WorldWideScience

Sample records for swine influenza virus

  1. Variant (Swine Origin) Influenza Viruses in Humans

    Science.gov (United States)

    ... Types Seasonal Avian Swine Variant Other Variant Influenza Viruses: Background and CDC Risk Assessment and Reporting Language: ... Background CDC Assessment Reporting Background On Variant Influenza Viruses Swine flu viruses do not normally infect humans. ...

  2. Pandemic swine influenza virus: Preparedness planning | Ojogba ...

    African Journals Online (AJOL)

    The novel H1N1 influenza virus that emerged in humans in Mexico in early 2009 and transmitted efficiently in the human population with global spread was declared a pandemic strain. The introduction of different avian and human influenza virus genes into swine influenza viruses often result in viruses of increased fitness ...

  3. Reassortment patterns in Swine influenza viruses.

    Directory of Open Access Journals (Sweden)

    Hossein Khiabanian

    Full Text Available Three human influenza pandemics occurred in the twentieth century, in 1918, 1957, and 1968. Influenza pandemic strains are the results of emerging viruses from non-human reservoirs to which humans have little or no immunity. At least two of these pandemic strains, in 1957 and in 1968, were the results of reassortments between human and avian viruses. Also, many cases of swine influenza viruses have reportedly infected humans, in particular, the recent H1N1 influenza virus of swine origin, isolated in Mexico and the United States. Pigs are documented to allow productive replication of human, avian, and swine influenza viruses. Thus it has been conjectured that pigs are the "mixing vessel" that create the avian-human reassortant strains, causing the human pandemics. Hence, studying the process and patterns of viral reassortment, especially in pigs, is a key to better understanding of human influenza pandemics. In the last few years, databases containing sequences of influenza A viruses, including swine viruses, collected since 1918 from diverse geographical locations, have been developed and made publicly available. In this paper, we study an ensemble of swine influenza viruses to analyze the reassortment phenomena through several statistical techniques. The reassortment patterns in swine viruses prove to be similar to the previous results found in human viruses, both in vitro and in vivo, that the surface glycoprotein coding segments reassort most often. Moreover, we find that one of the polymerase segments (PB1, reassorted in the strains responsible for the last two human pandemics, also reassorts frequently.

  4. Swine Influenza/Variant Influenza Viruses

    Science.gov (United States)

    ... Humans Key Facts about Human Infections with Variant Viruses Interim Guidance for Clinicians on Human Infections Background, Risk Assessment & Reporting Reported Infections with Variant Influenza Viruses in the United States since 2005 Past Outbreaks ...

  5. pandemic swine influenza virus: preparedness planning

    African Journals Online (AJOL)

    Zamzar

    pandemic planning. Keywords: Pandemic, swine, influenza, virus, preparedness. INTRODUCTION. Effective pandemic preparedness and response should involve all sectors of ... In less affluent countries, human and material resources are often scarce and other ... Once surge requirements have been estimated, policy ...

  6. The global antigenic diversity of swine influenza A viruses

    DEFF Research Database (Denmark)

    Lewis, Nicola S; Russell, Colin A; Langat, Pinky

    2016-01-01

    Swine influenza presents a substantial disease burden for pig populations worldwide and poses a potential pandemic threat to humans. There is considerable diversity in both H1 and H3 influenza viruses circulating in swine due to the frequent introductions of viruses from humans and birds coupled...... with geographic segregation of global swine populations. Much of this diversity is characterized genetically but the antigenic diversity of these viruses is poorly understood. Critically, the antigenic diversity shapes the risk profile of swine influenza viruses in terms of their epizootic and pandemic potential...

  7. The global antigenic diversity of swine influenza A viruses

    NARCIS (Netherlands)

    N.S. Lewis (Nicola); C.A. Russell (Colin); P. Langat (Pinky); T.K. Anderson (Tavis); K. Berger (Kathryn); F. Bielejec (Filip); D.F. Burke (David); G. Dudas (Gytis); J.M. Fonville (Judith); R.A.M. Fouchier (Ron); P. Kellam (Paul); B.F. Koel (Björn); P. Lemey (Philippe); T. Nguyen (Tung); B. Nuansrichy (Bundit); J.S. Malik Peiris; T. Saito (Takehiko); G. Simon (Gaelle); E. Skepner (Eugene); N. Takemae (Nobuhiro); R.J. Webby (Richard J.); K. van Reeth; S.M. Brookes (Sharon M.); L. Larsen (Lars); S.J. Watson (Simon J.); I.H. Brown (Ian); A.L. Vincent (Amy L.); S. Reid (Scott); M.A. Garcia (Montserrat Auero); T.C. Harder (Timm); E. Foni (Emanuela); I. Markowska-Daniel (Iwona)

    2016-01-01

    textabstractSwine influenza presents a substantial disease burden for pig populations worldwide and poses a potential pandemic threat to humans. There is considerable diversity in both H1 and H3 influenza viruses circulating in swine due to the frequent introductions of viruses from humans and birds

  8. Efficacy of Influenza Vaccination and Tamiflu? Treatment ? Comparative Studies with Eurasian Swine Influenza Viruses in Pigs

    OpenAIRE

    Duerrwald, Ralf; Schlegel, Michael; Bauer, Katja; Vissiennon, Th?ophile; Wutzler, Peter; Schmidtke, Michaela

    2013-01-01

    Recent epidemiological developments demonstrated that gene segments of swine influenza A viruses can account for antigenic changes as well as reduced drug susceptibility of pandemic influenza A viruses. This raises questions about the efficacy of preventive measures against swine influenza A viruses. Here, the protective effect of vaccination was compared with that of prophylactic Tamiflu® treatment against two Eurasian swine influenza A viruses. 11-week-old pigs were infected by aerosol nebu...

  9. Population dynamics of swine influenza virus in finishing pigs

    NARCIS (Netherlands)

    Loeffen, W.L.A.

    2008-01-01

    Influenza virus infections in swine were first noticed in the US in 1918, during the human pandemic of the Spanish flu. In Europe, seroprevalences for the three most common swine influenza strains at the moment, H1N1, H3N2 and H1N2, range from 20-80% in finishing pigs at the end of the finishing

  10. The global antigenic diversity of swine influenza A viruses

    Science.gov (United States)

    Lewis, Nicola S; Russell, Colin A; Langat, Pinky; Anderson, Tavis K; Berger, Kathryn; Bielejec, Filip; Burke, David F; Dudas, Gytis; Fonville, Judith M; Fouchier, Ron AM; Kellam, Paul; Koel, Bjorn F; Lemey, Philippe; Nguyen, Tung; Nuansrichy, Bundit; Peiris, JS Malik; Saito, Takehiko; Simon, Gaelle; Skepner, Eugene; Takemae, Nobuhiro; Webby, Richard J; Van Reeth, Kristien; Brookes, Sharon M; Larsen, Lars; Watson, Simon J; Brown, Ian H; Vincent, Amy L

    2016-01-01

    Swine influenza presents a substantial disease burden for pig populations worldwide and poses a potential pandemic threat to humans. There is considerable diversity in both H1 and H3 influenza viruses circulating in swine due to the frequent introductions of viruses from humans and birds coupled with geographic segregation of global swine populations. Much of this diversity is characterized genetically but the antigenic diversity of these viruses is poorly understood. Critically, the antigenic diversity shapes the risk profile of swine influenza viruses in terms of their epizootic and pandemic potential. Here, using the most comprehensive set of swine influenza virus antigenic data compiled to date, we quantify the antigenic diversity of swine influenza viruses on a multi-continental scale. The substantial antigenic diversity of recently circulating viruses in different parts of the world adds complexity to the risk profiles for the movement of swine and the potential for swine-derived infections in humans. DOI: http://dx.doi.org/10.7554/eLife.12217.001 PMID:27113719

  11. Influenza A virus infections in swine: pathogenesis and diagnosis.

    Science.gov (United States)

    Janke, B H

    2014-03-01

    Influenza has been recognized as a respiratory disease in swine since its first appearance concurrent with the 1918 "Spanish flu" human pandemic. All influenza viruses of significance in swine are type A, subtype H1N1, H1N2, or H3N2 viruses. Influenza viruses infect epithelial cells lining the surface of the respiratory tract, inducing prominent necrotizing bronchitis and bronchiolitis and variable interstitial pneumonia. Cell death is due to direct virus infection and to insult directed by leukocytes and cytokines of the innate immune system. The most virulent viruses consistently express the following characteristics of infection: (1) higher or more prolonged virus replication, (2) excessive cytokine induction, and (3) replication in the lower respiratory tract. Nearly all the viral proteins contribute to virulence. Pigs are susceptible to infection with both human and avian viruses, which often results in gene reassortment between these viruses and endemic swine viruses. The receptors on the epithelial cells lining the respiratory tract are major determinants of infection by influenza viruses from other hosts. The polymerases, especially PB2, also influence cross-species infection. Methods of diagnosis and characterization of influenza viruses that infect swine have improved over the years, driven both by the availability of new technologies and by the necessity of keeping up with changes in the virus. Testing of oral fluids from pigs for virus and antibody is a recent development that allows efficient sampling of large numbers of animals.

  12. Novel reassortant swine influenza viruses are circulating in Danish pigs

    DEFF Research Database (Denmark)

    Breum, Solvej Østergaard; Hjulsager, Charlotte Kristiane; Trebbien, Ramona

    of the reassortant viruses comprised a HA gene similar to H1 of H1N1 avian-like swine influenza virus (SIV) and a NA gene most closely related to N2 gene of human H3N2 influenza virus that circulated in humans in the mid 1990s. The internal genes of this reassortant virus with the subtype H1avN2hu all belonged...... to the H1N1 avian-like SIV lineages. Until now this novel virus H1avN2hu has only been detected in Danish swine. The other novel reassortant virus contained the HA gene from H1N1pdm09 virus and a NA gene similar to the N2 gene of H3N2 SIV that have been circulating in European swine since the mid 1980s...

  13. Influenza A Viruses of Human Origin in Swine, Brazil

    Science.gov (United States)

    Schaefer, Rejane; Gava, Danielle; Cantão, Maurício Egídio; Ciacci-Zanella, Janice Reis

    2015-01-01

    The evolutionary origins of the influenza A(H1N1)pdm09 virus that caused the first outbreak of the 2009 pandemic in Mexico remain unclear, highlighting the lack of swine surveillance in Latin American countries. Although Brazil has one of the largest swine populations in the world, influenza was not thought to be endemic in Brazil’s swine until the major outbreaks of influenza A(H1N1)pdm09 in 2009. Through phylogenetic analysis of whole-genome sequences of influenza viruses of the H1N1, H1N2, and H3N2 subtypes collected in swine in Brazil during 2009–2012, we identified multiple previously uncharacterized influenza viruses of human seasonal H1N2 and H3N2 virus origin that have circulated undetected in swine for more than a decade. Viral diversity has further increased in Brazil through reassortment between co-circulating viruses, including A(H1N1)pdm09. The circulation of multiple divergent hemagglutinin lineages challenges the design of effective cross-protective vaccines and highlights the need for additional surveillance. PMID:26196759

  14. The future of influenza A virus vaccines for swine

    Science.gov (United States)

    Economic losses due to influenza A virus (IAV) infections are substantial and a global problem, ranking among the top three major health challenges in the swine industry. Currently, H1 and H3 subtypes circulate in pigs globally associated with different combinations of N1 and N2 subtypes; however, t...

  15. Transcription analysis on response of swine lung to H1N1 swine influenza virus.

    Science.gov (United States)

    Li, Yongtao; Zhou, Hongbo; Wen, Zhibin; Wu, Shujuan; Huang, Canhui; Jia, Guangmin; Chen, Huanchun; Jin, Meilin

    2011-08-08

    As a mild, highly contagious, respiratory disease, swine influenza always damages the innate immune systems, and increases susceptibility to secondary infections which results in considerable morbidity and mortality in pigs. Nevertheless, the systematical host response of pigs to swine influenza virus infection remains largely unknown. To explore it, a time-course gene expression profiling was performed for comprehensive analysis of the global host response induced by H1N1 swine influenza virus in pigs. At the early stage of H1N1 swine virus infection, pigs were suffering mild respiratory symptoms and pathological changes. A total of 268 porcine genes showing differential expression (DE) after inoculation were identified to compare with the controls on day 3 post infection (PID) (Fold change ≥ 2, p swine influenza virus infection in pigs. The observed gene expression profile could help to screen the potential host agents for reducing the prevalence of swine influenza virus and further understand the molecular pathogenesis associated with H1N1 infection in pigs.

  16. Imported pigs may have introduced the first classical swine influenza viruses into Mainland China.

    Science.gov (United States)

    Zhu, Wenfei; Yang, Shuai; Guo, Yuanji; Yang, Lei; Bai, Tian; Yu, Zaijiang; Li, Xiaodan; Li, Ming; Guo, Junfeng; Wang, Dayan; Gao, Rongbao; Dong, Libo; Zou, Shumei; Li, Zi; Wang, Min; Shu, Yuelong

    2013-07-01

    The first classical swine influenza A H1N1 viruses were isolated in Mainland China in 1991. To aid surveillance of swine influenza viruses as part of pandemic preparedness, we sought to identify their origin. We sequenced and phylogenically analyzed 19 swine influenza viruses isolated in 1991 and 1992 in China and compared them with viruses isolated from other regions during the same period. All 19 swine influenza viruses analyzed in our study shared the highest similarity with the classical swine influenza virus A/Swine/Maryland/23239/1991 (H1N1). Phylogenetic trees of eight segmented genes exhibited similar topology, with all segments in the cluster of classical swine influenza viruses. In addition, antigenic analysis also indicated that the tested isolated were related to classical swine influenza isolates. Classical swine H1N1 influenza viruses were predominant in Beijing pig herds during this period. Since both antibody and virus detections did not indicate the presence of CS H1N1 before 1991 in Mainland China, we combined with the data on pigs imported to and exported from China and concluded that these viruses might spread to China via pigs imported from North America and that they could affect the genetic evolution and transmission dynamics of swine influenza viruses in Hong Kong. Copyright © 2013 Elsevier B.V. All rights reserved.

  17. Genetic evolution of recently emerged novel human-like swine H3 influenza A viruses (IAV) in United States swine

    Science.gov (United States)

    Introduction Influenza A virus (IAV) is a major cause of respiratory disease in swine. IAV transmission from humans to swine is a major contributor to swine IAV diversity. In 2012, a novel H3N2 with an HA (hu-H3) and NA derived from human seasonal H3N2 was detected in United States (US) swine. The h...

  18. Molecular Epidemiology and Evolution of Influenza Viruses Circulating within European Swine between 2009 and 2013

    DEFF Research Database (Denmark)

    J. Watson, Simon; Langat, Pinky; M. Reid, Scott

    2015-01-01

    The emergence in humans of the A(H1N1)pdm09 influenza virus, a complex reassortant virus of swine origin, highlighted the importance of worldwide influenza virus surveillance in swine. To date, large-scale surveillance studies have been reported for southern China and North America, but such data...

  19. Spatial Dynamics of Human-Origin H1 Influenza A Virus in North American Swine

    Science.gov (United States)

    Nelson, Martha I.; Lemey, Philippe; Tan, Yi; Vincent, Amy; Lam, Tommy Tsan-Yuk; Detmer, Susan; Viboud, Cécile; Suchard, Marc A.; Rambaut, Andrew; Holmes, Edward C.; Gramer, Marie

    2011-01-01

    The emergence and rapid global spread of the swine-origin H1N1/09 pandemic influenza A virus in humans underscores the importance of swine populations as reservoirs for genetically diverse influenza viruses with the potential to infect humans. However, despite their significance for animal and human health, relatively little is known about the phylogeography of swine influenza viruses in the United States. This study utilizes an expansive data set of hemagglutinin (HA1) sequences (n = 1516) from swine influenza viruses collected in North America during the period 2003–2010. With these data we investigate the spatial dissemination of a novel influenza virus of the H1 subtype that was introduced into the North American swine population via two separate human-to-swine transmission events around 2003. Bayesian phylogeographic analysis reveals that the spatial dissemination of this influenza virus in the US swine population follows long-distance swine movements from the Southern US to the Midwest, a corn-rich commercial center that imports millions of swine annually. Hence, multiple genetically diverse influenza viruses are introduced and co-circulate in the Midwest, providing the opportunity for genomic reassortment. Overall, the Midwest serves primarily as an ecological sink for swine influenza in the US, with sources of virus genetic diversity instead located in the Southeast (mainly North Carolina) and South-central (mainly Oklahoma) regions. Understanding the importance of long-distance pig transportation in the evolution and spatial dissemination of the influenza virus in swine may inform future strategies for the surveillance and control of influenza, and perhaps other swine pathogens. PMID:21695237

  20. Genesis and genetic constellations of swine influenza viruses in Thailand.

    Science.gov (United States)

    Poonsuk, Sukontip; Sangthong, Pradit; Petcharat, Nantawan; Lekcharoensuk, Porntippa

    2013-12-27

    Swine influenza virus (SIV) is one of the most important zoonotic agents and the origin of the most recent pandemic virus. Asia is considered to be the epicenter for genetic exchanging of influenza A viruses and Southeast Asia including Thailand serves as a reservoir to maintain the persistence of the viruses for seeding other regions. Therefore, searching for new reassortants in this area has been routinely required. Although SIVs in Thailand have been characterized, collective information regarding their genetic evolution and gene constellations is limited. In this study, whole genomes of 30 SIVs isolated during clinical target surveillance plus all available sequences of past and currently circulating Thai SIVs were genetically characterized based on their evolutionary relationships. All genetic pools of Thai SIVs are comprised of four lineages including classical swine (CS), Eurasian swine (EAs), Triple reassortants (TRIG) and Seasonal human (Shs). Out of 84 isolates, nine H1N1, six H3N2 and one H1N2 strains were identified. Gene constellations of SIVs in Thailand are highly complex resulting from multiple reassortments among concurrently circulating SIVs and temporally introduced foreign genes. Most strains contain gene segments from both EAs and CS lineages and appeared transiently. TRIG lineage has been recently introduced into Thai SIV gene pools. The existence of EAs and TRIG lineages in this region may increase rates of genetic exchange and diversity while Southeast Asia is a persistent reservoir for influenza A viruses. Continual monitoring of SIV evolution in this region is crucial in searching for the next potential pandemic viruses. Copyright © 2013 Elsevier B.V. All rights reserved.

  1. Antigenic and genetic evolution of swine influenza A (H3N2) viruses in Europe

    NARCIS (Netherlands)

    J.C. de Jong (Jan); D.J. Smith (Derek James); A.S. Lapedes (Alan); I. Donatelli; L. Campitelli; G. Barigazzi; K. van Reeth; T.C. Jones (Terry); G.F. Rimmelzwaan (Guus); A.D.M.E. Osterhaus (Albert); R.A.M. Fouchier (Ron)

    2007-01-01

    textabstractIn the early 1970s, a human influenza A/Port Chalmers/1/73 (H3N2)-like virus colonized the European swine population. Analyses of swine influenza A (H3N2) viruses isolated in The Netherlands and Belgium revealed that in the early 1990s, antigenic drift had occurred, away from A/Port

  2. Swine Influenza Viruses – Evolution and Zoonotic Potential

    DEFF Research Database (Denmark)

    Fobian, Kristina

    the establishment of a reverse genetics system based on a backbone from the Danish H1N2 SIV, which is one of the two most prevalent subtypes in Denmark. Recently, a variant of a North American swine H3N2 virus containing a pandemic M gene was transmitted to humans in the US and on few occasions human......-to-human transmission was observed. These events underline the need for a reverse genetics system to be used for an analysis of the behavior of a pandemic M gene in a Danish SIV.......Influenza A virus (IAV) is an important respiratory pathogen with a broad host range. The natural reservoir for IAV is waterfowls, but both human and swine are considered natural hosts. During the past century IAV has caused severe pandemics as well as seasonal epidemics in the human population...

  3. Modified live virus vaccine induces a distinct immune response profile compared to inactivated influenza A virus vaccines in swine

    Science.gov (United States)

    Genetic and antigenic diversity within H1 influenza A virus (IAV) subtypes circulating in swine is increasing. The need for cross-protective influenza vaccines in swine is necessary as the virus becomes more diverse. This study compared the humoral and cell-mediated immune response of modified live ...

  4. Serological study of influenza viruses in veterinarians working with swine in Mexico.

    Science.gov (United States)

    Saavedra-Montañez, Manuel; Castillo-Juárez, Héctor; Sánchez-Betancourt, Iván; Rivera-Benitez, José Francisco; Ramírez-Mendoza, Humberto

    2017-06-01

    Humans and swine are both affected by influenza viruses, and swine are considered a potential source of new influenza viruses. Transmission of influenza viruses across species is well documented. The aim of this study was to evaluate the seroprevalence of different influenza virus subtypes in veterinarians working for the Mexican swine industry, using a hemagglutination inhibition test. All sera tested were collected in July 2011. The data were analysed using a generalized linear model and a linear model to study the possible association of seroprevalence with the age of the veterinarian, vaccination status, and biosecurity level of the farm where they work. The observed seroprevalence was 12.3%, 76.5%, 46.9%, and 11.1% for the human subtypes of pandemic influenza virus (pH1N1), seasonal human influenza virus (hH1N1), the swine subtypes of classical swine influenza virus (swH1N1), and triple-reassortant swine influenza virus (swH3N2), respectively. Statistical analysis indicated that age was associated with hH1N1 seroprevalence (P veterinarians, whereas all of those not vaccinated tested negative for this subtype. Our findings suggest that, between the onset of the 2009 pandemic and July 2011, the Mexican veterinarians working in the swine industry did not have immunity to the pH1N1 virus; hence, they would have been at risk for infection with this virus if this subtype had been circulating in swine in Mexico prior to 2011.

  5. Interaction between Mycoplasma hyopneumoniae and Swine Influenza Virus

    Science.gov (United States)

    Thacker, Eileen L.; Thacker, Brad J.; Janke, Bruce H.

    2001-01-01

    An experimental respiratory model was used to investigate the interaction between Mycoplasma hyopneumoniae and swine influenza virus (SIV) in the induction of pneumonia in susceptible swine. Previous studies demonstrated that M. hyopneumoniae, which produces a chronic bronchopneumonia in swine, potentiates a viral pneumonia induced by the porcine reproductive and respiratory syndrome virus (PRRSV). In this study, pigs were inoculated with M. hyopneumoniae 21 days prior to inoculation with SIV. Clinical disease as characterized by the severity of cough and fever was evaluated daily. Percentages of lung tissue with visual lesions and microscopic lesions were assessed upon necropsy at 3, 7, 14, and 21 days following SIV inoculation. Clinical observations revealed that pigs infected with both SIV and M. hyopneumoniae coughed significantly more than pigs inoculated with a single agent. Macroscopic pneumonia on necropsy at days 3 and 7 was greatest in both SIV-infected groups, with minimal levels of pneumonia in the M. hyopneumoniae-only-infected pigs. At 14 days post-SIV inoculation, pneumonia was significantly more severe in pigs infected with both pathogens. However, by 21 days postinoculation, the level of pneumonia in the dual-infected pigs was similar to that of the M. hyopneumoniae-only-infected group, and the pneumonia in the pigs inoculated with only SIV was nearly resolved. Microscopically, there was no apparent increase in the severity of pneumonia in pigs infected with both agents compared to that of single-agent-challenged pigs. The results of this study found that while pigs infected with both agents exhibited more severe clinical disease, the relationship between the two pathogens lacked the profound potentiation found with dual infection with M. hyopneumoniae and PRRSV. These findings demonstrate that the relationship between mycoplasmas and viruses varies with the individual agent. PMID:11427564

  6. Feral Swine in the United States Have Been Exposed to both Avian and Swine Influenza A Viruses.

    Science.gov (United States)

    Martin, Brigitte E; Sun, Hailiang; Carrel, Margaret; Cunningham, Fred L; Baroch, John A; Hanson-Dorr, Katie C; Young, Sean G; Schmit, Brandon; Nolting, Jacqueline M; Yoon, Kyoung-Jin; Lutman, Mark W; Pedersen, Kerri; Lager, Kelly; Bowman, Andrew S; Slemons, Richard D; Smith, David R; DeLiberto, Thomas; Wan, Xiu-Feng

    2017-10-01

    Influenza A viruses (IAVs) in swine can cause sporadic infections and pandemic outbreaks among humans, but how avian IAV emerges in swine is still unclear. Unlike domestic swine, feral swine are free ranging and have many opportunities for IAV exposure through contacts with various habitats and animals, including migratory waterfowl, a natural reservoir for IAVs. During the period from 2010 to 2013, 8,239 serum samples were collected from feral swine across 35 U.S. states and tested against 45 contemporary antigenic variants of avian, swine, and human IAVs; of these, 406 (4.9%) samples were IAV antibody positive. Among 294 serum samples selected for antigenic characterization, 271 cross-reacted with ≥1 tested virus, whereas the other 23 did not cross-react with any tested virus. Of the 271 IAV-positive samples, 236 cross-reacted with swine IAVs, 1 with avian IAVs, and 16 with avian and swine IAVs, indicating that feral swine had been exposed to both swine and avian IAVs but predominantly to swine IAVs. Our findings suggest that feral swine could potentially be infected with both avian and swine IAVs, generating novel IAVs by hosting and reassorting IAVs from wild birds and domestic swine and facilitating adaptation of avian IAVs to other hosts, including humans, before their spillover. Continued surveillance to monitor the distribution and antigenic diversities of IAVs in feral swine is necessary to increase our understanding of the natural history of IAVs. IMPORTANCE There are more than 5 million feral swine distributed across at least 35 states in the United States. In contrast to domestic swine, feral swine are free ranging and have unique opportunities for contact with wildlife, livestock, and their habitats. Our serological results indicate that feral swine in the United States have been exposed to influenza A viruses (IAVs) consistent with those found in both domestic swine and wild birds, with the predominant infections consisting of swine-adapted IAVs

  7. Novel triple-reassortant H1N1 swine influenza viruses in pigs in Tianjin, Northern China.

    Science.gov (United States)

    Sun, Ying-Feng; Wang, Xiu-Hui; Li, Xiu-Li; Zhang, Li; Li, Hai-Hua; Lu, Chao; Yang, Chun-Lei; Feng, Jing; Han, Wei; Ren, Wei-Ke; Tian, Xiang-Xue; Tong, Guang-Zhi; Wen, Feng; Li, Ze-Jun; Gong, Xiao-Qian; Liu, Xiao-Min; Ruan, Bao-Yang; Yan, Ming-Hua; Yu, Hai

    2016-02-01

    Pigs are susceptible to both human and avian influenza viruses and therefore have been proposed to be mixing vessels for the generation of pandemic influenza viruses through reassortment. In this study, for the first time, we report the isolation and genetic analyses of three novel triple-reassortant H1N1 swine influenza viruses from pigs in Tianjin, Northern China. Phylogenetic analysis showed that these novel viruses contained genes from the 2009 pandemic H1N1 (PB2, PB1, PA and NP), Eurasian swine (HA, NA and M) and triple-reassortant swine (NS) lineages. This indicated that the reassortment among the 2009 pandemic H1N1, Eurasian swine and triple-reassortant swine influenza viruses had taken place in pigs in Tianjin and resulted in the generation of new viruses. Furthermore, three human-like H1N1, two classical swine H1N1 and two Eurasian swine H1N1 viruses were also isolated during the swine influenza virus surveillance from 2009 to 2013, which indicated that multiple genetic lineages of swine H1N1 viruses were co-circulating in the swine population in Tianjin, China. The emergence of novel triple-reassortant H1N1 swine influenza viruses may be a potential threat to human health and emphasizes the importance of further continuous surveillance. Copyright © 2015 Elsevier B.V. All rights reserved.

  8. The genetic diversity of contemporary swine influenza A viruses in the United States

    Science.gov (United States)

    Introduction: Influenza A virus (IAV) is one of the most important respiratory pathogens of swine. It impacts mortality and causes significant financial losses through decreased production and the costs associated with vaccination and treatment. Further, due to the susceptibility of swine to transie...

  9. Polyanhydride nanovaccine against swine influenza virus in pigs.

    Science.gov (United States)

    Dhakal, Santosh; Goodman, Jonathan; Bondra, Kathryn; Lakshmanappa, Yashavanth S; Hiremath, Jagadish; Shyu, Duan-Liang; Ouyang, Kang; Kang, Kyung-Il; Krakowka, Steven; Wannemuehler, Michael J; Won Lee, Chang; Narasimhan, Balaji; Renukaradhya, Gourapura J

    2017-02-22

    We have recently demonstrated the effectiveness of an influenza A virus (IAV) subunit vaccine based on biodegradable polyanhydride nanoparticles delivery in mice. In the present study, we evaluated the efficacy of ∼200nm polyanhydride nanoparticles encapsulating inactivated swine influenza A virus (SwIAV) as a vaccine to induce protective immunity against a heterologous IAV challenge in pigs. Nursery pigs were vaccinated intranasally twice with inactivated SwIAV H1N2 (KAg) or polyanhydride nanoparticle-encapsulated KAg (KAg nanovaccine), and efficacy was evaluated against a heterologous zoonotic virulent SwIAV H1N1 challenge. Pigs were monitored for fever daily. Local and systemic antibody responses, antigen-specific proliferation of peripheral blood mononuclear cells, gross and microscopic lung lesions, and virus load in the respiratory tract were compared among the groups of animals. Our pre-challenge results indicated that KAg nanovaccine induced virus-specific lymphocyte proliferation and increased the frequency of CD4 + CD8αα + T helper and CD8 + cytotoxic T cells in peripheral blood mononuclear cells. KAg nanovaccine-immunized pigs were protected from fever following SwIAV challenge. In addition, pigs immunized with the KAg nanovaccine presented with lower viral antigens in lung sections and had 6 to 8-fold reduction in nasal shedding of SwIAV four days post-challenge compared to control animals. Immunologically, increased IFN-γ secreting T lymphocyte populations against both the vaccine and challenge viruses were detected in KAg nanovaccine-immunized pigs compared to the animals immunized with KAg alone. However, in the KAg nanovaccine-immunized pigs, hemagglutination inhibition, IgG and IgA antibody responses, and virus neutralization titers were comparable to that in the animals immunized with KAg alone. Overall, our data indicated that intranasal delivery of polyanhydride-based SwIAV nanovaccine augmented antigen-specific cellular immune response in

  10. Differentiated swine airway epithelial cell cultures for the investigation of influenza A virus infection and replication.

    Science.gov (United States)

    Bateman, Allen C; Karasin, Alexander I; Olsen, Christopher W

    2013-03-01

    Differentiated human airway epithelial cell cultures have been utilized to investigate cystic fibrosis, wound healing, and characteristics of viral infections. These cultures, grown at an air-liquid interface (ALI) in media with defined hormones and growth factors, recapitulate many aspects of the in vivo respiratory tract and allow for experimental studies at the cellular level. To optimize growth conditions for differentiated swine airway epithelial cultures and to use these cultures to examine influenza virus infection and replication. Primary swine respiratory epithelial cells were grown at an air-liquid interface with varying amounts of retinoic acid and epidermal growth factor. Cells grown with optimized concentrations of these factors for 4 weeks differentiated into multilayer epithelial cell cultures resembling the lining of the swine respiratory tract. Influenza virus infection and replication were examined in these cultures. Retinoic acid promoted ciliogenesis, whereas epidermal growth factor controlled the thickness of the pseudoepithelium. The optimal concentrations for differentiated swine cell cultures were 1·5 ng/ml epidermal growth factor and 100nm retinoic acid. Influenza A viruses infected and productively replicated in these cultures in the absence of exogenous trypsin, suggesting that the cultures express a protease capable of activating influenza virus hemagglutinin. Differences in virus infection and replication characteristics found previously in pigs in vivo were recapitulated in the swine cultures. This system could be a useful tool for a range of applications, including investigating influenza virus species specificity, defining cell tropism of influenza viruses in the swine respiratory epithelium, and studying other swine respiratory diseases. © 2012 Blackwell Publishing Ltd.

  11. Continual re-introduction of human pandemic H1N1 influenza A viruses into US swine, 2009-2014

    Science.gov (United States)

    Human-to-swine transmission of pandemic H1N1 influenza viruses (pH1N1) increased the genetic diversity of influenza A viruses in swine (swIAVs) globally and is linked to the emergence of new pandemic threats, including H3N2v variants. Through phylogenetic analysis of contemporary swIAVs in the Unit...

  12. Interspecies interactions and potential Influenza A virus risk in small swine farms in Peru

    Directory of Open Access Journals (Sweden)

    McCune Sarah

    2012-03-01

    Full Text Available Abstract Background The recent avian influenza epidemic in Asia and the H1N1 pandemic demonstrated that influenza A viruses pose a threat to global public health. The animal origins of the viruses confirmed the potential for interspecies transmission. Swine are hypothesized to be prime "mixing vessels" due to the dual receptivity of their trachea to human and avian strains. Additionally, avian and human influenza viruses have previously been isolated in swine. Therefore, understanding interspecies contact on smallholder swine farms and its potential role in the transmission of pathogens such as influenza virus is very important. Methods This qualitative study aimed to determine swine-associated interspecies contacts in two coastal areas of Peru. Direct observations were conducted at both small-scale confined and low-investment swine farms (n = 36 and in open areas where swine freely range during the day (n = 4. Interviews were also conducted with key stakeholders in swine farming. Results In both locations, the intermingling of swine and domestic birds was common. An unexpected contact with avian species was that swine were fed poultry mortality in 6/20 of the farms in Chancay. Human-swine contacts were common, with a higher frequency on the confined farms. Mixed farming of swine with chickens or ducks was observed in 36% of all farms. Human-avian interactions were less frequent overall. Use of adequate biosecurity and hygiene practices by farmers was suboptimal at both locations. Conclusions Close human-animal interaction, frequent interspecies contacts and suboptimal biosecurity and hygiene practices pose significant risks of interspecies influenza virus transmission. Farmers in small-scale swine production systems constitute a high-risk population and need to be recognized as key in preventing interspecies pathogen transfer. A two-pronged prevention approach, which offers educational activities for swine farmers about sound hygiene and

  13. Efficacy of influenza vaccination and tamiflu® treatment--comparative studies with Eurasian Swine influenza viruses in pigs.

    Science.gov (United States)

    Duerrwald, Ralf; Schlegel, Michael; Bauer, Katja; Vissiennon, Théophile; Wutzler, Peter; Schmidtke, Michaela

    2013-01-01

    Recent epidemiological developments demonstrated that gene segments of swine influenza A viruses can account for antigenic changes as well as reduced drug susceptibility of pandemic influenza A viruses. This raises questions about the efficacy of preventive measures against swine influenza A viruses. Here, the protective effect of vaccination was compared with that of prophylactic Tamiflu® treatment against two Eurasian swine influenza A viruses. 11-week-old pigs were infected by aerosol nebulisation with high doses of influenza virus A/swine/Potsdam/15/1981 (H1N1/1981, heterologous challenge to H1N1 vaccine strain) and A/swine/Bakum/1832/2000 (H1N2/2000, homologous challenge to H1N2 vaccine strain) in two independent trials. In each trial (i) 10 pigs were vaccinated twice with a trivalent vaccine (RESPIPORC® FLU3; 28 and 7 days before infection), (ii) another 10 pigs received 150 mg/day of Tamiflu® for 5 days starting 12 h before infection, and (iii) 12 virus-infected pigs were left unvaccinated and untreated and served as controls. Both viruses replicated efficiently in porcine respiratory organs causing influenza with fever, dyspnoea, and pneumonia. Tamiflu® treatment as well as vaccination prevented clinical signs and significantly reduced virus shedding. Whereas after homologous challenge with H1N2/2000 no infectious virus in lung and hardly any lung inflammation were detected, the virus titre was not and the lung pathology was only partially reduced in H1N1/1981, heterologous challenged pigs. Tamiflu® application did not affect these study parameters. In conclusion, all tested preventive measures provided protection against disease. Vaccination additionally prevented virus replication and histopathological changes in the lung of homologous challenged pigs.

  14. Efficacy of Influenza Vaccination and Tamiflu® Treatment – Comparative Studies with Eurasian Swine Influenza Viruses in Pigs

    Science.gov (United States)

    Duerrwald, Ralf; Schlegel, Michael; Bauer, Katja; Vissiennon, Théophile; Wutzler, Peter; Schmidtke, Michaela

    2013-01-01

    Recent epidemiological developments demonstrated that gene segments of swine influenza A viruses can account for antigenic changes as well as reduced drug susceptibility of pandemic influenza A viruses. This raises questions about the efficacy of preventive measures against swine influenza A viruses. Here, the protective effect of vaccination was compared with that of prophylactic Tamiflu® treatment against two Eurasian swine influenza A viruses. 11-week-old pigs were infected by aerosol nebulisation with high doses of influenza virus A/swine/Potsdam/15/1981 (H1N1/1981, heterologous challenge to H1N1 vaccine strain) and A/swine/Bakum/1832/2000 (H1N2/2000, homologous challenge to H1N2 vaccine strain) in two independent trials. In each trial (i) 10 pigs were vaccinated twice with a trivalent vaccine (RESPIPORC® FLU3; 28 and 7 days before infection), (ii) another 10 pigs received 150 mg/day of Tamiflu® for 5 days starting 12 h before infection, and (iii) 12 virus-infected pigs were left unvaccinated and untreated and served as controls. Both viruses replicated efficiently in porcine respiratory organs causing influenza with fever, dyspnoea, and pneumonia. Tamiflu® treatment as well as vaccination prevented clinical signs and significantly reduced virus shedding. Whereas after homologous challenge with H1N2/2000 no infectious virus in lung and hardly any lung inflammation were detected, the virus titre was not and the lung pathology was only partially reduced in H1N1/1981, heterologous challenged pigs. Tamiflu® application did not affect these study parameters. In conclusion, all tested preventive measures provided protection against disease. Vaccination additionally prevented virus replication and histopathological changes in the lung of homologous challenged pigs. PMID:23630601

  15. Efficacy of influenza vaccination and tamiflu® treatment--comparative studies with Eurasian Swine influenza viruses in pigs.

    Directory of Open Access Journals (Sweden)

    Ralf Duerrwald

    Full Text Available Recent epidemiological developments demonstrated that gene segments of swine influenza A viruses can account for antigenic changes as well as reduced drug susceptibility of pandemic influenza A viruses. This raises questions about the efficacy of preventive measures against swine influenza A viruses. Here, the protective effect of vaccination was compared with that of prophylactic Tamiflu® treatment against two Eurasian swine influenza A viruses. 11-week-old pigs were infected by aerosol nebulisation with high doses of influenza virus A/swine/Potsdam/15/1981 (H1N1/1981, heterologous challenge to H1N1 vaccine strain and A/swine/Bakum/1832/2000 (H1N2/2000, homologous challenge to H1N2 vaccine strain in two independent trials. In each trial (i 10 pigs were vaccinated twice with a trivalent vaccine (RESPIPORC® FLU3; 28 and 7 days before infection, (ii another 10 pigs received 150 mg/day of Tamiflu® for 5 days starting 12 h before infection, and (iii 12 virus-infected pigs were left unvaccinated and untreated and served as controls. Both viruses replicated efficiently in porcine respiratory organs causing influenza with fever, dyspnoea, and pneumonia. Tamiflu® treatment as well as vaccination prevented clinical signs and significantly reduced virus shedding. Whereas after homologous challenge with H1N2/2000 no infectious virus in lung and hardly any lung inflammation were detected, the virus titre was not and the lung pathology was only partially reduced in H1N1/1981, heterologous challenged pigs. Tamiflu® application did not affect these study parameters. In conclusion, all tested preventive measures provided protection against disease. Vaccination additionally prevented virus replication and histopathological changes in the lung of homologous challenged pigs.

  16. Virus survival in slurry: Analysis of the stability of foot-and-mouth disease, classical swine fever, bovine viral diarrhoea and swine influenza viruses

    DEFF Research Database (Denmark)

    Bøtner, Anette; Belsham, Graham

    2012-01-01

    of an outbreak of disease before it has been recognized. The survival of foot-and-mouth disease virus, classical swine fever virus, bovine viral diarrhoea virus and swine influenza virus, which belong to three different RNA virus families plus porcine parvovirus (a DNA virus) was examined under controlled...... conditions. For each RNA virus, the virus survival in farm slurry under anaerobic conditions was short (generally ≤1h) when heated (to 55°C) but each of these viruses could retain infectivity at cool temperatures (5°C) for many weeks. The porcine parvovirus survived considerably longer than each of the RNA...

  17. Presence of influenza viruses in backyard poultry and swine in El Yali wetland, Chile.

    Science.gov (United States)

    Bravo-Vasquez, N; Di Pillo, F; Lazo, A; Jiménez-Bluhm, P; Schultz-Cherry, S; Hamilton-West, C

    2016-11-01

    In South America little is known regarding influenza virus circulating in backyard poultry and swine populations. Backyard productive systems (BPS) that breed swine and poultry are widely distributed throughout Chile with high density in the central zone, and several BPS are located within the "El Yali" (EY) ecosystem, which is one of the most important wetlands in South America. Here, 130 different wild bird species have been described, of them, at least 22 species migrate yearly from North America for nesting. For this reason, EY is considered as a high-risk zone for avian influenza virus. This study aims to identify if backyard poultry and swine bred in the EY ecosystem have been exposed to influenza A virus and if so, to identify influenza virus subtypes. A biosecurity and handling survey was applied and samples were collected from BPS in two seasons (spring 2013 and fall 2014) for influenza seroprevalence, and in one season (fall 2014) for virus presence. Seroprevalence at BPS level was 42% (95% CI:22-49) during spring 2013 and 60% (95% CI 43-72) in fall 2014. rRT-PCR for the influenza A matrix gene indicated a viral prevalence of 27% (95% CI:14-39) at BPS level in fall 2014. Eight farms (73% of rRT-PCR positive farms) were also positive to the Elisa test at the same time. One BPS was simultaneously positive (rRT-PCR) in multiple species (poultry, swine and geese) and a H1N2 virus was identified from swine, exemplifying the risk that these BPS may pose for generation of novel influenza viruses. Copyright © 2016 Elsevier B.V. All rights reserved.

  18. Differentiated swine airway epithelial cell cultures for the investigation of influenza A virus infection and replication

    OpenAIRE

    Bateman, Allen C.; Karasin, Alexander I.; Olsen, Christopher W.

    2012-01-01

    Please cite this paper as: Bateman et al. (2013) Differentiated swine airway epithelial cell cultures for the investigation of influenza A virus infection and replication. Influenza and Other Respiratory Viruses 7(2) 139–150. Background  Differentiated human airway epithelial cell cultures have been utilized to investigate cystic fibrosis, wound healing, and characteristics of viral infections. These cultures, grown at an air–liquid interface (ALI) in media with defined hormones and growth fa...

  19. Replication of influenza A virus in swine umbilical cord epithelial stem-like cells.

    Science.gov (United States)

    Khatri, Mahesh; Chattha, Kuldeep S

    2015-01-01

    In this study, we describe the isolation and characterization of epithelial stem-like cells from the swine umbilical cord and their susceptibility to influenza virus infection. Swine umbilical cord epithelial stem cells (SUCECs) expressed stem cell and pluripotency associated markers such as SSEA-1, SSEA-4, TRA 1-60 and TRA 1-81 and Oct4. Morphologically, cells displayed polygonal morphology and were found to express epithelial markers; pancytokeratin, cytokeratin-18 and occludin; mesenchymal cell markers CD44, CD90 and haematopoietic cell marker CD45 were not detected on these cells. The cells had extensive proliferation and self- renewal properties. The cells also possessed immunomodulatory activity and inhibited the proliferation of T cells. Also, higher levels of anti-inflammatory cytokine IL-10 were detected in SUCEC-T cell co-cultures. The cells were multipotent and differentiated into lung epithelial cells when cultured in epithelial differentiation media. We also examined if SUCECs are susceptible to infection with influenza virus. SUCECs expressed sialic acid receptors, used by influenza virus for binding to cells. The 2009 pandemic influenza virus and swine influenza virus replicated in these cells. SUCECs due to their differentiation and immunoregulatory properties will be useful as cellular therapy in a pig model for human diseases. Additionally, our data indicate that influenza virus can infect SUCECs and may transmit influenza virus from mother to fetus through umbilical cord and transplantation of influenza virus-infected stem cells may transmit infection to recipients. Therefore, we propose that umbilical cord cells, in addition to other agents, should also be tested for influenza virus before cryopreservation for future use as a cell therapy for disease conditions.

  20. Genetic and pathogenic characteristics of H1 avian and swine influenza A viruses.

    Science.gov (United States)

    Kang, Hyun-Mi; Lee, Eun-Kyoung; Song, Byung-Min; Jeong, Jipseol; Kim, Hye-Ryoung; Choi, Eun-Jin; Shin, Yeun-Kyung; Lee, Hee-Soo; Lee, Youn-Jeong

    2014-10-01

    This study examined the potential for cross-species transmission of influenza viruses by comparing the genetic and pathogenic characteristics of H1 avian influenza viruses (AIVs) with different host origins in Korea. Antigenic and phylogenetic analyses of H1 AIVs circulating in Korea provided evidence of genetic similarity between viruses that infect domestic ducks and those that infect wild birds, although there was no relationship between avian and swine viruses. However, there were some relationships between swine and human viral genes. The replication and pathogenicity of the H1 viruses was assessed in chickens, domestic ducks and mice. Viral shedding in chickens was relatively high. Virus was recovered from both oropharyngeal and cloacal swabs up to 5-10 days post-inoculation. The titres of domestic duck viruses in chickens were much higher than those of wild-bird viruses. Both domestic duck and wild-bird viruses replicated poorly in domestic ducks. None of the swine viruses replicated in chickens or domestic ducks; however, six viruses showed relatively high titres in mice, regardless of host origin, and induced clinical signs such as ruffled fur, squatting and weight loss. Thus, although the phylogenetic and antigenic analyses showed no evidence of interspecies transmission between birds and swine, the results suggest that Korean H1 viruses have the potential to cause disease in mammals. Therefore, we should intensify continuous monitoring of avian H1 viruses in mammals and seek to prevent interspecies transmission. © 2014 The Authors.

  1. PA-X protein decreases replication and pathogenicity of swine influenza virus in cultured cells and mouse models.

    Science.gov (United States)

    Gong, Xiao-Qian; Sun, Ying-Feng; Ruan, Bao-Yang; Liu, Xiao-Min; Wang, Qi; Yang, Hai-Ming; Wang, Shuai-Yong; Zhang, Peng; Wang, Xiu-Hui; Shan, Tong-Ling; Tong, Wu; Zhou, Yan-Jun; Li, Guo-Xin; Zheng, Hao; Tong, Guang-Zhi; Yu, Hai

    2017-06-01

    Swine influenza viruses have been circulating in pigs throughout world and might be potential threats to human health. PA-X protein is a newly discovered protein produced from the PA gene by ribosomal frameshifting and the effects of PA-X on the 1918 H1N1, the pandemic 2009 H1N1, the highly pathogenic avian H5N1 and the avian H9N2 influenza viruses have been reported. However, the role of PA-X in the pathogenesis of swine influenza virus is still unknown. In this study, we rescued the H1N1 wild-type (WT) classical swine influenza virus (A/Swine/Guangdong/1/2011 (H1N1)) and H1N1 PA-X deficient virus containing mutations at the frameshift motif, and compared their replication properties and pathogenicity of swine influenza virus in vitro and in vivo. Our results show that the expression of PA-X inhibits virus replication and polymerase activity in cultured cells and decreases virulence in mouse models. Therefore, our study demonstrates that PA-X protein acts as a negative virulence regulator for classical H1N1 swine influenza virus and decreases virulence by inhibiting viral replication and polymerase activity, deepening our understanding of the pathogenesis of swine influenza virus. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. Evidence of infection with avian, human, and swine influenza viruses in pigs in Cairo, Egypt.

    Science.gov (United States)

    Gomaa, Mokhtar R; Kandeil, Ahmed; El-Shesheny, Rabeh; Shehata, Mahmoud M; McKenzie, Pamela P; Webby, Richard J; Ali, Mohamed A; Kayali, Ghazi

    2018-02-01

    The majority of the Egyptian swine population was culled in the aftermath of the 2009 H1N1 pandemic, but small-scale growing remains. We sampled pigs from piggeries and an abattoir in Cairo. We found virological evidence of infection with avian H9N2 and H5N1 viruses as well as human pandemic H1N1 influenza virus. Serological evidence suggested previous exposure to avian H5N1 and H9N2, human pandemic H1N1, and swine avian-like and human-like viruses. This raises concern about potential reassortment of influenza viruses in pigs and highlights the need for better control and prevention of influenza virus infection in pigs.

  3. New influenza A virus reassortments have been found in Danish swine in 2011

    DEFF Research Database (Denmark)

    Breum, Solvej Østergaard; Hjulsager, Charlotte Kristiane; Trebbien, Ramona

    2012-01-01

    % of the samples were positive for swine influenza virus. All influenza positive samples were tested for the H1N1pdm09 virus by a real time RT-PCR assay specific for the pandemic HA gene and 26% of the samples were positive. Subtyping of 90 samples by sequencing revealed the presence of; i) H1N1 “avian like...... in the Danish pig population. iii) H1N1pdm09 viruses which were found the first time in Danish pigs in January 2010. iv) Three new subtype variants comprising H1 “avian like” together with N2 “human like”, H1 pandemic with N2 “human like” and finally H1 pandemic with N2 from swine H3N2. The presence of N2...... the pandemic H1N1 virus. This study contribute significantly to our knowledge of the epidemiology of swine influenza A virus circulating in Danish swine and the potential role of swine in the emergence of novel reassortant viruses....

  4. Assessment of zoonotic potential of four European swine influenza viruses in the ferret model

    DEFF Research Database (Denmark)

    Fobian, Kristina; P. Fabrizio, Thomas; Yoon, Sun-Woo

    The reverse zoonotic events that introduced the 2009 pandemic influenza virus into swine herds have drastically increased the diversity of reassortants throughout Europe. The pandemic potential of these novel reassortments is unknown, hence necessitating enhanced surveillance of European swine......-like H1 and human-like N2 and one with pandemic H1 and swine-like N2. All viruses replicated to high viral titers in nasal wash- and nasal turbinate samples from inoculated ferrets and transmitted efficiently by direct contact. Only the H3N2 virus transmitted to naïve ferrets via respiratory droplets...... to neuraminidase inhibitors. These findings suggest that the investigated viruses have the potential to infect humans and further underline the need for continued surveillance as well as pandemic and zoonotic assessment of new influenza reassortants....

  5. [Immune response of pigs to Aujeszky disease virus and swine influenza virus].

    Science.gov (United States)

    Tamarov, G; Khristov, S

    1978-01-01

    Explored was the possibility of simultaneous vaccination of pigs against the Aujeszky's disease virus and the swine influenza virus. Used were strain MK-25 against the former and strain 3sb against the latter. It was found that at the simultaneous subcutaneous or oral treatment with the two antigens equally effective immunity was built as in the case of vaccination with each one of them used alone. No antagonism was established between the two antigens during the time of immunity building in the body.

  6. Swine Influenza (Swine Flu) in Pigs

    Science.gov (United States)

    ... Avian Swine Variant Pandemic Other Key Facts about Swine Influenza (Swine Flu) in Pigs Language: English (US) Español Recommend on Facebook Tweet ... visit the CDC seasonal flu website . What is Swine Influenza? Swine Influenza (swine flu) is a respiratory ...

  7. Pathogenesis and transmission of swine-origin 2009 A(H1N1) influenza virus in ferrets

    NARCIS (Netherlands)

    V.J. Munster (Vincent); E. de Wit (Emmie); J.M.A. van den Brand (Judith); S. Herfst (Sander); E.J.A. Schrauwen (Eefje); T.M. Bestebroer (Theo); D.A.M.C. van de Vijver (David); C.A.B. Boucher (Charles); M.P.G. Koopmans D.V.M. (Marion); G.F. Rimmelzwaan (Guus); T. Kuiken (Thijs); A.D.M.E. Osterhaus (Albert); R.A.M. Fouchier (Ron)

    2009-01-01

    textabstractThe swine-origin A(H1N1) influenza virus that has emerged in humans in early 2009 has raised concerns about pandemic developments. In a ferret pathogenesis and transmission model, the 2009 A(H1N1) influenza virus was found to be more pathogenic than a seasonal A(H1N1) virus, with more

  8. Novel reassortment of Eurasian avian-like and pandemic/2009 influenza viruses in swine: Infectious potential for humans

    OpenAIRE

    Webster, RG; Chen, X; Zhou, B; Zhu, H; Lam, TTY; Chen, H; Peiris, JSM; Guan, Y; Wang, J; Fan, X; Smith, DK; Webby, R; Chen, A

    2011-01-01

    Pigs are considered to be intermediate hosts and "mixing vessels," facilitating the genesis of pandemic influenza viruses, as demonstrated by the emergence of the 2009 H1N1 pandemic (pdm/09) virus. The prevalence and repeated introduction of the pdm/09 virus into pigs raises the possibility of generating novel swine influenza viruses with the potential to infect humans. To address this, an active influenza surveillance program was conducted with slaughtered pigs in abattoirs in southern China...

  9. In Vitro Reassortment between Endemic H1N2 and 2009 H1N1 Pandemic Swine Influenza Viruses Generates Attenuated Viruses

    OpenAIRE

    Hause, Ben M.; Collin, Emily A.; Ran, Zhiguang; Zhu, Laihua; Webby, Richard J.; Simonson, Randy R.; Li, Feng

    2012-01-01

    The pandemic H1N1 (pH1N1) influenza virus was first reported in humans in the spring of 2009 and soon thereafter was identified in numerous species, including swine. Reassortant viruses, presumably arising from the co-infection of pH1N1 and endemic swine influenza virus (SIV), were subsequently identified from diagnostic samples collected from swine. In this study, co-infection of swine testicle (ST) cells with swine-derived endemic H1N2 (MN745) and pH1N1 (MN432) yielded two reassortant H1N2 ...

  10. Receptor specificity of subtype H1 influenza A viruses isolated from swine and humans in the United States

    Science.gov (United States)

    Chen, Li-Mei; Rivailler, Pierre; Hossain, Jaber; Carney, Paul; Balish, Amanda; Perry, Ijeoma; Davis, C. Todd; Garten, Rebecca; Shu, Bo; Xu, Xiyan; Klimov, Alexander; Paulson, James C.; Cox, Nancy J.; Swenson, Sabrina; Stevens, James; Vincent, Amy; Gramer, Marie; Donis, Ruben O.

    2017-01-01

    The evolution of classical swine influenza viruses receptor specificity preceding the emergence of the 2009 H1N1 pandemic virus was analyzed in glycan microarrays. Classical swine influenza viruses from the α, β, and γ antigenic clusters isolated between 1945 and 2009 revealed a binding profile very similar to that of 2009 pandemic H1N1 viruses, with selectivity for α2-6-linked sialosides and very limited binding to α2-3 sialosides. Despite considerable genetic divergence, the ‘human-like’ H1N1 viruses circulating in swine retained strong binding preference for α2-6 sialylated glycans. Interspecies transmission of H1N1 influenza viruses from swine to humans or from humans to swine has not driven selection of viruses with distinct novel receptor binding specificities. Classical swine and human seasonal H1N1 influenza viruses have conserved specificity for similar α2-6-sialoside receptors in spite of long term circulation in separate hosts, suggesting that humans and swine impose analogous selection pressures on the evolution of receptor binding function. PMID:21333316

  11. Safety, immunogenicity, and efficacy of an alphavirus replicon-based swine influenza virus hemagglutinin vaccine.

    Science.gov (United States)

    Vander Veen, Ryan L; Loynachan, Alan T; Mogler, Mark A; Russell, Brandon J; Harris, D L Hank; Kamrud, Kurt I

    2012-03-02

    A single-cycle, propagation-defective replicon particle (RP) vaccine expressing a swine influenza virus hemagglutinin (HA) gene was constructed and evaluated in several different animal studies. Studies done in both the intended host (pigs) and non-host (mice) species demonstrated that the RP vaccine is not shed or spread by vaccinated animals to comingled cohorts, nor does it revert to virulence following vaccination. In addition, vaccinated pigs develop both specific humoral and IFN-γ immune responses, and young pigs are protected against homologous influenza virus challenge. Copyright © 2012 Elsevier Ltd. All rights reserved.

  12. Real-time reverse transcription-PCR assay for differentiating the Pandemic H1N1 2009 influenza virus from swine influenza viruses.

    Science.gov (United States)

    Hiromoto, Yasuaki; Uchida, Yuko; Takemae, Nobuhiro; Hayashi, Tsuyoshi; Tsuda, Tomoyuki; Saito, Takehiko

    2010-12-01

    Since the Pandemic H1N1 2009 (H1N1pdm) influenza virus emerged in human in 2009, H1N1pdm, classical swine H1, Eurasian avian-like H1, human-like H1 and human-like H3 swine influenza viruses have circulated in pig populations, and avian H9N2 viruses have been isolated in pigs as well. In this study, TaqMan single-step real-time reverse transcription-PCR (rtRT-PCR) assays targeting the hemagglutinin gene were developed to differentiate H1N1pdm from other genetic lineages of the H1 subtype and other subtypes of influenza viruses circulating in human and pig populations for veterinary use. H1N1pdm rtRT-PCR detected H1N1pdm RNA and did not cross-react with classical swine H1, Eurasian avian-like H1, human-like H1, human-like H3 swine and avian H9 influenza viruses RNA. Classical swine H1, Eurasian avian-like H1, human-like H1 and H3 and avian H9 rtRT-PCR were reacted exclusively with viral RNA of their respective lineages and subtypes. The results demonstrate that these assays are useful for the diagnosis of the H1N1pdm virus in both human- and animal-health-related fields. Copyright © 2010 Elsevier B.V. All rights reserved.

  13. H1N1 influenza viruses varying widely in hemagglutinin stability transmit efficiently from swine to swine and to ferrets.

    Directory of Open Access Journals (Sweden)

    Marion Russier

    2017-03-01

    Full Text Available A pandemic-capable influenza virus requires a hemagglutinin (HA surface glycoprotein that is immunologically unseen by most people and is capable of supporting replication and transmission in humans. HA stabilization has been linked to 2009 pH1N1 pandemic potential in humans and H5N1 airborne transmissibility in the ferret model. Swine have served as an intermediate host for zoonotic influenza viruses, yet the evolutionary pressure exerted by this host on HA stability was unknown. For over 70 contemporary swine H1 and H3 isolates, we measured HA activation pH to range from pH 5.1 to 5.9 for H1 viruses and pH 5.3 to 5.8 for H3 viruses. Thus, contemporary swine isolates vary widely in HA stability, having values favored by both avian (pH >5.5 and human and ferret (pH ≤5.5 species. Using an early 2009 pandemic H1N1 (pH1N1 virus backbone, we generated three viruses differing by one HA residue that only altered HA stability: WT (pH 5.5, HA1-Y17H (pH 6.0, and HA2-R106K (pH 5.3. All three replicated in pigs and transmitted from pig-to-pig and pig-to-ferret. WT and R106 viruses maintained HA genotype and phenotype after transmission. Y17H (pH 6.0 acquired HA mutations that stabilized the HA protein to pH 5.8 after transmission to pigs and 5.5 after transmission to ferrets. Overall, we found swine support a broad range of HA activation pH for contact transmission and many recent swine H1N1 and H3N2 isolates have stabilized (human-like HA proteins. This constitutes a heightened pandemic risk and underscores the importance of ongoing surveillance and control efforts for swine viruses.

  14. Distribution of sialic acid receptors and influenza A viruses of avian and swine origin and in experimentally infected pigs

    DEFF Research Database (Denmark)

    Trebbien, Ramona; Larsen, Lars Erik; Viuff, Birgitte M.

    2011-01-01

    Background: Pigs are considered susceptible to influenza A virus infections from different host origins because earlier studies have shown that they have receptors for both avian (sialic acid-alpha-2,3-terminal saccharides (SAalpha- 2,3)) and swine/human (SA-alpha-2,6) influenza viruses in the up......Background: Pigs are considered susceptible to influenza A virus infections from different host origins because earlier studies have shown that they have receptors for both avian (sialic acid-alpha-2,3-terminal saccharides (SAalpha- 2,3)) and swine/human (SA-alpha-2,6) influenza viruses...... acts as a mixing vessel between human and avian influenza viruses. Furthermore, it was shown that AIV prefers to infect alveolar type II epithelial cells in pigs. This corresponds with findings in humans emphasising the resemblance between the two species....

  15. Virological and serological study of human infection with swine influenza A H1N1 virus in China.

    Science.gov (United States)

    Zu, Rongqiang; Dong, Libo; Qi, Xian; Wang, Dayan; Zou, Shumei; Bai, Tian; Li, Ming; Li, Xiaodan; Zhao, Xiang; Xu, Cuiling; Huo, Xiang; Xiang, Nijuan; Yang, Shuai; Li, Zi; Xu, Zhen; Wang, Hua; Shu, Yuelong

    2013-11-01

    Pigs are considered to be "mixing vessels" for the emergence of influenza viruses with pandemic potential. 2009 Pandemic Influenza H1N1 further proved this hypothesis, and raised the needs for risk assessment of human cases caused by swine influenza virus. A field investigation was conducted after a case identified with infection of European avian-like swine influenza H1N1 virus. The diagnosis was confirmed by real-time PCR, virus isolation, whole genome sequencing and serological assays. Samples from local pigs and close contacts were tested to identify the source of infection and route of transmission. The virus from the index case was similar to viruses circulating in the local pigs. The case's grandfather was asymptomatic with sero-conversion. A total of 42.8% of swine sera were positive for European avian-like swine H1N1. This study highlighted the importance of performing surveillance on swine influenza to monitor new virus emergence in humans. © 2013 Elsevier Inc. All rights reserved.

  16. Pathogenicity and transmissibility of North American triple reassortant swine influenza A viruses in ferrets.

    Directory of Open Access Journals (Sweden)

    Subrata Barman

    Full Text Available North American triple reassortant swine (TRS influenza A viruses have caused sporadic human infections since 2005, but human-to-human transmission has not been documented. These viruses have six gene segments (PB2, PB1, PA, HA, NP, and NS closely related to those of the 2009 H1N1 pandemic viruses. Therefore, understanding of these viruses' pathogenicity and transmissibility may help to identify determinants of virulence of the 2009 H1N1 pandemic viruses and to elucidate potential human health threats posed by the TRS viruses. Here we evaluated in a ferret model the pathogenicity and transmissibility of three groups of North American TRS viruses containing swine-like and/or human-like HA and NA gene segments. The study was designed only to detect informative and significant patterns in the transmissibility and pathogenicity of these three groups of viruses. We observed that irrespective of their HA and NA lineages, the TRS viruses were moderately pathogenic in ferrets and grew efficiently in both the upper and lower respiratory tracts. All North American TRS viruses studied were transmitted between ferrets via direct contact. However, their transmissibility by respiratory droplets was related to their HA and NA lineages: TRS viruses with human-like HA and NA were transmitted most efficiently, those with swine-like HA and NA were transmitted minimally or not transmitted, and those with swine-like HA and human-like NA (N2 showed intermediate transmissibility. We conclude that the lineages of HA and NA may play a crucial role in the respiratory droplet transmissibility of these viruses. These findings have important implications for pandemic planning and warrant confirmation.

  17. Identification of swine influenza virus epitopes and analysis of multiple specificities expressed by cytotoxic T cell subsets

    DEFF Research Database (Denmark)

    Pedersen, Lasse Eggers; Breum, Solvej Østergaard; Riber, Ulla

    2014-01-01

    Background: Major histocompatibility complex (MHC) class I peptide binding and presentation are essential for antigen-specific activation of cytotoxic T lymphocytes (CTLs) and swine MHC class I molecules, also termed swine leukocyte antigens (SLA), thus play a crucial role in the process that leads...... to elimination of viruses such as swine influenza virus (SwIV). This study describes the identification of SLA-presented peptide epitopes that are targets for a swine CTL response, and further analyses multiple specificities expressed by SwIV activated CTL subsets. Findings: Four SwIV derived peptides were...

  18. Molecular epidemiology of novel swine origin influenza virus (S-OIV from Gwalior, India, 2009

    Directory of Open Access Journals (Sweden)

    Shukla Jyoti

    2011-06-01

    Full Text Available Abstract Background The H1N1pandemic virus is a newly emergent human influenza A virus that is closely related to a number of currently circulating pig viruses in the 'classic North American' and 'Eurasian' swine influenza virus lineages and thus referred as S-OIV. Since the first reports of the virus in humans in April 2009, H1N1 virus has spread to 168 countries and overseas territories. India also witnessed severe H1N1 pandemic virus epidemic with considerable morbidity and mortality in different parts starting from May 2009. Findings The suspected swine flu outbreak from Gwalior India during October- December 2009 was confirmed through S-OIV HA gene specific RT-LAMP and real time RT-PCR. Positive samples through CDC real time and Lamp assay were further processed for isolation of the virus. Full HA gene sequencing of the H1N1 isolates of Gwalior, India revealed 99% homology with California and other circulating novel swine flu viruses. Three major changes were observed at nucleotide level, while two major amino acid shifts were observed at the position C9W and I30M corresponding to the ORF with prototype strain. The HA gene sequence phylogeny revealed the circulation of two genetically distinct lineages belonging to Clade VII and Clade I of S-OIV. Conclusions Our findings also supported the earlier report about circulation of mixed genogroups of S-OIV in India. Therefore continuous monitoring of the genetic makeup of this newly emergent virus is essential to understand its evolution within the country.

  19. Identification of swine influenza A virus and Stenotrophomonas maltophilia co-infection in Chinese pigs

    Directory of Open Access Journals (Sweden)

    Hou Dongjun

    2012-08-01

    Full Text Available Abstract Background Influenza virus virulence can be exacerbated by bacterial co-infections. Swine influenza virus (SIV infection together with some bacteria is found to enhance pathogenicity. Methods SIV-positive samples suspected of containing bacteria were used for bacterial isolation and identification. Antimicrobial susceptibility testing was performed by disc diffusion methods. To investigate the interaction of SIV and the bacteria in vitro, guinea pigs were used as mammalian hosts to determine the effect on viral susceptibility and transmissibility. Differences in viral titers between groups were compared using Student’s t-test. Results During surveillance for SIV in China from 2006 to 2009, seven isolates (24.14% of 29 influenza A viruses were co-isolated with Stenotrophomonas maltophilia from nasal and tracheal swab samples of pigs. Antimicrobial susceptibility testing showed that the bacteria possessed a high level of resistance towards clinically used antibiotics. To investigate the interaction between these two microorganisms in influencing viral susceptibility and transmission in humans, guinea pigs were used as an infection model. Animals were inoculated with SIV or S. maltophilia alone or co-infected with SIV and S. maltophilia. The results showed that although no transmission among guinea pigs was observed, virus–bacteria co-infections resulted in higher virus titers in nasal washes and trachea and a longer virus shedding period. Conclusions This is the first report of influenza virus co-infection with S. maltophilia in the Chinese swine population. Increased replication of virus by co-infection with multidrug resistant bacteria might increase the infection rate of SIV in humans. The control of S. maltophilia in clinics will contribute to reducing the spread of SIV in pigs and humans.

  20. Swine influenza H1N1 virus induces acute inflammatory immune responses in pig lungs: a potential animal model for human H1N1 influenza virus.

    Science.gov (United States)

    Khatri, Mahesh; Dwivedi, Varun; Krakowka, Steven; Manickam, Cordelia; Ali, Ahmed; Wang, Leyi; Qin, Zhuoming; Renukaradhya, Gourapura J; Lee, Chang-Won

    2010-11-01

    Pigs are capable of generating reassortant influenza viruses of pandemic potential, as both the avian and mammalian influenza viruses can infect pig epithelial cells in the respiratory tract. The source of the current influenza pandemic is H1N1 influenza A virus, possibly of swine origin. This study was conducted to understand better the pathogenesis of H1N1 influenza virus and associated host mucosal immune responses during acute infection in humans. Therefore, we chose a H1N1 swine influenza virus, Sw/OH/24366/07 (SwIV), which has a history of transmission to humans. Clinically, inoculated pigs had nasal discharge and fever and shed virus through nasal secretions. Like pandemic H1N1, SwIV also replicated extensively in both the upper and lower respiratory tracts, and lung lesions were typical of H1N1 infection. We detected innate, proinflammatory, Th1, Th2, and Th3 cytokines, as well as SwIV-specific IgA antibody in lungs of the virus-inoculated pigs. Production of IFN-γ by lymphocytes of the tracheobronchial lymph nodes was also detected. Higher frequencies of cytotoxic T lymphocytes, γδ T cells, dendritic cells, activated T cells, and CD4+ and CD8+ T cells were detected in SwIV-infected pig lungs. Concomitantly, higher frequencies of the immunosuppressive T regulatory cells were also detected in the virus-infected pig lungs. The findings of this study have relevance to pathogenesis of the pandemic H1N1 influenza virus in humans; thus, pigs may serve as a useful animal model to design and test effective mucosal vaccines and therapeutics against influenza virus.

  1. Evidence of reassortment of pandemic H1N1 influenza virus in swine in Argentina: are we facing the expansion of potential epicenters of influenza emergence?

    Science.gov (United States)

    Pereda, Ariel; Rimondi, Agustina; Cappuccio, Javier; Sanguinetti, Ramon; Angel, Matthew; Ye, Jianqiang; Sutton, Troy; Dibárbora, Marina; Olivera, Valeria; Craig, Maria I.; Quiroga, Maria; Machuca, Mariana; Ferrero, Andrea; Perfumo, Carlos; Perez, Daniel R.

    2011-01-01

    Please cite this paper as: Pereda et al. (2011) Evidence of reassortment of pandemic H1N1 influenza virus in swine in Argentina: are we facing the expansion of potential epicenters of influenza emergence? Influenza and Other Respiratory Viruses 5(6), 409–412. In this report, we describe the occurrence of two novel swine influenza viruses (SIVs) in pigs in Argentina. These viruses are the result of two independent reassortment events between the H1N1 pandemic influenza virus (H1N1pdm) and human‐like SIVs, showing the constant evolution of influenza viruses at the human–swine interface and the potential health risk of H1N1pdm as it appears to be maintained in the swine population. It must be noted that because of the lack of information regarding the circulation of SIVs in South America, we cannot discard the possibility that ancestors of the H1N1pdm or other SIVs have been present in this part of the world. More importantly, these findings suggest an ever‐expanding geographic range of potential epicenters of influenza emergence with public health risks. PMID:21668680

  2. Immune and inflammatory response in pigs during acute influenza caused by H1N1 swine influenza virus.

    Science.gov (United States)

    Pomorska-Mól, Małgorzata; Markowska-Daniel, Iwona; Kwit, Krzysztof; Czyżewska, Ewelina; Dors, Arkadiusz; Rachubik, Jarosław; Pejsak, Zygmunt

    2014-10-01

    Swine influenza (SI) is an acute respiratory disease of pigs, caused by swine influenza virus (SIV). Little is known about the inflammatory response in the lung during acute SI and its correlation with clinical signs or lung pathology. Moreover, until now there has been a limited amount of data available on the relationship between the concentrations of pro- and anti-inflammatory cytokines in the lungs and the serum concentration of acute-phase proteins (APPs) in SIV-infected pigs. In the present study, the porcine inflammatory and immune responses during acute influenza caused by H1N1 SIV (SwH1N1) were studied. Nine pigs were infected intratracheally, and five served as controls. Antibodies against SIV were measured by haemagglutination inhibition assay, and the influenza-virus-specific T-cell response was measured using a proliferation assay. C-reactive protein (CRP), haptoglobin (Hp), serum amyloid A (SAA), and pig major acute-phase protein (Pig-MAP) the concentrations in serum and concentration of IL-1β, IL-6, IL-8, IL-10, TNF-α and IFN-γ in lung tissues were measured using commercial ELISAs.

  3. Carnosine markedly ameliorates H9N2 swine influenza virus-induced acute lung injury.

    Science.gov (United States)

    Xu, Tong; Wang, Cunlian; Zhang, Ruihua; Xu, Mingju; Liu, Baojian; Wei, Dong; Wang, Guohua; Tian, Shufei

    2015-10-01

    Oxidative stress injury is an important pathogenesis of influenza virus in critically ill patients. The present study investigated the efficacy of carnosine, an antioxidant and free radical scavenger, on a model of acute lung injury (ALI) induced by H9N2 swine influenza virus. Female specific-pathogen-free BALB/c mice were randomized into four groups and treated as follows: (1) H9N2 group, (2) mock control group, (3) H9N2+carnosine group and (4) carnosine control group. The H9N2 group mice were inoculated intranasally with A/Swine/Hebei/012/2008/ (H9N2) virus (100 μl) in allantoic fluid (AF), whilst mock-infected animals were intranasally inoculated with non-infectious AF. Carnosine [10 mg (kg body mass)- 1] was administered orally (100 μl) for 7 days consecutively. The survival rate, lung water content, TNF-α and IL-1β levels, lung histopathology, myeloperoxidase (MPO) activity, and Toll-like receptor (TLR)-4 levels were determined at 2, 4, 6, 8 and 14 days after inoculation. Carnosine treatment effectively decreased the mortality (43 versus 75 %, P lungs and decreased the lung wet/dry mass ratio (P lungs of infected mice (P < 0.05), which supported the use of carnosine for managing severe influenza cases.

  4. Genetic drift of HA and NA in Danish swine influenza virus from the period 2003-2012

    DEFF Research Database (Denmark)

    Fobian, Kristina; Breum, Solvej Østergaard; Hjulsager, Charlotte Kristiane

    2012-01-01

    . Currently at least three influenza A subtypes (H1N1, H1N2 and H3N2) are endemic in the Danish swine population, and since 2010 the pandemic virus (H1N1pdm09) have also frequently been detected. The focus in this study will be on H1N1 and H1N2, since the prevalence of H3N2 have declined over the past years......-titers obtained by testing against a panel of reference swine influenza virus antisera are used for antigenic cartography. Preliminary phylogenetic analyses indicate a higher degree of drift for H1 genes than N1 genes. The antigenic and genetic characterization of the swine influenza virus isolates in this study...

  5. Reassortment between swine H3N2 and 2009 pandemic H1N1 in the United States resulted in influenza A viruses with diverse genetic constellations with variable virulence in pigs

    Science.gov (United States)

    Repeated spillovers of the H1N1 pandemic virus (H1N1pdm09) from humans to pigs resulted in substantial evolution of swine influenza viruses, contributing to the genetic and antigenic diversity of influenza A virus (IAV) currently circulating in swine. The reassortment with endemic swine viruses and ...

  6. Novel reassortment of Eurasian avian-like and pandemic/2009 influenza viruses in swine: infectious potential for humans.

    Science.gov (United States)

    Zhu, Huachen; Zhou, Boping; Fan, Xiaohui; Lam, Tommy T Y; Wang, Jia; Chen, Antony; Chen, Xinchun; Chen, Honglin; Webster, Robert G; Webby, Richard; Peiris, Joseph S M; Smith, David K; Guan, Yi

    2011-10-01

    Pigs are considered to be intermediate hosts and "mixing vessels," facilitating the genesis of pandemic influenza viruses, as demonstrated by the emergence of the 2009 H1N1 pandemic (pdm/09) virus. The prevalence and repeated introduction of the pdm/09 virus into pigs raises the possibility of generating novel swine influenza viruses with the potential to infect humans. To address this, an active influenza surveillance program was conducted with slaughtered pigs in abattoirs in southern China. Over 50% of the pigs tested were found to be seropositive for one or more H1 influenza viruses, most commonly pdm/09-like viruses. Out of 36 virus isolates detected, one group of novel reassortants had Eurasian avian-like swine H1N1 surface genes and pdm/09 internal genes. Animal experiments showed that this virus transmitted effectively from pig to pig and from pig to ferret, and it could also replicate in ex vivo human lung tissue. Immunization against the 2009 pandemic virus gave only partial protection to ferrets. The continuing prevalence of the pdm/09 virus in pigs could lead to the genesis of novel swine reassortant viruses with the potential to infect humans.

  7. From where did the 2009 'swine-origin' influenza A virus (H1N1) emerge?

    Science.gov (United States)

    2009-01-01

    The swine-origin influenza A (H1N1) virus that appeared in 2009 and was first found in human beings in Mexico, is a reassortant with at least three parents. Six of the genes are closest in sequence to those of H1N2 'triple-reassortant' influenza viruses isolated from pigs in North America around 1999-2000. Its other two genes are from different Eurasian 'avian-like' viruses of pigs; the NA gene is closest to H1N1 viruses isolated in Europe in 1991-1993, and the MP gene is closest to H3N2 viruses isolated in Asia in 1999-2000. The sequences of these genes do not directly reveal the immediate source of the virus as the closest were from isolates collected more than a decade before the human pandemic started. The three parents of the virus may have been assembled in one place by natural means, such as by migrating birds, however the consistent link with pig viruses suggests that human activity was involved. We discuss a published suggestion that unsampled pig herds, the intercontinental live pig trade, together with porous quarantine barriers, generated the reassortant. We contrast that suggestion with the possibility that laboratory errors involving the sharing of virus isolates and cultured cells, or perhaps vaccine production, may have been involved. Gene sequences from isolates that bridge the time and phylogenetic gap between the new virus and its parents will distinguish between these possibilities, and we suggest where they should be sought. It is important that the source of the new virus be found if we wish to avoid future pandemics rather than just trying to minimize the consequences after they have emerged. Influenza virus is a very significant zoonotic pathogen. Public confidence in influenza research, and the agribusinesses that are based on influenza's many hosts, has been eroded by several recent events involving the virus. Measures that might restore confidence include establishing a unified international administrative framework coordinating

  8. Susceptibility of swine to H5 and H7 low pathogenic avian influenza viruses.

    Science.gov (United States)

    Balzli, Charles; Lager, Kelly; Vincent, Amy; Gauger, Phillip; Brockmeier, Susan; Miller, Laura; Richt, Juergen A; Ma, Wenjun; Suarez, David; Swayne, David E

    2016-07-01

    The ability of pigs to become infected with low pathogenic avian influenza (LPAI) viruses and then generate mammalian adaptable influenza A viruses is difficult to determine. Yet, it is an important link to understanding any relationship between LPAI virus ecology and possible epidemics among swine and/or humans. Assess susceptibility of pigs to LPAI viruses found within the United States and their direct contact transmission potential. Pigs were inoculated with one of ten H5 or H7 LPAI viruses selected from seven different bird species to test infectivity, virulence, pathogenesis, and potential to transmit virus to contact pigs through histological, RRT-PCR and seroconversion data. Although pigs were susceptible to infection with each of the LPAI viruses, no clinical disease was recognized in any pig. During the acute phase of the infection, minor pulmonary lesions were found in some pigs and one or more pigs in each group were RRT-PCR-positive in the lower respiratory tract, but no virus was detected in upper respiratory tract (negative nasal swabs). Except for one group, one or more pigs in each LPAI group developed antibody. No LPAI viruses transmitted to contact pigs. LPAI strains from various bird populations within the United States are capable of infecting pigs. Although adaptability and transmission of individual strains seem unlikely, the subclinical nature of the infections demonstrates the need to improve sampling and testing methods to more accurately measure incidence of LPAI virus infection in pigs, and their potential role in human-zoonotic LPAI virus dynamics. © 2016 The Authors. Influenza and Other Respiratory Viruses Published by John Wiley & Sons Ltd.

  9. Comparative Pathogenesis of an Avian H5N2 and a Swine H1N1 Influenza Virus in Pigs

    DEFF Research Database (Denmark)

    De Vleeschauwer, Annebel; Atanasova, Kalina; Van Borm, Steven

    2009-01-01

    only rare AIV positive cells and this was associated with reduced nasal shedding of the avian compared to the swine virus. The titers and distribution of the AIV varied extremely between individual pigs and were strongly affected by the route of inoculation. Gross lung lesions and clinical signs were......Pigs are considered intermediate hosts for the transmission of avian influenza viruses (AIVs) to humans but the basic organ pathogenesis of AIVs in pigs has been barely studied. We have used 42 four-week-old influenza naive pigs and two different inoculation routes (intranasal and intratracheal......) to compare the pathogenesis of a low pathogenic (LP) H5N2 AIV with that of an H1N1 swine influenza virus. The respiratory tract and selected extra-respiratory tissues were examined for virus replication by titration, immunofluorescence and RT-PCR throughout the course of infection. Both viruses caused...

  10. Original Article: Real time reverse transcription (RRT)?polymerase chain reaction (PCR) methods for detection of pandemic (H1N1) 2009 influenza virus and European swine influenza A virus infections in pigs

    OpenAIRE

    Slomka, Marek J.; Densham, Anstice L. E.; Coward, Vivien J.; Essen, Steve; Brookes, Sharon M.; Irvine, Richard M.; Spackman, Erica; Ridgeon, Jonathan; Gardner, Rebecca; Hanna, Amanda; Suarez, David L.; Brown, Ian H.

    2010-01-01

    Please cite this paper as: Slomka et?al. (2010) Real time reverse transcription (RRT)?polymerase chain reaction (PCR) methods for detection of pandemic (H1N1) 2009 influenza virus and European swine influenza A virus infections in pigs. Influenza and Other Respiratory Viruses 4(5), 277?293. Background? There is a requirement to detect and differentiate pandemic (H1N1) 2009 (H1N1v) and established swine influenza A viruses (SIVs) by real time reverse transcription (RRT) PCR methods. Objectives...

  11. New reassortant and enzootic European swine influenza 1 viruses transmits efficiently through direct contact in the ferret model

    DEFF Research Database (Denmark)

    Fobian, Kristina; P. Fabrizio, Thomas; Yoon, Sun-Woo

    2015-01-01

    The reverse zoonotic events that introduced the 2009 pandemic influenza virus into pigs have drastically increased the diversity of swine influenza viruses in Europe. The pandemic potential of these novel reassortments is still unclear, necessitating enhanced surveillance of European pigs...... and human-like N2 and one with 2009 pandemic H1 and swine-like N2. All viruses replicated to high titers in nasal wash- and nasal turbinate samples from inoculated ferrets and transmitted efficiently by direct contact. Only the H3N2 virus transmitted to naïve ferrets via the airborne route. Growth kinetics...... using a differentiated human bronchial epithelial cell line showed that all four viruses were able to replicate to high titers. Further, the viruses revealed preferential binding to the α2,6-silalylated glycans and investigation of the antiviral susceptibility of the viruses revealed that all were...

  12. Surveillance programs in Denmark has revealed the circulation of novel reassortant influenza A viruses in swine

    DEFF Research Database (Denmark)

    Larsen, Lars Erik; Hjulsager, Charlotte Kristiane; Trebbien, Ramona

    2014-01-01

    by the combination of the gene segments hemagglutinin (HA) and neuraminidase (NA). In most European countries, the avian-like (av)H1N1, the 2009 pandemic variant (H1N1pdm09), H1N2 and H3N2 subtypes have constituted the dominating SIV subtypes during recent years. In Denmark, the H1N2 subtype is a reassortant between...... avH1N1 and H3N2 which is different from the dominating European H1N2 subtype (1). The prevalence of the H1N1pdm09 virus in swine has increased since 2009 in some countries including Denmark. Here we present the results of the national passive surveillance program on influenza in swine performed from...

  13. Influenza A (H3N2) virus in swine at agricultural fairs and transmission to humans, Michigan and Ohio, USA, 2016

    Science.gov (United States)

    An 18 case outbreak of variant H3N2 influenza A occurred during 2016 after exposure to influenza-infected swine at seven agricultural fairs. Sixteen cases were infected with a reassortant between 2010-2011 human seasonal H3N2 strains and viruses endemic in North American swine, a viral lineage incre...

  14. Expression Dynamics of Innate Immunity in Influenza Virus-Infected Swine

    Directory of Open Access Journals (Sweden)

    Massimo Amadori

    2017-04-01

    Full Text Available The current circulating swine influenza virus (IV subtypes in Europe (H1N1, H1N2, and H3N2 are associated with clinical outbreaks of disease. However, we showed that pigs could be susceptible to other IV strains that are able to cross the species barrier. In this work, we extended our investigations into whether different IV strains able to cross the species barrier might give rise to different innate immune responses that could be associated with pathological lesions. For this purpose, we used the same samples collected in a previous study of ours, in which healthy pigs had been infected with a H3N2 Swine IV and four different H3N8 IV strains circulating in different animal species. Pigs had been clinically inspected and four subjects/group were sacrificed at 3, 6, and 21 days post infection. In the present study, all groups but mock exhibited antibody responses to IV nucleoprotein protein. Pulmonary lesions and high-titered viral replication were observed in pigs infected with the swine-adapted virus. Interestingly, pigs infected with avian and seal H3N8 strains also showed moderate lesions and viral replication, whereas equine and canine IVs did not cause overt pathological signs, and replication was barely detectable. Swine IV infection induced interferon (IFN-alpha and interleukin-6 responses in bronchoalveolar fluids (BALF at day 3 post infection, as opposed to the other non-swine-adapted virus strains. However, IFN-alpha responses to the swine-adapted virus were not associated with an increase of the local, constitutive expression of IFN-alpha genes. Remarkably, the Equine strain gave rise to a Serum Amyloid A response in BALF despite little if any replication. Each virus strain could be associated with expression of cytokine genes and/or proteins after infection. These responses were observed well beyond the period of virus replication, suggesting a prolonged homeostatic imbalance of the innate immune system.

  15. Comparative Analysis of Avian and Swine Influenza Viruses Infections of Well Differentiated Lung Epithelial Cells of Turkey

    Directory of Open Access Journals (Sweden)

    Sahar Abd El Rahman

    2015-07-01

    Full Text Available Influenza viruses initiate infection by binding of the viral hemagglutinin to the cellular sialic acid residues. The precision-cut lung slice, as a valuable cultural tool of differentiated respiratory epithelial cells, is characterized by its ability to be viable for at least six days in-vitro, mimic in-vivo original cells and simply monitored by an inverted microscope. The aims of the study were to analyse the distribution of different sialic acid types in bronchus and parabronchial tissues of Turkey Precision Lung Slices (TPCLS, investigate the infection susceptibility of TPCLS by avian influenza (H9N2 and H7N7 and swine influenza (H3N2 viruses and evaluate the infection expression of TPCLS by different influenza viruses in correlation to the cellular sialic acids distribution after infection. The lectin stains and monoclonal antibodies prepared against nucleoprotein of influenza virus were used for analysing sialic acids distributions and viral antigen detection of TPCLS by immunoflourescent technique. The viral infective particles released from infected TPCLS by different avian and swine influenza viruses were titrated at different time intervals after infection. Both α2,3-linked and α2,6-linked sialic acids were expressed in the bronchus of TPCLS, while only α2,6-linked sialic acid was expressed in the parabronchial tissues. The indirect immunoflourescent technique showed variation of infection susceptibility of TPCLS parts by avian and swine influenza viruses. Infection was expressed in the bronchial epithelium by H9N2, H7N7 and H3N2, while in the parabronchial tissue by H9N2 and H3N2. Titration of the released infective viruses in the supernatant of infected TPCLS revealed that H9N2 could replicate faster than the other influenza viruses. TPCLS is a promising in-vitro model for viral infection study of turkey.

  16. Optimal Use of Vaccines for Control of Influenza A Virus in Swine

    Science.gov (United States)

    Sandbulte, Matthew R.; Spickler, Anna R.; Zaabel, Pamela K.; Roth, James A.

    2015-01-01

    Influenza A virus in swine (IAV-S) is one of the most important infectious disease agents of swine in North America. In addition to the economic burden of IAV-S to the swine industry, the zoonotic potential of IAV-S sometimes leads to serious public health concerns. Adjuvanted, inactivated vaccines have been licensed in the United States for over 20 years, and there is also widespread usage of autogenous/custom IAV-S vaccines. Vaccination induces neutralizing antibodies and protection against infection with very similar strains. However, IAV-S strains are so diverse and prone to mutation that these vaccines often have disappointing efficacy in the field. This scientific review was developed to help veterinarians and others to identify the best available IAV-S vaccine for a particular infected herd. We describe key principles of IAV-S structure and replication, protective immunity, currently available vaccines, and vaccine technologies that show promise for the future. We discuss strategies to optimize the use of available IAV-S vaccines, based on information gathered from modern diagnostics and surveillance programs. Improvements in IAV-S immunization strategies, in both the short term and long term, will benefit swine health and productivity and potentially reduce risks to public health. PMID:26344946

  17. Optimal Use of Vaccines for Control of Influenza A Virus in Swine

    Directory of Open Access Journals (Sweden)

    Matthew R. Sandbulte

    2015-01-01

    Full Text Available Influenza A virus in swine (IAV-S is one of the most important infectious disease agents of swine in North America. In addition to the economic burden of IAV-S to the swine industry, the zoonotic potential of IAV-S sometimes leads to serious public health concerns. Adjuvanted, inactivated vaccines have been licensed in the United States for over 20 years, and there is also widespread usage of autogenous/custom IAV-S vaccines. Vaccination induces neutralizing antibodies and protection against infection with very similar strains. However, IAV-S strains are so diverse and prone to mutation that these vaccines often have disappointing efficacy in the field. This scientific review was developed to help veterinarians and others to identify the best available IAV-S vaccine for a particular infected herd. We describe key principles of IAV-S structure and replication, protective immunity, currently available vaccines, and vaccine technologies that show promise for the future. We discuss strategies to optimize the use of available IAV-S vaccines, based on information gathered from modern diagnostics and surveillance programs. Improvements in IAV-S immunization strategies, in both the short term and long term, will benefit swine health and productivity and potentially reduce risks to public health.

  18. Swine Influenza Virus PA and Neuraminidase Gene Reassortment into Human H1N1 Influenza Virus Is Associated with an Altered Pathogenic Phenotype Linked to Increased MIP-2 Expression.

    Science.gov (United States)

    Dlugolenski, Daniel; Jones, Les; Howerth, Elizabeth; Wentworth, David; Tompkins, S Mark; Tripp, Ralph A

    2015-05-01

    Swine are susceptible to infection by both avian and human influenza viruses, and this feature is thought to contribute to novel reassortant influenza viruses. In this study, the influenza virus reassortment rate in swine and human cells was determined. Coinfection of swine cells with 2009 pandemic H1N1 virus (huH1N1) and an endemic swine H1N2 (A/swine/Illinois/02860/09) virus (swH1N2) resulted in a 23% reassortment rate that was independent of α2,3- or α2,6-sialic acid distribution on the cells. The reassortants had altered pathogenic phenotypes linked to introduction of the swine virus PA and neuraminidase (NA) into huH1N1. In mice, the huH1N1 PA and NA mediated increased MIP-2 expression early postinfection, resulting in substantial pulmonary neutrophilia with enhanced lung pathology and disease. The findings support the notion that swine are a mixing vessel for influenza virus reassortants independent of sialic acid distribution. These results show the potential for continued reassortment of the 2009 pandemic H1N1 virus with endemic swine viruses and for reassortants to have increased pathogenicity linked to the swine virus NA and PA genes which are associated with increased pulmonary neutrophil trafficking that is related to MIP-2 expression. Influenza A viruses can change rapidly via reassortment to create a novel virus, and reassortment can result in possible pandemics. Reassortments among subtypes from avian and human viruses led to the 1957 (H2N2 subtype) and 1968 (H3N2 subtype) human influenza pandemics. Recent analyses of circulating isolates have shown that multiple genes can be recombined from human, avian, and swine influenza viruses, leading to triple reassortants. Understanding the factors that can affect influenza A virus reassortment is needed for the establishment of disease intervention strategies that may reduce or preclude pandemics. The findings from this study show that swine cells provide a mixing vessel for influenza virus reassortment

  19. Swine Influenza Virus PA and Neuraminidase Gene Reassortment into Human H1N1 Influenza Virus Is Associated with an Altered Pathogenic Phenotype Linked to Increased MIP-2 Expression

    Science.gov (United States)

    Dlugolenski, Daniel; Jones, Les; Howerth, Elizabeth; Wentworth, David; Tompkins, S. Mark

    2015-01-01

    ABSTRACT Swine are susceptible to infection by both avian and human influenza viruses, and this feature is thought to contribute to novel reassortant influenza viruses. In this study, the influenza virus reassortment rate in swine and human cells was determined. Coinfection of swine cells with 2009 pandemic H1N1 virus (huH1N1) and an endemic swine H1N2 (A/swine/Illinois/02860/09) virus (swH1N2) resulted in a 23% reassortment rate that was independent of α2,3- or α2,6-sialic acid distribution on the cells. The reassortants had altered pathogenic phenotypes linked to introduction of the swine virus PA and neuraminidase (NA) into huH1N1. In mice, the huH1N1 PA and NA mediated increased MIP-2 expression early postinfection, resulting in substantial pulmonary neutrophilia with enhanced lung pathology and disease. The findings support the notion that swine are a mixing vessel for influenza virus reassortants independent of sialic acid distribution. These results show the potential for continued reassortment of the 2009 pandemic H1N1 virus with endemic swine viruses and for reassortants to have increased pathogenicity linked to the swine virus NA and PA genes which are associated with increased pulmonary neutrophil trafficking that is related to MIP-2 expression. IMPORTANCE Influenza A viruses can change rapidly via reassortment to create a novel virus, and reassortment can result in possible pandemics. Reassortments among subtypes from avian and human viruses led to the 1957 (H2N2 subtype) and 1968 (H3N2 subtype) human influenza pandemics. Recent analyses of circulating isolates have shown that multiple genes can be recombined from human, avian, and swine influenza viruses, leading to triple reassortants. Understanding the factors that can affect influenza A virus reassortment is needed for the establishment of disease intervention strategies that may reduce or preclude pandemics. The findings from this study show that swine cells provide a mixing vessel for influenza

  20. The Molecular Determinants of Antibody Recognition and Antigenic Drift in the H3 Hemagglutinin of Swine Influenza A Virus

    Science.gov (United States)

    Abente, Eugenio J.; Santos, Jefferson; Lewis, Nicola S.; Gauger, Phillip C.; Stratton, Jered; Skepner, Eugene; Rajao, Daniela S.

    2016-01-01

    ABSTRACT Influenza A virus (IAV) of the H3 subtype is an important respiratory pathogen that affects both humans and swine. Vaccination to induce neutralizing antibodies against the surface glycoprotein hemagglutinin (HA) is the primary method used to control disease. However, due to antigenic drift, vaccine strains must be periodically updated. Six of the 7 positions previously identified in human seasonal H3 (positions 145, 155, 156, 158, 159, 189, and 193) were also indicated in swine H3 antigenic evolution. To experimentally test the effect on virus antigenicity of these 7 positions, substitutions were introduced into the HA of an isogenic swine lineage virus. We tested the antigenic effect of these introduced substitutions by using hemagglutination inhibition (HI) data with monovalent swine antisera and antigenic cartography to evaluate the antigenic phenotype of the mutant viruses. Combinations of substitutions within the antigenic motif caused significant changes in antigenicity. One virus mutant that varied at only two positions relative to the wild type had a >4-fold reduction in HI titers compared to homologous antisera. Potential changes in pathogenesis and transmission of the double mutant were evaluated in pigs. Although the double mutant had virus shedding titers and transmissibility comparable to those of the wild type, it caused a significantly lower percentage of lung lesions. Elucidating the antigenic effects of specific amino acid substitutions at these sites in swine H3 IAV has important implications for understanding IAV evolution within pigs as well as for improved vaccine development and control strategies in swine. IMPORTANCE A key component of influenza virus evolution is antigenic drift mediated by the accumulation of amino acid substitutions in the hemagglutinin (HA) protein, resulting in escape from prior immunity generated by natural infection or vaccination. Understanding which amino acid positions of the HA contribute to the ability

  1. Development of a primer–probe energy transfer based real-time PCR for the detection of Swine influenza virus

    DEFF Research Database (Denmark)

    Kowalczyk, Andrzej; Markowska-Daniel, Iwona; Rasmussen, Thomas Bruun

    2013-01-01

    Swine influenza virus (SIV) causes a contagious and requiring official notification disease of pigs and humans. In this study, a real-time reverse transcription-polymerase chain reaction (RT-PCR) assay based on primer–probe energy transfer (PriProET) for the detection of SIV RNA was developed...

  2. Replicon particle vaccine protects swine against influenza.

    Science.gov (United States)

    Bosworth, B; Erdman, M M; Stine, D L; Harris, I; Irwin, C; Jens, M; Loynachan, A; Kamrud, K; Harris, D L

    2010-12-01

    An alphavirus derived replicon particle (RP) vaccine expressing the cluster IV H3N2 swine influenza virus (SIV) hemagglutinin (HA) gene induced protective immunity against homologous influenza virus challenge. However, pigs with maternal antibody had no protective immunity against challenge after vaccination with RP vaccines expressing HA gene alone or in combination with nucleoprotein gene. Copyright © 2010 Elsevier Ltd. All rights reserved.

  3. The Inability to Screen Exhibition Swine for Influenza A Virus Using Body Temperature.

    Science.gov (United States)

    Bowman, A S; Nolting, J M; Workman, J D; Cooper, M; Fisher, A E; Marsh, B; Forshey, T

    2016-02-01

    Agricultural fairs create an unconventional animal-human interface that has been associated with swine-to-human transmission of influenza A virus (IAV) in recent years. Early detection of IAV-infected pigs at agricultural fairs would allow veterinarians to better protect swine and human health during these swine exhibitions. This study assessed the use of swine body temperature measurement, recorded by infrared and rectal thermometers, as a practical method to detect IAV-infected swine at agricultural fairs. In our first objective, infrared thermometers were used to record the body surface temperature of 1,092 pigs at the time of IAV nasal swab collection at the end of the exhibition period of 55 agricultural fairs. IAV was recovered from 212 (19.4%) pigs, and the difference in mean infrared body temperature measurement of IAV-positive and IAV-negative pigs was 0.83°C. In a second objective, snout wipes were collected from 1,948 pigs immediately prior to the unloading of the animals at a single large swine exhibition. Concurrent to the snout wipe collection, owners took the rectal temperatures of his/her pigs. In this case, 47 (2.4%) pigs tested positive for IAV before they entered the swine barn. The mean rectal temperatures differed by only 0.19°C between IAV-positive and IAV-negative pigs. The low prevalence of IAV among the pigs upon entry to the fair in the second objective provides evidence that limiting intraspecies spread of IAV during the fairs will likely have significant impacts on the zoonotic transmission. However, in both objectives, the high degree of similarity in the body temperature measurements between the IAV-positive and IAV-negative pigs made it impossible to set a diagnostically meaningful cut point to differentiate IAV status of the individual animals. Unfortunately, body temperature measurement cannot be used to accurately screen exhibition swine for IAV. © 2015 Blackwell Verlag GmbH.

  4. Replication characteristics of swine influenza viruses in precision-cut lung slices reflect the virulence properties of the viruses.

    Science.gov (United States)

    Meng, Fandan; Punyadarsaniya, Darsaniya; Uhlenbruck, Sabine; Hennig-Pauka, Isabel; Schwegmann-Wessels, Christel; Ren, Xiaofeng; Dürrwald, Ralf; Herrler, Georg

    2013-11-13

    Precision-cut lung slices of pigs were infected with five swine influenza A viruses of different subtypes (A/sw/Potsdam/15/1981 H1N1, A/sw/Bad Griesbach/IDT5604/2006 H1N1, A/sw/Bakum/1832/2000 H1N2, A/sw/Damme/IDT5673/2006 H3N2, A/sw/Herford/IDT5932/2007 H3N2). The viruses were able to infect ciliated and mucus-producing cells. The infection of well-differentiated respiratory epithelial cells by swine influenza A viruses was analyzed with respect to the kinetics of virus release into the supernatant. The highest titres were determined for H3N2/2006 and H3N2/2007 viruses. H1N1/1981 and H1N2/2000 viruses replicated somewhat slower than the H3N2 viruses whereas a H1N1 strain from 2006 multiplied at significantly lower titres than the other strains. Regarding their ability to induce a ciliostatic effect, the two H3N2 strains were found to be most virulent. H1N1/1981 and H1N2/2000 were somewhat less virulent with respect to their effect on ciliary activity. The lowest ciliostatic effect was observed with H1N1/2006. In order to investigate whether this finding is associated with a corresponding virulence in the host, pigs were infected experimentally with H3N2/2006, H1N2/2000, H1N1/1981 and H1N1/2006 viruses. The H1N1/2006 virus was significantly less virulent than the other viruses in pigs which was in agreement with the results obtained by the in vitro-studies. These findings offer the possibility to develop an ex vivo-system that is able to assess virulence of swine influenza A viruses.

  5. Pathogenesis of swine influenza virus (Thai isolates in weanling pigs: an experimental trial

    Directory of Open Access Journals (Sweden)

    Kitikoon Pravina

    2009-03-01

    Full Text Available Abstract Background The objective of this study is to investigate the pathogenesis of swine influenza virus (SIV subtype H1N1 and H3N2 (Thai isolates in 22-day-old SPF pigs. Results The study found that all pigs in the infected groups developed typical signs of flu-like symptoms on 1–4 days post- infection (dpi. The H1N1-infected pigs had greater lung lesion scores than those of the H3N2-infected pigs. Histopathological lesions related to swine influenza-induced lesions consisting of epithelial cells damage, airway plugging and peribronchial and perivascular mononuclear cell infiltration were present in both infected groups. Immunofluorescence and immunohistochemistry using nucleoprotein specific monoclonal antibodies revealed positive staining cells in lung sections of both infected groups at 2 and 4 dpi. Virus shedding was detected at 2 dpi from both infected groups as demonstrated by RT-PCR and virus isolation. Conclusion The results demonstrated that both SIV subtypes were able to induce flu-like symptoms and lung lesions in weanling pigs. However the severity of the diseases with regards to lung lesions both gross and microscopic lesions was greater in the H1N1-infected pigs. Based on phylogenetic analysis, haemagglutinin gene of subtype H1N1 from Thailand clustered with the classical H1 SIV sequences and neuraminidase gene clustered with virus of avian origin, whereas, both genes of H3N2 subtype clustered with H3N2 human-like SIV from the 1970s.

  6. N-acetyl-l-cystine (NAC) protects against H9N2 swine influenza virus-induced acute lung injury.

    Science.gov (United States)

    Zhang, Rui-Hua; Li, Chun-Hong; Wang, Cun-Lian; Xu, Ming-Ju; Xu, Tong; Wei, Dong; Liu, Bao-Jian; Wang, Guo-Hua; Tian, Shu-Fei

    2014-09-01

    The antioxidant N-acetyl-l-cysteine (NAC) had been shown to inhibit replication of seasonal human influenza A viruses. Here, the effects of NAC on H9N2 swine influenza virus-induced acute lung injury (ALI) were investigated in mice. BALB/c mice were inoculated intranasally with 10(7) 50% tissue culture infective doses (TCID(50)) of A/swine/HeBei/012/2008/(H9N2) viruses with or without NAC treatments to induce ALI model. The result showed that pulmonary inflammation, pulmonary edema, MPO activity, total cells, neutrophils, macrophages, TNF-α, IL-6, IL-1β and CXCL-10 in BALF were attenuated by NAC. Moreover, our data showed that NAC significantly inhibited the levels of TLR4 protein and TLR4 mRNA in the lungs. Pharmacological inhibitors of TLR4 (E5564) exerted similar effects like those determined for NAC in H9N2 swine influenza virus-infected mice. These results suggest that antioxidants like NAC represent a potential additional treatment option that could be considered in the case of an influenza A virus pandemic. Copyright © 2014 Elsevier B.V. All rights reserved.

  7. Isolation and complete genomic characterization of pandemic H1N1/2009 influenza viruses from Cuban swine herds.

    Science.gov (United States)

    Pérez, Lester Josué; Perera, Carmen Laura; Vega, Armando; Frías, Maria T; Rouseaux, Dagmar; Ganges, Llilianne; Nuñez, José Ignacio; Díaz de Arce, Heidy

    2013-06-01

    The emergence of the pandemic H1N1/2009 influenza virus poses a potential global threat for human and animal health. In this study, we carried out pandemic H1N1/2009 influenza virus surveillance in swine herds in Cuba intending to determine whether the virus was circulating among pig populations. As a result we describe, for the first time, the detection of pandemic H1N1/2009 influenza virus in swine herds in Cuba. In addition, phylogenetic analysis and molecular characterization of three viral isolates were performed. Phylogenetic relationships confirmed that all of the eight genes of the three isolates were derived from the pandemic H1N1/2009 virus. The Cuban isolates, formed an independent cluster within the pandemic H1N1/2009 influenza strains. Different molecular markers, previously described in pandemic H1N1/2009 influenza viruses, related with adaptive evolution, viral evasion from the host-immune response, virulence and dissemination were also present in Cuban pandemic H1N1/2009 isolates. Copyright © 2012 Elsevier Ltd. All rights reserved.

  8. H1N1 influenza (Swine flu)

    Science.gov (United States)

    Swine flu; H1N1 type A influenza ... The H1N1 virus is now considered a regular flu virus. It is one of the three viruses included in the regular (seasonal) flu vaccine . You cannot get H1N1 flu virus from ...

  9. Comparative pathogenesis of an avian H5N2 and a swine H1N1 influenza virus in pigs.

    Directory of Open Access Journals (Sweden)

    Annebel De Vleeschauwer

    2009-08-01

    Full Text Available Pigs are considered intermediate hosts for the transmission of avian influenza viruses (AIVs to humans but the basic organ pathogenesis of AIVs in pigs has been barely studied. We have used 42 four-week-old influenza naive pigs and two different inoculation routes (intranasal and intratracheal to compare the pathogenesis of a low pathogenic (LP H5N2 AIV with that of an H1N1 swine influenza virus. The respiratory tract and selected extra-respiratory tissues were examined for virus replication by titration, immunofluorescence and RT-PCR throughout the course of infection. Both viruses caused a productive infection of the entire respiratory tract and epithelial cells in the lungs were the major target. Compared to the swine virus, the AIV produced lower virus titers and fewer antigen positive cells at all levels of the respiratory tract. The respiratory part of the nasal mucosa in particular showed only rare AIV positive cells and this was associated with reduced nasal shedding of the avian compared to the swine virus. The titers and distribution of the AIV varied extremely between individual pigs and were strongly affected by the route of inoculation. Gross lung lesions and clinical signs were milder with the avian than with the swine virus, corresponding with lower viral loads in the lungs. The brainstem was the single extra-respiratory tissue found positive for virus and viral RNA with both viruses. Our data do not reject the theory of the pig as an intermediate host for AIVs, but they suggest that AIVs need to undergo genetic changes to establish full replication potential in pigs. From a biomedical perspective, experimental LP H5 AIV infection of pigs may be useful to examine heterologous protection provided by H5 vaccines or other immunization strategies, as well as for further studies on the molecular pathogenesis and neurotropism of AIVs in mammals.

  10. In vitro reassortment between endemic H1N2 and 2009 H1N1 pandemic swine influenza viruses generates attenuated viruses.

    Directory of Open Access Journals (Sweden)

    Ben M Hause

    Full Text Available The pandemic H1N1 (pH1N1 influenza virus was first reported in humans in the spring of 2009 and soon thereafter was identified in numerous species, including swine. Reassortant viruses, presumably arising from the co-infection of pH1N1 and endemic swine influenza virus (SIV, were subsequently identified from diagnostic samples collected from swine. In this study, co-infection of swine testicle (ST cells with swine-derived endemic H1N2 (MN745 and pH1N1 (MN432 yielded two reassortant H1N2 viruses (R1 and R2, both possessing a matrix gene derived from pH1N1. In ST cells, the reassortant viruses had growth kinetics similar to the parental H1N2 virus and reached titers approximately 2 log(10 TCID(50/mL higher than the pH1N1 virus, while in A549 cells these viruses had similar growth kinetics. Intranasal challenge of pigs with H1N2, pH1N1, R1 or R2 found that all viruses were capable of infecting and transmitting between direct contact pigs as measured by real time reverse transcription PCR of nasal swabs. Lung samples were also PCR-positive for all challenge groups and influenza-associated microscopic lesions were detected by histology. Interestingly, infectious virus was detected in lung samples for pigs challenged with the parental H1N2 and pH1N1 at levels significantly higher than either reassortant virus despite similar levels of viral RNA. Results of our experiment suggested that the reassortant viruses generated through in vitro cell culture system were attenuated without gaining any selective growth advantage in pigs over the parental lineages. Thus, reassortant influenza viruses described in this study may provide a good system to study genetic basis of the attenuation and its mechanism.

  11. Antigenically diverse swine-origin H1N1 variant influenza viruses exhibit differential ferret pathogenesis and transmission phenotypes.

    Science.gov (United States)

    Pulit-Penaloza, Joanna A; Jones, Joyce; Sun, Xiangjie; Jang, Yunho; Thor, Sharmi; Belser, Jessica A; Zanders, Natosha; Creager, Hannah M; Ridenour, Callie; Wang, Li; Stark, Thomas J; Garten, Rebecca; Chen, Li-Mei; Barnes, John; Tumpey, Terrence M; Wentworth, David E; Maines, Taronna R; Davis, C Todd

    2018-03-14

    Influenza A(H1) viruses circulating in swine represent an emerging virus threat as zoonotic infections occur sporadically following exposure to swine. A fatal infection caused by an H1N1 variant (H1N1v) virus was detected in a patient with reported exposure to swine and who presented with pneumonia, respiratory failure, and cardiac arrest. To understand the genetic and phenotypic characteristics of the virus, genome sequence analysis, antigenic characterization, and ferret pathogenesis and transmissibility experiments were performed. Antigenic analysis of the virus isolated from the fatal case, A/Ohio/09/2015, demonstrated significant antigenic drift away from classical swine H1N1 variant viruses and H1N1 pandemic 2009 viruses. A substitution in the H1 hemagglutinin (G155E) was identified that likely impacted antigenicity, and reverse genetics was employed to understand the molecular mechanism of antibody escape. Reversion of the substitution to 155G, in a reverse genetics A/Ohio/09/2015 virus, showed that this residue was central to the loss of hemagglutination inhibition by ferret antisera raised against a prototypical H1N1 pandemic 2009 virus (A/California/07/2009), as well as gamma lineage classical swine H1N1 viruses, demonstrating the importance of this residue for antibody recognition of this H1 lineage. When analyzed in the ferret model, A/Ohio/09/2015 and another H1N1v virus (A/Iowa/39/2015), as well as A/California/07/2009, replicated efficiently in the respiratory tract of ferrets. The two H1N1v viruses transmitted efficiently among cohoused ferrets, but respiratory droplet transmission studies showed that A/California/07/2009 transmitted through the air more efficiently. Pre-existing immunity to A/California/07/2009 did not fully protect ferrets from challenge with A/Ohio/09/2015. IMPORTANCE Human infections with classical swine influenza A(H1N1) viruses that circulate in pigs continue to occur in the United States following exposure to swine. To

  12. Avian-like A (H1N1) swine influenza virus antibodies among swine farm residents and pigs in southern China.

    Science.gov (United States)

    Zhou, Han; Cao, Zhenpeng; Tan, Likai; Fu, Xinliang; Lu, Gang; Qi, Wenbao; Ke, Changwen; Wang, Heng; Sun, Lingshuang; Zhang, Guihong

    2014-01-01

    Infection of human with avian-like A (H1N1) swine influenza virus (SIV) occasionally occurs in China, suggesting a potential risk of cross-species transmission of the swine influenza H1N1 virus from pigs to humans, particularly to those having direct contact with pigs. A seroepidemiological study was conducted to assess the prevalence of antibodies against the avian-like A (H1N1) SIV among swine farm residents and pigs in southern China to evaluate the risk of infection to swine farm workers. Hemagglutination inhibition (HI) assays revealed that 11.17% (61/546) of the sera samples from swine farm residents in southern China were positive for antibodies against the avian-like A (H1N1) SIV. The difference in numbers of antibody-positive samples obtained from swine farm residents and a control group of healthy city residents was statistically significant (P = 0.031). In addition, 219 of the 1,180 serum samples from pigs were positive for the antibodies against an avian-like A (H1N1) SIV, A/swine/Guangdong/SS1/2013(H1N1), as assessed by HI. The data suggest that occupational exposure of swine farm residents and veterinarians in southern China to pigs may increase their risk of acquiring avian-like A (H1N1) SIV infection. According to a special pig farming model in southern China, the staff and residents are in close contact with infected pigs and may be among the first to become infected.

  13. Protective efficacy of a virus-vectored multi-component vaccine against porcine reproductive and respiratory syndrome virus, porcine circovirus type 2 and swine influenza virus.

    Science.gov (United States)

    Tian, Debin; Sooryanarain, Harini; Matzinger, Shannon R; Gauger, Phil C; Karuppannan, Anbu K; Elankumaran, Subbiah; Opriessnig, Tanja; Meng, Xiang-Jin

    2017-12-01

    Porcine reproductive and respiratory syndrome virus (PRRSV), porcine circovirus type 2 (PCV2) and swine influenza virus (SIV) are three of the most economically important swine pathogens, causing immense economic losses to the global swine industry. Monovalent commercial vaccines against each of the three viruses are routinely used in pig farms worldwide. A trivalent vaccine against all three pathogens would greatly simplify the vaccination programme and reduce the financial burden to the swine industry. In this study, by using an attenuated strain of PRRSV (strain DS722) as a live virus vector, we generated a multi-component vaccine virus, DS722-SIV-PCV2, which expresses the protective antigens from SIV and PCV2. The DS722-SIV-PCV2 trivalent vaccine virus replicates well, and expresses PCV2 capsid and SIV HA proteins in vitro. A subsequent vaccination and challenge study in 48 pigs revealed that the DS722-SIV-PCV2-vaccinated pigs had significantly reduced lung lesions and viral RNA loads when challenged with PRRSV. Upon challenge with PCV2, the vaccinated pigs had partially reduced lymphoid lesions and viral DNA loads, and when challenged with SIV the vaccinated pigs had significantly reduced acute respiratory sign scores. The results from this study demonstrate the potential of DS722-SIV-PCV2 as a candidate trivalent vaccine, and also shed light on exploring PRRSV as a potential live virus vaccine vector.

  14. Avian influenza A (H5N1) virus antibodies in pigs and residents of swine farms, southern China.

    Science.gov (United States)

    Cao, Nan; Zhu, Wanjun; Chen, Ye; Tan, Likai; Zhou, Pei; Cao, Zhenpeng; Ke, Changwen; Li, Yugu; Wu, Jie; Qi, Wenbao; Jiao, Peirong; Zhang, Guihong

    2013-12-01

    Since 1997, the H5 avian influenza viruses (AIVs) circulating in China have become an international concern. Clade 2.3.2 of H5N1 AIVs is genetically distinct from the viruses isolated before 2007 and antigenically different from the vaccine strains widely used in China. Swine farms in rural China are thought to play an important role in AIVs ecology. A seroepidemiological study was undertaken among swine farm residents and pigs to understand the prevalence of antibodies against H5N1 AIVs in southern China. During the period March 24, 2008 to December 25, 2012,serum samples were collected from 1606 swine farm residents on 40 swine farms in southern China. A total of 1980 pigs' serum samples were collected in the same swine farms where swine workers' serum samples were collected from March 2009 to March 2013. For a control group, 104 serum samples were collected from healthy city residents in Nanchang. All the serum samples were collected to perform hemagglutination inhibition (HI) and (neutralization) NT assays to investigate the prevalence of H5N1 AIV infections in southern China. Sixteen human samples were positive by HI assay and 10 of these were also positive by NT assay against H5N1. No serum samples from human control and pigs were HI positive for H5N1 AIV. Our results demonstrate minimal transmission H5N1 AIV from birds to pigs in the swine farms studied and the risk of poultry-to-human and poultry-to-pig transmission for at least clades 2.3.2 seemed very low. This study provides the first data regarding antibodies against H5N1 AIV in humans and pigs on swine farms in China. The findings of this study can serve as a baseline for additional serologic studies to assess transmission of H5N1 viruses between avian species, pigs and swine workers. Copyright © 2013 Elsevier B.V. All rights reserved.

  15. Detection of swine-origin influenza A (H1N1) viruses using a paired surface plasma waves biosensor

    Science.gov (United States)

    Su, Li-Chen; Chang, Ying-Feng; Li, Ying-Chang; Hsieh, Jo-Ping; Lee, Cheng-Chung; Chou, Chien

    2010-08-01

    In order to enhance the sensitivity of conventional rapid test technique for the detection of swine-origin influenza A (H1N1) viruses (S-OIVs), we used a paired surface plasma waves biosensor (PSPWB) based on SPR in conjunction with an optical heterodyne technique. Experimentally, PSPWB showed a 125-fold improvement at least in the S-OIV detection as compared to conventional enzyme linked immunosorbent assay. Moreover, the detection limit of the PSPWB for the S-OIV detection was enhanced 250-fold in buffer at least in comparison with that of conventional rapid influenza diagnostic test.

  16. Swine influenza virus vaccine serologic cross-reactivity to contemporary U.S. swine H3N2 and efficacy in pigs infected with an H3N2 similar to 2011-2012 H3N2v

    Science.gov (United States)

    Background: Swine influenza A virus (IAV) reassortment with 2009 H1N1 pandemic (H1N1pdm09) virus has been documented and new genotypes and sub-clusters of H3N2 have since expanded in the U.S. swine population. An H3N2 variant (H3N2v) virus with the H1N1pdm09 matrix gene and the remaining genes of sw...

  17. Replication of avian, human and swine influenza viruses in porcine respiratory explants and association with sialic acid distribution

    Directory of Open Access Journals (Sweden)

    Nauwynck Hans J

    2010-02-01

    Full Text Available Abstract Background Throughout the history of human influenza pandemics, pigs have been considered the most likely "mixing vessel" for reassortment between human and avian influenza viruses (AIVs. However, the replication efficiencies of influenza viruses from various hosts, as well as the expression of sialic acid (Sia receptor variants in the entire porcine respiratory tract have never been studied in detail. Therefore, we established porcine nasal, tracheal, bronchial and lung explants, which cover the entire porcine respiratory tract with maximal similarity to the in vivo situation. Subsequently, we assessed virus yields of three porcine, two human and six AIVs in these explants. Since our results on virus replication were in disagreement with the previously reported presence of putative avian virus receptors in the trachea, we additionally studied the distribution of sialic acid receptors by means of lectin histochemistry. Human (Siaα2-6Gal and avian virus receptors (Siaα2-3Gal were identified with Sambucus Nigra and Maackia amurensis lectins respectively. Results Compared to swine and human influenza viruses, replication of the AIVs was limited in all cultures but most strikingly in nasal and tracheal explants. Results of virus titrations were confirmed by quantification of infected cells using immunohistochemistry. By lectin histochemistry we found moderate to abundant expression of the human-like virus receptors in all explant systems but minimal binding of the lectins that identify avian-like receptors, especially in the nasal, tracheal and bronchial epithelium. Conclusions The species barrier that restricts the transmission of influenza viruses from one host to another remains preserved in our porcine respiratory explants. Therefore this system offers a valuable alternative to study virus and/or host properties required for adaptation or reassortment of influenza viruses. Our results indicate that, based on the expression of Sia

  18. The avian-origin H3N2 canine influenza virus has limited replication in swine

    Science.gov (United States)

    A genetically and antigenically distinct H3N2 canine influenza of avian-origin was detected in March of 2015 in Chicago, Illinois. A subsequent outbreak was reported with over 1,000 dogs in the Midwest affected. The potential for canine-to-swine transmission was unknown. Experimental infection in pi...

  19. Two years of surveillance of influenza a virus infection in a swine herd. Results of virological, serological and pathological studies.

    Science.gov (United States)

    Cappuccio, Javier; Dibarbora, Marina; Lozada, Inés; Quiroga, Alejandra; Olivera, Valeria; Dángelo, Marta; Pérez, Estefanía; Barrales, Hernán; Perfumo, Carlos; Pereda, Ariel; Pérez, Daniel R

    2017-02-01

    Swine farms provide a dynamic environment for the evolution of influenza A viruses (IAVs). The present report shows the results of a surveillance effort of IAV infection in one commercial swine farm in Argentina. Two cross-sectional serological and virological studies (n=480) were carried out in 2011 and 2012. Virus shedding was detected in nasal samples from pigs from ages 7, 21 and 42-days old. More than 90% of sows and gilts but less than 40% of 21-days old piglets had antibodies against IAV. In addition, IAV was detected in 8/17 nasal swabs and 10/15 lung samples taken from necropsied pigs. A subset of these samples was further processed for virus isolation resulting in 6 viruses of the H1N2 subtype (δ2 cluster). Pathological studies revealed an association between suppurative bronchopneumonia and necrotizing bronchiolitis with IAV positive samples. Statistical analyses showed that the degree of lesions in bronchi, bronchiole, and alveoli was higher in lungs positive to IAV. The results of this study depict the relevance of continuing long-term active surveillance of IAV in swine populations to establish IAV evolution relevant to swine and humans. Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. European surveillance network for influenza in pigs: surveillance programs, diagnostic tools and Swine influenza virus subtypes identified in 14 European countries from 2010 to 2013.

    Directory of Open Access Journals (Sweden)

    Gaëlle Simon

    Full Text Available Swine influenza causes concern for global veterinary and public health officials. In continuing two previous networks that initiated the surveillance of swine influenza viruses (SIVs circulating in European pigs between 2001 and 2008, a third European Surveillance Network for Influenza in Pigs (ESNIP3, 2010-2013 aimed to expand widely the knowledge of the epidemiology of European SIVs. ESNIP3 stimulated programs of harmonized SIV surveillance in European countries and supported the coordination of appropriate diagnostic tools and subtyping methods. Thus, an extensive virological monitoring, mainly conducted through passive surveillance programs, resulted in the examination of more than 9 000 herds in 17 countries. Influenza A viruses were detected in 31% of herds examined from which 1887 viruses were preliminary characterized. The dominating subtypes were the three European enzootic SIVs: avian-like swine H1N1 (53.6%, human-like reassortant swine H1N2 (13% and human-like reassortant swine H3N2 (9.1%, as well as pandemic A/H1N1 2009 (H1N1pdm virus (10.3%. Viruses from these four lineages co-circulated in several countries but with very different relative levels of incidence. For instance, the H3N2 subtype was not detected at all in some geographic areas whereas it was still prevalent in other parts of Europe. Interestingly, H3N2-free areas were those that exhibited highest frequencies of circulating H1N2 viruses. H1N1pdm viruses were isolated at an increasing incidence in some countries from 2010 to 2013, indicating that this subtype has become established in the European pig population. Finally, 13.9% of the viruses represented reassortants between these four lineages, especially between previous enzootic SIVs and H1N1pdm. These novel viruses were detected at the same time in several countries, with increasing prevalence. Some of them might become established in pig herds, causing implications for zoonotic infections.

  1. European Surveillance Network for Influenza in Pigs: Surveillance Programs, Diagnostic Tools and Swine Influenza Virus Subtypes Identified in 14 European Countries from 2010 to 2013

    Science.gov (United States)

    Simon, Gaëlle; Larsen, Lars E.; Dürrwald, Ralf; Foni, Emanuela; Harder, Timm; Van Reeth, Kristien; Markowska-Daniel, Iwona; Reid, Scott M.; Dan, Adam; Maldonado, Jaime; Huovilainen, Anita; Billinis, Charalambos; Davidson, Irit; Agüero, Montserrat; Vila, Thaïs; Hervé, Séverine; Breum, Solvej Østergaard; Chiapponi, Chiara; Urbaniak, Kinga; Kyriakis, Constantinos S.; Brown, Ian H.; Loeffen, Willie

    2014-01-01

    Swine influenza causes concern for global veterinary and public health officials. In continuing two previous networks that initiated the surveillance of swine influenza viruses (SIVs) circulating in European pigs between 2001 and 2008, a third European Surveillance Network for Influenza in Pigs (ESNIP3, 2010–2013) aimed to expand widely the knowledge of the epidemiology of European SIVs. ESNIP3 stimulated programs of harmonized SIV surveillance in European countries and supported the coordination of appropriate diagnostic tools and subtyping methods. Thus, an extensive virological monitoring, mainly conducted through passive surveillance programs, resulted in the examination of more than 9 000 herds in 17 countries. Influenza A viruses were detected in 31% of herds examined from which 1887 viruses were preliminary characterized. The dominating subtypes were the three European enzootic SIVs: avian-like swine H1N1 (53.6%), human-like reassortant swine H1N2 (13%) and human-like reassortant swine H3N2 (9.1%), as well as pandemic A/H1N1 2009 (H1N1pdm) virus (10.3%). Viruses from these four lineages co-circulated in several countries but with very different relative levels of incidence. For instance, the H3N2 subtype was not detected at all in some geographic areas whereas it was still prevalent in other parts of Europe. Interestingly, H3N2-free areas were those that exhibited highest frequencies of circulating H1N2 viruses. H1N1pdm viruses were isolated at an increasing incidence in some countries from 2010 to 2013, indicating that this subtype has become established in the European pig population. Finally, 13.9% of the viruses represented reassortants between these four lineages, especially between previous enzootic SIVs and H1N1pdm. These novel viruses were detected at the same time in several countries, with increasing prevalence. Some of them might become established in pig herds, causing implications for zoonotic infections. PMID:25542013

  2. European surveillance network for influenza in pigs: surveillance programs, diagnostic tools and Swine influenza virus subtypes identified in 14 European countries from 2010 to 2013.

    Science.gov (United States)

    Simon, Gaëlle; Larsen, Lars E; Dürrwald, Ralf; Foni, Emanuela; Harder, Timm; Van Reeth, Kristien; Markowska-Daniel, Iwona; Reid, Scott M; Dan, Adam; Maldonado, Jaime; Huovilainen, Anita; Billinis, Charalambos; Davidson, Irit; Agüero, Montserrat; Vila, Thaïs; Hervé, Séverine; Breum, Solvej Østergaard; Chiapponi, Chiara; Urbaniak, Kinga; Kyriakis, Constantinos S; Brown, Ian H; Loeffen, Willie

    2014-01-01

    Swine influenza causes concern for global veterinary and public health officials. In continuing two previous networks that initiated the surveillance of swine influenza viruses (SIVs) circulating in European pigs between 2001 and 2008, a third European Surveillance Network for Influenza in Pigs (ESNIP3, 2010-2013) aimed to expand widely the knowledge of the epidemiology of European SIVs. ESNIP3 stimulated programs of harmonized SIV surveillance in European countries and supported the coordination of appropriate diagnostic tools and subtyping methods. Thus, an extensive virological monitoring, mainly conducted through passive surveillance programs, resulted in the examination of more than 9 000 herds in 17 countries. Influenza A viruses were detected in 31% of herds examined from which 1887 viruses were preliminary characterized. The dominating subtypes were the three European enzootic SIVs: avian-like swine H1N1 (53.6%), human-like reassortant swine H1N2 (13%) and human-like reassortant swine H3N2 (9.1%), as well as pandemic A/H1N1 2009 (H1N1pdm) virus (10.3%). Viruses from these four lineages co-circulated in several countries but with very different relative levels of incidence. For instance, the H3N2 subtype was not detected at all in some geographic areas whereas it was still prevalent in other parts of Europe. Interestingly, H3N2-free areas were those that exhibited highest frequencies of circulating H1N2 viruses. H1N1pdm viruses were isolated at an increasing incidence in some countries from 2010 to 2013, indicating that this subtype has become established in the European pig population. Finally, 13.9% of the viruses represented reassortants between these four lineages, especially between previous enzootic SIVs and H1N1pdm. These novel viruses were detected at the same time in several countries, with increasing prevalence. Some of them might become established in pig herds, causing implications for zoonotic infections.

  3. Reassortment between swine H3N2 and 2009 pandemic H1N1 generated diverse genetic constellations in influenza A viruses currently circulating in pigs in the United States

    Science.gov (United States)

    Introduction Influenza A virus (IAV) is a significant pathogen to the swine industry. Since its introduction in 2009, the H1N1 pandemic virus (H1N1pdm09) has been repeatedly transmitted from humans to swine, but onward transmission in U.S. swine was mostly restricted to its internal genes. Reassortm...

  4. Triple-reassortant influenza A virus with H3 of human seasonal origin, NA of swine origin, and internal A(H1N1) pandemic 2009 genes is established in Danish pigs

    DEFF Research Database (Denmark)

    Krog, Jesper Schak; Hjulsager, Charlotte Kristiane; Larsen, Michael Albin

    2017-01-01

    This report describes a triple-reassortant influenza A virus with a HA that resembles H3 of human seasonal influenza from 2004 to 2005, N2 from influenza A virus already established in swine, and the internal gene cassette from A(H1N1)pdm09 has spread in Danish pig herds. The virus has been detec...

  5. Single-step multiplex reverse transcription-polymerase chain reaction assay for detection and differentiation of the 2009 (H1N1) influenza A virus pandemic in Thai swine populations

    Science.gov (United States)

    A recently emerged H1N1 Influenza A virus (pandemic 1 H1N1: pH1N1) with a Swine influenza virus (SIV) genetic background spread globally from human-to-human causing the first influenza virus pandemic of the 21st century. In a short period reverse zoonotic cases in pigs followed by a wide spread of t...

  6. Immunization of pigs with an attenuated pseudorabies virus recombinant expressing the haemagglutinin of pandemic swine origin H1N1 influenza A virus.

    Science.gov (United States)

    Klingbeil, Katharina; Lange, Elke; Teifke, Jens P; Mettenleiter, Thomas C; Fuchs, Walter

    2014-04-01

    Pigs can be severely harmed by influenza, and represent important reservoir hosts, in which new human pathogens such as the recent pandemic swine-origin H1N1 influenza A virus can arise by mutation and reassortment of genome segments. To obtain novel, safe influenza vaccines for pigs, and to investigate the antigen-specific immune response, we modified an established live-virus vaccine against Aujeszky's disease of swine, pseudorabies virus (PrV) strain Bartha (PrV-Ba), to serve as vector for the expression of haemagglutinin (HA) of swine-origin H1N1 virus. To facilitate transgene insertion, the genome of PrV-Ba was cloned as a bacterial artificial chromosome. HA expression occurred under control of the human or murine cytomegalovirus immediate early promoters (P-HCMV, P-MCMV), but could be substantially enhanced by synthetic introns and adaptation of the codon usage to that of PrV. However, despite abundant expression, the heterologous glycoprotein was not detectably incorporated into mature PrV particles. Replication of HA-expressing PrV in cell culture was only slightly affected compared to that of the parental virus strain. A single immunization of pigs with the PrV vector expressing the codon-optimized HA gene under control of P-MCMV induced high levels of HA-specific antibodies. The vaccinated animals were protected from clinical signs after challenge with a related swine-origin H1N1 influenza A virus, and challenge virus shedding was significantly reduced.

  7. Isolation and complete genomic characterization of H1N1 subtype swine influenza viruses in southern China through the 2009 pandemic

    Directory of Open Access Journals (Sweden)

    Xue Chunyi

    2011-03-01

    Full Text Available Abstract Background The swine influenza (SI is an infectious disease of swine and human. The novel swine-origin influenza A (H1N1 that emerged from April 2009 in Mexico spread rapidly and caused a human pandemic globally. To determine whether the tremendous virus had existed in or transmitted to pigs in southern China, eight H1N1 influenza strains were identified from pigs of Guangdong province during 2008-2009. Results Based on the homology and phylogenetic analyses of the nucleotide sequences of each gene segments, the isolates were confirmed to belong to the classical SI group, with HA, NP and NS most similar to 2009 human-like H1N1 influenza virus lineages. All of the eight strains were low pathogenic influenza viruses, had the same host range, and not sensitive to class of antiviral drugs. Conclusions This study provides the evidence that there is no 2009 H1N1-like virus emerged in southern China, but the importance of swine influenza virus surveillance in China should be given a high priority.

  8. Effect of serial pig passages on the adaptation of an avian H9N2 influenza virus to swine.

    Directory of Open Access Journals (Sweden)

    Jose Carlos Mancera Gracia

    Full Text Available H9N2 avian influenza viruses are endemic in poultry in Asia and the Middle East. These viruses sporadically cause dead-end infections in pigs and humans raising concerns about their potential to adapt to mammals or reassort with human or swine influenza viruses. We performed ten serial passages with an avian H9N2 virus (A/quail/Hong Kong/G1/1997 in influenza naïve pigs to assess the potential of this virus to adapt to swine. Virus replication in the entire respiratory tract and nasal virus excretion were examined after each passage and we deep sequenced viral genomic RNA of the parental and passage four H9N2 virus isolated from the nasal mucosa and lung. The parental H9N2 virus caused a productive infection in pigs with a predominant tropism for the nasal mucosa, whereas only 50% lung samples were virus-positive. In contrast, inoculation of pigs with passage four virus resulted in viral replication in the entire respiratory tract. Subsequent passages were associated with reduced virus replication in the lungs and infectious virus was no longer detectable in the upper and lower respiratory tract of inoculated pigs at passage ten. The broader tissue tropism after four passages was associated with an amino acid residue substitution at position 225, within the receptor-binding site of the hemagglutinin. We also compared the parental H9N2, passage four H9N2 and the 2009 pandemic H1N1 (pH1N1 virus in a direct contact transmission experiment. Whereas only one out of six contact pigs showed nasal virus excretion of the wild-type H9N2 for more than four days, all six contact animals shed the passage four H9N2 virus. Nevertheless, the amount of excreted virus was significantly lower when compared to that of the pH1N1, which readily transmitted and replicated in all six contact animals. Our data demonstrate that serial passaging of H9N2 virus in pigs enhances its replication and transmissibility. However, full adaptation of an avian H9N2 virus to pigs

  9. First report of seroprevalence of swine influenza A virus in Tibetan pigs in Tibet, China.

    Science.gov (United States)

    Liu, Guo-Hua; Zhou, Dong-Hui; Cong, Wei; Zhang, Xiao-Xuan; Shi, Xin-Chun; Danba, Ciren; Huang, Si-Yang; Zhu, Xing-Quan

    2014-01-01

    Swine influenza A virus (SIV) is zoonotic pathogen that can be acquired by food-borne transmission because food animals, for example pigs, are recognized as a reservoir. The objectives of this study were to determine the seroprevalence of anti-SIV (H1N1 and H3N2) in Tibetan pigs in Tibet Nationality Autonomous Region, China, a region with cold weather and high altitude. A total of 421 serum samples were randomly collected from Tibetan pigs in Tibet and were evaluated for antibodies against SIV using enzyme-linked immunosorbent assay. Overall, 52 % (219/421) of the animals was positive for H1N1, 16.9 % (71/421) positive for H3N2, and 8.8 % (37/421) positive for both H1N1 and H3N2. The results of the present survey indicated that SIV is highly prevalent among Tibetan pigs in Tibet, China. The results of the present investigation have implications for the ongoing control of SIV infection in Tibetan pigs in Tibet, China and elsewhere.

  10. Real time reverse transcription (RRT)-polymerase chain reaction (PCR) methods for detection of pandemic (H1N1) 2009 influenza virus and European swine influenza A virus infections in pigs

    Science.gov (United States)

    BACKGROUND. Requirement to detect pandemic (H1N1) 2009 (H1N1v) and established swine influenza A viruses (SIVs) by RealTime real time reverse transcription (RRT) PCR methods. Objectives. First, modify an existing M gene RRT PCR for sensitive generic detection of H1N1v and other European SIVs. S...

  11. Efficacy of a high-growth reassortant H1N1 influenza virus vaccine against the classical swine H1N1 subtype influenza virus in mice and pigs.

    Science.gov (United States)

    Wen, Feng; Yu, Hai; Yang, Fu-Ru; Huang, Meng; Yang, Sheng; Zhou, Yan-Jun; Li, Ze-Jun; Tong, Guang-Zhi

    2014-11-01

    Swine influenza (SI) is an acute, highly contagious respiratory disease caused by swine influenza A viruses (SwIVs), and it poses a potential global threat to human health. Classical H1N1 (cH1N1) SwIVs are still circulating and remain the predominant subtype in the swine population in China. In this study, a high-growth reassortant virus (GD/PR8) harboring the hemagglutinin (HA) and neuraminidase (NA) genes from a novel cH1N1 isolate in China, A/Swine/Guangdong/1/2011 (GD/11) and six internal genes from the high-growth A/Puerto Rico/8/34(PR8) virus was generated by plasmid-based reverse genetics and tested as a candidate seed virus for the preparation of an inactivated vaccine. The protective efficacy of this vaccine was evaluated in mice and pigs challenged with GD/11 virus. Prime and boost inoculation of GD/PR8 vaccine yielded high-titer serum hemagglutination inhibiting (HI) antibodies and IgG antibodies for GD/11 in both mice and pigs. Complete protection of mice and pigs against cH1N1 SIV challenge was observed, with significantly fewer lung lesions and reduced viral shedding in vaccine-inoculated animals compared with unvaccinated control animals. Our data demonstrated that the GD/PR8 may serve as the seed virus for a promising SwIVs vaccine to protect the swine population.

  12. Prior infection of pigs with a recent human H3N2 influenza virus confers minimal cross-protection against a European swine H3N2 virus.

    Science.gov (United States)

    Qiu, Yu; van der Meulen, Karen; Van Reeth, Kristien

    2013-11-01

    H3N2 influenza viruses circulating in humans and European pigs originate from the pandemic A/Hong Kong/68 virus. Because of slower antigenic drift in swine, the antigenic divergence between swine and human viruses has been increasing. It remains unknown to what extent this results in a reduced cross-protection between recent human and swine H3N2 influenza viruses. We examined whether prior infection of pigs with an old [A/Victoria/3/75 (A/Vic/75)] or a more recent [A/Wisconsin/67/05 (A/Wis/05)] human H3N2 virus protected against a European swine H3N2 virus [sw/Gent/172/08 (sw/Gent/08)]. Genetic and antigenic relationships between sw/Gent/08 and a selection of human H3N2 viruses were also assessed. After challenge with sw/Gent/08, all challenge controls had high virus titers in the entire respiratory tract at 3 days post-challenge and nasal virus excretion for 5-6 days. Prior infection with sw/Gent/08 or A/Vic/75 offered complete virological protection against challenge. Pigs previously inoculated with A/Wis/05 showed similar virus titers in the respiratory tract as challenge controls, but the mean duration of nasal shedding was 1·3 days shorter. Unlike sw/Gent/08- and A/Vic/75-inoculated pigs, A/Wis/05-inoculated pigs lacked cross-reactive neutralizing antibodies against sw/Gent/08 before challenge, but they showed a more rapid antibody response to sw/Gent/08 than challenge controls after challenge. Cross-protection and serological responses correlated with genetic and antigenic differences. Infection immunity to a recent human H3N2 virus confers minimal cross-protection against a European swine H3N2 virus. We discuss our findings with regard to the recent zoonotic infections of humans in the United States with a swine-origin H3N2 variant virus. © 2013 John Wiley & Sons Ltd.

  13. [Serological detection of Brucella suis, influenza virus and Aujeszky's disease virus in backyard and small swine holders in Argentina].

    Science.gov (United States)

    Dibarbora, Marina; Cappuccio, Javier A; Aznar, María N; Bessone, Fernando A; Piscitelli, Hernán; Pereda, Ariel J; Pérez, Daniel R

    Farmers raising less than 100 sows represent more than 99% of swine producers in Argentina, although little is known about their sanitary status and productive characteristics in the country. Sanitary and productive information was obtained. Furthermore, samples for serological studies were taken to detect antibodies against Brucella suis (Bs), Aujeszky's disease virus (AV) and influenza virus (IV) in 68 backyard and small producers with less than 100 sows located in the north, central and south regions of Argentina. Antibodies against H1 pandemic were detected in 80% of the farms while 11%, 11.7% and 6.0% of the producers were positive to influenza H3 cluster 2, AV and Bs, respectively. None of the producers was aware of the risk factors concerning the transmission of diseases from pigs to humans. A percentage of 47% of them buy pigs for breeding from other farmers and markets. With regard to biosecurity measures, only 16% of the farms had perimeter fences. The results of this study demonstrate that productive characterization and disease surveys are important to improve productivity and to reduce the risk of disease transmission among animals and humans. The study of sanitary status and risk factors is necessary for better control and eradication of diseases in backyard or small producers. More representative studies at country level should be carried out to detect the pathogensthat circulate and, with this knowledge, to implement prevention and control measures. Copyright © 2017 Asociación Argentina de Microbiología. Publicado por Elsevier España, S.L.U. All rights reserved.

  14. Vaccination with NS1-truncated H3N2 swine influenza virus primes T cells and confers cross-protection against an H1N1 heterosubtypic challenge in pigs

    Science.gov (United States)

    The diversity of contemporary swine influenza virus (SIV) strains impedes effective immunization of swine herds. Mucosally delivered, attenuated virus vaccines are one approach with potential to provide broad cross-protection. Reverse genetics-derived H3N2 SIV virus with truncated NS1 (NS1delta126 T...

  15. Positive Selection in CD8+ T-Cell Epitopes of Influenza Virus Nucleoprotein Revealed by a Comparative Analysis of Human and Swine Viral Lineages.

    Science.gov (United States)

    Machkovech, Heather M; Bedford, Trevor; Suchard, Marc A; Bloom, Jesse D

    2015-11-01

    Numerous experimental studies have demonstrated that CD8(+) T cells contribute to immunity against influenza by limiting viral replication. It is therefore surprising that rigorous statistical tests have failed to find evidence of positive selection in the epitopes targeted by CD8(+) T cells. Here we use a novel computational approach to test for selection in CD8(+) T-cell epitopes. We define all epitopes in the nucleoprotein (NP) and matrix protein (M1) with experimentally identified human CD8(+) T-cell responses and then compare the evolution of these epitopes in parallel lineages of human and swine influenza viruses that have been diverging since roughly 1918. We find a significant enrichment of substitutions that alter human CD8(+) T-cell epitopes in NP of human versus swine influenza virus, consistent with the idea that these epitopes are under positive selection. Furthermore, we show that epitope-altering substitutions in human influenza virus NP are enriched on the trunk versus the branches of the phylogenetic tree, indicating that viruses that acquire these mutations have a selective advantage. However, even in human influenza virus NP, sites in T-cell epitopes evolve more slowly than do nonepitope sites, presumably because these epitopes are under stronger inherent functional constraint. Overall, our work demonstrates that there is clear selection from CD8(+) T cells in human influenza virus NP and illustrates how comparative analyses of viral lineages from different hosts can identify positive selection that is otherwise obscured by strong functional constraint. There is a strong interest in correlates of anti-influenza immunity that are protective against diverse virus strains. CD8(+) T cells provide such broad immunity, since they target conserved viral proteins. An important question is whether T-cell immunity is sufficiently strong to drive influenza virus evolution. Although many studies have shown that T cells limit viral replication in animal

  16. Introduction of a Novel Swine-Origin Influenza A (H1N1 Virus into Milwaukee, Wisconsin in 2009

    Directory of Open Access Journals (Sweden)

    Swati Kumar

    2009-06-01

    Full Text Available On 17 April 2009, novel swine origin influenza A virus (S-OIV cases appeared within the United States. Most influenza A diagnostic assays currently utilized in local clinical laboratories do not allow definitive subtype determination. Detailed subtype analysis of influenza A positive samples in our laboratory allowed early confirmation of a large outbreak of S-OIV in southeastern Wisconsin (SEW. The initial case of S-OIV in SEW was detected on 28 April 2009. All influenza A samples obtained during the 16 week period prior to 28 April 2009, and the first four weeks of the subsequent epidemic were sub typed. Four different multiplex assays were employed, utilizing real time PCR and end point PCR to fully subtype human and animal influenza viral components. Specific detection of S-OIV was developed within days. Data regarding patient demographics and other concurrently circulating viruses were analyzed. During the first four weeks of the epidemic, 679 of 3726 (18.2% adults and children tested for influenza A were identified with S-OIV infection. Thirteen patients (0.34% tested positive for seasonal human subtypes of influenza A during the first two weeks and none in the subsequent 2 weeks of the epidemic. Parainfluenza viruses were the most prevalent seasonal viral agents circulating during the epidemic (of those tested, with detection rates of 12% followed by influenza B and RSV at 1.9% and 0.9% respectively. S-OIV was confirmed on day 2 of instituting subtype testing and within 4 days of report of national cases of S-OIV. Novel surge capacity diagnostic infrastructure exists in many specialty and research laboratories around the world. The capacity for broader influenza A sub typing at the local laboratory level allows timely and accurate detection of novel strains as they emerge in the community, despite the presence of other circulating viruses producing identical illness. This is likely to become increasingly important given the need for

  17. Outbreak of swine-origin influenza A (H1N1) virus infection - Mexico, March-April 2009.

    Science.gov (United States)

    2009-05-08

    In March and early April 2009, Mexico experienced outbreaks of respiratory illness and increased reports of patients with influenza-like illness (ILI) in several areas of the country. On April 12, the General Directorate of Epidemiology (DGE) reported an outbreak of ILI in a small community in the state of Veracruz to the Pan American Health Organization (PAHO) in accordance with International Health Regulations. On April 17, a case of atypical pneumonia in Oaxaca State prompted enhanced surveillance throughout Mexico. On April 23, several cases of severe respiratory illness laboratory confirmed as swine-origin influenza A (H1N1) virus (S-OIV) infection were communicated to the PAHO. Sequence analysis revealed that the patients were infected with the same S-OIV strain detected in two children residing in California. This report describes the initial and ongoing investigation of the S-OIV outbreak in Mexico.

  18. Detection and Isolation of Swine Influenza A Virus in Spiked Oral Fluid and Samples from Individually Housed, Experimentally Infected Pigs: Potential Role of Porcine Oral Fluid in Active Influenza A Virus Surveillance in Swine.

    Directory of Open Access Journals (Sweden)

    Inge Decorte

    Full Text Available The lack of seasonality of swine influenza A virus (swIAV in combination with the capacity of swine to harbor a large number of co-circulating IAV lineages, resulting in the risk for the emergence of influenza viruses with pandemic potential, stress the importance of swIAV surveillance. To date, active surveillance of swIAV worldwide is barely done because of the short detection period in nasal swab samples. Therefore, more sensitive diagnostic methods to monitor circulating virus strains are requisite.qRT-PCR and virus isolations were performed on oral fluid and nasal swabs collected from individually housed pigs that were infected sequentially with H1N1 and H3N2 swIAV strains. The same methods were also applied to oral fluid samples spiked with H1N1 to study the influence of conservation time and temperature on swIAV infectivity and detectability in porcine oral fluid.All swIAV infected animals were found qRT-PCR positive in both nasal swabs and oral fluid. However, swIAV could be detected for a longer period in oral fluid than in nasal swabs. Despite the high detectability of swIAV in oral fluid, virus isolation from oral fluid collected from infected pigs was rare. These results are supported by laboratory studies showing that the PCR detectability of swIAV remains unaltered during a 24 h incubation period in oral fluid, while swIAV infectivity drops dramatically immediately upon contact with oral fluid (3 log titer reduction and gets lost after 24 h conservation in oral fluid at ambient temperature.Our data indicate that porcine oral fluid has the potential to replace nasal swabs for molecular diagnostic purposes. The difficulty to isolate swIAV from oral fluid could pose a drawback for its use in active surveillance programs.

  19. Detection and Isolation of Swine Influenza A Virus in Spiked Oral Fluid and Samples from Individually Housed, Experimentally Infected Pigs: Potential Role of Porcine Oral Fluid in Active Influenza A Virus Surveillance in Swine

    Science.gov (United States)

    Decorte, Inge; Steensels, Mieke; Lambrecht, Bénédicte

    2015-01-01

    Background The lack of seasonality of swine influenza A virus (swIAV) in combination with the capacity of swine to harbor a large number of co-circulating IAV lineages, resulting in the risk for the emergence of influenza viruses with pandemic potential, stress the importance of swIAV surveillance. To date, active surveillance of swIAV worldwide is barely done because of the short detection period in nasal swab samples. Therefore, more sensitive diagnostic methods to monitor circulating virus strains are requisite. Methods qRT-PCR and virus isolations were performed on oral fluid and nasal swabs collected from individually housed pigs that were infected sequentially with H1N1 and H3N2 swIAV strains. The same methods were also applied to oral fluid samples spiked with H1N1 to study the influence of conservation time and temperature on swIAV infectivity and detectability in porcine oral fluid. Results All swIAV infected animals were found qRT-PCR positive in both nasal swabs and oral fluid. However, swIAV could be detected for a longer period in oral fluid than in nasal swabs. Despite the high detectability of swIAV in oral fluid, virus isolation from oral fluid collected from infected pigs was rare. These results are supported by laboratory studies showing that the PCR detectability of swIAV remains unaltered during a 24 h incubation period in oral fluid, while swIAV infectivity drops dramatically immediately upon contact with oral fluid (3 log titer reduction) and gets lost after 24 h conservation in oral fluid at ambient temperature. Conclusions Our data indicate that porcine oral fluid has the potential to replace nasal swabs for molecular diagnostic purposes. The difficulty to isolate swIAV from oral fluid could pose a drawback for its use in active surveillance programs. PMID:26431039

  20. Pathogenic characteristics of a novel triple-reasserted H1N2 swine influenza virus.

    Science.gov (United States)

    Liu, Huili; Tao, Jie; Zhang, Pengchao; Yin, Xiuchen; Ha, Zhuo; Zhang, Chunling

    2016-07-01

    A novel triple reasserted H1N2 virus A/swine/Shanghai/1/2007 (SH07) was isolated from nasal swabs of weaned pig showing clinical symptoms of coughing and sneezing. To explore the virus characteristics, mice, chickens and pigs were selected for pathogenicity study. Pigs inoculated intranasally with 10(6) TCID50 SH07 showed clinical symptoms with coughing and sneezing, but no death. The virus nuclear acid was detected in many tissues using real-time PCR, which was mainly distributed in respiratory system particularly in the lungs. The virus was low-pathogenic to chickens with 10(6) TCID50 dose inoculation either via intramuscular or intranasal routes. However virus nuclear acid detection and virus isolation confirmed that the virus can also be found in nasal and rectum. When virus was inoculated into mice by intramuscular or intranasal routes we observed 100% and 80% lethality respectively. The third generation of samples passaged on MDCK cell were SIV positive in indirect immunofluorescence assay (IFA) using antiserum against H1N2 SIV. Furthermore, the lungs of mice showed obvious lesion with interstitial pneumonia. Data in our study suggest that SH07 is preferentially pathogenic to mammals rather than birds although it is a reasserting virus with the fragments from swine, human and avian origin. Copyright © 2016 International Alliance for Biological Standardization. Published by Elsevier Ltd. All rights reserved.

  1. Reassortment process after co-infection of pigs with avian H1N1 and swine H3N2 influenza viruses.

    Science.gov (United States)

    Urbaniak, Kinga; Markowska-Daniel, Iwona; Kowalczyk, Andrzej; Kwit, Krzysztof; Pomorska-Mól, Małgorzata; Frącek, Barbara; Pejsak, Zygmunt

    2017-07-08

    The influenza A virus is highly variable, which, to some degree, is caused by the reassortment of viral genetic material. This process plays a major role in the generation of novel influenza virus strains that can emerge in a new host population. Due to the susceptibility of pigs to infections with avian, swine and human influenza viruses, they are considered intermediate hosts for the adaptation of the avian influenza virus to humans. In order to test the reassortment process in pigs, they were co-infected with H3N2 A/swine/Gent/172/2008 (Gent/08) and H1N1 A/duck/Italy/1447/2005 (Italy/05) and co-housed with a group of naïve piglets. The Gent/08 strains dominated over Italy/05, but reassortment occurred. The reassortant strains of the H1N1 subtype (12.5%) with one gene (NP or M) of swine-origin were identified in the nasal discharge of the contact-exposed piglets. These results demonstrate that despite their low efficiency, genotypically and phenotypically different influenza A viruses can undergo genetic exchange during co-infection of pigs.

  2. Swine influenza virus vaccine serologic cross-reactivity to contemporary US swine H3N2 and efficacy in pigs infected with an H3N2 similar to 2011-2012 H3N2v.

    Science.gov (United States)

    Kitikoon, Pravina; Gauger, Phillip C; Anderson, Tavis K; Culhane, Marie R; Swenson, Sabrina; Loving, Crystal L; Perez, Daniel R; Vincent, Amy L

    2013-12-01

    Swine influenza A virus (IAV) reassortment with 2009 H1N1 pandemic (H1N1pdm09) virus has been documented, and new genotypes and subclusters of H3N2 have since expanded in the US swine population. An H3N2 variant (H3N2v) virus with the H1N1pdm09 matrix gene and the remaining genes of swine triple reassortant H3N2 caused outbreaks at agricultural fairs in 2011-2012. To assess commercial swine IAV vaccines' efficacy against H3N2 viruses, including those similar to H3N2v, antisera to three vaccines were tested by hemagglutinin inhibition (HI) assay against contemporary H3N2. Vaccine 1, with high HI cross-reactivity, was further investigated for efficacy against H3N2 virus infection in pigs with or without maternally derived antibodies (MDA). In addition, efficacy of a vaccine derived from whole inactivated virus (WIV) was compared with live attenuated influenza virus (LAIV) against H3N2. Hemagglutinin inhibition cross-reactivity demonstrated that contemporary swine H3N2 viruses have drifted from viruses in current swine IAV vaccines. The vaccine with the highest level of HI cross-reactivity significantly protected pigs without MDA. However, the presence of MDA at vaccination blocked vaccine efficacy. The performance of WIV and LAIV was comparable in the absence of MDA. Swine IAV in the United States is complex and dynamic. Vaccination to minimize virus shedding can help limit transmission of virus among pigs and people. However, vaccines must be updated. A critical review of the use of WIV in sows is required in the context of the current IAV ecology and vaccine application in pigs with MDA. Published 2013. This article is a U.S. Government work and is in the public domain in the USA.

  3. Polymorphisms in the hemagglutinin gene influenced the viral shedding of pandemic 2009 influenza virus in swine

    Science.gov (United States)

    The contribution of influenza virus quasi-species for transmission efficiency and replication is poorly understood. In the present study we show that naturally occurring polymorphisms present in the hemagglutinin (HA) gene of two 2009 pandemic H1N1 isolates, A/California/04/2009 (Ca/09) and A/Mexico...

  4. H1N1 Swine Influenza Viruses Differ from Avian Precursors by a Higher pH Optimum of Membrane Fusion

    Science.gov (United States)

    Baumann, Jan; Kouassi, Nancy Mounogou; Foni, Emanuela; Klenk, Hans-Dieter

    2015-01-01

    ABSTRACT The H1N1 Eurasian avian-like swine (EAsw) influenza viruses originated from an avian H1N1 virus. To characterize potential changes in the membrane fusion activity of the hemagglutinin (HA) during avian-to-swine adaptation of the virus, we studied EAsw viruses isolated in the first years of their circulation in pigs and closely related contemporary H1N1 viruses of wild aquatic birds. Compared to the avian viruses, the swine viruses were less sensitive to neutralization by lysosomotropic agent NH4Cl in MDCK cells, had a higher pH optimum of hemolytic activity, and were less stable at acidic pH. Eight amino acid substitutions in the HA were found to separate the EAsw viruses from their putative avian precursor; four substitutions—T492S, N722D, R752K, and S1132F—were located in the structural regions of the HA2 subunit known to play a role in acid-induced conformational transition of the HA. We also studied low-pH-induced syncytium formation by cell-expressed HA proteins and found that the HAs of the 1918, 1957, 1968, and 2009 pandemic viruses required a lower pH for fusion induction than did the HA of a representative EAsw virus. Our data show that transmission of an avian H1N1 virus to pigs was accompanied by changes in conformational stability and fusion promotion activity of the HA. We conclude that distinctive host-determined fusion characteristics of the HA may represent a barrier for avian-to-swine and swine-to-human transmission of influenza viruses. IMPORTANCE Continuing cases of human infections with zoonotic influenza viruses highlight the necessity to understand which viral properties contribute to interspecies transmission. Efficient binding of the HA to cellular receptors in a new host species is known to be essential for the transmission. Less is known about required adaptive changes in the membrane fusion activity of the HA. Here we show that adaptation of an avian influenza virus to pigs in Europe in 1980s was accompanied by mutations in

  5. Reverse zoonosis of influenza to swine: new perspectives on the human–animal interface

    Science.gov (United States)

    The origins of the 2009 influenza A (H1N1) pandemic in swine are unknown, highlighting gaps in our understanding of influenza A virus (IAV) ecology and evolution. We review how recently strengthened influenza virus surveillance in pigs has revealed that influenza virus transmission from humans to sw...

  6. Transmission dynamics of pandemic influenza A(H1N1)pdm09 virus in humans and swine in backyard farms in Tumbes, Peru.

    Science.gov (United States)

    Tinoco, Yeny O; Montgomery, Joel M; Kasper, Mathew R; Nelson, Martha I; Razuri, Hugo; Guezala, Maria C; Azziz-Baumgartner, Eduardo; Widdowson, Marc-Alain; Barnes, John; Gilman, Robert H; Bausch, Daniel G; Gonzalez, Armando E

    2016-01-01

    We aimed to determine the frequency of pH1N1 transmission between humans and swine on backyard farms in Tumbes, Peru. Two-year serial cross-sectional study comprising four sampling periods: March 2009 (pre-pandemic), October 2009 (peak of the pandemic in Peru), April 2010 (1st post-pandemic period), and October 2011 (2nd post-pandemic period). Backyard swine serum, tracheal swabs, and lung sample were collected during each sampling period. We assessed current and past pH1N1 infection in swine through serological testing, virus culture, and RT-PCR and compared the results with human incidence data from a population-based active surveillance cohort study in Peru. Among 1303 swine sampled, the antibody prevalence to pH1N1 was 0% pre-pandemic, 8% at the peak of the human pandemic (October 2009), and 24% in April 2010 and 1% in October 2011 (post-pandemic sampling periods). Trends in swine seropositivity paralleled those seen in humans in Tumbes. The pH1N1 virus was isolated from three pigs during the peak of the pandemic. Phylogenetic analysis revealed that these viruses likely represent two separate human-to-swine transmission events in backyard farm settings. Our findings suggest that human-to-swine pH1N1 transmission occurred during the pandemic among backyard farms in Peru, emphasizing the importance of interspecies transmission in backyard pig populations. Continued surveillance for influenza viruses in backyard farms is warranted. © 2015 The Authors. Influenza and Other Respiratory Viruses Published by John Wiley & Sons Ltd.

  7. Novel Reassortant Human-Like H3N2 and H3N1 Influenza A Viruses Detected in Pigs Are Virulent and Antigenically Distinct from Swine Viruses Endemic to the United States

    Science.gov (United States)

    Rajão, Daniela S.; Gauger, Phillip C.; Anderson, Tavis K.; Lewis, Nicola S.; Abente, Eugenio J.; Killian, Mary Lea; Sutton, Troy C.; Zhang, Jianqiang

    2015-01-01

    ABSTRACT Human-like swine H3 influenza A viruses (IAV) were detected by the USDA surveillance system. We characterized two novel swine human-like H3N2 and H3N1 viruses with hemagglutinin (HA) genes similar to those in human seasonal H3 strains and internal genes closely related to those of 2009 H1N1 pandemic viruses. The H3N2 neuraminidase (NA) was of the contemporary human N2 lineage, while the H3N1 NA was of the classical swine N1 lineage. Both viruses were antigenically distant from swine H3 viruses that circulate in the United States and from swine vaccine strains and also showed antigenic drift from human seasonal H3N2 viruses. Their pathogenicity and transmission in pigs were compared to those of a human H3N2 virus with a common HA ancestry. Both swine human-like H3 viruses efficiently infected pigs and were transmitted to indirect contacts, whereas the human H3N2 virus did so much less efficiently. To evaluate the role of genes from the swine isolates in their pathogenesis, reverse genetics-generated reassortants between the swine human-like H3N1 virus and the seasonal human H3N2 virus were tested in pigs. The contribution of the gene segments to virulence was complex, with the swine HA and internal genes showing effects in vivo. The experimental infections indicate that these novel H3 viruses are virulent and can sustain onward transmission in pigs, and the naturally occurring mutations in the HA were associated with antigenic divergence from H3 IAV from humans and swine. Consequently, these viruses could have a significant impact on the swine industry if they were to cause more widespread outbreaks, and the potential risk of these emerging swine IAV to humans should be considered. IMPORTANCE Pigs are important hosts in the evolution of influenza A viruses (IAV). Human-to-swine transmissions of IAV have resulted in the circulation of reassortant viruses containing human-origin genes in pigs, greatly contributing to the diversity of IAV in swine worldwide

  8. Novel Reassortant Human-Like H3N2 and H3N1 Influenza A Viruses Detected in Pigs Are Virulent and Antigenically Distinct from Swine Viruses Endemic to the United States.

    Science.gov (United States)

    Rajão, Daniela S; Gauger, Phillip C; Anderson, Tavis K; Lewis, Nicola S; Abente, Eugenio J; Killian, Mary Lea; Perez, Daniel R; Sutton, Troy C; Zhang, Jianqiang; Vincent, Amy L

    2015-11-01

    Human-like swine H3 influenza A viruses (IAV) were detected by the USDA surveillance system. We characterized two novel swine human-like H3N2 and H3N1 viruses with hemagglutinin (HA) genes similar to those in human seasonal H3 strains and internal genes closely related to those of 2009 H1N1 pandemic viruses. The H3N2 neuraminidase (NA) was of the contemporary human N2 lineage, while the H3N1 NA was of the classical swine N1 lineage. Both viruses were antigenically distant from swine H3 viruses that circulate in the United States and from swine vaccine strains and also showed antigenic drift from human seasonal H3N2 viruses. Their pathogenicity and transmission in pigs were compared to those of a human H3N2 virus with a common HA ancestry. Both swine human-like H3 viruses efficiently infected pigs and were transmitted to indirect contacts, whereas the human H3N2 virus did so much less efficiently. To evaluate the role of genes from the swine isolates in their pathogenesis, reverse genetics-generated reassortants between the swine human-like H3N1 virus and the seasonal human H3N2 virus were tested in pigs. The contribution of the gene segments to virulence was complex, with the swine HA and internal genes showing effects in vivo. The experimental infections indicate that these novel H3 viruses are virulent and can sustain onward transmission in pigs, and the naturally occurring mutations in the HA were associated with antigenic divergence from H3 IAV from humans and swine. Consequently, these viruses could have a significant impact on the swine industry if they were to cause more widespread outbreaks, and the potential risk of these emerging swine IAV to humans should be considered. Pigs are important hosts in the evolution of influenza A viruses (IAV). Human-to-swine transmissions of IAV have resulted in the circulation of reassortant viruses containing human-origin genes in pigs, greatly contributing to the diversity of IAV in swine worldwide. New human-like H3N2

  9. Specific Inhibitory Effect of κ-Carrageenan Polysaccharide on Swine Pandemic 2009 H1N1 Influenza Virus.

    Directory of Open Access Journals (Sweden)

    Qiang Shao

    Full Text Available The 2009 influenza A H1N1 pandemic placed unprecedented demands on antiviral drug resources and the vaccine industry. Carrageenan, an extractive of red algae, has been proven to inhibit infection and multiplication of various enveloped viruses. The aim of this study was to examine the ability of κ-carrageenan to inhibit swine pandemic 2009 H1N1 influenza virus to gain an understanding of antiviral ability of κ-carrageenan. It was here demonstrated that κ-carrageenan had no cytotoxicity at concentrations below 1000 μg/ml. Hemagglutination, 50% tissue culture infectious dose (TCID50 and cytopathic effect (CPE inhibition assays showed that κ-carrageenan inhibited A/Swine/Shandong/731/2009 H1N1 (SW731 and A/California/04/2009 H1N1 (CA04 replication in a dose-dependent fashion. Mechanism studies show that the inhibition of SW731 multiplication and mRNA expression was maximized when κ-carrageenan was added before or during adsorption. The result of Hemagglutination inhibition assay indicate that κ-carrageenan specifically targeted HA of SW731 and CA04, both of which are pandemic H1N/2009 viruses, without effect on A/Pureto Rico/8/34 H1N1 (PR8, A/WSN/1933 H1N1 (WSN, A/Swine/Beijing/26/2008 H1N1 (SW26, A/Chicken/Shandong/LY/2008 H9N2 (LY08, and A/Chicken/Shandong/ZB/2007 H9N2 (ZB07 viruses. Immunofluorescence assay and Western blot showed that κ-carrageenan also inhibited SW731 protein expression after its internalization into cells. These results suggest that κ-carrageenan can significantly inhibit SW731 replication by interfering with a few replication steps in the SW731 life cycles, including adsorption, transcription, and viral protein expression, especially interactions between HA and cells. In this way, κ-carrageenan might be a suitable alternative approach to therapy meant to address anti-IAV, which contains an HA homologous to that of SW731.

  10. Genetic and antigenic characterization of influenza A virus circulating in Danish swine during the past decade

    DEFF Research Database (Denmark)

    Fobian, Kristina; Kirk, Isa Kristina; Breum, Solvej Østergaard

    . Phylogenetic analysis of the HA and NA genes revealed continuous evolutionary drift as expected for RNA viruses with low mutational selection pressure. Estimated selection pressures indicated that more purifying and less diversifying selection controlled the H1 evolution. The mean rates of synonymous and non......-synonymous substitutions for H1, N1 and N2 were found to be in agreement with previously observed values for Eurasian swine lineages. Calculation of possible glycosylation sites in the hemagglutinin gene revealed that the H1N2 and H1N1 subtypes had three well conserved glycosylation sites in common. The results of the HI...

  11. Oct4+ stem/progenitor swine lung epithelial cells are targets for influenza virus replication.

    Science.gov (United States)

    Khatri, Mahesh; Goyal, Sagar M; Saif, Yehia M

    2012-06-01

    We isolated stem/progenitor epithelial cells from the lungs of 4- to 6-week-old pigs. The epithelial progenitor colony cells were surrounded by mesenchymal stromal cells. The progenitor epithelial colony cells expressed stem cell markers such as octamer binding transcription factor 4 (Oct4) and stage-specific embryonic antigen 1 (SSEA-1), as well as the epithelial markers pancytokeratin, cytokeratin-18, and occludin, but not mesenchymal (CD44, CD29, and CD90) and hematopoietic (CD45) markers. The colony cells had extensive self-renewal potential and had the capacity to undergo differentiation to alveolar type I- and type II-like pneumocytes. Additionally, these cells expressed sialic acid receptors and supported the active replication of influenza virus, which was accompanied by cell lysis. The lysis of progenitor epithelial cells by influenza virus may cause a marked reduction in the potential of progenitor cells for self renewal and for their ability to differentiate into specialized cells of the lung. These observations suggest the possible involvement of lung stem/progenitor cells in influenza virus infection.

  12. Diagnosis of influenza viruses with special reference to novel H1N1 2009 influenza virus

    OpenAIRE

    Broor, Shobha; Chahar, Harendra Singh; Kaushik, Samander

    2009-01-01

    On 15 April and 17 April 2009, novel swineorigin influenza A (H1N1) virus was identifi ed in specimens obtained from two epidemiologically unlinked patients in the United States. The ongoing outbreak of novel H1N1 2009 influenza (swine influenza) has caused more than 3,99,232 laboratory confi rmed cases of pandemic influenza H1N1 and over 4735 deaths globally. This novel 2009 influenza virus designated as H1N1 A/swine/California/04/2009 virus is not zoonotic swine flu and is transmitted from ...

  13. Protection of human influenza vaccines against a reassortant swine influenza virus of pandemic H1N1 origin using a pig model.

    Science.gov (United States)

    Arunorat, Jirapat; Charoenvisal, Nataya; Woonwong, Yonlayong; Kedkovid, Roongtham; Jittimanee, Supattra; Sitthicharoenchai, Panchan; Kesdangsakonwut, Sawang; Poolperm, Pariwat; Thanawongnuwech, Roongroje

    2017-10-01

    Since the pandemic H1N1 emergence in 2009 (pdmH1N1), many reassortant pdmH1N1 viruses emerged and found circulating in the pig population worldwide. Currently, commercial human subunit vaccines are used commonly to prevent the influenza symptom based on the WHO recommendation. In case of current reassortant swine influenza viruses transmitting from pigs to humans, the efficacy of current human influenza vaccines is of interest. In this study, influenza A negative pigs were vaccinated with selected commercial human subunit vaccines and challenged with rH3N2. All sera were tested with both HI and SN assays using four representative viruses from the surveillance data in 2012 (enH1N1, pdmH1N1, rH1N2 and rH3N2). The results showed no significant differences in clinical signs and macroscopic and microscopic findings among groups. However, all pig sera from vaccinated groups had protective HI titers to the enH1N1, pdmH1N1 and rH1N2 at 21DPV onward and had protective SN titers only to pdmH1N1and rH1N2 at 21DPV onward. SN test results appeared more specific than those of HI tests. All tested sera had no cross-reactivity against the rH3N2. Both studied human subunit vaccines failed to protect and to stop viral shedding with no evidence of serological reaction against rH3N2. SIV surveillance is essential for monitoring a novel SIV emergence potentially for zoonosis. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Avian influenza A virus PB2 promotes interferon type I inducing properties of a swine strain in porcine dendritic cells

    Energy Technology Data Exchange (ETDEWEB)

    Ocana-Macchi, Manuela; Ricklin, Meret E.; Python, Sylvie; Monika, Gsell-Albert [Institute of Virology and Immunoprophylaxis, Mittelhaeusern (Switzerland); Stech, Juergen; Stech, Olga [Friedrich-Loeffler Institut, Greifswald-Insel Riems (Germany); Summerfield, Artur, E-mail: artur.summerfield@ivi.admin.ch [Institute of Virology and Immunoprophylaxis, Mittelhaeusern (Switzerland)

    2012-05-25

    The 2009 influenza A virus (IAV) pandemic resulted from reassortment of avian, human and swine strains probably in pigs. To elucidate the role of viral genes in host adaptation regarding innate immune responses, we focussed on the effect of genes from an avian H5N1 and a porcine H1N1 IAV on infectivity and activation of porcine GM-CSF-induced dendritic cells (DC). The highest interferon type I responses were achieved by the porcine virus reassortant containing the avian polymerase gene PB2. This finding was not due to differential tropism since all viruses infected DC equally. All viruses equally induced MHC class II, but porcine H1N1 expressing the avian viral PB2 induced more prominent nuclear NF-{kappa}B translocation compared to its parent IAV. The enhanced activation of DC may be detrimental or beneficial. An over-stimulation of innate responses could result in either pronounced tissue damage or increased resistance against IAV reassortants carrying avian PB2.

  15. Avian influenza A virus PB2 promotes interferon type I inducing properties of a swine strain in porcine dendritic cells

    International Nuclear Information System (INIS)

    Ocaña-Macchi, Manuela; Ricklin, Meret E.; Python, Sylvie; Monika, Gsell-Albert; Stech, Jürgen; Stech, Olga; Summerfield, Artur

    2012-01-01

    The 2009 influenza A virus (IAV) pandemic resulted from reassortment of avian, human and swine strains probably in pigs. To elucidate the role of viral genes in host adaptation regarding innate immune responses, we focussed on the effect of genes from an avian H5N1 and a porcine H1N1 IAV on infectivity and activation of porcine GM-CSF-induced dendritic cells (DC). The highest interferon type I responses were achieved by the porcine virus reassortant containing the avian polymerase gene PB2. This finding was not due to differential tropism since all viruses infected DC equally. All viruses equally induced MHC class II, but porcine H1N1 expressing the avian viral PB2 induced more prominent nuclear NF-κB translocation compared to its parent IAV. The enhanced activation of DC may be detrimental or beneficial. An over-stimulation of innate responses could result in either pronounced tissue damage or increased resistance against IAV reassortants carrying avian PB2.

  16. Characterization of co-circulating swine influenza A viruses in North America and the identification of a novel H1 genetic clade with antigenic significance.

    Science.gov (United States)

    Anderson, Tavis K; Campbell, Brian A; Nelson, Martha I; Lewis, Nicola S; Janas-Martindale, Alicia; Killian, Mary Lea; Vincent, Amy L

    2015-04-02

    Multiple genetically and antigenically distinct hemagglutinin genes of the H1 and H3 influenza A virus (IAV) subtypes co-circulate in North American swine. This diversity has evolved by repeated transmission of IAVs from humans to swine and subsequent antigenic drift in swine. To understand the evolutionary dynamics of these diverse HA lineages in North American swine, we undertook a phylogenetic analysis of 1576 H1 and 607 H3 HA gene segments, as well as 834 N1 and 1293 N2 NA gene segments, and 2126 M gene segments. These data revealed yearly co-circulation of H1N1, H1N2, and H3N2 viruses, with three HA clades representing the majority of the HA sequences: of the H1 viruses, 42% were classified as H1δ1 and 40.6% were classified as H1γ; and of the H3 viruses 53% were classified as cluster IV-A H3N2. We detected a genetically distinct minor clade consisting of 37 H1 viruses isolated between 2003 and 2013, which we classified as H1γ-2. We estimated that this clade circulated in swine since approximately 1995, but it was not detected in swine until 2003. Though this clade only represents 1.07% of swine H1 sequences reported over the past 10 years, hemagglutination inhibition (HI) assays demonstrated that representatives of this clade of viruses are antigenically distinct, and, when measured using antigenic cartography, were as many as 7 antigenic units from other H1γ viruses. Therefore vaccines against the contemporary H1γ viruses are not likely to cross-protect against γ-2 viruses. The long-term circulation of these γ-2 viruses suggests that minor populations of viruses may be underreported in the national dataset given the long branch lengths and gaps in detections. The identification of these γ-2 viruses demonstrates the need for robust surveillance to capture the full diversity IAVs in swine in the USA and the importance of antigenic drift in the diversification and emergence of new antigenic variants in swine, which complicates vaccine design. Published

  17. Biodegradable nanoparticle delivery of inactivated swine influenza virus vaccine provides heterologous cell-mediated immune response in pigs.

    Science.gov (United States)

    Dhakal, Santosh; Hiremath, Jagadish; Bondra, Kathryn; Lakshmanappa, Yashavanth S; Shyu, Duan-Liang; Ouyang, Kang; Kang, Kyung-Il; Binjawadagi, Basavaraj; Goodman, Jonathan; Tabynov, Kairat; Krakowka, Steven; Narasimhan, Balaji; Lee, Chang Won; Renukaradhya, Gourapura J

    2017-02-10

    Swine influenza virus (SwIV) is one of the important zoonotic pathogens. Current flu vaccines have failed to provide cross-protection against evolving viruses in the field. Poly(lactic-co-glycolic acid) (PLGA) is a biodegradable FDA approved polymer and widely used in drug and vaccine delivery. In this study, inactivated SwIV H1N2 antigens (KAg) encapsulated in PLGA nanoparticles (PLGA-KAg) were prepared, which were spherical in shape with 200 to 300nm diameter, and induced maturation of antigen presenting cells in vitro. Pigs vaccinated twice with PLGA-KAg via intranasal route showed increased antigen specific lymphocyte proliferation and enhanced the frequency of T-helper/memory and cytotoxic T cells (CTLs) in peripheral blood mononuclear cells (PBMCs). In PLGA-KAg vaccinated and heterologous SwIV H1N1 challenged pigs, clinical flu symptoms were absent, while the control pigs had fever for four days. Grossly and microscopically, reduced lung pathology and viral antigenic mass in the lung sections with clearance of infectious challenge virus in most of the PLGA-KAg vaccinated pig lung airways were observed. Immunologically, PLGA-KAg vaccine irrespective of not significantly boosting the mucosal antibody response, it augmented the frequency of IFN-γ secreting total T cells, T-helper and CTLs against both H1N2 and H1N1 SwIV. In summary, inactivated influenza virus delivered through PLGA-NPs reduced the clinical disease and induced cross-protective cell-mediated immune response in a pig model. Our data confirmed the utility of a pig model for intranasal particulate flu vaccine delivery platform to control flu in humans. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. A Review of Swine Influenza: An Emerging Pandemic | Adeola ...

    African Journals Online (AJOL)

    An unprecedented epizootic swine Influenza A (H1N1) virus that is highly pathogenic has crossed the species barrier in Mexico to cause many human fatalities and poses an increasing pandemic threat. This summary describes the aetiopathogenesis of human infection with Influenza A (H1N1) and reviews ...

  19. Expression of myeloperoxidase in swine influenza virus (SIV)-infected neutrophils in lungs from pigs experimentally infected with SIV subtype H1N2.

    Science.gov (United States)

    Kim, Bongtae; Shin, Jeoung Hwa; Han, Kiwon; Seo, Hwi Won; Oh, Yeonsu; Kang, Ikjae; Park, Changhoon; Lee, Bog-Hieu; Jang, Jin Sil; Kim, Sung-Hoon; Chae, Chanhee

    2011-10-01

    The expression of myeloperoxidase (MPO) was examined in the swine influenza virus (SIV)-infected neutrophils in the lungs of pigs experimentally infected with swine influenza virus (SIV) subtype H1N2 by immunohistochemistry. Five pigs each from the infected and non-infected group were euthanized 1, 3, 5, 7, and 10 days post-inoculation (dpi). Immunohistochemical reactivity was mainly seen in neutrophils. The score for pulmonary histopathological lesions correlated with the score for MPO immunohistochemical reactivity (r ( s ) = 0.962, P < 0.01). In addition, the score for in situ hybridization of SIV nucleic acid correlated with the score for MPO immunohistochemical reactivity (r ( s ) = 0.976, P < 0.01). These results suggest neutrophils are one of the primary effector cells in the early phase of SIV infection in pigs.

  20. Influenza A (H3N2) Variant Virus

    Science.gov (United States)

    ... Swine Variant Pandemic Other Influenza A (H3N2) Variant Virus Language: English (US) Español Recommend on Facebook Tweet Share Compartir Influenza viruses that normally circulate in pigs are called “variant” ...

  1. In vitro and ex vivo analyses of co-infections with swine influenza and porcine reproductive and respiratory syndrome viruses.

    Science.gov (United States)

    Dobrescu, I; Levast, B; Lai, K; Delgado-Ortega, M; Walker, S; Banman, S; Townsend, H; Simon, G; Zhou, Y; Gerdts, V; Meurens, F

    2014-02-21

    Viral respiratory diseases remain problematic in swine. Among viruses, porcine reproductive and respiratory syndrome virus (PRRSV) and swine influenza virus (SIV), alone or in combination, are the two main known contributors to lung infectious diseases. Previous studies demonstrated that experimental dual infections of pigs with PRRSV followed by SIV can cause more severe disease than the single viral infections. However, our understanding of the impact of one virus on the other at the molecular level is still extremely limited. Thus, the aim of the current study was to determine the influence of dual infections, compared to single infections, in porcine alveolar macrophages (PAMs) and precision cut lung slices (PCLS). PAMs were isolated and PCLS were acquired from the lungs of healthy 8-week-old pigs. Then, PRRSV (ATCC VR-2385) and a local SIV strain of H1N1 subtype (A/Sw/Saskatchewan/18789/02) were applied simultaneously or with 3h apart on PAMs and PCLS for a total of 18 h. Immuno-staining for both viruses and beta-tubulin, real-time quantitative PCR and ELISA assays targeting various genes (pathogen recognition receptors, interferons (IFN) type I, cytokines, and IFN-inducible genes) and proteins were performed to analyze the cell and the tissue responses. Interference caused by the first virus on replication of the second virus was observed, though limited. On the host side, a synergistic effect between PRRSV and SIV co-infections was observed for some transcripts such as TLR3, RIG-I, and IFNβ in PCLS. The PRRSV infection 3h prior to SIV infection reduced the response to SIV while the SIV infection prior to PRRSV infection had limited impact on the second infection. This study is the first to show an impact of PRRSV/SIV co-infection and superinfections in the cellular and tissue immune response at the molecular level. It opens the door to further research in this exciting and intriguing field. Copyright © 2013 Elsevier B.V. All rights reserved.

  2. Reverse zoonosis of influenza to swine: new perspectives on the human-animal interface.

    Science.gov (United States)

    Nelson, Martha I; Vincent, Amy L

    2015-03-01

    The origins of the 2009 influenza A (H1N1) pandemic in swine are unknown, highlighting gaps in our understanding of influenza A virus (IAV) ecology and evolution. We review how recently strengthened influenza virus surveillance in pigs has revealed that influenza virus transmission from humans to swine is far more frequent than swine-to-human zoonosis, and is central in seeding swine globally with new viral diversity. The scale of global human-to-swine transmission represents the largest 'reverse zoonosis' of a pathogen documented to date. Overcoming the bias towards perceiving swine as sources of human viruses, rather than recipients, is key to understanding how the bidirectional nature of the human-animal interface produces influenza threats to both hosts. Published by Elsevier Ltd.

  3. Protection of pigs against pandemic swine origin H1N1 influenza A virus infection by hemagglutinin- or neuraminidase-expressing attenuated pseudorabies virus recombinants.

    Science.gov (United States)

    Klingbeil, Katharina; Lange, Elke; Blohm, Ulrike; Teifke, Jens P; Mettenleiter, Thomas C; Fuchs, Walter

    2015-03-02

    Influenza is an important respiratory disease of pigs, and may lead to novel human pathogens like the 2009 pandemic H1N1 swine-origin influenza virus (SoIV). Therefore, improved influenza vaccines for pigs are required. Recently, we demonstrated that single intranasal immunization with a hemagglutinin (HA)-expressing pseudorabies virus recombinant of vaccine strain Bartha (PrV-Ba) protected pigs from H1N1 SoIV challenge (Klingbeil et al., 2014). Now we investigated enhancement of efficacy by prime-boost vaccination and/or intramuscular administration. Furthermore, a novel PrV-Ba recombinant expressing codon-optimized N1 neuraminidase (NA) was included. In vitro replication of this virus was only slightly affected compared to parental virus. Unlike HA, the abundantly expressed NA was efficiently incorporated into PrV particles. Immunization of pigs with the two PrV recombinants, either singly or in combination, induced B cell proliferation and the expected SoIV-specific antibodies, whose titers increased substantially after boost vaccination. After immunization of animals with either PrV recombinant H1N1 SoIV challenge virus replication was significantly reduced compared to PrV-Ba vaccinated or naïve controls. Protective efficacy of HA-expressing PrV was higher than of NA-expressing PrV, and not significantly enhanced by combination. Despite higher serum antibody titers obtained after intramuscular immunization, transmission of challenge virus to naïve contact animals was only prevented after intranasal prime-boost vaccination with HA-expressing PrV-Ba. Copyright © 2015 Elsevier B.V. All rights reserved.

  4. Chest Radiographic Findings of Novel Swine-Origin Influenza A (H1N1) Virus Infection in Children

    Energy Technology Data Exchange (ETDEWEB)

    Bae, So Young; Hong, Eun Sook; Paik, Sang Hyun; Park, Seong Jin; Cha, Jang Gyu; Lee, Hae Kyung [Dept. of Radiology, Soonchunhyang University Bucheon Hospital, Bucheon (Korea, Republic of); Jang, Yun Woo [Dept. of Radiology, Soonchunhyang University Hospital, Seoul (Korea, Republic of)

    2011-06-15

    To analyze chest radiographic findings in children infected with laboratory confirmed novel swine-origin influenza A (H1N1) virus. Three hundred seventy-two out of 2,014 children with laboratory confirmed H1N1 infection and who also underwent a chest radiograph from September to November 2009 were enrolled in this study. Patients were divided into in-patients, out-patients, and patients with co-infections and further subdivided into with underlying disease and without underlying disease as well as age (<2 years old, 2-5 years, 5-10 years, 10-18 years old). The initial radiographs were evaluated for radiographic findings and the anatomic distribution of abnormalities. The initial radiographs were abnormal in 154 (41.39%) patients. The predominant radiographic findings were peribronchial wall opacity found in 85 (22.84%) patients and hyperinflation observed in 69 (18.54%) patients. Further, 75 (71.42%) patients exhibited central predominance and the right lower lung zone was also commonly involved. There were statistically significant differences in the radiological findings between in-patient and out-patient groups. However, there were no significant differences in the radiographic findings between in-patients and the co-infection group with respect the presence of underlying disease and age. Initial radiographs of children with laboratory confirmed H1N1 virus were abnormal in 41.39% of cases. The common radiographic findings included peribronchial opacities, hyperinflation, lower lung zonal distribution, and central predominance

  5. Chest Radiographic Findings of Novel Swine-Origin Influenza A (H1N1) Virus Infection in Children

    International Nuclear Information System (INIS)

    Bae, So Young; Hong, Eun Sook; Paik, Sang Hyun; Park, Seong Jin; Cha, Jang Gyu; Lee, Hae Kyung; Jang, Yun Woo

    2011-01-01

    To analyze chest radiographic findings in children infected with laboratory confirmed novel swine-origin influenza A (H1N1) virus. Three hundred seventy-two out of 2,014 children with laboratory confirmed H1N1 infection and who also underwent a chest radiograph from September to November 2009 were enrolled in this study. Patients were divided into in-patients, out-patients, and patients with co-infections and further subdivided into with underlying disease and without underlying disease as well as age (<2 years old, 2-5 years, 5-10 years, 10-18 years old). The initial radiographs were evaluated for radiographic findings and the anatomic distribution of abnormalities. The initial radiographs were abnormal in 154 (41.39%) patients. The predominant radiographic findings were peribronchial wall opacity found in 85 (22.84%) patients and hyperinflation observed in 69 (18.54%) patients. Further, 75 (71.42%) patients exhibited central predominance and the right lower lung zone was also commonly involved. There were statistically significant differences in the radiological findings between in-patient and out-patient groups. However, there were no significant differences in the radiographic findings between in-patients and the co-infection group with respect the presence of underlying disease and age. Initial radiographs of children with laboratory confirmed H1N1 virus were abnormal in 41.39% of cases. The common radiographic findings included peribronchial opacities, hyperinflation, lower lung zonal distribution, and central predominance

  6. PA-X protein contributes to virulence of triple-reassortant H1N2 influenza virus by suppressing early immune responses in swine.

    Science.gov (United States)

    Xu, Guanlong; Zhang, Xuxiao; Liu, Qinfang; Bing, Guoxia; Hu, Zhe; Sun, Honglei; Xiong, Xin; Jiang, Ming; He, Qiming; Wang, Yu; Pu, Juan; Guo, Xin; Yang, Hanchun; Liu, Jinhua; Sun, Yipeng

    2017-08-01

    Previous studies have identified a functional role of PA-X for influenza viruses in mice and avian species; however, its role in swine remains unknown. Toward this, we constructed PA-X deficient virus (Sw-FS) in the background of a Triple-reassortment (TR) H1N2 swine influenza virus (SIV) to assess the impact of PA-X in viral virulence in pigs. Expression of PA-X in TR H1N2 SIV enhanced viral replication and host protein synthesis shutoff, and inhibited the mRNA levels of type I IFNs and proinflammatory cytokines in porcine cells. A delay of proinflammatory responses was observed in lungs of pigs infected by wild type SIV (Sw-WT) compared to Sw-FS. Furthermore, Sw-WT virus replicated and transmitted more efficiently than Sw-FS in pigs. These results highlight the importance of PA-X in the moderation of virulence and immune responses of TR SIV in swine, which indicated that PA-X is a pro-virulence factor in TR SIV in pigs. Copyright © 2017 Elsevier Inc. All rights reserved.

  7. Co-infection of classic swine H1N1 influenza virus in pigs persistently infected with porcine rubulavirus.

    Science.gov (United States)

    Rivera-Benitez, José Francisco; De la Luz-Armendáriz, Jazmín; Saavedra-Montañez, Manuel; Jasso-Escutia, Miguel Ángel; Sánchez-Betancourt, Ivan; Pérez-Torres, Armando; Reyes-Leyva, Julio; Hernández, Jesús; Martínez-Lara, Atalo; Ramírez-Mendoza, Humberto

    2016-02-29

    Porcine rubulavirus (PorPV) and swine influenza virus infection causes respiratory disease in pigs. PorPV persistent infection could facilitate the establishment of secondary infections. The aim of this study was to analyse the pathogenicity of classic swine H1N1 influenza virus (swH1N1) in growing pigs persistently infected with porcine rubulavirus. Conventional six-week-old pigs were intranasally inoculated with PorPV, swH1N1, or PorPV/swH1N1. A mock-infected group was included. The co-infection with swH1N1 was at 44 days post-infection (DPI), right after clinical signs of PorPV infection had stopped. The pigs of the co-infection group presented an increase of clinical signs compared to the simple infection groups. In all infected groups, the most recurrent lung lesion was hyperplasia of the bronchiolar-associated lymphoid tissue and interstitial pneumonia. By means of immunohistochemical evaluation it was possible to demonstrate the presence of the two viral agents infecting simultaneously the bronchiolar epithelium. Viral excretion of PorPV in nasal and oral fluid was recorded at 28 and 52 DPI, respectively. PorPV persisted in several samples from respiratory tissues (RT), secondary lymphoid organs (SLO), and bronchoalveolar lavage fluid (BALF). For swH1N1, the viral excretion in nasal fluids was significantly higher in single-infected swH1N1 pigs than in the co-infected group. However, the co-infection group exhibited an increase in the presence of swH1N1 in RT, SLO, and BALF at two days after co-infection. In conclusion, the results obtained confirm an increase in the clinical signs of infection, and PorPV was observed to impact the spread of swH1N1 in analysed tissues in the early stage of co-infection, although viral shedding was not enhanced. In the present study, the interaction of swH1N1 infection is demonstrated in pigs persistently infected with PorPV. Copyright © 2016 Elsevier B.V. All rights reserved.

  8. 2009 pandemic H1N1 influenza virus elicits similar clinical course but differential host transcriptional response in mouse, macaque, and swine infection models

    Science.gov (United States)

    2012-01-01

    Background The 2009 pandemic H1N1 influenza virus emerged in swine and quickly became a major global health threat. In mouse, non human primate, and swine infection models, the pH1N1 virus efficiently replicates in the lung and induces pro-inflammatory host responses; however, whether similar or different cellular pathways were impacted by pH1N1 virus across independent infection models remains to be further defined. To address this we have performed a comparative transcriptomic analysis of acute phase responses to a single pH1N1 influenza virus, A/California/04/2009 (CA04), in the lung of mice, macaques and swine. Results Despite similarities in the clinical course, we observed differences in inflammatory molecules elicited, and the kinetics of their gene expression changes across all three species. We found genes associated with the retinoid X receptor (RXR) signaling pathway known to control pro-inflammatory and metabolic processes that were differentially regulated during infection in each species, though the heterodimeric RXR partner, pathway associated signaling molecules, and gene expression patterns varied among the three species. Conclusions By comparing transcriptional changes in the context of clinical and virological measures, we identified differences in the host transcriptional response to pH1N1 virus across independent models of acute infection. Antiviral resistance and the emergence of new influenza viruses have placed more focus on developing drugs that target the immune system. Underlying overt clinical disease are molecular events that suggest therapeutic targets identified in one host may not be appropriate in another. PMID:23153050

  9. Investigation of Pathogenesis of H1N1 Influenza Virus and Swine Streptococcus suis Serotype 2 Co-Infection in Pigs by Microarray Analysis.

    Directory of Open Access Journals (Sweden)

    Xian Lin

    Full Text Available Swine influenza virus and Streptococcus suis are two important contributors to the porcine respiratory disease complex, and both have significant economic impacts. Clinically, influenza virus and Streptococcus suis co-infections in pigs are very common, which often contribute to severe pneumonia and can increase the mortality. However, the co-infection pathogenesis in pigs is unclear. In the present study, co-infection experiments were performed using swine H1N1 influenza virus and Streptococcus suis serotype 2 (SS2. The H1N1-SS2 co-infected pigs exhibited more severe clinical symptoms, serious pathological changes, and robust apoptosis of lungs at 6 days post-infection compared with separate H1N1 and SS2 infections. A comprehensive gene expression profiling using a microarray approach was performed to investigate the global host responses of swine lungs against the swine H1N1 infection, SS2 infection, co-infection, and phosphate-buffered saline control. Results showed 457, 411, and 844 differentially expressed genes in the H1N1, SS2, and H1N1-SS2 groups, respectively, compared with the control. Noticeably, genes associated with the immune, inflammatory, and apoptosis responses were highly overexpressed in the co-infected group. Pathway analysis indicated that the cytokine-cytokine receptor interactions, MAPK, toll-like receptor, complement and coagulation cascades, antigen processing and presentation, and apoptosis pathway were significantly regulated in the co-infected group. However, the genes related to these were less regulated in the separate H1N1 and SS2 infection groups. This observation suggested that a certain level of synergy was induced by H1N1 and SS2 co-infection with significantly stronger inflammatory and apoptosis responses, which may lead to more serious respiratory disease syndrome and pulmonary pathological lesion.

  10. Investigation of Pathogenesis of H1N1 Influenza Virus and Swine Streptococcus suis Serotype 2 Co-Infection in Pigs by Microarray Analysis.

    Science.gov (United States)

    Lin, Xian; Huang, Canhui; Shi, Jian; Wang, Ruifang; Sun, Xin; Liu, Xiaokun; Zhao, Lianzhong; Jin, Meilin

    2015-01-01

    Swine influenza virus and Streptococcus suis are two important contributors to the porcine respiratory disease complex, and both have significant economic impacts. Clinically, influenza virus and Streptococcus suis co-infections in pigs are very common, which often contribute to severe pneumonia and can increase the mortality. However, the co-infection pathogenesis in pigs is unclear. In the present study, co-infection experiments were performed using swine H1N1 influenza virus and Streptococcus suis serotype 2 (SS2). The H1N1-SS2 co-infected pigs exhibited more severe clinical symptoms, serious pathological changes, and robust apoptosis of lungs at 6 days post-infection compared with separate H1N1 and SS2 infections. A comprehensive gene expression profiling using a microarray approach was performed to investigate the global host responses of swine lungs against the swine H1N1 infection, SS2 infection, co-infection, and phosphate-buffered saline control. Results showed 457, 411, and 844 differentially expressed genes in the H1N1, SS2, and H1N1-SS2 groups, respectively, compared with the control. Noticeably, genes associated with the immune, inflammatory, and apoptosis responses were highly overexpressed in the co-infected group. Pathway analysis indicated that the cytokine-cytokine receptor interactions, MAPK, toll-like receptor, complement and coagulation cascades, antigen processing and presentation, and apoptosis pathway were significantly regulated in the co-infected group. However, the genes related to these were less regulated in the separate H1N1 and SS2 infection groups. This observation suggested that a certain level of synergy was induced by H1N1 and SS2 co-infection with significantly stronger inflammatory and apoptosis responses, which may lead to more serious respiratory disease syndrome and pulmonary pathological lesion.

  11. Investigation of Pathogenesis of H1N1 Influenza Virus and Swine Streptococcus suis Serotype 2 Co-Infection in Pigs by Microarray Analysis

    Science.gov (United States)

    Shi, Jian; Wang, Ruifang; Sun, Xin; Liu, Xiaokun; Zhao, Lianzhong; Jin, Meilin

    2015-01-01

    Swine influenza virus and Streptococcus suis are two important contributors to the porcine respiratory disease complex, and both have significant economic impacts. Clinically, influenza virus and Streptococcus suis co-infections in pigs are very common, which often contribute to severe pneumonia and can increase the mortality. However, the co-infection pathogenesis in pigs is unclear. In the present study, co-infection experiments were performed using swine H1N1 influenza virus and Streptococcus suis serotype 2 (SS2). The H1N1-SS2 co-infected pigs exhibited more severe clinical symptoms, serious pathological changes, and robust apoptosis of lungs at 6 days post-infection compared with separate H1N1 and SS2 infections. A comprehensive gene expression profiling using a microarray approach was performed to investigate the global host responses of swine lungs against the swine H1N1 infection, SS2 infection, co-infection, and phosphate-buffered saline control. Results showed 457, 411, and 844 differentially expressed genes in the H1N1, SS2, and H1N1-SS2 groups, respectively, compared with the control. Noticeably, genes associated with the immune, inflammatory, and apoptosis responses were highly overexpressed in the co-infected group. Pathway analysis indicated that the cytokine–cytokine receptor interactions, MAPK, toll-like receptor, complement and coagulation cascades, antigen processing and presentation, and apoptosis pathway were significantly regulated in the co-infected group. However, the genes related to these were less regulated in the separate H1N1 and SS2 infection groups. This observation suggested that a certain level of synergy was induced by H1N1 and SS2 co-infection with significantly stronger inflammatory and apoptosis responses, which may lead to more serious respiratory disease syndrome and pulmonary pathological lesion. PMID:25906258

  12. A Single-Amino-Acid Substitution at Position 225 in Hemagglutinin Alters the Transmissibility of Eurasian Avian-Like H1N1 Swine Influenza Virus in Guinea Pigs.

    Science.gov (United States)

    Wang, Zeng; Yang, Huanliang; Chen, Yan; Tao, Shiyu; Liu, Liling; Kong, Huihui; Ma, Shujie; Meng, Fei; Suzuki, Yasuo; Qiao, Chuanling; Chen, Hualan

    2017-11-01

    Efficient transmission from human to human is the prerequisite for an influenza virus to cause a pandemic; however, the molecular determinants of influenza virus transmission are still largely unknown. In this study, we explored the molecular basis for transmission of Eurasian avian-like H1N1 (EAH1N1) swine influenza viruses by comparing two viruses that are genetically similar but differ in their transmissibility in guinea pigs: the A/swine/Guangxi/18/2011 virus (GX/18) is highly transmissible by respiratory droplet in guinea pigs, whereas the A/swine/Heilongjiang/27/2012 virus (HLJ/27) does not transmit in this animal model. We used reverse genetics to generate a series of reassortants and mutants in the GX/18 background and tested their transmissibility in guinea pigs. We found that a single-amino-acid substitution of glycine (G) for glutamic acid (E) at position 225 (E225G) in the HA1 protein completely abolished the respiratory droplet transmission of GX/18, whereas the substitution of E for G at the same position (G225E) in HA1 enabled HLJ/27 to transmit in guinea pigs. We investigated the underlying mechanism and found that viruses bearing 225E in HA1 replicated more rapidly than viruses bearing 225G due to differences in assembly and budding efficiencies. Our study indicates that the amino acid 225E in HA1 plays a key role in EAH1N1 swine influenza virus transmission and provides important information for evaluating the pandemic potential of field influenza virus strains. IMPORTANCE Efficient transmission among humans is a prerequisite for a novel influenza virus to cause a human pandemic. Transmissibility of influenza viruses is a polygenic trait, and understanding the genetic determinants for transmissibility will provide useful insights for evaluating the pandemic potential of influenza viruses in the field. Several amino acids in the hemagglutinin (HA) protein of influenza viruses have been shown to be important for transmissibility, usually by

  13. Poly I:C adjuvanted inactivated swine influenza vaccine induces heterologous protective immunity in pigs.

    Science.gov (United States)

    Thomas, Milton; Wang, Zhao; Sreenivasan, Chithra C; Hause, Ben M; Gourapura J Renukaradhya; Li, Feng; Francis, David H; Kaushik, Radhey S; Khatri, Mahesh

    2015-01-15

    Swine influenza is widely prevalent in swine herds in North America and Europe causing enormous economic losses and a public health threat. Pigs can be infected by both avian and mammalian influenza viruses and are sources of generation of reassortant influenza viruses capable of causing pandemics in humans. Current commercial vaccines provide satisfactory immunity against homologous viruses; however, protection against heterologous viruses is not adequate. In this study, we evaluated the protective efficacy of an intranasal Poly I:C adjuvanted UV inactivated bivalent swine influenza vaccine consisting of Swine/OH/24366/07 H1N1 and Swine/CO/99 H3N2, referred as PAV, in maternal antibody positive pigs against an antigenic variant and a heterologous swine influenza virus challenge. Groups of three-week-old commercial-grade pigs were immunized intranasally with PAV or a commercial vaccine (CV) twice at 2 weeks intervals. Three weeks after the second immunization, pigs were challenged with the antigenic variant Swine/MN/08 H1N1 (MN08) and the heterologous Swine/NC/10 H1N2 (NC10) influenza virus. Antibodies in serum and respiratory tract, lung lesions, virus shedding in nasal secretions and virus load in lungs were assessed. Intranasal administration of PAV induced challenge viruses specific-hemagglutination inhibition- and IgG antibodies in the serum and IgA and IgG antibodies in the respiratory tract. Importantly, intranasal administration of PAV provided protection against the antigenic variant MN08 and the heterologous NC10 swine influenza viruses as evidenced by significant reductions in lung virus load, gross lung lesions and significantly reduced shedding of challenge viruses in nasal secretions. These results indicate that Poly I:C or its homologues may be effective as vaccine adjuvants capable of generating cross-protective immunity against antigenic variants/heterologous swine influenza viruses in pigs. Copyright © 2014 Elsevier Ltd. All rights reserved.

  14. Serum amyloid P component inhibits influenza A virus infections: in vitro and in vivo studies

    DEFF Research Database (Denmark)

    Horvath, A; Andersen, I; Junker, K

    2001-01-01

    . These studies were extended to comprise five mouse-adapted influenza A strains, two swine influenza A strains, a mink influenza A virus, a ferret influenza A reassortant virus, a influenza B virus and a parainfluenza 3 virus. The HA activity of all these viruses was inhibited by SAP. Western blotting showed...

  15. Protection of mice against lethal challenge with 2009 H1N1 influenza A virus by 1918-like and classical swine H1N1 based vaccines.

    Directory of Open Access Journals (Sweden)

    Balaji Manicassamy

    2010-01-01

    Full Text Available The recent 2009 pandemic H1N1 virus infection in humans has resulted in nearly 5,000 deaths worldwide. Early epidemiological findings indicated a low level of infection in the older population (>65 years with the pandemic virus, and a greater susceptibility in people younger than 35 years of age, a phenomenon correlated with the presence of cross-reactive immunity in the older population. It is unclear what virus(es might be responsible for this apparent cross-protection against the 2009 pandemic H1N1 virus. We describe a mouse lethal challenge model for the 2009 pandemic H1N1 strain, used together with a panel of inactivated H1N1 virus vaccines and hemagglutinin (HA monoclonal antibodies to dissect the possible humoral antigenic determinants of pre-existing immunity against this virus in the human population. By hemagglutinination inhibition (HI assays and vaccination/challenge studies, we demonstrate that the 2009 pandemic H1N1 virus is antigenically similar to human H1N1 viruses that circulated from 1918-1943 and to classical swine H1N1 viruses. Antibodies elicited against 1918-like or classical swine H1N1 vaccines completely protect C57B/6 mice from lethal challenge with the influenza A/Netherlands/602/2009 virus isolate. In contrast, contemporary H1N1 vaccines afforded only partial protection. Passive immunization with cross-reactive monoclonal antibodies (mAbs raised against either 1918 or A/California/04/2009 HA proteins offered full protection from death. Analysis of mAb antibody escape mutants, generated by selection of 2009 H1N1 virus with these mAbs, indicate that antigenic site Sa is one of the conserved cross-protective epitopes. Our findings in mice agree with serological data showing high prevalence of 2009 H1N1 cross-reactive antibodies only in the older population, indicating that prior infection with 1918-like viruses or vaccination against the 1976 swine H1N1 virus in the USA are likely to provide protection against the 2009

  16. Overcoming maternal antibody interference by vaccination with human adenovirus 5 recombinant viruses expressing the hemagglutinin and the nucleoprotein of swine influenza virus.

    Science.gov (United States)

    Wesley, Ronald D; Lager, Kelly M

    2006-11-26

    Sows and gilts lack immunity to human adenovirus 5 (Ad-5) vectored vaccines so immunogens of swine pathogens can be expressed with these vaccines in order to immunize suckling piglets that have interfering, maternally derived antibodies. In this study 7-day-old piglets, that had suckled H3N2 infected gilts, were sham-inoculated with a non-expressing Ad-5 vector or given a primary vaccination with replication-defective Ad-5 viruses expressed the H3 hemagglutinin and the nucleoprotein of swine influenza virus (SIV) subtype H3N2. The hemagglutination inhibition (HI) titer of the sham-inoculated group (n = 12) showed continued antibody decay whereas piglets vaccinated with Ad-5 SIV (n = 23) developed an active immune response by the second week post-vaccination. At 4 weeks-of-age when the HI titer of the sham-inoculated group had decayed to 45, the sham-inoculated group and half of the Ad-5 SIV vaccinated pigs were boosted with a commercial inactivated SIV vaccine. The boosted pigs that had been primed in the presence of maternal interfering antibodies had a strong anamnestic response while sham-inoculated pigs did not respond to the commercial vaccine. Two weeks after the booster vaccination the pigs were challenged with a non-homologous H3N2 virulent SIV. The efficacy of the vaccination protocol was demonstrated by abrogation of clinical signs, by clearance of challenge virus from pulmonary lavage fluids, by markedly reduced virus shedding in nasal secretions, and by the absence of moderate or severe SIV-induced lung lesions. These recombinant Ad-5 SIV vaccines are useful for priming the immune system to override the effects of maternally derived antibodies which interfere with conventional SIV vaccines.

  17. Complete Genome Sequencing of Influenza A Viruses within Swine Farrow-to-Wean Farms Reveals the Emergence, Persistence, and Subsidence of Diverse Viral Genotypes.

    Science.gov (United States)

    Diaz, Andres; Marthaler, Douglas; Culhane, Marie; Sreevatsan, Srinand; Alkhamis, Moh; Torremorell, Montserrat

    2017-09-15

    Influenza A viruses (IAVs) are endemic in swine and represent a public health risk. However, there is limited information on the genetic diversity of swine IAVs within farrow-to-wean farms, which is where most pigs are born. In this longitudinal study, we sampled 5 farrow-to-wean farms for a year and collected 4,190 individual nasal swabs from three distinct pig subpopulations. Of these, 207 (4.9%) samples tested PCR positive for IAV, and 124 IAVs were isolated. We sequenced the complete genomes of 123 IAV isolates and found 31 H1N1, 26 H1N2, 63 H3N2, and 3 mixed IAVs. Based on the IAV hemagglutinin, seven different influenza A viral groups (VGs) were identified. Most of the remaining IAV gene segments allowed us to differentiate the same VGs, although an additional viral group was identified for gene segment 3 (PA). Moreover, the codetection of more than one IAV VG was documented at different levels (farm, subpopulation, and individual pigs), highlighting the environment for potential IAV reassortment. Additionally, 3 out of 5 farms contained IAV isolates ( n = 5) with gene segments from more than one VG, and 79% of all the IAVs sequenced contained a signature mutation (S31N) in the matrix gene that has been associated with resistance to the antiviral amantadine. Within farms, some IAVs were detected only once, while others were detected for 283 days. Our results illustrate the maintenance and subsidence of different IAVs within swine farrow-to-wean farms over time, demonstrating that pig subpopulation dynamics are important to better understand the diversity and epidemiology of swine IAVs. IMPORTANCE On a global scale, swine are one of the main reservoir species for influenza A viruses (IAVs) and play a key role in the transmission of IAVs between species. Additionally, the 2009 IAV pandemics highlighted the role of pigs in the emergence of IAVs with pandemic potential. However, limited information is available regarding the diversity and distribution of swine

  18. Acute phase protein response during subclinical infection of pigs with H1N1 swine influenza virus.

    Science.gov (United States)

    Pomorska-Mól, Małgorzata; Markowska-Daniel, Iwona; Pejsak, Zygmunt

    2012-10-12

    In the present study acute phase proteins (APPs) responses in pigs after subclinical infection with H1N1 swine influenza virus (SwH1N1) were evaluated. Fourteen 5 weeks old, seronegative piglets, both sexes were used. Ten of them were infected intranasally with SwH1N1. C-reactive protein (CRP), haptoglobin (Hp), serum amyloid A (SAA) and pig major acute phase protein (Pig-MAP) concentrations in serum were measured using commercial ELISAs. No significant clinical signs were observed in any of the infected pigs, however, all infected animals developed specific antibodies against SwH1N1 and viral shedding was observed from 2 to 5 dpi. Only concentrations of Hp and SAA were significantly induced after infection, with mean maximum levels from days 1 to 2 post infection (dpi). The concentrations of CRP and Pig-MAP remained generally unchanged, however in half of infected pigs the concentration of CRP tended to increase at 1 dpi (but without statistical significance). The results of our study confirmed that monitoring of APPs may be useful for detection of subclinically infected pigs. The use of SAA or Hp and Pig-MAP may be a valuable in combination [i.e. Hp (increased concentration) and Pig-MAP (unchanged concentration)] to detect subclinically SIV infected pigs, or to identify pigs actually producing a large amount of virus. Additional studies need to be done in order to confirm these findings. Copyright © 2012 Elsevier B.V. All rights reserved.

  19. Distinct regulation of host responses by ERK and JNK MAP kinases in swine macrophages infected with pandemic (H1N1 2009 influenza virus.

    Directory of Open Access Journals (Sweden)

    Wei Gao

    Full Text Available Swine influenza is an acute respiratory disease in pigs caused by swine influenza virus (SIV. Highly virulent SIV strains cause mortality of up to 10%. Importantly, pigs have long been considered "mixing vessels" that generate novel influenza viruses with pandemic potential, a constant threat to public health. Since its emergence in 2009 and subsequent pandemic spread, the pandemic (H1N1 2009 (H1N1pdm has been detected in pig farms, creating the risk of generating new reassortants and their possible infection of humans. Pathogenesis in SIV or H1N1pdm-infected pigs remains poorly characterized. Proinflammatory and antiviral cytokine responses are considered correlated with the intensity of clinical signs, and swine macrophages are found to be indispensible in effective clearance of SIV from pig lungs. In this study, we report a unique pattern of cytokine responses in swine macrophages infected with H1N1pdm. The roles of mitogen-activated protein (MAP kinases in the regulation of the host responses were examined. We found that proinflammatory cytokines IL-6, IL-8, IL-10, and TNF-α were significantly induced and their induction was ERK1/2-dependent. IFN-β and IFN-inducible antiviral Mx and 2'5'-OAS were sharply induced, but the inductions were effectively abolished when ERK1/2 was inhibited. Induction of CCL5 (RANTES was completely inhibited by inhibitors of ERK1/2 and JNK1/2, which appeared also to regulate FasL and TNF-α, critical for apoptosis in pig macrophages. We found that NFκB was activated in H1N1pdm-infected cells, but the activation was suppressed when ERK1/2 was inhibited, indicating there is cross-talk between MAP kinase and NFκB responses in pig macrophages. Our data suggest that MAP kinase may activate NFκB through the induction of RIG-1, which leads to the induction of IFN-β in swine macrophages. Understanding host responses and their underlying mechanisms may help identify venues for effective control of SIV and assist in

  20. Mutation from arginine to lysine at the position 189 of hemagglutinin contributes to the antigenic drift in H3N2 swine influenza viruses.

    Science.gov (United States)

    Ye, Jianqiang; Xu, Yifei; Harris, Jillian; Sun, Hailiang; Bowman, Andrew S; Cunningham, Fred; Cardona, Carol; Yoon, Kyoungjin J; Slemons, Richard D; Wan, Xiu-Feng

    2013-11-01

    Two distinct antigenic clusters were previously identified among the H3N2 swine influenza A viruses (IAVs) and were designated H3N2SIV-alpha and H3N2SIV-beta (Feng et al., 2013. Journal of Virology 87 (13), 7655-7667). A consistent mutation was observed at the position 189 of hemagglutinin (R189K) between H3N2SIV-alpha and H3N2SIV-beta fair isolates. To evaluate the contribution of R189K mutation to the antigenic drift from H3N2SIV-alpha to H3N2SIV-beta, four reassortant viruses with 189R or 189K were generated. The antigenic cartography demonstrated that the R189K mutation in the hemagglutinin of H3N2 IAV contributed to the antigenic drift, separating these viruses into H3N2SIV-alpha to H3N2SIV-beta. This R189K mutation was also found to contribute to the cross-reaction with several ferret sera raised against historical human IAVs with hemagglutinin carrying 189K. This study suggests that the R189K mutation plays a vital role in the antigenicity of swine and human H3N2 IAVs and identification of this antigenic determinant will help us rapidly identify antigenic variants in influenza surveillance. © 2013 Elsevier Inc. All rights reserved.

  1. Truncation of C-terminal 20 amino acids in PA-X contributes to adaptation of swine influenza virus in pigs.

    Science.gov (United States)

    Xu, Guanlong; Zhang, Xuxiao; Sun, Yipeng; Liu, Qinfang; Sun, Honglei; Xiong, Xin; Jiang, Ming; He, Qiming; Wang, Yu; Pu, Juan; Guo, Xin; Yang, Hanchun; Liu, Jinhua

    2016-02-25

    The PA-X protein is a fusion protein incorporating the N-terminal 191 amino acids of the PA protein with a short C-terminal sequence encoded by an overlapping ORF (X-ORF) in segment 3 that is accessed by + 1 ribosomal frameshifting, and this X-ORF exists in either full length or a truncated form (either 61-or 41-condons). Genetic evolution analysis indicates that all swine influenza viruses (SIVs) possessed full-length PA-X prior to 1985, but since then SIVs with truncated PA-X have gradually increased and become dominant, implying that truncation of this protein may contribute to the adaptation of influenza virus in pigs. To verify this hypothesis, we constructed PA-X extended viruses in the background of a "triple-reassortment" H1N2 SIV with truncated PA-X, and evaluated their biological characteristics in vitro and in vivo. Compared with full-length PA-X, SIV with truncated PA-X had increased viral replication in porcine cells and swine respiratory tissues, along with enhanced pathogenicity, replication and transmissibility in pigs. Furthermore, we found that truncation of PA-X improved the inhibition of IFN-I mRNA expression. Hereby, our results imply that truncation of PA-X may contribute to the adaptation of SIV in pigs.

  2. Pneumonia in novel swine-origin influenza A (H1N1) virus infection: High-resolution CT findings

    International Nuclear Information System (INIS)

    Li Ping; Su Dongju; Zhang Jifeng; Xia Xudong; Sui Hong; Zhao Donghui

    2011-01-01

    Objective: The purpose of our study was to review the initial high-resolution CT (HRCT) findings in pneumonia patients with presumed/laboratory-confirmed novel swine-origin influenza A (H1N1) virus (S-OIV) infection and detect pneumonia earlier. Materials and methods: High-resolution CT (HRCT) findings of 106 patients with presumed/laboratory-confirmed novel S-OIV (H1N1) infection were reviewed. The 106 patients were divided into two groups according to the serious condition of the diseases. The pattern (consolidation, ground-glass, nodules, and reticulation), distribution, and extent of abnormality on the HRCT were evaluated in both groups. The dates of the onset of symptoms of the patients were recorded. Results: The predominant CT findings in the patients at presentation were unilateral or bilateral multifocal asymmetric ground-glass opacities alone (n = 29, 27.4%), with unilateral or bilateral consolidation (n = 50, 47.2%). The consolidation had peribronchovascular and subpleural predominance. The areas of consolidation were found mainly in the posterior, middle and lower regions of the lungs. Reticular opacities were found in 6 cases of the initial MDCT scan. The extent of disease was greater in group 1 patients requiring advanced mechanical ventilation, with diffuse involvement in 19 patients (63.3%) of group 1 patients, and only 15/76 (19.7%) of group 2 patients (p 2 test). 20 cases (19%) of the 106 patients had small bilateral or unilateral pleural effusions. None had evidence of hilar or mediastinal lymph node enlargement on CT performed at admission or later. Conclusions: The most common radiographic and CT findings in patients with S-OIV infection are unilateral or bilateral ground-glass opacities with or without associated focal or multifocal areas of consolidation. On HRCT, the ground-glass opacities had a predominant peribronchovascular and subpleural distribution. CT plays an important role in the early recognition of severe S-OIV (H1N1).

  3. The influence of age and maternal antibodies on the postvaccinal response against swine influenza viruses in pigs.

    Science.gov (United States)

    Markowska-Daniel, Iwona; Pomorska-Mól, Małgorzata; Pejsak, Zygmunt

    2011-07-15

    The influence of age and maternal immunity on the development and duration of postvaccinal humoral response against swine influenza viruses (SIV) were investigated under experimental conditions. Piglets born to immune and non-immune sows were vaccinated twice with bivalent inactivated vaccine. Vaccination was done according to 5 different schedules: 1+4, 1+8, 4+8, 8+10 or 8+12 weeks of age. Antibodies to the haemagglutinin type 1 and 3 were determined using the haemagglutination inhibition (HI) test. Maternally derived antibodies (MDA) against H1N1 and H3N2 in the serum of unvaccinated piglets born to immune sows were above the positive level until about 13-14 and 9-10 weeks of life, respectively. No serological responses were seen in any of the groups after the first vaccination. After the second dose of vaccine production of antibodies was observed even before the complete disappearance of maternal antibodies. MDA, however, were associated with reduced antibody response. In MDA-negative piglets, an active humoral postvaccinal response was developed in all vaccinated pigs. The age at which the vaccine was given was associated with the differences in the magnitude of antibody response to SIV. In general those pigs that were vaccinated for the first time at the age of 1 week, developed lower maximum titres after the second vaccination, and become seronegative earlier than pigs that were vaccinated for the first time at 4 or 8 weeks of age. Copyright © 2011 Elsevier B.V. All rights reserved.

  4. Differential interactions of virulent and non-virulent H. parasuis strains with naïve or swine influenza virus pre-infected dendritic cells

    Directory of Open Access Journals (Sweden)

    Mussá Tufária

    2012-11-01

    Full Text Available Abstract Pigs possess a microbiota in the upper respiratory tract that includes Haemophilus parasuis. Pigs are also considered the reservoir of influenza viruses and infection with this virus commonly results in increased impact of bacterial infections, including those by H. parasuis. However, the mechanisms involved in host innate responses towards H. parasuis and their implications in a co-infection with influenza virus are unknown. Therefore, the ability of a non-virulent H. parasuis serovar 3 (SW114 and a virulent serovar 5 (Nagasaki strains to interact with porcine bone marrow dendritic cells (poBMDC and their modulation in a co-infection with swine influenza virus (SwIV H3N2 was examined. At 1 hour post infection (hpi, SW114 interaction with poBMDC was higher than that of Nagasaki, while at 8 hpi both strains showed similar levels of interaction. The co-infection with H3N2 SwIV and either SW114 or Nagasaki induced higher levels of IL-1β, TNF-α, IL-6, IL-12 and IL-10 compared to mock or H3N2 SwIV infection alone. Moreover, IL-12 and IFN-α secretion differentially increased in cells co-infected with H3N2 SwIV and Nagasaki. These results pave the way for understanding the differences in the interaction of non-virulent and virulent strains of H. parasuis with the swine immune system and their modulation in a viral co-infection.

  5. Reassortment between Swine H3N2 and 2009 Pandemic H1N1 in the United States Resulted in Influenza A Viruses with Diverse Genetic Constellations with Variable Virulence in Pigs

    Science.gov (United States)

    Rajão, Daniela S.; Walia, Rasna R.; Campbell, Brian; Gauger, Phillip C.; Janas-Martindale, Alicia; Killian, Mary Lea

    2016-01-01

    ABSTRACT Repeated spillovers of the H1N1 pandemic virus (H1N1pdm09) from humans to pigs resulted in substantial evolution of influenza A viruses infecting swine, contributing to the genetic and antigenic diversity of influenza A viruses (IAV) currently circulating in swine. The reassortment with endemic swine viruses and maintenance of some of the H1N1pdm09 internal genes resulted in the circulation of different genomic constellations in pigs. Here, we performed a whole-genome phylogenetic analysis of 368 IAV circulating in swine from 2009 to 2016 in the United States. We identified 44 different genotypes, with the most common genotype (32.33%) containing a clade IV-A HA gene, a 2002-lineage NA gene, an M-pdm09 gene, and remaining gene segments of triple reassortant internal gene (TRIG) origin. To understand how different genetic constellations may relate to viral fitness, we compared the pathogenesis and transmission in pigs of six representative genotypes. Although all six genotypes efficiently infected pigs, they resulted in different degrees of pathology and viral shedding. These results highlight the vast H3N2 genetic diversity circulating in U.S. swine after 2009. This diversity has important implications in the control of this disease by the swine industry, as well as a potential risk for public health if swine-adapted viruses with H1N1pdm09 genes have an increased risk to humans, as occurred in the 2011-2012 and 2016 human variant H3N2v cases associated with exhibition swine. IMPORTANCE People continue to spread the 2009 H1N1 pandemic (H1N1pdm09) IAV to pigs, allowing H1N1pdm09 to reassort with endemic swine IAV. In this study, we determined the 8 gene combinations of swine H3N2 IAV detected from 2009 to 2016. We identified 44 different genotypes of H3N2, the majority of which contained at least one H1N1pdm09 gene segment. We compared six representative genotypes of H3N2 in pigs. All six genotypes efficiently infected pigs, but they resulted in different

  6. Innate immune response to a H3N2 subtype swine influenza virus in newborn porcine trachea cells, alveolar macrophages, and precision-cut lung slices.

    Science.gov (United States)

    Delgado-Ortega, Mario; Melo, Sandrine; Punyadarsaniya, Darsaniya; Ramé, Christelle; Olivier, Michel; Soubieux, Denis; Marc, Daniel; Simon, Gaëlle; Herrler, Georg; Berri, Mustapha; Dupont, Joëlle; Meurens, François

    2014-04-09

    Viral respiratory diseases remain of major importance in swine breeding units. Swine influenza virus (SIV) is one of the main known contributors to infectious respiratory diseases. The innate immune response to swine influenza viruses has been assessed in many previous studies. However most of these studies were carried out in a single-cell population or directly in the live animal, in all its complexity. In the current study we report the use of a trachea epithelial cell line (newborn pig trachea cells - NPTr) in comparison with alveolar macrophages and lung slices for the characterization of innate immune response to an infection by a European SIV of the H3N2 subtype. The expression pattern of transcripts involved in the recognition of the virus, interferon type I and III responses, and the host-response regulation were assessed by quantitative PCR in response to infection. Some significant differences were observed between the three systems, notably in the expression of type III interferon mRNA. Then, results show a clear induction of JAK/STAT and MAPK signaling pathways in infected NPTr cells. Conversely, PI3K/Akt signaling pathways was not activated. The inhibition of the JAK/STAT pathway clearly reduced interferon type I and III responses and the induction of SOCS1 at the transcript level in infected NPTr cells. Similarly, the inhibition of MAPK pathway reduced viral replication and interferon response. All together, these results contribute to an increased understanding of the innate immune response to H3N2 SIV and may help identify strategies to effectively control SIV infection.

  7. Influenza A virus in swine breeding herds: Combination of vaccination and biosecurity practices can reduce likelihood of endemic piglet reservoir.

    Science.gov (United States)

    White, L A; Torremorell, M; Craft, M E

    2017-03-01

    Recent modelling and empirical work on influenza A virus (IAV) suggests that piglets play an important role as an endemic reservoir. The objective of this study is to test intervention strategies aimed at reducing the incidence of IAV in piglets and ideally, preventing piglets from becoming exposed in the first place. These interventions include biosecurity measures, vaccination, and management options that swine producers may employ individually or jointly to control IAV in their herds. We have developed a stochastic Susceptible-Exposed-Infectious-Recovered-Vaccinated (SEIRV) model that reflects the spatial organization of a standard breeding herd and accounts for the different production classes of pigs therein. Notably, this model allows for loss of immunity for vaccinated and recovered animals, and for vaccinated animals to have different latency and infectious periods from unvaccinated animals as suggested by the literature. The interventions tested include: (1) varied timing of gilt introductions to the breeding herd, (2) gilt separation (no indirect transmission to or from the gilt development unit), (3) gilt vaccination upon arrival to the farm, (4) early weaning, and (5) vaccination strategies of sows with different timing (mass and pre-farrow) and efficacy (homologous vs. heterologous). We conducted a Latin Hypercube Sampling and Partial Rank Correlation Coefficient (LHS-PRCC) analysis combined with a random forest analysis to assess the relative importance of each epidemiological parameter in determining epidemic outcomes. In concert, mass vaccination, early weaning of piglets (removal 0-7days after birth), gilt separation, gilt vaccination, and longer periods between introductions of gilts (6 months) were the most effective at reducing prevalence. Endemic prevalence overall was reduced by 51% relative to the null case; endemic prevalence in piglets was reduced by 74%; and IAV was eliminated completely from the herd in 23% of all simulations. Importantly

  8. Antigenic drift in swine influenza H3 haemagglutinins with implications for vaccination policy

    NARCIS (Netherlands)

    Jong, de J.C.; Nieuwstadt, van A.P.; Kimman, T.G.; Loeffen, W.L.A.; Bestebroer, T.M.; Bijlsma, K.; Verweij, C.; Osterhaus, A.D.M.E.; Claas, E.C.J.

    1999-01-01

    In order to explore the occurrence of antigenic drift in swine influenza A(H3N2) virus, we examined virus strains from outbreaks of respiratory disease among finishing pigs in the Netherlands in 1996 and 1997 and from earlier outbreaks. In contrast to swine H3N2 strains from the 1980s, the recent

  9. 2009 Swine-origin influenza A (H1N1 resembles previous influenza isolates.

    Directory of Open Access Journals (Sweden)

    Carl Kingsford

    2009-07-01

    Full Text Available In April 2009, novel swine-origin influenza viruses (S-OIV were identified in patients from Mexico and the United States. The viruses were genetically characterized as a novel influenza A (H1N1 strain originating in swine, and within a very short time the S-OIV strain spread across the globe via human-to-human contact.We conducted a comprehensive computational search of all available sequences of the surface proteins of H1N1 swine influenza isolates and found that a similar strain to S-OIV appeared in Thailand in 2000. The earlier isolates caused infections in pigs but only one sequenced human case, A/Thailand/271/2005 (H1N1.Differences between the Thai cases and S-OIV may help shed light on the ability of the current outbreak strain to spread rapidly among humans.

  10. Experimental transmission of avian-like swine H1N1 influenza virus between immunologically naïve and vaccinated pigs.

    Science.gov (United States)

    Lloyd, Lucy E; Jonczyk, Magdalena; Jervis, Carley M; Flack, Deborah J; Lyall, John; Foote, Alasdair; Mumford, Jennifer A; Brown, Ian H; Wood, James L; Elton, Debra M

    2011-09-01

    Infection of pigs with swine influenza has been studied experimentally and in the field; however, little information is available on the natural transmission of this virus in pigs. Two studies in an experimental transmission model are presented here, one in immunologically naïve and one in a combination of vaccinated and naïve pigs. To investigate the transmission of a recent 'avian-like' swine H1N1 influenza virus in naive piglets, to assess the antibody response to a commercially available vaccine and to determine the efficiency of transmission in pigs after vaccination. Transmission chains were initiated by intranasal challenge of two immunologically naïve pigs. Animals were monitored daily for clinical signs and virus shedding. Pairs of pigs were sequentially co-housed, and once virus was detected in recipients, prior donors were removed. In the vaccination study, piglets were vaccinated and circulating antibody levels were monitored by haemagglutination inhibition assay. To study transmission in vaccinates, a pair of infected immunologically naïve animals was co-housed with vaccinated recipient pigs and further pairs of vaccinates were added sequentially as above. The chain was completed by the addition of naive pigs. Transmission of the H1N1 virus was achieved through a chain of six pairs of naïve piglets and through four pairs of vaccinated animals. Transmission occurred with minimal clinical signs and, in vaccinates, at antibody levels higher than previously reported to protect against infection. © 2011 Blackwell Publishing Ltd.

  11. Strain-dependent effects of PB1-F2 of triple-reassortant H3N2 influenza viruses in swine.

    Science.gov (United States)

    Pena, Lindomar; Vincent, Amy L; Loving, Crystal L; Henningson, Jamie N; Lager, Kelly M; Li, Weizhong; Perez, Daniel R

    2012-10-01

    The PB1-F2 protein of the influenza A viruses (IAVs) can act as a virulence factor in mice. Its contribution to the virulence of IAV in swine, however, remains largely unexplored. In this study, we chose two genetically related H3N2 triple-reassortant IAVs to assess the impact of PB1-F2 in virus replication and virulence in pigs. Using reverse genetics, we disrupted the PB1-F2 ORF of A/swine/Wisconsin/14094/99 (H3N2) (Sw/99) and A/turkey/Ohio/313053/04 (H3N2) (Ty/04). Removing the PB1-F2 ORF led to increased expression of PB1-N40 in a strain-dependent manner. Ablation of the PB1-F2 ORF (or incorporation of the N66S mutation in the PB1-F2 ORF, Sw/99 N66S) affected the replication in porcine alveolar macrophages of only the Sw/99 KO (PB1-F2 knockout) and Sw/99 N66S variants. The Ty/04 KO strain showed decreased virus replication in swine respiratory explants, whereas no such effect was observed in Sw/99 KO, compared with the wild-type (WT) counterparts. In pigs, PB1-F2 did not affect virus shedding or viral load in the lungs for any of these strains. Upon necropsy, PB1-F2 had no effect on the lung pathology caused by Sw/99 variants. Interestingly, the Ty/04 KO-infected pigs showed significantly increased lung pathology at 3 days post-infection compared with pigs infected with the Ty/04 WT strain. In addition, the pulmonary levels of interleukin (IL)-6, IL-8 and gamma interferon were regulated differentially by the expression of PB1-F2. Taken together, these results indicate that PB1-F2 modulates virus replication, virulence and innate immune responses in pigs in a strain-dependent fashion.

  12. Crosstalk between animal and human influenza viruses

    Science.gov (United States)

    Ozawa, Makoto; Kawaoka, Yoshihiro

    2017-01-01

    Although outbreaks of highly pathogenic avian influenza in wild and domestic birds have been posing the threat of a new influenza pandemic for the last decade, the first pandemic of the 21st century came from swine viruses. This fact emphasizes the complexity of influenza viral ecology and the difficulty of predicting influenza viral dynamics. Complete control of influenza viruses seems impossible. However, we must minimize the impact of animal and human influenza outbreaks by learning lessons from past experiences and recognizing the current status. Here, we review the most recent influenza virology data in the veterinary field, including aspects of zoonotic agents and recent studies that assessed the pandemic potential of H5N1 highly pathogenic avian influenza viruses. PMID:25387011

  13. Pneumonia in novel swine-origin influenza A (H1N1) virus infection: High-resolution CT findings

    Energy Technology Data Exchange (ETDEWEB)

    Li Ping, E-mail: pinglee_2000@yahoo.com [Department of Radiology, The Second Affiliated Hospital of Harbin Medical University, 246 Xue Fu Road, Harbin 150086 (China); Su Dongju, E-mail: hyd_sdj@yahoo.com.cn [Department of Respiratory, The Second Affiliated Hospital of Harbin Medical University, 246 Xue Fu Road, Harbin 150086 (China); Zhang Jifeng, E-mail: zjf2005520@163.com [Department of Radiology, The Second Affiliated Hospital of Harbin Medical University, 246 Xue Fu Road, Harbin 150086 (China); Xia Xudong, E-mail: xiaxd888@163.com [Department of Radiology, The Second Affiliated Hospital of Harbin Medical University, 246 Xue Fu Road, Harbin 150086 (China); Sui Hong, E-mail: suisuihong@126.com [Department of Statistics, Harbin Medical University, 240 Xue Fu Road, Harbin 150086 (China); Zhao Donghui, E-mail: yhwoooooo@yahoo.com.cn [Centers for Disease Control and Prevention of Heilongjiang, 187 Xiang An Street, Harbin 150036 (China)

    2011-11-15

    Objective: The purpose of our study was to review the initial high-resolution CT (HRCT) findings in pneumonia patients with presumed/laboratory-confirmed novel swine-origin influenza A (H1N1) virus (S-OIV) infection and detect pneumonia earlier. Materials and methods: High-resolution CT (HRCT) findings of 106 patients with presumed/laboratory-confirmed novel S-OIV (H1N1) infection were reviewed. The 106 patients were divided into two groups according to the serious condition of the diseases. The pattern (consolidation, ground-glass, nodules, and reticulation), distribution, and extent of abnormality on the HRCT were evaluated in both groups. The dates of the onset of symptoms of the patients were recorded. Results: The predominant CT findings in the patients at presentation were unilateral or bilateral multifocal asymmetric ground-glass opacities alone (n = 29, 27.4%), with unilateral or bilateral consolidation (n = 50, 47.2%). The consolidation had peribronchovascular and subpleural predominance. The areas of consolidation were found mainly in the posterior, middle and lower regions of the lungs. Reticular opacities were found in 6 cases of the initial MDCT scan. The extent of disease was greater in group 1 patients requiring advanced mechanical ventilation, with diffuse involvement in 19 patients (63.3%) of group 1 patients, and only 15/76 (19.7%) of group 2 patients (p < 0.01, {chi}{sup 2} test). 20 cases (19%) of the 106 patients had small bilateral or unilateral pleural effusions. None had evidence of hilar or mediastinal lymph node enlargement on CT performed at admission or later. Conclusions: The most common radiographic and CT findings in patients with S-OIV infection are unilateral or bilateral ground-glass opacities with or without associated focal or multifocal areas of consolidation. On HRCT, the ground-glass opacities had a predominant peribronchovascular and subpleural distribution. CT plays an important role in the early recognition of severe S

  14. European Surveillance Network for Influenza in Pigs: Surveillance Programs, Diagnostic Tools and Swine Influenza Virus Subtypes Identified in 14 European Countries from 2010 to 2013

    DEFF Research Database (Denmark)

    Simon, Gaelle; Larsen, Lars Erik; Duerrwald, Ralf

    2014-01-01

    : avian-like swine H1N1 (53.6%), human-like reassortant swine H1N2 (13%) and human-like reassortant swine H3N2 (9.1%), as well as pandemic A/H1N1 2009 (H1N1pdm) virus (10.3%). Viruses from these four lineages co-circulated in several countries but with very different relative levels of incidence....... For instance, the H3N2 subtype was not detected at all in some geographic areas whereas it was still prevalent in other parts of Europe. Interestingly, H3N2-free areas were those that exhibited highest frequencies of circulating H1N2 viruses. H1N1pdm viruses were isolated at an increasing incidence in some...... countries from 2010 to 2013, indicating that this subtype has become established in the European pig population. Finally, 13.9% of the viruses represented reassortants between these four lineages, especially between previous enzootic SIVs and H1N1pdm. These novel viruses were detected at the same time...

  15. Adjuvant effects of invariant NKT cell ligand potentiates the innate and adaptive immunity to an inactivated H1N1 swine influenza virus vaccine in pigs.

    Science.gov (United States)

    Dwivedi, Varun; Manickam, Cordelia; Dhakal, Santosh; Binjawadagi, Basavaraj; Ouyang, Kang; Hiremath, Jagadish; Khatri, Mahesh; Hague, Jacquelyn Gervay; Lee, Chang Won; Renukaradhya, Gourapura J

    2016-04-15

    Pigs are considered as the source of some of the emerging human flu viruses. Inactivated swine influenza virus (SwIV) vaccine has been in use in the US swine herds, but it failed to control the flu outbreaks. The main reason has been attributed to lack of induction of strong local mucosal immunity in the respiratory tract. Invariant natural killer T (iNKT) cell is a unique T cell subset, and activation of iNKT cell using its ligand α-Galactosylceramide (α-GalCer) has been shown to potentiate the cross-protective immunity to inactivated influenza virus vaccine candidates in mice. Recently, we discovered iNKT cell in pig and demonstrated its activation using α-GalCer. In this study, we evaluated the efficacy of an inactivated H1N1 SwIV coadministered with α-GalCer intranasally against a homologous viral challenge. Our results demonstrated the potent adjuvant effects of α-GalCer in potentiating both innate and adaptive immune responses to SwIV Ags in the lungs of pigs, which resulted in reduction in the lung viral load by 3 logs compared to without adjuvant. Immunologically, in the lungs of pigs vaccinated with α-GalCer an increased virus specific IgA response, IFN-α secretion and NK cell-cytotoxicity was observed. In addition, iNKT cell-stimulation enhanced the secretion of Th1 cytokines (IFN-γ and IL-12) and reduced the production of immunosuppressive cytokines (IL-10 and TGF-β) in the lungs of pigs⋅ In conclusion, we demonstrated for the first time iNKT cell adjuvant effects in pigs to SwIV Ags through augmenting the innate and adaptive immune responses in the respiratory tract. Copyright © 2016 Elsevier B.V. All rights reserved.

  16. Epithelial cells derived from swine bone marrow express stem cell markers and support influenza virus replication in vitro.

    Directory of Open Access Journals (Sweden)

    Mahesh Khatri

    Full Text Available The bone marrow contains heterogeneous population of cells that are involved in the regeneration and repair of diseased organs, including the lungs. In this study, we isolated and characterized progenitor epithelial cells from the bone marrow of 4- to 5-week old germ-free pigs. Microscopically, the cultured cells showed epithelial-like morphology. Phenotypically, these cells expressed the stem cell markers octamer-binding transcription factor (Oct4 and stage-specific embryonic antigen-1 (SSEA-1, the alveolar stem cell marker Clara cell secretory protein (Ccsp, and the epithelial cell markers pan-cytokeratin (Pan-K, cytokeratin-18 (K-18, and occludin. When cultured in epithelial cell growth medium, the progenitor epithelial cells expressed type I and type II pneumocyte markers. Next, we examined the susceptibility of these cells to influenza virus. Progenitor epithelial cells expressed sialic acid receptors utilized by avian and mammalian influenza viruses and were targets for influenza virus replication. Additionally, differentiated type II but not type I pneumocytes supported the replication of influenza virus. Our data indicate that we have identified a unique population of progenitor epithelial cells in the bone marrow that might have airway reconstitution potential and may be a useful model for cell-based therapies for infectious and non-infectious lung diseases.

  17. Restored PB1-F2 into the 2009 pandemic H1N1 influenza virus has minimal effects in swine

    Science.gov (United States)

    PB1-F2 is an 87-90 amino acid long protein expressed by certain influenza A viruses. Previous studies have shown that PB1-F2 contributes to virulence in the mouse model; however, its role in natural hosts - pigs, humans, or birds - remains largely unknown. Outbreaks of domestic pigs infected with th...

  18. Influenza (Flu) Viruses

    Science.gov (United States)

    ... and antigenic shift. Transmission of Influenza Viruses from Animals to People Influenza A viruses also are found in many different animals, including ducks, chickens, pigs, whales, horses and seals. ...

  19. Human T-cells directed to seasonal influenza A virus cross-react with 2009 pandemic influenza A (H1N1) and swine-origin triple-reassortant H3N2 influenza viruses

    NARCIS (Netherlands)

    M.L.B. Hillaire (Marine); S.E. Vogelzang-van Trierum (Stella ); J.H.C.M. Kreijtz (Joost); G. de Mutsert (Gerrie); R.A.M. Fouchier (Ron); A.D.M.E. Osterhaus (Albert); G.F. Rimmelzwaan (Guus)

    2013-01-01

    textabstractVirus-specific CD8+ T-cells contribute to protective immunity against influenza A virus (IAV) infections. As the majority of these cells are directed to conserved viral proteins, they may afford protection against IAVs of various subtypes. The present study assessed the cross-reactivity

  20. Pathogenicity and Transmission in Pigs of the Novel A(H3N2)v Influenza Virus Isolated from Humans and Characterization of Swine H3N2 Viruses Isolated in 2010-2011

    Science.gov (United States)

    Kitikoon, Pravina; Gauger, Phillip C.; Schlink, Sarah N.; Bayles, Darrell O.; Gramer, Marie R.; Darnell, Daniel; Webby, Richard J.; Lager, Kelly M.; Swenson, Sabrina L.; Klimov, Alexander

    2012-01-01

    Swine influenza virus (SIV) H3N2 with triple reassorted internal genes (TRIG) has been enzootic in Unites States since 1998. Transmission of the 2009 pandemic H1N1 (pH1N1) virus to pigs in the United States was followed by reassortment with endemic SIV, resulting in reassorted viruses that include novel H3N2 genotypes (rH3N2p). Between July and December 2011, 12 cases of human infections with swine-lineage H3N2 viruses containing the pandemic matrix (pM) gene [A(H3N2)v] were detected. Whole-genome analysis of H3N2 viruses isolated from pigs from 2009 to 2011 sequenced in this study and other available H3N2 sequences showed six different rH3N2p genotypes present in the U.S. swine population since 2009. The presence of the pM gene was a common feature among all rH3N2p genotypes, but no specific genotype appeared to predominate in the swine population. We compared the pathogenic, transmission, genetic, and antigenic properties of a human A(H3N2)v isolate and two swine H3N2 isolates, H3N2-TRIG and rH3N2p. Our in vivo study detected no increased virulence in A(H3N2)v or rH3N2p viruses compared to endemic H3N2-TRIG virus. Antibodies to cluster IV H3N2-TRIG and rH3N2p viruses had reduced cross-reactivity to A(H3N2)v compared to other cluster IV H3N2-TRIG and rH3N2p viruses. Genetic analysis of the hemagglutinin gene indicated that although rH3N2p and A(H3N2)v are related to cluster IV of H3N2-TRIG, some recent rH3N2p isolates appeared to be forming a separate cluster along with the human isolates of A(H3N2)v. Continued monitoring of these H3N2 viruses is necessary to evaluate the evolution and potential loss of population immunity in swine and humans. PMID:22491461

  1. Simultaneous infection of pigs and people with triple reassortant swine influenza virus H1N1 at a U.S. county fair

    Science.gov (United States)

    Influenza-like illness was noted in people and pigs in attendance at an Ohio county fair in August 2007. The morbidity rate in swine approached 100 percent within one to two days of initial symptoms being recognized and approximately two dozen people developed influenza-like illness. Triple reassort...

  2. Comparative pathology of pigs infected with Korean H1N1, H1N2, or H3N2 swine influenza A viruses.

    Science.gov (United States)

    Lyoo, Kwang-Soo; Kim, Jeong-Ki; Jung, Kwonil; Kang, Bo-Kyu; Song, Daesub

    2014-09-24

    The predominant subtypes of swine influenza A virus (SIV) in Korea swine population are H1N1, H1N2, and H3N2. The viruses are genetically close to the classical U.S. H1N1 and triple-reassortant H1N2 and H3N2 viruses, respectively. Comparative pathogenesis caused by Korean H1N1, H1N2, and H3N2 SIV was evaluated in this study. The H3N2 infected pigs had severe scores of gross and histopathological lesions at post-inoculation days (PID) 2, and this then progressively decreased. Both the H1N1 and H1N2 infected pigs lacked gross lesions at PID 2, but they showed moderate to severe pneumonia on PID 4, 7 and 14. The pigs infected with H1N1 had significant scores of gross and histopathological lesions when compared with the other pigs infected with H1N2, H3N2, and mock at PID 14. Mean SIV antigen-positive scores were rarely detected for pigs infected with H1N2 and H3N2 from PID 7, whereas a significantly increased amount of viral antigens were found in the bronchioles and alveolar epithelium of the H1N1infected pigs at PID 14. We demonstrated that Korean SIV subtypes had different pulmonary pathologic patterns. The Korean H3N2 rapidly induced acute lung lesions such as broncho-interstitial pneumonia, while the Korean H1N1 showed longer course of infection as compared to other strains.

  3. Xanthones from Polygala karensium inhibit neuraminidases from influenza A viruses

    DEFF Research Database (Denmark)

    Dao, Trong Tuan; Dang, Thai Trung; Nguyen, Phi Hung

    2012-01-01

    The emergence of the H1N1 swine flu pandemic has the possibility to develop the occurrence of disaster- or drug-resistant viruses by additional reassortments in novel influenza A virus. In the course of an anti-influenza screening program for natural products, 10 xanthone derivatives (1-10) were...

  4. Corticosteroid treatment ameliorates acute lung injury induced by 2009 swine origin influenza A (H1N1 virus in mice.

    Directory of Open Access Journals (Sweden)

    Chenggang Li

    Full Text Available BACKGROUND: The 2009 influenza pandemic affected people in almost all countries in the world, especially in younger age groups. During this time, the debate over whether to use corticosteroid treatment in severe influenza H1N1 infections patients resurfaced and was disputed by clinicians. There is an urgent need for a susceptible animal model of 2009 H1N1 infection that can be used to evaluate the pathogenesis and the therapeutic effect of corticosteroid treatment during infection. METHODOLOGY/PRINCIPAL FINDINGS: We intranasally inoculated two groups of C57BL/6 and BALB/c mice (using 4- or 6-to 8-week-old mice to compare the pathogenesis of several different H1N1 strains in mice of different ages. Based on the results, a very susceptible 4-week-old C57BL/6 mouse model of Beijing 501 strain of 2009 H1N1 virus infection was established, showing significantly elevated lung edema and cytokine levels compared to controls. Using our established animal model, the cytokine production profile and lung histology were assessed at different times post-infection, revealing increased lung lesions in a time-dependent manner. In additional,the mice were also treated with dexamethasone, which significantly improved survival rate and lung lesions in infected mice compared to those in control mice. Our data showed that corticosteroid treatment ameliorated acute lung injury induced by the 2009 A/H1N1 virus in mice and suggested that corticosteroids are valid drugs for treating 2009 A/H1N1 infection. CONCLUSIONS/SIGNIFICANCE: Using the established, very susceptible 2009 Pandemic Influenza A (H1N1 mouse model, our studies indicate that corticosteroids are a potential therapeutic remedy that may address the increasing concerns over future 2009 A/H1N1 pandemics.

  5. Genetic and biological characterisation of an avian-like H1N2 swine influenza virus generated by reassortment of circulating avian-like H1N1 and H3N2 subtypes in Denmark

    DEFF Research Database (Denmark)

    Trebbien, Ramona; Bragstad, Karoline; Larsen, Lars Erik

    2013-01-01

    level. The difference, however, was not statistically significant. Pigs euthanized on day 4 after inoculation, had a high virus load in all lung lobes. After the second inoculation, the nasal virus excretion was minimal. There were no clinical sign except elevated body temperature under the experimental......BACKGROUND: The influenza A virus subtypes H1N1, H1N2 and H3N2 are the most prevalent subtypes in swine. In 2003, a reassorted H1N2 swine influenza virus (SIV) subtype appeared and became prevalent in Denmark. In the present study, the reassortant H1N2 subtype was characterised genetically...... and the infection dynamics compared to an “avian-like” H1N1 virus by an experimental infection study. METHODS: Sequence analyses were performed of the H1N2 virus. Two groups of pigs were inoculated with the reassortant H1N2 virus and an “avian-like” H1N1 virus, respectively, followed by inoculation...

  6. Protection of guinea pigs by vaccination with a recombinant swinepox virus co-expressing HA1 genes of swine H1N1 and H3N2 influenza viruses.

    Science.gov (United States)

    Xu, Jiarong; Yang, Deji; Huang, Dongyan; Xu, Jiaping; Liu, Shichao; Lin, Huixing; Zhu, Haodan; Liu, Bao; Lu, Chengping

    2013-03-01

    Swine influenza (SI) is an acute respiratory infectious disease of swine caused by swine influenza virus (SIV). SIV is not only an important respiratory pathogen in pigs but also a potent threat to human health. Here, we report the construction of a recombinant swinepox virus (rSPV/H3-2A-H1) co-expressing hemagglutinin (HA1) of SIV subtypes H1N1 and H3N2. Immune responses and protection efficacy of the rSPV/H3-2A-H1 were evaluated in guinea pigs. Inoculation of rSPV/H3-2A-H1 yielded neutralizing antibodies against SIV H1N1 and H3N2. The IFN-γ and IL-4 concentrations in the supernatant of lymphocytes stimulated with purified SIV HA1 antigen were significantly higher (P pigs against SIV H1N1 or H3N2 challenge was observed. No SIV shedding was detected from guinea pigs vaccinated with rSPV/H3-2A-H1 after challenge. Most importantly, the guinea pigs immunized with rSPV/H3-2A-H1 did not show gross and micrographic lung lesions. However, the control guinea pigs experienced distinct gross and micrographic lung lesions at 7 days post-challenge. Our data suggest that the recombinant swinepox virus encoding HA1 of SIV H1N1 and H3N2 might serve as a promising candidate vaccine for protection against SIV H1N1 and H3N2 infections.

  7. Reassortment between Swine H3N2 and 2009 Pandemic H1N1 in the United States Resulted in Influenza A Viruses with Diverse Genetic Constellations with Variable Virulence in Pigs.

    Science.gov (United States)

    Rajão, Daniela S; Walia, Rasna R; Campbell, Brian; Gauger, Phillip C; Janas-Martindale, Alicia; Killian, Mary Lea; Vincent, Amy L

    2017-02-15

    Repeated spillovers of the H1N1 pandemic virus (H1N1pdm09) from humans to pigs resulted in substantial evolution of influenza A viruses infecting swine, contributing to the genetic and antigenic diversity of influenza A viruses (IAV) currently circulating in swine. The reassortment with endemic swine viruses and maintenance of some of the H1N1pdm09 internal genes resulted in the circulation of different genomic constellations in pigs. Here, we performed a whole-genome phylogenetic analysis of 368 IAV circulating in swine from 2009 to 2016 in the United States. We identified 44 different genotypes, with the most common genotype (32.33%) containing a clade IV-A HA gene, a 2002-lineage NA gene, an M-pdm09 gene, and remaining gene segments of triple reassortant internal gene (TRIG) origin. To understand how different genetic constellations may relate to viral fitness, we compared the pathogenesis and transmission in pigs of six representative genotypes. Although all six genotypes efficiently infected pigs, they resulted in different degrees of pathology and viral shedding. These results highlight the vast H3N2 genetic diversity circulating in U.S. swine after 2009. This diversity has important implications in the control of this disease by the swine industry, as well as a potential risk for public health if swine-adapted viruses with H1N1pdm09 genes have an increased risk to humans, as occurred in the 2011-2012 and 2016 human variant H3N2v cases associated with exhibition swine. People continue to spread the 2009 H1N1 pandemic (H1N1pdm09) IAV to pigs, allowing H1N1pdm09 to reassort with endemic swine IAV. In this study, we determined the 8 gene combinations of swine H3N2 IAV detected from 2009 to 2016. We identified 44 different genotypes of H3N2, the majority of which contained at least one H1N1pdm09 gene segment. We compared six representative genotypes of H3N2 in pigs. All six genotypes efficiently infected pigs, but they resulted in different degrees of lung damage

  8. Emerging influenza viruses and the prospect of a universal influenza virus vaccine.

    Science.gov (United States)

    Krammer, Florian

    2015-05-01

    Influenza viruses cause annual seasonal epidemics and pandemics at irregular intervals. Several cases of human infections with avian and swine influenza viruses have been detected recently, warranting enhanced surveillance and the development of more effective countermeasures to address the pandemic potential of these viruses. The most effective countermeasure against influenza virus infection is the use of prophylactic vaccines. However, vaccines that are currently in use for seasonal influenza viruses have to be re-formulated and re-administered in a cumbersome process every year due to the antigenic drift of the virus. Furthermore, current seasonal vaccines are ineffective against novel pandemic strains. This paper reviews zoonotic influenza viruses with pandemic potential and technological advances towards better vaccines that induce broad and long lasting protection from influenza virus infection. Recent efforts have focused on the development of broadly protective/universal influenza virus vaccines that can provide immunity against drifted seasonal influenza virus strains but also against potential pandemic viruses. Copyright © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Origins of the 2009 H1N1 influenza pandemic in swine in Mexico

    Science.gov (United States)

    Mena, Ignacio; Nelson, Martha I; Quezada-Monroy, Francisco; Dutta, Jayeeta; Cortes-Fernández, Refugio; Lara-Puente, J Horacio; Castro-Peralta, Felipa; Cunha, Luis F; Trovão, Nídia S; Lozano-Dubernard, Bernardo; Rambaut, Andrew; van Bakel, Harm; García-Sastre, Adolfo

    2016-01-01

    Asia is considered an important source of influenza A virus (IAV) pandemics, owing to large, diverse viral reservoirs in poultry and swine. However, the zoonotic origins of the 2009 A/H1N1 influenza pandemic virus (pdmH1N1) remain unclear, due to conflicting evidence from swine and humans. There is strong evidence that the first human outbreak of pdmH1N1 occurred in Mexico in early 2009. However, no related swine viruses have been detected in Mexico or any part of the Americas, and to date the most closely related ancestor viruses were identified in Asian swine. Here, we use 58 new whole-genome sequences from IAVs collected in Mexican swine to establish that the swine virus responsible for the 2009 pandemic evolved in central Mexico. This finding highlights how the 2009 pandemic arose from a region not considered a pandemic risk, owing to an expansion of IAV diversity in swine resulting from long-distance live swine trade. DOI: http://dx.doi.org/10.7554/eLife.16777.001 PMID:27350259

  10. Origins of the 2009 H1N1 influenza pandemic in swine in Mexico.

    Science.gov (United States)

    Mena, Ignacio; Nelson, Martha I; Quezada-Monroy, Francisco; Dutta, Jayeeta; Cortes-Fernández, Refugio; Lara-Puente, J Horacio; Castro-Peralta, Felipa; Cunha, Luis F; Trovão, Nídia S; Lozano-Dubernard, Bernardo; Rambaut, Andrew; van Bakel, Harm; García-Sastre, Adolfo

    2016-06-28

    Asia is considered an important source of influenza A virus (IAV) pandemics, owing to large, diverse viral reservoirs in poultry and swine. However, the zoonotic origins of the 2009 A/H1N1 influenza pandemic virus (pdmH1N1) remain unclear, due to conflicting evidence from swine and humans. There is strong evidence that the first human outbreak of pdmH1N1 occurred in Mexico in early 2009. However, no related swine viruses have been detected in Mexico or any part of the Americas, and to date the most closely related ancestor viruses were identified in Asian swine. Here, we use 58 new whole-genome sequences from IAVs collected in Mexican swine to establish that the swine virus responsible for the 2009 pandemic evolved in central Mexico. This finding highlights how the 2009 pandemic arose from a region not considered a pandemic risk, owing to an expansion of IAV diversity in swine resulting from long-distance live swine trade.

  11. Avian influenza virus

    Science.gov (United States)

    Avian influenza virus (AIV) is type A influenza that is adapted to avian host species. Although the virus can be isolated from numerous avian species, the natural host reservoir species are dabbling ducks, shorebirds and gulls. Domestic poultry species (poultry being defined as birds that are rais...

  12. In silico analysis and identification of novel inhibitor for new H1N1 swine influenza virus

    Directory of Open Access Journals (Sweden)

    Manjunath Dammalli

    2014-09-01

    Full Text Available Objective: To identify alternative drug for the treatment of pandemic disease caused by influenza virus. Methods: The structure based drug design approach was employed. New sequence was employed to build the N1 simulation structure by homology modeling which was further checked for high reliability by verify score and Ramachandran plot. Evaluation of drug likeness and absorption, distribution, metabolism, excretion, toxicity showed that the ligands satisfy all the properties to be used as a drug. Docking studies were performed using LeadIT and docking scores indicated good binding energy values towards N1. Results: Four candidates were screened and suggested as potent target candidates from the docking studies. The screened compounds from Stemonaceae family illustrated better activity compared to the drugs which are already present in the market. Conclusions: The results may help to find the alternative drug to solve the drug-resistant problem and stimulate designing more effective drugs against 2009-H1N1 influenza pandemic, yet pharmacological studies have to confirm it.

  13. Using routine surveillance data to estimate the epidemic potential of emerging zoonoses: application to the emergence of US swine origin influenza A H3N2v virus.

    Science.gov (United States)

    Cauchemez, Simon; Epperson, Scott; Biggerstaff, Matthew; Swerdlow, David; Finelli, Lyn; Ferguson, Neil M

    2013-01-01

    Prior to emergence in human populations, zoonoses such as SARS cause occasional infections in human populations exposed to reservoir species. The risk of widespread epidemics in humans can be assessed by monitoring the reproduction number R (average number of persons infected by a human case). However, until now, estimating R required detailed outbreak investigations of human clusters, for which resources and expertise are not always available. Additionally, existing methods do not correct for important selection and under-ascertainment biases. Here, we present simple estimation methods that overcome many of these limitations. Our approach is based on a parsimonious mathematical model of disease transmission and only requires data collected through routine surveillance and standard case investigations. We apply it to assess the transmissibility of swine-origin influenza A H3N2v-M virus in the US, Nipah virus in Malaysia and Bangladesh, and also present a non-zoonotic example (cholera in the Dominican Republic). Estimation is based on two simple summary statistics, the proportion infected by the natural reservoir among detected cases (G) and among the subset of the first detected cases in each cluster (F). If detection of a case does not affect detection of other cases from the same cluster, we find that R can be estimated by 1-G; otherwise R can be estimated by 1-F when the case detection rate is low. In more general cases, bounds on R can still be derived. We have developed a simple approach with limited data requirements that enables robust assessment of the risks posed by emerging zoonoses. We illustrate this by deriving transmissibility estimates for the H3N2v-M virus, an important step in evaluating the possible pandemic threat posed by this virus. Please see later in the article for the Editors' Summary.

  14. Using routine surveillance data to estimate the epidemic potential of emerging zoonoses: application to the emergence of US swine origin influenza A H3N2v virus.

    Directory of Open Access Journals (Sweden)

    Simon Cauchemez

    Full Text Available Prior to emergence in human populations, zoonoses such as SARS cause occasional infections in human populations exposed to reservoir species. The risk of widespread epidemics in humans can be assessed by monitoring the reproduction number R (average number of persons infected by a human case. However, until now, estimating R required detailed outbreak investigations of human clusters, for which resources and expertise are not always available. Additionally, existing methods do not correct for important selection and under-ascertainment biases. Here, we present simple estimation methods that overcome many of these limitations.Our approach is based on a parsimonious mathematical model of disease transmission and only requires data collected through routine surveillance and standard case investigations. We apply it to assess the transmissibility of swine-origin influenza A H3N2v-M virus in the US, Nipah virus in Malaysia and Bangladesh, and also present a non-zoonotic example (cholera in the Dominican Republic. Estimation is based on two simple summary statistics, the proportion infected by the natural reservoir among detected cases (G and among the subset of the first detected cases in each cluster (F. If detection of a case does not affect detection of other cases from the same cluster, we find that R can be estimated by 1-G; otherwise R can be estimated by 1-F when the case detection rate is low. In more general cases, bounds on R can still be derived.We have developed a simple approach with limited data requirements that enables robust assessment of the risks posed by emerging zoonoses. We illustrate this by deriving transmissibility estimates for the H3N2v-M virus, an important step in evaluating the possible pandemic threat posed by this virus. Please see later in the article for the Editors' Summary.

  15. PB1-F2 Protein Does Not Impact the Virulence of Triple-Reassortant H3N2 Swine Influenza Virus in Pigs but Alters Pathogenicity and Transmission in Turkeys

    Science.gov (United States)

    Deventhiran, Jagadeeswaran; Kumar, Sandeep R. P.; Raghunath, Shobana; Elankumaran, Subbiah

    2015-01-01

    ABSTRACT PB1-F2 protein, the 11th influenza A virus (IAV) protein, is considered to play an important role in primary influenza virus infection and postinfluenza secondary bacterial pneumonia in mice. The functional role of PB1-F2 has been reported to be a strain-specific and host-specific phenomenon. Its precise contribution to the pathogenicity and transmission of influenza virus in mammalian host, such as swine, and avian hosts, such as turkeys, remain largely unknown. In this study, we explored the role of PB1-F2 protein of triple-reassortant (TR) H3N2 swine influenza virus (SIV) in pigs and turkeys. Using the eight-plasmid reverse genetics system, we rescued wild-type SIV A/swine/Minnesota/1145/2007 (H3N2) (SIV 1145-WT), a PB1-F2 knockout mutant (SIV 1145-KO), and its N66S variant (SIV 1145-N66S). The ablation of PB1-F2 in SIV 1145 modulated early-stage apoptosis but did not affect the viral replication in swine alveolar macrophage cells. In pigs, PB1-F2 expression did not affect nasal shedding, lung viral load, immunophenotypes, and lung pathology. On the other hand, in turkeys, SIV 1145-KO infected poults, and its in-contacts developed clinical signs earlier than SIV 1145-WT groups and also displayed more extensive histopathological changes in intestine. Further, turkeys infected with SIV 1145-N66S displayed poor infectivity and transmissibility. The more extensive histopathologic changes in intestine and relative transmission advantage observed in turkeys infected with SIV 1145-KO need to be further explored. Taken together, these results emphasize the host-specific roles of PB1-F2 in the pathogenicity and transmission of IAV. IMPORTANCE Novel triple-reassortant H3N2 swine influenza virus emerged in 1998 and spread rapidly among the North American swine population. Subsequently, it showed an increased propensity to reassort, generating a range of reassortants. Unlike classical swine influenza virus, TR SIV produces a full-length PB1-F2 protein, which is

  16. PB1-F2 Protein Does Not Impact the Virulence of Triple-Reassortant H3N2 Swine Influenza Virus in Pigs but Alters Pathogenicity and Transmission in Turkeys.

    Science.gov (United States)

    Deventhiran, Jagadeeswaran; Kumar, Sandeep R P; Raghunath, Shobana; Leroith, Tanya; Elankumaran, Subbiah

    2016-01-01

    PB1-F2 protein, the 11th influenza A virus (IAV) protein, is considered to play an important role in primary influenza virus infection and postinfluenza secondary bacterial pneumonia in mice. The functional role of PB1-F2 has been reported to be a strain-specific and host-specific phenomenon. Its precise contribution to the pathogenicity and transmission of influenza virus in mammalian host, such as swine, and avian hosts, such as turkeys, remain largely unknown. In this study, we explored the role of PB1-F2 protein of triple-reassortant (TR) H3N2 swine influenza virus (SIV) in pigs and turkeys. Using the eight-plasmid reverse genetics system, we rescued wild-type SIV A/swine/Minnesota/1145/2007 (H3N2) (SIV 1145-WT), a PB1-F2 knockout mutant (SIV 1145-KO), and its N66S variant (SIV 1145-N66S). The ablation of PB1-F2 in SIV 1145 modulated early-stage apoptosis but did not affect the viral replication in swine alveolar macrophage cells. In pigs, PB1-F2 expression did not affect nasal shedding, lung viral load, immunophenotypes, and lung pathology. On the other hand, in turkeys, SIV 1145-KO infected poults, and its in-contacts developed clinical signs earlier than SIV 1145-WT groups and also displayed more extensive histopathological changes in intestine. Further, turkeys infected with SIV 1145-N66S displayed poor infectivity and transmissibility. The more extensive histopathologic changes in intestine and relative transmission advantage observed in turkeys infected with SIV 1145-KO need to be further explored. Taken together, these results emphasize the host-specific roles of PB1-F2 in the pathogenicity and transmission of IAV. Novel triple-reassortant H3N2 swine influenza virus emerged in 1998 and spread rapidly among the North American swine population. Subsequently, it showed an increased propensity to reassort, generating a range of reassortants. Unlike classical swine influenza virus, TR SIV produces a full-length PB1-F2 protein, which is considered an important

  17. Seroprevalence and risk factors for swine influenza zoonotic transmission in swine workers from northwestern Mexico.

    Science.gov (United States)

    López-Robles, G; Montalvo-Corral, M; Caire-Juvera, G; Ayora-Talavera, G; Hernández, J

    2012-04-01

    A cross-sectional study was conducted to evaluate the transmission of swine influenza through occupational exposure and to assess some risk factors for zoonotic transmission in workers from commercial farms in Mexico. Seroprevalence to swine influenza subtypes was determined by hemagglutinin inhibition assay and was higher in exposed (E), in comparison with unexposed (UE) participants (Pinfluenza virus (SIV) H3N2 and the exposition to swine [OR 3.05, 95% (CI) 1.65-5.64] and to geographic location [OR 8.15, 95% (CI) 1.41-47.05] was found. Vaccination appeared as a protective factor [OR 0.05, 95% (CI) 0.01-0.52]. Farms with high number of breeding herd were associated with increased anti-SIV antibodies in the E group [OR 3.98, 95% (CI) 1.00-15.86]. These findings are relevant and support the evidence of zoonoses in swine farms and point out the need to implement preventive measures to diminish the occurrence of the disease and the potential emergence of pathogenic reassortant strains. © 2011 Blackwell Verlag GmbH.

  18. Structural and Biochemical Analyses of Swine Major Histocompatibility Complex Class I Complexes and Prediction of the Epitope Map of Important Influenza A Virus Strains.

    Science.gov (United States)

    Fan, Shuhua; Wu, Yanan; Wang, Song; Wang, Zhenbao; Jiang, Bo; Liu, Yanjie; Liang, Ruiying; Zhou, Wenzhong; Zhang, Nianzhi; Xia, Chun

    2016-08-01

    The lack of a peptide-swine leukocyte antigen class I (pSLA I) complex structure presents difficulties for the study of swine cytotoxic T lymphocyte (CTL) immunity and molecule vaccine development to eliminate important swine viral diseases, such as influenza A virus (IAV). Here, after cloning and comparing 28 SLA I allelic genes from Chinese Heishan pigs, pSLA-3*hs0202 was crystalized and solved. SLA-3*hs0202 binding with sβ2m and a KMNTQFTAV (hemagglutinin [HA]-KMN9) peptide from the 2009 pandemic swine H1N1 strain clearly displayed two distinct conformations with HA-KMN9 peptides in the structures, which are believed to be beneficial to stimulate a broad spectrum of CTL immune responses. Notably, we found that different HA-KMN9 conformations are caused, not only by the flexibility of the side chains of residues in the peptide-binding groove (PBG), but also by the skewing of α1 and α2 helixes forming the PBG. In addition, alanine scanning and circular-dichroism (CD) spectra confirmed that the B, D, and F pockets play critical biochemical roles in determining the peptide-binding motif of SLA-3*hs0202. Based on biochemical parameters and comparisons to similar pockets in other known major histocompatibility complex class I (MHC-I) structures, the fundamental motif for SLA-3*hs0202 was determined to be X-(M/A/R)-(N/Q/R/F)-X-X-X-X-X-(V/I) by refolding in vitro and multiple mutant peptides. Finally, 28 SLA-3*hs0202-restricted epitope candidates were identified from important IAV strains, and two of them have been found in humans as HLA-A*0201-specific IAV epitopes. Structural and biochemical illumination of pSLA-3*hs0202 can benefit vaccine development to control IAV in swine. We crystalized and solved the first SLA-3 structure, SLA-3*hs0202, and found that it could present the same IAV peptide with two distinct conformations. Unlike previous findings showing that variable peptide conformations are caused only by the flexibility of the side chains in the groove

  19. Roles of p38 MAPK in the regulation of the inflammatory response to swine influenza virus-induced acute lung injury in mice.

    Science.gov (United States)

    Wei, D; Huang, Z H; Zhang, R H; Wang, C L; Xu, M J; Liu, B J; Wang, G H; Xu, T

    2014-01-01

    Swine influenza virus (SIV), one of the most important zoonotic agents, is associated with major public health concerns. The current study was conducted to investigate the role of p38 mitogen-activated protein kinase (p38 MAPK) in the regulation of the inflammatory response to acute lung injury (ALI) induced by SIV of H9N2 subtype (H9N2-SIV) in mice. For this purpose, BALB/c mice were intranasally infected with 20 LD(50) of H9N2-SIV (infected group), while non-infected mice served as control (control group). To assess the effect of p38 MAPK, its specific inhibitor SB203580 was employed followed by SIV infection (SB group). At various times after infection, mouse lungs were subjected to pathological and histological observations and detection of inflammatory cytokines tumor necrosis factor α (TNF)-α, interleukin (IL)-1β, IL-6, and IL-10 and phosphorylated p38 MAPK. The obtained results showed obvious inflammatory responses, injury and raised levels of inflammatory cytokines and phosphorylated p38 MAPK in the lungs of virus-infected mice. In the mice inoculated with the virus alone, the level of phosphorylated p38 MAPK increased from day 2 and peaked at day 6 post infection (p.i.). However, SB203580 caused lower increases in inflammatory cytokines and phosphorylated p38 MAPK and a milder lung injury. These findings indicate that the activation of p38 MAPK upregulated the inflammatory responses to H9N2-SIV-induced ALI, increased its severity and promoted the production of inflammatory cytokines.

  20. Effect of feed restriction on performance and postprandial nutrient metabolism in pigs co-infected with Mycoplasma hyopneumoniae and swine influenza virus.

    Science.gov (United States)

    Le Floc'h, Nathalie; Deblanc, Céline; Cariolet, Roland; Gautier-Bouchardon, Anne V; Merlot, Elodie; Simon, Gaëlle

    2014-01-01

    As nutritional status and inflammation are strongly connected, feeding and nutritional strategies could be effective to improve the ability of pigs to cope with disease. The aims of this study were to investigate the impact of a feed restriction on the ability of pigs to resist and be tolerant to a coinfection with Mycoplasma hyopneumoniae (Mhp) and the European H1N1 swine influenza virus, and the consequences for nutrient metabolism, with a focus on amino acids. Two groups of specific pathogen-free pigs were inoculated with Mhp and H1N1 21 days apart. One group was fed ad libitum, the other group was subjected to a two-week 40% feed restriction starting one week before H1N1 infection. The two respective mock control groups were included. Three days post-H1N1 infection, 200 g of feed was given to pigs previously fasted overnight and serial blood samples were taken over 4 hours to measure plasma nutrient concentrations. Throughout the study, clinical signs were observed and pathogens were detected in nasal swabs and lung tissues. Feed-restricted pigs presented shorter hyperthermia and a positive mean weight gain over the 3 days post-H1N1 infection whereas animals fed ad libitum lost weight. Both infection and feed restriction reduced postprandial glucose concentrations, indicating changes in glucose metabolism. Post-prandial plasma concentrations of the essential amino acids histidine, arginine and threonine were lower in co-infected pigs suggesting a greater use of those amino acids for metabolic purposes associated with the immune response. Altogether, these results indicate that modifying feeding practices could help to prepare animals to overcome an influenza infection. Connections with metabolism changes are discussed.

  1. Effect of feed restriction on performance and postprandial nutrient metabolism in pigs co-infected with Mycoplasma hyopneumoniae and swine influenza virus.

    Directory of Open Access Journals (Sweden)

    Nathalie Le Floc'h

    Full Text Available As nutritional status and inflammation are strongly connected, feeding and nutritional strategies could be effective to improve the ability of pigs to cope with disease. The aims of this study were to investigate the impact of a feed restriction on the ability of pigs to resist and be tolerant to a coinfection with Mycoplasma hyopneumoniae (Mhp and the European H1N1 swine influenza virus, and the consequences for nutrient metabolism, with a focus on amino acids. Two groups of specific pathogen-free pigs were inoculated with Mhp and H1N1 21 days apart. One group was fed ad libitum, the other group was subjected to a two-week 40% feed restriction starting one week before H1N1 infection. The two respective mock control groups were included. Three days post-H1N1 infection, 200 g of feed was given to pigs previously fasted overnight and serial blood samples were taken over 4 hours to measure plasma nutrient concentrations. Throughout the study, clinical signs were observed and pathogens were detected in nasal swabs and lung tissues. Feed-restricted pigs presented shorter hyperthermia and a positive mean weight gain over the 3 days post-H1N1 infection whereas animals fed ad libitum lost weight. Both infection and feed restriction reduced postprandial glucose concentrations, indicating changes in glucose metabolism. Post-prandial plasma concentrations of the essential amino acids histidine, arginine and threonine were lower in co-infected pigs suggesting a greater use of those amino acids for metabolic purposes associated with the immune response. Altogether, these results indicate that modifying feeding practices could help to prepare animals to overcome an influenza infection. Connections with metabolism changes are discussed.

  2. Genotype patterns of contemporary reassorted H3N2 virus in U.S. swine

    Science.gov (United States)

    To understand the evolution of H3N2v influenza viruses that have infected 288 humans since July 2011, we performed the largest phylogenetic analysis at a whole genome scale of influenza viruses from North American swine to date (n = 200). At least ten distinct reassorted H3N2/pandemic H1N1 (rH3N2p)...

  3. Pandemic Swine-Origin H1N1 Influenza Virus Replicates to Higher Levels and Induces More Fever and Acute Inflammatory Cytokines in Cynomolgus versus Rhesus Monkeys and Can Replicate in Common Marmosets.

    Science.gov (United States)

    Mooij, Petra; Koopman, Gerrit; Mortier, Daniëlla; van Heteren, Melanie; Oostermeijer, Herman; Fagrouch, Zahra; de Laat, Rudy; Kobinger, Gary; Li, Yan; Remarque, Edmond J; Kondova, Ivanela; Verschoor, Ernst J; Bogers, Willy M J M

    2015-01-01

    The close immunological and physiological resemblance with humans makes non-human primates a valuable model for studying influenza virus pathogenesis and immunity and vaccine efficacy against infection. Although both cynomolgus and rhesus macaques are frequently used in influenza virus research, a direct comparison of susceptibility to infection and disease has not yet been performed. In the current study a head-to-head comparison was made between these species, by using a recently described swine-origin pandemic H1N1 strain, A/Mexico/InDRE4487/2009. In comparison to rhesus macaques, cynomolgus macaques developed significantly higher levels of virus replication in the upper airways and in the lungs, involving both peak level and duration of virus production, as well as higher increases in body temperature. In contrast, clinical symptoms, including respiratory distress, were more easily observed in rhesus macaques. Expression of sialyl-α-2,6-Gal saccharides, the main receptor for human influenza A viruses, was 50 to 73 times more abundant in trachea and bronchus of cynomolgus macaques relative to rhesus macaques. The study also shows that common marmosets, a New World non-human primate species, are susceptible to infection with pandemic H1N1. The study results favor the cynomolgus macaque as model for pandemic H1N1 influenza virus research because of the more uniform and high levels of virus replication, as well as temperature increases, which may be due to a more abundant expression of the main human influenza virus receptor in the trachea and bronchi.

  4. Pandemic Swine-Origin H1N1 Influenza Virus Replicates to Higher Levels and Induces More Fever and Acute Inflammatory Cytokines in Cynomolgus versus Rhesus Monkeys and Can Replicate in Common Marmosets.

    Directory of Open Access Journals (Sweden)

    Petra Mooij

    Full Text Available The close immunological and physiological resemblance with humans makes non-human primates a valuable model for studying influenza virus pathogenesis and immunity and vaccine efficacy against infection. Although both cynomolgus and rhesus macaques are frequently used in influenza virus research, a direct comparison of susceptibility to infection and disease has not yet been performed. In the current study a head-to-head comparison was made between these species, by using a recently described swine-origin pandemic H1N1 strain, A/Mexico/InDRE4487/2009. In comparison to rhesus macaques, cynomolgus macaques developed significantly higher levels of virus replication in the upper airways and in the lungs, involving both peak level and duration of virus production, as well as higher increases in body temperature. In contrast, clinical symptoms, including respiratory distress, were more easily observed in rhesus macaques. Expression of sialyl-α-2,6-Gal saccharides, the main receptor for human influenza A viruses, was 50 to 73 times more abundant in trachea and bronchus of cynomolgus macaques relative to rhesus macaques. The study also shows that common marmosets, a New World non-human primate species, are susceptible to infection with pandemic H1N1. The study results favor the cynomolgus macaque as model for pandemic H1N1 influenza virus research because of the more uniform and high levels of virus replication, as well as temperature increases, which may be due to a more abundant expression of the main human influenza virus receptor in the trachea and bronchi.

  5. Outbreaks of influenza A virus in farmed mink (Neovison vison) in Denmark: molecular characterization of the viruses

    DEFF Research Database (Denmark)

    Larsen, Lars Erik; Breum, Solvej Østergaard; Trebbien, Ramona

    2012-01-01

    Influenza in mink (Neovison vison) is assumed to be rare, but several outbreaks have been described during recent years in Europe and the North America. In 2009, influenza A of the subtype H3N2 was detected in several Danish mink farms with respiratory symptoms. Full-genome sequencing showed...... that the virus was a human/swine reassortant, with the H and N gene most related to human H3N2 viruses circulating in 2005. The remaining 6 genes were most closely related to H1N2 influenza viruses circulating in Danish swine. This virus had not previously been described in swine, mink or humans. PCRs assays...... specifically targeting the new reassortant were developed and used to screen influenza positive samples from humans and swine in Denmark with negative results. Thus, there was no evidence that this virus had spread to humans or was circulating in Danish pigs. In 2010 and 2011, influenza virus was again...

  6. Polymerase discordance in novel swine influenza H3N2v constellations is tolerated in swine but not human respiratory epithelial cells.

    Science.gov (United States)

    Powell, Joshua D; Dlugolenski, Daniel; Nagy, Tamas; Gabbard, Jon; Lee, Christopher; Tompkins, Stephen M; Tripp, Ralph A

    2014-01-01

    Swine-origin H3N2v, a variant of H3N2 influenza virus, is a concern for novel reassortment with circulating pandemic H1N1 influenza virus (H1N1pdm09) in swine because this can lead to the emergence of a novel pandemic virus. In this study, the reassortment prevalence of H3N2v with H1N1pdm09 was determined in swine cells. Reassortants evaluated showed that the H1N1pdm09 polymerase (PA) segment occurred within swine H3N2 with ∼ 80% frequency. The swine H3N2-human H1N1pdm09 PA reassortant (swH3N2-huPA) showed enhanced replication in swine cells, and was the dominant gene constellation. Ferrets infected with swH3N2-huPA had increased lung pathogenicity compared to parent viruses; however, swH3N2-huPA replication in normal human bronchoepithelial cells was attenuated - a feature linked to expression of IFN-β and IFN-λ genes in human but not swine cells. These findings indicate that emergence of novel H3N2v influenza constellations require more than changes in the viral polymerase complex to overcome barriers to cross-species transmission. Additionally, these findings reveal that while the ferret model is highly informative for influenza studies, slight differences in pathogenicity may not necessarily be indicative of human outcomes after infection.

  7. The influence of experimental infection of gilts with swine H1N2 influenza A virus during the second month of gestation on the course of pregnancy, reproduction parameters and clinical status

    Science.gov (United States)

    2014-01-01

    Background The course of swine influenza in pigs is reported to be similar to human influenza. Occasionally abortions and other reproduction disorders have been associated with influenza A virus (IAV) infection in pigs. Abortions may be a consequence of high fever, pro-inflammatory cytokines or transplacental transmission of the virus. The role of IAV in the complications observed during pregnancy has been scanty and the true importance of this agent as a cause of reproductive problems in swine is not known. The aim was to determine the possible involvement of swine H1N2 IAV strain on reproductive disorders in pregnant gilts under experimental conditions. Results The gestation length was from 113 to 116 days, no abortion or any other reproduction disorders were noted. A PCR assay confirms the presence of IAV in the nasal swabs taken from inoculated gilts between 1 and 5 dpi. In the nasal swabs from control gilts and newborn piglets, no IAV genetic material was found. No viral RNA was detected in samples of blood taken from gilts and piglets, placentas, lungs and tracheas taken from piglets euthanized after delivery. The significant decrease in the number and percentage of lymphocytes without leukopenia was observed at 4 dpi in inoculated gilts. The percentage of granulocytes increased significantly at 4 dpi in inoculated pigs. The concentration of IL-6, IL-10 and TNF-α were higher in inoculated gilts, while IL-4 and IFN-γ were not detected in the serum of any of animals. The serum concentrations of C-reactive protein remained stable during study, while haptoglobin concentrations increased significantly after inoculation. Conclusions The results of the study indicate that infection of pregnant gilts with swine H1N2 IAV in the second month of pregnancy does not cause abortion and other reproduction disorders. No evidence for transplacental transmission of swine H1N2 IAV was found. However, due to subclinical course of influenza in the present experiment caution

  8. The influence of experimental infection of gilts with swine H1N2 influenza A virus during the second month of gestation on the course of pregnancy, reproduction parameters and clinical status.

    Science.gov (United States)

    Kwit, Krzysztof; Pomorska-Mól, Małgorzata; Markowska-Daniel, Iwona

    2014-06-04

    The course of swine influenza in pigs is reported to be similar to human influenza. Occasionally abortions and other reproduction disorders have been associated with influenza A virus (IAV) infection in pigs. Abortions may be a consequence of high fever, pro-inflammatory cytokines or transplacental transmission of the virus.The role of IAV in the complications observed during pregnancy has been scanty and the true importance of this agent as a cause of reproductive problems in swine is not known. The aim was to determine the possible involvement of swine H1N2 IAV strain on reproductive disorders in pregnant gilts under experimental conditions. The gestation length was from 113 to 116 days, no abortion or any other reproduction disorders were noted. A PCR assay confirms the presence of IAV in the nasal swabs taken from inoculated gilts between 1 and 5 dpi. In the nasal swabs from control gilts and newborn piglets, no IAV genetic material was found. No viral RNA was detected in samples of blood taken from gilts and piglets, placentas, lungs and tracheas taken from piglets euthanized after delivery. The significant decrease in the number and percentage of lymphocytes without leukopenia was observed at 4 dpi in inoculated gilts. The percentage of granulocytes increased significantly at 4 dpi in inoculated pigs. The concentration of IL-6, IL-10 and TNF-α were higher in inoculated gilts, while IL-4 and IFN-γ were not detected in the serum of any of animals. The serum concentrations of C-reactive protein remained stable during study, while haptoglobin concentrations increased significantly after inoculation. The results of the study indicate that infection of pregnant gilts with swine H1N2 IAV in the second month of pregnancy does not cause abortion and other reproduction disorders. No evidence for transplacental transmission of swine H1N2 IAV was found. However, due to subclinical course of influenza in the present experiment caution should be taken in extrapolating

  9. A Novel H1N2 Influenza Virus Related to the Classical and Human Influenza Viruses from Pigs in Southern China.

    Science.gov (United States)

    Song, Yafen; Wu, Xiaowei; Wang, Nianchen; Ouyang, Guowen; Qu, Nannan; Cui, Jin; Qi, Yan; Liao, Ming; Jiao, Peirong

    2016-01-01

    Southern China has long been considered to be an epicenter of pandemic influenza viruses. The special environment, breeding mode, and lifestyle in southern China provides more chances for wild aquatic birds, domestic poultry, pigs, and humans to be in contact. This creates the opportunity for interspecies transmission and generation of new influenza viruses. In this study, we reported a novel reassortant H1N2 influenza virus from pigs in southern China. According to the phylogenetic trees and homology of the nucleotide sequence, the virus was confirmed to be a novel triple-reassortant H1N2 virus containing genes from classical swine (PB2, PB1, HA, NP, and NS genes), triple-reassortant swine (PA and M genes), and recent human (NA gene) lineages. It indicated that the novel reassortment virus among human and swine influenza viruses occurred in pigs in southern China. The isolation of the novel reassortant H1N2 influenza viruses provides further evidence that pigs are "mixing vessels," and swine influenza virus surveillance in southern China will provide important information about genetic evaluation and antigenic variation of swine influenza virus to formulate the prevention and control measures for the viruses.

  10. Influenza A Viruses of Swine (IAV-S) in Vietnam from 2010 to 2015: Multiple Introductions of A(H1N1)pdm09 Viruses into the Pig Population and Diversifying Genetic Constellations of Enzootic IAV-S.

    Science.gov (United States)

    Takemae, Nobuhiro; Harada, Michiyo; Nguyen, Phuong Thanh; Nguyen, Tung; Nguyen, Tien Ngoc; To, Thanh Long; Nguyen, Tho Dang; Pham, Vu Phong; Le, Vu Tri; Do, Hoa Thi; Vo, Hung Van; Le, Quang Vinh Tin; Tran, Tan Minh; Nguyen, Thanh Duy; Thai, Phuong Duy; Nguyen, Dang Hoang; Le, Anh Quynh Thi; Nguyen, Diep Thi; Uchida, Yuko; Saito, Takehiko

    2017-01-01

    Active surveillance of influenza A viruses of swine (IAV-S) involving 262 farms and 10 slaughterhouses in seven provinces in northern and southern Vietnam from 2010 to 2015 yielded 388 isolates from 32 farms; these viruses were classified into H1N1, H1N2, and H3N2 subtypes. Whole-genome sequencing followed by phylogenetic analysis revealed that the isolates represented 15 genotypes, according to the genetic constellation of the eight segments. All of the H1N1 viruses were entirely A(H1N1)pdm09 viruses, whereas all of the H1N2 and H3N2 viruses were reassortants among 5 distinct ancestral viruses: H1 and H3 triple-reassortant (TR) IAV-S that originated from North American pre-2009 human seasonal H1, human seasonal H3N2, and A(H1N1)pdm09 viruses. Notably, 93% of the reassortant IAV-S retained M genes that were derived from A(H1N1)pdm09, suggesting some advantage in terms of their host adaptation. Bayesian Markov chain Monte Carlo analysis revealed that multiple introductions of A(H1N1)pdm09 and TR IAV-S into the Vietnamese pig population have driven the genetic diversity of currently circulating Vietnamese IAV-S. In addition, our results indicate that a reassortant IAV-S with human-like H3 and N2 genes and an A(H1N1)pdm09 origin M gene likely caused a human case in Ho Chi Minh City in 2010. Our current findings indicate that human-to-pig transmission as well as cocirculation of different IAV-S have contributed to diversifying the gene constellations of IAV-S in Vietnam. This comprehensive genetic characterization of 388 influenza A viruses of swine (IAV-S) isolated through active surveillance of Vietnamese pig farms from 2010 through 2015 provides molecular epidemiological insight into the genetic diversification of IAV-S in Vietnam after the emergence of A(H1N1)pdm09 viruses. Multiple reassortments among A(H1N1)pdm09 viruses and enzootic IAV-S yielded 14 genotypes, 9 of which carried novel gene combinations. The reassortants that carried M genes derived from A(H1N1

  11. Harnessing Local Immunity for an Effective Universal Swine Influenza Vaccine.

    Science.gov (United States)

    Tchilian, Elma; Holzer, Barbara

    2017-05-05

    Influenza A virus infections are a global health threat to humans and are endemic in pigs, contributing to decreased weight gain and suboptimal reproductive performance. Pigs are also a source of new viruses of mixed swine, avian, and human origin, potentially capable of initiating human pandemics. Current inactivated vaccines induce neutralising antibody against the immunising strain but rapid escape occurs through antigenic drift of the surface glycoproteins. However, it is known that prior infection provides a degree of cross-protective immunity mediated by cellular immune mechanisms directed at the more conserved internal viral proteins. Here we review new data that emphasises the importance of local immunity in cross-protection and the role of the recently defined tissue-resident memory T cells, as well as locally-produced, and sometimes cross-reactive, antibody. Optimal induction of local immunity may require aerosol delivery of live vaccines, but it remains unclear how long protective local immunity persists. Nevertheless, a universal vaccine might be extremely useful for disease prevention in the face of a pandemic. As a natural host for influenza A viruses, pigs are both a target for a universal vaccine and an excellent model for developing human influenza vaccines.

  12. Development of two types of rapid diagnostic test kits to detect the hemagglutinin or nucleoprotein of the swine-origin pandemic influenza A virus H1N1.

    Science.gov (United States)

    Mizuike, Rika; Sasaki, Tadahiro; Baba, Koichi; Iwamoto, Hisahiko; Shibai, Yusuke; Kosaka, Mieko; Kubota-Koketsu, Ritsuko; Yang, Cheng-Song; Du, Anariwa; Sakudo, Akikazu; Tsujikawa, Muneo; Yunoki, Mikihiro; Ikuta, Kazuyoshi

    2011-03-01

    Since its emergence in April 2009, pandemic influenza A virus H1N1 (H1N1 pdm), a new type of influenza A virus with a triple-reassortant genome, has spread throughout the world. Initial attempts to diagnose the infection in patients using immunochromatography (IC) relied on test kits developed for seasonal influenza A and B viruses, many of which proved significantly less sensitive to H1N1 pdm. Here, we prepared monoclonal antibodies that react with H1N1 pdm but not seasonal influenza A (H1N1 and H3N2) or B viruses. Using two of these antibodies, one recognizing viral hemagglutinin (HA) and the other recognizing nucleoprotein (NP), we developed kits for the specific detection of H1N1 pdm and tested them using clinical specimens of nasal wash fluid or nasopharyngeal fluid from patients with influenza-like illnesses. The specificities of both IC test kits were very high (93% for the HA kit, 100% for the NP kit). The test sensitivities for detection of H1N1 pdm were 85.5% with the anti-NP antibody, 49.4% with the anti-HA antibody, and 79.5% with a commercially available influenza A virus detection assay. Use of the anti-NP antibody could allow the rapid and accurate diagnosis of H1N1 pdm infections.

  13. C-reactive protein, haptoglobin, serum amyloid A and pig major acute phase protein response in pigs simultaneously infected with H1N1 swine influenza virus and Pasteurella multocida.

    Science.gov (United States)

    Pomorska-Mól, Małgorzata; Markowska-Daniel, Iwona; Kwit, Krzysztof; Stępniewska, Katarzyna; Pejsak, Zygmunt

    2013-01-18

    Swine influenza (SI) is an acute respiratory disease caused by swine influenza virus (SIV). Swine influenza is generally characterized by acute onset of fever and respiratory symptoms. The most frequent complications of influenza are secondary bacterial pneumonia. The objective of this work was to study the acute phase proteins (APP) responses after coinfection of piglets with H1N1 swine influenza virus (SwH1N1) and Pasteurella multocida (Pm) in order to identify whether the individual APP response correlate with disease severity and whether APP could be used as markers of the health status of coinfected pigs. In all coinfected pigs clinical sings, including fever, coughing and dyspnea, were seen. Viral shedding was observed from 2 to 7 dpi. The mean level of antibodies against Pm dermonecrotoxin in infected piglets increase significantly from 7 dpi. Anti-SwH1N1 antibodies in the serum were detected from 7 dpi. The concentration of C-reactive protein (CRP) increased significantly at 1 dpi as compared to control pigs, and remained significantly higher to 3 dpi. Level of serum amyloid A (SAA) was significantly higher from 2 to 3 dpi. Haptoglobin (Hp) was significantly elevated from 3 dpi to the end of study, while pig major acute phase protein (Pig-MAP) from 3 to 7 dpi. The concentrations of CRP, Hp and SAA significantly increased before specific antibodies were detected. Positive correlations were found between serum concentration of Hp and SAA and lung scores, and between clinical score and concentrations of Pig-MAP and SAA. The results of current study confirmed that monitoring of APP may revealed ongoing infection, and in this way may be useful in selecting clinically healthy pigs (i.e. before integration into an uninfected herd). Present results corroborated our previous findings that SAA could be a potentially useful indicator in experimental infection studies (e.g. vaccine efficiency investigations) or as a marker for disease severity, because of correlation

  14. Safety and efficacy of a novel live attenuated influenza vaccine against pandemic H1N1 in swine

    Science.gov (United States)

    On June 11, 2009 the World Health Organization (WHO) declared that the outbreaks caused by novel swine-origin influenza A (H1N1) virus had reached pandemic proportions. The pandemic H1N1 (H1N1pdm) is the predominant influenza strain in the human population. It has also crossed the species barriers a...

  15. Pre-infection of pigs with Mycoplasma hyopneumoniae modifies outcomes of infection with European swine influenza virus of H1N1, but not H1N2, subtype.

    Science.gov (United States)

    Deblanc, C; Gorin, S; Quéguiner, S; Gautier-Bouchardon, A V; Ferré, S; Amenna, N; Cariolet, R; Simon, G

    2012-05-25

    Swine influenza virus (SIV) and Mycoplasma hyopneumoniae (Mhp) are widespread in farms and are major pathogens involved in the porcine respiratory disease complex (PRDC). The aim of this experiment was to compare the pathogenicity of European avian-like swine H1N1 and European human-like reassortant swine H1N2 viruses in naïve pigs and in pigs previously infected with Mhp. Six groups of SPF pigs were inoculated intra-tracheally with either Mhp, or H1N1, or H1N2 or Mhp+H1N1 or Mhp+H1N2, both pathogens being inoculated at 21 days intervals in these two last groups. A mock-infected group was included. Although both SIV strains induced clinical signs when singly inoculated, results indicated that the H1N2 SIV was more pathogenic than the H1N1 virus, with an earlier shedding and a greater spread in lungs. Initial infection with Mhp before SIV inoculation increased flu clinical signs and pathogenesis (hyperthermia, loss of appetite, pneumonia lesions) due to the H1N1 virus but did not modify significantly outcomes of H1N2 infection. Thus, Mhp and SIV H1N1 appeared to act synergistically, whereas Mhp and SIV H1N2 would compete, as H1N2 infection led to the elimination of Mhp in lung diaphragmatic lobes. In conclusion, SIV would be a risk factor for the severity of respiratory disorders when associated with Mhp, depending on the viral subtype involved. This experimental model of coinfection with Mhp and avian-like swine H1N1 is a relevant tool for studying the pathogenesis of SIV-associated PRDC and testing intervention strategies for the control of the disease. Copyright © 2012 Elsevier B.V. All rights reserved.

  16. The neuropsychiatric aspects of influenza/swine flu: A selective review.

    Science.gov (United States)

    Manjunatha, Narayana; Math, Suresh Bada; Kulkarni, Girish Baburao; Chaturvedi, Santosh Kumar

    2011-07-01

    The world witnessed the influenza virus during the seasonal epidemics and pandemics. The current strain of H1N1 (swine flu) pandemic is believed to be the legacy of the influenza pandemic (1918-19). The influenza virus has been implicated in many neuropsychiatric disorders. In view of the recent pandemic, it would be interesting to review the neuropsychiatric aspects of influenza, specifically swine flu. Author used popular search engine 'PUBMED' to search for published articles with different MeSH terms using Boolean operator (AND). Among these, a selective review of the published literature was done. Acute manifestations of swine flu varied from behavioral changes, fear of misdiagnosis during outbreak, neurological features like seizures, encephalopathy, encephalitis, transverse myelitis, aseptic meningitis, multiple sclerosis, and Guillian-Barre Syndrome. Among the chronic manifestations, schizophrenia, Parkinson's disease, mood disorder, dementia, and mental retardation have been hypothesized. Further research is required to understand the etiological hypothesis of the chronic manifestations of influenza. The author urges neuroscientists around the world to make use of the current swine flu pandemic as an opportunity for further research.

  17. The neuropsychiatric aspects of influenza/swine flu: A selective review

    Directory of Open Access Journals (Sweden)

    Narayana Manjunatha

    2011-01-01

    Full Text Available The world witnessed the influenza virus during the seasonal epidemics and pandemics. The current strain of H1N1 (swine flu pandemic is believed to be the legacy of the influenza pandemic (1918-19. The influenza virus has been implicated in many neuropsychiatric disorders. In view of the recent pandemic, it would be interesting to review the neuropsychiatric aspects of influenza, specifically swine flu. Author used popular search engine ′PUBMED′ to search for published articles with different MeSH terms using Boolean operator (AND. Among these, a selective review of the published literature was done. Acute manifestations of swine flu varied from behavioral changes, fear of misdiagnosis during outbreak, neurological features like seizures, encephalopathy, encephalitis, transverse myelitis, aseptic meningitis, multiple sclerosis, and Guillian-Barre Syndrome. Among the chronic manifestations, schizophrenia, Parkinson′s disease, mood disorder, dementia, and mental retardation have been hypothesized. Further research is required to understand the etiological hypothesis of the chronic manifestations of influenza. The author urges neuroscientists around the world to make use of the current swine flu pandemic as an opportunity for further research.

  18. Classical Swine Fever Virus-Rluc Replicons

    DEFF Research Database (Denmark)

    Risager, Peter Christian; Belsham, Graham J.; Rasmussen, Thomas Bruun

    Classical swine fever virus (CSFV) is the etiologic agent of the severe porcine disease, classical swine fever. Unraveling the molecular determinants of efficient replication is crucial for gaining proper knowledge of the pathogenic traits of this virus. Monitoring the replication competence within...

  19. Triple-reassortant swine influenza A (H1) in humans in the United States, 2005-2009.

    Science.gov (United States)

    Shinde, Vivek; Bridges, Carolyn B; Uyeki, Timothy M; Shu, Bo; Balish, Amanda; Xu, Xiyan; Lindstrom, Stephen; Gubareva, Larisa V; Deyde, Varough; Garten, Rebecca J; Harris, Meghan; Gerber, Susan; Vagasky, Susan; Smith, Forrest; Pascoe, Neal; Martin, Karen; Dufficy, Deborah; Ritger, Kathy; Conover, Craig; Quinlisk, Patricia; Klimov, Alexander; Bresee, Joseph S; Finelli, Lyn

    2009-06-18

    Triple-reassortant swine influenza A (H1) viruses--containing genes from avian, human, and swine influenza viruses--emerged and became enzootic among pig herds in North America during the late 1990s. We report the clinical features of the first 11 sporadic cases of infection of humans with triple-reassortant swine influenza A (H1) viruses reported to the Centers for Disease Control and Prevention, occurring from December 2005 through February 2009, until just before the current epidemic of swine-origin influenza A (H1N1) among humans. These data were obtained from routine national influenza surveillance reports and from joint case investigations by public and animal health agencies. The median age of the 11 patients was 10 years (range, 16 months to 48 years), and 4 had underlying health conditions. Nine of the patients had had exposure to pigs, five through direct contact and four through visits to a location where pigs were present but without contact. In another patient, human-to-human transmission was suspected. The range of the incubation period, from the last known exposure to the onset of symptoms, was 3 to 9 days. Among the 10 patients with known clinical symptoms, symptoms included fever (in 90%), cough (in 100%), headache (in 60%), and diarrhea (in 30%). Complete blood counts were available for four patients, revealing leukopenia in two, lymphopenia in one, and thrombocytopenia in another. Four patients were hospitalized, two of whom underwent invasive mechanical ventilation. Four patients received oseltamivir, and all 11 recovered from their illness. From December 2005 until just before the current human epidemic of swine-origin influenza viruses, there was sporadic infection with triple-reassortant swine influenza A (H1) viruses in persons with exposure to pigs in the United States. Although all the patients recovered, severe illness of the lower respiratory tract and unusual influenza signs such as diarrhea were observed in some patients, including

  20. Influenza C and D Viruses Package Eight Organized Ribonucleoprotein Complexes.

    Science.gov (United States)

    Nakatsu, Sumiho; Murakami, Shin; Shindo, Keiko; Horimoto, Taisuke; Sagara, Hiroshi; Noda, Takeshi; Kawaoka, Yoshihiro

    2018-03-15

    Influenza A and B viruses have eight-segmented, single-stranded, negative-sense RNA genomes, whereas influenza C and D viruses have seven-segmented genomes. Each genomic RNA segment exists in the form of a ribonucleoprotein complex (RNP) in association with nucleoproteins and an RNA-dependent RNA polymerase in virions. Influenza D virus was recently isolated from swine and cattle, but its morphology is not fully studied. Here, we examined the morphological characteristics of D/bovine/Yamagata/10710/2016 (D/Yamagata) and C/Ann Arbor/50 (C/AA), focusing on RNPs packaged within the virions. By scanning transmission electron microscopic tomography, we found that more than 70% of D/Yamagata and C/AA virions packaged eight RNPs arranged in the "1+7" pattern as observed in influenza A and B viruses, even though type C and D virus genomes are segmented into only seven segments. These results imply that influenza viruses generally package eight RNPs arranged in the "1+7" pattern regardless of the number of RNA segments in their genome. IMPORTANCE The genomes of influenza A and B viruses are segmented into eight segments of negative-sense RNA, and those of influenza C and D viruses are segmented into seven segments. For progeny virions to be infectious, each virion needs to package all of their genomic segments. Several studies support the conclusion that influenza A and B viruses selectively package eight distinct genomic RNA segments; however, the packaging of influenza C and D viruses, which possess seven segmented genomes, is less understood. By using electron microscopy, we showed that influenza C and D viruses package eight RNA segments just as influenza A and B viruses do. These results suggest that influenza viruses prefer to package eight RNA segments within virions independent of the number of genome segments. Copyright © 2018 American Society for Microbiology.

  1. Genetic and biological characterisation of an avian-like H1N2 swine influenza virus generated by reassortment of circulating avian-like H1N1 and H3N2 subtypes in Denmark

    Science.gov (United States)

    2013-01-01

    Background The influenza A virus subtypes H1N1, H1N2 and H3N2 are the most prevalent subtypes in swine. In 2003, a reassorted H1N2 swine influenza virus (SIV) subtype appeared and became prevalent in Denmark. In the present study, the reassortant H1N2 subtype was characterised genetically and the infection dynamics compared to an “avian-like” H1N1 virus by an experimental infection study. Methods Sequence analyses were performed of the H1N2 virus. Two groups of pigs were inoculated with the reassortant H1N2 virus and an “avian-like” H1N1 virus, respectively, followed by inoculation with the opposite subtype four weeks later. Measurements of HI antibodies and acute phase proteins were performed. Nasal virus excretion and virus load in lungs were determined by real-time RT-PCR. Results The phylogenetic analysis revealed that the reassorted H1N2 virus contained a European “avian-like” H1-gene and a European “swine-like” N2-gene, thus being genetically distinct from most H1N2 viruses circulating in Europe, but similar to viruses reported in 2009/2010 in Sweden and Italy. Sequence analyses of the internal genes revealed that the reassortment probably arose between circulating Danish “avian-like” H1N1 and H3N2 SIVs. Infected pigs developed cross-reactive antibodies, and increased levels of acute phase proteins after inoculations. Pigs inoculated with H1N2 exhibited nasal virus excretion for seven days, peaking day 1 after inoculation two days earlier than H1N1 infected pigs and at a six times higher level. The difference, however, was not statistically significant. Pigs euthanized on day 4 after inoculation, had a high virus load in all lung lobes. After the second inoculation, the nasal virus excretion was minimal. There were no clinical sign except elevated body temperature under the experimental conditions. Conclusions The “avian-like” H1N2 subtype, which has been established in the Danish pig population at least since 2003, is a reassortant

  2. Characterization of uncultivable bat influenza virus using a replicative synthetic virus.

    Directory of Open Access Journals (Sweden)

    Bin Zhou

    2014-10-01

    Full Text Available Bats harbor many viruses, which are periodically transmitted to humans resulting in outbreaks of disease (e.g., Ebola, SARS-CoV. Recently, influenza virus-like sequences were identified in bats; however, the viruses could not be cultured. This discovery aroused great interest in understanding the evolutionary history and pandemic potential of bat-influenza. Using synthetic genomics, we were unable to rescue the wild type bat virus, but could rescue a modified bat-influenza virus that had the HA and NA coding regions replaced with those of A/PR/8/1934 (H1N1. This modified bat-influenza virus replicated efficiently in vitro and in mice, resulting in severe disease. Additional studies using a bat-influenza virus that had the HA and NA of A/swine/Texas/4199-2/1998 (H3N2 showed that the PR8 HA and NA contributed to the pathogenicity in mice. Unlike other influenza viruses, engineering truncations hypothesized to reduce interferon antagonism into the NS1 protein didn't attenuate bat-influenza. In contrast, substitution of a putative virulence mutation from the bat-influenza PB2 significantly attenuated the virus in mice and introduction of a putative virulence mutation increased its pathogenicity. Mini-genome replication studies and virus reassortment experiments demonstrated that bat-influenza has very limited genetic and protein compatibility with Type A or Type B influenza viruses, yet it readily reassorts with another divergent bat-influenza virus, suggesting that the bat-influenza lineage may represent a new Genus/Species within the Orthomyxoviridae family. Collectively, our data indicate that the bat-influenza viruses recently identified are authentic viruses that pose little, if any, pandemic threat to humans; however, they provide new insights into the evolution and basic biology of influenza viruses.

  3. Characterization of uncultivable bat influenza virus using a replicative synthetic virus.

    Science.gov (United States)

    Zhou, Bin; Ma, Jingjiao; Liu, Qinfang; Bawa, Bhupinder; Wang, Wei; Shabman, Reed S; Duff, Michael; Lee, Jinhwa; Lang, Yuekun; Cao, Nan; Nagy, Abdou; Lin, Xudong; Stockwell, Timothy B; Richt, Juergen A; Wentworth, David E; Ma, Wenjun

    2014-10-01

    Bats harbor many viruses, which are periodically transmitted to humans resulting in outbreaks of disease (e.g., Ebola, SARS-CoV). Recently, influenza virus-like sequences were identified in bats; however, the viruses could not be cultured. This discovery aroused great interest in understanding the evolutionary history and pandemic potential of bat-influenza. Using synthetic genomics, we were unable to rescue the wild type bat virus, but could rescue a modified bat-influenza virus that had the HA and NA coding regions replaced with those of A/PR/8/1934 (H1N1). This modified bat-influenza virus replicated efficiently in vitro and in mice, resulting in severe disease. Additional studies using a bat-influenza virus that had the HA and NA of A/swine/Texas/4199-2/1998 (H3N2) showed that the PR8 HA and NA contributed to the pathogenicity in mice. Unlike other influenza viruses, engineering truncations hypothesized to reduce interferon antagonism into the NS1 protein didn't attenuate bat-influenza. In contrast, substitution of a putative virulence mutation from the bat-influenza PB2 significantly attenuated the virus in mice and introduction of a putative virulence mutation increased its pathogenicity. Mini-genome replication studies and virus reassortment experiments demonstrated that bat-influenza has very limited genetic and protein compatibility with Type A or Type B influenza viruses, yet it readily reassorts with another divergent bat-influenza virus, suggesting that the bat-influenza lineage may represent a new Genus/Species within the Orthomyxoviridae family. Collectively, our data indicate that the bat-influenza viruses recently identified are authentic viruses that pose little, if any, pandemic threat to humans; however, they provide new insights into the evolution and basic biology of influenza viruses.

  4. Virus-Vectored Influenza Virus Vaccines

    Science.gov (United States)

    Tripp, Ralph A.; Tompkins, S. Mark

    2014-01-01

    Despite the availability of an inactivated vaccine that has been licensed for >50 years, the influenza virus continues to cause morbidity and mortality worldwide. Constant evolution of circulating influenza virus strains and the emergence of new strains diminishes the effectiveness of annual vaccines that rely on a match with circulating influenza strains. Thus, there is a continued need for new, efficacious vaccines conferring cross-clade protection to avoid the need for biannual reformulation of seasonal influenza vaccines. Recombinant virus-vectored vaccines are an appealing alternative to classical inactivated vaccines because virus vectors enable native expression of influenza antigens, even from virulent influenza viruses, while expressed in the context of the vector that can improve immunogenicity. In addition, a vectored vaccine often enables delivery of the vaccine to sites of inductive immunity such as the respiratory tract enabling protection from influenza virus infection. Moreover, the ability to readily manipulate virus vectors to produce novel influenza vaccines may provide the quickest path toward a universal vaccine protecting against all influenza viruses. This review will discuss experimental virus-vectored vaccines for use in humans, comparing them to licensed vaccines and the hurdles faced for licensure of these next-generation influenza virus vaccines. PMID:25105278

  5. High-resolution computed tomography findings of swine-origin influenza A (H1N1) virus (S-OIV) infection: comparison with scrub typhus

    Energy Technology Data Exchange (ETDEWEB)

    Jo, Bang Sil; Lee, In Jae; Lee, Kwanseop [Dept. of Radiology, Hallym Univ. College of Medicine, Seoul (Korea, Republic of)], E-mail: ijlee2003@medimail.co.kr; Im, Hyoung June [Dept. of Occupational Medicine, Hallym Univ. College of Medicine, Seoul (Korea, Republic of)

    2012-07-15

    Background. Swine-origin influenza A (H1N1) virus (S-OIV) infection and scrub typhus, also known as tsutsugamushi disease can manifest as acute respiratory illnesses, particularly during the late fall or early winter, with similar radiographic findings, such as a predominance of ground-glass opacity (GGO). Purpose. To differentiate S-OIV infection from scrub typhus using high-resolution computed tomography (HRCT). Material and Methods. We retrospectively reviewed the HRCT findings of 14 patients with S-OIV infection and 10 patients with scrub typhus. We assessed the location, cross-sectional distribution, and the presence of a peribronchovascular distribution of GGO and consolidations on HRCT. We also assessed the presence of interlobular septal thickening, bronchial wall thickening, pneumothorax, pneumomediastinum, pleural effusion, and mediastinal or axillary lymph node enlargement. Results. Scrub typhus was more common than S-OIV in elderly patients (P < 0.001). The monthly incidences of S-OIV and scrub typhus infection reached a peak between October and November. About 86% of S-OIV patients and 80% of scrub typhus patients presented with GGO. About 67% of the GGO lesions in S-OIV had a peribronchovascular distribution, but this was absent in scrub typhus (P = 0.005). Consolidation (93% vs. 10%, P < 0.001) and bronchial wall thickening (43% vs. 0%, P = 0.024) were more frequent in S-OIV infection than scrub typhus. Interlobular septal thickening (90% vs. 36%, P = 0.013) and axillary lymphadenopathy (90% vs. 0%, P < 0.001) were more common in scrub typhus than S-OIV infection. Conclusion. There was considerable overlap in HRCT findings between S-OIV infection and scrub typhus. However, S-OIV showed a distinctive peribronchovascular distribution of GGO lesions. Consolidation and bronchial wall thickening were seen more frequently in S-OIV infection, whereas interlobular septal thickening and axillary lymphadenopathy were more common in scrub typhus. Thus, CT could

  6. High-resolution computed tomography findings of swine-origin influenza A (H1N1) virus (S-OIV) infection: comparison with scrub typhus

    International Nuclear Information System (INIS)

    Jo, Bang Sil; Lee, In Jae; Lee, Kwanseop; Im, Hyoung June

    2012-01-01

    Background. Swine-origin influenza A (H1N1) virus (S-OIV) infection and scrub typhus, also known as tsutsugamushi disease can manifest as acute respiratory illnesses, particularly during the late fall or early winter, with similar radiographic findings, such as a predominance of ground-glass opacity (GGO). Purpose. To differentiate S-OIV infection from scrub typhus using high-resolution computed tomography (HRCT). Material and Methods. We retrospectively reviewed the HRCT findings of 14 patients with S-OIV infection and 10 patients with scrub typhus. We assessed the location, cross-sectional distribution, and the presence of a peribronchovascular distribution of GGO and consolidations on HRCT. We also assessed the presence of interlobular septal thickening, bronchial wall thickening, pneumothorax, pneumomediastinum, pleural effusion, and mediastinal or axillary lymph node enlargement. Results. Scrub typhus was more common than S-OIV in elderly patients (P < 0.001). The monthly incidences of S-OIV and scrub typhus infection reached a peak between October and November. About 86% of S-OIV patients and 80% of scrub typhus patients presented with GGO. About 67% of the GGO lesions in S-OIV had a peribronchovascular distribution, but this was absent in scrub typhus (P = 0.005). Consolidation (93% vs. 10%, P < 0.001) and bronchial wall thickening (43% vs. 0%, P = 0.024) were more frequent in S-OIV infection than scrub typhus. Interlobular septal thickening (90% vs. 36%, P = 0.013) and axillary lymphadenopathy (90% vs. 0%, P < 0.001) were more common in scrub typhus than S-OIV infection. Conclusion. There was considerable overlap in HRCT findings between S-OIV infection and scrub typhus. However, S-OIV showed a distinctive peribronchovascular distribution of GGO lesions. Consolidation and bronchial wall thickening were seen more frequently in S-OIV infection, whereas interlobular septal thickening and axillary lymphadenopathy were more common in scrub typhus. Thus, CT could

  7. Rapid separation and identification of the subtypes of swine and equine influenza A viruses by electromigration techniques with UV and fluorometric detection

    Czech Academy of Sciences Publication Activity Database

    Horká, Marie; Kubíček, O.; Kubesová, Anna; Rosenbergová, K.; Kubíčková, Z.; Šlais, Karel

    2011-01-01

    Roč. 136, č. 14 (2011), s. 3010-3015 ISSN 0003-2654 R&D Projects: GA AV ČR IAAX00310701; GA MV VG20112015021 Institutional research plan: CEZ:AV0Z40310501 Keywords : influenza viruses * capillary zone electrophoresis (CZE) * capillary isoelectric focusing (CIEF) Subject RIV: CB - Analytical Chemistry, Separation Impact factor: 4.230, year: 2011

  8. Characterization of a novel oil-in-water emulsion adjuvant for swine influenza virus and Mycoplasma hyopneumoniae vaccines

    Science.gov (United States)

    Vaccines consisting of subunit or inactivated bacteria/virus and potent adjuvants are widely used to control and prevent infectious diseases. Because inactivated and subunit antigens are often less antigenic than live microbes, a growing need exists for the development of new and improved vaccine ad...

  9. Analysis of the quality of protection induced by a porcine influenza A vaccine to challenge with an H3N2 virus

    NARCIS (Netherlands)

    Heinen, P.P.; Nieuwstadt, van A.P.; Boer Luijtze, de E.A.; Bianchi, A.

    2001-01-01

    Antigenic drift of swine influenza A (H3N2) viruses away from the human A/Port Chalmers/1/73 (H3N2) strain, used in current commercial swine influenza vaccines, has been demonstrated in The Netherlands and Belgium. Therefore, replacement of this human strain by a more recent swine H3N2 isolate has

  10. Characterization of cross protection of Swine-Origin Influenza Virus (S-OIV) H1N1 and reassortant H5N1 influenza vaccine in BALB/c mice given a single-dose vaccination.

    Science.gov (United States)

    Lin, Hui-Tsu; Chuang, Chuan-Chang; Wu, Hsieh-Ling; Chu, Der-Ming; Wang, Yeau-Ching

    2013-03-21

    Influenza virus has antigen drift and antigen shift effect, vaccination with some influenza vaccine might not induce sufficient immunity for host to the threat of other influenza virus strains. S-OIV H1N1 and H5N1 influenza vaccines in single-dose immunization were evaluated in mice for cross protection to the challenge of A/California/7/2009 H1N1 or NIBRG-14 H5N1 virus. Both H1N1 and H5N1 induced significant homologous IgG, HAI, and microneutralization antibody responses in the mice, while only vaccines plus adjuvant produced significant heterogeneous IgG and HAI antibody responses. Both alum and MPLA adjuvants significantly reduced the S-OIV H1N1 vaccine dose required to elicit protective HAI antibody titers from 0.05 μg to 0.001 μg. Vaccines alone did not protect mice from challenge with heterogeneous influenza virus, while H5N1 vaccine plus alum and MPLA adjuvants did. Mouse body weight loss was also less significant in the presence of adjuvant than in the vaccine without adjuvant. Furthermore, both H1N1 and H5N1 lung viral titers of immunized mice were significantly reduced post challenge with homologous viruses. Only in the presence of MPLA adjuvant could the H5N1 vaccine significantly reduce mouse lung viral titers post H1N1 virus challenge, and not vice versa. MPLA adjuvant induced cross protection with a single dose vaccination to the challenge of heterogeneous influenza virus in mice. Lung viral titer seemed to be a better indicator compared to IgG, neutralization antibody, and HAI titer to predict survival of mice infected with influenza virus.

  11. Novel vaccines against influenza viruses

    OpenAIRE

    Kang, Sang-Moo; Song, Jae-Min; Compans, Richard W.

    2011-01-01

    Killed and live attenuated influenza virus vaccines are effective in preventing and curbing the spread of influenza epidemics when the strains present in the vaccines are closely matched with the predicted epidemic strains. These vaccines are primarily targeted to induce immunity to the variable major target antigen, hemagglutinin (HA) of influenza virus. However, current vaccines are not effective in preventing the emergence of new pandemic or highly virulent viruses. New approaches are bein...

  12. Polymerase Discordance in Novel Swine Influenza H3N2v Constellations Is Tolerated in Swine but Not Human Respiratory Epithelial Cells

    Science.gov (United States)

    Powell, Joshua D.; Dlugolenski, Daniel; Nagy, Tamas; Gabbard, Jon; Lee, Christopher; Tompkins, Stephen M.; Tripp, Ralph A.

    2014-01-01

    Swine-origin H3N2v, a variant of H3N2 influenza virus, is a concern for novel reassortment with circulating pandemic H1N1 influenza virus (H1N1pdm09) in swine because this can lead to the emergence of a novel pandemic virus. In this study, the reassortment prevalence of H3N2v with H1N1pdm09 was determined in swine cells. Reassortants evaluated showed that the H1N1pdm09 polymerase (PA) segment occurred within swine H3N2 with ∼80% frequency. The swine H3N2-human H1N1pdm09 PA reassortant (swH3N2-huPA) showed enhanced replication in swine cells, and was the dominant gene constellation. Ferrets infected with swH3N2-huPA had increased lung pathogenicity compared to parent viruses; however, swH3N2-huPA replication in normal human bronchoepithelial cells was attenuated - a feature linked to expression of IFN-β and IFN-λ genes in human but not swine cells. These findings indicate that emergence of novel H3N2v influenza constellations require more than changes in the viral polymerase complex to overcome barriers to cross-species transmission. Additionally, these findings reveal that while the ferret model is highly informative for influenza studies, slight differences in pathogenicity may not necessarily be indicative of human outcomes after infection. PMID:25330303

  13. Polymerase discordance in novel swine influenza H3N2v constellations is tolerated in swine but not human respiratory epithelial cells.

    Directory of Open Access Journals (Sweden)

    Joshua D Powell

    Full Text Available Swine-origin H3N2v, a variant of H3N2 influenza virus, is a concern for novel reassortment with circulating pandemic H1N1 influenza virus (H1N1pdm09 in swine because this can lead to the emergence of a novel pandemic virus. In this study, the reassortment prevalence of H3N2v with H1N1pdm09 was determined in swine cells. Reassortants evaluated showed that the H1N1pdm09 polymerase (PA segment occurred within swine H3N2 with ∼ 80% frequency. The swine H3N2-human H1N1pdm09 PA reassortant (swH3N2-huPA showed enhanced replication in swine cells, and was the dominant gene constellation. Ferrets infected with swH3N2-huPA had increased lung pathogenicity compared to parent viruses; however, swH3N2-huPA replication in normal human bronchoepithelial cells was attenuated - a feature linked to expression of IFN-β and IFN-λ genes in human but not swine cells. These findings indicate that emergence of novel H3N2v influenza constellations require more than changes in the viral polymerase complex to overcome barriers to cross-species transmission. Additionally, these findings reveal that while the ferret model is highly informative for influenza studies, slight differences in pathogenicity may not necessarily be indicative of human outcomes after infection.

  14. Serum amyloid P component inhibits influenza A virus infections: in vitro and in vivo studies

    DEFF Research Database (Denmark)

    Horvath, A; Andersen, I; Junker, K

    2001-01-01

    . These studies were extended to comprise five mouse-adapted influenza A strains, two swine influenza A strains, a mink influenza A virus, a ferret influenza A reassortant virus, a influenza B virus and a parainfluenza 3 virus. The HA activity of all these viruses was inhibited by SAP. Western blotting showed......Serum amyloid P component (SAP) binds in vitro Ca(2+)-dependently to several ligands including oligosaccharides with terminal mannose and galactose. We have earlier reported that SAP binds to human influenza A virus strains, inhibiting hemagglutinin (HA) activity and virus infectivity in vitro...... that SAP bound to HA trimers, monomers and HA1 and HA2 subunits of influenza A virus. Binding studies indicated that galactose, mannose and fucose moieties contributed to the SAP reacting site(s). Intranasal administration of human SAP to mice induced no demonstrable toxic reactions, and circulating...

  15. Influenza A Virus with a Human-Like N2 Gene Is Circulating in Pigs

    DEFF Research Database (Denmark)

    Breum, Solvej Østergaard; Hjulsager, Charlotte Kristiane; Trebbien, Ramona

    2013-01-01

    A novel reassortant influenza A virus, H1avN2hu, has been found in Danish swine. The virus contains an H1 gene similar to the hemagglutinin (HA) gene of H1N1 avian-like swine viruses and an N2 gene most closely related to the neuraminidase (NA) gene of human H3N2 viruses from the mid-1990s....

  16. Dynamic Virus-Bacterium Interactions in a Porcine Precision-Cut Lung Slice Coinfection Model: Swine Influenza Virus Paves the Way for Streptococcus suis Infection in a Two-Step Process.

    Science.gov (United States)

    Meng, F; Wu, N H; Nerlich, A; Herrler, G; Valentin-Weigand, P; Seitz, M

    2015-07-01

    Swine influenza virus (SIV) and Streptococcus suis are common pathogens of the respiratory tract in pigs, with both being associated with pneumonia. The interactions of both pathogens and their contribution to copathogenesis are only poorly understood. In the present study, we established a porcine precision-cut lung slice (PCLS) coinfection model and analyzed the effects of a primary SIV infection on secondary infection by S. suis at different time points. We found that SIV promoted adherence, colonization, and invasion of S. suis in a two-step process. First, in the initial stages, these effects were dependent on bacterial encapsulation, as shown by selective adherence of encapsulated, but not unencapsulated, S. suis to SIV-infected cells. Second, at a later stage of infection, SIV promoted S. suis adherence and invasion of deeper tissues by damaging ciliated epithelial cells. This effect was seen with a highly virulent SIV subtype H3N2 strain but not with a low-virulence subtype H1N1 strain, and it was independent of the bacterial capsule, since an unencapsulated S. suis mutant behaved in a way similar to that of the encapsulated wild-type strain. In conclusion, the PCLS coinfection model established here revealed novel insights into the dynamic interactions between SIV and S. suis during infection of the respiratory tract. It showed that at least two different mechanisms contribute to the beneficial effects of SIV for S. suis, including capsule-mediated bacterial attachment to SIV-infected cells and capsule-independent effects involving virus-mediated damage of ciliated epithelial cells. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  17. Analysis of the acute-phase protein response in pigs to clinical and subclinical infection with H3N2 swine influenza virus.

    Science.gov (United States)

    Pomorska-Mól, Małgorzata; Kwit, Krzysztof; Pejsak, Zygmunt; Markowska-Daniel, Iwona

    2014-03-01

    Swine influenza (SI) is a contagious, important respiratory disease. Diagnosis of SI is based on the clinical signs, confirmed by the detection of viral RNA or specific antibodies. However, the infection is much more frequent than the disease. The aim of study was to investigate the kinetics of acute-phase protein (APP) response during subclinical and clinical influenza in pigs. The utility of APP measurements in identification of infected animals was also evaluated. Twenty-eight piglets were used. C-reactive protein (CRP), haptoglobin (Hp), serum amyloid A (SAA) and pig major acute-phase protein (Pig-MAP) concentrations in serum were measured using commercial ELISAs. No relevant clinical signs were observed in intranasally infected pigs. In contrast, coughing, nasal discharge, and fever were observed in pigs infected intratracheally. All infected pigs exhibited specific antibodies in the serum at 10 dpi, and viral shedding was confirmed. The concentrations of CRP, Hp and SAA were significantly increased after infection. The level of Pig-MAP remained constant during subclinical and clinical infection. The concentrations of CRP, Hp and SAA were higher in pigs with clinical disease. Although not specific, strategic APP measurements may reveal ongoing clinical and subclinical infection. A close relationship between the magnitude of serum APP response with the severity of disease, providing an objective tool for validation the severity of infection. The maximum concentration of SAA in serum was closely correlated with lung score and makes this APP potential indicator for disease progress or estimation of treatment strategy.

  18. Comparative virulence of wild-type H1N1pdm09 influenza A isolates in swine.

    Science.gov (United States)

    Henningson, Jamie N; Rajao, Daniela S; Kitikoon, Pravina; Lorusso, Alessio; Culhane, Marie R; Lewis, Nicola S; Anderson, Tavis K; Vincent, Amy L

    2015-03-23

    In 2009, a novel swine-origin H1N1 (H1N1pdm09) influenza A virus (IAV) reached pandemic status and was soon after detected in pigs worldwide. The objective of this study was to evaluate whether differences in the HA protein can affect pathogenicity and antigenicity of H1N1pdm09 in swine. We compared lung pathology, viral replication and shedding and the antigenic relationships of four wild-type H1N1pdm09 viruses in pigs: one human (CA/09) and three isolated in swine after the pandemic (IL/09, IL/10, and MN/10). The swine strains were selected based upon unique amino acid substitutions in the HA protein. All selected viruses resulted in mild disease and viral shedding through nasal and oral fluids, however, viral replication and the degree of pathology varied between the isolates. A/Swine/IL/5265/2010 (IL/10), with substitutions I120M, S146G, S186P, V252M, had lower viral titers in the lungs and nasal secretions and fewer lung lesions. The other two swine viruses caused respiratory pathology and replicated to titers similar to the human CA/09, although MN/10 (with mutations D45Y, K304E, A425S) had lower nasal shedding. Swine-adapted H1N1pdm09 have zoonotic potential, and have reassorted with other co-circulating swine viruses, influencing the evolution of IAV in swine globally. Further, our results suggest that amino acid changes in the HA gene have the potential to alter the virulence of H1N1pdm09 in swine. Importantly, the limited clinical signs in pigs could result in continued circulation of these viruses with other endemic swine IAVs providing opportunities for reassortment. Published by Elsevier B.V.

  19. Anti-viral properties and mode of action of standardized Echinacea purpurea extract against highly pathogenic avian Influenza virus (H5N1, H7N7 and swine-origin H1N1 (S-OIV

    Directory of Open Access Journals (Sweden)

    Schoop Roland

    2009-11-01

    Full Text Available Abstract Background Influenza virus (IV infections are a major threat to human welfare and animal health worldwide. Anti-viral therapy includes vaccines and a few anti-viral drugs. However vaccines are not always available in time, as demonstrated by the emergence of the new 2009 H1N1-type pandemic strain of swine origin (S-OIV in April 2009, and the acquisition of resistance to neuraminidase inhibitors such as Tamiflu® (oseltamivir is a potential problem. Therefore the prospects for the control of IV by existing anti-viral drugs are limited. As an alternative approach to the common anti-virals we studied in more detail a commercial standardized extract of the widely used herb Echinacea purpurea (Echinaforce®, EF in order to elucidate the nature of its anti-IV activity. Results Human H1N1-type IV, highly pathogenic avian IV (HPAIV of the H5- and H7-types, as well as swine origin IV (S-OIV, H1N1, were all inactivated in cell culture assays by the EF preparation at concentrations ranging from the recommended dose for oral consumption to several orders of magnitude lower. Detailed studies with the H5N1 HPAIV strain indicated that direct contact between EF and virus was required, prior to infection, in order to obtain maximum inhibition in virus replication. Hemagglutination assays showed that the extract inhibited the receptor binding activity of the virus, suggesting that the extract interferes with the viral entry into cells. In sequential passage studies under treatment in cell culture with the H5N1 virus no EF-resistant variants emerged, in contrast to Tamiflu®, which produced resistant viruses upon passaging. Furthermore, the Tamiflu®-resistant virus was just as susceptible to EF as the wild type virus. Conclusion As a result of these investigations, we believe that this standard Echinacea preparation, used at the recommended dose for oral consumption, could be a useful, readily available and affordable addition to existing control options

  20. Vaccination-challenge studies with a Port Chalmers/73 (H3N2)-based swine influenza virus vaccine: Reflections on vaccine strain updates and on the vaccine potency test.

    Science.gov (United States)

    De Vleeschauwer, Annebel; Qiu, Yu; Van Reeth, Kristien

    2015-05-11

    The human A/Port Chalmers/1/73 (H3N2) influenza virus strain, the supposed ancestor of European H3N2 swine influenza viruses (SIVs), was used in most commercial SIV vaccines in Europe until recently. If manufacturers want to update vaccine strains, they have to perform laborious intratracheal (IT) challenge experiments and demonstrate reduced virus titres in the lungs of vaccinated pigs. We aimed to examine (a) the ability of a Port Chalmers/73-based commercial vaccine to induce cross-protection against a contemporary European H3N2 SIV and serologic cross-reaction against H3N2 SIVs from Europe and North America and (b) the validity of intranasal (IN) challenge and virus titrations of nasal swabs as alternatives for IT challenge and titrations of lung tissue in vaccine potency tests. Pigs were vaccinated with Suvaxyn Flu(®) and challenged by the IT or IN route with sw/Gent/172/08. Post-vaccination sera were examined in haemagglutination-inhibition assays against vaccine and challenge strains and additional H3N2 SIVs from Europe and North America, including an H3N2 variant virus. Tissues of the respiratory tract and nasal swabs were collected 3 days post challenge (DPCh) and from 0-7 DPCh, respectively, and examined by virus titration. Two vaccinations consistently induced cross-reactive antibodies against European H3N2 SIVs from 1998-2012, but minimal or undetectable antibody titres against North American viruses. Challenge virus titres in the lungs, trachea and nasal mucosa of the vaccinated pigs were significantly reduced after both IT and IN challenge. Yet the reduction of virus titres and nasal shedding was greater after IT challenge. The Port Chalmers/73-based vaccine still offered protection against a European H3N2 SIV isolated 35 years later and with only 86.9% amino acid homology in its HA1, but it is unlikely to protect against H3N2 SIVs that are endemic in North America. We use our data to reflect on vaccine strain updates and on the vaccine potency test

  1. Mycoplasma hyopneumoniae does not affect the interferon-related anti-viral response but predisposes the pig to a higher level of inflammation following swine influenza virus infection.

    Science.gov (United States)

    Deblanc, Céline; Delgado-Ortega, Mario; Gorin, Stéphane; Berri, Mustapha; Paboeuf, Frédéric; Berthon, Patricia; Herrler, Georg; Meurens, François; Simon, Gaëlle

    2016-10-01

    In pigs, influenza A viruses and Mycoplasma hyopneumoniae (Mhp) are major contributors to the porcine respiratory disease complex. Pre-infection with Mhp was previously shown experimentally to exacerbate the clinical outcomes of H1N1 infection during the first week after virus inoculation. In order to better understand the interactions between these pathogens, we aimed to assess very early responses (at 5, 24 and 48 h) after H1N1 infection in pigs pre-infected or not with Mhp. Clinical signs and macroscopic lung lesions were similar in both infected groups at early times post-H1N1 infection; and Mhp pre-infection affected neither the influenza virus replication nor the IFN-induced antiviral responses in the lung. However, it predisposed the animals to a higher inflammatory response to H1N1 infection, as revealed by the massive infiltration of neutrophils and macrophages into the lungs and the increased production of pro-inflammatory cytokines (IL-6, IL-1β and TNF-α). Thus, it seems it is this marked inflammatory state that would play a role in exacerbating the clinical signs subsequent to H1N1 infection.

  2. Novel vaccines against influenza viruses.

    Science.gov (United States)

    Kang, S M; Song, J M; Compans, R W

    2011-12-01

    Killed and live attenuated influenza virus vaccines are effective in preventing and curbing the spread of influenza epidemics when the strains present in the vaccines are closely matched with the predicted epidemic strains. These vaccines are primarily targeted to induce immunity to the variable major target antigen, hemagglutinin (HA) of influenza virus. However, current vaccines are not effective in preventing the emergence of new pandemic or highly virulent viruses. New approaches are being investigated to develop universal influenza virus vaccines as well as to apply more effective vaccine delivery methods. Conserved vaccine targets including the influenza M2 ion channel protein and HA stalk domains are being developed using recombinant technologies to improve the level of cross protection. In addition, recent studies provide evidence that vaccine supplements can provide avenues to further improve current vaccies. Copyright © 2011 Elsevier B.V. All rights reserved.

  3. Pandemic H1N1 influenza virus in Chilean commercial turkeys with genetic and serologic comparisons to U.S. H1N1 avian influenza vaccine isolates

    Science.gov (United States)

    Beginning in April 2009, a novel H1N1 influenza virus has caused acute respiratory disease in humans, first in Mexico and then spreading around the world. The resulting pandemic influenza A H1N1 2009 (pH1N1) virus was isolated in swine in Canada in June, 2009, and later in turkey breeders in Chile, ...

  4. Ring test evaluation of the detection of influenza A virus in swine oral fluids by real-time, reverse transcription polymerase chain reaction (rRT-PCR) and virus isolation

    Science.gov (United States)

    The probability of detecting influenza A virus (IAV) in oral fluid (OF) specimens was calculated for each of 13 real-time, reverse transcription polymerase chain reaction (rRT-PCR) and 7 virus isolation (VI) assays. To conduct the study, OF was inoculated with H1N1 or H3N2 IAV and serially 10-fold d...

  5. Classical Swine Fever and Avian Influenza epidemcis: Lessons learned

    NARCIS (Netherlands)

    Elbers, A.R.; Loeffen, W.L.A.; Koch, G.

    2012-01-01

    This publication is based on a talk which was held in the course of the spring symposium „Impfen statt Keulen“ of the Akademie für Tiergesundheit (AfT) 2011 in Wiesbaden-Naurod. Experience with recent large-scale epidemics of Classical Swine Fever and Avian Influenza – among others in the

  6. Transmission of Influenza A Viruses

    Science.gov (United States)

    Neumann, Gabriele; Kawaoka, Yoshihiro

    2015-01-01

    Influenza A viruses cause respiratory infections that range from asymptomatic to deadly in humans. Widespread outbreaks (pandemics) are attributable to ‘novel’ viruses that possess a viral hemagglutinin (HA) gene to which humans lack immunity. After a pandemic, these novel viruses form stable virus lineages in humans and circulate until they are replaced by other novel viruses. The factors and mechanisms that facilitate virus transmission among hosts and the establishment of novel lineages are not completely understood, but the HA and basic polymerase 2 (PB2) proteins are thought to play essential roles in these processes by enabling avian influenza viruses to infect mammals and replicate efficiently in their new host. Here, we summarize our current knowledge of the contributions of HA, PB2, and other viral components to virus transmission and the formation of new virus lineages. PMID:25812763

  7. Prevalencia serológica del virus de influenza A en cerdos en Argentina durante la temporada 2002: evaluación mediante inhibición de la hemaglutinación y ELISA Seroprevalence of the swine Influenza virus in fattening pigs in Argentina in the 2002 season: evaluation by hemagglutination-inhibition and ELISA tests

    Directory of Open Access Journals (Sweden)

    P.E. Piñeyro

    2010-06-01

    Full Text Available Se evaluó la prevalencia serológica del virus de influenza mediante las pruebas de inhibición de la hemaglutinación (IHA y ELISA para los subtipos H1N1 y H3N2 en 13 granjas porcinas de Argentina. Se compararon los resultados obtenidos mediante ambas pruebas en términos individuales y de establecimientos. La prevalencia individual por la técnica de IHA fue de 38,46% a 100% para H1 y de 7,69% a 100% para H3. Por la técnica de ELISA, la prevalencia individual fue de 2,33% a 6,9% para H1 y de 9,65% a 48% para H3. No se observaron diferencias significativas entre ambas técnicas a escala de granja (H1: p=0,20; H3: p=0,11. La concordancia entre las pruebas fue nula al tomar como unidad de referencia el animal (H1: 0,005; H3: 0,070, mientras que en términos de establecimiento fue escasa (H1: 0,350; H3: 0,235. Considerando la alta prevalencia individual obtenida por la prueba de IHA y la alta sensibilidad de esta técnica, se podría sugerir que en las poblaciones porcinas de la Argentina circularon cepas virales humanas o cepas porcinas con gran proximidad filogenética a las utilizadas en este estudio desde el año 2002.The seroprevalence of the Influenza virus against H1N1 and H3N2 was determined by the hemagglutination-inhibition test (HI and a commercial swine influenza ELISA kit, in 13 Argentinean swine herds. The results of within-herd and between-herd prevalence obtained by both tests were statistically correlated. The within-herd prevalence observed by the HI test varied from 38.46 to 100% against H1 and 7.69 to 100% for H3. When the within-herd prevalence was measured with the ELISA test, it varied from 2.33 to 6.9% for H1 and 9.65 to 48% for H3. No statistical differences were observed at herd level between HI and ELISA (H1: p = 0. 20; H3: p=0.11. No agreement between HI and ELISA detected prevalence was observed when the within-herd prevalence was compared (H1: 0.005; H3: 0.070, while the agreement at herd level was considered poor

  8. Protective efficacy of a broadly cross-reactive swine influenza DNA vaccine encoding M2e, cytotoxic T lymphocyte epitope and consensus H3 hemagglutinin

    Science.gov (United States)

    2012-01-01

    Background Pigs have been implicated as mixing reservoir for the generation of new pandemic influenza strains, control of swine influenza has both veterinary and public health significance. Unlike human influenza vaccines, strains used for commercially available swine influenza vaccines are not regularly replaced, making the vaccines provide limited protection against antigenically diverse viruses. It is therefore necessary to develop broadly protective swine influenza vaccines that are efficacious to both homologous and heterologous virus infections. In this study, two forms of DNA vaccines were constructed, one was made by fusing M2e to consensus H3HA (MHa), which represents the majority of the HA sequences of H3N2 swine influenza viruses. Another was made by fusing M2e and a conserved CTL epitope (NP147-155) to consensus H3HA (MNHa). Their protective efficacies against homologous and heterologous challenges were tested. Results BALB/c mice were immunized twice by particle-mediated epidermal delivery (gene gun) with the two DNA vaccines. It was shown that the two vaccines elicited substantial antibody responses, and MNHa induced more significant T cell-mediated immune response than MHa did. Then two H3N2 strains representative of different evolutional and antigenic clusters were used to challenge the vaccine-immunized mice (homosubtypic challenge). Results indicated that both of the DNA vaccines prevented homosubtypic virus infections completely. The vaccines’ heterologous protective efficacies were further tested by challenging with a H1N1 swine influenza virus and a reassortant 2009 pandemic strain. It was found that MNHa reduced the lung viral titers significantly in both challenge groups, histopathological observation showed obvious reduction of lung pathogenesis as compared to MHa and control groups. Conclusions The combined utility of the consensus HA and the conserved M2e and CTL epitope can confer complete and partial protection against homologous and

  9. Development of Two Types of Rapid Diagnostic Test Kits To Detect the Hemagglutinin or Nucleoprotein of the Swine-Origin Pandemic Influenza A Virus H1N1▿

    OpenAIRE

    Mizuike, Rika; Sasaki, Tadahiro; Baba, Koichi; Iwamoto, Hisahiko; Shibai, Yusuke; Kosaka, Mieko; Kubota-Koketsu, Ritsuko; Yang, Cheng-Song; Du, Anariwa; Sakudo, Akikazu; Tsujikawa, Muneo; Yunoki, Mikihiro; Ikuta, Kazuyoshi

    2011-01-01

    Since its emergence in April 2009, pandemic influenza A virus H1N1 (H1N1 pdm), a new type of influenza A virus with a triple-reassortant genome, has spread throughout the world. Initial attempts to diagnose the infection in patients using immunochromatography (IC) relied on test kits developed for seasonal influenza A and B viruses, many of which proved significantly less sensitive to H1N1 pdm. Here, we prepared monoclonal antibodies that react with H1N1 pdm but not seasonal influenza A (H1N1...

  10. Outbreaks of influenza A virus in farmed mink (Neovison vison) in Denmark: molecular characterization of the viruses

    DEFF Research Database (Denmark)

    Larsen, Lars Erik; Breum, Solvej Østergaard; Trebbien, Ramona

    2012-01-01

    Influenza in mink (Neovison vison) is assumed to be rare, but several outbreaks have been described during recent years in Europe and the North America. In 2009, influenza A of the subtype H3N2 was detected in several Danish mink farms with respiratory symptoms. Full-genome sequencing showed...... diagnosed in diseased mink in a few farms. The genetic typing showed that the virus was similar to the pandemic H1N1 virus circulating in humans and swine. The H3N2 virus was not detected in 2010 and 2011. Taken together, these findings indicate that mink is highly susceptible for influenza A virus of human...

  11. Domestic pigs have low susceptibility to H5N1 highly pathogenic avian influenza viruses.

    Directory of Open Access Journals (Sweden)

    Aleksandr S Lipatov

    2008-07-01

    Full Text Available Genetic reassortment of H5N1 highly pathogenic avian influenza viruses (HPAI with currently circulating human influenza A strains is one possibility that could lead to efficient human-to-human transmissibility. Domestic pigs which are susceptible to infection with both human and avian influenza A viruses are one of the natural hosts where such reassortment events could occur. Virological, histological and serological features of H5N1 virus infection in pigs were characterized in this study. Two- to three-week-old domestic piglets were intranasally inoculated with 10(6 EID(50 of A/Vietnam/1203/04 (VN/04, A/chicken/Indonesia/7/03 (Ck/Indo/03, A/Whooper swan/Mongolia/244/05 (WS/Mong/05, and A/Muscovy duck/Vietnam/ 209/05 (MDk/VN/05 viruses. Swine H3N2 and H1N1 viruses were studied as a positive control for swine influenza virus infection. The pathogenicity of the H5N1 HPAI viruses was also characterized in mouse and ferret animal models. Intranasal inoculation of pigs with H5N1 viruses or consumption of infected chicken meat did not result in severe disease. Mild weight loss was seen in pigs inoculated with WS/Mong/05, Ck/Indo/03 H5N1 and H1N1 swine influenza viruses. WS/Mong/05, Ck/Indo/03 and VN/04 viruses were detected in nasal swabs of inoculated pigs mainly on days 1 and 3. Titers of H5N1 viruses in nasal swabs were remarkably lower compared with those of swine influenza viruses. Replication of all four H5N1 viruses in pigs was restricted to the respiratory tract, mainly to the lungs. Titers of H5N1 viruses in the lungs were lower than those of swine viruses. WS/Mong/05 virus was isolated from trachea and tonsils, and MDk/VN/05 virus was isolated from nasal turbinate of infected pigs. Histological examination revealed mild to moderate bronchiolitis and multifocal alveolitis in the lungs of pigs infected with H5N1 viruses, while infection with swine influenza viruses resulted in severe tracheobronchitis and bronchointerstitial pneumonia. Pigs

  12. Rapid detection and subtyping of European swine influenza viruses in porcine clinical samples by haemagglutinin- and neuraminidase-specific tetra- and triplex real-time RT-PCRs

    DEFF Research Database (Denmark)

    Henritzi, Dinah; Zhao, Na; Starick, Elke

    2016-01-01

    diagnostic methods which allow for cost-effective large-scale analysis. Methods New SIV haemagglutinin (HA) and neuraminidase (NA) subtype- and lineage-specific multiplex real-time RT-PCRs (RT-qPCR) have been developed and validated with reference virus isolates and clinical samples. Results A diagnostic...... algorithm is proposed for the combined detection in clinical samples and subtyping of SIV strains currently circulating in Europe that is based on a generic, M-gene-specific influenza A virus RT-qPCR. In a second step, positive samples are examined by tetraplex HA- and triplex NA-specific RT-qPCRs...... to differentiate the porcine subtypes H1, H3, N1 and N2. Within the HA subtype H1, lineages “av” (European avian-derived), “hu” (European human-derived) and “pdm” (human pandemic A/H1N1, 2009) are distinguished by RT-qPCRs, and within the NA subtype N1, lineage “pdm” is differentiated. An RT-PCR amplicon Sanger...

  13. Unravelling the genetic components involved in the immune response of pigs vaccinated against influenza virus.

    Science.gov (United States)

    Zanella, Ricardo; Gava, Danielle; Peixoto, Jane de Oliveira; Schaefer, Rejane; Ciacci-Zanella, Janice Reis; Biondo, Natalha; da Silva, Marcos Vinicius Gualberto Barbosa; Cantão, Maurício Egídio; Ledur, Mônica Corrêa

    2015-12-02

    A genome-wide association study for immune response to influenza vaccination in a crossbred swine population was conducted. Swine influenza is caused by influenza A virus (FLUAV) which is considered one of the most prevalent respiratory pathogens in swine worldwide. The main strategy used to control influenza in swine herds is through vaccination. However, the currently circulating FLUAV subtypes in swine are genetically and antigenically diverse and their interaction with the host genetics poses a challenge for the production of efficacious and cross-protective vaccines. In this study, 103 pigs vaccinated with an inactivated H1N1 pandemic virus were genotyped with the Illumina PorcineSNP60V2 BeadChip for the identification of genetic markers associated with immune response efficacy to influenza A virus vaccination. Immune response was measured based on the presence or absence of HA (hemagglutinin) and NP (nucleoprotein) antibodies induced by vaccination and detected in swine sera by the hemagglutination inhibition (HI) and ELISA assays, respectively. The ELISA test was also used as a measurement of antibody levels produced following the FLUAV vaccination. Associations were tested with x(2) test for a case and control data and using maximum likelihood method for the quantitative data, where a moderate association was considered if pimmune response. Using the response to vaccination measured by ELISA as a qualitative and quantitative phenotype, four genomic regions were associated with immune response: one on SSC12 and three on chromosomes SSC1, SSC7, and SSC15, respectively. Those regions harbor important functional candidate genes possibly involved with the degree of immune response to vaccination. These results show an important role of host genetics in the immune response to influenza vaccination. Genetic selection for pigs with better response to FLUAV vaccination might be an alternative to reduce the impact of influenza virus infection in the swine industry

  14. Influenza B viruses : not to be discounted

    NARCIS (Netherlands)

    van de Sandt, Carolien E; Bodewes, Rogier; Rimmelzwaan, Guus F; de Vries, Rory D

    2015-01-01

    In contrast to influenza A viruses, which have been investigated extensively, influenza B viruses have attracted relatively little attention. However, influenza B viruses are an important cause of morbidity and mortality in the human population and full understanding of their biological and

  15. Local and systemic immune response in pigs during subclinical and clinical swine influenza infection.

    Science.gov (United States)

    Pomorska-Mól, M; Kwit, K; Markowska-Daniel, I; Kowalski, C; Pejsak, Z

    2014-10-01

    Local and systemic immune responses in pigs intranasally (IN) and intratracheally (IT) inoculated with swine influenza virus (SIV) were studied. No clinical signs were observed in IN-inoculated pigs, while IT-inoculated pigs developed typical signs of influenza. Significantly higher titres of specific antibodies and changes of haematological parameters were found only in IT-inoculated pigs. Because positive correlations between viral titre, local cytokine concentration, and lung pathology have been observed, we hypothesise that both viral load and the local secretion of cytokines play a role in the induction of lung lesions. It could be that a higher replication of SIV stimulates immune cells to secrete higher amounts of cytokines. The results of the present study indicate that pathogenesis of SIV is dependent on both, the damage caused to the lung parenchyma directly by virus, and the effects on the cells of the host's immune system. Copyright © 2014 Elsevier Ltd. All rights reserved.

  16. Identification of cross-reacting T-cell epitopes in structural and non-structural proteins of swine and pandemic H1N1 influenza A virus strains in pigs

    DEFF Research Database (Denmark)

    Baratelli, Massimiliano; Pedersen, Lasse Eggers; Trebbien, Ramona

    2017-01-01

    , reverse vaccinology was applied to identify cross-reacting MHC class I T-cell epitopes from two different SwIV H1 lineages in pigs. In silico prediction followed by in vitro and in vivo testing was used to identify SLA-1*0702 T-cell epitopes in heterologous SwIV-infected pigs. Following viral infection......Heterologous protection against swine influenza viruses (SwIVs) of different lineages is an important concern for the pig industry. Cross-protection between 'avian-like' H1N1 and 2009 pandemic H1N1 lineages has been observed previously, indicating the involvement of cross-reacting T-cells. Here......, tetramer specific T-cell populations were identified. The majority of the identified T-cell epitopes were conserved between the examined lineages, suggesting that targeting cross-reactive T-cell epitopes could be used to improve vaccines against SwIV in SLA-1*0702-positive pigs....

  17. Reverse Genetics of Influenza B Viruses.

    Science.gov (United States)

    Nogales, Aitor; Perez, Daniel R; Santos, Jefferson; Finch, Courtney; Martínez-Sobrido, Luis

    2017-01-01

    Annual influenza epidemics are caused not only by influenza A viruses but also by influenza B viruses. Initially established for the generation of recombinant influenza A viruses, plasmid-based reverse genetics techniques have allowed researchers the generation of wild type and mutant viruses from full-length cDNA copies of the influenza viral genome. These reverse genetics approaches have allowed researchers to answer important questions on the biology of influenza viruses by genetically engineering infectious recombinant viruses. This has resulted in a better understanding of the molecular biology of influenza viruses, including both viral and host factors required for genome replication and transcription. With the ability to generate recombinant viruses containing specific mutations in the viral genome, these reverse genetics tools have also allowed the identification of viral and host factors involved in influenza pathogenesis, transmissibility, host-range interactions and restrictions, and virulence. Likewise, reverse genetics techniques have been used for the implementation of inactivated or live-attenuated influenza vaccines and the identification of anti-influenza drugs and their mechanism of antiviral activity. In 2002, these reverse genetics approaches allowed also the recovery of recombinant influenza B viruses entirely from plasmid DNA. In this chapter we describe the cloning of influenza B/Brisbane/60/2008 viral RNAs into the ambisense pDP-2002 plasmid and the experimental procedures for the successful generation of recombinant influenza B viruses.

  18. Infecção pelo vírus Influenza A (H1N1 de origem suína: como reconhecer, diagnosticar e prevenir How to prevent, recognize and diagnose infection with the swine-origin Influenza A (H1N1 virus in humans

    Directory of Open Access Journals (Sweden)

    Alcyone Artioli Machado

    2009-05-01

    Full Text Available Em março de 2009, houve o início de uma epidemia de gripe no México que, em pouco tempo, levou ao surgimento de casos semelhantes em outros países, alertando as autoridades sanitárias para o risco de uma pandemia. Neste artigo, descrevemos os principais sinais e sintomas da infecção pelo vírus Influenza A (H1N1 de origem suína, as medidas a serem tomadas para os casos suspeitos ou confirmados e como proceder em relação aos contactantes. Comentamos também quais drogas são utilizadas para o tratamento e profilaxia.In March of 2009, a flu epidemic began in Mexico. Shortly thereafter, similar cases appeared in other countries, alerting authorities to the risk of a pandemic. This article details the principal signs and symptoms of infection with the swine-origin Influenza A (H1N1 virus. In addition, the measures to be taken in suspected or confirmed cases are addressed, as are the procedures to follow in relation to contacts. Furthermore, the drugs used in the prophylaxis against and the treatment of infection with the H1N1 virus are described.

  19. Swine influenza A (H1N1 strikes a potential for global disaster

    Directory of Open Access Journals (Sweden)

    Galwankar Sagar

    2009-01-01

    Full Text Available As of April 25 th 2009, 11.00 AM, eight human cases of swine influenza A virus infection have been identified in the United States in California and Texas. There is also established evidence of similar cases across the United States border in Mexico. Experts from the Centers for Disease Control and Prevention in cooperation with World Health Organization and public health experts from Canada and Mexico are leading an exhaustive investigation to find the source of infection and infected people. We present a profile of this illness from the available literature.

  20. Histopathological and immunohistochemical findings of swine with spontaneous influenza A infection in Brazil, 2009-2010

    Directory of Open Access Journals (Sweden)

    Tatiane T.N. Watanabe

    2012-11-01

    Full Text Available Swine influenza (SI is caused by the type A swine influenza virus (SIV. It is a highly contagious disease with a rapid course and recovery. The major clinical signs and symptoms are cough, fever, anorexia and poor performance. The disease has been associated with other co-infections in many countries, but not in Brazil, where, however, the first outbreak has been reported in 2011. The main aim of this study was to characterize the histological features in association with the immunohistochemical (IHC results for influenza A (IA, porcine circovirus type 2 (PCV2 and porcine reproductive and respiratory syndrome virus (PRRSV in lung samples from 60 pigs submitted to Setor de Patologia Veterinária at the Universidade Federal do Rio Grande do Sul (SPV-UFRGS, Brazil, during 2009-2010. All of these lung samples had changes characterized by interstitial pneumonia with necrotizing bronchiolitis, never observed previously in the evaluation of swine lungs in our laboratory routine. Pigs in this study had showed clinical signs of a respiratory infection. Swine samples originated from Rio Grande do Sul 31 (52%, Santa Catarina 14 (23%, Paraná 11 (18%, and Mato Grosso do Sul 4 (7%. Positive anti-IA IHC labelling was observed in 45% of the cases, which were associated with necrotizing bronchiolitis, atelectasis, purulent bronchopneumonia and hyperemia. Moreover, type II pneumocyte hyperplasia, alveolar and bronchiolar polyp-like structures, bronchus-associated lymphoid tissue (BALT hyperplasia and pleuritis were the significant features in negative anti-IA IHC, which were also associated with chronic lesions. There were only two cases with positive anti-PCV2 IHC and none to PRRSV. Therefore, SIV was the predominant infectious agent in the lung samples studied. The viral antigen is often absent due to the rapid progress of SI, which may explain the negative IHC results for IA (55%; therefore, IHC should be performed at the beginning of the disease. This study

  1. Likely correlation between sources of information and acceptability of A/H1N1 swine-origin influenza virus vaccine in Marseille, France.

    Directory of Open Access Journals (Sweden)

    Antoine Nougairède

    Full Text Available BACKGROUND: In France, there was a reluctance to accept vaccination against the A/H1N1 pandemic influenza virus despite government recommendation and investment in the vaccine programme. METHODS AND FINDINGS: We examined the willingness of different populations to accept A/H1N1 vaccination (i in a French hospital among 3315 employees immunized either by in-house medical personnel or mobile teams of MDs and (ii in a shelter housing 250 homeless persons. Google was used to assess the volume of enquiries concerning incidence of influenza. We analyzed the information on vaccination provided by Google, the website of the major French newspapers, and PubMed. Two trust Surveys were used to assess public opinion on the trustworthiness of people in different professions. Paramedics were significantly more reluctant to accept immunisation than qualified medical staff. Acceptance was significantly increased when recommended directly by MDs. Anecdotal cases of directly observed severe infections were followed by enhanced acceptance of paramedical staff. Scientific literature was significantly more in favour of vaccination than Google and French newspaper websites. In the case of the newspaper websites, information correlated with their recognised political reputations, although they would presumably claim independence from political bias. The Trust Surveys showed that politicians were highly dis-trusted in contrast with doctors and pharmacists who were considered much more trustworthy. CONCLUSIONS: The low uptake of the vaccine could reflect failure to convey high quality medical information and advice relating to the benefits of being vaccinated. We believe that the media and internet contributed to this problem by raising concerns within the general population and that failure to involve GPs in the control programme may have been a mistake. GPs are highly regarded by the public and can provide face-to-face professional advice and information. The top

  2. Universal influenza virus vaccines and therapeutic antibodies.

    Science.gov (United States)

    Nachbagauer, R; Krammer, F

    2017-04-01

    Current influenza virus vaccines are effective when well matched to the circulating strains. Unfortunately, antigenic drift and the high diversity of potential emerging zoonotic and pandemic viruses make it difficult to select the right strains for vaccine production. This problem causes vaccine mismatches, which lead to sharp drops in vaccine effectiveness and long response times to manufacture matched vaccines in case of novel pandemic viruses. To provide an overview of universal influenza virus vaccines and therapeutic antibodies in preclinical and clinical development. PubMed and clinicaltrials.gov were used as sources for this review. Universal influenza virus vaccines that target conserved regions of the influenza virus including the haemagglutinin stalk domain, the ectodomain of the M2 ion channel or the internal matrix and nucleoproteins are in late preclinical and clinical development. These vaccines could confer broad protection against all influenza A and B viruses including drift variants and thereby abolish the need for annual re-formulation and re-administration of influenza virus vaccines. In addition, these novel vaccines would enhance preparedness against emerging influenza virus pandemics. Finally, novel therapeutic antibodies against the same conserved targets are in clinical development and could become valuable tools in the fight against influenza virus infection. Both universal influenza virus vaccines and therapeutic antibodies are potential future options for the control of human influenza infections. Copyright © 2017 European Society of Clinical Microbiology and Infectious Diseases. Published by Elsevier Ltd. All rights reserved.

  3. New vaccines against influenza virus

    Science.gov (United States)

    Lee, Young-Tae; Kim, Ki-Hye; Ko, Eun-Ju; Lee, Yu-Na; Kim, Min-Chul; Kwon, Young-Man; Tang, Yinghua; Cho, Min-Kyoung; Lee, Youn-Jeong

    2014-01-01

    Vaccination is one of the most effective and cost-benefit interventions that prevent the mortality and reduce morbidity from infectious pathogens. However, the licensed influenza vaccine induces strain-specific immunity and must be updated annually based on predicted strains that will circulate in the upcoming season. Influenza virus still causes significant health problems worldwide due to the low vaccine efficacy from unexpected outbreaks of next epidemic strains or the emergence of pandemic viruses. Current influenza vaccines are based on immunity to the hemagglutinin antigen that is highly variable among different influenza viruses circulating in humans and animals. Several scientific advances have been endeavored to develop universal vaccines that will induce broad protection. Universal vaccines have been focused on regions of viral proteins that are highly conserved across different virus subtypes. The strategies of universal vaccines include the matrix 2 protein, the hemagglutinin HA2 stalk domain, and T cell-based multivalent antigens. Supplemented and/or adjuvanted vaccination in combination with universal target antigenic vaccines would have much promise. This review summarizes encouraging scientific advances in the field with a focus on novel vaccine designs. PMID:24427759

  4. Development of high-yield influenza B virus vaccine viruses.

    Science.gov (United States)

    Ping, Jihui; Lopes, Tiago J S; Neumann, Gabriele; Kawaoka, Yoshihiro

    2016-12-20

    The burden of human infections with influenza A and B viruses is substantial, and the impact of influenza B virus infections can exceed that of influenza A virus infections in some seasons. Over the past few decades, viruses of two influenza B virus lineages (Victoria and Yamagata) have circulated in humans, and both lineages are now represented in influenza vaccines, as recommended by the World Health Organization. Influenza B virus vaccines for humans have been available for more than half a century, yet no systematic efforts have been undertaken to develop high-yield candidates. Therefore, we screened virus libraries possessing random mutations in the six "internal" influenza B viral RNA segments [i.e., those not encoding the major viral antigens, hemagglutinin (HA) and neuraminidase NA)] for mutants that confer efficient replication. Candidate viruses that supported high yield in cell culture were tested with the HA and NA genes of eight different viruses of the Victoria and Yamagata lineages. We identified combinations of mutations that increased the titers of candidate vaccine viruses in mammalian cells used for human influenza vaccine virus propagation and in embryonated chicken eggs, the most common propagation system for influenza viruses. These influenza B virus vaccine backbones can be used for improved vaccine virus production.

  5. Development of high-yield influenza B virus vaccine viruses

    Science.gov (United States)

    Ping, Jihui; Lopes, Tiago J. S.; Neumann, Gabriele; Kawaoka, Yoshihiro

    2016-01-01

    The burden of human infections with influenza A and B viruses is substantial, and the impact of influenza B virus infections can exceed that of influenza A virus infections in some seasons. Over the past few decades, viruses of two influenza B virus lineages (Victoria and Yamagata) have circulated in humans, and both lineages are now represented in influenza vaccines, as recommended by the World Health Organization. Influenza B virus vaccines for humans have been available for more than half a century, yet no systematic efforts have been undertaken to develop high-yield candidates. Therefore, we screened virus libraries possessing random mutations in the six “internal” influenza B viral RNA segments [i.e., those not encoding the major viral antigens, hemagglutinin (HA) and neuraminidase NA)] for mutants that confer efficient replication. Candidate viruses that supported high yield in cell culture were tested with the HA and NA genes of eight different viruses of the Victoria and Yamagata lineages. We identified combinations of mutations that increased the titers of candidate vaccine viruses in mammalian cells used for human influenza vaccine virus propagation and in embryonated chicken eggs, the most common propagation system for influenza viruses. These influenza B virus vaccine backbones can be used for improved vaccine virus production. PMID:27930325

  6. Detection and characterization of an H4N6 avian-lineage influenza A virus in pigs in the Midwestern United States

    Science.gov (United States)

    H4Nx viruses were reported in swine in Canada and China, but had not been recognized in swine in the USA. In late 2015, an avian-origin H4N6 influenza A virus was isolated from pigs in the United States during a routine diagnostic investigation of clinical respiratory disease in the herd. Serologica...

  7. Identification and Epidemiology of Severe Respiratory Disease due to Novel Swine-Origin Influenza A (H1N1 Virus Infection in Alberta

    Directory of Open Access Journals (Sweden)

    George Zahariadis

    2010-01-01

    Full Text Available BACKGROUND: In March 2009, global surveillance started detecting cases of influenza-like illness in Mexico. By mid-April 2009, two pediatric patients were identified in the United States who were confirmed to be infected by a novel influenza A (H1N1 strain. The present article describes the first identified severe respiratory infection and the first death associated with pandemic H1N1 (pH1N1 in Canada.

  8. Detection of influenza C virus but not influenza D virus in Scottish respiratory samples

    Science.gov (United States)

    Smith, Donald B.; Gaunt, Eleanor R.; Digard, Paul; Templeton, Kate; Simmonds, Peter

    2016-01-01

    Background A newly proposed genus of influenza virus (influenza D) is associated with respiratory disease in pigs and cattle. The novel virus is most closely related to human influenza C virus and can infect ferrets but infection has not been reported in humans. Objectives To ascertain if influenza D virus can be detected retrospectively in patient respiratory samples. Study design 3300 human respiratory samples from Edinburgh, Scotland, covering the period 2006–2008, were screened in pools of 10 by RT-PCR using primers capable of detecting both influenza C and D viruses. Results Influenza D was not detected in any sample. Influenza C was present in 6 samples (0.2%), compared with frequencies of 3.3% and 0.9% for influenza A and B viruses from RT-PCR testing of respiratory samples over the same period. Influenza C virus was detected in samples from individuals 45 years old, with cases occurring throughout the year. Phylogenetic analysis of nearly complete sequences of all seven segments revealed the presence of multiple, reassortant lineages. Conclusion We were unable to detect viruses related to influenza D virus in human respiratory samples. Influenza C virus was less prevalent than influenza A and B viruses, was associated with mild disease in the young (45 years) and comprised multiple, reassortant lineages. Inclusion of influenza C virus as part of a diagnostic testing panel for respiratory infections would be of limited additional value. PMID:26655269

  9. Influenza A Virus in Backyard Pigs and Poultry in Rural Cambodia.

    Science.gov (United States)

    Osbjer, K; Berg, M; Sokerya, S; Chheng, K; San, S; Davun, H; Magnusson, U; Olsen, B; Zohari, S

    2017-10-01

    Surveillance of influenza virus in humans and livestock is critical, given the worldwide public health threats and livestock production losses. Livestock farming involving close proximity between humans, pigs and poultry is often practised by smallholders in low-income countries and is considered an important driver of influenza virus evolution. This study determined the prevalence and genetic characteristics of influenza A virus (IAV) in backyard pigs and poultry in Cambodia. A total of 751 animals were tested by matrix gene-based rRT-PCR, and influenza virus was detected in 1.5% of sampled pigs, 1.4% of chickens and 1.0% of ducks, but not in pigeons. Full-length genome sequencing confirmed triple reassortant H3N2 in all IAV-positive pigs and various low pathogenic avian influenza subtypes in poultry. Phylogenetic analysis of the swine influenza viruses revealed that these had haemagglutinin and neuraminidase genes originating from human H3N2 viruses previously isolated in South-East Asia. Phylogenetic analysis also revealed that several of the avian influenza subtypes detected were closely related to internal viral genes from highly pathogenic H5N1 and H9N2 formerly sequenced in the region. High sequence homology was likewise found with influenza A viruses circulating in pigs, poultry and wild birds in China and Vietnam, suggesting transboundary introduction and cocirculation of the various influenza subtypes. In conclusion, highly pathogenic subtypes of influenza virus seem rare in backyard poultry, but virus reassortment, involving potentially zoonotic and pandemic subtypes, appears to occur frequently in smallholder pigs and poultry. Increased targeted surveillance and monitoring of influenza circulation on smallholdings would further improve understanding of the transmission dynamics and evolution of influenza viruses in humans, pigs and poultry in the Mekong subregion and could contribute to limit the influenza burden. © 2016 Blackwell Verlag GmbH.

  10. Modified vaccinia virus Ankara expressing the hemagglutinin of pandemic (H1N1) 2009 virus induces cross-protective immunity against Eurasian 'avian-like' H1N1 swine viruses in mice.

    Science.gov (United States)

    Castrucci, Maria R; Facchini, Marzia; Di Mario, Giuseppina; Garulli, Bruno; Sciaraffia, Ester; Meola, Monica; Fabiani, Concetta; De Marco, Maria A; Cordioli, Paolo; Siccardi, Antonio; Kawaoka, Yoshihiro; Donatelli, Isabella

    2014-05-01

    To examine cross-reactivity between hemagglutinin (HA) derived from A/California/7/09 (CA/09) virus and that derived from representative Eurasian "avian-like" (EA) H1N1 swine viruses isolated in Italy between 1999 and 2008 during virological surveillance in pigs. Modified vaccinia virus Ankara (MVA) expressing the HA gene of CA/09 virus (MVA-HA-CA/09) was used as a vaccine to investigate cross-protective immunity against H1N1 swine viruses in mice. Two classical swine H1N1 (CS) viruses and four representative EA-like H1N1 swine viruses previously isolated during outbreaks of respiratory disease in pigs on farms in Northern Italy were used in this study. Female C57BL/6 mice were vaccinated with MVA/HA/CA/09 and then challenged intranasally with H1N1 swine viruses. Cross-reactive antibody responses were determined by hemagglutination- inhibition (HI) and virus microneutralizing (MN) assays of sera from MVA-vaccinated mice. The extent of protective immunity against infection with H1N1 swine viruses was determined by measuring lung viral load on days 2 and 4 post-challenge. Systemic immunization of mice with CA/09-derived HA, vectored by MVA, elicited cross-protective immunity against recent EA-like swine viruses. This immune protection was related to the levels of cross-reactive HI antibodies in the sera of the immunized mice and was dependent on the similarity of the antigenic site Sa of H1 HAs. Our findings suggest that the herd immunity elicited in humans by the pandemic (H1N1) 2009 virus could limit the transmission of recent EA-like swine HA genes into the influenza A virus gene pool in humans. © 2013 The Authors Influenza and Other Respiratory Viruses Published by John Wiley & Sons Ltd.

  11. Antibody responses to influenza viruses in paediatric patients and their contacts at the onset of the 2009 pandemic in Mexico.

    Science.gov (United States)

    Miranda-Novales, Guadalupe; Arriaga-Pizano, Lourdes; Herrera-Castillo, Cristina; Pastelin-Palacios, Rodolfo; Valero-Pacheco, Nuriban; Pérez-Toledo, Marisol; Ferat-Osorio, Eduardo; Solórzano-Santos, Fortino; Vázquez-Rosales, Guillermo; Espitia-Pinzón, Clara; Zamudio-Lugo, Irma; Meza-Chávez, Abigail; Klenerman, Paul; Isibasi, Armando; López-Macías, Constantino

    2015-03-15

    On April 2009, the Mexican Ministry of Health received notification of cases of severe pneumonia mostly affecting young healthy people; this was the beginning of the first influenza pandemic of the 21st century. The nature of the immune response to the influenza A(H1N1)2009 pandemic strain in Mexico at the beginning of the pandemic outbreak has not been completely defined. We describe the serological response to the 2009 pandemic influenza virus in paediatric patients with influenza-like illness, their household contacts (HHCs), and exposed health-care workers (HCWs) at the beginning of the pandemic outbreak in Mexico City. thirty pre-epidemic and 129 epidemic samples were collected and serum antibodies were measured against A(H1N1)2009 pandemic virus and two non-pandemic swine influenza viruses by an haemagglutination inhibition assay . 91% (29/32) of the convalescence samples from confirmed patients had an antibody titre ≥ 10 (GMT 25), 63% (41/65) of the HHCs (GMT 12), 41% of HCWs (GMT 6) and 13% (4/30) of pre-epidemic samples (GMT 6) for the pandemic influenza virus. Of the 32 confirmed cases, 60% had an antibody titre ≥ 40 for the pandemic strain, 53% for the A/swine/Iowa(H1N1) virus (GMT 62) and 43% for the A/swine/Texas(H3N2) virus (GMT 66). The antibody response to 2009 pandemic influenza virus was widespread in convalescence samples from patients with confirmed pandemic influenza infection but the GMT was below the protective titre. There was no evidence that antibodies to the swine influenza viruses had cross-protective effect against the 2009 pandemic influenza virus.

  12. A novel strategy for exploring the reassortment origins of newly emerging influenza virus.

    Science.gov (United States)

    Tian, Deqiao; Wang, Yumin; Zheng, Tao

    2011-01-01

    In early 2009, new swine-origin influenza A (H1N1) virus emerged in Mexico and the United States. The emerging influenza virus had made global influenza pandemic for nearly one year. To every emerging pathogen, exploring the origin sources is vital for viral control and clearance. Influenza virus is different from other virus in that it has 8 segments, making the segment reassortment a main drive in virus evolution. In exploring reassortment evolution origins of a newly emerging influenza virus, integrated comparing of the origin sources of all the segments is necessary. If some segments have high homologous with one parental strain, lower homologous with another parental strain, while other segments are reverse, can we proposed that this emerging influenza virus may re-assort from the two parental strains. Here we try to explore the multilevel reassortment evolution origins of 2009 H1N1 influenza virus using this method. By further validating the fidelity of this strategy, this method might be useful in judging the reassortment origins of newly emerging influenza virus.

  13. Seasonal Inactivated Influenza Virus Vaccines

    OpenAIRE

    Couch, Robert B.

    2008-01-01

    Inactivated influenza virus vaccines are the primary modality used for prevention of influenza. A system of annual identification of new strains causing illnesses, selections for vaccines, chick embryo growth, inactivation, processing, packaging, distribution and usage has been in place for decades. Current vaccines contain 15 µg of the HA of an A/H1N1, A/H3N2 and B strain and are given parenterally to induce serum anti-HA antibody for prevention of subsequent infection and illness from natur...

  14. Emerging influenza virus: A global threat

    Indian Academy of Sciences (India)

    2008-10-15

    Oct 15, 2008 ... Home; Journals; Journal of Biosciences; Volume 33; Issue 4. Emerging influenza virus: A global threat. M Khanna P Kumar ... Since 1918, influenza virus has been one of the major causes of morbidity and mortality, especially among young children. Though the commonly circulating strain of the virus is not ...

  15. Influenza B viruses: not to be discounted.

    Science.gov (United States)

    van de Sandt, Carolien E; Bodewes, Rogier; Rimmelzwaan, Guus F; de Vries, Rory D

    2015-01-01

    In contrast to influenza A viruses, which have been investigated extensively, influenza B viruses have attracted relatively little attention. However, influenza B viruses are an important cause of morbidity and mortality in the human population and full understanding of their biological and epidemiological properties is imperative to better control this important pathogen. However, some of its characteristics are still elusive and warrant investigation. Here, we review evolution, epidemiology, pathogenesis and immunity and identify gaps in our knowledge of influenza B viruses. The divergence of two antigenically distinct influenza B viruses is highlighted. The co-circulation of viruses of these two lineages necessitated the development of quadrivalent influenza vaccines, which is discussed in addition to possibilities to develop universal vaccination strategies.

  16. Immune efficacy of an adenoviral vector-based swine influenza vaccine against antigenically distinct H1N1 strains in mice.

    Science.gov (United States)

    Wu, Yunpu; Yang, Dawei; Xu, Bangfeng; Liang, Wenhua; Sui, Jinyu; Chen, Yan; Yang, Huanliang; Chen, Hualan; Wei, Ping; Qiao, Chuanling

    2017-11-01

    Avian-like H1N1 swine influenza viruses are prevalent in pigs and have occasionally crossed the species barrier and infected humans, which highlights the importance of preventing swine influenza. Human adenovirus serotype 5 (Ad5) has been tested in human influenza vaccine clinical trials and has exhibited a reliable safety profile. Here, we generated a replication-defective, recombinant adenovirus (designated as rAd5-avH1HA) expressing the hemagglutinin gene of an avian-like H1N1 virus (A/swine/Zhejiang/199/2013, ZJ/199/13). Using a BALB/c mouse model, we showed that a two-dose intramuscular administration of recombinant rAd5-avH1HA induced high levels of hemagglutination inhibition antibodies and prevented homologous and heterologous H1N1 virus-induced weight loss, as well as viral replication in the nasal turbinates and lungs of mice. Furthermore, a prime-boost immunization strategy trial with a recombinant plasmid (designated as pCAGGS-HA) followed by rAd5-avH1HA vaccine provided effective protection against homologous and heterologous H1N1 virus infection in mice. These results indicate that rAd5-avH1HA is an efficacious genetically engineered vaccine candidate against H1N1 swine influenza. Future studies should examine its immune efficacy in pigs. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. Superior in vitro stimulation of human CD8+ T-cells by whole virus versus split virus influenza vaccines.

    Science.gov (United States)

    Halbroth, Benedict R; Heil, Alexander; Distler, Eva; Dass, Martin; Wagner, Eva M; Plachter, Bodo; Probst, Hans Christian; Strand, Dennis; Hartwig, Udo F; Karner, Anita; Aichinger, Gerald; Kistner, Otfried; Landfester, Katharina; Herr, Wolfgang

    2014-01-01

    Pandemic and seasonal influenza viruses cause considerable morbidity and mortality in the general human population. Protection from severe disease may result from vaccines that activate antigen-presenting DC for effective stimulation of influenza-specific memory T cells. Special attention is paid to vaccine-induced CD8+ T-cell responses, because they are mainly directed against conserved internal influenza proteins thereby presumably mediating cross-protection against circulating seasonal as well as emerging pandemic virus strains. Our study showed that influenza whole virus vaccines of major seasonal A and B strains activated DC more efficiently than those of pandemic swine-origin H1N1 and pandemic-like avian H5N1 strains. In contrast, influenza split virus vaccines had a low ability to activate DC, regardless which strain was investigated. We also observed that whole virus vaccines stimulated virus-specific CD8+ memory T cells much stronger compared to split virus counterparts, whereas both vaccine formats activated CD4+ Th cell responses similarly. Moreover, our data showed that whole virus vaccine material is delivered into the cytosolic pathway of DC for effective activation of virus-specific CD8+ T cells. We conclude that vaccines against seasonal and pandemic (-like) influenza strains that aim to stimulate cross-reacting CD8+ T cells should include whole virus rather than split virus formulations.

  18. Oral fluids as a live-animal sample for evaluating cross-reactivity and cross-protection following intranasal influenza A virus vaccination in pigs

    Science.gov (United States)

    In North American swine there are numerous antigenically distinct influenza A virus (IAV) H1 subtypes currently circulating, making vaccine development difficult due to the inability to formulate a vaccine that provides broad cross-protection. Live-attenuated influenza virus (LAIV) vaccines provide ...

  19. Pandemic influenza A/H1N1 virus incursion into Africa: countries ...

    African Journals Online (AJOL)

    Swine origin influenza A/H1N1 virus was first detected in Mexico in April 2009. It thereafter spread to over a hundred countries in five continents including Africa and was declared a pandemic by the WHO. The disease was estimated to have caused 18,500 laboratory - confirmed deaths worldwide among millions of infected ...

  20. Non-hydrolyzed in digestive tract and blood natural L-carnosine peptide ("bioactivated Jewish penicillin") as a panacea of tomorrow for various flu ailments: signaling activity attenuating nitric oxide (NO) production, cytostasis, and NO-dependent inhibition of influenza virus replication in macrophages in the human body infected with the virulent swine influenza A (H1N1) virus.

    Science.gov (United States)

    Babizhayev, Mark A; Deyev, Anatoliy I; Yegorov, Yegor E

    2013-01-01

    Influenza (flu) is caused by a highly contagious virus that is spread by coughs and sneezes. Flu symptoms include high fever, chills and sweating, sore throat, weakness, headache, muscle and joint pains, and cough. Older people and those with an underlying medical condition are more likely to develop serious complications, including secondary bacterial pneumonia, primary influenza pneumonia, and inflammation of the brain or heart. There are three types of flu virus: A, B, and C. The flu virus has a unique ability to change its surface structure. This allows it to escape recognition by the body's immune system and cause widespread illness (epidemics and pandemics). Most cases of influenza occur within a 6- to 8-week period during winter and spring. Epidemics occur when there are minor changes in the nature of the virus so that more people within a community are susceptible. Influenza A is more likely to cause epidemics. Pandemics (worldwide epidemics) occur when there are major changes in the virus so that the disease affects a large proportion of people in a geographic region or on more than one continent. The findings presented in this article have many important implications for understanding the influenza A (H1N1) viral pathogenesis, prevention, and treatment. Direct viral cytotoxicity (referred cytopathic effect) is only a fraction of several types of events induced by virus infection. Nitric oxide and oxygen free radicals such as superoxide anion (O2-·) are generated markedly in influenza A (including H1N1) virus-infected host boosts, and these molecular species are identified as the potent pathogenic agents. The mutual interaction of nitric oxide (NO) with O2-· resulting in the formation of peroxynitrite is operative in the pathogenic mechanism of influenza virus pneumonia. Influenza virus infection involves pathological events in which oxygen free radicals play an important role in the pathogenesis. The toxicity and reactivity of oxygen radicals generated

  1. Evaluation of an Influenza-Like Illness Case Definition in the Diagnosis of Influenza Among Patients with Acute Febrile Illness in Cambodia

    Science.gov (United States)

    2010-01-01

    reassortment swine-origin influenza A virus which is the agent associated with the WHO declared influenza pan- demic [4]. Influenza viruses are...of a novel swine- origin influenza A ( H1N1 ) virus in humans. The New England journal of medicine 2009, 360(25):2605-2615. 5. Dilantika C, Sedyaningsih...RESEARCH ARTICLE Open Access Evaluation of an influenza -like illness case definition in the diagnosis of influenza among patients with acute febrile

  2. Rapid typing of influenza viruses using super high-speed quantitative real-time PCR.

    Science.gov (United States)

    Sakurai, Akira; Nomura, Namiko; Nanba, Reiko; Sinkai, Takayuki; Iwaki, Tsunehito; Obayashi, Taminori; Hashimoto, Kazuhiro; Hasegawa, Michiya; Sakoda, Yoshihiro; Naito, Akihiro; Morizane, Yoshihito; Hosaka, Mitsugu; Tsuboi, Kunio; Kida, Hiroshi; Kai, Akemi; Shibasaki, Futoshi

    2011-12-01

    The development of a rapid and sensitive system for detecting influenza viruses is a high priority for controlling future epidemics and pandemics. Quantitative real-time PCR is often used for detecting various kinds of viruses; however, it requires more than 2h per run. Detection assays were performed with super high-speed RT-PCR (SHRT-PCR) developed according to a newly designed heating system. The new method uses a high-speed reaction (18s/cycle; 40 cycles in less than 20min) for typing influenza viruses. The detection limit of SHRT-PCR was 1 copy/reaction and 10(-1) plaque-forming unit/reaction for viruses in culture supernatants during 20min. Using SHRT-PCR, 86 strains of influenza viruses isolated by the Tokyo Metropolitan Institute of Public Health were tested; the results showed 100% sensitivity and specificity for each influenza A and B virus, and swine-origin influenza virus. Twenty-seven swabs collected from the pharyngeal mucosa of outpatients were also tested, showing positive signs for influenza virus on an immunochromatographic assay; the results between SHRT-PCR and immunochromatography exhibited 100% agreement for both positive and negative results. The rapid reaction time and high sensitivity of SHRT-PCR makes this technique well suited for monitoring epidemics and pre-pandemic influenza outbreaks. Copyright © 2011. Published by Elsevier B.V.

  3. Molecular characterization of African swine fever virus in apparently ...

    African Journals Online (AJOL)

    African swine fever (ASF) is a highly lethal and economically significant disease of domestic pigs in Uganda where outbreaks regularly occur. There is neither a vaccine nor treatment available for ASF control. Twenty two African swine fever virus (ASFV) genotypes (I - XXII) have been identified based on partial sequencing ...

  4. Close Relationship of Ruminant Pestiviruses and Classical Swine Fever Virus

    Science.gov (United States)

    Postel, Alexander; Schmeiser, Stefanie; Oguzoglu, Tuba Cigdem; Indenbirken, Daniela; Alawi, Malik; Fischer, Nicole; Grundhoff, Adam

    2015-01-01

    To determine why serum from small ruminants infected with ruminant pestiviruses reacted positively to classical swine fever virus (CSFV)–specific diagnostic tests, we analyzed 2 pestiviruses from Turkey. They differed genetically and antigenically from known Pestivirus species and were closely related to CSFV. Cross-reactions would interfere with classical swine fever diagnosis in pigs. PMID:25811683

  5. Protective efficacy of a broadly cross-reactive swine influenza DNA vaccine encoding M2e, cytotoxic T lymphocyte epitope and consensus H3 hemagglutinin

    Directory of Open Access Journals (Sweden)

    Wang Bin

    2012-06-01

    Full Text Available Abstract Background Pigs have been implicated as mixing reservoir for the generation of new pandemic influenza strains, control of swine influenza has both veterinary and public health significance. Unlike human influenza vaccines, strains used for commercially available swine influenza vaccines are not regularly replaced, making the vaccines provide limited protection against antigenically diverse viruses. It is therefore necessary to develop broadly protective swine influenza vaccines that are efficacious to both homologous and heterologous virus infections. In this study, two forms of DNA vaccines were constructed, one was made by fusing M2e to consensus H3HA (MHa, which represents the majority of the HA sequences of H3N2 swine influenza viruses. Another was made by fusing M2e and a conserved CTL epitope (NP147-155 to consensus H3HA (MNHa. Their protective efficacies against homologous and heterologous challenges were tested. Results BALB/c mice were immunized twice by particle-mediated epidermal delivery (gene gun with the two DNA vaccines. It was shown that the two vaccines elicited substantial antibody responses, and MNHa induced more significant T cell-mediated immune response than MHa did. Then two H3N2 strains representative of different evolutional and antigenic clusters were used to challenge the vaccine-immunized mice (homosubtypic challenge. Results indicated that both of the DNA vaccines prevented homosubtypic virus infections completely. The vaccines’ heterologous protective efficacies were further tested by challenging with a H1N1 swine influenza virus and a reassortant 2009 pandemic strain. It was found that MNHa reduced the lung viral titers significantly in both challenge groups, histopathological observation showed obvious reduction of lung pathogenesis as compared to MHa and control groups. Conclusions The combined utility of the consensus HA and the conserved M2e and CTL epitope can confer complete and partial protection

  6. rapidSTRIPE H1N1 Test for Detection of the Pandemic Swine Origin Influenza A (H1N1) Virus▿

    OpenAIRE

    Patel, Pranav; Graser, Elmara; Robst, Stephan; Hillert, Roger; Meye, Axel; Hillebrand, Timo; Niedrig, Matthias

    2011-01-01

    The rapidSTRIPE H1N1 test, based on a nucleic acid lateral-flow assay, has been developed for diagnosis of a swine-origin influenza A (H1N1) virus. This test is simple and cost-effective and allows specific detection of the S-OIV A (H1N1) virus from swab sampling to final detection on a lateral-flow stripe within 2 to 3 h.

  7. Antibody levels to hepatitis E virus in North Carolina swine workers, non-swine workers, swine, and murids.

    Science.gov (United States)

    Withers, Mark R; Correa, Maria T; Morrow, Morgan; Stebbins, Martha E; Seriwatana, Jitvimol; Webster, W David; Boak, Marshall B; Vaughn, David W

    2002-04-01

    In a cross-sectional serosurvey, eastern North Carolina swine workers (n = 165) were compared with non-swine workers (127) for the presence of antibodies to hepatitis E virus as measured by a quantitative immunoglobulin enzyme-linked immunosorbent assay. Using a cutoff of 20 Walter Reed U/ml, swine-exposed subjects had a 4.5-fold higher antibody prevalence (10.9%) than unexposed subjects (2.4%). No evidence of past clinical hepatitis E or unexplained jaundice could be elicited. Swine (84) and mice (61), from farm sites in the same region as exposed subjects, were also tested. Antibody prevalence in swine (overall = 34.5%) varied widely (10.0-91.7%) according to site, but no antibody was detected in mice. Our data contribute to the accumulating evidence that hepatitis E may be a zoonosis and specifically to the concept of it as an occupational infection of livestock workers.

  8. Rheumatoid Arthritis and Swine Influenza Vaccine: A Case Report

    Directory of Open Access Journals (Sweden)

    Gurjot Basra

    2012-01-01

    Full Text Available Rheumatoid arthritis (RA is the most common chronic inflammatory joint disease. Multiple scientific articles have documented that vaccinations for influenza, MMR, and HBV, to name a few, could be triggers of RA in genetically predisposed individuals. However, there is limited data regarding the association of swine flu vaccine (H1N1 and RA. We report the case of a Mexican American female who developed RA right after vaccination with H1N1 vaccine. Genetically, RA has consistently been associated with an epitope in the third hypervariable region of the HLA-DR chains, known as the “shared epitope”, which is found primarily in DR4 and DR1 regions. The presence of HLA-DRB1 alleles is associated with susceptibility to RA in Mexican Americans. Hence, certain individuals with the presence of the “shared epitope” may develop RA following specific vaccinations. To our knowledge, this is the first reported case of RA following vaccination with the swine flu vaccine.

  9. Influenza viruses: from birds to humans.

    Science.gov (United States)

    Reperant, Leslie A; Kuiken, Thijs; Osterhaus, Albert D M E

    2012-01-01

    Avian influenza viruses are the precursors of human influenza A viruses. They may be transmitted directly from avian reservoirs, or infect other mammalian species before subsequent transmission to their human host. So far, avian influenza viruses have caused sporadic-yet increasingly more frequently recognized-cases of infection in humans. They have to adapt to and circulate efficiently in human populations, before they may trigger a worldwide human influenza outbreak or pandemic. Cross-species transmission of avian influenza viruses from their reservoir hosts-wild waterbirds-to terrestrial poultry and to humans is based on different modes of transmission and results in distinctive pathogenetic manifestations, which are reviewed in this paper.

  10. Isolation of avian influenza virus in Texas.

    Science.gov (United States)

    Glass, S E; Naqi, S A; Grumbles, L C

    1981-01-01

    An avian influenza virus with surface antigens similar to those of fowl plague virus (Hav 1 Nav 2) was isolated in 1979 from 2 commercial turkey flocks in Central Texas. Two flocks in contact with these infected flocks developed clinical signs, gross lesions, and seroconversion but yielded no virus. This was the first recorded incidence of clinical avian influenza in Texas turkeys and only the second time that an agent with these surface antigens was isolated from turkeys in U.S.

  11. Detection and characterization of influenza A virus endemic circulation in neonatal and nursery pigs in a farm using an inactivated influenza vaccine

    Science.gov (United States)

    Influenza A virus (IAV) is the cause of an acute respiratory disease affecting swine worldwide with potential zoonotic implications. Inactivated IAV vaccines used in breeding females provides passive immunity to neonatal piglets through colostrum. However, maternally derived antibody (MDA) may reduc...

  12. European surveillance network for influenza in pigs

    NARCIS (Netherlands)

    Simon, Gaëlle; Larsen, Lars E.; Dürrwald, Ralf; Foni, Emanuela; Harder, Timm; Reeth, Van Kristien; Markowska-Daniel, Iwona; Reid, Scott M.; Dan, Adam; Maldonado, Jaime; Huovilainen, Anita; Billinis, Charalambos; Davidson, Irit; Agüero, Montserrat; Vila, Thaïs; Hervé, Séverine; Breum, Solvej Østergaard; Chiapponi, Chiara; Urbaniak, Kinga; Kyriakis, Constantinos S.; Brown, Ian H.; Loeffen, Willie; Meulen, Van der Karen; Schlegel, Michael; Bublot, Michel; Kellam, Paul; Watson, Simon; Lewis, Nicola S.; Pybus, Oliver G.; Webby, Richard; Chen, Hualan; Vincent, Amy L.

    2014-01-01

    Swine influenza causes concern for global veterinary and public health officials. In continuing two previous networks that initiated the surveillance of swine influenza viruses (SIVs) circulating in European pigs between 2001 and 2008, a third European Surveillance Network for Influenza in Pigs

  13. Outbreaks of Influenza A Virus in Farmed Mink (Neovison vison) in Denmark: Molecular characterization of the involved viruses

    DEFF Research Database (Denmark)

    Larsen, Lars Erik; Breum, Solvej Østergaard; Trebbien, Ramona

    Influenza in mink (Neovison vison) is assumed to be rare, but outbreaks have previously been reported in farmed mink. The first report was from Swedish mink farms in 1984 and the second was reported from Canadian mink farms. In 2009, influenza A of the subtype H3N2 was detected in several Danish...... or was circulating in Danish pigs. In 2010 and 2011, influenza virus was again diagnosed in diseased mink in a few farms. The genetic typing showed that the virus was similar to the pandemic H1N1 virus circulating in humans and swine. The H3N2 virus was not detected in 2010 and 2011. Taken together, these findings...

  14. Prevalence of influenza A viruses in livestock and free-living waterfowl in Uganda.

    Science.gov (United States)

    Kirunda, Halid; Erima, Bernard; Tumushabe, Agnes; Kiconco, Jocelyn; Tugume, Titus; Mulei, Sophia; Mimbe, Derrick; Mworozi, Edison; Bwogi, Josephine; Luswa, Lukwago; Kibuuka, Hannah; Millard, Monica; Byaruhanga, Achilles; Ducatez, Mariette F; Krauss, Scott; Webby, Richard J; Webster, Robert G; Wurapa, Kofi; Byarugaba, Denis K; Wabwire-Mangen, Fred

    2014-02-27

    Avian influenza viruses may cause severe disease in a variety of domestic animal species worldwide, with high mortality in chickens and turkeys. To reduce the information gap about prevalence of these viruses in animals in Uganda, this study was undertaken. Influenza A virus prevalence by RT-PCR was 1.1% (45/4,052) while seroprevalence by ELISA was 0.8% (24/2,970). Virus prevalence was highest in domestic ducks (2.7%, 17/629) and turkeys (2.6%, 2/76), followed by free-living waterfowl (1.3%, 12/929) and swine (1.4%, 7/511). A lower proportion of chicken samples (0.4%, 7/1,865) tested positive. No influenza A virus was isolated. A seasonal prevalence of these viruses in waterfowl was 0.7% (4/561) for the dry and 2.2% (8/368) for the wet season. In poultry, prevalence was 0.2% (2/863) for the dry and 1.4% (24/1,713) for the wet season, while that of swine was 0.0% (0/159) and 2.0% (7/352) in the two seasons, respectively. Of the 45 RT-PCR positive samples, 13 (28.9%) of them were H5 but none was H7. The 19 swine sera positive for influenza antibodies by ELISA were positive for H1 antibodies by HAI assay, but the subtype(s) of ELISA positive poultry sera could not be determined. Antibodies in the poultry sera could have been those against subtypes not included in the HAI test panel. The study has demonstrated occurrence of influenza A viruses in animals in Uganda. The results suggest that increase in volumes of migratory waterfowl in the country could be associated with increased prevalence of these viruses in free-living waterfowl and poultry.

  15. African swine fever virus isolate, Georgia, 2007.

    Science.gov (United States)

    Rowlands, Rebecca J; Michaud, Vincent; Heath, Livio; Hutchings, Geoff; Oura, Chris; Vosloo, Wilna; Dwarka, Rahana; Onashvili, Tinatin; Albina, Emmanuel; Dixon, Linda K

    2008-12-01

    African swine fever (ASF) is widespread in Africa but is rarely introduced to other continents. In June 2007, ASF was confirmed in the Caucasus region of Georgia, and it has since spread to neighboring countries. DNA fragments amplified from the genome of the isolates from domestic pigs in Georgia in 2007 were sequenced and compared with other ASF virus (ASFV) isolates to establish the genotype of the virus. Sequences were obtained from 4 genome regions, including part of the gene B646L that encodes the p72 capsid protein, the complete E183L and CP204L genes, which encode the p54 and p30 proteins and the variable region of the B602L gene. Analysis of these sequences indicated that the Georgia 2007 isolate is closely related to isolates belonging to genotype II, which is circulating in Mozambique, Madagascar, and Zambia. One possibility for the spread of disease to Georgia is that pigs were fed ASFV-contaminated pork brought in on ships and, subsequently, the disease was disseminated throughout the region.

  16. viruses associated with human and animal influenza - a review 40

    African Journals Online (AJOL)

    DR. AMINU

    ABSTRACT. In this review, the most important viruses associated with human and animal influenza are reported. These include Influenza A,B and C. Influenza viruses are members of the family. Orthomyxoviridae. Influenza A virus being the most pathogenic and wide spread with many subtypes has constantly cause ...

  17. Viruses associated with human and animal influenza - a review ...

    African Journals Online (AJOL)

    In this review, the most important viruses associated with human and animal influenza are reported. These include Influenza A,B and C. Influenza viruses are members of the family Orthomyxoviridae. Influenza A virus being the most pathogenic and wide spread with many subtypes has constantly cause epidemics in several ...

  18. Kaempferol ameliorates H9N2 swine influenza virus-induced acute lung injury by inactivation of TLR4/MyD88-mediated NF-κB and MAPK signaling pathways.

    Science.gov (United States)

    Zhang, Ruihua; Ai, Xia; Duan, Yongjie; Xue, Man; He, Wenxiao; Wang, Cunlian; Xu, Tong; Xu, Mingju; Liu, Baojian; Li, Chunhong; Wang, Zhijun; Zhang, Ruihong; Wang, Guohua; Tian, Shufei; Liu, Huifeng

    2017-05-01

    Kaempferol, a very common type of dietary flavonoids, has been found to exert antioxidative and anti-inflammatory properties. The purpose of our investigation was designed to reveal the effect of kaempferol on H9N2 influenza virus-induced inflammation in vivo and in vitro. In vivo, BALB/C mice were infected intranasally with H9N2 influenza virus with or without kaempferol treatment to induce acute lung injury (ALI) model. In vitro, MH-S cells were infected with H9N2 influenza virus with or without kaempferol treatment. In vivo, kaempferol treatment attenuated pulmonary edema, the W/D mass ratio, pulmonary capillary permeability, myeloperoxidase (MPO) activity, and the numbers of inflammatory cells. Kaempferol reduced ROS and Malondialdehyde (MDA) production, and increased the superoxide dismutase (SOD) activity. Kaempferol also reduced overproduction of TNF-α, IL-1β and IL-6. In addition, kaempferol decreased the H9N2 viral titre. In vitro, ROS, MDA, TNF-α, IL-1β and IL-6 was also reduced by kaempferol. Moreover, our data showed that kaempferol significantly inhibited the upregulation of toll-like receptor 4 (TLR4), myeloid differentiation factor 88 (MyD88), phosphorylation level of IκBα and nuclear factor-κB (NF-κB) p65, NF-κB p65 DNA binding activity, and phosphorylation level of MAPKs, both in vivo and in vitro. These results suggest that kaempferol exhibits a protective effect on H9N2 virus-induced inflammation via suppression of TLR4/MyD88-mediated NF-κB and MAPKs pathways, and kaempferol may be considered as an effective drug for the potential treatment of influenza virus-induced ALI. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  19. Estimation of the transmission dynamics of African swine fever virus within a swine house

    DEFF Research Database (Denmark)

    Nielsen, J. P.; Larsen, T. S.; Hisham Beshara Halasa, Tariq

    2017-01-01

    The spread of African swine fever virus (ASFV) threatens to reach further parts of Europe. In countries with a large swine production, an outbreak of ASF may result in devastating economic consequences for the swine industry. Simulation models can assist decision makers setting up contingency plans......·00 (95% CI 0-1). Furthermore, we simulated the spread of ASFV within a pig house using a modified SEIR-model to establish the time from infection of one animal until ASFV is detected in the herd. Based on a chosen detection limit of 2·55% equivalent to 10 dead pigs out of 360, the disease would...

  20. Environmental Conditions Affect Exhalation of H3N2 Seasonal and Variant Influenza Viruses and Respiratory Droplet Transmission in Ferrets.

    Directory of Open Access Journals (Sweden)

    Kortney M Gustin

    Full Text Available The seasonality of influenza virus infections in temperate climates and the role of environmental conditions like temperature and humidity in the transmission of influenza virus through the air are not well understood. Using ferrets housed at four different environmental conditions, we evaluated the respiratory droplet transmission of two influenza viruses (a seasonal H3N2 virus and an H3N2 variant virus, the etiologic virus of a swine to human summertime infection and concurrently characterized the aerosol shedding profiles of infected animals. Comparisons were made among the different temperature and humidity conditions and between the two viruses to determine if the H3N2 variant virus exhibited enhanced capabilities that may have contributed to the infections occurring in the summer. We report here that although increased levels of H3N2 variant virus were found in ferret nasal wash and exhaled aerosol samples compared to the seasonal H3N2 virus, enhanced respiratory droplet transmission was not observed under any of the environmental settings. However, overall environmental conditions were shown to modulate the frequency of influenza virus transmission through the air. Transmission occurred most frequently at 23°C/30%RH, while the levels of infectious virus in aerosols exhaled by infected ferrets agree with these results. Improving our understanding of how environmental conditions affect influenza virus infectivity and transmission may reveal ways to better protect the public against influenza virus infections.

  1. Avian Influenza A Virus Infections in Humans

    Science.gov (United States)

    ... in People Spread of Bird Flu Viruses Between Animals and People Examples of Human Infections with Avian Influenza A ... Influenza A (H5N1) H5N1 in Birds and Other Animals H5N1 in People Public Health Threat of Highly Pathogenic Asian Avian ...

  2. Innate immune evasion strategies of influenza viruses.

    Science.gov (United States)

    Hale, Benjamin G; Albrecht, Randy A; García-Sastre, Adolfo

    2010-01-01

    Influenza viruses are globally important human respiratory pathogens. These viruses cause seasonal epidemics and occasional worldwide pandemics, both of which can vary significantly in disease severity. The virulence of a particular influenza virus strain is partly determined by its success in circumventing the host immune response. This article briefly reviews the innate mechanisms that host cells have evolved to resist virus infection, and outlines the plethora of strategies that influenza viruses have developed in order to counteract such powerful defences. The molecular details of this virus-host interplay are summarized, and the ways in which research in this area is being applied to the rational design of protective vaccines and novel antivirals are discussed.

  3. Isolation and characterization of H3N2 influenza A virus from turkeys.

    Science.gov (United States)

    Tang, Y; Lee, C W; Zhang, Y; Senne, D A; Dearth, R; Byrum, B; Perez, D R; Suarez, D L; Saif, Y M

    2005-06-01

    Five 34-wk-old turkey breeder layer flocks in separate houses of 2550 birds each in a single farm in Ohio experienced a drop in egg production from late January to early February 2004. Tracheal swabs (n = 60), cloacal swabs (n = 50), and convalescent sera (n = 110) from the flocks were submitted to the laboratory for diagnostics. Virus isolation was attempted in specific-pathogen free embryonating chicken eggs and Vero and MDCK cells. Virus characterization was performed using agar gel immunodiffusion, the hemagglutination test, the hemagglutination inhibition test, the virus neutralization test, reverse transcription-polymerase chain reaction, sequencing, and phylogenetic analysis. A presumptive influenza virus was successfully propagated and isolated on the first passage in MDCK cells, but initially not in Vero cells or specific-pathogen free chicken embryos. After two passages in MDCK cells, it was possible to propagate the isolate in specific-pathogen free chicken embryos. Preliminary sequence analysis of the isolated virus confirmed that it was influenza A virus with almost 100% (235/236) identity with the matrix gene of a swine influenza A virus, A/Swine/Illinois/100084/01 (H1N2). However, it was not possible to subtype the virus using conventional serotyping methods. The results of genetic characterization of the isolated virus showed that it was the H3N2 subtype and was designated as A/Turkey/OH/313053/04 (H3N2). Phylogenetic analysis of the eight gene segments of the virus showed that A/Turkey/OH/313053/04 (H3N2) isolate was most closely related to the triple-reassortant H3N2 swine viruses [A/Swine/WI/14094/99 (H3N2)] that have been circulating among pigs in the United States since 1998, which contains gene segments from avian, swine, and human viruses. The A/Turkey/OH/313053/04 (H3N2) isolated from turkeys in this study was classified as a low pathogenic avian influenza A virus because it only caused a drop in egg production with minor other clinical

  4. Quantification of underlying mechanisms of classical swine fever virus transmission

    NARCIS (Netherlands)

    Weesendorp, E.

    2010-01-01

    Classical swine fever (CSF) is an exotic viral disease in most European countries. Occasionally, outbreaks occur due to re-introduction of the virus. During these outbreaks, virus transmission between herds occurs via direct contact between infected and susceptible pigs, or via indirect transmission

  5. A Whole Virus Pandemic Influenza H1N1 Vaccine Is Highly Immunogenic and Protective in Active Immunization and Passive Protection Mouse Models

    OpenAIRE

    Kistner, Otfried; Crowe, Brian A.; Wodal, Walter; Kerschbaum, Astrid; Savidis-Dacho, Helga; Sabarth, Nicolas; Falkner, Falko G.; Mayerhofer, Ines; Mundt, Wolfgang; Reiter, Manfred; Grillberger, Leopold; Tauer, Christa; Graninger, Michael; Sachslehner, Alois; Schwendinger, Michael

    2010-01-01

    The recent emergence and rapid spread of a novel swine-derived H1N1 influenza virus has resulted in the first influenza pandemic of this century. Monovalent vaccines have undergone preclinical and clinical development prior to initiation of mass immunization campaigns. We have carried out a series of immunogenicity and protection studies following active immunization of mice, which indicate that a whole virus, nonadjuvanted vaccine is immunogenic at low doses and protects against live virus c...

  6. Experimental infection of pregnant gilts with swine hepatitis E virus

    OpenAIRE

    Kasorndorkbua, Chaiyan; Thacker, Brad J.; Halbur, Patrick G.; Guenette, Denis K.; Buitenwerf, Ryan M.; Royer, Ryan L.; Meng, Xiang-Jin

    2003-01-01

    To determine the effect of swine hepatitis E virus (HEV) infection on pregnant gilts, their fetuses, and offspring, 12 gilts were intravenously inoculated with swine HEV. Six gilts, who were not inoculated, served as controls. All inoculated gilts became actively infected and shed HEV in feces, but vertical transmission was not detected in the fetuses. There was no evidence of clinical disease in the gilts or their offspring. Mild multifocal lymphohistiocytic hepatitis was observed in 4 of 12...

  7. Pneumonia and respiratory failure from swine-origin influenza A (H1N1) in Mexico.

    Science.gov (United States)

    Perez-Padilla, Rogelio; de la Rosa-Zamboni, Daniela; Ponce de Leon, Samuel; Hernandez, Mauricio; Quiñones-Falconi, Francisco; Bautista, Edgar; Ramirez-Venegas, Alejandra; Rojas-Serrano, Jorge; Ormsby, Christopher E; Corrales, Ariel; Higuera, Anjarath; Mondragon, Edgar; Cordova-Villalobos, Jose Angel

    2009-08-13

    In late March 2009, an outbreak of a respiratory illness later proved to be caused by novel swine-origin influenza A (H1N1) virus (S-OIV) was identified in Mexico. We describe the clinical and epidemiologic characteristics of persons hospitalized for pneumonia at the national tertiary hospital for respiratory illnesses in Mexico City who had laboratory-confirmed S-OIV infection, also known as swine flu. We used retrospective medical chart reviews to collect data on the hospitalized patients. S-OIV infection was confirmed in specimens with the use of a real-time reverse-transcriptase-polymerase-chain-reaction assay. From March 24 through April 24, 2009, a total of 18 cases of pneumonia and confirmed S-OIV infection were identified among 98 patients hospitalized for acute respiratory illness at the National Institute of Respiratory Diseases in Mexico City. More than half of the 18 case patients were between 13 and 47 years of age, and only 8 had preexisting medical conditions. For 16 of the 18 patients, this was the first hospitalization for their illness; the other 2 patients were referred from other hospitals. All patients had fever, cough, dyspnea or respiratory distress, increased serum lactate dehydrogenase levels, and bilateral patchy pneumonia. Other common findings were an increased creatine kinase level (in 62% of patients) and lymphopenia (in 61%). Twelve patients required mechanical ventilation, and seven died. Within 7 days after contact with the initial case patients, a mild or moderate influenza-like illness developed in 22 health care workers; they were treated with oseltamivir, and none were hospitalized. S-OIV infection can cause severe illness, the acute respiratory distress syndrome, and death in previously healthy persons who are young to middle-aged. None of the secondary infections among health care workers were severe. 2009 Massachusetts Medical Society

  8. Proteomic analysis of swine serum following highly virulent classical swine fever virus infection

    Directory of Open Access Journals (Sweden)

    Guo Huan-cheng

    2011-03-01

    Full Text Available Abstract Background Classical swine fever virus (CSFV belongs to the genus Pestivirus within the family Flaviviridae. Virulent strains of classical swine fever virus (CSFV cause severe disease in pigs characterized by immunosuppression, thrombocytopenia and disseminated intravascular coagulation, which causes significant economic losses to the pig industry worldwide. Methods To reveal proteomic changes in swine serum during the acute stage of lethal CSFV infection, 5 of 10 pigs were inoculated with the virulent CSFV Shimen strain, the remainder serving as uninfected controls. A serum sample was taken at 3 days post-infection from each swine, at a stage when there were no clinical symptoms other than increased rectal temperatures (≥40°C. The samples were treated to remove serum albumin and immunoglobulin (IgG, and then subjected to two-dimension differential gel electrophoresis. Results Quantitative intensity analysis revealed 17 protein spots showing at least 1.5-fold quantitative alteration in expression. Ten spots were successfully identified by MALDI-TOF MS or LTQ MS. Expression of 4 proteins was increased and 6 decreased in CSFV-infected pigs. Functions of these proteins included blood coagulation, anti-inflammatory activity and angiogenesis. Conclusion These proteins with altered expression may have important implications in the pathogenesis of classical swine fever and provide a clue for identification of biomarkers for classical swine fever early diagnosis.

  9. Nucleocytoplasmic Shuttling of Influenza A Virus Proteins

    Directory of Open Access Journals (Sweden)

    Jing Li

    2015-05-01

    Full Text Available Influenza viruses transcribe and replicate their genomes in the nuclei of infected host cells. The viral ribonucleoprotein (vRNP complex of influenza virus is the essential genetic unit of the virus. The viral proteins play important roles in multiple processes, including virus structural maintenance, mediating nucleocytoplasmic shuttling of the vRNP complex, virus particle assembly, and budding. Nucleocytoplasmic shuttling of viral proteins occurs throughout the entire virus life cycle. This review mainly focuses on matrix protein (M1, nucleoprotein (NP, nonstructural protein (NS1, and nuclear export protein (NEP, summarizing the mechanisms of their nucleocytoplasmic shuttling and the regulation of virus replication through their phosphorylation to further understand the regulation of nucleocytoplasmic shuttling in host adaptation of the viruses.

  10. Subtype identification of the novel A H1N1 and other human influenza A viruses using an oligonucleotide microarray.

    Science.gov (United States)

    Kang, Xiaoping; Li, Yongqiang; Sun, Honghe; Wu, Weili; Liu, Hong; Lin, Fang; Qing, Chenfeng; Chang, Guohui; Zhu, Qingyu; Chen, Weijun; Yang, Yinhui

    2010-01-01

    A novel strain of influenza A (H1N1) virus was isolated in Mexico and the US in March and April 2009. This novel virus spread to many countries and regions in a few months, and WHO raised the level of pandemic alert from phase 5 to phase 6 on June 11, 2009. The accurate identification of H1N1 virus and other human seasonal influenza A viruses is very important for further treatment and control of their infections. In this study, we developed an oligonucleotide microarray to subtype human H1N1, H3N2 and H5N1 influenza viruses, which could distinguish the novel H1N1 from human seasonal H1N1 influenza viruses and swine H1N1 influenza viruses. The microarray utilizes a panel of primers for multiplex PCR amplification of the hemagglutinin (HA), neuraminidase (NA) and matrix (MP) genes of human influenza A viruses. The 59-mer oligonucleotides were designed to distinguish different subtypes of human influenza A viruses. With this microarray, we accurately identified and correctly subtyped the reference virus strains. Moreover, we confirmed 4 out of 39 clinical throat swab specimens from suspected cases of novel H1N1.

  11. Caveolin-1 influences human influenza A virus (H1N1 multiplication in cell culture

    Directory of Open Access Journals (Sweden)

    Hemgård Gun-Viol

    2010-05-01

    Full Text Available Abstract Background The threat of recurring influenza pandemics caused by new viral strains and the occurrence of escape mutants necessitate the search for potent therapeutic targets. The dependence of viruses on cellular factors provides a weak-spot in the viral multiplication strategy and a means to interfere with viral multiplication. Results Using a motif-based search strategy for antiviral targets we identified caveolin-1 (Cav-1 as a putative cellular interaction partner of human influenza A viruses, including the pandemic influenza A virus (H1N1 strains of swine origin circulating from spring 2009 on. The influence of Cav-1 on human influenza A/PR/8/34 (H1N1 virus replication was determined in inhibition and competition experiments. RNAi-mediated Cav-1 knock-down as well as transfection of a dominant-negative Cav-1 mutant results in a decrease in virus titre in infected Madin-Darby canine kidney cells (MDCK, a cell line commonly used in basic influenza research as well as in virus vaccine production. To understand the molecular basis of the phenomenon we focussed on the putative caveolin-1 binding domain (CBD located in the lumenal, juxtamembranal portion of the M2 matrix protein which has been identified in the motif-based search. Pull-down assays and co-immunoprecipitation experiments showed that caveolin-1 binds to M2. The data suggest, that Cav-1 modulates influenza virus A replication presumably based on M2/Cav-1 interaction. Conclusion As Cav-1 is involved in the human influenza A virus life cycle, the multifunctional protein and its interaction with M2 protein of human influenza A viruses represent a promising starting point for the search for antiviral agents.

  12. Kinetics of lung lesion development and pro-inflammatory cytokine response in pigs with vaccine-associated enhanced respiratory disease induced by challenge with pandemic (2009) A/H1N1 influenza virus

    Science.gov (United States)

    The objective of this report was to characterize the enhanced clinical disease and lung lesions observed in pigs vaccinated with inactivated H1N2 swine delta-cluster influenza A virus and challenged with pandemic 2009 A/H1N1 human influenza virus. Eighty-four, six-week-old, crossbred pigs were rand...

  13. Potent peptidic fusion inhibitors of influenza virus

    Energy Technology Data Exchange (ETDEWEB)

    Kadam, Rameshwar U.; Juraszek, Jarek; Brandenburg, Boerries; Buyck, Christophe; Schepens, Wim B. G.; Kesteleyn, Bart; Stoops, Bart; Vreeken, Rob J.; Vermond, Jan; Goutier, Wouter; Tang, Chan; Vogels, Ronald; Friesen, Robert H. E.; Goudsmit, Jaap; van Dongen, Maria J. P.; Wilson, Ian A.

    2017-09-28

    Influenza therapeutics with new targets and mechanisms of action are urgently needed to combat potential pandemics, emerging viruses, and constantly mutating strains in circulation. We report here on the design and structural characterization of potent peptidic inhibitors of influenza hemagglutinin. The peptide design was based on complementarity-determining region loops of human broadly neutralizing antibodies against the hemagglutinin (FI6v3 and CR9114). The optimized peptides exhibit nanomolar affinity and neutralization against influenza A group 1 viruses, including the 2009 H1N1 pandemic and avian H5N1 strains. The peptide inhibitors bind to the highly conserved stem epitope and block the low pH–induced conformational rearrangements associated with membrane fusion. These peptidic compounds and their advantageous biological properties should accelerate the development of new small molecule– and peptide-based therapeutics against influenza virus.

  14. Zoonoses: USDA ARS Lessons Learned During Novel Influenza H1N1 Investigations

    Science.gov (United States)

    Influenza illness was first recognized in pigs during the 1918 human Spanish flu pandemic, and influenza A virus has since remained of importance to the swine industry as a primary respiratory pathogen. Influenza virus H1N1 remained relatively stable in U.S. swine for nearly 80 years following 1918...

  15. Computer-aided assessment of pulmonary disease in novel swine-origin H1N1 influenza on CT

    Science.gov (United States)

    Yao, Jianhua; Dwyer, Andrew J.; Summers, Ronald M.; Mollura, Daniel J.

    2011-03-01

    The 2009 pandemic is a global outbreak of novel H1N1 influenza. Radiologic images can be used to assess the presence and severity of pulmonary infection. We develop a computer-aided assessment system to analyze the CT images from Swine-Origin Influenza A virus (S-OIV) novel H1N1 cases. The technique is based on the analysis of lung texture patterns and classification using a support vector machine (SVM). Pixel-wise tissue classification is computed from the SVM value. The method was validated on four H1N1 cases and ten normal cases. We demonstrated that the technique can detect regions of pulmonary abnormality in novel H1N1 patients and differentiate these regions from visually normal lung (area under the ROC curve is 0.993). This technique can also be applied to differentiate regions infected by different pulmonary diseases.

  16. Functional analysis of replication determinantsin classical swine fever virus

    DEFF Research Database (Denmark)

    Hadsbjerg, Johanne

    and animal pathogens should facilitate finding new approaches for efficient disease control. The principal aim of this thesis is to characterise determinants involved in the replication of classical swine fever virus (CSFV). Classical swine fever is a highly contagious virus disease of domestic pigs and wild...... in cell culture. Knowledge of these sequence variations and putative long-range interactions will provide valuable insights into mechanisms underlying virustranslation and replication. In manuscript 3, a selection marker has been inserted into a CSFV-based replicon making it suitable for screening...

  17. Survival of influenza virus on banknotes.

    Science.gov (United States)

    Thomas, Yves; Vogel, Guido; Wunderli, Werner; Suter, Patricia; Witschi, Mark; Koch, Daniel; Tapparel, Caroline; Kaiser, Laurent

    2008-05-01

    Successful control of a viral disease requires knowledge of the different vectors that could promote its transmission among hosts. We assessed the survival of human influenza viruses on banknotes given that billions of these notes are exchanged daily worldwide. Banknotes were experimentally contaminated with representative influenza virus subtypes at various concentrations, and survival was tested after different time periods. Influenza A viruses tested by cell culture survived up to 3 days when they were inoculated at high concentrations. The same inoculum in the presence of respiratory mucus showed a striking increase in survival time (up to 17 days). Similarly, B/Hong Kong/335/2001 virus was still infectious after 1 day when it was mixed with respiratory mucus. When nasopharyngeal secretions of naturally infected children were used, influenza virus survived for at least 48 h in one-third of the cases. The unexpected stability of influenza virus in this nonbiological environment suggests that unusual environmental contamination should be considered in the setting of pandemic preparedness.

  18. Survival of Influenza Virus on Banknotes▿

    Science.gov (United States)

    Thomas, Yves; Vogel, Guido; Wunderli, Werner; Suter, Patricia; Witschi, Mark; Koch, Daniel; Tapparel, Caroline; Kaiser, Laurent

    2008-01-01

    Successful control of a viral disease requires knowledge of the different vectors that could promote its transmission among hosts. We assessed the survival of human influenza viruses on banknotes given that billions of these notes are exchanged daily worldwide. Banknotes were experimentally contaminated with representative influenza virus subtypes at various concentrations, and survival was tested after different time periods. Influenza A viruses tested by cell culture survived up to 3 days when they were inoculated at high concentrations. The same inoculum in the presence of respiratory mucus showed a striking increase in survival time (up to 17 days). Similarly, B/Hong Kong/335/2001 virus was still infectious after 1 day when it was mixed with respiratory mucus. When nasopharyngeal secretions of naturally infected children were used, influenza virus survived for at least 48 h in one-third of the cases. The unexpected stability of influenza virus in this nonbiological environment suggests that unusual environmental contamination should be considered in the setting of pandemic preparedness. PMID:18359825

  19. Influenza virus activity in Papua New Guinea.

    Science.gov (United States)

    Sungu, M; Sanders, R

    1991-09-01

    Influenza viruses remain a major cause of respiratory disease in both developed and developing countries. A great deal of information concerning the structure, pathology and modes of transmission of these viruses has been accumulated, but no means of successfully combating them have, as yet, been devised. The most appropriate strategy for limiting the effects of influenza is to monitor the emergence and spread of new strains carefully and warn the public and at-risk groups of impending epidemics. In Papua New Guinea, as in most other developing countries, the major at-risk groups are the very young and the elderly. In the past, influenza epidemics were rare and affected the whole community, but with modern development and increased mobility the transmission dynamics of influenza have changed. The only influenza surveillance centre in Papua New Guinea is at the Papua New Guinea Institute of Medical Research in Goroka, and the surveillance activities of this centre are limited to the immediately surrounding areas. There is a need to establish a national influenza surveillance network, to provide nation-wide monitoring of influenza activity, and to provide a central repository of current information on influenza infections in the country.

  20. Influenza A (H1N1) 2009: a pandemic alarm

    Indian Academy of Sciences (India)

    Keywords. Antigenic shift; genetic reassortment; H1N1; pandemic; swine influenza; zoonosis. Abstract. At this critical juncture when the world has not yet recovered from the threat of avian influenza, the virus has returned in the disguise of swine influenza, a lesser known illness common in pigs. It has reached pandemic ...

  1. Avian influenza in shorebirds: experimental infection of ruddy turnstones (Arenaria interpres) with avian influenza virus

    OpenAIRE

    Hall, Jeffrey S.; Krauss, Scott; Franson, J. Christian; TeSlaa, Joshua L.; Nashold, Sean W.; Stallknecht, David E.; Webby, Richard J.; Webster, Robert G.

    2012-01-01

    Please cite this paper as: Hall et al. (2012) Avian influenza in shorebirds: experimental infection of ruddy turnstones (Arenaria interpres) with avian influenza virus. Influenza and Other Respiratory Viruses DOI: 10.1111/j.1750‐2659.2012.00358.x. Background  Low pathogenic avian influenza viruses (LPAIV) have been reported in shorebirds, especially at Delaware Bay, USA, during spring migration. However, data on patterns of virus excretion, minimal infectious doses, and clinical outcome are l...

  2. Molecular detection and typing of influenza viruses. Are we ready for an influenza pandemic?

    NARCIS (Netherlands)

    MacKay, W.G.; Loon, A.M. van; Niedrig, M.; Meijer, A.; Lina, B.; Niesters, H.G.M.

    2008-01-01

    BACKGROUND: We cannot predict when an influenza pandemic will occur or which variant of the virus will cause it. Little information is currently available on the ability of laboratories to detect and subtype influenza viruses including the avian influenza viruses. OBJECTIVES: To assess the ability

  3. Modulation of Translation Initiation Efficiency in Classical Swine Fever Virus

    DEFF Research Database (Denmark)

    Friis, Martin Barfred; Rasmussen, Thomas Bruun; Belsham, Graham

    2012-01-01

    Modulation of translation initiation efficiency on classical swine fever virus (CSFV) RNA can be achieved by targeted mutations within the internal ribosome entry site (IRES). In this study, cDNAs corresponding to the wild type (wt) or mutant forms of the IRES of CSFV strain Paderborn were...

  4. Modulation of Translation Initiation Efficiency in Classical Swine Fever Virus

    DEFF Research Database (Denmark)

    Friis, Martin Barfred; Rasmussen, Thomas Bruun; Belsham, Graham J.

    Modulation of translation initiation efficiency on classical swine fever virus (CSFV) RNA can be achieved by targeted mutations within the internal ribosome entry site (IRES). In this study, the nucleotides 47 to 427, including the IRES region of the wt CSFV strain Paderborn, were amplified...

  5. Hepatitis E Virus Genotype 3 in Humans and Swine, Bolivia

    Science.gov (United States)

    Cavallo, Annalisa; Gonzales, José Luis; Bonelli, Sara Irene; Valda, Ybar; Pieri, Angela; Segundo, Higinio; Ibañez, Ramón; Mantella, Antonia; Bartalesi, Filippo; Tolari, Francesco; Bartoloni, Alessandro

    2011-01-01

    We determined the seroprevalence of hepatitis E virus (HEV) in persons in 2 rural communities in southeastern Bolivia and the presence of HEV in human and swine fecal samples. HEV seroprevalence was 6.3%, and HEV genotype 3 strains with high sequence homology were detected. PMID:21801630

  6. Public health risk from avian influenza viruses.

    Science.gov (United States)

    Perdue, Michael L; Swayne, David E

    2005-09-01

    Since 1997, avian influenza (AI) virus infections in poultry have taken on new significance, with increasing numbers of cases involving bird-to-human transmission and the resulting production of clinically severe and fatal human infections. Such human infections have been sporadic and are caused by H7N7 and H5N1 high-pathogenicity (HP) and H9N2 low-pathogenicity (LP) AI viruses in Europe and Asia. These infections have raised the level of concern by human health agencies for the potential reassortment of influenza virus genes and generation of the next human pandemic influenza A virus. The presence of endemic infections by H5N1 HPAI viruses in poultry in several Asian countries indicates that these viruses will continue to contaminate the environment and be an exposure risk with human transmission and infection. Furthermore, the reports of mammalian infections with H5N1 AI viruses and, in particular, mammal-to-mammal transmission in humans and tigers are unprecedented. However, the subsequent risk for generating a pandemic human strain is unknown. More international funding from both human and animal health agencies for diagnosis or detection and control of AI in Asia is needed. Additional funding for research is needed to understand why and how these AI viruses infect humans and what pandemic risks they pose.

  7. On the spread of the novel influenza A (H1N1) virus in Mexico.

    Science.gov (United States)

    López-Cervantes, Malaquías; Venado, Aida; Moreno, Andrés; Pacheco-Domínguez, Reyna L; Ortega-Pierres, Guadalupe

    2009-06-01

    A novel influenza A H1N1 virus of swine origin is responsible for the influenza epidemic affecting Mexico, the United States of America (USA), and 39 other countries. While the origin of this emerging pathogen remains uncertain, an increase in the reported incidence of respiratory diseases was noted during March 2009 at the town of La Gloria, in the southeastern state of Veracruz, Mexico. So far, this is the first community in which a case of novel influenza A H1N1 virus has been identified. Further cases were rapidly detected in other areas of Mexico and elsewhere. Initially, the atypical respiratory disease outbreak caused great uncertainty posing a challenge to the Mexican health system. Control measures such as social distancing, timely medical care, and personal hygiene have so far proven effective in containing the outbreak, resulting in a decline of the number of new cases. To the best of our knowledge, it appears that the virus might not be as virulent or contagious as previously thought. Here we provide a description of the influenza epidemic spread in Mexico. As the virus disseminates worldwide, there is concern about the possibility of a new reassortment resulting in a more pathogenic strain that will pose a threat for every country. The influenza epidemic provided lessons that underscore the importance of epidemiologic surveillance and preparedness. Further investigation to address questions about this new virus and conditions for its spread is warranted.

  8. Early assessment of anxiety and behavioral response to novel swine-origin influenza A(H1N1.

    Directory of Open Access Journals (Sweden)

    James Holland Jones

    Full Text Available BACKGROUND: Since late April, 2009, a novel influenza virus A (H1N1, generally referred to as the "swine flu," has spread around the globe and infected hundreds of thousands of people. During the first few days after the initial outbreak in Mexico, extensive media coverage together with a high degree of uncertainty about the transmissibility and mortality rate associated with the virus caused widespread concern in the population. The spread of an infectious disease can be strongly influenced by behavioral changes (e.g., social distancing during the early phase of an epidemic, but data on risk perception and behavioral response to a novel virus is usually collected with a substantial delay or after an epidemic has run its course. METHODOLOGY/PRINCIPAL FINDINGS: Here, we report the results from an online survey that gathered data (n = 6,249 about risk perception of the Influenza A(H1N1 outbreak during the first few days of widespread media coverage (April 28-May 5, 2009. We find that after an initially high level of concern, levels of anxiety waned along with the perception of the virus as an immediate threat. Overall, our data provide evidence that emotional status mediates behavioral response. Intriguingly, principal component analysis revealed strong clustering of anxiety about swine flu, bird flu and terrorism. All three of these threats receive a great deal of media attention and their fundamental uncertainty is likely to generate an inordinate amount of fear vis-a-vis their actual threat. CONCLUSIONS/SIGNIFICANCE: Our results suggest that respondents' behavior varies in predictable ways. Of particular interest, we find that affective variables, such as self-reported anxiety over the epidemic, mediate the likelihood that respondents will engage in protective behavior. Understanding how protective behavior such as social distancing varies and the specific factors that mediate it may help with the design of epidemic control strategies.

  9. Influenza virus replication in macrophages: balancing protection and pathogenesis.

    Science.gov (United States)

    Cline, Troy D; Beck, Donald; Bianchini, Elizabeth

    2017-10-01

    Macrophages are essential for protection against influenza A virus infection, but are also implicated in the morbidity and mortality associated with severe influenza disease, particularly during infection with highly pathogenic avian influenza (HPAI) H5N1 virus. While influenza virus infection of macrophages was once thought to be abortive, it is now clear that certain virus strains can replicate productively in macrophages. This may have important consequences for the antiviral functions of macrophages, the course of disease and the outcome of infection for the host. In this article, we review findings related to influenza virus replication in macrophages and the impact of productive replication on macrophage antiviral functions. A clear understanding of the interactions between influenza viruses and macrophages may lead to new antiviral therapies to relieve the burden of severe disease associated with influenza viruses.

  10. Methadone enhances human influenza A virus replication.

    Science.gov (United States)

    Chen, Yun-Hsiang; Wu, Kuang-Lun; Tsai, Ming-Ta; Chien, Wei-Hsien; Chen, Mao-Liang; Wang, Yun

    2017-01-01

    Growing evidence has indicated that opioids enhance replication of human immunodeficiency virus and hepatitis C virus in target cells. However, it is unknown whether opioids can enhance replication of other clinically important viral pathogens. In this study, the interaction of opioid agonists and human influenza A/WSN/33 (H1N1) virus was examined in human lung epithelial A549 cells. Cells were exposed to morphine, methadone or buprenorphine followed by human H1N1 viral infection. Exposure to methadone differentially enhanced viral propagation, consistent with an increase in virus adsorption, susceptibility to virus infection and viral protein synthesis. In contrast, morphine or buprenorphine did not alter H1N1 replication. Because A549 cells do not express opioid receptors, methadone-enhanced H1N1 replication in human lung cells may not be mediated through these receptors. The interaction of methadone and H1N1 virus was also examined in adult mice. Treatment with methadone significantly increased H1N1 viral replication in lungs. Our data suggest that use of methadone facilitates influenza A viral infection in lungs and might raise concerns regarding the possible consequence of an increased risk of serious influenza A virus infection in people who receive treatment in methadone maintenance programs. © 2015 Society for the Study of Addiction.

  11. Phylodynamics of the emergence of influenza viruses after cross-species transmission.

    Directory of Open Access Journals (Sweden)

    Leila Rahnama

    Full Text Available Human populations are constantly exposed to emerging pathogens such as influenza A viruses that result from cross-species transmissions. Generally these sporadic events are evolutionary dead-ends, but occasionally, viruses establish themselves in a new host that offers a novel genomic context to which the virus must adjust to avoid attenuation. However, the dynamics of this process are unknown. Here we present a novel method to characterize the time it takes to G+C composition at third codon positions (GC3 content of influenza viruses to adjust to that of a new host. We compare the inferred dynamics in two subtypes, H1N1 and H3N2, based on complete genomes of viruses circulating in humans, swine and birds between 1900-2009. Our results suggest that both subtypes have the same fast-adjusting genes, which are not necessarily those with the highest absolute rates of evolution, but those with the most relaxed selective pressures. Our analyses reveal that NA and NS2 genes adjust the fastest to a new host and that selective pressures of H3N2 viruses are relaxed faster than for H1N1. The asymmetric nature of these processes suggests that viruses with the greatest adjustment potential to humans are coming from both birds and swine for H3N2, but only from birds for H1N1.

  12. Phylodynamics of the emergence of influenza viruses after cross-species transmission.

    Science.gov (United States)

    Rahnama, Leila; Aris-Brosou, Stéphane

    2013-01-01

    Human populations are constantly exposed to emerging pathogens such as influenza A viruses that result from cross-species transmissions. Generally these sporadic events are evolutionary dead-ends, but occasionally, viruses establish themselves in a new host that offers a novel genomic context to which the virus must adjust to avoid attenuation. However, the dynamics of this process are unknown. Here we present a novel method to characterize the time it takes to G+C composition at third codon positions (GC3 content) of influenza viruses to adjust to that of a new host. We compare the inferred dynamics in two subtypes, H1N1 and H3N2, based on complete genomes of viruses circulating in humans, swine and birds between 1900-2009. Our results suggest that both subtypes have the same fast-adjusting genes, which are not necessarily those with the highest absolute rates of evolution, but those with the most relaxed selective pressures. Our analyses reveal that NA and NS2 genes adjust the fastest to a new host and that selective pressures of H3N2 viruses are relaxed faster than for H1N1. The asymmetric nature of these processes suggests that viruses with the greatest adjustment potential to humans are coming from both birds and swine for H3N2, but only from birds for H1N1.

  13. Prevalence and risk factors for H1N1 and H3N2 influenza A virus infections in Minnesota turkey premises.

    Science.gov (United States)

    Corzo, Cesar A; Gramer, Marie; Lauer, Dale; Davies, Peter R

    2012-09-01

    Influenza virus infections can cause respiratory and systemic disease of variable severity and also result in economic losses for the turkey industry. Several subtypes of influenza can infect turkeys, causing diverse clinical signs. Influenza subtypes of swine origin have been diagnosed in turkey premises; however, it is not known how common these infections are nor the likely routes of transmission. We conducted a cross-sectional study to estimate the prevalence of influenza viruses and examine factors associated with infection on Minnesota turkey premises. Results from influenza diagnostic tests and turkey and pig premise location data were obtained from the Minnesota Poultry Testing Laboratory and the Minnesota Board of Animal Health, respectively, from January 2007 to September 2008. Diagnostic data from 356 premises were obtained, of which 17 premises tested positive for antibodies to influenza A virus by agar gel immunodiffusion assay and were confirmed as either H1N1 or H3N2 influenza viruses by hemagglutination and neuraminidase inhibition assays. Influenza infection status was associated with proximity to pig premises and flock size. The latter had a sparing effect on influenza status. This study suggests that H1N1 and H3N2 influenza virus infections of turkey premises in Minnesota are an uncommon event. The route of influenza virus transmission could not be determined; however, the findings suggest that airborne transmission should be considered in future studies.

  14. The replication of Bangladeshi H9N2 avian influenza viruses carrying genes from H7N3 in mammals.

    Science.gov (United States)

    Shanmuganatham, Karthik K; Jones, Jeremy C; Marathe, Bindumadhav M; Feeroz, Mohammed M; Jones-Engel, Lisa; Walker, David; Turner, Jasmine; Rabiul Alam, S M; Kamrul Hasan, M; Akhtar, Sharmin; Seiler, Patrick; McKenzie, Pamela; Krauss, Scott; Webby, Richard J; Webster, Robert G

    2016-04-20

    H9N2 avian influenza viruses are continuously monitored by the World Health Organization because they are endemic; they continually reassort with H5N1, H7N9 and H10N8 viruses; and they periodically cause human infections. We characterized H9N2 influenza viruses carrying internal genes from highly pathogenic H7N3 viruses, which were isolated from chickens or quail from live-bird markets in Bangladesh between 2010 and 2013. All of the H9N2 viruses used in this study carried mammalian host-specific mutations. We studied their replication kinetics in normal human bronchoepithelial cells and swine tracheal and lung explants, which exhibit many features of the mammalian airway epithelium and serve as a mammalian host model. All H9N2 viruses replicated to moderate-to-high titers in the normal human bronchoepithelial cells and swine lung explants, but replication was limited in the swine tracheal explants. In Balb/c mice, the H9N2 viruses were nonlethal, replicated to moderately high titers and the infection was confined to the lungs. In the ferret model of human influenza infection and transmission, H9N2 viruses possessing the Q226L substitution in hemagglutinin replicated well without clinical signs and spread via direct contact but not by aerosol. None of the H9N2 viruses tested were resistant to the neuraminidase inhibitors. Our study shows that the Bangladeshi H9N2 viruses have the potential to infect humans and highlights the importance of monitoring and characterizing this influenza subtype to better understand the potential risk these viruses pose to humans.

  15. Interaction of nanodiamonds materials with influenza viruses

    International Nuclear Information System (INIS)

    Ivanova, V T; Ivanova, M V; Garina, K O; Trushakova, S V; Manykin, A A; Burseva, E I; Spitsyn, B V; Korzhenevsky, A P

    2012-01-01

    The perspectives of the application of modern materials contained nanodiamonds (ND) are considered in this study. The interaction between detonation paniculate ND, soot and influenza A and B viruses, fragments of cDNA were analyzed at the normal conditions. It was shown that these sorbents can interact with the following viruses: reference epidemic strains of influenza A(H1N1), A(H1N1)v, A(H3N2) and B viruses circulated in the word in 2000-2010. The allantoises, concentrated viruses, cDNA can be absorbed by ND sorbents and getting removed from water solutions within 20 min. ND sorbents can be used for the preparation of antivirus filters for water solution and for future diagnostic systems in virology.

  16. Swine Flu: Prevention to Pandemic

    Directory of Open Access Journals (Sweden)

    Preeti Padda

    2015-03-01

    Full Text Available Swine flu, also known as swine influenza, pig influenza, hog flu and pig flu, is a respiratory disease caused by viruses (influenza viruses that infect the respiratory tract of pigs, resulting in nasal secretions, a barking cough, decreased appetite, and listless behaviour. Swine flu produces most of the same symptoms in pigs as human flu produces in people. Mostly people who are closely associated with pigs (for example, pork processors and farmers acquire the infection and similarly pigs get infected occasionally human flu infection. The cross-species infections (swine virus to man; human flu virus to pigs have always been confined to local areas and have not spread across borders in either pigs or humans. Unfortunately, this cross-species situation with influenza viruses has had the potential to change and cause epidemics and pandemics. Most recent pandemic has been reported in 2009,  where "swine flu" strain, first seen in Mexico, was termed as H1N1 as it was mainly infecting people and exhibited two main surface antigens, H1 (hemagglutinin type 1 and N1 (neuraminidase type1. This unique eight RNA strands from novel H1N1 flu have one strand derived from human flu strains, two from avian (bird strains, and five from swine strains. Since then it has been infecting people here and there. 

  17. Influenza virus resistance to oseltamivir: what are the implications?

    NARCIS (Netherlands)

    Fleming, D.M.; Elliot, A.J.; Meijer, A.; Paget, W.J.

    2009-01-01

    Influenza caused by an oseltamivir-resistant influenza A(H1N1) virus was widespread across Europe during the 2007–08 winter. About 25% of A(H1N1) viruses tested in the European Influenza Surveillance Scheme (EISS) were resistant with an H274Y mutation in the neuraminidase glycoprotein. Early

  18. Influenza virus infection among pediatric patients reporting diarrhea and influenza-like illness

    Directory of Open Access Journals (Sweden)

    Uyeki Timothy M

    2010-01-01

    Full Text Available Abstract Background Influenza is a major cause of morbidity and hospitalization among children. While less often reported in adults, gastrointestinal symptoms have been associated with influenza in children, including abdominal pain, nausea, vomiting, and diarrhea. Methods From September 2005 and April 2008, pediatric patients in Indonesia presenting with concurrent diarrhea and influenza-like illness were enrolled in a study to determine the frequency of influenza virus infection in young patients presenting with symptoms less commonly associated with an upper respiratory tract infection (URTI. Stool specimens and upper respiratory swabs were assayed for the presence of influenza virus. Results Seasonal influenza A or influenza B viral RNA was detected in 85 (11.6% upper respiratory specimens and 21 (2.9% of stool specimens. Viable influenza B virus was isolated from the stool specimen of one case. During the time of this study, human infections with highly pathogenic avian influenza A (H5N1 virus were common in the survey area. However, among 733 enrolled subjects, none had evidence of H5N1 virus infection. Conclusions The detection of influenza viral RNA and viable influenza virus from stool suggests that influenza virus may be localized in the gastrointestinal tract of children, may be associated with pediatric diarrhea and may serve as a potential mode of transmission during seasonal and epidemic influenza outbreaks.

  19. Antibody titers against swine influenza subtypes determined by the hemagglutination inhibition test are highly dependent on the strain

    DEFF Research Database (Denmark)

    Trebbien, Ramona; Nielsen, Jens; Bøtner, Anette

    In Denmark there are three circulating strains of swine influenza H1N1, H1N2 and H3N2. The H1N2 is different from the H1N2 subtypes circulating in other European countries. The Danish subtype is a reassortment between the two Danish circulating swine influenza subtypes H1N1 and H3N2. From...

  20. Shotgun glycomics of pig lung identifies natural endogenous receptors for influenza viruses.

    Science.gov (United States)

    Byrd-Leotis, Lauren; Liu, Renpeng; Bradley, Konrad C; Lasanajak, Yi; Cummings, Sandra F; Song, Xuezheng; Heimburg-Molinaro, Jamie; Galloway, Summer E; Culhane, Marie R; Smith, David F; Steinhauer, David A; Cummings, Richard D

    2014-06-03

    Influenza viruses bind to host cell surface glycans containing terminal sialic acids, but as studies on influenza binding become more sophisticated, it is becoming evident that although sialic acid may be necessary, it is not sufficient for productive binding. To better define endogenous glycans that serve as viral receptors, we have explored glycan recognition in the pig lung, because influenza is broadly disseminated in swine, and swine have been postulated as an intermediary host for the emergence of pandemic strains. For these studies, we used the technology of "shotgun glycomics" to identify natural receptor glycans. The total released N- and O-glycans from pig lung glycoproteins and glycolipid-derived glycans were fluorescently tagged and separated by multidimensional HPLC, and individual glycans were covalently printed to generate pig lung shotgun glycan microarrays. All viruses tested interacted with one or more sialylated N-glycans but not O-glycans or glycolipid-derived glycans, and each virus demonstrated novel and unexpected differences in endogenous N-glycan recognition. The results illustrate the repertoire of specific, endogenous N-glycans of pig lung glycoproteins for virus recognition and offer a new direction for studying endogenous glycan functions in viral pathogenesis.

  1. Conducting polymers as sorbents of influenza viruses

    Czech Academy of Sciences Publication Activity Database

    Ivanova, V. T.; Garina, E. O.; Burtseva, E. I.; Kirillova, E. S.; Ivanova, M. V.; Stejskal, Jaroslav; Sapurina, Irina

    2017-01-01

    Roč. 71, č. 2 (2017), s. 495-503 ISSN 0366-6352 R&D Projects: GA ČR(CZ) GA16-02787S; GA MŠk(CZ) LH14199 Institutional support: RVO:61389013 Keywords : influenza viruses * conducting polymers * polyaniline Subject RIV: CD - Macromolecular Chemistry OBOR OECD: Polymer science Impact factor: 1.258, year: 2016

  2. Filamentous Influenza Virus Enters Cells via Macropinocytosis

    Science.gov (United States)

    Rossman, Jeremy S.; Leser, George P.

    2012-01-01

    Influenza virus is pleiomorphic, producing both spherical (100-nm-diameter) and filamentous (100-nm by 20-μm) virions. While the spherical virions are known to enter host cells through exploitation of clathrin-mediated endocytosis, the entry pathway for filamentous virions has not been determined, though the existence of an alternative, non-clathrin-, non-caveolin-mediated entry pathway for influenza virus has been known for many years. In this study, we confirm recent results showing that influenza virus utilizes macropinocytosis as an alternate entry pathway. Furthermore, we find that filamentous influenza viruses use macropinocytosis as the primary entry mechanism. Virions enter cells as intact filaments within macropinosomes and are trafficked to the acidic late-endosomal compartment. Low pH triggers a conformational change in the M2 ion channel protein, altering membrane curvature and leading to a fragmentation of the filamentous virions. This fragmentation may enable more-efficient fusion between the viral and endosomal membranes. PMID:22875971

  3. CT manifestations of patients with swine-origin influenza A H1N1

    International Nuclear Information System (INIS)

    Qi Wenxu; Liu Junpeng; Gao Song; Guo Qiyong

    2010-01-01

    Objective: To explore the manifestations of chest multi-slice spiral CT in patients with initial infection of swine-origin influenza A (H1N1) virus (S-OIV). Methods: The chest multi-slices spirals CT images of 19 firstly diagnosed patients with swine-origin influenza A (H1N1) in our institution were retrospectively studied. CT manifestations were evaluated by three experienced radiologists. Location, appearance of lung abnormalities, abnormal distribution, pleural effusion and others (pericadiaum, lymphadenopathy and pleural thickening) were observed and quantitatively analyzed. The correlation of ground-glass and consolidation CT scores with the fever time was studied. Results: The abnormal CT findings were observed bilaterally in 18 of 19 subjects including ground-glass (n=3), consolidation (n=3), consolidation accompanied with ground-glass (n=12). Most of these lesions were distributed diffusively (n=14) while the others located in the middle and low lobes (n=4). Unilateral (n=3) or bilateral (n=2) pleural effusion were observed. Lymphadenopathy (n=2), effusion of pericadium (n=1), pleural thickening (n=1) and cardiac enlargement (n=2) were also found in patients with H1N1. CT scores of ground-glass were 4.25 (n=2), 3.75 (n=1), 2.25 (n=1), 1.75 (n=1), 1.00 (n=6), 0.75 (n=2), 0.50 (n=2), 0 (n=4). CT scores of consolidation were 4.25 (n=1), 4.00 (n=1), 3.75 (n=1), 2.75 (n=1), 1.25 (n=3), 1.00 (n=2), 0.75 (n=2), 0.50 (n=1), 0.25 (n=3), 0 (n=4). CT scores of ground-glass were significantly correlated with the fever time (r=0.776, P 0.01). Conclusions: The most common CT findings in patients with S-OIV infection are diffuse distribution of bilateral ground-glass opacities with or without associated focal or multifocal areas of consolidation. The increasing of ground-glass's range could be the marker of progression of H1N1 pulmonary infection at initial stage. (authors)

  4. Swine-Origin Influenza A Outbreak 2009 at Shinshu University, Japan

    Directory of Open Access Journals (Sweden)

    Washizuka Shinsuke

    2011-02-01

    Full Text Available Abstract Background A worldwide outbreak of swine flu H1N1 pandemic influenza occurred in April 2009. To determine the mechanism underlying the spread of infection, we prospectively evaluated a survey implemented at a local university. Methods Between August 2009 and March 2010, we surveyed 3 groups of subjects: 2318 children in six schools attached to the Faculty of Education, 11424 university students, and 3344 staff members. Subjects with influenza-like symptoms who were diagnosed with swine flu at hospitals or clinics were defined as swine flu patients and asked to make a report using a standardized form. Results After the start of the pandemic, a total of 2002 patients (11.7% were registered in the survey. These patients included 928 schoolchildren (40.0%, 1016 university students (8.9%, and 58 staff members (1.7%. The incidence in schoolchildren was significantly higher than in the other 2 groups (P Conclusion Schoolchildren and university students are vulnerable to swine flu, suggesting that avoidance of close contact, especially among these young people, may be effective way in controlling future severe influenza pandemics, especially at educational institutions.

  5. Influenza A virus infections in marine mammals and terrestrial carnivores.

    Science.gov (United States)

    Harder, Timm C; Siebert, Ursula; Wohlsein, Peter; Vahlenkamp, Thomas

    2013-01-01

    Influenza A viruses (IAV), members of the Orthomyxoviridae, cover a wide host spectrum comprising a plethora of avian and, in comparison, a few mammalian species. The viral reservoir and gene pool are kept in metapopulations of aquatic wild birds. The mammalian-adapted IAVs originally arose by transspecies transmission from avian sources. In swine, horse and man, species-adapted IAV lineages circulate independently of the avian reservoir and cause predominantly respiratory disease of highly variable severity. Sporadic outbreaks of IAV infections associated with pneumonic clinical signs have repeatedly occurred in marine mammals (harbour seals [Phoca vitulina]) off the New England coast of the U.S.A. due to episodic transmission of avian IAV. However, no indigenous marine mammal IAV lineages are described. In contrast to marine mammals, avian- and equine-derived IAVs have formed stable circulating lineages in terrestrial carnivores: IAVs of subtype H3N2 and H3N8 are found in canine populations in South Korea, China, and the U.S.A. Experimental infections revealed that dogs and cats can be infected with an even wider range of avian IAVs. Cats, in particular, also proved susceptible to native infection with human pandemic H1N1 viruses and, according to serological data, may be vulnerable to infection with further human-adapted IAVs. Ferrets are susceptible to a variety of avian and mammalian IAVs and are an established animal model of human IAV infection. Thus, a potential role of pet cats, dogs and ferrets as mediators of avian-derived viruses to the human population does exist. A closer observation for influenza virus infections and transmissions at this animal-human interface is indicated.

  6. A review of simulation modelling approaches used for the spread of zoonotic influenza viruses in animal and human populations.

    Science.gov (United States)

    Dorjee, S; Poljak, Z; Revie, C W; Bridgland, J; McNab, B; Leger, E; Sanchez, J

    2013-09-01

    Increasing incidences of emerging and re-emerging diseases that are mostly zoonotic (e.g. severe acute respiratory syndrome, avian influenza H5N1, pandemic influenza) has led to the need for a multidisciplinary approach to tackling these threats to public and animal health. Accordingly, a global movement of 'One-Health/One-Medicine' has been launched to foster collaborative efforts amongst animal and human health officials and researchers to address these problems. Historical evidence points to the fact that pandemics caused by influenza A viruses remain a major zoonotic threat to mankind. Recently, a range of mathematical and computer simulation modelling methods and tools have increasingly been applied to improve our understanding of disease transmission dynamics, contingency planning and to support policy decisions on disease outbreak management. This review provides an overview of methods, approaches and software used for modelling the spread of zoonotic influenza viruses in animals and humans, particularly those related to the animal-human interface. Modelling parameters used in these studies are summarized to provide references for future work. This review highlights the limited application of modelling research to influenza in animals and at the animal-human interface, in marked contrast to the large volume of its research in human populations. Although swine are widely recognized as a potential host for generating novel influenza viruses, and that some of these viruses, including pandemic influenza A/H1N1 2009, have been shown to be readily transmissible between humans and swine, only one study was found related to the modelling of influenza spread at the swine-human interface. Significant gaps in the knowledge of frequency of novel viral strains evolution in pigs, farm-level natural history of influenza infection, incidences of influenza transmission between farms and between swine and humans are clearly evident. Therefore, there is a need to direct

  7. Pyrazole compound BPR1P0034 with potent and selective anti-influenza virus activity

    Directory of Open Access Journals (Sweden)

    Yeh Jiann-Yih

    2010-02-01

    Full Text Available Abstract Background Influenza viruses are a major cause of morbidity and mortality around the world. More recently, a swine-origin influenza A (H1N1 virus that is spreading via human-to-human transmission has become a serious public concern. Although vaccination is the primary strategy for preventing infections, influenza antiviral drugs play an important role in a comprehensive approach to controlling illness and transmission. In addition, a search for influenza-inhibiting drugs is particularly important in the face of high rate of emergence of influenza strains resistant to several existing influenza antivirals. Methods We searched for novel anti-influenza inhibitors using a cell-based neutralization (inhibition of virus-induced cytopathic effect assay. After screening 20,800 randomly selected compounds from a library from ChemDiv, Inc., we found that BPR1P0034 has sub-micromolar antiviral activity. The compound was resynthesized in five steps by conventional chemical techniques. Lead optimization and a structure-activity analysis were used to improve potency. Time-of-addition assay was performed to target an event in the virus life cycle. Results The 50% effective inhibitory concentration (IC50 of BPR1P0034 was 0.42 ± 0.11 μM, when measured with a plaque reduction assay. Viral protein and RNA synthesis of A/WSN/33 (H1N1 was inhibited by BPR1P0034 and the virus-induced cytopathic effects were thus significantly reduced. BPR1P0034 exhibited broad inhibition spectrum for influenza viruses but showed no antiviral effect for enteroviruses and echovirus 9. In a time-of-addition assay, in which the compound was added at different stages along the viral replication cycle (such as at adsorption or after adsorption, its antiviral activity was more efficient in cells treated with the test compound between 0 and 2 h, right after viral infection, implying that an early step of viral replication might be the target of the compound. These results suggest

  8. Giant Magnetoresistance-based Biosensor for Detection of Influenza A Virus.

    Science.gov (United States)

    Krishna, Venkatramana D; Wu, Kai; Perez, Andres M; Wang, Jian-Ping

    2016-01-01

    We have developed a simple and sensitive method for the detection of influenza A virus based on giant magnetoresistance (GMR) biosensor. This assay employs monoclonal antibodies to viral nucleoprotein (NP) in combination with magnetic nanoparticles (MNPs). Presence of influenza virus allows the binding of MNPs to the GMR sensor and the binding is proportional to the concentration of virus. Binding of MNPs onto the GMR sensor causes change in the resistance of sensor, which is measured in a real time electrical readout. GMR biosensor detected as low as 1.5 × 10(2) TCID50/mL virus and the signal intensity increased with increasing concentration of virus up to 1.0 × 10(5) TCID50/mL. This study showed that the GMR biosensor assay is relevant for diagnostic application since the virus concentration in nasal samples of influenza virus infected swine was reported to be in the range of 10(3) to 10(5) TCID50/mL.

  9. Bestrijding van de nieuwe influenza A (H1N1). I. Overzicht van de relevante virologische aspecten

    NARCIS (Netherlands)

    Koopmans, Marion P. G.; Meijer, Adam; van der Lubben, Mariken I. M.; Boucher, Charles; Fouchier, Ron A. M.; Osterhaus, Ab D. M. E.; Timen, Aura; de Jong, Menno D.; van Steenbergen, Jim E.

    2009-01-01

    In April 2009 a new influenza virus was discovered, which spread from Mexico to the rest of the world. The new influenza A (H1N1) virus is genetically related to swine flu viruses, and differs substantially from circulating human influenza viruses. It is able to spread from person to person. Because

  10. Influenza A(H9N2) Virus, Burkina Faso

    OpenAIRE

    Zecchin, Bianca; Minoungou, Germaine; Fusaro, Alice; Moctar, Sidi; Ouedraogo-Kaboré, Anne; Schivo, Alessia; Salviato, Annalisa; Marciano, Sabrina; Monne, Isabella

    2017-01-01

    We identified influenza A(H9N2) virus G1 lineage in poultry in Burkina Faso. Urgent actions are needed to raise awareness about the risk associated with spread of this zoonotic virus subtype in the area and to construct a strategy for effective prevention and control of influenza caused by this virus.

  11. Swine- Origin Influenza A (H1N1) Pandemic Revisited | Mathew ...

    African Journals Online (AJOL)

    Since the beginning of January 2008 sporadic cases of infections in humans caused by influenza A (H1N1) virus- resistant to available anti-influenza drugs have been reported worldwide [1,2]. The World Health Organization (WHO) in its report published on 18 March 2009 indicated that during weeks 1- 4 (28 December ...

  12. Characterisation and Identification of Avian Influenza Virus (AI

    Directory of Open Access Journals (Sweden)

    Dyah Ayu Hewajuli

    2008-06-01

    Full Text Available Avian Influenza is caused by Influenza A virus which is a member of Orthomyxoviridae family. Influenza A virus is enveloped single stranded RNA with eight-segmented, negative polarity and filament or oval form, 50 – 120 by 200 – 300 nm diameters. Influenza A viruses have been found to infect birds, human, pig, horse and sometimes in the other mammalian such as seal and whale. The viruses are divided into different subtypes based on the antigenic protein which covers the virus surface i.e. Haemaglutinin (HA and Neuraminidase (NA. In addition, the nomenclature of subtype virus is based on HA and NA i.e HxNx, for example H5N1, H9N2 and the others. According to pathogenic, it could be divided into two distinct groups, they are Highly Pathogenic Avian Influenza (HPAI and Low Pathogenic Avian Influenza (LPAI. The Avian Influenza viruses have been continuously occurred and spread out in some continents such us America, Europe, Africa and Asian countries. The outbreak of Avian Influenza caused high mortality on birds and it has been reported that in human case Avian Influenza subtype H5N1 virus has caused several deaths. To anticipate this condition, an effort to prevent the transmission of Avian Influenza is needed. These strategic attempts include biosecurity, depopulation, vaccination, control of virus movement, monitoring and evaluation. Laboratory diagnostic plays an important role for successful prevention, control and eradication programs of Avian Influenza. Recently, there are two diagnostic methods for Avian Influenza. They are conventional (virological diagnosis and molecular methods. The conventional method is usually used for initial diagnostic of Avian Influenza. The conventional method takes more time and more costly, whereas the molecular method is more effective than conventional method. Based on the available diagnostic technique, basically diagnostic of Avian Influenza is done by serology test, isolation and identification as well

  13. Influenza virus infection during pregnancy and in specific populations

    OpenAIRE

    Meijer, WJ

    2016-01-01

    Influenza virus infection causes approximately 1 billion infections worldwide each year. These infections are usually self-limiting, but serious complications may occur, in particular in adults aged 65 years or older, patients with cardiovascular disease, asthma or autoimmune disorders and pregnant women. In this thesis we studied several aspects of influenza virus infection. Pregnant women appear to be at an increased risk of complications of influenza virus infection, especially during the ...

  14. Influenza Virus and Glycemic Variability in Diabetes: A Killer Combination?

    Directory of Open Access Journals (Sweden)

    Katina D. Hulme

    2017-05-01

    Full Text Available Following the 2009 H1N1 influenza virus pandemic, numerous studies identified the striking link between diabetes mellitus and influenza disease severity. Typically, influenza virus is a self-limiting infection but in individuals who have a pre-existing chronic illness, such as diabetes mellitus, severe influenza can develop. Here, we discuss the latest clinical and experimental evidence for the role of diabetes in predisposing the host to severe influenza. We explore the possible mechanisms that underlie this synergy and highlight the, as yet, unexplored role that blood glucose oscillations may play in disease development. Diabetes is one of the world’s fastest growing chronic diseases and influenza virus represents a constant and pervasive threat to human health. It is therefore imperative that we understand how diabetes increases influenza severity in order to mitigate the burden of future influenza epidemics and pandemics.

  15. Molecular epidemiology of influenza A(H1N1pdm09 viruses from Pakistan in 2009-2010.

    Directory of Open Access Journals (Sweden)

    Uzma Bashir Aamir

    Full Text Available In early 2009, a novel influenza A(H1N1 virus that emerged in Mexico and United States rapidly disseminated worldwide. The spread of this virus caused considerable morbidity with over 18000 recorded deaths. The new virus was found to be a reassortant containing gene segments from human, avian and swine influenza viruses.The first case of human infection with A(H1N1pdm09 in Pakistan was detected on 18(th June 2009. Since then, 262 laboratory-confirmed cases have been detected during various outbreaks with 29 deaths (as of 31(st August 2010. The peak of the epidemic was observed in December with over 51% of total respiratory cases positive for influenza. Representative isolates from Pakistan viruses were sequenced and analyzed antigenically. Sequence analysis of genes coding for surface glycoproteins HA and NA showed high degree of high levels of sequence identity with corresponding genes of regional viruses circulating South East Asia. All tested viruses were sensitive to Oseltamivir in the Neuraminidase Inhibition assays.Influenza A(H1N1pdm09 viruses from Pakistan form a homogenous group of viruses. Their HA genes belong to clade 7 and show antigenic profile similar to the vaccine strain A/California/07/2009. These isolates do not show any amino acid changes indicative of high pathogenicity and virulence. It is imperative to continue monitoring of these viruses for identification of potential variants of high virulence or drug resistance.

  16. H1N1 influenza ('swine 'flu') in the paediatric ICU in South Africa

    African Journals Online (AJOL)

    Schoub B. Swine flu – implications for South Africa. Communicable Diseases Surveillance. Bulletin 2009;7(3):5-7. 5. Ahrens JO, Morrow BM, Argent AC. Influenza A(H1N1)pdm09 in critically ill children admitted to a paediatric intensive care unit, South Africa. S Afr J Crit Care 2015;31(1):4-7. 6. Cox CM, Blanton L, Dhara R, ...

  17. Influenza A Virus Infection in Pigs Attracts Multifunctional and Cross-Reactive T Cells to the Lung.

    Science.gov (United States)

    Talker, Stephanie C; Stadler, Maria; Koinig, Hanna C; Mair, Kerstin H; Rodríguez-Gómez, Irene M; Graage, Robert; Zell, Roland; Dürrwald, Ralf; Starick, Elke; Harder, Timm; Weissenböck, Herbert; Lamp, Benjamin; Hammer, Sabine E; Ladinig, Andrea; Saalmüller, Armin; Gerner, Wilhelm

    2016-10-15

    Pigs are natural hosts for influenza A viruses and play a critical role in influenza epidemiology. However, little is known about their influenza-evoked T-cell response. We performed a thorough analysis of both the local and systemic T-cell response in influenza virus-infected pigs, addressing kinetics and phenotype as well as multifunctionality (gamma interferon [IFN-γ], tumor necrosis factor alpha [TNF-α], and interleukin-2 [IL-2]) and cross-reactivity. A total of 31 pigs were intratracheally infected with an H1N2 swine influenza A virus (FLUAVsw) and consecutively euthanized. Lungs, tracheobronchial lymph nodes, and blood were sampled during the first 15 days postinfection (p.i.) and at 6 weeks p.i. Ex vivo flow cytometry of lung lymphocytes revealed an increase in proliferating (Ki-67(+)) CD8(+) T cells with an early effector phenotype (perforin(+) CD27(+)) at day 6 p.i. Low frequencies of influenza virus-specific IFN-γ-producing CD4(+) and CD8(+) T cells could be detected in the lung as early as 4 days p.i. On consecutive days, influenza virus-specific CD4(+) and CD8(+) T cells produced mainly IFN-γ and/or TNF-α, reaching peak frequencies around day 9 p.i., which were up to 30-fold higher in the lung than in tracheobronchial lymph nodes or blood. At 6 weeks p.i., CD4(+) and CD8(+) memory T cells had accumulated in lung tissue. These cells showed diverse cytokine profiles and in vitro reactivity against heterologous influenza virus strains, all of which supports their potential to combat heterologous influenza virus infections in pigs. Pigs not only are a suitable large-animal model for human influenza virus infection and vaccine development but also play a central role in the emergence of new pandemic strains. Although promising candidate universal vaccines are tested in pigs and local T cells are the major correlate of heterologous control, detailed and targeted analyses of T-cell responses at the site of infection are scarce. With the present study, we

  18. Key Facts about Influenza (Flu) and Flu Vaccine

    Science.gov (United States)

    ... Collection of Respiratory Specimens for Influenza Virus Testing Clinical Signs & Symptoms of Influenza Symptoms & Laboratory Diagnosis Information for ... Submit" /> Archived Flu Emails Influenza Types Seasonal Avian Swine Variant Pandemic Other ... This Page What is Influenza (also called Flu)? Signs and Symptoms of Flu How Flu Spreads Period ...

  19. Detection and subtyping (H5 and H7) of avian type A influenza virus by reverse transcription-PCR and PCR-ELISA

    DEFF Research Database (Denmark)

    Munch, M.; Nielsen, L.P.; Handberg, Kurt

    2001-01-01

    Avian influenza virus infections are a major cause of morbidity and rapid identification of the virus has important clinical, economical and epidemiological implications. We have developed a one-tube Reverse Transcriptase Polymerase Chain Reaction (RT-PCR) for the rapid diagnosis of avian influenza...... A. A panel of reference influenza strains from various hosts including avian species, human, swine and horse were evaluated in a one tube RT-PCR using primers designed for the amplification of a 218 bp fragment of the NP gene. The PCR products were detected by PCR-ELISA by use of an internal...

  20. DIVA vaccination strategies for avian influenza virus.

    Science.gov (United States)

    Suarez, David L

    2012-12-01

    Vaccination for both low pathogenicity avian influenza and highly pathogenic avian influenza is commonly used by countries that have become endemic for avian influenza virus, but stamping-out policies are still common for countries with recently introduced disease. Stamping-out policies of euthanatizing infected and at-risk flocks has been an effective control tool, but it comes at a high social and economic cost. Efforts to identify alternative ways to respond to outbreaks without widespread stamping out has become a goal for organizations like the World Organisation for Animal Health. A major issue with vaccination for avian influenza is trade considerations because countries that vaccinate are often considered to be endemic for the disease and they typically lose their export markets. Primarily as a tool to promote trade, the concept of DIVA (differentiate infected from vaccinated animals) has been considered for avian influenza, but the goal for trade is to differentiate vaccinated and not-infected from vaccinated and infected animals because trading partners are unwilling to accept infected birds. Several different strategies have been investigated for a DIVA strategy, but each has advantages and disadvantages. A review of current knowledge on the research and implementation of the DIVA strategy will be discussed with possible ways to implement this strategy in the field. The increased desire for a workable DIVA strategy may lead to one of these ideas moving from the experimental to the practical.

  1. Pneumonia and Pandemic Influenza A H1N1 Virus Infection: A Review of the Literature

    Directory of Open Access Journals (Sweden)

    Servet Kayhan

    2014-01-01

    Full Text Available Influenza viruses cause seasonal epidemics and occasional pandemics. On 18 March 2009, A novel swine origin influenza A (H1N1 virus was seen in Mexico, then a global outbreak of respiratory illness started. The new H1N1 virus usually attaches to tracheobronchial epithelial cells and the clinical picture ranges from transient lower respiratory tract infections to severe pneumonia leading to acute respiratory distress syndrome. The main complication is extension of viral infection to the alveoli that causes primary viral pneumonia. The most common radiologic findings are unilateral or bilateral ground-glass opacities and multifocal areas of consolidations Bacterial coinfections, particularly Streptococcus pneumoniae and Staphylococcus aureus, increase the severity of illness. Patients with underlying cardiopulmonary comorbid conditions, pregnancy and obesity appear to be at higher risk of severe pneumonia. The severe cases have required admission to intensive care units and needs to mechanical ventilation. H1N1 influenza virus is now in post-pandemic period; however, localized outbreaks of various magnitudes are being reported. Keywords: H1N1; influenza; pandemic; pneumonia

  2. MicroRNA expression profile of mouse lung infected with 2009 pandemic H1N1 influenza virus.

    Directory of Open Access Journals (Sweden)

    Zhihao Wu

    Full Text Available MicroRNAs have been implicated in the regulation of gene expression of various biological processes in a post-transcriptional manner under physiological and pathological conditions including host responses to viral infections. The 2009 pandemic H1N1 influenza virus is an emerging reassortant strain of swine, human and bird influenza virus that can cause mild to severe illness and even death. To further understand the molecular pathogenesis of the 2009 pandemic H1N1 influenza virus, we profiled cellular microRNAs of lungs from BALB/c mice infected with wild-type 2009 pandemic influenza virus A/Beijing/501/2009 (H1N1 (hereafter referred to as BJ501 and mouse-adapted influenza virus A/Puerto Rico/8/1934 (H1N1 (hereafter referred to as PR8 for comparison. Microarray analysis showed both the influenza virus BJ501 and PR8 infection induced strain- and temporal-specific microRNA expression patterns and that their infection caused a group of common and distinct differentially expressed microRNAs. Characteristically, more differentially expressed microRNAs were aroused on day 5 post infection than on day 2 and more up-regulated differentially expressed microRNAs were provoked than the down-regulated for both strains of influenza virus. Finally, 47 differentially expressed microRNAs were obtained for the infection of both strains of H1N1 influenza virus with 29 for influenza virus BJ501 and 43 for PR8. Among them, 15 microRNAs had no reported function, while 32 including miR-155 and miR-233 are known to play important roles in cancer, immunity and antiviral activity. Pathway enrichment analyses of the predicted targets revealed that the transforming growth factor-β (TGF-β signaling pathway was the key cellular pathway associated with the differentially expressed miRNAs during influenza virus PR8 or BJ501 infection. To our knowledge, this is the first report of microRNA expression profiles of the 2009 pandemic H1N1 influenza virus in a mouse model, and

  3. Multiple Genome Constellations of Similar and Distinct Influenza A Viruses Co-Circulate in Pigs During Epidemic Events.

    Science.gov (United States)

    Diaz, Andres; Marthaler, Douglas; Corzo, Cesar; Muñoz-Zanzi, Claudia; Sreevatsan, Srinand; Culhane, Marie; Torremorell, Montserrat

    2017-09-19

    Swine play a key role in the ecology and transmission of influenza A viruses (IAVs) between species. However, the epidemiology and diversity of swine IAVs is not completely understood. In this cohort study, we sampled on a weekly basis 132 3-week old pigs for 15 weeks. We found two overlapping epidemic events of infection in which most pigs (98.4%) tested PCR positive for IAVs. The prevalence rate of infection ranged between 0 and 86% per week and the incidence density ranged between 0 and 71 cases per 100 pigs-week. Three distinct influenza viral groups (VGs) replicating as a "swarm" of viruses were identified (swine H1-gamma, H1-beta, and H3-cluster-IV IAVs) and co-circulated at different proportions over time suggesting differential allele fitness. Furthermore, using deep genome sequencing 13 distinct viral genome constellations were differentiated. Moreover, 78% of the pigs had recurrent infections with IAVs closely related to each other or IAVs clearly distinct. Our results demonstrated the molecular complexity of swine IAVs during natural infection of pigs in which novel strains of IAVs with zoonotic and pandemic potential can emerge. These are key findings to design better health interventions to reduce the transmission of swine IAVs and minimize the public health risk.

  4. Aerosolized avian influenza virus by laboratory manipulations

    Directory of Open Access Journals (Sweden)

    Li Zhiping

    2012-08-01

    Full Text Available Abstract Background Avian H5N1 influenza viruses present a challenge in the laboratory environment, as they are difficult to collect from the air due to their small size and relatively low concentration. In an effort to generate effective methods of H5N1 air removal and ensure the safety of laboratory personnel, this study was designed to investigate the characteristics of aerosolized H5N1 produced by laboratory manipulations during research studies. Results Normal laboratory procedures used to process the influenza virus were carried out independently and the amount of virus polluting the on-site atmosphere was measured. In particular, zootomy, grinding, centrifugation, pipetting, magnetic stirring, egg inoculation, and experimental zoogenetic infection were performed. In addition, common accidents associated with each process were simulated, including breaking glass containers, syringe injection of influenza virus solution, and rupturing of centrifuge tubes. A micro-cluster sampling ambient air pollution collection device was used to collect air samples. The collected viruses were tested for activity by measuring their ability to induce hemagglutination with chicken red blood cells and to propagate in chicken embryos after direct inoculation, the latter being detected by reverse-transcription PCR and HA test. The results showed that the air samples from the normal centrifugal group and the negative-control group were negative, while all other groups were positive for H5N1. Conclusions Our findings suggest that there are numerous sources of aerosols in laboratory operations involving H5N1. Thus, laboratory personnel should be aware of the exposure risk that accompanies routine procedures involved in H5N1 processing and take proactive measures to prevent accidental infection and decrease the risk of virus aerosol leakage beyond the laboratory.

  5. Evolution of a reassortant North American gull influenza virus lineage: drift, shift and stability

    Science.gov (United States)

    Hall, Jeffrey S.; TeSlaa, Joshua L.; Nashold, Sean W.; Halpin, Rebecca A.; Stockwell, Timothy; Wentworth, David E.; Dugan, Vivien; Ip, Hon S.

    2013-01-01

    Background: The role of gulls in the ecology of avian influenza (AI) is different than that of waterfowl. Different constellations of subtypes circulate within the two groups of birds and AI viruses isolated from North American gulls frequently possess reassortant genomes with genetic elements from both North America and Eurasian lineages. A 2008 isolate from a Newfoundland Great Black-backed Gull contained a mix of North American waterfowl, North American gull and Eurasian lineage genes. Methods: We isolated, sequenced and phylogenetically compared avian influenza viruses from 2009 Canadian wild birds. Results: We analyzed six 2009 virus isolates from Canada and found the same phylogenetic lineage had persisted over a larger geographic area, with an expanded host range that included dabbling and diving ducks as well as gulls. All of the 2009 virus isolates contained an internal protein coding set of genes of the same Eurasian lineage genes except PB1 that was from a North American lineage, and these genes continued to evolve by genetic drift. We show evidence that the 2008 Great Black-backed Gull virus was derived from this lineage with a reassortment of a North American PA gene into the more stable core set of internal protein coding genes that has circulated in avian populations for at least 2 years. From this core, the surface glycoprotein genes have switched several times creating H13N6, H13N2, and H16N3 subtypes. These gene segments were from North American lineages except for the H16 and N3 vRNAs. Conclusions: This process appears similar to genetic shifts seen with swine influenza where a stable "triple reassortant internal gene" core has circulated in swine populations with genetic shifts occurring with hemaggluttinin and neuraminidase proteins getting periodically switched. Thus gulls may serve as genetic mixing vessels for different lineages of avian influenza, similar to the role of swine with regards to human influenza. These findings illustrate the

  6. Evaluation of the Specificity and Sensitivity of a Potential Rapid Influenza Screening System

    Science.gov (United States)

    2013-01-01

    of influenza virus species during the 2009 swine origin influenza A H1N1 virus epidemic in Milwaukee, Wisconsin. J Clin Microbiol 2009;47:2779–86...Luminex xTAG respiratory virus panel is indicative of infection with novel A/ H1N1 (swine-like) influenza virus . J Clin Microbiol 2009;47:2347–8... influenza test, and clinical case definition to viral culture and reverse transcription-PCR for rapid diagnosis of influenza virus infection. J Clin

  7. No evidence of African swine fever virus replication in hard ticks

    NARCIS (Netherlands)

    de Carvalho Ferreira, Helena C; Tudela Zúquete, Sara; Wijnveld, Michiel; Weesendorp, Eefke; Jongejan, Frans; Stegeman, Arjan; Loeffen, Willie L A

    African swine fever (ASF) is caused by African swine fever virus (ASFV), a tick-borne DNA virus. Soft ticks of the genus Ornithodoros are the only biological vectors of ASFV recognized so far. Although other hard ticks have been tested for vector competence, two commonly found tick species in

  8. Virulence determinants within the E2 glycoprotein of Classical Swine Fever Virus

    DEFF Research Database (Denmark)

    Johnston, Camille Melissa; Fahnøe, Ulrik; Lohse, Louise

    Classical Swine Fever is a highly contagious disease of pigs caused by Classical Swine Fever Virus (CSFV), a member of the pestivirus genus within the family Flaviviridae. The E2 glycoprotein of CSFV has been shown to be an important factor for the virulence of the virus. In a recent study, we have...

  9. African swine fever virus uses macropinocytosis to enter host cells.

    Directory of Open Access Journals (Sweden)

    Elena G Sánchez

    Full Text Available African swine fever (ASF is caused by a large and highly pathogenic DNA virus, African swine fever virus (ASFV, which provokes severe economic losses and expansion threats. Presently, no specific protection or vaccine against ASF is available, despite the high hazard that the continued occurrence of the disease in sub-Saharan Africa, the recent outbreak in the Caucasus in 2007, and the potential dissemination to neighboring countries, represents. Although virus entry is a remarkable target for the development of protection tools, knowledge of the ASFV entry mechanism is still very limited. Whereas early studies have proposed that the virus enters cells through receptor-mediated endocytosis, the specific mechanism used by ASFV remains uncertain. Here we used the ASFV virulent isolate Ba71, adapted to grow in Vero cells (Ba71V, and the virulent strain E70 to demonstrate that entry and internalization of ASFV includes most of the features of macropinocytosis. By a combination of optical and electron microscopy, we show that the virus causes cytoplasm membrane perturbation, blebbing and ruffles. We have also found that internalization of the virions depends on actin reorganization, activity of Na(+/H(+ exchangers, and signaling events typical of the macropinocytic mechanism of endocytosis. The entry of virus into cells appears to directly stimulate dextran uptake, actin polarization and EGFR, PI3K-Akt, Pak1 and Rac1 activation. Inhibition of these key regulators of macropinocytosis, as well as treatment with the drug EIPA, results in a considerable decrease in ASFV entry and infection. In conclusion, this study identifies for the first time the whole pathway for ASFV entry, including the key cellular factors required for the uptake of the virus and the cell signaling involved.

  10. Mutations in H5N1 influenza virus hemagglutinin that confer binding to human tracheal airway epithelium.

    Directory of Open Access Journals (Sweden)

    Guadalupe Ayora-Talavera

    2009-11-01

    Full Text Available The emergence in 2009 of a swine-origin H1N1 influenza virus as the first pandemic of the 21st Century is a timely reminder of the international public health impact of influenza viruses, even those associated with mild disease. The widespread distribution of highly pathogenic H5N1 influenza virus in the avian population has spawned concern that it may give rise to a human influenza pandemic. The mortality rate associated with occasional human infection by H5N1 virus approximates 60%, suggesting that an H5N1 pandemic would be devastating to global health and economy. To date, the H5N1 virus has not acquired the propensity to transmit efficiently between humans. The reasons behind this are unclear, especially given the high mutation rate associated with influenza virus replication. Here we used a panel of recombinant H5 hemagglutinin (HA variants to demonstrate the potential for H5 HA to bind human airway epithelium, the predominant target tissue for influenza virus infection and spread. While parental H5 HA exhibited limited binding to human tracheal epithelium, introduction of selected mutations converted the binding profile to that of a current human influenza strain HA. Strikingly, these amino-acid changes required multiple simultaneous mutations in the genomes of naturally occurring H5 isolates. Moreover, H5 HAs bearing intermediate sequences failed to bind airway tissues and likely represent mutations that are an evolutionary "dead end." We conclude that, although genetic changes that adapt H5 to human airways can be demonstrated, they may not readily arise during natural virus replication. This genetic barrier limits the likelihood that current H5 viruses will originate a human pandemic.

  11. Haemagglutinin and nucleoprotein replicon particle vaccination of swine protects against the pandemic H1N1 2009 virus.

    Science.gov (United States)

    Vander Veen, R L; Mogler, M A; Russell, B J; Loynachan, A T; Harris, D L H; Kamrud, K I

    2013-10-12

    The recent emergence of the pandemic H1N1 (pH1N1) and H3N2 variant influenza A viruses (IAV) in 2009 and 2011-2012, respectively, highlight the zoonotic potential of influenza viruses and the need for vaccines capable of eliciting heterosubtypic protection. In these studies, single-cycle, propagation-defective replicon particle (RP) vaccines expressing IAV haemagglutinin (HA) and nucleoprotein (NP) genes were constructed and efficacy was evaluated in homologous and heterologous pig challenge studies with the pH1N1 2009 influenza virus (A/California/04/2009). Homologous HA RP vaccination eliminated virus shedding and decreased pulmonary pathology in pigs following pH1N1 2009 challenge. An RP vaccine expressing an H3N2-derived NP gene was able to decrease nasal shedding and viral load following heterosubtypic pH1N1 2009 challenge in pigs. These studies indicate that although homologous vaccination of swine remains the most effective means of preventing IAV infection, other vaccine alternatives do offer a level of heterosubtypic protection, and should continue to be evaluated for their ability to provide broader protection.

  12. Glycomic analysis of human respiratory tract tissues and correlation with influenza virus infection.

    Directory of Open Access Journals (Sweden)

    Trevenan Walther

    2013-03-01

    Full Text Available The first step in influenza infection of the human respiratory tract is binding of the virus to sialic (Sia acid terminated receptors. The binding of different strains of virus for the receptor is determined by the α linkage of the sialic acid to galactose and the adjacent glycan structure. In this study the N- and O-glycan composition of the human lung, bronchus and nasopharynx was characterized by mass spectrometry. Analysis showed that there was a wide spectrum of both Sia α2-3 and α2-6 glycans in the lung and bronchus. This glycan structural data was then utilized in combination with binding data from 4 of the published glycan arrays to assess whether these current glycan arrays were able to predict replication of human, avian and swine viruses in human ex vivo respiratory tract tissues. The most comprehensive array from the Consortium for Functional Glycomics contained the greatest diversity of sialylated glycans, but was not predictive of productive replication in the bronchus and lung. Our findings indicate that more comprehensive but focused arrays need to be developed to investigate influenza virus binding in an assessment of newly emerging influenza viruses.

  13. Insights from investigating the interactions of adamantane-based drugs with the M2 proton channel from the H1N1 swine virus

    International Nuclear Information System (INIS)

    Wang, Jing-Fang; Wei, Dong-Qing; Chou, Kuo-Chen

    2009-01-01

    The M2 proton channel is one of indispensable components for the influenza A virus that plays a vital role in its life cycle and hence is an important target for drug design against the virus. In view of this, the three-dimensional structure of the H1N1-M2 channel was developed based on the primary sequence taken from a patient recently infected by the H1N1 (swine flu) virus. With an explicit water-membrane environment, molecular docking studies were performed for amantadine and rimantadine, the two commercial drugs generally used to treat influenza A infection. It was found that their binding affinity to the H1N1-M2 channel is significantly lower than that to the H5N1-M2 channel, fully consistent with the recent report that the H1N1 swine virus was resistant to the two drugs. The findings and the relevant analysis reported here might provide useful structural insights for developing effective drugs against the new swine flu virus.

  14. Characterization of influenza virus among influenza like illness cases in Mumbai, India.

    Science.gov (United States)

    Roy, Soumen; Dahake, Ritwik; Patil, Deepak; Tawde, Shweta; Mukherjee, Sandeepan; Athlekar, Shrikant; Chowdhary, Abhay; Deshmukh, Ranjana

    2014-01-01

    The present study was carried out to monitor influenza viruses by identifying the virus and studying the seasonal variation during 2007-2009 in Mumbai. A total of 193 clinical respiratory samples (nasal and throat swab) were collected from patients having influenza like illness in Mumbai region. One-step real-time reverse-transcriptase PCR (rRTPCR) was used to detect Influenza type A (H1 and H3) and Influenza type B virus. Isolation of the virus was carried out using in vitro system which was further confirmed and typed by hemagglutination assay and hemagglutination inhibition assay. Out of 193 samples 24 (12.4 3%) samples tested positive for influenza virus, of which 13 (6.73 %) were influenza type A virus and 10 (5.18 %) were influenza type B virus, while 1 sample (0.51 %) was positive for both. By culture methods, 3 (1.55 %) viral isolates were obtained. All the three isolates were found to be Influenza type B/Malaysia (Victoria lineage) by Hemagglutination Inhibition Assay. The data generated from the present study reveals that both Influenza type A and B are prevalent in Mumbai with considerable activity. The peak activity was observed during monsoon season.

  15. SNPer: an R library for quantitative variant analysis on single nucleotide polymorphisms among influenza virus populations.

    Directory of Open Access Journals (Sweden)

    Unitsa Sangket

    Full Text Available Influenza virus (IFV can evolve rapidly leading to genetic drifts and shifts resulting in human and animal influenza epidemics and pandemics. The genetic shift that gave rise to the 2009 influenza A/H1N1 pandemic originated from a triple gene reassortment of avian, swine and human IFVs. More minor genetic alterations in genetic drift can lead to influenza drug resistance such as the H274Y mutation associated with oseltamivir resistance. Hence, a rapid tool to detect IFV mutations and the potential emergence of new virulent strains can better prepare us for seasonal influenza outbreaks as well as potential pandemics. Furthermore, identification of specific mutations by closely examining single nucleotide polymorphisms (SNPs in IFV sequences is essential to classify potential genetic markers associated with potentially dangerous IFV phenotypes. In this study, we developed a novel R library called "SNPer" to analyze quantitative variants in SNPs among IFV subpopulations. The computational SNPer program was applied to three different subpopulations of published IFV genomic information. SNPer queried SNPs data and grouped the SNPs into (1 universal SNPs, (2 likely common SNPs, and (3 unique SNPs. SNPer outperformed manual visualization in terms of time and labor. SNPer took only three seconds with no errors in SNP comparison events compared with 40 hours with errors using manual visualization. The SNPer tool can accelerate the capacity to capture new and potentially dangerous IFV strains to mitigate future influenza outbreaks.

  16. New world bats harbor diverse influenza A viruses.

    Directory of Open Access Journals (Sweden)

    Suxiang Tong

    Full Text Available Aquatic birds harbor diverse influenza A viruses and are a major viral reservoir in nature. The recent discovery of influenza viruses of a new H17N10 subtype in Central American fruit bats suggests that other New World species may similarly carry divergent influenza viruses. Using consensus degenerate RT-PCR, we identified a novel influenza A virus, designated as H18N11, in a flat-faced fruit bat (Artibeus planirostris from Peru. Serologic studies with the recombinant H18 protein indicated that several Peruvian bat species were infected by this virus. Phylogenetic analyses demonstrate that, in some gene segments, New World bats harbor more influenza virus genetic diversity than all other mammalian and avian species combined, indicative of a long-standing host-virus association. Structural and functional analyses of the hemagglutinin and neuraminidase indicate that sialic acid is not a ligand for virus attachment nor a substrate for release, suggesting a unique mode of influenza A virus attachment and activation of membrane fusion for entry into host cells. Taken together, these findings indicate that bats constitute a potentially important and likely ancient reservoir for a diverse pool of influenza viruses.

  17. Flock-based surveillance for lowpathogenic avian influenza virus in ...

    African Journals Online (AJOL)

    Flock-based surveillance for lowpathogenic avian influenza virus in commercial breeders and layers, southwest Nigeria. ... African Journal of Infectious Diseases ... Background: Flock surveillance systems for avian influenza (AI) virus play a critical role in countries where vaccination is not practiced so as to establish the ...

  18. Freshwater clams as bioconcentrators of avian influenza virus in water.

    Science.gov (United States)

    Huyvaert, Kathryn P; Carlson, Jenny S; Bentler, Kevin T; Cobble, Kacy R; Nolte, Dale L; Franklin, Alan B

    2012-10-01

    We report experimental evidence for bioconcentration of a low-pathogenicity avian influenza virus (H6N8) in the tissue of freshwater clams. Our results support the concept that freshwater clams may provide an effective tool for use in the early detection of influenza A viruses in aquatic environments.

  19. Seasonal trivalent inactivated influenza vaccine protects against 1918 Spanish influenza virus in ferrets

    Science.gov (United States)

    The influenza H1N1 pandemic of 1918 was one of the worst medical disasters in human history. Recent studies have demonstrated that the hemagglutinin (HA) protein of the 1918 virus and 2009 H1N1 pandemic virus, the latter now a component of the seasonal trivalent inactivated influenza vaccine (TIV),...

  20. Molecular Determinants of Influenza Virus Pathogenesis in Mice

    Science.gov (United States)

    Katz, Jaqueline M.; York, Ian A.

    2015-01-01

    Mice are widely used for studying influenza virus pathogenesis and immunology because of their low cost, the wide availability of mouse-specific reagents, and the large number of mouse strains available, including knockout and transgenic strains. However, mice do not fully recapitulate the signs of influenza infection of humans: transmission of influenza between mice is much less efficient than in humans, and influenza viruses often require adaptation before they are able to efficiently replicate in mice. In the process of mouse adaptation, influenza viruses acquire mutations that enhance their ability to attach to mouse cells, replicate within the cells, and suppress immunity, among other functions. Many such mouse-adaptive mutations have been identified, covering all 8 genomic segments of the virus. Identification and analysis of these mutations have provided insight into the molecular determinants of influenza virulence and pathogenesis, not only in mice but also in humans and other species. In particular, several mouse-adaptive mutations of avian influenza viruses have proved to be general mammalian-adaptive changes that are potential markers of pre-pandemic viruses. As well as evaluating influenza pathogenesis, mice have also been used as models for evaluation of novel vaccines and anti-viral therapies. Mice can be a useful animal model for studying influenza biology as long as differences between human and mice infections are taken into account. PMID:25038937

  1. The contrasting phylodynamics of human influenza B viruses.

    Science.gov (United States)

    Vijaykrishna, Dhanasekaran; Holmes, Edward C; Joseph, Udayan; Fourment, Mathieu; Su, Yvonne C F; Halpin, Rebecca; Lee, Raphael T C; Deng, Yi-Mo; Gunalan, Vithiagaran; Lin, Xudong; Stockwell, Timothy B; Fedorova, Nadia B; Zhou, Bin; Spirason, Natalie; Kühnert, Denise; Bošková, Veronika; Stadler, Tanja; Costa, Anna-Maria; Dwyer, Dominic E; Huang, Q Sue; Jennings, Lance C; Rawlinson, William; Sullivan, Sheena G; Hurt, Aeron C; Maurer-Stroh, Sebastian; Wentworth, David E; Smith, Gavin J D; Barr, Ian G

    2015-01-16

    A complex interplay of viral, host, and ecological factors shapes the spatio-temporal incidence and evolution of human influenza viruses. Although considerable attention has been paid to influenza A viruses, a lack of equivalent data means that an integrated evolutionary and epidemiological framework has until now not been available for influenza B viruses, despite their significant disease burden. Through the analysis of over 900 full genomes from an epidemiological collection of more than 26,000 strains from Australia and New Zealand, we reveal fundamental differences in the phylodynamics of the two co-circulating lineages of influenza B virus (Victoria and Yamagata), showing that their individual dynamics are determined by a complex relationship between virus transmission, age of infection, and receptor binding preference. In sum, this work identifies new factors that are important determinants of influenza B evolution and epidemiology.

  2. Improving the representativeness of influenza viruses shared within the WHO Global Influenza Surveillance and Response System.

    Science.gov (United States)

    Pereyaslov, Dmitriy; Zemtsova, Galina; Gruessner, Christine; Daniels, Rodney S; McCauley, John W; Brown, Caroline S

    2016-03-01

    Sharing influenza viruses within the WHO Global Influenza Surveillance and Response System is crucial for monitoring evolution of influenza viruses. Analysis of timeliness and geographic representativeness of viruses shared by National Influenza Centres (NICs) in the WHO European Region with the London WHO Collaborating Centre for Reference and Research on Influenza for the Northern Hemisphere's 2010-2011 and 2011-2012 influenza seasons. Data from NICs on influenza-positive specimens shared with WHO CC London for the above-mentioned influenza seasons were analyzed for timeliness of sharing with respect to the February deadline (31 January) for inclusion in the WHO consultations on the composition of influenza virus vaccines for the Northern Hemisphere and geographic representativeness. The 2010-2011 and 2011-2012 seasons were different in terms of the seasonal pattern, the timing of the epidemic, and the dominant virus. Consistent patterns of virus sharing across the seasons were observed. Approximately half the viruses collected before the deadline were not shared within the deadline; the average delay between date of specimen collection and shipment receipt was 3 and 1·5 months for the first and second season, respectively. A baseline was provided for future work on enhancement of specimen sharing in the WHO European Region and improving the vaccine virus selection process. Greater insight into virus selection criteria applied by countries and the causes of delays in shipment are needed to understand the representativeness of viruses shared and to assess the importance of this for vaccine strain selection. © 2015 The Authors. Influenza and Other Respiratory Viruses Published by John Wiley & Sons Ltd.

  3. No serological evidence that harbour porpoises are additional hosts of influenza B viruses

    NARCIS (Netherlands)

    R. Bodewes (Rogier); M.W.G. van de Bildt (Marco); C.E. van Elk; P.E. Bunskoek (Paulien); D.A.M.C. van de Vijver (David); S.L. Smits (Saskia); A.D.M.E. Osterhaus (Albert); T. Kuiken (Thijs)

    2014-01-01

    textabstractInfluenza A and B viruses circulate among humans causing epidemics almost annually. While various hosts for influenza A viruses exist, influenza B viruses have been detected only in humans and seals. However, recurrent infections of seals in Dutch coastal waters with influenza B viruses

  4. The Mutational Robustness of Influenza A Virus.

    Directory of Open Access Journals (Sweden)

    Elisa Visher

    2016-08-01

    Full Text Available A virus' mutational robustness is described in terms of the strength and distribution of the mutational fitness effects, or MFE. The distribution of MFE is central to many questions in evolutionary theory and is a key parameter in models of molecular evolution. Here we define the mutational fitness effects in influenza A virus by generating 128 viruses, each with a single nucleotide mutation. In contrast to mutational scanning approaches, this strategy allowed us to unambiguously assign fitness values to individual mutations. The presence of each desired mutation and the absence of additional mutations were verified by next generation sequencing of each stock. A mutation was considered lethal only after we failed to rescue virus in three independent transfections. We measured the fitness of each viable mutant relative to the wild type by quantitative RT-PCR following direct competition on A549 cells. We found that 31.6% of the mutations in the genome-wide dataset were lethal and that the lethal fraction did not differ appreciably between the HA- and NA-encoding segments and the rest of the genome. Of the viable mutants, the fitness mean and standard deviation were 0.80 and 0.22 in the genome-wide dataset and best modeled as a beta distribution. The fitness impact of mutation was marginally lower in the segments coding for HA and NA (0.88 ± 0.16 than in the other 6 segments (0.78 ± 0.24, and their respective beta distributions had slightly different shape parameters. The results for influenza A virus are remarkably similar to our own analysis of CirSeq-derived fitness values from poliovirus and previously published data from other small, single stranded DNA and RNA viruses. These data suggest that genome size, and not nucleic acid type or mode of replication, is the main determinant of viral mutational fitness effects.

  5. Bilateral Pulmonary Thromboembolism: An Unusual Presentation of Infection with Influenza A (H1N1 Virus

    Directory of Open Access Journals (Sweden)

    Parviz Saleh

    2010-06-01

    Full Text Available AbstractSwine flue is a highly contagious acute respiratory diseasecaused by a subtype of influenza A virus. Herein we presentthree patients with H1N1 infection complicated with pulmonarythromboembolism. The patients had chest pain and unexplaineddyspnea. Imaging studies showed bilateral hilar predominance.Computed tomographic angiography confirmed bilateral thromboembolism(an unusual presentation of H1N1 infection. We didnot find any predisposing factor including endothelial damage,stasis, or hypercoagulable state in these patients. They did notreceive any medication. After anticoagulation and treatment withoseltamivir, all the patients were discharged in good condition.To the best of our knowledge bilateral pulmonary thromboembolismhas not been reported in English language literature inpatients with swine flu infection. Appropriate diagnosis andtreatment will be life saving in this condition.Iran J Med Sci 2010; 35(2: 149-153.

  6. Antigenic characterization of H3 subtypes of avian influenza A viruses from North America

    Science.gov (United States)

    Bailey, Elizabeth; Long, Li-Pong; Zhao, Nan; Hall, Jeffrey S.; Baroch, John A; Nolting, Jaqueline; Senter, Lucy; Cunningham, Frederick L; Pharr, G Todd; Hanson, Larry; Slemons, Richard; DeLiberto, Thomas J.; Wan, Xiu-Feng

    2016-01-01

    Besides humans, H3 subtypes of influenza A viruses (IAVs) can infect various animal hosts, including avian, swine, equine, canine, and sea mammal species. These H3 viruses are both antigenically and genetically diverse. Here, we characterized the antigenic diversity of contemporary H3 avian IAVs recovered from migratory birds in North America. Hemagglutination inhibition (HI) assays were performed on 37 H3 isolates of avian IAVs recovered from 2007 to 2011 using generated reference chicken sera. These isolates were recovered from samples taken in the Atlantic, Mississippi, Central, and Pacific waterfowl migration flyways. Antisera to all the tested H3 isolates cross-reacted with each other and, to a lesser extent, with those to H3 canine and H3 equine IAVs. Antigenic cartography showed that the largest antigenic distance among the 37 avian IAVs is about four units, and each unit corresponds to a 2 log 2 difference in the HI titer. However, none of the tested H3 IAVs cross-reacted with ferret sera derived from contemporary swine and human IAVs. Our results showed that the H3 avian IAVs we tested lacked significant antigenic diversity, and these viruses were antigenically different from those circulating in swine and human populations. This suggests that H3 avian IAVs in North American waterfowl are antigenically relatively stable.

  7. Effect of radiation on certain animal viruses in liquid swine manure

    Energy Technology Data Exchange (ETDEWEB)

    Simon, J.; Mocsari, E.; di Gleria, M.; Felkai, V. (Phylaxia Oltoanyag- es Tapszertermeloe Vallalat, Budapest (Hungary); Orszagos Allategeszseguegyi Intezet, Budapest (Hungary))

    1983-03-01

    The virucidal effect of /sup 60/Co gamma radiation was studied in cell culture medium and in liquid swine manure involving the most important porcine viruses that can be spread by liquid manure. The radiation doses (20 kGy and 30 kGy) were determined in preliminary experiments employing a porcine enterovirus from the serogroup 1 (Teschen group). In the main experiment, the following viruses were employed: swine vesicular disease (SVD) virus, type C foot-and-mouth disease (FMD) virus, a field strain of Aujeszky's disease (AD) virus, transmissible gastroenteritis (TGE) virus, as well as bovine viral diarrhea (BVD) virus. The latter strain served as a model for hog cholera virus. The results of the experiments indicate that safe disinfection of the virus infected liquid swine manure by ionizing radiation requires a radiation dose of 30 kGy.

  8. Influenza A and B virus intertypic reassortment through compatible viral packaging signals.

    Science.gov (United States)

    Baker, Steven F; Nogales, Aitor; Finch, Courtney; Tuffy, Kevin M; Domm, William; Perez, Daniel R; Topham, David J; Martínez-Sobrido, Luis

    2014-09-01

    Influenza A and B viruses cocirculate in humans and together cause disease and seasonal epidemics. These two types of influenza viruses are evolutionarily divergent, and exchange of genetic segments inside coinfected cells occurs frequently within types but never between influenza A and B viruses. Possible mechanisms inhibiting the intertypic reassortment of genetic segments could be due to incompatible protein functions of segment homologs, a lack of processing of heterotypic segments by influenza virus RNA-dependent RNA polymerase, an inhibitory effect of viral proteins on heterotypic virus function, or an inability to specifically incorporate heterotypic segments into budding virions. Here, we demonstrate that the full-length hemagglutinin (HA) of prototype influenza B viruses can complement the function of multiple influenza A viruses. We show that viral noncoding regions were sufficient to drive gene expression for either type A or B influenza virus with its cognate or heterotypic polymerase. The native influenza B virus HA segment could not be incorporated into influenza A virus virions. However, by adding the influenza A virus packaging signals to full-length influenza B virus glycoproteins, we rescued influenza A viruses that possessed HA, NA, or both HA and NA of influenza B virus. Furthermore, we show that, similar to single-cycle infectious influenza A virus, influenza B virus cannot incorporate heterotypic transgenes due to packaging signal incompatibilities. Altogether, these results demonstrate that the lack of influenza A and B virus reassortants can be attributed at least in part to incompatibilities in the virus-specific packaging signals required for effective segment incorporation into nascent virions. Reassortment of influenza A or B viruses provides an evolutionary strategy leading to unique genotypes, which can spawn influenza A viruses with pandemic potential. However, the mechanism preventing intertypic reassortment or gene exchange between

  9. Influenza A and B Virus Intertypic Reassortment through Compatible Viral Packaging Signals

    Science.gov (United States)

    Baker, Steven F.; Nogales, Aitor; Finch, Courtney; Tuffy, Kevin M.; Domm, William; Perez, Daniel R.; Topham, David J.

    2014-01-01

    ABSTRACT Influenza A and B viruses cocirculate in humans and together cause disease and seasonal epidemics. These two types of influenza viruses are evolutionarily divergent, and exchange of genetic segments inside coinfected cells occurs frequently within types but never between influenza A and B viruses. Possible mechanisms inhibiting the intertypic reassortment of genetic segments could be due to incompatible protein functions of segment homologs, a lack of processing of heterotypic segments by influenza virus RNA-dependent RNA polymerase, an inhibitory effect of viral proteins on heterotypic virus function, or an inability to specifically incorporate heterotypic segments into budding virions. Here, we demonstrate that the full-length hemagglutinin (HA) of prototype influenza B viruses can complement the function of multiple influenza A viruses. We show that viral noncoding regions were sufficient to drive gene expression for either type A or B influenza virus with its cognate or heterotypic polymerase. The native influenza B virus HA segment could not be incorporated into influenza A virus virions. However, by adding the influenza A virus packaging signals to full-length influenza B virus glycoproteins, we rescued influenza A viruses that possessed HA, NA, or both HA and NA of influenza B virus. Furthermore, we show that, similar to single-cycle infectious influenza A virus, influenza B virus cannot incorporate heterotypic transgenes due to packaging signal incompatibilities. Altogether, these results demonstrate that the lack of influenza A and B virus reassortants can be attributed at least in part to incompatibilities in the virus-specific packaging signals required for effective segment incorporation into nascent virions. IMPORTANCE Reassortment of influenza A or B viruses provides an evolutionary strategy leading to unique genotypes, which can spawn influenza A viruses with pandemic potential. However, the mechanism preventing intertypic reassortment or

  10. Modeling Influenza Virus Infection: A Roadmap for Influenza Research

    Directory of Open Access Journals (Sweden)

    Alessandro Boianelli

    2015-10-01

    Full Text Available Influenza A virus (IAV infection represents a global threat causing seasonal outbreaks and pandemics. Additionally, secondary bacterial infections, caused mainly by Streptococcus pneumoniae, are one of the main complications and responsible for the enhanced morbidity and mortality associated with IAV infections. In spite of the significant advances in our knowledge of IAV infections, holistic comprehension of the interplay between IAV and the host immune response (IR remains largely fragmented. During the last decade, mathematical modeling has been instrumental to explain and quantify IAV dynamics. In this paper, we review not only the state of the art of mathematical models of IAV infection but also the methodologies exploited for parameter estimation. We focus on the adaptive IR control of IAV infection and the possible mechanisms that could promote a secondary bacterial coinfection. To exemplify IAV dynamics and identifiability issues, a mathematical model to explain the interactions between adaptive IR and IAV infection is considered. Furthermore, in this paper we propose a roadmap for future influenza research. The development of a mathematical modeling framework with a secondary bacterial coinfection, immunosenescence, host genetic factors and responsiveness to vaccination will be pivotal to advance IAV infection understanding and treatment optimization.

  11. Initial psychological responses to Influenza A, H1N1 ("Swine flu"

    Directory of Open Access Journals (Sweden)

    Neto Felix

    2009-10-01

    Full Text Available Abstract Background The outbreak of the pandemic flu, Influenza A H1N1 (Swine Flu in early 2009, provided a major challenge to health services around the world. Previous pandemics have led to stockpiling of goods, the victimisation of particular population groups, and the cancellation of travel and the boycotting of particular foods (e.g. pork. We examined initial behavioural and attitudinal responses towards Influenza A, H1N1 ("Swine flu" in the six days following the WHO pandemic alert level 5, and regional differences in these responses. Methods 328 respondents completed a cross-sectional Internet or paper-based questionnaire study in Malaysia (N = 180 or Europe (N = 148. Measures assessed changes in transport usage, purchase of preparatory goods for a pandemic, perceived risk groups, indicators of anxiety, assessed estimated mortality rates for seasonal flu, effectiveness of seasonal flu vaccination, and changes in pork consumption Results 26% of the respondents were 'very concerned' about being a flu victim (42% Malaysians, 5% Europeans, p Conclusion Initial responses to Influenza A show large regional differences in anxiety, with Malaysians more anxious and more likely to reduce travel and to buy masks and food. Discussions with family and friends may reinforce existing anxiety levels. Particular groups (homosexuals, prostitutes, the homeless are perceived as at greater risk, potentially leading to increased prejudice during a pandemic. Europeans underestimated mortality of seasonal flu, and require more information about the protection given by seasonal flu inoculation.

  12. Detection of pandemic strain of influenza virus (A/H1N1/pdm09) in pigs, West Africa: implications and considerations for prevention of future influenza pandemics at the source.

    Science.gov (United States)

    Adeola, Oluwagbenga A; Olugasa, Babasola O; Emikpe, Benjamin O

    2015-01-01

    Human and animal influenza are inextricably linked. In particular, the pig is uniquely important as a mixing vessel for genetic reassortment of influenza viruses, leading to emergence of novel strains which may cause human pandemics. Significant reduction in transmission of influenza viruses from humans, and other animals, to swine may therefore be crucial for preventing future influenza pandemics. This study investigated the presence of the 2009 pandemic influenza A/H1N1 virus, A(H1N1)pdm09, in Nigerian and Ghanaian pigs, and also determined levels of acceptance of preventive measures which could significantly reduce the transmission of this virus from humans to pigs. Nasal swab specimens from 125 pigs in Ibadan, Nigeria, and Kumasi, Ghana, were tested for the presence of influenza A/California/04/2009 (H1N1) by quantitative antigen-detection ELISA. A semi-structured questionnaire was also administered to pig handlers in the two study areas and responses were analyzed to evaluate their compliance with seven measures for preventing human-to-swine transmission of influenza viruses. The virus was detected among pigs in the two cities, with prevalence of 8% in Ibadan and 10% in Kumasi. Levels of compliance of pig handlers with relevant preventive measures were also found to be mostly below 25 and 40% in Ibadan and Kumasi, respectively. Detection of influenza A(H1N1)pdm09 among pigs tested suggests the possibility of human-to-swine transmission, which may proceed even more rapidly, considering the very poor acceptance of basic preventive measures observed in this study. This is also the first report on detection of influenza A(H1N1)pdm09 in Ghanaian pigs. We recommend improvement on personal hygiene among pig handlers, enforcement of sick leave particularly during the first few days of influenza-like illnesses, and training of pig handlers on recognition of influenza-like signs in humans and pigs. These could be crucial for prevention of future influenza pandemics.

  13. Monomeric nucleoprotein of influenza A virus.

    Directory of Open Access Journals (Sweden)

    Sylvie Chenavas

    2013-03-01

    Full Text Available Isolated influenza A virus nucleoprotein exists in an equilibrium between monomers and trimers. Samples containing only monomers or only trimers can be stabilized by respectively low and high salt. The trimers bind RNA with high affinity but remain trimmers, whereas the monomers polymerise onto RNA forming nucleoprotein-RNA complexes. When wild type (wt nucleoprotein is crystallized, it forms trimers, whether one starts with monomers or trimers. We therefore crystallized the obligate monomeric R416A mutant nucleoprotein and observed how the domain exchange loop that leads over to a neighbouring protomer in the trimer structure interacts with equivalent sites on the mutant monomer surface, avoiding polymerisation. The C-terminus of the monomer is bound to the side of the RNA binding surface, lowering its positive charge. Biophysical characterization of the mutant and wild type monomeric proteins gives the same results, suggesting that the exchange domain is folded in the same way for the wild type protein. In a search for how monomeric wt nucleoprotein may be stabilized in the infected cell we determined the phosphorylation sites on nucleoprotein isolated from virus particles. We found that serine 165 was phosphorylated and conserved in all influenza A and B viruses. The S165D mutant that mimics phosphorylation is monomeric and displays a lowered affinity for RNA compared with wt monomeric NP. This suggests that phosphorylation may regulate the polymerisation state and RNA binding of nucleoprotein in the infected cell. The monomer structure could be used for finding new anti influenza drugs because compounds that stabilize the monomer may slow down viral infection.

  14. CRISPR-Cas9, a tool to efficiently increase the development of recombinant African swine fever viruses

    Science.gov (United States)

    African swine fever is a contagious and often lethal disease for domestic pigs with a significant economic impact on the swine industry. The etiological agent, African swine fever virus (ASFV), is a highly structurally complex double stranded DNA virus. No effective vaccines or antiviral treatment ...

  15. Finding a new drug and vaccine for emerging swine flu: What is the concept?

    Directory of Open Access Journals (Sweden)

    Viroj Wiwanitkit

    2009-08-01

    Full Text Available Viroj WiwanitkitWiwanitkit House, Bangkhae, Bangkok 10160Abstract: Influenza is a well known infection of the respiratory system. The main clinical manifestations of influenza include fever, sore throat, headache, cough, coryza, and malaise. Apart from the well known classical influenza, there are also groups of influenza virus infections that are called “atypical infection”. These infections are usually due to a novel influenza virus infection. In early 2009, an emerging novel influenza originating from Mexico called swine flu was reported. The World Health Organization noted a level VI precaution, the highest level precaution possible, for this newest influenza virus infection. As of June 2009, it is not known if this disease will be successfully controlled. Finding new drugs and vaccine for the emerging swine flu is still required to cope with this emerging worldwide problem.Keywords: swine flu, drug, vaccine, concept

  16. Hepatitis E virus and coliphages in waters proximal to swine concentrated animal feeding operations

    OpenAIRE

    Gentry-Shields, Jennifer; Myers, Kevin; Pisanic, Nora; Heaney, Christopher; Stewart, Jill

    2014-01-01

    North Carolina is the second leading state in pork production in the United States, with over 10 million swine. Swine manure in NC is typically collected and stored in open-pit lagoons before the liquid waste is sprayed onto agricultural fields for disposal. Components of this waste may be able to impact surface water quality with the potential for human exposure. This study examined viruses of public health concern in creeks adjacent to swine concentrated animal feeding operation (CAFO) spra...

  17. Avian influenza in shorebirds: experimental infection of ruddy turnstones (Arenaria interpres) with avian influenza virus

    Science.gov (United States)

    Hall, Jeffrey S.; Krauss, Scott; Franson, J. Christian; TeSlaa, Joshua L.; Nashold, Sean W.; Stallknecht, David E.; Webby, Richard J.; Webster, Robert G.

    2013-01-01

    Background: Low pathogenic avian influenza viruses (LPAIV) have been reported in shorebirds, especially at Delaware Bay, USA, during spring migration. However, data on patterns of virus excretion, minimal infectious doses, and clinical outcome are lacking. The ruddy turnstone (Arenaria interpres) is the shorebird species with the highest prevalence of influenza virus at Delaware Bay. Objectives: The primary objective of this study was to experimentally assess the patterns of influenza virus excretion, minimal infectious doses, and clinical outcome in ruddy turnstones. Methods: We experimentally challenged ruddy turnstones using a common LPAIV shorebird isolate, an LPAIV waterfowl isolate, or a highly pathogenic H5N1 avian influenza virus. Cloacal and oral swabs and sera were analyzed from each bird. Results: Most ruddy turnstones had pre-existing antibodies to avian influenza virus, and many were infected at the time of capture. The infectious doses for each challenge virus were similar (103·6–104·16 EID50), regardless of exposure history. All infected birds excreted similar amounts of virus and showed no clinical signs of disease or mortality. Influenza A-specific antibodies remained detectable for at least 2 months after inoculation. Conclusions: These results provide a reference for interpretation of surveillance data, modeling, and predicting the risks of avian influenza transmission and movement in these important hosts.

  18. Within-Host Evolution of Human Influenza Virus.

    Science.gov (United States)

    Xue, Katherine S; Moncla, Louise H; Bedford, Trevor; Bloom, Jesse D

    2018-03-10

    The rapid global evolution of influenza virus begins with mutations that arise de novo in individual infections, but little is known about how evolution occurs within hosts. We review recent progress in understanding how and why influenza viruses evolve within human hosts. Advances in deep sequencing make it possible to measure within-host genetic diversity in both acute and chronic influenza infections. Factors like antigenic selection, antiviral treatment, tissue specificity, spatial structure, and multiplicity of infection may affect how influenza viruses evolve within human hosts. Studies of within-host evolution can contribute to our understanding of the evolutionary and epidemiological factors that shape influenza virus's global evolution. Copyright © 2018 Elsevier Ltd. All rights reserved.

  19. Recombinant influenza viruses as delivery vectors for hepatis B virus epitopes.

    Science.gov (United States)

    Song, Jae-Min; Lee, Kwang-Hee; Seong, Baik-Lin

    2012-07-01

    Neuraminidase (NA) of influenza virus contains stalk region that shows a great deal of variability in both amino acid sequence and length. In this paper, we investigated generation of recombinant influenza viruses that had hepatitis B virus (HBV) B cell epitopes in the NA stalk region as a dual vaccine candidate. We used the WSH-HK reassortant helper virus for rescue of recombinant influenza virus containing HBV epitopes and reverse genetic protocol based on the use of micrococcal nuclease-treated virus cores for reconstitution of ribonucleoproteins. We successfully generated a chimeric influenza viruses which contained 22 amino acid peptides in the stalk region derived from the surface and pre-surface protein HBV. The growth kinetics of the recombinant viruses was investigated after infection of Madin-Darby canine kidney (MDCK) and Madin-Darby bovine kidney (MDBK) cells and the rIV-BVPreS virus showed higher titer than other viruses in MDCK cells. We also confirmed the presence of HBV epitopes in the chimeric viruses by enzyme-linked immunosorbent assay (ELISA) using anti-HBV polyclonal antibody. When the ratio of recombinant virus verse wild type virus was calculated by ELISA, recombinant viruses exhibited 2 fold higher values than the wild type virus. These results suggest that chimeric influenza virus which contained foreign antigens can be used as dual vaccine against both HBV and influenza viruses.

  20. Positive Selection on Hemagglutinin and Neuraminidase Genes of H1N1 Influenza Viruses

    LENUS (Irish Health Repository)

    Li, Wenfu

    2011-04-21

    Abstract Background Since its emergence in March 2009, the pandemic 2009 H1N1 influenza A virus has posed a serious threat to public health. To trace the evolutionary path of these new pathogens, we performed a selection-pressure analysis of a large number of hemagglutinin (HA) and neuraminidase (NA) gene sequences of H1N1 influenza viruses from different hosts. Results Phylogenetic analysis revealed that both HA and NA genes have evolved into five distinct clusters, with further analyses indicating that the pandemic 2009 strains have experienced the strongest positive selection. We also found evidence of strong selection acting on the seasonal human H1N1 isolates. However, swine viruses from North America and Eurasia were under weak positive selection, while there was no significant evidence of positive selection acting on the avian isolates. A site-by-site analysis revealed that the positively selected sites were located in both of the cleaved products of HA (HA1 and HA2), as well as NA. In addition, the pandemic 2009 strains were subject to differential selection pressures compared to seasonal human, North American swine and Eurasian swine H1N1 viruses. Conclusions Most of these positively and\\/or differentially selected sites were situated in the B-cell and\\/or T-cell antigenic regions, suggesting that selection at these sites might be responsible for the antigenic variation of the viruses. Moreover, some sites were also associated with glycosylation and receptor-binding ability. Thus, selection at these positions might have helped the pandemic 2009 H1N1 viruses to adapt to the new hosts after they were introduced from pigs to humans. Positive selection on position 274 of NA protein, associated with drug resistance, might account for the prevalence of drug-resistant variants of seasonal human H1N1 influenza viruses, but there was no evidence that positive selection was responsible for the spread of the drug resistance of the pandemic H1N1 strains.

  1. EVIDENCE OF PSEUDORABIES VIRUS SHEDDING IN FERAL SWINE ( SUS SCROFA) POPULATIONS OF FLORIDA, USA.

    Science.gov (United States)

    Hernández, Felipe A; Sayler, Katherine A; Bounds, Courtney; Milleson, Michael P; Carr, Amanda N; Wisely, Samantha M

    2018-01-01

    :  Feral swine ( Sus scrofa) are a pathogen reservoir for pseudorabies virus (PrV). The virus can be fatal to wildlife and contributes to economic losses in the swine industry worldwide. National surveillance efforts in the US use serology to detect PrV-specific antibodies in feral swine populations, but PrV exposure is not a direct indicator of pathogen transmission among conspecifics or to non-suid wildlife species. We measured antibody production and the presence of PrV DNA in four tissue types from feral swine populations of Florida, US. We sampled blood, nasal, oral, and genital swabs from 551 individuals at 39 sites during 2014-16. Of the animals tested for antibody production, 224 of 436 (51%) feral swine were antibody positive while 38 of 549 feral swine (7%) tested for viral shedding were quantitative polymerase chain reaction (qPCR)-positive for PrV. The detection of PrV DNA across all the collected sample types (blood, nasal, oral, and genital [vaginal] swabs) suggested viral shedding via direct (oronasal or venereal), and potentially indirect (through carcass consumption), routes of transmission among infected and susceptible animals. Fourteen of 212 seronegative feral swine were qPCR-positive, indicating 7% false negatives in the serologic assay. Our findings suggest that serology may underestimate the actual infection risk posed by feral swine to other species and that feral swine populations in Florida are capable of shedding the virus through multiple routes.

  2. Pathogenicity testing of influenza candidate vaccine viruses in the ferret model.

    Science.gov (United States)

    Belser, Jessica A; Johnson, Adam; Pulit-Penaloza, Joanna A; Pappas, Claudia; Pearce, Melissa B; Tzeng, Wen-Pin; Hossain, M Jaber; Ridenour, Callie; Wang, Li; Chen, Li-Mei; Wentworth, David E; Katz, Jacqueline M; Maines, Taronna R; Tumpey, Terrence M

    2017-11-01

    The development of influenza candidate vaccine viruses (CVVs) for pre-pandemic vaccine production represents a critical step in pandemic preparedness. The multiple subtypes and clades of avian or swine origin influenza viruses circulating world-wide at any one time necessitates the continuous generation of CVVs to provide an advanced starting point should a novel zoonotic virus cross the species barrier and cause a pandemic. Furthermore, the evolution and diversity of novel influenza viruses that cause zoonotic infections requires ongoing monitoring and surveillance, and, when a lack of antigenic match between circulating viruses and available CVVs is identified, the production of new CVVs. Pandemic guidelines developed by the WHO Global Influenza Program govern the design and preparation of reverse genetics-derived CVVs, which must undergo numerous safety and quality tests prior to human use. Confirmation of reassortant CVV attenuation of virulence in ferrets relative to wild-type virus represents one of these critical steps, yet there is a paucity of information available regarding the relative degree of attenuation achieved by WHO-recommended CVVs developed against novel viruses with pandemic potential. To better understand the degree of CVV attenuation in the ferret model, we examined the relative virulence of six A/Puerto Rico/8/1934-based CVVs encompassing five different influenza A subtypes (H2N3, H5N1, H5N2, H5N8, and H7N9) compared with the respective wild-type virus in ferrets. Despite varied virulence of wild-type viruses in the ferret, all CVVs examined showed reductions in morbidity and viral shedding in upper respiratory tract tissues. Furthermore, unlike the wild-type counterparts, none of the CVVs spread to extrapulmonary tissues during the acute phase of infection. While the magnitude of virus attenuation varied between virus subtypes, collectively we show the reliable and reproducible attenuation of CVVs that have the A/Puerto Rico/9/1934 backbone

  3. Influenza A virus infection of healthy piglets in an abattoir in Brazil: animal-human interface and risk for interspecies transmission

    Directory of Open Access Journals (Sweden)

    Ariane Ribeiro Amorim

    2013-08-01

    Full Text Available Asymptomatic influenza virus infections in pigs are frequent and the lack of measures for controlling viral spread facilitates the circulation of different virus strains between pigs. The goal of this study was to demonstrate the circulation of influenza A virus strains among asymptomatic piglets in an abattoir in Brazil and discuss the potential public health impacts. Tracheal samples (n = 330 were collected from asymptomatic animals by a veterinarian that also performed visual lung tissue examinations. No slaughtered animals presented with any noticeable macroscopic signs of influenza infection following examination of lung tissues. Samples were then analysed by reverse transcription-polymerase chain reaction that resulted in the identification of 30 (9% influenza A positive samples. The presence of asymptomatic pig infections suggested that these animals could facilitate virus dissemination and act as a source of infection for the herd, thereby enabling the emergence of influenza outbreaks associated with significant economic losses. Furthermore, the continuous exposure of the farm and abattoir workers to the virus increases the risk for interspecies transmission. Monitoring measures of swine influenza virus infections and vaccination and monitoring of employees for influenza infection should also be considered. In addition regulatory agencies should consider the public health ramifications regarding the potential zoonotic viral transmission between humans and pigs.

  4. Isolation and characterization of virus of highly pathogenic avian influenza H5 subtype of chicken from outbreaks in Indonesia

    Directory of Open Access Journals (Sweden)

    Agus Wiyono

    2004-03-01

    Full Text Available A study on the isolation and characterization of Highly Pathogenic Avian Influenza of chicken from outbreaks in Indonesia was conducted at Indonesian Research Institute for Veterinary Science. Outbreaks of avian disease had been reported in Indonesia since August 2003 affecting commercial layer, broiler, quail, and ostrich and also native chicken with showing clinical signs such as cyanosis of wattle and comb, nasal discharges and hypersalivation, subcutaneous ptechiae on foot and leg, diarre and sudden high mortality. The aim of this study is to isolate and characterize the causal agent of the disease. Samples of serum, feather follicle, tracheal swab, as well as organs of proventriculus, intestine, caecal tonsil, trachea and lungs were collected from infected animals. Serum samples were tested haemaglutination/haemaglutination inhibition to Newcastle Disease and Egg Drop Syndrome viruses. Isolation of virus of the causal agent of the outbreak was conducted from samples of feather follicle, tracheal swab, and organs using 11 days old specific pathogen free (SPF embryonated eggs. The isolated viruses were then characterised by agar gel precipitation test using swine influenza reference antisera, by haemaglutination inhibition using H1 to H15 reference antisera, and by electron microscope examination. The pathogenicity of the viruses was confirmed by intravenous pathogenicity index test and its culture in Chicken Embryo Fibroblast primary cell culture without addition of trypsin. The study revealed that the causative agent of the outbreaks of avian disease in Indonesia was avian influenza H5 subtype virus based upon serological tests, virus isolation and characterization using swine influenza reference antisera, and electron microscope examination. While subtyping of the viruses using H1 to H15 reference antisera suggested that the virus is very likely to be an avian influenza H5N1 subtype virus. The pathogenicity test confirmed that the viruses

  5. Transcriptional immunoresponse of tissue-specific macrophages in swine after infection with African swine fever virus

    Directory of Open Access Journals (Sweden)

    Kowalczyk Andrzej

    2015-12-01

    Full Text Available Macrophages and cytokines are important in the control of inflammation and regulation of the immune response. However, they can also contribute to immunopathology in the host after viral infection and the regulatory network can be subverted by infectious agents, including viruses, some of which produce cytokine analogues or have mechanisms that inhibit cytokine function. African swine fever virus (ASFV encodes a number of proteins which modulate cytokine and chemokine induction, host transcription factor activation, stress responses, and apoptosis. The aim of this review is to elucidate the mechanisms of immune responses to ASFV in different subpopulations of porcine macrophages. A transcriptional immune response in different resident tissue macrophages following ASFV infection was presented in many publications. ASFV-susceptible porcine macrophages can be of several origins, such as peripheral blood, lungs, bone marrow, etc. blood monocytes, blood macrophages, and lung macrophages have demonstrated a modulation of phenotype. Monocyte-derived macrophages could express surface markers not found on their monocyte precursors. Moreover, they can undergo further differentiation after infection and during inflammation. When viruses infect such cells, immunological activity can be seriously impaired or modified.

  6. Prospective study of avian influenza virus infections among rural Thai villagers.

    Directory of Open Access Journals (Sweden)

    Whitney S Krueger

    Full Text Available In 2008, 800 rural Thai adults living within Kamphaeng Phet Province were enrolled in a prospective cohort study of zoonotic influenza transmission. Serological analyses of enrollment sera suggested this cohort had experienced subclinical avian influenza virus (AIV infections with H9N2 and H5N1 viruses.After enrollment, participants were contacted weekly for 24 mos for acute influenza-like illnesses (ILI. Cohort members confirmed to have influenza A infections were enrolled with their household contacts in a family transmission study involving paired sera and respiratory swab collections. Cohort members also provided sera at 12 and 24 months after enrollment. Serologic and real-time RT-PCR assays were performed against avian, swine, and human influenza viruses.Over the 2 yrs of follow-up, 81 ILI investigations in the cohort were conducted; 31 (38% were identified as influenza A infections by qRT-PCR. Eighty-three household contacts were enrolled; 12 (14% reported ILIs, and 11 (92% of those were identified as influenza infections. A number of subjects were found to have slightly elevated antibodies against avian-like A/Hong Kong/1073/1999(H9N2 virus: 21 subjects (2.7% at 12-months and 40 subjects (5.1% at 24-months. Among these, two largely asymptomatic acute infections with H9N2 virus were detected by >4-fold increases in annual serologic titers (final titers 1:80. While controlling for age and influenza vaccine receipt, moderate poultry exposure was significantly associated with elevated H9N2 titers (adjusted OR = 2.3; 95% CI, 1.04-5.2 at the 24-month encounter. One subject had an elevated titer (1:20 against H5N1 during follow-up.From 2008-10, evidence for AIV infections was sparse among this rural population. Subclinical H9N2 AIV infections likely occurred, but serological results were confounded by antibody cross-reactions. There is a critical need for improved serological diagnostics to more accurately detect subclinical AIV infections in

  7. In vitro evaluation of the antiviral activity of methylglyoxal against influenza B virus infection.

    Science.gov (United States)

    Charyasriwong, Siriwan; Haruyama, Takahiro; Kobayashi, Nobuyuki

    Influenza A and B virus infections are serious public health concerns globally. However, the concerns regarding influenza B infection have been underestimated. The currently used anti-influenza drugs have not provided equal efficacy for both influenza A and B viruses. Susceptibility to neuraminidase (NA) inhibitors has been observed to be lower for influenza B viruses than for influenza A viruses. Moreover, the emergence of resistance to anti-influenza drugs underscores the need to develop new drugs. Recently, we reported that methylglyoxal (MGO) suppressed influenza A virus replication in a strain-independent manner. Therefore, we hypothesize that MGO exhibits anti-influenza activity against B strains. This study aimed to evaluate the anti-influenza viral activity of MGO against influenza B strains by using Madin-Darby canine kidney (MDCK) cells. Several types of influenza B viruses were used to determine the activity of MGO. The susceptibilities of influenza A and B viruses to NA inhibitors were compared. MGO inhibited influenza B virus replication, with 50% inhibitory concentrations ranging from 23-140 μM, which indicated greater sensitivity of influenza B viruses than influenza A viruses. Our results show that MGO has potent inhibitory activity against influenza B viruses, including NA inhibitor-resistant strains.

  8. Quantitative assessment of the likelihood of the introduction of classical swine fever virus into the Danish swine population

    DEFF Research Database (Denmark)

    Bronsvoort, BMD; Alban, L.; Greiner, M.

    2008-01-01

    Classical swine fever virus (CSFV) is a major infectious-disease agent of livestock and causes production losses through increased morbidity and mortality, particularly of young pigs. We identified the pathways for introduction of CSFV into Denmark and assessed the annual probability...

  9. Advances in the development of influenza virus vaccines.

    Science.gov (United States)

    Krammer, Florian; Palese, Peter

    2015-03-01

    Influenza virus infections are a major public health concern and cause significant morbidity and mortality worldwide. Current influenza virus vaccines are an effective countermeasure against infection but need to be reformulated almost every year owing to antigenic drift. Furthermore, these vaccines do not protect against novel pandemic strains, and the timely production of pandemic vaccines remains problematic because of the limitations of current technology. Several improvements have been made recently to enhance immune protection induced by seasonal and pandemic vaccines, and to speed up production in case of a pandemic. Importantly, vaccine constructs that induce broad or even universal influenza virus protection are currently in preclinical and clinical development.

  10. A Review of Evidence that Equine Influenza Viruses Are Zoonotic

    Directory of Open Access Journals (Sweden)

    Tai Xie

    2016-07-01

    Full Text Available Among scientists, there exist mixed opinions whether equine influenza viruses infect man. In this report, we summarize a 2016 systematic and comprehensive review of the English, Chinese, and Mongolian scientific literature regarding evidence for equine influenza virus infections in man. Searches of PubMed, Web of Knowledge, ProQuest, CNKI, Chongqing VIP Database, Wanfang Data and MongolMed yielded 2831 articles, of which 16 met the inclusion criteria for this review. Considering these 16 publications, there was considerable experimental and observational evidence that at least H3N8 equine influenza viruses have occasionally infected man. In this review we summarize the most salient scientific reports.

  11. Genomic signature-based identification of influenza A viruses using RT-PCR/electro-spray ionization mass spectrometry (ESI-MS technology.

    Directory of Open Access Journals (Sweden)

    Varough M Deyde

    Full Text Available BACKGROUND: The emergence and rapid spread of the 2009 H1N1 pandemic influenza A virus (H1N1pdm in humans highlights the importance of enhancing the capability of existing influenza surveillance systems with tools for rapid identification of emerging and re-emerging viruses. One of the new approaches is the RT-PCR electrospray ionization mass spectrometry (RT-PCR/ESI-MS technology, which is based on analysis of base composition (BC of RT-PCR amplicons from influenza "core" genes. Combination of the BC signatures represents a "genomic print" of an influenza A virus. METHODOLOGY/PRINCIPAL FINDINGS: Here, 757 samples collected between 2006 and 2009 were tested, including 302 seasonal H1N1, 171 H3N2, 7 swine triple reassortants, and 277 H1N1pdm viruses. Of the 277 H1N1pdm samples, 209 were clinical specimens (throat, nasal and nasopharyngeal swabs, nasal washes, blood and sputum. BC signatures for the clinical specimen from one of the first cases of the 2009 pandemic, A/California/04/2009, confirmed it as an unusual, previously unrecognized influenza A virus, with "core" genes related to viruses of avian, human and swine origins. Subsequent analysis of additional 276 H1N1pdm samples revealed that they shared the genomic print of A/California/04/2009, which differed from those of North American swine triple reassortant viruses, seasonal H1N1 and H3N2 and other viruses tested. Moreover, this assay allowed distinction between "core" genes of co-circulating groups of seasonal H1N1, such as clades 2B, 2C, and their reassortants with dual antiviral resistance to adamantanes and oseltamivir. CONCLUSIONS/SIGNIFICANCE: The RT-PCR/ESI-MS assay is a broad range influenza identification tool that can be used directly on clinical specimens for rapid and accurate detection of influenza virus genes. The assay differentiates the H1N1pdm from seasonal and other nonhuman hosts viruses. Although not a diagnostic tool, this assay demonstrates its usefulness and

  12. Progress in Developing Virus-like Particle Influenza Vaccines

    Science.gov (United States)

    Quan, Fu-Shi; Lee, Young-Tae; Kim, Ki-Hye; Kim, Min-Chul; Kang, Sang-Moo

    2016-01-01

    Summary Recombinant vaccines based on virus-like particles (VLPs) or nanoparticles have been successful in their safety and efficacy in preclinical and clinical studies. The technology of expressing enveloped VLP vaccines has combined with molecular engineering of proteins in membrane-anchor and immunogenic forms mimicking the native conformation of surface proteins on the enveloped viruses. This review summarizes recent developments in influenza VLP vaccines against seasonal, pandemic, and avian influenza viruses from the perspective of use in humans. The immunogenicity and efficacies of influenza VLP vaccine in the homologous and cross-protection were reviewed. Discussions include limitations of current influenza vaccination strategies and future directions to confer broadly cross protective new influenza vaccines as well as vaccination. PMID:27058302

  13. Intranasal Administration of Whole Inactivated Influenza Virus Vaccine as a Promising Influenza Vaccine Candidate.

    Science.gov (United States)

    Ainai, Akira; Suzuki, Tadaki; Tamura, Shin-Ichi; Hasegawa, Hideki

    The effect of the current influenza vaccine, an inactivated virus vaccine administered by subcutaneous/intramuscular injection, is limited to reducing the morbidity and mortality associated with seasonal influenza outbreaks. Intranasal vaccination, by contrast, mimics natural infection and induces not only systemic IgG antibodies but also local secretory IgA (S-IgA) antibodies found on the surface of the mucosal epithelium in the upper respiratory tract. S-IgA antibodies are highly effective at preventing virus infection. Although the live attenuated influenza vaccine (LAIV) administered intranasally can induce local antibodies, this vaccine is restricted to healthy populations aged 2-49 years because of safety concerns associated with using live viruses in a vaccine. Instead of LAIV, an intranasal vaccine made with inactivated virus could be applied to high-risk populations, including infants and elderly adults. Normally, a mucosal adjuvant would be required to enhance the effect of intranasal vaccination with an inactivated influenza vaccine. However, we found that intranasal administration of a concentrated, whole inactivated influenza virus vaccine without any mucosal adjuvant was enough to induce local neutralizing S-IgA antibodies in the nasal epithelium of healthy individuals with some immunological memory for seasonal influenza viruses. This intranasal vaccine is a novel candidate that could improve on the current injectable vaccine or the LAIV for the prevention of seasonal influenza epidemics.

  14. Continental synchronicity of human influenza virus epidemics despite climactic variation.

    Science.gov (United States)

    Geoghegan, Jemma L; Saavedra, Aldo F; Duchêne, Sebastián; Sullivan, Sheena; Barr, Ian; Holmes, Edward C

    2018-01-01

    The factors that determine the pattern and rate of spread of influenza virus at a continental-scale are uncertain. Although recent work suggests that influenza epidemics in the United States exhibit a strong geographical correlation, the spatiotemporal dynamics of influenza in Australia, a country and continent of approximately similar size and climate complexity but with a far smaller population, are not known. Using a unique combination of large-scale laboratory-confirmed influenza surveillance comprising >450,000 entries and genomic sequence data we determined the local-level spatial diffusion of this important human pathogen nationwide in Australia. We used laboratory-confirmed influenza data to characterize the spread of influenza virus across Australia during 2007-2016. The onset of established epidemics varied across seasons, with highly synchronized epidemics coinciding with the emergence of antigenically distinct viruses, particularly during the 2009 A/H1N1 pandemic. The onset of epidemics was largely synchronized between the most populous cities, even those separated by distances of >3000 km and those that experience vastly diverse climates. In addition, by analyzing global phylogeographic patterns we show that the synchronized dissemination of influenza across Australian cities involved multiple introductions from the global influenza population, coupled with strong domestic connectivity, rather than through the distinct radial patterns of geographic dispersal that are driven by work-flow transmission as observed in the United States. In addition, by comparing the spatial structure of influenza A and B, we found that these viruses tended to occupy different geographic regions, and peak in different seasons, perhaps indicative of moderate cross-protective immunity or viral interference effects. The highly synchronized outbreaks of influenza virus at a continental-scale revealed here highlight the importance of coordinated public health responses in the

  15. Continental synchronicity of human influenza virus epidemics despite climactic variation.

    Directory of Open Access Journals (Sweden)

    Jemma L Geoghegan

    2018-01-01

    Full Text Available The factors that determine the pattern and rate of spread of influenza virus at a continental-scale are uncertain. Although recent work suggests that influenza epidemics in the United States exhibit a strong geographical correlation, the spatiotemporal dynamics of influenza in Australia, a country and continent of approximately similar size and climate complexity but with a far smaller population, are not known. Using a unique combination of large-scale laboratory-confirmed influenza surveillance comprising >450,000 entries and genomic sequence data we determined the local-level spatial diffusion of this important human pathogen nationwide in Australia. We used laboratory-confirmed influenza data to characterize the spread of influenza virus across Australia during 2007-2016. The onset of established epidemics varied across seasons, with highly synchronized epidemics coinciding with the emergence of antigenically distinct viruses, particularly during the 2009 A/H1N1 pandemic. The onset of epidemics was largely synchronized between the most populous cities, even those separated by distances of >3000 km and those that experience vastly diverse climates. In addition, by analyzing global phylogeographic patterns we show that the synchronized dissemination of influenza across Australian cities involved multiple introductions from the global influenza population, coupled with strong domestic connectivity, rather than through the distinct radial patterns of geographic dispersal that are driven by work-flow transmission as observed in the United States. In addition, by comparing the spatial structure of influenza A and B, we found that these viruses tended to occupy different geographic regions, and peak in different seasons, perhaps indicative of moderate cross-protective immunity or viral interference effects. The highly synchronized outbreaks of influenza virus at a continental-scale revealed here highlight the importance of coordinated public health

  16. 76 FR 79203 - Prospective Grant of Exclusive License: Veterinary Biological Products for Swine Influenza Vaccines

    Science.gov (United States)

    2011-12-21

    .... Sustained outbreaks of highly pathogenic influenza in animals increase the risk of reassortment and adaption... efficient and versatile than the conventional inactivated whole-virus vaccines; (b) Can be precisely...) Because they do not contain other viral proteins, a diagnostic test will enable vaccinated animals to be...

  17. Active Surveillance for Avian Influenza Virus, Egypt, 2010–2012

    Science.gov (United States)

    Kandeil, Ahmed; El-Shesheny, Rabeh; Kayed, Ahmed S.; Gomaa, Mokhtar M.; Maatouq, Asmaa M.; Shehata, Mahmoud M.; Moatasim, Yassmin; Bagato, Ola; Cai, Zhipeng; Rubrum, Adam; Kutkat, Mohamed A.; McKenzie, Pamela P.; Webster, Robert G.; Webby, Richard J.; Ali, Mohamed A.

    2014-01-01

    Continuous circulation of influenza A(H5N1) virus among poultry in Egypt has created an epicenter in which the viruses evolve into newer subclades and continue to cause disease in humans. To detect influenza viruses in Egypt, since 2009 we have actively surveyed various regions and poultry production sectors. From August 2010 through January 2013, >11,000 swab samples were collected; 10% were positive by matrix gene reverse transcription PCR. During this period, subtype H9N2 viruses emerged, cocirculated with subtype H5N1 viruses, and frequently co-infected the same avian host. Genetic and antigenic analyses of viruses revealed that influenza A(H5N1) clade 2.2.1 viruses are dominant and that all subtype H9N2 viruses are G1-like. Cocirculation of different subtypes poses concern for potential reassortment. Avian influenza continues to threaten public and animal health in Egypt, and continuous surveillance for avian influenza virus is needed. PMID:24655395

  18. 21 CFR 866.3330 - Influenza virus serological reagents.

    Science.gov (United States)

    2010-04-01

    ... consist of antigens and antisera used in serological tests to identify antibodies to influenza in serum... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Influenza virus serological reagents. 866.3330 Section 866.3330 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES...

  19. Influenza- and respiratory syncytial virus-associated adult mortality ...

    African Journals Online (AJOL)

    Background. Influenza and respiratory syncytial virus (RSV) infections cause seasonal excess mortality and hospitalisation in adults (particularly the elderly) in high-income countries. Little information exists on the impact of these infections on adults in Africa. Objectives. To estimate influenza- and RSV-related adult mortality ...

  20. Prevention and Treatment of Avian Influenza A Viruses in People

    Science.gov (United States)

    ... in People Spread of Bird Flu Viruses Between Animals and People Examples of Human Infections with Avian Influenza A ... Influenza A (H5N1) H5N1 in Birds and Other Animals H5N1 in People Public Health Threat of Highly Pathogenic Asian Avian ...

  1. Avian Influenza A (H7N9) Virus

    Science.gov (United States)

    ... in People Spread of Bird Flu Viruses Between Animals and People Examples of Human Infections with Avian Influenza A ... Influenza A (H5N1) H5N1 in Birds and Other Animals H5N1 in People Public Health Threat of Highly Pathogenic Asian Avian ...

  2. Pathogenicity of highly pathogenic avian influenza virus in mammals

    NARCIS (Netherlands)

    de Wit, Emmie; Kawaoka, Yoshihiro; de Jong, Menno D.; Fouchier, Ron A. M.

    2008-01-01

    In recent years, there has been an increase in outbreaks of highly pathogenic avian influenza (HPAI) in poultry. Occasionally, these outbreaks have resulted in transmission of influenza viruses to humans and other mammals, with symptoms ranging from conjunctivitis to pneumonia and death. Here, the

  3. A common solution to group 2 influenza virus neutralization

    NARCIS (Netherlands)

    Friesen, Robert H. E.; Lee, Peter S.; Stoop, Esther J. M.; Hoffman, Ryan M. B.; Ekiert, Damian C.; Bhabha, Gira; Yu, Wenli; Juraszek, Jarek; Koudstaal, Wouter; Jongeneelen, Mandy; Korse, Hans J. W. M.; Ophorst, Carla; Brinkman-van der Linden, Els C. M.; Throsby, Mark; Kwakkenbos, Mark J.; Bakker, Arjen Q.; Beaumont, Tim; Spits, Hergen; Kwaks, Ted; Vogels, Ronald; Ward, Andrew B.; Goudsmit, Jaap; Wilson, Ian A.

    2014-01-01

    The discovery and characterization of broadly neutralizing antibodies (bnAbs) against influenza viruses have raised hopes for the development of monoclonal antibody (mAb)-based immunotherapy and the design of universal influenza vaccines. Only one human bnAb (CR8020) specifically recognizing group 2

  4. Modes of transmission of influenza B virus in households.

    Directory of Open Access Journals (Sweden)

    Benjamin J Cowling

    Full Text Available While influenza A and B viruses can be transmitted via respiratory droplets, the importance of small droplet nuclei "aerosols" in transmission is controversial.In Hong Kong and Bangkok, in 2008-11, subjects were recruited from outpatient clinics if they had recent onset of acute respiratory illness and none of their household contacts were ill. Following a positive rapid influenza diagnostic test result, subjects were randomly allocated to one of three household-based interventions: hand hygiene, hand hygiene plus face masks, and a control group. Index cases plus their household contacts were followed for 7-10 days to identify secondary infections by reverse transcription polymerase chain reaction (RT-PCR testing of respiratory specimens. Index cases with RT-PCR-confirmed influenza B were included in the present analyses. We used a mathematical model to make inferences on the modes of transmission, facilitated by apparent differences in clinical presentation of secondary infections resulting from aerosol transmission. We estimated that approximately 37% and 26% of influenza B virus transmission was via the aerosol mode in households in Hong Kong and Bangkok, respectively. In the fitted model, influenza B virus infections were associated with a 56%-72% risk of fever plus cough if infected via aerosol route, and a 23%-31% risk of fever plus cough if infected via the other two modes of transmission.Aerosol transmission may be an important mode of spread of influenza B virus. The point estimates of aerosol transmission were slightly lower for influenza B virus compared to previously published estimates for influenza A virus in both Hong Kong and Bangkok. Caution should be taken in interpreting these findings because of the multiple assumptions inherent in the model, including that there is limited biological evidence to date supporting a difference in the clinical features of influenza B virus infection by different modes.

  5. Pandemic H1N1 2009 virus in Norwegian pigs naïve to influenza A viruses

    DEFF Research Database (Denmark)

    Germundsson, A.; Gjerset, B.; Hjulsager, Charlotte Kristiane

    In March-April 2009, a novel pandemic influenza A (H1N1) virus (pH1N1-09v) emerged in the human population. The first case of pH1N1v infection in pigs was reported from Canada in May 2009. In Norway, pH1N1v infection was recorded in a swine herd on the 10th of October of 2009. Here, we report...... results from the investigation performed during the outbreak and the follow up surveillance performed in the Norwegian pig population. Nasal swabs were collected from herds i) where pigs had been exposed to persons with verified pH1N1-09v infection or with influenza-like illness (ILI); ii) where pigs...... showed clinical signs or iii) with a history of close contact with or close proximity to infected herds. In addition, blood samples were collected from nucleus and multiplier breeding herds. Detection of pH1N1-09v was initially performed using a real-time RT-PCR targeted to detect influenza A virus...

  6. African swine fever virus infection in Classical swine fever subclinically infected wild boars.

    Science.gov (United States)

    Cabezón, Oscar; Muñoz-González, Sara; Colom-Cadena, Andreu; Pérez-Simó, Marta; Rosell, Rosa; Lavín, Santiago; Marco, Ignasi; Fraile, Lorenzo; de la Riva, Paloma Martínez; Rodríguez, Fernando; Domínguez, Javier; Ganges, Llilianne

    2017-08-01

    Recently moderate-virulence classical swine fever virus (CSFV) strains have been proven capable of generating postnatal persistent infection (PI), defined by the maintenance of viremia and the inability to generate CSFV-specific immune responses in animals. These animals also showed a type I interferon blockade in the absence of clinical signs. In this study, we assessed the infection generated in 7-week-old CSFV PI wild boars after infection with the African swine fever virus (ASFV). The wild boars were divided in two groups and were infected with ASFV. Group A comprised boars who were CSFV PI in a subclinical form and Group B comprised pestivirus-free wild boars. Some relevant parameters related to CSFV replication and the immune response of CSFV PI animals were studied. Additionally, serum soluble factors such as IFN-α, TNF-α, IL-6, IL-10, IFN-γ and sCD163 were analysed before and after ASFV infection to assess their role in disease progression. After ASFV infection, only the CSFV PI wild boars showed progressive acute haemorrhagic disease; however, the survival rates following ASFV infection was similar in both experimental groups. Notwithstanding, the CSFV RNA load of CSFV PI animals remained unaltered over the study; likewise, the ASFV DNA load detected after infection was similar between groups. Interestingly, systemic type I FN-α and IL-10 levels in sera were almost undetectable in CSFV PI animals, yet detectable in Group B, while detectable levels of IFN-γ were found in both groups. Finally, the flow cytometry analysis showed an increase in myelomonocytic cells (CD172a + ) and a decrease in CD4 + T cells in the PBMCs from CSFV PI animals after ASFV infection. Our results showed that the immune response plays a role in the progression of disease in CSFV subclinically infected wild boars after ASFV infection, and the immune response comprised the systemic type I interferon blockade. ASFV does not produce any interference with CSFV replication, or vice

  7. Influenza research database: an integrated bioinformatics resource for influenza virus research

    Science.gov (United States)

    The Influenza Research Database (IRD) is a U.S. National Institute of Allergy and Infectious Diseases (NIAID)-sponsored Bioinformatics Resource Center dedicated to providing bioinformatics support for influenza virus research. IRD facilitates the research and development of vaccines, diagnostics, an...

  8. Invasive pneumococcal and meningococcal disease : association with influenza virus and respiratory syncytial virus activity?

    NARCIS (Netherlands)

    Jansen, A G S C; Sanders, E A M; VAN DER Ende, A; VAN Loon, A M; Hoes, A W; Hak, E

    2008-01-01

    Few studies have examined the relationship between viral activity and bacterial invasive disease, considering both influenza virus and respiratory syncytial virus (RSV). This study aimed to assess the potential relationship between invasive pneumococcal disease (IPD), meningococcal disease (MD), and

  9. A combination of HA and PA mutations enhances virulence in a mouse-adapted H6N6 influenza A virus.

    Science.gov (United States)

    Tan, Likai; Su, Shuo; Smith, David K; He, Shuyi; Zheng, Yun; Shao, Zhenwen; Ma, Jun; Zhu, Huachen; Zhang, Guihong

    2014-12-01

    H6N6 viruses are commonly isolated from domestic ducks, and avian-to-swine transmissions of H6N6 viruses have been detected in China. Whether subsequent adaptation of H6N6 viruses in mammals would increase their pathogenicity toward humans is not known. To address this, we generated a mouse-adapted (MA) swine influenza H6N6 virus (A/swine/Guangdong/K6/2010 [GDK6-MA]) which exhibited greater virulence than the wild-type virus (GDK6). Amino acid substitutions in PB2 (E627K), PA (I38M), and hemagglutinin ([HA] L111F, H156N, and S263R) occurred in GDK6-MA. HA with the H156N mutation [HA(H156N)] resulted in enlarged plaque sizes on MDCK cells and enhanced early-stage viral replication in mammalian cells. PA(I38M) raised polymerase activity in vitro but did not change virus replication in either mammalian cells or mice. These single substitutions had only limited effects on virulence; however, a combination of HA(H156N S263R) with PA(I38M) in the GDK6 backbone led to a significantly more virulent variant. This suggests that these substitutions can compensate for the lack of PB2(627K) and modulate virulence, revealing a new determinant of pathogenicity for H6N6 viruses in mice, which might also pose a threat to human health. Avian H6N6 influenza viruses are enzootic in domestic ducks and have been detected in swine in China. Infections of mammals by H6N6 viruses raise the possibility of viral adaptation and increasing pathogenicity in the new hosts. To examine the molecular mechanisms of adaptation, a mouse-adapted avian-origin swine influenza H6N6 virus (GDK6-MA), which had higher virulence than its parental virus, was generated. Specific mutations were found in PB2 (E627K), PA (I38M), and HA (L111F, H156N, and S263R) and were assessed for their virulence in mice. The combination of HA(H156N S263R) and PA(I38M) compensated for the lack of PB2(627K) and showed increased pathogenicity in mice, revealing a novel mechanism that can affect the virulence of influenza viruses

  10. DETECTION OF CLASSICAL SWINE FEVER VIRUS BY RT-PCR IN WEST BENGAL, INDIA

    Directory of Open Access Journals (Sweden)

    Sumit Chowdhury

    2016-12-01

    Full Text Available Classical swine fever is a deadly disease of swine, caused by a RNA virus. The present study has identified presence of the classical swine fever virus (CSFV in pigs of West Bengal by one step reverse transcriptase PCR (RT-PCR performed using 5’ NTR specific primers. Internal organs from clinically affected pigs were examined from three districts of West Bengal. RT-PCT has identified presence of CSFV in all the tissues examined confirming presence of CSFV in different parts of the state.

  11. Unraveling the Armor of a Killer: Evasion of Host Defenses by African Swine Fever Virus.

    Science.gov (United States)

    Reis, Ana Luisa; Netherton, Chris; Dixon, Linda K

    2017-03-15

    African swine fever is an acute hemorrhagic disease of pigs. Extensive recent spread in the Russian Federation and Eastern Europe has increased the risk to global pig production. The virus is a large DNA virus and is the only member of the Asfarviridae family. In pigs, the virus replicates predominantly in macrophages. We review how the virus overcomes the barriers to replication in the macrophage and the virus mechanism to inhibit key host defense pathways. Copyright © 2017 American Society for Microbiology.

  12. 64 multidetector CT findings of influenza A (H1N1) virus in patients with hematologic malignancies

    Energy Technology Data Exchange (ETDEWEB)

    El-Badrawy, Adel [Dept. of Radiology, Mansoura Faculty of Medicine, Mansoura (Egypt)], E-mail: adelelbadrawy@hotmail.com; Zeidan, Amany [Dept. of Thoracic Medicine, Mansoura Faculty of Medicine, Mansoura (Egypt); Ebrahim, Mohamed A. [Dept. of Medical Oncology, Mansoura Faculty of Medicine, Mansoura (Egypt)

    2012-07-15

    Background. The pandemic of swine-origin H1N1 influenza that began in early 2009 has provided evidence that radiology can assist in the early diagnosis of severe cases. Immunocompromised patients are at increased risk for morbidity and mortality. MDCT is superior to radiography in showing the distribution of the disease. Purpose. To review the 64 multidetector CT thoracic findings of novel swine-origin influenza A (H1N1) virus in patients with hematologic malignancies. Material and Methods. This study included 12 patients (3 women, 9 men; mean age, 32.2 years). All patients proved to be infected with influenza A (H1N1) virus. The hematologic malignancies were acute myeloid leukemia (n = 8), chronic lymphocytic leukemia (n = 2), multiple myeloma (n = 1), and myelodysplastic syndrome (n = 1). All the patients underwent CT scanning using a 64 multidetector CT scanner. Chest CT scans were reviewed for ground-glass opacities (GGOs), consolidation, airway thickening/dilatation, nodules, mediastinal lymphadenopathy, and pleural effusion. Results. More than one CT finding was detected in every patient. Pulmonary affection was bilateral, more on the left side. The affections were mainly peribronchial. Airway wall thickening and dilatation were detected in all 12 patients, GGO in 9/12 patients, nodules in 6/12 patients, consolidation in 6/12 patients, hilar lymphadenopathy in 3/12 patients, and pleural effusion in 2/12 patients. Conclusion. Acute myeloid leukemia is the most common hematologic malignancy affected by influenza A (H1N1) virus. The left lung is affected more than the right one. The most common multidetector CT findings are unilateral or bilateral airway thickening and dilatation. Multidetector CT can be used for early and accurate assessment of pulmonary affection with influenza A H1N1 virus infection.

  13. 64 multidetector CT findings of influenza A (H1N1) virus in patients with hematologic malignancies

    International Nuclear Information System (INIS)

    El-Badrawy, Adel; Zeidan, Amany; Ebrahim, Mohamed A.

    2012-01-01

    Background. The pandemic of swine-origin H1N1 influenza that began in early 2009 has provided evidence that radiology can assist in the early diagnosis of severe cases. Immunocompromised patients are at increased risk for morbidity and mortality. MDCT is superior to radiography in showing the distribution of the disease. Purpose. To review the 64 multidetector CT thoracic findings of novel swine-origin influenza A (H1N1) virus in patients with hematologic malignancies. Material and Methods. This study included 12 patients (3 women, 9 men; mean age, 32.2 years). All patients proved to be infected with influenza A (H1N1) virus. The hematologic malignancies were acute myeloid leukemia (n = 8), chronic lymphocytic leukemia (n = 2), multiple myeloma (n = 1), and myelodysplastic syndrome (n = 1). All the patients underwent CT scanning using a 64 multidetector CT scanner. Chest CT scans were reviewed for ground-glass opacities (GGOs), consolidation, airway thickening/dilatation, nodules, mediastinal lymphadenopathy, and pleural effusion. Results. More than one CT finding was detected in every patient. Pulmonary affection was bilateral, more on the left side. The affections were mainly peribronchial. Airway wall thickening and dilatation were detected in all 12 patients, GGO in 9/12 patients, nodules in 6/12 patients, consolidation in 6/12 patients, hilar lymphadenopathy in 3/12 patients, and pleural effusion in 2/12 patients. Conclusion. Acute myeloid leukemia is the most common hematologic malignancy affected by influenza A (H1N1) virus. The left lung is affected more than the right one. The most common multidetector CT findings are unilateral or bilateral airway thickening and dilatation. Multidetector CT can be used for early and accurate assessment of pulmonary affection with influenza A H1N1 virus infection

  14. Sequential Seasonal H1N1 Influenza Virus Infections Protect Ferrets against Novel 2009 H1N1 Influenza Virus

    Science.gov (United States)

    Carter, Donald M.; Bloom, Chalise E.; Nascimento, Eduardo J. M.; Marques, Ernesto T. A.; Craigo, Jodi K.; Cherry, Joshua L.; Lipman, David J.

    2013-01-01

    Individuals H1N1 influenza. Many people >60 years old also had preexisting antibodies to novel H1N1. These observations are puzzling because the seasonal H1N1 viruses circulating during the last 60 years were not antigenically similar to novel H1N1. We therefore hypothesized that a sequence of exposures to antigenically different seasonal H1N1 viruses can elicit an antibody response that protects against novel 2009 H1N1. Ferrets were preinfected with seasonal H1N1 viruses and assessed for cross-reactive antibodies to novel H1N1. Serum from infected ferrets was assayed for cross-reactivity to both seasonal and novel 2009 H1N1 strains. These results were compared to those of ferrets that were sequentially infected with H1N1 viruses isolated prior to 1957 or more-recently isolated viruses. Following seroconversion, ferrets were challenged with novel H1N1 influenza virus and assessed for viral titers in the nasal wash, morbidity, and mortality. There was no hemagglutination inhibition (HAI) cross-reactivity in ferrets infected with any single seasonal H1N1 influenza viruses, with limited protection to challenge. However, sequential H1N1 influenza infections reduced the incidence of disease and elicited cross-reactive antibodies to novel H1N1 isolates. The amount and duration of virus shedding and the frequency of transmission following novel H1N1 challenge were reduced. Exposure to multiple seasonal H1N1 influenza viruses, and not to any single H1N1 influenza virus, elicits a breadth of antibodies that neutralize novel H1N1 even though the host was never exposed to the novel H1N1 influenza viruses. PMID:23115287

  15. Interaction of influenza virus proteins with nucleosomes

    International Nuclear Information System (INIS)

    Garcia-Robles, Inmaculada; Akarsu, Hatice; Mueller, Christoph W.; Ruigrok, Rob W.H.; Baudin, Florence

    2005-01-01

    During influenza virus infection, transcription and replication of the viral RNA take place in the cell nucleus. Directly after entry in the nucleus the viral ribonucleoproteins (RNPs, the viral subunits containing vRNA, nucleoprotein and the viral polymerase) are tightly associated with the nuclear matrix. Here, we have analysed the binding of RNPs, M1 and NS2/NEP proteins to purified nucleosomes, reconstituted histone octamers and purified single histones. RNPs and M1 both bind to the chromatin components but at two different sites, RNP to the histone tails and M1 to the globular domain of the histone octamer. NS2/NEP did not bind to nucleosomes at all. The possible consequences of these findings for nuclear release of newly made RNPs and for other processes during the infection cycle are discussed

  16. Sequence adaptations during growth of rescued classical swine fever viruses in cell culture and within infected pigs

    DEFF Research Database (Denmark)

    Hadsbjerg, Johanne; Friis, Martin Barfred; Fahnøe, Ulrik

    2016-01-01

    Classical swine fever virus (CSFV) causes an economically important disease of swine. Four different viruses were rescued from full-length cloned cDNAs derived from the Paderborn strain of CSFV. Three of these viruses had been modified by mutagenesis (with 7 or 8 nt changes) within stem 2 of the ...

  17. Serologic Evidence for Influenza C and D Virus among Ruminants and Camelids, Africa, 1991-2015.

    Science.gov (United States)

    Salem, Elias; Cook, Elizabeth A J; Lbacha, Hicham Ait; Oliva, Justine; Awoume, Félix; Aplogan, Gilbert L; Hymann, Emmanuel Couacy; Muloi, Dishon; Deem, Sharon L; Alali, Said; Zouagui, Zaid; Fèvre, Eric M; Meyer, Gilles; Ducatez, Mariette F

    2017-09-01

    Influenza D virus has been identified in America, Europe, and Asia. We detected influenza D virus antibodies in cattle and small ruminants from North (Morocco) and West (Togo and Benin) Africa. Dromedary camels in Kenya harbored influenza C or D virus antibodies, indicating a potential new host for these viruses.

  18. Influenza and Other Respiratory Viruses in Three Central American Countries

    Science.gov (United States)

    2010-01-01

    enteroviruses ( coxsackie and echovirus) were isolated from patient specimens. Discussion When compared to the rest of the population, viruses were isolated from... coxsackie virus (n = 2). Among the 17 dual infections, the most common were adenovirus-RSV (n = 4), influenza virus A-RSV (n = 3), influenza A-HSV-1 (n...Enterovirus 70 ⁄ 71 2 (0Æ1) Coxsackie 2 (0Æ1) 1 0 0 1 0 Echovirus 3 (0Æ2) 0 0 0 1 2 Parainfluenza viruses (1, 2 and 3) 57 (3Æ2) 0 18 11 9 19

  19. Reduction of Influenza Virus Titer and Protection against Influenza Virus Infection in Infant Mice Fed Lactobacillus casei Shirota

    OpenAIRE

    Yasui, Hisako; Kiyoshima, Junko; Hori, Tetsuji

    2004-01-01

    We investigated whether oral administration of Lactobacillus casei strain Shirota to neonatal and infant mice ameliorates influenza virus (IFV) infection in the upper respiratory tract and protects against influenza infection. In a model of upper respiratory IFV infection, the titer of virus in the nasal washings of infant mice administered L. casei Shirota (L. casei Shirota group) was significantly (P < 0.05) lower than that in infant mice administered saline (control group) (102.48 ± 100.31...

  20. Avian Influenza Virus Glycoproteins Restrict Virus Replication and Spread through Human Airway Epithelium at Temperatures of the Proximal Airways

    OpenAIRE

    Scull, Margaret A.; Gillim-Ross, Laura; Santos, Celia; Roberts, Kim L.; Bordonali, Elena; Subbarao, Kanta; Barclay, Wendy S.; Pickles, Raymond J.

    2009-01-01

    Transmission of avian influenza viruses from bird to human is a rare event even though avian influenza viruses infect the ciliated epithelium of human airways in vitro and ex vivo. Using an in vitro model of human ciliated airway epithelium (HAE), we demonstrate that while human and avian influenza viruses efficiently infect at temperatures of the human distal airways (37 degrees C), avian, but not human, influenza viruses are restricted for infection at the cooler temperatures of the human p...

  1. The temperature-sensitive and attenuation phenotypes conferred by mutations in the influenza virus PB2, PB1, and NP genes are influenced by the species of origin of the PB2 gene in reassortant viruses derived from influenza A/California/07/2009 and A/WSN/33 viruses.

    Science.gov (United States)

    Broadbent, Andrew J; Santos, Celia P; Godbout, Rachel A; Subbarao, Kanta

    2014-11-01

    Live attenuated influenza vaccines in the United States are derived from a human virus that is temperature sensitive (ts), characterized by restricted (≥ 100-fold) replication at 39 °C. The ts genetic signature (ts sig) has been mapped to 5 loci in 3 genes: PB1 (391 E, 581 G, and 661 T), PB2 (265 S), and NP (34 G). However, when transferred into avian and swine influenza viruses, only partial ts and attenuation phenotypes occur. To investigate the reason for this, we introduced the ts sig into the human origin virus A/WSN/33 (WSN), the avian-origin virus A/Vietnam/1203/04 (VN04), and the swine origin triple-reassortant 2009 pandemic H1N1 virus A/California/07/2009 (CA07), which contains gene segments from human, avian, and swine viruses. The VN04(ts sig) and CA07(ts sig) viruses replicated efficiently in Madin-Darby canine kidney (MDCK) cells at 39 °C, but the replication of WSN(ts sig) was restricted ≥ 100-fold compared to that at 33 °C. Reassortant CA07(ts sig) viruses were generated with individual polymerase gene segments from WSN, and vice versa. Only ts sig viruses with a PB2 gene segment derived from WSN were restricted in replication ≥ 100-fold at 39 °C. In ferrets, the CA07(ts sig) virus replicated in the upper and lower respiratory tract, but the replication of a reassortant CA07(ts sig) virus with a WSN PB2 gene was severely restricted in the lungs. Taken together, these data suggest that the origin of the PB2 gene segment influences the ts phenotype in vitro and attenuation in vivo. This could have implications for the design of novel live vaccines against animal origin influenza viruses. Live attenuated influenza vaccines (LAIVs) on temperature-sensitive (ts) backbones derived from animal origin influenza viruses are being sought for use in the poultry and swine industries and to protect people against animal origin influenza. However, inserting the ts genetic signature from a licensed LAIV backbone fails to fully attenuate these viruses. Our

  2. Pneumonia induced by swine-origin influenza A (H1N1) infection. Chest computed tomography findings in children

    International Nuclear Information System (INIS)

    Yamada, Kentaro; Shinmoto, Hiroshi; Hamamoto, Manabu; Yoshida, Yusuke; Kawauchi, Toshio; Kaji, Tatsumi; Kosuda, Shigeru

    2011-01-01

    The purpose of this study was to determine the features of chest computed tomography (CT) in children with swine-origin influenza A (H1N1) virus (S-OIV). The study population consisted of 16 children with laboratory-confirmed S-OIV infection (12 boys, 4 girls), with an age range of 5-10 years (mean 6.3 years). Pneumonia was suspected in these patients based on clinical features or confirmed by radiography. All subjects underwent CT for close evaluation of pneumonia, including characteristics, distribution, extent, and other findings such as pleural effusion, pneumothorax, and pneumomediastinum. The predominant CT finding was consolidation plus ground-grass opacity (GGO) (11/16, 69%). The consolidation-dominant pattern was found in 10 of 16 (66%) patients, and 1 (6%) was GGO-dominant. One (6%) had only GGO. In all, 7 of the 16 patients had segmental or lobar consolidation. Abnormal opacities were primarily distributed in the central lung zone (8/16, 50%) and were multifocal (15/16, 94%). Four showed atelectasis (4/16, 25%). Pneumomediastinum was observed in 4 of 16 (25%). One patient had negative radiographic findings but was positive on CT. Multifocal consolidation with central distribution is a common CT finding in children with S-OIV, but there are few GGO-dominant cases. Widespread consolidation (segmental or lobar) is also common. (author)

  3. Swine-origin influenza A viral (H1N1) infection in children. Chest computed tomography findings

    International Nuclear Information System (INIS)

    Im, Soo-Ah; Kim, Hyo-Lim; Yoon, Jong-seo; Kang, Jin-Han; Lee, Joon-Sung; Chun, Ho-Jong

    2011-01-01

    The aim of this study was to review the chest computed tomography (CT) findings in children with swine-origin influenza (H1N1) virus (S-OIV) infection. The radiologists retrospectively reviewed chest CT findings in 12 children with S-OIV infection and recorded the following findings: ground-glass opacities (GGO), consolidation, nodules, reticular opacities, peribronchial cuffing, and air trapping; distribution; affected lobes. The presence of pleural effusions, pneumomediastinum, pulmonary interstitial emphysema (PIE), and lymphadenopathy was also recorded. Chest CT revealed GGO (67%), consolidation (67%), nodules (25%), peribronchial cuffing (42%), and air trapping (33%). The distribution of the lesions was random (75%), peribronchial (17%), or subpleural (8%). The lobes affected were the lower (92%), upper (58%), and middle (17%) lobes. There were associated pleural effusions (42%), PIE (42%), pneumomediastinum (33%), and lymphadenopathy (75%). Among five patients with air-leak complications, three had a history of allergies and three required the intensive care unit. Chest CT findings in children with S-OIV infection were peribronchial thickening and a mixture of airspace consolidation and GGO with random distribution and lower lobe predominance. Pleural effusion, lymphadenopathy, PIE, and pneumomediastinum may be associated findings. (author)

  4. The Influenza NS1 Protein: What Do We Know in Equine Influenza Virus Pathogenesis?

    Directory of Open Access Journals (Sweden)

    Marta Barba

    2016-08-01

    Full Text Available Equine influenza virus remains a serious health and potential economic problem throughout most parts of the world, despite intensive vaccination programs in some horse populations. The influenza non-structural protein 1 (NS1 has multiple functions involved in the regulation of several cellular and viral processes during influenza infection. We review the strategies that NS1 uses to facilitate virus replication and inhibit antiviral responses in the host, including sequestering of double-stranded RNA, direct modulation of protein kinase R activity and inhibition of transcription and translation of host antiviral response genes such as type I interferon. Details are provided regarding what it is known about NS1 in equine influenza, especially concerning C-terminal truncation. Further research is needed to determine the role of NS1 in equine influenza infection, which will help to understand the pathophysiology of complicated cases related to cytokine imbalance and secondary bacterial infection, and to investigate new therapeutic and vaccination strategies.

  5. Toward a method for tracking virus evolutionary trajectory applied to the pandemic H1N1 2009 influenza virus.

    Science.gov (United States)

    Squires, R Burke; Pickett, Brett E; Das, Sajal; Scheuermann, Richard H

    2014-12-01

    In 2009 a novel pandemic H1N1 influenza virus (H1N1pdm09) emerged as the first official influenza pandemic of the 21st century. Early genomic sequence analysis pointed to the swine origin of the virus. Here we report a novel computational approach to determine the evolutionary trajectory of viral sequences that uses data-driven estimations of nucleotide substitution rates to track the gradual accumulation of observed sequence alterations over time. Phylogenetic analysis and multiple sequence alignments show that sequences belonging to the resulting evolutionary trajectory of the H1N1pdm09 lineage exhibit a gradual accumulation of sequence variations and tight temporal correlations in the topological structure of the phylogenetic trees. These results suggest that our evolutionary trajectory analysis (ETA) can more effectively pinpoint the evolutionary history of viruses, including the host and geographical location traversed by each segment, when compared against either BLAST or traditional phylogenetic analysis alone. Copyright © 2014 Elsevier B.V. All rights reserved.

  6. Analyzing Influenza Virus Sequences using Binary Encoding Approach

    Directory of Open Access Journals (Sweden)

    Ham Ching Lam

    2012-01-01

    Full Text Available Capturing mutation patterns of each individual influenza virus sequence is often challenging; in this paper, we demonstrated that using a binary encoding scheme coupled with dimension reduction technique, we were able to capture the intrinsic mutation pattern of the virus. Our approach looks at the variance between sequences instead of the commonly used p-distance or Hamming distance. We first convert the influenza genetic sequences to a binary strings and form a binary sequence alignment matrix and then apply Principal Component Analysis (PCA to this matrix. PCA also provides identification power to identify reassortant virus by using data projection technique. Due to the sparsity of the binary string, we were able to analyze large volume of influenza sequence data in a very short time. For protein sequences, our scheme also allows the incorporation of biophysical properties of each amino acid. Here, we present various encouraging results from analyzing influenza nucleotide, protein and genome sequences using the proposed approach.

  7. Initial psychological responses to Influenza A, H1N1 ("Swine flu").

    Science.gov (United States)

    Goodwin, Robin; Haque, Shamsul; Neto, Felix; Myers, Lynn B

    2009-10-06

    The outbreak of the pandemic flu, Influenza A H1N1 (Swine Flu) in early 2009, provided a major challenge to health services around the world. Previous pandemics have led to stockpiling of goods, the victimisation of particular population groups, and the cancellation of travel and the boycotting of particular foods (e.g. pork). We examined initial behavioural and attitudinal responses towards Influenza A, H1N1 ("Swine flu") in the six days following the WHO pandemic alert level 5, and regional differences in these responses. 328 respondents completed a cross-sectional Internet or paper-based questionnaire study in Malaysia (N = 180) or Europe (N = 148). Measures assessed changes in transport usage, purchase of preparatory goods for a pandemic, perceived risk groups, indicators of anxiety, assessed estimated mortality rates for seasonal flu, effectiveness of seasonal flu vaccination, and changes in pork consumption 26% of the respondents were 'very concerned' about being a flu victim (42% Malaysians, 5% Europeans, p public transport use (48% Malaysia, 22% Europe, p Malaysia, 17% Europe, p Malaysia, 7% Europe), 41% Malaysia (15% Europe) intended to do so (p < .001). 63% of Europeans, 19% of Malaysians had discussed the pandemic with friends (p < .001). Groups seen as at 'high risk' of infection included the immune compromised (mentioned by 87% respondents), pig farmers (70%), elderly (57%), prostitutes/highly sexually active (53%), and the homeless (53%). In data collected only in Europe, 64% greatly underestimated the mortality rates of seasonal flu, 26% believed seasonal flu vaccination gave protection against swine flu. 7% had reduced/stopped eating pork. 3% had purchased anti-viral drugs for use at home, while 32% intended to do so if the pandemic worsened. Initial responses to Influenza A show large regional differences in anxiety, with Malaysians more anxious and more likely to reduce travel and to buy masks and food. Discussions with family and friends may

  8. Influenza A (H1N1) 2009: a pandemic alarm

    Indian Academy of Sciences (India)

    At this critical juncture when the world has not yet recovered from the threat of avian influenza, the virus has returned in the disguise of swine influenza, a lesser known illness common in pigs. It has reached pandemic proportions in a short time span with health personnel still devising ways to identify the novel H1N1 virus ...

  9. The Role of Extracellular Histones in Influenza Virus Pathogenesis.

    Science.gov (United States)

    Ashar, Harshini K; Mueller, Nathan C; Rudd, Jennifer M; Snider, Timothy A; Achanta, Mallika; Prasanthi, Maram; Pulavendran, Sivasami; Thomas, Paul G; Ramachandran, Akhilesh; Malayer, Jerry R; Ritchey, Jerry W; Rajasekhar, Rachakatla; Chow, Vincent T K; Esmon, Charles T; Teluguakula, Narasaraju

    2018-01-01

    Although exaggerated host immune responses have been implicated in influenza-induced lung pathogenesis, the etiologic factors that contribute to these events are not completely understood. We previously demonstrated that neutrophil extracellular traps exacerbate pulmonary injury during influenza pneumonia. Histones are the major protein components of neutrophil extracellular traps and are known to have cytotoxic effects. Here, we examined the role of extracellular histones in lung pathogenesis during influenza. Mice infected with influenza virus displayed high accumulation of extracellular histones, with widespread pulmonary microvascular thrombosis. Occluded pulmonary blood vessels with vascular thrombi often exhibited endothelial necrosis surrounded by hemorrhagic effusions and pulmonary edema. Histones released during influenza induced cytotoxicity and showed strong binding to platelets within thrombi in infected mouse lungs. Nasal wash samples from influenza-infected patients also showed increased accumulation of extracellular histones, suggesting a possible clinical relevance of elevated histones in pulmonary injury. Although histones inhibited influenza growth in vitro, in vivo treatment with histones did not yield antiviral effects and instead exacerbated lung pathology. Blocking with antihistone antibodies caused a marked decrease in lung pathology in lethal influenza-challenged mice and improved protection when administered in combination with the antiviral agent oseltamivir. These findings support the pathogenic effects of extracellular histones in that pulmonary injury during influenza was exacerbated. Targeting histones provides a novel therapeutic approach to influenza pneumonia. Copyright © 2018 American Society for Investigative Pathology. Published by Elsevier Inc. All rights reserved.

  10. Novel bioinformatics strategies for prediction of directional sequence changes in influenza virus genomes and for surveillance of potentially hazardous strains.

    Science.gov (United States)

    Iwasaki, Yuki; Abe, Takashi; Wada, Yoshiko; Wada, Kennosuke; Ikemura, Toshimichi

    2013-08-21

    With the remarkable increase of microbial and viral sequence data obtained from high-throughput DNA sequencers, novel tools are needed for comprehensive analysis of the big sequence data. We have developed "Batch-Learning Self-Organizing Map (BLSOM)" which can characterize very many, even millions of, genomic sequences on one plane. Influenza virus is one of zoonotic viruses and shows clear host tropism. Important issues for bioinformatics studies of influenza viruses are prediction of genomic sequence changes in the near future and surveillance of potentially hazardous strains. To characterize sequence changes in influenza virus genomes after invasion into humans from other animal hosts, we applied BLSOMs to analyses of mono-, di-, tri-, and tetranucleotide compositions in all genome sequences of influenza A and B viruses and found clear host-dependent clustering (self-organization) of the sequences. Viruses isolated from humans and birds differed in mononucleotide composition from each other. In addition, host-dependent oligonucleotide compositions that could not be explained with the host-dependent mononucleotide composition were revealed by oligonucleotide BLSOMs. Retrospective time-dependent directional changes of mono- and oligonucleotide compositions, which were visualized for human strains on BLSOMs, could provide predictive information about sequence changes in newly invaded viruses from other animal hosts (e.g. the swine-derived pandemic H1N1/09). Basing on the host-dependent oligonucleotide composition, we proposed a strategy for prediction of directional changes of virus sequences and for surveillance of potentially hazardous strains when introduced into human populations from non-human sources. Millions of genomic sequences from infectious microbes and viruses have become available because of their medical and social importance, and BLSOM can characterize the big data and support efficient knowledge discovery.

  11. Evaluation of recombinant influenza virus-simian immunodeficiency virus vaccines in macaques.

    Science.gov (United States)

    Sexton, Amy; De Rose, Robert; Reece, Jeanette C; Alcantara, Sheilajen; Loh, Liyen; Moffat, Jessica M; Laurie, Karen; Hurt, Aeron; Doherty, Peter C; Turner, Stephen J; Kent, Stephen J; Stambas, John

    2009-08-01

    There is an urgent need for human immunodeficiency virus (HIV) vaccines that induce robust mucosal immunity. Influenza A viruses (both H1N1 and H3N2) were engineered to express simian immunodeficiency virus (SIV) CD8 T-cell epitopes and evaluated following administration to the respiratory tracts of 11 pigtail macaques. Influenza virus was readily detected from respiratory tract secretions, although the infections were asymptomatic. Animals seroconverted to influenza virus and generated CD8 and CD4 T-cell responses to influenza virus proteins. SIV-specific CD8 T-cell responses bearing the mucosal homing marker beta7 integrin were induced by vaccination of naïve animals. Further, SIV-specific CD8 T-cell responses could be boosted by recombinant influenza virus-SIV vaccination of animals with already-established SIV infection. Sequential vaccination with influenza virus-SIV recombinants of different subtypes (H1N1 followed by H3N2 or vice versa) produced only a limited boost in immunity, probably reflecting T-cell immunity to conserved internal proteins of influenza A virus. SIV challenge of macaques vaccinated with an influenza virus expressing a single SIV CD8 T cell resulted in a large anamnestic recall CD8 T-cell response, but immune escape rapidly ensued and there was no impact on chronic SIV viremia. Although our results suggest that influenza virus-HIV vaccines hold promise for the induction of mucosal immunity to HIV, broader antigen cover will be needed to limit cytotoxic T-lymphocyte escape.

  12. Highly pathogenic avian influenza viruses inhibit effective immune responses of human blood-derived macrophages

    OpenAIRE

    Friesenhagen, Judith; Boergeling, Yvonne; Hrincius, Eike; Ludwig, Stephan; Roth, Johannes; Viemann, Dorothee

    2012-01-01

    Human blood-derived macrophages are non-permissive for influenza virus propagation, and fail to elicit inflammatory and antiviral responses upon infection with high pathogenic avian influenza viruses.

  13. Influenza Virus-specific CD8+ T Cells : -longevity, cross-reactivity and viral evasion-

    NARCIS (Netherlands)

    C.E. van de Sandt (Carolien)

    2016-01-01

    markdownabstractInfluenza viruses are among the leading causes of acute respiratory tract infections worldwide. Natural influenza virus infections elicit both humoral and cellular immune responses. Although, neutralizing antibodies directed to the hemagglutinin (HA) globular head domain prevent

  14. Molecular characterization of Belgian pseudorabies virus isolates from domestic swine and wild boar.

    Science.gov (United States)

    Verpoest, Sara; Cay, Ann Brigitte; De Regge, Nick

    2014-08-06

    Aujeszky's disease is an economically important disease in domestic swine caused by suid herpesvirus 1, also called pseudorabies virus (PRV). In several European countries, including Belgium, the virus has successfully been eradicated from the domestic swine population. The presence of PRV in the wild boar population however poses a risk for possible reintroduction of the virus into the domestic pig population. It is therefore important to assess the genetic relatedness between circulating strains and possible epidemiological links. In this study, nine historical Belgian domestic swine isolates that circulated before 1990 and five recent wild boar isolates obtained since 2006 from Belgium and the Grand Duchy of Luxembourg were genetically characterized by restriction fragment length polymorphism (RFLP) analysis and phylogenetic analysis. While all wild boar isolates were characterized as type I RFLP genotypes, the RFLP patterns of the domestic swine isolates suggest that a shift from genotype I to genotype II might have occurred in the 1980s in the domestic population. By phylogenetic analysis, Belgian wild boar isolates belonging to both clade A and B were observed, while all domestic swine isolates clustered within clade A. The joint phylogenetic analysis of both wild boar and domestic swine strains showed that some isolates with identical sequences were present within both populations, raising the question whether these strains represent an increased risk for reintroduction of the virus into the domestic population. Copyright © 2014 Elsevier B.V. All rights reserved.

  15. [Wild birds--a reservoir for influenza A virus].

    Science.gov (United States)

    Griot, C; Hoop, R

    2007-11-01

    Influenza A viruses, in particular the H5 and H7 subtypes, have caused epizootic diseases in poultry for a long time. Wild aquatic birds and shorebirds form the natural virus reservoir. All influenza virus subtypes and almost all possible haemagglutinin/neuraminidase combinations have been detected in wild birds, whereas relatively few have been detected in humans and other mammals. In 1997, the emerging and spreading of the highly pathogenic strain H5N1 within Asia was supported by lack of hygiene in commercial poultry units and by the existence of live bird markets. During autumn 2005, migratory birds have been accused for spreading the infection along their flyways to Europe including Switzerland. For early detection of introduction to Europe, many countries have initiated surveillance programs for avian influenza in wild birds. Vaccines against influenza A viruses are existing for birds and are widely used to protect domestic fowl in endemic regions of Asia as well as valuable birds in zoos worldwide. Subtype H5N1 could be the progenitor virus of a new pandemic influenza virus. Therefore, the World Organisation for Animal Health (OIE, Paris) as well as the Food and Agriculture Organisation of the United Nations (FAO, Rome) will need to increase their efforts to assist countries to combat the disease in the field.

  16. No serological evidence that harbour porpoises are additional hosts of influenza B viruses.

    Directory of Open Access Journals (Sweden)

    Rogier Bodewes

    Full Text Available Influenza A and B viruses circulate among humans causing epidemics almost annually. While various hosts for influenza A viruses exist, influenza B viruses have been detected only in humans and seals. However, recurrent infections of seals in Dutch coastal waters with influenza B viruses that are antigenetically distinct from influenza B viruses circulating among humans suggest that influenza B viruses have been introduced into this seal population by another, non-human, host. Harbour porpoises (Phocoena phocoena are sympatric with seals in these waters and are also o