WorldWideScience

Sample records for swine influenza virus

  1. Swine Influenza/Variant Influenza Viruses

    Science.gov (United States)

    ... Address What's this? Submit What's this? Submit Button Influenza Types Seasonal Avian Swine Variant Pandemic Other Information on Swine Influenza/Variant Influenza Virus Language: English (US) Español Recommend ...

  2. Pandemic swine influenza virus: Preparedness planning | Ojogba ...

    African Journals Online (AJOL)

    The novel H1N1 influenza virus that emerged in humans in Mexico in early 2009 and transmitted efficiently in the human population with global spread was declared a pandemic strain. The introduction of different avian and human influenza virus genes into swine influenza viruses often result in viruses of increased fitness ...

  3. Genetic Reassortment Among the Influenza Viruses (Avian Influenza, Human Influenza and Swine Influenza in Pigs

    Directory of Open Access Journals (Sweden)

    Dyah Ayu Hewajuli

    2012-12-01

    Full Text Available Influenza A virus is a hazardous virus and harm to respiratory tract. The virus infect birds, pigs, horses, dogs, mammals and humans. Pigs are important hosts in ecology of the influenza virus because they have two receptors, namely NeuAc 2,3Gal and NeuAc 2,6Gal which make the pigs are sensitive to infection of influenza virus from birds and humans and genetic reassortment can be occurred. Classical swine influenza H1N1 viruses had been circulated in pigs in North America and other countries for 80 years. In 1998, triple reassortant H3N2 swine influenza viruses that contains genes of human influenza A virus (H3N2, swine influenza virus (H1N1 and avian influenza are reported as cause an outbreaks in pigs in North America. Furthermore, the circulation of triple reassortant H3N2 swine influenza virus resulting reassortant H1N1 swine influenza and reassortant H1N2 swine influenza viruses cause infection in humans. Humans who were infected by triple reassortant swine influenza A virus (H1N1 usually made direct contact with pigs. Although without any clinical symptoms, pigs that are infected by triple reassortant swine influenza A (H1N1 can transmit infection to the humans around them. In June 2009, WHO declared that pandemic influenza of reassortant H1N1 influenza A virus (novel H1N1 has reached phase 6. In Indonesia until 2009, there were 1005 people were infected by H1N1 influenza A and 5 of them died. Novel H1N1 and H5N1 viruses have been circulated in humans and pigs in Indonesia. H5N1 reassortant and H1N1 viruses or the seasonal flu may could arise because of genetic reassortment between avian influenza and humans influenza viruses that infect pigs together.

  4. [An overview on swine influenza viruses].

    Science.gov (United States)

    Yang, Shuai; Zhu, Wen-Fei; Shu, Yue-Long

    2013-05-01

    Swine influenza viruses (SIVs) are respiratory pathogens of pigs. They cause both economic bur den in livestock-dependent industries and serious global public health concerns in humans. Because of their dual susceptibility to human and avian influenza viruses, pigs are recognized as intermediate hosts for genetic reassortment and interspecies transmission. Subtypes H1N1, H1N2, and H3N2 circulate in swine populations around the world, with varied origin and genetic characteristics among different continents and regions. In this review, the role of pigs in evolution of influenza A viruses, the genetic evolution of SIVs and interspecies transmission of SIVs are described. Considering the possibility that pigs might produce novel influenza viruses causing more outbreaks and pandemics, routine epidemiological surveillance of influenza viruses in pig populations is highly recommended.

  5. History of Swine influenza viruses in Asia.

    Science.gov (United States)

    Zhu, Huachen; Webby, Richard; Lam, Tommy T Y; Smith, David K; Peiris, Joseph S M; Guan, Yi

    2013-01-01

    The pig is one of the main hosts of influenza A viruses and plays important roles in shaping the current influenza ecology. The occurrence of the 2009 H1N1 pandemic influenza virus demonstrated that pigs could independently facilitate the genesis of a pandemic influenza strain. Genetic analyses revealed that this virus was derived by reassortment between at least two parent swine influenza viruses (SIV), from the northern American triple reassortant H1N2 (TR) and European avian-like H1N1 (EA) lineages. The movement of live pigs between different continents and subsequent virus establishment are preconditions for such a reassortment event to occur. Asia, especially China, has the largest human and pig populations in the world, and seems to be the only region frequently importing pigs from other continents. Virological surveillance revealed that not only classical swine H1N1 (CS), and human-origin H3N2 viruses circulated, but all of the EA, TR and their reassortant variants were introduced into and co-circulated in pigs in this region. Understanding the long-term evolution and history of SIV in Asia would provide insights into the emergence of influenza viruses with epidemic potential in swine and humans.

  6. Swine influenza virus: zoonotic potential and vaccination strategies for the control of avian and swine influenzas.

    Science.gov (United States)

    Thacker, Eileen; Janke, Bruce

    2008-02-15

    Influenza viruses are able to infect humans, swine, and avian species, and swine have long been considered a potential source of new influenza viruses that can infect humans. Swine have receptors to which both avian and mammalian influenza viruses bind, which increases the potential for viruses to exchange genetic sequences and produce new reassortant viruses in swine. A number of genetically diverse viruses are circulating in swine herds throughout the world and are a major cause of concern to the swine industry. Control of swine influenza is primarily through the vaccination of sows, to protect young pigs through maternally derived antibodies. However, influenza viruses continue to circulate in pigs after the decay of maternal antibodies, providing a continuing source of virus on a herd basis. Measures to control avian influenza in commercial poultry operations are dictated by the virulence of the virus. Detection of a highly pathogenic avian influenza (HPAI) virus results in immediate elimination of the flock. Low-pathogenic avian influenza viruses are controlled through vaccination, which is done primarily in turkey flocks. Maintenance of the current HPAI virus-free status of poultry in the United States is through constant surveillance of poultry flocks. Although current influenza vaccines for poultry and swine are inactivated and adjuvanted, ongoing research into the development of newer vaccines, such as DNA, live-virus, or vectored vaccines, is being done. Control of influenza virus infection in poultry and swine is critical to the reduction of potential cross-species adaptation and spread of influenza viruses, which will minimize the risk of animals being the source of the next pandemic.

  7. The global antigenic diversity of swine influenza A viruses

    DEFF Research Database (Denmark)

    Lewis, Nicola S; Russell, Colin A; Langat, Pinky

    2016-01-01

    Swine influenza presents a substantial disease burden for pig populations worldwide and poses a potential pandemic threat to humans. There is considerable diversity in both H1 and H3 influenza viruses circulating in swine due to the frequent introductions of viruses from humans and birds coupled...... with geographic segregation of global swine populations. Much of this diversity is characterized genetically but the antigenic diversity of these viruses is poorly understood. Critically, the antigenic diversity shapes the risk profile of swine influenza viruses in terms of their epizootic and pandemic potential...

  8. Efficacy of Influenza Vaccination and Tamiflu? Treatment ? Comparative Studies with Eurasian Swine Influenza Viruses in Pigs

    OpenAIRE

    Duerrwald, Ralf; Schlegel, Michael; Bauer, Katja; Vissiennon, Th?ophile; Wutzler, Peter; Schmidtke, Michaela

    2013-01-01

    Recent epidemiological developments demonstrated that gene segments of swine influenza A viruses can account for antigenic changes as well as reduced drug susceptibility of pandemic influenza A viruses. This raises questions about the efficacy of preventive measures against swine influenza A viruses. Here, the protective effect of vaccination was compared with that of prophylactic Tamiflu® treatment against two Eurasian swine influenza A viruses. 11-week-old pigs were infected by aerosol nebu...

  9. Influenza D Virus Infection in Feral Swine Populations, United States.

    Science.gov (United States)

    Ferguson, Lucas; Luo, Kaijian; Olivier, Alicia K; Cunningham, Fred L; Blackmon, Sherry; Hanson-Dorr, Katie; Sun, Hailiang; Baroch, John; Lutman, Mark W; Quade, Bianca; Epperson, William; Webby, Richard; DeLiberto, Thomas J; Wan, Xiu-Feng

    2018-06-01

    Influenza D virus (IDV) has been identified in domestic cattle, swine, camelid, and small ruminant populations across North America, Europe, Asia, South America, and Africa. Our study investigated seroprevalence and transmissibility of IDV in feral swine. During 2012-2013, we evaluated feral swine populations in 4 US states; of 256 swine tested, 57 (19.1%) were IDV seropositive. Among 96 archived influenza A virus-seropositive feral swine samples collected from 16 US states during 2010-2013, 41 (42.7%) were IDV seropositive. Infection studies demonstrated that IDV-inoculated feral swine shed virus 3-5 days postinoculation and seroconverted at 21 days postinoculation; 50% of in-contact naive feral swine shed virus, seroconverted, or both. Immunohistochemical staining showed viral antigen within epithelial cells of the respiratory tract, including trachea, soft palate, and lungs. Our findings suggest that feral swine might serve an important role in the ecology of IDV.

  10. Population dynamics of swine influenza virus in finishing pigs

    NARCIS (Netherlands)

    Loeffen, W.L.A.

    2008-01-01

    Influenza virus infections in swine were first noticed in the US in 1918, during the human pandemic of the Spanish flu. In Europe, seroprevalences for the three most common swine influenza strains at the moment, H1N1, H3N2 and H1N2, range from 20-80% in finishing pigs at the end of the finishing

  11. Novel reassortant swine influenza viruses are circulating in Danish pigs

    DEFF Research Database (Denmark)

    Breum, Solvej Østergaard; Hjulsager, Charlotte Kristiane; Trebbien, Ramona

    of the reassortant viruses comprised a HA gene similar to H1 of H1N1 avian-like swine influenza virus (SIV) and a NA gene most closely related to N2 gene of human H3N2 influenza virus that circulated in humans in the mid 1990s. The internal genes of this reassortant virus with the subtype H1avN2hu all belonged...... to the H1N1 avian-like SIV lineages. Until now this novel virus H1avN2hu has only been detected in Danish swine. The other novel reassortant virus contained the HA gene from H1N1pdm09 virus and a NA gene similar to the N2 gene of H3N2 SIV that have been circulating in European swine since the mid 1980s...

  12. Influenza A Viruses of Human Origin in Swine, Brazil.

    Science.gov (United States)

    Nelson, Martha I; Schaefer, Rejane; Gava, Danielle; Cantão, Maurício Egídio; Ciacci-Zanella, Janice Reis

    2015-08-01

    The evolutionary origins of the influenza A(H1N1)pdm09 virus that caused the first outbreak of the 2009 pandemic in Mexico remain unclear, highlighting the lack of swine surveillance in Latin American countries. Although Brazil has one of the largest swine populations in the world, influenza was not thought to be endemic in Brazil's swine until the major outbreaks of influenza A(H1N1)pdm09 in 2009. Through phylogenetic analysis of whole-genome sequences of influenza viruses of the H1N1, H1N2, and H3N2 subtypes collected in swine in Brazil during 2009-2012, we identified multiple previously uncharacterized influenza viruses of human seasonal H1N2 and H3N2 virus origin that have circulated undetected in swine for more than a decade. Viral diversity has further increased in Brazil through reassortment between co-circulating viruses, including A(H1N1)pdm09. The circulation of multiple divergent hemagglutinin lineages challenges the design of effective cross-protective vaccines and highlights the need for additional surveillance.

  13. Influenza A Viruses of Human Origin in Swine, Brazil

    Science.gov (United States)

    Schaefer, Rejane; Gava, Danielle; Cantão, Maurício Egídio; Ciacci-Zanella, Janice Reis

    2015-01-01

    The evolutionary origins of the influenza A(H1N1)pdm09 virus that caused the first outbreak of the 2009 pandemic in Mexico remain unclear, highlighting the lack of swine surveillance in Latin American countries. Although Brazil has one of the largest swine populations in the world, influenza was not thought to be endemic in Brazil’s swine until the major outbreaks of influenza A(H1N1)pdm09 in 2009. Through phylogenetic analysis of whole-genome sequences of influenza viruses of the H1N1, H1N2, and H3N2 subtypes collected in swine in Brazil during 2009–2012, we identified multiple previously uncharacterized influenza viruses of human seasonal H1N2 and H3N2 virus origin that have circulated undetected in swine for more than a decade. Viral diversity has further increased in Brazil through reassortment between co-circulating viruses, including A(H1N1)pdm09. The circulation of multiple divergent hemagglutinin lineages challenges the design of effective cross-protective vaccines and highlights the need for additional surveillance. PMID:26196759

  14. Swine Influenza Virus Antibodies in Humans, Western Europe, 2009

    Science.gov (United States)

    Gerloff, Nancy A.; Kremer, Jacques R.; Charpentier, Emilie; Sausy, Aurélie; Olinger, Christophe M.; Weicherding, Pierre; Schuh, John; Van Reeth, Kristien

    2011-01-01

    Serologic studies for swine influenza viruses (SIVs) in humans with occupational exposure to swine have been reported from the Americas but not from Europe. We compared levels of neutralizing antibodies against 3 influenza viruses—pandemic (H1N1) 2009, an avian-like enzootic subtype H1N1 SIV, and a 2007–08 seasonal subtype H1N1—in 211 persons with swine contact and 224 matched controls in Luxembourg. Persons whose profession involved contact with swine had more neutralizing antibodies against SIV and pandemic (H1N1) 2009 virus than did the controls. Controls also had antibodies against these viruses although exposure to them was unlikely. Antibodies against SIV and pandemic (H1N1) 2009 virus correlated with each other but not with seasonal subtype H1N1 virus. Sequential exposure to variants of seasonal influenza (H1N1) viruses may have increased chances for serologic cross-reactivity with antigenically distinct viruses. Further studies are needed to determine the extent to which serologic responses correlate with infection. PMID:21392430

  15. Two genotypes of H1N2 swine influenza viruses appeared among pigs in China.

    Science.gov (United States)

    Xu, Chuantian; Zhu, Qiyun; Yang, Huanliang; Zhang, Xiumei; Qiao, Chuanling; Chen, Yan; Xin, Xiaoguang; Chen, Hualan

    2009-10-01

    H1N2 is one of the main subtypes of influenza, which circulates in swine all over the world. To investigate the prevalence and genetic of H1N2 in swine of China. Two H1N2 swine influenza viruses were isolated from Tianjin and Guangdong province of China in 2004 and 2006, respectively. The molecular evolution of eight gene segments was analyzed. A/Swine/Tianjin/1/2004 has low identity with A/Swine/Guangdong/2006; in the phylogenetic tree of PA gene, A/Swine/Guangdong/1/2006 and A/Swine/Guangxi/1/2006 along with the H1N2 swine isolates of North America formed a cluster; and A/Swine/Tianjin/2004 and A/Swine/Zhejiang/2004, along with the classical H1N1 swine isolates formed another cluster; except that NA gene of A/Swine/Tianjin/1/2004 fell into the cluster of the H3N2 human influenza virus, indicating the reassortment between H3N2 human and H1N1 swine influenza viruses. Two different genotypes of H1N2 appeared among pigs in China. A/swine/Guangdong/1/06 was probably from H1N2 swine influenza viruses of North America; while A/swine/Tianjin/1/04 maybe come from reassortments of classical H1N1 swine and H3N2 human viruses prevalent in North America.

  16. Prospective surveillance for influenza. virus in Chinese swine farms.

    Science.gov (United States)

    Anderson, Benjamin D; Ma, Mai-Juan; Wang, Guo-Lin; Bi, Zhen-Qiang; Lu, Bing; Wang, Xian-Jun; Wang, Chuang-Xin; Chen, Shan-Hui; Qian, Yan-Hua; Song, Shao-Xia; Li, Min; Zhao, Teng; Wu, Meng-Na; Borkenhagen, Laura K; Cao, Wu-Chun; Gray, Gregory C

    2018-05-16

    Pork production in China is rapidly increasing and swine production operations are expanding in size and number. However, the biosecurity measures necessary to prevent swine disease transmission, particularly influenza. viruses (IAV) that can be zoonotic, are often inadequate. Despite this risk, few studies have attempted to comprehensively study IAV ecology in swine production settings. Here, we present environmental and animal sampling data collected in the first year of an ongoing five-year prospective epidemiological study to assess IAV ecology as it relates to swine workers, their pigs, and the farm environment. From March 2015 to February 2016, we collected 396 each of environmental swab, water, bioaerosol, and fecal/slurry samples, as well as 3300 pig oral secretion samples from six farms in China. The specimens were tested with molecular assays for IAV. Of these, 46 (11.6%) environmental swab, 235 (7.1%) pig oral secretion, 23 (5.8%) water, 20 (5.1%) bioaerosol, and 19 (4.8%) fecal/slurry specimens were positive for influenza. by qRT-PCR. Risk factors for IAV detection among collected samples were identified using bivariate logistic regression. Overall, these first year data suggest that IAV is quite ubiquitous in the swine production environment and demonstrate an association between the different types of environmental sampling used. Given the mounting evidence that some of these viruses freely move between pigs and swine workers, and that mixing of these viruses can yield progeny viruses with pandemic potential, it seems imperative that routine surveillance for novel IAVs be conducted in commercial swine farms.

  17. Molucular Epidemiology and Evolution of Influenza Viruses Circulating within European Swine between 2009 and 2013

    NARCIS (Netherlands)

    Watson, S.J.; Langat, P.; Reid, S.; Lam, T.; Cotten, M.; Kelly, M.; Reeth, Van K.; Qiu, Y.; Simon, G.; Bonin, E.; Foni, E.; Chiapponi, C.; Larsen, L.; Hjulsager, C.; Markowska-Daniel, I.; Urbaniak, K.; Durrwald, R.; Schlegel, M.; Huovilainen, A.; Davidson, I.; Dan, A.; Loeffen, W.L.A.; Edwards, S.; Bublot, M.; Vila, T.; Maldonado, J.; Valls, L.; Brown, I.H.; Pybus, O.G.; Kellam, P.

    2015-01-01

    The emergence in humans of the A(H1N1)pdm09 influenza virus, a complex reassortant virus of swine origin, highlighted the importance of worldwide influenza virus surveillance in swine. To date, large-scale surveillance studies have been reported for southern China and North America, but such data

  18. Swine influenza viruses isolated in 1983, 2002 and 2009 in Sweden exemplify different lineages

    Directory of Open Access Journals (Sweden)

    Metreveli Giorgi

    2010-12-01

    Full Text Available Abstract Swine influenza virus isolates originating from outbreaks in Sweden from 1983, 2002 and 2009 were subjected to nucleotide sequencing and phylogenetic analysis. The aim of the studies was to obtain an overview on their potential relatedness as well as to provide data for broader scale studies on swine influenza epidemiology. Nonetheless, analyzing archive isolates is justified by the efforts directed to the comprehension of the appearance of pandemic H1N1 influenza virus. Interestingly, this study illustrates the evolution of swine influenza viruses in Europe, because the earliest isolate belonged to 'classical' swine H1N1, the subsequent ones to Eurasian 'avian-like' swine H1N1 and reassortant 'avian-like' swine H1N2 lineages, respectively. The latter two showed close genetic relatedness regarding their PB2, HA, NP, and NS genes, suggesting common ancestry. The study substantiates the importance of molecular surveillance for swine influenza viruses.

  19. Interspecies Interactions and Potential Influenza A Virus Risk in Small Swine Farms in Peru

    Science.gov (United States)

    2012-03-15

    and swine influenza viruses : our current understanding of the zoonotic risk. Vet Res 2007, 38(2):243–260. 4. Wertheim JO: When pigs fly: the avian ...first authors. Abstract Background The recent avian influenza epidemic in Asia and the H1N1 pandemic demonstrated that influenza A viruses pose a...prime “mixing vessels” due to the dual receptivity of their trachea to human and avian strains. Additionally, avian and human influenza viruses

  20. Influenza (Flu) Viruses

    Science.gov (United States)

    ... Types Seasonal Avian Swine Variant Pandemic Other Influenza (Flu) Viruses Language: English (US) Español Recommend on Facebook ... influenza circulate and cause illness. More Information about Flu Viruses Types of Influenza Viruses Influenza A and ...

  1. Interaction between Mycoplasma hyopneumoniae and Swine Influenza Virus

    Science.gov (United States)

    Thacker, Eileen L.; Thacker, Brad J.; Janke, Bruce H.

    2001-01-01

    An experimental respiratory model was used to investigate the interaction between Mycoplasma hyopneumoniae and swine influenza virus (SIV) in the induction of pneumonia in susceptible swine. Previous studies demonstrated that M. hyopneumoniae, which produces a chronic bronchopneumonia in swine, potentiates a viral pneumonia induced by the porcine reproductive and respiratory syndrome virus (PRRSV). In this study, pigs were inoculated with M. hyopneumoniae 21 days prior to inoculation with SIV. Clinical disease as characterized by the severity of cough and fever was evaluated daily. Percentages of lung tissue with visual lesions and microscopic lesions were assessed upon necropsy at 3, 7, 14, and 21 days following SIV inoculation. Clinical observations revealed that pigs infected with both SIV and M. hyopneumoniae coughed significantly more than pigs inoculated with a single agent. Macroscopic pneumonia on necropsy at days 3 and 7 was greatest in both SIV-infected groups, with minimal levels of pneumonia in the M. hyopneumoniae-only-infected pigs. At 14 days post-SIV inoculation, pneumonia was significantly more severe in pigs infected with both pathogens. However, by 21 days postinoculation, the level of pneumonia in the dual-infected pigs was similar to that of the M. hyopneumoniae-only-infected group, and the pneumonia in the pigs inoculated with only SIV was nearly resolved. Microscopically, there was no apparent increase in the severity of pneumonia in pigs infected with both agents compared to that of single-agent-challenged pigs. The results of this study found that while pigs infected with both agents exhibited more severe clinical disease, the relationship between the two pathogens lacked the profound potentiation found with dual infection with M. hyopneumoniae and PRRSV. These findings demonstrate that the relationship between mycoplasmas and viruses varies with the individual agent. PMID:11427564

  2. Replication of swine and human influenza viruses in juvenile and layer turkey hens.

    Science.gov (United States)

    Ali, Ahmed; Yassine, Hadi; Awe, Olusegun O; Ibrahim, Mahmoud; Saif, Yehia M; Lee, Chang-Won

    2013-04-12

    Since the first reported isolation of swine influenza viruses (SIVs) in turkeys in the 1980s, transmission of SIVs to turkeys was frequently documented. Recently, the 2009 pandemic H1N1 virus, that was thought to be of swine origin, was detected in turkeys with a severe drop in egg production. In this study, we assessed the infectivity of different mammalian influenza viruses including swine, pandemic H1N1 and seasonal human influenza viruses in both juvenile and layer turkeys. In addition, we investigated the potential influenza virus dissemination in the semen of experimentally infected turkey toms. Results showed that all mammalian origin influenza viruses tested can infect turkeys. SIVs were detected in respiratory and digestive tracts of both juvenile and layer turkeys. Variations in replication efficiencies among SIVs were observed especially in the reproductive tract of layer turkeys. Compared to SIVs, limited replication of seasonal human H1N1 and no detectable replication of recent human-like swine H1N2, pandemic H1N1 and seasonal human H3N2 viruses was noticed. All birds seroconverted to all tested viruses regardless of their replication level. In turkey toms, we were able to detect swine H3N2 virus in semen and reproductive tract of infected toms by real-time RT-PCR although virus isolation was not successful. These data suggest that turkey hens could be affected by diverse influenza strains especially SIVs. Moreover, the differences in the replication efficiency we demonstrated among SIVs and between SIV and human influenza viruses in layer turkeys suggest a possible use of turkeys as an animal model to study host tropism and pathogenesis of influenza viruses. Our results also indicate a potential risk of venereal transmission of influenza viruses in turkeys. Copyright © 2012 Elsevier B.V. All rights reserved.

  3. Feral Swine in the United States Have Been Exposed to both Avian and Swine Influenza A Viruses.

    Science.gov (United States)

    Martin, Brigitte E; Sun, Hailiang; Carrel, Margaret; Cunningham, Fred L; Baroch, John A; Hanson-Dorr, Katie C; Young, Sean G; Schmit, Brandon; Nolting, Jacqueline M; Yoon, Kyoung-Jin; Lutman, Mark W; Pedersen, Kerri; Lager, Kelly; Bowman, Andrew S; Slemons, Richard D; Smith, David R; DeLiberto, Thomas; Wan, Xiu-Feng

    2017-10-01

    Influenza A viruses (IAVs) in swine can cause sporadic infections and pandemic outbreaks among humans, but how avian IAV emerges in swine is still unclear. Unlike domestic swine, feral swine are free ranging and have many opportunities for IAV exposure through contacts with various habitats and animals, including migratory waterfowl, a natural reservoir for IAVs. During the period from 2010 to 2013, 8,239 serum samples were collected from feral swine across 35 U.S. states and tested against 45 contemporary antigenic variants of avian, swine, and human IAVs; of these, 406 (4.9%) samples were IAV antibody positive. Among 294 serum samples selected for antigenic characterization, 271 cross-reacted with ≥1 tested virus, whereas the other 23 did not cross-react with any tested virus. Of the 271 IAV-positive samples, 236 cross-reacted with swine IAVs, 1 with avian IAVs, and 16 with avian and swine IAVs, indicating that feral swine had been exposed to both swine and avian IAVs but predominantly to swine IAVs. Our findings suggest that feral swine could potentially be infected with both avian and swine IAVs, generating novel IAVs by hosting and reassorting IAVs from wild birds and domestic swine and facilitating adaptation of avian IAVs to other hosts, including humans, before their spillover. Continued surveillance to monitor the distribution and antigenic diversities of IAVs in feral swine is necessary to increase our understanding of the natural history of IAVs. IMPORTANCE There are more than 5 million feral swine distributed across at least 35 states in the United States. In contrast to domestic swine, feral swine are free ranging and have unique opportunities for contact with wildlife, livestock, and their habitats. Our serological results indicate that feral swine in the United States have been exposed to influenza A viruses (IAVs) consistent with those found in both domestic swine and wild birds, with the predominant infections consisting of swine-adapted IAVs

  4. Guinea pig model for evaluating the potential public health risk of swine and avian influenza viruses.

    Directory of Open Access Journals (Sweden)

    Yipeng Sun

    Full Text Available BACKGROUND: The influenza viruses circulating in animals sporadically transmit to humans and pose pandemic threats. Animal models to evaluate the potential public health risk potential of these viruses are needed. METHODOLOGY/PRINCIPAL FINDINGS: We investigated the guinea pig as a mammalian model for the study of the replication and transmission characteristics of selected swine H1N1, H1N2, H3N2 and avian H9N2 influenza viruses, compared to those of pandemic (H1N1 2009 and seasonal human H1N1, H3N2 influenza viruses. The swine and avian influenza viruses investigated were restricted to the respiratory system of guinea pigs and shed at high titers in nasal tracts without prior adaptation, similar to human strains. None of the swine and avian influenza viruses showed transmissibility among guinea pigs; in contrast, pandemic (H1N1 2009 virus transmitted from infected guinea pigs to all animals and seasonal human influenza viruses could also horizontally transmit in guinea pigs. The analysis of the receptor distribution in the guinea pig respiratory tissues by lectin histochemistry indicated that both SAα2,3-Gal and SAα2,6-Gal receptors widely presented in the nasal tract and the trachea, while SAα2,3-Gal receptor was the main receptor in the lung. CONCLUSIONS/SIGNIFICANCE: We propose that the guinea pig could serve as a useful mammalian model to evaluate the potential public health threat of swine and avian influenza viruses.

  5. Guinea pig model for evaluating the potential public health risk of swine and avian influenza viruses.

    Science.gov (United States)

    Sun, Yipeng; Bi, Yuhai; Pu, Juan; Hu, Yanxin; Wang, Jingjing; Gao, Huijie; Liu, Linqing; Xu, Qi; Tan, Yuanyuan; Liu, Mengda; Guo, Xin; Yang, Hanchun; Liu, Jinhua

    2010-11-23

    The influenza viruses circulating in animals sporadically transmit to humans and pose pandemic threats. Animal models to evaluate the potential public health risk potential of these viruses are needed. We investigated the guinea pig as a mammalian model for the study of the replication and transmission characteristics of selected swine H1N1, H1N2, H3N2 and avian H9N2 influenza viruses, compared to those of pandemic (H1N1) 2009 and seasonal human H1N1, H3N2 influenza viruses. The swine and avian influenza viruses investigated were restricted to the respiratory system of guinea pigs and shed at high titers in nasal tracts without prior adaptation, similar to human strains. None of the swine and avian influenza viruses showed transmissibility among guinea pigs; in contrast, pandemic (H1N1) 2009 virus transmitted from infected guinea pigs to all animals and seasonal human influenza viruses could also horizontally transmit in guinea pigs. The analysis of the receptor distribution in the guinea pig respiratory tissues by lectin histochemistry indicated that both SAα2,3-Gal and SAα2,6-Gal receptors widely presented in the nasal tract and the trachea, while SAα2,3-Gal receptor was the main receptor in the lung. We propose that the guinea pig could serve as a useful mammalian model to evaluate the potential public health threat of swine and avian influenza viruses.

  6. Educating youth swine exhibitors on influenza A virus transmission at agricultural fairs.

    Science.gov (United States)

    Nolting, J M; Midla, J; Whittington, M S; Scheer, S D; Bowman, A S

    2018-02-01

    Influenza A virus (IAV) is a major zoonotic pathogen that threatens global public health. Novel strains of influenza A viruses pose a significant risk to public health due to their pandemic potential, and transmission of influenza A viruses from animals to humans is an important mechanism in the generation and introduction of IAVs that threaten human health. The purpose of this descriptive correlational study was to develop real-life training scenarios to better inform swine exhibitors of the risks they may encounter when influenza A viruses are present in swine. Educational activities were implemented in five Ohio counties where exhibition swine had historically been shedding influenza A viruses during the county fair. A total of 146 youth swine exhibitors participated in the educational programme, and an increase in the knowledge base of these youth was documented. It is expected that educating youth exhibitors about exposure to influenza A virus infections in the swine they are exhibiting will result in altered behaviours and animal husbandry practices that will improve both human and animal health. © 2017 Blackwell Verlag GmbH.

  7. Assessment of zoonotic potential of four European swine influenza viruses in the ferret model

    DEFF Research Database (Denmark)

    Fobian, Kristina; P. Fabrizio, Thomas; Yoon, Sun-Woo

    herds and enhanced focus on risk assessment of these new viruses. In this study, four European swine influenza viruses were assessed for their zoonotic potential. Of the four viruses, two were enzootic viruses of subtype H1N2 (with avian-like H1) and H3N2 and two were new reassortants, one with avian......The reverse zoonotic events that introduced the 2009 pandemic influenza virus into swine herds have drastically increased the diversity of reassortants throughout Europe. The pandemic potential of these novel reassortments is unknown, hence necessitating enhanced surveillance of European swine...... to neuraminidase inhibitors. These findings suggest that the investigated viruses have the potential to infect humans and further underline the need for continued surveillance as well as pandemic and zoonotic assessment of new influenza reassortants....

  8. The first Swedish H1N2 swine influenza virus isolate represents an uncommon reassortant

    OpenAIRE

    Renström Lena HM; Isaksson Mats; Berg Mikael; Zohari Siamak; Widén Frederik; Metreveli Giorgi; Bálint Ádám; Wallgren Per; Belák Sándor; Segall Thomas; Kiss István

    2009-01-01

    Abstract The European swine influenza viruses (SIVs) show considerable diversity comprising different types of H1N1, H3N2, and H1N2 strains. The intensifying full genome sequencing efforts reveal further reassortants within these subtypes. Here we report the identification of an uncommon reassortant variant of H1N2 subtype influenza virus isolated from a pig in a multisite herd where H1N2 swine influenza was diagnosed for the first time in Sweden during the winter of 2008-2009. The majority o...

  9. MANAGEMENT PATIENT OF SWINE INFLUENZA

    Directory of Open Access Journals (Sweden)

    Endra Gunawan

    2015-05-01

    Full Text Available Influenza is an acute respiratory diseases caused by various influenza virus which infect the upper and lower respiratory tract and often accompanied by systemic symptoms such as fever, headache and muscle pain. Influenza spreads through the air. Swine influenza comes from swine and can cause an outbreaks in pig flocks. Even this is a kind of a rare case but the swine influenza could be transmitted to human by direct contact with infected swine or through environment that already being contaminated by swine influenza virus. There are 3 types of swine influenza virus namely H1N1, H3N2 and H1N2. Type H1N1 swine-virus had been known since 1918. Avian influenza virus infection is transmitted from one person to another through secret containing virus. Virus is binded into the mucous cells of respiratory tract before it is finally infecting the cells itself. Management patients with H1N1 influenza is based on the complications and the risk. Besides, it is also need to consider the clinical criteria of the patient. Therapy medicamentosa is applied to the patients by giving an antiviral, antibiotics and symptomatic therapy. Prevention can be done by avoid contact with infected animal or environment, having antiviral prophylaxis and vaccination.

  10. Swine Influenza Virus (H1N2) Characterization and Transmission in Ferrets, Chile.

    Science.gov (United States)

    Bravo-Vasquez, Nicolás; Karlsson, Erik A; Jimenez-Bluhm, Pedro; Meliopoulos, Victoria; Kaplan, Bryan; Marvin, Shauna; Cortez, Valerie; Freiden, Pamela; Beck, Melinda A; Hamilton-West, Christopher; Schultz-Cherry, Stacey

    2017-02-01

    Phylogenetic analysis of the influenza hemagglutinin gene (HA) has suggested that commercial pigs in Chile harbor unique human seasonal H1-like influenza viruses, but further information, including characterization of these viruses, was unavailable. We isolated influenza virus (H1N2) from a swine in a backyard production farm in Central Chile and demonstrated that the HA gene was identical to that in a previous report. Its HA and neuraminidase genes were most similar to human H1 and N2 viruses from the early 1990s and internal segments were similar to influenza A(H1N1)pdm09 virus. The virus replicated efficiently in vitro and in vivo and transmitted in ferrets by respiratory droplet. Antigenically, it was distinct from other swine viruses. Hemagglutination inhibition analysis suggested that antibody titers to the swine Chilean H1N2 virus were decreased in persons born after 1990. Further studies are needed to characterize the potential risk to humans, as well as the ecology of influenza in swine in South America.

  11. Novel reassortant of swine influenza H1N2 virus in Germany.

    Science.gov (United States)

    Zell, Roland; Motzke, Susann; Krumbholz, Andi; Wutzler, Peter; Herwig, Volker; Dürrwald, Ralf

    2008-01-01

    European porcine H1N2 influenza viruses arose after multiple reassortment steps involving a porcine influenza virus with avian-influenza-like internal segments and human H1N1 and H3N2 viruses in 1994. In Germany, H1N2 swine influenza viruses first appeared in 2000. Two German H1N2 swine influenza virus strains isolated from pigs with clinical symptoms of influenza are described. They were characterized by the neutralization test, haemagglutination inhibition (HI) test and complete sequencing of the viral genomes. The data demonstrate that these viruses represent a novel H1N2 reassortant. The viruses showed limited neutralization by sera raised against heterologous A/sw/Bakum/1,832/00-like H1N2 viruses. Sera pools from recovered pigs showed a considerably lower HI reaction, indicative of diagnostic difficulties in using the HI test to detect these viruses with A/sw/Bakum/1,832/00-like H1N2 antigens. Genome sequencing revealed the novel combination of the human-like HAH1 gene of European porcine H1N2 influenza viruses and the NAN2 gene of European porcine H3N2 viruses.

  12. Influenza A virus infection dynamics in swine farms in Belgium, France, Italy and Spain 2006-2008

    NARCIS (Netherlands)

    Kyriakis, C.S.; Rose, N.; Foni, E.; Maldonado, J.; Loeffen, W.L.A.; Madec, F.; Simon, G.; Reeth, K.

    2013-01-01

    Avian-like H1N1 and reassortant H3N2 and H1N2 influenza A viruses with a human-like haemagglutinin have been co-circulating in swine in Europe for more than a decade. We aimed to examine the infection dynamics of the three swine influenza virus (SIV) lineages at the farm level, and to identify

  13. Live poultry market workers are susceptible to both avian and swine influenza viruses, Guangdong Province, China.

    Science.gov (United States)

    Chen, Jidang; Ma, Jun; White, Sarah K; Cao, Zhenpeng; Zhen, Yun; He, Shuyi; Zhu, Wanjun; Ke, Changwen; Zhang, Yongbiao; Su, Shuo; Zhang, Guihong

    2015-12-31

    Guangdong Province is recognized for dense populations of humans, pigs, poultry and pets. In order to evaluate the threat of viral infection faced by those working with animals, a cross-sectional, sero-epidemiological study was conducted in Guangdong between December 2013 and January 2014. Individuals working with swine, at poultry farms, or live poultry markets (LPM), and veterinarians, and controls not exposed to animals were enrolled in this study and 11 (4 human, 3 swine, 3 avian, and 1 canine) influenza A viruses were used in hemagglutination inhibition (HI) assays (7 strains) and the cross-reactivity test (9 strains) in which 5 strains were used in both tests. Univariate analysis was performed to identify which variables were significantly associated with seropositivity. Odds ratios (OR) revealed that swine workers had a significantly higher risk of elevated antibodies against A/swine/Guangdong/L6/2009(H1N1), a classical swine virus, and A/swine/Guangdong/SS1/2012(H1N1), a Eurasian avian-like swine virus than non-exposed controls. Poultry farm workers were at a higher risk of infection with avian influenza H7N9 and H9N2. LPM workers were at a higher risk of infection with 3 subtypes of avian influenza, H5N1, H7N9, and H9N2. Interestingly, the OR also indicated that LPM workers were at risk of H1N1 swine influenza virus infection, perhaps due to the presence of pigs in the LPM. While partial confounding by cross-reactive antibodies against human viruses or vaccines cannot be ruled out, our data suggests that animal exposed people as are more likely to have antibodies against animal influenza viruses. Copyright © 2015 Elsevier B.V. All rights reserved.

  14. Efficacy of influenza vaccination and tamiflu® treatment--comparative studies with Eurasian Swine influenza viruses in pigs.

    Science.gov (United States)

    Duerrwald, Ralf; Schlegel, Michael; Bauer, Katja; Vissiennon, Théophile; Wutzler, Peter; Schmidtke, Michaela

    2013-01-01

    Recent epidemiological developments demonstrated that gene segments of swine influenza A viruses can account for antigenic changes as well as reduced drug susceptibility of pandemic influenza A viruses. This raises questions about the efficacy of preventive measures against swine influenza A viruses. Here, the protective effect of vaccination was compared with that of prophylactic Tamiflu® treatment against two Eurasian swine influenza A viruses. 11-week-old pigs were infected by aerosol nebulisation with high doses of influenza virus A/swine/Potsdam/15/1981 (H1N1/1981, heterologous challenge to H1N1 vaccine strain) and A/swine/Bakum/1832/2000 (H1N2/2000, homologous challenge to H1N2 vaccine strain) in two independent trials. In each trial (i) 10 pigs were vaccinated twice with a trivalent vaccine (RESPIPORC® FLU3; 28 and 7 days before infection), (ii) another 10 pigs received 150 mg/day of Tamiflu® for 5 days starting 12 h before infection, and (iii) 12 virus-infected pigs were left unvaccinated and untreated and served as controls. Both viruses replicated efficiently in porcine respiratory organs causing influenza with fever, dyspnoea, and pneumonia. Tamiflu® treatment as well as vaccination prevented clinical signs and significantly reduced virus shedding. Whereas after homologous challenge with H1N2/2000 no infectious virus in lung and hardly any lung inflammation were detected, the virus titre was not and the lung pathology was only partially reduced in H1N1/1981, heterologous challenged pigs. Tamiflu® application did not affect these study parameters. In conclusion, all tested preventive measures provided protection against disease. Vaccination additionally prevented virus replication and histopathological changes in the lung of homologous challenged pigs.

  15. Efficacy of influenza vaccination and tamiflu® treatment--comparative studies with Eurasian Swine influenza viruses in pigs.

    Directory of Open Access Journals (Sweden)

    Ralf Duerrwald

    Full Text Available Recent epidemiological developments demonstrated that gene segments of swine influenza A viruses can account for antigenic changes as well as reduced drug susceptibility of pandemic influenza A viruses. This raises questions about the efficacy of preventive measures against swine influenza A viruses. Here, the protective effect of vaccination was compared with that of prophylactic Tamiflu® treatment against two Eurasian swine influenza A viruses. 11-week-old pigs were infected by aerosol nebulisation with high doses of influenza virus A/swine/Potsdam/15/1981 (H1N1/1981, heterologous challenge to H1N1 vaccine strain and A/swine/Bakum/1832/2000 (H1N2/2000, homologous challenge to H1N2 vaccine strain in two independent trials. In each trial (i 10 pigs were vaccinated twice with a trivalent vaccine (RESPIPORC® FLU3; 28 and 7 days before infection, (ii another 10 pigs received 150 mg/day of Tamiflu® for 5 days starting 12 h before infection, and (iii 12 virus-infected pigs were left unvaccinated and untreated and served as controls. Both viruses replicated efficiently in porcine respiratory organs causing influenza with fever, dyspnoea, and pneumonia. Tamiflu® treatment as well as vaccination prevented clinical signs and significantly reduced virus shedding. Whereas after homologous challenge with H1N2/2000 no infectious virus in lung and hardly any lung inflammation were detected, the virus titre was not and the lung pathology was only partially reduced in H1N1/1981, heterologous challenged pigs. Tamiflu® application did not affect these study parameters. In conclusion, all tested preventive measures provided protection against disease. Vaccination additionally prevented virus replication and histopathological changes in the lung of homologous challenged pigs.

  16. Efficacy of Influenza Vaccination and Tamiflu® Treatment – Comparative Studies with Eurasian Swine Influenza Viruses in Pigs

    Science.gov (United States)

    Duerrwald, Ralf; Schlegel, Michael; Bauer, Katja; Vissiennon, Théophile; Wutzler, Peter; Schmidtke, Michaela

    2013-01-01

    Recent epidemiological developments demonstrated that gene segments of swine influenza A viruses can account for antigenic changes as well as reduced drug susceptibility of pandemic influenza A viruses. This raises questions about the efficacy of preventive measures against swine influenza A viruses. Here, the protective effect of vaccination was compared with that of prophylactic Tamiflu® treatment against two Eurasian swine influenza A viruses. 11-week-old pigs were infected by aerosol nebulisation with high doses of influenza virus A/swine/Potsdam/15/1981 (H1N1/1981, heterologous challenge to H1N1 vaccine strain) and A/swine/Bakum/1832/2000 (H1N2/2000, homologous challenge to H1N2 vaccine strain) in two independent trials. In each trial (i) 10 pigs were vaccinated twice with a trivalent vaccine (RESPIPORC® FLU3; 28 and 7 days before infection), (ii) another 10 pigs received 150 mg/day of Tamiflu® for 5 days starting 12 h before infection, and (iii) 12 virus-infected pigs were left unvaccinated and untreated and served as controls. Both viruses replicated efficiently in porcine respiratory organs causing influenza with fever, dyspnoea, and pneumonia. Tamiflu® treatment as well as vaccination prevented clinical signs and significantly reduced virus shedding. Whereas after homologous challenge with H1N2/2000 no infectious virus in lung and hardly any lung inflammation were detected, the virus titre was not and the lung pathology was only partially reduced in H1N1/1981, heterologous challenged pigs. Tamiflu® application did not affect these study parameters. In conclusion, all tested preventive measures provided protection against disease. Vaccination additionally prevented virus replication and histopathological changes in the lung of homologous challenged pigs. PMID:23630601

  17. Surveillance programs in Denmark has revealed the circulation of novel reassortant influenza A viruses in swine

    DEFF Research Database (Denmark)

    Larsen, Lars Erik; Hjulsager, Charlotte Kristiane; Trebbien, Ramona

    2014-01-01

    avH1N1 and H3N2 which is different from the dominating European H1N2 subtype (1). The prevalence of the H1N1pdm09 virus in swine has increased since 2009 in some countries including Denmark. Here we present the results of the national passive surveillance program on influenza in swine performed from...... by the combination of the gene segments hemagglutinin (HA) and neuraminidase (NA). In most European countries, the avian-like (av)H1N1, the 2009 pandemic variant (H1N1pdm09), H1N2 and H3N2 subtypes have constituted the dominating SIV subtypes during recent years. In Denmark, the H1N2 subtype is a reassortant between......Swine influenza is a respiratory disease caused by multiple subtypes of influenza A virus. Swine influenza virus (SIV) is enzootic in swine populations in Europe, Asia, North and South America. The influenza A virus genome consist of eight distinct gene segments and SIV subtypes are defined...

  18. Presence of influenza viruses in backyard poultry and swine in El Yali wetland, Chile.

    Science.gov (United States)

    Bravo-Vasquez, N; Di Pillo, F; Lazo, A; Jiménez-Bluhm, P; Schultz-Cherry, S; Hamilton-West, C

    2016-11-01

    In South America little is known regarding influenza virus circulating in backyard poultry and swine populations. Backyard productive systems (BPS) that breed swine and poultry are widely distributed throughout Chile with high density in the central zone, and several BPS are located within the "El Yali" (EY) ecosystem, which is one of the most important wetlands in South America. Here, 130 different wild bird species have been described, of them, at least 22 species migrate yearly from North America for nesting. For this reason, EY is considered as a high-risk zone for avian influenza virus. This study aims to identify if backyard poultry and swine bred in the EY ecosystem have been exposed to influenza A virus and if so, to identify influenza virus subtypes. A biosecurity and handling survey was applied and samples were collected from BPS in two seasons (spring 2013 and fall 2014) for influenza seroprevalence, and in one season (fall 2014) for virus presence. Seroprevalence at BPS level was 42% (95% CI:22-49) during spring 2013 and 60% (95% CI 43-72) in fall 2014. rRT-PCR for the influenza A matrix gene indicated a viral prevalence of 27% (95% CI:14-39) at BPS level in fall 2014. Eight farms (73% of rRT-PCR positive farms) were also positive to the Elisa test at the same time. One BPS was simultaneously positive (rRT-PCR) in multiple species (poultry, swine and geese) and a H1N2 virus was identified from swine, exemplifying the risk that these BPS may pose for generation of novel influenza viruses. Copyright © 2016 Elsevier B.V. All rights reserved.

  19. New influenza A virus reassortments have been found in Danish swine in 2011

    DEFF Research Database (Denmark)

    Breum, Solvej Østergaard; Hjulsager, Charlotte Kristiane; Trebbien, Ramona

    2012-01-01

    viruses which have been circulating in Danish pigs since it was found for the first time in 1981. ii) H1N2 reassortant viruses which comprise HA from “avian like” H1N1 and NA from swine H3N2. The reassortant H1N2 virus was discovered in Danish pig for the first time in 2003 and is now well established......In 2011 a passive surveillance for influenza A virus was conducted in Danish swine. Tested samples were clinical samples from affected pigs submitted to the Danish National Veterinary Institute for swine influenza virus detection. In total 713 samples from 276 herds were analysed and about 24......% of the samples were positive for swine influenza virus. All influenza positive samples were tested for the H1N1pdm09 virus by a real time RT-PCR assay specific for the pandemic HA gene and 26% of the samples were positive. Subtyping of 90 samples by sequencing revealed the presence of; i) H1N1 “avian like...

  20. Genetic and pathogenic characteristics of H1 avian and swine influenza A viruses.

    Science.gov (United States)

    Kang, Hyun-Mi; Lee, Eun-Kyoung; Song, Byung-Min; Jeong, Jipseol; Kim, Hye-Ryoung; Choi, Eun-Jin; Shin, Yeun-Kyung; Lee, Hee-Soo; Lee, Youn-Jeong

    2014-10-01

    This study examined the potential for cross-species transmission of influenza viruses by comparing the genetic and pathogenic characteristics of H1 avian influenza viruses (AIVs) with different host origins in Korea. Antigenic and phylogenetic analyses of H1 AIVs circulating in Korea provided evidence of genetic similarity between viruses that infect domestic ducks and those that infect wild birds, although there was no relationship between avian and swine viruses. However, there were some relationships between swine and human viral genes. The replication and pathogenicity of the H1 viruses was assessed in chickens, domestic ducks and mice. Viral shedding in chickens was relatively high. Virus was recovered from both oropharyngeal and cloacal swabs up to 5-10 days post-inoculation. The titres of domestic duck viruses in chickens were much higher than those of wild-bird viruses. Both domestic duck and wild-bird viruses replicated poorly in domestic ducks. None of the swine viruses replicated in chickens or domestic ducks; however, six viruses showed relatively high titres in mice, regardless of host origin, and induced clinical signs such as ruffled fur, squatting and weight loss. Thus, although the phylogenetic and antigenic analyses showed no evidence of interspecies transmission between birds and swine, the results suggest that Korean H1 viruses have the potential to cause disease in mammals. Therefore, we should intensify continuous monitoring of avian H1 viruses in mammals and seek to prevent interspecies transmission. © 2014 The Authors.

  1. Evidence of infection with avian, human, and swine influenza viruses in pigs in Cairo, Egypt.

    Science.gov (United States)

    Gomaa, Mokhtar R; Kandeil, Ahmed; El-Shesheny, Rabeh; Shehata, Mahmoud M; McKenzie, Pamela P; Webby, Richard J; Ali, Mohamed A; Kayali, Ghazi

    2018-02-01

    The majority of the Egyptian swine population was culled in the aftermath of the 2009 H1N1 pandemic, but small-scale growing remains. We sampled pigs from piggeries and an abattoir in Cairo. We found virological evidence of infection with avian H9N2 and H5N1 viruses as well as human pandemic H1N1 influenza virus. Serological evidence suggested previous exposure to avian H5N1 and H9N2, human pandemic H1N1, and swine avian-like and human-like viruses. This raises concern about potential reassortment of influenza viruses in pigs and highlights the need for better control and prevention of influenza virus infection in pigs.

  2. [Swine influenza virus: evolution mechanism and epidemic characterization--a review].

    Science.gov (United States)

    Qi, Xian; Lu, Chengping

    2009-09-01

    Pigs may play an important role in the evolution and ecology of influenza A virus. The tracheal epithelium of pigs contain both SA alpha 2,6 Gal and SA alpha 2,3 Gal receptors and can be infected with swine, human and avian viruses, therefore, pigs have been considered as an intermediate host for the adaptation of avian influenza viruses to humans or as mixing vessels for the generation of genetically reassortant viruses. Evolution patterns among swine influenza viruses including evolution of host adaptation, antigenic drift and genetic reassortment, and the latter is the main one. Unlike human influenza viruses, swine viruses have different epizootiological patterns in different areas of world, which is enzootic and geographic dependence. Currently, three predominant subtypes of influenza virus are prevalent in pig populations worldwide: H1N1, H3N2, and H1N2, and these include classical swine H1N1, avian-like H1N1, human-like H3N2, reassortant H3N2 and various genotype H1N2 viruses. In Europe, North America and China, influenza A viruses circulating in pigs are distinct in the genetic characteristics and genetic sources. Since 1979, three subtypes, avian-like H1N1, reassortant H1N2 and H3N2 viruses, have been co-circulating in European swine. Before 1998, classical H1N1 viruses were the exclusive cause of swine influenza in North America. However, after that, three triple-reassortant H1N2, H3N2 and H1N1 viruses with genes of human, swine and avian virus began to emerge in pigs. Genetically, the pandemic viruses emerging in human, so called influenza A (H1N1) viruses, contain genes from both Europe and North American SIV lineages. SIV is not the same as Europe and the United States in the prevalence and genetic background in China, mainly classical swine H1N1 and human-like H3N2 type virus. However, in recent years, SIV from Europe and North America have been introduced into Chinese pig herds, so more attention should be given on the evolutionary of SIV in China

  3. Are Swine Workers in the United States at Increased Risk of Infection with Zoonotic Influenza Virus?

    Science.gov (United States)

    Myers, Kendall P.; Olsen, Christopher W.; Setterquist, Sharon F.; Capuano, Ana W.; Donham, Kelley J.; Thacker, Eileen L.; Merchant, James A.; Gray, Gregory C.

    2006-01-01

    Background Pandemic influenza strains originate in nonhuman species. Pigs have an important role in interspecies transmission of the virus. We examined multiple swine-exposed human populations in the nation's number 1 swine-producing state for evidence of previous swine influenza virus infection. Methods We performed controlled, cross-sectional seroprevalence studies among 111 farmers, 97 meat processing workers, 65 veterinarians, and 79 control subjects using serum samples collected during the period of 2002–2004. Serum samples were tested using a hemagglutination inhibition assay against the following 6 influenza A virus isolates collected recently from pigs and humans: A/Swine/WI/238/97 (H1N1), A/Swine/WI/R33F/01 (H1N2), A/Swine/Minnesota/593/99 (H3N2), A/New Caledonia/20/99 (H1N1), A/Panama/2007/99 (H3N2), and A/Nanchang/933/95 (H3N2). Results Using multivariable proportional odds modeling, all 3 exposed study groups demonstrated markedly elevated titers against the H1N1 and H1N2 swine influenza virus isolates, compared with control subjects. Farmers had the strongest indication of exposure to swine H1N1 virus infection (odds ratio [OR], 35.3; 95% confidence interval [CI], 7.7–161.8), followed by veterinarians (OR, 17.8; 95% CI, 3.8–82.7), and meat processing workers (OR, 6.5; 95% CI, 1.4–29.5). Similarly, farmers had the highest odds for exposure to swine H1N2 virus (OR, 13.8; 95% CI, 5.4–35.4), followed by veterinarians (OR, 9.5; 95% CI, 3.6–24.6) and meat processing workers (OR, 2.7; 95% CI, 1.1–6.7). Conclusions Occupational exposure to pigs greatly increases workers' risk of swine influenza virus infection. Swine workers should be included in pandemic surveillance and in antiviral and immunization strategies. PMID:16323086

  4. Reassortant H1N1 influenza virus vaccines protect pigs against pandemic H1N1 influenza virus and H1N2 swine influenza virus challenge.

    Science.gov (United States)

    Yang, Huanliang; Chen, Yan; Shi, Jianzhong; Guo, Jing; Xin, Xiaoguang; Zhang, Jian; Wang, Dayan; Shu, Yuelong; Qiao, Chuanling; Chen, Hualan

    2011-09-28

    Influenza A (H1N1) virus has caused human influenza outbreaks in a worldwide pandemic since April 2009. Pigs have been found to be susceptible to this influenza virus under experimental and natural conditions, raising concern about their potential role in the pandemic spread of the virus. In this study, we generated a high-growth reassortant virus (SC/PR8) that contains the hemagglutinin (HA) and neuraminidase (NA) genes from a novel H1N1 isolate, A/Sichuan/1/2009 (SC/09), and six internal genes from A/Puerto Rico/8/34 (PR8) virus, by genetic reassortment. The immunogenicity and protective efficacy of this reassortant virus were evaluated at different doses in a challenge model using a homologous SC/09 or heterologous A/Swine/Guangdong/1/06(H1N2) virus (GD/06). Two doses of SC/PR8 virus vaccine elicited high-titer serum hemagglutination inhibiting (HI) antibodies specific for the 2009 H1N1 virus and conferred complete protection against challenge with either SC/09 or GD/06 virus, with reduced lung lesions and viral shedding in vaccine-inoculated animals compared with non-vaccinated control animals. These results indicated for the first time that a high-growth SC/PR8 reassortant H1N1 virus exhibits properties that are desirable to be a promising vaccine candidate for use in swine in the event of a pandemic H1N1 influenza. Copyright © 2011 Elsevier B.V. All rights reserved.

  5. The first Swedish H1N2 swine influenza virus isolate represents an uncommon reassortant

    Directory of Open Access Journals (Sweden)

    Renström Lena HM

    2009-10-01

    Full Text Available Abstract The European swine influenza viruses (SIVs show considerable diversity comprising different types of H1N1, H3N2, and H1N2 strains. The intensifying full genome sequencing efforts reveal further reassortants within these subtypes. Here we report the identification of an uncommon reassortant variant of H1N2 subtype influenza virus isolated from a pig in a multisite herd where H1N2 swine influenza was diagnosed for the first time in Sweden during the winter of 2008-2009. The majority of the European H1N2 swine influenza viruses described so far possess haemagglutinin (HA of the human-like H1N2 SIV viruses and the neuraminidase (NA of either the European H1N2 or H3N2 SIV-like viruses. The Swedish isolate has an avian-like SIV HA and a H3N2 SIV-like NA, which is phylogenetically more closely related to H3N2 SIV NAs from isolates collected in the early '80s than to the NA of H3N2 origin of the H1N2 viruses isolated during the last decade, as depicted by some German strains, indicative of independent acquisition of the NA genes for these two types of reassortants. The internal genes proved to be entirely of avian-like SIV H1N1 origin. The prevalence of this SIV variant in pig populations needs to be determined, as well as the suitability of the routinely used laboratory reagents to analyze this strain. The description of this H1N2 SIV adds further information to influenza epidemiology and supports the necessity of surveillance for influenza viruses in pigs.

  6. The first Swedish H1N2 swine influenza virus isolate represents an uncommon reassortant.

    Science.gov (United States)

    Bálint, Adám; Metreveli, Giorgi; Widén, Frederik; Zohari, Siamak; Berg, Mikael; Isaksson, Mats; Renström, Lena Hm; Wallgren, Per; Belák, Sándor; Segall, Thomas; Kiss, István

    2009-10-28

    The European swine influenza viruses (SIVs) show considerable diversity comprising different types of H1N1, H3N2, and H1N2 strains. The intensifying full genome sequencing efforts reveal further reassortants within these subtypes. Here we report the identification of an uncommon reassortant variant of H1N2 subtype influenza virus isolated from a pig in a multisite herd where H1N2 swine influenza was diagnosed for the first time in Sweden during the winter of 2008-2009. The majority of the European H1N2 swine influenza viruses described so far possess haemagglutinin (HA) of the human-like H1N2 SIV viruses and the neuraminidase (NA) of either the European H1N2 or H3N2 SIV-like viruses. The Swedish isolate has an avian-like SIV HA and a H3N2 SIV-like NA, which is phylogenetically more closely related to H3N2 SIV NAs from isolates collected in the early '80s than to the NA of H3N2 origin of the H1N2 viruses isolated during the last decade, as depicted by some German strains, indicative of independent acquisition of the NA genes for these two types of reassortants. The internal genes proved to be entirely of avian-like SIV H1N1 origin. The prevalence of this SIV variant in pig populations needs to be determined, as well as the suitability of the routinely used laboratory reagents to analyze this strain.The description of this H1N2 SIV adds further information to influenza epidemiology and supports the necessity of surveillance for influenza viruses in pigs.

  7. Swine Influenza (Swine Flu) in Pigs

    Science.gov (United States)

    ... Address What's this? Submit What's this? Submit Button Influenza Types Seasonal Avian Swine Variant Pandemic Other Key Facts about Swine Influenza (Swine Flu) in Pigs Language: English (US) Español ...

  8. New reassortant and enzootic European swine influenza 1 viruses transmits efficiently through direct contact in the ferret model

    DEFF Research Database (Denmark)

    Fobian, Kristina; P. Fabrizio, Thomas; Yoon, Sun-Woo

    2015-01-01

    The reverse zoonotic events that introduced the 2009 pandemic influenza virus into pigs have drastically increased the diversity of swine influenza viruses in Europe. The pandemic potential of these novel reassortments is still unclear, necessitating enhanced surveillance of European pigs...... with additional focus on risk assessment of these new viruses. In this study, four European swine influenza viruses were assessed for their zoonotic potential. Two of the four viruses were enzootic viruses of subtype H1N2 (with avian-like H1) and H3N2 and two were new reassortants, one with avian-like H1...... and human-like N2 and one with 2009 pandemic H1 and swine-like N2. All viruses replicated to high titers in nasal wash- and nasal turbinate samples from inoculated ferrets and transmitted efficiently by direct contact. Only the H3N2 virus transmitted to naïve ferrets via the airborne route. Growth kinetics...

  9. Genetic and antigenic characterization of influenza A virus circulating in Danish swine during the past decade

    DEFF Research Database (Denmark)

    Fobian, Kristina; Kirk, Isa Kristina; Breum, Solvej Østergaard

    Influenza A virus has been endemic in Danish swine for the last 30 years, with H1N1 and H1N2 being the dominating subtypes. The purpose of this study was to investigate the genetic and antigenic evolution of the influenza viruses found in Danish swine during the last 10 years. A total of 78 samples...... to the complex epidemiology of circulating swine influenza virus in Denmark and indicates that vaccine development targeted against Danish H1N1 and H1N2 need only to include few components for the induction of cross protection against the predominant strains. The study was supported by grants from “European......-synonymous substitutions for H1, N1 and N2 were found to be in agreement with previously observed values for Eurasian swine lineages. Calculation of possible glycosylation sites in the hemagglutinin gene revealed that the H1N2 and H1N1 subtypes had three well conserved glycosylation sites in common. The results of the HI...

  10. Virus survival in slurry: Analysis of the stability of foot-and-mouth disease, classical swine fever, bovine viral diarrhoea and swine influenza viruses

    DEFF Research Database (Denmark)

    Bøtner, Anette; Belsham, Graham

    2012-01-01

    of an outbreak of disease before it has been recognized. The survival of foot-and-mouth disease virus, classical swine fever virus, bovine viral diarrhoea virus and swine influenza virus, which belong to three different RNA virus families plus porcine parvovirus (a DNA virus) was examined under controlled...... conditions. For each RNA virus, the virus survival in farm slurry under anaerobic conditions was short (generally ≤1h) when heated (to 55°C) but each of these viruses could retain infectivity at cool temperatures (5°C) for many weeks. The porcine parvovirus survived considerably longer than each of the RNA...... viruses under all conditions tested. The implications for disease spread are discussed....

  11. H1N1 influenza viruses varying widely in hemagglutinin stability transmit efficiently from swine to swine and to ferrets.

    Directory of Open Access Journals (Sweden)

    Marion Russier

    2017-03-01

    Full Text Available A pandemic-capable influenza virus requires a hemagglutinin (HA surface glycoprotein that is immunologically unseen by most people and is capable of supporting replication and transmission in humans. HA stabilization has been linked to 2009 pH1N1 pandemic potential in humans and H5N1 airborne transmissibility in the ferret model. Swine have served as an intermediate host for zoonotic influenza viruses, yet the evolutionary pressure exerted by this host on HA stability was unknown. For over 70 contemporary swine H1 and H3 isolates, we measured HA activation pH to range from pH 5.1 to 5.9 for H1 viruses and pH 5.3 to 5.8 for H3 viruses. Thus, contemporary swine isolates vary widely in HA stability, having values favored by both avian (pH >5.5 and human and ferret (pH ≤5.5 species. Using an early 2009 pandemic H1N1 (pH1N1 virus backbone, we generated three viruses differing by one HA residue that only altered HA stability: WT (pH 5.5, HA1-Y17H (pH 6.0, and HA2-R106K (pH 5.3. All three replicated in pigs and transmitted from pig-to-pig and pig-to-ferret. WT and R106 viruses maintained HA genotype and phenotype after transmission. Y17H (pH 6.0 acquired HA mutations that stabilized the HA protein to pH 5.8 after transmission to pigs and 5.5 after transmission to ferrets. Overall, we found swine support a broad range of HA activation pH for contact transmission and many recent swine H1N1 and H3N2 isolates have stabilized (human-like HA proteins. This constitutes a heightened pandemic risk and underscores the importance of ongoing surveillance and control efforts for swine viruses.

  12. The PB2-K627E mutation attenuates H3N2 swine influenza virus in cultured cells and in mice.

    Science.gov (United States)

    Gong, Xiao-Qian; Ruan, Bao-Yang; Liu, Xiao-Min; Zhang, Peng; Wang, Xiu-Hui; Wang, Qi; Shan, Tong-Ling; Tong, Wu; Zhou, Yan-Jun; Li, Guo-Xin; Zheng, Hao; Tong, Guang-Zhi; Yu, Hai

    2018-04-01

    PB2-627K is an important amino acid that determines the virulence of some influenza A viruses. However, it has not been experimentally investigated in the H3N2 swine influenza virus. To explore the potential role of PB2-K627E substitution in H3N2 swine influenza virus, the growth properties and pathogenicity between H3N2 swine influenza virus and its PB2-K627E mutant were compared. For the first time, our results showed that PB2-K627E mutation attenuates H3N2 swine influenza virus in mammalian cells and in mice, suggesting that PB2-627K is required for viral replication and pathogenicity of H3N2 swine influenza virus. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. A phylogeny-based global nomenclature system and automated annotation tool for H1 hemagglutinin genes from swine influenza A viruses

    Science.gov (United States)

    The H1 subtype of influenza A viruses (IAV) has been circulating in swine since the 1918 human influenza pandemic. Over time, and aided by further introductions from non-swine hosts, swine H1 have diversified into three genetic lineages. Due to limited global data, these H1 lineages were named based...

  14. Antigenic and genetic evolution of contemporary swine H1 influenza viruses in the United States.

    Science.gov (United States)

    Rajao, Daniela S; Anderson, Tavis K; Kitikoon, Pravina; Stratton, Jered; Lewis, Nicola S; Vincent, Amy L

    2018-05-01

    Several lineages of influenza A viruses (IAV) currently circulate in North American pigs. Genetic diversity is further increased by transmission of IAV between swine and humans and subsequent evolution. Here, we characterized the genetic and antigenic evolution of contemporary swine H1N1 and H1N2 viruses representing clusters H1-α (1A.1), H1-β (1A.2), H1pdm (1A.3.3.2), H1-γ (1A.3.3.3), H1-δ1 (1B.2.2), and H1-δ2 (1B.2.1) currently circulating in pigs in the United States. The δ1-viruses diversified into two new genetic clades, H1-δ1a (1B.2.2.1) and H1-δ1b (1B.2.2.2), which were also antigenically distinct from the earlier H1-δ1-viruses. Further characterization revealed that a few key amino acid changes were associated with antigenic divergence in these groups. The continued genetic and antigenic evolution of contemporary H1 viruses might lead to loss of vaccine cross-protection that could lead to significant economic impact to the swine industry, and represents a challenge to public health initiatives that attempt to minimize swine-to-human IAV transmission. Published by Elsevier Inc.

  15. Identification of swine influenza virus epitopes and analysis of multiple specificities expressed by cytotoxic T cell subsets

    DEFF Research Database (Denmark)

    Pedersen, Lasse Eggers; Breum, Solvej Østergaard; Riber, Ulla

    2014-01-01

    Background: Major histocompatibility complex (MHC) class I peptide binding and presentation are essential for antigen-specific activation of cytotoxic T lymphocytes (CTLs) and swine MHC class I molecules, also termed swine leukocyte antigens (SLA), thus play a crucial role in the process that leads...... to elimination of viruses such as swine influenza virus (SwIV). This study describes the identification of SLA-presented peptide epitopes that are targets for a swine CTL response, and further analyses multiple specificities expressed by SwIV activated CTL subsets. Findings: Four SwIV derived peptides were...

  16. Molecular epidemiology of novel swine origin influenza virus (S-OIV from Gwalior, India, 2009

    Directory of Open Access Journals (Sweden)

    Shukla Jyoti

    2011-06-01

    Full Text Available Abstract Background The H1N1pandemic virus is a newly emergent human influenza A virus that is closely related to a number of currently circulating pig viruses in the 'classic North American' and 'Eurasian' swine influenza virus lineages and thus referred as S-OIV. Since the first reports of the virus in humans in April 2009, H1N1 virus has spread to 168 countries and overseas territories. India also witnessed severe H1N1 pandemic virus epidemic with considerable morbidity and mortality in different parts starting from May 2009. Findings The suspected swine flu outbreak from Gwalior India during October- December 2009 was confirmed through S-OIV HA gene specific RT-LAMP and real time RT-PCR. Positive samples through CDC real time and Lamp assay were further processed for isolation of the virus. Full HA gene sequencing of the H1N1 isolates of Gwalior, India revealed 99% homology with California and other circulating novel swine flu viruses. Three major changes were observed at nucleotide level, while two major amino acid shifts were observed at the position C9W and I30M corresponding to the ORF with prototype strain. The HA gene sequence phylogeny revealed the circulation of two genetically distinct lineages belonging to Clade VII and Clade I of S-OIV. Conclusions Our findings also supported the earlier report about circulation of mixed genogroups of S-OIV in India. Therefore continuous monitoring of the genetic makeup of this newly emergent virus is essential to understand its evolution within the country.

  17. Adaptive evolution during the establishment of European avian-like H1N1 influenza A virus in swine.

    Science.gov (United States)

    Joseph, Udayan; Vijaykrishna, Dhanasekaran; Smith, Gavin J D; Su, Yvonne C F

    2018-04-01

    An H1N1 subtype influenza A virus with all eight gene segments derived from wild birds (including mallards), ducks and chickens, caused severe disease outbreaks in swine populations in Europe beginning in 1979 and successfully adapted to form the European avian-like swine (EA-swine) influenza lineage. Genes of the EA-swine lineage that are clearly segregated from its closest avian relatives continue to circulate in swine populations globally and represent a unique opportunity to study the adaptive process of an avian-to-mammalian cross-species transmission. Here, we used a relaxed molecular clock model to test whether the EA-swine virus originated through the introduction of a single avian ancestor as an entire genome, followed by an analysis of host-specific selection pressures among different gene segments. Our data indicated independent introduction of gene segments via transmission of avian viruses into swine followed by reassortment events that occurred at least 1-4 years prior to the EA-swine outbreak. All EA-swine gene segments exhibit greater selection pressure than avian viruses, reflecting both adaptive pressures and relaxed selective constraints that are associated with host switching. Notably, we identified key amino acid mutations in the viral surface proteins (H1 and N1) that play a role in adaptation to new hosts. Following the establishment of EA-swine lineage, we observed an increased frequency of intrasubtype reassortment of segments compared to the earlier strains that has been associated with adaptive amino acid replacements, disease severity and vaccine escape. Taken together, our study provides key insights into the adaptive changes in viral genomes following the transmission of avian influenza viruses to swine and the early establishment of the EA-swine lineage.

  18. The origin of the PB1 segment of swine influenza A virus subtype H1N2 determines viral pathogenicity in mice.

    Science.gov (United States)

    Metreveli, Giorgi; Gao, Qinshan; Mena, Ignacio; Schmolke, Mirco; Berg, Mikael; Albrecht, Randy A; García-Sastre, Adolfo

    2014-08-08

    Swine appear to be a key species in the generation of novel human influenza pandemics. Previous pandemic viruses are postulated to have evolved in swine by reassortment of avian, human, and swine influenza viruses. The human pandemic influenza viruses that emerged in 1957 and 1968 as well as swine viruses circulating since 1998 encode PB1 segments derived from avian influenza viruses. Here we investigate the possible role in viral replication and virulence of the PB1 gene segments present in two swine H1N2 influenza A viruses, A/swine/Sweden/1021/2009(H1N2) (sw 1021) and A/swine/Sweden/9706/2010(H1N2) (sw 9706), where the sw 1021 virus has shown to be more pathogenic in mice. By using reverse genetics, we swapped the PB1 genes of these two viruses. Similar to the sw 9706 virus, chimeric sw 1021 virus carrying the sw 9706 PB1 gene was not virulent in mice. In contrast, replacement of the PB1 gene of the sw 9706 virus by that from sw 1021 virus resulted in increased pathogenicity. Our study demonstrated that differences in virulence of swine influenza virus subtype H1N2 are attributed at least in part to the PB1 segment. Copyright © 2014 Elsevier B.V. All rights reserved.

  19. Genetic drift of HA and NA in Danish swine influenza virus from the period 2003-2012

    DEFF Research Database (Denmark)

    Fobian, Kristina; Breum, Solvej Østergaard; Hjulsager, Charlotte Kristiane

    2012-01-01

    . Currently at least three influenza A subtypes (H1N1, H1N2 and H3N2) are endemic in the Danish swine population, and since 2010 the pandemic virus (H1N1pdm09) have also frequently been detected. The focus in this study will be on H1N1 and H1N2, since the prevalence of H3N2 have declined over the past years...... will provide a more complete picture of the molecular epidemiology of the H1N1 and H1N2 swine influenza viruses in Denmark. A thorough knowledge of the antigenic drift in surface genes is very important concerning evaluation of the zoonotic potential of existing and future swine influenza virus strains......The aim of this study is to analyze; the genetic drift in hemagglutinin (HA) and neuraminidase (NA) genes from influenza viruses isolated from Danish swine over the past decade; the antigenic evolution and relatedness between swine influenza virus strains of the H1 subtype by antigenic cartography...

  20. Evidence of reassortment of pandemic H1N1 influenza virus in swine in Argentina: are we facing the expansion of potential epicenters of influenza emergence?

    Science.gov (United States)

    Pereda, Ariel; Rimondi, Agustina; Cappuccio, Javier; Sanguinetti, Ramon; Angel, Matthew; Ye, Jianqiang; Sutton, Troy; Dibárbora, Marina; Olivera, Valeria; Craig, Maria I.; Quiroga, Maria; Machuca, Mariana; Ferrero, Andrea; Perfumo, Carlos; Perez, Daniel R.

    2011-01-01

    Please cite this paper as: Pereda et al. (2011) Evidence of reassortment of pandemic H1N1 influenza virus in swine in Argentina: are we facing the expansion of potential epicenters of influenza emergence? Influenza and Other Respiratory Viruses 5(6), 409–412. In this report, we describe the occurrence of two novel swine influenza viruses (SIVs) in pigs in Argentina. These viruses are the result of two independent reassortment events between the H1N1 pandemic influenza virus (H1N1pdm) and human‐like SIVs, showing the constant evolution of influenza viruses at the human–swine interface and the potential health risk of H1N1pdm as it appears to be maintained in the swine population. It must be noted that because of the lack of information regarding the circulation of SIVs in South America, we cannot discard the possibility that ancestors of the H1N1pdm or other SIVs have been present in this part of the world. More importantly, these findings suggest an ever‐expanding geographic range of potential epicenters of influenza emergence with public health risks. PMID:21668680

  1. Protocol: Transmission and prevention of influenza in Hutterites: Zoonotic transmission of influenza A: swine & swine workers

    Directory of Open Access Journals (Sweden)

    Loeb Mark

    2009-11-01

    Full Text Available Abstract Background Among swine, reassortment of influenza virus genes from birds, pigs, and humans could generate influenza viruses with pandemic potential. Humans with acute infection might also be a source of infection for swine production units. This article describes the study design and methods being used to assess influenza A transmission between swine workers and pigs. We hypothesize that transmission of swine influenza viruses to humans, transmission of human influenza viruses to swine, and reassortment of human and swine influenza A viruses is occurring. The project is part of a Team Grant; all Team Grant studies include active surveillance for influenza among Hutterite swine farmers in Alberta, Canada. This project also includes non-Hutterite swine farms that are experiencing swine respiratory illness. Methods/Design Nurses conduct active surveillance for influenza-like-illness (ILI, visiting participating communally owned and operated Hutterite swine farms twice weekly. Nasopharyngeal swabs and acute and convalescent sera are obtained from persons with any two such symptoms. Swabs are tested for influenza A and B by a real time RT-PCR (reverse transcriptase polymerase chain reaction at the Alberta Provincial Laboratory for Public Health (ProvLab. Test-positive participants are advised that they have influenza. The occurrence of test-positive swine workers triggers sampling (swabbing, acute and convalescent serology of the swine herd by veterinarians. Specimens obtained from swine are couriered to St. Jude Children's Research Hospital, Memphis, TN for testing. Veterinarians and herd owners are notified if animal specimens are test-positive for influenza. If swine ILI occurs, veterinarians obtain samples from the pigs; test-positives from the animals trigger nurses to obtain specimens (swabbing, acute and convalescent serology from the swine workers. ProvLab cultures influenza virus from human specimens, freezes these cultures and

  2. New reassortant and enzootic European swine influenza viruses transmit efficiently through direct contact in the ferret model.

    Science.gov (United States)

    Fobian, Kristina; Fabrizio, Thomas P; Yoon, Sun-Woo; Hansen, Mette Sif; Webby, Richard J; Larsen, Lars E

    2015-07-01

    The reverse zoonotic events that introduced the 2009 pandemic influenza virus into pigs have drastically increased the diversity of swine influenza viruses in Europe. The pandemic potential of these novel reassortments is still unclear, necessitating enhanced surveillance of European pigs with additional focus on risk assessment of these new viruses. In this study, four European swine influenza viruses were assessed for their zoonotic potential. Two of the four viruses were enzootic viruses of subtype H1N2 (with avian-like H1) and H3N2, and two were new reassortants, one with avian-like H1 and human-like N2 and one with 2009 pandemic H1 and swine-like N2. All viruses replicated to high titres in nasal wash and nasal turbinate samples from inoculated ferrets and transmitted efficiently by direct contact. Only the H3N2 virus transmitted to naïve ferrets via the airborne route. Growth kinetics using a differentiated human bronchial epithelial cell line showed that all four viruses were able to replicate to high titres. Further, the viruses revealed preferential binding to the 2,6-α-silalylated glycans and investigation of the antiviral susceptibility of the viruses revealed that all were sensitive to neuraminidase inhibitors. These findings suggested that these viruses have the potential to infect humans and further underline the need for continued surveillance as well as biological characterization of new influenza A viruses.

  3. A novel monoclonal antibody effective against lethal challenge with swine-lineage and 2009 pandemic H1N1 influenza viruses in mice

    Science.gov (United States)

    The HA protein of the 2009 pandemic H1N1viruses (14 H1N1pdm) is antigenically closely related to the HA of classical North American swine H1N1 influenza viruses (cH1N1). Since 1998, through reassortment and incorporation of HA genes from human H3N2 and H1N1 influenza viruses, swine influenza strains...

  4. Reassortant swine influenza viruses isolated in Japan contain genes from pandemic A(H1N1) 2009.

    Science.gov (United States)

    Kanehira, Katsushi; Takemae, Nobuhiro; Uchida, Yuko; Hikono, Hirokazu; Saito, Takehiko

    2014-06-01

    In 2013, three reassortant swine influenza viruses (SIVs)-two H1N2 and one H3N2-were isolated from symptomatic pigs in Japan; each contained genes from the pandemic A(H1N1) 2009 virus and endemic SIVs. Phylogenetic analysis revealed that the two H1N2 viruses, A/swine/Gunma/1/2013 and A/swine/Ibaraki/1/2013, were reassortants that contain genes from the following three distinct lineages: (i) H1 and nucleoprotein (NP) genes derived from a classical swine H1 HA lineage uniquely circulating among Japanese SIVs; (ii) neuraminidase (NA) genes from human-like H1N2 swine viruses; and (iii) other genes from pandemic A(H1N1) 2009 viruses. The H3N2 virus, A/swine/Miyazaki/2/2013, comprised genes from two sources: (i) hemagglutinin (HA) and NA genes derived from human and human-like H3N2 swine viruses and (ii) other genes from pandemic A(H1N1) 2009 viruses. Phylogenetic analysis also indicated that each of the reassortants may have arisen independently in Japanese pigs. A/swine/Miyazaki/2/2013 were found to have strong antigenic reactivities with antisera generated for some seasonal human-lineage viruses isolated during or before 2003, whereas A/swine/Miyazaki/2/2013 reactivities with antisera against viruses isolated after 2004 were clearly weaker. In addition, antisera against some strains of seasonal human-lineage H1 viruses did not react with either A/swine/Gunma/1/2013 or A/swine/Ibaraki/1/2013. These findings indicate that emergence and spread of these reassortant SIVs is a potential public health risk. © 2014 The Societies and Wiley Publishing Asia Pty Ltd.

  5. Isolation and molecular characterization of an H5N1 swine influenza virus in China in 2015.

    Science.gov (United States)

    Wu, Haibo; Yang, Fan; Lu, Rufeng; Xu, Lihua; Liu, Fumin; Peng, Xiuming; Wu, Nanping

    2018-03-01

    In 2015, an H5N1 influenza virus was isolated from a pig in Zhejiang Province, Eastern China. This strain was characterized by whole-genome sequencing with subsequent phylogenetic analysis. Phylogenetic analysis showed that all segments from this strain belonged to clade 2.3.2 and that it had received its genes from poultry influenza viruses in China. A Glu627Lys mutation associated with pathogenicity was observed in the PB2 protein. This strain was moderately pathogenic in mice and was able to replicate without prior adaptation. These results suggest that active surveillance of swine influenza should be used as an early warning system for influenza outbreaks in mammals.

  6. From where did the 2009 'swine-origin' influenza A virus (H1N1 emerge?

    Directory of Open Access Journals (Sweden)

    Armstrong John S

    2009-11-01

    Full Text Available Abstract The swine-origin influenza A (H1N1 virus that appeared in 2009 and was first found in human beings in Mexico, is a reassortant with at least three parents. Six of the genes are closest in sequence to those of H1N2 'triple-reassortant' influenza viruses isolated from pigs in North America around 1999-2000. Its other two genes are from different Eurasian 'avian-like' viruses of pigs; the NA gene is closest to H1N1 viruses isolated in Europe in 1991-1993, and the MP gene is closest to H3N2 viruses isolated in Asia in 1999-2000. The sequences of these genes do not directly reveal the immediate source of the virus as the closest were from isolates collected more than a decade before the human pandemic started. The three parents of the virus may have been assembled in one place by natural means, such as by migrating birds, however the consistent link with pig viruses suggests that human activity was involved. We discuss a published suggestion that unsampled pig herds, the intercontinental live pig trade, together with porous quarantine barriers, generated the reassortant. We contrast that suggestion with the possibility that laboratory errors involving the sharing of virus isolates and cultured cells, or perhaps vaccine production, may have been involved. Gene sequences from isolates that bridge the time and phylogenetic gap between the new virus and its parents will distinguish between these possibilities, and we suggest where they should be sought. It is important that the source of the new virus be found if we wish to avoid future pandemics rather than just trying to minimize the consequences after they have emerged. Influenza virus is a very significant zoonotic pathogen. Public confidence in influenza research, and the agribusinesses that are based on influenza's many hosts, has been eroded by several recent events involving the virus. Measures that might restore confidence include establishing a unified international administrative

  7. Susceptibility of swine to H5 and H7 low pathogenic avian influenza viruses.

    Science.gov (United States)

    Balzli, Charles; Lager, Kelly; Vincent, Amy; Gauger, Phillip; Brockmeier, Susan; Miller, Laura; Richt, Juergen A; Ma, Wenjun; Suarez, David; Swayne, David E

    2016-07-01

    The ability of pigs to become infected with low pathogenic avian influenza (LPAI) viruses and then generate mammalian adaptable influenza A viruses is difficult to determine. Yet, it is an important link to understanding any relationship between LPAI virus ecology and possible epidemics among swine and/or humans. Assess susceptibility of pigs to LPAI viruses found within the United States and their direct contact transmission potential. Pigs were inoculated with one of ten H5 or H7 LPAI viruses selected from seven different bird species to test infectivity, virulence, pathogenesis, and potential to transmit virus to contact pigs through histological, RRT-PCR and seroconversion data. Although pigs were susceptible to infection with each of the LPAI viruses, no clinical disease was recognized in any pig. During the acute phase of the infection, minor pulmonary lesions were found in some pigs and one or more pigs in each group were RRT-PCR-positive in the lower respiratory tract, but no virus was detected in upper respiratory tract (negative nasal swabs). Except for one group, one or more pigs in each LPAI group developed antibody. No LPAI viruses transmitted to contact pigs. LPAI strains from various bird populations within the United States are capable of infecting pigs. Although adaptability and transmission of individual strains seem unlikely, the subclinical nature of the infections demonstrates the need to improve sampling and testing methods to more accurately measure incidence of LPAI virus infection in pigs, and their potential role in human-zoonotic LPAI virus dynamics. © 2016 The Authors. Influenza and Other Respiratory Viruses Published by John Wiley & Sons Ltd.

  8. Airborne detection and quantification of swine influenza a virus in air samples collected inside, outside and downwind from swine barns.

    Directory of Open Access Journals (Sweden)

    Cesar A Corzo

    Full Text Available Airborne transmission of influenza A virus (IAV in swine is speculated to be an important route of virus dissemination, but data are scarce. This study attempted to detect and quantify airborne IAV by virus isolation and RRT-PCR in air samples collected under field conditions. This was accomplished by collecting air samples from four acutely infected pig farms and locating air samplers inside the barns, at the external exhaust fans and downwind from the farms at distances up to 2.1 km. IAV was detected in air samples collected in 3 out of 4 farms included in the study. Isolation of IAV was possible from air samples collected inside the barn at two of the farms and in one farm from the exhausted air. Between 13% and 100% of samples collected inside the barns tested RRT-PCR positive with an average viral load of 3.20E+05 IAV RNA copies/m³ of air. Percentage of exhaust positive air samples also ranged between 13% and 100% with an average viral load of 1.79E+04 RNA copies/m³ of air. Influenza virus RNA was detected in air samples collected between 1.5 and 2.1 Km away from the farms with viral levels significantly lower at 4.65E+03 RNA copies/m³. H1N1, H1N2 and H3N2 subtypes were detected in the air samples and the hemagglutinin gene sequences identified in the swine samples matched those in aerosols providing evidence that the viruses detected in the aerosols originated from the pigs in the farms under study. Overall our results indicate that pigs can be a source of IAV infectious aerosols and that these aerosols can be exhausted from pig barns and be transported downwind. The results from this study provide evidence of the risk of aerosol transmission in pigs under field conditions.

  9. Experimental infection with H1N1 European swine influenza virus protects pigs from an infection with the 2009 pandemic H1N1 human influenza virus.

    Science.gov (United States)

    Busquets, Núria; Segalés, Joaquim; Córdoba, Lorena; Mussá, Tufaria; Crisci, Elisa; Martín-Valls, Gerard E; Simon-Grifé, Meritxell; Pérez-Simó, Marta; Pérez-Maíllo, Monica; Núñez, Jose I; Abad, Francesc X; Fraile, Lorenzo; Pina, Sonia; Majó, Natalia; Bensaid, Albert; Domingo, Mariano; Montoya, María

    2010-01-01

    The recent pandemic caused by human influenza virus A(H1N1) 2009 contains ancestral gene segments from North American and Eurasian swine lineages as well as from avian and human influenza lineages. The emergence of this A(H1N1) 2009 poses a potential global threat for human health and the fact that it can infect other species, like pigs, favours a possible encounter with other influenza viruses circulating in swine herds. In Europe, H1N1, H1N2 and H3N2 subtypes of swine influenza virus currently have a high prevalence in commercial farms. To better assess the risk posed by the A(H1N1) 2009 in the actual situation of swine farms, we sought to analyze whether a previous infection with a circulating European avian-like swine A/Swine/Spain/53207/2004 (H1N1) influenza virus (hereafter referred to as SwH1N1) generated or not cross-protective immunity against a subsequent infection with the new human pandemic A/Catalonia/63/2009 (H1N1) influenza virus (hereafter referred to as pH1N1) 21 days apart. Pigs infected only with pH1N1 had mild to moderate pathological findings, consisting on broncho-interstitial pneumonia. However, pigs inoculated with SwH1N1 virus and subsequently infected with pH1N1 had very mild lung lesions, apparently attributed to the remaining lesions caused by SwH1N1 infection. These later pigs also exhibited boosted levels of specific antibodies. Finally, animals firstly infected with SwH1N1 virus and latter infected with pH1N1 exhibited undetectable viral RNA load in nasal swabs and lungs after challenge with pH1N1, indicating a cross-protective effect between both strains. © INRA, EDP Sciences, 2010.

  10. Swine-origin influenza A (H3N2) virus infection in two children--Indiana and Pennsylvania, July-August 2011.

    Science.gov (United States)

    2011-09-09

    Influenza A viruses are endemic in many animal species, including humans, swine, and wild birds, and sporadic cases of transmission of influenza A viruses between humans and animals do occur, including human infections with avian-origin influenza A viruses (i.e., H5N1 and H7N7) and swine-origin influenza A viruses (i.e., H1N1, H1N2, and H3N2). Genetic analysis can distinguish animal origin influenza viruses from the seasonal human influenza viruses that circulate widely and cause annual epidemics. This report describes two cases of febrile respiratory illness caused by swine-origin influenza A (H3N2) viruses identified on August 19 and August 26, 2011, and the current investigations. No epidemiologic link between the two cases has been identified, and although investigations are ongoing, no additional confirmed human infections with this virus have been detected. These viruses are similar to eight other swine-origin influenza A (H3N2) viruses identified from previous human infections over the past 2 years, but are unique in that one of the eight gene segments (matrix [M] gene) is from the 2009 influenza A (H1N1) virus. The acquisition of the M gene in these two swine-origin influenza A (H3N2) viruses indicates that they are "reassortants" because they contain genes of the swine-origin influenza A (H3N2) virus circulating in North American pigs since 1998 and the 2009 influenza A (H1N1) virus that might have been transmitted to pigs from humans during the 2009 H1N1 pandemic. However, reassortments of the 2009 influenza A (H1N1) virus with other swine influenza A viruses have been reported previously in swine. Clinicians who suspect influenza virus infection in humans with recent exposure to swine should obtain a nasopharyngeal swab from the patient for timely diagnosis at a state public health laboratory and consider empiric neuraminidase inhibitor antiviral treatment to quickly limit potential human transmission.

  11. Influenza A (H3N2) virus in swine at agricultural fairs and transmission to humans, Michigan and Ohio, USA, 2016

    Science.gov (United States)

    An 18 case outbreak of variant H3N2 influenza A occurred during 2016 after exposure to influenza-infected swine at seven agricultural fairs. Sixteen cases were infected with a reassortant between 2010-2011 human seasonal H3N2 strains and viruses endemic in North American swine, a viral lineage incre...

  12. Genetic analysis and antigenic characterization of swine origin influenza viruses isolated from humans in the United States, 1990-2010.

    Science.gov (United States)

    Shu, Bo; Garten, Rebecca; Emery, Shannon; Balish, Amanda; Cooper, Lynn; Sessions, Wendy; Deyde, Varough; Smith, Catherine; Berman, LaShondra; Klimov, Alexander; Lindstrom, Stephen; Xu, Xiyan

    2012-01-05

    Swine influenza viruses (SIV) have been recognized as important pathogens for pigs and occasional human infections with swine origin influenza viruses (SOIV) have been reported. Between 1990 and 2010, a total of twenty seven human cases of SOIV infections have been identified in the United States. Six viruses isolated from 1990 to 1995 were recognized as classical SOIV (cSOIV) A(H1N1). After 1998, twenty-one SOIV recovered from human cases were characterized as triple reassortant (tr_SOIV) inheriting genes from classical swine, avian and human influenza viruses. Of those twenty-one tr_SOIV, thirteen were of A(H1N1), one of A(H1N2), and seven of A(H3N2) subtype. SOIV characterized were antigenically and genetically closely related to the subtypes of influenza viruses circulating in pigs but distinct from contemporary influenza viruses circulating in humans. The diversity of subtypes and genetic lineages in SOIV cases highlights the importance of continued surveillance at the animal-human interface. Copyright © 2011. Published by Elsevier Inc.

  13. Burden of pediatric influenza A virus infection post swine-flu H1N1 pandemic in Egypt.

    Science.gov (United States)

    Khattab, Adel; Shaheen, Malak; Kamel, Terez; El Faramay, Amel; El Rahman, Safaa Abd; Nabil, Dalia; Gouda, Mohamed

    2013-09-01

    To screen children with influenza like illness or with symptoms of acute respiratory tract infections for influenza A virus infection - post swine flu pandemic era - using rapid influenza diagnostic tests. During two years (2010 & 2011), 1 200 children with influenza like illness or acute respiratory tract infections (according to World Health Organization criteria) were recruited. Their ages ranged from 2-60 months. Nasopharyngeal aspirates specimens were collected from all children for rapid influenza A diagnostic test. Influenza A virus rapid test was positive in 47.5% of the children; the majority (89.6%) were presented with lower respiratory tract infections. Respiratory rate and temperature were significantly higher among positive rapid influenza test patients. Influenza A virus infection is still a major cause of respiratory tract infections in Egyptian children. It should be considered in all cases with cough and febrile episodes and influenza like symptoms even post swine flu pandemic. Copyright © 2013 Hainan Medical College. Published by Elsevier B.V. All rights reserved.

  14. Expression Dynamics of Innate Immunity in Influenza Virus-Infected Swine

    Directory of Open Access Journals (Sweden)

    Massimo Amadori

    2017-04-01

    Full Text Available The current circulating swine influenza virus (IV subtypes in Europe (H1N1, H1N2, and H3N2 are associated with clinical outbreaks of disease. However, we showed that pigs could be susceptible to other IV strains that are able to cross the species barrier. In this work, we extended our investigations into whether different IV strains able to cross the species barrier might give rise to different innate immune responses that could be associated with pathological lesions. For this purpose, we used the same samples collected in a previous study of ours, in which healthy pigs had been infected with a H3N2 Swine IV and four different H3N8 IV strains circulating in different animal species. Pigs had been clinically inspected and four subjects/group were sacrificed at 3, 6, and 21 days post infection. In the present study, all groups but mock exhibited antibody responses to IV nucleoprotein protein. Pulmonary lesions and high-titered viral replication were observed in pigs infected with the swine-adapted virus. Interestingly, pigs infected with avian and seal H3N8 strains also showed moderate lesions and viral replication, whereas equine and canine IVs did not cause overt pathological signs, and replication was barely detectable. Swine IV infection induced interferon (IFN-alpha and interleukin-6 responses in bronchoalveolar fluids (BALF at day 3 post infection, as opposed to the other non-swine-adapted virus strains. However, IFN-alpha responses to the swine-adapted virus were not associated with an increase of the local, constitutive expression of IFN-alpha genes. Remarkably, the Equine strain gave rise to a Serum Amyloid A response in BALF despite little if any replication. Each virus strain could be associated with expression of cytokine genes and/or proteins after infection. These responses were observed well beyond the period of virus replication, suggesting a prolonged homeostatic imbalance of the innate immune system.

  15. Swine Influenza Virus PA and Neuraminidase Gene Reassortment into Human H1N1 Influenza Virus Is Associated with an Altered Pathogenic Phenotype Linked to Increased MIP-2 Expression.

    Science.gov (United States)

    Dlugolenski, Daniel; Jones, Les; Howerth, Elizabeth; Wentworth, David; Tompkins, S Mark; Tripp, Ralph A

    2015-05-01

    Swine are susceptible to infection by both avian and human influenza viruses, and this feature is thought to contribute to novel reassortant influenza viruses. In this study, the influenza virus reassortment rate in swine and human cells was determined. Coinfection of swine cells with 2009 pandemic H1N1 virus (huH1N1) and an endemic swine H1N2 (A/swine/Illinois/02860/09) virus (swH1N2) resulted in a 23% reassortment rate that was independent of α2,3- or α2,6-sialic acid distribution on the cells. The reassortants had altered pathogenic phenotypes linked to introduction of the swine virus PA and neuraminidase (NA) into huH1N1. In mice, the huH1N1 PA and NA mediated increased MIP-2 expression early postinfection, resulting in substantial pulmonary neutrophilia with enhanced lung pathology and disease. The findings support the notion that swine are a mixing vessel for influenza virus reassortants independent of sialic acid distribution. These results show the potential for continued reassortment of the 2009 pandemic H1N1 virus with endemic swine viruses and for reassortants to have increased pathogenicity linked to the swine virus NA and PA genes which are associated with increased pulmonary neutrophil trafficking that is related to MIP-2 expression. Influenza A viruses can change rapidly via reassortment to create a novel virus, and reassortment can result in possible pandemics. Reassortments among subtypes from avian and human viruses led to the 1957 (H2N2 subtype) and 1968 (H3N2 subtype) human influenza pandemics. Recent analyses of circulating isolates have shown that multiple genes can be recombined from human, avian, and swine influenza viruses, leading to triple reassortants. Understanding the factors that can affect influenza A virus reassortment is needed for the establishment of disease intervention strategies that may reduce or preclude pandemics. The findings from this study show that swine cells provide a mixing vessel for influenza virus reassortment

  16. Evidence for Cross-species Influenza A Virus Transmission Within Swine Farms, China: A One Health, Prospective Cohort Study.

    Science.gov (United States)

    Ma, Mai-Juan; Wang, Guo-Lin; Anderson, Benjamin D; Bi, Zhen-Qiang; Lu, Bing; Wang, Xian-Jun; Wang, Chuang-Xin; Chen, Shan-Hui; Qian, Yan-Hua; Song, Shao-Xia; Li, Min; Lednicky, John A; Zhao, Teng; Wu, Meng-Na; Cao, Wu-Chun; Gray, Gregory C

    2018-02-01

    Our understanding of influenza A virus transmission between humans and pigs is limited. Beginning in 2015, we used a One Health approach and serial sampling to prospectively study 299 swine workers and 100 controls, their 9000 pigs, and 6 pig farm environments in China for influenza A viruses (IAVs) using molecular, culture, and immunological techniques. Study participants were closely monitored for influenza-like illness (ILI) events. Upon enrollment, swine workers had higher serum neutralizing antibody titers against swine H1N1 and higher nasal wash total immunoglobulin A (IgA) and specific IgA titers against swine H1N1 and H3N2 viruses. Over a period of 12 months, IAVs were detected by quantitative reverse-transcription polymerase chain reaction in 46 of 396 (11.6%) environmental swabs, 235 of 3300 (7.1%) pig oral secretion, 23 of 396 (5.8%) water, 20 of 396 (5.1%) aerosol, and 19 of 396 (4.8%) fecal-slurry specimens. Five of 32 (15.6%) participants with ILI events had nasopharyngeal swab specimens that were positive for IAV, and 17 (53.1%) demonstrated 4-fold rises in neutralization titers against a swine virus. Reassorted Eurasian avian-lineage H1N1, A(H1N1)pdm09-like, and swine-lineage H3N2 viruses were identified in pig farms. The A(H1N1)pdm09-like H1N1 viruses identified in swine were nearly genetically identical to the human H1N1 viruses isolated from the participants with ILI. There was considerable evidence of A(H1N1)pdm09-like, swine-lineage H1N1, and swine-lineage H3N2 viruses circulating, likely reassorting, and likely crossing species within the pig farms. These data suggest that stronger surveillance for novel influenza virus emergence within swine farms is imperative. © The Author(s) 2017. Published by Oxford University Press for the Infectious Diseases Society of America. All rights reserved. For permissions, e-mail: journals.permissions@oup.com.

  17. Optimal Use of Vaccines for Control of Influenza A Virus in Swine

    Directory of Open Access Journals (Sweden)

    Matthew R. Sandbulte

    2015-01-01

    Full Text Available Influenza A virus in swine (IAV-S is one of the most important infectious disease agents of swine in North America. In addition to the economic burden of IAV-S to the swine industry, the zoonotic potential of IAV-S sometimes leads to serious public health concerns. Adjuvanted, inactivated vaccines have been licensed in the United States for over 20 years, and there is also widespread usage of autogenous/custom IAV-S vaccines. Vaccination induces neutralizing antibodies and protection against infection with very similar strains. However, IAV-S strains are so diverse and prone to mutation that these vaccines often have disappointing efficacy in the field. This scientific review was developed to help veterinarians and others to identify the best available IAV-S vaccine for a particular infected herd. We describe key principles of IAV-S structure and replication, protective immunity, currently available vaccines, and vaccine technologies that show promise for the future. We discuss strategies to optimize the use of available IAV-S vaccines, based on information gathered from modern diagnostics and surveillance programs. Improvements in IAV-S immunization strategies, in both the short term and long term, will benefit swine health and productivity and potentially reduce risks to public health.

  18. Novel reassortant influenza A(H1N2) virus derived from A(H1N1)pdm09 virus isolated from swine, Japan, 2012.

    Science.gov (United States)

    Kobayashi, Miho; Takayama, Ikuyo; Kageyama, Tsutomu; Tsukagoshi, Hiroyuki; Saitoh, Mika; Ishioka, Taisei; Yokota, Yoko; Kimura, Hirokazu; Tashiro, Masato; Kozawa, Kunihisa

    2013-12-01

    We isolated a novel influenza virus A(H1N2) strain from a pig on January 13, 2012, in Gunma Prefecture, Japan. Phylogenetic analysis showed that the strain was a novel type of double-reassortant virus derived from the swine influenza virus strains H1N1pdm09 and H1N2, which were prevalent in Gunma at that time.

  19. Distribution of sialic acid receptors and influenza A viruses of avian and swine origin and in experimentally infected pigs

    DEFF Research Database (Denmark)

    Trebbien, Ramona; Larsen, Lars Erik; Viuff, Birgitte M.

    2011-01-01

    Background: Pigs are considered susceptible to influenza A virus infections from different host origins because earlier studies have shown that they have receptors for both avian (sialic acid-alpha-2,3-terminal saccharides (SAalpha- 2,3)) and swine/human (SA-alpha-2,6) influenza viruses...... in the upper respiratory tract. Furthermore, experimental and natural infections in pigs have been reported with influenza A virus from avian and human sources. Methods: This study investigated the receptor distribution in the entire respiratory tract of pigs using specific lectins Maackia Amurensis (MAA) I...... and AIV virus was found, and this difference was in accordance with the distribution of the SA-alpha-2,6 and SA-alpha-2,3 receptor, respectively. The results indicated that the distribution of influenza A virus receptors in pigs are similar to that of humans and therefore challenge the theory that the pig...

  20. The molecular determinants of antibody recognition and antigenic drift in the H3 hemagglutinin of swine influenza A virus

    Science.gov (United States)

    Influenza A virus (IAV) of the H3 subtype is an important pathogen that affects both humans and swine. The main intervention strategy for preventing infection is vaccination to induce neutralizing antibodies against the surface glycoprotein hemagglutinin (HA). However, due to antigenic drift, vaccin...

  1. European Surveillance Network for Influenza in Pigs: Surveillance Programs, Diagnostic Tools and Swine Influenza Virus Subtypes Identified in 14 European Countries from 2010 to 2013

    DEFF Research Database (Denmark)

    Simon, Gaelle; Larsen, Lars Erik; Duerrwald, Ralf

    2014-01-01

    : avian-like swine H1N1 (53.6%), human-like reassortant swine H1N2 (13%) and human-like reassortant swine H3N2 (9.1%), as well as pandemic A/H1N1 2009 (H1N1pdm) virus (10.3%). Viruses from these four lineages co-circulated in several countries but with very different relative levels of incidence....... For instance, the H3N2 subtype was not detected at all in some geographic areas whereas it was still prevalent in other parts of Europe. Interestingly, H3N2-free areas were those that exhibited highest frequencies of circulating H1N2 viruses. H1N1pdm viruses were isolated at an increasing incidence in some......Swine influenza causes concern for global veterinary and public health officials. In continuing two previous networks that initiated the surveillance of swine influenza viruses (SIVs) circulating in European pigs between 2001 and 2008, a third European Surveillance Network for Influenza in Pigs...

  2. Swine influenza virus infection dynamics in two pig farms; results of a longitudinal assessment

    Directory of Open Access Journals (Sweden)

    Simon-Grifé Meritxell

    2012-03-01

    Full Text Available Abstract In order to assess the dynamics of influenza virus infection in pigs, serological and virological follow-ups were conducted in two whole batches of pigs from two different farms (F1 and F2, from 3 weeks of age until market age. Anti-swine influenza virus (SIV antibodies (measured by ELISA and hemagglutination inhibition and nasal virus shedding (measured by RRT-PCR and isolation in embryonated chicken eggs and MDCK cells were carried out periodically. SIV isolates were subtyped and hemagglutinin and neuraminidase genes were partially sequenced and analyzed phylogenetically. In F1, four waves of viral circulation were detected, and globally, 62/121 pigs (51.2% were positive by RRT-PCR at least once. All F1 isolates corresponded to H1N1 subtype although hemagglutination inhibition results also revealed the presence of antibodies against H3N2. The first viral wave took place in the presence of colostral-derived antibodies. Nine pigs were positive in two non-consecutive sampling weeks, with two of the animals being positive with the same isolate. Phylogenetic analyses showed that different H1N1 variants circulated in that farm. In F2, only one isolate, H1N2, was detected and all infections were concentrated in a very short period of time, as assumed for a classic influenza outbreak. These findings led us to propose that influenza virus infection in pigs might present different patterns, from an epidemic outbreak to an endemic form with different waves of infections with a lower incidence.

  3. Genetic analysis of human and swine influenza A viruses isolated in Northern Italy during 2010-2015.

    Science.gov (United States)

    Chiapponi, C; Ebranati, E; Pariani, E; Faccini, S; Luppi, A; Baioni, L; Manfredi, R; Carta, V; Merenda, M; Affanni, P; Colucci, M E; Veronesi, L; Zehender, G; Foni, E

    2018-02-01

    Influenza A virus (IAV) infection in swine plays an important role in the ecology of influenza viruses. The emergence of new IAVs comes through different mechanisms, with the genetic reassortment of genes between influenza viruses, also originating from different species, being common. We performed a genetic analysis on 179 IAV isolates from humans (n. 75) and pigs (n. 104) collected in Northern Italy between 2010 and 2015, to monitor the genetic exchange between human and swine IAVs. No cases of human infection with swine strains were noticed, but direct infections of swine with H1N1pdm09 strains were detected. Moreover, we pointed out a continuous circulation of H1N1pdm09 strains in swine populations evidenced by the introduction of internal genes of this subtype. These events contribute to generating new viral variants-possibly endowed with pandemic potential-and emphasize the importance of continuous surveillance at both animal and human level. © 2017 The Authors. Zoonoses and Public Health published by Blackwell Verlag GmbH.

  4. The Inability to Screen Exhibition Swine for Influenza A Virus Using Body Temperature.

    Science.gov (United States)

    Bowman, A S; Nolting, J M; Workman, J D; Cooper, M; Fisher, A E; Marsh, B; Forshey, T

    2016-02-01

    Agricultural fairs create an unconventional animal-human interface that has been associated with swine-to-human transmission of influenza A virus (IAV) in recent years. Early detection of IAV-infected pigs at agricultural fairs would allow veterinarians to better protect swine and human health during these swine exhibitions. This study assessed the use of swine body temperature measurement, recorded by infrared and rectal thermometers, as a practical method to detect IAV-infected swine at agricultural fairs. In our first objective, infrared thermometers were used to record the body surface temperature of 1,092 pigs at the time of IAV nasal swab collection at the end of the exhibition period of 55 agricultural fairs. IAV was recovered from 212 (19.4%) pigs, and the difference in mean infrared body temperature measurement of IAV-positive and IAV-negative pigs was 0.83°C. In a second objective, snout wipes were collected from 1,948 pigs immediately prior to the unloading of the animals at a single large swine exhibition. Concurrent to the snout wipe collection, owners took the rectal temperatures of his/her pigs. In this case, 47 (2.4%) pigs tested positive for IAV before they entered the swine barn. The mean rectal temperatures differed by only 0.19°C between IAV-positive and IAV-negative pigs. The low prevalence of IAV among the pigs upon entry to the fair in the second objective provides evidence that limiting intraspecies spread of IAV during the fairs will likely have significant impacts on the zoonotic transmission. However, in both objectives, the high degree of similarity in the body temperature measurements between the IAV-positive and IAV-negative pigs made it impossible to set a diagnostically meaningful cut point to differentiate IAV status of the individual animals. Unfortunately, body temperature measurement cannot be used to accurately screen exhibition swine for IAV. © 2015 Blackwell Verlag GmbH.

  5. Pathogenesis of swine influenza virus (Thai isolates in weanling pigs: an experimental trial

    Directory of Open Access Journals (Sweden)

    Kitikoon Pravina

    2009-03-01

    Full Text Available Abstract Background The objective of this study is to investigate the pathogenesis of swine influenza virus (SIV subtype H1N1 and H3N2 (Thai isolates in 22-day-old SPF pigs. Results The study found that all pigs in the infected groups developed typical signs of flu-like symptoms on 1–4 days post- infection (dpi. The H1N1-infected pigs had greater lung lesion scores than those of the H3N2-infected pigs. Histopathological lesions related to swine influenza-induced lesions consisting of epithelial cells damage, airway plugging and peribronchial and perivascular mononuclear cell infiltration were present in both infected groups. Immunofluorescence and immunohistochemistry using nucleoprotein specific monoclonal antibodies revealed positive staining cells in lung sections of both infected groups at 2 and 4 dpi. Virus shedding was detected at 2 dpi from both infected groups as demonstrated by RT-PCR and virus isolation. Conclusion The results demonstrated that both SIV subtypes were able to induce flu-like symptoms and lung lesions in weanling pigs. However the severity of the diseases with regards to lung lesions both gross and microscopic lesions was greater in the H1N1-infected pigs. Based on phylogenetic analysis, haemagglutinin gene of subtype H1N1 from Thailand clustered with the classical H1 SIV sequences and neuraminidase gene clustered with virus of avian origin, whereas, both genes of H3N2 subtype clustered with H3N2 human-like SIV from the 1970s.

  6. Distribution of sialic acid receptors and influenza A viruses of avian and swine origin and in experimentally infected pigs

    DEFF Research Database (Denmark)

    Trebbien, Ramona; Larsen, Lars Erik; Viuff, Birgitte M.

    2011-01-01

    Background: Pigs are considered susceptible to influenza A virus infections from different host origins because earlier studies have shown that they have receptors for both avian (sialic acid-alpha-2,3-terminal saccharides (SAalpha- 2,3)) and swine/human (SA-alpha-2,6) influenza viruses in the up......Background: Pigs are considered susceptible to influenza A virus infections from different host origins because earlier studies have shown that they have receptors for both avian (sialic acid-alpha-2,3-terminal saccharides (SAalpha- 2,3)) and swine/human (SA-alpha-2,6) influenza viruses...... and AIV virus was found, and this difference was in accordance with the distribution of the SA-alpha-2,6 and SA-alpha-2,3 receptor, respectively. The results indicated that the distribution of influenza A virus receptors in pigs are similar to that of humans and therefore challenge the theory that the pig...

  7. H1N1 influenza (Swine flu)

    Science.gov (United States)

    Swine flu; H1N1 type A influenza ... The H1N1 virus is now considered a regular flu virus. It is one of the three viruses included in the regular (seasonal) flu vaccine . You cannot get H1N1 flu virus from ...

  8. Comparison of the usefulness of the CACO-2 cell line with standard substrates for isolation of swine influenza A viruses.

    Science.gov (United States)

    Chiapponi, Chiara; Zanni, Irene; Garbarino, Chiara; Barigazzi, Giuseppe; Foni, Emanuela

    2010-01-01

    Influenza A virus isolation is undertaken routinely in embryonated chicken eggs, but to improve virus detection various cell lines can be used. The CACO-2 cell line was compared to the MDCK cell line and embryonated chicken eggs for the isolation of H1N1, H1N2, H3N2 swine influenza A virus subtypes from clinical specimens. From 2006 to 2008, 104 influenza A samples found positive by PCR from 42 respiratory outbreaks in Italian swine farms were examined by virus isolation. Sixty swine influenza A viruses were isolated (16 H1N1, 28 H1N2 and 16 H3N2) and their growth behaviour on the different substrates was examined. 16/16 H1N1, 28/28 H1N2 and 8/16 of H3N2 viruses were isolated from the CACO-2 cell line, while 7/16 H1N1, 3/28 H1N2 and 16/16 H3N2 viruses were isolated using embryonated chicken eggs. Only 9/16 H1N1, 1/28 H1N2 and 6/16 H3N2 viruses replicated in MDCK cells. A link was found between viral hemagglutinin and the isolation rate on the various substrates. The CACO-2 line was statistically more sensitive (Fisher's exact test, pH1N2 subtypes. In contrast influenza A H3N2 virus was isolated more readily in embryonated chicken eggs than in cultured cells (Fisher's exact test, p<0.01).

  9. Appearance of reassortant European avian-origin H1 influenza A viruses of swine in Vietnam.

    Science.gov (United States)

    Takemae, N; Nguyen, P T; Le, V T; Nguyen, T N; To, T L; Nguyen, T D; Pham, V P; Vo, H V; Le, Q V T; Do, H T; Nguyen, D T; Uchida, Y; Saito, T

    2018-03-06

    Three subtypes-H1N1, H1N2 and H3N2-of influenza A viruses of swine (IAVs-S) are currently endemic in swine worldwide, but there is considerable genotypic diversity among each subtype and limited geographical distribution. Through IAVs-S monitoring in Vietnam, two H1N2 influenza A viruses were isolated from healthy pigs in Ba Ria-Vung Tau Province, Southern Vietnam, on 2 December 2016. BLAST and phylogenetic analyses revealed that their HA and NA genes were derived from those of European avian-like H1N2 IAVs-S that contained avian-origin H1 and human-like N2 genes, and were particularly closely related to those of IAVs-S circulating in the Netherlands, Germany or Denmark. In addition, the internal genes of these Vietnamese isolates were derived from human A(H1N1)pdm09 viruses, suggesting that the Vietnamese H1N2 IAVs-S are reassortants between European H1N2 IAVs-S and human A(H1N1)pdm09v. The appearance of European avian-like H1N2 IAVs-S in Vietnam marks their first transmission outside Europe. Our results and statistical analyses of the number of live pigs imported into Vietnam suggest that the European avian-like H1N2 IAVs-S may have been introduced into Vietnam with their hosts through international trade. These findings highlight the importance of quarantining imported pigs to impede the introduction of new IAVs-S. © 2018 Blackwell Verlag GmbH.

  10. Comparative pathogenesis of an avian H5N2 and a swine H1N1 influenza virus in pigs.

    Directory of Open Access Journals (Sweden)

    Annebel De Vleeschauwer

    2009-08-01

    Full Text Available Pigs are considered intermediate hosts for the transmission of avian influenza viruses (AIVs to humans but the basic organ pathogenesis of AIVs in pigs has been barely studied. We have used 42 four-week-old influenza naive pigs and two different inoculation routes (intranasal and intratracheal to compare the pathogenesis of a low pathogenic (LP H5N2 AIV with that of an H1N1 swine influenza virus. The respiratory tract and selected extra-respiratory tissues were examined for virus replication by titration, immunofluorescence and RT-PCR throughout the course of infection. Both viruses caused a productive infection of the entire respiratory tract and epithelial cells in the lungs were the major target. Compared to the swine virus, the AIV produced lower virus titers and fewer antigen positive cells at all levels of the respiratory tract. The respiratory part of the nasal mucosa in particular showed only rare AIV positive cells and this was associated with reduced nasal shedding of the avian compared to the swine virus. The titers and distribution of the AIV varied extremely between individual pigs and were strongly affected by the route of inoculation. Gross lung lesions and clinical signs were milder with the avian than with the swine virus, corresponding with lower viral loads in the lungs. The brainstem was the single extra-respiratory tissue found positive for virus and viral RNA with both viruses. Our data do not reject the theory of the pig as an intermediate host for AIVs, but they suggest that AIVs need to undergo genetic changes to establish full replication potential in pigs. From a biomedical perspective, experimental LP H5 AIV infection of pigs may be useful to examine heterologous protection provided by H5 vaccines or other immunization strategies, as well as for further studies on the molecular pathogenesis and neurotropism of AIVs in mammals.

  11. In vitro reassortment between endemic H1N2 and 2009 H1N1 pandemic swine influenza viruses generates attenuated viruses.

    Directory of Open Access Journals (Sweden)

    Ben M Hause

    Full Text Available The pandemic H1N1 (pH1N1 influenza virus was first reported in humans in the spring of 2009 and soon thereafter was identified in numerous species, including swine. Reassortant viruses, presumably arising from the co-infection of pH1N1 and endemic swine influenza virus (SIV, were subsequently identified from diagnostic samples collected from swine. In this study, co-infection of swine testicle (ST cells with swine-derived endemic H1N2 (MN745 and pH1N1 (MN432 yielded two reassortant H1N2 viruses (R1 and R2, both possessing a matrix gene derived from pH1N1. In ST cells, the reassortant viruses had growth kinetics similar to the parental H1N2 virus and reached titers approximately 2 log(10 TCID(50/mL higher than the pH1N1 virus, while in A549 cells these viruses had similar growth kinetics. Intranasal challenge of pigs with H1N2, pH1N1, R1 or R2 found that all viruses were capable of infecting and transmitting between direct contact pigs as measured by real time reverse transcription PCR of nasal swabs. Lung samples were also PCR-positive for all challenge groups and influenza-associated microscopic lesions were detected by histology. Interestingly, infectious virus was detected in lung samples for pigs challenged with the parental H1N2 and pH1N1 at levels significantly higher than either reassortant virus despite similar levels of viral RNA. Results of our experiment suggested that the reassortant viruses generated through in vitro cell culture system were attenuated without gaining any selective growth advantage in pigs over the parental lineages. Thus, reassortant influenza viruses described in this study may provide a good system to study genetic basis of the attenuation and its mechanism.

  12. Development of a primer–probe energy transfer based real-time PCR for the detection of Swine influenza virus

    DEFF Research Database (Denmark)

    Kowalczyk, Andrzej; Markowska-Daniel, Iwona; Rasmussen, Thomas Bruun

    2013-01-01

    Swine influenza virus (SIV) causes a contagious and requiring official notification disease of pigs and humans. In this study, a real-time reverse transcription-polymerase chain reaction (RT-PCR) assay based on primer–probe energy transfer (PriProET) for the detection of SIV RNA was developed...... of the specific product amplification. The assay is specific for influenza virus with a sensitivity of detection limit of approximately 10 copies of RNA by PCR. Based on serial dilutions of SIV, the detection limit of the assay was approximately 0.003 TCID50/ml for H1N1 A/Swine/Poland/KPR9/2004 virus. The Pri...

  13. Antigenically Diverse Swine Origin H1N1 Variant Influenza Viruses Exhibit Differential Ferret Pathogenesis and Transmission Phenotypes.

    Science.gov (United States)

    Pulit-Penaloza, Joanna A; Jones, Joyce; Sun, Xiangjie; Jang, Yunho; Thor, Sharmi; Belser, Jessica A; Zanders, Natosha; Creager, Hannah M; Ridenour, Callie; Wang, Li; Stark, Thomas J; Garten, Rebecca; Chen, Li-Mei; Barnes, John; Tumpey, Terrence M; Wentworth, David E; Maines, Taronna R; Davis, C Todd

    2018-06-01

    Influenza A(H1) viruses circulating in swine represent an emerging virus threat, as zoonotic infections occur sporadically following exposure to swine. A fatal infection caused by an H1N1 variant (H1N1v) virus was detected in a patient with reported exposure to swine and who presented with pneumonia, respiratory failure, and cardiac arrest. To understand the genetic and phenotypic characteristics of the virus, genome sequence analysis, antigenic characterization, and ferret pathogenesis and transmissibility experiments were performed. Antigenic analysis of the virus isolated from the fatal case, A/Ohio/09/2015, demonstrated significant antigenic drift away from the classical swine H1N1 variant viruses and H1N1 pandemic 2009 viruses. A substitution in the H1 hemagglutinin (G155E) was identified that likely impacted antigenicity, and reverse genetics was employed to understand the molecular mechanism of antibody escape. Reversion of the substitution to 155G, in a reverse genetics A/Ohio/09/2015 virus, showed that this residue was central to the loss of hemagglutination inhibition by ferret antisera raised against a prototypical H1N1 pandemic 2009 virus (A/California/07/2009), as well as gamma lineage classical swine H1N1 viruses, demonstrating the importance of this residue for antibody recognition of this H1 lineage. When analyzed in the ferret model, A/Ohio/09/2015 and another H1N1v virus, A/Iowa/39/2015, as well as A/California/07/2009, replicated efficiently in the respiratory tract of ferrets. The two H1N1v viruses transmitted efficiently among cohoused ferrets, but respiratory droplet transmission studies showed that A/California/07/2009 transmitted through the air more efficiently. Preexisting immunity to A/California/07/2009 did not fully protect ferrets from challenge with A/Ohio/09/2015. IMPORTANCE Human infections with classical swine influenza A(H1N1) viruses that circulate in pigs continue to occur in the United States following exposure to swine. To

  14. Molecular characterization of a novel reassortant H1N2 influenza virus containing genes from the 2009 pandemic human H1N1 virus in swine from eastern China.

    Science.gov (United States)

    Peng, Xiuming; Wu, Haibo; Xu, Lihua; Peng, Xiaorong; Cheng, Linfang; Jin, Changzhong; Xie, Tiansheng; Lu, Xiangyun; Wu, Nanping

    2016-06-01

    Pandemic outbreaks of H1N1 swine influenza virus have been reported since 2009. Reassortant H1N2 viruses that contain genes from the pandemic H1N1 virus have been isolated in Italy and the United States. However, there is limited information regarding the molecular characteristics of reassortant H1N2 swine influenza viruses in eastern China. Active influenza surveillance programs in Zhejiang Province identified a novel H1N2 influenza virus isolated from pigs displaying clinical signs of influenza virus infection. Whole-genome sequencing was performed and this strain was compared with other influenza viruses available in GenBank. Phylogenetic analysis suggested that the novel strain contained genes from the 2009 pandemic human H1N1 and swine H3N2 viruses. BALB/c mice were infected with the isolated virus to assess its virulence in mice. While the novel H1N2 isolate replicated well in mice, it was found to be less virulent. These results provide additional evidence that swine serve as intermediate hosts or 'mixing vessels' for novel influenza viruses. They also emphasize the importance of surveillance in the swine population for use as an early warning system for influenza outbreaks in swine and human populations.

  15. Efficacy of a pandemic (H1N1) 2009 virus vaccine in pigs against the pandemic influenza virus is superior to commercially available swine influenza vaccines.

    Science.gov (United States)

    Loeffen, W L A; Stockhofe, N; Weesendorp, E; van Zoelen-Bos, D; Heutink, R; Quak, S; Goovaerts, D; Heldens, J G M; Maas, R; Moormann, R J; Koch, G

    2011-09-28

    In April 2009 a new influenza A/H1N1 strain, currently named "pandemic (H1N1) influenza 2009" (H1N1v), started the first official pandemic in humans since 1968. Several incursions of this virus in pig herds have also been reported from all over the world. Vaccination of pigs may be an option to reduce exposure of human contacts with infected pigs, thereby preventing cross-species transfer, but also to protect pigs themselves, should this virus cause damage in the pig population. Three swine influenza vaccines, two of them commercially available and one experimental, were therefore tested and compared for their efficacy against an H1N1v challenge. One of the commercial vaccines is based on an American classical H1N1 influenza strain, the other is based on a European avian H1N1 influenza strain. The experimental vaccine is based on reassortant virus NYMC X179A (containing the hemagglutinin (HA) and neuraminidase (NA) genes of A/California/7/2009 (H1N1v) and the internal genes of A/Puerto Rico/8/34 (H1N1)). Excretion of infectious virus was reduced by 0.5-3 log(10) by the commercial vaccines, depending on vaccine and sample type. Both vaccines were able to reduce virus replication especially in the lower respiratory tract, with less pathological lesions in vaccinated and subsequently challenged pigs than in unvaccinated controls. In pigs vaccinated with the experimental vaccine, excretion levels of infectious virus in nasal and oropharyngeal swabs, were at or below 1 log(10)TCID(50) per swab and lasted for only 1 or 2 days. An inactivated vaccine containing the HA and NA of an H1N1v is able to protect pigs from an infection with H1N1v, whereas swine influenza vaccines that are currently available are of limited efficaciousness. Whether vaccination of pigs against H1N1v will become opportune remains to be seen and will depend on future evolution of this strain in the pig population. Close monitoring of the pig population, focussing on presence and evolution of

  16. Identification of swine H1N2/pandemic H1N1 reassortant influenza virus in pigs, United States.

    Science.gov (United States)

    Ali, Ahmed; Khatri, Mahesh; Wang, Leyi; Saif, Yehia M; Lee, Chang-Won

    2012-07-06

    In October and November 2010, novel H1N2 reassortant influenza viruses were identified from pigs showing mild respiratory signs that included cough and depression. Sequence and phylogenetic analysis showed that the novel H1N2 reassortants possesses HA and NA genes derived from recent H1N2 swine isolates similar to those isolated from Midwest. Compared to the majority of reported reassortants, both viruses preserved human-like host restrictive and putative antigenic sites in their HA and NA genes. The four internal genes, PB2, PB1, PA, and NS were similar to the contemporary swine triple reassortant viruses' internal genes (TRIG). Interestingly, NP and M genes of the novel reassortants were derived from the 2009 pandemic H1N1. The NP and M proteins of the two isolates demonstrated one (E16G) and four (G34A, D53E, I109T, and V313I) amino acid changes in the M2 and NP proteins, respectively. Similar amino acid changes were also noticed upon incorporation of the 2009 pandemic H1N1 NP in other reassortant viruses reported in the U.S. Thus the role of those amino acids in relation to host adaptation need to be further investigated. The reassortments of pandemic H1N1 with swine influenza viruses and the potential of interspecies transmission of these reassortants from swine to other species including human indicate the importance of systematic surveillance of swine population to determine the origin, the prevalence of similar reassortants in the U.S. and their impact on both swine production and public health. Copyright © 2012 Elsevier B.V. All rights reserved.

  17. Virulence and transmissibility of H1N2 influenza virus in ferrets imply the continuing threat of triple-reassortant swine viruses.

    Science.gov (United States)

    Pascua, Philippe Noriel Q; Song, Min-Suk; Lee, Jun Han; Baek, Yun Hee; Kwon, Hyeok-il; Park, Su-Jin; Choi, Eun Hye; Lim, Gyo-Jin; Lee, Ok-Jun; Kim, Si-Wook; Kim, Chul-Joong; Sung, Moon Hee; Kim, Myung Hee; Yoon, Sun-Woo; Govorkova, Elena A; Webby, Richard J; Webster, Robert G; Choi, Young-Ki

    2012-09-25

    Efficient worldwide swine surveillance for influenza A viruses is urgently needed; the emergence of a novel reassortant pandemic H1N1 (pH1N1) virus in 2009 demonstrated that swine can be the direct source of pandemic influenza and that the pandemic potential of viruses prevalent in swine populations must be monitored. We used the ferret model to assess the pathogenicity and transmissibility of predominant Korean triple-reassortant swine (TRSw) H1N2 and H3N2 influenza viruses genetically related to North American strains. Although most of the TRSw viruses were moderately pathogenic, one [A/Swine/Korea/1204/2009; Sw/1204 (H1N2)] was virulent in ferrets, causing death within 10 d of inoculation, and was efficiently transmitted to naive contact ferrets via respiratory droplets. Although molecular analysis did not reveal known virulence markers, the Sw/1204 virus acquired mutations in hemagglutinin (HA) (Asp-225-Gly) and neuraminidase (NA) (Ser-315-Asn) proteins during the single ferret passage. The contact-Sw/1204 virus became more virulent in mice, replicated efficiently in vitro, extensively infected human lung tissues ex vivo, and maintained its ability to replicate and transmit in swine. Reverse-genetics studies further indicated that the HA(225G) and NA(315N) substitutions contributed substantially in altering virulence and transmissibility. These findings support the continuing threat of some field TRSw viruses to human and animal health, reviving concerns on the capacity of pigs to create future pandemic viruses. Apart from warranting continued and enhanced global surveillance, this study also provides evidence on the emerging roles of HA(225G) and NA(315N) as potential virulence markers in mammals.

  18. Two different genotypes of H1N2 swine influenza virus isolated in northern China and their pathogenicity in animals.

    Science.gov (United States)

    Yang, Huanliang; Chen, Yan; Qiao, Chuanling; Xu, Chuantian; Yan, Minghua; Xin, Xiaoguang; Bu, Zhigao; Chen, Hualan

    2015-02-25

    During 2006 and 2007, two swine-origin triple-reassortant influenza A (H1N2) viruses were isolated from pigs in northern China, and the antigenic characteristics of the hemagglutinin protein of the viruses were examined. Genotyping and phylogenetic analyses demonstrated different emergence patterns for the two H1N2 viruses, Sw/Hebei/10/06 and Sw/Tianjin/1/07. Sequences for the other genes encoding the internal proteins were compared with the existing data to determine their origins and establish the likely mechanisms of genetic reassortment. Sw/Hebei/10/06 is an Sw/Indiana/9K035/99-like virus, whereas Sw/Tianjin/1/07 represents a new H1N2 genotype with surface genes of classic swine and human origin and internal genes originating from the Eurasian avian-like swine H1N1 virus. Six-week-old female BALB/c mice infected with the Sw/HeB/10/06 and Sw/TJ/1/07 viruses showed an average weight loss of 12.8% and 8.1%, respectively. Healthy six-week-old pigs were inoculated intranasally with either the Sw/HeB/10/06 or Sw/TJ/1/07 virus. No considerable changes in the clinical presentation were observed post-inoculation in any of the virus-inoculated groups, and the viruses effectively replicated in the nasal cavity and lung tissue. Based on the results, it is possible that the new genotype of the swine H1N2 virus that emerged in China may become widespread in the swine population and pose a potential threat to public health. Copyright © 2014 Elsevier B.V. All rights reserved.

  19. Characterization of an artificial swine-origin influenza virus with the same gene combination as H1N1/2009 virus: a genesis clue of pandemic strain.

    Science.gov (United States)

    Zhao, Xueli; Sun, Yipeng; Pu, Juan; Fan, Lihong; Shi, Weimin; Hu, Yanxin; Yang, Jun; Xu, Qi; Wang, Jingjing; Hou, Dongjun; Ma, Guangpeng; Liu, Jinhua

    2011-01-01

    Pandemic H1N1/2009 influenza virus, derived from a reassortment of avian, human, and swine influenza viruses, possesses a unique gene segment combination that had not been detected previously in animal and human populations. Whether such a gene combination could result in the pathogenicity and transmission as H1N1/2009 virus remains unclear. In the present study, we used reverse genetics to construct a reassortant virus (rH1N1) with the same gene combination as H1N1/2009 virus (NA and M genes from a Eurasian avian-like H1N1 swine virus and another six genes from a North American triple-reassortant H1N2 swine virus). Characterization of rH1N1 in mice showed that this virus had higher replicability and pathogenicity than those of the seasonal human H1N1 and Eurasian avian-like swine H1N1 viruses, but was similar to the H1N1/2009 and triple-reassortant H1N2 viruses. Experiments performed on guinea pigs showed that rH1N1 was not transmissible, whereas pandemic H1N1/2009 displayed efficient transmissibility. To further determine which gene segment played a key role in transmissibility, we constructed a series of reassortants derived from rH1N1 and H1N1/2009 viruses. Direct contact transmission studies demonstrated that the HA and NS genes contributed to the transmission of H1N1/2009 virus. Second, the HA gene of H1N1/2009 virus, when combined with the H1N1/2009 NA gene, conferred efficient contact transmission among guinea pigs. The present results reveal that not only gene segment reassortment but also amino acid mutation were needed for the generation of the pandemic influenza virus.

  20. Characterization of an artificial swine-origin influenza virus with the same gene combination as H1N1/2009 virus: a genesis clue of pandemic strain.

    Directory of Open Access Journals (Sweden)

    Xueli Zhao

    Full Text Available Pandemic H1N1/2009 influenza virus, derived from a reassortment of avian, human, and swine influenza viruses, possesses a unique gene segment combination that had not been detected previously in animal and human populations. Whether such a gene combination could result in the pathogenicity and transmission as H1N1/2009 virus remains unclear. In the present study, we used reverse genetics to construct a reassortant virus (rH1N1 with the same gene combination as H1N1/2009 virus (NA and M genes from a Eurasian avian-like H1N1 swine virus and another six genes from a North American triple-reassortant H1N2 swine virus. Characterization of rH1N1 in mice showed that this virus had higher replicability and pathogenicity than those of the seasonal human H1N1 and Eurasian avian-like swine H1N1 viruses, but was similar to the H1N1/2009 and triple-reassortant H1N2 viruses. Experiments performed on guinea pigs showed that rH1N1 was not transmissible, whereas pandemic H1N1/2009 displayed efficient transmissibility. To further determine which gene segment played a key role in transmissibility, we constructed a series of reassortants derived from rH1N1 and H1N1/2009 viruses. Direct contact transmission studies demonstrated that the HA and NS genes contributed to the transmission of H1N1/2009 virus. Second, the HA gene of H1N1/2009 virus, when combined with the H1N1/2009 NA gene, conferred efficient contact transmission among guinea pigs. The present results reveal that not only gene segment reassortment but also amino acid mutation were needed for the generation of the pandemic influenza virus.

  1. Characterization of a newly emerged genetic cluster of H1N1 and H1N2 swine influenza virus in the United States.

    Science.gov (United States)

    Vincent, Amy L; Ma, Wenjun; Lager, Kelly M; Gramer, Marie R; Richt, Juergen A; Janke, Bruce H

    2009-10-01

    H1 influenza A viruses that were distinct from the classical swine H1 lineage were identified in pigs in Canada in 2003–2004; antigenic and genetic characterization identified the hemagglutinin (HA) as human H1 lineage. The viruses identified in Canadian pigs were human lineage in entirety or double (human–swine) reassortants. Here, we report the whole genome sequence analysis of four human-like H1 viruses isolated from U.S. swine in 2005 and 2007. All four isolates were characterized as triple reassortants with an internal gene constellation similar to contemporary U.S. swine influenza virus (SIV), with HA and neuraminidase (NA) most similar to human influenza virus lineages. A 2007 human-like H1N1 was evaluated in a pathogenesis and transmission model and compared to a 2004 reassortant H1N1 SIV isolate with swine lineage HA and NA. The 2007 isolate induced disease typical of influenza virus and was transmitted to contact pigs; however, the kinetics and magnitude differed from the 2004 H1N1 SIV. This study indicates that the human-like H1 SIV can efficiently replicate and transmit in the swine host and now co-circulates with contemporary SIVs as a distinct genetic cluster of H1 SIV.

  2. Swine influenza virus vaccines: to change or not to change-that's the question.

    Science.gov (United States)

    Van Reeth, Kristien; Ma, Wenjun

    2013-01-01

    Commercial vaccines currently available against swine influenza virus (SIV) are inactivated, adjuvanted, whole virus vaccines, based on H1N1 and/or H3N2 and/or H1N2 SIVs. In keeping with the antigenic and genetic differences between SIVs circulating in Europe and the US, the vaccines for each region are produced locally and contain different strains. Even within a continent, there is no standardization of vaccine strains, and the antigen mass and adjuvants can also differ between different commercial products. Recombinant protein vaccines against SIV, vector, and DNA vaccines, and vaccines attenuated by reverse genetics have been tested in experimental studies, but they have not yet reached the market. In this review, we aim to present a critical analysis of the performance of commercial inactivated and novel generation SIV vaccines in experimental vaccination challenge studies in pigs. We pay special attention to the differences between commercial SIV vaccines and vaccination attitudes in Europe and in North America, to the issue of vaccine strain selection and changes, and to the potential advantages of novel generation vaccines over the traditional killed SIV vaccines.

  3. Replication of avian, human and swine influenza viruses in porcine respiratory explants and association with sialic acid distribution

    Directory of Open Access Journals (Sweden)

    Nauwynck Hans J

    2010-02-01

    Full Text Available Abstract Background Throughout the history of human influenza pandemics, pigs have been considered the most likely "mixing vessel" for reassortment between human and avian influenza viruses (AIVs. However, the replication efficiencies of influenza viruses from various hosts, as well as the expression of sialic acid (Sia receptor variants in the entire porcine respiratory tract have never been studied in detail. Therefore, we established porcine nasal, tracheal, bronchial and lung explants, which cover the entire porcine respiratory tract with maximal similarity to the in vivo situation. Subsequently, we assessed virus yields of three porcine, two human and six AIVs in these explants. Since our results on virus replication were in disagreement with the previously reported presence of putative avian virus receptors in the trachea, we additionally studied the distribution of sialic acid receptors by means of lectin histochemistry. Human (Siaα2-6Gal and avian virus receptors (Siaα2-3Gal were identified with Sambucus Nigra and Maackia amurensis lectins respectively. Results Compared to swine and human influenza viruses, replication of the AIVs was limited in all cultures but most strikingly in nasal and tracheal explants. Results of virus titrations were confirmed by quantification of infected cells using immunohistochemistry. By lectin histochemistry we found moderate to abundant expression of the human-like virus receptors in all explant systems but minimal binding of the lectins that identify avian-like receptors, especially in the nasal, tracheal and bronchial epithelium. Conclusions The species barrier that restricts the transmission of influenza viruses from one host to another remains preserved in our porcine respiratory explants. Therefore this system offers a valuable alternative to study virus and/or host properties required for adaptation or reassortment of influenza viruses. Our results indicate that, based on the expression of Sia

  4. Distribution of sialic acid receptors and influenza A virus of avian and swine origin in experimentally infected pigs

    Directory of Open Access Journals (Sweden)

    Viuff Birgitte M

    2011-09-01

    Full Text Available Abstract Background Pigs are considered susceptible to influenza A virus infections from different host origins because earlier studies have shown that they have receptors for both avian (sialic acid-alpha-2,3-terminal saccharides (SA-alpha-2,3 and swine/human (SA-alpha-2,6 influenza viruses in the upper respiratory tract. Furthermore, experimental and natural infections in pigs have been reported with influenza A virus from avian and human sources. Methods This study investigated the receptor distribution in the entire respiratory tract of pigs using specific lectins Maackia Amurensis (MAA I, and II, and Sambucus Nigra (SNA. Furthermore, the predilection sites of swine influenza virus (SIV subtypes H1N1 and H1N2 as well as avian influenza virus (AIV subtype H4N6 were investigated in the respiratory tract of experimentally infected pigs using immunohistochemical methods. Results SIV antigen was widely distributed in bronchi, but was also present in epithelial cells of the nose, trachea, bronchioles, and alveolar type I and II epithelial cells in severely affected animals. AIV was found in the lower respiratory tract, especially in alveolar type II epithelial cells and occasionally in bronchiolar epithelial cells. SA-alpha-2,6 was the predominant receptor in all areas of the respiratory tract with an average of 80-100% lining at the epithelial cells. On the contrary, the SA-alpha-2,3 was not present (0% at epithelial cells of nose, trachea, and most bronchi, but was found in small amounts in bronchioles, and in alveoli reaching an average of 20-40% at the epithelial cells. Interestingly, the receptor expression of both SA-alpha-2,3 and 2,6 was markedly diminished in influenza infected areas compared to non-infected areas. Conclusions A difference in predilection sites between SIV and AIV virus was found, and this difference was in accordance with the distribution of the SA-alpha-2,6 and SA-alpha-2,3 receptor, respectively. The results indicated

  5. Evidence of cross-reactive immunity to 2009 pandemic influenza A virus in workers seropositive to swine H1N1 influenza viruses circulating in Italy.

    Directory of Open Access Journals (Sweden)

    Maria A De Marco

    Full Text Available BACKGROUND: Pigs play a key epidemiologic role in the ecology of influenza A viruses (IAVs emerging from animal hosts and transmitted to humans. Between 2008 and 2010, we investigated the health risk of occupational exposure to swine influenza viruses (SIVs in Italy, during the emergence and spread of the 2009 H1N1 pandemic (H1N1pdm virus. METHODOLOGY/PRINCIPAL FINDINGS: Serum samples from 123 swine workers (SWs and 379 control subjects (Cs, not exposed to pig herds, were tested by haemagglutination inhibition (HI assay against selected SIVs belonging to H1N1 (swH1N1, H1N2 (swH1N2 and H3N2 (swH3N2 subtypes circulating in the study area. Potential cross-reactivity between swine and human IAVs was evaluated by testing sera against recent, pandemic and seasonal, human influenza viruses (H1N1 and H3N2 antigenic subtypes. Samples tested against swH1N1 and H1N1pdm viruses were categorized into sera collected before (n. 84 SWs; n. 234 Cs and after (n. 39 SWs; n. 145 Cs the pandemic peak. HI-antibody titers ≥10 were considered positive. In both pre-pandemic and post-pandemic peak subperiods, SWs showed significantly higher swH1N1 seroprevalences when compared with Cs (52.4% vs. 4.7% and 59% vs. 9.7%, respectively. Comparable HI results were obtained against H1N1pdm antigen (58.3% vs. 7.7% and 59% vs. 31.7%, respectively. No differences were found between HI seroreactivity detected in SWs and Cs against swH1N2 (33.3% vs. 40.4% and swH3N2 (51.2 vs. 55.4% viruses. These findings indicate the occurrence of swH1N1 transmission from pigs to Italian SWs. CONCLUSION/SIGNIFICANCE: A significant increase of H1N1pdm seroprevalences occurred in the post-pandemic peak subperiod in the Cs (p<0.001 whereas SWs showed no differences between the two subperiods, suggesting a possible occurrence of cross-protective immunity related to previous swH1N1 infections. These data underline the importance of risk assessment and occupational health surveillance activities aimed

  6. The avian-origin H3N2 canine influenza virus has limited replication in swine

    Science.gov (United States)

    A genetically and antigenically distinct H3N2 canine influenza of avian-origin was detected in March of 2015 in Chicago, Illinois. A subsequent outbreak was reported with over 1,000 dogs in the Midwest affected. The potential for canine-to-swine transmission was unknown. Experimental infection in pi...

  7. Two years of surveillance of influenza a virus infection in a swine herd. Results of virological, serological and pathological studies.

    Science.gov (United States)

    Cappuccio, Javier; Dibarbora, Marina; Lozada, Inés; Quiroga, Alejandra; Olivera, Valeria; Dángelo, Marta; Pérez, Estefanía; Barrales, Hernán; Perfumo, Carlos; Pereda, Ariel; Pérez, Daniel R

    2017-02-01

    Swine farms provide a dynamic environment for the evolution of influenza A viruses (IAVs). The present report shows the results of a surveillance effort of IAV infection in one commercial swine farm in Argentina. Two cross-sectional serological and virological studies (n=480) were carried out in 2011 and 2012. Virus shedding was detected in nasal samples from pigs from ages 7, 21 and 42-days old. More than 90% of sows and gilts but less than 40% of 21-days old piglets had antibodies against IAV. In addition, IAV was detected in 8/17 nasal swabs and 10/15 lung samples taken from necropsied pigs. A subset of these samples was further processed for virus isolation resulting in 6 viruses of the H1N2 subtype (δ2 cluster). Pathological studies revealed an association between suppurative bronchopneumonia and necrotizing bronchiolitis with IAV positive samples. Statistical analyses showed that the degree of lesions in bronchi, bronchiole, and alveoli was higher in lungs positive to IAV. The results of this study depict the relevance of continuing long-term active surveillance of IAV in swine populations to establish IAV evolution relevant to swine and humans. Copyright © 2016 Elsevier Ltd. All rights reserved.

  8. Rapid detection and subtyping of European swine influenza viruses in porcine clinical samples by haemagglutinin- and neuraminidase-specific tetra- and triplex real-time RT-PCRs

    DEFF Research Database (Denmark)

    Henritzi, Dinah; Zhao, Na; Starick, Elke

    2016-01-01

    diagnostic methods which allow for cost-effective large-scale analysis. Methods New SIV haemagglutinin (HA) and neuraminidase (NA) subtype- and lineage-specific multiplex real-time RT-PCRs (RT-qPCR) have been developed and validated with reference virus isolates and clinical samples. Results A diagnostic....... Swine influenza viruses (SIV) are widespread in European domestic pig populations and evolve dynamically. Knowledge regarding occurrence, spread and evolution of potentially zoonotic SIV in Europe is poorly understood. Objectives Efficient SIV surveillance programmes depend on sensitive and specific......Background A diversifying pool of mammalian-adapted influenza A viruses (IAV) with largely unknown zoonotic potential is maintained in domestic swine populations worldwide. The most recent human influenza pandemic in 2009 was caused by a virus with genes originating from IAV isolated from swine...

  9. European surveillance network for influenza in pigs: surveillance programs, diagnostic tools and Swine influenza virus subtypes identified in 14 European countries from 2010 to 2013.

    Directory of Open Access Journals (Sweden)

    Gaëlle Simon

    Full Text Available Swine influenza causes concern for global veterinary and public health officials. In continuing two previous networks that initiated the surveillance of swine influenza viruses (SIVs circulating in European pigs between 2001 and 2008, a third European Surveillance Network for Influenza in Pigs (ESNIP3, 2010-2013 aimed to expand widely the knowledge of the epidemiology of European SIVs. ESNIP3 stimulated programs of harmonized SIV surveillance in European countries and supported the coordination of appropriate diagnostic tools and subtyping methods. Thus, an extensive virological monitoring, mainly conducted through passive surveillance programs, resulted in the examination of more than 9 000 herds in 17 countries. Influenza A viruses were detected in 31% of herds examined from which 1887 viruses were preliminary characterized. The dominating subtypes were the three European enzootic SIVs: avian-like swine H1N1 (53.6%, human-like reassortant swine H1N2 (13% and human-like reassortant swine H3N2 (9.1%, as well as pandemic A/H1N1 2009 (H1N1pdm virus (10.3%. Viruses from these four lineages co-circulated in several countries but with very different relative levels of incidence. For instance, the H3N2 subtype was not detected at all in some geographic areas whereas it was still prevalent in other parts of Europe. Interestingly, H3N2-free areas were those that exhibited highest frequencies of circulating H1N2 viruses. H1N1pdm viruses were isolated at an increasing incidence in some countries from 2010 to 2013, indicating that this subtype has become established in the European pig population. Finally, 13.9% of the viruses represented reassortants between these four lineages, especially between previous enzootic SIVs and H1N1pdm. These novel viruses were detected at the same time in several countries, with increasing prevalence. Some of them might become established in pig herds, causing implications for zoonotic infections.

  10. Triple-reassortant influenza A virus with H3 of human seasonal origin, NA of swine origin, and internal A(H1N1) pandemic 2009 genes is established in Danish pigs

    DEFF Research Database (Denmark)

    Krog, Jesper Schak; Hjulsager, Charlotte Kristiane; Larsen, Michael Albin

    2017-01-01

    This report describes a triple-reassortant influenza A virus with a HA that resembles H3 of human seasonal influenza from 2004 to 2005, N2 from influenza A virus already established in swine, and the internal gene cassette from A(H1N1)pdm09 has spread in Danish pig herds. The virus has been detec...

  11. Characterization of Viral Load, Viability and Persistence of Influenza A Virus in Air and on Surfaces of Swine Production Facilities.

    Directory of Open Access Journals (Sweden)

    Victor Neira

    Full Text Available Indirect transmission of influenza A virus (IAV in swine is poorly understood and information is lacking on levels of environmental exposure encountered by swine and people during outbreaks of IAV in swine barns. We characterized viral load, viability and persistence of IAV in air and on surfaces during outbreaks in swine barns. IAV was detected in pigs, air and surfaces from five confirmed outbreaks with 48% (47/98 of oral fluid, 38% (32/84 of pen railing and 43% (35/82 of indoor air samples testing positive by IAV RT-PCR. IAV was isolated from air and oral fluids yielding a mixture of subtypes (H1N1, H1N2 and H3N2. Detection of IAV RNA from air was sustained during the outbreaks with maximum levels estimated between 7 and 11 days from reported onset. Our results indicate that during outbreaks of IAV in swine, aerosols and surfaces in barns contain significant levels of IAV potentially representing an exposure hazard to both swine and people.

  12. Design and performance of the CDC real-time reverse transcriptase PCR swine flu panel for detection of 2009 A (H1N1) pandemic influenza virus.

    Science.gov (United States)

    Shu, Bo; Wu, Kai-Hui; Emery, Shannon; Villanueva, Julie; Johnson, Roy; Guthrie, Erica; Berman, LaShondra; Warnes, Christine; Barnes, Nathelia; Klimov, Alexander; Lindstrom, Stephen

    2011-07-01

    Swine influenza viruses (SIV) have been shown to sporadically infect humans and are infrequently identified by the Influenza Division of the Centers for Disease Control and Prevention (CDC) after being received as unsubtypeable influenza A virus samples. Real-time reverse transcriptase PCR (rRT-PCR) procedures for detection and characterization of North American lineage (N. Am) SIV were developed and implemented at CDC for rapid identification of specimens from cases of suspected infections with SIV. These procedures were utilized in April 2009 for detection of human cases of 2009 A (H1N1) pandemic (pdm) influenza virus infection. Based on genetic sequence data derived from the first two viruses investigated, the previously developed rRT-PCR procedures were optimized to create the CDC rRT-PCR Swine Flu Panel for detection of the 2009 A (H1N1) pdm influenza virus. The analytical sensitivity of the CDC rRT-PCR Swine Flu Panel was shown to be 5 copies of RNA per reaction and 10(-1.3 - -0.7) 50% infectious doses (ID(50)) per reaction for cultured viruses. Cross-reactivity was not observed when testing human clinical specimens or cultured viruses that were positive for human seasonal A (H1N1, H3N2) and B influenza viruses. The CDC rRT-PCR Swine Flu Panel was distributed to public health laboratories in the United States and internationally from April 2009 until June 2010. The CDC rRT-PCR Swine Flu Panel served as an effective tool for timely and specific detection of 2009 A (H1N1) pdm influenza viruses and facilitated subsequent public health response implementation.

  13. Different evolutionary trends of swine H1N2 influenza viruses in Italy compared to European viruses.

    Science.gov (United States)

    Moreno, Ana; Gabanelli, Elena; Sozzi, Enrica; Lelli, Davide; Chiapponi, Chiara; Ciccozzi, Massimo; Zehender, Gianguglielmo; Cordioli, Paolo

    2013-12-01

    European H1N2 swine influenza viruses (EU H1N2SIVs) arose from multiple reassortment events among human H1N1, human H3N2, and avian influenza viruses. We investigated the evolutionary dynamics of 53 Italian H1N2 strains by comparing them with EU H1N2 SIVs. Hemagglutinin (HA) phylogeny revealed Italian strains fell into four groups: Group A and B (41 strains) had a human H1 similar to EU H1N2SIVs, which probably originated in 1986. However Group B (38 strains) formed a subgroup that had a two-amino acid deletion at positions 146/147 in HA. Group C (11 strains) contained an avian H1 that probably originated in 1996, and Group D (1 strain) had an H1 characteristic of the 2009 pandemic strain. Neuraminidase (NA) phylogeny suggested a series of genomic reassortments had occurred. Group A had an N2 that originated from human H3N2 in the late 1970s. Group B had different human N2 that most likely arose from a reassortment with the more recent human H3N2 virus, which probably occurred in 2000. Group C had an avian-like H1 combined with an N2 gene from one of EU H1N2SIVs, EU H3N2SIVs or Human H3N2. Group D was part of the EU H3N2SIVs clade. Although selection pressure for HA and NA was low, several positively selected sites were identified in both proteins, some of which were antigenic, suggesting selection influenced the evolution of SIV. The data highlight different evolutionary trends between European viruses and currently circulating Italian B strains and show the establishment of reassortant strains involving human viruses in Italian pigs.

  14. [Phylogenetic analysis of human/swine/avian gene reassortant H1N2 influenza A virus isolated from a pig in China].

    Science.gov (United States)

    Chen, Yixiang; Meng, Xueqiong; Liu, Qi; Huang, Xia; Huang, Shengbin; Liu, Cuiquan; Shi, Kaichuang; Guo, Jiangang; Chen, Fangfang; Hu, Liping

    2008-04-01

    Our aim in this study was to determine the genetic characterization and probable origin of the H1N2 swine influenza virus (A/Swine/Guangxi/13/2006) (Sw/GX/13/06) from lung tissue of a pig in Guangxi province, China. Eight genes of Sw/GX/13/06 were cloned and genetically analyzed. The hemagglutinin (HA), nucleoprotein (NP), matrix (M) and non-structural (NS) genes of Sw/GX/13/06 were most closely related to genes from the classical swine H1N1 influenza virus lineage. The neuraminidase (NA) and PB1 genes were most closely related to the corresponding genes from the human influenza H3N2 virus lineage. The remaining two genes PA and PB2 polymerase genes were most closely related to the genes from avian influenza virus lineage. Phylogenetic analyses revealed that Sw/GX/13/06 was a human/swine/avian H1N2 virus, and closely related to H1N2 viruses isolated from pigs in United States (1999-2001) and Korea (2002). To our knowledge, Sw/GX/13/06 was the first triple-reassortant H1N2 influenza A virus isolated from a pig in China. Whether the Sw/GX/13/06 has a potential threat to breeding farm and human health remains to be further investigated.

  15. A simple Pichia pastoris fermentation and downstream processing strategy for making recombinant pandemic Swine Origin Influenza a virus Hemagglutinin protein.

    Science.gov (United States)

    Athmaram, T N; Singh, Anil Kumar; Saraswat, Shweta; Srivastava, Saurabh; Misra, Princi; Kameswara Rao, M; Gopalan, N; Rao, P V L

    2013-02-01

    The present Influenza vaccine manufacturing process has posed a clear impediment to initiation of rapid mass vaccination against spreading pandemic influenza. New vaccine strategies are therefore needed that can accelerate the vaccine production. Pichia offers several advantages for rapid and economical bulk production of recombinant proteins and, hence, can be attractive alternative for producing an effective influenza HA based subunit vaccine. The recombinant Pichia harboring the transgene was subjected to fed-batch fermentation at 10 L scale. A simple fermentation and downstream processing strategy is developed for high-yield secretory expression of the recombinant Hemagglutinin protein of pandemic Swine Origin Influenza A virus using Pichia pastoris via fed-batch fermentation. Expression and purification were optimized and the expressed recombinant Hemagglutinin protein was verified by sodium dodecyl sulfate polyacrylamide gel electrophoresis, Western blot and MALDI-TOF analysis. In this paper, we describe a fed-batch fermentation protocol for the secreted production of Swine Influenza A Hemagglutinin protein in the P. pastoris GS115 strain. We have shown that there is a clear relationship between product yield and specific growth rate. The fed-batch fermentation and downstream processing methods optimized in the present study have immense practical application for high-level production of the recombinant H1N1 HA protein in a cost effective way using P. pastoris.

  16. Dual Infection of Novel Influenza Viruses A/H1N1 and A/H3N2 in a Cluster of Cambodian Patients

    Science.gov (United States)

    2011-01-01

    influenza viruses as well as the avian influenza virus A/H5N1...on full genome sequencing. This incident confirms dual influenza virus infections and highlights the risk of zoonotic and seasonal influenza viruses ...North American swine influenza viruses , North American avian influenza viruses , human influenza viruses , and a Eurasian swine influenza virus . 18

  17. Genetic characterization of H1N2 swine influenza virus isolated in China and its pathogenesis and inflammatory responses in mice.

    Science.gov (United States)

    Zhang, Yan; Wang, Nan; Cao, Jiyue; Chen, Huanchun; Jin, Meilin; Zhou, Hongbo

    2013-09-01

    In 2009, two H1N2 influenza viruses were isolated from trachea swabs of pigs in Hubei in China. We compared these sequences with the other 18 complete genome sequences of swine H1N2 isolates from China during 2004 to 2010 and undertook extensive analysis of their evolutionary patterns. Six different genotypes - two reassortants between triple reassortant (TR) H3N2 and classical swine (CS) H1N1 virus, three reassortants between TR H1N2, Eurasian avian-like H1N1 swine virus and H9N2 swine virus, and one reassortant between H1N1, H3N2 human virus and CS H1N1 virus - were observed in these 20 swine H1N2 isolates. The TR H1N2 swine virus is the predominant genotype, and the two Hubei H1N2 isolates were located in this cluster. We also used a mouse model to examine the pathogenesis and inflammatory responses of the two isolates. The isolates replicated efficiently in the lung, and exhibited a strong inflammatory response, serious pathological changes and mortality in infected mice. Given the role that swine can play as putative "genetic mixing vessels" and the observed transmission of TR H1N2 in ferrets, H1N2 influenza surveillance in pigs should be increased to minimize the potential threat to public health.

  18. Cross-Species Infectivity of H3N8 Influenza Virus in an Experimental Infection in Swine.

    Science.gov (United States)

    Solórzano, Alicia; Foni, Emanuela; Córdoba, Lorena; Baratelli, Massimiliano; Razzuoli, Elisabetta; Bilato, Dania; Martín del Burgo, María Ángeles; Perlin, David S; Martínez, Jorge; Martínez-Orellana, Pamela; Fraile, Lorenzo; Chiapponi, Chiara; Amadori, Massimo; del Real, Gustavo; Montoya, María

    2015-11-01

    Avian influenza A viruses have gained increasing attention due to their ability to cross the species barrier and cause severe disease in humans and other mammal species as pigs. H3 and particularly H3N8 viruses, are highly adaptive since they are found in multiple avian and mammal hosts. H3N8 viruses have not been isolated yet from humans; however, a recent report showed that equine influenza A viruses (IAVs) can be isolated from pigs, although an established infection has not been observed thus far in this host. To gain insight into the possibility of H3N8 avian IAVs to cross the species barrier into pigs, in vitro experiments and an experimental infection in pigs with four H3N8 viruses from different origins (equine, canine, avian, and seal) were performed. As a positive control, an H3N2 swine influenza virus A was used. Although equine and canine viruses hardly replicated in the respiratory systems of pigs, avian and seal viruses replicated substantially and caused detectable lesions in inoculated pigs without previous adaptation. Interestingly, antibodies against hemagglutinin could not be detected after infection by hemagglutination inhibition (HAI) test with avian and seal viruses. This phenomenon was observed not only in pigs but also in mice immunized with the same virus strains. Our data indicated that H3N8 IAVs from wild aquatic birds have the potential to cross the species barrier and establish successful infections in pigs that might spread unnoticed using the HAI test as diagnostic tool. Although natural infection of humans with an avian H3N8 influenza A virus has not yet been reported, this influenza A virus subtype has already crossed the species barrier. Therefore, we have examined the potential of H3N8 from canine, equine, avian, and seal origin to productively infect pigs. Our results demonstrated that avian and seal viruses replicated substantially and caused detectable lesions in inoculated pigs without previous adaptation. Surprisingly, we

  19. Identification of Human H1N2 and Human-Swine Reassortant H1N2 and H1N1 Influenza A Viruses among Pigs in Ontario, Canada (2003 to 2005)†

    OpenAIRE

    Karasin, Alexander I.; Carman, Suzanne; Olsen, Christopher W.

    2006-01-01

    Since 2003, three novel genotypes of H1 influenza viruses have been recovered from Canadian pigs, including a wholly human H1N2 virus and human-swine reassortants. These isolates demonstrate that human-lineage H1N2 viruses are infectious for pigs and that viruses with a human PB1/swine PA/swine PB2 polymerase complex can replicate in pigs.

  20. [Serological detection of Brucella suis, influenza virus and Aujeszky's disease virus in backyard and small swine holders in Argentina].

    Science.gov (United States)

    Dibarbora, Marina; Cappuccio, Javier A; Aznar, María N; Bessone, Fernando A; Piscitelli, Hernán; Pereda, Ariel J; Pérez, Daniel R

    Farmers raising less than 100 sows represent more than 99% of swine producers in Argentina, although little is known about their sanitary status and productive characteristics in the country. Sanitary and productive information was obtained. Furthermore, samples for serological studies were taken to detect antibodies against Brucella suis (Bs), Aujeszky's disease virus (AV) and influenza virus (IV) in 68 backyard and small producers with less than 100 sows located in the north, central and south regions of Argentina. Antibodies against H1 pandemic were detected in 80% of the farms while 11%, 11.7% and 6.0% of the producers were positive to influenza H3 cluster 2, AV and Bs, respectively. None of the producers was aware of the risk factors concerning the transmission of diseases from pigs to humans. A percentage of 47% of them buy pigs for breeding from other farmers and markets. With regard to biosecurity measures, only 16% of the farms had perimeter fences. The results of this study demonstrate that productive characterization and disease surveys are important to improve productivity and to reduce the risk of disease transmission among animals and humans. The study of sanitary status and risk factors is necessary for better control and eradication of diseases in backyard or small producers. More representative studies at country level should be carried out to detect the pathogensthat circulate and, with this knowledge, to implement prevention and control measures. Copyright © 2017 Asociación Argentina de Microbiología. Publicado por Elsevier España, S.L.U. All rights reserved.

  1. Molecular Epidemiology and Evolution of Influenza Viruses Circulating within European Swine between 2009 and 2013

    DEFF Research Database (Denmark)

    J. Watson, Simon; Langat, Pinky; M. Reid, Scott

    2015-01-01

    )pdm09 becoming established at a mean frequency of 8% across European countries. Notably, swine in the United Kingdom have largely had a replacement of the endemic Eurasian avian virus-like (“avian-like”) genotypes with A(H1N1)pdm09-derived genotypes. The high number of reassortant genotypes observed...

  2. Pathogenic characteristics of a novel triple-reasserted H1N2 swine influenza virus.

    Science.gov (United States)

    Liu, Huili; Tao, Jie; Zhang, Pengchao; Yin, Xiuchen; Ha, Zhuo; Zhang, Chunling

    2016-07-01

    A novel triple reasserted H1N2 virus A/swine/Shanghai/1/2007 (SH07) was isolated from nasal swabs of weaned pig showing clinical symptoms of coughing and sneezing. To explore the virus characteristics, mice, chickens and pigs were selected for pathogenicity study. Pigs inoculated intranasally with 10(6) TCID50 SH07 showed clinical symptoms with coughing and sneezing, but no death. The virus nuclear acid was detected in many tissues using real-time PCR, which was mainly distributed in respiratory system particularly in the lungs. The virus was low-pathogenic to chickens with 10(6) TCID50 dose inoculation either via intramuscular or intranasal routes. However virus nuclear acid detection and virus isolation confirmed that the virus can also be found in nasal and rectum. When virus was inoculated into mice by intramuscular or intranasal routes we observed 100% and 80% lethality respectively. The third generation of samples passaged on MDCK cell were SIV positive in indirect immunofluorescence assay (IFA) using antiserum against H1N2 SIV. Furthermore, the lungs of mice showed obvious lesion with interstitial pneumonia. Data in our study suggest that SH07 is preferentially pathogenic to mammals rather than birds although it is a reasserting virus with the fragments from swine, human and avian origin. Copyright © 2016 International Alliance for Biological Standardization. Published by Elsevier Ltd. All rights reserved.

  3. A Phylogeny-Based Global Nomenclature System and Automated Annotation Tool for H1 Hemagglutinin Genes from Swine Influenza A Viruses

    Science.gov (United States)

    Macken, Catherine A.; Lewis, Nicola S.; Van Reeth, Kristien; Brown, Ian H.; Swenson, Sabrina L.; Simon, Gaëlle; Saito, Takehiko; Berhane, Yohannes; Ciacci-Zanella, Janice; Pereda, Ariel; Davis, C. Todd; Donis, Ruben O.; Webby, Richard J.

    2016-01-01

    ABSTRACT The H1 subtype of influenza A viruses (IAVs) has been circulating in swine since the 1918 human influenza pandemic. Over time, and aided by further introductions from nonswine hosts, swine H1 viruses have diversified into three genetic lineages. Due to limited global data, these H1 lineages were named based on colloquial context, leading to a proliferation of inconsistent regional naming conventions. In this study, we propose rigorous phylogenetic criteria to establish a globally consistent nomenclature of swine H1 virus hemagglutinin (HA) evolution. These criteria applied to a data set of 7,070 H1 HA sequences led to 28 distinct clades as the basis for the nomenclature. We developed and implemented a web-accessible annotation tool that can assign these biologically informative categories to new sequence data. The annotation tool assigned the combined data set of 7,070 H1 sequences to the correct clade more than 99% of the time. Our analyses indicated that 87% of the swine H1 viruses from 2010 to the present had HAs that belonged to 7 contemporary cocirculating clades. Our nomenclature and web-accessible classification tool provide an accurate method for researchers, diagnosticians, and health officials to assign clade designations to HA sequences. The tool can be updated readily to track evolving nomenclature as new clades emerge, ensuring continued relevance. A common global nomenclature facilitates comparisons of IAVs infecting humans and pigs, within and between regions, and can provide insight into the diversity of swine H1 influenza virus and its impact on vaccine strain selection, diagnostic reagents, and test performance, thereby simplifying communication of such data. IMPORTANCE A fundamental goal in the biological sciences is the definition of groups of organisms based on evolutionary history and the naming of those groups. For influenza A viruses (IAVs) in swine, understanding the hemagglutinin (HA) genetic lineage of a circulating strain aids

  4. Comparative pathology of pigs infected with Korean H1N1, H1N2, or H3N2 swine influenza A viruses

    OpenAIRE

    Lyoo, Kwang-Soo; Kim, Jeong-Ki; Jung, Kwonil; Kang, Bo-Kyu; Song, Daesub

    2014-01-01

    Background The predominant subtypes of swine influenza A virus (SIV) in Korea swine population are H1N1, H1N2, and H3N2. The viruses are genetically close to the classical U.S. H1N1 and triple-reassortant H1N2 and H3N2 viruses, respectively. Comparative pathogenesis caused by Korean H1N1, H1N2, and H3N2 SIV was evaluated in this study. Findings The H3N2 infected pigs had severe scores of gross and histopathological lesions at post-inoculation days (PID) 2, and this then progressively decrease...

  5. A human-like H1N2 influenza virus detected during an outbreak of acute respiratory disease in swine in Brazil.

    Science.gov (United States)

    Schaefer, Rejane; Rech, Raquel Rubia; Gava, Danielle; Cantão, Mauricio Egídio; da Silva, Marcia Cristina; Silveira, Simone; Zanella, Janice Reis Ciacci

    2015-01-01

    Passive monitoring for detection of influenza A viruses (IAVs) in pigs has been carried out in Brazil since 2009, detecting mostly the A(H1N1)pdm09 influenza virus. Since then, outbreaks of acute respiratory disease suggestive of influenza A virus infection have been observed frequently in Brazilian pig herds. During a 2010-2011 influenza monitoring, a novel H1N2 influenza virus was detected in nursery pigs showing respiratory signs. The pathologic changes were cranioventral acute necrotizing bronchiolitis to subacute proliferative and purulent bronchointerstitial pneumonia. Lung tissue samples were positive for both influenza A virus and A(H1N1)pdm09 influenza virus based on RT-qPCR of the matrix gene. Two IAVs were isolated in SPF chicken eggs. HI analysis of both swine H1N2 influenza viruses showed reactivity to the H1δ cluster. DNA sequencing was performed for all eight viral gene segments of two virus isolates. According to the phylogenetic analysis, the HA and NA genes clustered with influenza viruses of the human lineage (H1-δ cluster, N2), whereas the six internal gene segments clustered with the A(H1N1)pdm09 group. This is the first report of a reassortant human-like H1N2 influenza virus derived from pandemic H1N1 virus causing an outbreak of respiratory disease in pigs in Brazil. The emergence of a reassortant IAV demands the close monitoring of pigs through the full-genome sequencing of virus isolates in order to enhance genetic information about IAVs circulating in pigs.

  6. H1N1 Swine Influenza Viruses Differ from Avian Precursors by a Higher pH Optimum of Membrane Fusion.

    Science.gov (United States)

    Baumann, Jan; Kouassi, Nancy Mounogou; Foni, Emanuela; Klenk, Hans-Dieter; Matrosovich, Mikhail

    2016-02-01

    The H1N1 Eurasian avian-like swine (EAsw) influenza viruses originated from an avian H1N1 virus. To characterize potential changes in the membrane fusion activity of the hemagglutinin (HA) during avian-to-swine adaptation of the virus, we studied EAsw viruses isolated in the first years of their circulation in pigs and closely related contemporary H1N1 viruses of wild aquatic birds. Compared to the avian viruses, the swine viruses were less sensitive to neutralization by lysosomotropic agent NH4Cl in MDCK cells, had a higher pH optimum of hemolytic activity, and were less stable at acidic pH. Eight amino acid substitutions in the HA were found to separate the EAsw viruses from their putative avian precursor; four substitutions-T492S, N722D, R752K, and S1132F-were located in the structural regions of the HA2 subunit known to play a role in acid-induced conformational transition of the HA. We also studied low-pH-induced syncytium formation by cell-expressed HA proteins and found that the HAs of the 1918, 1957, 1968, and 2009 pandemic viruses required a lower pH for fusion induction than did the HA of a representative EAsw virus. Our data show that transmission of an avian H1N1 virus to pigs was accompanied by changes in conformational stability and fusion promotion activity of the HA. We conclude that distinctive host-determined fusion characteristics of the HA may represent a barrier for avian-to-swine and swine-to-human transmission of influenza viruses. Continuing cases of human infections with zoonotic influenza viruses highlight the necessity to understand which viral properties contribute to interspecies transmission. Efficient binding of the HA to cellular receptors in a new host species is known to be essential for the transmission. Less is known about required adaptive changes in the membrane fusion activity of the HA. Here we show that adaptation of an avian influenza virus to pigs in Europe in 1980s was accompanied by mutations in the HA, which decreased

  7. Reverse zoonosis of influenza to swine: new perspectives on the human–animal interface

    Science.gov (United States)

    The origins of the 2009 influenza A (H1N1) pandemic in swine are unknown, highlighting gaps in our understanding of influenza A virus (IAV) ecology and evolution. We review how recently strengthened influenza virus surveillance in pigs has revealed that influenza virus transmission from humans to sw...

  8. Complete genome sequence of a novel influenza A H1N2 virus circulating in swine from Central Bajio region, Mexico.

    Science.gov (United States)

    Sánchez-Betancourt, J I; Cervantes-Torres, J B; Saavedra-Montañez, M; Segura-Velázquez, R A

    2017-12-01

    The aim of this study was to perform the complete genome sequence of a swine influenza A H1N2 virus strain isolated from a pig in Guanajuato, México (A/swine/Mexico/GtoDMZC01/2014) and to report its seroprevalence in 86 counties at the Central Bajio zone. To understand the evolutionary dynamics of the isolate, we undertook a phylogenetic analysis of the eight gene segments. These data revealed that the isolated virus is a reassortant H1N2 subtype, as its genes are derived from human (HA, NP, PA) and swine (M, NA, PB1, PB2 and NS) influenza viruses. Pig serum samples were analysed by the hemagglutination inhibition test, using wild H1N2 and H3N2 strains (A/swine/México/Mex51/2010 [H3N2]) as antigen sources. Positive samples to the H1N2 subtype were processed using the field-isolated H1N1 subtype (A/swine/México/Ver37/2010 [H1N1]). Seroprevalence to the H1N2 subtype was 26.74% in the sampled counties, being Jalisco the state with highest seroprevalence to this subtype (35.30%). The results herein reported demonstrate that this new, previously unregistered influenza virus subtype in México that shows internal genes from other swine viral subtypes isolated in the past 5 years, along with human virus-originated genes, is widely distributed in this area of the country. © 2017 Blackwell Verlag GmbH.

  9. Transmission dynamics of pandemic influenza A(H1N1)pdm09 virus in humans and swine in backyard farms in Tumbes, Peru.

    Science.gov (United States)

    Tinoco, Yeny O; Montgomery, Joel M; Kasper, Mathew R; Nelson, Martha I; Razuri, Hugo; Guezala, Maria C; Azziz-Baumgartner, Eduardo; Widdowson, Marc-Alain; Barnes, John; Gilman, Robert H; Bausch, Daniel G; Gonzalez, Armando E

    2016-01-01

    We aimed to determine the frequency of pH1N1 transmission between humans and swine on backyard farms in Tumbes, Peru. Two-year serial cross-sectional study comprising four sampling periods: March 2009 (pre-pandemic), October 2009 (peak of the pandemic in Peru), April 2010 (1st post-pandemic period), and October 2011 (2nd post-pandemic period). Backyard swine serum, tracheal swabs, and lung sample were collected during each sampling period. We assessed current and past pH1N1 infection in swine through serological testing, virus culture, and RT-PCR and compared the results with human incidence data from a population-based active surveillance cohort study in Peru. Among 1303 swine sampled, the antibody prevalence to pH1N1 was 0% pre-pandemic, 8% at the peak of the human pandemic (October 2009), and 24% in April 2010 and 1% in October 2011 (post-pandemic sampling periods). Trends in swine seropositivity paralleled those seen in humans in Tumbes. The pH1N1 virus was isolated from three pigs during the peak of the pandemic. Phylogenetic analysis revealed that these viruses likely represent two separate human-to-swine transmission events in backyard farm settings. Our findings suggest that human-to-swine pH1N1 transmission occurred during the pandemic among backyard farms in Peru, emphasizing the importance of interspecies transmission in backyard pig populations. Continued surveillance for influenza viruses in backyard farms is warranted. © 2015 The Authors. Influenza and Other Respiratory Viruses Published by John Wiley & Sons Ltd.

  10. Evaluation of the zoonotic potential of a novel reassortant H1N2 swine influenza virus with gene constellation derived from multiple viral sources.

    Science.gov (United States)

    Lee, Jee Hoon; Pascua, Philippe Noriel Q; Decano, Arun G; Kim, Se Mi; Park, Su-Jin; Kwon, Hyeok-Il; Kim, Eun-Ha; Kim, Young-Il; Kim, HyongKyu; Kim, Seok-Yong; Song, Min-Suk; Jang, Hyung-Kwan; Park, Bong Kyun; Choi, Young Ki

    2015-08-01

    In 2011-2012, contemporary North American-like H3N2 swine influenza viruses (SIVs) possessing the 2009 pandemic H1N1 matrix gene (H3N2pM-like virus) were detected in domestic pigs of South Korea where H1N2 SIV strains are endemic. More recently, we isolated novel reassortant H1N2 SIVs bearing the Eurasian avian-like swine H1-like hemagglutinin and Korean swine H1N2-like neuraminidase in the internal gene backbone of the H3N2pM-like virus. In the present study, we clearly provide evidence on the genetic origins of the novel H1N2 SIVs virus through genetic and phylogenetic analyses. In vitro studies demonstrated that, in comparison with a pre-existing 2012 Korean H1N2 SIV [A/swine/Korea/CY03-11/2012 (CY03-11/2012)], the 2013 novel reassortant H1N2 isolate [A/swine/Korea/CY0423/2013 (CY0423-12/2013)] replicated more efficiently in differentiated primary human bronchial epithelial cells. The CY0423-12/2013 virus induced higher viral titers than the CY03-11/2012 virus in the lungs and nasal turbinates of infected mice and nasal wash samples of ferrets. Moreover, the 2013 H1N2 reassortant, but not the intact 2012 H1N2 virus, was transmissible to naïve contact ferrets via respiratory-droplets. Noting that the viral precursors have the ability to infect humans, our findings highlight the potential threat of a novel reassortant H1N2 SIV to public health and underscore the need to further strengthen influenza surveillance strategies worldwide, including swine populations. Copyright © 2015 Elsevier B.V. All rights reserved.

  11. Regional patterns of genetic diversity in swine influenza A viruses in the United States from 2010 to 2016.

    Science.gov (United States)

    Walia, Rasna R; Anderson, Tavis K; Vincent, Amy L

    2018-04-06

    Regular spatial and temporal analyses of the genetic diversity and evolutionary patterns of influenza A virus (IAV) in swine informs control efforts and improves animal health. Initiated in 2009, the USDA passively surveils IAV in U.S. swine, with a focus on subtyping clinical respiratory submissions, sequencing at minimum the hemagglutinin (HA) and neuraminidase (NA) genes, and sharing these data publicly. In this study, our goal was to quantify and describe regional and national patterns in the genetic diversity and evolution of IAV in U.S. swine from 2010 to 2016. A comprehensive phylogenetic and epidemiological analysis of publicly available HA and NA genes generated by the USDA surveillance system collected from January 2010 to December 2016 was conducted. The dominant subtypes and genetic clades detected during the study period were H1N1 (H1-γ/1A.3.3.3, N1-classical, 29%), H1N2 (H1-δ1/1B.2.2, N2-2002, 27%), and H3N2 (H3-IV-A, N2-2002, 15%), but many other minor clades were also maintained. Year-round circulation was observed, with a primary epidemic peak in October-November and a secondary epidemic peak in March-April. Partitioning these data into 5 spatial zones revealed that genetic diversity varied regionally and was not correlated with aggregated national patterns of HA/NA diversity. These data suggest that vaccine composition and control efforts should consider IAV diversity within swine production regions in addition to aggregated national patterns. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  12. Specific Inhibitory Effect of κ-Carrageenan Polysaccharide on Swine Pandemic 2009 H1N1 Influenza Virus.

    Directory of Open Access Journals (Sweden)

    Qiang Shao

    Full Text Available The 2009 influenza A H1N1 pandemic placed unprecedented demands on antiviral drug resources and the vaccine industry. Carrageenan, an extractive of red algae, has been proven to inhibit infection and multiplication of various enveloped viruses. The aim of this study was to examine the ability of κ-carrageenan to inhibit swine pandemic 2009 H1N1 influenza virus to gain an understanding of antiviral ability of κ-carrageenan. It was here demonstrated that κ-carrageenan had no cytotoxicity at concentrations below 1000 μg/ml. Hemagglutination, 50% tissue culture infectious dose (TCID50 and cytopathic effect (CPE inhibition assays showed that κ-carrageenan inhibited A/Swine/Shandong/731/2009 H1N1 (SW731 and A/California/04/2009 H1N1 (CA04 replication in a dose-dependent fashion. Mechanism studies show that the inhibition of SW731 multiplication and mRNA expression was maximized when κ-carrageenan was added before or during adsorption. The result of Hemagglutination inhibition assay indicate that κ-carrageenan specifically targeted HA of SW731 and CA04, both of which are pandemic H1N/2009 viruses, without effect on A/Pureto Rico/8/34 H1N1 (PR8, A/WSN/1933 H1N1 (WSN, A/Swine/Beijing/26/2008 H1N1 (SW26, A/Chicken/Shandong/LY/2008 H9N2 (LY08, and A/Chicken/Shandong/ZB/2007 H9N2 (ZB07 viruses. Immunofluorescence assay and Western blot showed that κ-carrageenan also inhibited SW731 protein expression after its internalization into cells. These results suggest that κ-carrageenan can significantly inhibit SW731 replication by interfering with a few replication steps in the SW731 life cycles, including adsorption, transcription, and viral protein expression, especially interactions between HA and cells. In this way, κ-carrageenan might be a suitable alternative approach to therapy meant to address anti-IAV, which contains an HA homologous to that of SW731.

  13. Subtyping of swine influenza viruses using a high-throughput real time PCR platform

    DEFF Research Database (Denmark)

    Goecke, Nicole Bakkegård; Krog, Jesper Schak; Hjulsager, Charlotte Kristiane

    ). The results revealed that the performance of the dynamic chip was similar to conventional real time analysis. Discussion and conclusion. Application of the chip for subtyping of swine influenza has resulted in a significant reduction in time, cost and working hours. Thereby, it is possible to offer diagnostic...... test and subsequent subtyping is performed by real time RT-PCR (RT-qPCR) but several assays are needed to cover the wide range of circulating subtypes which is expensive,resource and time demanding. To mitigate these restrictions the high-throughput qPCR platform BioMark (Fluidigm) has been explored...... services with reduced price and turnover time which will facilitate choice of vaccines and by that lead to reduction of antibiotic used....

  14. Protection of human influenza vaccines against a reassortant swine influenza virus of pandemic H1N1 origin using a pig model.

    Science.gov (United States)

    Arunorat, Jirapat; Charoenvisal, Nataya; Woonwong, Yonlayong; Kedkovid, Roongtham; Jittimanee, Supattra; Sitthicharoenchai, Panchan; Kesdangsakonwut, Sawang; Poolperm, Pariwat; Thanawongnuwech, Roongroje

    2017-10-01

    Since the pandemic H1N1 emergence in 2009 (pdmH1N1), many reassortant pdmH1N1 viruses emerged and found circulating in the pig population worldwide. Currently, commercial human subunit vaccines are used commonly to prevent the influenza symptom based on the WHO recommendation. In case of current reassortant swine influenza viruses transmitting from pigs to humans, the efficacy of current human influenza vaccines is of interest. In this study, influenza A negative pigs were vaccinated with selected commercial human subunit vaccines and challenged with rH3N2. All sera were tested with both HI and SN assays using four representative viruses from the surveillance data in 2012 (enH1N1, pdmH1N1, rH1N2 and rH3N2). The results showed no significant differences in clinical signs and macroscopic and microscopic findings among groups. However, all pig sera from vaccinated groups had protective HI titers to the enH1N1, pdmH1N1 and rH1N2 at 21DPV onward and had protective SN titers only to pdmH1N1and rH1N2 at 21DPV onward. SN test results appeared more specific than those of HI tests. All tested sera had no cross-reactivity against the rH3N2. Both studied human subunit vaccines failed to protect and to stop viral shedding with no evidence of serological reaction against rH3N2. SIV surveillance is essential for monitoring a novel SIV emergence potentially for zoonosis. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Rapid detection and subtyping of European swine influenza viruses in porcine clinical samples by haemagglutinin- and neuraminidase-specific tetra- and triplex real-time RT-PCRs.

    Science.gov (United States)

    Henritzi, Dinah; Zhao, Na; Starick, Elke; Simon, Gaelle; Krog, Jesper S; Larsen, Lars Erik; Reid, Scott M; Brown, Ian H; Chiapponi, Chiara; Foni, Emanuela; Wacheck, Silke; Schmid, Peter; Beer, Martin; Hoffmann, Bernd; Harder, Timm C

    2016-11-01

    A diversifying pool of mammalian-adapted influenza A viruses (IAV) with largely unknown zoonotic potential is maintained in domestic swine populations worldwide. The most recent human influenza pandemic in 2009 was caused by a virus with genes originating from IAV isolated from swine. Swine influenza viruses (SIV) are widespread in European domestic pig populations and evolve dynamically. Knowledge regarding occurrence, spread and evolution of potentially zoonotic SIV in Europe is poorly understood. Efficient SIV surveillance programmes depend on sensitive and specific diagnostic methods which allow for cost-effective large-scale analysis. New SIV haemagglutinin (HA) and neuraminidase (NA) subtype- and lineage-specific multiplex real-time RT-PCRs (RT-qPCR) have been developed and validated with reference virus isolates and clinical samples. A diagnostic algorithm is proposed for the combined detection in clinical samples and subtyping of SIV strains currently circulating in Europe that is based on a generic, M-gene-specific influenza A virus RT-qPCR. In a second step, positive samples are examined by tetraplex HA- and triplex NA-specific RT-qPCRs to differentiate the porcine subtypes H1, H3, N1 and N2. Within the HA subtype H1, lineages "av" (European avian-derived), "hu" (European human-derived) and "pdm" (human pandemic A/H1N1, 2009) are distinguished by RT-qPCRs, and within the NA subtype N1, lineage "pdm" is differentiated. An RT-PCR amplicon Sanger sequencing method of small fragments of the HA and NA genes is also proposed to safeguard against failure of multiplex RT-qPCR subtyping. These new multiplex RT-qPCR assays provide adequate tools for sustained SIV monitoring programmes in Europe. © 2016 The Authors. Influenza and Other Respiratory Viruses Published by John Wiley & Sons Ltd.

  16. Avian influenza A virus PB2 promotes interferon type I inducing properties of a swine strain in porcine dendritic cells

    International Nuclear Information System (INIS)

    Ocaña-Macchi, Manuela; Ricklin, Meret E.; Python, Sylvie; Monika, Gsell-Albert; Stech, Jürgen; Stech, Olga; Summerfield, Artur

    2012-01-01

    The 2009 influenza A virus (IAV) pandemic resulted from reassortment of avian, human and swine strains probably in pigs. To elucidate the role of viral genes in host adaptation regarding innate immune responses, we focussed on the effect of genes from an avian H5N1 and a porcine H1N1 IAV on infectivity and activation of porcine GM-CSF-induced dendritic cells (DC). The highest interferon type I responses were achieved by the porcine virus reassortant containing the avian polymerase gene PB2. This finding was not due to differential tropism since all viruses infected DC equally. All viruses equally induced MHC class II, but porcine H1N1 expressing the avian viral PB2 induced more prominent nuclear NF-κB translocation compared to its parent IAV. The enhanced activation of DC may be detrimental or beneficial. An over-stimulation of innate responses could result in either pronounced tissue damage or increased resistance against IAV reassortants carrying avian PB2.

  17. Avian influenza A virus PB2 promotes interferon type I inducing properties of a swine strain in porcine dendritic cells

    Energy Technology Data Exchange (ETDEWEB)

    Ocana-Macchi, Manuela; Ricklin, Meret E.; Python, Sylvie; Monika, Gsell-Albert [Institute of Virology and Immunoprophylaxis, Mittelhaeusern (Switzerland); Stech, Juergen; Stech, Olga [Friedrich-Loeffler Institut, Greifswald-Insel Riems (Germany); Summerfield, Artur, E-mail: artur.summerfield@ivi.admin.ch [Institute of Virology and Immunoprophylaxis, Mittelhaeusern (Switzerland)

    2012-05-25

    The 2009 influenza A virus (IAV) pandemic resulted from reassortment of avian, human and swine strains probably in pigs. To elucidate the role of viral genes in host adaptation regarding innate immune responses, we focussed on the effect of genes from an avian H5N1 and a porcine H1N1 IAV on infectivity and activation of porcine GM-CSF-induced dendritic cells (DC). The highest interferon type I responses were achieved by the porcine virus reassortant containing the avian polymerase gene PB2. This finding was not due to differential tropism since all viruses infected DC equally. All viruses equally induced MHC class II, but porcine H1N1 expressing the avian viral PB2 induced more prominent nuclear NF-{kappa}B translocation compared to its parent IAV. The enhanced activation of DC may be detrimental or beneficial. An over-stimulation of innate responses could result in either pronounced tissue damage or increased resistance against IAV reassortants carrying avian PB2.

  18. Efficacy of a pandemic (H1N1) 2009 virus vaccine in pigs against the pandemic influenza virus is superior to commercially available swine influenza vaccines.

    NARCIS (Netherlands)

    Loeffen, W.L.A.; Stockhofe-Zurwieden, N.; Weesendorp, E.; Zoelen-Bos, van D.J.; Heutink, R.; Quak, J.; Goovaerts, D.; Heldens, J.; Maas, H.A.; Moormann, R.J.M.; Koch, G.

    2011-01-01

    In April 2009 a new influenza A/H1N1 strain, currently named “pandemic (H1N1) influenza 2009¿ (H1N1v), started the first official pandemic in humans since 1968. Several incursions of this virus in pig herds have also been reported from all over the world. Vaccination of pigs may be an option to

  19. Influenza A (H3N2) Variant Virus

    Science.gov (United States)

    ... Swine Variant Pandemic Other Influenza A (H3N2) Variant Virus Language: English (US) Español Recommend on Facebook Tweet Share Compartir Influenza viruses that normally circulate in pigs are called “variant” ...

  20. Cross-protection against European swine influenza viruses in the context of infection immunity against the 2009 pandemic H1N1 virus: studies in the pig model of influenza.

    Science.gov (United States)

    Qiu, Yu; De Hert, Karl; Van Reeth, Kristien

    2015-09-24

    Pigs are natural hosts for the same influenza virus subtypes as humans and are a valuable model for cross-protection studies with influenza. In this study, we have used the pig model to examine the extent of virological protection between a) the 2009 pandemic H1N1 (pH1N1) virus and three different European H1 swine influenza virus (SIV) lineages, and b) these H1 viruses and a European H3N2 SIV. Pigs were inoculated intranasally with representative strains of each virus lineage with 6- and 17-week intervals between H1 inoculations and between H1 and H3 inoculations, respectively. Virus titers in nasal swabs and/or tissues of the respiratory tract were determined after each inoculation. There was substantial though differing cross-protection between pH1N1 and other H1 viruses, which was directly correlated with the relatedness in the viral hemagglutinin (HA) and neuraminidase (NA) proteins. Cross-protection against H3N2 was almost complete in pigs with immunity against H1N2, but was weak in H1N1/pH1N1-immune pigs. In conclusion, infection with a live, wild type influenza virus may offer substantial cross-lineage protection against viruses of the same HA and/or NA subtype. True heterosubtypic protection, in contrast, appears to be minimal in natural influenza virus hosts. We discuss our findings in the light of the zoonotic and pandemic risks of SIVs.

  1. Reverse zoonosis of influenza to swine: new perspectives on the human-animal interface.

    Science.gov (United States)

    Nelson, Martha I; Vincent, Amy L

    2015-03-01

    The origins of the 2009 influenza A (H1N1) pandemic in swine are unknown, highlighting gaps in our understanding of influenza A virus (IAV) ecology and evolution. We review how recently strengthened influenza virus surveillance in pigs has revealed that influenza virus transmission from humans to swine is far more frequent than swine-to-human zoonosis, and is central in seeding swine globally with new viral diversity. The scale of global human-to-swine transmission represents the largest 'reverse zoonosis' of a pathogen documented to date. Overcoming the bias towards perceiving swine as sources of human viruses, rather than recipients, is key to understanding how the bidirectional nature of the human-animal interface produces influenza threats to both hosts. Published by Elsevier Ltd.

  2. Protection of pigs against pandemic swine origin H1N1 influenza A virus infection by hemagglutinin- or neuraminidase-expressing attenuated pseudorabies virus recombinants.

    Science.gov (United States)

    Klingbeil, Katharina; Lange, Elke; Blohm, Ulrike; Teifke, Jens P; Mettenleiter, Thomas C; Fuchs, Walter

    2015-03-02

    Influenza is an important respiratory disease of pigs, and may lead to novel human pathogens like the 2009 pandemic H1N1 swine-origin influenza virus (SoIV). Therefore, improved influenza vaccines for pigs are required. Recently, we demonstrated that single intranasal immunization with a hemagglutinin (HA)-expressing pseudorabies virus recombinant of vaccine strain Bartha (PrV-Ba) protected pigs from H1N1 SoIV challenge (Klingbeil et al., 2014). Now we investigated enhancement of efficacy by prime-boost vaccination and/or intramuscular administration. Furthermore, a novel PrV-Ba recombinant expressing codon-optimized N1 neuraminidase (NA) was included. In vitro replication of this virus was only slightly affected compared to parental virus. Unlike HA, the abundantly expressed NA was efficiently incorporated into PrV particles. Immunization of pigs with the two PrV recombinants, either singly or in combination, induced B cell proliferation and the expected SoIV-specific antibodies, whose titers increased substantially after boost vaccination. After immunization of animals with either PrV recombinant H1N1 SoIV challenge virus replication was significantly reduced compared to PrV-Ba vaccinated or naïve controls. Protective efficacy of HA-expressing PrV was higher than of NA-expressing PrV, and not significantly enhanced by combination. Despite higher serum antibody titers obtained after intramuscular immunization, transmission of challenge virus to naïve contact animals was only prevented after intranasal prime-boost vaccination with HA-expressing PrV-Ba. Copyright © 2015 Elsevier B.V. All rights reserved.

  3. Pathogenicity and transmission of triple reassortant H3N2 swine influenza A viruses is attenuated following Turkey embryo propagation.

    Science.gov (United States)

    Raghunath, Shobana; Pudupakam, Raghavendra Sumanth; Deventhiran, Jagadeeswaran; Tevatia, Rahul; Leroith, Tanya

    2017-03-01

    Genetic lineages of swine influenza A viruses (SIVs) have recently been established in Turkeys in the United States. To identify molecular determinants that are involved in virulence and transmission of SIVs to Turkeys, we sequentially passaged two triple reassortant H3N2 SIV isolates from Minnesota in ten day old specific-pathogen free (SPF) Turkey embryos and tested them in seven-day old Turkey poults. We found that SIV replication in Turkey embryos led to minimal mutations in and around the receptor binding and antigenic sites of the HA molecule, while other gene segments were unchanged. The predominant changes associated with Turkey embryo passage were A223V, V226A and T248I mutations in the receptor-binding and glycosylation sites of the HA molecule. Furthermore, Turkey embryo propagation altered receptor specificity in SIV strain 07-1145. Embryo passaged 07-1145 virus showed a decrease in α2, 6 sialic acid receptor binding compared to the wild type virus. Intranasal infection of wild type SIVs in one-week-old Turkey poults resulted in persistent diarrhea and all the infected birds seroconverted at ten days post infection. The 07-1145 wild type virus also transmitted to age matched in-contact birds introduced one-day post infection. Turkeys infected with embryo passaged viruses displayed no clinical signs and were not transmitted to in-contact poults. Our results suggest that Turkey embryo propagation attenuates recent TR SIVs for infectivity and transmission in one week old Turkeys. Our findings will have important implications in identifying molecular determinants that control the transmission and virulence of TR SIVs in Turkeys and other species. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. Chest Radiographic Findings of Novel Swine-Origin Influenza A (H1N1) Virus Infection in Children

    Energy Technology Data Exchange (ETDEWEB)

    Bae, So Young; Hong, Eun Sook; Paik, Sang Hyun; Park, Seong Jin; Cha, Jang Gyu; Lee, Hae Kyung [Dept. of Radiology, Soonchunhyang University Bucheon Hospital, Bucheon (Korea, Republic of); Jang, Yun Woo [Dept. of Radiology, Soonchunhyang University Hospital, Seoul (Korea, Republic of)

    2011-06-15

    To analyze chest radiographic findings in children infected with laboratory confirmed novel swine-origin influenza A (H1N1) virus. Three hundred seventy-two out of 2,014 children with laboratory confirmed H1N1 infection and who also underwent a chest radiograph from September to November 2009 were enrolled in this study. Patients were divided into in-patients, out-patients, and patients with co-infections and further subdivided into with underlying disease and without underlying disease as well as age (<2 years old, 2-5 years, 5-10 years, 10-18 years old). The initial radiographs were evaluated for radiographic findings and the anatomic distribution of abnormalities. The initial radiographs were abnormal in 154 (41.39%) patients. The predominant radiographic findings were peribronchial wall opacity found in 85 (22.84%) patients and hyperinflation observed in 69 (18.54%) patients. Further, 75 (71.42%) patients exhibited central predominance and the right lower lung zone was also commonly involved. There were statistically significant differences in the radiological findings between in-patient and out-patient groups. However, there were no significant differences in the radiographic findings between in-patients and the co-infection group with respect the presence of underlying disease and age. Initial radiographs of children with laboratory confirmed H1N1 virus were abnormal in 41.39% of cases. The common radiographic findings included peribronchial opacities, hyperinflation, lower lung zonal distribution, and central predominance

  5. PA-X protein contributes to virulence of triple-reassortant H1N2 influenza virus by suppressing early immune responses in swine.

    Science.gov (United States)

    Xu, Guanlong; Zhang, Xuxiao; Liu, Qinfang; Bing, Guoxia; Hu, Zhe; Sun, Honglei; Xiong, Xin; Jiang, Ming; He, Qiming; Wang, Yu; Pu, Juan; Guo, Xin; Yang, Hanchun; Liu, Jinhua; Sun, Yipeng

    2017-08-01

    Previous studies have identified a functional role of PA-X for influenza viruses in mice and avian species; however, its role in swine remains unknown. Toward this, we constructed PA-X deficient virus (Sw-FS) in the background of a Triple-reassortment (TR) H1N2 swine influenza virus (SIV) to assess the impact of PA-X in viral virulence in pigs. Expression of PA-X in TR H1N2 SIV enhanced viral replication and host protein synthesis shutoff, and inhibited the mRNA levels of type I IFNs and proinflammatory cytokines in porcine cells. A delay of proinflammatory responses was observed in lungs of pigs infected by wild type SIV (Sw-WT) compared to Sw-FS. Furthermore, Sw-WT virus replicated and transmitted more efficiently than Sw-FS in pigs. These results highlight the importance of PA-X in the moderation of virulence and immune responses of TR SIV in swine, which indicated that PA-X is a pro-virulence factor in TR SIV in pigs. Copyright © 2017 Elsevier Inc. All rights reserved.

  6. Differential interactions of virulent and non-virulent H. parasuis strains with naïve or swine influenza virus pre-infected dendritic cells.

    Science.gov (United States)

    Mussá, Tufária; Rodríguez-Cariño, Carolina; Sánchez-Chardi, Alejandro; Baratelli, Massimiliano; Costa-Hurtado, Mar; Fraile, Lorenzo; Domínguez, Javier; Aragon, Virginia; Montoya, María

    2012-11-16

    Pigs possess a microbiota in the upper respiratory tract that includes Haemophilus parasuis. Pigs are also considered the reservoir of influenza viruses and infection with this virus commonly results in increased impact of bacterial infections, including those by H. parasuis. However, the mechanisms involved in host innate responses towards H. parasuis and their implications in a co-infection with influenza virus are unknown. Therefore, the ability of a non-virulent H. parasuis serovar 3 (SW114) and a virulent serovar 5 (Nagasaki) strains to interact with porcine bone marrow dendritic cells (poBMDC) and their modulation in a co-infection with swine influenza virus (SwIV) H3N2 was examined. At 1 hour post infection (hpi), SW114 interaction with poBMDC was higher than that of Nagasaki, while at 8 hpi both strains showed similar levels of interaction. The co-infection with H3N2 SwIV and either SW114 or Nagasaki induced higher levels of IL-1β, TNF-α, IL-6, IL-12 and IL-10 compared to mock or H3N2 SwIV infection alone. Moreover, IL-12 and IFN-α secretion differentially increased in cells co-infected with H3N2 SwIV and Nagasaki. These results pave the way for understanding the differences in the interaction of non-virulent and virulent strains of H. parasuis with the swine immune system and their modulation in a viral co-infection.

  7. Genomic characterization of H1N2 swine influenza viruses in Italy.

    Science.gov (United States)

    Moreno, Ana; Chiapponi, Chiara; Boniotti, Maria Beatrice; Sozzi, Enrica; Foni, Emanuela; Barbieri, Ilaria; Zanoni, Maria Grazia; Faccini, Silvia; Lelli, Davide; Cordioli, Paolo

    2012-05-04

    Three subtypes (H1N1, H1N2, and H3N2) are currently diffused worldwide in pigs. The H1N2 subtype was detected for the first time in Italian pigs in 1998. To investigate the genetic characteristics and the molecular evolution of this subtype in Italy, we conducted a phylogenetic analysis of whole genome sequences of 26 strains isolated from 1998 to 2010. Phylogenetic analysis of HA and NA genes showed differences between the older (1998-2003) and the more recent strains (2003-2010). The older isolates were closely related to the established European H1N2 lineage, whereas the more recent isolates possessed a different NA deriving from recent human H3N2 viruses. Two other reassortant H1N2 strains have been detected: A/sw/It/22530/02 has the HA gene that is closely related to H1N1 viruses; A/sw/It/58769/10 is an uncommon strain with an HA that is closely related to H1N1 and an NA similar to H3N2 SIVs. Amino acid analysis revealed interesting features: a deletion of two amino acids (146-147) in the HA gene of the recent isolates and two strains isolated in 1998; the presence of the uncommon aa change (N66S), in the PB1-F2 protein in strains isolated from 2009 to 2010, which is said to have contributed to the increased virulence. These results demonstrate the importance of pigs as mixing vessels for animal and human influenza and show the presence and establishment of reassortant strains involving human viruses in pigs in Italy. These findings also highlighted different genomic characteristics of the NA gene the recent Italian strains compared to circulating European viruses. Published by Elsevier B.V.

  8. A Single-Amino-Acid Substitution at Position 225 in Hemagglutinin Alters the Transmissibility of Eurasian Avian-Like H1N1 Swine Influenza Virus in Guinea Pigs.

    Science.gov (United States)

    Wang, Zeng; Yang, Huanliang; Chen, Yan; Tao, Shiyu; Liu, Liling; Kong, Huihui; Ma, Shujie; Meng, Fei; Suzuki, Yasuo; Qiao, Chuanling; Chen, Hualan

    2017-11-01

    Efficient transmission from human to human is the prerequisite for an influenza virus to cause a pandemic; however, the molecular determinants of influenza virus transmission are still largely unknown. In this study, we explored the molecular basis for transmission of Eurasian avian-like H1N1 (EAH1N1) swine influenza viruses by comparing two viruses that are genetically similar but differ in their transmissibility in guinea pigs: the A/swine/Guangxi/18/2011 virus (GX/18) is highly transmissible by respiratory droplet in guinea pigs, whereas the A/swine/Heilongjiang/27/2012 virus (HLJ/27) does not transmit in this animal model. We used reverse genetics to generate a series of reassortants and mutants in the GX/18 background and tested their transmissibility in guinea pigs. We found that a single-amino-acid substitution of glycine (G) for glutamic acid (E) at position 225 (E225G) in the HA1 protein completely abolished the respiratory droplet transmission of GX/18, whereas the substitution of E for G at the same position (G225E) in HA1 enabled HLJ/27 to transmit in guinea pigs. We investigated the underlying mechanism and found that viruses bearing 225E in HA1 replicated more rapidly than viruses bearing 225G due to differences in assembly and budding efficiencies. Our study indicates that the amino acid 225E in HA1 plays a key role in EAH1N1 swine influenza virus transmission and provides important information for evaluating the pandemic potential of field influenza virus strains. IMPORTANCE Efficient transmission among humans is a prerequisite for a novel influenza virus to cause a human pandemic. Transmissibility of influenza viruses is a polygenic trait, and understanding the genetic determinants for transmissibility will provide useful insights for evaluating the pandemic potential of influenza viruses in the field. Several amino acids in the hemagglutinin (HA) protein of influenza viruses have been shown to be important for transmissibility, usually by

  9. Comparison of two H1N2 swine influenza A viruses from disease outbreaks in pigs in Sweden during 2009 and 2010.

    Science.gov (United States)

    Metreveli, Giorgi; Emmoth, Eva; Zohari, Siamak; Bálint, Adám; Widén, Frederik; Muradrasoli, Shaman; Wallgren, Per; Belák, Sándor; Leblanc, Neil; Berg, Mikael; Kiss, István

    2011-04-01

    The influenza A virus subtypes H1N1, H1N2 and H3N2 are prevalent in pig populations worldwide. In the present study, two relatively uncommon swine influenza virus (SIV) H1N2 subtypes, isolated in Sweden in 2009 and 2010, were compared regarding their molecular composition and biological characteristics. The differences regarding markers purportedly related to pathogenicity, host adaptation or replication efficiency. They included a truncated PB1-F2 protein in the earlier isolate but a full length version in the more recent one; differences in the number of haemagglutinin glycosylation sites, including a characteristic human one; and a nuclear export protein with altered export signal. Of particular interest, the NS1 amino acid sequence of swine H1N2-2009 and 2010 has a 'unique or very unusual' PDZ binding domain (RPKV) at the C-terminal of the protein, a motif that has been implicated as a virulence marker. Concerning biological properties, these viruses reached lower titre and showed reduced cytopathogenicity in MDCK cells compared with an avian-like H1N1 isolate A/swine/Lidkoping/1193/2002 belonging to the same lineage as the 2009 and 2010 isolates. The findings should contribute to better understanding of factors related to the survival/extinction of this uncommon reassortant variant.

  10. Comparative Pathogenesis of an Avian H5N2 and a Swine H1N1 Influenza Virus in Pigs

    DEFF Research Database (Denmark)

    De Vleeschauwer, Annebel; Atanasova, Kalina; Van Borm, Steven

    2009-01-01

    Pigs are considered intermediate hosts for the transmission of avian influenza viruses (AIVs) to humans but the basic organ pathogenesis of AIVs in pigs has been barely studied. We have used 42 four-week-old influenza naive pigs and two different inoculation routes (intranasal and intratracheal) ...

  11. Intradermal immunization with inactivated swine influenza virus and adjuvant polydi(sodium carboxylatoethylphenoxy)phosphazene (PCEP) induced humoral and cell-mediated immunity and reduced lung viral titres in pigs.

    Science.gov (United States)

    Magiri, Royford; Lai, Ken; Chaffey, Alyssa; Zhou, Yan; Pyo, Hyun-Mi; Gerdts, Volker; Wilson, Heather L; Mutwiri, George

    2018-03-14

    Swine influenza virus is endemic worldwide and it is responsible for significant economic losses to the swine industry. A vaccine that stimulates a rapid and long-lasting protective immune response to prevent this infection is highly sought. Poly[di(sodium carboxylatoethylphenoxy)-phosphazene (PCEP) has demonstrated adjuvant activity when formulated as part of multiple vaccines in mice and pigs. In this study we examined the magnitude and type of immune response induced in pigs vaccinated via the intramuscular or intradermal routes with inactivated swine influenza virus (SIV) H1N1 vaccine formulated with PCEP. Intradermal administration of PCEP-adjuvanted inactivated SIV vaccine stimulated significant anti-SIV antibody titres, increased neutralizing antibodies, and significantly reduced lung virus load with limited reduction of gross lung lesions after challenge with virulent H1N1 relative to control animals. These results indicate that PCEP may be effective as a vaccine adjuvant against swine influenza viruses in pigs and should be considered a potential candidate adjuvant for future swine intradermal influenza vaccines. Copyright © 2018 Elsevier Ltd. All rights reserved.

  12. Pneumonia in novel swine-origin influenza A (H1N1) virus infection: High-resolution CT findings

    International Nuclear Information System (INIS)

    Li Ping; Su Dongju; Zhang Jifeng; Xia Xudong; Sui Hong; Zhao Donghui

    2011-01-01

    Objective: The purpose of our study was to review the initial high-resolution CT (HRCT) findings in pneumonia patients with presumed/laboratory-confirmed novel swine-origin influenza A (H1N1) virus (S-OIV) infection and detect pneumonia earlier. Materials and methods: High-resolution CT (HRCT) findings of 106 patients with presumed/laboratory-confirmed novel S-OIV (H1N1) infection were reviewed. The 106 patients were divided into two groups according to the serious condition of the diseases. The pattern (consolidation, ground-glass, nodules, and reticulation), distribution, and extent of abnormality on the HRCT were evaluated in both groups. The dates of the onset of symptoms of the patients were recorded. Results: The predominant CT findings in the patients at presentation were unilateral or bilateral multifocal asymmetric ground-glass opacities alone (n = 29, 27.4%), with unilateral or bilateral consolidation (n = 50, 47.2%). The consolidation had peribronchovascular and subpleural predominance. The areas of consolidation were found mainly in the posterior, middle and lower regions of the lungs. Reticular opacities were found in 6 cases of the initial MDCT scan. The extent of disease was greater in group 1 patients requiring advanced mechanical ventilation, with diffuse involvement in 19 patients (63.3%) of group 1 patients, and only 15/76 (19.7%) of group 2 patients (p 2 test). 20 cases (19%) of the 106 patients had small bilateral or unilateral pleural effusions. None had evidence of hilar or mediastinal lymph node enlargement on CT performed at admission or later. Conclusions: The most common radiographic and CT findings in patients with S-OIV infection are unilateral or bilateral ground-glass opacities with or without associated focal or multifocal areas of consolidation. On HRCT, the ground-glass opacities had a predominant peribronchovascular and subpleural distribution. CT plays an important role in the early recognition of severe S-OIV (H1N1).

  13. Identification of cross-reacting T-cell epitopes in structural and non-structural proteins of swine and pandemic H1N1 influenza A virus strains in pigs

    DEFF Research Database (Denmark)

    Baratelli, Massimiliano; Pedersen, Lasse Eggers; Trebbien, Ramona

    2017-01-01

    Heterologous protection against swine influenza viruses (SwIVs) of different lineages is an important concern for the pig industry. Cross-protection between 'avian-like' H1N1 and 2009 pandemic H1N1 lineages has been observed previously, indicating the involvement of cross-reacting T-cells. Here...

  14. Antigenic variation of H1N1, H1N2 and H3N2 swine influenza viruses in Japan and Vietnam.

    Science.gov (United States)

    Takemae, Nobuhiro; Nguyen, Tung; Ngo, Long Thanh; Hiromoto, Yasuaki; Uchida, Yuko; Pham, Vu Phong; Kageyama, Tsutomu; Kasuo, Shizuko; Shimada, Shinichi; Yamashita, Yasutaka; Goto, Kaoru; Kubo, Hideyuki; Le, Vu Tri; Van Vo, Hung; Do, Hoa Thi; Nguyen, Dang Hoang; Hayashi, Tsuyoshi; Matsuu, Aya; Saito, Takehiko

    2013-04-01

    The antigenicity of the influenza A virus hemagglutinin is responsible for vaccine efficacy in protecting pigs against swine influenza virus (SIV) infection. However, the antigenicity of SIV strains currently circulating in Japan and Vietnam has not been well characterized. We examined the antigenicity of classical H1 SIVs, pandemic A(H1N1)2009 (A(H1N1)pdm09) viruses, and seasonal human-lineage SIVs isolated in Japan and Vietnam. A hemagglutination inhibition (HI) assay was used to determine antigenic differences that differentiate the recent Japanese H1N2 and H3N2 SIVs from the H1N1 and H3N2 domestic vaccine strains. Minor antigenic variation between pig A(H1N1)pdm09 viruses was evident by HI assay using 13 mAbs raised against homologous virus. A Vietnamese H1N2 SIV, whose H1 gene originated from a human strain in the mid-2000s, reacted poorly with post-infection ferret serum against human vaccine strains from 2000-2010. These results provide useful information for selection of optimal strains for SIV vaccine production.

  15. Population dynamics of swine influenza virus in farrow-to-finish and specialised finishing herds in the Netherlands

    NARCIS (Netherlands)

    Loeffen, W.L.A.; Hunneman, W.A.; Quak, J.; Verheijden, J.H.M.; Stegeman, J.A.

    2009-01-01

    Influenza virus infections with subtypes H1N1, H3N2 and H1N2 are very common in domestic pigs in Europe. Data on possible differences of population dynamics in finishing pigs in farrow-to-finish herds and in specialised finishing herds are, however, scarce. The presence of sows and weaned piglets on

  16. Pneumonia in novel swine-origin influenza A (H1N1) virus infection: High-resolution CT findings

    Energy Technology Data Exchange (ETDEWEB)

    Li Ping, E-mail: pinglee_2000@yahoo.com [Department of Radiology, The Second Affiliated Hospital of Harbin Medical University, 246 Xue Fu Road, Harbin 150086 (China); Su Dongju, E-mail: hyd_sdj@yahoo.com.cn [Department of Respiratory, The Second Affiliated Hospital of Harbin Medical University, 246 Xue Fu Road, Harbin 150086 (China); Zhang Jifeng, E-mail: zjf2005520@163.com [Department of Radiology, The Second Affiliated Hospital of Harbin Medical University, 246 Xue Fu Road, Harbin 150086 (China); Xia Xudong, E-mail: xiaxd888@163.com [Department of Radiology, The Second Affiliated Hospital of Harbin Medical University, 246 Xue Fu Road, Harbin 150086 (China); Sui Hong, E-mail: suisuihong@126.com [Department of Statistics, Harbin Medical University, 240 Xue Fu Road, Harbin 150086 (China); Zhao Donghui, E-mail: yhwoooooo@yahoo.com.cn [Centers for Disease Control and Prevention of Heilongjiang, 187 Xiang An Street, Harbin 150036 (China)

    2011-11-15

    Objective: The purpose of our study was to review the initial high-resolution CT (HRCT) findings in pneumonia patients with presumed/laboratory-confirmed novel swine-origin influenza A (H1N1) virus (S-OIV) infection and detect pneumonia earlier. Materials and methods: High-resolution CT (HRCT) findings of 106 patients with presumed/laboratory-confirmed novel S-OIV (H1N1) infection were reviewed. The 106 patients were divided into two groups according to the serious condition of the diseases. The pattern (consolidation, ground-glass, nodules, and reticulation), distribution, and extent of abnormality on the HRCT were evaluated in both groups. The dates of the onset of symptoms of the patients were recorded. Results: The predominant CT findings in the patients at presentation were unilateral or bilateral multifocal asymmetric ground-glass opacities alone (n = 29, 27.4%), with unilateral or bilateral consolidation (n = 50, 47.2%). The consolidation had peribronchovascular and subpleural predominance. The areas of consolidation were found mainly in the posterior, middle and lower regions of the lungs. Reticular opacities were found in 6 cases of the initial MDCT scan. The extent of disease was greater in group 1 patients requiring advanced mechanical ventilation, with diffuse involvement in 19 patients (63.3%) of group 1 patients, and only 15/76 (19.7%) of group 2 patients (p < 0.01, {chi}{sup 2} test). 20 cases (19%) of the 106 patients had small bilateral or unilateral pleural effusions. None had evidence of hilar or mediastinal lymph node enlargement on CT performed at admission or later. Conclusions: The most common radiographic and CT findings in patients with S-OIV infection are unilateral or bilateral ground-glass opacities with or without associated focal or multifocal areas of consolidation. On HRCT, the ground-glass opacities had a predominant peribronchovascular and subpleural distribution. CT plays an important role in the early recognition of severe S

  17. Clinical and epidemiologic characteristics of an outbreak of novel H1N1 (swine origin) influenza A virus among United States military beneficiaries.

    Science.gov (United States)

    Crum-Cianflone, Nancy F; Blair, Patrick J; Faix, Dennis; Arnold, John; Echols, Sara; Sherman, Sterling S; Tueller, John E; Warkentien, Tyler; Sanguineti, Gabriela; Bavaro, Mary; Hale, Braden R

    2009-12-15

    A novel swine-origin influenza A (H1N1) virus was identified in March 2009 and subsequently caused worldwide outbreaks. The San Diego region was an early focal point of the emerging pandemic. We describe the clinical and epidemiologic characteristics of this novel strain in a military population to assist in future outbreak prevention and control efforts. We performed an epidemiologic evaluation of novel H1N1 virus infections diagnosed in San Diego County among 96,258 local US military beneficiaries. The structured military medical system afforded the ability to obtain precise epidemiologic information on the impact on H1N1 virus infection in a population. The novel H1N1 virus was confirmed using real-time reverse transcriptase polymerase chain reaction (rRT-PCR). From 21 April through 8 May 2009, 761 patients presented with influenza-like illness and underwent rRT-PCR testing. Of these patients, 97 had confirmed novel H1N1 virus infection, with an incidence rate of 101 cases per 100,000 persons. The median age of H1N1 patients with H1N1 virus infection was 21 years (interquartile range, 15-25 years). Fever was a universal symptom in patients with H1N1 virus infection; other symptoms included cough (present in 96% of patients), myalgia or arthralgia (57%), and sore throat (51%). Sixty-eight (70%) of our patients had an identifiable epidemiologic link to another confirmed patient. The largest cluster of cases of H1N1 virus infection occurred on a Navy ship and involved 32 (8%) of 402 crew members; the secondary attack rate was 6%-14%. The rapid influenza testing that was used during this outbreak had a sensitivity of 51% and specificity of 98%, compared with rRT-PCR. Only 1 patient was hospitalized, and there were no deaths. A novel H1N1 influenza A virus caused a significant outbreak among military beneficiaries in San Diego County, including a significant cluster of cases onboard a Navy ship. The outbreak described here primarily affected adolescents and young

  18. Protective efficacy of an inactivated Eurasian avian-like H1N1 swine influenza vaccine against homologous H1N1 and heterologous H1N1 and H1N2 viruses in mice.

    Science.gov (United States)

    Sui, Jinyu; Yang, Dawei; Qiao, Chuanling; Xu, Huiyang; Xu, Bangfeng; Wu, Yunpu; Yang, Huanliang; Chen, Yan; Chen, Hualan

    2016-07-19

    Eurasian avian-like H1N1 (EA H1N1) swine influenza viruses are prevalent in pigs in Europe and Asia, but occasionally cause human infection, which raises concern about their pandemic potential. Here, we produced a whole-virus inactivated vaccine with an EA H1N1 strain (A/swine/Guangxi/18/2011, SW/GX/18/11) and evaluated its efficacy against homologous H1N1 and heterologous H1N1 and H1N2 influenza viruses in mice. A strong humoral immune response, which we measured by hemagglutination inhibition (HI) and virus neutralization (VN), was induced in the vaccine-inoculated mice upon challenge. The inactivated SW/GX/18/11 vaccine provided complete protection against challenge with homologous SW/GX/18/11 virus in mice and provided effective protection against challenge with heterologous H1N1 and H1N2 viruses with distinctive genomic combinations. Our findings suggest that this EA H1N1 vaccine can provide protection against both homologous H1N1 and heterologous H1N1 or H1N2 virus infection. As such, it is an excellent vaccine candidate to prevent H1N1 swine influenza. Copyright © 2016 Elsevier Ltd. All rights reserved.

  19. [Contemporary threat of influenza virus infection].

    Science.gov (United States)

    Płusa, Tadeusz

    2010-01-01

    Swine-origine H1N1 influenza virus (S-OIV) caused a great mobilization of health medical service over the world. Now it is well known that a vaccine against novel virus is expected as a key point in that battle. In the situation when recommended treatment with neuraminidase inhibitors is not sufficient to control influenza A/H1N1 viral infection the quick and precisely diagnostic procedures should be applied to save and protect our patients.

  20. Comparative pathology of pigs infected with Korean H1N1, H1N2, or H3N2 swine influenza A viruses.

    Science.gov (United States)

    Lyoo, Kwang-Soo; Kim, Jeong-Ki; Jung, Kwonil; Kang, Bo-Kyu; Song, Daesub

    2014-09-24

    The predominant subtypes of swine influenza A virus (SIV) in Korea swine population are H1N1, H1N2, and H3N2. The viruses are genetically close to the classical U.S. H1N1 and triple-reassortant H1N2 and H3N2 viruses, respectively. Comparative pathogenesis caused by Korean H1N1, H1N2, and H3N2 SIV was evaluated in this study. The H3N2 infected pigs had severe scores of gross and histopathological lesions at post-inoculation days (PID) 2, and this then progressively decreased. Both the H1N1 and H1N2 infected pigs lacked gross lesions at PID 2, but they showed moderate to severe pneumonia on PID 4, 7 and 14. The pigs infected with H1N1 had significant scores of gross and histopathological lesions when compared with the other pigs infected with H1N2, H3N2, and mock at PID 14. Mean SIV antigen-positive scores were rarely detected for pigs infected with H1N2 and H3N2 from PID 7, whereas a significantly increased amount of viral antigens were found in the bronchioles and alveolar epithelium of the H1N1infected pigs at PID 14. We demonstrated that Korean SIV subtypes had different pulmonary pathologic patterns. The Korean H3N2 rapidly induced acute lung lesions such as broncho-interstitial pneumonia, while the Korean H1N1 showed longer course of infection as compared to other strains.

  1. Xanthones from Polygala karensium inhibit neuraminidases from influenza A viruses

    DEFF Research Database (Denmark)

    Dao, Trong Tuan; Dang, Thai Trung; Nguyen, Phi Hung

    2012-01-01

    The emergence of the H1N1 swine flu pandemic has the possibility to develop the occurrence of disaster- or drug-resistant viruses by additional reassortments in novel influenza A virus. In the course of an anti-influenza screening program for natural products, 10 xanthone derivatives (1-10) were ...

  2. Genetic and biological characterisation of an avian-like H1N2 swine influenza virus generated by reassortment of circulating avian-like H1N1 and H3N2 subtypes in Denmark

    DEFF Research Database (Denmark)

    Trebbien, Ramona; Bragstad, Karoline; Larsen, Lars Erik

    2013-01-01

    BACKGROUND: The influenza A virus subtypes H1N1, H1N2 and H3N2 are the most prevalent subtypes in swine. In 2003, a reassorted H1N2 swine influenza virus (SIV) subtype appeared and became prevalent in Denmark. In the present study, the reassortant H1N2 subtype was characterised genetically...... and the infection dynamics compared to an “avian-like” H1N1 virus by an experimental infection study. METHODS: Sequence analyses were performed of the H1N2 virus. Two groups of pigs were inoculated with the reassortant H1N2 virus and an “avian-like” H1N1 virus, respectively, followed by inoculation...... with the opposite subtype four weeks later. Measurements of HI antibodies and acute phase proteins were performed. Nasal virus excretion and virus load in lungs were determined by real-time RT-PCR. RESULTS: The phylogenetic analysis revealed that the reassorted H1N2 virus contained a European “avian-like” H1-gene...

  3. Multiplex RT-PCR assay for differentiating European swine influenza virus subtypes H1N1, H1N2 and H3N2.

    Science.gov (United States)

    Chiapponi, Chiara; Moreno, Ana; Barbieri, Ilaria; Merenda, Marianna; Foni, Emanuela

    2012-09-01

    In Europe, three major swine influenza viral (SIV) subtypes (H1N1, H1N2 and H3N2) have been isolated in pigs. Developing a test that is able to detect and identify the subtype of the circulating strain rapidly during an outbreak of respiratory disease in the pig population is of essential importance. This study describes two multiplex RT-PCRs which distinguish the haemagglutinin (HA) gene and the neuraminidase (NA) gene of the three major subtypes of SIV circulating in Europe. The HA PCR was able to identify the lineage (avian or human) of the HA of H1 subtypes. The analytical sensitivity of the test, considered to be unique, was assessed using three reference viruses. The detection limit corresponded to 1×10(-1) TCID(50)/200μl for avian-like H1N1, 1×10(0) TCID(50)/200μl for human-like H1N2 and 1×10(1) TCID(50)/200μl for H3N2 SIV. The multiplex RT-PCR was first carried out on a collection of 70 isolated viruses showing 100% specificity and then on clinical samples, from which viruses had previously been isolated, resulting in an 89% positive specificity of the viral subtype. Finally, the test was able to identify the viral subtype correctly in 56% of influenza A positive samples, from which SIV had not been isolated previously. It was also possible to identify mixed viral infections and the circulation of a reassortant strain before performing genomic studies. Copyright © 2012 Elsevier B.V. All rights reserved.

  4. Corticosteroid treatment ameliorates acute lung injury induced by 2009 swine origin influenza A (H1N1 virus in mice.

    Directory of Open Access Journals (Sweden)

    Chenggang Li

    Full Text Available BACKGROUND: The 2009 influenza pandemic affected people in almost all countries in the world, especially in younger age groups. During this time, the debate over whether to use corticosteroid treatment in severe influenza H1N1 infections patients resurfaced and was disputed by clinicians. There is an urgent need for a susceptible animal model of 2009 H1N1 infection that can be used to evaluate the pathogenesis and the therapeutic effect of corticosteroid treatment during infection. METHODOLOGY/PRINCIPAL FINDINGS: We intranasally inoculated two groups of C57BL/6 and BALB/c mice (using 4- or 6-to 8-week-old mice to compare the pathogenesis of several different H1N1 strains in mice of different ages. Based on the results, a very susceptible 4-week-old C57BL/6 mouse model of Beijing 501 strain of 2009 H1N1 virus infection was established, showing significantly elevated lung edema and cytokine levels compared to controls. Using our established animal model, the cytokine production profile and lung histology were assessed at different times post-infection, revealing increased lung lesions in a time-dependent manner. In additional,the mice were also treated with dexamethasone, which significantly improved survival rate and lung lesions in infected mice compared to those in control mice. Our data showed that corticosteroid treatment ameliorated acute lung injury induced by the 2009 A/H1N1 virus in mice and suggested that corticosteroids are valid drugs for treating 2009 A/H1N1 infection. CONCLUSIONS/SIGNIFICANCE: Using the established, very susceptible 2009 Pandemic Influenza A (H1N1 mouse model, our studies indicate that corticosteroids are a potential therapeutic remedy that may address the increasing concerns over future 2009 A/H1N1 pandemics.

  5. Emerging influenza viruses and the prospect of a universal influenza virus vaccine.

    Science.gov (United States)

    Krammer, Florian

    2015-05-01

    Influenza viruses cause annual seasonal epidemics and pandemics at irregular intervals. Several cases of human infections with avian and swine influenza viruses have been detected recently, warranting enhanced surveillance and the development of more effective countermeasures to address the pandemic potential of these viruses. The most effective countermeasure against influenza virus infection is the use of prophylactic vaccines. However, vaccines that are currently in use for seasonal influenza viruses have to be re-formulated and re-administered in a cumbersome process every year due to the antigenic drift of the virus. Furthermore, current seasonal vaccines are ineffective against novel pandemic strains. This paper reviews zoonotic influenza viruses with pandemic potential and technological advances towards better vaccines that induce broad and long lasting protection from influenza virus infection. Recent efforts have focused on the development of broadly protective/universal influenza virus vaccines that can provide immunity against drifted seasonal influenza virus strains but also against potential pandemic viruses. Copyright © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Protection of guinea pigs by vaccination with a recombinant swinepox virus co-expressing HA1 genes of swine H1N1 and H3N2 influenza viruses.

    Science.gov (United States)

    Xu, Jiarong; Yang, Deji; Huang, Dongyan; Xu, Jiaping; Liu, Shichao; Lin, Huixing; Zhu, Haodan; Liu, Bao; Lu, Chengping

    2013-03-01

    Swine influenza (SI) is an acute respiratory infectious disease of swine caused by swine influenza virus (SIV). SIV is not only an important respiratory pathogen in pigs but also a potent threat to human health. Here, we report the construction of a recombinant swinepox virus (rSPV/H3-2A-H1) co-expressing hemagglutinin (HA1) of SIV subtypes H1N1 and H3N2. Immune responses and protection efficacy of the rSPV/H3-2A-H1 were evaluated in guinea pigs. Inoculation of rSPV/H3-2A-H1 yielded neutralizing antibodies against SIV H1N1 and H3N2. The IFN-γ and IL-4 concentrations in the supernatant of lymphocytes stimulated with purified SIV HA1 antigen were significantly higher (P guinea pigs against SIV H1N1 or H3N2 challenge was observed. No SIV shedding was detected from guinea pigs vaccinated with rSPV/H3-2A-H1 after challenge. Most importantly, the guinea pigs immunized with rSPV/H3-2A-H1 did not show gross and micrographic lung lesions. However, the control guinea pigs experienced distinct gross and micrographic lung lesions at 7 days post-challenge. Our data suggest that the recombinant swinepox virus encoding HA1 of SIV H1N1 and H3N2 might serve as a promising candidate vaccine for protection against SIV H1N1 and H3N2 infections.

  7. Avian influenza virus

    Science.gov (United States)

    Avian influenza virus (AIV) is type A influenza that is adapted to avian host species. Although the virus can be isolated from numerous avian species, the natural host reservoir species are dabbling ducks, shorebirds and gulls. Domestic poultry species (poultry being defined as birds that are rais...

  8. In silico analysis and identification of novel inhibitor for new H1N1 swine influenza virus

    Directory of Open Access Journals (Sweden)

    Manjunath Dammalli

    2014-09-01

    Full Text Available Objective: To identify alternative drug for the treatment of pandemic disease caused by influenza virus. Methods: The structure based drug design approach was employed. New sequence was employed to build the N1 simulation structure by homology modeling which was further checked for high reliability by verify score and Ramachandran plot. Evaluation of drug likeness and absorption, distribution, metabolism, excretion, toxicity showed that the ligands satisfy all the properties to be used as a drug. Docking studies were performed using LeadIT and docking scores indicated good binding energy values towards N1. Results: Four candidates were screened and suggested as potent target candidates from the docking studies. The screened compounds from Stemonaceae family illustrated better activity compared to the drugs which are already present in the market. Conclusions: The results may help to find the alternative drug to solve the drug-resistant problem and stimulate designing more effective drugs against 2009-H1N1 influenza pandemic, yet pharmacological studies have to confirm it.

  9. Using routine surveillance data to estimate the epidemic potential of emerging zoonoses: application to the emergence of US swine origin influenza A H3N2v virus.

    Directory of Open Access Journals (Sweden)

    Simon Cauchemez

    Full Text Available Prior to emergence in human populations, zoonoses such as SARS cause occasional infections in human populations exposed to reservoir species. The risk of widespread epidemics in humans can be assessed by monitoring the reproduction number R (average number of persons infected by a human case. However, until now, estimating R required detailed outbreak investigations of human clusters, for which resources and expertise are not always available. Additionally, existing methods do not correct for important selection and under-ascertainment biases. Here, we present simple estimation methods that overcome many of these limitations.Our approach is based on a parsimonious mathematical model of disease transmission and only requires data collected through routine surveillance and standard case investigations. We apply it to assess the transmissibility of swine-origin influenza A H3N2v-M virus in the US, Nipah virus in Malaysia and Bangladesh, and also present a non-zoonotic example (cholera in the Dominican Republic. Estimation is based on two simple summary statistics, the proportion infected by the natural reservoir among detected cases (G and among the subset of the first detected cases in each cluster (F. If detection of a case does not affect detection of other cases from the same cluster, we find that R can be estimated by 1-G; otherwise R can be estimated by 1-F when the case detection rate is low. In more general cases, bounds on R can still be derived.We have developed a simple approach with limited data requirements that enables robust assessment of the risks posed by emerging zoonoses. We illustrate this by deriving transmissibility estimates for the H3N2v-M virus, an important step in evaluating the possible pandemic threat posed by this virus. Please see later in the article for the Editors' Summary.

  10. PB1-F2 Protein Does Not Impact the Virulence of Triple-Reassortant H3N2 Swine Influenza Virus in Pigs but Alters Pathogenicity and Transmission in Turkeys.

    Science.gov (United States)

    Deventhiran, Jagadeeswaran; Kumar, Sandeep R P; Raghunath, Shobana; Leroith, Tanya; Elankumaran, Subbiah

    2016-01-01

    PB1-F2 protein, the 11th influenza A virus (IAV) protein, is considered to play an important role in primary influenza virus infection and postinfluenza secondary bacterial pneumonia in mice. The functional role of PB1-F2 has been reported to be a strain-specific and host-specific phenomenon. Its precise contribution to the pathogenicity and transmission of influenza virus in mammalian host, such as swine, and avian hosts, such as turkeys, remain largely unknown. In this study, we explored the role of PB1-F2 protein of triple-reassortant (TR) H3N2 swine influenza virus (SIV) in pigs and turkeys. Using the eight-plasmid reverse genetics system, we rescued wild-type SIV A/swine/Minnesota/1145/2007 (H3N2) (SIV 1145-WT), a PB1-F2 knockout mutant (SIV 1145-KO), and its N66S variant (SIV 1145-N66S). The ablation of PB1-F2 in SIV 1145 modulated early-stage apoptosis but did not affect the viral replication in swine alveolar macrophage cells. In pigs, PB1-F2 expression did not affect nasal shedding, lung viral load, immunophenotypes, and lung pathology. On the other hand, in turkeys, SIV 1145-KO infected poults, and its in-contacts developed clinical signs earlier than SIV 1145-WT groups and also displayed more extensive histopathological changes in intestine. Further, turkeys infected with SIV 1145-N66S displayed poor infectivity and transmissibility. The more extensive histopathologic changes in intestine and relative transmission advantage observed in turkeys infected with SIV 1145-KO need to be further explored. Taken together, these results emphasize the host-specific roles of PB1-F2 in the pathogenicity and transmission of IAV. Novel triple-reassortant H3N2 swine influenza virus emerged in 1998 and spread rapidly among the North American swine population. Subsequently, it showed an increased propensity to reassort, generating a range of reassortants. Unlike classical swine influenza virus, TR SIV produces a full-length PB1-F2 protein, which is considered an important

  11. Effect of feed restriction on performance and postprandial nutrient metabolism in pigs co-infected with Mycoplasma hyopneumoniae and swine influenza virus.

    Directory of Open Access Journals (Sweden)

    Nathalie Le Floc'h

    Full Text Available As nutritional status and inflammation are strongly connected, feeding and nutritional strategies could be effective to improve the ability of pigs to cope with disease. The aims of this study were to investigate the impact of a feed restriction on the ability of pigs to resist and be tolerant to a coinfection with Mycoplasma hyopneumoniae (Mhp and the European H1N1 swine influenza virus, and the consequences for nutrient metabolism, with a focus on amino acids. Two groups of specific pathogen-free pigs were inoculated with Mhp and H1N1 21 days apart. One group was fed ad libitum, the other group was subjected to a two-week 40% feed restriction starting one week before H1N1 infection. The two respective mock control groups were included. Three days post-H1N1 infection, 200 g of feed was given to pigs previously fasted overnight and serial blood samples were taken over 4 hours to measure plasma nutrient concentrations. Throughout the study, clinical signs were observed and pathogens were detected in nasal swabs and lung tissues. Feed-restricted pigs presented shorter hyperthermia and a positive mean weight gain over the 3 days post-H1N1 infection whereas animals fed ad libitum lost weight. Both infection and feed restriction reduced postprandial glucose concentrations, indicating changes in glucose metabolism. Post-prandial plasma concentrations of the essential amino acids histidine, arginine and threonine were lower in co-infected pigs suggesting a greater use of those amino acids for metabolic purposes associated with the immune response. Altogether, these results indicate that modifying feeding practices could help to prepare animals to overcome an influenza infection. Connections with metabolism changes are discussed.

  12. Pandemic Swine-Origin H1N1 Influenza Virus Replicates to Higher Levels and Induces More Fever and Acute Inflammatory Cytokines in Cynomolgus versus Rhesus Monkeys and Can Replicate in Common Marmosets.

    Directory of Open Access Journals (Sweden)

    Petra Mooij

    Full Text Available The close immunological and physiological resemblance with humans makes non-human primates a valuable model for studying influenza virus pathogenesis and immunity and vaccine efficacy against infection. Although both cynomolgus and rhesus macaques are frequently used in influenza virus research, a direct comparison of susceptibility to infection and disease has not yet been performed. In the current study a head-to-head comparison was made between these species, by using a recently described swine-origin pandemic H1N1 strain, A/Mexico/InDRE4487/2009. In comparison to rhesus macaques, cynomolgus macaques developed significantly higher levels of virus replication in the upper airways and in the lungs, involving both peak level and duration of virus production, as well as higher increases in body temperature. In contrast, clinical symptoms, including respiratory distress, were more easily observed in rhesus macaques. Expression of sialyl-α-2,6-Gal saccharides, the main receptor for human influenza A viruses, was 50 to 73 times more abundant in trachea and bronchus of cynomolgus macaques relative to rhesus macaques. The study also shows that common marmosets, a New World non-human primate species, are susceptible to infection with pandemic H1N1. The study results favor the cynomolgus macaque as model for pandemic H1N1 influenza virus research because of the more uniform and high levels of virus replication, as well as temperature increases, which may be due to a more abundant expression of the main human influenza virus receptor in the trachea and bronchi.

  13. Identification of reassortant pandemic H1N1 influenza virus in Korean pigs.

    Science.gov (United States)

    Han, Jae Yeon; Park, Sung Jun; Kim, Hye Kwon; Rho, Semi; Nguyen, Giap Van; Song, Daesub; Kang, Bo Kyu; Moon, Hyung Jun; Yeom, Min Joo; Park, Bong Kyun

    2012-05-01

    Since the 2009 pandemic human H1N1 influenza A virus emerged in April 2009, novel reassortant strains have been identified throughout the world. This paper describes the detection and isolation of reassortant strains associated with human pandemic influenza H1N1 and swine influenza H1N2 (SIV) viruses in swine populations in South Korea. Two influenza H1N2 reassortants were detected, and subtyped by PCR. The strains were isolated using Madin- Darby canine kidney (MDCK) cells, and genetically characterized by phylogenetic analysis for genetic diversity. They consisted of human, avian, and swine virus genes that were originated from the 2009 pandemic H1N1 virus and a neuraminidase (NA) gene from H1N2 SIV previously isolated in North America. This identification of reassortment events in swine farms raises concern that reassortant strains may continuously circulate within swine populations, calling for the further study and surveillance of pandemic H1N1 among swine.

  14. The influence of experimental infection of gilts with swine H1N2 influenza A virus during the second month of gestation on the course of pregnancy, reproduction parameters and clinical status.

    Science.gov (United States)

    Kwit, Krzysztof; Pomorska-Mól, Małgorzata; Markowska-Daniel, Iwona

    2014-06-04

    The course of swine influenza in pigs is reported to be similar to human influenza. Occasionally abortions and other reproduction disorders have been associated with influenza A virus (IAV) infection in pigs. Abortions may be a consequence of high fever, pro-inflammatory cytokines or transplacental transmission of the virus.The role of IAV in the complications observed during pregnancy has been scanty and the true importance of this agent as a cause of reproductive problems in swine is not known. The aim was to determine the possible involvement of swine H1N2 IAV strain on reproductive disorders in pregnant gilts under experimental conditions. The gestation length was from 113 to 116 days, no abortion or any other reproduction disorders were noted. A PCR assay confirms the presence of IAV in the nasal swabs taken from inoculated gilts between 1 and 5 dpi. In the nasal swabs from control gilts and newborn piglets, no IAV genetic material was found. No viral RNA was detected in samples of blood taken from gilts and piglets, placentas, lungs and tracheas taken from piglets euthanized after delivery. The significant decrease in the number and percentage of lymphocytes without leukopenia was observed at 4 dpi in inoculated gilts. The percentage of granulocytes increased significantly at 4 dpi in inoculated pigs. The concentration of IL-6, IL-10 and TNF-α were higher in inoculated gilts, while IL-4 and IFN-γ were not detected in the serum of any of animals. The serum concentrations of C-reactive protein remained stable during study, while haptoglobin concentrations increased significantly after inoculation. The results of the study indicate that infection of pregnant gilts with swine H1N2 IAV in the second month of pregnancy does not cause abortion and other reproduction disorders. No evidence for transplacental transmission of swine H1N2 IAV was found. However, due to subclinical course of influenza in the present experiment caution should be taken in extrapolating

  15. A Novel H1N2 Influenza Virus Related to the Classical and Human Influenza Viruses from Pigs in Southern China.

    Science.gov (United States)

    Song, Yafen; Wu, Xiaowei; Wang, Nianchen; Ouyang, Guowen; Qu, Nannan; Cui, Jin; Qi, Yan; Liao, Ming; Jiao, Peirong

    2016-01-01

    Southern China has long been considered to be an epicenter of pandemic influenza viruses. The special environment, breeding mode, and lifestyle in southern China provides more chances for wild aquatic birds, domestic poultry, pigs, and humans to be in contact. This creates the opportunity for interspecies transmission and generation of new influenza viruses. In this study, we reported a novel reassortant H1N2 influenza virus from pigs in southern China. According to the phylogenetic trees and homology of the nucleotide sequence, the virus was confirmed to be a novel triple-reassortant H1N2 virus containing genes from classical swine (PB2, PB1, HA, NP, and NS genes), triple-reassortant swine (PA and M genes), and recent human (NA gene) lineages. It indicated that the novel reassortment virus among human and swine influenza viruses occurred in pigs in southern China. The isolation of the novel reassortant H1N2 influenza viruses provides further evidence that pigs are "mixing vessels," and swine influenza virus surveillance in southern China will provide important information about genetic evaluation and antigenic variation of swine influenza virus to formulate the prevention and control measures for the viruses.

  16. Cross talk between animal and human influenza viruses.

    Science.gov (United States)

    Ozawa, Makoto; Kawaoka, Yoshihiro

    2013-01-01

    Although outbreaks of highly pathogenic avian influenza in wild and domestic birds have been posing the threat of a new influenza pandemic for the past decade, the first pandemic of the twenty-first century came from swine viruses. This fact emphasizes the complexity of influenza viral ecology and the difficulty of predicting influenza viral dynamics. Complete control of influenza viruses seems impossible. However, we must minimize the impact of animal and human influenza outbreaks by learning lessons from past experiences and recognizing the current status. Here, we review the most recent influenza virology data in the veterinary field, including aspects of zoonotic agents and recent studies that assess the pandemic potential of H5N1 highly pathogenic avian influenza viruses.

  17. Genetic diversity among pandemic 2009 influenza viruses isolated from a transmission chain

    DEFF Research Database (Denmark)

    Fordyce, Sarah Louise; Bragstad, Karoline; Pedersen, Svend Stenvang

    2013-01-01

    Influenza viruses such as swine-origin influenza A(H1N1) virus (A(H1N1)pdm09) generate genetic diversity due to the high error rate of their RNA polymerase, often resulting in mixed genotype populations (intra-host variants) within a single infection. This variation helps influenza to rapidly res...

  18. Influenza A Viruses of Swine (IAV-S) in Vietnam from 2010 to 2015: Multiple Introductions of A(H1N1)pdm09 Viruses into the Pig Population and Diversifying Genetic Constellations of Enzootic IAV-S.

    Science.gov (United States)

    Takemae, Nobuhiro; Harada, Michiyo; Nguyen, Phuong Thanh; Nguyen, Tung; Nguyen, Tien Ngoc; To, Thanh Long; Nguyen, Tho Dang; Pham, Vu Phong; Le, Vu Tri; Do, Hoa Thi; Vo, Hung Van; Le, Quang Vinh Tin; Tran, Tan Minh; Nguyen, Thanh Duy; Thai, Phuong Duy; Nguyen, Dang Hoang; Le, Anh Quynh Thi; Nguyen, Diep Thi; Uchida, Yuko; Saito, Takehiko

    2017-01-01

    Active surveillance of influenza A viruses of swine (IAV-S) involving 262 farms and 10 slaughterhouses in seven provinces in northern and southern Vietnam from 2010 to 2015 yielded 388 isolates from 32 farms; these viruses were classified into H1N1, H1N2, and H3N2 subtypes. Whole-genome sequencing followed by phylogenetic analysis revealed that the isolates represented 15 genotypes, according to the genetic constellation of the eight segments. All of the H1N1 viruses were entirely A(H1N1)pdm09 viruses, whereas all of the H1N2 and H3N2 viruses were reassortants among 5 distinct ancestral viruses: H1 and H3 triple-reassortant (TR) IAV-S that originated from North American pre-2009 human seasonal H1, human seasonal H3N2, and A(H1N1)pdm09 viruses. Notably, 93% of the reassortant IAV-S retained M genes that were derived from A(H1N1)pdm09, suggesting some advantage in terms of their host adaptation. Bayesian Markov chain Monte Carlo analysis revealed that multiple introductions of A(H1N1)pdm09 and TR IAV-S into the Vietnamese pig population have driven the genetic diversity of currently circulating Vietnamese IAV-S. In addition, our results indicate that a reassortant IAV-S with human-like H3 and N2 genes and an A(H1N1)pdm09 origin M gene likely caused a human case in Ho Chi Minh City in 2010. Our current findings indicate that human-to-pig transmission as well as cocirculation of different IAV-S have contributed to diversifying the gene constellations of IAV-S in Vietnam. This comprehensive genetic characterization of 388 influenza A viruses of swine (IAV-S) isolated through active surveillance of Vietnamese pig farms from 2010 through 2015 provides molecular epidemiological insight into the genetic diversification of IAV-S in Vietnam after the emergence of A(H1N1)pdm09 viruses. Multiple reassortments among A(H1N1)pdm09 viruses and enzootic IAV-S yielded 14 genotypes, 9 of which carried novel gene combinations. The reassortants that carried M genes derived from A(H1N1

  19. Pre-infection of pigs with Mycoplasma hyopneumoniae modifies outcomes of infection with European swine influenza virus of H1N1, but not H1N2, subtype.

    Science.gov (United States)

    Deblanc, C; Gorin, S; Quéguiner, S; Gautier-Bouchardon, A V; Ferré, S; Amenna, N; Cariolet, R; Simon, G

    2012-05-25

    Swine influenza virus (SIV) and Mycoplasma hyopneumoniae (Mhp) are widespread in farms and are major pathogens involved in the porcine respiratory disease complex (PRDC). The aim of this experiment was to compare the pathogenicity of European avian-like swine H1N1 and European human-like reassortant swine H1N2 viruses in naïve pigs and in pigs previously infected with Mhp. Six groups of SPF pigs were inoculated intra-tracheally with either Mhp, or H1N1, or H1N2 or Mhp+H1N1 or Mhp+H1N2, both pathogens being inoculated at 21 days intervals in these two last groups. A mock-infected group was included. Although both SIV strains induced clinical signs when singly inoculated, results indicated that the H1N2 SIV was more pathogenic than the H1N1 virus, with an earlier shedding and a greater spread in lungs. Initial infection with Mhp before SIV inoculation increased flu clinical signs and pathogenesis (hyperthermia, loss of appetite, pneumonia lesions) due to the H1N1 virus but did not modify significantly outcomes of H1N2 infection. Thus, Mhp and SIV H1N1 appeared to act synergistically, whereas Mhp and SIV H1N2 would compete, as H1N2 infection led to the elimination of Mhp in lung diaphragmatic lobes. In conclusion, SIV would be a risk factor for the severity of respiratory disorders when associated with Mhp, depending on the viral subtype involved. This experimental model of coinfection with Mhp and avian-like swine H1N1 is a relevant tool for studying the pathogenesis of SIV-associated PRDC and testing intervention strategies for the control of the disease. Copyright © 2012 Elsevier B.V. All rights reserved.

  20. The neuropsychiatric aspects of influenza/swine flu: A selective review

    Directory of Open Access Journals (Sweden)

    Narayana Manjunatha

    2011-01-01

    Full Text Available The world witnessed the influenza virus during the seasonal epidemics and pandemics. The current strain of H1N1 (swine flu pandemic is believed to be the legacy of the influenza pandemic (1918-19. The influenza virus has been implicated in many neuropsychiatric disorders. In view of the recent pandemic, it would be interesting to review the neuropsychiatric aspects of influenza, specifically swine flu. Author used popular search engine ′PUBMED′ to search for published articles with different MeSH terms using Boolean operator (AND. Among these, a selective review of the published literature was done. Acute manifestations of swine flu varied from behavioral changes, fear of misdiagnosis during outbreak, neurological features like seizures, encephalopathy, encephalitis, transverse myelitis, aseptic meningitis, multiple sclerosis, and Guillian-Barre Syndrome. Among the chronic manifestations, schizophrenia, Parkinson′s disease, mood disorder, dementia, and mental retardation have been hypothesized. Further research is required to understand the etiological hypothesis of the chronic manifestations of influenza. The author urges neuroscientists around the world to make use of the current swine flu pandemic as an opportunity for further research.

  1. Genetic and biological characterisation of an avian-like H1N2 swine influenza virus generated by reassortment of circulating avian-like H1N1 and H3N2 subtypes in Denmark.

    Science.gov (United States)

    Trebbien, Ramona; Bragstad, Karoline; Larsen, Lars Erik; Nielsen, Jens; Bøtner, Anette; Heegaard, Peter M H; Fomsgaard, Anders; Viuff, Birgitte; Hjulsager, Charlotte Kristiane

    2013-09-18

    The influenza A virus subtypes H1N1, H1N2 and H3N2 are the most prevalent subtypes in swine. In 2003, a reassorted H1N2 swine influenza virus (SIV) subtype appeared and became prevalent in Denmark. In the present study, the reassortant H1N2 subtype was characterised genetically and the infection dynamics compared to an "avian-like" H1N1 virus by an experimental infection study. Sequence analyses were performed of the H1N2 virus. Two groups of pigs were inoculated with the reassortant H1N2 virus and an "avian-like" H1N1 virus, respectively, followed by inoculation with the opposite subtype four weeks later. Measurements of HI antibodies and acute phase proteins were performed. Nasal virus excretion and virus load in lungs were determined by real-time RT-PCR. The phylogenetic analysis revealed that the reassorted H1N2 virus contained a European "avian-like" H1-gene and a European "swine-like" N2-gene, thus being genetically distinct from most H1N2 viruses circulating in Europe, but similar to viruses reported in 2009/2010 in Sweden and Italy. Sequence analyses of the internal genes revealed that the reassortment probably arose between circulating Danish "avian-like" H1N1 and H3N2 SIVs. Infected pigs developed cross-reactive antibodies, and increased levels of acute phase proteins after inoculations. Pigs inoculated with H1N2 exhibited nasal virus excretion for seven days, peaking day 1 after inoculation two days earlier than H1N1 infected pigs and at a six times higher level. The difference, however, was not statistically significant. Pigs euthanized on day 4 after inoculation, had a high virus load in all lung lobes. After the second inoculation, the nasal virus excretion was minimal. There were no clinical sign except elevated body temperature under the experimental conditions. The "avian-like" H1N2 subtype, which has been established in the Danish pig population at least since 2003, is a reassortant between circulating swine "avian-like" H1N1 and H3N2. The Danish

  2. Triple-reassortant swine influenza A (H1) in humans in the United States, 2005-2009.

    Science.gov (United States)

    Shinde, Vivek; Bridges, Carolyn B; Uyeki, Timothy M; Shu, Bo; Balish, Amanda; Xu, Xiyan; Lindstrom, Stephen; Gubareva, Larisa V; Deyde, Varough; Garten, Rebecca J; Harris, Meghan; Gerber, Susan; Vagasky, Susan; Smith, Forrest; Pascoe, Neal; Martin, Karen; Dufficy, Deborah; Ritger, Kathy; Conover, Craig; Quinlisk, Patricia; Klimov, Alexander; Bresee, Joseph S; Finelli, Lyn

    2009-06-18

    Triple-reassortant swine influenza A (H1) viruses--containing genes from avian, human, and swine influenza viruses--emerged and became enzootic among pig herds in North America during the late 1990s. We report the clinical features of the first 11 sporadic cases of infection of humans with triple-reassortant swine influenza A (H1) viruses reported to the Centers for Disease Control and Prevention, occurring from December 2005 through February 2009, until just before the current epidemic of swine-origin influenza A (H1N1) among humans. These data were obtained from routine national influenza surveillance reports and from joint case investigations by public and animal health agencies. The median age of the 11 patients was 10 years (range, 16 months to 48 years), and 4 had underlying health conditions. Nine of the patients had had exposure to pigs, five through direct contact and four through visits to a location where pigs were present but without contact. In another patient, human-to-human transmission was suspected. The range of the incubation period, from the last known exposure to the onset of symptoms, was 3 to 9 days. Among the 10 patients with known clinical symptoms, symptoms included fever (in 90%), cough (in 100%), headache (in 60%), and diarrhea (in 30%). Complete blood counts were available for four patients, revealing leukopenia in two, lymphopenia in one, and thrombocytopenia in another. Four patients were hospitalized, two of whom underwent invasive mechanical ventilation. Four patients received oseltamivir, and all 11 recovered from their illness. From December 2005 until just before the current human epidemic of swine-origin influenza viruses, there was sporadic infection with triple-reassortant swine influenza A (H1) viruses in persons with exposure to pigs in the United States. Although all the patients recovered, severe illness of the lower respiratory tract and unusual influenza signs such as diarrhea were observed in some patients, including

  3. Characterization of uncultivable bat influenza virus using a replicative synthetic virus.

    Directory of Open Access Journals (Sweden)

    Bin Zhou

    2014-10-01

    Full Text Available Bats harbor many viruses, which are periodically transmitted to humans resulting in outbreaks of disease (e.g., Ebola, SARS-CoV. Recently, influenza virus-like sequences were identified in bats; however, the viruses could not be cultured. This discovery aroused great interest in understanding the evolutionary history and pandemic potential of bat-influenza. Using synthetic genomics, we were unable to rescue the wild type bat virus, but could rescue a modified bat-influenza virus that had the HA and NA coding regions replaced with those of A/PR/8/1934 (H1N1. This modified bat-influenza virus replicated efficiently in vitro and in mice, resulting in severe disease. Additional studies using a bat-influenza virus that had the HA and NA of A/swine/Texas/4199-2/1998 (H3N2 showed that the PR8 HA and NA contributed to the pathogenicity in mice. Unlike other influenza viruses, engineering truncations hypothesized to reduce interferon antagonism into the NS1 protein didn't attenuate bat-influenza. In contrast, substitution of a putative virulence mutation from the bat-influenza PB2 significantly attenuated the virus in mice and introduction of a putative virulence mutation increased its pathogenicity. Mini-genome replication studies and virus reassortment experiments demonstrated that bat-influenza has very limited genetic and protein compatibility with Type A or Type B influenza viruses, yet it readily reassorts with another divergent bat-influenza virus, suggesting that the bat-influenza lineage may represent a new Genus/Species within the Orthomyxoviridae family. Collectively, our data indicate that the bat-influenza viruses recently identified are authentic viruses that pose little, if any, pandemic threat to humans; however, they provide new insights into the evolution and basic biology of influenza viruses.

  4. Characterization of uncultivable bat influenza virus using a replicative synthetic virus.

    Science.gov (United States)

    Zhou, Bin; Ma, Jingjiao; Liu, Qinfang; Bawa, Bhupinder; Wang, Wei; Shabman, Reed S; Duff, Michael; Lee, Jinhwa; Lang, Yuekun; Cao, Nan; Nagy, Abdou; Lin, Xudong; Stockwell, Timothy B; Richt, Juergen A; Wentworth, David E; Ma, Wenjun

    2014-10-01

    Bats harbor many viruses, which are periodically transmitted to humans resulting in outbreaks of disease (e.g., Ebola, SARS-CoV). Recently, influenza virus-like sequences were identified in bats; however, the viruses could not be cultured. This discovery aroused great interest in understanding the evolutionary history and pandemic potential of bat-influenza. Using synthetic genomics, we were unable to rescue the wild type bat virus, but could rescue a modified bat-influenza virus that had the HA and NA coding regions replaced with those of A/PR/8/1934 (H1N1). This modified bat-influenza virus replicated efficiently in vitro and in mice, resulting in severe disease. Additional studies using a bat-influenza virus that had the HA and NA of A/swine/Texas/4199-2/1998 (H3N2) showed that the PR8 HA and NA contributed to the pathogenicity in mice. Unlike other influenza viruses, engineering truncations hypothesized to reduce interferon antagonism into the NS1 protein didn't attenuate bat-influenza. In contrast, substitution of a putative virulence mutation from the bat-influenza PB2 significantly attenuated the virus in mice and introduction of a putative virulence mutation increased its pathogenicity. Mini-genome replication studies and virus reassortment experiments demonstrated that bat-influenza has very limited genetic and protein compatibility with Type A or Type B influenza viruses, yet it readily reassorts with another divergent bat-influenza virus, suggesting that the bat-influenza lineage may represent a new Genus/Species within the Orthomyxoviridae family. Collectively, our data indicate that the bat-influenza viruses recently identified are authentic viruses that pose little, if any, pandemic threat to humans; however, they provide new insights into the evolution and basic biology of influenza viruses.

  5. Host adaptation and transmission of influenza A viruses in mammals

    Science.gov (United States)

    Schrauwen, Eefje JA; Fouchier, Ron AM

    2014-01-01

    A wide range of influenza A viruses of pigs and birds have infected humans in the last decade, sometimes with severe clinical consequences. Each of these so-called zoonotic infections provides an opportunity for virus adaptation to the new host. Fortunately, most of these human infections do not yield viruses with the ability of sustained human-to-human transmission. However, animal influenza viruses have acquired the ability of sustained transmission between humans to cause pandemics on rare occasions in the past, and therefore, influenza virus zoonoses continue to represent threats to public health. Numerous recent studies have shed new light on the mechanisms of adaptation and transmission of avian and swine influenza A viruses in mammals. In particular, several studies provided insights into the genetic and phenotypic traits of influenza A viruses that may determine airborne transmission. Here, we summarize recent studies on molecular determinants of virulence and adaptation of animal influenza A virus and discuss the phenotypic traits associated with airborne transmission of newly emerging influenza A viruses. Increased understanding of the determinants and mechanisms of virulence and transmission may aid in assessing the risks posed by animal influenza viruses to human health, and preparedness for such risks. PMID:26038511

  6. Virus-Vectored Influenza Virus Vaccines

    Science.gov (United States)

    Tripp, Ralph A.; Tompkins, S. Mark

    2014-01-01

    Despite the availability of an inactivated vaccine that has been licensed for >50 years, the influenza virus continues to cause morbidity and mortality worldwide. Constant evolution of circulating influenza virus strains and the emergence of new strains diminishes the effectiveness of annual vaccines that rely on a match with circulating influenza strains. Thus, there is a continued need for new, efficacious vaccines conferring cross-clade protection to avoid the need for biannual reformulation of seasonal influenza vaccines. Recombinant virus-vectored vaccines are an appealing alternative to classical inactivated vaccines because virus vectors enable native expression of influenza antigens, even from virulent influenza viruses, while expressed in the context of the vector that can improve immunogenicity. In addition, a vectored vaccine often enables delivery of the vaccine to sites of inductive immunity such as the respiratory tract enabling protection from influenza virus infection. Moreover, the ability to readily manipulate virus vectors to produce novel influenza vaccines may provide the quickest path toward a universal vaccine protecting against all influenza viruses. This review will discuss experimental virus-vectored vaccines for use in humans, comparing them to licensed vaccines and the hurdles faced for licensure of these next-generation influenza virus vaccines. PMID:25105278

  7. Rapid separation and identification of the subtypes of swine and equine influenza A viruses by electromigration techniques with UV and fluorometric detection

    Czech Academy of Sciences Publication Activity Database

    Horká, Marie; Kubíček, O.; Kubesová, Anna; Rosenbergová, K.; Kubíčková, Z.; Šlais, Karel

    2011-01-01

    Roč. 136, č. 14 (2011), s. 3010-3015 ISSN 0003-2654 R&D Projects: GA AV ČR IAAX00310701; GA MV VG20112015021 Institutional research plan: CEZ:AV0Z40310501 Keywords : influenza viruses * capillary zone electrophoresis (CZE) * capillary isoelectric focusing (CIEF) Subject RIV: CB - Analytical Chemistry, Separation Impact factor: 4.230, year: 2011

  8. High-resolution computed tomography findings of swine-origin influenza A (H1N1) virus (S-OIV) infection: comparison with scrub typhus

    International Nuclear Information System (INIS)

    Jo, Bang Sil; Lee, In Jae; Lee, Kwanseop; Im, Hyoung June

    2012-01-01

    Background. Swine-origin influenza A (H1N1) virus (S-OIV) infection and scrub typhus, also known as tsutsugamushi disease can manifest as acute respiratory illnesses, particularly during the late fall or early winter, with similar radiographic findings, such as a predominance of ground-glass opacity (GGO). Purpose. To differentiate S-OIV infection from scrub typhus using high-resolution computed tomography (HRCT). Material and Methods. We retrospectively reviewed the HRCT findings of 14 patients with S-OIV infection and 10 patients with scrub typhus. We assessed the location, cross-sectional distribution, and the presence of a peribronchovascular distribution of GGO and consolidations on HRCT. We also assessed the presence of interlobular septal thickening, bronchial wall thickening, pneumothorax, pneumomediastinum, pleural effusion, and mediastinal or axillary lymph node enlargement. Results. Scrub typhus was more common than S-OIV in elderly patients (P < 0.001). The monthly incidences of S-OIV and scrub typhus infection reached a peak between October and November. About 86% of S-OIV patients and 80% of scrub typhus patients presented with GGO. About 67% of the GGO lesions in S-OIV had a peribronchovascular distribution, but this was absent in scrub typhus (P = 0.005). Consolidation (93% vs. 10%, P < 0.001) and bronchial wall thickening (43% vs. 0%, P = 0.024) were more frequent in S-OIV infection than scrub typhus. Interlobular septal thickening (90% vs. 36%, P = 0.013) and axillary lymphadenopathy (90% vs. 0%, P < 0.001) were more common in scrub typhus than S-OIV infection. Conclusion. There was considerable overlap in HRCT findings between S-OIV infection and scrub typhus. However, S-OIV showed a distinctive peribronchovascular distribution of GGO lesions. Consolidation and bronchial wall thickening were seen more frequently in S-OIV infection, whereas interlobular septal thickening and axillary lymphadenopathy were more common in scrub typhus. Thus, CT could

  9. High-resolution computed tomography findings of swine-origin influenza A (H1N1) virus (S-OIV) infection: comparison with scrub typhus

    Energy Technology Data Exchange (ETDEWEB)

    Jo, Bang Sil; Lee, In Jae; Lee, Kwanseop [Dept. of Radiology, Hallym Univ. College of Medicine, Seoul (Korea, Republic of)], E-mail: ijlee2003@medimail.co.kr; Im, Hyoung June [Dept. of Occupational Medicine, Hallym Univ. College of Medicine, Seoul (Korea, Republic of)

    2012-07-15

    Background. Swine-origin influenza A (H1N1) virus (S-OIV) infection and scrub typhus, also known as tsutsugamushi disease can manifest as acute respiratory illnesses, particularly during the late fall or early winter, with similar radiographic findings, such as a predominance of ground-glass opacity (GGO). Purpose. To differentiate S-OIV infection from scrub typhus using high-resolution computed tomography (HRCT). Material and Methods. We retrospectively reviewed the HRCT findings of 14 patients with S-OIV infection and 10 patients with scrub typhus. We assessed the location, cross-sectional distribution, and the presence of a peribronchovascular distribution of GGO and consolidations on HRCT. We also assessed the presence of interlobular septal thickening, bronchial wall thickening, pneumothorax, pneumomediastinum, pleural effusion, and mediastinal or axillary lymph node enlargement. Results. Scrub typhus was more common than S-OIV in elderly patients (P < 0.001). The monthly incidences of S-OIV and scrub typhus infection reached a peak between October and November. About 86% of S-OIV patients and 80% of scrub typhus patients presented with GGO. About 67% of the GGO lesions in S-OIV had a peribronchovascular distribution, but this was absent in scrub typhus (P = 0.005). Consolidation (93% vs. 10%, P < 0.001) and bronchial wall thickening (43% vs. 0%, P = 0.024) were more frequent in S-OIV infection than scrub typhus. Interlobular septal thickening (90% vs. 36%, P = 0.013) and axillary lymphadenopathy (90% vs. 0%, P < 0.001) were more common in scrub typhus than S-OIV infection. Conclusion. There was considerable overlap in HRCT findings between S-OIV infection and scrub typhus. However, S-OIV showed a distinctive peribronchovascular distribution of GGO lesions. Consolidation and bronchial wall thickening were seen more frequently in S-OIV infection, whereas interlobular septal thickening and axillary lymphadenopathy were more common in scrub typhus. Thus, CT could

  10. Characterization of a novel oil-in-water emulsion adjuvant for swine influenza virus and Mycoplasma hyopneumoniae vaccines

    Science.gov (United States)

    Vaccines consisting of subunit or inactivated bacteria/virus and potent adjuvants are widely used to control and prevent infectious diseases. Because inactivated and subunit antigens are often less antigenic than live microbes, a growing need exists for the development of new and improved vaccine ad...

  11. Serum amyloid P component inhibits influenza A virus infections: in vitro and in vivo studies

    DEFF Research Database (Denmark)

    Horvath, A; Andersen, I; Junker, K

    2001-01-01

    . These studies were extended to comprise five mouse-adapted influenza A strains, two swine influenza A strains, a mink influenza A virus, a ferret influenza A reassortant virus, a influenza B virus and a parainfluenza 3 virus. The HA activity of all these viruses was inhibited by SAP. Western blotting showed......Serum amyloid P component (SAP) binds in vitro Ca(2+)-dependently to several ligands including oligosaccharides with terminal mannose and galactose. We have earlier reported that SAP binds to human influenza A virus strains, inhibiting hemagglutinin (HA) activity and virus infectivity in vitro...... that SAP bound to HA trimers, monomers and HA1 and HA2 subunits of influenza A virus. Binding studies indicated that galactose, mannose and fucose moieties contributed to the SAP reacting site(s). Intranasal administration of human SAP to mice induced no demonstrable toxic reactions, and circulating...

  12. Polymerase discordance in novel swine influenza H3N2v constellations is tolerated in swine but not human respiratory epithelial cells.

    Directory of Open Access Journals (Sweden)

    Joshua D Powell

    Full Text Available Swine-origin H3N2v, a variant of H3N2 influenza virus, is a concern for novel reassortment with circulating pandemic H1N1 influenza virus (H1N1pdm09 in swine because this can lead to the emergence of a novel pandemic virus. In this study, the reassortment prevalence of H3N2v with H1N1pdm09 was determined in swine cells. Reassortants evaluated showed that the H1N1pdm09 polymerase (PA segment occurred within swine H3N2 with ∼ 80% frequency. The swine H3N2-human H1N1pdm09 PA reassortant (swH3N2-huPA showed enhanced replication in swine cells, and was the dominant gene constellation. Ferrets infected with swH3N2-huPA had increased lung pathogenicity compared to parent viruses; however, swH3N2-huPA replication in normal human bronchoepithelial cells was attenuated - a feature linked to expression of IFN-β and IFN-λ genes in human but not swine cells. These findings indicate that emergence of novel H3N2v influenza constellations require more than changes in the viral polymerase complex to overcome barriers to cross-species transmission. Additionally, these findings reveal that while the ferret model is highly informative for influenza studies, slight differences in pathogenicity may not necessarily be indicative of human outcomes after infection.

  13. Polymerase Discordance in Novel Swine Influenza H3N2v Constellations Is Tolerated in Swine but Not Human Respiratory Epithelial Cells

    Science.gov (United States)

    Powell, Joshua D.; Dlugolenski, Daniel; Nagy, Tamas; Gabbard, Jon; Lee, Christopher; Tompkins, Stephen M.; Tripp, Ralph A.

    2014-01-01

    Swine-origin H3N2v, a variant of H3N2 influenza virus, is a concern for novel reassortment with circulating pandemic H1N1 influenza virus (H1N1pdm09) in swine because this can lead to the emergence of a novel pandemic virus. In this study, the reassortment prevalence of H3N2v with H1N1pdm09 was determined in swine cells. Reassortants evaluated showed that the H1N1pdm09 polymerase (PA) segment occurred within swine H3N2 with ∼80% frequency. The swine H3N2-human H1N1pdm09 PA reassortant (swH3N2-huPA) showed enhanced replication in swine cells, and was the dominant gene constellation. Ferrets infected with swH3N2-huPA had increased lung pathogenicity compared to parent viruses; however, swH3N2-huPA replication in normal human bronchoepithelial cells was attenuated - a feature linked to expression of IFN-β and IFN-λ genes in human but not swine cells. These findings indicate that emergence of novel H3N2v influenza constellations require more than changes in the viral polymerase complex to overcome barriers to cross-species transmission. Additionally, these findings reveal that while the ferret model is highly informative for influenza studies, slight differences in pathogenicity may not necessarily be indicative of human outcomes after infection. PMID:25330303

  14. Influenza A Virus with a Human-Like N2 Gene Is Circulating in Pigs

    DEFF Research Database (Denmark)

    Breum, Solvej Østergaard; Hjulsager, Charlotte Kristiane; Trebbien, Ramona

    2013-01-01

    A novel reassortant influenza A virus, H1avN2hu, has been found in Danish swine. The virus contains an H1 gene similar to the hemagglutinin (HA) gene of H1N1 avian-like swine viruses and an N2 gene most closely related to the neuraminidase (NA) gene of human H3N2 viruses from the mid-1990s....

  15. Avian influenza viruses in humans.

    Science.gov (United States)

    Malik Peiris, J S

    2009-04-01

    Past pandemics arose from low pathogenic avian influenza (LPAI) viruses. In more recent times, highly pathogenic avian influenza (HPAI) H5N1, LPAI H9N2 and both HPAI and LPAI H7 viruses have repeatedly caused zoonotic disease in humans. Such infections did not lead to sustained human-to-human transmission. Experimental infection of human volunteers and seroepidemiological studies suggest that avian influenza viruses of other subtypes may also infect humans. Viruses of the H7 subtype appear to have a predilection to cause conjunctivitis and influenza-like illness (ILI), although HPAI H7N7 virus has also caused fatal respiratory disease. Low pathogenic H9N2 viruses have caused mild ILI and its occurrence may be under-recognised for this reason. In contrast, contemporary HPAI H5N1 viruses are exceptional in their virulence for humans and differ from human seasonal influenza viruses in their pathogenesis. Patients have a primary viral pneumonia progressing to acute respiratory distress syndrome (ARDS) and multiple organ dysfunction syndrome. Over 380 human cases have been confirmed to date, with an overall case fatality of 63%. The zoonotic transmission of avian influenza is a rare occurrence, butthe greater public health concern is the adaptation of such viruses to efficient human transmission, which could lead to a pandemic. A better understanding of the ecology of avian influenza viruses and the biological determinants of transmissibility and pathogenicity in humans is important for pandemic preparedness.

  16. Transmission of influenza A viruses between pigs and people, Iowa, 2002-2004.

    Science.gov (United States)

    Terebuh, Pauline; Olsen, Christopher W; Wright, Jennifer; Klimov, Alexander; Karasin, Alexander; Todd, Karla; Zhou, Hong; Hall, Henrietta; Xu, Xiyan; Kniffen, Tim; Madsen, David; Garten, Rebecca; Bridges, Carolyn B

    2010-11-01

    Triple-reassortant (tr) viruses of human, avian, and swine origin, including H1N1, H1N2, and H3N2 subtypes, emerged in North American swine herds in 1998 and have become predominant. While sporadic human infections with classical influenza A (H1N1) and with tr-swine influenza viruses have been reported, relatively few have been documented in occupationally exposed swine workers (SW). We conducted a 2-year (2002-2004) prospective cohort study of transmission of influenza viruses between pigs and SW from a single pork production company in Iowa. Respiratory samples were collected and tested for influenza viruses from SW and from pigs under their care through surveillance for influenza-like illnesses (ILI). Serial blood samples from study participants were tested by hemagglutination inhibition (HI) for antibody seroconversion against human and swine influenza viruses (SIV), and antibody seroprevalence was compared to age-matched urban Iowa blood donors. During the first year, 15 of 88 SW had ILI and were sampled; all were culture-negative for influenza. During the second year, 11 of 76 SW had ILI and were sampled; one was culture-positive for a human seasonal H3N2 virus. Among 20 swine herd ILI outbreaks sampled, influenza A virus was detected by rRT-PCR from 17 with 11 trH1N1 and five trH3N2 virus isolates cultured. During both years, HI geometric mean titers were significantly higher among SW compared to blood donor controls for three SIV: classical swine Sw/WI/238/97 (H1N1), tr Sw/IN/9K035/99 (H1N2), and trSw/IA/H02NJ56371/02 (H1N1)] (P influenza viruses and were exposed to diverse influenza virus strains circulating in pigs. Influenza virus surveillance among pigs and SW should be encouraged to better understand cross-species transmission and diversity of influenza viruses at the human-swine interface. © 2010 Blackwell Publishing Ltd.

  17. Outbreaks of influenza A virus in farmed mink (Neovison vison) in Denmark: molecular characterization of the viruses

    DEFF Research Database (Denmark)

    Larsen, Lars Erik; Breum, Solvej Østergaard; Trebbien, Ramona

    2012-01-01

    that the virus was a human/swine reassortant, with the H and N gene most related to human H3N2 viruses circulating in 2005. The remaining 6 genes were most closely related to H1N2 influenza viruses circulating in Danish swine. This virus had not previously been described in swine, mink or humans. PCRs assays...... specifically targeting the new reassortant were developed and used to screen influenza positive samples from humans and swine in Denmark with negative results. Thus, there was no evidence that this virus had spread to humans or was circulating in Danish pigs. In 2010 and 2011, influenza virus was again...... diagnosed in diseased mink in a few farms. The genetic typing showed that the virus was similar to the pandemic H1N1 virus circulating in humans and swine. The H3N2 virus was not detected in 2010 and 2011. Taken together, these findings indicate that mink is highly susceptible for influenza A virus of human...

  18. PANDEMIC SWINE INFLUENZA VIRUS: PREPAREDNESS ...

    African Journals Online (AJOL)

    Zamzar

    offices including Ministries of Health, Agriculture,. Defense ... adapt international standards to local. 4 realities . ... authority to declare an emergency, restrict travel and mass ... Communication goals, strategies, and messages will evolve during ...

  19. Vaccination-challenge studies with a Port Chalmers/73 (H3N2)-based swine influenza virus vaccine: Reflections on vaccine strain updates and on the vaccine potency test.

    Science.gov (United States)

    De Vleeschauwer, Annebel; Qiu, Yu; Van Reeth, Kristien

    2015-05-11

    The human A/Port Chalmers/1/73 (H3N2) influenza virus strain, the supposed ancestor of European H3N2 swine influenza viruses (SIVs), was used in most commercial SIV vaccines in Europe until recently. If manufacturers want to update vaccine strains, they have to perform laborious intratracheal (IT) challenge experiments and demonstrate reduced virus titres in the lungs of vaccinated pigs. We aimed to examine (a) the ability of a Port Chalmers/73-based commercial vaccine to induce cross-protection against a contemporary European H3N2 SIV and serologic cross-reaction against H3N2 SIVs from Europe and North America and (b) the validity of intranasal (IN) challenge and virus titrations of nasal swabs as alternatives for IT challenge and titrations of lung tissue in vaccine potency tests. Pigs were vaccinated with Suvaxyn Flu(®) and challenged by the IT or IN route with sw/Gent/172/08. Post-vaccination sera were examined in haemagglutination-inhibition assays against vaccine and challenge strains and additional H3N2 SIVs from Europe and North America, including an H3N2 variant virus. Tissues of the respiratory tract and nasal swabs were collected 3 days post challenge (DPCh) and from 0-7 DPCh, respectively, and examined by virus titration. Two vaccinations consistently induced cross-reactive antibodies against European H3N2 SIVs from 1998-2012, but minimal or undetectable antibody titres against North American viruses. Challenge virus titres in the lungs, trachea and nasal mucosa of the vaccinated pigs were significantly reduced after both IT and IN challenge. Yet the reduction of virus titres and nasal shedding was greater after IT challenge. The Port Chalmers/73-based vaccine still offered protection against a European H3N2 SIV isolated 35 years later and with only 86.9% amino acid homology in its HA1, but it is unlikely to protect against H3N2 SIVs that are endemic in North America. We use our data to reflect on vaccine strain updates and on the vaccine potency test

  20. Anti-viral properties and mode of action of standardized Echinacea purpurea extract against highly pathogenic avian Influenza virus (H5N1, H7N7 and swine-origin H1N1 (S-OIV

    Directory of Open Access Journals (Sweden)

    Schoop Roland

    2009-11-01

    Full Text Available Abstract Background Influenza virus (IV infections are a major threat to human welfare and animal health worldwide. Anti-viral therapy includes vaccines and a few anti-viral drugs. However vaccines are not always available in time, as demonstrated by the emergence of the new 2009 H1N1-type pandemic strain of swine origin (S-OIV in April 2009, and the acquisition of resistance to neuraminidase inhibitors such as Tamiflu® (oseltamivir is a potential problem. Therefore the prospects for the control of IV by existing anti-viral drugs are limited. As an alternative approach to the common anti-virals we studied in more detail a commercial standardized extract of the widely used herb Echinacea purpurea (Echinaforce®, EF in order to elucidate the nature of its anti-IV activity. Results Human H1N1-type IV, highly pathogenic avian IV (HPAIV of the H5- and H7-types, as well as swine origin IV (S-OIV, H1N1, were all inactivated in cell culture assays by the EF preparation at concentrations ranging from the recommended dose for oral consumption to several orders of magnitude lower. Detailed studies with the H5N1 HPAIV strain indicated that direct contact between EF and virus was required, prior to infection, in order to obtain maximum inhibition in virus replication. Hemagglutination assays showed that the extract inhibited the receptor binding activity of the virus, suggesting that the extract interferes with the viral entry into cells. In sequential passage studies under treatment in cell culture with the H5N1 virus no EF-resistant variants emerged, in contrast to Tamiflu®, which produced resistant viruses upon passaging. Furthermore, the Tamiflu®-resistant virus was just as susceptible to EF as the wild type virus. Conclusion As a result of these investigations, we believe that this standard Echinacea preparation, used at the recommended dose for oral consumption, could be a useful, readily available and affordable addition to existing control options

  1. Molecular evolution of H1N1 swine influenza in Guangdong, China, 2016-2017.

    Science.gov (United States)

    Cai, Mengkai; Huang, Junming; Bu, Dexin; Yu, Zhiqing; Fu, Xinliang; Ji, Chihai; Zhou, Pei; Zhang, Guihong

    2018-06-01

    Swine are the main host of the H1N1 swine influenza virus (SIV), however, H1N1 can also infect humans and occasionally cause serious respiratory disease. To trace the evolution of the SIV in Guangdong, China, we performed an epidemic investigation during the period of 2016-2017. Nine H1N1 influenza viruses were isolated from swine nasal swabs. Antigenic analysis revealed that these viruses belonged to two distinct antigenic groups, represented by A/Swine/Guangdong/101/2016 and A/Swine/Guangdong/52/2017. Additionally, three genotypes, known as GD52/17-like, GD493/17-like and GD101/16-like, were identified by phylogenetic analysis. Importantly, the genotypes including a minimum of 4 pdm/09-origin internal genes have become prevalent in China in recent years. A total of 2966 swine serum samples were used to perform hemagglutination inhibition (HI) tests, and the results showed that the seroprevalence values of SW/GD/101/16 (32.2% in 2016, 32.1% in 2017) were significantly higher than the seroprevalence values of SW/GD/52/17 (18.0% in 2016, 16.7% in 2017). Our study showed that the three reassortant genotypes of H1N1 SIV currently circulating in China are stable, but H1N1pdm09 poses challenges to human health by the introduction of internal genes into these reassortant genotypes. Strengthening SIV surveillance is therefore critical for SIV control and minimizing its potential threat to public health. Copyright © 2018 Elsevier B.V. All rights reserved.

  2. Influenza Virus Infection in Nonhuman Primates

    Science.gov (United States)

    Karlsson, Erik A.; Engel, Gregory A.; Feeroz, M.M.; San, Sorn; Rompis, Aida; Lee, Benjamin P. Y.-H.; Shaw, Eric; Oh, Gunwha; Schillaci, Michael A.; Grant, Richard; Heidrich, John; Schultz-Cherry, Stacey

    2012-01-01

    To determine whether nonhuman primates are infected with influenza viruses in nature, we conducted serologic and swab studies among macaques from several parts of the world. Our detection of influenza virus and antibodies to influenza virus raises questions about the role of nonhuman primates in the ecology of influenza. PMID:23017256

  3. Classical Swine Fever and Avian Influenza epidemcis: Lessons learned

    NARCIS (Netherlands)

    Elbers, A.R.; Loeffen, W.L.A.; Koch, G.

    2012-01-01

    This publication is based on a talk which was held in the course of the spring symposium „Impfen statt Keulen“ of the Akademie für Tiergesundheit (AfT) 2011 in Wiesbaden-Naurod. Experience with recent large-scale epidemics of Classical Swine Fever and Avian Influenza – among others in the

  4. Transmission of Influenza A Viruses

    Science.gov (United States)

    Neumann, Gabriele; Kawaoka, Yoshihiro

    2015-01-01

    Influenza A viruses cause respiratory infections that range from asymptomatic to deadly in humans. Widespread outbreaks (pandemics) are attributable to ‘novel’ viruses that possess a viral hemagglutinin (HA) gene to which humans lack immunity. After a pandemic, these novel viruses form stable virus lineages in humans and circulate until they are replaced by other novel viruses. The factors and mechanisms that facilitate virus transmission among hosts and the establishment of novel lineages are not completely understood, but the HA and basic polymerase 2 (PB2) proteins are thought to play essential roles in these processes by enabling avian influenza viruses to infect mammals and replicate efficiently in their new host. Here, we summarize our current knowledge of the contributions of HA, PB2, and other viral components to virus transmission and the formation of new virus lineages. PMID:25812763

  5. The evolving history of influenza viruses and influenza vaccines.

    Science.gov (United States)

    Hannoun, Claude

    2013-09-01

    The isolation of influenza virus 80 years ago in 1933 very quickly led to the development of the first generation of live-attenuated vaccines. The first inactivated influenza vaccine was monovalent (influenza A). In 1942, a bivalent vaccine was produced after the discovery of influenza B. It was later discovered that influenza viruses mutated leading to antigenic changes. Since 1973, the WHO has issued annual recommendations for the composition of the influenza vaccine based on results from surveillance systems that identify currently circulating strains. In 1978, the first trivalent vaccine included two influenza A strains and one influenza B strain. Currently, there are two influenza B lineages circulating; in the latest WHO recommendations, it is suggested that a second B strain could be added to give a quadrivalent vaccine. The history of influenza vaccine and the associated technology shows how the vaccine has evolved to match the evolution of influenza viruses.

  6. Avian Influenza A Virus Infections in Humans

    Science.gov (United States)

    ... people has ranged from mild to severe. Avian Influenza Transmission Avian Influenza Transmission Infographic [555 KB, 2 pages] Spanish [ ... important for public health. Signs and Symptoms of Avian Influenza A Virus Infections in Humans The reported signs ...

  7. Swine flu (H1N1 influenza): awareness profile of visitors of swine flu screening booths in Belgaum city, Karnataka.

    Science.gov (United States)

    Viveki, R G; Halappanavar, A B; Patil, M S; Joshi, A V; Gunagi, Praveena; Halki, Sunanda B

    2012-06-01

    The 2009 flu pandemic was a global outbreak of a new strain of H1N1 influenza virus often referred colloquially as "swine flu". The objectives of the study were: (1) To know the sociodemographic and awareness profile of visitors attending swine flu screening booths. (2) To reveal sources of information. The present cross-sectional study was undertaken among the visitors (18 years and above) attending swine flu screening booths organised within the Belgaum city during Ganesh festival from 28-08-2009 to 03-09-2009 by interviewing them using predesigned, pretested structured questionnaire on swine flu. The data was collected and analysed using SPSS software programme for windows (version 16). Chi-square test was applied. Out of 206 visitors, 132 (64.1%) were males and 107 (51.9%) were in the age group of 30-49 years; 183 (88.8%) had heard about swine flu. More than a third of the visitors (38.3%) disclosed that there was a vaccine to prevent swine flu. Majority responded that it could be transmitted by being in close proximity to pigs (49.0%) and by eating pork (51.5%). Newspaper/magazine (64.6%), television (61.7%), and public posters/pamphlets (44.2%) were common sources of information. The present study revealed that doctors/public health workers have played little role in creating awareness in the community. The improved communication between doctors and the community would help to spread correct information about the disease and the role that the community can play in controlling the spread of the disease.

  8. Outbreaks of Influenza A Virus in Farmed Mink (Neovison vison) in Denmark: Molecular characterization of the involved viruses

    DEFF Research Database (Denmark)

    Larsen, Lars Erik; Breum, Solvej Østergaard; Trebbien, Ramona

    mink farms with respiratory symptoms. Full-genome sequencing showed that the virus was a human/swine reassortant, with the H and N gene most related to human H3N2 viruses circulating in 2005. The remaining 6 genes were most closely related to H1N2 influenza viruses circulating in Danish swine....... This virus had not previously been described in swine, mink nor humans. PCRs assays specifically targeting the new reassortant were developed and used to screen influenza positive samples from humans and swine in Denmark with negative results. Thus, there was no evidence that this virus had spread to humans...... or was circulating in Danish pigs. In 2010 and 2011, influenza virus was again diagnosed in diseased mink in a few farms. The genetic typing showed that the virus was similar to the pandemic H1N1 virus circulating in humans and swine. The H3N2 virus was not detected in 2010 and 2011. Taken together, these findings...

  9. Predicting Hotspots for Influenza Virus Reassortment

    Science.gov (United States)

    Gilbert, Marius; Martin, Vincent; Cappelle, Julien; Hosseini, Parviez; Njabo, Kevin Y.; Abdel Aziz, Soad; Xiao, Xiangming; Daszak, Peter; Smith, Thomas B.

    2013-01-01

    The 1957 and 1968 influenza pandemics, each of which killed ≈1 million persons, arose through reassortment events. Influenza virus in humans and domestic animals could reassort and cause another pandemic. To identify geographic areas where agricultural production systems are conducive to reassortment, we fitted multivariate regression models to surveillance data on influenza A virus subtype H5N1 among poultry in China and Egypt and subtype H3N2 among humans. We then applied the models across Asia and Egypt to predict where subtype H3N2 from humans and subtype H5N1 from birds overlap; this overlap serves as a proxy for co-infection and in vivo reassortment. For Asia, we refined the prioritization by identifying areas that also have high swine density. Potential geographic foci of reassortment include the northern plains of India, coastal and central provinces of China, the western Korean Peninsula and southwestern Japan in Asia, and the Nile Delta in Egypt. PMID:23628436

  10. Characterization of influenza a outbreaks in Minnesota swine herds and measures taken to reduce the risk of zoonotic transmission.

    Science.gov (United States)

    Beaudoin, A; Johnson, S; Davies, P; Bender, J; Gramer, M

    2012-03-01

    Influenza A virus infections commonly cause respiratory disease in swine and can be transmitted between people and pigs, with potentially novel strains introduced into herds and spilling back into the human population. The goals of this study were to characterize influenza infections in Minnesota pigs and assess biosecurity measures used by swine workers. Veterinarians submitting influenza-positive swine samples to the University of Minnesota Veterinary Diagnostic Laboratory between October 2007 and April 2009 were surveyed regarding disease-related information and biosecurity procedures at each farm. Influenza-positive samples were submitted year-round, peaking in spring and fall. H1N1 was the most commonly detected subtype (56%), followed by H3N2 (14%) and H1N2 (12%). Most positive submissions were associated with illness in growing pigs (median age 8.8 weeks, IQR 5-15). Median morbidity and mortality were 25% (IQR 10-48) and 2% (IQR 0.5-3.5), respectively. Vaccination of sows and growing pigs was conducted at 71% and 7.9% of the swine farms, respectively. Specialized footwear was reported as the most common form of protective equipment used by workers. Employee vaccination for seasonal influenza was 19%. The sow vaccination rate in this study is consistent with national data, although growing pig vaccination is lower than the national average. Seasonal and age trends identified here may provide diagnostic guidance when growing pigs experience respiratory disease. Inconsistent use of protective equipment and employee vaccination at swine farms indicates the need for further discussion and research of approaches to minimize interspecies influenza transmission on swine farms. © 2011 Blackwell Verlag GmbH.

  11. Influenza B viruses : not to be discounted

    NARCIS (Netherlands)

    van de Sandt, Carolien E; Bodewes, Rogier; Rimmelzwaan, Guus F; de Vries, Rory D

    2015-01-01

    In contrast to influenza A viruses, which have been investigated extensively, influenza B viruses have attracted relatively little attention. However, influenza B viruses are an important cause of morbidity and mortality in the human population and full understanding of their biological and

  12. Isolation and genetic characterization of avian-like H1N1 and novel ressortant H1N2 influenza viruses from pigs in China.

    Science.gov (United States)

    Yu, Hai; Zhang, Peng-Chao; Zhou, Yan-Jun; Li, Guo-Xin; Pan, Jie; Yan, Li-Ping; Shi, Xiao-Xiao; Liu, Hui-Li; Tong, Guang-Zhi

    2009-08-21

    As pigs are susceptible to both human and avian influenza viruses, they have been proposed to be intermediate hosts or mixing vessels for the generation of pandemic influenza viruses through reassortment or adaptation to the mammalian host. In this study, we reported avian-like H1N1 and novel ressortant H1N2 influenza viruses from pigs in China. Homology and phylogenetic analyses showed that the H1N1 virus (A/swine/Zhejiang/1/07) was closely to avian-like H1N1 viruses and seemed to be derived from the European swine H1N1 viruses, which was for the first time reported in China; and the two H1N2 viruses (A/swine/Shanghai/1/07 and A/swine/Guangxi/13/06) were novel ressortant H1N2 influenza viruses containing genes from the classical swine (HA, NP, M and NS), human (NA and PB1) and avian (PB2 and PA) lineages, which indicted that the reassortment among human, avian, and swine influenza viruses had taken place in pigs in China and resulted in the generation of new viruses. The isolation of avian-like H1N1 influenza virus originated from the European swine H1N1 viruses, especially the emergence of two novel ressortant H1N2 influenza viruses provides further evidence that pigs serve as intermediate hosts or "mixing vessels", and swine influenza virus surveillance in China should be given a high priority.

  13. Likely Correlation between Sources of Information and Acceptability of A/H1N1 Swine-Origin Influenza Virus Vaccine in Marseille, France

    Science.gov (United States)

    Ninove, Laetitia; Sartor, Catherine; Badiaga, Sékéné; Botelho, Elizabeth; Brouqui, Philippe; Zandotti, Christine; De Lamballerie, Xavier; La Scola, Bernard; Drancourt, Michel; Gould, Ernest A.; Charrel, Rémi N.; Raoult, Didier

    2010-01-01

    Background In France, there was a reluctance to accept vaccination against the A/H1N1 pandemic influenza virus despite government recommendation and investment in the vaccine programme. Methods and Findings We examined the willingness of different populations to accept A/H1N1vaccination (i) in a French hospital among 3315 employees immunized either by in-house medical personnel or mobile teams of MDs and (ii) in a shelter housing 250 homeless persons. Google was used to assess the volume of enquiries concerning incidence of influenza. We analyzed the information on vaccination provided by Google, the website of the major French newspapers, and PubMed. Two trust Surveys were used to assess public opinion on the trustworthiness of people in different professions. Paramedics were significantly more reluctant to accept immunisation than qualified medical staff. Acceptance was significantly increased when recommended directly by MDs. Anecdotal cases of directly observed severe infections were followed by enhanced acceptance of paramedical staff. Scientific literature was significantly more in favour of vaccination than Google and French newspaper websites. In the case of the newspaper websites, information correlated with their recognised political reputations, although they would presumably claim independence from political bias. The Trust Surveys showed that politicians were highly distrusted in contrast with doctors and pharmacists who were considered much more trustworthy. Conclusions The low uptake of the vaccine could reflect failure to convey high quality medical information and advice relating to the benefits of being vaccinated. We believe that the media and internet contributed to this problem by raising concerns within the general population and that failure to involve GPs in the control programme may have been a mistake. GPs are highly regarded by the public and can provide face-to-face professional advice and information. The top-down strategy of vaccine

  14. Infecção pelo vírus Influenza A (H1N1 de origem suína: como reconhecer, diagnosticar e prevenir How to prevent, recognize and diagnose infection with the swine-origin Influenza A (H1N1 virus in humans

    Directory of Open Access Journals (Sweden)

    Alcyone Artioli Machado

    2009-05-01

    Full Text Available Em março de 2009, houve o início de uma epidemia de gripe no México que, em pouco tempo, levou ao surgimento de casos semelhantes em outros países, alertando as autoridades sanitárias para o risco de uma pandemia. Neste artigo, descrevemos os principais sinais e sintomas da infecção pelo vírus Influenza A (H1N1 de origem suína, as medidas a serem tomadas para os casos suspeitos ou confirmados e como proceder em relação aos contactantes. Comentamos também quais drogas são utilizadas para o tratamento e profilaxia.In March of 2009, a flu epidemic began in Mexico. Shortly thereafter, similar cases appeared in other countries, alerting authorities to the risk of a pandemic. This article details the principal signs and symptoms of infection with the swine-origin Influenza A (H1N1 virus. In addition, the measures to be taken in suspected or confirmed cases are addressed, as are the procedures to follow in relation to contacts. Furthermore, the drugs used in the prophylaxis against and the treatment of infection with the H1N1 virus are described.

  15. Weighing serological evidence of human exposure to animal influenza viruses - a literature review.

    Science.gov (United States)

    Sikkema, Reina Saapke; Freidl, Gudrun Stephanie; de Bruin, Erwin; Koopmans, Marion

    2016-11-03

    Assessing influenza A virus strains circulating in animals and their potential to cross the species barrier and cause human infections is important to improve human influenza surveillance and preparedness. We reviewed studies describing serological evidence of human exposure to animal influenza viruses. Comparing serological data is difficult due to a lack of standardisation in study designs and in laboratory methods used in published reports. Therefore, we designed a scoring system to assess and weigh specificity of obtained serology results in the selected articles. Many studies report reliable evidence of antibodies to swine influenza viruses among persons occupationally exposed to pigs. Most avian influenza studies target H5, H7 and H9 subtypes and most serological evidence of human exposure to avian influenza viruses is reported for these subtypes. Avian influenza studies receiving a low grade in this review often reported higher seroprevalences in humans compared with studies with a high grade. Official surveillance systems mainly focus on avian H5 and H7 viruses. Swine influenza viruses and avian subtypes other than H5 and H7 (emphasising H9) should be additionally included in official surveillance systems. Surveillance efforts should also be directed towards understudied geographical areas, such as Africa and South America. This article is copyright of The Authors, 2016.

  16. Weighing serological evidence of human exposure to animal influenza viruses − a literature review

    Science.gov (United States)

    Sikkema, Reina Saapke; Freidl, Gudrun Stephanie; de Bruin, Erwin; Koopmans, Marion

    2016-01-01

    Assessing influenza A virus strains circulating in animals and their potential to cross the species barrier and cause human infections is important to improve human influenza surveillance and preparedness. We reviewed studies describing serological evidence of human exposure to animal influenza viruses. Comparing serological data is difficult due to a lack of standardisation in study designs and in laboratory methods used in published reports. Therefore, we designed a scoring system to assess and weigh specificity of obtained serology results in the selected articles. Many studies report reliable evidence of antibodies to swine influenza viruses among persons occupationally exposed to pigs. Most avian influenza studies target H5, H7 and H9 subtypes and most serological evidence of human exposure to avian influenza viruses is reported for these subtypes. Avian influenza studies receiving a low grade in this review often reported higher seroprevalences in humans compared with studies with a high grade. Official surveillance systems mainly focus on avian H5 and H7 viruses. Swine influenza viruses and avian subtypes other than H5 and H7 (emphasising H9) should be additionally included in official surveillance systems. Surveillance efforts should also be directed towards understudied geographical areas, such as Africa and South America. PMID:27874827

  17. Influenza A viruses of avian origin circulating in pigs and other mammals.

    Science.gov (United States)

    Urbaniak, Kinga; Kowalczyk, Andrzej; Markowska-Daniel, Iwona

    2014-01-01

    Influenza A viruses (IAVs) are zoonotic agents, capable of crossing the species barriers. Nowadays, they still constitute a great challenge worldwide. The natural reservoir of all influenza A viruses are wild aquatic birds, despite the fact they have been isolated from a number of avian and mammalian species, including humans. Even when influenza A viruses are able to get into another than waterfowl population, they are often unable to efficiently adapt and transmit between individuals. Only in rare cases, these viruses are capable of establishing a new lineage. To succeed a complete adaptation and further transmission between species, influenza A virus must overcome a species barrier, including adaptation to the receptors of a new host, which would allow the virus-cell binding, virus replication and, then, animal-to-animal transmission. For many years, pigs were thought to be intermediate host for adaptation of avian influenza viruses to humans, because of their susceptibility to infection with both, avian and human influenza viruses, which supported hypothesis of pigs as a 'mixing vessel'. In this review, the molecular factors necessary for interspecies transmission are described, with special emphasis on adaptation of avian influenza viruses to the pig population. In addition, this review gives the information about swine influenza viruses circulating around the world with special emphasis on Polish strains.

  18. viruses associated with human and animal influenza - a review 40

    African Journals Online (AJOL)

    DR. AMINU

    These include Influenza A,B and C. Influenza viruses are members of the family. Orthomyxoviridae. .... low pathogenicity avian influenza may be as mild as ruffled feathers, a ... influenza A viruses are zoonotic agents recognized as continuing ...

  19. Histopathological and immunohistochemical findings of swine with spontaneous influenza A infection in Brazil, 2009-2010

    Directory of Open Access Journals (Sweden)

    Tatiane T.N. Watanabe

    2012-11-01

    Full Text Available Swine influenza (SI is caused by the type A swine influenza virus (SIV. It is a highly contagious disease with a rapid course and recovery. The major clinical signs and symptoms are cough, fever, anorexia and poor performance. The disease has been associated with other co-infections in many countries, but not in Brazil, where, however, the first outbreak has been reported in 2011. The main aim of this study was to characterize the histological features in association with the immunohistochemical (IHC results for influenza A (IA, porcine circovirus type 2 (PCV2 and porcine reproductive and respiratory syndrome virus (PRRSV in lung samples from 60 pigs submitted to Setor de Patologia Veterinária at the Universidade Federal do Rio Grande do Sul (SPV-UFRGS, Brazil, during 2009-2010. All of these lung samples had changes characterized by interstitial pneumonia with necrotizing bronchiolitis, never observed previously in the evaluation of swine lungs in our laboratory routine. Pigs in this study had showed clinical signs of a respiratory infection. Swine samples originated from Rio Grande do Sul 31 (52%, Santa Catarina 14 (23%, Paraná 11 (18%, and Mato Grosso do Sul 4 (7%. Positive anti-IA IHC labelling was observed in 45% of the cases, which were associated with necrotizing bronchiolitis, atelectasis, purulent bronchopneumonia and hyperemia. Moreover, type II pneumocyte hyperplasia, alveolar and bronchiolar polyp-like structures, bronchus-associated lymphoid tissue (BALT hyperplasia and pleuritis were the significant features in negative anti-IA IHC, which were also associated with chronic lesions. There were only two cases with positive anti-PCV2 IHC and none to PRRSV. Therefore, SIV was the predominant infectious agent in the lung samples studied. The viral antigen is often absent due to the rapid progress of SI, which may explain the negative IHC results for IA (55%; therefore, IHC should be performed at the beginning of the disease. This study

  20. Likely correlation between sources of information and acceptability of A/H1N1 swine-origin influenza virus vaccine in Marseille, France.

    Directory of Open Access Journals (Sweden)

    Antoine Nougairède

    Full Text Available BACKGROUND: In France, there was a reluctance to accept vaccination against the A/H1N1 pandemic influenza virus despite government recommendation and investment in the vaccine programme. METHODS AND FINDINGS: We examined the willingness of different populations to accept A/H1N1 vaccination (i in a French hospital among 3315 employees immunized either by in-house medical personnel or mobile teams of MDs and (ii in a shelter housing 250 homeless persons. Google was used to assess the volume of enquiries concerning incidence of influenza. We analyzed the information on vaccination provided by Google, the website of the major French newspapers, and PubMed. Two trust Surveys were used to assess public opinion on the trustworthiness of people in different professions. Paramedics were significantly more reluctant to accept immunisation than qualified medical staff. Acceptance was significantly increased when recommended directly by MDs. Anecdotal cases of directly observed severe infections were followed by enhanced acceptance of paramedical staff. Scientific literature was significantly more in favour of vaccination than Google and French newspaper websites. In the case of the newspaper websites, information correlated with their recognised political reputations, although they would presumably claim independence from political bias. The Trust Surveys showed that politicians were highly dis-trusted in contrast with doctors and pharmacists who were considered much more trustworthy. CONCLUSIONS: The low uptake of the vaccine could reflect failure to convey high quality medical information and advice relating to the benefits of being vaccinated. We believe that the media and internet contributed to this problem by raising concerns within the general population and that failure to involve GPs in the control programme may have been a mistake. GPs are highly regarded by the public and can provide face-to-face professional advice and information. The top

  1. Emerging influenza virus: A global threat

    Indian Academy of Sciences (India)

    PRAKASH KUMAR

    Emerging influenza virus: A global threat. 475. J. Biosci. ... pathogens and are of major global health concern. Recently, ..... cases among persons in 14 countries in Asia, the Middle ... of influenza, investment in pandemic vaccine research and.

  2. Rheumatoid arthritis and Swine influenza vaccine: a case report.

    Science.gov (United States)

    Basra, Gurjot; Jajoria, Praveen; Gonzalez, Emilio

    2012-01-01

    Rheumatoid arthritis (RA) is the most common chronic inflammatory joint disease. Multiple scientific articles have documented that vaccinations for influenza, MMR, and HBV, to name a few, could be triggers of RA in genetically predisposed individuals. However, there is limited data regarding the association of swine flu vaccine (H1N1) and RA. We report the case of a Mexican American female who developed RA right after vaccination with H1N1 vaccine. Genetically, RA has consistently been associated with an epitope in the third hypervariable region of the HLA-DR β chains, known as the "shared epitope", which is found primarily in DR4 and DR1 regions. The presence of HLA-DRB1 alleles is associated with susceptibility to RA in Mexican Americans. Hence, certain individuals with the presence of the "shared epitope" may develop RA following specific vaccinations. To our knowledge, this is the first reported case of RA following vaccination with the swine flu vaccine.

  3. Identification and Epidemiology of Severe Respiratory Disease due to Novel Swine-Origin Influenza A (H1N1 Virus Infection in Alberta

    Directory of Open Access Journals (Sweden)

    George Zahariadis

    2010-01-01

    Full Text Available BACKGROUND: In March 2009, global surveillance started detecting cases of influenza-like illness in Mexico. By mid-April 2009, two pediatric patients were identified in the United States who were confirmed to be infected by a novel influenza A (H1N1 strain. The present article describes the first identified severe respiratory infection and the first death associated with pandemic H1N1 (pH1N1 in Canada.

  4. 76 FR 79203 - Prospective Grant of Exclusive License: Veterinary Biological Products for Swine Influenza Vaccines

    Science.gov (United States)

    2011-12-21

    ... Exclusive License: Veterinary Biological Products for Swine Influenza Vaccines AGENCY: National Institutes....7. The invention relates to compositions and methods of use as Veterinary Influenza Vaccines... to humans. This technology describes DNA vaccines against influenza serotypes H5N1, H1N1, H3N2, and...

  5. Modified vaccinia virus Ankara expressing the hemagglutinin of pandemic (H1N1) 2009 virus induces cross-protective immunity against Eurasian 'avian-like' H1N1 swine viruses in mice.

    Science.gov (United States)

    Castrucci, Maria R; Facchini, Marzia; Di Mario, Giuseppina; Garulli, Bruno; Sciaraffia, Ester; Meola, Monica; Fabiani, Concetta; De Marco, Maria A; Cordioli, Paolo; Siccardi, Antonio; Kawaoka, Yoshihiro; Donatelli, Isabella

    2014-05-01

    To examine cross-reactivity between hemagglutinin (HA) derived from A/California/7/09 (CA/09) virus and that derived from representative Eurasian "avian-like" (EA) H1N1 swine viruses isolated in Italy between 1999 and 2008 during virological surveillance in pigs. Modified vaccinia virus Ankara (MVA) expressing the HA gene of CA/09 virus (MVA-HA-CA/09) was used as a vaccine to investigate cross-protective immunity against H1N1 swine viruses in mice. Two classical swine H1N1 (CS) viruses and four representative EA-like H1N1 swine viruses previously isolated during outbreaks of respiratory disease in pigs on farms in Northern Italy were used in this study. Female C57BL/6 mice were vaccinated with MVA/HA/CA/09 and then challenged intranasally with H1N1 swine viruses. Cross-reactive antibody responses were determined by hemagglutination- inhibition (HI) and virus microneutralizing (MN) assays of sera from MVA-vaccinated mice. The extent of protective immunity against infection with H1N1 swine viruses was determined by measuring lung viral load on days 2 and 4 post-challenge. Systemic immunization of mice with CA/09-derived HA, vectored by MVA, elicited cross-protective immunity against recent EA-like swine viruses. This immune protection was related to the levels of cross-reactive HI antibodies in the sera of the immunized mice and was dependent on the similarity of the antigenic site Sa of H1 HAs. Our findings suggest that the herd immunity elicited in humans by the pandemic (H1N1) 2009 virus could limit the transmission of recent EA-like swine HA genes into the influenza A virus gene pool in humans. © 2013 The Authors Influenza and Other Respiratory Viruses Published by John Wiley & Sons Ltd.

  6. Novel triple reassortant H1N2 influenza viruses bearing six internal genes of the pandemic 2009/H1N1 influenza virus were detected in pigs in China.

    Science.gov (United States)

    Qiao, Chuanling; Liu, Liping; Yang, Huanliang; Chen, Yan; Xu, Huiyang; Chen, Hualan

    2014-12-01

    The pandemic A/H1N1 influenza viruses emerged in both Mexico and the United States in March 2009, and were transmitted efficiently in the human population. Transmissions of the pandemic 2009/H1N1 virus from humans to poultry and other species of mammals were reported from several continents during the course of the 2009 H1N1 pandemic. Reassortant H1N1, H1N2, and H3N2 viruses containing genes of the pandemic 2009/H1N1 viruses appeared in pigs in some countries. In winter of 2012, a total of 2600 nasal swabs were collected from healthy pigs in slaughterhouses located throughout 10 provinces in China. The isolated viruses were subjected to genetic and antigenic analysis. Two novel triple-reassortant H1N2 influenza viruses were isolated from swine in China in 2012, with the HA gene derived from Eurasian avian-like swine H1N1, the NA gene from North American swine H1N2, and the six internal genes from the pandemic 2009/H1N1 viruses. The two viruses had similar antigenic features and some significant changes in antigenic characteristics emerged when compared to the previously identified isolates. We inferred that the novel reassortant viruses in China may have arisen from the accumulation of the three types of influenza viruses, which further indicates that swine herds serve as "mixing vessels" for influenza viruses. Influenza virus reassortment is an ongoing process, and our findings highlight the urgent need for continued influenza surveillance among swine herds. Copyright © 2014 Elsevier B.V. All rights reserved.

  7. Portable GMR Handheld Platform for the Detection of Influenza A Virus.

    Science.gov (United States)

    Wu, Kai; Klein, Todd; Krishna, Venkatramana D; Su, Diqing; Perez, Andres M; Wang, Jian-Ping

    2017-11-22

    Influenza A virus (IAV) is a common respiratory pathogen infecting many hosts including humans, pigs (swine influenza virus or SIV), and birds (avian influenza virus or AIV). Monitoring swine and avian influenza viruses in the wild, farms, and live poultry markets is of great significance for human and veterinary public health. A portable, sensitive, and quantitative immunoassay device will be of high demand especially in the rural and resource-limited areas. We report herein our Z-Lab point-of-care (POC) device for sensitive and specific detection of swine influenza viruses with minimum sample handling and laboratory skill requirements. In the present study, a portable and quantitative immunoassay platform based on giant magnetoresistive (GMR) technology is used for the detection of IAV nucleoprotein (NP) and purified H3N2v. Z-Lab displays quantitative results in less than 10 min with sensitivities down to 15 ng/mL and 125 TCID 50 /mL for IAV nucleoprotein and purified H3N2v, respectively. This platform allows lab-testing to be performed outdoors and opens up the applications of immunoassays in nonclinical settings.

  8. Non-hydrolyzed in digestive tract and blood natural L-carnosine peptide ("bioactivated Jewish penicillin") as a panacea of tomorrow for various flu ailments: signaling activity attenuating nitric oxide (NO) production, cytostasis, and NO-dependent inhibition of influenza virus replication in macrophages in the human body infected with the virulent swine influenza A (H1N1) virus.

    Science.gov (United States)

    Babizhayev, Mark A; Deyev, Anatoliy I; Yegorov, Yegor E

    2013-01-01

    Influenza (flu) is caused by a highly contagious virus that is spread by coughs and sneezes. Flu symptoms include high fever, chills and sweating, sore throat, weakness, headache, muscle and joint pains, and cough. Older people and those with an underlying medical condition are more likely to develop serious complications, including secondary bacterial pneumonia, primary influenza pneumonia, and inflammation of the brain or heart. There are three types of flu virus: A, B, and C. The flu virus has a unique ability to change its surface structure. This allows it to escape recognition by the body's immune system and cause widespread illness (epidemics and pandemics). Most cases of influenza occur within a 6- to 8-week period during winter and spring. Epidemics occur when there are minor changes in the nature of the virus so that more people within a community are susceptible. Influenza A is more likely to cause epidemics. Pandemics (worldwide epidemics) occur when there are major changes in the virus so that the disease affects a large proportion of people in a geographic region or on more than one continent. The findings presented in this article have many important implications for understanding the influenza A (H1N1) viral pathogenesis, prevention, and treatment. Direct viral cytotoxicity (referred cytopathic effect) is only a fraction of several types of events induced by virus infection. Nitric oxide and oxygen free radicals such as superoxide anion (O2-·) are generated markedly in influenza A (including H1N1) virus-infected host boosts, and these molecular species are identified as the potent pathogenic agents. The mutual interaction of nitric oxide (NO) with O2-· resulting in the formation of peroxynitrite is operative in the pathogenic mechanism of influenza virus pneumonia. Influenza virus infection involves pathological events in which oxygen free radicals play an important role in the pathogenesis. The toxicity and reactivity of oxygen radicals generated

  9. Virulence determinants of pandemic influenza viruses

    Science.gov (United States)

    Tscherne, Donna M.; García-Sastre, Adolfo

    2011-01-01

    Influenza A viruses cause recurrent, seasonal epidemics and occasional global pandemics with devastating levels of morbidity and mortality. The ability of influenza A viruses to adapt to various hosts and undergo reassortment events ensures constant generation of new strains with unpredictable degrees of pathogenicity, transmissibility, and pandemic potential. Currently, the combination of factors that drives the emergence of pandemic influenza is unclear, making it impossible to foresee the details of a future outbreak. Identification and characterization of influenza A virus virulence determinants may provide insight into genotypic signatures of pathogenicity as well as a more thorough understanding of the factors that give rise to pandemics. PMID:21206092

  10. Avian influenza virus transmission to mammals.

    Science.gov (United States)

    Herfst, S; Imai, M; Kawaoka, Y; Fouchier, R A M

    2014-01-01

    Influenza A viruses cause yearly epidemics and occasional pandemics. In addition, zoonotic influenza A viruses sporadically infect humans and may cause severe respiratory disease and fatalities. Fortunately, most of these viruses do not have the ability to be efficiently spread among humans via aerosols or respiratory droplets (airborne transmission) and to subsequently cause a pandemic. However, adaptation of these zoonotic viruses to humans by mutation or reassortment with human influenza A viruses may result in airborne transmissible viruses with pandemic potential. Although our knowledge of factors that affect mammalian adaptation and transmissibility of influenza viruses is still limited, we are beginning to understand some of the biological traits that drive airborne transmission of influenza viruses among mammals. Increased understanding of the determinants and mechanisms of airborne transmission may aid in assessing the risks posed by avian influenza viruses to human health, and preparedness for such risks. This chapter summarizes recent discoveries on the genetic and phenotypic traits required for avian influenza viruses to become airborne transmissible between mammals.

  11. A historical perspective of influenza A(H1N2) virus.

    Science.gov (United States)

    Komadina, Naomi; McVernon, Jodie; Hall, Robert; Leder, Karin

    2014-01-01

    The emergence and transition to pandemic status of the influenza A(H1N1)A(H1N1)pdm09) virus in 2009 illustrated the potential for previously circulating human viruses to re-emerge in humans and cause a pandemic after decades of circulating among animals. Within a short time of the initial emergence of A(H1N1)pdm09 virus, novel reassortants were isolated from swine. In late 2011, a variant (v) H3N2 subtype was isolated from humans, and by 2012, the number of persons infected began to increase with limited person-to-person transmission. During 2012 in the United States, an A(H1N2)v virus was transmitted to humans from swine. During the same year, Australia recorded its first H1N2 subtype infection among swine. The A(H3N2)v and A(H1N2)v viruses contained the matrix protein from the A(H1N1)pdm09 virus, raising the possibility of increased transmissibility among humans and underscoring the potential for influenza pandemics of novel swine-origin viruses. We report on the differing histories of A(H1N2) viruses among humans and animals.

  12. Design and Performance of the CDC Real-Time Reverse Transcriptase PCR Swine Flu Panel for Detection of 2009 A (H1N1) Pandemic Influenza Virus▿†‡

    Science.gov (United States)

    Shu, Bo; Wu, Kai-Hui; Emery, Shannon; Villanueva, Julie; Johnson, Roy; Guthrie, Erica; Berman, LaShondra; Warnes, Christine; Barnes, Nathelia; Klimov, Alexander; Lindstrom, Stephen

    2011-01-01

    Swine influenza viruses (SIV) have been shown to sporadically infect humans and are infrequently identified by the Influenza Division of the Centers for Disease Control and Prevention (CDC) after being received as unsubtypeable influenza A virus samples. Real-time reverse transcriptase PCR (rRT-PCR) procedures for detection and characterization of North American lineage (N. Am) SIV were developed and implemented at CDC for rapid identification of specimens from cases of suspected infections with SIV. These procedures were utilized in April 2009 for detection of human cases of 2009 A (H1N1) pandemic (pdm) influenza virus infection. Based on genetic sequence data derived from the first two viruses investigated, the previously developed rRT-PCR procedures were optimized to create the CDC rRT-PCR Swine Flu Panel for detection of the 2009 A (H1N1) pdm influenza virus. The analytical sensitivity of the CDC rRT-PCR Swine Flu Panel was shown to be 5 copies of RNA per reaction and 10−1.3∼−0.7 50% infectious doses (ID50) per reaction for cultured viruses. Cross-reactivity was not observed when testing human clinical specimens or cultured viruses that were positive for human seasonal A (H1N1, H3N2) and B influenza viruses. The CDC rRT-PCR Swine Flu Panel was distributed to public health laboratories in the United States and internationally from April 2009 until June 2010. The CDC rRT-PCR Swine Flu Panel served as an effective tool for timely and specific detection of 2009 A (H1N1) pdm influenza viruses and facilitated subsequent public health response implementation. PMID:21593260

  13. Replication Capacity of Avian Influenza A(H9N2) Virus in Pet Birds and Mammals, Bangladesh.

    Science.gov (United States)

    Lenny, Brian J; Shanmuganatham, Karthik; Sonnberg, Stephanie; Feeroz, Mohammed M; Alam, S M Rabiul; Hasan, M Kamrul; Jones-Engel, Lisa; McKenzie, Pamela; Krauss, Scott; Webster, Robert G; Jones, Jeremy C

    2015-12-01

    Avian influenza A(H9N2) is an agricultural and public health threat. We characterized an H9N2 virus from a pet market in Bangladesh and demonstrated replication in samples from pet birds, swine tissues, human airway and ocular cells, and ferrets. Results implicated pet birds in the potential dissemination and zoonotic transmission of this virus.

  14. Challenges of influenza A viruses in humans and animals and current animal vaccines as an effective control measure

    Science.gov (United States)

    2018-01-01

    Influenza A viruses (IAVs) are genetically diverse and variable pathogens that share various hosts including human, swine, and domestic poultry. Interspecies and intercontinental viral spreads make the ecology of IAV more complex. Beside endemic IAV infections, human has been exposed to pandemic and zoonotic threats from avian and swine influenza viruses. Animal health also has been threatened by high pathogenic avian influenza viruses (in domestic poultry) and reverse zoonosis (in swine). Considering its dynamic interplay between species, prevention and control against IAV should be conducted effectively in both humans and animal sectors. Vaccination is one of the most efficient tools against IAV. Numerous vaccines against animal IAVs have been developed by a variety of vaccine technologies and some of them are currently commercially available. We summarize several challenges in control of IAVs faced by human and animals and discuss IAV vaccines for animal use with those application in susceptible populations. PMID:29399575

  15. Molecular characterization of African swine fever virus in apparently ...

    African Journals Online (AJOL)

    African swine fever (ASF) is a highly lethal and economically significant disease of domestic pigs in Uganda where outbreaks regularly occur. There is neither a vaccine nor treatment available for ASF control. Twenty two African swine fever virus (ASFV) genotypes (I - XXII) have been identified based on partial sequencing ...

  16. Close Relationship of Ruminant Pestiviruses and Classical Swine Fever Virus

    Science.gov (United States)

    Postel, Alexander; Schmeiser, Stefanie; Oguzoglu, Tuba Cigdem; Indenbirken, Daniela; Alawi, Malik; Fischer, Nicole; Grundhoff, Adam

    2015-01-01

    To determine why serum from small ruminants infected with ruminant pestiviruses reacted positively to classical swine fever virus (CSFV)–specific diagnostic tests, we analyzed 2 pestiviruses from Turkey. They differed genetically and antigenically from known Pestivirus species and were closely related to CSFV. Cross-reactions would interfere with classical swine fever diagnosis in pigs. PMID:25811683

  17. Isolation of avian influenza virus in Texas.

    Science.gov (United States)

    Glass, S E; Naqi, S A; Grumbles, L C

    1981-01-01

    An avian influenza virus with surface antigens similar to those of fowl plague virus (Hav 1 Nav 2) was isolated in 1979 from 2 commercial turkey flocks in Central Texas. Two flocks in contact with these infected flocks developed clinical signs, gross lesions, and seroconversion but yielded no virus. This was the first recorded incidence of clinical avian influenza in Texas turkeys and only the second time that an agent with these surface antigens was isolated from turkeys in U.S.

  18. Rheumatoid Arthritis and Swine Influenza Vaccine: A Case Report

    Directory of Open Access Journals (Sweden)

    Gurjot Basra

    2012-01-01

    Full Text Available Rheumatoid arthritis (RA is the most common chronic inflammatory joint disease. Multiple scientific articles have documented that vaccinations for influenza, MMR, and HBV, to name a few, could be triggers of RA in genetically predisposed individuals. However, there is limited data regarding the association of swine flu vaccine (H1N1 and RA. We report the case of a Mexican American female who developed RA right after vaccination with H1N1 vaccine. Genetically, RA has consistently been associated with an epitope in the third hypervariable region of the HLA-DR chains, known as the “shared epitope”, which is found primarily in DR4 and DR1 regions. The presence of HLA-DRB1 alleles is associated with susceptibility to RA in Mexican Americans. Hence, certain individuals with the presence of the “shared epitope” may develop RA following specific vaccinations. To our knowledge, this is the first reported case of RA following vaccination with the swine flu vaccine.

  19. Antibody levels to hepatitis E virus in North Carolina swine workers, non-swine workers, swine, and murids.

    Science.gov (United States)

    Withers, Mark R; Correa, Maria T; Morrow, Morgan; Stebbins, Martha E; Seriwatana, Jitvimol; Webster, W David; Boak, Marshall B; Vaughn, David W

    2002-04-01

    In a cross-sectional serosurvey, eastern North Carolina swine workers (n = 165) were compared with non-swine workers (127) for the presence of antibodies to hepatitis E virus as measured by a quantitative immunoglobulin enzyme-linked immunosorbent assay. Using a cutoff of 20 Walter Reed U/ml, swine-exposed subjects had a 4.5-fold higher antibody prevalence (10.9%) than unexposed subjects (2.4%). No evidence of past clinical hepatitis E or unexplained jaundice could be elicited. Swine (84) and mice (61), from farm sites in the same region as exposed subjects, were also tested. Antibody prevalence in swine (overall = 34.5%) varied widely (10.0-91.7%) according to site, but no antibody was detected in mice. Our data contribute to the accumulating evidence that hepatitis E may be a zoonosis and specifically to the concept of it as an occupational infection of livestock workers.

  20. A flow-through chromatography process for influenza A and B virus purification.

    Science.gov (United States)

    Weigel, Thomas; Solomaier, Thomas; Peuker, Alessa; Pathapati, Trinath; Wolff, Michael W; Reichl, Udo

    2014-10-01

    Vaccination is still the most efficient measure to protect against influenza virus infections. Besides the seasonal wave of influenza, pandemic outbreaks of bird or swine flu represent a high threat to human population. With the establishment of cell culture-based processes, there is a growing demand for robust, economic and efficient downstream processes for influenza virus purification. This study focused on the development of an economic flow-through chromatographic process avoiding virus strain sensitive capture steps. Therefore, a three-step process consisting of anion exchange chromatography (AEC), Benzonase(®) treatment, and size exclusion chromatography with a ligand-activated core (LCC) was established, and tested for purification of two influenza A virus strains and one influenza B virus strain. The process resulted in high virus yields (≥68%) with protein contamination levels fulfilling requirements of the European Pharmacopeia for production of influenza vaccines for human use. DNA was depleted by ≥98.7% for all strains. The measured DNA concentrations per dose were close to the required limits of 10ng DNA per dose set by the European Pharmacopeia. In addition, the added Benzonase(®) could be successfully removed from the product fraction. Overall, the presented downstream process could potentially represent a simple, robust and economic platform technology for production of cell culture-derived influenza vaccines. Copyright © 2014 Elsevier B.V. All rights reserved.

  1. European surveillance network for influenza in pigs

    NARCIS (Netherlands)

    Simon, Gaëlle; Larsen, Lars E.; Dürrwald, Ralf; Foni, Emanuela; Harder, Timm; Reeth, Van Kristien; Markowska-Daniel, Iwona; Reid, Scott M.; Dan, Adam; Maldonado, Jaime; Huovilainen, Anita; Billinis, Charalambos; Davidson, Irit; Agüero, Montserrat; Vila, Thaïs; Hervé, Séverine; Breum, Solvej Østergaard; Chiapponi, Chiara; Urbaniak, Kinga; Kyriakis, Constantinos S.; Brown, Ian H.; Loeffen, Willie; Meulen, Van der Karen; Schlegel, Michael; Bublot, Michel; Kellam, Paul; Watson, Simon; Lewis, Nicola S.; Pybus, Oliver G.; Webby, Richard; Chen, Hualan; Vincent, Amy L.

    2014-01-01

    Swine influenza causes concern for global veterinary and public health officials. In continuing two previous networks that initiated the surveillance of swine influenza viruses (SIVs) circulating in European pigs between 2001 and 2008, a third European Surveillance Network for Influenza in Pigs

  2. Viruses associated with human and animal influenza - a review ...

    African Journals Online (AJOL)

    In this review, the most important viruses associated with human and animal influenza are reported. These include Influenza A,B and C. Influenza viruses are members of the family Orthomyxoviridae. Influenza A virus being the most pathogenic and wide spread with many subtypes has constantly cause epidemics in several ...

  3. Genetic characterization of H1N2 influenza a virus isolated from sick pigs in Southern China in 2010.

    Science.gov (United States)

    Kong, Wei Li; Huang, Liang Zong; Qi, Hai Tao; Cao, Nan; Zhang, Liang Quan; Wang, Heng; Guan, Shang Song; Qi, Wen Bao; Jiao, Pei Rong; Liao, Ming; Zhang, Gui Hong

    2011-10-13

    In China H3N2 and H1N1 swine influenza viruses have been circulating for many years. In January 2010, before swine were infected with foot and mouth disease in Guangdong, some pigs have shown flu-like symptoms: cough, sneeze, runny nose and fever. We collected the nasopharyngeal swab of all sick pigs as much as possible. One subtype H1N2 influenza viruses were isolated from the pig population. The complete genome of one isolate, designated A/swine/Guangdong/1/2010(H1N2), was sequenced and compared with sequences available in GenBank. The nucleotide sequences of all eight viral RNA segments were determined, and then phylogenetic analysis was performed using the neighbor-joining method. HA, NP, M and NS were shown to be closely to swine origin. PB2 and PA were close to avian origin, but NA and PB1were close to human origin. It is a result of a multiple reassortment event. In conclusion, our finding provides further evidence about the interspecies transmission of avian influenza viruses to pigs and emphasizes the importance of reinforcing swine influenza virus (SIV) surveillance, especially before the emergence of highly pathogenic FMDs in pigs in Guangdong.

  4. Genetic characterization of H1N2 influenza a virus isolated from sick pigs in Southern China in 2010

    Directory of Open Access Journals (Sweden)

    Kong Wei

    2011-10-01

    Full Text Available Abstract In China H3N2 and H1N1 swine influenza viruses have been circulating for many years. In January 2010, before swine were infected with foot and mouth disease in Guangdong, some pigs have shown flu-like symptoms: cough, sneeze, runny nose and fever. We collected the nasopharyngeal swab of all sick pigs as much as possible. One subtype H1N2 influenza viruses were isolated from the pig population. The complete genome of one isolate, designated A/swine/Guangdong/1/2010(H1N2, was sequenced and compared with sequences available in GenBank. The nucleotide sequences of all eight viral RNA segments were determined, and then phylogenetic analysis was performed using the neighbor-joining method. HA, NP, M and NS were shown to be closely to swine origin. PB2 and PA were close to avian origin, but NA and PB1were close to human origin. It is a result of a multiple reassortment event. In conclusion, our finding provides further evidence about the interspecies transmission of avian influenza viruses to pigs and emphasizes the importance of reinforcing swine influenza virus (SIV surveillance, especially before the emergence of highly pathogenic FMDs in pigs in Guangdong.

  5. Screening for influenza viruses in 7804 patients with influenza-like symptoms

    International Nuclear Information System (INIS)

    Xuehui Li; Nan Lv; Chen Hangwe; Lanhua You; Huimin Wang

    2010-01-01

    To screen a large number of patients with influenza-like symptoms by using the gold-immunochromatographic assay kit. All patients with influenza-like symptoms visiting the outpatient department of the General Hospital of Beijing Military Region, Beijing, China between May 2009 and January 2010 were enrolled in the study. Nasopharyngeal swabs were collected immediately after the patient visited, then a gold-immunochromatographic assay was performed for screening of influenza A and B viruses according to the kit protocol. Among the 7804 patients enrolled in this study, 202 patients were influenza virus-positive; the positive cases accounted for 2.6% of all cases detected. Among the 202 influenza virus-positive patients, 171 patients were influenza virus A-positive, 24 were influenza virus B-positive, and 7 were co-infected with influenza virus A and B. More than 57% of the virus-positive patients were younger than 30 years old. Symptoms such as fever, sore throat, nasal congestion, sneezing, runny nose, and joint pain were more frequently observed in influenza virus A-positive patients than in influenza virus B-positive and influenza virus-negative patients. The gold immunochromatographic assay kit is very useful for screening a large number of patients with influenza-like symptoms. A higher number of influenza virus A-positive patients have sore throat, nasal congestion, sneezing, runny nose, and joint pain than influenza virus B-positive and influenza virus-negative patients (Author).

  6. Kaempferol ameliorates H9N2 swine influenza virus-induced acute lung injury by inactivation of TLR4/MyD88-mediated NF-κB and MAPK signaling pathways.

    Science.gov (United States)

    Zhang, Ruihua; Ai, Xia; Duan, Yongjie; Xue, Man; He, Wenxiao; Wang, Cunlian; Xu, Tong; Xu, Mingju; Liu, Baojian; Li, Chunhong; Wang, Zhijun; Zhang, Ruihong; Wang, Guohua; Tian, Shufei; Liu, Huifeng

    2017-05-01

    Kaempferol, a very common type of dietary flavonoids, has been found to exert antioxidative and anti-inflammatory properties. The purpose of our investigation was designed to reveal the effect of kaempferol on H9N2 influenza virus-induced inflammation in vivo and in vitro. In vivo, BALB/C mice were infected intranasally with H9N2 influenza virus with or without kaempferol treatment to induce acute lung injury (ALI) model. In vitro, MH-S cells were infected with H9N2 influenza virus with or without kaempferol treatment. In vivo, kaempferol treatment attenuated pulmonary edema, the W/D mass ratio, pulmonary capillary permeability, myeloperoxidase (MPO) activity, and the numbers of inflammatory cells. Kaempferol reduced ROS and Malondialdehyde (MDA) production, and increased the superoxide dismutase (SOD) activity. Kaempferol also reduced overproduction of TNF-α, IL-1β and IL-6. In addition, kaempferol decreased the H9N2 viral titre. In vitro, ROS, MDA, TNF-α, IL-1β and IL-6 was also reduced by kaempferol. Moreover, our data showed that kaempferol significantly inhibited the upregulation of toll-like receptor 4 (TLR4), myeloid differentiation factor 88 (MyD88), phosphorylation level of IκBα and nuclear factor-κB (NF-κB) p65, NF-κB p65 DNA binding activity, and phosphorylation level of MAPKs, both in vivo and in vitro. These results suggest that kaempferol exhibits a protective effect on H9N2 virus-induced inflammation via suppression of TLR4/MyD88-mediated NF-κB and MAPKs pathways, and kaempferol may be considered as an effective drug for the potential treatment of influenza virus-induced ALI. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  7. African Swine Fever Virus, Siberia, Russia, 2017.

    Science.gov (United States)

    Kolbasov, Denis; Titov, Ilya; Tsybanov, Sodnom; Gogin, Andrey; Malogolovkin, Alexander

    2018-04-01

    African swine fever (ASF) is arguably the most dangerous and emerging swine disease worldwide. ASF is a serious problem for the swine industry. The first case of ASF in Russia was reported in 2007. We report an outbreak of ASF in Siberia, Russia, in 2017.

  8. Isolation and characterization of H3N2 influenza A virus from turkeys.

    Science.gov (United States)

    Tang, Y; Lee, C W; Zhang, Y; Senne, D A; Dearth, R; Byrum, B; Perez, D R; Suarez, D L; Saif, Y M

    2005-06-01

    Five 34-wk-old turkey breeder layer flocks in separate houses of 2550 birds each in a single farm in Ohio experienced a drop in egg production from late January to early February 2004. Tracheal swabs (n = 60), cloacal swabs (n = 50), and convalescent sera (n = 110) from the flocks were submitted to the laboratory for diagnostics. Virus isolation was attempted in specific-pathogen free embryonating chicken eggs and Vero and MDCK cells. Virus characterization was performed using agar gel immunodiffusion, the hemagglutination test, the hemagglutination inhibition test, the virus neutralization test, reverse transcription-polymerase chain reaction, sequencing, and phylogenetic analysis. A presumptive influenza virus was successfully propagated and isolated on the first passage in MDCK cells, but initially not in Vero cells or specific-pathogen free chicken embryos. After two passages in MDCK cells, it was possible to propagate the isolate in specific-pathogen free chicken embryos. Preliminary sequence analysis of the isolated virus confirmed that it was influenza A virus with almost 100% (235/236) identity with the matrix gene of a swine influenza A virus, A/Swine/Illinois/100084/01 (H1N2). However, it was not possible to subtype the virus using conventional serotyping methods. The results of genetic characterization of the isolated virus showed that it was the H3N2 subtype and was designated as A/Turkey/OH/313053/04 (H3N2). Phylogenetic analysis of the eight gene segments of the virus showed that A/Turkey/OH/313053/04 (H3N2) isolate was most closely related to the triple-reassortant H3N2 swine viruses [A/Swine/WI/14094/99 (H3N2)] that have been circulating among pigs in the United States since 1998, which contains gene segments from avian, swine, and human viruses. The A/Turkey/OH/313053/04 (H3N2) isolated from turkeys in this study was classified as a low pathogenic avian influenza A virus because it only caused a drop in egg production with minor other clinical

  9. African Swine Fever Virus Biology and Vaccine Approaches.

    Science.gov (United States)

    Revilla, Yolanda; Pérez-Núñez, Daniel; Richt, Juergen A

    2018-01-01

    African swine fever (ASF) is an acute and often fatal disease affecting domestic pigs and wild boar, with severe economic consequences for affected countries. ASF is endemic in sub-Saharan Africa and the island of Sardinia, Italy. Since 2007, the virus emerged in the republic of Georgia, and since then spread throughout the Caucasus region and Russia. Outbreaks have also been reported in Belarus, Ukraine, Lithuania, Latvia, Estonia, Romania, Moldova, Czech Republic, and Poland, threatening neighboring West European countries. The causative agent, the African swine fever virus (ASFV), is a large, enveloped, double-stranded DNA virus that enters the cell by macropinocytosis and a clathrin-dependent mechanism. African Swine Fever Virus is able to interfere with various cellular signaling pathways resulting in immunomodulation, thus making the development of an efficacious vaccine very challenging. Inactivated preparations of African Swine Fever Virus do not confer protection, and the role of antibodies in protection remains unclear. The use of live-attenuated vaccines, although rendering suitable levels of protection, presents difficulties due to safety and side effects in the vaccinated animals. Several African Swine Fever Virus proteins have been reported to induce neutralizing antibodies in immunized pigs, and vaccination strategies based on DNA vaccines and recombinant proteins have also been explored, however, without being very successful. The complexity of the virus particle and the ability of the virus to modulate host immune responses are most likely the reason for this failure. Furthermore, no permanent cell lines able to sustain productive virus infection by both virulent and naturally attenuated African Swine Fever Virus strains exist so far, thus impairing basic research and the commercial production of attenuated vaccine candidates. © 2018 Elsevier Inc. All rights reserved.

  10. Estimation of the transmission dynamics of African swine fever virus within a swine house

    DEFF Research Database (Denmark)

    Nielsen, J. P.; Larsen, T. S.; Hisham Beshara Halasa, Tariq

    2017-01-01

    The spread of African swine fever virus (ASFV) threatens to reach further parts of Europe. In countries with a large swine production, an outbreak of ASF may result in devastating economic consequences for the swine industry. Simulation models can assist decision makers setting up contingency plans......·00 (95% CI 0-1). Furthermore, we simulated the spread of ASFV within a pig house using a modified SEIR-model to establish the time from infection of one animal until ASFV is detected in the herd. Based on a chosen detection limit of 2·55% equivalent to 10 dead pigs out of 360, the disease would...

  11. Isolation and genetic characterization of avian influenza viruses and a Newcastle disease virus from wild birds in Barbados: 2003-2004.

    Science.gov (United States)

    Douglas, Kirk O; Lavoie, Marc C; Kim, L Mia; Afonso, Claudio L; Suarez, David L

    2007-09-01

    Zoonotic transmission of an H5N1 avian influenza A virus to humans in 2003-present has generated increased public health and scientific interest in the prevalence and variability of influenza A viruses in wild birds and their potential threat to human health. Migratory waterfowl and shorebirds are regarded as the primordial reservoir of all influenza A viral subtypes and have been repeatedly implicated in avian influenza outbreaks in domestic poultry and swine. All of the 16 hemagglutinin and nine neuraminidase influenza subtypes have been isolated from wild birds, but waterfowl of the order Anseriformes are the most commonly infected. Using 9-to-11-day-old embryonating chicken egg culture, virus isolation attempts were conducted on 168 cloacal swabs from various resident, imported, and migratory bird species in Barbados during the months of July to October of 2003 and 2004. Hemagglutination assay and reverse transcription-polymerase chain reaction were used to screen all allantoic fluids for the presence of hemagglutinating agents and influenza A virus. Hemagglutination positive-influenza negative samples were also tested for Newcastle disease virus (NDV), which is also found in waterfowl. Two influenza A viruses and one NDV were isolated from Anseriformes (40/168), with isolation rates of 5.0% (2/40) and 2.5% (1/40), respectively, for influenza A and NDV. Sequence analysis of the influenza A virus isolates showed them to be H4N3 viruses that clustered with other North American avian influenza viruses. This is the first report of the presence of influenza A virus and NDV in wild birds in the English-speaking Caribbean.

  12. Caveolin-1 influences human influenza A virus (H1N1 multiplication in cell culture

    Directory of Open Access Journals (Sweden)

    Hemgård Gun-Viol

    2010-05-01

    Full Text Available Abstract Background The threat of recurring influenza pandemics caused by new viral strains and the occurrence of escape mutants necessitate the search for potent therapeutic targets. The dependence of viruses on cellular factors provides a weak-spot in the viral multiplication strategy and a means to interfere with viral multiplication. Results Using a motif-based search strategy for antiviral targets we identified caveolin-1 (Cav-1 as a putative cellular interaction partner of human influenza A viruses, including the pandemic influenza A virus (H1N1 strains of swine origin circulating from spring 2009 on. The influence of Cav-1 on human influenza A/PR/8/34 (H1N1 virus replication was determined in inhibition and competition experiments. RNAi-mediated Cav-1 knock-down as well as transfection of a dominant-negative Cav-1 mutant results in a decrease in virus titre in infected Madin-Darby canine kidney cells (MDCK, a cell line commonly used in basic influenza research as well as in virus vaccine production. To understand the molecular basis of the phenomenon we focussed on the putative caveolin-1 binding domain (CBD located in the lumenal, juxtamembranal portion of the M2 matrix protein which has been identified in the motif-based search. Pull-down assays and co-immunoprecipitation experiments showed that caveolin-1 binds to M2. The data suggest, that Cav-1 modulates influenza virus A replication presumably based on M2/Cav-1 interaction. Conclusion As Cav-1 is involved in the human influenza A virus life cycle, the multifunctional protein and its interaction with M2 protein of human influenza A viruses represent a promising starting point for the search for antiviral agents.

  13. Expression of a single siRNA against a conserved region of NP gene strongly inhibits in vitro replication of different Influenza A virus strains of avian and swine origin.

    Science.gov (United States)

    Stoppani, Elena; Bassi, Ivan; Dotti, Silvia; Lizier, Michela; Ferrari, Maura; Lucchini, Franco

    2015-08-01

    Influenza A virus is the principal agent responsible of the respiratory tract's infections in humans. Every year, highly pathogenic and infectious strains with new antigenic assets appear, making ineffective vaccines so far developed. The discovery of RNA interference (RNAi) opened the way to the progress of new promising drugs against Influenza A virus and also to the introduction of disease resistance traits in genetically modified animals. In this paper, we show that Madin-Darby Canine Kidney (MDCK) cell line expressing short hairpin RNAs (shRNAs) cassette, designed on a specific conserved region of the nucleoprotein (NP) viral genome, can strongly inhibit the viral replication of four viral strains sharing the target sequence, reducing the viral mRNA respectively to 2.5×10(-4), 7.5×10(-5), 1.7×10(-3), 1.9×10(-4) compared to the control, as assessed by real-time PCR. Moreover, we demonstrate that during the challenge with a viral strain bearing a single mismatch on the target sequence, although a weaker inhibition is observed, viral mRNA is still lowered down to 1.2×10(-3) folds in the shRNA-expressing clone compared to the control, indicating a broad potential use of this approach. In addition, we developed a highly predictive and fast screening test of siRNA sequences based on dual-luciferase assay, useful for the in vitro prediction of the potential effect of viral inhibition. In conclusion, these findings reveal new siRNA sequences able to inhibit Influenza A virus replication and provide a basis for the development of siRNAs as prophylaxis and therapy for influenza infection both in humans and animals. Copyright © 2015 Elsevier B.V. All rights reserved.

  14. Potent peptidic fusion inhibitors of influenza virus

    Energy Technology Data Exchange (ETDEWEB)

    Kadam, Rameshwar U.; Juraszek, Jarek; Brandenburg, Boerries; Buyck, Christophe; Schepens, Wim B. G.; Kesteleyn, Bart; Stoops, Bart; Vreeken, Rob J.; Vermond, Jan; Goutier, Wouter; Tang, Chan; Vogels, Ronald; Friesen, Robert H. E.; Goudsmit, Jaap; van Dongen, Maria J. P.; Wilson, Ian A.

    2017-09-28

    Influenza therapeutics with new targets and mechanisms of action are urgently needed to combat potential pandemics, emerging viruses, and constantly mutating strains in circulation. We report here on the design and structural characterization of potent peptidic inhibitors of influenza hemagglutinin. The peptide design was based on complementarity-determining region loops of human broadly neutralizing antibodies against the hemagglutinin (FI6v3 and CR9114). The optimized peptides exhibit nanomolar affinity and neutralization against influenza A group 1 viruses, including the 2009 H1N1 pandemic and avian H5N1 strains. The peptide inhibitors bind to the highly conserved stem epitope and block the low pH–induced conformational rearrangements associated with membrane fusion. These peptidic compounds and their advantageous biological properties should accelerate the development of new small molecule– and peptide-based therapeutics against influenza virus.

  15. Survival of influenza virus on banknotes.

    Science.gov (United States)

    Thomas, Yves; Vogel, Guido; Wunderli, Werner; Suter, Patricia; Witschi, Mark; Koch, Daniel; Tapparel, Caroline; Kaiser, Laurent

    2008-05-01

    Successful control of a viral disease requires knowledge of the different vectors that could promote its transmission among hosts. We assessed the survival of human influenza viruses on banknotes given that billions of these notes are exchanged daily worldwide. Banknotes were experimentally contaminated with representative influenza virus subtypes at various concentrations, and survival was tested after different time periods. Influenza A viruses tested by cell culture survived up to 3 days when they were inoculated at high concentrations. The same inoculum in the presence of respiratory mucus showed a striking increase in survival time (up to 17 days). Similarly, B/Hong Kong/335/2001 virus was still infectious after 1 day when it was mixed with respiratory mucus. When nasopharyngeal secretions of naturally infected children were used, influenza virus survived for at least 48 h in one-third of the cases. The unexpected stability of influenza virus in this nonbiological environment suggests that unusual environmental contamination should be considered in the setting of pandemic preparedness.

  16. Survival of Influenza Virus on Banknotes▿

    Science.gov (United States)

    Thomas, Yves; Vogel, Guido; Wunderli, Werner; Suter, Patricia; Witschi, Mark; Koch, Daniel; Tapparel, Caroline; Kaiser, Laurent

    2008-01-01

    Successful control of a viral disease requires knowledge of the different vectors that could promote its transmission among hosts. We assessed the survival of human influenza viruses on banknotes given that billions of these notes are exchanged daily worldwide. Banknotes were experimentally contaminated with representative influenza virus subtypes at various concentrations, and survival was tested after different time periods. Influenza A viruses tested by cell culture survived up to 3 days when they were inoculated at high concentrations. The same inoculum in the presence of respiratory mucus showed a striking increase in survival time (up to 17 days). Similarly, B/Hong Kong/335/2001 virus was still infectious after 1 day when it was mixed with respiratory mucus. When nasopharyngeal secretions of naturally infected children were used, influenza virus survived for at least 48 h in one-third of the cases. The unexpected stability of influenza virus in this nonbiological environment suggests that unusual environmental contamination should be considered in the setting of pandemic preparedness. PMID:18359825

  17. Codon usage bias and the evolution of influenza A viruses. Codon Usage Biases of Influenza Virus

    Directory of Open Access Journals (Sweden)

    Wong Emily HM

    2010-08-01

    Full Text Available Abstract Background The influenza A virus is an important infectious cause of morbidity and mortality in humans and was responsible for 3 pandemics in the 20th century. As the replication of the influenza virus is based on its host's machinery, codon usage of its viral genes might be subject to host selection pressures, especially after interspecies transmission. A better understanding of viral evolution and host adaptive responses might help control this disease. Results Relative Synonymous Codon Usage (RSCU values of the genes from segment 1 to segment 6 of avian and human influenza viruses, including pandemic H1N1, were studied via Correspondence Analysis (CA. The codon usage patterns of seasonal human influenza viruses were distinct among their subtypes and different from those of avian viruses. Newly isolated viruses could be added to the CA results, creating a tool to investigate the host origin and evolution of viral genes. It was found that the 1918 pandemic H1N1 virus contained genes with mammalian-like viral codon usage patterns, indicating that the introduction of this virus to humans was not through in toto transfer of an avian influenza virus. Many human viral genes had directional changes in codon usage over time of viral isolation, indicating the effect of host selection pressures. These changes reduced the overall GC content and the usage of G at the third codon position in the viral genome. Limited evidence of translational selection pressure was found in a few viral genes. Conclusions Codon usage patterns from CA allowed identification of host origin and evolutionary trends in influenza viruses, providing an alternative method and a tool to understand the evolution of influenza viruses. Human influenza viruses are subject to selection pressure on codon usage which might assist in understanding the characteristics of newly emerging viruses.

  18. Proteomic analysis of swine serum following highly virulent classical swine fever virus infection

    Directory of Open Access Journals (Sweden)

    Guo Huan-cheng

    2011-03-01

    Full Text Available Abstract Background Classical swine fever virus (CSFV belongs to the genus Pestivirus within the family Flaviviridae. Virulent strains of classical swine fever virus (CSFV cause severe disease in pigs characterized by immunosuppression, thrombocytopenia and disseminated intravascular coagulation, which causes significant economic losses to the pig industry worldwide. Methods To reveal proteomic changes in swine serum during the acute stage of lethal CSFV infection, 5 of 10 pigs were inoculated with the virulent CSFV Shimen strain, the remainder serving as uninfected controls. A serum sample was taken at 3 days post-infection from each swine, at a stage when there were no clinical symptoms other than increased rectal temperatures (≥40°C. The samples were treated to remove serum albumin and immunoglobulin (IgG, and then subjected to two-dimension differential gel electrophoresis. Results Quantitative intensity analysis revealed 17 protein spots showing at least 1.5-fold quantitative alteration in expression. Ten spots were successfully identified by MALDI-TOF MS or LTQ MS. Expression of 4 proteins was increased and 6 decreased in CSFV-infected pigs. Functions of these proteins included blood coagulation, anti-inflammatory activity and angiogenesis. Conclusion These proteins with altered expression may have important implications in the pathogenesis of classical swine fever and provide a clue for identification of biomarkers for classical swine fever early diagnosis.

  19. Computer-aided assessment of pulmonary disease in novel swine-origin H1N1 influenza on CT

    Science.gov (United States)

    Yao, Jianhua; Dwyer, Andrew J.; Summers, Ronald M.; Mollura, Daniel J.

    2011-03-01

    The 2009 pandemic is a global outbreak of novel H1N1 influenza. Radiologic images can be used to assess the presence and severity of pulmonary infection. We develop a computer-aided assessment system to analyze the CT images from Swine-Origin Influenza A virus (S-OIV) novel H1N1 cases. The technique is based on the analysis of lung texture patterns and classification using a support vector machine (SVM). Pixel-wise tissue classification is computed from the SVM value. The method was validated on four H1N1 cases and ten normal cases. We demonstrated that the technique can detect regions of pulmonary abnormality in novel H1N1 patients and differentiate these regions from visually normal lung (area under the ROC curve is 0.993). This technique can also be applied to differentiate regions infected by different pulmonary diseases.

  20. Variant (Swine Origin) Influenza Viruses in Humans

    Science.gov (United States)

    ... and Pigs [1.3 MB, 2 pages] Educational Posters [389 KB, 1 page] Compendium of Measures to ... site? Adobe PDF file Microsoft PowerPoint file Microsoft Word file Microsoft Excel file Audio/Video file Apple ...

  1. Avian influenza in shorebirds: experimental infection of ruddy turnstones (Arenaria interpres) with avian influenza virus

    OpenAIRE

    Hall, Jeffrey S.; Krauss, Scott; Franson, J. Christian; TeSlaa, Joshua L.; Nashold, Sean W.; Stallknecht, David E.; Webby, Richard J.; Webster, Robert G.

    2012-01-01

    Please cite this paper as: Hall et al. (2012) Avian influenza in shorebirds: experimental infection of ruddy turnstones (Arenaria interpres) with avian influenza virus. Influenza and Other Respiratory Viruses DOI: 10.1111/j.1750‐2659.2012.00358.x. Background  Low pathogenic avian influenza viruses (LPAIV) have been reported in shorebirds, especially at Delaware Bay, USA, during spring migration. However, data on patterns of virus excretion, minimal infectious doses, and clinical outcome are l...

  2. Molecular detection and typing of influenza viruses. Are we ready for an influenza pandemic?

    NARCIS (Netherlands)

    MacKay, W.G.; Loon, A.M. van; Niedrig, M.; Meijer, A.; Lina, B.; Niesters, H.G.M.

    2008-01-01

    BACKGROUND: We cannot predict when an influenza pandemic will occur or which variant of the virus will cause it. Little information is currently available on the ability of laboratories to detect and subtype influenza viruses including the avian influenza viruses. OBJECTIVES: To assess the ability

  3. The 2009 A (H1N1) influenza virus pandemic: A review.

    Science.gov (United States)

    Girard, Marc P; Tam, John S; Assossou, Olga M; Kieny, Marie Paule

    2010-07-12

    In March and early April 2009 a new swine-origin influenza virus (S-OIV), A (H1N1), emerged in Mexico and the USA. The virus quickly spread worldwide through human-to-human transmission. In view of the number of countries and communities which were reporting human cases, the World Health Organization raised the influenza pandemic alert to the highest level (level 6) on June 11, 2009. The propensity of the virus to primarily affect children, young adults and pregnant women, especially those with an underlying lung or cardiac disease condition, and the substantial increase in rate of hospitalizations, prompted the efforts of the pharmaceutical industry, including new manufacturers from China, Thailand, India and South America, to develop pandemic H1N1 influenza vaccines. All currently registered vaccines were tested for safety and immunogenicity in clinical trials on human volunteers. All were found to be safe and to elicit potentially protective antibody responses after the administration of a single dose of vaccine, including split inactivated vaccines with or without adjuvant, whole-virion vaccines and live-attenuated vaccines. The need for an increased surveillance of influenza virus circulation in swine is outlined. Copyright 2010. Published by Elsevier Ltd.

  4. Swine flu

    Directory of Open Access Journals (Sweden)

    Manish Sinha

    Full Text Available Summary: The recent outbreak of human infection with a novel Swine-Origin Influenza A (H1N1 virus is spreading rapidly through sustained human-to-human transmission in multiple countries. Human-to-human transmission occurs by inhalation of infectious droplets and droplet nuclei, and by direct contact, which is facilitated by air and land travel and social gatherings. The most frequently reported symptoms are fever, cough, myalgia, and sore throat. Detailed contact and travel histories and knowledge of viral activity in community are essential for prompt case detection by the health personnel. Real-time Reverse Transcriptase-Polymerase Chain Reaction analysis of throat swabs or lower respiratory samples is a sensitive means of diagnosis. Use of oral oseltamivir may be warranted for the treatment of severe illness. Keywords: Swine influenza, H1N1, Swine flu, Oseltamivir

  5. Original antigenic sin responses to influenza viruses.

    Science.gov (United States)

    Kim, Jin Hyang; Skountzou, Ioanna; Compans, Richard; Jacob, Joshy

    2009-09-01

    Most immune responses follow Burnet's rule in that Ag recruits specific lymphocytes from a large repertoire and induces them to proliferate and differentiate into effector cells. However, the phenomenon of "original antigenic sin" stands out as a paradox to Burnet's rule of B cell engagement. Humans, upon infection with a novel influenza strain, produce Abs against older viral strains at the expense of responses to novel, protective antigenic determinants. This exacerbates the severity of the current infection. This blind spot of the immune system and the redirection of responses to the "original Ag" rather than to novel epitopes were described fifty years ago. Recent reports have questioned the existence of this phenomenon. Hence, we revisited this issue to determine the extent to which original antigenic sin is induced by variant influenza viruses. Using two related strains of influenza A virus, we show that original antigenic sin leads to a significant decrease in development of protective immunity and recall responses to the second virus. In addition, we show that sequential infection of mice with two live influenza virus strains leads to almost exclusive Ab responses to the first viral strain, suggesting that original antigenic sin could be a potential strategy by which variant influenza viruses subvert the immune system.

  6. Methods for molecular surveillance of influenza

    OpenAIRE

    Wang, Ruixue; Taubenberger, Jeffery K

    2010-01-01

    Molecular-based techniques for detecting influenza viruses have become an integral component of human and animal surveillance programs in the last two decades. The recent pandemic of the swine-origin influenza A virus (H1N1) and the continuing circulation of highly pathogenic avian influenza A virus (H5N1) further stress the need for rapid and accurate identification and subtyping of influenza viruses for surveillance, outbreak management, diagnosis and treatment. There has been remarkable pr...

  7. Functional analysis of replication determinantsin classical swine fever virus

    DEFF Research Database (Denmark)

    Hadsbjerg, Johanne

    and animal pathogens should facilitate finding new approaches for efficient disease control. The principal aim of this thesis is to characterise determinants involved in the replication of classical swine fever virus (CSFV). Classical swine fever is a highly contagious virus disease of domestic pigs and wild...... in cell culture. Knowledge of these sequence variations and putative long-range interactions will provide valuable insights into mechanisms underlying virustranslation and replication. In manuscript 3, a selection marker has been inserted into a CSFV-based replicon making it suitable for screening...

  8. A Historical Perspective of Influenza A(H1N2) Virus

    OpenAIRE

    Komadina, Naomi; McVernon, Jodie; Hall, Robert; Leder, Karin

    2014-01-01

    The emergence and transition to pandemic status of the influenza A(H1N1)A(H1N1)pdm09) virus in 2009 illustrated the potential for previously circulating human viruses to re-emerge in humans and cause a pandemic after decades of circulating among animals. Within a short time of the initial emergence of A(H1N1)pdm09 virus, novel reassortants were isolated from swine. In late 2011, a variant (v) H3N2 subtype was isolated from humans, and by 2012, the number of persons infected began to increase ...

  9. Evolution and adaptation of the pandemic A/H1N1 2009 influenza virus

    Directory of Open Access Journals (Sweden)

    Ducatez MF

    2011-07-01

    Full Text Available Mariette F Ducatez, Thomas P Fabrizio, Richard J WebbyDepartment of Infectious Diseases, St Jude Children's Research Hospital, Memphis, TN, USAAbstract: The emergence of the 2009 H1N1 pandemic influenza virus [A(H1N1pdm09] has provided the public health community with many challenges, but also the scientific community with an opportunity to monitor closely its evolution through the processes of drift and shift. To date, and despite having circulated in humans for nearly two years, little antigenic variation has been observed in the A(H1N1pdm09 viruses. However, as the A(H1N1pdm09 virus continues to circulate and the immunologic pressure within the human population increases, future antigenic change is almost a certainty. Several coinfections of A(H1N1pdm09 and seasonal A(H1N1 or A(H3N2 viruses have been observed, but no reassortant viruses have been described in humans, suggesting a lack of fitness of reassortant viruses or a lack of opportunities for interaction of different viral lineages. In contrast, multiple reassortment events have been detected in swine populations between A(H1N1 pdm09 and other endemic swine viruses. Somewhat surprisingly, many of the well characterized influenza virus virulence markers appear to have limited impact on the phenotype of the A(H1N1pdm09 viruses when they have been introduced into mutant viruses in laboratory settings. As such, it is unclear what the evolutionary path of the pandemic virus will be, but the monitoring of any changes in the circulating viruses will remain a global public and animal health priority.Keywords: influenza, pandemic, evolution, adaptation

  10. 76 FR 81467 - Availability of an Environmental Assessment for Field Testing Swine Influenza Vaccine, RNA

    Science.gov (United States)

    2011-12-28

    ...] Availability of an Environmental Assessment for Field Testing Swine Influenza Vaccine, RNA AGENCY: Animal and... Vaccine, RNA. The environmental assessment, which is based on a risk analysis prepared to assess the risks...: Send your comment to Docket No. APHIS-2011-0114, Regulatory Analysis and Development, PPD, APHIS...

  11. Seasonal and pandemic human influenza viruses attach better to human upper respiratory tract epithelium than avian influenza viruses.

    Science.gov (United States)

    van Riel, Debby; den Bakker, Michael A; Leijten, Lonneke M E; Chutinimitkul, Salin; Munster, Vincent J; de Wit, Emmie; Rimmelzwaan, Guus F; Fouchier, Ron A M; Osterhaus, Albert D M E; Kuiken, Thijs

    2010-04-01

    Influenza viruses vary markedly in their efficiency of human-to-human transmission. This variation has been speculated to be determined in part by the tropism of influenza virus for the human upper respiratory tract. To study this tropism, we determined the pattern of virus attachment by virus histochemistry of three human and three avian influenza viruses in human nasal septum, conchae, nasopharynx, paranasal sinuses, and larynx. We found that the human influenza viruses-two seasonal influenza viruses and pandemic H1N1 virus-attached abundantly to ciliated epithelial cells and goblet cells throughout the upper respiratory tract. In contrast, the avian influenza viruses, including the highly pathogenic H5N1 virus, attached only rarely to epithelial cells or goblet cells. Both human and avian viruses attached occasionally to cells of the submucosal glands. The pattern of virus attachment was similar among the different sites of the human upper respiratory tract for each virus tested. We conclude that influenza viruses that are transmitted efficiently among humans attach abundantly to human upper respiratory tract, whereas inefficiently transmitted influenza viruses attach rarely. These results suggest that the ability of an influenza virus to attach to human upper respiratory tract is a critical factor for efficient transmission in the human population.

  12. Glycosylation of Hemagglutinin and Neuraminidase of Influenza A Virus as Signature for Ecological Spillover and Adaptation among Influenza Reservoirs

    Directory of Open Access Journals (Sweden)

    Paul Kim

    2018-04-01

    Full Text Available Glycosylation of the hemagglutinin (HA and neuraminidase (NA of the influenza provides crucial means for immune evasion and viral fitness in a host population. However, the time-dependent dynamics of each glycosylation sites have not been addressed. We monitored the potential N-linked glycosylation (NLG sites of over 10,000 HA and NA of H1N1 subtype isolated from human, avian, and swine species over the past century. The results show a shift in glycosylation sites as a hallmark of 1918 and 2009 pandemics, and also for the 1976 “abortive pandemic”. Co-segregation of particular glycosylation sites was identified as a characteristic of zoonotic transmission from animal reservoirs, and interestingly, of “reverse zoonosis” of human viruses into swine populations as well. After the 2009 pandemic, recent isolates accrued glycosylation at canonical sites in HA, reflecting gradual seasonal adaptation, and a novel glycosylation in NA as an independent signature for adaptation among humans. Structural predictions indicated a remarkably pleiotropic influence of glycans on multiple HA epitopes for immune evasion, without sacrificing the receptor binding of HA or the activity of NA. The results provided the rationale for establishing the ecological niche of influenza viruses among the reservoir and could be implemented for influenza surveillance and improving pandemic preparedness.

  13. Glycosylation of Hemagglutinin and Neuraminidase of Influenza A Virus as Signature for Ecological Spillover and Adaptation among Influenza Reservoirs

    Science.gov (United States)

    Kim, Paul; Jang, Yo Han; Kwon, Soon Bin; Lee, Chung Min; Han, Gyoonhee; Seong, Baik Lin

    2018-01-01

    Glycosylation of the hemagglutinin (HA) and neuraminidase (NA) of the influenza provides crucial means for immune evasion and viral fitness in a host population. However, the time-dependent dynamics of each glycosylation sites have not been addressed. We monitored the potential N-linked glycosylation (NLG) sites of over 10,000 HA and NA of H1N1 subtype isolated from human, avian, and swine species over the past century. The results show a shift in glycosylation sites as a hallmark of 1918 and 2009 pandemics, and also for the 1976 “abortive pandemic”. Co-segregation of particular glycosylation sites was identified as a characteristic of zoonotic transmission from animal reservoirs, and interestingly, of “reverse zoonosis” of human viruses into swine populations as well. After the 2009 pandemic, recent isolates accrued glycosylation at canonical sites in HA, reflecting gradual seasonal adaptation, and a novel glycosylation in NA as an independent signature for adaptation among humans. Structural predictions indicated a remarkably pleiotropic influence of glycans on multiple HA epitopes for immune evasion, without sacrificing the receptor binding of HA or the activity of NA. The results provided the rationale for establishing the ecological niche of influenza viruses among the reservoir and could be implemented for influenza surveillance and improving pandemic preparedness. PMID:29642453

  14. A New Adjuvant Combined with Inactivated Influenza Enhances Specific CD8 T Cell Response in Mice and Decreases Symptoms in Swine Upon Challenge.

    Science.gov (United States)

    Bouguyon, Edwige; Goncalves, Elodie; Shevtsov, Alexander; Maisonnasse, Pauline; Remyga, Stepan; Goryushev, Oleg; Deville, Sebastien; Bertho, Nicolas; Ben Arous, Juliette

    2015-11-01

    Vaccination is the most effective way to control swine influenza virus (SIV) in the field. Classical vaccines are based on inactivated antigens formulated with an oil emulsion or a polymeric adjuvant. Standard adjuvants enhance the humoral response and orient the immune response toward a Th2 response. An important issue is that current vaccines do not protect against new strains. One approach to improve cross-protection is to enhance Th1 and cytotoxic responses. The development of adjuvants orienting the immune response of inactivated vaccines toward Th1/Cytotoxic responses would be highly beneficial. This study shows that the water in oil in water emulsion adjuvant Montanide™ ISA 201 VG allows the induction of anti-influenza CD8 T cell in mice and induces homologous protection against an H1N1 challenge in swine. Such adjuvants that induce both humoral and cell-mediated immunity could improve the protection conferred by SIV vaccines in the field.

  15. Expression of microRNAs and innate immune factor genes in lung tissue of pigs infected with influenza virus (H1N2)

    DEFF Research Database (Denmark)

    Skovgaard, Kerstin; Cirera, S.; Vasby, D.

    A infection. The present work aimed of providing a better understanding of the involvement of innate immune factors including miRNA in the host response to establishment and progression of influenza virus infection. Twenty pigs were challenged by aerosol containing H1N2 (A/swine/Denmark/12687/03) influenza......Swine influenza is a highly infectious respiratory disease in pigs caused by influenza A virus. Activation of a frontline of pattern-recognition receptors (PRRs) expressed by epithelial cells as well as immune cells of the upper respiratory tract, leads to a potent type 1 interferon (IFN) release......, this response must be tightly regulated. Recently, microRNA (miRNA) has been proposed to play an important role in modulating and fine tuning the innate immune response in order to avoid such harmful overreactions. Little is known about the significance of miRNA regulation in the lung during acute influenza...

  16. Early assessment of anxiety and behavioral response to novel swine-origin influenza A(H1N1.

    Directory of Open Access Journals (Sweden)

    James Holland Jones

    Full Text Available BACKGROUND: Since late April, 2009, a novel influenza virus A (H1N1, generally referred to as the "swine flu," has spread around the globe and infected hundreds of thousands of people. During the first few days after the initial outbreak in Mexico, extensive media coverage together with a high degree of uncertainty about the transmissibility and mortality rate associated with the virus caused widespread concern in the population. The spread of an infectious disease can be strongly influenced by behavioral changes (e.g., social distancing during the early phase of an epidemic, but data on risk perception and behavioral response to a novel virus is usually collected with a substantial delay or after an epidemic has run its course. METHODOLOGY/PRINCIPAL FINDINGS: Here, we report the results from an online survey that gathered data (n = 6,249 about risk perception of the Influenza A(H1N1 outbreak during the first few days of widespread media coverage (April 28-May 5, 2009. We find that after an initially high level of concern, levels of anxiety waned along with the perception of the virus as an immediate threat. Overall, our data provide evidence that emotional status mediates behavioral response. Intriguingly, principal component analysis revealed strong clustering of anxiety about swine flu, bird flu and terrorism. All three of these threats receive a great deal of media attention and their fundamental uncertainty is likely to generate an inordinate amount of fear vis-a-vis their actual threat. CONCLUSIONS/SIGNIFICANCE: Our results suggest that respondents' behavior varies in predictable ways. Of particular interest, we find that affective variables, such as self-reported anxiety over the epidemic, mediate the likelihood that respondents will engage in protective behavior. Understanding how protective behavior such as social distancing varies and the specific factors that mediate it may help with the design of epidemic control strategies.

  17. Hepatitis E Virus Genotype 3 in Humans and Swine, Bolivia

    Science.gov (United States)

    Cavallo, Annalisa; Gonzales, José Luis; Bonelli, Sara Irene; Valda, Ybar; Pieri, Angela; Segundo, Higinio; Ibañez, Ramón; Mantella, Antonia; Bartalesi, Filippo; Tolari, Francesco; Bartoloni, Alessandro

    2011-01-01

    We determined the seroprevalence of hepatitis E virus (HEV) in persons in 2 rural communities in southeastern Bolivia and the presence of HEV in human and swine fecal samples. HEV seroprevalence was 6.3%, and HEV genotype 3 strains with high sequence homology were detected. PMID:21801630

  18. Prevalence and risk factors for H1N1 and H3N2 influenza A virus infections in Minnesota turkey premises.

    Science.gov (United States)

    Corzo, Cesar A; Gramer, Marie; Lauer, Dale; Davies, Peter R

    2012-09-01

    Influenza virus infections can cause respiratory and systemic disease of variable severity and also result in economic losses for the turkey industry. Several subtypes of influenza can infect turkeys, causing diverse clinical signs. Influenza subtypes of swine origin have been diagnosed in turkey premises; however, it is not known how common these infections are nor the likely routes of transmission. We conducted a cross-sectional study to estimate the prevalence of influenza viruses and examine factors associated with infection on Minnesota turkey premises. Results from influenza diagnostic tests and turkey and pig premise location data were obtained from the Minnesota Poultry Testing Laboratory and the Minnesota Board of Animal Health, respectively, from January 2007 to September 2008. Diagnostic data from 356 premises were obtained, of which 17 premises tested positive for antibodies to influenza A virus by agar gel immunodiffusion assay and were confirmed as either H1N1 or H3N2 influenza viruses by hemagglutination and neuraminidase inhibition assays. Influenza infection status was associated with proximity to pig premises and flock size. The latter had a sparing effect on influenza status. This study suggests that H1N1 and H3N2 influenza virus infections of turkey premises in Minnesota are an uncommon event. The route of influenza virus transmission could not be determined; however, the findings suggest that airborne transmission should be considered in future studies.

  19. Influenza virus infection among pediatric patients reporting diarrhea and influenza-like illness

    Directory of Open Access Journals (Sweden)

    Uyeki Timothy M

    2010-01-01

    Full Text Available Abstract Background Influenza is a major cause of morbidity and hospitalization among children. While less often reported in adults, gastrointestinal symptoms have been associated with influenza in children, including abdominal pain, nausea, vomiting, and diarrhea. Methods From September 2005 and April 2008, pediatric patients in Indonesia presenting with concurrent diarrhea and influenza-like illness were enrolled in a study to determine the frequency of influenza virus infection in young patients presenting with symptoms less commonly associated with an upper respiratory tract infection (URTI. Stool specimens and upper respiratory swabs were assayed for the presence of influenza virus. Results Seasonal influenza A or influenza B viral RNA was detected in 85 (11.6% upper respiratory specimens and 21 (2.9% of stool specimens. Viable influenza B virus was isolated from the stool specimen of one case. During the time of this study, human infections with highly pathogenic avian influenza A (H5N1 virus were common in the survey area. However, among 733 enrolled subjects, none had evidence of H5N1 virus infection. Conclusions The detection of influenza viral RNA and viable influenza virus from stool suggests that influenza virus may be localized in the gastrointestinal tract of children, may be associated with pediatric diarrhea and may serve as a potential mode of transmission during seasonal and epidemic influenza outbreaks.

  20. Radioimmunoassay of influenza A virus haemagglutinin. I

    International Nuclear Information System (INIS)

    Russ, G.; Styk, B.; Polakova, K.

    1978-01-01

    Haemagglutinin released from influenza A virus recombinant MRC11 [antigenically identical to the strain A/Port Chalmers/1/73 (H3N2)] by bromelain treatment and purified by rate zonal centrifugation (further on B-HA) was examined for possible contamination by neuraminidase. Specific enzymatic activities of the MRC11 virus and the B-HA respectively showed that B-HA contained less than 0.1% of enzymatically active neuraminidase originally present in the virus. Gel double diffusion tests, specificities of rabbit antisera induced by B-HA as well as radioimmunoprecipitation experiments demonstrated that B-HA was devoid of any antigenically active neuraminidase. Precipitation of 125 I-labelled B-HA with antisera to influenza virus recombinants with N2 neuraminidase was evidently caused by antibodies to host antigenic determinant(s) present in these sera. As for purity and radioimmunoprecipitation properties, B-HA is quite suitable for radioimmunoassay experiments. (author)

  1. The replication of Bangladeshi H9N2 avian influenza viruses carrying genes from H7N3 in mammals.

    Science.gov (United States)

    Shanmuganatham, Karthik K; Jones, Jeremy C; Marathe, Bindumadhav M; Feeroz, Mohammed M; Jones-Engel, Lisa; Walker, David; Turner, Jasmine; Rabiul Alam, S M; Kamrul Hasan, M; Akhtar, Sharmin; Seiler, Patrick; McKenzie, Pamela; Krauss, Scott; Webby, Richard J; Webster, Robert G

    2016-04-20

    H9N2 avian influenza viruses are continuously monitored by the World Health Organization because they are endemic; they continually reassort with H5N1, H7N9 and H10N8 viruses; and they periodically cause human infections. We characterized H9N2 influenza viruses carrying internal genes from highly pathogenic H7N3 viruses, which were isolated from chickens or quail from live-bird markets in Bangladesh between 2010 and 2013. All of the H9N2 viruses used in this study carried mammalian host-specific mutations. We studied their replication kinetics in normal human bronchoepithelial cells and swine tracheal and lung explants, which exhibit many features of the mammalian airway epithelium and serve as a mammalian host model. All H9N2 viruses replicated to moderate-to-high titers in the normal human bronchoepithelial cells and swine lung explants, but replication was limited in the swine tracheal explants. In Balb/c mice, the H9N2 viruses were nonlethal, replicated to moderately high titers and the infection was confined to the lungs. In the ferret model of human influenza infection and transmission, H9N2 viruses possessing the Q226L substitution in hemagglutinin replicated well without clinical signs and spread via direct contact but not by aerosol. None of the H9N2 viruses tested were resistant to the neuraminidase inhibitors. Our study shows that the Bangladeshi H9N2 viruses have the potential to infect humans and highlights the importance of monitoring and characterizing this influenza subtype to better understand the potential risk these viruses pose to humans.

  2. Circulating avian influenza viruses closely related to the 1918 virus have pandemic potential

    Science.gov (United States)

    Watanabe, Tokiko; Zhong, Gongxun; Russell, Colin A.; Nakajima, Noriko; Hatta, Masato; Hanson, Anthony; McBride, Ryan; Burke, David F.; Takahashi, Kenta; Fukuyama, Satoshi; Tomita, Yuriko; Maher, Eileen A.; Watanabe, Shinji; Imai, Masaki; Neumann, Gabriele; Hasegawa, Hideki; Paulson, James C.; Smith, Derek J.; Kawaoka, Yoshihiro

    2014-01-01

    Summary Wild birds harbor a large gene pool of influenza A viruses that have the potential to cause influenza pandemics. Foreseeing and understanding this potential is important for effective surveillance. Our phylogenetic and geographic analyses revealed the global prevalence of avian influenza virus genes whose proteins differ only a few amino acids from the 1918 pandemic influenza virus, suggesting that 1918-like pandemic viruses may emerge in the future. To assess this risk, we generated and characterized a virus composed of avian influenza viral segments with high homology to the 1918 virus. This virus exhibited higher pathogenicity in mice and ferrets than an authentic avian influenza virus. Further, acquisition of seven amino acid substitutions in the viral polymerases and the hemagglutinin surface glycoprotein conferred respiratory droplet transmission to the 1918-like avian virus in ferrets, demonstrating that contemporary avian influenza viruses with 1918 virus-like proteins may have pandemic potential. PMID:24922572

  3. Emergence of influenza viruses with zoonotic potential: open issues which need to be addressed. A review.

    Science.gov (United States)

    Capua, Ilaria; Munoz, Olga

    2013-07-26

    The real and perceived impact of influenza infections in animals has changed dramatically over the last 10 years, due mainly to the better understanding of the public health implications of avian and swine influenza viruses. On a number of occasions in the last decade avian-to-human transmissions of H5, H7 and H9 virus subtypes have occurred, and the first influenza pandemic of the new millennium occurred as a result of the emergence and spread of a virus from pigs. Although the mechanisms that allow influenza viruses to jump from one host species to another are not fully understood, several genetic signatures linked to the crossing of species barriers have been identified. This has led to a re-evaluation of the importance of understanding these viruses in the animal reservoir, to the extent that millions of euros have been invested in surveillance, research and capacity building worldwide. This has resulted in an enhanced collaboration with our medical counterparts, leading to many discoveries that will contribute to an understanding of the complex mechanisms that lead to the emergence of a pandemic virus. Copyright © 2013 Elsevier B.V. All rights reserved.

  4. Conducting polymers as sorbents of influenza viruses

    Czech Academy of Sciences Publication Activity Database

    Ivanova, V. T.; Garina, E. O.; Burtseva, E. I.; Kirillova, E. S.; Ivanova, M. V.; Stejskal, Jaroslav; Sapurina, Irina

    2017-01-01

    Roč. 71, č. 2 (2017), s. 495-503 ISSN 0366-6352 R&D Projects: GA ČR(CZ) GA16-02787S; GA MŠk(CZ) LH14199 Institutional support: RVO:61389013 Keywords : influenza viruses * conducting polymers * polyaniline Subject RIV: CD - Macromolecular Chemistry OBOR OECD: Polymer science Impact factor: 1.258, year: 2016

  5. Shotgun glycomics of pig lung identifies natural endogenous receptors for influenza viruses.

    Science.gov (United States)

    Byrd-Leotis, Lauren; Liu, Renpeng; Bradley, Konrad C; Lasanajak, Yi; Cummings, Sandra F; Song, Xuezheng; Heimburg-Molinaro, Jamie; Galloway, Summer E; Culhane, Marie R; Smith, David F; Steinhauer, David A; Cummings, Richard D

    2014-06-03

    Influenza viruses bind to host cell surface glycans containing terminal sialic acids, but as studies on influenza binding become more sophisticated, it is becoming evident that although sialic acid may be necessary, it is not sufficient for productive binding. To better define endogenous glycans that serve as viral receptors, we have explored glycan recognition in the pig lung, because influenza is broadly disseminated in swine, and swine have been postulated as an intermediary host for the emergence of pandemic strains. For these studies, we used the technology of "shotgun glycomics" to identify natural receptor glycans. The total released N- and O-glycans from pig lung glycoproteins and glycolipid-derived glycans were fluorescently tagged and separated by multidimensional HPLC, and individual glycans were covalently printed to generate pig lung shotgun glycan microarrays. All viruses tested interacted with one or more sialylated N-glycans but not O-glycans or glycolipid-derived glycans, and each virus demonstrated novel and unexpected differences in endogenous N-glycan recognition. The results illustrate the repertoire of specific, endogenous N-glycans of pig lung glycoproteins for virus recognition and offer a new direction for studying endogenous glycan functions in viral pathogenesis.

  6. CROSSREACTIVE ANTIBODIES AND MEMORY T CELLS TO HUMAN AND ZOONOTIC INFLUENZA A VIRUSES IN VOLUNTEERS

    Directory of Open Access Journals (Sweden)

    I. V. Losev

    2015-01-01

    Full Text Available There exists a real hazard of transferring zoonotic influenza A viruses, either swine, or avian, into human population. In such case, severity of such pandemics depends on the pathogen-specific immunity in the population. Virtual absence of such immunity in humans was declared in the literature. In this work, we assessed systemic, local, and T-cell immunity to potentially pandemic H3N2sw, H5N1, H5N2, H7N3, H7N9 and H2N2 influenza A viruses in a group of healthy adults of different age. Our results indicate that these subjects develop the following immune reactions: (i local (i.e., nasal IgA and cellular (CD4+ and CD8v memory T cells heterosubtypic immunity, in absence of detectable virus-specific serum antibodies to avian influenza A viruses; (ii Local immune responses (as nasal IgA to human A (H2N2 virus which circulated in 1957-1968 were detected both in subjects who could be primed at that time, but also in subjects born after 1968; (iii full-scale systemic and local immunity to potentially pandemic А (H3N2sw swine virus was found in the group. Conclusion. In order of proper epidemiological forecasts and planning appropriate preventive measures for potentially pandemic Influenza A viruses, a regular monitoring of collective immunity should be performed using different adaptive markers. In this respect, any conclusion based on molecular analysis only could lead to considerable mistakes, and should be accomplished by the mentioned immunological studies.

  7. Modulation of Translation Initiation Efficiency in Classical Swine Fever Virus

    DEFF Research Database (Denmark)

    Friis, Martin Barfred; Rasmussen, Thomas Bruun; Belsham, Graham

    2012-01-01

    Modulation of translation initiation efficiency on classical swine fever virus (CSFV) RNA can be achieved by targeted mutations within the internal ribosome entry site (IRES). In this study, cDNAs corresponding to the wild type (wt) or mutant forms of the IRES of CSFV strain Paderborn were...... in vitro and electroporated into porcine PK15 cells. Rescued mutant viruses were obtained from RNAs that contained mutations within domain IIIf which retained more than 75% of wt translation efficiency. Sequencing of cDNA generated from these rescued viruses verified the maintenance of the introduced...... changes within the IRES. The growth characteristics of each rescued mutant virus were compared to that of the wt virus. It was shown that viable mutant viruses with reduced translation initiation efficiency can be designed and generated and that viruses containing mutations within domain IIIf of the IRES...

  8. An infectious bat-derived chimeric influenza virus harbouring the entry machinery of an influenza A virus.

    Science.gov (United States)

    Juozapaitis, Mindaugas; Aguiar Moreira, Étori; Mena, Ignacio; Giese, Sebastian; Riegger, David; Pohlmann, Anne; Höper, Dirk; Zimmer, Gert; Beer, Martin; García-Sastre, Adolfo; Schwemmle, Martin

    2014-07-23

    In 2012, the complete genomic sequence of a new and potentially harmful influenza A-like virus from bats (H17N10) was identified. However, infectious influenza virus was neither isolated from infected bats nor reconstituted, impeding further characterization of this virus. Here we show the generation of an infectious chimeric virus containing six out of the eight bat virus genes, with the remaining two genes encoding the haemagglutinin and neuraminidase proteins of a prototypic influenza A virus. This engineered virus replicates well in a broad range of mammalian cell cultures, human primary airway epithelial cells and mice, but poorly in avian cells and chicken embryos without further adaptation. Importantly, the bat chimeric virus is unable to reassort with other influenza A viruses. Although our data do not exclude the possibility of zoonotic transmission of bat influenza viruses into the human population, they indicate that multiple barriers exist that makes this an unlikely event.

  9. Influenza A virus infections in marine mammals and terrestrial carnivores.

    Science.gov (United States)

    Harder, Timm C; Siebert, Ursula; Wohlsein, Peter; Vahlenkamp, Thomas

    2013-01-01

    Influenza A viruses (IAV), members of the Orthomyxoviridae, cover a wide host spectrum comprising a plethora of avian and, in comparison, a few mammalian species. The viral reservoir and gene pool are kept in metapopulations of aquatic wild birds. The mammalian-adapted IAVs originally arose by transspecies transmission from avian sources. In swine, horse and man, species-adapted IAV lineages circulate independently of the avian reservoir and cause predominantly respiratory disease of highly variable severity. Sporadic outbreaks of IAV infections associated with pneumonic clinical signs have repeatedly occurred in marine mammals (harbour seals [Phoca vitulina]) off the New England coast of the U.S.A. due to episodic transmission of avian IAV. However, no indigenous marine mammal IAV lineages are described. In contrast to marine mammals, avian- and equine-derived IAVs have formed stable circulating lineages in terrestrial carnivores: IAVs of subtype H3N2 and H3N8 are found in canine populations in South Korea, China, and the U.S.A. Experimental infections revealed that dogs and cats can be infected with an even wider range of avian IAVs. Cats, in particular, also proved susceptible to native infection with human pandemic H1N1 viruses and, according to serological data, may be vulnerable to infection with further human-adapted IAVs. Ferrets are susceptible to a variety of avian and mammalian IAVs and are an established animal model of human IAV infection. Thus, a potential role of pet cats, dogs and ferrets as mediators of avian-derived viruses to the human population does exist. A closer observation for influenza virus infections and transmissions at this animal-human interface is indicated.

  10. tion and/or treatment of influenza virus infections

    African Journals Online (AJOL)

    Repro

    more frequent in children and more seri- ous in the elderly, ... The main option for the prevention of influenza and ... rapid development of influenza virus resistance ... drugs that affect the CNS, particu- .... include employees of hospitals, clinics ...

  11. Replication and Transmission of the Novel Bovine Influenza D Virus in a Guinea Pig Model.

    Science.gov (United States)

    Sreenivasan, Chithra; Thomas, Milton; Sheng, Zizhang; Hause, Ben M; Collin, Emily A; Knudsen, David E B; Pillatzki, Angela; Nelson, Eric; Wang, Dan; Kaushik, Radhey S; Li, Feng

    2015-12-01

    Influenza D virus (FLUDV) is a novel influenza virus that infects cattle and swine. The goal of this study was to investigate the replication and transmission of bovine FLUDV in guinea pigs. Following direct intranasal inoculation of animals, the virus was detected in nasal washes of infected animals during the first 7 days postinfection. High viral titers were obtained from nasal turbinates and lung tissues of directly inoculated animals. Further, bovine FLUDV was able to transmit from the infected guinea pigs to sentinel animals by means of contact and not by aerosol dissemination under the experimental conditions tested in this study. Despite exhibiting no clinical signs, infected guinea pigs developed seroconversion and the viral antigen was detected in lungs of animals by immunohistochemistry. The observation that bovine FLUDV replicated in the respiratory tract of guinea pigs was similar to observations described previously in studies of gnotobiotic calves and pigs experimentally infected with bovine FLUDV but different from those described previously in experimental infections in ferrets and swine with a swine FLUDV, which supported virus replication only in the upper respiratory tract and not in the lower respiratory tract, including lung. Our study established that guinea pigs could be used as an animal model for studying this newly emerging influenza virus. Influenza D virus (FLUDV) is a novel emerging pathogen with bovine as its primary host. The epidemiology and pathogenicity of the virus are not yet known. FLUDV also spreads to swine, and the presence of FLUDV-specific antibodies in humans could indicate that there is a potential for zoonosis. Our results showed that bovine FLUDV replicated in the nasal turbinate and lungs of guinea pigs at high titers and was also able to transmit from an infected animal to sentinel animals by contact. The fact that bovine FLUDV replicated productively in both the upper and lower respiratory tracts of guinea pigs

  12. A review of simulation modelling approaches used for the spread of zoonotic influenza viruses in animal and human populations.

    Science.gov (United States)

    Dorjee, S; Poljak, Z; Revie, C W; Bridgland, J; McNab, B; Leger, E; Sanchez, J

    2013-09-01

    Increasing incidences of emerging and re-emerging diseases that are mostly zoonotic (e.g. severe acute respiratory syndrome, avian influenza H5N1, pandemic influenza) has led to the need for a multidisciplinary approach to tackling these threats to public and animal health. Accordingly, a global movement of 'One-Health/One-Medicine' has been launched to foster collaborative efforts amongst animal and human health officials and researchers to address these problems. Historical evidence points to the fact that pandemics caused by influenza A viruses remain a major zoonotic threat to mankind. Recently, a range of mathematical and computer simulation modelling methods and tools have increasingly been applied to improve our understanding of disease transmission dynamics, contingency planning and to support policy decisions on disease outbreak management. This review provides an overview of methods, approaches and software used for modelling the spread of zoonotic influenza viruses in animals and humans, particularly those related to the animal-human interface. Modelling parameters used in these studies are summarized to provide references for future work. This review highlights the limited application of modelling research to influenza in animals and at the animal-human interface, in marked contrast to the large volume of its research in human populations. Although swine are widely recognized as a potential host for generating novel influenza viruses, and that some of these viruses, including pandemic influenza A/H1N1 2009, have been shown to be readily transmissible between humans and swine, only one study was found related to the modelling of influenza spread at the swine-human interface. Significant gaps in the knowledge of frequency of novel viral strains evolution in pigs, farm-level natural history of influenza infection, incidences of influenza transmission between farms and between swine and humans are clearly evident. Therefore, there is a need to direct

  13. Global Surveillance of Emerging Influenza Virus Genotypes by Mass Spectrometry

    Science.gov (United States)

    2007-05-30

    Intercontinental circulation of human influenza A( H1N2 ) reassortant viruses during the 2001–2002 influenza season. J Infect Dis 186: 1490–1493. 6. Taubenberger...Global Surveillance of Emerging Influenza Virus Genotypes by Mass Spectrometry Rangarajan Sampath1*, Kevin L. Russell2, Christian Massire1, Mark W...Infections and Immunity, University of Texas Medical Branch, Galveston, Texas, United States of America Background. Effective influenza surveillance requires

  14. Localization of influenza virus proteins to nuclear dot 10 structures in influenza virus-infected cells

    International Nuclear Information System (INIS)

    Sato, Yoshiko; Yoshioka, Kenichi; Suzuki, Chie; Awashima, Satoshi; Hosaka, Yasuhiro; Yewdell, Jonathan; Kuroda, Kazumichi

    2003-01-01

    We studied influenza virus M1 protein by generating HeLa and MDCK cell lines that express M1 genetically fused to green fluorescent protein (GFP). GFP-M1 was incorporated into virions produced by influenza virus infected MDCK cells expressing the fusion protein indicating that the fusion protein is at least partially functional. Following infection of either HeLa or MDCK cells with influenza A virus (but not influenza B virus), GFP-M1 redistributes from its cytosolic/nuclear location and accumulates in nuclear dots. Immunofluorescence revealed that the nuclear dots represent nuclear dot 10 (ND10) structures. The colocalization of authentic M1, as well as NS1 and NS2 protein, with ND10 was confirmed by immunofluorescence following in situ isolation of ND10. These findings demonstrate a previously unappreciated involvement of influenza virus with ND10, a structure involved in cellular responses to immune cytokines as well as the replication of a rapidly increasing list of viruses

  15. Pyrazole compound BPR1P0034 with potent and selective anti-influenza virus activity

    Directory of Open Access Journals (Sweden)

    Yeh Jiann-Yih

    2010-02-01

    Full Text Available Abstract Background Influenza viruses are a major cause of morbidity and mortality around the world. More recently, a swine-origin influenza A (H1N1 virus that is spreading via human-to-human transmission has become a serious public concern. Although vaccination is the primary strategy for preventing infections, influenza antiviral drugs play an important role in a comprehensive approach to controlling illness and transmission. In addition, a search for influenza-inhibiting drugs is particularly important in the face of high rate of emergence of influenza strains resistant to several existing influenza antivirals. Methods We searched for novel anti-influenza inhibitors using a cell-based neutralization (inhibition of virus-induced cytopathic effect assay. After screening 20,800 randomly selected compounds from a library from ChemDiv, Inc., we found that BPR1P0034 has sub-micromolar antiviral activity. The compound was resynthesized in five steps by conventional chemical techniques. Lead optimization and a structure-activity analysis were used to improve potency. Time-of-addition assay was performed to target an event in the virus life cycle. Results The 50% effective inhibitory concentration (IC50 of BPR1P0034 was 0.42 ± 0.11 μM, when measured with a plaque reduction assay. Viral protein and RNA synthesis of A/WSN/33 (H1N1 was inhibited by BPR1P0034 and the virus-induced cytopathic effects were thus significantly reduced. BPR1P0034 exhibited broad inhibition spectrum for influenza viruses but showed no antiviral effect for enteroviruses and echovirus 9. In a time-of-addition assay, in which the compound was added at different stages along the viral replication cycle (such as at adsorption or after adsorption, its antiviral activity was more efficient in cells treated with the test compound between 0 and 2 h, right after viral infection, implying that an early step of viral replication might be the target of the compound. These results suggest

  16. Giant Magnetoresistance-based Biosensor for Detection of Influenza A Virus.

    Science.gov (United States)

    Krishna, Venkatramana D; Wu, Kai; Perez, Andres M; Wang, Jian-Ping

    2016-01-01

    We have developed a simple and sensitive method for the detection of influenza A virus based on giant magnetoresistance (GMR) biosensor. This assay employs monoclonal antibodies to viral nucleoprotein (NP) in combination with magnetic nanoparticles (MNPs). Presence of influenza virus allows the binding of MNPs to the GMR sensor and the binding is proportional to the concentration of virus. Binding of MNPs onto the GMR sensor causes change in the resistance of sensor, which is measured in a real time electrical readout. GMR biosensor detected as low as 1.5 × 10(2) TCID50/mL virus and the signal intensity increased with increasing concentration of virus up to 1.0 × 10(5) TCID50/mL. This study showed that the GMR biosensor assay is relevant for diagnostic application since the virus concentration in nasal samples of influenza virus infected swine was reported to be in the range of 10(3) to 10(5) TCID50/mL.

  17. Avian Influenza A (H7N9) Virus

    Science.gov (United States)

    ... August 7, 2017 Increase in Human Infections with Avian Influenza A(H7N9) Virus During the Fifth Epidemic — China, October 2016–February 2017 Antigenic and genetic characteristics of zoonotic influenza viruses and candidate vaccine viruses developed for ...

  18. Transmission of Influenza B Viruses in the Guinea Pig

    Science.gov (United States)

    Pica, Natalie; Chou, Yi-Ying; Bouvier, Nicole M.

    2012-01-01

    Epidemic influenza is typically caused by infection with viruses of the A and B types and can result in substantial morbidity and mortality during a given season. Here we demonstrate that influenza B viruses can replicate in the upper respiratory tract of the guinea pig and that viruses of the two main lineages can be transmitted with 100% efficiency between inoculated and naïve animals in both contact and noncontact models. Our results also indicate that, like in the case for influenza A virus, transmission of influenza B viruses is enhanced at colder temperatures, providing an explanation for the seasonality of influenza epidemics in temperate climates. We therefore present, for the first time, a small animal model with which to study the underlying mechanisms of influenza B virus transmission. PMID:22301149

  19. Characterisation and Identification of Avian Influenza Virus (AI

    Directory of Open Access Journals (Sweden)

    Dyah Ayu Hewajuli

    2008-06-01

    Full Text Available Avian Influenza is caused by Influenza A virus which is a member of Orthomyxoviridae family. Influenza A virus is enveloped single stranded RNA with eight-segmented, negative polarity and filament or oval form, 50 – 120 by 200 – 300 nm diameters. Influenza A viruses have been found to infect birds, human, pig, horse and sometimes in the other mammalian such as seal and whale. The viruses are divided into different subtypes based on the antigenic protein which covers the virus surface i.e. Haemaglutinin (HA and Neuraminidase (NA. In addition, the nomenclature of subtype virus is based on HA and NA i.e HxNx, for example H5N1, H9N2 and the others. According to pathogenic, it could be divided into two distinct groups, they are Highly Pathogenic Avian Influenza (HPAI and Low Pathogenic Avian Influenza (LPAI. The Avian Influenza viruses have been continuously occurred and spread out in some continents such us America, Europe, Africa and Asian countries. The outbreak of Avian Influenza caused high mortality on birds and it has been reported that in human case Avian Influenza subtype H5N1 virus has caused several deaths. To anticipate this condition, an effort to prevent the transmission of Avian Influenza is needed. These strategic attempts include biosecurity, depopulation, vaccination, control of virus movement, monitoring and evaluation. Laboratory diagnostic plays an important role for successful prevention, control and eradication programs of Avian Influenza. Recently, there are two diagnostic methods for Avian Influenza. They are conventional (virological diagnosis and molecular methods. The conventional method is usually used for initial diagnostic of Avian Influenza. The conventional method takes more time and more costly, whereas the molecular method is more effective than conventional method. Based on the available diagnostic technique, basically diagnostic of Avian Influenza is done by serology test, isolation and identification as well

  20. Sialic acid tissue distribution and influenza virus tropism

    OpenAIRE

    Kumlin, Urban; Olofsson, Sigvard; Dimock, Ken; Arnberg, Niklas

    2008-01-01

    Abstract? Avian influenza A viruses exhibit a strong preference for using ?2,3?linked sialic acid as a receptor. Until recently, the presumed lack of this receptor in human airways was believed to constitute an efficient barrier to avian influenza A virus infection of humans. Recent zoonotic outbreaks of avian influenza A virus have triggered researchers to analyse tissue distribution of sialic acid in further detail. Here, we review and extend the current knowledge about sialic acid distribu...

  1. Influenza Virus and Glycemic Variability in Diabetes: A Killer Combination?

    Directory of Open Access Journals (Sweden)

    Katina D. Hulme

    2017-05-01

    Full Text Available Following the 2009 H1N1 influenza virus pandemic, numerous studies identified the striking link between diabetes mellitus and influenza disease severity. Typically, influenza virus is a self-limiting infection but in individuals who have a pre-existing chronic illness, such as diabetes mellitus, severe influenza can develop. Here, we discuss the latest clinical and experimental evidence for the role of diabetes in predisposing the host to severe influenza. We explore the possible mechanisms that underlie this synergy and highlight the, as yet, unexplored role that blood glucose oscillations may play in disease development. Diabetes is one of the world’s fastest growing chronic diseases and influenza virus represents a constant and pervasive threat to human health. It is therefore imperative that we understand how diabetes increases influenza severity in order to mitigate the burden of future influenza epidemics and pandemics.

  2. DAMPs and influenza virus infection in ageing.

    Science.gov (United States)

    Samy, Ramar Perumal; Lim, Lina H K

    2015-11-01

    Influenza A virus (IAV) is a serious global health problem worldwide due to frequent and severe outbreaks. IAV causes significant morbidity and mortality in the elderly population, due to the ineffectiveness of the vaccine and the alteration of T cell immunity with ageing. The cellular and molecular link between ageing and virus infection is unclear and it is possible that damage associated molecular patterns (DAMPs) may play a role in the raised severity and susceptibility of virus infections in the elderly. DAMPs which are released from damaged cells following activation, injury or cell death can activate the immune response through the stimulation of the inflammasome through several types of receptors found on the plasma membrane, inside endosomes after endocytosis as well as in the cytosol. In this review, the detriment in the immune system during ageing and the links between influenza virus infection and ageing will be discussed. In addition, the role of DAMPs such as HMGB1 and S100/Annexin in ageing, and the enhanced morbidity and mortality to severe influenza infection in ageing will be highlighted. Copyright © 2015 Elsevier B.V. All rights reserved.

  3. Influenza A Virus Infection in Pigs Attracts Multifunctional and Cross-Reactive T Cells to the Lung.

    Science.gov (United States)

    Talker, Stephanie C; Stadler, Maria; Koinig, Hanna C; Mair, Kerstin H; Rodríguez-Gómez, Irene M; Graage, Robert; Zell, Roland; Dürrwald, Ralf; Starick, Elke; Harder, Timm; Weissenböck, Herbert; Lamp, Benjamin; Hammer, Sabine E; Ladinig, Andrea; Saalmüller, Armin; Gerner, Wilhelm

    2016-10-15

    Pigs are natural hosts for influenza A viruses and play a critical role in influenza epidemiology. However, little is known about their influenza-evoked T-cell response. We performed a thorough analysis of both the local and systemic T-cell response in influenza virus-infected pigs, addressing kinetics and phenotype as well as multifunctionality (gamma interferon [IFN-γ], tumor necrosis factor alpha [TNF-α], and interleukin-2 [IL-2]) and cross-reactivity. A total of 31 pigs were intratracheally infected with an H1N2 swine influenza A virus (FLUAVsw) and consecutively euthanized. Lungs, tracheobronchial lymph nodes, and blood were sampled during the first 15 days postinfection (p.i.) and at 6 weeks p.i. Ex vivo flow cytometry of lung lymphocytes revealed an increase in proliferating (Ki-67(+)) CD8(+) T cells with an early effector phenotype (perforin(+) CD27(+)) at day 6 p.i. Low frequencies of influenza virus-specific IFN-γ-producing CD4(+) and CD8(+) T cells could be detected in the lung as early as 4 days p.i. On consecutive days, influenza virus-specific CD4(+) and CD8(+) T cells produced mainly IFN-γ and/or TNF-α, reaching peak frequencies around day 9 p.i., which were up to 30-fold higher in the lung than in tracheobronchial lymph nodes or blood. At 6 weeks p.i., CD4(+) and CD8(+) memory T cells had accumulated in lung tissue. These cells showed diverse cytokine profiles and in vitro reactivity against heterologous influenza virus strains, all of which supports their potential to combat heterologous influenza virus infections in pigs. Pigs not only are a suitable large-animal model for human influenza virus infection and vaccine development but also play a central role in the emergence of new pandemic strains. Although promising candidate universal vaccines are tested in pigs and local T cells are the major correlate of heterologous control, detailed and targeted analyses of T-cell responses at the site of infection are scarce. With the present study, we

  4. Molecular epidemiology of influenza A(H1N1pdm09 viruses from Pakistan in 2009-2010.

    Directory of Open Access Journals (Sweden)

    Uzma Bashir Aamir

    Full Text Available In early 2009, a novel influenza A(H1N1 virus that emerged in Mexico and United States rapidly disseminated worldwide. The spread of this virus caused considerable morbidity with over 18000 recorded deaths. The new virus was found to be a reassortant containing gene segments from human, avian and swine influenza viruses.The first case of human infection with A(H1N1pdm09 in Pakistan was detected on 18(th June 2009. Since then, 262 laboratory-confirmed cases have been detected during various outbreaks with 29 deaths (as of 31(st August 2010. The peak of the epidemic was observed in December with over 51% of total respiratory cases positive for influenza. Representative isolates from Pakistan viruses were sequenced and analyzed antigenically. Sequence analysis of genes coding for surface glycoproteins HA and NA showed high degree of high levels of sequence identity with corresponding genes of regional viruses circulating South East Asia. All tested viruses were sensitive to Oseltamivir in the Neuraminidase Inhibition assays.Influenza A(H1N1pdm09 viruses from Pakistan form a homogenous group of viruses. Their HA genes belong to clade 7 and show antigenic profile similar to the vaccine strain A/California/07/2009. These isolates do not show any amino acid changes indicative of high pathogenicity and virulence. It is imperative to continue monitoring of these viruses for identification of potential variants of high virulence or drug resistance.

  5. Flow cytometric monitoring of influenza A virus infection in MDCK cells during vaccine production

    Directory of Open Access Journals (Sweden)

    Reichl Udo

    2008-04-01

    Full Text Available Abstract Background In cell culture-based influenza vaccine production the monitoring of virus titres and cell physiology during infection is of great importance for process characterisation and optimisation. While conventional virus quantification methods give only virus titres in the culture broth, data obtained by fluorescence labelling of intracellular virus proteins provide additional information on infection dynamics. Flow cytometry represents a valuable tool to investigate the influences of cultivation conditions and process variations on virus replication and virus yields. Results In this study, fluorescein-labelled monoclonal antibodies against influenza A virus matrix protein 1 and nucleoprotein were used for monitoring the infection status of adherent Madin-Darby canine kidney cells from bioreactor samples. Monoclonal antibody binding was shown for influenza A virus strains of different subtypes (H1N1, H1N2, H3N8 and host specificity (human, equine, swine. At high multiplicity of infection in a bioreactor, the onset of viral protein accumulation in adherent cells on microcarriers was detected at about 2 to 4 h post infection by flow cytometry. In contrast, a significant increase in titre by hemagglutination assay was detected at the earliest 4 to 6 h post infection. Conclusion It is shown that flow cytometry is a sensitive and robust method for the monitoring of viral infection in fixed cells from bioreactor samples. Therefore, it is a valuable addition to other detection methods of influenza virus infection such as immunotitration and RNA hybridisation. Thousands of individual cells are measured per sample. Thus, the presented method is believed to be quite independent of the concentration of infected cells (multiplicity of infection and total cell concentration in bioreactors. This allows to perform detailed studies on factors relevant for optimization of virus yields in cell cultures. The method could also be used for process

  6. Seasonal and pandemic human influenza viruses attach better to human upper respiratory tract epithelium than avian influenza viruses

    NARCIS (Netherlands)

    D.A.J. van Riel (Debby); M.A. den Bakker (Michael); L.M.E. Leijten (Lonneke); S. Chutinimitkul (Salin); V.J. Munster (Vincent); E. de Wit (Emmie); G.F. Rimmelzwaan (Guus); R.A.M. Fouchier (Ron); A.D.M.E. Osterhaus (Albert); T. Kuiken (Thijs)

    2010-01-01

    textabstractInfluenza viruses vary markedly in their efficiency of human-to-human transmission. This variation has been speculated to be determined in part by the tropism of influenza virus for the human upper respiratory tract. To study this tropism, we determined the pattern of virus attachment by

  7. Characterization of influenza virus among influenza like illness cases in Mumbai, India

    OpenAIRE

    Roy, Soumen; Dahake, Ritwik; Patil, Deepak; Tawde, Shweta; Mukherjee, Sandeepan; Athlekar, Shrikant; Chowdhary, Abhay; Deshmukh, Ranjana

    2014-01-01

    The present study was carried out to monitor influenza viruses by identifying the virus and studying the seasonal variation during 2007–2009 in Mumbai. A total of 193 clinical respiratory samples (nasal and throat swab) were collected from patients having influenza like illness in Mumbai region. One-step real-time reverse-transcriptase PCR (rRTPCR) was used to detect Influenza type A (H1 and H3) and Influenza type B virus. Isolation of the virus was carried out using in vitro system which was...

  8. H1N1 influenza ('swine 'flu') in the paediatric ICU in South Africa

    African Journals Online (AJOL)

    Schoub B. Swine flu – implications for South Africa. Communicable Diseases Surveillance. Bulletin 2009;7(3):5-7. 5. Ahrens JO, Morrow BM, Argent AC. Influenza A(H1N1)pdm09 in critically ill children admitted to a paediatric intensive care unit, South Africa. S Afr J Crit Care 2015;31(1):4-7. 6. Cox CM, Blanton L, Dhara R, ...

  9. Inhibition of influenza virus replication by targeting broad host cell pathways.

    Directory of Open Access Journals (Sweden)

    Isabelle Marois

    Full Text Available Antivirals that are currently used to treat influenza virus infections target components of the virus which can mutate rapidly. Consequently, there has been an increase in the number of resistant strains to one or many antivirals in recent years. Here we compared the antiviral effects of lysosomotropic alkalinizing agents (LAAs and calcium modulators (CMs, which interfere with crucial events in the influenza virus replication cycle, against avian, swine, and human viruses of different subtypes in MDCK cells. We observed that treatment with LAAs, CMs, or a combination of both, significantly inhibited viral replication. Moreover, the drugs were effective even when they were administered 8 h after infection. Finally, analysis of the expression of viral acidic polymerase (PA revealed that both drugs classes interfered with early events in the viral replication cycle. This study demonstrates that targeting broad host cellular pathways can be an efficient strategy to inhibit influenza replication. Furthermore, it provides an interesting avenue for drug development where resistance by the virus might be reduced since the virus is not targeted directly.

  10. Aerosolized avian influenza virus by laboratory manipulations

    Directory of Open Access Journals (Sweden)

    Li Zhiping

    2012-08-01

    Full Text Available Abstract Background Avian H5N1 influenza viruses present a challenge in the laboratory environment, as they are difficult to collect from the air due to their small size and relatively low concentration. In an effort to generate effective methods of H5N1 air removal and ensure the safety of laboratory personnel, this study was designed to investigate the characteristics of aerosolized H5N1 produced by laboratory manipulations during research studies. Results Normal laboratory procedures used to process the influenza virus were carried out independently and the amount of virus polluting the on-site atmosphere was measured. In particular, zootomy, grinding, centrifugation, pipetting, magnetic stirring, egg inoculation, and experimental zoogenetic infection were performed. In addition, common accidents associated with each process were simulated, including breaking glass containers, syringe injection of influenza virus solution, and rupturing of centrifuge tubes. A micro-cluster sampling ambient air pollution collection device was used to collect air samples. The collected viruses were tested for activity by measuring their ability to induce hemagglutination with chicken red blood cells and to propagate in chicken embryos after direct inoculation, the latter being detected by reverse-transcription PCR and HA test. The results showed that the air samples from the normal centrifugal group and the negative-control group were negative, while all other groups were positive for H5N1. Conclusions Our findings suggest that there are numerous sources of aerosols in laboratory operations involving H5N1. Thus, laboratory personnel should be aware of the exposure risk that accompanies routine procedures involved in H5N1 processing and take proactive measures to prevent accidental infection and decrease the risk of virus aerosol leakage beyond the laboratory.

  11. Aerosolized avian influenza virus by laboratory manipulations.

    Science.gov (United States)

    Li, Zhiping; Li, Jinsong; Zhang, Yandong; Li, Lin; Ma, Limin; Li, Dan; Gao, Feng; Xia, Zhiping

    2012-08-06

    Avian H5N1 influenza viruses present a challenge in the laboratory environment, as they are difficult to collect from the air due to their small size and relatively low concentration. In an effort to generate effective methods of H5N1 air removal and ensure the safety of laboratory personnel, this study was designed to investigate the characteristics of aerosolized H5N1 produced by laboratory manipulations during research studies. Normal laboratory procedures used to process the influenza virus were carried out independently and the amount of virus polluting the on-site atmosphere was measured. In particular, zootomy, grinding, centrifugation, pipetting, magnetic stirring, egg inoculation, and experimental zoogenetic infection were performed. In addition, common accidents associated with each process were simulated, including breaking glass containers, syringe injection of influenza virus solution, and rupturing of centrifuge tubes. A micro-cluster sampling ambient air pollution collection device was used to collect air samples. The collected viruses were tested for activity by measuring their ability to induce hemagglutination with chicken red blood cells and to propagate in chicken embryos after direct inoculation, the latter being detected by reverse-transcription PCR and HA test. The results showed that the air samples from the normal centrifugal group and the negative-control group were negative, while all other groups were positive for H5N1. Our findings suggest that there are numerous sources of aerosols in laboratory operations involving H5N1. Thus, laboratory personnel should be aware of the exposure risk that accompanies routine procedures involved in H5N1 processing and take proactive measures to prevent accidental infection and decrease the risk of virus aerosol leakage beyond the laboratory.

  12. The public health impact of avian influenza viruses.

    Science.gov (United States)

    Katz, J M; Veguilla, V; Belser, J A; Maines, T R; Van Hoeven, N; Pappas, C; Hancock, K; Tumpey, T M

    2009-04-01

    Influenza viruses with novel hemagglutinin and 1 or more accompanying genes derived from avian influenza viruses sporadically emerge in humans and have the potential to result in a pandemic if the virus causes disease and spreads efficiently in a population that lacks immunity to the novel hemagglutinin. Since 1997, multiple avian influenza virus subtypes have been transmitted directly from domestic poultry to humans and have caused a spectrum of human disease, from asymptomatic to severe and fatal. To assess the pandemic risk that avian influenza viruses pose, we have used multiple strategies to better understand the capacity of avian viruses to infect, cause disease, and transmit among mammals, including humans. Seroepidemiologic studies that evaluate the frequency and risk of human infection with avian influenza viruses in populations with exposure to domestic or wild birds can provide a better understanding of the pandemic potential of avian influenza subtypes. Investigations conducted in Hong Kong following the first H5N1 outbreak in humans in 1997 determined that exposure to poultry in live bird markets was a key risk factor for human disease. Among poultry workers, butchering and exposure to sick poultry were risk factors for antibody to H5 virus, which provided evidence for infection. A second risk assessment tool, the ferret, can be used to evaluate the level of virulence and potential for host-to-host transmission of avian influenza viruses in this naturally susceptible host. Avian viruses isolated from humans exhibit a level of virulence and transmissibility in ferrets that generally reflects that seen in humans. The ferret model thus provides a means to monitor emerging avian influenza viruses for pandemic risk, as well as to evaluate laboratory-generated reassortants and mutants to better understand the molecular basis of influenza virus transmissibility. Taken together, such studies provide valuable information with which we can assess the public

  13. Characterization of Seasonal Influenza Virus Type and Subtypes Isolated from Influenza Like Illness Cases of 2012.

    Science.gov (United States)

    Upadhyay, B P; Ghimire, P; Tashiro, M; Banjara, M R

    Background Seasonal influenza is one of the increasing public health burdens in Nepal. Objective The objective of this study was to isolate and characterize the influenza virus type and subtypes of Nepal. Method A total of 1536 throat swab specimens were collected from January to December 2012. Total ribonucleic acid was extracted using Qiagen viral nucleic acid extraction kit and polymerase chain reaction assay was performed following the US; CDC Real-time PCR protocol. Ten percent of positive specimens were inoculated onto Madin-Darby Canine Kidney cells. Isolates were characterized by using reference ferret antisera. Result Of the total specimens (n=1536), influenza virus type A was detected in 196 (22%) cases; of which 194 (99%) were influenza A (H1N1) pdm09 and 2 (1 %) were influenza A/H3 subtype. Influenza B was detected in 684 (76.9%) cases. Influenza A (H1N1) pdm09, A/H3 and influenza B virus were antigenically similar to the recommended influenza virus vaccine candidate of the year 2012. Although sporadic cases of influenza were observed throughout the year, peak was observed during July to November. Conclusion Similar to other tropical countries, A (H1N1) pdm09, A/H3 and influenza B viruses were co-circulated in Nepal.

  14. Prevention and Treatment of Avian Influenza A Viruses in People

    Science.gov (United States)

    ... and Treatment of Avian Influenza A Viruses in People Language: English (US) Español Recommend on Facebook Tweet ... can happen when enough virus gets into a person’s eyes, nose or mouth, or is inhaled. This ...

  15. Characterization of influenza virus among influenza like illness cases in Mumbai, India.

    Science.gov (United States)

    Roy, Soumen; Dahake, Ritwik; Patil, Deepak; Tawde, Shweta; Mukherjee, Sandeepan; Athlekar, Shrikant; Chowdhary, Abhay; Deshmukh, Ranjana

    2014-01-01

    The present study was carried out to monitor influenza viruses by identifying the virus and studying the seasonal variation during 2007-2009 in Mumbai. A total of 193 clinical respiratory samples (nasal and throat swab) were collected from patients having influenza like illness in Mumbai region. One-step real-time reverse-transcriptase PCR (rRTPCR) was used to detect Influenza type A (H1 and H3) and Influenza type B virus. Isolation of the virus was carried out using in vitro system which was further confirmed and typed by hemagglutination assay and hemagglutination inhibition assay. Out of 193 samples 24 (12.4 3%) samples tested positive for influenza virus, of which 13 (6.73 %) were influenza type A virus and 10 (5.18 %) were influenza type B virus, while 1 sample (0.51 %) was positive for both. By culture methods, 3 (1.55 %) viral isolates were obtained. All the three isolates were found to be Influenza type B/Malaysia (Victoria lineage) by Hemagglutination Inhibition Assay. The data generated from the present study reveals that both Influenza type A and B are prevalent in Mumbai with considerable activity. The peak activity was observed during monsoon season.

  16. Glycomic analysis of human respiratory tract tissues and correlation with influenza virus infection.

    Directory of Open Access Journals (Sweden)

    Trevenan Walther

    2013-03-01

    Full Text Available The first step in influenza infection of the human respiratory tract is binding of the virus to sialic (Sia acid terminated receptors. The binding of different strains of virus for the receptor is determined by the α linkage of the sialic acid to galactose and the adjacent glycan structure. In this study the N- and O-glycan composition of the human lung, bronchus and nasopharynx was characterized by mass spectrometry. Analysis showed that there was a wide spectrum of both Sia α2-3 and α2-6 glycans in the lung and bronchus. This glycan structural data was then utilized in combination with binding data from 4 of the published glycan arrays to assess whether these current glycan arrays were able to predict replication of human, avian and swine viruses in human ex vivo respiratory tract tissues. The most comprehensive array from the Consortium for Functional Glycomics contained the greatest diversity of sialylated glycans, but was not predictive of productive replication in the bronchus and lung. Our findings indicate that more comprehensive but focused arrays need to be developed to investigate influenza virus binding in an assessment of newly emerging influenza viruses.

  17. New world bats harbor diverse influenza A viruses.

    Directory of Open Access Journals (Sweden)

    Suxiang Tong

    Full Text Available Aquatic birds harbor diverse influenza A viruses and are a major viral reservoir in nature. The recent discovery of influenza viruses of a new H17N10 subtype in Central American fruit bats suggests that other New World species may similarly carry divergent influenza viruses. Using consensus degenerate RT-PCR, we identified a novel influenza A virus, designated as H18N11, in a flat-faced fruit bat (Artibeus planirostris from Peru. Serologic studies with the recombinant H18 protein indicated that several Peruvian bat species were infected by this virus. Phylogenetic analyses demonstrate that, in some gene segments, New World bats harbor more influenza virus genetic diversity than all other mammalian and avian species combined, indicative of a long-standing host-virus association. Structural and functional analyses of the hemagglutinin and neuraminidase indicate that sialic acid is not a ligand for virus attachment nor a substrate for release, suggesting a unique mode of influenza A virus attachment and activation of membrane fusion for entry into host cells. Taken together, these findings indicate that bats constitute a potentially important and likely ancient reservoir for a diverse pool of influenza viruses.

  18. SNPer: an R library for quantitative variant analysis on single nucleotide polymorphisms among influenza virus populations.

    Directory of Open Access Journals (Sweden)

    Unitsa Sangket

    Full Text Available Influenza virus (IFV can evolve rapidly leading to genetic drifts and shifts resulting in human and animal influenza epidemics and pandemics. The genetic shift that gave rise to the 2009 influenza A/H1N1 pandemic originated from a triple gene reassortment of avian, swine and human IFVs. More minor genetic alterations in genetic drift can lead to influenza drug resistance such as the H274Y mutation associated with oseltamivir resistance. Hence, a rapid tool to detect IFV mutations and the potential emergence of new virulent strains can better prepare us for seasonal influenza outbreaks as well as potential pandemics. Furthermore, identification of specific mutations by closely examining single nucleotide polymorphisms (SNPs in IFV sequences is essential to classify potential genetic markers associated with potentially dangerous IFV phenotypes. In this study, we developed a novel R library called "SNPer" to analyze quantitative variants in SNPs among IFV subpopulations. The computational SNPer program was applied to three different subpopulations of published IFV genomic information. SNPer queried SNPs data and grouped the SNPs into (1 universal SNPs, (2 likely common SNPs, and (3 unique SNPs. SNPer outperformed manual visualization in terms of time and labor. SNPer took only three seconds with no errors in SNP comparison events compared with 40 hours with errors using manual visualization. The SNPer tool can accelerate the capacity to capture new and potentially dangerous IFV strains to mitigate future influenza outbreaks.

  19. Flock-based surveillance for lowpathogenic avian influenza virus in ...

    African Journals Online (AJOL)

    Flock-based surveillance for lowpathogenic avian influenza virus in commercial breeders and layers, southwest Nigeria. ... African Journal of Infectious Diseases ... Background: Flock surveillance systems for avian influenza (AI) virus play a critical role in countries where vaccination is not practiced so as to establish the ...

  20. radioprotective and interferonogenic characteristics of influenza virus vaccine

    International Nuclear Information System (INIS)

    Ivanov, A.A.; Ershov, F.I.; Ulanova, A.M.; Kuz'mina, T.D.; Stavrakova, N.M.; Tazulakhova, Eh.B.; Shal'nova, G.A.; Akademiya Meditsinskikh Nauk SSSR, Moscow

    1995-01-01

    Different methods of prophylactic treatment with influenza virus vaccina increase survival of irradiated mice and hamsters by 25-55% as compared to unprotected ones. Higher radioresistance occurs in the same time intervals as a rise of interferon in the blood after immunization with influenza virus vaccine. 7 refs.; 2 figs.; 2 tabs

  1. Detecting emerging transmissibility of avian influenza virus in human households

    NARCIS (Netherlands)

    Boven, M. van; Koopmans, M.; Du Ry van Beest Holle, M.; Meijer, Adam; Klinkenberg, D.; Donnelly, C.A.; Heesterbeek, J.A.P.

    Accumulating infections of highly pathogenic H5N1 avian influenza in humans underlines the need to track the ability of these viruses to spread among humans. A human-transmissible avian influenza virus is expected to cause clusters of infections in humans living in close contact. Therefore,

  2. Detecting emerging transmissibility of avian influenza virus in human households

    NARCIS (Netherlands)

    Boven, van R.M.; Koopmans, M.; Du Ry Beest Holle, van M.; Meijer, A.; Klinkenberg, D.; Donnelly, C.; Heesterbeek, J.A.P.

    2007-01-01

    Accumulating infections of highly pathogenic H5N1 avian influenza in humans underlines the need to track the ability of these viruses to spread among humans. A human-transmissible avian influenza virus is expected to cause clusters of infections in humans living in close contact. Therefore,

  3. No evidence of African swine fever virus replication in hard ticks

    NARCIS (Netherlands)

    Carvalho Ferreira, de H.C.; Zúquete, S.T.; Wijnveld, M.; Weesendorp, E.; Jongejan, F.; Stegeman, J.A.; Loeffen, W.L.A.

    2014-01-01

    African swine fever (ASF) is caused by African swine fever virus (ASFV), a tick-borne DNA virus. Soft ticks of the genus Ornithodoros are the only biological vectors of ASFV recognized so far. Although other hard ticks have been tested for vector competence, two commonly found tick species in

  4. No evidence of African swine fever virus replication in hard ticks

    NARCIS (Netherlands)

    de Carvalho Ferreira, Helena C; Tudela Zúquete, Sara; Wijnveld, Michiel; Weesendorp, Eefke; Jongejan, Frans; Stegeman, Arjan; Loeffen, Willie L A

    African swine fever (ASF) is caused by African swine fever virus (ASFV), a tick-borne DNA virus. Soft ticks of the genus Ornithodoros are the only biological vectors of ASFV recognized so far. Although other hard ticks have been tested for vector competence, two commonly found tick species in

  5. Inactivation of Viruses and Bacteriophages as Models for Swine Hepatitis E Virus in Food Matrices.

    Science.gov (United States)

    Emmoth, Eva; Rovira, Jordi; Rajkovic, Andreja; Corcuera, Elena; Wilches Pérez, Diego; Dergel, Irene; Ottoson, Jakob R; Widén, Frederik

    2017-03-01

    Hepatitis E virus has been recognised as a food-borne virus hazard in pork products, due to its zoonotic properties. This risk can be reduced by adequate treatment of the food to inactivate food-borne viruses. We used a spectrum of viruses and bacteriophages to evaluate the effect of three food treatments: high pressure processing (HPP), lactic acid (LA) and intense light pulse (ILP) treatments. On swine liver at 400 MPa for 10 min, HPP gave log 10 reductions of ≥4.2, ≥5.0 and 3.4 for feline calicivirus (FCV) 2280, FCV wildtype (wt) and murine norovirus 1 (MNV 1), respectively. Escherichia coli coliphage ϕX174 displayed a lower reduction of 1.1, while Escherichia coli coliphage MS2 was unaffected. For ham at 600 MPa, the corresponding reductions were 4.1, 4.4, 2.9, 1.7 and 1.3 log 10 . LA treatment at 2.2 M gave log 10 reductions in the viral spectrum of 0.29-2.1 for swine liver and 0.87-3.1 for ham, with ϕX174 and MNV 1, respectively, as the most stable microorganisms. The ILP treatment gave log 10 reductions of 1.6-2.8 for swine liver, 0.97-2.2 for ham and 1.3-2.3 for sausage, at 15-60 J cm -2 , with MS2 as the most stable microorganism. The HPP treatment gave significantly (p virus reduction on swine liver than ham for the viruses at equivalent pressure/time combinations. For ILP treatment, reductions on swine liver were significantly (p virus contamination and in advice to food producers. Conservative model indicators for the pathogenic viruses could be suggested.

  6. Seasonal trivalent inactivated influenza vaccine protects against 1918 Spanish influenza virus in ferrets

    Science.gov (United States)

    The influenza H1N1 pandemic of 1918 was one of the worst medical disasters in human history. Recent studies have demonstrated that the hemagglutinin (HA) protein of the 1918 virus and 2009 H1N1 pandemic virus, the latter now a component of the seasonal trivalent inactivated influenza vaccine (TIV),...

  7. No serological evidence that harbour porpoises are additional hosts of influenza B viruses

    NARCIS (Netherlands)

    R. Bodewes (Rogier); M.W.G. van de Bildt (Marco); C.E. van Elk; P.E. Bunskoek (Paulien); D.A.M.C. van de Vijver (David); S.L. Smits (Saskia); A.D.M.E. Osterhaus (Albert); T. Kuiken (Thijs)

    2014-01-01

    textabstractInfluenza A and B viruses circulate among humans causing epidemics almost annually. While various hosts for influenza A viruses exist, influenza B viruses have been detected only in humans and seals. However, recurrent infections of seals in Dutch coastal waters with influenza B viruses

  8. Molecular Determinants of Influenza Virus Pathogenesis in Mice

    Science.gov (United States)

    Katz, Jaqueline M.; York, Ian A.

    2015-01-01

    Mice are widely used for studying influenza virus pathogenesis and immunology because of their low cost, the wide availability of mouse-specific reagents, and the large number of mouse strains available, including knockout and transgenic strains. However, mice do not fully recapitulate the signs of influenza infection of humans: transmission of influenza between mice is much less efficient than in humans, and influenza viruses often require adaptation before they are able to efficiently replicate in mice. In the process of mouse adaptation, influenza viruses acquire mutations that enhance their ability to attach to mouse cells, replicate within the cells, and suppress immunity, among other functions. Many such mouse-adaptive mutations have been identified, covering all 8 genomic segments of the virus. Identification and analysis of these mutations have provided insight into the molecular determinants of influenza virulence and pathogenesis, not only in mice but also in humans and other species. In particular, several mouse-adaptive mutations of avian influenza viruses have proved to be general mammalian-adaptive changes that are potential markers of pre-pandemic viruses. As well as evaluating influenza pathogenesis, mice have also been used as models for evaluation of novel vaccines and anti-viral therapies. Mice can be a useful animal model for studying influenza biology as long as differences between human and mice infections are taken into account. PMID:25038937

  9. Immunomodulatory Activity of Red Ginseng against Influenza A Virus Infection

    Directory of Open Access Journals (Sweden)

    Jong Seok Lee

    2014-01-01

    Full Text Available Ginseng herbal medicine has been known to have beneficial effects on improving human health. We investigated whether red ginseng extract (RGE has preventive effects on influenza A virus infection in vivo and in vitro. RGE was found to improve survival of human lung epithelial cells upon influenza virus infection. Also, RGE treatment reduced the expression of pro-inflammatory genes (IL-6, IL-8 probably in part through interference with the formation of reactive oxygen species by influenza A virus infection. Long-term oral administration of mice with RGE showed multiple immunomodulatory effects such as stimulating antiviral cytokine IFN-γ production after influenza A virus infection. In addition, RGE administration in mice inhibited the infiltration of inflammatory cells into the bronchial lumens. Therefore, RGE might have the potential beneficial effects on preventing influenza A virus infections via its multiple immunomodulatory functions.

  10. Insights from investigating the interactions of adamantane-based drugs with the M2 proton channel from the H1N1 swine virus

    International Nuclear Information System (INIS)

    Wang, Jing-Fang; Wei, Dong-Qing; Chou, Kuo-Chen

    2009-01-01

    The M2 proton channel is one of indispensable components for the influenza A virus that plays a vital role in its life cycle and hence is an important target for drug design against the virus. In view of this, the three-dimensional structure of the H1N1-M2 channel was developed based on the primary sequence taken from a patient recently infected by the H1N1 (swine flu) virus. With an explicit water-membrane environment, molecular docking studies were performed for amantadine and rimantadine, the two commercial drugs generally used to treat influenza A infection. It was found that their binding affinity to the H1N1-M2 channel is significantly lower than that to the H5N1-M2 channel, fully consistent with the recent report that the H1N1 swine virus was resistant to the two drugs. The findings and the relevant analysis reported here might provide useful structural insights for developing effective drugs against the new swine flu virus.

  11. Influenza virus induces apoptosis via BAD-mediated mitochondrial dysregulation.

    Science.gov (United States)

    Tran, Anh T; Cortens, John P; Du, Qiujiang; Wilkins, John A; Coombs, Kevin M

    2013-01-01

    Influenza virus infection results in host cell death and major tissue damage. Specific components of the apoptotic pathway, a signaling cascade that ultimately leads to cell death, are implicated in promoting influenza virus replication. BAD is a cell death regulator that constitutes a critical control point in the intrinsic apoptosis pathway, which occurs through the dysregulation of mitochondrial outer membrane permeabilization and the subsequent activation of downstream apoptogenic factors. Here we report a novel proviral role for the proapoptotic protein BAD in influenza virus replication. We show that influenza virus-induced cytopathology and cell death are considerably inhibited in BAD knockdown cells and that both virus replication and viral protein production are dramatically reduced, which suggests that virus-induced apoptosis is BAD dependent. Our data showed that influenza viruses induced phosphorylation of BAD at residues S112 and S136 in a temporal manner. Viral infection also induced BAD cleavage, late in the viral life cycle, to a truncated form that is reportedly a more potent inducer of apoptosis. We further demonstrate that knockdown of BAD resulted in reduced cytochrome c release and suppression of the intrinsic apoptotic pathway during influenza virus replication, as seen by an inhibition of caspases-3, caspase-7, and procyclic acidic repetitive protein (PARP) cleavage. Our data indicate that influenza viruses carefully modulate the activation of the apoptotic pathway that is dependent on the regulatory function of BAD and that failure of apoptosis activation resulted in unproductive viral replication.

  12. The Mutational Robustness of Influenza A Virus.

    Directory of Open Access Journals (Sweden)

    Elisa Visher

    2016-08-01

    Full Text Available A virus' mutational robustness is described in terms of the strength and distribution of the mutational fitness effects, or MFE. The distribution of MFE is central to many questions in evolutionary theory and is a key parameter in models of molecular evolution. Here we define the mutational fitness effects in influenza A virus by generating 128 viruses, each with a single nucleotide mutation. In contrast to mutational scanning approaches, this strategy allowed us to unambiguously assign fitness values to individual mutations. The presence of each desired mutation and the absence of additional mutations were verified by next generation sequencing of each stock. A mutation was considered lethal only after we failed to rescue virus in three independent transfections. We measured the fitness of each viable mutant relative to the wild type by quantitative RT-PCR following direct competition on A549 cells. We found that 31.6% of the mutations in the genome-wide dataset were lethal and that the lethal fraction did not differ appreciably between the HA- and NA-encoding segments and the rest of the genome. Of the viable mutants, the fitness mean and standard deviation were 0.80 and 0.22 in the genome-wide dataset and best modeled as a beta distribution. The fitness impact of mutation was marginally lower in the segments coding for HA and NA (0.88 ± 0.16 than in the other 6 segments (0.78 ± 0.24, and their respective beta distributions had slightly different shape parameters. The results for influenza A virus are remarkably similar to our own analysis of CirSeq-derived fitness values from poliovirus and previously published data from other small, single stranded DNA and RNA viruses. These data suggest that genome size, and not nucleic acid type or mode of replication, is the main determinant of viral mutational fitness effects.

  13. Influenza A and B Virus Intertypic Reassortment through Compatible Viral Packaging Signals

    Science.gov (United States)

    Baker, Steven F.; Nogales, Aitor; Finch, Courtney; Tuffy, Kevin M.; Domm, William; Perez, Daniel R.; Topham, David J.

    2014-01-01

    ABSTRACT Influenza A and B viruses cocirculate in humans and together cause disease and seasonal epidemics. These two types of influenza viruses are evolutionarily divergent, and exchange of genetic segments inside coinfected cells occurs frequently within types but never between influenza A and B viruses. Possible mechanisms inhibiting the intertypic reassortment of genetic segments could be due to incompatible protein functions of segment homologs, a lack of processing of heterotypic segments by influenza virus RNA-dependent RNA polymerase, an inhibitory effect of viral proteins on heterotypic virus function, or an inability to specifically incorporate heterotypic segments into budding virions. Here, we demonstrate that the full-length hemagglutinin (HA) of prototype influenza B viruses can complement the function of multiple influenza A viruses. We show that viral noncoding regions were sufficient to drive gene expression for either type A or B influenza virus with its cognate or heterotypic polymerase. The native influenza B virus HA segment could not be incorporated into influenza A virus virions. However, by adding the influenza A virus packaging signals to full-length influenza B virus glycoproteins, we rescued influenza A viruses that possessed HA, NA, or both HA and NA of influenza B virus. Furthermore, we show that, similar to single-cycle infectious influenza A virus, influenza B virus cannot incorporate heterotypic transgenes due to packaging signal incompatibilities. Altogether, these results demonstrate that the lack of influenza A and B virus reassortants can be attributed at least in part to incompatibilities in the virus-specific packaging signals required for effective segment incorporation into nascent virions. IMPORTANCE Reassortment of influenza A or B viruses provides an evolutionary strategy leading to unique genotypes, which can spawn influenza A viruses with pandemic potential. However, the mechanism preventing intertypic reassortment or

  14. Modulation of Translation Initiation Efficiency in Classical Swine Fever Virus

    DEFF Research Database (Denmark)

    Friis, Martin Barfred; Rasmussen, Thomas Bruun; Belsham, Graham J.

    Modulation of translation initiation efficiency on classical swine fever virus (CSFV) RNA can be achieved by targeted mutations within the internal ribosome entry site (IRES). In this study, the nucleotides 47 to 427, including the IRES region of the wt CSFV strain Paderborn, were amplified...... and inserted, under T7 promoter control, into mono- and dicistronic plasmids containing the reporter genes rLuc and fLuc. Mutant fragments of the IRES sequence were generated by overlap PCR and inserted into the reporter plasmids. To evaluate IRES functionality, translation of the rLUC was placed under...... viruses were obtained after one cell culture passage from constructs with more than 75 % translation efficiency compared to the wildtype IRES. cDNA was generated from these clones and sequenced to verify the maintenance of the changes in the IRES. These results show that full-length viable mutant viruses...

  15. Bilateral Pulmonary Thromboembolism: An Unusual Presentation of Infection with Influenza A (H1N1 Virus

    Directory of Open Access Journals (Sweden)

    Parviz Saleh

    2010-06-01

    Full Text Available AbstractSwine flue is a highly contagious acute respiratory diseasecaused by a subtype of influenza A virus. Herein we presentthree patients with H1N1 infection complicated with pulmonarythromboembolism. The patients had chest pain and unexplaineddyspnea. Imaging studies showed bilateral hilar predominance.Computed tomographic angiography confirmed bilateral thromboembolism(an unusual presentation of H1N1 infection. We didnot find any predisposing factor including endothelial damage,stasis, or hypercoagulable state in these patients. They did notreceive any medication. After anticoagulation and treatment withoseltamivir, all the patients were discharged in good condition.To the best of our knowledge bilateral pulmonary thromboembolismhas not been reported in English language literature inpatients with swine flu infection. Appropriate diagnosis andtreatment will be life saving in this condition.Iran J Med Sci 2010; 35(2: 149-153.

  16. Riems influenza a typing array (RITA): An RT-qPCR-based low density array for subtyping avian and mammalian influenza a viruses.

    Science.gov (United States)

    Hoffmann, Bernd; Hoffmann, Donata; Henritzi, Dinah; Beer, Martin; Harder, Timm C

    2016-06-03

    Rapid and sensitive diagnostic approaches are of the utmost importance for the detection of humans and animals infected by specific influenza virus subtype(s). Cascade-like diagnostics starting with the use of pan-influenza assays and subsequent subtyping devices are normally used. Here, we demonstrated a novel low density array combining 32 TaqMan(®) real-time RT-PCR systems in parallel for the specific detection of the haemagglutinin (HA) and neuraminidase (NA) subtypes of avian and porcine hosts. The sensitivity of the newly developed system was compared with that of the pan-influenza assay, and the specificity of all RT-qPCRs was examined using a broad panel of 404 different influenza A virus isolates representing 45 different subtypes. Furthermore, we analysed the performance of the RT-qPCR assays with diagnostic samples obtained from wild birds and swine. Due to the open format of the array, adaptations to detect newly emerging influenza A virus strains can easily be integrated. The RITA array represents a competitive, fast and sensitive subtyping tool that requires neither new machinery nor additional training of staff in a lab where RT-qPCR is already established.

  17. Pandemic H1N1 2009 virus in Norwegian pigs naïve to influenza A viruses

    DEFF Research Database (Denmark)

    Germundsson, A.; Gjerset, B.; Hjulsager, Charlotte Kristiane

    In March-April 2009, a novel pandemic influenza A (H1N1) virus (pH1N1-09v) emerged in the human population. The first case of pH1N1v infection in pigs was reported from Canada in May 2009. In Norway, pH1N1v infection was recorded in a swine herd on the 10th of October of 2009. Here, we report...... isolated from a confirmed human case at the farm. The majority of the positive herds had a history of contact with humans that were diagnosed with pandemic influenza or with ILI. This suggests that infected humans are the most likely source for introduction of pH1N1-09v to the Norwegian pig herds...

  18. Influenza AH1N2 Viruses, United Kingdom, 2001?02 Influenza Season

    OpenAIRE

    Ellis, Joanna S.; Alvarez-Aguero, Adriana; Gregory, Vicky; Lin, Yi Pu; Hay, A.; Zambon, Maria C.

    2003-01-01

    During the winter of 2001?02, influenza AH1N2 viruses were detected for the first time in humans in the U.K. The H1N2 viruses co-circulated with H3N2 viruses and a very small number of H1N1 viruses and were isolated in the community and hospitalized patients, predominantly from children

  19. Initial Identification and Characterization of an Emerging Zoonotic Influenza Prior to Pandemic Spread

    Science.gov (United States)

    2010-11-01

    equally closely strains of both H1N2 influenza A virus of swine origin and H3N2 influenza A virus of avian origin. The expected matches for each of...Naval Health Research Center Initial Identification and Characterization of an Emerging Zoonotic Influenza Virus Prior to Pandemic Spread...10.1128/JCM.01336-10 PMCID: PMC3020883 Initial Identification and Characterization of an Emerging Zoonotic Influenza Virus Prior to Pandemic

  20. Antigenic Characterization of H3 Subtypes of Avian Influenza A Viruses from North America.

    Science.gov (United States)

    Bailey, Elizabeth; Long, Li-Ping; Zhao, Nan; Hall, Jeffrey S; Baroch, John A; Nolting, Jacqueline; Senter, Lucy; Cunningham, Frederick L; Pharr, G Todd; Hanson, Larry; Slemons, Richard; DeLiberto, Thomas J; Wan, Xiu-Feng

    2016-05-01

    Besides humans, H3 subtypes of influenza A viruses (IAVs) can infect various animal hosts, including avian, swine, equine, canine, and sea mammal species. These H3 viruses are both antigenically and genetically diverse. Here, we characterized the antigenic diversity of contemporary H3 avian IAVs recovered from migratory birds in North America. Hemagglutination inhibition (HI) assays were performed on 37 H3 isolates of avian IAVs recovered from 2007 to 2011 using generated reference chicken sera. These isolates were recovered from samples taken in the Atlantic, Mississippi, Central, and Pacific waterfowl migration flyways. Antisera to all the tested H3 isolates cross-reacted with each other and, to a lesser extent, with those to H3 canine and H3 equine IAVs. Antigenic cartography showed that the largest antigenic distance among the 37 avian IAVs is about four units, and each unit corresponds to a 2 log 2 difference in the HI titer. However, none of the tested H3 IAVs cross-reacted with ferret sera derived from contemporary swine and human IAVs. Our results showed that the H3 avian IAVs we tested lacked significant antigenic diversity, and these viruses were antigenically different from those circulating in swine and human populations. This suggests that H3 avian IAVs in North American waterfowl are antigenically relatively stable.

  1. Influenza virus and endothelial cells: a species specific relationship

    Directory of Open Access Journals (Sweden)

    Kirsty Renfree Short

    2014-12-01

    Full Text Available Influenza A virus infection is an important cause of respiratory disease in humans. The original reservoirs of influenza A virus are wild waterfowl and shorebirds, where virus infection causes limited, if any, disease. Both in humans and in wild waterbirds, epithelial cells are the main target of infection. However, influenza virus can spread from wild bird species to terrestrial poultry. Here, the virus can evolve into highly pathogenic avian influenza (HPAI. Part of this evolution involves increased viral tropism for endothelial cells. HPAI virus infections not only cause severe disease in chickens and other terrestrial poultry species but can also spread to humans and back to wild bird populations. Here, we review the role of the endothelium in the pathogenesis of influenza virus infection in wild birds, terrestrial poultry and humans with a particular focus on HPAI viruses. We demonstrate that whilst the endothelium is an important target of virus infection in terrestrial poultry and some wild bird species, in humans the endothelium is more important in controlling the local inflammatory milieu. Thus, the endothelium plays an important, but species-specific, role in the pathogenesis of influenza virus infection.

  2. Avian influenza in shorebirds: experimental infection of ruddy turnstones (Arenaria interpres) with avian influenza virus

    Science.gov (United States)

    Hall, Jeffrey S.; Krauss, Scott; Franson, J. Christian; TeSlaa, Joshua L.; Nashold, Sean W.; Stallknecht, David E.; Webby, Richard J.; Webster, Robert G.

    2013-01-01

    Background: Low pathogenic avian influenza viruses (LPAIV) have been reported in shorebirds, especially at Delaware Bay, USA, during spring migration. However, data on patterns of virus excretion, minimal infectious doses, and clinical outcome are lacking. The ruddy turnstone (Arenaria interpres) is the shorebird species with the highest prevalence of influenza virus at Delaware Bay. Objectives: The primary objective of this study was to experimentally assess the patterns of influenza virus excretion, minimal infectious doses, and clinical outcome in ruddy turnstones. Methods: We experimentally challenged ruddy turnstones using a common LPAIV shorebird isolate, an LPAIV waterfowl isolate, or a highly pathogenic H5N1 avian influenza virus. Cloacal and oral swabs and sera were analyzed from each bird. Results: Most ruddy turnstones had pre-existing antibodies to avian influenza virus, and many were infected at the time of capture. The infectious doses for each challenge virus were similar (103·6–104·16 EID50), regardless of exposure history. All infected birds excreted similar amounts of virus and showed no clinical signs of disease or mortality. Influenza A-specific antibodies remained detectable for at least 2 months after inoculation. Conclusions: These results provide a reference for interpretation of surveillance data, modeling, and predicting the risks of avian influenza transmission and movement in these important hosts.

  3. Initial psychological responses to Influenza A, H1N1 ("Swine flu"

    Directory of Open Access Journals (Sweden)

    Neto Felix

    2009-10-01

    Full Text Available Abstract Background The outbreak of the pandemic flu, Influenza A H1N1 (Swine Flu in early 2009, provided a major challenge to health services around the world. Previous pandemics have led to stockpiling of goods, the victimisation of particular population groups, and the cancellation of travel and the boycotting of particular foods (e.g. pork. We examined initial behavioural and attitudinal responses towards Influenza A, H1N1 ("Swine flu" in the six days following the WHO pandemic alert level 5, and regional differences in these responses. Methods 328 respondents completed a cross-sectional Internet or paper-based questionnaire study in Malaysia (N = 180 or Europe (N = 148. Measures assessed changes in transport usage, purchase of preparatory goods for a pandemic, perceived risk groups, indicators of anxiety, assessed estimated mortality rates for seasonal flu, effectiveness of seasonal flu vaccination, and changes in pork consumption Results 26% of the respondents were 'very concerned' about being a flu victim (42% Malaysians, 5% Europeans, p Conclusion Initial responses to Influenza A show large regional differences in anxiety, with Malaysians more anxious and more likely to reduce travel and to buy masks and food. Discussions with family and friends may reinforce existing anxiety levels. Particular groups (homosexuals, prostitutes, the homeless are perceived as at greater risk, potentially leading to increased prejudice during a pandemic. Europeans underestimated mortality of seasonal flu, and require more information about the protection given by seasonal flu inoculation.

  4. Within-Host Evolution of Human Influenza Virus.

    Science.gov (United States)

    Xue, Katherine S; Moncla, Louise H; Bedford, Trevor; Bloom, Jesse D

    2018-03-10

    The rapid global evolution of influenza virus begins with mutations that arise de novo in individual infections, but little is known about how evolution occurs within hosts. We review recent progress in understanding how and why influenza viruses evolve within human hosts. Advances in deep sequencing make it possible to measure within-host genetic diversity in both acute and chronic influenza infections. Factors like antigenic selection, antiviral treatment, tissue specificity, spatial structure, and multiplicity of infection may affect how influenza viruses evolve within human hosts. Studies of within-host evolution can contribute to our understanding of the evolutionary and epidemiological factors that shape influenza virus's global evolution. Copyright © 2018 Elsevier Ltd. All rights reserved.

  5. Molecular diagnostics of Avian influenza virus

    Directory of Open Access Journals (Sweden)

    Petrović Tamaš

    2006-01-01

    Full Text Available The success of supervizing an infectious disease depends on the ability for speedy detection and characterization of the cause and the forming of a corresponding system for examining the success of control implemented in order to prevent a recurrence of the disease. Since influenza viruses continue to circle, causing significant morbidity and mortality both among the human population and among animals all over the world, it is essential to secure the timely identification and monitoring of the strains that are in circulation. The speedy detection and characterization of new highly-virulent varieties is one of the priorities of the World Health Organization monitoring network. The implementation of molecular methods has an increasingly significant role in diagnostics and the monitoring of the influenza virus. Among a large number of molecular methods, the one particularly in use is the reverse transcription-polimerase chain reaction (PT-PCR. Technological progress in the area of the conducting of molecular methods has enabled that we can prove, in one day, using the RT-PCR method even very small quantities of the infective agent in a sample. In an obtained PCR product, we can relatively easily establish the nucleotide sequence, a detailed analysis and molecular epidemiology of the circulating strains. The molecular diagnostics procedure (RT-PCR is based on the correct choice or designing of primers depending on the desired knowledge. In order to obtain a specific diagnosis of influenza A, B or C, primers are used which multiply internal genes, such as the nucleoprotein (NP or matrix gene (M, because these are genes that are highly conserved among the virus types. In the event that we are interested in the subtype of influenza A, after obtaining a positive reaction, primers for genes of surface antigens are selected, such as hemagglutinin. Following the correct detection of the H subtype, it is possible to establish the virus virulence through the

  6. Evolution of Therapeutic Antibodies, Influenza Virus Biology, Influenza, and Influenza Immunotherapy

    Directory of Open Access Journals (Sweden)

    Urai Chaisri

    2018-01-01

    Full Text Available This narrative review article summarizes past and current technologies for generating antibodies for passive immunization/immunotherapy. Contemporary DNA and protein technologies have facilitated the development of engineered therapeutic monoclonal antibodies in a variety of formats according to the required effector functions. Chimeric, humanized, and human monoclonal antibodies to antigenic/epitopic myriads with less immunogenicity than animal-derived antibodies in human recipients can be produced in vitro. Immunotherapy with ready-to-use antibodies has gained wide acceptance as a powerful treatment against both infectious and noninfectious diseases. Influenza, a highly contagious disease, precipitates annual epidemics and occasional pandemics, resulting in high health and economic burden worldwide. Currently available drugs are becoming less and less effective against this rapidly mutating virus. Alternative treatment strategies are needed, particularly for individuals at high risk for severe morbidity. In a setting where vaccines are not yet protective or available, human antibodies that are broadly effective against various influenza subtypes could be highly efficacious in lowering morbidity and mortality and controlling unprecedented epidemic/pandemic. Prototypes of human single-chain antibodies to several conserved proteins of influenza virus with no Fc portion (hence, no ADE effect in recipients are available. These antibodies have high potential as a novel, safe, and effective anti-influenza agent.

  7. Influenza vaccines: from whole virus preparations to recombinant protein technology.

    Science.gov (United States)

    Huber, Victor C

    2014-01-01

    Vaccination against influenza represents our most effective form of prevention. Historical approaches toward vaccine creation and production have yielded highly effective vaccines that are safe and immunogenic. Despite their effectiveness, these historical approaches do not allow for the incorporation of changes into the vaccine in a timely manner. In 2013, a recombinant protein-based vaccine that induces immunity toward the influenza virus hemagglutinin was approved for use in the USA. This vaccine represents the first approved vaccine formulation that does not require an influenza virus intermediate for production. This review presents a brief history of influenza vaccines, with insight into the potential future application of vaccines generated using recombinant technology.

  8. Finding a new drug and vaccine for emerging swine flu: What is the concept?

    Directory of Open Access Journals (Sweden)

    Viroj Wiwanitkit

    2009-08-01

    Full Text Available Viroj WiwanitkitWiwanitkit House, Bangkhae, Bangkok 10160Abstract: Influenza is a well known infection of the respiratory system. The main clinical manifestations of influenza include fever, sore throat, headache, cough, coryza, and malaise. Apart from the well known classical influenza, there are also groups of influenza virus infections that are called “atypical infection”. These infections are usually due to a novel influenza virus infection. In early 2009, an emerging novel influenza originating from Mexico called swine flu was reported. The World Health Organization noted a level VI precaution, the highest level precaution possible, for this newest influenza virus infection. As of June 2009, it is not known if this disease will be successfully controlled. Finding new drugs and vaccine for the emerging swine flu is still required to cope with this emerging worldwide problem.Keywords: swine flu, drug, vaccine, concept

  9. Chalcones as novel influenza A (H1N1) neuraminidase inhibitors from Glycyrrhiza inflata

    DEFF Research Database (Denmark)

    Dao, Trong Tuan; Nguyen, Phi Hung; Lee, Hong Sik

    2011-01-01

    The emergence of highly pathogenic influenza A virus strains, such as the new H1N1 swine influenza (novel influenza), represents a serious threat to global human health. During our course of an anti-influenza screening program on natural products, one new licochalcone G (1) and seven known (2-8) ...

  10. Influenza virus sequence feature variant type analysis: evidence of a role for NS1 in influenza virus host range restriction.

    Science.gov (United States)

    Noronha, Jyothi M; Liu, Mengya; Squires, R Burke; Pickett, Brett E; Hale, Benjamin G; Air, Gillian M; Galloway, Summer E; Takimoto, Toru; Schmolke, Mirco; Hunt, Victoria; Klem, Edward; García-Sastre, Adolfo; McGee, Monnie; Scheuermann, Richard H

    2012-05-01

    Genetic drift of influenza virus genomic sequences occurs through the combined effects of sequence alterations introduced by a low-fidelity polymerase and the varying selective pressures experienced as the virus migrates through different host environments. While traditional phylogenetic analysis is useful in tracking the evolutionary heritage of these viruses, the specific genetic determinants that dictate important phenotypic characteristics are often difficult to discern within the complex genetic background arising through evolution. Here we describe a novel influenza virus sequence feature variant type (Flu-SFVT) approach, made available through the public Influenza Research Database resource (www.fludb.org), in which variant types (VTs) identified in defined influenza virus protein sequence features (SFs) are used for genotype-phenotype association studies. Since SFs have been defined for all influenza virus proteins based on known structural, functional, and immune epitope recognition properties, the Flu-SFVT approach allows the rapid identification of the molecular genetic determinants of important influenza virus characteristics and their connection to underlying biological functions. We demonstrate the use of the SFVT approach to obtain statistical evidence for effects of NS1 protein sequence variations in dictating influenza virus host range restriction.

  11. Effect of radiation on certain animal viruses in liquid swine manure

    Energy Technology Data Exchange (ETDEWEB)

    Simon, J.; Mocsari, E.; di Gleria, M.; Felkai, V. (Phylaxia Oltoanyag- es Tapszertermeloe Vallalat, Budapest (Hungary); Orszagos Allategeszseguegyi Intezet, Budapest (Hungary))

    1983-03-01

    The virucidal effect of /sup 60/Co gamma radiation was studied in cell culture medium and in liquid swine manure involving the most important porcine viruses that can be spread by liquid manure. The radiation doses (20 kGy and 30 kGy) were determined in preliminary experiments employing a porcine enterovirus from the serogroup 1 (Teschen group). In the main experiment, the following viruses were employed: swine vesicular disease (SVD) virus, type C foot-and-mouth disease (FMD) virus, a field strain of Aujeszky's disease (AD) virus, transmissible gastroenteritis (TGE) virus, as well as bovine viral diarrhea (BVD) virus. The latter strain served as a model for hog cholera virus. The results of the experiments indicate that safe disinfection of the virus infected liquid swine manure by ionizing radiation requires a radiation dose of 30 kGy.

  12. Effect of radiation on certain animal viruses in liquid swine manure

    International Nuclear Information System (INIS)

    Simon, J.; Mocsari, E.; di Gleria, M.; Felkai, V.

    1983-01-01

    The virucidal effect of 60 Co gamma radiation was studied in cell culture medium and in liquid swine manure involving the most important porcine viruses that can be spread by liquid manure. The radiation doses (20 kGy and 30 kGy) were determined in preliminary experiments employing a porcine enterovirus from the serogroup 1 (Teschen group). In the main experiment, the following viruses were employed: swine vesicular disease (SVD) virus, type C foot-and-mouth disease (FMD) virus, a field strain of Aujeszky's disease (AD) virus, transmissible gastroenteritis (TGE) virus, as well as bovine viral diarrhoea (BVD) virus. The latter strain served as a model for hog cholera virus. The results of the experiments indicate that safe disinfection of the virus infected liquid swine manure by ionizing radiation requires a radiation dose of 30 kGy. (author)

  13. Effect of radiation on certain animal viruses in liquid swine manure

    Energy Technology Data Exchange (ETDEWEB)

    Simon, J; Mocsari, E; di Gleria, M; Felkai, V [Phylaxia Oltoanyag- es Tapszertermeloe Vallalat, Budapest (Hungary); Orszagos Allategeszseguegyi Intezet, Budapest [Hungary

    1983-03-01

    The virucidal effect of /sup 60/Co gamma radiation was studied in cell culture medium and in liquid swine manure involving the most important porcine viruses that can be spread by liquid manure. The radiation doses (20 kGy and 30 kGy) were determined in preliminary experiments employing a porcine enterovirus from the serogroup 1 (Teschen group). In the main experiment, the following viruses were employed: swine vesicular disease (SVD) virus, type C foot-and-mouth disease (FMD) virus, a field strain of Aujeszky's disease (AD) virus, transmissible gastroenteritis (TGE) virus, as well as bovine viral diarrhea (BVD) virus. The latter strain served as a model for hog cholera virus. The results of the experiments indicate that safe disinfection of the virus infected liquid swine manure by ionizing radiation requires a radiation dose of 30 kGy.

  14. Vaccination with Recombinant Parainfluenza Virus 5 Expressing Neuraminidase Protects against Homologous and Heterologous Influenza Virus Challenge.

    Science.gov (United States)

    Mooney, Alaina J; Gabbard, Jon D; Li, Zhuo; Dlugolenski, Daniel A; Johnson, Scott K; Tripp, Ralph A; He, Biao; Tompkins, S Mark

    2017-12-01

    Seasonal human influenza virus continues to cause morbidity and mortality annually, and highly pathogenic avian influenza (HPAI) viruses along with other emerging influenza viruses continue to pose pandemic threats. Vaccination is considered the most effective measure for controlling influenza; however, current strategies rely on a precise vaccine match with currently circulating virus strains for efficacy, requiring constant surveillance and regular development of matched vaccines. Current vaccines focus on eliciting specific antibody responses against the hemagglutinin (HA) surface glycoprotein; however, the diversity of HAs across species and antigenic drift of circulating strains enable the evasion of virus-inhibiting antibody responses, resulting in vaccine failure. The neuraminidase (NA) surface glycoprotein, while diverse, has a conserved enzymatic site and presents an appealing target for priming broadly effective antibody responses. Here we show that vaccination with parainfluenza virus 5 (PIV5), a promising live viral vector expressing NA from avian (H5N1) or pandemic (H1N1) influenza virus, elicited NA-specific antibody and T cell responses, which conferred protection against homologous and heterologous influenza virus challenges. Vaccination with PIV5-N1 NA provided cross-protection against challenge with a heterosubtypic (H3N2) virus. Experiments using antibody transfer indicate that antibodies to NA have an important role in protection. These findings indicate that PIV5 expressing NA may be effective as a broadly protective vaccine against seasonal influenza and emerging pandemic threats. IMPORTANCE Seasonal influenza viruses cause considerable morbidity and mortality annually, while emerging viruses pose potential pandemic threats. Currently licensed influenza virus vaccines rely on the antigenic match of hemagglutinin (HA) for vaccine strain selection, and most vaccines rely on HA inhibition titers to determine efficacy, despite the growing

  15. Positive Selection on Hemagglutinin and Neuraminidase Genes of H1N1 Influenza Viruses

    LENUS (Irish Health Repository)

    Li, Wenfu

    2011-04-21

    Abstract Background Since its emergence in March 2009, the pandemic 2009 H1N1 influenza A virus has posed a serious threat to public health. To trace the evolutionary path of these new pathogens, we performed a selection-pressure analysis of a large number of hemagglutinin (HA) and neuraminidase (NA) gene sequences of H1N1 influenza viruses from different hosts. Results Phylogenetic analysis revealed that both HA and NA genes have evolved into five distinct clusters, with further analyses indicating that the pandemic 2009 strains have experienced the strongest positive selection. We also found evidence of strong selection acting on the seasonal human H1N1 isolates. However, swine viruses from North America and Eurasia were under weak positive selection, while there was no significant evidence of positive selection acting on the avian isolates. A site-by-site analysis revealed that the positively selected sites were located in both of the cleaved products of HA (HA1 and HA2), as well as NA. In addition, the pandemic 2009 strains were subject to differential selection pressures compared to seasonal human, North American swine and Eurasian swine H1N1 viruses. Conclusions Most of these positively and\\/or differentially selected sites were situated in the B-cell and\\/or T-cell antigenic regions, suggesting that selection at these sites might be responsible for the antigenic variation of the viruses. Moreover, some sites were also associated with glycosylation and receptor-binding ability. Thus, selection at these positions might have helped the pandemic 2009 H1N1 viruses to adapt to the new hosts after they were introduced from pigs to humans. Positive selection on position 274 of NA protein, associated with drug resistance, might account for the prevalence of drug-resistant variants of seasonal human H1N1 influenza viruses, but there was no evidence that positive selection was responsible for the spread of the drug resistance of the pandemic H1N1 strains.

  16. Influenza A virus infection of healthy piglets in an abattoir in Brazil: animal-human interface and risk for interspecies transmission

    Directory of Open Access Journals (Sweden)

    Ariane Ribeiro Amorim

    2013-08-01

    Full Text Available Asymptomatic influenza virus infections in pigs are frequent and the lack of measures for controlling viral spread facilitates the circulation of different virus strains between pigs. The goal of this study was to demonstrate the circulation of influenza A virus strains among asymptomatic piglets in an abattoir in Brazil and discuss the potential public health impacts. Tracheal samples (n = 330 were collected from asymptomatic animals by a veterinarian that also performed visual lung tissue examinations. No slaughtered animals presented with any noticeable macroscopic signs of influenza infection following examination of lung tissues. Samples were then analysed by reverse transcription-polymerase chain reaction that resulted in the identification of 30 (9% influenza A positive samples. The presence of asymptomatic pig infections suggested that these animals could facilitate virus dissemination and act as a source of infection for the herd, thereby enabling the emergence of influenza outbreaks associated with significant economic losses. Furthermore, the continuous exposure of the farm and abattoir workers to the virus increases the risk for interspecies transmission. Monitoring measures of swine influenza virus infections and vaccination and monitoring of employees for influenza infection should also be considered. In addition regulatory agencies should consider the public health ramifications regarding the potential zoonotic viral transmission between humans and pigs.

  17. Detection and subtyping (H5 and H7) of avian type A influenza virus by reverse transcription-PCR and PCR-ELISA

    DEFF Research Database (Denmark)

    Munch, M.; Nielsen, L.P.; Handberg, Kurt

    2001-01-01

    A. A panel of reference influenza strains from various hosts including avian species, human, swine and horse were evaluated in a one tube RT-PCR using primers designed for the amplification of a 218 bp fragment of the NP gene. The PCR products were detected by PCR-ELISA by use of an internal......Avian influenza virus infections are a major cause of morbidity and rapid identification of the virus has important clinical, economical and epidemiological implications. We have developed a one-tube Reverse Transcriptase Polymerase Chain Reaction (RT-PCR) for the rapid diagnosis of avian influenza...... catching probe confirming the NP influenza A origin. The PCR-ELISA was about 100 times more sensitive than detection of PCR products by agarose gel electrophoresis. RT-PCR and detection by PCR-ELISA is comparable in sensitivity to virus propagation in eggs. We also designed primers for the detection...

  18. CRISPR-Cas9, a tool to efficiently increase the development of recombinant African swine fever viruses

    Science.gov (United States)

    African swine fever is a contagious and often lethal disease for domestic pigs with a significant economic impact on the swine industry. The etiological agent, African swine fever virus (ASFV), is a highly structurally complex double stranded DNA virus. No effective vaccines or antiviral treatment ...

  19. Isolation and characterization of virus of highly pathogenic avian influenza H5 subtype of chicken from outbreaks in Indonesia

    Directory of Open Access Journals (Sweden)

    Agus Wiyono

    2004-03-01

    Full Text Available A study on the isolation and characterization of Highly Pathogenic Avian Influenza of chicken from outbreaks in Indonesia was conducted at Indonesian Research Institute for Veterinary Science. Outbreaks of avian disease had been reported in Indonesia since August 2003 affecting commercial layer, broiler, quail, and ostrich and also native chicken with showing clinical signs such as cyanosis of wattle and comb, nasal discharges and hypersalivation, subcutaneous ptechiae on foot and leg, diarre and sudden high mortality. The aim of this study is to isolate and characterize the causal agent of the disease. Samples of serum, feather follicle, tracheal swab, as well as organs of proventriculus, intestine, caecal tonsil, trachea and lungs were collected from infected animals. Serum samples were tested haemaglutination/haemaglutination inhibition to Newcastle Disease and Egg Drop Syndrome viruses. Isolation of virus of the causal agent of the outbreak was conducted from samples of feather follicle, tracheal swab, and organs using 11 days old specific pathogen free (SPF embryonated eggs. The isolated viruses were then characterised by agar gel precipitation test using swine influenza reference antisera, by haemaglutination inhibition using H1 to H15 reference antisera, and by electron microscope examination. The pathogenicity of the viruses was confirmed by intravenous pathogenicity index test and its culture in Chicken Embryo Fibroblast primary cell culture without addition of trypsin. The study revealed that the causative agent of the outbreaks of avian disease in Indonesia was avian influenza H5 subtype virus based upon serological tests, virus isolation and characterization using swine influenza reference antisera, and electron microscope examination. While subtyping of the viruses using H1 to H15 reference antisera suggested that the virus is very likely to be an avian influenza H5N1 subtype virus. The pathogenicity test confirmed that the viruses

  20. Prospective study of avian influenza virus infections among rural Thai villagers.

    Directory of Open Access Journals (Sweden)

    Whitney S Krueger

    Full Text Available In 2008, 800 rural Thai adults living within Kamphaeng Phet Province were enrolled in a prospective cohort study of zoonotic influenza transmission. Serological analyses of enrollment sera suggested this cohort had experienced subclinical avian influenza virus (AIV infections with H9N2 and H5N1 viruses.After enrollment, participants were contacted weekly for 24 mos for acute influenza-like illnesses (ILI. Cohort members confirmed to have influenza A infections were enrolled with their household contacts in a family transmission study involving paired sera and respiratory swab collections. Cohort members also provided sera at 12 and 24 months after enrollment. Serologic and real-time RT-PCR assays were performed against avian, swine, and human influenza viruses.Over the 2 yrs of follow-up, 81 ILI investigations in the cohort were conducted; 31 (38% were identified as influenza A infections by qRT-PCR. Eighty-three household contacts were enrolled; 12 (14% reported ILIs, and 11 (92% of those were identified as influenza infections. A number of subjects were found to have slightly elevated antibodies against avian-like A/Hong Kong/1073/1999(H9N2 virus: 21 subjects (2.7% at 12-months and 40 subjects (5.1% at 24-months. Among these, two largely asymptomatic acute infections with H9N2 virus were detected by >4-fold increases in annual serologic titers (final titers 1:80. While controlling for age and influenza vaccine receipt, moderate poultry exposure was significantly associated with elevated H9N2 titers (adjusted OR = 2.3; 95% CI, 1.04-5.2 at the 24-month encounter. One subject had an elevated titer (1:20 against H5N1 during follow-up.From 2008-10, evidence for AIV infections was sparse among this rural population. Subclinical H9N2 AIV infections likely occurred, but serological results were confounded by antibody cross-reactions. There is a critical need for improved serological diagnostics to more accurately detect subclinical AIV infections in

  1. Prospective study of avian influenza virus infections among rural Thai villagers.

    Science.gov (United States)

    Krueger, Whitney S; Khuntirat, Benjawan; Yoon, In-Kyu; Blair, Patrick J; Chittagarnpitch, Malinee; Putnam, Shannon D; Supawat, Krongkaew; Gibbons, Robert V; Bhuddari, Darunee; Pattamadilok, Sirima; Sawanpanyalert, Pathom; Heil, Gary L; Gray, Gregory C

    2013-01-01

    In 2008, 800 rural Thai adults living within Kamphaeng Phet Province were enrolled in a prospective cohort study of zoonotic influenza transmission. Serological analyses of enrollment sera suggested this cohort had experienced subclinical avian influenza virus (AIV) infections with H9N2 and H5N1 viruses. After enrollment, participants were contacted weekly for 24 mos for acute influenza-like illnesses (ILI). Cohort members confirmed to have influenza A infections were enrolled with their household contacts in a family transmission study involving paired sera and respiratory swab collections. Cohort members also provided sera at 12 and 24 months after enrollment. Serologic and real-time RT-PCR assays were performed against avian, swine, and human influenza viruses. Over the 2 yrs of follow-up, 81 ILI investigations in the cohort were conducted; 31 (38%) were identified as influenza A infections by qRT-PCR. Eighty-three household contacts were enrolled; 12 (14%) reported ILIs, and 11 (92%) of those were identified as influenza infections. A number of subjects were found to have slightly elevated antibodies against avian-like A/Hong Kong/1073/1999(H9N2) virus: 21 subjects (2.7%) at 12-months and 40 subjects (5.1%) at 24-months. Among these, two largely asymptomatic acute infections with H9N2 virus were detected by >4-fold increases in annual serologic titers (final titers 1:80). While controlling for age and influenza vaccine receipt, moderate poultry exposure was significantly associated with elevated H9N2 titers (adjusted OR = 2.3; 95% CI, 1.04-5.2) at the 24-month encounter. One subject had an elevated titer (1:20) against H5N1 during follow-up. From 2008-10, evidence for AIV infections was sparse among this rural population. Subclinical H9N2 AIV infections likely occurred, but serological results were confounded by antibody cross-reactions. There is a critical need for improved serological diagnostics to more accurately detect subclinical AIV infections in humans.

  2. Genomic analysis of influenza A virus from captive wild boars in Brazil reveals a human-like H1N2 influenza virus.

    Science.gov (United States)

    Biondo, Natalha; Schaefer, Rejane; Gava, Danielle; Cantão, Mauricio E; Silveira, Simone; Mores, Marcos A Z; Ciacci-Zanella, Janice R; Barcellos, David E S N

    2014-01-10

    Influenza is a viral disease that affects human and several animal species. In Brazil, H1N1, H3N2 and 2009 pandemic H1N1 A(H1N1)pdm09 influenza A viruses (IAV) circulate in domestic swine herds. Wild boars are also susceptible to IAV infection but in Brazil until this moment there are no reports of IAV infection in wild boars or in captive wild boars populations. Herein the occurrence of IAV in captive wild boars with the presence of lung consolidation lesions during slaughter was investigated. Lung samples were screened by RT-PCR for IAV detection. IAV positive samples were further analyzed by quantitative real-time PCR (qRRT-PCR), virus isolation, genomic sequencing, histopathology and immunohistochemistry (IHC). Eleven out of 60 lungs (18.3%) were positive for IAV by RT-PCR and seven out of the eleven were also positive for A(H1N1)pdm09 by qRRT-PCR. Chronic diffuse bronchopneumonia was observed in all samples and IHC analysis was negative for influenza A antigen. Full genes segments of H1N2 IAV were sequenced using Illumina's genome analyzer platform (MiSeq). The genomic analysis revealed that the HA and NA genes clustered with IAVs of the human lineage and the six internal genes were derived from the H1N1pdm09 IAV. This is the first report of a reassortant human-like H1N2 influenza virus infection in captive wild boars in Brazil and indicates the need to monitor IAV evolution in Suidae populations. Copyright © 2013 Elsevier B.V. All rights reserved.

  3. Immunofluorescence Plaque Assay for African Swine Fever Virus

    Science.gov (United States)

    Tessler, J.; Hess, W. R.; Pan, I. C.; Trautman, R.

    1974-01-01

    Suitably diluted cell culture adapted African swine fever virus preparations were inoculated on VERO cell monolayers and grown on coverslips. Gum tragacanth was used as an overlay. After three days incubation at 37°C the infected cultures were fixed with acetone and stained with fluorescent antibody conjugate. Fluorescing plaques consisted of 20-30 infected cells. Three statistical criteria for a quantitatively reliable assay were met: the Poisson distribution for plaque counts, linearity of the relationship between the concentration of virus and the plaque count and reproducibility of replicate titrations. The method is suitable for counts up to at least 70 plaques per 5 cm2 coverslip and computed titers are reproducible within 0.16 log units with a total of 300 plaques enumerated. PMID:4279763

  4. A competitive-inhibiton radioimmunoassay for influenza virus envelope antigens

    International Nuclear Information System (INIS)

    Russ, G.; Styk, B.; Vareckova, E.; Polakova, K.

    1976-01-01

    A double-antibody competitive-inhibition radioimmunoassay for influenza virus envelope antigens is described. A viral antigen preparation from influenza A virus recombinant MRC11 [antigenically identical to A/Port Chalmers/1/73 (H3N2)] consisting of haemagglutinin and neuraminidase was labelled with radioiodine. Rabbit antisera were allowed to react with the labelled antigen and the resultant antigen-antibody complexes were precipitated with the appropriate antiglobulin. The competitive-inhibition radioimmunoassay very sensitively elucidated differences even among closely related influenza virus strains. Attempts have been made to eliminate neuraminidase from radioimmunoprecipitation to obtain a competitive-inhibition radioimmunoassay system for haemagglutinin alone. (author)

  5. Effective lethal mutagenesis of influenza virus by three nucleoside analogs.

    Science.gov (United States)

    Pauly, Matthew D; Lauring, Adam S

    2015-04-01

    Lethal mutagenesis is a broad-spectrum antiviral strategy that exploits the high mutation rate and low mutational tolerance of many RNA viruses. This approach uses mutagenic drugs to increase viral mutation rates and burden viral populations with mutations that reduce the number of infectious progeny. We investigated the effectiveness of lethal mutagenesis as a strategy against influenza virus using three nucleoside analogs, ribavirin, 5-azacytidine, and 5-fluorouracil. All three drugs were active against a panel of seasonal H3N2 and laboratory-adapted H1N1 strains. We found that each drug increased the frequency of mutations in influenza virus populations and decreased the virus' specific infectivity, indicating a mutagenic mode of action. We were able to drive viral populations to extinction by passaging influenza virus in the presence of each drug, indicating that complete lethal mutagenesis of influenza virus populations can be achieved when a sufficient mutational burden is applied. Population-wide resistance to these mutagenic agents did not arise after serial passage of influenza virus populations in sublethal concentrations of drug. Sequencing of these drug-passaged viral populations revealed genome-wide accumulation of mutations at low frequency. The replicative capacity of drug-passaged populations was reduced at higher multiplicities of infection, suggesting the presence of defective interfering particles and a possible barrier to the evolution of resistance. Together, our data suggest that lethal mutagenesis may be a particularly effective therapeutic approach with a high genetic barrier to resistance for influenza virus. Influenza virus is an RNA virus that causes significant morbidity and mortality during annual epidemics. Novel therapies for RNA viruses are needed due to the ease with which these viruses evolve resistance to existing therapeutics. Lethal mutagenesis is a broad-spectrum strategy that exploits the high mutation rate and the low

  6. Serological evidence for avian H9N2 influenza virus infections among Romanian agriculture workers.

    Science.gov (United States)

    Coman, Alexandru; Maftei, Daniel N; Krueger, Whitney S; Heil, Gary L; Friary, John A; Chereches, Razvan M; Sirlincan, Emanuela; Bria, Paul; Dragnea, Claudiu; Kasler, Iosif; Gray, Gregory C

    2013-12-01

    In recent years, wild birds have introduced multiple highly pathogenic avian influenza (HPAI) H5N1 virus infections in Romanian poultry. In 2005 HPAI infections were widespread among domestic poultry and anecdotal reports suggested domestic pigs may also have been exposed. We sought to examine evidence for zoonotic influenza infections among Romanian agriculture workers. Between 2009 and 2010, 363 adult participants were enrolled in a cross-sectional, seroepidemiological study. Confined animal feeding operation (CAFO) swine workers in Tulcea and small, traditional backyard farmers in Cluj-Napoca were enrolled, as well as a non-animal exposed control group from Cluj-Napoca. Enrollment sera were examined for serological evidence of previous infection with 9 avian and 3 human influenza virus strains. Serologic assays showed no evidence of previous infection with 7 low pathogenic avian influenza viruses or with HPAI H5N1. However, 33 participants (9.1%) had elevated microneutralization antibody titers against avian-like A/Hong Kong/1073/1999(H9N2), 5 with titers ≥ 1:80 whom all reported exposure to poultry. Moderate poultry exposure was significantly associated with elevated titers after controlling for the subjects' age (adjusted OR = 3.6; 95% CI, 1.1-12.1). There was no evidence that previous infection with human H3N2 or H2N2 viruses were confounding the H9N2 seroreactivity. These data suggest that H9N2 virus may have circulated in Romanian poultry and occasionally infected man. Copyright © 2013 King Saud Bin Abdulaziz University for Health Sciences. Published by Elsevier Ltd. All rights reserved.

  7. EVIDENCE OF PSEUDORABIES VIRUS SHEDDING IN FERAL SWINE ( SUS SCROFA) POPULATIONS OF FLORIDA, USA.

    Science.gov (United States)

    Hernández, Felipe A; Sayler, Katherine A; Bounds, Courtney; Milleson, Michael P; Carr, Amanda N; Wisely, Samantha M

    2018-01-01

    :  Feral swine ( Sus scrofa) are a pathogen reservoir for pseudorabies virus (PrV). The virus can be fatal to wildlife and contributes to economic losses in the swine industry worldwide. National surveillance efforts in the US use serology to detect PrV-specific antibodies in feral swine populations, but PrV exposure is not a direct indicator of pathogen transmission among conspecifics or to non-suid wildlife species. We measured antibody production and the presence of PrV DNA in four tissue types from feral swine populations of Florida, US. We sampled blood, nasal, oral, and genital swabs from 551 individuals at 39 sites during 2014-16. Of the animals tested for antibody production, 224 of 436 (51%) feral swine were antibody positive while 38 of 549 feral swine (7%) tested for viral shedding were quantitative polymerase chain reaction (qPCR)-positive for PrV. The detection of PrV DNA across all the collected sample types (blood, nasal, oral, and genital [vaginal] swabs) suggested viral shedding via direct (oronasal or venereal), and potentially indirect (through carcass consumption), routes of transmission among infected and susceptible animals. Fourteen of 212 seronegative feral swine were qPCR-positive, indicating 7% false negatives in the serologic assay. Our findings suggest that serology may underestimate the actual infection risk posed by feral swine to other species and that feral swine populations in Florida are capable of shedding the virus through multiple routes.

  8. Full-Genome Sequence of a Reassortant H1N2 Influenza A Virus Isolated from Pigs in Brazil.

    Science.gov (United States)

    Schmidt, Candice; Cibulski, Samuel Paulo; Muterle Varela, Ana Paula; Mengue Scheffer, Camila; Wendlant, Adrieli; Quoos Mayer, Fabiana; Lopes de Almeida, Laura; Franco, Ana Cláudia; Roehe, Paulo Michel

    2014-12-18

    In this study, the full-genome sequence of a reassortant H1N2 swine influenza virus is reported. The isolate has the hemagglutinin (HA) and neuraminidase (NA) genes from human lineage (H1-δ cluster and N2), and the internal genes (polymerase basic 1 [PB1], polymerase basic 2 [PB2], polymerase acidic [PA], nucleoprotein [NP], matrix [M], and nonstructural [NS]) are derived from human 2009 pandemic H1N1 (H1N1pdm09) virus. Copyright © 2014 Schmidt et al.

  9. Continental synchronicity of human influenza virus epidemics despite climactic variation.

    Science.gov (United States)

    Geoghegan, Jemma L; Saavedra, Aldo F; Duchêne, Sebastián; Sullivan, Sheena; Barr, Ian; Holmes, Edward C

    2018-01-01

    The factors that determine the pattern and rate of spread of influenza virus at a continental-scale are uncertain. Although recent work suggests that influenza epidemics in the United States exhibit a strong geographical correlation, the spatiotemporal dynamics of influenza in Australia, a country and continent of approximately similar size and climate complexity but with a far smaller population, are not known. Using a unique combination of large-scale laboratory-confirmed influenza surveillance comprising >450,000 entries and genomic sequence data we determined the local-level spatial diffusion of this important human pathogen nationwide in Australia. We used laboratory-confirmed influenza data to characterize the spread of influenza virus across Australia during 2007-2016. The onset of established epidemics varied across seasons, with highly synchronized epidemics coinciding with the emergence of antigenically distinct viruses, particularly during the 2009 A/H1N1 pandemic. The onset of epidemics was largely synchronized between the most populous cities, even those separated by distances of >3000 km and those that experience vastly diverse climates. In addition, by analyzing global phylogeographic patterns we show that the synchronized dissemination of influenza across Australian cities involved multiple introductions from the global influenza population, coupled with strong domestic connectivity, rather than through the distinct radial patterns of geographic dispersal that are driven by work-flow transmission as observed in the United States. In addition, by comparing the spatial structure of influenza A and B, we found that these viruses tended to occupy different geographic regions, and peak in different seasons, perhaps indicative of moderate cross-protective immunity or viral interference effects. The highly synchronized outbreaks of influenza virus at a continental-scale revealed here highlight the importance of coordinated public health responses in the

  10. Prevalence of African swine fever virus and classical swine fever virus antibodies in pigs in Benue State, Nigeria.

    Science.gov (United States)

    Asambe, A; Sackey, A K B; Tekdek, L B

    2018-03-01

    This study investigated the prevalence of African swine fever virus (ASFV) and classical swine fever virus (CSFV) antibodies in pigs in Benue State, Nigeria. Serum samples were collected from a total of 460 pigs, including 416 from 74 piggeries and 44 from Makurdi slaughter slab. The samples were analysed using indirect enzyme-linked immunosorbent assay (ELISA) test kit to detect the presence of ASFV antibodies, while competitive ELISA test kit was used to detect antibodies to CSFV. Our findings showed a total ASF prevalence of 13 (2.8%), while prevalences of 7 (1.7%) and 6 (13.6%) were observed in piggeries and in Makurdi slaughter slab, respectively. However, no CSFV antibody sera were detected in this study. Relatively higher ASFV antibody-positive pigs were detected in the slaughter slab than in piggeries. The difference in prevalence of ASF between the two locations was significantly associated (p = 0.017). These findings suggest the presence of ASFV antibody-positive pig in Benue State, Nigeria. Continuous surveillance and monitoring of these diseases among pigs in Nigeria to prevent any fulminating outbreak are recommended.

  11. Genetic characterization of influenza A viruses circulating in pigs and isolated in north-east Spain during the period 2006-2007.

    Science.gov (United States)

    Baratelli, Massimiliano; Córdoba, Lorena; Pérez, Lester J; Maldonado, Jaime; Fraile, Lorenzo; Núñez, José I; Montoya, Maria

    2014-04-01

    Swine influenza virus is one of the most important pathogens involved in the swine respiratory disease complex. Recent serological surveys showed a high prevalence of swine influenza strains belonging to the H1N1, H1N2 and H3N2 subtypes circulating in pigs in Spain. However, little is known about their genome sequence. Five swine influenza strains were isolated from some unrelated outbreaks occurred during 2006-2007, and their complete genome sequences were determined. Phylogenetic analysis revealed that they belonged to the lineages "Avian-Like" H1N1, "Human-Like" H3N2, and "Human-Like" H1N2, showing tight relationships with early or contemporary strains described in Europe. Notably, one virus of the H1N2 subtype showed genetic and antigenic divergence with the European contemporary strains or vaccinal strains of the same subtype, suggesting that some local and divergent clusters of the virus may pass unnoticed in routinary subtyping. Finally, analysis on the entire pattern of genome segments suggested that a second reassortment event could have influenced the evolution of that divergent H1N2 strain. Copyright © 2013 Elsevier Ltd. All rights reserved.

  12. Pathogenicity of highly pathogenic avian influenza virus in mammals

    NARCIS (Netherlands)

    de Wit, Emmie; Kawaoka, Yoshihiro; de Jong, Menno D.; Fouchier, Ron A. M.

    2008-01-01

    In recent years, there has been an increase in outbreaks of highly pathogenic avian influenza (HPAI) in poultry. Occasionally, these outbreaks have resulted in transmission of influenza viruses to humans and other mammals, with symptoms ranging from conjunctivitis to pneumonia and death. Here, the

  13. Alteration of a second putative fusion peptide of structural glycoprotein E2 of Classical Swine Fever Virus alters virus replication and virulence in swine

    Science.gov (United States)

    E2, the major envelope glycoprotein of Classical Swine Fever Virus (CSFV), is involved in several critical virus functions including cell attachment, host range susceptibility, and virulence in natural hosts. Functional structural analysis of E2 based on Wimley-White interfacial hydrophobicity dis...

  14. Modes of transmission of influenza B virus in households.

    Directory of Open Access Journals (Sweden)

    Benjamin J Cowling

    Full Text Available While influenza A and B viruses can be transmitted via respiratory droplets, the importance of small droplet nuclei "aerosols" in transmission is controversial.In Hong Kong and Bangkok, in 2008-11, subjects were recruited from outpatient clinics if they had recent onset of acute respiratory illness and none of their household contacts were ill. Following a positive rapid influenza diagnostic test result, subjects were randomly allocated to one of three household-based interventions: hand hygiene, hand hygiene plus face masks, and a control group. Index cases plus their household contacts were followed for 7-10 days to identify secondary infections by reverse transcription polymerase chain reaction (RT-PCR testing of respiratory specimens. Index cases with RT-PCR-confirmed influenza B were included in the present analyses. We used a mathematical model to make inferences on the modes of transmission, facilitated by apparent differences in clinical presentation of secondary infections resulting from aerosol transmission. We estimated that approximately 37% and 26% of influenza B virus transmission was via the aerosol mode in households in Hong Kong and Bangkok, respectively. In the fitted model, influenza B virus infections were associated with a 56%-72% risk of fever plus cough if infected via aerosol route, and a 23%-31% risk of fever plus cough if infected via the other two modes of transmission.Aerosol transmission may be an important mode of spread of influenza B virus. The point estimates of aerosol transmission were slightly lower for influenza B virus compared to previously published estimates for influenza A virus in both Hong Kong and Bangkok. Caution should be taken in interpreting these findings because of the multiple assumptions inherent in the model, including that there is limited biological evidence to date supporting a difference in the clinical features of influenza B virus infection by different modes.

  15. Influenza research database: an integrated bioinformatics resource for influenza virus research

    Science.gov (United States)

    The Influenza Research Database (IRD) is a U.S. National Institute of Allergy and Infectious Diseases (NIAID)-sponsored Bioinformatics Resource Center dedicated to providing bioinformatics support for influenza virus research. IRD facilitates the research and development of vaccines, diagnostics, an...

  16. Strategies for differentiating infection in vaccinated animals (DIVA) for foot-and-mouth disease, classical swine fever and avian influenza

    DEFF Research Database (Denmark)

    Uttenthal, Åse; Parida, Satya; Rasmussen, Thomas Bruun

    2010-01-01

    for the presence of infection. This literature review describes the current knowledge on the use of DIVA diagnostic strategies for three important transboundary animal diseases: foot-and-mouth disease in cloven-hoofed animals, classical swine fever in pigs and avian influenza in poultry....

  17. Influenza-associated encephalopathy: no evidence for neuroinvasion by influenza virus nor for reactivation of human herpesvirus 6 or 7.

    NARCIS (Netherlands)

    van Zeijl, J.H.; Bakkers, J.; Wilbrink, B.; Melchers, W.J.; Mullaart, R.A.; Galama, J.M.

    2005-01-01

    During 2 consecutive influenza seasons we investigated the presence of influenza virus, human herpesvirus (HHV) type 6, and HHV-7 in cerebrospinal fluid samples from 9 white children suffering from influenza-associated encephalopathy. We conclude that it is unlikely that neuroinvasion by influenza

  18. Hepatitis E virus infection in North Italy: high seroprevalence in swine herds and increased risk for swine workers.

    NARCIS (Netherlands)

    Mughini-Gras, L; Angeloni, G; Salata, C; Vonesch, N; D'Amico, W; Campagna, G; Natale, A; Zuliani, F; Ceglie, L; Monne, I; Vascellari, M; Capello, K; DI Martino, G; Inglese, N; Palù, G; Tomao, P; Bonfanti, L

    2017-01-01

    We determined the hepatitis E virus (HEV) seroprevalence and detection rate in commercial swine herds in Italy's utmost pig-rich area, and assessed HEV seropositivity risk in humans as a function of occupational exposure to pigs, diet, foreign travel, medical history and hunting activities. During

  19. Hepatitis E virus infection in North Italy : high seroprevalence in swine herds and increased risk for swine workers

    NARCIS (Netherlands)

    Mughini-Gras, L|info:eu-repo/dai/nl/413306046; Angeloni, Giorgia; Salata, C; Vonesch, N; D'Amico, W; Campagna, G; Natale, Alda; Zuliani, Federica; Ceglie, Letizia; Monne, Isabella; Vascellari, M; Capello, Katia; DI Martino, G; Inglese, N; Palù, G; Tomao, P; Bonfanti, L.

    2017-01-01

    We determined the hepatitis E virus (HEV) seroprevalence and detection rate in commercial swine herds in Italy's utmost pig-rich area, and assessed HEV seropositivity risk in humans as a function of occupational exposure to pigs, diet, foreign travel, medical history and hunting activities. During

  20. Invasive pneumococcal and meningococcal disease : association with influenza virus and respiratory syncytial virus activity?

    NARCIS (Netherlands)

    Jansen, A G S C; Sanders, E A M; VAN DER Ende, A; VAN Loon, A M; Hoes, A W; Hak, E

    2008-01-01

    Few studies have examined the relationship between viral activity and bacterial invasive disease, considering both influenza virus and respiratory syncytial virus (RSV). This study aimed to assess the potential relationship between invasive pneumococcal disease (IPD), meningococcal disease (MD), and

  1. A novel RT-multiplex PCR for enteroviruses, hepatitis A and E viruses and influenza A virus among infants and children with diarrhea in Vietnam.

    Science.gov (United States)

    Phan, T G; Nguyen, T A; Yan, H; Okitsu, S; Ushijima, H

    2005-06-01

    A novel reverse transcription-multiplex polymerase chain reaction (RT-multiplex PCR) assay that can detect enteroviruses, hepatitis A and E viruses and influenza A virus from various hosts (avian species, human, swine and horse) was developed. The identification of that group of viruses was performed with the mixture of four pairs of published specific primers (F1 and R1, P3 and P4, 2s and 2as, MMU42 and MMU43) for amplifying viral genomes and specifically generated four different amplicon sizes of 440, 267, 146 and 219 bp for enteroviruses, hepatitis A and E viruses and influenza A virus, respectively. A total of 276 fecal specimens (previously screened for rotavirus, adenovirus, norovirus, sapovirus and astrovirus-negative) from infants and children admitted into hospital with acute gastroenteritis in Ho Chi Minh city, Vietnam during October 2002 and September 2003 were collected and further tested for the presence of those viruses by RT-multiplex PCR. Enteroviruses were identified in 27 specimens and this represented 9.8%. No hepatitis A and E viruses and influenza A virus was found among these subjects. The sensitivity and specificity of RT-multiplex PCR were also assessed and demonstrated the strong validation against RT-monoplex PCR. Taken together, the findings clearly indicated that this novel RT-multiplex PCR is a simple and potential assay for rapid, sensitive, specific and cost-effective laboratory diagnosis to investigate molecular epidemiology of acute gastroenteritis caused by enteroviruses, hepatitis A and E viruses and influenza A virus. This report is the first, to our knowledge, detecting these kinds of viruses in diarrheal feces from infants and children in Vietnam.

  2. Temperature sensitivity on growth and/or replication of H1N1, H1N2 and H3N2 influenza A viruses isolated from pigs and birds in mammalian cells.

    Science.gov (United States)

    Massin, Pascale; Kuntz-Simon, Gaëlle; Barbezange, Cyril; Deblanc, Céline; Oger, Aurélie; Marquet-Blouin, Estelle; Bougeard, Stéphanie; van der Werf, Sylvie; Jestin, Véronique

    2010-05-19

    Influenza A viruses have been isolated from a wide range of animal species, aquatic birds being the reservoir for their genetic diversity. Avian influenza viruses can be transmitted to humans, directly or indirectly through an intermediate host like pig. This study aimed to define in vitro conditions that could prove useful to evaluate the potential of influenza viruses to adapt to a different host. Growth of H1N1, H1N2 and H3N2 influenza viruses belonging to different lineages isolated from birds or pigs prior to 2005 was tested on MDCK or NPTr cell lines in the presence or absence of exogenous trypsin. Virus multiplication was compared at 33, 37 and 40 degrees C, the infection site temperatures in human, swine and avian hosts, respectively. Temperature sensitivity of PB2-, NP- and M-RNA replication was also tested by quantitative real-time PCR. Multiplication of avian viruses was cold-sensitive, whatever cell type. By contrast, temperature sensitivity of swine viruses was found to depend on the virus and the host cell: for an H1N1 swine isolate from 1982, multiplication was cold-sensitive on NPTr cells and undetectable at 40 degrees C. From genetic analyses, it appears that temperature sensitivity could involve other residues than PB2 residue 627 and could affect other steps of the replication cycle than replication. Copyright 2009 Elsevier B.V. All rights reserved.

  3. 64 multidetector CT findings of influenza A (H1N1) virus in patients with hematologic malignancies

    International Nuclear Information System (INIS)

    El-Badrawy, Adel; Zeidan, Amany; Ebrahim, Mohamed A.

    2012-01-01

    Background. The pandemic of swine-origin H1N1 influenza that began in early 2009 has provided evidence that radiology can assist in the early diagnosis of severe cases. Immunocompromised patients are at increased risk for morbidity and mortality. MDCT is superior to radiography in showing the distribution of the disease. Purpose. To review the 64 multidetector CT thoracic findings of novel swine-origin influenza A (H1N1) virus in patients with hematologic malignancies. Material and Methods. This study included 12 patients (3 women, 9 men; mean age, 32.2 years). All patients proved to be infected with influenza A (H1N1) virus. The hematologic malignancies were acute myeloid leukemia (n = 8), chronic lymphocytic leukemia (n = 2), multiple myeloma (n = 1), and myelodysplastic syndrome (n = 1). All the patients underwent CT scanning using a 64 multidetector CT scanner. Chest CT scans were reviewed for ground-glass opacities (GGOs), consolidation, airway thickening/dilatation, nodules, mediastinal lymphadenopathy, and pleural effusion. Results. More than one CT finding was detected in every patient. Pulmonary affection was bilateral, more on the left side. The affections were mainly peribronchial. Airway wall thickening and dilatation were detected in all 12 patients, GGO in 9/12 patients, nodules in 6/12 patients, consolidation in 6/12 patients, hilar lymphadenopathy in 3/12 patients, and pleural effusion in 2/12 patients. Conclusion. Acute myeloid leukemia is the most common hematologic malignancy affected by influenza A (H1N1) virus. The left lung is affected more than the right one. The most common multidetector CT findings are unilateral or bilateral airway thickening and dilatation. Multidetector CT can be used for early and accurate assessment of pulmonary affection with influenza A H1N1 virus infection

  4. 64 multidetector CT findings of influenza A (H1N1) virus in patients with hematologic malignancies

    Energy Technology Data Exchange (ETDEWEB)

    El-Badrawy, Adel [Dept. of Radiology, Mansoura Faculty of Medicine, Mansoura (Egypt)], E-mail: adelelbadrawy@hotmail.com; Zeidan, Amany [Dept. of Thoracic Medicine, Mansoura Faculty of Medicine, Mansoura (Egypt); Ebrahim, Mohamed A. [Dept. of Medical Oncology, Mansoura Faculty of Medicine, Mansoura (Egypt)

    2012-07-15

    Background. The pandemic of swine-origin H1N1 influenza that began in early 2009 has provided evidence that radiology can assist in the early diagnosis of severe cases. Immunocompromised patients are at increased risk for morbidity and mortality. MDCT is superior to radiography in showing the distribution of the disease. Purpose. To review the 64 multidetector CT thoracic findings of novel swine-origin influenza A (H1N1) virus in patients with hematologic malignancies. Material and Methods. This study included 12 patients (3 women, 9 men; mean age, 32.2 years). All patients proved to be infected with influenza A (H1N1) virus. The hematologic malignancies were acute myeloid leukemia (n = 8), chronic lymphocytic leukemia (n = 2), multiple myeloma (n = 1), and myelodysplastic syndrome (n = 1). All the patients underwent CT scanning using a 64 multidetector CT scanner. Chest CT scans were reviewed for ground-glass opacities (GGOs), consolidation, airway thickening/dilatation, nodules, mediastinal lymphadenopathy, and pleural effusion. Results. More than one CT finding was detected in every patient. Pulmonary affection was bilateral, more on the left side. The affections were mainly peribronchial. Airway wall thickening and dilatation were detected in all 12 patients, GGO in 9/12 patients, nodules in 6/12 patients, consolidation in 6/12 patients, hilar lymphadenopathy in 3/12 patients, and pleural effusion in 2/12 patients. Conclusion. Acute myeloid leukemia is the most common hematologic malignancy affected by influenza A (H1N1) virus. The left lung is affected more than the right one. The most common multidetector CT findings are unilateral or bilateral airway thickening and dilatation. Multidetector CT can be used for early and accurate assessment of pulmonary affection with influenza A H1N1 virus infection.

  5. Avian Influenza Virus (H5N1): a Threat to Human Health

    OpenAIRE

    Peiris, J. S. Malik; de Jong, Menno D.; Guan, Yi

    2007-01-01

    Pandemic influenza virus has its origins in avian influenza viruses. The highly pathogenic avian influenza virus subtype H5N1 is already panzootic in poultry, with attendant economic consequences. It continues to cross species barriers to infect humans and other mammals, often with fatal outcomes. Therefore, H5N1 virus has rightly received attention as a potential pandemic threat. However, it is noted that the pandemics of 1957 and 1968 did not arise from highly pathogenic influenza viruses, ...

  6. An Ultrasensitive Mechanism Regulates Influenza Virus-Induced Inflammation.

    Directory of Open Access Journals (Sweden)

    Jason E Shoemaker

    2015-06-01

    Full Text Available Influenza viruses present major challenges to public health, evident by the 2009 influenza pandemic. Highly pathogenic influenza virus infections generally coincide with early, high levels of inflammatory cytokines that some studies have suggested may be regulated in a strain-dependent manner. However, a comprehensive characterization of the complex dynamics of the inflammatory response induced by virulent influenza strains is lacking. Here, we applied gene co-expression and nonlinear regression analysis to time-course, microarray data developed from influenza-infected mouse lung to create mathematical models of the host inflammatory response. We found that the dynamics of inflammation-associated gene expression are regulated by an ultrasensitive-like mechanism in which low levels of virus induce minimal gene expression but expression is strongly induced once a threshold virus titer is exceeded. Cytokine assays confirmed that the production of several key inflammatory cytokines, such as interleukin 6 and monocyte chemotactic protein 1, exhibit ultrasensitive behavior. A systematic exploration of the pathways regulating the inflammatory-associated gene response suggests that the molecular origins of this ultrasensitive response mechanism lie within the branch of the Toll-like receptor pathway that regulates STAT1 phosphorylation. This study provides the first evidence of an ultrasensitive mechanism regulating influenza virus-induced inflammation in whole lungs and provides insight into how different virus strains can induce distinct temporal inflammation response profiles. The approach developed here should facilitate the construction of gene regulatory models of other infectious diseases.

  7. Interaction of influenza virus proteins with nucleosomes

    International Nuclear Information System (INIS)

    Garcia-Robles, Inmaculada; Akarsu, Hatice; Mueller, Christoph W.; Ruigrok, Rob W.H.; Baudin, Florence

    2005-01-01

    During influenza virus infection, transcription and replication of the viral RNA take place in the cell nucleus. Directly after entry in the nucleus the viral ribonucleoproteins (RNPs, the viral subunits containing vRNA, nucleoprotein and the viral polymerase) are tightly associated with the nuclear matrix. Here, we have analysed the binding of RNPs, M1 and NS2/NEP proteins to purified nucleosomes, reconstituted histone octamers and purified single histones. RNPs and M1 both bind to the chromatin components but at two different sites, RNP to the histone tails and M1 to the globular domain of the histone octamer. NS2/NEP did not bind to nucleosomes at all. The possible consequences of these findings for nuclear release of newly made RNPs and for other processes during the infection cycle are discussed

  8. Effect of radiation on certain animal viruses in liquid swine manure

    International Nuclear Information System (INIS)

    Simon, J.; Mocsari, E.; Di Gleria, M.; Felkai, V.

    1983-01-01

    The virucidal effect of 60 Co γ-radiation was studied in cell culture medium and in liquid swine manure involving the most important porcine viruses that can be spread by liquid manure. The radiation doses, 20 and 30 kGy, were determined in preliminary experiments. At a radiation dose of 30 kGy, the activity of extracellular and cell-associated test viruses, except swine vesicular disease virus (SVDV), was completely destroyed both in cell culture medium and in liquid swine manure. The infectivity of SVDV decreased significantly (P 10 TCID 50 , both in cell culture medium and in liquid manure and this value corresponded to the international effectiveness demand for a disinfectant. The results showed that the safe disinfection virus in liquid swine manure by ionizing radiation requires a radiation dose of 30 kGy. (author)

  9. Avian influenza virus risk assessment in falconry

    Directory of Open Access Journals (Sweden)

    Lüschow Dörte

    2011-04-01

    Full Text Available Abstract Background There is a continuing threat of human infections with avian influenza viruses (AIV. In this regard falconers might be a potential risk group because they have close contact to their hunting birds (raptors such as falcons and hawks as well as their avian prey such as gulls and ducks. Both (hunting birds and prey birds seem to be highly susceptible to some AIV strains, especially H5N1. We therefore conducted a field study to investigate AIV infections in falconers, their falconry birds as well as prey birds. Findings During 2 hunting seasons (2006/2007 and 2007/2008 falconers took tracheal and cloacal swabs from 1080 prey birds that were captured by their falconry birds (n = 54 in Germany. AIV-RNA of subtypes H6, H9, or H13 was detected in swabs of 4.1% of gulls (n = 74 and 3.8% of ducks (n = 53 using RT-PCR. The remaining 953 sampled prey birds and all falconry birds were negative. Blood samples of the falconry birds tested negative for AIV specific antibodies. Serum samples from all 43 falconers reacted positive in influenza A virus-specific ELISA, but remained negative using microneutralisation test against subtypes H5 and H7 and haemagglutination inhibition test against subtypes H6, H9 and H13. Conclusion Although we were able to detect AIV-RNA in samples from prey birds, the corresponding falconry birds and falconers did not become infected. Currently falconers do not seem to carry a high risk for getting infected with AIV through handling their falconry birds and their prey.

  10. Reduction of Influenza Virus Titer and Protection against Influenza Virus Infection in Infant Mice Fed Lactobacillus casei Shirota

    OpenAIRE

    Yasui, Hisako; Kiyoshima, Junko; Hori, Tetsuji

    2004-01-01

    We investigated whether oral administration of Lactobacillus casei strain Shirota to neonatal and infant mice ameliorates influenza virus (IFV) infection in the upper respiratory tract and protects against influenza infection. In a model of upper respiratory IFV infection, the titer of virus in the nasal washings of infant mice administered L. casei Shirota (L. casei Shirota group) was significantly (P < 0.05) lower than that in infant mice administered saline (control group) (102.48 ± 100.31...

  11. Virulence determinants within the E2 glycoprotein of Classical Swine Fever Virus

    DEFF Research Database (Denmark)

    Johnston, Camille Melissa; Fahnøe, Ulrik; Lohse, Louise

    Classical Swine Fever is a highly contagious disease of pigs caused by Classical Swine Fever Virus (CSFV), a member of the pestivirus genus within the family Flaviviridae. The E2 glycoprotein of CSFV has been shown to be an important factor for the virulence of the virus. In a recent study, we have......Kos (with the SL motif). The results indicate that the E2 residues 763-64 play an important role in CSFV virulence....

  12. Avian Influenza Virus Glycoproteins Restrict Virus Replication and Spread through Human Airway Epithelium at Temperatures of the Proximal Airways

    OpenAIRE

    Scull, Margaret A.; Gillim-Ross, Laura; Santos, Celia; Roberts, Kim L.; Bordonali, Elena; Subbarao, Kanta; Barclay, Wendy S.; Pickles, Raymond J.

    2009-01-01

    Transmission of avian influenza viruses from bird to human is a rare event even though avian influenza viruses infect the ciliated epithelium of human airways in vitro and ex vivo. Using an in vitro model of human ciliated airway epithelium (HAE), we demonstrate that while human and avian influenza viruses efficiently infect at temperatures of the human distal airways (37 degrees C), avian, but not human, influenza viruses are restricted for infection at the cooler temperatures of the human p...

  13. Influenza virus inactivated by artificial ribonucleases as a prospective killed virus vaccine.

    Science.gov (United States)

    Fedorova, Antonina A; Goncharova, Elena P; Kovpak, Mikhail P; Vlassov, Valentin V; Zenkova, Marina A

    2012-04-19

    The inactivation of viral particles with agents causing minimal damage to the structure of surface epitopes is a well-established approach for the production of killed virus vaccines. Here, we describe new agents for the inactivation of influenza virus, artificial ribonucleases (aRNases), which are chemical compounds capable of cleaving RNA molecules. Several aRNases were identified, exhibiting significant virucidal activity against the influenza A virus and causing a minimal effect on the affinity of monoclonal antibodies for the inactivated virus. Using a murine model of the influenza virus infection, a high protective activity of the aRNase-inactivated virus as a vaccine was demonstrated. The results of the experiments demonstrate the efficacy of novel chemical agents in the preparation of vaccines against influenza and, perhaps, against other infections caused by RNA viruses. Copyright © 2012 Elsevier Ltd. All rights reserved.

  14. The Influenza NS1 Protein: What Do We Know in Equine Influenza Virus Pathogenesis?

    Directory of Open Access Journals (Sweden)

    Marta Barba

    2016-08-01

    Full Text Available Equine influenza virus remains a serious health and potential economic problem throughout most parts of the world, despite intensive vaccination programs in some horse populations. The influenza non-structural protein 1 (NS1 has multiple functions involved in the regulation of several cellular and viral processes during influenza infection. We review the strategies that NS1 uses to facilitate virus replication and inhibit antiviral responses in the host, including sequestering of double-stranded RNA, direct modulation of protein kinase R activity and inhibition of transcription and translation of host antiviral response genes such as type I interferon. Details are provided regarding what it is known about NS1 in equine influenza, especially concerning C-terminal truncation. Further research is needed to determine the role of NS1 in equine influenza infection, which will help to understand the pathophysiology of complicated cases related to cytokine imbalance and secondary bacterial infection, and to investigate new therapeutic and vaccination strategies.

  15. A Defective Interfering Influenza RNA Inhibits Infectious Influenza Virus Replication in Human Respiratory Tract Cells: A Potential New Human Antiviral

    Directory of Open Access Journals (Sweden)

    Claire M. Smith

    2016-08-01

    Full Text Available Defective interfering (DI viruses arise during the replication of influenza A virus and contain a non-infective version of the genome that is able to interfere with the production of infectious virus. In this study we hypothesise that a cloned DI influenza A virus RNA may prevent infection of human respiratory epithelial cells with infection by influenza A. The DI RNA (244/PR8 was derived by a natural deletion process from segment 1 of influenza A/PR/8/34 (H1N1; it comprises 395 nucleotides and is packaged in the DI virion in place of a full-length genome segment 1. Given intranasally, 244/PR8 DI virus protects mice and ferrets from clinical influenza caused by a number of different influenza A subtypes and interferes with production of infectious influenza A virus in cells in culture. However, evidence that DI influenza viruses are active in cells of the human respiratory tract is lacking. Here we show that 244/PR8 DI RNA is replicated by an influenza A challenge virus in human lung diploid fibroblasts, bronchial epithelial cells, and primary nasal basal cells, and that the yield of challenge virus is significantly reduced in a dose-dependent manner indicating that DI influenza virus has potential as a human antiviral.

  16. DETECTION OF CLASSICAL SWINE FEVER VIRUS BY RT-PCR IN WEST BENGAL, INDIA

    Directory of Open Access Journals (Sweden)

    Sumit Chowdhury

    2016-12-01

    Full Text Available Classical swine fever is a deadly disease of swine, caused by a RNA virus. The present study has identified presence of the classical swine fever virus (CSFV in pigs of West Bengal by one step reverse transcriptase PCR (RT-PCR performed using 5’ NTR specific primers. Internal organs from clinically affected pigs were examined from three districts of West Bengal. RT-PCT has identified presence of CSFV in all the tissues examined confirming presence of CSFV in different parts of the state.

  17. The temperature-sensitive and attenuation phenotypes conferred by mutations in the influenza virus PB2, PB1, and NP genes are influenced by the species of origin of the PB2 gene in reassortant viruses derived from influenza A/California/07/2009 and A/WSN/33 viruses.

    Science.gov (United States)

    Broadbent, Andrew J; Santos, Celia P; Godbout, Rachel A; Subbarao, Kanta

    2014-11-01

    Live attenuated influenza vaccines in the United States are derived from a human virus that is temperature sensitive (ts), characterized by restricted (≥ 100-fold) replication at 39 °C. The ts genetic signature (ts sig) has been mapped to 5 loci in 3 genes: PB1 (391 E, 581 G, and 661 T), PB2 (265 S), and NP (34 G). However, when transferred into avian and swine influenza viruses, only partial ts and attenuation phenotypes occur. To investigate the reason for this, we introduced the ts sig into the human origin virus A/WSN/33 (WSN), the avian-origin virus A/Vietnam/1203/04 (VN04), and the swine origin triple-reassortant 2009 pandemic H1N1 virus A/California/07/2009 (CA07), which contains gene segments from human, avian, and swine viruses. The VN04(ts sig) and CA07(ts sig) viruses replicated efficiently in Madin-Darby canine kidney (MDCK) cells at 39 °C, but the replication of WSN(ts sig) was restricted ≥ 100-fold compared to that at 33 °C. Reassortant CA07(ts sig) viruses were generated with individual polymerase gene segments from WSN, and vice versa. Only ts sig viruses with a PB2 gene segment derived from WSN were restricted in replication ≥ 100-fold at 39 °C. In ferrets, the CA07(ts sig) virus replicated in the upper and lower respiratory tract, but the replication of a reassortant CA07(ts sig) virus with a WSN PB2 gene was severely restricted in the lungs. Taken together, these data suggest that the origin of the PB2 gene segment influences the ts phenotype in vitro and attenuation in vivo. This could have implications for the design of novel live vaccines against animal origin influenza viruses. Live attenuated influenza vaccines (LAIVs) on temperature-sensitive (ts) backbones derived from animal origin influenza viruses are being sought for use in the poultry and swine industries and to protect people against animal origin influenza. However, inserting the ts genetic signature from a licensed LAIV backbone fails to fully attenuate these viruses. Our

  18. Virulent PB1-F2 residues: effects on fitness of H1N1 influenza A virus in mice and changes during evolution of human influenza A viruses.

    Science.gov (United States)

    Alymova, Irina V; McCullers, Jonathan A; Kamal, Ram P; Vogel, Peter; Green, Amanda M; Gansebom, Shane; York, Ian A

    2018-05-10

    Specific residues of influenza A virus (IAV) PB1-F2 proteins may enhance inflammation or cytotoxicity. In a series of studies, we evaluated the function of these virulence-associated residues in the context of different IAV subtypes in mice. Here, we demonstrate that, as with the previously assessed pandemic 1968 (H3N2) IAV, PB1-F2 inflammatory residues increase the virulence of H1N1 IAV, suggesting that this effect might be a universal feature. Combining both inflammatory and cytotoxic residues in PB1-F2 enhanced virulence further, compared to either motif alone. Residues from these virulent motifs have been present in natural isolates from human seasonal IAV of all subtypes, but there has been a trend toward a gradual reduction in the number of virulent residues over time. However, human IAV of swine and avian origin tend to have more virulent residues than do the human-adapted seasonal strains, raising the possibility that donation of PB1 segments from these zoonotic viruses may increase the severity of some seasonal human strains. Our data suggest the value of surveillance of virulent residues in both human and animal IAV to predict the severity of influenza season.

  19. The Role of Extracellular Histones in Influenza Virus Pathogenesis.

    Science.gov (United States)

    Ashar, Harshini K; Mueller, Nathan C; Rudd, Jennifer M; Snider, Timothy A; Achanta, Mallika; Prasanthi, Maram; Pulavendran, Sivasami; Thomas, Paul G; Ramachandran, Akhilesh; Malayer, Jerry R; Ritchey, Jerry W; Rajasekhar, Rachakatla; Chow, Vincent T K; Esmon, Charles T; Teluguakula, Narasaraju

    2018-01-01

    Although exaggerated host immune responses have been implicated in influenza-induced lung pathogenesis, the etiologic factors that contribute to these events are not completely understood. We previously demonstrated that neutrophil extracellular traps exacerbate pulmonary injury during influenza pneumonia. Histones are the major protein components of neutrophil extracellular traps and are known to have cytotoxic effects. Here, we examined the role of extracellular histones in lung pathogenesis during influenza. Mice infected with influenza virus displayed high accumulation of extracellular histones, with widespread pulmonary microvascular thrombosis. Occluded pulmonary blood vessels with vascular thrombi often exhibited endothelial necrosis surrounded by hemorrhagic effusions and pulmonary edema. Histones released during influenza induced cytotoxicity and showed strong binding to platelets within thrombi in infected mouse lungs. Nasal wash samples from influenza-infected patients also showed increased accumulation of extracellular histones, suggesting a possible clinical relevance of elevated histones in pulmonary injury. Although histones inhibited influenza growth in vitro, in vivo treatment with histones did not yield antiviral effects and instead exacerbated lung pathology. Blocking with antihistone antibodies caused a marked decrease in lung pathology in lethal influenza-challenged mice and improved protection when administered in combination with the antiviral agent oseltamivir. These findings support the pathogenic effects of extracellular histones in that pulmonary injury during influenza was exacerbated. Targeting histones provides a novel therapeutic approach to influenza pneumonia. Copyright © 2018 American Society for Investigative Pathology. Published by Elsevier Inc. All rights reserved.

  20. Toward a method for tracking virus evolutionary trajectory applied to the pandemic H1N1 2009 influenza virus.

    Science.gov (United States)

    Squires, R Burke; Pickett, Brett E; Das, Sajal; Scheuermann, Richard H

    2014-12-01

    In 2009 a novel pandemic H1N1 influenza virus (H1N1pdm09) emerged as the first official influenza pandemic of the 21st century. Early genomic sequence analysis pointed to the swine origin of the virus. Here we report a novel computational approach to determine the evolutionary trajectory of viral sequences that uses data-driven estimations of nucleotide substitution rates to track the gradual accumulation of observed sequence alterations over time. Phylogenetic analysis and multiple sequence alignments show that sequences belonging to the resulting evolutionary trajectory of the H1N1pdm09 lineage exhibit a gradual accumulation of sequence variations and tight temporal correlations in the topological structure of the phylogenetic trees. These results suggest that our evolutionary trajectory analysis (ETA) can more effectively pinpoint the evolutionary history of viruses, including the host and geographical location traversed by each segment, when compared against either BLAST or traditional phylogenetic analysis alone. Copyright © 2014 Elsevier B.V. All rights reserved.

  1. Swine-origin influenza A viral (H1N1) infection in children. Chest computed tomography findings

    International Nuclear Information System (INIS)

    Im, Soo-Ah; Kim, Hyo-Lim; Yoon, Jong-seo; Kang, Jin-Han; Lee, Joon-Sung; Chun, Ho-Jong

    2011-01-01

    The aim of this study was to review the chest computed tomography (CT) findings in children with swine-origin influenza (H1N1) virus (S-OIV) infection. The radiologists retrospectively reviewed chest CT findings in 12 children with S-OIV infection and recorded the following findings: ground-glass opacities (GGO), consolidation, nodules, reticular opacities, peribronchial cuffing, and air trapping; distribution; affected lobes. The presence of pleural effusions, pneumomediastinum, pulmonary interstitial emphysema (PIE), and lymphadenopathy was also recorded. Chest CT revealed GGO (67%), consolidation (67%), nodules (25%), peribronchial cuffing (42%), and air trapping (33%). The distribution of the lesions was random (75%), peribronchial (17%), or subpleural (8%). The lobes affected were the lower (92%), upper (58%), and middle (17%) lobes. There were associated pleural effusions (42%), PIE (42%), pneumomediastinum (33%), and lymphadenopathy (75%). Among five patients with air-leak complications, three had a history of allergies and three required the intensive care unit. Chest CT findings in children with S-OIV infection were peribronchial thickening and a mixture of airspace consolidation and GGO with random distribution and lower lobe predominance. Pleural effusion, lymphadenopathy, PIE, and pneumomediastinum may be associated findings. (author)

  2. Rapid detection of the avian influenza virus H5N1 subtype in Egypt

    African Journals Online (AJOL)

    Dr

    highly pathogenic avian influenza virus subtype H5N1 in Egypt is threatening poultry and ... Key words: Avian influenza virus, H5N1, fluorescent antibody enzyme-linked immunosorbent assay (ELISA) ..... poultry and is potentially zoonotic.

  3. Evaluation of recombinant influenza virus-simian immunodeficiency virus vaccines in macaques.

    Science.gov (United States)

    Sexton, Amy; De Rose, Robert; Reece, Jeanette C; Alcantara, Sheilajen; Loh, Liyen; Moffat, Jessica M; Laurie, Karen; Hurt, Aeron; Doherty, Peter C; Turner, Stephen J; Kent, Stephen J; Stambas, John

    2009-08-01

    There is an urgent need for human immunodeficiency virus (HIV) vaccines that induce robust mucosal immunity. Influenza A viruses (both H1N1 and H3N2) were engineered to express simian immunodeficiency virus (SIV) CD8 T-cell epitopes and evaluated following administration to the respiratory tracts of 11 pigtail macaques. Influenza virus was readily detected from respiratory tract secretions, although the infections were asymptomatic. Animals seroconverted to influenza virus and generated CD8 and CD4 T-cell responses to influenza virus proteins. SIV-specific CD8 T-cell responses bearing the mucosal homing marker beta7 integrin were induced by vaccination of naïve animals. Further, SIV-specific CD8 T-cell responses could be boosted by recombinant influenza virus-SIV vaccination of animals with already-established SIV infection. Sequential vaccination with influenza virus-SIV recombinants of different subtypes (H1N1 followed by H3N2 or vice versa) produced only a limited boost in immunity, probably reflecting T-cell immunity to conserved internal proteins of influenza A virus. SIV challenge of macaques vaccinated with an influenza virus expressing a single SIV CD8 T cell resulted in a large anamnestic recall CD8 T-cell response, but immune escape rapidly ensued and there was no impact on chronic SIV viremia. Although our results suggest that influenza virus-HIV vaccines hold promise for the induction of mucosal immunity to HIV, broader antigen cover will be needed to limit cytotoxic T-lymphocyte escape.

  4. Virological surveillance and preliminary antigenic characterization of influenza viruses in pigs in five European countries from 2006 to 2008.

    Science.gov (United States)

    Kyriakis, C S; Brown, I H; Foni, E; Kuntz-Simon, G; Maldonado, J; Madec, F; Essen, S C; Chiapponi, C; Van Reeth, K

    2011-03-01

    This study presents the results of the virological surveillance for swine influenza viruses (SIVs) in Belgium, UK, Italy, France and Spain from 2006 to 2008. Our major aims were to clarify the occurrence of the three SIV subtypes - H1N1, H3N2 and H1N2 - at regional levels, to identify novel reassortant viruses and to antigenically compare SIVs with human H1N1 and H3N2 influenza viruses. Lung tissue and/or nasal swabs from outbreaks of acute respiratory disease in pigs were investigated by virus isolation. The hemagglutinin (HA) and neuraminidase (NA) subtypes were determined using standard methods. Of the total 169 viruses, 81 were classified as 'avian-like' H1N1, 36 as human-like H3N2 and 47 as human-like H1N2. Only five novel reassortant viruses were identified: two H1N1 viruses had a human-like HA and three H1N2 viruses an avian-like HA. All three SIV subtypes were detected in Belgium, Italy and Spain, while only H1N1 and H1N2 viruses were found in UK and Northwestern France. Cross-hemagglutination inhibition (HI) tests with hyperimmune sera against selected older and recent human influenza viruses showed a strong antigenic relationship between human H1N1 and H3N2 viruses from the 1980s and H1N2 and H3N2 human-like SIVs, confirming their common origin. However, antisera against human viruses isolated during the last decade did not react with currently circulating H1 or H3 SIVs, suggesting that especially young people may be, to some degree, susceptible to SIV infections. © 2009 Blackwell Verlag GmbH.

  5. Chimeric Hemagglutinin Constructs Induce Broad Protection against Influenza B Virus Challenge in the Mouse Model.

    Science.gov (United States)

    Ermler, Megan E; Kirkpatrick, Ericka; Sun, Weina; Hai, Rong; Amanat, Fatima; Chromikova, Veronika; Palese, Peter; Krammer, Florian

    2017-06-15

    Seasonal influenza virus epidemics represent a significant public health burden. Approximately 25% of all influenza virus infections are caused by type B viruses, and these infections can be severe, especially in children. Current influenza virus vaccines are an effective prophylaxis against infection but are impacted by rapid antigenic drift, which can lead to mismatches between vaccine strains and circulating strains. Here, we describe a broadly protective vaccine candidate based on chimeric hemagglutinins, consisting of globular head domains from exotic influenza A viruses and stalk domains from influenza B viruses. Sequential vaccination with these constructs in mice leads to the induction of broadly reactive antibodies that bind to the conserved stalk domain of influenza B virus hemagglutinin. Vaccinated mice are protected from lethal challenge with diverse influenza B viruses. Results from serum transfer experiments and antibody-dependent cell-mediated cytotoxicity (ADCC) assays indicate that this protection is antibody mediated and based on Fc effector functions. The present data suggest that chimeric hemagglutinin-based vaccination is a viable strategy to broadly protect against influenza B virus infection. IMPORTANCE While current influenza virus vaccines are effective, they are affected by mismatches between vaccine strains and circulating strains. Furthermore, the antiviral drug oseltamivir is less effective for treating influenza B virus infections than for treating influenza A virus infections. A vaccine that induces broad and long-lasting protection against influenza B viruses is therefore urgently needed. Copyright © 2017 American Society for Microbiology.

  6. No serological evidence that harbour porpoises are additional hosts of influenza B viruses.

    Directory of Open Access Journals (Sweden)

    Rogier Bodewes

    Full Text Available Influenza A and B viruses circulate among humans causing epidemics almost annually. While various hosts for influenza A viruses exist, influenza B viruses have been detected only in humans and seals. However, recurrent infections of seals in Dutch coastal waters with influenza B viruses that are antigenetically distinct from influenza B viruses circulating among humans suggest that influenza B viruses have been introduced into this seal population by another, non-human, host. Harbour porpoises (Phocoena phocoena are sympatric with seals in these waters and are also occasionally in close contact with humans after stranding and subsequent rehabilitation. In addition, virus attachment studies demonstrated that influenza B viruses can bind to cells of the respiratory tract of these animals. Therefore, we hypothesized that harbour porpoises might be a reservoir of influenza B viruses. In the present study, an unique set of serum samples from 79 harbour porpoises, stranded alive on the Dutch coast between 2003 and 2013, was tested for the presence of antibodies against influenza B viruses by use of the hemagglutination inhibition test and for antibodies against influenza A viruses by use of a competitive influenza A nucleoprotein ELISA. No antibodies were detected against either virus, suggesting that influenza A and B virus infections of harbour porpoises in Dutch coastal waters are not common, which was supported by statistical analysis of the dataset.

  7. Evidence for subclinical avian influenza virus infections among rural Thai villagers.

    Science.gov (United States)

    Khuntirat, Benjawan P; Yoon, In-Kyu; Blair, Patrick J; Krueger, Whitney S; Chittaganpitch, Malinee; Putnam, Shannon D; Supawat, Krongkaew; Gibbons, Robert V; Pattamadilok, Sirima; Sawanpanyalert, Pathom; Heil, Gary L; Friary, John A; Capuano, Ana W; Gray, Gregory C

    2011-10-01

    Regions of Thailand reported sporadic outbreaks of A/H5N1 highly pathogenic avian influenza (HPAI) among poultry between 2004 and 2008. Kamphaeng Phet Province, in north-central Thailand had over 50 HPAI poultry outbreaks in 2004 alone, and 1 confirmed and 2 likely other human HPAI infections between 2004 and 2006. In 2008, we enrolled a cohort of 800 rural Thai adults living in 8 sites within Kamphaeng Phet Province in a prospective study of zoonotic influenza transmission. We studied participants' sera with serologic assays against 16 avian, 2 swine, and 8 human influenza viruses. Among participants (mean age 49.6 years and 58% female) 65% reported lifetime poultry exposure of at least 30 consecutive minutes. Enrollees had elevated antibodies by microneutralization assay against 3 avian viruses: A/Hong Kong/1073/1999(H9N2), A/Thailand/676/2005(H5N1), and A/Thailand/384/2006(H5N1). Bivariate risk factor modeling demonstrated that male gender, lack of an indoor water source, and tobacco use were associated with elevated titers against avian H9N2 virus. Multivariate modeling suggested that increasing age, lack of an indoor water source, and chronic breathing problems were associated with infection with 1 or both HPAI H5N1 strains. Poultry exposure was not associated with positive serologic findings. These data suggest that people in rural central Thailand may have experienced subclinical avian influenza infections as a result of yet unidentified environmental exposures. Lack of an indoor water source may play a role in transmission.

  8. Influenza B virus M2 protein can functionally replace its influenza A virus counterpart in promoting virus replication

    International Nuclear Information System (INIS)

    Wanitchang, Asawin; Wongthida, Phonphimon; Jongkaewwattana, Anan

    2016-01-01

    The M2 protein (AM2 and BM2) of influenza A and B viruses function as a proton channel essential for viral replication. They also carry a cytoplasmic tail whose functions are not fully delineated. It is currently unknown whether these proteins could be replaced functionally in a viral context. Here, we generated single-cycle influenza A viruses (scIAV-ΔHA) carrying various M2-2A-mCherry constructs in the segment 4 (HA) and evaluated their growth in complementing cells. Intriguingly, the scIAV-ΔHA carrying AM2 and that bearing BM2 grew comparably well in MDCK-HA cells. Furthermore, while the virus carrying chimeric B-AM2 in which the BM2 transmembrane fused with the AM2 cytoplasmic tail produced robust infection, the one bearing the AM2 transmembrane fused with the BM2 cytoplasmic tail (A-BM2) exhibited severely impaired growth. Altogether, we demonstrate that AM2 and BM2 are functionally interchangeable and underscore the role of compatibility between transmembrane and cytoplasmic tail of the M2 protein. -- Highlights: •Flu A M2 protein (AM2) can be functionally replaced by that of Flu B (BM2). •Both AM2 and BM2 with extended cytoplasmic tail are functional. •Compatibility between the ion channel and the cytoplasmic tail is critical for M2 function. •M2 with higher ion channel activity may augment influenza virus replication.

  9. Influenza B virus M2 protein can functionally replace its influenza A virus counterpart in promoting virus replication

    Energy Technology Data Exchange (ETDEWEB)

    Wanitchang, Asawin; Wongthida, Phonphimon; Jongkaewwattana, Anan, E-mail: anan.jon@biotec.or.th

    2016-11-15

    The M2 protein (AM2 and BM2) of influenza A and B viruses function as a proton channel essential for viral replication. They also carry a cytoplasmic tail whose functions are not fully delineated. It is currently unknown whether these proteins could be replaced functionally in a viral context. Here, we generated single-cycle influenza A viruses (scIAV-ΔHA) carrying various M2-2A-mCherry constructs in the segment 4 (HA) and evaluated their growth in complementing cells. Intriguingly, the scIAV-ΔHA carrying AM2 and that bearing BM2 grew comparably well in MDCK-HA cells. Furthermore, while the virus carrying chimeric B-AM2 in which the BM2 transmembrane fused with the AM2 cytoplasmic tail produced robust infection, the one bearing the AM2 transmembrane fused with the BM2 cytoplasmic tail (A-BM2) exhibited severely impaired growth. Altogether, we demonstrate that AM2 and BM2 are functionally interchangeable and underscore the role of compatibility between transmembrane and cytoplasmic tail of the M2 protein. -- Highlights: •Flu A M2 protein (AM2) can be functionally replaced by that of Flu B (BM2). •Both AM2 and BM2 with extended cytoplasmic tail are functional. •Compatibility between the ion channel and the cytoplasmic tail is critical for M2 function. •M2 with higher ion channel activity may augment influenza virus replication.

  10. Control of Influenza and Poliomyelitis with Killed Virus Vaccines

    Science.gov (United States)

    Salk, Jonas; Salk, Darrell

    1977-01-01

    Discusses control of poliomyelitis and influenza by live and killed virus vaccines. Considered are the etiological agents, pathogenic mechanisms and epidemiology of each disease. Reviews recent scientific studies of the diseases. Recommends use of killed virus vaccines in controlling both diseases. (CS)

  11. Avian influenza A viruses: From zoonosis to pandemic

    NARCIS (Netherlands)

    M. Richard (Mathilde); M.T. de Graaf (Marieke); S. Herfst (Sander)

    2014-01-01

    textabstractZoonotic influenza A viruses originating from the animal reservoir pose a threat for humans, as they have the ability to trigger pandemics upon adaptation to and invasion of an immunologically naive population. Of particular concern are the H5N1 viruses that continue to circulate in

  12. Rapidly expanding range of highly pathogenic avian influenza viruses

    Science.gov (United States)

    Hall, Jeffrey S.; Dusek, Robert J.; Spackman, Erica

    2015-01-01

    The movement of highly pathogenic avian influenza (H5N8) virus across Eurasia and into North America and the virus’ propensity to reassort with co-circulating low pathogenicity viruses raise concerns among poultry producers, wildlife biologists, aviculturists, and public health personnel worldwide. Surveillance, modeling, and experimental research will provide the knowledge required for intelligent policy and management decisions.

  13. Avian influenza a virus budding morphology: spherical or filamentous?

    Science.gov (United States)

    Most strains of influenza A virus (IAV) can produce long (µm length) filamentous virus particles as well as ~100 nm diameter spherical virions. The function of the filamentous particles is unclear but is hypothesized to facilitate transmission within or from the respiratory tract. In mammalian IAVs,...

  14. Transmission of highly pathogenic avian influenza H7 virus

    NARCIS (Netherlands)

    Bos, M.E.H.

    2009-01-01

    Knowledge of the transmission of highly pathogenic avian influenza (HPAI) virus still has gaps, complicating epidemic control. A model was developed to back-calculate the day HPAI virus was introduced into a flock, based on within-flock mortality data of the Dutch HPAI H7N7 epidemic (2003). The

  15. Influenza virus and endothelial cells: A species specific relationship

    NARCIS (Netherlands)

    K.R. Short (Kirsty); E.J.B. Veldhuis Kroeze (Edwin); L.A. Reperant (Leslie); M. Richard (Mathilde); T. Kuiken (Thijs)

    2014-01-01

    textabstractInfluenza A virus (IAV) infection is an important cause of respiratory disease in humans. The original reservoirs of IAV are wild waterfowl and shorebirds, where virus infection causes limited, if any, disease. Both in humans and in wild waterbirds, epithelial cells are the main target

  16. Influenza and other respiratory viruses in three Central American countries

    Science.gov (United States)

    Laguna‐Torres, Victor A.; Sánchez‐Largaespada, José F.; Lorenzana, Ivette; Forshey, Brett; Aguilar, Patricia; Jimenez, Mirna; Parrales, Eduardo; Rodriguez, Francisco; García, Josefina; Jimenez, Ileana; Rivera, Maribel; Perez, Juan; Sovero, Merly; Rios, Jane; Gamero, María E.; Halsey, Eric S.; Kochel, Tadeusz J.

    2010-01-01

    Please cite this paper as: Laguna‐Torres et al. (2011) Influenza and other respiratory viruses in three Central American countries. Influenza and Other Respiratory Viruses 5(2), 123–134. Background  Despite the disease burden imposed by respiratory diseases on children in Central America, there is a paucity of data describing the etiologic agents of the disease. Aims  To analyze viral etiologic agents associated with influenza‐like illness (ILI) in participants reporting to one outpatient health center, one pediatric hospital, and three general hospitals in El Salvador, Honduras, and Nicaragua Material & Methods  Between August 2006 and April 2009, pharyngeal swabs were collected from outpatients and inpatients. Patient specimens were inoculated onto cultured cell monolayers, and viral antigens were detected by indirect and direct immunofluorescence staining. Results  A total of 1,756 patients were enrolled, of whom 1,195 (68.3%) were under the age of 5; and 183 (10.4%) required hospitalization. One or more viral agents were identified in 434 (24.7%) cases, of which 17 (3.9%) were dual infections. The most common viruses isolated were influenza A virus (130; 7.4% of cases), respiratory syncytial virus (122; 6.9%), adenoviruses (63; 3.6%), parainfluenza viruses (57; 3.2%), influenza B virus (47; 2.7% of cases), and herpes simplex virus 1 (22; 1.3%). In addition, human metapneumovirus and enteroviruses (coxsackie and echovirus) were isolated from patient specimens. Discussion  When compared to the rest of the population, viruses were isolated from a significantly higher percentage of patients age 5 or younger. The prevalence of influenza A virus or influenza B virus infections was similar between the younger and older age groups. RSV was the most commonly detected pathogen in infants age 5 and younger and was significantly associated with pneumonia (p < 0.0001) and hospitalization (p < 0.0001). Conclusion  Genetic analysis of influenza

  17. Influenza virus neutralizing antibodies and IgG isotype profiles after immunization of mice with influenza A subunit vaccine using various adjuvants

    NARCIS (Netherlands)

    Benne, CA; Harmsen, M; vanderGraaff, W; Verheul, AFM; Snippe, H; Kraaijeveld, CA

    The influence of various adjuvants on the development of influenza virus neutralizing antibodies and distribution of anti-influenza virus IgG isotypes after immunization of mice with influenza A (H3N2) subunit vaccine was investigated. Serum titres of influenza virus neutralizing antibodies and

  18. Cloned defective interfering influenza virus protects ferrets from pandemic 2009 influenza A virus and allows protective immunity to be established.

    Directory of Open Access Journals (Sweden)

    Nigel J Dimmock

    Full Text Available Influenza A viruses are a major cause of morbidity and mortality in the human population, causing epidemics in the winter, and occasional worldwide pandemics. In addition there are periodic outbreaks in domestic poultry, horses, pigs, dogs, and cats. Infections of domestic birds can be fatal for the birds and their human contacts. Control in man operates through vaccines and antivirals, but both have their limitations. In the search for an alternative treatment we have focussed on defective interfering (DI influenza A virus. Such a DI virus is superficially indistinguishable from a normal virus but has a large deletion in one of the eight RNAs that make up the viral genome. Antiviral activity resides in the deleted RNA. We have cloned one such highly active DI RNA derived from segment 1 (244 DI virus and shown earlier that intranasal administration protects mice from lethal disease caused by a number of different influenza A viruses. A more cogent model of human influenza is the ferret. Here we found that intranasal treatment with a single dose of 2 or 0.2 µg 244 RNA delivered as A/PR/8/34 virus particles protected ferrets from disease caused by pandemic virus A/California/04/09 (A/Cal; H1N1. Specifically, 244 DI virus significantly reduced fever, weight loss, respiratory symptoms, and infectious load. 244 DI RNA, the active principle, was amplified in nasal washes following infection with A/Cal, consistent with its amelioration of clinical disease. Animals that were treated with 244 DI RNA cleared infectious and DI viruses without delay. Despite the attenuation of infection and disease by DI virus, ferrets formed high levels of A/Cal-specific serum haemagglutination-inhibiting antibodies and were solidly immune to rechallenge with A/Cal. Together with earlier data from mouse studies, we conclude that 244 DI virus is a highly effective antiviral with activity potentially against all influenza A subtypes.

  19. Chiropteran influenza viruses: flu from bats or a relic from the past?

    Science.gov (United States)

    Brunotte, Linda; Beer, Martin; Horie, Masayuki; Schwemmle, Martin

    2016-02-01

    The identification of influenza A-like genomic sequences in bats suggests the existence of distinct lineages of chiropteran influenza viruses in South and Central America. These viruses share similarities with conventional influenza A viruses but lack the canonical receptor-binding property and neuraminidase function. The inability to isolate infectious bat influenza viruses impeded further studies, however, reverse genetic analysis provided new insights into the molecular biology of these viruses. In this review, we highlight the recent developments in the field of the newly discovered bat-derived influenza A-like viruses. We also discuss whether bats are a neglected natural reservoir of influenza viruses, the risk associated with bat influenza viruses for humans and whether these viruses originate from the pool of avian IAV or vice versa. Copyright © 2016 Elsevier B.V. All rights reserved.

  20. Influenza-Like Illnesses in Senegal: Not Only Focus on Influenza Viruses

    Science.gov (United States)

    Dia, Ndongo; Diene Sarr, Fatoumata; Thiam, Diamilatou; Faye Sarr, Tening; Espié, Emmanuelle; OmarBa, Ibrahim; Coly, Malang; Niang, Mbayame; Richard, Vincent

    2014-01-01

    Influenza surveillance in African countries was initially restricted to the identification of circulating strains. In Senegal, the network has recently been enhanced (i) to include epidemiological data from Dakar and other regions and (ii) to extend virological surveillance to other respiratory viruses. Epidemiological data from the sentinel sites is transmitted daily by mobile phone. The data include those for other febrile syndromes similar to influenza-like illnesses (ILI), corresponding to integrated approach. Also, clinical samples are randomly selected and analyzed for influenza and other respiratory viruses. There were 101,640 declared visits to the 11 sentinel sites between week 11-2012 and week 35-2013; 22% of the visits were for fever syndromes and 23% of the cases of fever syndrome were ILI. Influenza viruses were the second most frequent cause of ILI (20%), after adenoviruses (21%) and before rhinoviruses (18%) and enteroviruses (15%). Co-circulation and co-infection were frequent and were responsible for ILI peaks. The first months of implementation of the enhanced surveillance system confirmed that viruses other the influenza make large contributions to influenza-like illnesses. It is therefore important to consider these etiologies in the development of strategies to reduce respiratory infections. More informative tools and research studies are required to assess the burden of respiratory infections in developing countries. PMID:24675982

  1. Avian Influenza Virus A (H5N1), Detected through Routine Surveillance, in Child, Bangladesh

    Science.gov (United States)

    Alamgir, A.S.M.; Sultana, Rebecca; Islam, M. Saiful; Rahman, Mustafizur; Fry, Alicia M.; Shu, Bo; Lindstrom, Stephen; Nahar, Kamrun; Goswami, Doli; Haider, M. Sabbir; Nahar, Sharifun; Butler, Ebonee; Hancock, Kathy; Donis, Ruben O.; Davis, Charles T.; Zaman, Rashid Uz; Luby, Stephen P.; Uyeki, Timothy M.; Rahman, Mahmudur

    2009-01-01

    We identified avian influenza virus A (H5N1) infection in a child in Bangladesh in 2008 by routine influenza surveillance. The virus was of the same clade and phylogenetic subgroup as that circulating among poultry during the period. This case illustrates the value of routine surveillance for detection of novel influenza virus. PMID:19751601

  2. Avian influenza virus (H5N1): a threat to human health

    NARCIS (Netherlands)

    Peiris, J. S. Malik; de Jong, Menno D.; Guan, Yi

    2007-01-01

    Pandemic influenza virus has its origins in avian influenza viruses. The highly pathogenic avian influenza virus subtype H5N1 is already panzootic in poultry, with attendant economic consequences. It continues to cross species barriers to infect humans and other mammals, often with fatal outcomes.

  3. Hypothiocyanite produced by human and rat respiratory epithelial cells inactivates extracellular H1N2 influenza A virus.

    Science.gov (United States)

    Gingerich, Aaron; Pang, Lan; Hanson, Jarod; Dlugolenski, Daniel; Streich, Rebecca; Lafontaine, Eric R; Nagy, Tamás; Tripp, Ralph A; Rada, Balázs

    2016-01-01

    Our aim was to study whether an extracellular, oxidative antimicrobial mechanism inherent to tracheal epithelial cells is capable of inactivating influenza H1N2 virus. Epithelial cells were isolated from tracheas of male Sprague-Dawley rats. Both primary human and rat tracheobronchial epithelial cells were differentiated in air-liquid interface cultures. A/swine/Illinois/02860/09 (swH1N2) influenza A virions were added to the apical side of airway cells for 1 h in the presence or absence of lactoperoxidase or thiocyanate. Characterization of rat epithelial cells (morphology, Duox expression) occurred via western blotting, PCR, hydrogen peroxide production measurement and histology. The number of viable virions was determined by plaque assays. Statistical difference of the results was analyzed by ANOVA and Tukey's test. Our data show that rat tracheobronchial epithelial cells develop a differentiated, polarized monolayer with high transepithelial electrical resistance, mucin production and expression of dual oxidases. Influenza A virions are inactivated by human and rat epithelial cells via a dual oxidase-, lactoperoxidase- and thiocyanate-dependent mechanism. Differentiated air-liquid interface cultures of rat tracheal epithelial cells provide a novel model to study airway epithelium-influenza interactions. The dual oxidase/lactoperoxidase/thiocyanate extracellular oxidative system producing hypothiocyanite is a fast and potent anti-influenza mechanism inactivating H1N2 viruses prior to infection of the epithelium.

  4. Seroprevalence of H1N1, H3N2 and H1N2 influenza viruses in pigs in seven European countries in 2002-2003

    NARCIS (Netherlands)

    Reeth, K.; Brown, I.H.; Durrwald, R.; Foni, E.; Labarque, G.; Lenihan, P.; Maldonado, J.; Markowska-Daniel, I.; Pensaert, M.; Pospisil, Z.; Koch, G.

    2008-01-01

    Objectives Avian-like H1N1 and human-like H3N2 swine influenza viruses (SIV) have been considered widespread among pigs in Western Europe since the 1980s, and a novel H1N2 reassortant with a human-like H1 emerged in the mid 1990s. This study, which was part of the EC-funded 'European Surveillance

  5. Evolution and Virulence of Influenza A Virus Protein PB1-F2

    Directory of Open Access Journals (Sweden)

    Ram P. Kamal

    2017-12-01

    Full Text Available PB1-F2 is an accessory protein of most human, avian, swine, equine, and canine influenza A viruses (IAVs. Although it is dispensable for virus replication and growth, it plays significant roles in pathogenesis by interfering with the host innate immune response, inducing death in immune and epithelial cells, altering inflammatory responses, and promoting secondary bacterial pneumonia. The effects of PB1-F2 differ between virus strains and host species. This can at least partially be explained by the presence of multiple PB1-F2 sequence variants, including premature stop codons that lead to the expression of truncated PB1-F2 proteins of different lengths and specific virulence-associated residues that enhance susceptibility to bacterial superinfection. Although there has been a tendency for human seasonal IAV to gradually reduce the number of virulence-associated residues, zoonotic IAVs contain a reservoir of PB1-F2 proteins with full length, virulence-associated sequences. Here, we review the molecular mechanisms by which PB1-F2 may affect influenza virulence, and factors associated with the evolution and selection of this protein.

  6. Evolution of an Eurasian avian-like influenza virus in naïve and vaccinated pigs.

    Directory of Open Access Journals (Sweden)

    Pablo R Murcia

    Full Text Available Influenza viruses are characterized by an ability to cross species boundaries and evade host immunity, sometimes with devastating consequences. The 2009 pandemic of H1N1 influenza A virus highlights the importance of pigs in influenza emergence, particularly as intermediate hosts by which avian viruses adapt to mammals before emerging in humans. Although segment reassortment has commonly been associated with influenza emergence, an expanded host-range is also likely to be associated with the accumulation of specific beneficial point mutations. To better understand the mechanisms that shape the genetic diversity of avian-like viruses in pigs, we studied the evolutionary dynamics of an Eurasian Avian-like swine influenza virus (EA-SIV in naïve and vaccinated pigs linked by natural transmission. We analyzed multiple clones of the hemagglutinin 1 (HA1 gene derived from consecutive daily viral populations. Strikingly, we observed both transient and fixed changes in the consensus sequence along the transmission chain. Hence, the mutational spectrum of intra-host EA-SIV populations is highly dynamic and allele fixation can occur with extreme rapidity. In addition, mutations that could potentially alter host-range and antigenicity were transmitted between animals and mixed infections were commonplace, even in vaccinated pigs. Finally, we repeatedly detected distinct stop codons in virus samples from co-housed pigs, suggesting that they persisted within hosts and were transmitted among them. This implies that mutations that reduce viral fitness in one host, but which could lead to fitness benefits in a novel host, can circulate at low frequencies.

  7. Punctuated Evolution of Influenza Virus Neuraminidase (A/H1N1 under Opposing Migration and Vaccination Pressures

    Directory of Open Access Journals (Sweden)

    J. C. Phillips

    2014-01-01

    Full Text Available Influenza virus contains two highly variable envelope glycoproteins, hemagglutinin (HA and neuraminidase (NA. The structure and properties of HA, which is responsible for binding the virus to the cell that is being infected, change significantly when the virus is transmitted from avian or swine species to humans. Here we focus first on the simpler problem of the much smaller human individual evolutionary amino acid mutational changes in NA, which cleaves sialic acid groups and is required for influenza virus replication. Our thermodynamic panorama shows that very small amino acid changes can be monitored very accurately across many historic (1945–2011 Uniprot and NCBI strains using hydropathicity scales to quantify the roughness of water film packages. Quantitative sequential analysis is most effective with the fractal differential hydropathicity scale based on protein self-organized criticality (SOC. Our analysis shows that large-scale vaccination programs have been responsible for a very large convergent reduction in common influenza severity in the last century. Hydropathic analysis is capable of interpreting and even predicting trends of functional changes in mutation prolific viruses directly from amino acid sequences alone. An engineered strain of NA1 is described which could well be significantly less virulent than current circulating strains.

  8. Detecting emerging transmissibility of avian influenza virus in human households.

    Directory of Open Access Journals (Sweden)

    Michiel van Boven

    2007-07-01

    Full Text Available Accumulating infections of highly pathogenic H5N1 avian influenza in humans underlines the need to track the ability of these viruses to spread among humans. A human-transmissible avian influenza virus is expected to cause clusters of infections in humans living in close contact. Therefore, epidemiological analysis of infection clusters in human households is of key importance. Infection clusters may arise from transmission events from (i the animal reservoir, (ii humans who were infected by animals (primary human-to-human transmission, or (iii humans who were infected by humans (secondary human-to-human transmission. Here we propose a method of analysing household infection data to detect changes in the transmissibility of avian influenza viruses in humans at an early stage. The method is applied to an outbreak of H7N7 avian influenza virus in The Netherlands that was the cause of more than 30 human-to-human transmission events. The analyses indicate that secondary human-to-human transmission is plausible for the Dutch household infection data. Based on the estimates of the within-household transmission parameters, we evaluate the effectiveness of antiviral prophylaxis, and conclude that it is unlikely that all household infections can be prevented with current antiviral drugs. We discuss the applicability of our method for the detection of emerging human-to-human transmission of avian influenza viruses in particular, and for the analysis of within-household infection data in general.

  9. Avian Influenza A Viruses: Evolution and Zoonotic Infection.

    Science.gov (United States)

    Kim, Se Mi; Kim, Young-Il; Pascua, Philippe Noriel Q; Choi, Young Ki

    2016-08-01

    Although efficient human-to-human transmission of avian influenza virus has yet to be seen, in the past two decades avian-to-human transmission of influenza A viruses has been reported. Influenza A/H5N1, in particular, has repeatedly caused human infections associated with high mortality, and since 1998 the virus has evolved into many clades of variants with significant antigenic diversity. In 2013, three (A/H7N9, A/H6N1, and A/H10N8) novel avian influenza viruses (AIVs) breached the animal-human host species barrier in Asia. In humans, roughly 35% of A/H7N9-infected patients succumbed to the zoonotic infection, and two of three A/H10N8 human infections were also lethal; however, neither of these viruses cause influenza-like symptoms in poultry. While most of these cases were associated with direct contact with infected poultry, some involved sustained human-to-human transmission. Thus, these events elicited concern regarding potential AIV pandemics. This article reviews the human incursions associated with AIV variants and the potential role of pigs as an intermediate host that may hasten AIV evolution. In addition, we discuss the known influenza A virus virulence and transmission factors and their evaluation in animal models. With the growing number of human AIV infections, constant vigilance for the emergence of novel viruses is of utmost importance. In addition, careful characterization and pathobiological assessment of these novel variants will help to identify strains of particular concern for future pandemics. Thieme Medical Publishers 333 Seventh Avenue, New York, NY 10001, USA.

  10. EFSA AHAW Panel (EFSA Panel on Animal Health and Welfare), ECDC (European Centre for Disease Prevention and Control) and EMA (European Medicines Agency), 2013. Scientific Opinion on the possible risks posed by the Influenza A(H3N2v) virus for animal health and its potential spread and implications for animal and human health

    DEFF Research Database (Denmark)

    Bøtner, Anette

    of respiratory nature and follows a relatively mild course with fever, coughing and inappetence, similar to that of the endemic swine influenza viruses. Immunity resulting from vaccination with European vaccines may provide some cross-protection against infection with H3N2v virus whereas vaccines based on US...

  11. Animal Models for Influenza Viruses: Implications for Universal Vaccine Development

    Directory of Open Access Journals (Sweden)

    Irina Margine

    2014-10-01

    Full Text Available Influenza virus infections are a significant cause of morbidity and mortality in the human population. Depending on the virulence of the influenza virus strain, as well as the immunological status of the infected individual, the severity of the respiratory disease may range from sub-clinical or mild symptoms to severe pneumonia that can sometimes lead to death. Vaccines remain the primary public health measure in reducing the influenza burden. Though the first influenza vaccine preparation was licensed more than 60 years ago, current research efforts seek to develop novel vaccination strategies with improved immunogenicity, effectiveness, and breadth of protection. Animal models of influenza have been essential in facilitating studies aimed at understanding viral factors that affect pathogenesis and contribute to disease or transmission. Among others, mice, ferrets, pigs, and nonhuman primates have been used to study influenza virus infection in vivo, as well as to do pre-clinical testing of novel vaccine approaches. Here we discuss and compare the unique advantages and limitations of each model.

  12. Inhibition of Avian Influenza A Virus Replication in Human Cells by Host Restriction Factor TUFM Is Correlated with Autophagy.

    Science.gov (United States)

    Kuo, Shu-Ming; Chen, Chi-Jene; Chang, Shih-Cheng; Liu, Tzu-Jou; Chen, Yi-Hsiang; Huang, Sheng-Yu; Shih, Shin-Ru

    2017-06-13

    Avian influenza A viruses generally do not replicate efficiently in human cells, but substitution of glutamic acid (Glu, E) for lysine (Lys, K) at residue 627 of avian influenza virus polymerase basic protein 2 (PB2) can serve to overcome host restriction and facilitate human infectivity. Although PB2 residue 627 is regarded as a species-specific signature of influenza A viruses, host restriction factors associated with PB2 627 E have yet to be fully investigated. We conducted immunoprecipitation, followed by differential proteomic analysis, to identify proteins associating with PB2 627 K (human signature) and PB2 627 E (avian signature) of influenza A/WSN/1933(H1N1) virus, and the results indicated that Tu elongation factor, mitochondrial (TUFM), had a higher binding affinity for PB2 627 E than PB2 627 K in transfected human cells. Stronger binding of TUFM to avian-signature PB2 590 G/ 591 Q and PB2 627 E in the 2009 swine-origin pandemic H1N1 and 2013 avian-origin H7N9 influenza A viruses was similarly observed. Viruses carrying avian-signature PB2 627 E demonstrated increased replication in TUFM-deficient cells, but viral replication decreased in cells overexpressing TUFM. Interestingly, the presence of TUFM specifically inhibited the replication of PB2 627 E viruses, but not PB2 627 K viruses. In addition, enhanced levels of interaction between TUFM and PB2 627 E were noted in the mitochondrial fraction of infected cells. Furthermore, TUFM-dependent autophagy was reduced in TUFM-deficient cells infected with PB2 627 E virus; however, autophagy remained consistent in PB2 627 K virus-infected cells. The results suggest that TUFM acts as a host restriction factor that impedes avian-signature influenza A virus replication in human cells in a manner that correlates with autophagy. IMPORTANCE An understanding of the mechanisms that influenza A viruses utilize to shift host tropism and the identification of host restriction factors that can limit infection are both

  13. In Vivo Imaging of Influenza Virus Infection in Immunized Mice

    Directory of Open Access Journals (Sweden)

    Rita Czakó

    2017-05-01

    Full Text Available Immunization is the cornerstone of seasonal influenza control and represents an important component of pandemic preparedness strategies. Using a bioluminescent reporter virus, we demonstrate the application of noninvasive in vivo imaging system (IVIS technology to evaluate the preclinical efficacy of candidate vaccines and immunotherapy in a mouse model of influenza. Sequential imaging revealed distinct spatiotemporal kinetics of bioluminescence in groups of mice passively or actively immunized by various strategies that accelerated the clearance of the challenge virus at different rates and by distinct mechanisms. Imaging findings were consistent with conclusions derived from virus titers in the lungs and, notably, were more informative than conventional efficacy endpoints in some cases. Our findings demonstrate the reliability of IVIS as a qualitative approach to support preclinical evaluation of candidate medical countermeasures for influenza in mice.

  14. Hsp90 inhibitors reduce influenza virus replication in cell culture

    International Nuclear Information System (INIS)

    Chase, Geoffrey; Deng, Tao; Fodor, Ervin; Leung, B.W.; Mayer, Daniel; Schwemmle, Martin; Brownlee, George

    2008-01-01

    The viral RNA polymerase complex of influenza A virus consists of three subunits PB1, PB2 and PA. Recently, the cellular chaperone Hsp90 was shown to play a role in nuclear import and assembly of the trimeric polymerase complex by binding to PB1 and PB2. Here we show that Hsp90 inhibitors, geldanamycin or its derivative 17-AAG, delay the growth of influenza virus in cell culture resulting in a 1-2 log reduction in viral titre early in infection. We suggest that this is caused by the reduced half-life of PB1 and PB2 and inhibition of nuclear import of PB1 and PA which lead to reduction in viral RNP assembly. Hsp90 inhibitors may represent a new class of antiviral compounds against influenza viruses

  15. Microneedle Vaccination Elicits Superior Protection and Antibody Response over Intranasal Vaccination against Swine-Origin Influenza A (H1N1 in Mice.

    Directory of Open Access Journals (Sweden)

    Ju-Hyung Shin

    Full Text Available Influenza is one of the critical infectious diseases globally and vaccination has been considered as the best way to prevent. In this study, immunogenicity and protection efficacy between intranasal (IN and microneedle (MN vaccination was compared using inactivated swine-origin influenza A/H1N1 virus vaccine. Mice were vaccinated by MN or IN administration with 1 μg of inactivated H1N1 virus vaccine. Antigen-specific antibody responses and hemagglutination-inhibition (HI titers were measured in all immunized sera after immunization. Five weeks after an immunization, a lethal challenge was performed to evaluate the protective efficacy. Furthermore, mice were vaccinated by IN administration with higher dosages (> 1 μg, analyzed in the same manner, and compared with 1 μg-vaccine-coated MN. Significantly higher antigen-specific antibody responses and HI titer were measured in sera in MN group than those in IN group. While 100% protection, slight weight loss, and reduced viral replication were observed in MN group, 0% survival rate were observed in IN group. As vaccine dose for IN vaccination increased, MN-immunized sera showed much higher antigen-specific antibody responses and HI titer than other IN groups. In addition, protective immunity of 1 μg-MN group was similar to those of 20- and 40 μg-IN groups. We conclude that MN vaccination showed more potential immune response and protection than IN vaccination at the same vaccine dosage.

  16. [Exploration on mechanism of anti-influenza virus activity of genus Paeonia based on network pharmacology].

    Science.gov (United States)

    Cai, Ya-Qi; Bao, Ya-Ting; Wang, Hong-Jin; Ren, Xiao-Dong; Huang, Lin-Fang; He, Jie; Liu, Tian-Tian; Zeng, Rui

    2018-04-01

    This paper aimed to investigate the anti-influenza virus activity of the genus Paeonia, screen potential anti-influenza virus compounds and predict targets of anti-influenza virus to explore the mechanism of anti-influenza virus activity. First of all, a total of 301 compounds of the genus Paeonia were summarized from the literatures in recent ten years. The candidate active ingredients from the genus Paeonia were identified by database such as PubChem and Chemical Book. The ligands were constructed by ChemDraw, Avogadro and Discovery Studio Visualizer. Secondly, 23 potential anti-influenza virus targets were developed by combining the target database and the literatures. Uniprot database was used to find the anti-influenza virus targets, and RCSB was used to identify targets associated with anti-influenza virus activity as docked receptor proteins. QuickVina 2.0 software was used for molecular docking. Finally, the Cytoscape 3.5.1 software was used to map the potential activity compounds of the genus Paeonia against influenza virus and the anti-influenza virus target network. Uniprot online database was used to analyze the target GO enrichment and KEGG metabolic pathways. The results showed that 74 compounds of the genus Paeonia had anti-influenza virus effect and 18 potential anti-influenza virus targets were screened. GO analysis concluded that the mechanism of the genus Paeonia anti-influenza virus is consistent with the mechanism of NA anti-influenza virus in order to stop the sprouting, dispersion and diffusion of virus and reduce the ability of virus to infect, so that the infection can be restricted so as to achieve the anti-influenza virus effect. Copyright© by the Chinese Pharmaceutical Association.

  17. Universal Detection and Identification of Avian Influenza Virus by Use of Resequencing Microarrays

    Science.gov (United States)

    2009-04-01

    Recent outbreaks of Nipah virus , severe acute respiratory syndrome virus , and avian influenza virus reiterate the impor- tance of zoonotic microbes as...Society for Microbiology. All Rights Reserved. Universal Detection and Identification of Avian Influenza Virus by Use of Resequencing Microarrays...been, and continue to emerge as, threats to human health. The recent outbreaks of highly pathogenic avian influenza virus in bird populations and the

  18. Isolation of a Reassortant H1N2 Swine Flu Strain of Type “Swine-Human-Avian” and Its Genetic Variability Analysis

    Directory of Open Access Journals (Sweden)

    Long-Bai Wang

    2018-01-01

    Full Text Available We isolated an influenza strain named A/Swine/Fujian/F1/2010 (H1N2 from a pig suspected to be infected with swine flu. The results of electron microscopy, hemagglutination (HA assay, hemagglutination inhibition (HI assay, and whole genome sequencing analysis suggest that it was a reassortant virus of swine (H1N1 subtype, human (H3N2 subtype, and avian influenza viruses. To further study the genetic evolution of A/Swine/Fujian/F1/2010 (H1N2, we cloned its whole genome fragments using RT-PCR and performed phylogenetic analysis on the eight genes. As a result, the nucleotide sequences of HA, NA, PB1, PA, PB2, NP, M, and NS gene are similar to those of A/Swine/Shanghai/1/2007(H1N2 with identity of 98.9%, 98.9%, 99.0%, 98.6%, 99.0%, 98.9%, 99.3%, and 99.3%, respectively. Similar to A/Swine/Shanghai/1/2007(H1N2, we inferred that the HA, NP, M, and NS gene fragments of A/Swine/Fujian/F1/2010 (H1N2 strain were derived from classical swine influenza H3N2 subtype, NA and PB1 were derived from human swine influenza H3N2 subtype, and PB2 and PA genes were derived from avian influenza virus. This further validates the role of swine as a “mixer” for influenza viruses.

  19. Synonymous Mutations at the Beginning of the Influenza A Virus Hemagglutinin Gene Impact Experimental Fitness.

    Science.gov (United States)

    Canale, Aneth S; Venev, Sergey V; Whitfield, Troy W; Caffrey, Daniel R; Marasco, Wayne A; Schiffer, Celia A; Kowalik, Timothy F; Jensen, Jeffrey D; Finberg, Robert W; Zeldovich, Konstantin B; Wang, Jennifer P; Bolon, Daniel N A

    2018-04-13

    The fitness effects of synonymous mutations can provide insights into biological and evolutionary mechanisms. We analyzed the experimental fitness effects of all single-nucleotide mutations, including synonymous substitutions, at the beginning of the influenza A virus hemagglutinin (HA) gene. Many synonymous substitutions were deleterious both in bulk competition and for individually isolated clones. Investigating protein and RNA levels of a subset of individually expressed HA variants revealed that multiple biochemical properties contribute to the observed experimental fitness effects. Our results indicate that a structural element in the HA segment viral RNA may influence fitness. Examination of naturally evolved sequences in human hosts indicates a preference for the unfolded state of this structural element compared to that found in swine hosts. Our overall results reveal that synonymous mutations may have greater fitness consequences than indicated by simple models of sequence conservation, and we discuss the implications of this finding for commonly used evolutionary tests and analyses. Copyright © 2018. Published by Elsevier Ltd.

  20. A Novel H1N2 Influenza Virus Related to the Classical and Human Influenza Viruses from Pigs in Southern China

    OpenAIRE

    Song, Yafen; Wu, Xiaowei; Wang, Nianchen; Ouyang, Guowen; Qu, Nannan; Cui, Jin; Qi, Yan; Liao, Ming; Jiao, Peirong

    2016-01-01

    Southern China has long been considered to be an epicenter of pandemic influenza viruses. The special environment, breeding mode, and lifestyle in southern China provides more chances for wild aquatic birds, domestic poultry, pigs, and humans to be in contact. This creates the opportunity for interspecies transmission and generation of new influenza viruses. In this study, we reported a novel reassortant H1N2 influenza virus from pigs in southern China. According to the phylogenetic trees and...

  1. Infection and Replication of Influenza Virus at the Ocular Surface.

    Science.gov (United States)

    Creager, Hannah M; Kumar, Amrita; Zeng, Hui; Maines, Taronna R; Tumpey, Terrence M; Belser, Jessica A

    2018-04-01

    Although influenza viruses typically cause respiratory tract disease, some viruses, particularly those with an H7 hemagglutinin, have been isolated from the eyes of conjunctivitis cases. Previous work has shown that isolates of multiple subtypes from both ocular and respiratory infections are capable of replication in human ex vivo ocular tissues and corneal or conjunctival cell monolayers, leaving the determinants of ocular tropism unclear. Here, we evaluated the effect of several variables on tropism for ocular cells cultured in vitro and examined the potential effect of the tear film on viral infectivity. All viruses tested were able to replicate in primary human corneal epithelial cell monolayers subjected to aerosol inoculation. The temperature at which cells were cultured postinoculation minimally affected infectivity. Replication efficiency, in contrast, was reduced at 33°C relative to that at 37°C, and this effect was slightly greater for the conjunctivitis isolates than for the respiratory ones. With the exception of a seasonal H3N2 virus, the subset of viruses studied in multilayer corneal tissue constructs also replicated productively after either aerosol or liquid inoculation. Human tears significantly inhibited the hemagglutination of both ocular and nonocular isolates, but the effect on viral infectivity was more variable, with tears reducing the infectivity of nonocular isolates more than ocular isolates. These data suggest that most influenza viruses may be capable of establishing infection if they reach the surface of ocular cells but that this is more likely for ocular-tropic viruses, as they are better able to maintain their infectivity during passage through the tear film. IMPORTANCE The potential spread of zoonotic influenza viruses to humans represents an important threat to public health. Unfortunately, despite the importance of cellular and tissue tropism to pathogenesis, determinants of influenza virus tropism have yet to be fully

  2. CRISPR-Cas9, a tool to efficiently increase the development of recombinant African swine fever viruses.

    Science.gov (United States)

    Borca, Manuel V; Holinka, Lauren G; Berggren, Keith A; Gladue, Douglas P

    2018-02-16

    African swine fever virus (ASFV) causes a highly contagious disease called African swine fever. This disease is often lethal for domestic pigs, causing extensive losses for the swine industry. ASFV is a large and complex double stranded DNA virus. Currently there is no commercially available treatment or vaccine to prevent this devastating disease. Development of recombinant ASFV for producing live-attenuated vaccines or studying the involvement of specific genes in virus virulence has relied on the relatively rare event of homologous recombination in primary swine macrophages, causing difficulty to purify the recombinant virus from the wild-type parental ASFV. Here we present the use of the CRISPR-Cas9 gene editing system as a more robust and efficient system to produce recombinant ASFVs. Using CRISPR-Cas9 a recombinant virus was efficiently developed by deleting the non-essential gene 8-DR from the genome of the highly virulent field strain Georgia07 using swine macrophages as cell substrate.

  3. Influenza A(H9N2) Virus, Myanmar, 2014-2015.

    Science.gov (United States)

    Lin, Thant Nyi; Nonthabenjawan, Nutthawan; Chaiyawong, Supassama; Bunpapong, Napawan; Boonyapisitsopa, Supanat; Janetanakit, Taveesak; Mon, Pont Pont; Mon, Hla Hla; Oo, Kyaw Naing; Oo, Sandi Myint; Mar Win, Mar; Amonsin, Alongkorn

    2017-06-01

    Routine surveillance of influenza A virus was conducted in Myanmar during 2014-2015. Influenza A(H9N2) virus was isolated in Shan State, upper Myanmar. Whole-genome sequencing showed that H9N2 virus from Myanmar was closely related to H9N2 virus of clade 4.2.5 from China.

  4. Vaccine-induced anti-HA2 antibodies promote virus fusion and enhance influenza virus respiratory disease.

    Science.gov (United States)

    Khurana, Surender; Loving, Crystal L; Manischewitz, Jody; King, Lisa R; Gauger, Phillip C; Henningson, Jamie; Vincent, Amy L; Golding, Hana

    2013-08-28

    Vaccine-induced disease enhancement has been described in connection with several viral vaccines in animal models and in humans. We investigated a swine model to evaluate mismatched influenza vaccine-associated enhanced respiratory disease (VAERD) after pH1N1 infection. Vaccinating pigs with whole inactivated H1N2 (human-like) virus vaccine (WIV-H1N2) resulted in enhanced pneumonia and disease after pH1N1 infection. WIV-H1N2 immune sera contained high titers of cross-reactive anti-pH1N1 hemagglutinin (HA) antibodies that bound exclusively to the HA2 domain but not to the HA1 globular head. No hemagglutination inhibition titers against pH1N1 (challenge virus) were measured. Epitope mapping using phage display library identified the immunodominant epitope recognized by WIV-H1N2 immune sera as amino acids 32 to 77 of pH1N1-HA2 domain, close to the fusion peptide. These cross-reactive anti-HA2 antibodies enhanced pH1N1 infection of Madin-Darby canine kidney cells by promoting virus membrane fusion activity. The enhanced fusion activity correlated with lung pathology in pigs. This study suggests a role for fusion-enhancing anti-HA2 antibodies in VAERD, in the absence of receptor-blocking virus-neutralizing antibodies. These findings should be considered during the evaluation of universal influenza vaccines designed to elicit HA2 stem-targeting antibodies.

  5. A combination in-ovo vaccine for avian influenza virus and Newcastle disease virus.

    Science.gov (United States)

    Steel, John; Burmakina, Svetlana V; Thomas, Colleen; Spackman, Erica; García-Sastre, Adolfo; Swayne, David E; Palese, Peter

    2008-01-24

    The protection of poultry from H5N1 highly pathogenic avian influenza A (HPAI) and Newcastle disease virus (NDV) can be achieved through vaccination, as part of a broader disease control strategy. We have previously generated a recombinant influenza virus expressing, (i) an H5 hemagglutinin protein, modified by the removal of the polybasic cleavage peptide and (ii) the ectodomain of the NDV hemagglutinin-neuraminidase (HN) protein in the place of the ectodomain of influenza neuraminidase (Park MS, et al. Proc Natl Acad Sci USA 2006;103(21):8203-8). Here we show this virus is attenuated in primary normal human bronchial epithelial (NHBE) cell culture, and demonstrate protection of C57BL/6 mice from lethal challenge with an H5 HA-containing influenza virus through immunisation with the recombinant virus. In addition, in-ovo vaccination of 18-day-old embryonated chicken eggs provided 90% and 80% protection against highly stringent lethal challenge by NDV and H5N1 virus, respectively. We propose that this virus has potential as a safe in-ovo live, attenuated, bivalent avian influenza and Newcastle disease virus vaccine.

  6. Mouse Saliva Inhibits Transit of Influenza Virus to the Lower Respiratory Tract by Efficiently Blocking Influenza Virus Neuraminidase Activity.

    Science.gov (United States)

    Gilbertson, Brad; Ng, Wy Ching; Crawford, Simon; McKimm-Breschkin, Jenny L; Brown, Lorena E

    2017-07-15

    We previously identified a novel inhibitor of influenza virus in mouse saliva that halts the progression of susceptible viruses from the upper to the lower respiratory tract of mice in vivo and neutralizes viral infectivity in MDCK cells. Here, we investigated the viral target of the salivary inhibitor by using reverse genetics to create hybrid viruses with some surface proteins derived from an inhibitor-sensitive strain and others from an inhibitor-resistant strain. These viruses demonstrated that the origin of the viral neuraminidase (NA), but not the hemagglutinin or matrix protein, was the determinant of susceptibility to the inhibitor. Comparison of the NA sequences of a panel of H3N2 viruses with differing sensitivities to the salivary inhibitor revealed that surface residues 368 to 370 (N2 numbering) outside the active site played a key role in resistance. Resistant viruses contained an EDS motif at this location, and mutation to either EES or KDS, found in highly susceptible strains, significantly increased in vitro susceptibility to the inhibitor and reduced the ability of the virus to progress to the lungs when the viral inoculum was initially confined to the upper respiratory tract. In the presence of saliva, viral strains with a susceptible NA could not be efficiently released from the surfaces of infected MDCK cells and had reduced enzymatic activity based on their ability to cleave substrate in vitro This work indicates that the mouse has evolved an innate inhibitor similar in function, though not in mechanism, to what humans have created synthetically as an antiviral drug for influenza virus. IMPORTANCE Despite widespread use of experimental pulmonary infection of the laboratory mouse to study influenza virus infection and pathogenesis, to our knowledge, mice do not naturally succumb to influenza. Here, we show that mice produce their own natural form of neuraminidase inhibitor in saliva that stops the virus from reaching the lungs, providing a

  7. Isolation of a highly pathogenic influenza virus from turkeys.

    Science.gov (United States)

    McNulty, M S; Allan, G M; McCracken, R M; McParland, P J

    1985-01-01

    An influenza virus was isolated from turkeys with an acute disease causing 30% mortality. The virus was subtyped as H5 N8. The nomenclature A/turkey/Ireland/83 (H5 N8) is proposed for this isolate. The virus had an ICPI of 1.80 to 1.85 for 1-day-old chicks and an IVPI of 2.74 for 6-week-old chickens. Following oronasal inoculation of juvenile and adult turkeys, chickens and ducks with the isolate, 100% mortality occurred in turkeys and chickens. No clinical signs were observed in inoculated ducks, but all developed serum antibody titres against the virus.

  8. Predominance of influenza A(H1N1)pdm09 virus genetic subclade 6B.1 and influenza B/Victoria lineage viruses at the start of the 2015/16 influenza season in Europe

    DEFF Research Database (Denmark)

    Broberg, Eeva; Melidou, Angeliki; Prosenc, Katarina

    2016-01-01

    Influenza A(H1N1)pdm09 viruses predominated in the European influenza 2015/16 season. Most analysed viruses clustered in a new genetic subclade 6B.1, antigenically similar to the northern hemisphere vaccine component A/California/7/2009. The predominant influenza B lineage was Victoria compared...

  9. Multigenic DNA vaccine induces protective cross-reactive T cell responses against heterologous influenza virus in nonhuman primates.

    Directory of Open Access Journals (Sweden)

    Merika T Koday

    Full Text Available Recent avian and swine-origin influenza virus outbreaks illustrate the ongoing threat of influenza pandemics. We investigated immunogenicity and protective efficacy of a multi-antigen (MA universal influenza DNA vaccine consisting of HA, M2, and NP antigens in cynomolgus macaques. Following challenge with a heterologous pandemic H1N1 strain, vaccinated animals exhibited significantly lower viral loads and more rapid viral clearance when compared to unvaccinated controls. The MA DNA vaccine induced robust serum and mucosal antibody responses but these high antibody titers were not broadly neutralizing. In contrast, the vaccine induced broadly-reactive NP specific T cell responses that cross-reacted with the challenge virus and inversely correlated with lower viral loads and inflammation. These results demonstrate that a MA DNA vaccine that induces strong cross-reactive T cell responses can, independent of neutralizing antibody, mediate significant cross-protection in a nonhuman primate model and further supports development as an effective approach to induce broad protection against circulating and emerging influenza strains.

  10. Perspective of Use of Antiviral Peptides against Influenza Virus

    Directory of Open Access Journals (Sweden)

    Sylvie Skalickova

    2015-10-01

    Full Text Available The threat of a worldwide influenza pandemic has greatly increased over the past decade with the emergence of highly virulent avian influenza strains. The increased frequency of drug-resistant influenza strains against currently available antiviral drugs requires urgent development of new strategies for antiviral therapy, too. The research in the field of therapeutic peptides began to develop extensively in the second half of the 20th century. Since then, the mechanisms of action for several peptides and their antiviral prospect received large attention due to the global threat posed by viruses. Here, we discussed the therapeutic properties of peptides used in influenza treatment. Peptides with antiviral activity against influenza can be divided into three main groups. First, entry blocker peptides such as a Flupep that interact with influenza hemagglutinin, block its binding to host cells and prevent viral fusion. Second, several peptides display virucidal activity, disrupting viral envelopes, e.g., Melittin. Finally, a third set of peptides interacts with the viral polymerase complex and act as viral replication inhibitors such as PB1 derived peptides. Here, we present a review of the current literature describing the antiviral activity, mechanism and future therapeutic potential of these influenza antiviral peptides.

  11. Functional Evolution of Influenza Virus NS1 Protein in Currently Circulating Human 2009 Pandemic H1N1 Viruses.

    Science.gov (United States)

    Clark, Amelia M; Nogales, Aitor; Martinez-Sobrido, Luis; Topham, David J; DeDiego, Marta L

    2017-09-01

    In 2009, a novel H1N1 influenza virus emerged in humans, causing a global pandemic. It was previously shown that the NS1 protein from this human 2009 pandemic H1N1 (pH1N1) virus was an effective interferon (IFN) antagonist but could not inhibit general host gene expression, unlike other NS1 proteins from seasonal human H1N1 and H3N2 viruses. Here we show that the NS1 protein from currently circulating pH1N1 viruses has evolved to encode 6 amino acid changes (E55K, L90I, I123V, E125D, K131E, and N205S) with respect to the original protein. Notably, these 6 residue changes restore the ability of pH1N1 NS1 to inhibit general host gene expression, mainly by their ability to restore binding to the cellular factor CPSF30. This is the first report describing the ability of the pH1N1 NS1 protein to naturally acquire mutations that restore this function. Importantly, a recombinant pH1N1 virus containing these 6 amino acid changes in the NS1 protein (pH1N1/NSs-6mut) inhibited host IFN and proinflammatory responses to a greater extent than that with the parental virus (pH1N1/NS1-wt), yet virus titers were not significantly increased in cell cultures or in mouse lungs, and the disease was partially attenuated. The pH1N1/NSs-6mut virus grew similarly to pH1N1/NSs-wt in mouse lungs, but infection with pH1N1/NSs-6mut induced lower levels of proinflammatory cytokines, likely due to a general inhibition of gene expression mediated by the mutated NS1 protein. This lower level of inflammation induced by the pH1N1/NSs-6mut virus likely accounts for the attenuated disease phenotype and may represent a host-virus adaptation affecting influenza virus pathogenesis. IMPORTANCE Seasonal influenza A viruses (IAVs) are among the most common causes of respiratory infections in humans. In addition, occasional pandemics are caused when IAVs circulating in other species emerge in the human population. In 2009, a swine-origin H1N1 IAV (pH1N1) was transmitted to humans, infecting people then and up

  12. Physician's knowledge, attitudes, and practices regarding seasonal influenza, pandemic influenza, and highly pathogenic avian influenza A (H5N1) virus infections of humans in Indonesia

    OpenAIRE

    Mangiri, Amalya; Iuliano, A. Danielle; Wahyuningrum, Yunita; Praptiningsih, Catharina Y.; Lafond, Kathryn E.; Storms, Aaron D.; Samaan, Gina; Ariawan, Iwan; Soeharno, Nugroho; Kreslake, Jennifer M.; Storey, J. Douglas; Uyeki, Timothy M.

    2016-01-01

    Indonesia has reported highest number of fatal human cases of highly pathogenic avian influenza (HPAI) A (H5N1) virus infection worldwide since 2005. There are limited data available on seasonal and pandemic influenza in Indonesia. During 2012, we conducted a survey of clinicians in two districts in western Java, Indonesia, to assess knowledge, attitudes, and practices (KAP) of clinical diagnosis, testing, and treatment of patients with seasonal influenza, pandemic influenza, or HPAI H5N1 vir...

  13. Global surveillance of emerging Influenza virus genotypes by mass spectrometry.

    Directory of Open Access Journals (Sweden)

    Rangarajan Sampath

    2007-05-01

    Full Text Available Effective influenza surveillance requires new methods capable of rapid and inexpensive genomic analysis of evolving viral species for pandemic preparedness, to understand the evolution of circulating viral species, and for vaccine strain selection. We have developed one such approach based on previously described broad-range reverse transcription PCR/electrospray ionization mass spectrometry (RT-PCR/ESI-MS technology.Analysis of base compositions of RT-PCR amplicons from influenza core gene segments (PB1, PB2, PA, M, NS, NP are used to provide sub-species identification and infer influenza virus H and N subtypes. Using this approach, we detected and correctly identified 92 mammalian and avian influenza isolates, representing 30 different H and N types, including 29 avian H5N1 isolates. Further, direct analysis of 656 human clinical respiratory specimens collected over a seven-year period (1999-2006 showed correct identification of the viral species and subtypes with >97% sensitivity and specificity. Base composition derived clusters inferred from this analysis showed 100% concordance to previously established clades. Ongoing surveillance of samples from the recent influenza virus seasons (2005-2006 showed evidence for emergence and establishment of new genotypes of circulating H3N2 strains worldwide. Mixed viral quasispecies were found in approximately 1% of these recent samples providing a view into viral evolution.Thus, rapid RT-PCR/ESI-MS analysis can be used to simultaneously identify all species of influenza viruses with clade-level resolution, identify mixed viral populations and monitor global spread and emergence of novel viral genotypes. This high-throughput method promises to become an integral component of influenza surveillance.

  14. Serologic evidence of exposure of raptors to influenza A virus.

    Science.gov (United States)

    Redig, Patrick T; Goyal, Sagar M

    2012-06-01

    Serum or plasma samples from raptors that prey or scavenge upon aquatic birds were tested by a commercially available blocking enzyme-linked immunosorbent assay for the evidence of antibodies to influenza A virus. Samples were taken from birds (n = 616) admitted to two rehabilitation centers in the United States. In addition, samples from 472 migrating peregrine falcons (Falco peregrinus) trapped on autumnal and vernal migrations for banding purposes were also tested. Only bald eagles were notably seropositive (22/406). One each of peregrine falcon, great horned owl (Bubo virginianus), and Cooper's hawk (Accipiter cooperi) from a total of 472, 81, and 100, respectively, were also positive. None of the turkey vultures (n = 21) or black vultures (n = 8) was positive. No clinical signs referable to avian influenza were seen in any bird at the time of capture. These data indicate that, among raptors, bald eagles do have exposure to influenza A viruses.

  15. Surveillance of wild birds for avian influenza virus.

    Science.gov (United States)

    Hoye, Bethany J; Munster, Vincent J; Nishiura, Hiroshi; Klaassen, Marcel; Fouchier, Ron A M

    2010-12-01

    Recent demand for increased understanding of avian influenza virus in its natural hosts, together with the development of high-throughput diagnostics, has heralded a new era in wildlife disease surveillance. However, survey design, sampling, and interpretation in the context of host populations still present major challenges. We critically reviewed current surveillance to distill a series of considerations pertinent to avian influenza virus surveillance in wild birds, including consideration of what, when, where, and how many to sample in the context of survey objectives. Recognizing that wildlife disease surveillance is logistically and financially constrained, we discuss pragmatic alternatives for achieving probability-based sampling schemes that capture this host-pathogen system. We recommend hypothesis-driven surveillance through standardized, local surveys that are, in turn, strategically compiled over broad geographic areas. Rethinking the use of existing surveillance infrastructure can thereby greatly enhance our global understanding of avian influenza and other zoonotic diseases.

  16. Treatment and Prevention of Pandemic H1N1 Influenza.