WorldWideScience

Sample records for swimming performance studies

  1. Pre-task music improves swimming performance.

    Science.gov (United States)

    Smirmaul, B P; Dos Santos, R V; Da Silva Neto, L V

    2015-12-01

    The purpose of this study was to investigate the effects of pre-task music on swimming performance and other psychological variables. A randomized counterbalanced within-subjects (experimental and control condition) design was employed. Eighteen regional level male swimmers performed two 200-m freestyle swimming time trials. Participants were exposed to either 5 minutes of self-selected music (pre-task music condition) or 5 minutes of silence (control condition) and, after 1 minute, performed the swimming task. Swimming time was significantly shorter (-1.44%) in the pre-task music condition. Listening to pre-task music increased motivation to perform the swimming task, while arousal remained unchanged. While fatigue increased after the swimming task in both conditions, vigor, ratings of perceived exertion and affective valence were unaltered. It is concluded, for the first time, that pre-task music improves swimming performance.

  2. Declines in swimming performance with age: a longitudinal study of Masters swimming champions

    Directory of Open Access Journals (Sweden)

    Rubin RT

    2013-03-01

    Full Text Available Robert T Rubin,1,2 Sonia Lin,3 Amy Curtis,4 Daniel Auerbach,5 Charlene Win6 1Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine, UCLA, Los Angeles, CA, USA; 2UCLA Bruin Masters Swim Club, Los Angeles, CA, USA; 3Saint Louis University School of Medicine, Saint Louis, MO, USA; 4Indiana University School of Medicine, Indianapolis, IN, USA; 5University of California, Berkeley, CA, USA; 6Loyola Marymount University, Los Angeles, CA, USA Introduction: Because of its many participants and thorough records, competitive Masters swimming offers a rich data source for determining the rate of physical decline associated with aging in physically fit individuals. The decline in performance among national champion swimmers, both men and women and in short and long swims, is linear, at about 0.6% per year up to age 70–75, after which it accelerates in quadratic fashion. These conclusions are based primarily on cross-sectional studies, and little is known about individual performance declines with aging. Herein we present performance profiles of 19 male and 26 female national and international champion Masters swimmers, ages 25 to 96 years, participating in competitions for an average of 23 years. Methods and results: Swimmers’ longitudinal data were compared with the fastest times of world record holders across ages 35–100 years by two regression methods. Neither method proved to accurately model this data set: compared with the rates of decline estimated from the world record data, which represent the best recorded times at given ages, there was bias toward shallower rates of performance decline in the longitudinal data, likely owing to a practice effect in some swimmers as they began their Masters programs. In swimmers’ later years, once maximum performance had been achieved, individual profiles followed the decline represented in the world records, and a few swimmers became the world record holders. In some instances

  3. Controlled-frequency breath swimming improves swimming performance and running economy.

    Science.gov (United States)

    Lavin, K M; Guenette, J A; Smoliga, J M; Zavorsky, G S

    2015-02-01

    Respiratory muscle fatigue can negatively impact athletic performance, but swimming has beneficial effects on the respiratory system and may reduce susceptibility to fatigue. Limiting breath frequency during swimming further stresses the respiratory system through hypercapnia and mechanical loading and may lead to appreciable improvements in respiratory muscle strength. This study assessed the effects of controlled-frequency breath (CFB) swimming on pulmonary function. Eighteen subjects (10 men), average (standard deviation) age 25 (6) years, body mass index 24.4 (3.7) kg/m(2), underwent baseline testing to assess pulmonary function, running economy, aerobic capacity, and swimming performance. Subjects were then randomized to either CFB or stroke-matched (SM) condition. Subjects completed 12 training sessions, in which CFB subjects took two breaths per length and SM subjects took seven. Post-training, maximum expiratory pressure improved by 11% (15) for all 18 subjects (P swimming may improve muscular oxygen utilization during terrestrial exercise in novice swimmers. © 2013 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  4. Creatine supplementation and swim performance: a brief review.

    Science.gov (United States)

    Hopwood, Melissa J; Graham, Kenneth; Rooney, Kieron B

    2006-03-01

    Nutritional supplements are popular among athletes participating in a wide variety of sports. Creatine is one of the most commonly used dietary supplements, as it has been shown to be beneficial in improving performance during repeated bouts of high-intensity anaerobic activity. This review examines the specific effects of creatine supplementation on swimming performance, and considers the effects of creatine supplementation on various measures of power development in this population. Research performed on the effect of creatine supplementation on swimming performance indicates that whilst creatine supplementation is ineffective in improving performance during a single sprint swim, dietary creatine supplementation may benefit repeated interval swim set performance. Considering the relationship between sprint swimming performance and measurements of power, the effect of creatine supplementation on power development in swimmers has also been examined. When measured on a swim bench ergometer, power development does show some improvement following a creatine supplementation regime. How this improvement in power output transfers to performance in the pool is uncertain. Although some evidence exists to suggest a gender effect on the performance improvements seen in swimmers following creatine supplementation, the majority of research indicates that male and female swimmers respond equally to supplementation. A major limitation to previous research is the lack of consideration given to the possible stroke dependant effect of creatine supplementation on swimming performance. The majority of the research conducted to date has involved examination of the freestyle swimming stroke only. The potential for performance improvements in the breaststroke and butterfly swimming strokes is discussed, with regards to the biomechanical differences and differences in efficiency between these strokes and freestyle. Key PointsCreatine supplementation does not improve single sprint

  5. Analysis of swimming performance: perceptions and practices of US-based swimming coaches.

    Science.gov (United States)

    Mooney, Robert; Corley, Gavin; Godfrey, Alan; Osborough, Conor; Newell, John; Quinlan, Leo Richard; ÓLaighin, Gearóid

    2016-01-01

    In elite swimming, a broad range of methods are used to assess performance, inform coaching practices and monitor athletic progression. The aim of this paper was to examine the performance analysis practices of swimming coaches and to explore the reasons behind the decisions that coaches take when analysing performance. Survey data were analysed from 298 Level 3 competitive swimming coaches (245 male, 53 female) based in the United States. Results were compiled to provide a generalised picture of practices and perceptions and to examine key emerging themes. It was found that a disparity exists between the importance swim coaches place on biomechanical analysis of swimming performance and the types of analyses that are actually conducted. Video-based methods are most frequently employed, with over 70% of coaches using these methods at least monthly, with analyses being mainly qualitative in nature rather than quantitative. Barriers to the more widespread use of quantitative biomechanical analysis in elite swimming environments were explored. Constraints include time, cost and availability of resources, but other factors such as sources of information on swimming performance and analysis and control over service provision are also discussed, with particular emphasis on video-based methods and emerging sensor-based technologies.

  6. Warm-up and performance in competitive swimming.

    Science.gov (United States)

    Neiva, Henrique P; Marques, Mário C; Barbosa, Tiago M; Izquierdo, Mikel; Marinho, Daniel A

    2014-03-01

    Warm-up before physical activity is commonly accepted to be fundamental, and any priming practices are usually thought to optimize performance. However, specifically in swimming, studies on the effects of warm-up are scarce, which may be due to the swimming pool environment, which has a high temperature and humidity, and to the complexity of warm-up procedures. The purpose of this study is to review and summarize the different studies on how warming up affects swimming performance, and to develop recommendations for improving the efficiency of warm-up before competition. Most of the main proposed effects of warm-up, such as elevated core and muscular temperatures, increased blood flow and oxygen delivery to muscle cells and higher efficiency of muscle contractions, support the hypothesis that warm-up enhances performance. However, while many researchers have reported improvements in performance after warm-up, others have found no benefits to warm-up. This lack of consensus emphasizes the need to evaluate the real effects of warm-up and optimize its design. Little is known about the effectiveness of warm-up in competitive swimming, and the variety of warm-up methods and swimming events studied makes it difficult to compare the published conclusions about the role of warm-up in swimming. Recent findings have shown that warm-up has a positive effect on the swimmer's performance, especially for distances greater than 200 m. We recommend that swimmers warm-up for a relatively moderate distance (between 1,000 and 1,500 m) with a proper intensity (a brief approach to race pace velocity) and recovery time sufficient to prevent the early onset of fatigue and to allow the restoration of energy reserves (8-20 min).

  7. Swimming and other activities: applied aspects of fish swimming performance

    Science.gov (United States)

    Castro-Santos, Theodore R.; Farrell, A.P.

    2011-01-01

    Human activities such as hydropower development, water withdrawals, and commercial fisheries often put fish species at risk. Engineered solutions designed to protect species or their life stages are frequently based on assumptions about swimming performance and behaviors. In many cases, however, the appropriate data to support these designs are either unavailable or misapplied. This article provides an overview of the state of knowledge of fish swimming performance – where the data come from and how they are applied – identifying both gaps in knowledge and common errors in application, with guidance on how to avoid repeating mistakes, as well as suggestions for further study.

  8. A Correlational Analysis of Tethered Swimming, Swim Sprint Performance and Dry-land Power Assessments.

    Science.gov (United States)

    Loturco, I; Barbosa, A C; Nocentini, R K; Pereira, L A; Kobal, R; Kitamura, K; Abad, C C C; Figueiredo, P; Nakamura, F Y

    2016-03-01

    Swimmers are often tested on both dry-land and in swimming exercises. The aim of this study was to test the relationships between dry-land, tethered force-time curve parameters and swimming performances in distances up to 200 m. 10 young male high-level swimmers were assessed using the maximal isometric bench-press and quarter-squat, mean propulsive power in jump-squat, squat and countermovement jumps (dry-land assessments), peak force, average force, rate of force development (RFD) and impulse (tethered swimming) and swimming times. Pearson product-moment correlations were calculated among the variables. Peak force and average force were very largely correlated with the 50- and 100-m swimming performances (r=- 0.82 and -0.74, respectively). Average force was very-largely/largely correlated with the 50- and 100-m performances (r=- 0.85 and -0.67, respectively). RFD and impulse were very-largely correlated with the 50-m time (r=- 0.72 and -0.76, respectively). Tethered swimming parameters were largely correlated (r=0.65 to 0.72) with mean propulsive power in jump-squat, squat-jump and countermovement jumps. Finally, mean propulsive power in jump-squat was largely correlated (r=- 0.70) with 50-m performance. Due to the significant correlations between dry-land assessments and tethered/actual swimming, coaches are encouraged to implement strategies able to increase leg power in sprint swimmers. © Georg Thieme Verlag KG Stuttgart · New York.

  9. Swimming Performance of Toy Robotic Fish

    Science.gov (United States)

    Petelina, Nina; Mendelson, Leah; Techet, Alexandra

    2015-11-01

    HEXBUG AquaBotsTM are a commercially available small robot fish that come in a variety of ``species''. These models have varying caudal fin shapes and randomly-varied modes of swimming including forward locomotion, diving, and turning. In this study, we assess the repeatability and performance of the HEXBUG swimming behaviors and discuss the use of these toys to develop experimental techniques and analysis methods to study live fish swimming. In order to determine whether these simple, affordable model fish can be a valid representation for live fish movement, two models, an angelfish and a shark, were studied using 2D Particle Image Velocimetry (PIV) and 3D Synthetic Aperture PIV. In a series of experiments, the robotic fish were either allowed to swim freely or towed in one direction at a constant speed. The resultant measurements of the caudal fin wake are compared to data from previous studies of a real fish and simplified flapping propulsors.

  10. CREATINE SUPPLEMENTATION AND SWIM PERFORMANCE: A BRIEF REVIEW

    Directory of Open Access Journals (Sweden)

    Melissa J. Hopwood

    2006-03-01

    Full Text Available Nutritional supplements are popular among athletes participating in a wide variety of sports. Creatine is one of the most commonly used dietary supplements, as it has been shown to be beneficial in improving performance during repeated bouts of high-intensity anaerobic activity. This review examines the specific effects of creatine supplementation on swimming performance, and considers the effects of creatine supplementation on various measures of power development in this population. Research performed on the effect of creatine supplementation on swimming performance indicates that whilst creatine supplementation is ineffective in improving performance during a single sprint swim, dietary creatine supplementation may benefit repeated interval swim set performance. Considering the relationship between sprint swimming performance and measurements of power, the effect of creatine supplementation on power development in swimmers has also been examined. When measured on a swim bench ergometer, power development does show some improvement following a creatine supplementation regime. How this improvement in power output transfers to performance in the pool is uncertain. Although some evidence exists to suggest a gender effect on the performance improvements seen in swimmers following creatine supplementation, the majority of research indicates that male and female swimmers respond equally to supplementation. A major limitation to previous research is the lack of consideration given to the possible stroke dependant effect of creatine supplementation on swimming performance. The majority of the research conducted to date has involved examination of the freestyle swimming stroke only. The potential for performance improvements in the breaststroke and butterfly swimming strokes is discussed, with regards to the biomechanical differences and differences in efficiency between these strokes and freestyle

  11. Swimming Performance of Adult Asian Carp: Field Assessment Using a Mobile Swim Tunnel

    Science.gov (United States)

    2016-08-01

    ERDC/TN ANSRP-16-1 August 2016 Approved for public release; distribution is unlimited. Swimming Performance of Adult Asian Carp: Field...Assessment Using a Mobile Swim Tunnel by Jan Jeffrey Hoover, Jay A. Collins, Alan W. Katzenmeyer, and K. Jack Killgore PURPOSE: Empirical swim speed...test in traditional laboratory swim tunnels. Biologists from the Engineer Research and Development Center (ERDC) Environmental Laboratory (EL), with

  12. Sodium bicarbonate improves swimming performance.

    Science.gov (United States)

    Lindh, A M; Peyrebrune, M C; Ingham, S A; Bailey, D M; Folland, J P

    2008-06-01

    Sodium bicarbonate ingestion has been shown to improve performance in single-bout, high intensity events, probably due to an increase in buffering capacity, but its influence on single-bout swimming performance has not been investigated. The effects of sodium bicarbonate supplementation on 200 m freestyle swimming performance were investigated in elite male competitors. Following a randomised, double blind counterbalanced design, 9 swimmers completed maximal effort swims on 3 separate occasions: a control trial (C); after ingestion of sodium bicarbonate (SB: NaHCO3 300 mg . kg (-1) body mass); and after ingestion of a placebo (P: CaCO3 200 mg . kg (-1) body mass). The SB and P agents were packed in gelatine capsules and ingested 90 - 60 min prior to each 200 m swim. Mean 200 m performance times were significantly faster for SB than C or P (1 : 52.2 +/- 4.7; 1 : 53.7 +/- 3.8; 1 : 54.0 +/- 3.6 min : ss; p bicarbonate were all elevated pre-exercise in the SB compared to C and P trials (p < 0.05). Post-200 m blood lactate concentrations were significantly higher following the SB trial compared with P and C (p < 0.05). It was concluded that SB supplementation can improve 200 m freestyle performance time in elite male competitors, most likely by increasing buffering capacity.

  13. Exercise-training intervention studies in competitive swimming.

    Science.gov (United States)

    Aspenes, Stian Thoresen; Karlsen, Trine

    2012-06-01

    Competitive swimming has a long history and is currently one of the largest Olympic sports, with 16 pool events. Several aspects separate swimming from most other sports such as (i) the prone position; (ii) simultaneous use of arms and legs for propulsion; (iii) water immersion (i.e. hydrostatic pressure on thorax and controlled respiration); (iv) propulsive forces that are applied against a fluctuant element; and (v) minimal influence of equipment on performance. Competitive swimmers are suggested to have specific anthropometrical features compared with other athletes, but are nevertheless dependent on physiological adaptations to enhance their performance. Swimmers thus engage in large volumes of training in the pool and on dry land. Strength training of various forms is widely used, and the energetic systems are addressed by aerobic and anaerobic swimming training. The aim of the current review was to report results from controlled exercise training trials within competitive swimming. From a structured literature search we found 17 controlled intervention studies that covered strength or resistance training, assisted sprint swimming, arms-only training, leg-kick training, respiratory muscle training, training the energy delivery systems and combined interventions across the aforementioned categories. Nine of the included studies were randomized controlled trials. Among the included studies we found indications that heavy strength training on dry land (one to five repetitions maximum with pull-downs for three sets with maximal effort in the concentric phase) or sprint swimming with resistance towards propulsion (maximal pushing with the arms against fixed points or pulling a perforated bowl) may be efficient for enhanced performance, and may also possibly have positive effects on stroke mechanics. The largest effect size (ES) on swimming performance was found in 50 m freestyle after a dry-land strength training regimen of maximum six repetitions across three

  14. Measuring Ucrit and endurance: equipment choice influences estimates of fish swimming performance.

    Science.gov (United States)

    Kern, P; Cramp, R L; Gordos, M A; Watson, J R; Franklin, C E

    2018-01-01

    This study compared the critical swimming speed (U crit ) and endurance performance of three Australian freshwater fish species in different swim-test apparatus. Estimates of U crit measured in a large recirculating flume were greater for all species compared with estimates from a smaller model of the same recirculating flume. Large differences were also observed for estimates of endurance swimming performance between these recirculating flumes and a free-surface swim tunnel. Differences in estimates of performance may be attributable to variation in flow conditions within different types of swim chambers. Variation in estimates of swimming performance between different types of flumes complicates the application of laboratory-based measures to the design of fish passage infrastructure. © 2017 The Fisheries Society of the British Isles.

  15. On burst-and-coast swimming performance in fish-like locomotion

    International Nuclear Information System (INIS)

    Chung, M-H

    2009-01-01

    Burst-and-coast swimming performance in fish-like locomotion is studied via two-dimensional numerical simulation. The numerical method used is the collocated finite-volume adaptive Cartesian cut-cell method developed previously. The NACA00xx airfoil shape is used as an equilibrium fish-body form. Swimming in a burst-and-coast style is computed assuming that the burst phase is composed of a single tail-beat. Swimming efficiency is evaluated in terms of the mass-specific cost of transport instead of the Froude efficiency. The effects of the Reynolds number (based on the body length and burst time), duty cycle and fineness ratio (the body length over the largest thickness) on swimming performance (momentum capacity and the mass-specific cost of transport) are studied quantitatively. The results lead to a conclusion consistent with previous findings that a larval fish seldom swims in a burst-and-coast style. Given mass and swimming speed, a fish needs the least cost if it swims in a burst-and-coast style with a fineness ratio of 8.33. This energetically optimal fineness ratio is larger than that derived from the simple hydromechanical model proposed in literature. The calculated amount of energy saving in burst-and-coast swimming is comparable with the real-fish estimation in the literature. Finally, the predicted wake-vortex structures of both continuous and burst-and-coast swimming are biologically relevant.

  16. On burst-and-coast swimming performance in fish-like locomotion.

    Science.gov (United States)

    Chung, M-H

    2009-09-01

    Burst-and-coast swimming performance in fish-like locomotion is studied via two-dimensional numerical simulation. The numerical method used is the collocated finite-volume adaptive Cartesian cut-cell method developed previously. The NACA00xx airfoil shape is used as an equilibrium fish-body form. Swimming in a burst-and-coast style is computed assuming that the burst phase is composed of a single tail-beat. Swimming efficiency is evaluated in terms of the mass-specific cost of transport instead of the Froude efficiency. The effects of the Reynolds number (based on the body length and burst time), duty cycle and fineness ratio (the body length over the largest thickness) on swimming performance (momentum capacity and the mass-specific cost of transport) are studied quantitatively. The results lead to a conclusion consistent with previous findings that a larval fish seldom swims in a burst-and-coast style. Given mass and swimming speed, a fish needs the least cost if it swims in a burst-and-coast style with a fineness ratio of 8.33. This energetically optimal fineness ratio is larger than that derived from the simple hydromechanical model proposed in literature. The calculated amount of energy saving in burst-and-coast swimming is comparable with the real-fish estimation in the literature. Finally, the predicted wake-vortex structures of both continuous and burst-and-coast swimming are biologically relevant.

  17. Comparative jet wake structure and swimming performance of salps.

    Science.gov (United States)

    Sutherland, Kelly R; Madin, Laurence P

    2010-09-01

    Salps are barrel-shaped marine invertebrates that swim by jet propulsion. Morphological variations among species and life-cycle stages are accompanied by differences in swimming mode. The goal of this investigation was to compare propulsive jet wakes and swimming performance variables among morphologically distinct salp species (Pegea confoederata, Weelia (Salpa) cylindrica, Cyclosalpa sp.) and relate swimming patterns to ecological function. Using a combination of in situ dye visualization and particle image velocimetry (PIV) measurements, we describe properties of the jet wake and swimming performance variables including thrust, drag and propulsive efficiency. Locomotion by all species investigated was achieved via vortex ring propulsion. The slow-swimming P. confoederata produced the highest weight-specific thrust (T=53 N kg(-1)) and swam with the highest whole-cycle propulsive efficiency (eta(wc)=55%). The fast-swimming W. cylindrica had the most streamlined body shape but produced an intermediate weight-specific thrust (T=30 N kg(-1)) and swam with an intermediate whole-cycle propulsive efficiency (eta(wc)=52%). Weak swimming performance variables in the slow-swimming C. affinis, including the lowest weight-specific thrust (T=25 N kg(-1)) and lowest whole-cycle propulsive efficiency (eta(wc)=47%), may be compensated by low energetic requirements. Swimming performance variables are considered in the context of ecological roles and evolutionary relationships.

  18. IMMEDIATE EFFECTS OF DEEP TRUNK MUSCLE TRAINING ON SWIMMING START PERFORMANCE.

    Science.gov (United States)

    Iizuka, Satoshi; Imai, Atsushi; Koizumi, Keisuke; Okuno, Keisuke; Kaneoka, Koji

    2016-12-01

    In recent years, deep trunk muscle training has been adopted in various sports, including swimming. This is performed both in everyday training and as part of the warm-up routine before competitive races. It is suggested that trunk stabilization exercises are effective in preventing injury, and aid in improving performance. However, conclusive evidence of the same is yet to be obtained. The time of start phase of swimming is a factor that can significantly influence competition performance in a swimming race. If trunk stabilization exercises can provide instantaneous trunk stability, it is expected that they will lead to performance improvements in the start phase of swimming. The purpose of this study was to investigate the immediate effect of trunk stabilization exercises on the start phase in swimming. Intervention study. Nine elite male swimmers (mean age 20.2 ± 1.0 years; height 174.4 ± 3.5 cm; weight 68.9 ± 4.1 kg) performed the swimming start movement. The measurement variables studied included flying distance, and the time and velocity of subjects at hands' entry and on reaching five meters. Measurements were taken in trials immediately before and after the trunk stabilization exercises. A comparison between pre- and post-exercise measurements was assessed. The time to reach five meters (T 5m ) decreased significantly after trunk stabilization exercises, by 0.019 s (p = 0.02). Velocity at entry (V entry ) did not demonstrate significant change, while velocity at five meters (V 5m ) increased significantly after the exercises (p = 0.023). In addition, the speed reduction rate calculated from V entry and V 5m significantly decreased by 5.17% after the intervention (p = 0.036). Trunk stabilization exercises may help reduce the time from start to five meters in the start phase in swimming. The results support the hypothesis that these exercises may improve swimming performance. Level 3b.

  19. Biomechanical aspects of peak performance in human swimming

    NARCIS (Netherlands)

    Toussaint, H.M.; Truijens, M.J.

    2005-01-01

    Peak performances in sport require the full deployment of all the powers an athlete possesses. How factors such as mechanical power output, technique and drag, each individually, but also in concert, determine swimming performance is the subject of this enquiry. This overview of swimming

  20. Evaluation of swimming capability and potential velocity barrier problems for fish. Part B: New telemetric approaches to the assessment of fish swimming performance

    International Nuclear Information System (INIS)

    Scruton, D. A.; Goosney, R. G.; McKinley, R. S.; Booth, R. K.; Colavecchia, M.

    1998-08-01

    This report represents the second part of a study undertaken to develop information related to swimming capability of several important fish species. The study will provide biological design criteria to mitigate potential velocity barrier problems associated with hydroelectric power plants. This part of the report focuses on the development and evaluation of approaches to assessing locomotory activity, swimming performance and energy load costs to fish under naturally occurring conditions and in relation to potential barriers. The study involved implantation of a bio-sensitive radio transmitter (electromyogram (EMG)) tag in the swimming muscle of fish, calibration of locomotory ability and energetic scope, and subsequent use of EMG signals to assess swimming performance and metabolic costs in situ. Digital signal processing (DSP) with antennae switching was also used to study high speed swimming performance, behaviour, and migratory strategy in relation to ascent of an experimental flume. The techniques and technologies developed indicate the complexity of factors that regulate fish swimming energy expenditure that need to be considered in the design and operation of fish passage facilities. 84 refs., 6 tabs., figs., 2 appendices

  1. The Investigation of the Relationship between Children's 50m Freestyle Swimming Performances and Motor Performances

    Science.gov (United States)

    Aktug, Zait Burak; Iri, Ruckan; Top, Elif

    2018-01-01

    The aim of the study is to examine the relationship between children's 50 m freestyle swimming performances and motor performances. There were 32 swimmers (male = 21, female = 11), who had been swimming for at least one and a half year, participated in the study. The motor performances of the participating swimmers were determined through the…

  2. THE IMPACT OF TECHNICAL ABILITY TO SWIMMING PERFORMANCE OF THE MIXED SWIMMING AT 100m IN COLLEGE FASTO

    Directory of Open Access Journals (Sweden)

    Elvira Beganović

    2011-08-01

    Full Text Available The aim of this study was to determine the impact of technical ability to swim (the starting point, the techniques and turns, within each of these techniques of swimming (freestyle, backstroke, breaststroke and butterfly marked as input or predictor variables, the performance of mixed swimming in the 100m, marked as output or criterion variable. The study was conducted on a sample of 31 students, females, aged from 20-24 years, with the help of the testing (assessment, technical skills of swimming (start, the techniques and turns: OCJKSTR, OCJKTEH, OCJKOKR, OCJLSTR, OCJLTEH, OCJLOKR, OCJPSTR, OCJPTEH, OCJPOKR, OCJDSTR, OCJDTEH, OCJDOKR and mixed swimming in the 100m (OCJPM100, the following order: butterfly, back, breaststroke, freestyle. Analyzing the presented results of regression analysis can be stated that after testing (assessment of all predictor system statistically the most significant impact on the criterion variable had the following variables: assessment techniques freestyle (OCJKTEH, evaluation of starting breast stroke (OCJPSTR and assessment of breast stroke turns (OCJPOKR.

  3. Simulated front crawl swimming performance related to critical speed and critical power.

    Science.gov (United States)

    Toussaint, H M; Wakayoshi, K; Hollander, A P; Ogita, F

    1998-01-01

    Competitive pool swimming events range in distance from 50 to 1500 m. Given the difference in performance times (+/- 23-1000 s), the contribution of the aerobic and anaerobic energy systems changes considerably with race distance. In training practice the regression line between swimming distance and time (Distance = critical velocity x time + anaerobic swimming capacity) is used to determine the individual capacity of the aerobic and anaerobic metabolic pathways. Although there is confidence that critical velocity and anaerobic swimming capacity are fitness measures that separate aerobic and anaerobic components, a firm theoretical basis for the interpretation of these results does not exist. The purpose of this study was to evaluate the critical power concept and anaerobic swimming capacity as measures of the aerobic and anaerobic capacity using a modeling approach. A systems model was developed that relates the mechanics and energetics involved in front crawl swimming performance. From actual swimming flume measurements, the time dependent aerobic and anaerobic energy release was modeled. Data derived from the literature were used to relate the energy cost of front crawl swimming to swimming velocity. A balance should exist between the energy cost to swim a distance in a certain time and the concomitant aerobic and anaerobic energy release. The ensuing model was used to predict performance times over a range of distances (50-1500 m) and to calculate the regression line between swimming distance and time. Using a sensitivity analysis, it was demonstrated that the critical velocity is indicative for the capacity of the aerobic energy system. Estimates of the anaerobic swimming capacity, however, were influenced by variations in both anaerobic and aerobic energy release. Therefore, it was concluded that the anaerobic swimming capacity does not provide a reliable estimate of the anaerobic capacity.

  4. Effects of Short-Interval and Long-Interval Swimming Protocols on Performance, Aerobic Adaptations, and Technical Parameters: A Training Study.

    Science.gov (United States)

    Dalamitros, Athanasios A; Zafeiridis, Andreas S; Toubekis, Argyris G; Tsalis, George A; Pelarigo, Jailton G; Manou, Vasiliki; Kellis, Spiridon

    2016-10-01

    Dalamitros, AA, Zafeiridis, AS, Toubekis, AG, Tsalis, GA, Pelarigo, JG, Manou, V, and Kellis, S. Effects of short-interval and long-interval swimming protocols on performance, aerobic adaptations, and technical parameters: A training study. J Strength Cond Res 30(10): 2871-2879, 2016-This study compared 2-interval swimming training programs of different work interval durations, matched for total distance and exercise intensity, on swimming performance, aerobic adaptations, and technical parameters. Twenty-four former swimmers were equally divided to short-interval training group (INT50, 12-16 × 50 m with 15 seconds rest), long-interval training group (INT100, 6-8 × 100 m with 30 seconds rest), and a control group (CON). The 2 experimental groups followed the specified swimming training program for 8 weeks. Before and after training, swimming performance, technical parameters, and indices of aerobic adaptations were assessed. ΙΝΤ50 and ΙΝΤ100 improved swimming performance in 100 and 400-m tests and the maximal aerobic speed (p ≤ 0.05); the performance in the 50-m swim did not change. Posttraining V[Combining Dot Above]O2max values were higher compared with pretraining values in both training groups (p ≤ 0.05), whereas peak aerobic power output increased only in INT100 (p ≤ 0.05). The 1-minute heart rate and blood lactate recovery values decreased after training in both groups (p training in both groups (p ≤ 0.05); no changes were observed in stroke rate after training. Comparisons between groups on posttraining mean values, after adjusting for pretraining values, revealed no significant differences between ΙΝΤ50 and ΙΝΤ100 for all variables; however, all measures were improved vs. the respective values in the CON (p training.

  5. Management of developing swimming performance in National Paralympic Committee of Indonesia

    Directory of Open Access Journals (Sweden)

    Nonik Rahmawati

    2018-05-01

    Full Text Available The main objective of this study is to understand and analyze structural organization of NPC (National Paralympic Committee of Indonesia on managing swimming performance,recruitment system, infrastructure management, funding management and implementation of the exercise management on managing swimming performance. This study was conducted at Head Office of NPC Indonesia and Kartasura Swimming Pool, Central Java Province. This studyis made in qualitative manner and presented in descriptive approach. The data collection is conducted by doing observation, document analysis, and interviews. The results of the management of developing swimming performance in NPC (National Paralympic Committee of Indonesia are summarized as follows: 1 there are general chairman, the head of the achievement division, the head of the sports department, coach manager and then directed to the coach coordinator and coach’s assistant in the organizational structure 2 recruitment of the organization is held by choosing people who concerned about NPC of Indonesia, recruitment of coach is held without any special tests, which is selected by: giving priority to athletes who have ever won medals and have experienced in coaching, while recruitment of athletes is held by using special test by NPC of Indonesia, 3 facilities, in the form of swimming’s support tools, are given gradually by Ministry of Youth and Sports Affairsby submitting proposals. Meanwhile, facility such as swimming pool still depends on renting Kartasura Swimming Pool, 4 the funding is obtained from Ministry of Youth and Sports Affairs without any sponsorship, 5 training program is held by giving suitable program in general preparation, special preparation, pre match, and also considering athletes’ physical condition, technique, and mental status. Training program can be developed according to the condition of each athlete. Based on the analysis, it can be concluded that management of developing swimming

  6. Analysis of swimming performance from physical, physiological, and biomechanical parameters in young swimmers.

    Science.gov (United States)

    Jürimäe, Jaak; Haljaste, Kaja; Cicchella, Antonio; Lätt, Evelin; Purge, Priit; Leppik, Aire; Jürimäe, Toivo

    2007-02-01

    The purpose of this study was to examine the influence of the energy cost of swimming, body composition, and technical parameters on swimming performance in young swimmers. Twenty-nine swimmers, 15 prepubertal (11.9 +/- 0.3 years; Tanner Stages 1-2) and 14 pubertal (14.3 +/- 1.4 years; Tanner Stages 3-4) boys participated in the study. The energy cost of swimming (Cs) and stroking parameters were assessed over maximal 400-m front-crawl swimming in a 25-m swimming pool. The backward extrapolation technique was used to evaluate peak oxygen consumption (VO2peak). A stroke index (SI; m2 . s(-1) . cycles(-1)) was calculated by multiplying the swimming speed by the stroke length. VO2peak results were compared with VO2peak test in the laboratory (bicycle, 2.86 +/- 0.74 L/min, vs. in water, 2.53 +/- 0.50 L/min; R2 = .713; p = .0001). Stepwise-regression analyses revealed that SI (R2 = .898), in-water VO2peak (R2 = .358), and arm span (R2 = .454) were the best predictors of swimming performance. The backward-extrapolation method could be used to assess VO2peak in young swimmers. SI, arm span, and VO2peak appear to be the major determinants of front-crawl swimming performance in young swimmers.

  7. Physiological, biomechanical and anthropometrical predictors of sprint swimming performance in adolescent swimmers.

    Science.gov (United States)

    Lätt, Evelin; Jürimäe, Jaak; Mäestu, Jarek; Purge, Priit; Rämson, Raul; Haljaste, Kaja; Keskinen, Kari L; Rodriguez, Ferran A; Jürimäe, Toivo

    2010-01-01

    The purpose of this study was to analyze the relationships between 100-m front crawl swimming performance and relevant biomechanical, anthropometrical and physiological parameters in male adolescent swimmers. Twenty five male swimmers (mean ± SD: age 15. 2 ± 1.9 years; height 1.76 ± 0.09 m; body mass 63.3 ± 10.9 kg) performed an all-out 100-m front crawl swimming test in a 25-m pool. A respiratory snorkel and valve system with low hydrodynamic resistance was used to collect expired air. Oxygen uptake was measured breath-by-breath by a portable metabolic cart. Swimming velocity, stroke rate (SR), stroke length and stroke index (SI) were assessed during the test by time video analysis. Blood samples for lactate measurement were taken from the fingertip pre exercise and at the third and fifth minute of recovery to estimate net blood lactate accumulation (ΔLa). The energy cost of swimming was estimated from oxygen uptake and blood lactate energy equivalent values. Basic anthropometry included body height, body mass and arm span. Body composition parameters were measured using dual-energy X-ray absorptiometry (DXA). Results indicate that biomechanical factors (90.3%) explained most of 100-m front crawl swimming performance variability in these adolescent male swimmers, followed by anthropometrical (45.8%) and physiological (45.2%) parameters. SI was the best single predictor of performance, while arm span and ∆La were the best anthropometrical and physiological indicators, respectively. SI and SR alone explained 92.6% of the variance in competitive performance. These results confirm the importance of considering specific stroke technical parameters when predicting success in young swimmers. Key pointsThis study investigated the influence of different anthropometrical, physiological and biomechanical parameters on 100-m swimming performance in adolescent boys.Biomechanical factors contributed most to sprint swimming performance in these young male swimmers (90

  8. Swimming performance of a biomimetic compliant fish-like robot

    Science.gov (United States)

    Epps, Brenden P.; Valdivia Y Alvarado, Pablo; Youcef-Toumi, Kamal; Techet, Alexandra H.

    2009-12-01

    Digital particle image velocimetry and fluorescent dye visualization are used to characterize the performance of fish-like swimming robots. During nominal swimming, these robots produce a ‘V’-shaped double wake, with two reverse-Kármán streets in the far wake. The Reynolds number based on swimming speed and body length is approximately 7500, and the Strouhal number based on flapping frequency, flapping amplitude, and swimming speed is 0.86. It is found that swimming speed scales with the strength and geometry of a composite wake, which is constructed by freezing each vortex at the location of its centroid at the time of shedding. Specifically, we find that swimming speed scales linearly with vortex circulation. Also, swimming speed scales linearly with flapping frequency and the width of the composite wake. The thrust produced by the swimming robot is estimated using a simple vortex dynamics model, and we find satisfactory agreement between this estimate and measurements made during static load tests.

  9. Parametric study of the swimming performance of a fish robot propelled by a flexible caudal fin

    Energy Technology Data Exchange (ETDEWEB)

    Low, K H; Chong, C W, E-mail: mkhlow@ntu.edu.s, E-mail: ch0018ee@ntu.edu.s [School of Mechanical and Aerospace Engineering, Nanyang Technological University, Singapore 639798 (Singapore)

    2010-12-15

    In this paper, we aim to study the swimming performance of fish robots by using a statistical approach. A fish robot employing a carangiform swimming mode had been used as an experimental platform for the performance study. The experiments conducted aim to investigate the effect of various design parameters on the thrust capability of the fish robot with a flexible caudal fin. The controllable parameters associated with the fin include frequency, amplitude of oscillation, aspect ratio and the rigidity of the caudal fin. The significance of these parameters was determined in the first set of experiments by using a statistical approach. A more detailed parametric experimental study was then conducted with only those significant parameters. As a result, the parametric study could be completed with a reduced number of experiments and time spent. With the obtained experimental result, we were able to understand the relationship between various parameters and a possible adjustment of parameters to obtain a higher thrust. The proposed statistical method for experimentation provides an objective and thorough analysis of the effects of individual or combinations of parameters on the swimming performance. Such an efficient experimental design helps to optimize the process and determine factors that influence variability.

  10. Parametric study of the swimming performance of a fish robot propelled by a flexible caudal fin.

    Science.gov (United States)

    Low, K H; Chong, C W

    2010-12-01

    In this paper, we aim to study the swimming performance of fish robots by using a statistical approach. A fish robot employing a carangiform swimming mode had been used as an experimental platform for the performance study. The experiments conducted aim to investigate the effect of various design parameters on the thrust capability of the fish robot with a flexible caudal fin. The controllable parameters associated with the fin include frequency, amplitude of oscillation, aspect ratio and the rigidity of the caudal fin. The significance of these parameters was determined in the first set of experiments by using a statistical approach. A more detailed parametric experimental study was then conducted with only those significant parameters. As a result, the parametric study could be completed with a reduced number of experiments and time spent. With the obtained experimental result, we were able to understand the relationship between various parameters and a possible adjustment of parameters to obtain a higher thrust. The proposed statistical method for experimentation provides an objective and thorough analysis of the effects of individual or combinations of parameters on the swimming performance. Such an efficient experimental design helps to optimize the process and determine factors that influence variability.

  11. Parametric study of the swimming performance of a fish robot propelled by a flexible caudal fin

    International Nuclear Information System (INIS)

    Low, K H; Chong, C W

    2010-01-01

    In this paper, we aim to study the swimming performance of fish robots by using a statistical approach. A fish robot employing a carangiform swimming mode had been used as an experimental platform for the performance study. The experiments conducted aim to investigate the effect of various design parameters on the thrust capability of the fish robot with a flexible caudal fin. The controllable parameters associated with the fin include frequency, amplitude of oscillation, aspect ratio and the rigidity of the caudal fin. The significance of these parameters was determined in the first set of experiments by using a statistical approach. A more detailed parametric experimental study was then conducted with only those significant parameters. As a result, the parametric study could be completed with a reduced number of experiments and time spent. With the obtained experimental result, we were able to understand the relationship between various parameters and a possible adjustment of parameters to obtain a higher thrust. The proposed statistical method for experimentation provides an objective and thorough analysis of the effects of individual or combinations of parameters on the swimming performance. Such an efficient experimental design helps to optimize the process and determine factors that influence variability.

  12. Critical force during tethered swimming for the evaluation of aerobic capacity and prediction of performances in freestyle swimming

    OpenAIRE

    Marcelo Papoti; Ricardo Vitório; Gustavo Gomes Araújo; Luiz Eduardo Barreto Martins; Sérgio Augusto Cunha; Claudio Alexandre Gobatto

    2010-01-01

    The present study investigated the relationship of critical force (Fcrit) with lactate threshold (LLNA) and the intensity corresponding to VO2max (iVO2max) in tethered swimming (TS), and their correlation with maximal performance in 400-m (V400) and 30-min (VT30) freestyle swimming (FS). Seven swimmers were submitted to a TS incremental test for the determination of LLNA and iVO2max. For the determination of Fcrit, the swimmers performed four exercises to exhaustion at intensities (F) corresp...

  13. THE USE OF NEURAL NETWORK TECHNOLOGY TO MODEL SWIMMING PERFORMANCE

    Directory of Open Access Journals (Sweden)

    António José Silva

    2007-03-01

    Full Text Available The aims of the present study were: to identify the factors which are able to explain the performance in the 200 meters individual medley and 400 meters front crawl events in young swimmers, to model the performance in those events using non-linear mathematic methods through artificial neural networks (multi-layer perceptrons and to assess the neural network models precision to predict the performance. A sample of 138 young swimmers (65 males and 73 females of national level was submitted to a test battery comprising four different domains: kinanthropometric evaluation, dry land functional evaluation (strength and flexibility, swimming functional evaluation (hydrodynamics, hydrostatic and bioenergetics characteristics and swimming technique evaluation. To establish a profile of the young swimmer non-linear combinations between preponderant variables for each gender and swim performance in the 200 meters medley and 400 meters font crawl events were developed. For this purpose a feed forward neural network was used (Multilayer Perceptron with three neurons in a single hidden layer. The prognosis precision of the model (error lower than 0.8% between true and estimated performances is supported by recent evidence. Therefore, we consider that the neural network tool can be a good approach in the resolution of complex problems such as performance modeling and the talent identification in swimming and, possibly, in a wide variety of sports

  14. Disease resistance is related to inherent swimming performance in Atlantic salmon

    OpenAIRE

    Castro, Vicente; Grisdale-Helland, Barbara; Jørgensen, Sven Martin; Helgerud, Jan; Claireaux, Guy; Farrell, Anthony P.; Krasnov, Aleksei; Helland, Ståle; Takle, Harald Rune

    2013-01-01

    Background Like humans, fish can be classified according to their athletic performance. Sustained exercise training of fish can improve growth and physical capacity, and recent results have documented improved disease resistance in exercised Atlantic salmon. In this study we investigated the effects of inherent swimming performance and exercise training on disease resistance in Atlantic salmon. Atlantic salmon were first classified as either poor or good according to their swimming per...

  15. Environmental calcium and variation in yolk sac size influence swimming performance in larval lake sturgeon (Acipenser fulvescens)

    DEFF Research Database (Denmark)

    Deslauriers, David; Svendsen, Jon Christian; Genz, Janet

    2018-01-01

    , because the yolk sac is likely to affect drag forces during swimming. Testing swimming performance of larval A. fulvescens reared in four different calcium treatments spanning the range of 4-132 mg l-1 [Ca2+], this study found no treatment effects on the sprint swimming speed. A novel test of volitional...... reduced swimming performance and could be more susceptible to predation or premature downstream drift. Our study reveals how environmental factors and phenotypic variation influence locomotor performance in a larval fish....

  16. The Relationship Between Lower Extremity Wingate Anaerobic Test (WAnT and 50m Freestyle Swimming Performance

    Directory of Open Access Journals (Sweden)

    Ayşegül YAPICI

    2015-07-01

    Full Text Available The aim of this study is to analyze the relationship between 50mt freestyle swimming performance and lower extremity Wingate anaerobic power and capacity test. 11 male (age: 13.45 ± 1.0 3 years, height: 166.18 ± 10.12 cm, weight: 55.00 ± 11.13 kg, experience: 6.2 ± 1.1 years swimmers participated in this study voluntarily. The players participated in anthropometric measurements followed by Wingate anaerobic test on the first day. They p erformed 50mt freestyle swimming performance tests on the second day (one days later. In this study, 50mt freestyle swimming performance has not been done from a standart jump. All the swimmers started their performance in the water with a 2 - leg - ged push away from the wall. Also 10mt lap periods were recorded. Data were expressed as mean ± standard deviation. Correlation between anaerobic performance tests and swimming performance tests were studied with Pearson correlation analysis. All analysis were exec uted in SPSS 17.0 and the statistical significance was set at p 0.05. The statistically s ignificant relationship between f atigue index and relative average power, relative minumum peak power and minumum peak power (p0.05. On looking at the relationship between the 10 mt lap period time in swimming and wingate anaerobic test performance, a statistically s ignificant relationship between both relative and absolute values maximum swimming speed and paek power, average speed swimming and average power, minimum swimming speed and minumum power (p0.05. The factors like experience, the level of profession, the difference of fricton between activities in water and land, air conditions (moisture, temperature may have effected the re sults.

  17. The performance effect of centralizing a nation's elite swim program.

    Science.gov (United States)

    Allen, Sian V; Vandenbogaerde, Tom J; Hopkins, Will G

    2015-03-01

    Many national sporting organizations recruit talented athletes to well-resourced centralized training squads to improve their performance. To develop a method to monitor performance progression of swimming squads and to use this method to assess the progression of New Zealand's centralized elite swimming squad. Best annual long-course competition times of all New Zealand swimmers with at least 3 y of performances in an event between 2002 and 2013 were downloaded from takeyourmarks.com (~281,000 times from ~8500 swimmers). A mixed linear model accounting for event, age, club, year, and elite-squad membership produced estimates of mean annual performance for 175 swim clubs and mean estimates of the deviation of swimmers' performances from their individual quadratic trajectories after they joined the elite squad. Effects were evaluated using magnitude-based inferences, with a smallest important improvement in swim time of -0.24%. Before 2009, effects of elite-squad membership were mostly unclear and trivial to small in magnitude. Thereafter, both sexes showed clear additional performance enhancements, increasing from large in 2009 (males -1.4%±0.8%, females -1.5%±0.8%; mean±90% confidence limits) to extremely large in 2013 (males -6.8%±1.7%, females -9.8%±2.9%). Some clubs also showed clear performance trends during the 11-y period. Our method of quantifying deviations from individual trends in competition performance with a mixed model showed that Swimming New Zealand's centralization strategy took several years to produce substantial performance effects. The method may also be useful for evaluating performance-enhancement strategies introduced at national or club level in other sports.

  18. Differential swimming performance of two natricine snakes exposed to a cholinesterase-inhibiting pesticide

    International Nuclear Information System (INIS)

    Hopkins, W.A.; Winne, C.T.; DuRant, S.E.

    2005-01-01

    Environmental contaminants have direct effects on organisms at the molecular, cellular, and tissue levels, but the net results of these sub-organismal effects are only consequential to exposed populations if they alter organism-level traits that ultimately influence fitness (e.g., growth, locomotor performance, reproduction, and survival). Here, we explore the possibility that the swimming performance of neonate black swamp snakes (Seminatrix pygaea) and diamondback water snakes (Nerodia rhombifer) may be affected by exposure to carbaryl (2.5 and 5.0 mg/L). The highest concentration of carbaryl caused greater reductions in swim velocity in S. pygaea than in N. rhombifer. Most individuals recovered from the effects of carbaryl on swimming performance within 96 h, but recovery was significantly slower in S. pygaea than in N. rhombifer. We hypothesize that the sensitivity of S. pygaea may arise from its highly permeable integument compared to other natricines. Our findings suggest that performance can serve as an ecologically relevant response to contaminant exposure in reptiles and warrants further study. - Exposure to a cholinesterase inhibitor reduces swimming velocity in snakes

  19. Differential swimming performance of two natricine snakes exposed to a cholinesterase-inhibiting pesticide

    Energy Technology Data Exchange (ETDEWEB)

    Hopkins, W.A. [University of Georgia, Savannah River Ecology Laboratory, Wildlife Ecotoxicology and Physiological Ecology Program, PO Drawer E, Aiken, SC 29802 (United States)]. E-mail: hopkins@srel.edu; Winne, C.T. [University of Georgia, Savannah River Ecology Laboratory, Wildlife Ecotoxicology and Physiological Ecology Program, PO Drawer E, Aiken, SC 29802 (United States); DuRant, S.E. [University of Georgia, Savannah River Ecology Laboratory, Wildlife Ecotoxicology and Physiological Ecology Program, PO Drawer E, Aiken, SC 29802 (United States)

    2005-02-01

    Environmental contaminants have direct effects on organisms at the molecular, cellular, and tissue levels, but the net results of these sub-organismal effects are only consequential to exposed populations if they alter organism-level traits that ultimately influence fitness (e.g., growth, locomotor performance, reproduction, and survival). Here, we explore the possibility that the swimming performance of neonate black swamp snakes (Seminatrix pygaea) and diamondback water snakes (Nerodia rhombifer) may be affected by exposure to carbaryl (2.5 and 5.0 mg/L). The highest concentration of carbaryl caused greater reductions in swim velocity in S. pygaea than in N. rhombifer. Most individuals recovered from the effects of carbaryl on swimming performance within 96 h, but recovery was significantly slower in S. pygaea than in N. rhombifer. We hypothesize that the sensitivity of S. pygaea may arise from its highly permeable integument compared to other natricines. Our findings suggest that performance can serve as an ecologically relevant response to contaminant exposure in reptiles and warrants further study. - Exposure to a cholinesterase inhibitor reduces swimming velocity in snakes.

  20. Disease resistance is related to inherent swimming performance in Atlantic salmon.

    Science.gov (United States)

    Castro, Vicente; Grisdale-Helland, Barbara; Jørgensen, Sven M; Helgerud, Jan; Claireaux, Guy; Farrell, Anthony P; Krasnov, Aleksei; Helland, Ståle J; Takle, Harald

    2013-01-21

    Like humans, fish can be classified according to their athletic performance. Sustained exercise training of fish can improve growth and physical capacity, and recent results have documented improved disease resistance in exercised Atlantic salmon. In this study we investigated the effects of inherent swimming performance and exercise training on disease resistance in Atlantic salmon.Atlantic salmon were first classified as either poor or good according to their swimming performance in a screening test and then exercise trained for 10 weeks using one of two constant-velocity or two interval-velocity training regimes for comparison against control trained fish (low speed continuously). Disease resistance was assessed by a viral disease challenge test (infectious pancreatic necrosis) and gene expression analyses of the host response in selected organs. An inherently good swimming performance was associated with improved disease resistance, as good swimmers showed significantly better survival compared to poor swimmers in the viral challenge test. Differences in mortalities between poor and good swimmers were correlated with cardiac mRNA expression of virus responsive genes reflecting the infection status. Although not significant, fish trained at constant-velocity showed a trend towards higher survival than fish trained at either short or long intervals. Finally, only constant training at high intensity had a significant positive effect on fish growth compared to control trained fish. This is the first evidence suggesting that inherent swimming performance is associated with disease resistance in fish.

  1. Disease resistance is related to inherent swimming performance in Atlantic salmon

    Directory of Open Access Journals (Sweden)

    Castro Vicente

    2013-01-01

    Full Text Available Abstract Background Like humans, fish can be classified according to their athletic performance. Sustained exercise training of fish can improve growth and physical capacity, and recent results have documented improved disease resistance in exercised Atlantic salmon. In this study we investigated the effects of inherent swimming performance and exercise training on disease resistance in Atlantic salmon. Atlantic salmon were first classified as either poor or good according to their swimming performance in a screening test and then exercise trained for 10 weeks using one of two constant-velocity or two interval-velocity training regimes for comparison against control trained fish (low speed continuously. Disease resistance was assessed by a viral disease challenge test (infectious pancreatic necrosis and gene expression analyses of the host response in selected organs. Results An inherently good swimming performance was associated with improved disease resistance, as good swimmers showed significantly better survival compared to poor swimmers in the viral challenge test. Differences in mortalities between poor and good swimmers were correlated with cardiac mRNA expression of virus responsive genes reflecting the infection status. Although not significant, fish trained at constant-velocity showed a trend towards higher survival than fish trained at either short or long intervals. Finally, only constant training at high intensity had a significant positive effect on fish growth compared to control trained fish. Conclusions This is the first evidence suggesting that inherent swimming performance is associated with disease resistance in fish.

  2. The prediction of swimming performance in competition from behavioral information.

    Science.gov (United States)

    Rushall, B S; Leet, D

    1979-06-01

    The swimming performances of the Canadian Team at the 1976 Olympic Games were categorized as being improved or worse than previous best times in the events contested. The two groups had been previously assessed on the Psychological Inventories for Competitive Swimmers. A stepwise multiple-discriminant analysis of the inventory responses revealed that 13 test questions produced a perfect discrimination of group membership. The resultant discriminant functions for predicting performance classification were applied to the test responses of 157 swimmers at the 1977 Canadian Winter National Swimming Championships. Using the same performance classification criteria the accuracy of prediction was not better than chance in three of four sex by performance classifications. This yielded a failure to locate a set of behavioral factors which determine swimming performance improvements in elite competitive circumstances. The possibility of sets of factors which do not discriminate between performances in similar environments or between similar groups of swimmers was raised.

  3. Evaluation of swimming capability and potential velocity barrier problems for fish. Part A: Swimming performance of selected warm and cold water fish species relative to fish passage and fishway design

    International Nuclear Information System (INIS)

    Scruton, D. A.; Goosney, R. G.; McKinley, R. S.; Booth, R. K.; Peake, S.

    1998-08-01

    The objective of this study was to provide information about the swimming capability of several widely distributed, economically or recreationally important fish species, for use in mitigating potential velocity barrier problems associated with hydroelectric power facilities. Swimming capability of anadromous and landlocked Atlantic salmon, brook trout, brown trout, lake sturgeon, and walleye, collected from various locations throughout Canada, were investigated to develop criteria for sustained, prolonged, burst swimming performance characteristics of the study species, fish physiology, life history and migration distance on swimming performance. Swimming performance characteristics in the wild, especially the use of physiological telemetry, as well as development of new methodology for the measurement of burst speed was also central to the study. Models were derived to describe swimming capabilities for each study species/life stage in relation to fish length, water velocity, water temperature, and other significant environmental factors. The data will form the basis of guideline development and decision making to improve design and evaluation of fish passage facilities. A series of annotated bibliographies resulting from the study are described in Appendix B. 74 refs., 8 tabs., figs., 2 appendices

  4. Swimming Performance and Metabolism of Golden Shiners

    Science.gov (United States)

    The swimming ability and metabolism of golden shiners, Notemigonus crysoleucas, was examined using swim tunnel respirometery. The oxygen consumption and tail beat frequencies at various swimming speeds, an estimation of the standard metabolic rate, and the critical swimming speed (Ucrit) was determ...

  5. The association of muscle strength, aerobic capacity and swim time performance in young, competitive swimmers

    DEFF Research Database (Denmark)

    Henriksen, Peter; Knudsen, Hans Kromann; Juul-Kristensen, Birgit

    2016-01-01

    The association of muscle strength, aerobic capacity and swim time performance in young, competitive swimmers Introduction Swim time performance is affected by physiological factors such as muscle strength and power of the upper and lower extremities as well as aerobic capacity (Smith et al., 2002......). The association between these factors and swim time performance may plausibly identify some of the determinants for performance enhancement in swimming (Smith et al., 2002). In order to detail the individual training programme, reference values are needed. The aims of this study were firstly to determine...... the association between muscle strength and power, aerobic capacity and 100 m freestyle time (FT) in young, competitive swimmers, and secondly to determine reference values for these physiological factors. Methods In total, 119 competitive swimmers aged 11-15 years were assessed with Grip Strength (GS), Vertical...

  6. PHYSIOLOGICAL, BIOMECHANICAL AND ANTHROPOMETRICAL PREDICTORS OF SPRINT SWIMMING PERFORMANCE IN ADOLESCENT SWIMMERS

    Directory of Open Access Journals (Sweden)

    Evelin Lätt

    2010-09-01

    Full Text Available The purpose of this study was to analyze the relationships between 100-m front crawl swimming performance and relevant biomechanical, anthropometrical and physiological parameters in male adolescent swimmers. Twenty five male swimmers (mean ± SD: age 15. 2 ± 1.9 years; height 1.76 ± 0.09 m; body mass 63.3 ± 10.9 kg performed an all-out 100-m front crawl swimming test in a 25-m pool. A respiratory snorkel and valve system with low hydrodynamic resistance was used to collect expired air. Oxygen uptake was measured breath-by-breath by a portable metabolic cart. Swimming velocity, stroke rate (SR, stroke length and stroke index (SI were assessed during the test by time video analysis. Blood samples for lactate measurement were taken from the fingertip pre exercise and at the third and fifth minute of recovery to estimate net blood lactate accumulation (?La. The energy cost of swimming was estimated from oxygen uptake and blood lactate energy equivalent values. Basic anthropometry included body height, body mass and arm span. Body composition parameters were measured using dual-energy X-ray absorptiometry (DXA. Results indicate that biomechanical factors (90.3% explained most of 100-m front crawl swimming performance variability in these adolescent male swimmers, followed by anthropometrical (45.8% and physiological (45.2% parameters. SI was the best single predictor of performance, while arm span and ∆La were the best anthropometrical and physiological indicators, respectively. SI and SR alone explained 92.6% of the variance in competitive performance. These results confirm the importance of considering specific stroke technical parameters when predicting success in young swimmers.

  7. Critical force during tethered swimming for the evaluation of aerobic capacity and prediction of performances in freestyle swimming

    Directory of Open Access Journals (Sweden)

    Marcelo Papoti

    2010-01-01

    Full Text Available The present study investigated the relationship of critical force (Fcrit with lactate threshold (LLNA and the intensity corresponding to VO2max (iVO2max in tethered swimming (TS, and their correlation with maximal performance in 400-m (V400 and 30-min (VT30 freestyle swimming (FS. Seven swimmers were submitted to a TS incremental test for the determination of LLNA and iVO2max. For the determination of Fcrit, the swimmers performed four exercises to exhaustion at intensities (F corresponding to 87%, 104%, 118% and 134% of iVO2max for the calculation of time limits (Tlim. Fcrit corresponded to the linear coefficient of the ratio between F and 1/tlim. The maximal performance in FS corresponded to the mean velocity obtained during maximal exercise of 400-m and 30-min crawl swimming. Fcrit (51.97 ± 4.02 N was significantly lower than iVO2max (60.21 ± 8.73 N but not than LLNA (45.89 ± 8.73. Fcrit was significantly correlated with iVO2max (0.97, LLNA (0.88, V400 (0.85, and VT30 (0.86. These data suggest that Fcrit can be used for the determination of aerobic capacity, prescription of a TS training program, and prediction of performance in FS.

  8. The association of muscle strength, aerobic capacity and swim time performance in young, competitive swimmers

    DEFF Research Database (Denmark)

    Henriksen, Peter; Kromann Knudsen, Hans; Juul-Kristensen, Birgit

    Swim time performance is affected by physiological factors such as muscle strength and power of the upper and lower extremities as well as aerobic capacity (Smith et al., 2002). The association between these factors and swim time performance may plausibly identify some of the determinants...... for performance enhancement in swimming (Smith et al., 2002). In order to detail the individual training programme, reference values are needed. The aims of this study were firstly to determine the association between muscle strength and power, aerobic capacity and 100 m freestyle time (FT) in young, competitive...... swimmers, and secondly to determine reference values for these physiological factors. Methods In total, 119 competitive swimmers aged 11-15 years were assessed with Grip Strength (GS), Vertical Jump (VJ) and an intermittent running test to estimate maximal oxygen uptake, the Andersen Test (AT). Swim time...

  9. Ovarian and uterine alterations following forced swimming: An immunohistochemical study.

    Science.gov (United States)

    Seyed Saadat, Seyedeh Nazanin; Mohammadghasemi, Fahimeh; Ebrahimi, Hannan; Rafati Sajedi, Hanieh; Chatrnour, Gelayol

    2016-10-01

    Physical exercise is known to be a stressor stimulus that leads to reproductive disruption. The aim of this study was to evaluate the effect of forced swimming on the uterus and ovaries in mice. Adult mice (N=24) were divided into the following three groups: A, control; B, swimming in water (10 o C); and C, swimming in water (23 o C). Swimmers swam for 5 min daily for 5 consecutive days/ wk during 2 wks. An enzyme linked immunosorbent assay was used to determine serum estradiol, follicle stimulating hormone (FSH) and testosterone levels. Immunohistochemistry was performed to study apoptotic cells or estrogen receptor (ER) expression in uterine epithelial cells and ovaries. ANOVA was used for statistical analysis. Swimming in both groups reduced the serum FSH and estradiol levels (pForced swimming of 2 wks duration reduces the serum levels of FSH and estradiol without having effects on apoptosis in the ovaries or uteri of mice. Over a long period of time, forced swimming may have an adverse effect on fertility.

  10. Propulsive efficiency of frog swimming with different feet and swimming patterns

    Directory of Open Access Journals (Sweden)

    Fan Jizhuang

    2017-04-01

    Full Text Available Aquatic and terrestrial animals have different swimming performances and mechanical efficiencies based on their different swimming methods. To explore propulsion in swimming frogs, this study calculated mechanical efficiencies based on data describing aquatic and terrestrial webbed-foot shapes and swimming patterns. First, a simplified frog model and dynamic equation were established, and hydrodynamic forces on the foot were computed according to computational fluid dynamic calculations. Then, a two-link mechanism was used to stand in for the diverse and complicated hind legs found in different frog species, in order to simplify the input work calculation. Joint torques were derived based on the virtual work principle to compute the efficiency of foot propulsion. Finally, two feet and swimming patterns were combined to compute propulsive efficiency. The aquatic frog demonstrated a propulsive efficiency (43.11% between those of drag-based and lift-based propulsions, while the terrestrial frog efficiency (29.58% fell within the range of drag-based propulsion. The results illustrate the main factor of swimming patterns for swimming performance and efficiency.

  11. Characteristics and Challenges of Open-Water Swimming Performance: A Review.

    Science.gov (United States)

    Baldassarre, Roberto; Bonifazi, Marco; Zamparo, Paola; Piacentini, Maria Francesca

    2017-11-01

    Although the popularity of open-water swimming (OWS) events has significantly increased in the last decades, specific studies regarding performance of elite or age-group athletes in these events are scarce. To analyze the existing literature on OWS. Relevant literature was located via computer-generated citations. During August 2016, online computer searches on PubMed and Scopus databases were conducted to locate published research. The number of participants in ultraendurance swimming events has substantially increased in the last 10 y. In elite athletes there is a higher overall competitive level of women than of men. The body composition of female athletes (different percentage and distribution of fat tissue) shows several advantages (more buoyancy and less drag) in aquatic conditions that determine the small difference between males and females. The main physiological characteristics of open-water swimmers (OW swimmers) are the ability to swim at high percentage of [Formula: see text] (80-90%) for many hours. Furthermore, to sustain high velocity for many hours, endurance swimmers need a high propelling efficiency and a low energy cost. Open-water races may be characterized by extreme environmental conditions (water temperature, tides, currents, and waves) that have an overall impact on performance, influencing tactics and pacing. Future studies are needed to study OWS in both training and competition.

  12. Differential swimming performance of two natricine snakes exposed to a cholinesterase-inhibiting pesticide.

    Science.gov (United States)

    Hopkins, W A; Winne, C T; DuRant, S E

    2005-02-01

    Environmental contaminants have direct effects on organisms at the molecular, cellular, and tissue levels, but the net results of these sub-organismal effects are only consequential to exposed populations if they alter organism-level traits that ultimately influence fitness (e.g., growth, locomotor performance, reproduction, and survival). Here, we explore the possibility that the swimming performance of neonate black swamp snakes (Seminatrix pygaea) and diamondback water snakes (Nerodia rhombifer) may be affected by exposure to carbaryl (2.5 and 5.0 mg/L). The highest concentration of carbaryl caused greater reductions in swim velocity in S. pygaea than in N. rhombifer. Most individuals recovered from the effects of carbaryl on swimming performance within 96 h, but recovery was significantly slower in S. pygaea than in N. rhombifer. We hypothesize that the sensitivity of S. pygaea may arise from its highly permeable integument compared to other natricines. Our findings suggest that performance can serve as an ecologically relevant response to contaminant exposure in reptiles and warrants further study.

  13. Inertial Sensor Technology for Elite Swimming Performance Analysis: A Systematic Review

    Science.gov (United States)

    Mooney, Robert; Corley, Gavin; Godfrey, Alan; Quinlan, Leo R; ÓLaighin, Gearóid

    2015-01-01

    Technical evaluation of swimming performance is an essential factor of elite athletic preparation. Novel methods of analysis, incorporating body worn inertial sensors (i.e., Microelectromechanical systems, or MEMS, accelerometers and gyroscopes), have received much attention recently from both research and commercial communities as an alternative to video-based approaches. This technology may allow for improved analysis of stroke mechanics, race performance and energy expenditure, as well as real-time feedback to the coach, potentially enabling more efficient, competitive and quantitative coaching. The aim of this paper is to provide a systematic review of the literature related to the use of inertial sensors for the technical analysis of swimming performance. This paper focuses on providing an evaluation of the accuracy of different feature detection algorithms described in the literature for the analysis of different phases of swimming, specifically starts, turns and free-swimming. The consequences associated with different sensor attachment locations are also considered for both single and multiple sensor configurations. Additional information such as this should help practitioners to select the most appropriate systems and methods for extracting the key performance related parameters that are important to them for analysing their swimmers’ performance and may serve to inform both applied and research practices. PMID:26712760

  14. Numerical study on the hydrodynamics of thunniform bio-inspired swimming under self-propulsion.

    Directory of Open Access Journals (Sweden)

    Ningyu Li

    Full Text Available Numerical simulations are employed to study the hydrodynamics of self-propelled thunniform swimming. The swimmer is modeled as a tuna-like flexible body undulating with kinematics of thunniform type. The wake evolution follows the vortex structures arranged nearly vertical to the forward direction, vortex dipole formation resulting in the propulsion motion, and finally a reverse Kármán vortex street. We also carry out a systematic parametric study of various aspects of the fluid dynamics behind the freely swimming behavior, including the swimming speed, hydrodynamic forces, power requirement and wake vortices. The present results show that the fin thrust as well as swimming velocity is an increasing function of both tail undulating amplitude Ap and oscillating amplitude of the caudal fin θm. Whereas change on the propulsive performance with Ap is associated with the strength of wake vortices and the area of suction region on the fin, the swimming performance improves with θm due to the favorable tilting of the fin that make the pressure difference force more oriented toward the thrust direction. Moreover, the energy loss in the transverse direction and the power requirement increase with Ap but decrease with θm, and this indicates that for achieving a desired swimming speed increasing θm seems more efficiently than increasing Ap. Furthermore, we have compared the current simulations with the published experimental studies on undulatory swimming. Comparisons show that our work tackles the flow regime of natural thunniform swimmers and follows the principal scaling law of undulatory locomotion reported. Finally, this study enables a detailed quantitative analysis, which is difficult to obtain by experiments, of the force production of the thunniform mode as well as its connection to the self-propelled swimming kinematics and vortex wake structure. The current findings help provide insights into the swimming performance and mechanisms of self

  15. Numerical study on the hydrodynamics of thunniform bio-inspired swimming under self-propulsion.

    Science.gov (United States)

    Li, Ningyu; Liu, Huanxing; Su, Yumin

    2017-01-01

    Numerical simulations are employed to study the hydrodynamics of self-propelled thunniform swimming. The swimmer is modeled as a tuna-like flexible body undulating with kinematics of thunniform type. The wake evolution follows the vortex structures arranged nearly vertical to the forward direction, vortex dipole formation resulting in the propulsion motion, and finally a reverse Kármán vortex street. We also carry out a systematic parametric study of various aspects of the fluid dynamics behind the freely swimming behavior, including the swimming speed, hydrodynamic forces, power requirement and wake vortices. The present results show that the fin thrust as well as swimming velocity is an increasing function of both tail undulating amplitude Ap and oscillating amplitude of the caudal fin θm. Whereas change on the propulsive performance with Ap is associated with the strength of wake vortices and the area of suction region on the fin, the swimming performance improves with θm due to the favorable tilting of the fin that make the pressure difference force more oriented toward the thrust direction. Moreover, the energy loss in the transverse direction and the power requirement increase with Ap but decrease with θm, and this indicates that for achieving a desired swimming speed increasing θm seems more efficiently than increasing Ap. Furthermore, we have compared the current simulations with the published experimental studies on undulatory swimming. Comparisons show that our work tackles the flow regime of natural thunniform swimmers and follows the principal scaling law of undulatory locomotion reported. Finally, this study enables a detailed quantitative analysis, which is difficult to obtain by experiments, of the force production of the thunniform mode as well as its connection to the self-propelled swimming kinematics and vortex wake structure. The current findings help provide insights into the swimming performance and mechanisms of self

  16. Impaired swimming performance of acid-exposed Arctic charr, Salvelinus alpinus L

    Energy Technology Data Exchange (ETDEWEB)

    Hunter, L.A. (North/South Consultants Inc., Winnipeg, MB (Canada)); Scherer, E. (Dept. of Fisheries and Oceans, Freshwater Inst. Science Lab., Winnipeg, MB (Canada))

    1988-01-01

    Effects of increased ambient acidity are of particular interest, as the formation of metabolic and respiratory acids and acceleration of branchial ion loss during vigorous swimming duplicates or compounds effects of exposure to environmental acidity. Three year old Arctic charr (Salvelinus alpinus L.) were exposed to five levels of acidity between pH 6 and pH 3.8. Swimming performance as determined by critical swimming speeds was 67.5 cm {center dot} s{sup -1} or 4.4 body lengths per second for untreated fish (pH 7.8). Performance declined sharply below pH 4.5; at pH 3.8 it was reduced by 35% after 7 days of exposure. Tailbeat frequencies and ventilation rates showed no dose-response effects. This would support the assumption that afferent and efferent neuromuscular functions may have remained unimpaired under increased ambient acidity so that the stimulus of directed water current continued to elicit forced swimming, causing (forcing) the fish to use the entire scope for activity available at the various pH levels. At swimming speeds between 20 and 50 cm {center dot} s{sup -1}, ventilation rates at all levels of acidity were higher than at the control level. Based on this, spontaneous, i.e., non-forced swimming activity may show a lower response threshold. 19 refs., 3 figs., 1 tab.

  17. Mechanical power, thrust power and propelling efficiency: relationships with elite sprint swimming performance.

    Science.gov (United States)

    Gatta, Giorgio; Cortesi, Matteo; Swaine, Ian; Zamparo, Paola

    2018-03-01

    The purpose of this study was to explore the relationships between mechanical power, thrust power, propelling efficiency and sprint performance in elite swimmers. Mechanical power was measured in 12 elite sprint male swimmers: (1) in the laboratory, by using a whole-body swimming ergometer (W' TOT ) and (2) in the pool, by measuring full tethered swimming force (F T ) and maximal swimming velocity (V max ): W' T  = F T  · V max . Propelling efficiency (η P ) was estimated based on the "paddle wheel model" at V max . V max was 2.17 ± 0.06 m · s -1 , η P was 0.39 ± 0.02, W' T was 374 ± 62 W and W' TOT was 941 ± 92 W. V max was better related to W' T (useful power output: R = 0.943, P swimming performance. The ratio W' T /W' TOT (0.40 ± 0.04) represents the fraction of total mechanical power that can be utilised in water (e.g., η P ) and was indeed the same as that estimated based on the "paddle wheel model"; this supports the use of this model to estimate η P in swimming.

  18. Swimming performance of a bio-inspired robotic vessel with undulating fin propulsion.

    Science.gov (United States)

    Liu, Hanlin; Curet, Oscar M

    2018-06-18

    Undulatory fin propulsion exhibits high degree of maneuver control -- an ideal for underwater vessels exploring complex environments. In this work, we developed and tested a self-contained, free-swimming robot with a single undulating fin running along the length of the robot, which controls both forward motion and directional maneuvers. We successfully replicated several maneuvers including forward swimming, reversed motion, diving, station-keeping and vertical swimming. For each maneuver, a series of experiments were performed as a function of fin frequency, wavelength and traveling wave direction to measure swimming velocities, orientation angles and mean power consumption. In addition, three-dimensional flow fields were measured during forward swimming and station-keeping using volumetric particle image velocimetry (PIV). The efficiency for forward swimming was compared using three metrics: cost of transport, wave efficiency and Strouhal number. The results indicate that the cost of transport exhibits a V-shape trend with the minimum value at low swimming velocity. The robot can reach optimal wave efficiency and locomotor performance at a range of 0.2 to 0.4 St. Volumetric PIV data reveal the shed of vortex tubes generated by the fin during forward swimming and station keeping. For forward swimming, a series of vortex tubes are shed off the fin edge with a lateral and downward direction with respect to the longitudinal axis of the fin. For station keeping, flow measurements suggest that the vortex tubes are shed at the mid-section of the fin while the posterior and anterior segment of the vortex stay attached to the fin. These results agree with the previous vortex structures based on simulations and 2D PIV. The further development of this vessel with high maneuverability and station keeping performance can be used for oceanography, coastal exploration, defense, oil industry and other marine industries where operations are unsafe or impractical for divers or

  19. Energetics and biomechanics as determining factors of swimming performance: updating the state of the art.

    Science.gov (United States)

    Barbosa, Tiago M; Bragada, José A; Reis, Víctor M; Marinho, Daniel A; Carvalho, Carlos; Silva, António J

    2010-03-01

    The biophysical determinants related to swimming performance are one of the most attractive topics within swimming science. The aim of this paper was to do an update of the "state of art" about the interplay between performance, energetic and biomechanics in competitive swimming. Throughout the manuscript some recent highlights are described: (i) the relationship between swimmer's segmental kinematics (segmental velocities, stroke length, stroke frequency, stroke index and coordination index) and his center of mass kinematics (swimming velocity and speed fluctuation); (ii) the relationships between energetic (energy expenditure and energy cost) and swimmer's kinematics; and (iii) the prediction of swimming performance derived from above mentioned parameters. Copyright 2009 Sports Medicine Australia. Published by Elsevier Ltd. All rights reserved.

  20. Accomplishments and Compromises in Prediction Research for World Records and Best Performances in Track and Field and Swimming

    Science.gov (United States)

    Liu, Yuanlong; Paul, Stanley; Fu, Frank H.

    2012-01-01

    The conductors of this study reviewed prediction research and studied the accomplishments and compromises in predicting world records and best performances in track and field and swimming. The results of the study showed that prediction research only promises to describe the historical trends in track and field and swimming performances, to study…

  1. MONITORING SWIMMING SPRINT PERFORMANCE DURING A TRAINING CYCLE

    Directory of Open Access Journals (Sweden)

    Daniel A. Marinho

    2009-12-01

    Full Text Available The preparation for a major competition is an important concern of coaches and athletes. Therefore, the aim of this study was to evaluate the evolution in sprint performance during a training macro cycle in age-group swimmers of both genders. The sample comprised twenty four age-group swimmers (12.0 ± 0.72 years old, 41.43 ± 6.88 kg, 1.51 ± 0.09 m. The evaluations occurred during nine weeks of swimming training in the first macro cycle. During this period the subjects performed 54 training units (6 units per week. In all weeks, the performance in two trials of a 25 m front crawl all out test, with 15 min of rest, was recorded. Only the bestperformance was used to assess the effects of training. Comparisons between the first week and the following weeks were conducted using pair-sample t-test. The significance level was set at 5%. The sprint performance did not change during the first 6 weeks of preparation. In the last three weeks the performance in the 25 m front crawl test was improved when compared with the first week, although the major changes occurred at the last week of preparation.It seems that in age-group swimmers seven weeks of specific swimming training enables improving swimmer’s sprint performance, although some differences exists between male and female swimmers. Thesedata could be used by coaches to program the training season and the evolution of the load components.

  2. Relationship Between Vertical Jump Height and Swimming Start Performance Before and After an Altitude Training Camp.

    Science.gov (United States)

    García-Ramos, Amador; Padial, Paulino; de la Fuente, Blanca; Argüelles-Cienfuegos, Javier; Bonitch-Góngora, Juan; Feriche, Belén

    2016-06-01

    This study aimed (a) to analyze the development in the squat jump height and swimming start performance after an altitude training camp, (b) to correlate the jump height and swimming start performance before and after the altitude training period, and (c) to correlate the percent change in the squat jump height with the percent change in swimming start performance. Fifteen elite male swimmers from the Spanish Junior National Team (17.1 ± 0.8 years) were tested before and after a 17-day training camp at moderate altitude. The height reached in the squat jump exercise with additional loads of 0, 25, 50, 75, and 100% of swimmers' pretest body weight and swimming start performance (time to 5, 10, and 15 m) were the dependent variables analyzed. Significant increases in the jump height (p ≤ 0.05; effect size [ES]: 0.35-0.48) and swimming start performance (p jump height before training (r = -0.56 to -0.77) and after training (r = -0.50 to -0.71). The change in the squat jump height was inversely correlated with the change in the start time at 5 m (r = -0.47), 10 m (r = -0.73), and 15 m (r = -0.62). These results suggest that altitude training can be suitable to enhance explosive performance. The correlations obtained between the squat jump height and start time in the raw and change scores confirm the relevance of having high levels of lower-body muscular power to optimize swimming start performance.

  3. Seasonality in swimming and cycling: Exploring a limitation of accelerometer based studies

    Directory of Open Access Journals (Sweden)

    Flo Harrison

    2017-09-01

    Full Text Available Accelerometer-based studies of children's physical activity have reported seasonal patterns in activity levels. However, the inability of many accelerometers to detect activity while the wearer is swimming or cycling may introduce a bias to the estimation of seasonality if participation in these activities are themselves seasonally patterned. We explore seasonal patterns in children's swimming and cycling among a sample of 7–8 year olds (N = 591 participating in the Millennium Cohort Study, UK. Participating children wore an accelerometer for one week on up to five occasions over the year and their parents completed a diary recording daily minutes spent swimming and cycling. Both swimming and cycling participation showed seasonal patterns, with 2.7 (SE 0.8 more minutes swimming and 5.7 (0.7 more minutes cycling performed in summer compared to winter. Adding swimming and cycling time to accelerometer-determined MVPA increased the summer-winter difference in MVPA from 16.6 (1.6 to 24.9 min. The seasonal trend in swimming and cycling appears to follow the same pattern as accelerometer-measured MVPA. Studies relying solely on accelerometers may therefore underestimate seasonal differences in children's activity.

  4. Simulated front crawl swimming performance related to critical speed and critical power

    NARCIS (Netherlands)

    Toussaint, H.M.; Wakayoshi, K.; Hollander, A.P.; Ogita, F.

    1998-01-01

    Purpose: Competitive pool swimming events range in distance from 50 to 1500 m. Given the difference in performance times (±23-1000 s), the contribution of the aerobic and anaerobic energy systems changes considerably with race distance. In training practice the regression line between swimming

  5. Effect of morphological fin curl on the swimming performance and station-holding ability of juvenile shovelnose sturgeon

    Science.gov (United States)

    Deslauriers, David; Johnston, Ryan; Chipps, Steven R.

    2016-01-01

    We assessed the effect of fin-curl on the swimming and station-holding ability of juvenile shovelnose sturgeon Scaphirhynchus platorynchus (mean fork length = 17 cm; mean weight = 16 g; n = 21) using a critical swimming speed test performed in a small swim chamber (90 L) at 20°C. We quantified fin-curl severity using the pectoral fin index. Results showed a positive relationship between pectoral fin index and critical swimming speed indicative of reduced swimming performance displayed by fish afflicted with a pectoral fin index < 8%. Fin-curl severity, however, did not affect the station-holding ability of individual fish. Rather, fish affected with severe fin-curl were likely unable to use their pectoral fins to position their body adequately in the water column, which led to the early onset of fatigue. Results generated from this study should serve as an important consideration for future stocking practices.

  6. The Effect of an Altitude Training Camp on Swimming Start Time and Loaded Squat Jump Performance.

    Science.gov (United States)

    García-Ramos, Amador; Štirn, Igor; Padial, Paulino; Argüelles-Cienfuegos, Javier; De la Fuente, Blanca; Calderón, Carmen; Bonitch-Góngora, Juan; Tomazin, Katja; Strumbelj, Boro; Strojnik, Vojko; Feriche, Belén

    2016-01-01

    This study evaluated the influence of an altitude training (AT) camp on swimming start time and loaded squat jump performance. To accomplish this goal, 13 international swimmers (8 women, 5 men) were allocated to both the control (Sea Level Training, SLT) and experimental conditions (AT, 2320 m above sea level) that were separated by a one year period. All tests (15 m freestyle swimming start and loaded squat jumps with additional loads of 25%, 50%, 75%, and 100% of swimmers' body weight) were performed before and after a concurrent 3-week strength and endurance training program prescribed by the national coach. Following the SLT camp, significant impairments in swimming start times to 10 (+3.1%) and 15 m (+4.0%) were observed (P 0.05). Trivial changes in peak velocity were obtained during the loaded squat jump after both training periods (effect sizes: training high-living high strategy concurrent training of 3 weeks does not adversely affect swimming start time and loaded squat jump performance in high level swimmers, but further studies are necessary to assess the effectiveness of power-oriented resistance training in the development of explosive actions.

  7. Effects of dry-land vs. resisted- and assisted-sprint exercises on swimming sprint performances.

    Science.gov (United States)

    Girold, Sébastien; Maurin, Didier; Dugué, Benoit; Chatard, Jean-Claude; Millet, Grégoire

    2007-05-01

    This study was undertaken to compare the effects of dry-land strength training with a combined in-water resisted- and assisted-sprint program in swimmer athletes. Twenty-one swimmers from regional to national level participated in this study. They were randomly assigned to 3 groups: the strength (S) group that was involved in a dry-land strength training program where barbells were used, the resisted- and assisted-sprint (RAS) group that got involved in a specific water training program where elastic tubes were used to generate resistance and assistance while swimming, and the control (C) group which was involved in an aerobic cycling program. During 12 weeks, the athletes performed 6 training sessions per week on separate days. All of them combined the same aerobic dominant work for their basic training in swimming and running with their specific training. Athletes were evaluated 3 times: before the training program started, after 6 weeks of training, and at the end of the training program. The outcome values were the strength of the elbow flexors and extensors evaluated using an isokinetic dynamometer, and the speed, stroke rate, stroke length, and stroke depth observed during a 50-meter sprint. No changes were observed after 6 weeks of training. At the end of the training period, we observed significant increases in swimming velocity, and strength of elbow flexors and extensors both in the S and RAS groups. However, stroke depth decreased both in the S and RAS groups. Stroke rate increased in the RAS but not in the S group. However, no significant differences in the swimming performances between the S and RAS groups were observed. No significant changes occurred in C. Altogether, programs combining swimming with dry-land strength or with in-water resisted- and assisted-sprint exercises led to a similar gain in sprint performance and are more efficient than traditional swimming training methods alone.

  8. Effect of fastskin suits on performance, drag, and energy cost of swimming.

    Science.gov (United States)

    Chatard, Jean-Claude; Wilson, Barry

    2008-06-01

    To investigate the effect of fastskin suits on 25- to 800-m performances, drag, and energy cost of swimming. The performances, stroke rate and distance per stroke, were measured for 14 competitive swimmers in a 25-m pool, when wearing a normal suit (N) and when wearing a full-body suit (FB) or a waist-to-ankle suit (L). Passive drag, oxygen uptake, blood lactate, and the perceived exertion were measured in a flume. There was a 3.2% +/- 2.4% performance benefit for all subjects over the six distances covered at maximal speed wearing FB and L when compared with N. When wearing L, the gain was significantly lower (1.8% +/- 2.5%, P energy cost of swimming was significantly reduced when wearing FB and L by 4.5% +/- 5.4% and 5.5% +/- 3.1%, respectively (P energy cost of submaximal swimming and an increased distance per stroke, at the same stroke rates, and reduced freestyle performance time.

  9. The Relationship Between the Lower-Body Muscular Profile and Swimming Start Performance

    Directory of Open Access Journals (Sweden)

    García-Ramos Amador

    2016-04-01

    Full Text Available This study aimed to examine the correlation of different dry land strength and power tests with swimming start performance. Twenty international level female swimmers (age 15.3 ± 1.6 years, FINA point score 709.6 ± 71.1 performed the track freestyle start. Additionally, dry land tests were conducted: a squat (SJ and countermovement jumps (CMJ, b squat jumps with additional resistance equivalent to 25, 50, 75 and 100% of swimmers’ body weight [BW], and c leg extension and leg flexion maximal voluntary isometric contractions. Correlations between dry land tests and start times at 5, 10 and 15 m were quantified through Pearson’s linear correlation coefficients (r. The peak bar velocity reached during the jumps with additional resistance was the variable most correlated to swimming start performance (r = -0.57 to -0.66 at 25%BW; r = -0.57 to -0.72 at 50%BW; r = -0.59 to -0.68 at 75%BW; r = -0.50 to - 0.64 at 100%BW. A few significant correlations between the parameters of the SJ and the CMJ with times of 5 and 10 m were found, and none with the isometric variables. The peak velocity reached during jumps with external loads relative to BW was found a good indicator of swimming start performance.

  10. ASSESSMENT OF MAXIMUM SUSTAINABLE SWIMMING PERFORMANCE IN RAINBOW TROUT (ONCORHYNCHUS MYKISS)

    Science.gov (United States)

    Wilson; Egginton

    1994-07-01

    Levels of swimming activity in fishes have been divided into three categories on the basis of the time a given speed can be maintained before the onset of fatigue (Beamish, 1978): sustained (more than 200 min), prolonged (20 s to 200 min) and burst swimming (less than 20 s). The locomotory capacity of a given species reflects both its lifestyle and its body form, although definitions of performance may vary. It is generally accepted that only the aerobic ('red') muscle fibres should be active at truly sustainable swimming speeds, i.e. at speeds that can be maintained indefinitely without fatigue. However, the standard laboratory method of evaluating the maximum sustainable swimming speed (Ucrit; Brett, 1964) almost certainly entails the recruitment of at least some of the rapidly fatigable fast glycolytic ('white') fibres at sub-critical speeds and undoubtedly complicates the evaluation of maximal cardiovascular performance. It would therefore be useful to have an objective and reproducible measure of truly sustainable performance that, by definition, relies solely on aerobic muscle activity. Electromyography (EMG) has been used to examine the pattern of white muscle recruitment following thermal acclimation in striped bass, Morine saxatilis (Sisson and Sidell, 1987). We wished to incorporate this method into a study of the acclimatory responses to chronic changes in environmental temperature of the cardiovascular and locomotory systems in rainbow trout (Wilson and Egginton, 1992). The present communication presents results on the cardiovascular performance and blood chemistry, at rest and during maximal aerobic exercise, of rainbow trout acclimated to 11 °C, as a validation of the methodology currently in use with fish acclimated to seasonal temperature extremes (Taylor et al. 1992). Different acclimation temperatures are known to produce compensatory changes in the relative proportions of red and white muscle mass (Sidell and Moerland, 1989). The aim of these

  11. Performance Level Differences in Swimming: A Meta-Analysis of Passive Drag Force

    Science.gov (United States)

    Havriluk, Rod

    2005-01-01

    The streamline is a basic position for competitive swimming starts mid turns and has been used in many studies on resistive forces. However, there is a wide yahweh, of theoretical interpretations in these studies, leading to diverse and questionable conclusions. The purpose of this study was to determine performance level differences in the…

  12. EFFECTS OF SODIUM BICARBONATE INGESTION ON SWIM PERFORMANCE IN YOUTH ATHLETES

    Directory of Open Access Journals (Sweden)

    Jozef Langfort

    2009-03-01

    Full Text Available The purpose of this study was to evaluate the effect of oral administration of sodium bicarbonate (300 mg·kg-1 b.w. on swim performance in competitive, (training experience of 6.6 ± 0.6 years youth, (15.1 ± 0.6 years male swimmers. The subjects completed a test trial, in a double blind fashion, on separate days, consisting of 4 x 50m front crawl swims with a 1st minute passive rest interval twice, on two occasions: after ingestion of bicarbonate or placebo, 72 hours apart, at the same time of the day. Blood samples were drawn from the finger tip three times during each trial; upon arrival to the laboratory, 60 min after ingestion of placebo or the sodium bicarbonate solution and after the 4 x 50m test, during the 1st min of recovery. Plasma lactate concentration, blood pH, standard bicarbonate and base excess were evaluated. The total time of the 4 x 50 m test trial improved from 1.54.28 to 1.52.85s, while statistically significant changes in swimming speed were recorded only during the first 50m sprint (1.92 vs. 1.97 m·s-1, p < 0.05. Resting blood concentration of HCO-3 increased following the ingestion of sodium bicarbonate from 25.13 to 28.49 mM (p < 0.05. Sodium bicarbonate intake had a statistically significant effect on resting blood pH (7.33 vs. 7.41, p < .05 as well as on post exercise plasma lactate concentration (11.27 vs. 13.06 mM, p < 0.05. Collectively, these data demonstrate that the ingestion of sodium bicarbonate in youth athletes is an effective buffer during high intensity interval swimming and suggest that such a procedure can be used in youth athletes to increase training intensity as well as swimming performance in competition at distances from 50 to 200 m

  13. Swimming performance, venous oxygen tension and cardiac performance of coronary-ligated rainbow trout, Oncorhynchus mykiss, exposed to progressive hypoxia

    DEFF Research Database (Denmark)

    Steffensen, J F; Farrell, A P

    1998-01-01

    We performed in vivo studies to examine the idea that cardiac work is impaired in rainbow trout (Oncorhynchus mykiss) below a certain venous PO2 threshold. We hypothesized that coronary-ligated fish, swimming continuously at a reasonably high water velocity (1.5 body lengths x s(-1)) and exposed...... to progressive hypoxia, would fatigue at higher venous PO2 and ambient water PO2 compared with sham-operated fish. However, we found that both the lowest venous PO2 that supported hypoxic swimming (9.9 torr for coronary-ligated fish and 11.1 torr for sham-operated fish) and the venous PO2 at fatigue (7.8 torr...... and 8.6 torr, respectively) were the same for coronary-ligated and sham-operated fish. Also, both groups quit swimming at the same water PO2 heart rate and hematocrit. Nevertheless, significant differences in cardiac performance did exist between the two groups. Whereas ventral aortic blood pressure...

  14. The Effect of an Altitude Training Camp on Swimming Start Time and Loaded Squat Jump Performance.

    Directory of Open Access Journals (Sweden)

    Amador García-Ramos

    Full Text Available This study evaluated the influence of an altitude training (AT camp on swimming start time and loaded squat jump performance. To accomplish this goal, 13 international swimmers (8 women, 5 men were allocated to both the control (Sea Level Training, SLT and experimental conditions (AT, 2320 m above sea level that were separated by a one year period. All tests (15 m freestyle swimming start and loaded squat jumps with additional loads of 25%, 50%, 75%, and 100% of swimmers' body weight were performed before and after a concurrent 3-week strength and endurance training program prescribed by the national coach. Following the SLT camp, significant impairments in swimming start times to 10 (+3.1% and 15 m (+4.0% were observed (P 0.05. Trivial changes in peak velocity were obtained during the loaded squat jump after both training periods (effect sizes: < 0.20. Based on these results we can conclude that a traditional training high-living high strategy concurrent training of 3 weeks does not adversely affect swimming start time and loaded squat jump performance in high level swimmers, but further studies are necessary to assess the effectiveness of power-oriented resistance training in the development of explosive actions.

  15. Key parameters of the swimming start and their relationship to start performance.

    Science.gov (United States)

    Tor, Elaine; Pease, David L; Ball, Kevin A

    2015-01-01

    The swimming start is typically broken into three sub-phases; on-block, flight, and underwater phases. While overall start performance is highly important to elite swimming, the contribution of each phase and important technical components within each phase, particularly with the new kick-start technique, has not been established. The aim of this study was to identify technical factors associated with overall start performance, with a particular focus on the underwater phase. A number of parameters were calculated from 52 starts performed by elite freestyle and butterfly swimmers. These parameters were split into above-water and underwater groupings, before factor analysis was used to reduce parameter numbers for multiple regression. For the above-water phases, 81% of variance in start performance was accounted for by take-off horizontal velocity. For the underwater water phase, 96% of variance was accounted for with time underwater in descent, time underwater in ascent and time to 10 m. Therefore, developing greater take-off horizontal velocity and focussing on the underwater phase by finding the ideal trajectory will lead to improved start performance.

  16. Relation of 25-meter Swimming Performance with Physical Properties and Isokinetic Knee Strength in Amateur Young Swimmers

    OpenAIRE

    DOKUMACI, Bircan; AYGÜN, Cihan; ÇAKIR ATABEK, Hayriye

    2017-01-01

    The purpose of this study was to investigate the relationship between physical properties,isokinetic knee strength and swimming performance in young amateur athletes. Seventeen 18-24 year old amateur swimmers (n=13 males, mean age=20.0 ± 2.1 years; n=4 females, meanage=21.5 ± 1.7 years) volunteered to participate in this study. All athletes were member of thesame team who were engaged to the swim training at least for 4 years. Following the 5-minwarm up session, each participant performed thr...

  17. Performance during a strenuous swimming session is associated with high blood lactate: pyruvate ratio and hypoglycemia in fasted rats.

    Science.gov (United States)

    Travassos, P B; Godoy, G; De Souza, H M; Curi, R; Bazotte, R B

    2018-03-26

    The aim of this study was to investigate the effect of lactatemia elevation and glycemia reduction on strenuous swimming performance in fasted rats. Three rats were placed in a swimming tank at the same time. The first rat was removed immediately (control group) and the remaining ones were submitted to a strenuous swimming session. After the second rat was exhausted (Exh group), the third one was immediately removed from the water (Exe group). According to the period of time required for exhaustion, the rats were divided into four groups: low performance (3-7 min), low-intermediary performance (8-12 min), high-intermediary performance (13-17 min), and high performance (18-22 min). All rats were removed from the swimming tanks and immediately killed by decapitation for blood collection or anesthetized for liver perfusion experiments. Blood glucose, lactate, and pyruvate concentrations, blood lactate/pyruvate ratio, and liver lactate uptake and its conversion to glucose were evaluated. Exhaustion in low and low-intermediary performance were better associated with higher lactate/pyruvate ratio. On the other hand, exhaustion in high-intermediary and high performance was better associated with hypoglycemia. Lactate uptake and glucose production from lactate in livers from the Exe and Exh groups were maintained. We concluded that there is a time sequence in the participation of lactate/pyruvate ratio and hypoglycemia in performance during an acute strenuous swimming section in fasted rats. The liver had an important participation in preventing hyperlactatemia and hypoglycemia during swimming through lactate uptake and its conversion to glucose.

  18. Effects of intraspecific variation in reproductive traits, pectoral fin use and burst swimming on metabolic rates and swimming performance in the Trinidadian guppy (Poecilia reticulata)

    DEFF Research Database (Denmark)

    Svendsen, Jon Christian; Banet, Amanda I.; Christensen, Rune Haubo Bojesen

    2013-01-01

    by the total body mass. Results showed that the metabolic rate increased curvilinearly with swimming speed. The slope of the relationship was used as an index of swimming cost. There was no evidence that reproductive traits correlated with swimming cost, MO2std or Ucrit. In contrast, data revealed strong...... swimming and pectoral fin movement over a wide speed range, presumably to support swimming stability and control, is an inefficient swimming behaviour. Finally, transition to burst-assisted swimming was associated with an increase in aerobic metabolic rate. Our study highlights factors other than swimming...

  19. The kinematic determinants of anuran swimming performance: an inverse and forward dynamics approach.

    Science.gov (United States)

    Richards, Christopher T

    2008-10-01

    The aims of this study were to explore the hydrodynamic mechanism of Xenopus laevis swimming and to describe how hind limb kinematics shift to control swimming performance. Kinematics of the joints, feet and body were obtained from high speed video of X. laevis frogs (N=4) during swimming over a range of speeds. A blade element approach was used to estimate thrust produced by both translational and rotational components of foot velocity. Peak thrust from the feet ranged from 0.09 to 0.69 N across speeds ranging from 0.28 to 1.2 m s(-1). Among 23 swimming strokes, net thrust impulse from rotational foot motion was significantly higher than net translational thrust impulse, ranging from 6.1 to 29.3 N ms, compared with a range of -7.0 to 4.1 N ms from foot translation. Additionally, X. laevis kinematics were used as a basis for a forward dynamic anuran swimming model. Input joint kinematics were modulated to independently vary the magnitudes of foot translational and rotational velocity. Simulations predicted that maximum swimming velocity (among all of the kinematics patterns tested) requires that maximal translational and maximal rotational foot velocity act in phase. However, consistent with experimental kinematics, translational and rotational motion contributed unequally to total thrust. The simulation powered purely by foot translation reached a lower peak stroke velocity than the pure rotational case (0.38 vs 0.54 m s(-1)). In all simulations, thrust from the foot was positive for the first half of the power stroke, but negative for the second half. Pure translational foot motion caused greater negative thrust (70% of peak positive thrust) compared with pure rotational simulation (35% peak positive thrust) suggesting that translational motion is propulsive only in the early stages of joint extension. Later in the power stroke, thrust produced by foot rotation overcomes negative thrust (due to translation). Hydrodynamic analysis from X. laevis as well as forward

  20. Effect of weight and frontal area of external telemetry packages on the kinematics, activity levels and swimming performance of small-bodied sharks.

    Science.gov (United States)

    Bouyoucos, I A; Suski, C D; Mandelman, J W; Brooks, E J

    2017-05-01

    This study sought to observe the effects of submerged weight and frontal cross-sectional area of external telemetry packages on the kinematics, activity levels and swimming performance of small-bodied juvenile sharks, using lemon sharks Negaprion brevirostris (60-80 cm total length, L T ) as a model species. Juveniles were observed free-swimming in a mesocosm untagged and with small and large external accelerometer packages that increased frontal cross-sectional area of the animals and their submerged weight. Despite adhering to widely used standards for tag mass, the presence of an external telemetry package altered swimming kinematics, activity levels and swimming performance of juvenile N. brevirostris relative to untagged individuals, suggesting that tag mass is not a suitable standalone metric of device suitability. Changes in swimming performance could not be detected from tail-beat frequency, which suggests that tail-beat frequency is an unsuitable standalone metric of swimming performance for small N. brevirostris. Lastly, sharks experienced treatment-specific changes in activity level and swimming kinematics from morning to afternoon observation. Therefore, the presence of external telemetry packages altered the kinematics, activity levels and swimming performance of small young-of-the-year N. brevirostris and these data may therefore be relevant to other similar-sized juveniles of other shark species. © 2017 The Fisheries Society of the British Isles.

  1. Exogenous lactate supply affects lactate kinetics of rainbow trout, not swimming performance

    Science.gov (United States)

    Omlin, Teye; Langevin, Karolanne

    2014-01-01

    Intense swimming causes circulatory lactate accumulation in rainbow trout because lactate disposal (Rd) is not stimulated as strongly as lactate appearance (Ra). This mismatch suggests that maximal Rd is limited by tissue capacity to metabolize lactate. This study uses exogenous lactate to investigate what constrains maximal Rd and minimal Ra. Our goals were to determine how exogenous lactate affects: 1) Ra and Rd of lactate under baseline conditions or during graded swimming, and 2) exercise performance (critical swimming speed, Ucrit) and energetics (cost of transport, COT). Results show that exogenous lactate allows swimming trout to boost maximal Rd lactate by 40% and reach impressive rates of 56 μmol·kg−1·min−1. This shows that the metabolic capacity of tissues for lactate disposal is not responsible for setting the highest Rd normally observed after intense swimming. Baseline endogenous Ra (resting in normoxic water) is not significantly reduced by exogenous lactate supply. Therefore, trout have an obligatory need to produce lactate, either as a fuel for oxidative tissues and/or from organs relying on glycolysis. Exogenous lactate does not affect Ucrit or COT, probably because it acts as a substitute for glucose and lipids rather than extra fuel. We conclude that the observed 40% increase in Rd lactate is made possible by accelerating lactate entry into oxidative tissues via monocarboxylate transporters (MCTs). This observation together with the weak expression of MCTs and the phenomenon of white muscle lactate retention show that lactate metabolism of rainbow trout is significantly constrained by transmembrane transport. PMID:25121611

  2. In situ swimming speed and swimming behaviour of fish feeding on the krill Meganyctiphanes norvegica

    OpenAIRE

    Onsrud, M. S. R.; Kaartvedt, Stein; Breien, M. T.

    2005-01-01

    In situ swimming speed and swimming behaviour of dielly migrating planktivorous fish were studied at a 120-m-deep location. Acoustic target tracking was performed using a hull-mounted transducer and submersible transducers located on the sea bottom and free hanging in the water column. The original data displayed a relationship between distance to transducer and swimming speed. A simplistic smoother applied during post-processing, appeared to break this relationship. Target tracki...

  3. Zebrafish swimming in the flow: a particle image velocimetry study

    Directory of Open Access Journals (Sweden)

    Violet Mwaffo

    2017-11-01

    Full Text Available Zebrafish is emerging as a species of choice for the study of a number of biomechanics problems, including balance development, schooling, and neuromuscular transmission. The precise quantification of the flow physics around swimming zebrafish is critical toward a mechanistic understanding of the complex swimming style of this fresh-water species. Although previous studies have elucidated the vortical structures in the wake of zebrafish swimming in placid water, the flow physics of zebrafish swimming against a water current remains unexplored. In an effort to illuminate zebrafish swimming in a dynamic environment reminiscent of its natural habitat, we experimentally investigated the locomotion and hydrodynamics of a single zebrafish swimming in a miniature water tunnel using particle image velocimetry. Our results on zebrafish locomotion detail the role of flow speed on tail beat undulations, heading direction, and swimming speed. Our findings on zebrafish hydrodynamics offer a precise quantification of vortex shedding during zebrafish swimming and demonstrate that locomotory patterns play a central role on the flow physics. This knowledge may help clarify the evolutionary advantage of burst and cruise swimming movements in zebrafish.

  4. Sexual ornaments, body morphology, and swimming performance in naturally hybridizing swordtails (teleostei: xiphophorus.

    Directory of Open Access Journals (Sweden)

    James B Johnson

    Full Text Available Determining the costs of sexual ornaments is complicated by the fact that ornaments are often integrated with other, non-sexual traits, making it difficult to dissect the effect of ornaments independent of other aspects of the phenotype. Hybridization can produce reduced phenotypic integration, allowing one to evaluate performance across a broad range of multivariate trait values. Here we assess the relationship between morphology and performance in the swordtails Xiphophorus malinche and X. birchmanni, two naturally-hybridizing fish species that differ extensively in non-sexual as well as sexual traits. We took advantage of novel trait variation in hybrids to determine if sexual ornaments incur a cost in terms of locomotor ability. For both fast-start and endurance swimming, hybrids performed at least as well as the two parental species. The sexually-dimorphic sword did not impair swimming performance per se. Rather, the sword negatively affected performance only when paired with a sub-optimal body shape. Studies seeking to quantify the costs of ornaments should consider that covariance with non-sexual traits may create the spurious appearance of costs.

  5. The effects of chronic cadmium exposure on repeat swimming performance and anaerobic metabolism in brown trout (Salmo trutta) and lake whitefish (Coregonus clupeaformis).

    Science.gov (United States)

    Cunningham, Jessie L; McGeer, James C

    2016-04-01

    This study investigates the effect of chronic Cd exposure on the ability to perform repeat swim challenges in brown trout (Salmo trutta) and lake whitefish (Coregonus clupeaformis). Fish were exposed to waterborne Cd (18nM) in moderately hard water (120mgL(-1) CaCO3) for 30 days. This level of exposure has been shown to cause sublethal physiological disruption and acclimation responses but no impairment of sustained swimming capacity (Ucrit) in single swim challenges. Swim trials were done over the course of the exposure and each one consisted of an initial swim to 85% of the Ucrit of control fish, a 30min recovery period and finally a second swim challenge to determine Ucrit. Plasma and tissue samples were collected before and after each of the swim periods. As expected from previous studies, Cd exposure resulted in significant accumulation of Cd in gills, liver and kidney but not in white muscle. Exposure also induced a loss of plasma Ca followed by subsequent recovery (in lake whitefish but not brown trout) with few mortalities (100% survival for lake whitefish and 93% for brown trout). Both control and exposed fish swam to 85% of the single swim Ucrit and no differences in performance were seen. The Ucrit of unexposed controls in the second swim challenges were not different from the single swim Ucrit. However, second swim performance was significantly reduced in Cd exposed fish, particularly after a week of exposure where 31% and 38% reductions were observed for brown trout and lake whitefish respectively. Swimming to 85% Ucrit resulted in metabolic expenditure with little recovery after 30min. Few differences were observed between control and Cd exposed fish with the exception of a reduction in resting white muscle ATP stores of Cd exposed fish after 1 week of exposure. The results show that chronic sublethal Cd exposure results in an impairment of swimming ability in repeat swim challenges but this impairment is generally not related to metabolic processes

  6. Laryngoscopy during swimming

    DEFF Research Database (Denmark)

    Walsted, Emil S; Swanton, Laura L; van van Someren, Ken

    2017-01-01

    that precipitates their symptoms. This report provides the first description of the feasibility of performing continuous laryngoscopy during exercise in a swimming environment. The report describes the methodology and safety of the use of continuous laryngoscopy while swimming. Laryngoscope, 2017....

  7. Measuring Kinematic Variables in Front Crawl Swimming Using Accelerometers: A Validation Study

    Directory of Open Access Journals (Sweden)

    Andrew J. Callaway

    2015-05-01

    Full Text Available Objective data on swimming performance is needed to meet the demands of the swimming coach and athlete. The purpose of this study is to use a multiple inertial measurement units to calculate Lap Time, Velocity, Stroke Count, Stroke Duration, Stroke Rate and Phases of the Stroke (Entry, Pull, Push, Recovery in front crawl swimming. Using multiple units on the body, an algorithm was developed to calculate the phases of the stroke based on the relative position of the body roll. Twelve swimmers, equipped with these devices on the body, performed fatiguing trials. The calculated factors were compared to the same data derived to video data showing strong positive results for all factors. Four swimmers required individual adaptation to the stroke phase calculation method. The developed algorithm was developed using a search window relative to the body roll (peak/trough. This customization requirement demonstrates that single based devices will not be able to determine these phases of the stroke with sufficient accuracy.

  8. Warm water and cool nests are best. How global warming might influence hatchling green turtle swimming performance.

    Directory of Open Access Journals (Sweden)

    David T Booth

    Full Text Available For sea turtles nesting on beaches surrounded by coral reefs, the most important element of hatchling recruitment is escaping predation by fish as they swim across the fringing reef, and as a consequence hatchlings that minimize their exposure to fish predation by minimizing the time spent crossing the fringing reef have a greater chance of surviving the reef crossing. One way to decrease the time required to cross the fringing reef is to maximize swimming speed. We found that both water temperature and nest temperature influence swimming performance of hatchling green turtles, but in opposite directions. Warm water increases swimming ability, with hatchling turtles swimming in warm water having a faster stroke rate, while an increase in nest temperature decreases swimming ability with hatchlings from warm nests producing less thrust per stroke.

  9. Swimming performance of the small characin Bryconamericus stramineus (Characiformes: Characidae

    Directory of Open Access Journals (Sweden)

    Miriam A. de Castro

    2010-01-01

    Full Text Available Very little research has been conducted on the swimming capacity of Neotropical fish. The few studies available have focused on large migratory species. The present study used fixed and increasing velocity tests to determine prolonged and sustained speeds of the "pequira", Bryconamericus stramineus Eigenmann, 1908, a small, abundant species found in fish passages implemented at the Paraná basin, Brazil. The results of increasing velocity tests showed significant relationships between critical speeds, total and standard lengths, and body weight. When compared with other Neotropical fish, the "pequira" is able to swim faster than individuals of other species of similar length. The point of change from sustained to prolonged swimming was found to occur at an approximate speed of 8.7 lengths per second. These data provide guidance and criteria for design and proper maintenance of structures such as fishways, fish screens and other systems that aim to facilitate or avoid upstream passages as part of management strategies.

  10. Swimming level classification of young school age children and their success in a long distance swimming test

    OpenAIRE

    Nováková, Martina

    2010-01-01

    Title: Swimming level classification of young school age children and their success in a long distance swimming test Work objectives: The outcome of our work is comparison and evaluation of the initial and final swimming lenght in a test of long distance swimming. This test is taken during one swimming course. Methodology: Data which were obtained by testing a certain group of people and were statistically processed, showed the swimming level and performance of the young school age children. ...

  11. Critical evaluation of oxygen-uptake assessment in swimming.

    Science.gov (United States)

    Sousa, Ana; Figueiredo, Pedro; Pendergast, David; Kjendlie, Per-Ludvik; Vilas-Boas, João P; Fernandes, Ricardo J

    2014-03-01

    Swimming has become an important area of sport science research since the 1970s, with the bioenergetic factors assuming a fundamental performance-influencing role. The purpose of this study was to conduct a critical evaluation of the literature concerning oxygen-uptake (VO2) assessment in swimming, by describing the equipment and methods used and emphasizing the recent works conducted in ecological conditions. Particularly in swimming, due to the inherent technical constraints imposed by swimming in a water environment, assessment of VO2max was not accomplished until the 1960s. Later, the development of automated portable measurement devices allowed VO2max to be assessed more easily, even in ecological swimming conditions, but few studies have been conducted in swimming-pool conditions with portable breath-by-breath telemetric systems. An inverse relationship exists between the velocity corresponding to VO2max and the time a swimmer can sustain it at this velocity. The energy cost of swimming varies according to its association with velocity variability. As, in the end, the supply of oxygen (whose limitation may be due to central-O2 delivery and transportation to the working muscles-or peripheral factors-O2 diffusion and utilization in the muscles) is one of the critical factors that determine swimming performance, VO2 kinetics and its maximal values are critical in understanding swimmers' behavior in competition and to develop efficient training programs.

  12. The effects of chronic cadmium exposure on repeat swimming performance and anaerobic metabolism in brown trout (Salmo trutta) and lake whitefish (Coregonus clupeaformis)

    Energy Technology Data Exchange (ETDEWEB)

    Cunningham, Jessie L.; McGeer, James C., E-mail: jmcgeer@wlu.ca

    2016-04-15

    Highlights: • Exposure to 18 nM waterborne Cd induced plasma Ca loss that recovered by day 30 for lake whitefish but not brown trout. • Ucrit measured after an initial swim to 85% of Ucrit and a 30 min rest period was reduced in 18 nM Cd exposed fish compared to controls. • Swimming to 85% of Ucrit resulted in decreased muscle glycogen and increased lactate that was not recovered in the 30 min recovery period. • Second swim impairment is not related to metabolic processes in white muscle. - Abstract: This study investigates the effect of chronic Cd exposure on the ability to perform repeat swim challenges in brown trout (Salmo trutta) and lake whitefish (Coregonus clupeaformis). Fish were exposed to waterborne Cd (18 nM) in moderately hard water (120 mg L{sup −1} CaCO{sub 3}) for 30 days. This level of exposure has been shown to cause sublethal physiological disruption and acclimation responses but no impairment of sustained swimming capacity (U{sub crit}) in single swim challenges. Swim trials were done over the course of the exposure and each one consisted of an initial swim to 85% of the U{sub crit} of control fish, a 30 min recovery period and finally a second swim challenge to determine U{sub crit}. Plasma and tissue samples were collected before and after each of the swim periods. As expected from previous studies, Cd exposure resulted in significant accumulation of Cd in gills, liver and kidney but not in white muscle. Exposure also induced a loss of plasma Ca followed by subsequent recovery (in lake whitefish but not brown trout) with few mortalities (100% survival for lake whitefish and 93% for brown trout). Both control and exposed fish swam to 85% of the single swim U{sub crit} and no differences in performance were seen. The Ucrit of unexposed controls in the second swim challenges were not different from the single swim Ucrit. However, second swim performance was significantly reduced in Cd exposed fish, particularly after a week of exposure

  13. Quality versus Quantity Debate in Swimming: Perceptions and Training Practices of Expert Swimming Coaches.

    Science.gov (United States)

    Nugent, Frank J; Comyns, Thomas M; Warrington, Giles D

    2017-06-01

    The debate over low-volume, high-intensity training versus high-volume, low-intensity training, commonly known as Quality versus Quantity, respectively, is a frequent topic of discussion among swimming coaches and academics. The aim of this study was to explore expert coaches' perceptions of quality and quantity coaching philosophies in competitive swimming and to investigate their current training practices. A purposeful sample of 11 expert swimming coaches was recruited for this study. The study was a mixed methods design and involved each coach participating in 1 semi-structured interview and completing 1 closed-ended questionnaire. The main findings of this study were that coaches felt quality training programmes would lead to short term results for youth swimmers, but were in many cases more appropriate for senior swimmers. The coaches suggested that quantity training programmes built an aerobic base for youth swimmers, promoted technical development through a focus on slower swimming and helped to enhance recovery from training or competition. However, the coaches continuously suggested that quantity training programmes must be performed with good technique and they felt this was a misunderstood element. This study was a critical step towards gaining a richer and broader understanding on the debate over Quality versus Quantity training from an expert swimming coaches' perspective which was not currently available in the research literature.

  14. Quality Versus Quantity Debate in Swimming: Perceptions and Training Practices of Expert Swimming Coaches

    Directory of Open Access Journals (Sweden)

    Nugent Frank J.

    2017-06-01

    Full Text Available The debate over low-volume, high-intensity training versus high-volume, low-intensity training, commonly known as Quality versus Quantity, respectively, is a frequent topic of discussion among swimming coaches and academics. The aim of this study was to explore expert coaches’ perceptions of quality and quantity coaching philosophies in competitive swimming and to investigate their current training practices. A purposeful sample of 11 expert swimming coaches was recruited for this study. The study was a mixed methods design and involved each coach participating in 1 semi-structured interview and completing 1 closed-ended questionnaire. The main findings of this study were that coaches felt quality training programmes would lead to short term results for youth swimmers, but were in many cases more appropriate for senior swimmers. The coaches suggested that quantity training programmes built an aerobic base for youth swimmers, promoted technical development through a focus on slower swimming and helped to enhance recovery from training or competition. However, the coaches continuously suggested that quantity training programmes must be performed with good technique and they felt this was a misunderstood element. This study was a critical step towards gaining a richer and broader understanding on the debate over Quality versus Quantity training from an expert swimming coaches’ perspective which was not currently available in the research literature.

  15. Pacing in Swimming: A Systematic Review.

    Science.gov (United States)

    McGibbon, Katie E; Pyne, D B; Shephard, M E; Thompson, K G

    2018-03-20

    Pacing strategy, or how energy is distributed during exercise, can substantially impact athletic performance and is considered crucial for optimal performance in many sports. This is particularly true in swimming given the highly resistive properties of water and low mechanical efficiency of the swimming action. The aim of this systematic review was to determine the pacing strategies utilised by competitive swimmers in competition and their reproducibility, and to examine the impact of different pacing strategies on kinematic, metabolic and performance variables. This will provide valuable and practical information to coaches and sports science practitioners. The databases Web of Science, Scopus, SPORTDiscus and PubMed were searched for published articles up to 1 August 2017. A total of 23 studies examining pool-based swimming competitions or experimental trials in English-language and peer-reviewed journals were included in this review. In short- and middle-distance swimming events maintenance of swimming velocity is critical, whereas in long-distance events a low lap-to-lap variability and the ability to produce an end spurt in the final lap(s) are key. The most effective strategy in the individual medley (IM) is to conserve energy during the butterfly leg to optimise performance in subsequent legs. The pacing profiles of senior swimmers remain relatively stable irrespective of opponents, competition stage or type, and performance time. Implementing event-specific pacing strategies should benefit the performance of competitive swimmers. Given differences between swimmers, there is a need for greater individualisation when considering pacing strategy selection across distances and strokes.

  16. Reduced swimming performance repeatedly evolves upon loss of migration in landlocked populations of Alewife

    Science.gov (United States)

    Velotta, Jonathan P.; McCormick, Stephen; Jones, Andrew W.; Schultz, Eric T.

    2018-01-01

    Whole-organism performance tasks are accomplished by the integration of morphological traits and physiological functions. Understanding how evolutionary change in morphology and physiology influences whole-organism performance will yield insight into the factors that shape its own evolution. We demonstrate that nonmigratory populations of alewife (Alosa pseudoharengus) have evolved reduced swimming performance in parallel, compared with their migratory ancestor. In contrast to theoretically and empirically based predictions, poor swimming among nonmigratory populations is unrelated to the evolution of osmoregulation and occurs despite the fact that nonmigratory alewives have a more fusiform (torpedo-like) body shape than their ancestor. Our results suggest that elimination of long-distance migration from the life cycle has shaped performance more than changes in body shape and physiological regulatory capacity.

  17. Performance of a swimming pool heating system by utilizing waste energy rejected from an ice rink with an energy storage tank

    International Nuclear Information System (INIS)

    Kuyumcu, Muhammed Enes; Tutumlu, Hakan; Yumrutaş, Recep

    2016-01-01

    Highlights: • An analytical model of the system, and a computational program were developed. • Transient behavior of the water in the buried energy storage tank was simulated. • Effects of various system parameters on the system performance were investigated. • Long period performance of the system was analyzed and obtained periodic condition. • Optimum ice rink size is determined for a semi-Olympic size swimming pool heating. - Abstract: This study deals with determining the long period performance of a swimming pool heating system by utilizing waste heat energy that is rejected from a chiller unit of ice rink and subsequently stored in an underground thermal energy storage (TES) tank. The system consists of an ice rink, a swimming pool, a spherical underground TES tank, a chiller and a heat pump. The ice rink and the swimming pool are both enclosed and located in Gaziantep, Turkey. An analytical model was developed to obtain the performance of the system using Duhamel’s superposition and similarity transformation techniques. A computational model written in MATLAB program based on the transient heat transfer is used to obtain the annual variation of the ice rink and the swimming pool energy requirements, the water temperature in the TES tank, COP, and optimum ice rink size depending on the different ground, TES tank, chiller, and heat pump characteristics. The results obtained from the analysis indicate that 6–7 years’ operational time span is necessary to obtain the annual periodic operation condition. In addition, an ice rink with a size of 475 m"2 gives the optimum performance of the system with a semi-Olympic size swimming pool (625 m"2).

  18. The effects of chronic cadmium exposure on repeat swimming performance and anaerobic metabolism in brown trout (Salmo trutta) and lake whitefish (Coregonus clupeaformis)

    International Nuclear Information System (INIS)

    Cunningham, Jessie L.; McGeer, James C.

    2016-01-01

    Highlights: • Exposure to 18 nM waterborne Cd induced plasma Ca loss that recovered by day 30 for lake whitefish but not brown trout. • Ucrit measured after an initial swim to 85% of Ucrit and a 30 min rest period was reduced in 18 nM Cd exposed fish compared to controls. • Swimming to 85% of Ucrit resulted in decreased muscle glycogen and increased lactate that was not recovered in the 30 min recovery period. • Second swim impairment is not related to metabolic processes in white muscle. - Abstract: This study investigates the effect of chronic Cd exposure on the ability to perform repeat swim challenges in brown trout (Salmo trutta) and lake whitefish (Coregonus clupeaformis). Fish were exposed to waterborne Cd (18 nM) in moderately hard water (120 mg L"−"1 CaCO_3) for 30 days. This level of exposure has been shown to cause sublethal physiological disruption and acclimation responses but no impairment of sustained swimming capacity (U_c_r_i_t) in single swim challenges. Swim trials were done over the course of the exposure and each one consisted of an initial swim to 85% of the U_c_r_i_t of control fish, a 30 min recovery period and finally a second swim challenge to determine U_c_r_i_t. Plasma and tissue samples were collected before and after each of the swim periods. As expected from previous studies, Cd exposure resulted in significant accumulation of Cd in gills, liver and kidney but not in white muscle. Exposure also induced a loss of plasma Ca followed by subsequent recovery (in lake whitefish but not brown trout) with few mortalities (100% survival for lake whitefish and 93% for brown trout). Both control and exposed fish swam to 85% of the single swim U_c_r_i_t and no differences in performance were seen. The Ucrit of unexposed controls in the second swim challenges were not different from the single swim Ucrit. However, second swim performance was significantly reduced in Cd exposed fish, particularly after a week of exposure where 31% and 38

  19. A Simple Method for Determination of Critical Swimming Velocity in Swimming Flume

    OpenAIRE

    高橋, 繁浩; 若吉, 浩二; Shigehiro, TAKAHASHI; Kohji, WAKAYOSHI; 中京大学; 奈良教育大学教育学部

    2001-01-01

    The purpose of this study was to investigate a simple method for determination of critical swimming velocity (Vcri). Vcri is defined by Wakayoshi et al. (1992) as the swimming speed which could theoretically be maintained forever without exhaustion, and is expressed as the slope of a regression line between swimming distance (D) and swimming time (T) obtained at various swimming speeds. To determine Vcri, 20 well-trained swimmers were measured at several swimming speeds ranging from 1.25 m/se...

  20. Low dose creatine supplementation enhances sprint phase of 400 meters swimming performance.

    Science.gov (United States)

    Anomasiri, Wilai; Sanguanrungsirikul, Sompol; Saichandee, Pisut

    2004-09-01

    This study demonstrated the effect of low dose creatine supplement (10 g. per day) on the sprinting time in the last 50 meters of 400 meters swimming competition, as well as the effect on exertion. Nineteen swimmers in the experimental group received creatine monohydrate 5 g with orange solution 15 g, twice per day for 7 days and nineteen swimmers in the control group received the same quantity of orange solution. The results showed that the swimmers who received creatine supplement lessened the sprinting time in the last 50 meters of 400 meters swimming competition than the control group. (p<0.05). The results of Wingate test (anaerobic power, anaerobic capacity and fatigue index) compared between pre and post supplementation. There was significant difference at p<0.05 in the control group from training effect whereas there was significant difference at p<0.000 from training effect and creatine supplement in the experiment group. Therefore, the creatine supplement in amateur swimmers in the present study enhanced the physical performance up to the maximum capacity.

  1. Solar-heated municipal swimming pools, a case study: Dade County, Florida

    Science.gov (United States)

    Levin, M.

    1981-09-01

    The installation of a solar energy system to heat the water in the swimming pool in one of Dade County, Florida's major parks is described. The mechanics of solar heated swimming pools are explained. The solar heating system consists of 216 unglazed polypropylene tube collectors, a differential thermostat, and the distribution system. The systems performance and economics as well as future plants are discussed.

  2. Heart rate variability and swimming.

    Science.gov (United States)

    Koenig, Julian; Jarczok, Marc N; Wasner, Mieke; Hillecke, Thomas K; Thayer, Julian F

    2014-10-01

    Professionals in the domain of swimming have a strong interest in implementing research methods in evaluating and improving training methods to maximize athletic performance and competitive outcome. Heart rate variability (HRV) has gained attention in research on sport and exercise to assess autonomic nervous system activity underlying physical activity and sports performance. Studies on swimming and HRV are rare. This review aims to summarize the current evidence on the application of HRV in swimming research and draws implications for future research. A systematic search of databases (PubMed via MEDLINE, PSYNDEX and Embase) according to the PRISMA statement was employed. Studies were screened for eligibility on inclusion criteria: (a) empirical investigation (HRV) in humans (non-clinical); (b) related to swimming; (c) peer-reviewed journal; and (d) English language. The search revealed 194 studies (duplicates removed), of which the abstract was screened for eligibility. Fourteen studies meeting the inclusion criteria were included in the review. Included studies broadly fell into three classes: (1) control group designs to investigate between-subject differences (i.e. swimmers vs. non-swimmers, swimmers vs. other athletes); (2) repeated measures designs on within-subject differences of interventional studies measuring HRV to address different modalities of training or recovery; and (3) other studies, on the agreement of HRV with other measures. The feasibility and possibilities of HRV within this particular field of application are well documented within the existing literature. Future studies, focusing on translational approaches that transfer current evidence in general practice (i.e. training of athletes) are needed.

  3. Swimming performance and unique wake topology of the sea hare (Aplysia)

    Science.gov (United States)

    Zhou, Zhuoyu; Mittal, Rajat

    2018-03-01

    The Aplysia, commonly referred to as the "sea hare," is a marine mollusc that swims using large-amplitude flapping of its wide, winglike parapodia. In this study, flow simulations with a relatively simple kinematical model are used to gain insights into the vortex dynamics, thrust generation, and energetics of locomotion for this animal. A unique vortex pattern characterized by three distinct trains of vortex ringlike structures is observed in the wake of this animal. These vortex rings are associated with a positive momentum flux in the wake that counteracts the drag generated by the body. Simulations indicate propulsive efficiencies of up to 24% and terminal swimming speeds of about 0.9 body length per cycle. Swimming speeds are found to increase with increasing parapodial flapping amplitude as well as wavelength of undulation.

  4. The evolution of phenotypic plasticity in fish swimming

    Science.gov (United States)

    Oufiero, Christopher E.; Whitlow, Katrina R.

    2016-01-01

    Abstract Fish have a remarkable amount of variation in their swimming performance, from within species differences to diversity among major taxonomic groups. Fish swimming is a complex, integrative phenotype and has the ability to plastically respond to a myriad of environmental changes. The plasticity of fish swimming has been observed on whole-organismal traits such as burst speed or critical swimming speed, as well as underlying phenotypes such as muscle fiber types, kinematics, cardiovascular system, and neuronal processes. Whether the plastic responses of fish swimming are beneficial seems to depend on the environmental variable that is changing. For example, because of the effects of temperature on biochemical processes, alterations of fish swimming in response to temperature do not seem to be beneficial. In contrast, changes in fish swimming in response to variation in flow may benefit the fish to maintain position in the water column. In this paper, we examine how this plasticity in fish swimming might evolve, focusing on environmental variables that have received the most attention: temperature, habitat, dissolved oxygen, and carbon dioxide variation. Using examples from previous research, we highlight many of the ways fish swimming can plastically respond to environmental variation and discuss potential avenues of future research aimed at understanding how plasticity of fish swimming might evolve. We consider the direct and indirect effects of environmental variation on swimming performance, including changes in swimming kinematics and suborganismal traits thought to predict swimming performance. We also discuss the role of the evolution of plasticity in shaping macroevolutionary patterns of diversity in fish swimming. PMID:29491937

  5. Influence of swimming time in alleviating the deleterious effects of hot summer on growing Muscovy duck performance.

    Science.gov (United States)

    Farghly, Mohamed F A; Mahrose, Khalid M; Ullah, Zafar; Rehman, Zaib Ur; Ding, Chan

    2017-09-01

    This experiment was conducted to observe the effects of varying swimming times (ST) of Muscovy ducks, raised in an open-sided house, in alleviating the deleterious effects of high temperature in hotter times of the day in the summer season on growth performance (body weight, average daily gain, feed consumption, and feed conversion ratio), carcass characteristics, body temperature, and some health aspects. We hypothesized that swimming times during the hottest periods of the day would show different performances. To test this hypothesis a total of 180 Muscovy ducklings were randomly distributed into 4 equal groups in a completely randomized design experiment. All groups were raised under similar housing conditions. Birds of the first group (C) were raised in the indoor system and had no access to a swimming pond. While all birds of the second, third, and fourth groups (T1, T2, and T3) had access to a swimming pond during 10:00 to 12:00 h, 12:00 to 14:00 h, and 14:00 to 16:00 h, respectively. The swimming pond (dimensions of 30 m length × 10 m width × 3 m depth with cement floor) was located in the front of the house. Vaccination and medical programs were undertaken according to the different ages under supervision of a licensed veterinarian. The obtained results indicated that swimming during 12:00 to 14:00 h improved (P swimming pond during 12:00 to 14:00 h. In conclusion, raising ducks during hot conditions in an open-sided house with access to a swimming pond at 12:00 to 14:00 h is highly recommended due to the high BW, better immunity, decreased mortality rate, and low body temperature of ducks which was positively reflected in the health condition. © 2017 Poultry Science Association Inc.

  6. Changes with age in swimming performance of X-irradiated mice

    International Nuclear Information System (INIS)

    Norimura, T.; Yoshikawa, I.; Okajima, S.

    1980-01-01

    The time required to swim 250 cm was determined once weekly for the entire life of fifteen pairs of male dd/K mice. The irradiated group was exposed to a single 224 rad of X-rays at 20 weeks of age. Median survival time (ST 50 ) for the control was 88.9 weeks and that for the irradiated group was 77.4 weeks, and both regression lines relating to death rate and age were parallel. The swimming ability of control mice began to decrease when the mice were 40 weeks of age, after which there was a gradual reduction with age at 0.00646/day. In the irradiated group, the swimming ability decreased from seven weeks after irradiation. The time of 50% reduction of swimming speed (TRS 50 ) for the control was 78.9 weeks and that for the irradiated group was 66.3 weeks, and the slopes of the regression lines relating reduction rate and age were similar. Differences between ST 50 and TRS 50 were 10 weeks in the control and 11 weeks in the irradiated group, respectively. These results indicate that there is no basic difference in the reduction in swimming ability between control and irradiated mice. The X-irradiation may simply mean that the reduction in the swimming ability is displaced to an earlier time with no alteration in the rate of reduction, and that the earlier appearance in the irradiated group is related to premature aging as induced by irradiation. (author)

  7. Critical force during tethered swimming for the evaluation of aerobic capacity and prediction of performances in freestyle swimming DOI:10.5007/1980-0037.2010v12n1p14

    Directory of Open Access Journals (Sweden)

    Marcelo Papoti

    2010-12-01

    Full Text Available The present study investigated the relationship of critical force (Fcrit with lactate threshold (LLNA and the intensity corresponding to VO2max (iVO2max in tethered swimming (TS, and their correlation with maximal performance in 400-m (V400 and 30-min (VT30 freestyle swimming (FS. Seven swimmers were submitted to a TS incremental test for the determination of LLNA and iVO2max. For the determination of Fcrit, the swimmers performed four exercises to exhaustion at intensities (F corresponding to 87%, 104%, 118% and 134% of iVO2max for the calculation of time limits (Tlim. Fcrit corresponded to the linear coefficient of the ratio between F and 1/tlim. The maximal performance in FS corresponded to the mean velocity obtained during maximal exercise of 400-m and 30-min crawl swimming. Fcrit (51.97 ± 4.02 N was significantly lower than iVO2max (60.21 ± 8.73 N but not than LLNA (45.89 ± 8.73. Fcrit was significantly correlated with iVO2max (0.97, LLNA (0.88, V400 (0.85, and VT30 (0.86. These data suggest that Fcrit can be used for the determination of aerobic capacity, prescription of a TS training program, and prediction of performance in FS.

  8. Trends in swimming training for individual medley events

    OpenAIRE

    Brtník, Tomáš

    2013-01-01

    Title: Trends in swimming training for individual medley events Objectives: The aim of our study was to analyze performance and training for 200 and 400 m individual medley events and describe new trends in training for these swimming events Methods: Our research design was a case study. We were interested in training of three swimmers of elite performance in the 200 and 400 m individual medley events. To identify cases, we used the analysis of documents and literature, to a limited extent, t...

  9. Swimming Pool Hygiene: Self-Monitoring, Task Clarification, and Performance Feedback Increase Lifeguard Cleaning Behaviors

    Science.gov (United States)

    Rose, Henry M. S.; Ludwig, Timothy D.

    2009-01-01

    The effects of task clarification, self-monitoring, and performance feedback on cleaning behaviors of 9 lifeguards in 3 performance areas (vacuuming, lobby tidying, and pool deck maintenance) were investigated using an ABA reversal design at a county swim complex. A specific task in each performance area was used as a behavioral control. Following…

  10. Comparison of Temporal Parameters of Swimming Rescue Elements When Performed Using Dolphin and Flutter Kick with Fins - Didactical Approach

    Science.gov (United States)

    Rejman, Marek; Wiesner, Wojciech; Silakiewicz, Piotr; Klarowicz, Andrzej; Abraldes, J. Arturo

    2012-01-01

    The aim of this study was an analysis of the time required to swim to a victim and tow them back to shore, while perfoming the flutter-kick and the dolphin-kick using fins. It has been hypothesized that using fins while using the dolphin-kick when swimming leads to reduced rescue time. Sixteen lifeguards took part in the study. The main tasks performed by them, were to approach and tow (double armpit) a dummy a distance of 50m while applying either the flutter-kick, or the dolphin-kick with fins. The analysis of the temporal parameters of both techniques of kicking demonstrates that, during the approach to the victim, neither the dolphin (tmean = 32.9s) or the flutter kick (tmean = 33.0s) were significantly faster than the other. However, when used for towing a victim the flutter kick (tmean = 47.1s) was significantly faster when compared to the dolphin-kick (tmean = 52.8s). An assessment of the level of technical skills in competitive swimming, and in approaching and towing the victim, were also conducted. Towing time was significantly correlated with the parameter that linked the temporal and technical dimensions of towing and swimming (difference between flutter kick towing time and dolphin-kick towing time, 100m medley time and the four swimming strokes evaluation). No similar interdependency has been discovered in flutter kick towing time. These findings suggest that the dolphin-kick is a more difficult skill to perform when towing the victim than the flutter-kick. Since the hypothesis stated was not confirmed, postulates were formulated on how to improve dolphin-kick technique with fins, in order to reduce swimming rescue time. Key points The source of reduction of swimming rescue time was researched. Time required to approach and to tow the victim while doing the flutter kick and the dolphin-kick with fins was analyzed. The propulsion generated by dolphin-kick did not make the approach and tow faster than the flutter kick. More difficult skill to realize of

  11. Swimming near the substrate: a simple robotic model of stingray locomotion

    International Nuclear Information System (INIS)

    Blevins, Erin; Lauder, George V

    2013-01-01

    Studies of aquatic locomotion typically assume that organisms move through unbounded fluid. However, benthic fishes swim close to the substrate and will experience significant ground effects, which will be greatest for fishes with wide spans such as benthic batoids and flatfishes. Ground effects on fixed-wing flight are well understood, but these models are insufficient to describe the dynamic interactions between substrates and undulating, oscillating fish. Live fish alter their swimming behavior in ground effect, complicating comparisons of near-ground and freestream swimming performance. In this study, a simple, stingray-inspired physical model offers insights into ground effects on undulatory swimmers, contrasting the self-propelled swimming speed, power requirements, and hydrodynamics of fins swimming with fixed kinematics near and far from a solid boundary. Contrary to findings for gliding birds and other fixed-wing fliers, ground effect does not necessarily enhance the performance of undulating fins. Under most kinematic conditions, fins do not swim faster in ground effect, power requirements increase, and the cost of transport can increase by up to 10%. The influence of ground effect varies with kinematics, suggesting that benthic fish might modulate their swimming behavior to minimize locomotor penalties and incur benefits from swimming near a substrate. (paper)

  12. Hydrodynamic study of freely swimming shark fish propulsion for marine vehicles using 2D particle image velocimetry.

    Science.gov (United States)

    Babu, Mannam Naga Praveen; Mallikarjuna, J M; Krishnankutty, P

    Two-dimensional velocity fields around a freely swimming freshwater black shark fish in longitudinal (XZ) plane and transverse (YZ) plane are measured using digital particle image velocimetry (DPIV). By transferring momentum to the fluid, fishes generate thrust. Thrust is generated not only by its caudal fin, but also using pectoral and anal fins, the contribution of which depends on the fish's morphology and swimming movements. These fins also act as roll and pitch stabilizers for the swimming fish. In this paper, studies are performed on the flow induced by fins of freely swimming undulatory carangiform swimming fish (freshwater black shark, L  = 26 cm) by an experimental hydrodynamic approach based on quantitative flow visualization technique. We used 2D PIV to visualize water flow pattern in the wake of the caudal, pectoral and anal fins of swimming fish at a speed of 0.5-1.5 times of body length per second. The kinematic analysis and pressure distribution of carangiform fish are presented here. The fish body and fin undulations create circular flow patterns (vortices) that travel along with the body waves and change the flow around its tail to increase the swimming efficiency. The wake of different fins of the swimming fish consists of two counter-rotating vortices about the mean path of fish motion. These wakes resemble like reverse von Karman vortex street which is nothing but a thrust-producing wake. The velocity vectors around a C-start (a straight swimming fish bends into C-shape) maneuvering fish are also discussed in this paper. Studying flows around flapping fins will contribute to design of bioinspired propulsors for marine vehicles.

  13. Swimming training induces liver mitochondrial adaptations to oxidative stress in rats submitted to repeated exhaustive swimming bouts.

    Directory of Open Access Journals (Sweden)

    Frederico D Lima

    Full Text Available BACKGROUND AND AIMS: Although acute exhaustive exercise is known to increase liver reactive oxygen species (ROS production and aerobic training has shown to improve the antioxidant status in the liver, little is known about mitochondria adaptations to aerobic training. The main objective of this study was to investigate the effects of the aerobic training on oxidative stress markers and antioxidant defense in liver mitochondria both after training and in response to three repeated exhaustive swimming bouts. METHODS: Wistar rats were divided into training (n = 14 and control (n = 14 groups. Training group performed a 6-week swimming training protocol. Subsets of training (n = 7 and control (n = 7 rats performed 3 repeated exhaustive swimming bouts with 72 h rest in between. Oxidative stress biomarkers, antioxidant activity, and mitochondria functionality were assessed. RESULTS: Trained group showed increased reduced glutathione (GSH content and reduced/oxidized (GSH/GSSG ratio, higher superoxide dismutase (MnSOD activity, and decreased lipid peroxidation in liver mitochondria. Aerobic training protected against exhaustive swimming ROS production herein characterized by decreased oxidative stress markers, higher antioxidant defenses, and increases in methyl-tetrazolium reduction and membrane potential. Trained group also presented higher time to exhaustion compared to control group. CONCLUSIONS: Swimming training induced positive adaptations in liver mitochondria of rats. Increased antioxidant defense after training coped well with exercise-produced ROS and liver mitochondria were less affected by exhaustive exercise. Therefore, liver mitochondria also adapt to exercise-induced ROS and may play an important role in exercise performance.

  14. Comparison of the effects of active, passive and mixed warm ups on swimming performance.

    Science.gov (United States)

    Adams, S; Psycharakis, S G

    2014-10-01

    The aim of this paper was to compare the effects of an active (AWU), passive (PWU) and mixed warm up (MWU) on swimming performance. Eight male competitive swimmers completed each type of WU and, following a 20-minute rest, performed a maximum 100m test on their specialised stroke. The order of WUs was randomized and there was a 7-day period between subsequent testing sessions. The time taken to complete the 100m trial was the performance measure. The rating of perceived exertion (RPE) was measured immediately post WU, while heart rate (HR) was measured pre and post WU and pre and post the maximum swim. During the 20-minute rest, the swimmers' psychological state was assessed with the CSAI-2 questionnaire. Post WU HR and RPE had the lowest values following the AWU and the highest values following the PWU (Pperformance HR increased significantly relative to pre WU HR for all conditions (P≤0.01). Swimmers had relatively low levels of anxiety and modest to high levels of self confidence for all conditions. No WU appeared to be superior to the others with respect to swimming performance. The MWU produced nearly identical values to the AWU for most variables, and was therefore found to be an appropriate alternative WU type that swimmers may use before competition. The PWU also seemed to be appropriate, but the somewhat worse performance and lower cognitive anxiety and self confidence scores recorded, albeit non-significant, suggested that more swimmers and distances are tested before any firm conclusions regarding its effectiveness can be drawn.

  15. Body dynamics and hydrodynamics of swimming larvae: a computational study

    NARCIS (Netherlands)

    Li, G.; Müller, U.K.; Leeuwen, van J.L.; Liu, H.

    2012-01-01

    To understand the mechanics of fish swimming, we need to know the forces exerted by the fluid and how these forces affect the motion of the fish. To this end, we developed a 3-D computational approach that integrates hydrodynamics and body dynamics. This study quantifies the flow around a swimming

  16. Unsteady computational fluid dynamics in front crawl swimming.

    Science.gov (United States)

    Samson, Mathias; Bernard, Anthony; Monnet, Tony; Lacouture, Patrick; David, Laurent

    2017-05-01

    The development of codes and power calculations currently allows the simulation of increasingly complex flows, especially in the turbulent regime. Swimming research should benefit from these technological advances to try to better understand the dynamic mechanisms involved in swimming. An unsteady Computational Fluid Dynamics (CFD) study is conducted in crawl, in order to analyse the propulsive forces generated by the hand and forearm. The k-ω SST turbulence model and an overset grid method have been used. The main objectives are to analyse the evolution of the hand-forearm propulsive forces and to explain this relative to the arm kinematics parameters. In order to validate our simulation model, the calculated forces and pressures were compared with several other experimental and numerical studies. A good agreement is found between our results and those of other studies. The hand is the segment that generates the most propulsive forces during the aquatic stroke. As the pressure component is the main source of force, the orientation of the hand-forearm in the absolute coordinate system is an important kinematic parameter in the swimming performance. The propulsive forces are biggest when the angles of attack are high. CFD appears as a very valuable tool to better analyze the mechanisms of swimming performance and offers some promising developments, especially for optimizing the performance from a parametric study.

  17. Study on water evaporation rate from indoor swimming pools

    Directory of Open Access Journals (Sweden)

    Rzeźnik Ilona

    2017-01-01

    Full Text Available The air relative humidity in closed spaces of indoor swimming pools influences significantly on users thermal comfort and the stability of the building structure, so its preservation on suitable level is very important. For this purpose, buildings are equipped with HVAC systems which provide adequate level of humidity. The selection of devices and their technical parameters is made using the mathematical models of water evaporation rate in the unoccupied and occupied indoor swimming pool. In the literature, there are many papers describing this phenomena but the results differ from each other. The aim of the study was the experimental verification of published models of evaporation rate in the pool. The tests carried out on a laboratory scale, using model of indoor swimming pool, measuring 99cm/68cm/22cm. The model was equipped with water spray installation with six nozzles to simulate conditions during the use of the swimming pool. The measurements were made for conditions of sports pools (water temperature 24°C and recreational swimming pool (water temperature 34°C. According to the recommendations the air temperature was about 2°C higher than water temperature, and the relative humidity ranged from 40% to 55%. Models Shah and Biasin & Krumm were characterized by the best fit to the results of measurements on a laboratory scale.

  18. The Effect of Swimming Experience on Acquisition and Retention of Swimming-Based Taste Aversion Learning in Rats

    Science.gov (United States)

    Masaki, Takahisa; Nakajima, Sadahiko

    2010-01-01

    Swimming endows rats with an aversion to a taste solution consumed before swimming. The present study explored whether the experience of swimming before or after the taste-swimming trials interferes with swimming-based taste aversion learning. Experiment 1 demonstrated that a single preexposure to 20 min of swimming was as effective as four or…

  19. Swimming activity in marine fish.

    Science.gov (United States)

    Wardle, C S

    1985-01-01

    Marine fish are capable of swimming long distances in annual migrations; they are also capable of high-speed dashes of short duration, and they can occupy small home territories for long periods with little activity. There is a large effect of fish size on the distance fish migrate at slow swimming speeds. When chased by a fishing trawl the effect of fish size on swimming performance can decide their fate. The identity and thickness of muscle used at each speed and evidence for the timing of myotomes used during the body movement cycle can be detected using electromyogram (EMG) electrodes. The cross-sectional area of muscle needed to maintain different swimming speeds can be predicted by relating the swimming drag force to the muscle force. At maximum swimming speed one completed cycle of swimming force is derived in sequence from the whole cross-sectional area of the muscles along the two sides of the fish. This and other aspects of the swimming cycle suggest that each myotome might be responsible for generating forces involved in particular stages of the tail sweep. The thick myotomes at the head end shorten during the peak thrust of the tail blade whereas the thinner myotomes nearer the tail generate stiffness appropriate for transmission of these forces and reposition the tail for the next cycle.

  20. Effect of ectoparasite infestation density and life history stages on the swimming performance of Atlantic salmon Salmo salar

    Directory of Open Access Journals (Sweden)

    Samantha Bui

    2016-06-01

    Full Text Available To overcome sustainability obstacles and improve operations, the Atlantic salmon farming industry is testing novel approaches to production. Redistributing farm sites to offshore locations is one such solution; however, tolerance to high-current velocity sites must be considered, particularly if fish health status is compromised by parasites. We tested the effect of parasite density and life-history stage on the swimming performance of Atlantic salmon Salmo salar using a swim flume. Salmon with 3 different salmon lice Lepeophtheirus salmonis densities (0, 0.02 � 0.01 and 0.11 � 0.01 lice cm-2 [mean � SE] were tested across the 4 major life-history stages of lice (copepodid, chalimus, pre-adult and adult for critical swimming performance (Ucrit. Salmon Ucrit declined slightly by a mean of 0.04 to 0.10 body lengths s-1 with high parasite densities compared to uninfested and low densities, across the lice stages, while progression through the parasite life-history stages had little effect on swimming performance. Our results suggest that increasing infestation density of salmon lice incurs negative fitness consequences for farmed Atlantic salmon held in high-current velocity sites, with little difference in costs associated with attachment by different life-history stages of the lice.

  1. Laryngoscopy during swimming: A novel diagnostic technique to characterize swimming-induced laryngeal obstruction.

    Science.gov (United States)

    Walsted, Emil S; Swanton, Laura L; van van Someren, Ken; Morris, Tessa E; Furber, Matthew; Backer, Vibeke; Hull, James H

    2017-10-01

    Exercise-induced laryngeal obstruction (EILO) is a key differential diagnosis for respiratory symptoms in athletes and is particularly prevalent in aquatic athletes. A definitive diagnosis of EILO is dependent on laryngoscopy, performed continuously, while an athlete engages in the sport that precipitates their symptoms. This report provides the first description of the feasibility of performing continuous laryngoscopy during exercise in a swimming environment. The report describes the methodology and safety of the use of continuous laryngoscopy while swimming. Laryngoscope, 127:2298-2301, 2017. © 2017 The American Laryngological, Rhinological and Otological Society, Inc.

  2. The ergogenic effect of beta-alanine combined with sodium bicarbonate on high-intensity swimming performance.

    Science.gov (United States)

    Painelli, Vitor de Salles; Roschel, Hamilton; Jesus, Flávia de; Sale, Craig; Harris, Roger Charles; Solis, Marina Yázigi; Benatti, Fabiana Braga; Gualano, Bruno; Lancha, Antonio Herbert; Artioli, Guilherme Giannini

    2013-05-01

    We investigated the effect of beta-alanine (BA) alone (study A) and in combination with sodium bicarbonate (SB) (study B) on 100- and 200-m swimming performance. In study A, 16 swimmers were assigned to receive either BA (3.2 g·day(-1) for 1 week and 6.4 g·day(-1) for 4 weeks) or placebo (PL; dextrose). At baseline and after 5 weeks of supplementation, 100- and 200-m races were completed. In study B, 14 were assigned to receive either BA (3.2 g·day(-1) for 1 week and 6.4 g·day(-1) for 3 weeks) or PL. Time trials were performed once before and twice after supplementation (with PL and SB), in a crossover fashion, providing 4 conditions: PL-PL, PL-SB, BA-PL, and BA-SB. In study A, BA supplementation improved 100- and 200-m time-trial performance by 2.1% (p = 0.029) and 2.0% (p = 0.0008), respectively. In study B, 200-m time-trial performance improved in all conditions, compared with presupplementation, except the PL-PL condition (PL-SB, +2.3%; BA-PL, +1.5%; BA-SB, +2.13% (p < 0.05)). BA-SB was not different from BA-PL (p = 0.21), but the probability of a positive effect was 78.5%. In the 100-m time-trial, only a within-group effect for SB was observed in the PL-SB (p = 0.022) and BA-SB (p = 0.051) conditions. However, 6 of 7 athletes swam faster after BA supplementation. The probability of BA having a positive effect was 65.2%; when SB was added to BA, the probability was 71.8%. BA and SB supplementation improved 100- and 200-m swimming performance. The coingestion of BA and SB induced a further nonsignificant improvement in performance.

  3. Biomechanical Analysis of the Swim-Start: A Review

    Directory of Open Access Journals (Sweden)

    Julien Vantorre, Didier Chollet, Ludovic Seifert

    2014-06-01

    Full Text Available This review updates the swim-start state of the art from a biomechanical standpoint. We review the contribution of the swim-start to overall swimming performance, the effects of various swim-start strategies, and skill effects across the range of swim-start strategies identified in the literature. The main objective is to determine the techniques to focus on in swimming training in the contemporary context of the sport. The phases leading to key temporal events of the swim-start, like water entry, require adaptations to the swimmer’s chosen technique over the course of a performance; we thus define the swim-start as the moment when preparation for take-off begins to the moment when the swimming pattern begins. A secondary objective is to determine the role of adaptive variability as it emerges during the swim-start. Variability is contextualized as having a functional role and operating across multiple levels of analysis: inter-subject (expert versus non-expert, inter-trial or intra-subject (through repetitions of the same movement, and inter-preference (preferred versus non-preferred technique. Regarding skill effects, we assume that swim-start expertise is distinct from swim stroke expertise. Highly skilled swim-starts are distinguished in terms of several factors: reaction time from the start signal to the impulse on the block, including the control and regulation of foot force and foot orientation during take-off; appropriate amount of glide time before leg kicking commences; effective transition from leg kicking to break-out of full swimming with arm stroking; overall maximal leg and arm propulsion and minimal water resistance; and minimized energy expenditure through streamlined body position. Swimmers who are less expert at the swim-start spend more time in this phase and would benefit from training designed to reduce: (i the time between reaction to the start signal and impulse on the block, and (ii the time in transition (i

  4. The Impact of Baby Swimming on Introductory and Elementary Swimming Training

    OpenAIRE

    Břízová, Gabriela

    2007-01-01

    THESIS ANNOTATION Title: The Impact of Baby Swimming on Introductory and Elementary Swimming Training Aim: To assess the impact of 'baby swimming' on the successfulness in introductory and partly in elementary swimming training, and to find out whether also other circumstances (for example the length of attendance at 'baby swimming') have some influence on introductory swimming training. Methods: We used a questionnaire method for the parents of children who had attended 'baby swimming' and f...

  5. Establishing zebrafish as a novel exercise model: swimming economy, swimming-enhanced growth and muscle growth marker gene expression.

    Directory of Open Access Journals (Sweden)

    Arjan P Palstra

    Full Text Available BACKGROUND: Zebrafish has been largely accepted as a vertebrate multidisciplinary model but its usefulness as a model for exercise physiology has been hampered by the scarce knowledge on its swimming economy, optimal swimming speeds and cost of transport. Therefore, we have performed individual and group-wise swimming experiments to quantify swimming economy and to demonstrate the exercise effects on growth in adult zebrafish. METHODOLOGY/PRINCIPAL FINDINGS: Individual zebrafish (n = 10 were able to swim at a critical swimming speed (U(crit of 0.548±0.007 m s(-1 or 18.0 standard body lengths (BL s(-1. The optimal swimming speed (U(opt at which energetic efficiency is highest was 0.396±0.019 m s(-1 (13.0 BL s(-1 corresponding to 72.26±0.29% of U(crit. The cost of transport at optimal swimming speed (COT(opt was 25.23±4.03 µmol g(-1 m(-1. A group-wise experiment was conducted with zebrafish (n = 83 swimming at U(opt for 6 h day(-1 for 5 days week(-1 for 4 weeks vs. zebrafish (n = 84 that rested during this period. Swimming zebrafish increased their total body length by 5.6% and body weight by 41.1% as compared to resting fish. For the first time, a highly significant exercise-induced growth is demonstrated in adult zebrafish. Expression analysis of a set of muscle growth marker genes revealed clear regulatory roles in relation to swimming-enhanced growth for genes such as growth hormone receptor b (ghrb, insulin-like growth factor 1 receptor a (igf1ra, troponin C (stnnc, slow myosin heavy chain 1 (smyhc1, troponin I2 (tnni2, myosin heavy polypeptide 2 (myhz2 and myostatin (mstnb. CONCLUSIONS/SIGNIFICANCE: From the results of our study we can conclude that zebrafish can be used as an exercise model for enhanced growth, with implications in basic, biomedical and applied sciences, such as aquaculture.

  6. Swimming level of pupils from elementary schools with own swimming pool

    OpenAIRE

    Zálupská, Klára

    2012-01-01

    Title: Swimming level of pupils from primary school with private swimming pool. Work objectives: The aim is to identify assess level of swimming of pupils from first to ninth grade of primary school with a private pool in Chomutov district using continuous swimming test with regular swimming lessons, which is started in the first grade and persists until the ninth grade. The condition was organizing a school swimming lessons once a week for 45 minutes in all grades. Methodology: Swimming leve...

  7. The key kinematic determinants of undulatory underwater swimming at maximal velocity.

    Science.gov (United States)

    Connaboy, Chris; Naemi, Roozbeh; Brown, Susan; Psycharakis, Stelios; McCabe, Carla; Coleman, Simon; Sanders, Ross

    2016-01-01

    The optimisation of undulatory underwater swimming is highly important in competitive swimming performance. Nineteen kinematic variables were identified from previous research undertaken to assess undulatory underwater swimming performance. The purpose of the present study was to determine which kinematic variables were key to the production of maximal undulatory underwater swimming velocity. Kinematic data at maximal undulatory underwater swimming velocity were collected from 17 skilled swimmers. A series of separate backward-elimination analysis of covariance models was produced with cycle frequency and cycle length as dependent variables (DVs) and participant as a fixed factor, as including cycle frequency and cycle length would explain 100% of the maximal swimming velocity variance. The covariates identified in the cycle-frequency and cycle-length models were used to form the saturated model for maximal swimming velocity. The final parsimonious model identified three covariates (maximal knee joint angular velocity, maximal ankle angular velocity and knee range of movement) as determinants of the variance in maximal swimming velocity (adjusted-r2 = 0.929). However, when participant was removed as a fixed factor there was a large reduction in explained variance (adjusted r2 = 0.397) and only maximal knee joint angular velocity continued to contribute significantly, highlighting its importance to the production of maximal swimming velocity. The reduction in explained variance suggests an emphasis on inter-individual differences in undulatory underwater swimming technique and/or anthropometry. Future research should examine the efficacy of other anthropometric, kinematic and coordination variables to better understand the production of maximal swimming velocity and consider the importance of individual undulatory underwater swimming techniques when interpreting the data.

  8. Later life swimming performance and persistent heart damage following subteratogenic PAH mixture exposure in the Atlantic killifish (Fundulus heteroclitus).

    Science.gov (United States)

    Brown, Daniel R; Thompson, Jasmine; Chernick, Melissa; Hinton, David E; Di Giulio, Richard T

    2017-12-01

    High-level, acute exposures to individual polycyclic aromatic hydrocarbons (PAHs) and complex PAH mixtures result in cardiac abnormalities in developing fish embryos. Whereas acute PAH exposures can be developmentally lethal, little is known about the later life consequences of early life, lower level PAH exposures in survivors. A population of PAH-adapted Fundulus heteroclitus from the PAH-contaminated Superfund site, Atlantic Wood Industries, Elizabeth River, Portsmouth, Virginia, United States, is highly resistant to acute PAH cardiac teratogenicity. We sought to determine and characterize long-term swimming performance and cardiac histological alterations of a subteratogenic PAH mixture exposure in both reference killifish and PAH-adapted Atlantic Wood killifish embryos. Killifish from a relatively uncontaminated reference site, King's Creek, Virginia, United States, and Atlantic Wood killifish were treated with dilutions of Elizabeth River sediment extract at 24 h post fertilization (hpf). Two proven subteratogenic dilutions, 0.1 and 1.0% Elizabeth River sediment extract (total PAH 5.04 and 50.4 µg/L, respectively), were used for embryo exposures. Then, at 5-mo post hatching, killifish were subjected to a swim performance test. A separate subset of these individuals was processed for cardiac histological analysis. Unexposed King's Creek killifish significantly outperformed the unexposed Atlantic Wood killifish in swimming performance as measured by Ucrit (i.e., critical swimming speed). However, King's Creek killifish exposed to Elizabeth River sediment extract (both 0.1 and 1.0%) showed significant declines in Ucrit. Histological analysis revealed the presence of blood in the pericardium of King's Creek killifish. Although Atlantic Wood killifish showed baseline performance deficits relative to King's Creek killifish, their pericardial cavities were nearly free of blood and atrial and ventricular alterations. These findings may explain, in part, the

  9. Intra-abdominal pressure during swimming.

    Science.gov (United States)

    Moriyama, S; Ogita, F; Huang, Z; Kurobe, K; Nagira, A; Tanaka, T; Takahashi, H; Hirano, Y

    2014-02-01

    The present study aimed to determine the intra-abdominal pressure during front crawl swimming at different velocities in competitive swimmers and to clarify the relationships between stroke indices and changes in intra-abdominal pressure. The subjects were 7 highly trained competitive collegiate male swimmers. Intra-abdominal pressure was measured during front crawl swimming at 1.0, 1.2 and 1.4 m · s(-1) and during the Valsalva maneuver. Intra-abdominal pressure was taken as the difference between minimum and maximum values, and the mean of 6 stable front crawl stroke cycles was used. Stroke rate and stroke length were also measured as stroke indices. There were significant differences in stroke rate among all velocities (P pressure and stroke rate or stroke length (P pressure and stroke indices when controlling for swimming velocity. These findings do not appear to support the effectiveness of trunk training performed by competitive swimmers aimed at increasing intra-abdominal pressure. © Georg Thieme Verlag KG Stuttgart · New York.

  10. Geneva 24 hours swim

    CERN Document Server

    2003-01-01

    The 18th edition of the Geneva 24 hours swim competition will take place at the Vernets Swimming Pool on the 4th and 5th of October. More information and the results of previous years are given at: http://www.carouge-natation.com/24_heures/home_24_heures.htm Last year, CERN obtained first position in the inter-company category with a total of 152.3 kms swam by 45 participants. We are counting on your support to repeat this excellent performance this year. For those who would like to train, the Livron swimming pool in Meyrin is open as from Monday the 8th September. For further information please do not hesitate to contact us. Gino de Bilio and Catherine Delamare

  11. Geneva 24 Hours Swim

    CERN Document Server

    2003-01-01

    The 18th edition of the Geneva 24 hours swim competition will take place at the Vernets Swimming Pool on the 4th and 5th of October. More information and the results of previous years are given at: http://www.carouge-natation.com/24_heures/home_24_heures.htm Last year, CERN obtained first position in the inter-company category with a total of 152.3 kms swam by 45 participants. We are counting on your support to repeat this excellent performance this year. For those who would like to train, the Livron swimming pool in Meyrin is open as from Monday the 8th September. For further information please do not hesitate to contact us. Gino de Bilio and Catherine Delamare

  12. [Effects of starvation on the consumption of energy sources and swimming performance in juvenile Gambusia affinis and Tanichthys albonubes].

    Science.gov (United States)

    Li, Jiang-tao; Lin, Xiao-tao; Zhou, Chen-hui; Zeng, Peng; Xu, Zhong-neng; Sun, Jun

    2016-01-01

    To explore the consumption of energy sources and swimming performance of juvenile Gambusia affinis and Tanichthys albonubes after starvation, contents of glycogen, lipid and protein, burst swimming speeds (Uburst), and critical swimming speeds (Ucrit) at different starvation times (0, 10, 20, 30 and 40 days) were evaluated. The results showed that, at 0 day, contents of glycogen and lipid were significantly lower in G. affinis than those in T. albonubes, whereas no significant difference in content of protein between two experimental fish was found. Swimming speeds in G. affinis were significantly lower than those in T. albonubes for all swimming performances. After different starvation scenarios, content of glycogen both in G. affinis and T. albonubes decreased significantly in power function trend with starvation time and were close to zero after starvation for 10 days, whereas the contents of lipid and protein were linearly significantly decreased. The slope of line regression equation between content of lipid and starvation time in G. affinis was significantly lower than that in T. albonubes, whereas there was a significantly higher slope of line equation between content of protein and starvation time in G. affinis. 40 days later, the consumption rate of glycogen both in G. affinis and T. albonubes were significantly higher than that of lipid, while the consumption rate of protein was the least. Consumption amounts of glycogen in all experimental fish were the least, G. affinis consumed more protein than lipid, and T. albonubes consumed more lipid than protein. Uburst and Ucrit decreased significantly linearly with starvation time for all experimental fish. Slope of linear equation between Uburst and starvation time was not significantly different between G. affinis and T. albonubes. However, the straight slope between Ucrit and starvation time was significantly lower in G. affinis than that in T. albonubes. These findings indicated that there was close

  13. Front crawl swimming analysis using accelerometers

    DEFF Research Database (Denmark)

    Espinosa, Hugo G; Nordsborg, Nikolai Baastrup; Thiel, David V

    2015-01-01

    Biomechanical characteristics such as stroke rate and stroke length can be used to determine the velocity of a swimmer and can be analysed in both a swimming pool and a flume. The aim of the present preliminary study was to investigate the differences between the acceleration data collected from...... a swimming pool with that collected from a flume, as a function of the swimmer's stroke rate and stroke count, with the objective of identifying the impact on the swimmer's performance. The differences were determined by the analysis of the stroke's features, comparing several strokes normalized to one...

  14. Wearable inertial sensors in swimming motion analysis: a systematic review.

    Science.gov (United States)

    de Magalhaes, Fabricio Anicio; Vannozzi, Giuseppe; Gatta, Giorgio; Fantozzi, Silvia

    2015-01-01

    The use of contemporary technology is widely recognised as a key tool for enhancing competitive performance in swimming. Video analysis is traditionally used by coaches to acquire reliable biomechanical data about swimming performance; however, this approach requires a huge computational effort, thus introducing a delay in providing quantitative information. Inertial and magnetic sensors, including accelerometers, gyroscopes and magnetometers, have been recently introduced to assess the biomechanics of swimming performance. Research in this field has attracted a great deal of interest in the last decade due to the gradual improvement of the performance of sensors and the decreasing cost of miniaturised wearable devices. With the aim of describing the state of the art of current developments in this area, a systematic review of the existing methods was performed using the following databases: PubMed, ISI Web of Knowledge, IEEE Xplore, Google Scholar, Scopus and Science Direct. Twenty-seven articles published in indexed journals and conference proceedings, focusing on the biomechanical analysis of swimming by means of inertial sensors were reviewed. The articles were categorised according to sensor's specification, anatomical sites where the sensors were attached, experimental design and applications for the analysis of swimming performance. Results indicate that inertial sensors are reliable tools for swimming biomechanical analyses.

  15. Effects of 8-Week Training on Aerobic Capacity and Swimming Performance of Boys Aged 12 Years

    Science.gov (United States)

    Zarzeczny, Ryszard; Kuberski, Mariusz; Deska, Agnieszka; Zarzeczna, Dorota; Rydz, Katarzyna; Lewandowska, Anna; Balchanowski, Tomasz; Bosiacki, Janusz

    2011-01-01

    Study aim: To assess the effects of 8-week endurance training in swimming on work capacity of boys aged 12 years. Material and methods: The following groups of schoolboys aged 12 years were studied: untrained control (UC; n = 14) and those training swimming for two years. The latter ones were subjected to 8-week training in classical style (CS; n…

  16. The Effect of Rehearsal Learning and Warm-up on the Speed of Different Swimming Strokes

    Science.gov (United States)

    Magno, Carlo; Mascardo, Elizabeth

    2009-01-01

    The study investigated the effects of rehearsal learning and warm-up exercise on the time of performing different swimming strokes. The study was conducted among 202 college freshmen students taking up a course on physical education concentrated in swimming. The design employed is a mixed factorial (2 X 2) where time of swimming is measured before…

  17. Mathematical modelling and simulation of the thermal performance of a solar heated indoor swimming pool

    OpenAIRE

    Mančić Marko V.; Živković Dragoljub S.; Milosavljević Peđa M.; Todorović Milena N.

    2014-01-01

    Buildings with indoor swimming pools have a large energy footprint. The source of major energy loss is the swimming pool hall where air humidity is increased by evaporation from the pool water surface. This increases energy consumption for heating and ventilation of the pool hall, fresh water supply loss and heat demand for pool water heating. In this paper, a mathematical model of the swimming pool was made to assess energy demands of an indoor swimming po...

  18. Applying physiological principles and assessment techniques to swimming the English Channel. A case study.

    Science.gov (United States)

    Acevedo, E O; Meyers, M C; Hayman, M; Haskin, J

    1997-03-01

    This study presents the use of physiological principles and assessment techniques in addressing four objectives that can enhance a swimmer's likelihood of successfully swimming the English Channel. The four objective were: (1) to prescribe training intensities and determine ideal swimming pace; (2) to determine the amount of insulation needed, relative to heat produced, to diminish the likelihood of the swimmer suffering from hypothermia; (3) to calculate the caloric expenditure for the swim and the necessary glucose replacement required to prevent glycogen depletion; and (4) to determine the rate of acclimatization to cold water (15.56 C/60 F). The subject participated in several pool swimming data collection sessions including a tethered swim incremental protocol to determine peak oxygen consumption and onset of lactate accumulation and several steady state swims to determine ideal swimming pace at 4.0 mM/L of lactate. Additionally, these swims provided information on oxygen consumption, which in combination with ultrasound assessment of subcutaneous fat was used to assess heat production and insulation capabilities. Finally, the subject participated in 18 cold water immersions to document acclimatization rate. The data demonstrated the high fitness level of this subject and indicated that at a stroke rate of 63 stokes/min, HR was 130 heats/min and lactate was 4 mM/L. At this swimming pace the swimmer would need to consume 470 kcal of glucose/hr. In addition, the energy produced at this swim pace was 13.25 kcal/min while the energy lost at the present subcutaneous fat quantity was 13.40 kcal/min, requiring a fat weight gain of 6,363.03 g (13.88 lbs) to resist heat loss. Finally, the data from the cold water immersions suggested that acclimatization occurred following two weeks of immersions. There results were provided to the swimmer and utilized in making decisions in preparation for the swim.

  19. Mechanical Study of Standard Six Beat Front Crawl Swimming by Using Swimming Human Simulation Model

    Science.gov (United States)

    Nakashima, Motomu

    There are many dynamical problems in front crawl swimming which have not been fully investigated by analytical approaches. Therefore, in this paper, standard six beat front crawl swimming is analyzed by the swimming human simulation model SWUM, which has been developed by the authors. First, the outline of the simulation model, the joint motion for one stroke cycle, and the specifications of calculation are described respectively. Next, contribution of each fluid force component and of each body part to the thrust, effect of the flutter kick, estimation of the active drag, roll motion, and the propulsive efficiency are discussed respectively. The following results were theoretically obtained: The thrust is produced at the upper limb by the normal drag force component. The flutter kick plays a role in raising the lower half of the body. The active drag coefficient in the simulation becomes 0.082. Buoyancy determines the primal wave of the roll motion fluctuation. The propulsive efficiency in the simulation becomes 0.2.

  20. Blood lactate recovery measurements, training, and performance during a 23-week period of competitive swimming.

    Science.gov (United States)

    Pelayo, P; Mujika, I; Sidney, M; Chatard, J C

    1996-01-01

    The purpose of this study was to relate measurements of blood lactate concentration, performance during a maximal anaerobic lactic test (MANLT) and training loads during a 23-week swimming season. Six elite 200-m freestyle male swimmers [mean age 19.5 (SD 1.6) years, height 184 (SD 5) cm and body mass 77.7 (SD 9.0) kg], participated in the study. The MANLT consisted of four all-out 50-m swims interspersed with 10-s recovery periods. Blood lactate concentrations were determined at 3 and 12-min post-exercise and were performed on weeks 2,6,10,14,18 and 21. Swimmers participated in 200-m freestyle competitions on weeks 1,7,13 and 23 (national championships). During weeks 1-10, training mostly involved aerobic exercise, while during weeks, 11-23, it involved anaerobic exercise. At 3-min and 12-min post-MANLT lactate concentrations varied throughout the season [range from 14.9 (SD 1.2) to 18.7 (SD 1.0) mmol.l-1] but demonstrated non-systematic variations. In contrast, the percentage of mean blood lactate decrease (% [La-]recovery) between min 3 and min 12 of the passive recovery post-MANLT increased from week 2 to 10 with aerobic training and decreased from week 10 to 21 with anaerobic training. The MANLT performance improved continuously throughout the season, while competition performance improved during the first three competitions but declined in the final championships, coinciding with the lowest % [La-]recovery and signs of overtraining, such as bad temper and increased sleeping heart rate. The results of this study indicated that % [La-]recovery could be an efficient marker for monitoring the impact of aerobic and anaerobic training and avoiding overtraining in elite 200-m swimmers.

  1. Effects of rearing density and dietary fat content on burst-swim performance and oxygen transport capacity in juvenile Atlantic salmon Salmo salar.

    Science.gov (United States)

    Hammenstig, D; Sandblom, E; Axelsson, M; Johnsson, J I

    2014-10-01

    The effects of hatchery rearing density (conventional or one third of conventional density) and feeding regime (high or reduced dietary fat levels) on burst-swim performance and oxygen transport capacity were studied in hatchery-reared Atlantic salmon Salmo salar, using wild fish as a reference group. There was no effect of rearing density or food regime on swimming performance in parr and smolts. The maximum swimming speed of wild parr was significantly higher than that of hatchery-reared conspecifics, while no such difference remained at the smolt stage. In smolts, relative ventricle mass was higher in wild S. salar compared with hatchery-reared fish. Moreover, wild S. salar had lower maximum oxygen consumption following a burst-swim challenge than hatchery fish. There were no effects of hatchery treatment on maximum oxygen consumption or relative ventricle mass. Haemoglobin and haematocrit levels, however, were lower in low-density fish than in fish reared at conventional density. Furthermore, dorsal-fin damage, an indicator of aggression, was similar in low-density reared and wild fish and lower than in S. salar reared at conventional density. Together, these results suggest that reduced rearing density is more important than reduced dietary fat levels in producing an S. salar smolt suitable for supplementary release. © 2014 The Fisheries Society of the British Isles.

  2. Swimming of a Tiny Subtropical Sea Butterfly with Coiled Shell

    Science.gov (United States)

    Murphy, David; Karakas, Ferhat; Maas, Amy

    2017-11-01

    Sea butterflies, also known as pteropods, include a variety of small, zooplanktonic marine snails. Thecosomatous pteropods possess a shell and swim at low Reynolds numbers by beating their wing-like parapodia in a manner reminiscent of insect flight. In fact, previous studies of the pteropod Limacina helicina have shown that pteropod swimming hydrodynamics and tiny insect flight aerodynamics are dynamically similar. Studies of L. helicina swimming have been performed in polar (0 degrees C) and temperate conditions (12 degrees C). Here we present measurements of the swimming of Heliconoides inflatus, a smaller yet morphologically similar pteropod that lives in warm Bermuda seawater (21 degrees C) with a viscosity almost half that of the polar seawater. The collected H. inflatus have shell sizes less than 1.5 mm in diameter, beat their wings at frequencies up to 11 Hz, and swim upwards in sawtooth trajectories at speeds up to approximately 25 mm/s. Using three-dimensional wing and body kinematics collected with two orthogonal high speed cameras and time-resolved, 2D flow measurements collected with a micro-PIV system, we compare the effects of smaller body size and lower water viscosity on the flow physics underlying flapping-based swimming by pteropods and flight by tiny insects.

  3. Cetacean Swimming with Prosthetic Limbs

    Science.gov (United States)

    Bode-Oke, Ayodeji; Ren, Yan; Dong, Haibo; Fish, Frank

    2016-11-01

    During entanglement in fishing gear, dolphins can suffer abrasions and amputations of flukes and fins. As a result, if the dolphin survives the ordeal, swimming performance is altered. Current rehabilitation technques is the use of prosthesis to regain swimming ability. In this work, analyses are focused on two dolphins with locomotive impairment; Winter (currently living in Clearwater Marine Aquarium in Florida) and Fuji (lived in Okinawa Churaumi Aquarium in Japan). Fuji lost about 75% of its fluke surface to necrosis (death of cells) and Winter lost its tail due to amputation. Both dolphins are aided by prosthetic tails that mimic the shape of a real dolphin tail. Using 3D surface reconstruction techniques and a high fidelity Computational Fluid Dynamics (CFD) flow solver, we were able to elucidate the kinematics and hydrodynamics and fluke deformation of these swimmers to clarify the effectiveness of prostheses in helping the dolphins regain their swimming ability. Associated with the performance, we identified distinct features in the wake structures that can explain this gap in the performance compared to a healthy dolphin. This work was supported by ONR MURI Grant Number N00014-14-1-0533.

  4. Morphological correlates of swimming activity in wild largemouth bass (Micropterus salmoides) in their natural environment.

    Science.gov (United States)

    Hanson, K C; Hasler, C T; Suski, C D; Cooke, S J

    2007-12-01

    Individual variation in morphology has been linked to organismal performance in numerous taxa. Recently, the relationship between functional morphology and swimming performance in teleost fishes has been studied in laboratory experiments. In this study, we evaluate the relationship between morphology and swimming activity of wild largemouth bass (Micropterus salmoides) during the reproductive period, providing the first data derived on free-swimming fish not exposed to forced swim trials in the laboratory. Sixteen male largemouth bass were angled from their nests, telemetered, and subsequently monitored by a whole-lake acoustic hydrophone array with sub-meter accuracy. Additionally, eleven morphological measurements were taken from digital images of each fish. A principal components analysis of the morphological measurements described 79.8% of the variance. PC1 was characterized by measures of overall body stoutness, PC2 was characterized by measures of the length and depth of the caudal region, and PC3 characterized individuals with relatively large anterior portions of the body and relatively small caudal areas. Of these variables, only PC3 showed significant relationships to swimming activity throughout the parental care period. PC3 was negatively correlated with multiple measures of swimming activity across the parental care period. Furthermore, swimming performance of individual male bass was noted to be repeatable across the parental care period indicating that this phenomenon extends beyond the laboratory.

  5. Swimming literacy field hockey woman player ground.

    OpenAIRE

    Baštová, Miroslava

    2012-01-01

    Title: Swimming literacy field hockey woman player ground. Objectives: To obtain and analyze data on the level ground swimming literacy field hockey woman player. Their perception swimming literacy for life, the use of non-specific regeneration and as a training resource. Methods: Analysis of scientific literature, survey, case study, data analysis and graphical presentation of results. Results of the work: field hockey player as swimming literate, benefits swimming but not used as a means of...

  6. Confirming the Value of Swimming-Performance Models for Adolescents.

    Science.gov (United States)

    Dormehl, Shilo J; Robertson, Samuel J; Barker, Alan R; Williams, Craig A

    2017-10-01

    To evaluate the efficacy of existing performance models to assess the progression of male and female adolescent swimmers through a quantitative and qualitative mixed-methods approach. Fourteen published models were tested using retrospective data from an independent sample of Dutch junior national-level swimmers from when they were 12-18 y of age (n = 13). The degree of association by Pearson correlations was compared between the calculated differences from the models and quadratic functions derived from the Dutch junior national qualifying times. Swimmers were grouped based on their differences from the models and compared with their swimming histories that were extracted from questionnaires and follow-up interviews. Correlations of the deviations from both the models and quadratic functions derived from the Dutch qualifying times were all significant except for the 100-m breaststroke and butterfly and the 200-m freestyle for females (P motivation appeared to be synonymous with higher-level career performance. This mixed-methods approach helped confirm the validity of the models that were found to be applicable to adolescent swimmers at all levels, allowing coaches to track performance and set goals. The value of the models in being able to account for the expected performance gains during adolescence enables quantification of peripheral factors that could affect performance.

  7. Swimming attendance during childhood and development of asthma: Meta-analysis.

    Science.gov (United States)

    Valeriani, Federica; Protano, Carmela; Vitali, Matteo; Romano Spica, Vincenzo

    2017-05-01

    The association between asthma and swimming pool attendance has not been demonstrated and currently there are conflicting results. In order to clarify the association between asthma diagnosis in children and swimming pool attendance, and to assess the consistency of the available epidemiological studies, we completed a literature analysis on the relationship between the exposure to disinfection by-products in indoor swimming pools during childhood and asthma diagnosis. Following the Meta-analysis of Observational Studies in Epidemiology (MOOSE) and Preferred Reporting Items for Systematic reviews and Meta-Analyses (PRISMA) criteria, a systematic review and meta-analysis was performed by searching MEDLINE via PubMed, TOXNET, and Scopus databases (from inception to 20 April 2015) using the key word "Asthma" together with "swimming pool", "disinfection by-products", "indoor air pollution" and "children". Inclusion criteria were: English language, a complete analytic study design involving a cohort of children (0-16 years), a well-defined definition of exposure, and the presence of data on effect and variance. Studies on in vivo, in vitro or professional and accidental exposure were excluded. After a screening process, seven reports (n = 5851 subjects) were included out of a total of 2928 references. The reported OR of the association between swimming pool attendance and asthma prevalence ranged from 0.58 to 2.30. The present meta-analysis failed to identify a significant difference in asthma development between children attending swimming pools and controls (OR, 1.084; 95% CI: 0.89-1.31). Swimming in childhood does not increase the likelihood of doctor-diagnosed asthma. Based on this meta-analysis review, the association of the disease with indoor pool attendance is still unclear. © 2016 Japan Pediatric Society.

  8. Start and turn performances of elite sprinters at the 2016 European Championships in swimming.

    Science.gov (United States)

    Morais, Jorge E; Marinho, Daniel A; Arellano, Raul; Barbosa, Tiago M

    2018-03-26

    The aim of this study was to examine the performance characteristics of male and female finalists in the 100-m distance at the 2016 European Championships in swimming (long-course-metre). The performances of all 64 (32-males and 32-females) were analysed (8 swimmers per event; Freestyle, Backstroke, Breaststroke and Butterfly). A set of start and turn parameters were analysed. In the start main outcome, male swimmers were faster in Butterfly (5.71 ± 0.14s) and females in Freestyle (6.68 ± 0.28s). In the turn main outcome, male and female swimmers were faster in Freestyle (males: 9.55 ± 0.13s; females: 10.78 ± 0.28s). A significant and strong stroke effect was noted in the start and turn main outcome, in both sexes. In the start plus the turn combined, males and females were faster in Freestyle (males: 15.40 ± 0.20s; females: 17.45 ± 0.54s). The start and the turn combined accounted almost one-third of the total race time in all events, and non-significant differences (p > 0.05) were noted across the four swim strokes. Once this research made evident the high relevance of start and turns, it is suggested that coaches and swimmers should dedicate an expressive portion of the training perfecting these actions.

  9. Coronary ligation reduces maximum sustained swimming speed in Chinook salmon, Oncorhynchus tshawytscha

    DEFF Research Database (Denmark)

    Farrell, A P; Steffensen, J F

    1987-01-01

    The maximum aerobic swimming speed of Chinook salmon (Oncorhynchus tshawytscha) was measured before and after ligation of the coronary artery. Coronary artery ligation prevented blood flow to the compact layer of the ventricular myocardium, which represents 30% of the ventricular mass, and produced...... a statistically significant 35.5% reduction in maximum swimming speed. We conclude that the coronary circulation is important for maximum aerobic swimming and implicit in this conclusion is that maximum cardiac performance is probably necessary for maximum aerobic swimming performance....

  10. Breaking the Myth That Relay Swimming Is Faster Than Individual Swimming.

    Science.gov (United States)

    Skorski, Sabrina; Etxebarria, Naroa; Thompson, Kevin G

    2016-04-01

    To investigate if swimming performance is better in a relay race than in the corresponding individual race. The authors analyzed 166 elite male swimmers from 15 nations in the same competition (downloaded from www.swimrankings.net). Of 778 observed races, 144 were Olympic Games performances (2000, 2004, 2012), with the remaining 634 performed in national or international competitions. The races were 100-m (n = 436) and 200-m (n = 342) freestyle events. Relay performance times for the 2nd-4th swimmers were adjusted (+ 0.73 s) to allow for the "flying start." Without any adjustment, mean individual relay performances were significantly faster for the first 50 m and overall time in the 100-m events. Furthermore, the first 100 m of the 200-m relay was significantly faster (P > .001). During relays, swimmers competing in 1st position did not show any difference compared with their corresponding individual performance (P > .16). However, swimmers competing in 2nd-4th relay-team positions demonstrated significantly faster times in the 100-m (P individual events (P team positions were adjusted for the flying start no differences were detected between relay and individual race performance for any event or split time (P > .17). Highly trained swimmers do not swim (or turn) faster in relay events than in their individual races. Relay exchange times account for the difference observed in individual vs relay performance.

  11. The Fluid Dynamics of Competitive Swimming

    Science.gov (United States)

    Wei, Timothy; Mark, Russell; Hutchison, Sean

    2014-01-01

    Nowhere in sport is performance so dependent on the interaction of the athlete with the surrounding medium than in competitive swimming. As a result, understanding (at least implicitly) and controlling (explicitly) the fluid dynamics of swimming are essential to earning a spot on the medal stand. This is an extremely complex, highly multidisciplinary problem with a broad spectrum of research approaches. This review attempts to provide a historical framework for the fluid dynamics-related aspects of human swimming research, principally conducted roughly over the past five decades, with an emphasis on the past 25 years. The literature is organized below to show a continuous integration of computational and experimental technologies into the sport. Illustrations from the authors' collaborations over a 10-year period, coupling the knowledge and experience of an elite-level coach, a lead biomechanician at USA Swimming, and an experimental fluid dynamicist, are intended to bring relevance and immediacy to the review.

  12. Effect of the Pacing Strategies on the Open Water 10km World Swimming Championships Performances.

    Science.gov (United States)

    Rodriguez, Luis; Veiga, Santiago

    2017-10-16

    The aim of the present research was 1) to compare the pacing strategies of different level open water swimmers during the 10km race of the FINA 2015 World Swimming Championships (WCH), and 2) to relate these pacing strategies to the race performance. Final and intermediate split times as well as intermediate race positions from the 10-kilometer race participants (69 men and 51 women) were collected from the public domain and were divided into five groups (G1 to G5) depending on their finishing positions. Medalists and finalists (G1 and G2, respectively) presented an even pacing profile with similar swimming velocities to the less successful swimmers (G3 to G5) on the initial and mid stages of the race but a 1.5-3% increase in swimming velocity in the last quarter of the race. This fast end spurt was largely related to the race performance and was not observed in the G3 and G4 (even-paced profile) or in the G5 (positive pacing profile) groups. Intermediate race positions and lap rankings were negatively related to finishing position indicating a delayed positioning of the most successful swimmers at 25%, 50% and 75% of race distance. The adoption of a conservative starting strategy by open water swimmers with a negative pacing profile and delayed partial positioning seems to increase the chances of overall race success as it allows a fast end spurt that is highly related to successful finishing race positions.

  13. SWIM (Soil and Water Integrated Model)

    Energy Technology Data Exchange (ETDEWEB)

    Krysanova, V; Wechsung, F; Arnold, J; Srinivasan, R; Williams, J

    2000-12-01

    The model SWIM (Soil and Water Integrated Model) was developed in order to provide a comprehensive GIS-based tool for hydrological and water quality modelling in mesoscale and large river basins (from 100 to 10,000 km{sup 2}), which can be parameterised using regionally available information. The model was developed for the use mainly in Europe and temperate zone, though its application in other regions is possible as well. SWIM is based on two previously developed tools - SWAT and MATSALU (see more explanations in section 1.1). The model integrates hydrology, vegetation, erosion, and nutrient dynamics at the watershed scale. SWIM has a three-level disaggregation scheme 'basin - sub-basins - hydrotopes' and is coupled to the Geographic Information System GRASS (GRASS, 1993). A robust approach is suggested for the nitrogen and phosphorus modelling in mesoscale watersheds. SWIM runs under the UNIX environment. Model test and validation were performed sequentially for hydrology, crop growth, nitrogen and erosion in a number of mesoscale watersheds in the German part of the Elbe drainage basin. A comprehensive scheme of spatial disaggregation into sub-basins and hydrotopes combined with reasonable restriction on a sub-basin area allows performing the assessment of water resources and water quality with SWIM in mesoscale river basins. The modest data requirements represent an important advantage of the model. Direct connection to land use and climate data provides a possibility to use the model for analysis of climate change and land use change impacts on hydrology, agricultural production, and water quality. (orig.)

  14. Pop up satellite tags impair swimming performance and energetics of the European eel (Anguilla anguilla)

    DEFF Research Database (Denmark)

    Methling, Caroline; Tudorache, Christian; Skov, Peter Vilhelm

    2011-01-01

    Pop-up satellite archival tags (PSATs) have recently been applied in attempts to follow the oceanic spawning migration of the European eel. PSATs are quite large, and in all likelihood their hydraulic drag constitutes an additional cost during swimming, which remains to be quantified, as does...... the potential implication for successful migration. Silver eels (L(T)=598.6 +/- 29 mm SD, N = 9) were subjected to swimming trials in a Steffensen-type swim tunnel at increasing speeds of 0.3-0.9 body lengths s(-1), first without and subsequently with, a scaled down PSAT dummy attached. The tag significantly...... increased oxygen consumption (MO(2)) during swimming and elevated minimum cost of transport (COT(min)) by 26 Standard (SMR) and active metabolic rate (AMR) as well as metabolic scope remained unaffected, suggesting that the observed effects were caused by increased drag. Optimal swimming speed (U...

  15. PROPERTIES OF SWIMMING WATER

    Directory of Open Access Journals (Sweden)

    Tayfun KIR

    2004-10-01

    Full Text Available Swimming waters may be hazardous on human health. So, The physicians who work in the facilities, which include swimming areas, are responsible to prevent risks. To ensure hygiene of swimming water, European Swimming Water Directive offers microbiological, physical, and chemical criteria. [TAF Prev Med Bull 2004; 3(5.000: 103-104

  16. Locomotor activity during the frenzy swim: analysing early swimming behaviour in hatchling sea turtles.

    Science.gov (United States)

    Pereira, Carla M; Booth, David T; Limpus, Colin J

    2011-12-01

    Swimming effort of hatchling sea turtles varies across species. In this study we analysed how swim thrust is produced in terms of power stroke rate, mean maximum thrust per power stroke and percentage of time spent power stroking throughout the first 18 h of swimming after entering the water, in both loggerhead and flatback turtle hatchlings and compared this with previous data from green turtle hatchlings. Loggerhead and green turtle hatchlings had similar power stroke rates and percentage of time spent power stroking throughout the trial, although mean maximum thrust was always significantly higher in green hatchlings, making them the most vigorous swimmers in our three-species comparison. Flatback hatchlings, however, were different from the other two species, with overall lower values in all three swimming variables. Their swimming effort dropped significantly during the first 2 h and kept decreasing significantly until the end of the trial at 18 h. These results support the hypothesis that ecological factors mould the swimming behaviour of hatchling sea turtles, with predator pressure being important in determining the strategy used to swim offshore. Loggerhead and green turtle hatchlings seem to adopt an intensely vigorous and energetically costly frenzy swim that would quickly take them offshore into the open ocean in order to reduce their exposure to near-shore aquatic predators. Flatback hatchlings, however, are restricted in geographic distribution and remain within the continental shelf region where predator pressure is probably relatively constant. For this reason, flatback hatchlings might use only part of their energy reserves during a less vigorous frenzy phase, with lower overall energy expenditure during the first day compared with loggerhead and green turtle hatchlings.

  17. Critical stroke rate as a parameter for evaluation in swimming

    Directory of Open Access Journals (Sweden)

    Marcos Franken

    2013-12-01

    Full Text Available The purpose of this study was to investigate the critical stroke rate (CSR compared to the average stroke rate (SR when swimming at the critical speed (CS. Ten competitive swimmers performed five 200 m trials at different velocities relative to their CS (90, 95, 100, 103 and 105% in front crawl. The CSR was significantly higher than the SR at 90% of the CS and lower at 105% of the CS. Stroke length (SL at 103 and 105% of the CS were lower than the SL at 90, 95, and 100% of the CS. The combination of the CS and CSR concepts can be useful for improving both aerobic capacity/power and technique. CS and CSR could be used to reduce the SR and increase the SL, when swimming at the CS pace, or to increase the swimming speed when swimming at the CSR.

  18. Estimating energy expenditure during front crawl swimming using accelerometers

    DEFF Research Database (Denmark)

    Nordsborg, Nikolai Baastrup; Espinosa, Hugo G.; Van Thiel, David H

    2014-01-01

    The determination of energy expenditure is of major interest in training load and performance assessment. Small, wireless accelerometer units have the potential to characterise energy expenditure during swimming. The correlation between absorbed oxygen versus flume swimming speed and absorbed oxy...

  19. Improved Function and Reduced Pain after Swimming and Cycling Training in Patients with Osteoarthritis.

    Science.gov (United States)

    Alkatan, Mohammed; Baker, Jeffrey R; Machin, Daniel R; Park, Wonil; Akkari, Amanda S; Pasha, Evan P; Tanaka, Hirofumi

    2016-03-01

    Arthritis and its associated joint pain act as significant barriers for adults attempting to perform land-based physical activity. Swimming can be an ideal form of exercise for patients with arthritis. Yet there is no information on the efficacy of regular swimming exercise involving patients with arthritis. The effect of a swimming exercise intervention on joint pain, stiffness, and physical function was evaluated in patients with osteoarthritis (OA). Using a randomized study design, 48 sedentary middle-aged and older adults with OA underwent 3 months of either swimming or cycling exercise training. Supervised exercise training was performed for 45 min/day, 3 days/week at 60-70% heart rate reserve for 12 weeks. The Western Ontario and McMaster Universities Arthritis Index was used to measure joint pain, stiffness, and physical limitation. After the exercise interventions, there were significant reductions in joint pain, stiffness, and physical limitation accompanied by increases in quality of life in both groups (all p swimming and cycling training. Regular swimming exercise reduced joint pain and stiffness associated with OA and improved muscle strength and functional capacity in middle-aged and older adults with OA. Additionally, the benefits of swimming exercise were similar to the more frequently prescribed land-based cycling training. clinicaltrials.gov NCT01836380.

  20. Swimming-pool piles

    International Nuclear Information System (INIS)

    Trioulaire, M.

    1959-01-01

    In France two swimming-pool piles, Melusine and Triton, have just been set in operation. The swimming-pool pile is the ideal research tool for neutron fluxes of the order of 10 13 . This type of pile can be of immediate interest to many research centres, but its cost must be reduced and a break with tradition should be observed in its design. It would be an advantage: - to bury the swimming-pool; - to reject the experimental channel; - to concentrate the cooling circuit in the swimming-pool; - to carry out all manipulations in the water; - to double the core. (author) [fr

  1. The Physiology and Mechanics of Undulatory Swimming: A Student Laboratory Exercise Using Medicinal Leeches

    Science.gov (United States)

    Ellerby, David J.

    2009-01-01

    The medicinal leech is a useful animal model for investigating undulatory swimming in the classroom. Unlike many swimming organisms, its swimming performance can be quantified without specialized equipment. A large blood meal alters swimming behavior in a way that can be used to generate a discussion of the hydrodynamics of swimming, muscle…

  2. Effect of swimming exercise on three-dimensional trabecular bone microarchitecture in ovariectomized rats.

    Science.gov (United States)

    Ju, Yong-In; Sone, Teruki; Ohnaru, Kazuhiro; Tanaka, Kensuke; Fukunaga, Masao

    2015-11-01

    Swimming is generally considered ineffective for increasing bone mass in humans, at least compared with weight-bearing sports. However, swimming exercise has sometimes been shown to have a strong positive effect on bone mass in small animals. This study investigated the effects of swimming on bone mass, strength, and microarchitecture in ovariectomized (OVX) rats. OVX or sham operations were performed on 18-wk-old female Fisher 344 rats. Rats were randomly divided into four groups: sham sedentary (Sham-CON), sham swimming exercised (Sham-SWI), OVX sedentary (OVX-CON), and OVX swimming exercised (OVX-SWI). Rats in exercise groups performed swimming in a water bath for 60 min/day, 5 days/wk, for 12 wk. Bone mineral density (BMD) in right femurs was analyzed using dual-energy X-ray absorptiometry. Three-dimensional trabecular architecture at the distal femoral metaphysis was analyzed using microcomputed tomography (μCT). Geometrical properties of diaphyseal cortical bone were evaluated in the midfemoral region using μCT. The biomechanical properties of femurs were analyzed using three-point bending. Femoral BMD was significantly decreased following ovariectomy. This change was suppressed by swimming. Trabecular bone thickness, number, and connectivity were decreased by ovariectomy, whereas structure model index (i.e., ratio of rod-like to plate-like trabeculae) increased. These changes were also suppressed by swimming exercise. Femurs displayed greater cortical width and maximum load in SWI groups than in CON groups. Together, these results demonstrate that swimming exercise drastically alleviated both OVX-induced decreases in bone mass and mechanical strength and the deterioration of trabecular microarchitecture in rat models of osteoporosis. Copyright © 2015 the American Physiological Society.

  3. Machine learning of swimming data via wisdom of crowd and regression analysis.

    Science.gov (United States)

    Xie, Jiang; Xu, Junfu; Nie, Celine; Nie, Qing

    2017-04-01

    Every performance, in an officially sanctioned meet, by a registered USA swimmer is recorded into an online database with times dating back to 1980. For the first time, statistical analysis and machine learning methods are systematically applied to 4,022,631 swim records. In this study, we investigate performance features for all strokes as a function of age and gender. The variances in performance of males and females for different ages and strokes were studied, and the correlations of performances for different ages were estimated using the Pearson correlation. Regression analysis show the performance trends for both males and females at different ages and suggest critical ages for peak training. Moreover, we assess twelve popular machine learning methods to predict or classify swimmer performance. Each method exhibited different strengths or weaknesses in different cases, indicating no one method could predict well for all strokes. To address this problem, we propose a new method by combining multiple inference methods to derive Wisdom of Crowd Classifier (WoCC). Our simulation experiments demonstrate that the WoCC is a consistent method with better overall prediction accuracy. Our study reveals several new age-dependent trends in swimming and provides an accurate method for classifying and predicting swimming times.

  4. The effects of swimming exercise and dissolved oxygen on growth performance, fin condition and precocious maturation of early-rearing Atlantic salmon Salmo salar

    Science.gov (United States)

    Waldrop, Thomas; Summerfelt, Steven T.; Mazik, Patricia M.; Good, Christopher

    2018-01-01

    Swimming exercise, typically measured in body-lengths per second (BL/s), and dissolved oxygen (DO), are important environmental variables in fish culture. While there is an obvious physiological association between these two parameters, their interaction has not been adequately studied in Atlantic salmon Salmo salar. Because exercise and DO are variables that can be easily manipulated in modern aquaculture systems, we sought to assess the impact of these parameters, alone and in combination, on the performance, health and welfare of juvenile Atlantic salmon. In our study, Atlantic salmon fry were stocked into 12 circular 0.5 m3 tanks in a flow-through system and exposed to either high (1.5–2 BL/s) or low (exercise and DO concentration on growth, feed conversion, survival and fin condition. By study's end, both increased swimming speed and higher DO were independently associated with a statistically significant increase in growth performance (p exercise and dissolved oxygen at saturation during Atlantic salmon early rearing can result in improved growth performance and a lower incidence of precocious parr.

  5. The role of students’ self-confidence in relation with swimming routines, frequency, and tutor in swimming class

    Science.gov (United States)

    Hartoto, S.; Khory, F. D.; Prakoso, B. B.

    2018-01-01

    It is compulsory for prospective physical education teachers to have the ability to perform swimming. The average of students’ passing in swimming class has reached 72%. Most students who failed to pass the class are those who have had aquaphobia, the condition in which one failed to perceive a situation in a positive and objective, some of which are hard to detect. This perception may come from past experience and it could diminish students’ confidence. Furthermore, the lack of confidence in students may cause unsatisfactory learning results. Therefore it is critical for the teachers to have a comprehensive knowledge of their students’ past experience in formulating a lesson. This research used descriptive qualitative approach. The aim of this article is to investigate the correlation between students’ confidence level and swimming routines, frequency, and tutors in order to succeed swimming class. This article will attempt to describe the results of a research conducted to 139 students of Department of Sport Education Universitas Negeri Surabaya as prospective physical education teachers in Indonesia who took swimming class. Past experience and confidence level are measured by a questionnaire. The results of the research show that students who have a higher level of confidence are those who follow practice routines with adequate frequency and helped by a compatible tutor.

  6. Species-specific patterns of swimming escape performance and cholinesterase activity in a guild of aquatic insects exposed to endosulfan

    International Nuclear Information System (INIS)

    Trekels, Hendrik; Van de Meutter, Frank; Stoks, Robby

    2012-01-01

    Next to imposing direct lethal effects, pollutants may also indirectly impose mortality by making prey organisms more vulnerable to predation. We report that four water boatmen species differed strongly in direct endosulfan-imposed mortality, and only the species that suffered highest mortality, Sigara iactans, also showed a reduction in escape swimming speed. While head AChE activity was inhibited in all four species, body ChE was only inhibited in S. iactans where it covaried with escape swimming speed, indicating a mechanistic link between body ChE and swimming speed. Our study underscores the need for risk assessment to consider sublethal pollutant effects, which may considerably affect survival rates under natural conditions, also when testing concentrations of a pesticide that cause direct mortality. Such sublethal effects may generate discrepancies between laboratory and field studies and should be considered when designing safety factors for toxicants where the risk assessment is solely based on LC50 values. - Highlights: ► Endosulfan, even at lethal levels, did not affect swimming propensity when attacked. ► Endosulfan reduced escape swimming in one out of four tested corixid species. ► Lower body ChE levels were associated with a slower escape speed in one species. ► Head AChE activity was more sensitive to endosulfan than body ChE. ► Endosulfan had strongly different effects on the closely related species. - Endosulfan only detectably reduced escape swimming speed in one of the four studied water boatmen species and this was associated with an inhibition of body ChE.

  7. The influence of elements of synchronized swimming on technique of the selected swimming strokes

    OpenAIRE

    Široký, Michal

    2015-01-01

    Title: The influence of elements of synchronized swimming on technique of the selected swimming strokes Objectives: The objective of the thesis is to assess the effect of the elements of synchronized swimming at improving the techniques of swimming. Methods: The results were detected by overt observation with active participation and subsequent scaling on the ordinal scale 1 to 5. Results: The results show that the influence of the elements of synchronized swimming on improving the technique ...

  8. Effect of beetroot juice supplementation on aerobic response during swimming.

    Science.gov (United States)

    Pinna, Marco; Roberto, Silvana; Milia, Raffaele; Marongiu, Elisabetta; Olla, Sergio; Loi, Andrea; Migliaccio, Gian Mario; Padulo, Johnny; Orlandi, Carmine; Tocco, Filippo; Concu, Alberto; Crisafulli, Antonio

    2014-01-29

    The beneficial effects of beetroot juice supplementation (BJS) have been tested during cycling, walking, and running. The purpose of the present study was to investigate whether BJS can also improve performance in swimmers. Fourteen moderately trained male master swimmers were recruited and underwent two incremental swimming tests randomly assigned in a pool during which workload, oxygen uptake (VO₂), carbon dioxide production (VCO₂), pulmonary ventilation (VE), and aerobic energy cost (AEC) of swimming were measured. One was a control swimming test (CSW) and the other a swimming test after six days of BJS (0.5 l/day organic beetroot juice containing about 5.5 mmol of NO₃⁻). Results show that workload at anaerobic threshold was significantly increased by BJS as compared to the CSW test (6.3 ± 1 and 6.7 ± 1.1 kg during the CSW and the BJS test respectively). Moreover, AEC was significantly reduced during the BJS test (1.9 ± 0.5 during the SW test vs. 1.7 ± 0.3 kcal·kg⁻¹1·h⁻¹ during the BJS test). The other variables lacked a statistically significant effect with BJS. The present investigation provides evidence that BJS positively affects performance of swimmers as it reduces the AEC and increases the workload at anaerobic threshold.

  9. SWIM: A Semi-Analytical Ocean Color Inversion Algorithm for Optically Shallow Waters

    Science.gov (United States)

    McKinna, Lachlan I. W.; Werdell, P. Jeremy; Fearns, Peter R. C. S.; Weeks, Scarla J.; Reichstetter, Martina; Franz, Bryan A.; Bailey, Sean W.; Shea, Donald M.; Feldman, Gene C.

    2014-01-01

    In clear shallow waters, light that is transmitted downward through the water column can reflect off the sea floor and thereby influence the water-leaving radiance signal. This effect can confound contemporary ocean color algorithms designed for deep waters where the seafloor has little or no effect on the water-leaving radiance. Thus, inappropriate use of deep water ocean color algorithms in optically shallow regions can lead to inaccurate retrievals of inherent optical properties (IOPs) and therefore have a detrimental impact on IOP-based estimates of marine parameters, including chlorophyll-a and the diffuse attenuation coefficient. In order to improve IOP retrievals in optically shallow regions, a semi-analytical inversion algorithm, the Shallow Water Inversion Model (SWIM), has been developed. Unlike established ocean color algorithms, SWIM considers both the water column depth and the benthic albedo. A radiative transfer study was conducted that demonstrated how SWIM and two contemporary ocean color algorithms, the Generalized Inherent Optical Properties algorithm (GIOP) and Quasi-Analytical Algorithm (QAA), performed in optically deep and shallow scenarios. The results showed that SWIM performed well, whilst both GIOP and QAA showed distinct positive bias in IOP retrievals in optically shallow waters. The SWIM algorithm was also applied to a test region: the Great Barrier Reef, Australia. Using a single test scene and time series data collected by NASA's MODIS-Aqua sensor (2002-2013), a comparison of IOPs retrieved by SWIM, GIOP and QAA was conducted.

  10. Benefits and Enjoyment of a Swimming Intervention for Youth With Cerebral Palsy: An RCT Study.

    Science.gov (United States)

    Declerck, Marlies; Verheul, Martine; Daly, Daniel; Sanders, Ross

    2016-01-01

    To investigate enjoyment and specific benefits of a swimming intervention for youth with cerebral palsy (CP). Fourteen youth with CP (aged 7 to 17 years, Gross Motor Function Classification System levels I to III) were randomly assigned to control and swimming groups. Walking ability, swimming skills, fatigue, and pain were assessed at baseline, after a 10-week swimming intervention (2/week, 40-50 minutes) or control period, after a 5-week follow-up and, for the intervention group, after a 20-week follow-up period. The level of enjoyment of each swim-session was assessed. Levels of enjoyment were high. Walking and swimming skills improved significantly more in the swimming than in the control group (P = .043; P = .002, respectively), whereas fatigue and pain did not increase. After 20 weeks, gains in walking and swimming skills were retained (P = .017; P = .016, respectively). We recommend a swimming program for youth with CP to complement a physical therapy program.

  11. SWIM EVERYDAY TO KEEP DEMENTIA AWAY

    Directory of Open Access Journals (Sweden)

    Nirmal Singh

    2005-03-01

    Full Text Available A sound mind resides in a sound body. Many individuals with an active lifestyle show sharp mental skills at an advanced age. Regular exercise has been shown to exert numerous beneficial effects on brawn as well as brain. The present study was undertaken to evaluate the influence of swimming on memory of rodents. A specially designed hexagonal water maze was used for the swimming exposures of animals. The learning and memory parameters were measured using exteroceptive behavioral models such as Elevated plus-maze, Hebb-Williams maze and Passive avoidance apparatus. The rodents (rats and mice were divided into twelve groups. The swimming exposure to the rodents was for 10- minute period during each session and there were two swimming exposures on each day. Rats and mice were subjected to swimming for -15 and -30 consecutive days. Control group animals were not subjected to swimming during above period. The learning index and memory score of all the animals was recorded on 1st, 2nd, 15th, 16th, 30th and 31st day employing above exteroceptive models. It was observed that rodents that underwent swimming regularly for 30- days showed sharp memories, when tested on above behavioral models whereas, control group animals showed decline in memory scores. Those animals, which underwent swimming for 15- days only showed good memory on 16th day, which however, declined after 30-days. These results emphasize the role of regular physical exercise particularly swimming in the maintenance and promotion of brain functions. The underlying physiological mechanism for improvement of memory appears to be the result of enhanced neurogenesis.

  12. Studies of evolutionary temperature adaptation: muscle function and locomotor performance in Antarctic fish.

    Science.gov (United States)

    Franklin, C E

    1998-09-01

    1. Studies of evolutionary temperature adaptation of muscle and locomotor performance in fish are reviewed with a focus on the Antarctic fauna living at subzero temperatures. 2. Only limited data are available to compare the sustained and burst swimming kinematics and performance of Antarctic, temperate and tropical species. Available data indicate that low temperatures limit maximum swimming performance and this is especially evident in fish larvae. 3. In a recent study, muscle performance in the Antarctic rock cod Notothenia coriiceps at 0 degree C was found to be sufficient to produce maximum velocities during burst swimming that were similar to those seen in the sculpin Myoxocephalus scorpius at 10 degrees C, indicating temperature compensation of muscle and locomotor performance in the Antarctic fish. However, at 15 degrees C, sculpin produce maximum swimming velocities greater than N. coriiceps at 0 degree C. 4. It is recommended that strict hypothesis-driven investigations using ecologically relevant measures of performance are undertaken to study temperature adaptation in Antarctic fish. Recent detailed phylogenetic analyses of the Antarctic fish fauna and their temperate relatives will allow a stronger experimental approach by helping to separate what is due to adaptation to the cold and what is due to phylogeny alone.

  13. Analysis of Sport Nutrition and Diet for Swimming Athletes

    OpenAIRE

    Jun An

    2014-01-01

    This current study analyzed nutrition and dietary structure of swimming athletes to clarify issues in nutrition and dietary structure of swimming athletes, based on which we designed achievable nutrition and diet strategies to equip the swimming athletes with the tools to achieve an adequate sport nutrition which helps them improve results. Firstly, we collected literatures about nutrition and diet of swimming athletes. Secondly, 40 swimming athletes were assigned to the test group and the co...

  14. Swimming pool granuloma

    Science.gov (United States)

    ... this page: //medlineplus.gov/ency/article/001357.htm Swimming pool granuloma To use the sharing features on this page, please enable JavaScript. A swimming pool granuloma is a long-term (chronic) skin ...

  15. Diarrhea and Swimming

    Science.gov (United States)

    ... 888) 232-6348 Contact CDC–INFO Healthy Swimming Health Benefits of Water-based Exercise Swimmer Protection Steps of ... Disinfection Microbial Testing & Disinfection Swimming Pool Chemicals Injuries & Outdoor Health International Recreational Water RWIs, Swimmer Hygiene, & Behavioral ...

  16. EFFECTS OF DISTANCE SPECIALIZATION ON THE BACKSTROKE SWIMMING KINEMATICS

    Directory of Open Access Journals (Sweden)

    Cortesi Matteo

    2012-09-01

    Full Text Available The purpose of the present study was to investigate different biomechanical variables of backstroke technique in swimmers specialized in different distance events, in order to investigate the capacity to modify the timing of the arm stroke when changing the swimming velocity from sub-maximal to maximal. Two 25-m backstroke trials respectively at 70% of maximum velocity (V70 and at 100% of maximum velocity (Vmax were performed by 9 200-m distance swimmers and 9 50-m distance swimmers. Swimming velocity, stroke length, stroke rate, duration of different phases of the arm stroke and selected kinematic variables were assessed in both cases. In the 50-m distance swimmers, the duration of the propulsive phase at Vmax, expressed as a percentage of the duration of the total underwater arm stroke, increased significantly (p = 0.001 with increasing swimming velocity. Specifically, both the pull and push phases were fundamental in the increase of duration of the propulsive phase. When compared to 200-m specialists, 50-m distance swimmers seem to be more able to modify their arm stroke phases duration when increasing the swimming velocity in backstroke

  17. Health impact of disinfection by-products in swimming pools

    Directory of Open Access Journals (Sweden)

    Cristina M. Villanueva

    2012-12-01

    Full Text Available This article is focused on the epidemiological evidence on the health impacts related to disinfection by-products (DBPs in swimming pools, which is a chemical hazard generated as an undesired consequence to reduce the microbial pathogens. Specific DBPs are carcinogenic, fetotoxic and/or irritant to the airways according to experimental studies. Epidemiological evidence shows that swimming in pools during pregnancy is not associated with an increased risk of reproductive outcomes. An epidemiological study suggested an increased risk of bladder cancer with swimming pool attendance, although evidence is inconclusive. A higher prevalence of respiratory symptoms including asthma is found among swimming pool workers and elite swimmers, although the causality of this association is unclear. The body of evidence in children indicates that asthma is not increased by swimming pool attendance. Overall, the available knowledge suggests that the health benefits of swimming outweigh the potential health risks of chemical contamination. However, the positive effects of swimming should be enhanced by minimising potential risks.

  18. Swimming dynamics of bidirectional artificial flagella

    NARCIS (Netherlands)

    Namdeo, S.; Khaderi, S. N.; Onck, P. R.

    2013-01-01

    We study magnetic artificial flagella whose swimming speed and direction can be controlled using light and magnetic field as external triggers. The dependence of the swimming velocity on the system parameters (e. g., length, stiffness, fluid viscosity, and magnetic field) is explored using a

  19. Swimming and muscle structure in fish

    NARCIS (Netherlands)

    Spierts, I.L.Y.

    1999-01-01

    In this series of studies the relations between swimming behaviour of fish in general and extreme swimming responses in particular (called fast starts or escape responses) and the structure and ontogeny of the muscle system was investigated. Special attention was paid to relate functional

  20. EFFECTIVENESS OF DOUBLE WASH SWIM-UP VERSUS DOUBLE DENSITY GRADIENT SWIM-UP TECHNIQUE OF SPERM PREPARATION IN IN VITRO FERTILISATION

    Directory of Open Access Journals (Sweden)

    Srinivas Sangisapu

    2017-10-01

    Full Text Available BACKGROUND Recovery of optimum number of good quality of spermatozoa is an important component of In Vitro Fertilisation (IVF. This is achieved by sperm preparation methods involving separation and recovery of capacitated sperms. Double Wash Swim-up (DWSU and Double Density Gradient Swim-up (DDGSU are two most accepted methods. Cochrane systematic review (2007 finds no clear benefit of one method over the other in Intrauterine Insemination (IUI. Systematic review on effectiveness of these preparations in IVF is lacking. Effectiveness is generally assessed in terms recovery rates of the sperms. Capability of successful fertilisation of good quality oocytes should ideally be the functional endpoint for evaluating effectiveness of sperm preparation methods. The aim of the study is to1. Compare the successful fertilisation rates of oocytes inseminated by semen preparation of Double Wash Swim-up (DWSU vis-a-vis by Double Density Gradient Swim-up (DDGSU method. 2. Evaluate the effectiveness of fertilisation of oocytes by Double Wash Swim-up method (DWSU vis-a-vis Double Density Gradient Swim-up (DDGSU method. MATERIALS AND METHODS A retrospective cohort study was conducted on infertile couples undergoing IVF from June 2014 to June 2017 at an ART Centre of a tertiary care hospital. The male partners were normozoospermic and female partners were normoresponsive to controlled ovarian stimulation and oocyte retrieval. RESULTS 70 male partners were subjected to double wash swim-up and 64 underwent double density gradient swim-up preparation. 1296 good quality oocytes were retrieved in their respective female partners. 452 (61% out of 742 oocytes were successfully fertilised after insemination by semen prepared by DWSU method. 378 (68% oocytes out of 554 were fertilised by insemination with semen prepared by DDGSU method. There seems to be strong association (RR=1.12 of fertilisation success with oocytes exposed to semen prepared by Double Density Gradient

  1. Swimming Training Reduces Neuroma Pain by Regulating Neurotrophins.

    Science.gov (United States)

    Tian, Jinge; Yu, Tingting; Xu, Yongming; Pu, Shaofeng; Lv, Yingying; Zhang, Xin; DU, Dongping

    2018-01-01

    Neuroma formation after peripheral nerve transection leads to severe neuropathic pain in amputees. Previous studies suggested that physical exercise could bring beneficial effect on alleviating neuropathic pain. However, the effect of exercise on neuroma pain still remained unclear. In addition, long-term exercise can affect the expression of neurotrophins (NT), such as nerve growth factor (NGF) and brain-derived neurotrophic factor (BDNF), which play key roles in nociceptor sensitization and nerve sprouting after nerve injury. Here, we investigated whether long-term swimming exercise could relieve neuroma pain by modulating NT expression. We used a tibial neuroma transposition (TNT) rat model to mimic neuroma pain. After TNT surgery, rats performed swimming exercise for 5 wk. Neuroma pain and tactile sensitivities were detected using von Frey filaments. Immunofluorescence was applied to analyze neuroma formation. NGF and BDNF expressions in peripheral neuroma, dorsal root ganglion, and the spinal cord were measured using enzyme-linked immunosorbent assay and Western blotting. TNT led to neuroma formation, induced neuroma pain, and mechanical allodynia in hind paw. Five-week swimming exercise inhibited neuroma formation and relieved mechanical allodynia in the hind paw and neuroma pain in the lateral ankle. The analgesic effect lasted for at least 1 wk, even when the exercise ceased. TNT elevated the expressions of BDNF and NGF in peripheral neuroma, dorsal root ganglion, and the spinal cord to different extents. Swimming also decreased the elevation of NT expression. Swimming exercise not only inhibits neuroma formation induced by nerve transection but also relieves pain behavior. These effects might be associated with the modulation of NT.

  2. Effect of Beetroot Juice Supplementation on Aerobic Response during Swimming

    Directory of Open Access Journals (Sweden)

    Marco Pinna

    2014-01-01

    Full Text Available The beneficial effects of beetroot juice supplementation (BJS have been tested during cycling, walking, and running. The purpose of the present study was to investigate whether BJS can also improve performance in swimmers. Fourteen moderately trained male master swimmers were recruited and underwent two incremental swimming tests randomly assigned in a pool during which workload, oxygen uptake (VO2, carbon dioxide production (VCO2, pulmonary ventilation (VE, and aerobic energy cost (AEC of swimming were measured. One was a control swimming test (CSW and the other a swimming test after six days of BJS (0.5l/day organic beetroot juice containing about 5.5 mmol of NO3−. Results show that workload at anaerobic threshold was significantly increased by BJS as compared to the CSW test (6.3 ± 1 and 6.7 ± 1.1 kg during the CSW and the BJS test respectively. Moreover, AEC was significantly reduced during the BJS test (1.9 ± 0.5 during the SW test vs. 1.7 ± 0.3 kcal·kg−1·h−1 during the BJS test. The other variables lacked a statistically significant effect with BJS. The present investigation provides evidence that BJS positively affects performance of swimmers as it reduces the AEC and increases the workload at anaerobic threshold.

  3. Swimming ability and physiological response to swimming fatigue in ...

    African Journals Online (AJOL)

    The swimming endurance of kuruma shrimp, Marsupenaeus japonicus (11.04 ± 2.43 g) at five swimming speeds (23.0, 26.7, 31.0, 34.6 and 38.6 cm s-1) was determined in a circulating flume at 25.7 ± 0.7°C. The plasma glucose and total protein, hepatopancreas and pleopods muscle glycogen concentrations were ...

  4. Automated visual tracking for studying the ontogeny of zebrafish swimming

    NARCIS (Netherlands)

    Fontaine, E.; Lentink, D.; Kranenbarg, S.; Müller, U.K.; Leeuwen, van J.L.; Barr, A.H.; Burdick, J.W.

    2008-01-01

    The zebrafish Danio rerio is a widely used model organism in studies of genetics, developmental biology, and recently, biomechanics. In order to quantify changes in swimming during all stages of development, we have developed a visual tracking system that estimates the posture of fish. Our current

  5. Swimming speed alteration of Artemia sp. and Brachionus plicatilis as a sub-lethal behavioural end-point for ecotoxicological surveys.

    Science.gov (United States)

    Garaventa, Francesca; Gambardella, Chiara; Di Fino, Alessio; Pittore, Massimiliano; Faimali, Marco

    2010-03-01

    In this study, we investigated the possibility to improve a new behavioural bioassay (Swimming Speed Alteration test-SSA test) using larvae of marine cyst-forming organisms: e.g. the brine shrimp Artemia sp. and the rotifer Brachionus plicatilis. Swimming speed was investigated as a behavioural end-point for application in ecotoxicology studies. A first experiment to analyse the linear swimming speed of the two organisms was performed to verify the applicability of the video-camera tracking system, here referred to as Swimming Behavioural Recorder (SBR). A second experiment was performed, exposing organisms to different toxic compounds (zinc pyrithione, Macrotrol MT-200, and Eserine). Swimming speed alteration was analyzed together with mortality. The results of the first experiment indicate that SBR is a suitable tool to detect linear swimming speed of the two organisms, since the values have been obtained in accordance with other studies using the same organisms (3.05 mm s(-1) for Artemia sp. and 0.62 mm s(-1) for B. plicatilis). Toxicity test results clearly indicate that swimming speed of Artemia sp. and B. plicatilis is a valid behavioural end-point to detect stress at sub-lethal toxic substance concentrations. Indeed, alterations in swimming speed have been detected at toxic compound concentrations as low as less then 0.1-5% of their LC(50) values. In conclusion, the SSA test with B. plicatilis and Artemia sp. can be a good behavioural integrated output for application in marine ecotoxicology and environmental monitoring programs.

  6. High-intensity high-volume swimming induces more robust signaling through PGC-1α and AMPK activation than sprint interval swimming in m. triceps brachii

    DEFF Research Database (Denmark)

    Casuso, Rafael A; Plaza-Díaz, Julio; Ruiz-Ojeda, Francisco J

    2017-01-01

    We aimed to test whether high-intensity high-volume training (HIHVT) swimming would induce more robust signaling than sprint interval training (SIT) swimming within the m. triceps brachii due to lower metabolic and oxidation. Nine well-trained swimmers performed the two training procedures...... on separate randomized days. Muscle biopsies from m. triceps brachii and blood samples were collected at three different time points: a) before the intervention (pre), b) immediately after the swimming procedures (post) and c) after 3 h of rest (3 h). Hydroperoxides, creatine kinase (CK), and lactate...

  7. The swimming program effects on the gross motor function, mental adjustment to the aquatic environment, and swimming skills in children with cerebral palsy: A pilot study

    Directory of Open Access Journals (Sweden)

    Jorgić Bojan

    2012-01-01

    Full Text Available The aim of this research was to determine the swimming program effects on the gross motor function, mental adjustment to the aquatic environment and the ability to move in the water and swim in children with cerebral palsy. The sample consisted of seven children (4 boys and 3 girls with spastic cerebral palsy and an average age of 9y 5mo ± 1y 3 mo. The swimming program lasted 6 weeks, with two swimming sessions per week. Each session lasted 45 minutes. The swimming program included the application of the Halliwick Method and swimming exercises which are used in a healthy population. The GMFM test was used for the assessment of gross motor functions. The WOTA2 test was applied to assess mental adjustment and swimming skills. The Wilcoxon matched pairs test was used to determine the statistically significant differences between the initial and final measuring. The results have indicated that there was statistically significant differences in the E dimension (p=0.04 and the total score T (p=0.03 of the GMFM test, then for mental adjustment to the aquatic environment WMA (p=0.02, ability to move in water andswimming skills WSW (p=0.03 and the overall result WTO (p=0.02 of the WOTA2 test. The applied swimming program had a statistically significant effect on the improvement in walking, running and jumping as well as the overall gross motor functions of children with cerebral palsy. The applied program also contributed to a statistically significant influence on the increase in mental adjustment to the aquatic environment and the ability to move in water and swim.

  8. Relationship between isometric shoulder strength and arms-only swimming power among male collegiate swimmers: study of valid clinical assessment methods.

    Science.gov (United States)

    Awatani, Takenori; Morikita, Ikuhiro; Mori, Seigo; Shinohara, Junji; Tatsumi, Yasutaka

    2018-04-01

    [Purpose] The purpose of the present study was to confirm the relationships between shoulder strength (extensor strength and internal rotator strength) of the abducted position and swimming power during arm-only swimming. [Subjects and Methods] Fourteen healthy male collegiate swimmers participated in the study. Main measures were shoulder strength (strength using torque that was calculated from the upper extremity length and the isometric force of the abducted position) and swimming power. [Results] Internal rotation torque of the dominant side in the abducted external rotated position (r=0.85) was significantly correlated with maximum swimming power. The rate of bilateral difference in extension torque in the maximum abducted position (r=-0.728) was significantly correlated with the swimming velocity-to-swimming power ratio. [Conclusion] The results of this study suggest that internal rotator strength measurement in the abducted external rotated position and extensor strength measurement in the maximum abducted position are valid assessment methods for swimmers.

  9. Coordination of multiple appendages in drag-based swimming.

    Science.gov (United States)

    Alben, Silas; Spears, Kevin; Garth, Stephen; Murphy, David; Yen, Jeannette

    2010-11-06

    Krill are aquatic crustaceans that engage in long distance migrations, either vertically in the water column or horizontally for 10 km (over 200,000 body lengths) per day. Hence efficient locomotory performance is crucial for their survival. We study the swimming kinematics of krill using a combination of experiment and analysis. We quantify the propulsor kinematics for tethered and freely swimming krill in experiments, and find kinematics that are very nearly metachronal. We then formulate a drag coefficient model which compares metachronal, synchronous and intermediate motions for a freely swimming body with two legs. With fixed leg velocity amplitude, metachronal kinematics give the highest average body speed for both linear and quadratic drag laws. The same result holds for five legs with the quadratic drag law. When metachronal kinematics is perturbed towards synchronous kinematics, an analysis shows that the velocity increase on the power stroke is outweighed by the velocity decrease on the recovery stroke. With fixed time-averaged work done by the legs, metachronal kinematics again gives the highest average body speed, although the advantage over synchronous kinematics is reduced.

  10. Hydrodynamic attraction of swimming microorganisms by surfaces

    OpenAIRE

    Berke, Allison P.; Turner, Linda; Berg, Howard C.; Lauga, Eric

    2008-01-01

    Cells swimming in confined environments are attracted by surfaces. We measure the steady-state distribution of smooth-swimming bacteria (Escherichia coli) between two glass plates. In agreement with earlier studies, we find a strong increase of the cell concentration at the boundaries. We demonstrate theoretically that hydrodynamic interactions of the swimming cells with solid surfaces lead to their re-orientation in the direction parallel to the surfaces, as well as their attraction by the c...

  11. Plasma renin activity, aldosterone and catecholamine levels when swimming and running.

    Science.gov (United States)

    Guezennec, C Y; Defer, G; Cazorla, G; Sabathier, C; Lhoste, F

    1986-01-01

    The purpose of this study was to determine the response of plasma renin activity (PRA), plasma aldosterone concentration (PAC) and catecholamines to two graded exercises differing by posture. Seven male subjects (19-25 years) performed successively a running rest on a treadmill and a swimming test in a 50-m swimming pool. Each exercise was increased in severity in 5-min steps with intervals of 1 min. Oxygen consumption, heart rate and blood lactate, measured every 5 min, showed a similar progression in energy expenditure until exhaustion, but there was a shorter time to exhaustion in the last step of the running test. PRA, PAC and catecholamines were increased after both types of exercise. The PRA increase was higher after the running test (20.9 ng AngI X ml-1 X h-1) than after swimming (8.66 ng AngI X ml-1 X h-1). The PAC increase was slightly greater after running (123 pg X ml-1) than swimming (102 pg X ml-1), buth the difference was not significant. Plasma catecholamine was higher after the swimming test. These results suggest that the volume shift induced by the supine position and water pressure during swimming decreased the PRA response. The association after swimming compared to running of a decreased PRA and an enhanced catecholamine response rule out a strict dependence of renin release under the effect of plasma catecholamines and is evidence of the major role of neural pathways for renin secretion during physical exercise.

  12. Factors influencing termination of swimming career of children at sport swimming classes

    OpenAIRE

    Pištěková, Petra

    2007-01-01

    Title: The Cause ofan Early End ofPupils' Swimming Career The aim of the thesis: Determination ofthe most frequent reasons for an early end ofpupils' swimming career. Method: The reasons for an early end ofpupils' swimming career were discovered by using questionnaires. Forty-five former pupils from special sports elementary schools were questioned and then the data were compared with available literature. Results: Research investigated changes in the most frequent reasons for an early end of...

  13. Individual-Environment Interactions in Swimming: The Smallest Unit for Analysing the Emergence of Coordination Dynamics in Performance?

    Science.gov (United States)

    Guignard, Brice; Rouard, Annie; Chollet, Didier; Hart, John; Davids, Keith; Seifert, Ludovic

    2017-08-01

    Displacement in competitive swimming is highly dependent on fluid characteristics, since athletes use these properties to propel themselves. It is essential for sport scientists and practitioners to clearly identify the interactions that emerge between each individual swimmer and properties of an aquatic environment. Traditionally, the two protagonists in these interactions have been studied separately. Determining the impact of each swimmer's movements on fluid flow, and vice versa, is a major challenge. Classic biomechanical research approaches have focused on swimmers' actions, decomposing stroke characteristics for analysis, without exploring perturbations to fluid flows. Conversely, fluid mechanics research has sought to record fluid behaviours, isolated from the constraints of competitive swimming environments (e.g. analyses in two-dimensions, fluid flows passively studied on mannequins or robot effectors). With improvements in technology, however, recent investigations have focused on the emergent circular couplings between swimmers' movements and fluid dynamics. Here, we provide insights into concepts and tools that can explain these on-going dynamic interactions in competitive swimming within the theoretical framework of ecological dynamics.

  14. Experimental hydrodynamics of swimming in fishes

    Science.gov (United States)

    Tytell, Eric Daniel

    2005-11-01

    studies of fish swimming, are shown to produce forces comparable to that of the caudal fin. Additionally, the caudal fin absorbs some of the energy from the vortices these fins shed, possibly augmenting its efficiency. Finally, an updated structure for the three-dimensional vortex wake of a sunfish is proposed.

  15. Flow Structures and Efficiency of Swimming Fish school: Numerical Study

    Science.gov (United States)

    Yatagai, Yuzuru; Hattori, Yuji

    2013-11-01

    The flow structure and energy-saving mechanism in fish school is numerically investigated by using the volume penalization method. We calculate the various patterns of configuration of fishes and investigate the relation between spatial arrangement and the performance of fish. It is found that the down-stream fish gains a hydrodynamic advantage from the upstream wake shed by the upstream fish. The most efficient configuration is that the downstream fish is placed in the wake. It reduces the drag force of the downstream fish in comparison with that in solo swimming.

  16. Comparison of physical fitness tests in swimming

    OpenAIRE

    Dostálová, Sabina

    2015-01-01

    Title: Comparison of physical fitness tests in swimming. Objective: The aim of this thesis is to evaluate specific tests, used while testing selected physical abilities in swimming. By specific tests we mean tests realized in the water. Selected tests are intended for swim coaches, who train junior to senior age groups. Methods: The chosen method was a comparison of studies, that pursue selected specific tests. We created partial conclusions for every test by summing up the results of differe...

  17. Sustained exercise-trained juvenile black carp (Mylopharyngodon piceus at a moderate water velocity exhibit improved aerobic swimming performance and increased postprandial metabolic responses

    Directory of Open Access Journals (Sweden)

    Xiuming Li

    2018-02-01

    Full Text Available The objectives of this study were to examine whether sustained exercise training at four water velocities, i.e. nearly still water (control, 1 body length (BL s−1, 2 BL s−1 and 4 BL s−1, has effects on swimming performance and digestive metabolism in juvenile black carp (Mylopharyngodon piceus. The results demonstrated that fish subjected to sustained training at 2 and 4 BL s−1 showed significantly higher critical swimming speed (Ucrit and maximum metabolic rate (MMR over the control group. Fish subjected to sustained training at 1 and 2 BL s−1 showed a significantly (30 and 54% prolonged duration, 14 and 17% higher postprandial ṀO2 increment (i.e. ṀO2peak, and 62 and 92% more energy expended on specific dynamic action (SDA, respectively, after consuming a similar meal over fish kept in nearly still water. These results suggest that (1 sustained exercise training at a higher speed (2 or 4 BL s−1 had a positive influence on the aerobic swimming performance of juvenile M. piceus, which may be associated with improved aerobic metabolism; and (2 sustained exercise training at a lower speed (1 or 2 BL s−1 resulted in elevated postprandial metabolic responses in juvenile M. piceus.

  18. Stress response of lead-exposed rainbow trout (Oncorhynchus mykiss) during swimming performance and hypoxia challenges

    Energy Technology Data Exchange (ETDEWEB)

    Phillips, K.A. [National Biological Service, La Crosse, WI (United States)]|[Univ. of Wisconsin, La Crosse, WI (United States); Caldwell, C.A. [National Biological Service, La Crosse, WI (United States); Sandheinrich, M.B. [Univ. of Wisconsin, La Crosse, WI (United States)

    1995-12-31

    Contaminants often invoke a stress response in aquatic organisms, and may compromise their capacity to respond to secondary stressors. This may reduce growth, reproduction and survival. The authors objectives were to assess the effects of lead and secondary stressors on hematology and blood chemistry of rainbow trout. After a 7 to 8-week aqueous exposure to Pb(100{micro}g/L), rainbow trout were challenged with forced swimming or hypoxia. Lead significantly reduced concentrations of 5-aminolevulinic acid dehydratase (ALAD), but not other constituents in the blood. Lead did not affect the swimming endurance of the fish. Hematocrit, mean cell hemoglobin content, and mean cell volume were significantly lower in Pb-exposed trout following the swimming challenge. Although hypoxia resulted in increased hematocrit and plasma glucose concentrations, there were no significant differences between the Pb and control groups. Hypoxia did not affect plasma chloride concentrations, although concentrations increased in Pb-exposed trout. There was no difference in lactic acid concentrations between Pb-exposed and control fish after forced swimming or hypoxia.

  19. Paramecia swimming in viscous flow

    Science.gov (United States)

    Zhang, P.; Jana, S.; Giarra, M.; Vlachos, P. P.; Jung, S.

    2015-12-01

    Ciliates like Paramecia exhibit fore-aft asymmetry in their body shapes, and preferentially swim in the direction of the slender anterior rather than the wider posterior. However, the physical reasons for this preference are not well understood. In this work, we propose that specific features of the fluid flow around swimming Paramecia confer some energetic advantage to the preferred swimming direction. Therefore, we seek to understand the effects of body asymmetry and swimming direction on the efficiency of swimming and the flux of fluid into the cilia layer (and thus of food into the oral groove), which we assumed to be primary factors in the energy budgets of these organisms. To this end, we combined numerical techniques (the boundary element method) and laboratory experiments (micro particle image velocimetry) to develop a quantitative model of the flow around a Paramecium and investigate the effect of the body shape on the velocity fields, as well as on the swimming and feeding behaviors. Both simulation and experimental results show that velocity fields exhibit fore-aft asymmetry. Moreover, the shape asymmetry revealed an increase of the fluid flux into the cilia layer compared to symmetric body shapes. Under the assumption that cilia fluid intake and feeding efficiency are primary factors in the energy budgets of Paramecia, our model predicts that the anterior swimming direction is energetically favorable to the posterior swimming direction.

  20. Swimming as physical activity and recreation for women

    Directory of Open Access Journals (Sweden)

    Yfanti Maria

    2014-01-01

    Full Text Available The present study reviews all data that establish swimming as an everyday lifestyle and recreational activity for women, since it promotes wellness, well-being and longevity. Swimming as a natural, physical activity is one of the most effective ways of exercise, since it affects and work outs the whole body. It is the most suitable sport for all age groups, because it combines beneficial results, for both body and soul and is also a low-risk-injury physical exercise. Aim of this study is to record the effect of recreational swimming in physical condition indexes and in quality of life in women. In particular to record the benefits, since studies have shown that swimming can help in prevention and treatment of chronic diseases and improves quality of life, of well-being and longevity. Results of all studies showed that swimming, as a great natural recreational activity has multiple beneficial effects on the female body that are not limited to the physical characteristics but are extended to the mental ones. Challenges for the application and development fields of this particular method of exercise, are the quality of service provided and the staffing of departments and programs in multiple carriers, private or public. Researchers and writers agree that there are great prospects for growth for women through partnerships, with programs and systematic research in the field of recreational swimming.

  1. Fish Swimming and Bird/Insect Flight

    Science.gov (United States)

    Wu, Theodore Yaotsu

    2011-01-01

    This expository review is devoted to fish swimming and bird/insect flight. (a) The simple waving motion of an elongated flexible ribbon plate of constant width propagating a wave distally down the plate to swim forward in a fluid, initially at rest, is first considered to provide a fundamental concept on energy conservation. It is generalized to include variations in body width and thickness, with appended dorsal, ventral and caudal fins shedding vortices to closely simulate fish swimming, for which a nonlinear theory is presented for large-amplitude propulsion. (b) For bird flight, the pioneering studies on oscillatory rigid wings are discussed with delineating a fully nonlinear unsteady theory for a two-dimensional flexible wing with arbitrary variations in shape and trajectory to provide a comparative study with experiments. (c) For insect flight, recent advances are reviewed by items on aerodynamic theory and modeling, computational methods, and experiments, for forward and hovering flights with producing leading-edge vortex to yield unsteady high lift. (d) Prospects are explored on extracting prevailing intrinsic flow energy by fish and bird to enhance thrust for propulsion. (e) The mechanical and biological principles are drawn together for unified studies on the energetics in deriving metabolic power for animal locomotion, leading to the surprising discovery that the hydrodynamic viscous drag on swimming fish is largely associated with laminar boundary layers, thus drawing valid and sound evidences for a resounding resolution to the long-standing fish-swim paradox proclaimed by Gray (1936, 1968 ).

  2. The backstroke swimming start: state of the art.

    Science.gov (United States)

    de Jesus, Karla; de Jesus, Kelly; Fernandes, Ricardo J; Vilas-Boas, João Paulo; Sanders, Ross

    2014-09-29

    As sprint swimming events can be decided by margins as small as .01 s, thus, an effective start is essential. This study reviews and discusses the 'state of the art' literature regarding backstroke start biomechanics from 23 documents. These included two swimming specific publications, eight peer-reviewed journal articles, three from the Biomechanics and Medicine in Swimming Congress series, eight from the International Society of Biomechanics in Sports Conference Proceedings, one from a Biomechanics Congress and one academic (PhD) thesis. The studies had diverse aims, including swimmers' proficiency levels and data collection settings. There was no single consensus for defining phase descriptions; and kinematics, kinetics and EMG approaches were implemented in laboratory settings. However, researchers face great challenges in improving methods of quantifying valid, reliable and accurate data between laboratory and competition conditions. For example, starting time was defined from the starting signal to distances as disparate as ∼5 m to 22.86 m in several studies. Due to recent rule changes, some of the research outcomes now refer to obsolete backstroke start techniques, and only a few studies considered the actual international rules. This literature review indicated that further research is required, in both laboratory and competition settings focusing on the combined influences of the current rules and block configuration on backstroke starting performances.

  3. Swimming in air-breathing fishes.

    Science.gov (United States)

    Lefevre, S; Domenici, P; McKenzie, D J

    2014-03-01

    Fishes with bimodal respiration differ in the extent of their reliance on air breathing to support aerobic metabolism, which is reflected in their lifestyles and ecologies. Many freshwater species undertake seasonal and reproductive migrations that presumably involve sustained aerobic exercise. In the six species studied to date, aerobic exercise in swim flumes stimulated air-breathing behaviour, and there is evidence that surfacing frequency and oxygen uptake from air show an exponential increase with increasing swimming speed. In some species, this was associated with an increase in the proportion of aerobic metabolism met by aerial respiration, while in others the proportion remained relatively constant. The ecological significance of anaerobic swimming activities, such as sprinting and fast-start manoeuvres during predator-prey interactions, has been little studied in air-breathing fishes. Some species practise air breathing during recovery itself, while others prefer to increase aquatic respiration, possibly to promote branchial ion exchange to restore acid-base balance, and to remain quiescent and avoid being visible to predators. Overall, the diversity of air-breathing fishes is reflected in their swimming physiology as well, and further research is needed to increase the understanding of the differences and the mechanisms through which air breathing is controlled and used during exercise. © 2014 The Fisheries Society of the British Isles.

  4. Influence of a swimming-pool on fertility in buffalo species

    Directory of Open Access Journals (Sweden)

    Luigi Zicarelli

    2010-01-01

    Full Text Available The aim of this study was to verify the effect of a swimming-pool on reproductive efficiency in buffalo species. The trial was performed in a commercial buffalo farm, where lactating buffaloes were divided into two groups (G1 and G2, and only in G1 a swimming-pool was available. Data of a 4-years period (1999–2002 were analysed. Statistical analysis of calving-conception interval (CCI of a first 3-years period (1999–2001, after logarithmic conversion, was performed by “t” Student’s Test while the percentage data were analyzed by Chi-square test. Animals in G1 showed higher conception rate within 120 days post calving (53.7% vs. 39.9%; P<0.001 in both deliveries of January-March and April-August. During the first 2 years (1999–2000 the CCI of buffaloes that delivered in January- March period was longer (P<0.001 than that of April-August. Furthermore, on the total of the 3 years the CCI was longer (P<0.01 in buffaloes of G2 compared to G1. Because of the presence of a swimming- pool also for G2 from 2002 May, the conception rate of not pregnant subjects characterized by more than 40 days open in 2001 and 2002 was also calculated and the favourable effect was confirmed. These results highlight the beneficial effect of a swimming-pool on fertility in buffalo species.

  5. 21 CFR 1250.89 - Swimming pools.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Swimming pools. 1250.89 Section 1250.89 Food and... SANITATION Sanitation Facilities and Conditions on Vessels § 1250.89 Swimming pools. (a) Fill and draw swimming pools shall not be installed or used. (b) Swimming pools of the recirculation type shall be...

  6. Sex Difference in Draft-Legal Ultra-Distance Events - A Comparison between Ultra-Swimming and Ultra-Cycling.

    Science.gov (United States)

    Salihu, Lejla; Rüst, Christoph Alexander; Rosemann, Thomas; Knechtle, Beat

    2016-04-30

    Recent studies reported that the sex difference in performance in ultra-endurance sports such as swimming and cycling changed over the years. However, the aspect of drafting in draft-legal ultra-endurance races has not yet been investigated. This study investigates the sex difference in ultra-swimming and ultra-cycling draft-legal races where drafting - swimming or cycling behind other participants to save energy and have more power at the end of the race to overtake them, is allowed. The change in performance of the annual best and the annual three best in an ultra-endurance swimming race (16-km 'Faros Swim Marathon') over 38 years and in a 24-h ultra-cycling race ('World Cycling Race') over 13 years were compared and analysed with respect to sex difference. Furthermore, performances of the fastest female and male finishers ever were compared. In the swimming event, the sex difference of the annual best male and female decreased non-significantly (P = 0.262) from 5.3% (1976) to 1.0% (2013). The sex gap of speed in the annual three fastest swimmers decreased significantly (P = 0.043) from 5.9 ± 1.6% (1979) to 4.7 ± 3.1% (2013). In the cycling event, the difference in cycling speed between the annual best male and female decreased significantly (P = 0.026) from 33.31% (1999) to 10.89% (2011). The sex gap of speed in the annual three fastest decreased significantly (P = 0.001) from 32.9 ± 0.6% (1999) to 16.4 ± 5.9% (2011). The fastest male swimmer ever (swimming speed 5.3 km/h, race time: 03:01:55 h:min:s) was 1.5% faster than the fastest female swimmer (swimming speed 5.2 km/h, race time: 03:04:09 h:min:s). The three fastest male swimmers ever (mean 5.27 ± 0.13 km/h) were 4.4% faster than the three fastest female swimmers (mean 5.05 ± 0.20 km/h) (P swimming and cycling, the sex difference in the annual top and annual top three swimmers and cyclists decreased (i.e. non-linearly in swimmers and linearly in cyclists) over the years. The sex difference of the

  7. 36 CFR 331.10 - Swimming.

    Science.gov (United States)

    2010-07-01

    ... 36 Parks, Forests, and Public Property 3 2010-07-01 2010-07-01 false Swimming. 331.10 Section 331.10 Parks, Forests, and Public Property CORPS OF ENGINEERS, DEPARTMENT OF THE ARMY REGULATIONS..., KENTUCKY AND INDIANA § 331.10 Swimming. Swimming is prohibited unless authorized in writing by the District...

  8. 36 CFR 327.5 - Swimming.

    Science.gov (United States)

    2010-07-01

    ... 36 Parks, Forests, and Public Property 3 2010-07-01 2010-07-01 false Swimming. 327.5 Section 327.5 Parks, Forests, and Public Property CORPS OF ENGINEERS, DEPARTMENT OF THE ARMY RULES AND REGULATIONS... Swimming. (a) Swimming, wading, snorkeling or scuba diving at one's own risk is permitted, except at...

  9. Searching for Criteria in Evaluating the Monofin Swimming Turn from the Perspective of Coaching and Improving Technique

    Science.gov (United States)

    Rejman, Marek; Borowska, Grażyna

    2008-01-01

    This study aims to analysise the selected kinematic parameters of the monofin swimming turn. The high complexity of performing turns is hindered by the large surface of the monofin, which disturbs control and sense of the body in water. A lack of objective data available on monofin swimming turns has resulted in field research connected with the specification of parameters needed for the evaluation of the technique. Therefore, turns observed in elite swimmers contain underlying conclusions for objective criteria, ensuring the highest level of coaching and the improving of turns in young swimmers. Six, high level, male swimmers participated in the study. The subject of the analysis was the fastest turn, from one out of three trial turns made after swimming a distance of 25 m. Images of the turns were collected from two cameras located under water in accordance with the procedures of the previous analyses of freestyle turns. The images were digitized and analysed by the SIMI®- Movement Analysis System. The interdependency of the total turn time and the remaining recorded parameters, constituted the basis for analysis of the kinematic parameters of five turn phases. The interdependency was measured using r- Pearson’s correlation coefficients. The novel character of the subject covered in this study, forced interpretation of the results on the basis of turn analyses in freestyle swimming. The results allow for the creation of a diagram outlinig area of search for an effective and efficient monofin swimming turn mechanism. The activities performed from the moment of wall contact until the commencement of stroking seem to be crucial for turn improvement. A strong belief has resulted that, the correct monofin swimming turn, is more than just a simple consequence of the fastest performance of all its components. The most important criteria in evaluating the quality of the monofin swimming turn are: striving for the optimal extension of wall contact time, push-off time

  10. Hepatoprotective Effects of Swimming Exercise against D-Galactose-Induced Senescence Rat Model

    Directory of Open Access Journals (Sweden)

    Chi-Chang Huang

    2013-01-01

    Full Text Available This study investigates whether a 12-week swimming exercise training can prevent liver damage or senescence associated biomarkers in an experimental aging model in rats. Twenty-three male Sprague-Dawley rats were divided into four groups: vehicle treatment with sedentary control (C, , aging induction with sedentary (A, , vehicle treatment with swimming exercise (SW, , and aging induction with swimming exercise (A + SW, . Rats in groups A and AS received intraperitoneal D-galactose injections (150 mg/kg/day for 12 weeks to induce aging. Rats in groups SW and A + SW were subjected to swimming exercise training for 12 weeks. Body weight, liver weight, epididymal fat mass, blood biochemistry, and liver pathology were performed at the end of the experiment. Hepatic senescence protein markers such as β-galactosidase, p53, and p21, as well as the inflammatory mediator, IL-6, were examined. The D-galactose-treated rats exhibited increases in AST and γ-GT plasma levels and β-galactosidase protein expression compared to the control group. Swimming exercise significantly reduced BW, epididymal fat mass, γ-GT activity, and p53, p21, and IL-6 protein levels compared to the aging group. These results suggest that a 12-week swimming exercise program suppresses senescence markers and downregulates inflammatory mediator in the liver tissues of D-galactose-induced aging rats.

  11. The Effect of Concurrent Visual Feedback on Controlling Swimming Speed

    Directory of Open Access Journals (Sweden)

    Szczepan Stefan

    2016-03-01

    Full Text Available Introduction. Developing the ability to control the speed of swimming is an important part of swimming training. Maintaining a defined constant speed makes it possible for the athlete to swim economically at a low physiological cost. The aim of this study was to determine the effect of concurrent visual feedback transmitted by the Leader device on the control of swimming speed in a single exercise test. Material and methods. The study involved a group of expert swimmers (n = 20. Prior to the experiment, the race time for the 100 m distance was determined for each of the participants. In the experiment, the participants swam the distance of 100 m without feedback and with visual feedback. In both variants, the task of the participants was to swim the test distance in a time as close as possible to the time designated prior to the experiment. In the first version of the experiment (without feedback, the participants swam the test distance without receiving real-time feedback on their swimming speed. In the second version (with visual feedback, the participants followed a beam of light moving across the bottom of the swimming pool, generated by the Leader device. Results. During swimming with visual feedback, the 100 m race time was significantly closer to the time designated. The difference between the pre-determined time and the time obtained was significantly statistically lower during swimming with visual feedback (p = 0.00002. Conclusions. Concurrently transmitting visual feedback to athletes improves their control of swimming speed. The Leader device has proven useful in controlling swimming speed.

  12. 43 CFR 423.36 - Swimming.

    Science.gov (United States)

    2010-10-01

    ... 43 Public Lands: Interior 1 2010-10-01 2010-10-01 false Swimming. 423.36 Section 423.36 Public Lands: Interior Regulations Relating to Public Lands BUREAU OF RECLAMATION, DEPARTMENT OF THE INTERIOR... Swimming. (a) You may swim, wade, snorkel, scuba dive, raft, or tube at your own risk in Reclamation waters...

  13. Pelagic behaviour of reservoir fishes: sinusoidal swimming and associated behaviour

    OpenAIRE

    JAROLÍM, Oldřich

    2009-01-01

    Annotation Long-term fixed-location hydroacoustic study with uplooking transducer was performed during 2005 in Římov reservoir, Czech Republic. It dealt mainly with fish behaviour in the open water of reservoir, especially with sinusoidal swimming behaviour. The dependence of pelagic fish behaviour on environmental conditions was also studied.

  14. Numerical and experimental investigations of human swimming motions.

    Science.gov (United States)

    Takagi, Hideki; Nakashima, Motomu; Sato, Yohei; Matsuuchi, Kazuo; Sanders, Ross H

    2016-08-01

    This paper reviews unsteady flow conditions in human swimming and identifies the limitations and future potential of the current methods of analysing unsteady flow. The capability of computational fluid dynamics (CFD) has been extended from approaches assuming steady-state conditions to consideration of unsteady/transient conditions associated with the body motion of a swimmer. However, to predict hydrodynamic forces and the swimmer's potential speeds accurately, more robust and efficient numerical methods are necessary, coupled with validation procedures, requiring detailed experimental data reflecting local flow. Experimental data obtained by particle image velocimetry (PIV) in this area are limited, because at present observations are restricted to a two-dimensional 1.0 m(2) area, though this could be improved if the output range of the associated laser sheet increased. Simulations of human swimming are expected to improve competitive swimming, and our review has identified two important advances relating to understanding the flow conditions affecting performance in front crawl swimming: one is a mechanism for generating unsteady fluid forces, and the other is a theory relating to increased speed and efficiency.

  15. Hydrodynamic advantages of swimming by salp chains.

    Science.gov (United States)

    Sutherland, Kelly R; Weihs, Daniel

    2017-08-01

    Salps are marine invertebrates comprising multiple jet-propelled swimming units during a colonial life-cycle stage. Using theory, we show that asynchronous swimming with multiple pulsed jets yields substantial hydrodynamic benefit due to the production of steady swimming velocities, which limit drag. Laboratory comparisons of swimming kinematics of aggregate salps ( Salpa fusiformis and Weelia cylindrica ) using high-speed video supported that asynchronous swimming by aggregates results in a smoother velocity profile and showed that this smoother velocity profile is the result of uncoordinated, asynchronous swimming by individual zooids. In situ flow visualizations of W. cylindrica swimming wakes revealed that another consequence of asynchronous swimming is that fluid interactions between jet wakes are minimized. Although the advantages of multi-jet propulsion have been mentioned elsewhere, this is the first time that the theory has been quantified and the role of asynchronous swimming verified using experimental data from the laboratory and the field. © 2017 The Author(s).

  16. Mathematical modelling and simulation of the thermal performance of a solar heated indoor swimming pool

    Directory of Open Access Journals (Sweden)

    Mančić Marko V.

    2014-01-01

    Full Text Available Buildings with indoor swimming pools have a large energy footprint. The source of major energy loss is the swimming pool hall where air humidity is increased by evaporation from the pool water surface. This increases energy consumption for heating and ventilation of the pool hall, fresh water supply loss and heat demand for pool water heating. In this paper, a mathematical model of the swimming pool was made to assess energy demands of an indoor swimming pool building. The mathematical model of the swimming pool is used with the created multi-zone building model in TRNSYS software to determine pool hall energy demand and pool losses. Energy loss for pool water and pool hall heating and ventilation are analyzed for different target pool water and air temperatures. The simulation showed that pool water heating accounts for around 22%, whereas heating and ventilation of the pool hall for around 60% of the total pool hall heat demand. With a change of preset controller air and water temperatures in simulations, evaporation loss was in the range 46-54% of the total pool losses. A solar thermal sanitary hot water system was modelled and simulated to analyze it's potential for energy savings of the presented demand side model. The simulation showed that up to 87% of water heating demands could be met by the solar thermal system, while avoiding stagnation. [Projekat Ministarstva nauke Republike Srbije, br. III 42006: Research and development of energy and environmentally highly effective polygeneration systems based on using renewable energy sources

  17. Swimming pool cleaner poisoning

    Science.gov (United States)

    Swimming pool cleaner poisoning occurs when someone swallows this type of cleaner, touches it, or breathes in ... The harmful substances in swimming pool cleaner are: Bromine ... copper Chlorine Soda ash Sodium bicarbonate Various mild acids

  18. Physical and energy requirements of competitive swimming events.

    Science.gov (United States)

    Pyne, David B; Sharp, Rick L

    2014-08-01

    The aquatic sports competitions held during the summer Olympic Games include diving, open-water swimming, pool swimming, synchronized swimming, and water polo. Elite-level performance in each of these sports requires rigorous training and practice to develop the appropriate physiological, biomechanical, artistic, and strategic capabilities specific to each sport. Consequently, the daily training plans of these athletes are quite varied both between and within the sports. Common to all aquatic athletes, however, is that daily training and preparation consumes several hours and involves frequent periods of high-intensity exertion. Nutritional support for this high-level training is a critical element of the preparation of these athletes to ensure the energy and nutrient demands of the training and competition are met. In this article, we introduce the fundamental physical requirements of these sports and specifically explore the energetics of human locomotion in water. Subsequent articles in this issue explore the specific nutritional requirements of each aquatic sport. We hope that such exploration will provide a foundation for future investigation of the roles of optimal nutrition in optimizing performance in the aquatic sports.

  19. Swimming mechanics and propulsive efficiency in the chambered nautilus

    Science.gov (United States)

    Neil, Thomas R.; Askew, Graham N.

    2018-02-01

    The chambered nautilus (Nautilus pompilius) encounters severe environmental hypoxia during diurnal vertical movements in the ocean. The metabolic cost of locomotion (Cmet) and swimming performance depend on how efficiently momentum is imparted to the water and how long on-board oxygen stores last. While propulsive efficiency is generally thought to be relatively low in jet propelled animals, the low Cmet in Nautilus indicates that this is not the case. We measured the wake structure in Nautilus during jet propulsion swimming, to determine their propulsive efficiency. Animals swam with either an anterior-first or posterior-first orientation. With increasing swimming speed, whole cycle propulsive efficiency increased during posterior-first swimming but decreased during anterior-first swimming, reaching a maximum of 0.76. The highest propulsive efficiencies were achieved by using an asymmetrical contractile cycle in which the fluid ejection phase was relatively longer than the refilling phase, reducing the volume flow rate of the ejected fluid. Our results demonstrate that a relatively high whole cycle propulsive efficiency underlies the low Cmet in Nautilus, representing a strategy to reduce the metabolic demands in an animal that spends a significant part of its daily life in a hypoxic environment.

  20. Healthy Swimming/Recreational Water

    Science.gov (United States)

    ... Medical Professionals En Español Publications, Data, & Statistics Healthy Swimming Resources Health Promotion Materials Find Your State Training & ... Announcements Outbreak Response Toolkits CDC at Work: Healthy Swimming Fast Facts Index of Water-Related Topics Model ...

  1. Propulsion of swimming microrobots inspired by metachronal waves in ciliates: from biology to material specifications

    International Nuclear Information System (INIS)

    Palagi, Stefano; Mazzolai, Barbara; Beccai, Lucia; Jager, Edwin WH

    2013-01-01

    The quest for swimming microrobots originates from possible applications in medicine, especially involving navigation in bodily fluids. Swimming microorganisms have become a source of inspiration because their propulsion mechanisms are effective in the low-Reynolds number regime. In this study, we address a propulsion mechanism inspired by metachronal waves, i.e. the spontaneous coordination of cilia leading to the fast swimming of ciliates. We analyse the biological mechanism (referring to its particular embodiment in Paramecium caudatum), and we investigate the contribution of its main features to the swimming performance, through a three-dimensional finite-elements model, in order to develop a simplified, yet effective artificial design. We propose a bioinspired propulsion mechanism for a swimming microrobot based on a continuous cylindrical electroactive surface exhibiting perpendicular wave deformations travelling longitudinally along its main axis. The simplified propulsion mechanism is conceived specifically for microrobots that embed a micro-actuation system capable of executing the bioinspired propulsion (self-propelled microrobots). Among the available electroactive polymers, we select polypyrrole as the possible actuation material and we assess it for this particular embodiment. The results are used to appoint target performance specifications for the development of improved or new electroactive materials to attain metachronal-waves-like propulsion. (paper)

  2. Propulsion of swimming microrobots inspired by metachronal waves in ciliates: from biology to material specifications.

    Science.gov (United States)

    Palagi, Stefano; Jager, Edwin W H; Mazzolai, Barbara; Beccai, Lucia

    2013-12-01

    The quest for swimming microrobots originates from possible applications in medicine, especially involving navigation in bodily fluids. Swimming microorganisms have become a source of inspiration because their propulsion mechanisms are effective in the low-Reynolds number regime. In this study, we address a propulsion mechanism inspired by metachronal waves, i.e. the spontaneous coordination of cilia leading to the fast swimming of ciliates. We analyse the biological mechanism (referring to its particular embodiment in Paramecium caudatum), and we investigate the contribution of its main features to the swimming performance, through a three-dimensional finite-elements model, in order to develop a simplified, yet effective artificial design. We propose a bioinspired propulsion mechanism for a swimming microrobot based on a continuous cylindrical electroactive surface exhibiting perpendicular wave deformations travelling longitudinally along its main axis. The simplified propulsion mechanism is conceived specifically for microrobots that embed a micro-actuation system capable of executing the bioinspired propulsion (self-propelled microrobots). Among the available electroactive polymers, we select polypyrrole as the possible actuation material and we assess it for this particular embodiment. The results are used to appoint target performance specifications for the development of improved or new electroactive materials to attain metachronal-waves-like propulsion.

  3. SEARCHING FOR CRITERIA IN EVALUATING THE MONOFIN SWIMMING TURN FROM THE PERSPECTIVE OF COACHING AND IMPROVING TECHNIQUE

    Directory of Open Access Journals (Sweden)

    Marek Rejman

    2008-03-01

    Full Text Available This study aims to analysise the selected kinematic parameters of the monofin swimming turn. The high complexity of performing turns is hindered by the large surface of the monofin, which disturbs control and sense of the body in water. A lack of objective data available on monofin swimming turns has resulted in field research connected with the specification of parameters needed for the evaluation of the technique. Therefore, turns observed in elite swimmers contain underlying conclusions for objective criteria, ensuring the highest level of coaching and the improving of turns in young swimmers. Six, high level, male swimmers participated in the study. The subject of the analysis was the fastest turn, from one out of three trial turns made after swimming a distance of 25 m. Images of the turns were collected from two cameras located under water in accordance with the procedures of the previous analyses of freestyle turns. The images were digitized and analysed by the SIMI®- Movement Analysis System. The interdependency of the total turn time and the remaining recorded parameters, constituted the basis for analysis of the kinematic parameters of five turn phases. The interdependency was measured using r- Pearson's correlation coefficients. The novel character of the subject covered in this study, forced interpretation of the results on the basis of turn analyses in freestyle swimming. The results allow for the creation of a diagram outlinig area of search for an effective and efficient monofin swimming turn mechanism. The activities performed from the moment of wall contact until the commencement of stroking seem to be crucial for turn improvement. A strong belief has resulted that, the correct monofin swimming turn, is more than just a simple consequence of the fastest performance of all its components. The most important criteria in evaluating the quality of the monofin swimming turn are: striving for the optimal extension of wall contact

  4. Swimming versus swinging effects in spacetime

    International Nuclear Information System (INIS)

    Gueron, Eduardo; Maia, Clovis A. S.; Matsas, George E. A.

    2006-01-01

    Wisdom has recently unveiled a new relativistic effect, called 'spacetime swimming', where quasirigid free bodies in curved spacetimes can 'speed up', 'slow down' or 'deviate' their falls by performing local cyclic shape deformations. We show here that for fast enough cycles this effect dominates over a nonrelativistic related one, named here 'space swinging', where the fall is altered through nonlocal cyclic deformations in Newtonian gravitational fields. We expect, therefore, to clarify the distinction between both effects leaving no room to controversy. Moreover, the leading contribution to the swimming effect predicted by Wisdom is enriched with a higher order term and the whole result is generalized to be applicable in cases where the tripod is in large redshift regions

  5. Energetics of swimming by the ferret: consequences of forelimb paddling.

    Science.gov (United States)

    Fish, Frank E; Baudinette, Russell V

    2008-06-01

    The domestic ferret (Mustela putorius furo) swims by alternate strokes of the forelimbs. This pectoral paddling is rare among semi-aquatic mammals. The energetic implications of swimming by pectoral paddling were examined by kinematic analysis and measurement of oxygen consumption. Ferrets maintained a constant stroke frequency, but increased swimming speed by increasing stroke amplitude. The ratio of swimming velocity to foot stroke velocity was low, indicating a low propulsive efficiency. Metabolic rate increased linearly with increasing speed. The cost of transport decreased with increasing swimming speed to a minimum of 3.59+/-0.28 J N(-1) m(-1) at U=0.44 m s(-1). The minimum cost of transport for the ferret was greater than values for semi-aquatic mammals using hind limb paddling, but lower than the minimum cost of transport for the closely related quadrupedally paddling mink. Differences in energetic performance may be due to the amount of muscle recruited for propulsion and the interrelationship hydrodynamic drag and interference between flow over the body surface and flow induced by propulsive appendages.

  6. Paramecium swimming in capillary tube

    Science.gov (United States)

    Jana, Saikat; Um, Soong Ho; Jung, Sunghwan

    2012-04-01

    Swimming organisms in their natural habitat need to navigate through a wide range of geometries and chemical environments. Interaction with boundaries in such situations is ubiquitous and can significantly modify the swimming characteristics of the organism when compared to ideal laboratory conditions. We study the different patterns of ciliary locomotion in glass capillaries of varying diameter and characterize the effect of the solid boundaries on the velocities of the organism. Experimental observations show that Paramecium executes helical trajectories that slowly transition to straight lines as the diameter of the capillary tubes decreases. We predict the swimming velocity in capillaries by modeling the system as a confined cylinder propagating longitudinal metachronal waves that create a finite pressure gradient. Comparing with experiments, we find that such pressure gradient considerations are necessary for modeling finite sized ciliary organisms in restrictive geometries.

  7. Effects of short-term swimming exercise on bone mineral density, geometry, and microstructural properties in sham and ovariectomized rats

    Directory of Open Access Journals (Sweden)

    Foong Kiew Ooi

    2014-12-01

    Full Text Available Little information exists about the effects of swimming exercise on bone health in ovariectomized animals with estrogen deficiency, which resembles the postmenopausal state and age-related bone loss in humans. This study investigated the effects of swimming exercise on tibia and femur bone mineral density (BMD, geometry, and microstructure in sham and ovariectomized rats. Forty 3-month-old female rats were divided into four groups: sham operated-sedentary control (Sham-control, sham operated with swimming exercise group (Sham-Swim, ovariectomy-sedentary control (OVx-control, and ovariectomy and swimming exercise (OVx-Swim groups. Swimming sessions were performed by the rats 90 minutes/day for 5 days/week for a total of 8 weeks. At the end of the study, tibial and femoral proximal volumetric total BMD, midshaft cortical volumetric BMD, cross-sectional area, and cross-sectional moment of inertia (MOI, and bone microstructural properties were measured for comparison. Data were analyzed using one-way analysis of variance (ANOVA. The Sham-Swim group exhibited significantly (p < 0.05; one-way ANOVA greater values in bone geometry parameters, that is, tibial midshaft cortical area and MOI compared to the Sham-control group. However, no significant differences were observed in these parameters between the Ovx-Swim and Ovx-control groups. There were no significant differences in femoral BMD between the Sham-Swim and Sham-control groups. Nevertheless, the Ovx-Swim group elicited significantly (p < 0.05; one-way ANOVA higher femoral proximal total BMD and improved bone microstructure compared to the Ovx-Sham group. In conclusion, the positive effects of swimming on bone properties in the ovariectomized rats in the present study may suggest that swimming as a non- or low-weight-bearing exercise may be beneficial for enhancing bone health in the postmenopausal population.

  8. Plyometric Long Jump Training With Progressive Loading Improves Kinetic and Kinematic Swimming Start Parameters.

    Science.gov (United States)

    Rebutini, Vanessa Z; Pereira, Gleber; Bohrer, Roberta C D; Ugrinowitsch, Carlos; Rodacki, André L F

    2016-09-01

    Rebutini, VZ, Pereira, G, Bohrer, RCD, Ugrinowitsch, C, and Rodacki, ALF. Plyometric long jump training with progressive loading improves kinetic and kinematic swimming start parameters. J Strength Cond Res 30(9): 2392-2398, 2016-This study was aimed to determine the effects of a plyometric long jump training program on torque around the lower limb joints and kinetic and kinematics parameters during the swimming jump start. Ten swimmers performed 3 identical assessment sessions, measuring hip and knee muscle extensors during maximal voluntary isometric contraction and kinetic and kinematics parameters during the swimming jump start, at 3 instants: INI (2 weeks before the training program, control period), PRE (2 weeks after INI measurements), and POST (24-48 hours after 9 weeks of training). There were no significant changes from INI to PRE measurements. However, the peak torque and rate of torque development increased significantly from PRE to POST measurements for both hip (47 and 108%) and knee (24 and 41%) joints. There were significant improvements to the horizontal force (7%), impulse (9%), and angle of resultant force (19%). In addition, there were significant improvements to the center of mass displacement (5%), horizontal takeoff velocity (16%), horizontal velocity at water entrance (22%), and peak angle velocity for the knee (15%) and hip joints (16%). Therefore, the plyometric long jump training protocol was effective to enhance torque around the lower limb joints and to control the resultant vector direction, to increase the swimming jump start performance. These findings suggest that coaches should use long jump training instead of vertical jump training to improve swimming start performance.

  9. EFFECT OF FLEXIBILITY ON THE RESULTS OF DOLPHIN SWIMMING TECHNIQUE

    Directory of Open Access Journals (Sweden)

    Slađana Tošić

    2011-09-01

    Full Text Available In order to determine the impact of flexibility on the results in swimming, we conducted a study on a sample of 50 female patients aged 11-14 years of age who are in the training process in the swimming clubs „Nis 2005“ and „Sveti Nikola“ in Nis. The study is applied to 14 measuring instruments that were divided into three groups: Measuring instruments for the assessment of flexibility (11; Measuring instruments for assessing the results of swimming (1; Measuring instruments for evaluation of morphological characteristics (2. The regression analysis determined the impact of flexibility on the results in swimming. The regression analysis didn't confirmed the assumption that there is a statistically significant effect of flexibility variables on results in swimming for female swimmers

  10. Evaluating performance from spiral polyethylene tubes as solar collectors for heating swimming pools

    Energy Technology Data Exchange (ETDEWEB)

    Stefanelli, Anderson Thiago Pontes; Marchi Neto, Ismael de; Scalon, Vicente Luiz; Padilha, Alcides [UNESP, Universidade Estadual Paulista Julio de Mesquita Filho, Bauru, SP (Brazil). Dept. de Engenharia Mecanica], e-mails: scalon@feb.unesp.br, padilha@feb.unesp.br

    2010-07-01

    The solar energy is very common in the daily of citizens from different regions in world. Environmental questions and the consequent Development of renewable energy techniques were a decisive factor for expanding this market. Currently, the solar energy is present in many different devices: as direct conversion through photovoltaic panels as in solar domestic for hot water systems(SDHWS). Another common use is in the heating system for swimming pools, that could be utilized for therapeutic or comfort reasons. The main aspect that increments this use is the economy for operation of these systems. On the other hand, these systems need a high initial investment. Reducing this cost without reduction in collector efficiency using new materials and / or alternative projects is important target for new researches. Thus, this paper aims to analyze the efficiency of one of these alternative models for heating swimming pools. The conceptual device evaluated is a low cost model. It could be made from polyethylene tubes forming spiral heat exchangers. Analysis of the system is based on a dynamic model using differential equations system including solar collector and swimming pool. Experimental radiation and other environmental conditions in the region of Bauru-SP are used for analyse the dynamic behavior of the system. The simulations are based on analysis of three main parameters: number of collectors, the pump drive time and wall thickness of the collector of polyethylene. Based on these numerical tests one can conclude that this new model of solar collector for swimming pool has a better cost benefit ratio when superficial area is equal to 80% of pool area, pump operation is alternating with four minutes turned on and 28 turned off and the polyethylene wall thickness is 1.5 mm (author)

  11. Swimming education in Australian society.

    OpenAIRE

    Lynch, TJ

    2014-01-01

    Abstract: The purpose of this paper is to explore a community swimming program using autoethnography qualitative research. Autoethnography is an approach to research and writing that seeks to describe and systematically analyze (graphy) personal experience (auto) in order to understand cultural experience (ethno) (Ellis 2004; Holman Jones 2005). Through childhood reflection of lived swimming experiences, and adult life reflection of lived swimming teaching experiences as a primary school teac...

  12. Unsteady bio-fluid dynamics in flying and swimming

    Science.gov (United States)

    Liu, Hao; Kolomenskiy, Dmitry; Nakata, Toshiyuki; Li, Gen

    2017-08-01

    Flying and swimming in nature present sophisticated and exciting ventures in biomimetics, which seeks sustainable solutions and solves practical problems by emulating nature's time-tested patterns, functions, and strategies. Bio-fluids in insect and bird flight, as well as in fish swimming are highly dynamic and unsteady; however, they have been studied mostly with a focus on the phenomena associated with a body or wings moving in a steady flow. Characterized by unsteady wing flapping and body undulation, fluid-structure interactions, flexible wings and bodies, turbulent environments, and complex maneuver, bio-fluid dynamics normally have challenges associated with low Reynolds number regime and high unsteadiness in modeling and analysis of flow physics. In this article, we review and highlight recent advances in unsteady bio-fluid dynamics in terms of leading-edge vortices, passive mechanisms in flexible wings and hinges, flapping flight in unsteady environments, and micro-structured aerodynamics in flapping flight, as well as undulatory swimming, flapping-fin hydrodynamics, body-fin interaction, C-start and maneuvering, swimming in turbulence, collective swimming, and micro-structured hydrodynamics in swimming. We further give a perspective outlook on future challenges and tasks of several key issues of the field.

  13. Shape Optimization of Swimming Sheets

    Energy Technology Data Exchange (ETDEWEB)

    Wilkening, J.; Hosoi, A.E.

    2005-03-01

    The swimming behavior of a flexible sheet which moves by propagating deformation waves along its body was first studied by G. I. Taylor in 1951. In addition to being of theoretical interest, this problem serves as a useful model of the locomotion of gastropods and various micro-organisms. Although the mechanics of swimming via wave propagation has been studied extensively, relatively little work has been done to define or describe optimal swimming by this mechanism.We carry out this objective for a sheet that is separated from a rigid substrate by a thin film of viscous Newtonian fluid. Using a lubrication approximation to model the dynamics, we derive the relevant Euler-Lagrange equations to optimize swimming speed and efficiency. The optimization equations are solved numerically using two different schemes: a limited memory BFGS method that uses cubic splines to represent the wave profile, and a multi-shooting Runge-Kutta approach that uses the Levenberg-Marquardt method to vary the parameters of the equations until the constraints are satisfied. The former approach is less efficient but generalizes nicely to the non-lubrication setting. For each optimization problem we obtain a one parameter family of solutions that becomes singular in a self-similar fashion as the parameter approaches a critical value. We explore the validity of the lubrication approximation near this singular limit by monitoring higher order corrections to the zeroth order theory and by comparing the results with finite element solutions of the full Stokes equations.

  14. Research on Relative Age in Hungarian Swimming

    Directory of Open Access Journals (Sweden)

    Nagy Nikoletta

    2015-12-01

    Full Text Available In 2017, the 19th World Swimming Championship will be organized in Hungary. Up to now, many people have already been working with swimmers to achieve good results. However, in the next period they must work even harder to ensure that the national swimmers of a country as small as Hungary can achieve the outstanding results of their predecessors. Since high-level competitions in swimming have become more intense, innovations including scientific studies are needed during preparation for the event. The purpose of this paper is to present the major results of an independent study carried out by the authors about the relative age of the best Hungarian swimmers with the aim of contributing to their preparation. The research population consisted of selected age groups of swimmers registered by the Hungarian Swimming Association (N=400. The method for data collection was an analysis of documents. To evaluate the data, the Chi-square and Kruskal-Wallis tests were used. The results are presented according to the period of the competitor’s date of birth, gender, and age group. The results confirm only partly the hypothesis that people born in the first quarters of the year play a dominant role in Hungarian national swimming teams. In the conclusion, the authors recommend further research on relative age in swimming and in other sports.

  15. Workflow Lexicons in Healthcare: Validation of the SWIM Lexicon.

    Science.gov (United States)

    Meenan, Chris; Erickson, Bradley; Knight, Nancy; Fossett, Jewel; Olsen, Elizabeth; Mohod, Prerna; Chen, Joseph; Langer, Steve G

    2017-06-01

    For clinical departments seeking to successfully navigate the challenges of modern health reform, obtaining access to operational and clinical data to establish and sustain goals for improving quality is essential. More broadly, health delivery organizations are also seeking to understand performance across multiple facilities and often across multiple electronic medical record (EMR) systems. Interpreting operational data across multiple vendor systems can be challenging, as various manufacturers may describe different departmental workflow steps in different ways and sometimes even within a single vendor's installed customer base. In 2012, The Society for Imaging Informatics in Medicine (SIIM) recognized the need for better quality and performance data standards and formed SIIM's Workflow Initiative for Medicine (SWIM), an initiative designed to consistently describe workflow steps in radiology departments as well as defining operational quality metrics. The SWIM lexicon was published as a working model to describe operational workflow steps and quality measures. We measured the prevalence of the SWIM lexicon workflow steps in both academic and community radiology environments using real-world patient observations and correlated that information with automatically captured workflow steps from our clinical information systems. Our goal was to measure frequency of occurrence of workflow steps identified by the SWIM lexicon in a real-world clinical setting, as well as to correlate how accurately departmental information systems captured patient flow through our health facility.

  16. Circular swimming in mice after exposure to a high magnetic field.

    Science.gov (United States)

    Houpt, Thomas A; Houpt, Charles E

    2010-06-16

    There is increasing evidence that exposure to high magnetic fields of 4T and above perturbs the vestibular system of rodents and humans. Performance in a swim test is a sensitive test of vestibular function. In order to determine the effect of magnet field exposure on swimming in mice, mice were exposed for 30 min within a 14.1T superconducting magnet and then tested at different times after exposure in a 2-min swim test. As previously observed in open field tests, mice swam in tight counter-clockwise circles when tested immediately after magnet exposure. The counter-clockwise orientation persisted throughout the 2-min swim test. The tendency to circle was transient, because no significant circling was observed when mice were tested at 3 min or later after magnet exposure. However, mice did show a decrease in total distance swum when tested between 3 and 40 min after magnet exposure. The decrease in swimming distance was accompanied by a pronounced postural change involving a counter-clockwise twist of the pelvis and hindlimbs that was particularly severe in the first 15s of the swim test. Finally, no persistent difference from sham-exposed mice was seen in the swimming of magnet-exposed mice when tested 60 min, 24h, or 96 h after magnet exposure. This suggests that there is no long-lasting effect of magnet exposure on the ability of mice to orient or swim. The transient deficits in swimming and posture seen shortly after magnet exposure are consistent with an acute perturbation of the vestibular system by the high magnetic field. (c) 2010 Elsevier Inc. All rights reserved.

  17. Multidisciplinary teaching in swimming: methodological reflection and proposal of check list

    Directory of Open Access Journals (Sweden)

    Sofia Canossa

    2007-12-01

    Full Text Available The present study proposes a new multidisciplinary approach related to teaching in swimming. Swimming is an interdisciplinary physical activity, which can be truly important at the level of the motor learning and experimentation in aquatic activities. In the present manuscript, it was compared the present reality of teaching in Swimming with a new perspective, this one with a multidisciplinary scope. Following the referred analysis, it was presented a discussion about the orientation and adequacy of the contents of the Swimming curriculum for children and youngsters, which are populations with specific characteristics and development necessities. In this sense, after stating the relevance of a multidisciplinary perspective, it was proposed a new approach for basic aquatic motor skills acquisition based on four disciplines: swimming, water polo, synchronised swimming and platform diving. This was made taking into account the initial stage of swimming teaching, i.e., aquatic readiness. This proposal aims mainly at implementing the teaching of Swimming at a multidisciplinary point of view that, in our opinion, is urgent, namely due to the small expression that the aquatic modalities traditionally considered as swimming satellites (water polo, synchronised swimming and platform diving have in the Portuguese sports context.

  18. Scaling the Thrust Production and Energetics of Inviscid Intermittent Swimming

    Science.gov (United States)

    Akoz, Emre; Moored, Keith

    2015-11-01

    Many fish have adopted an intermittent swimming gait sometimes referred as a burst-and-coast behavior. By using this gait, fish have been estimated at reducing their energetic cost of swimming by about 50%. Lighthill proposed that the skin friction drag of an undulating body can be around 400% greater than a rigidly-held coasting body, which may explain the energetic savings of intermittent swimming. Recent studies have confirmed the increase in skin friction drag over an undulating body, however, the increase is on the order of 20-70%. This more modest gain in skin friction drag is not sufficient to lead to the observed energy savings. Motivated by these observations, we investigate the inviscid mechanisms behind intermittent swimming for parameters typical of biology. We see that there is an energy savings at a fixed swimming speed for intermittent swimming as compared to continuous swimming. Then we consider three questions: What is the nature of the inviscid mechanism that leads to the observed energy savings, how do the forces and energetics of intermittent swimming scale with the swimming parameters, and what are the limitations to the benefit? Supported by the Office of Naval Research under Program Director Dr. Bob Brizzola, MURI grant number N00014-14-1-0533.

  19. 1968 Listing of Swimming Pool Equipment.

    Science.gov (United States)

    National Sanitation Foundation, Ann Arbor, MI. Testing Lab.

    An up-to-date listing of swimming pool equipment including--(1) companies authorized to display the National Sanitation Foundation seal of approval, (2) equipment listed as meeting NSF swimming pool equipment standards relating to diatomite type filters, (3) equipment listed as meeting NSF swimming pool equipment standard relating to sand type…

  20. The effect of external dummy transmitters on oxygen consumption and performance of swimming Atlantic cod

    DEFF Research Database (Denmark)

    Steinhausen, M.F.; Andersen, Niels Gerner; Steffensen, J.F.

    2006-01-01

    Decreased critical swimming speed and increased oxygen consumption (Mo-2) was found for externally tagged Atlantic cod Gadus morhua swimming at a high speed of 0 center dot 9 body length (total length, L-Gamma) s(-1). No difference was found in the standard metabolic rate, indicating...... that the higher Mo-2 for tagged cod was due to drag force rather than increased costs to keep buoyancy. (c) 2006 The Authors Journal compilation (c) 2006 The Fisheries Society of the British Isles....

  1. Swimming of Microorganisms Viewed from String and Membrane Theories

    OpenAIRE

    Kawamura, Masako; Sugamoto, Akio; Nojiri, Shin'ichi

    1993-01-01

    Swimming of microorganisms is studied from a viewpoint of extended objects (strings and membranes) swimming in the incompressible f luid of low Reynolds number. The flagellated motion is analyzed in two dimensional fluid, by using the method developed in the ciliated motion with the Joukowski transformation. Discussion is given on the conserved charges and the algebra which are associated with the area (volume)- preserving diffeomorphisms giving the swimming motion of microorganisms. It is al...

  2. Multi-fractal characterization of bacterial swimming dynamics: a case study on real and simulated Serratia marcescens

    OpenAIRE

    Koorehdavoudi, Hana; Bogdan, Paul; Wei, Guopeng; Marculescu, Radu; Zhuang, Jiang; Carlsen, Rika Wright; Sitti, Metin

    2017-01-01

    To add to the current state of knowledge about bacterial swimming dynamics, in this paper, we study the fractal swimming dynamics of populations of Serratia marcescens bacteria both in vitro and in silico, while accounting for realistic conditions like volume exclusion, chemical interactions, obstacles and distribution of chemoattractant in the environment. While previous research has shown that bacterial motion is non-ergodic, we demonstrate that, besides the non-ergodicity, the bacterial sw...

  3. Swimming performance changes during the final 3 weeks of training leading to the Sydney 2000 Olympic Games.

    Science.gov (United States)

    Mujika, I; Padilla, S; Pyne, D

    2002-11-01

    The purpose of this study was to determine the magnitude of the swimming performance change during the final 3 weeks of training (F3T) leading to the Sydney 2000 Olympic Games. Olympic swimmers who took part in the same event or events at the Telstra 2000 Grand Prix Series in Melbourne, Australia, (26 - 27 August 2000), and 21 - 28 d later at the Sydney 2000 Olympic Games (16 - 23 September 2000) were included in this analysis. A total of 99 performances (50 male, 49 female) were analysed. The overall performance improvement between pre- and post-F3T conditions for all swimmers was 2.18 +/- 1.50 % (p pre-Olympic F3T elicited a significant performance improvement of 2.57 % for male and 1.78 % for female swimmers at the Sydney 2000 Olympic Games. The magnitude was similar for all competition events, and was achieved by swimmers from different countries and performance levels. These data provide a quantitative framework for coaches and swimmers to set realistic performance goals based on individual performance levels before the final training phase leading to important competitions.

  4. The swimming polarity of multicellular magnetotactic prokaryotes can change during an isolation process employing magnets: evidence of a relation between swimming polarity and magnetic moment intensity.

    Science.gov (United States)

    de Melo, Roger Duarte; Acosta-Avalos, Daniel

    2017-09-01

    Magnetotactic microorganisms are characterized by swimming in the direction of an applied magnetic field. In nature, two types of swimming polarity have been observed: north-seeking microorganisms that swim in the same direction as the magnetic field, and south-seeking microorganisms that swim in the opposite direction. The present work studies the reversal in the swimming polarity of the multicellular magnetotactic prokaryote Candidatus Magnetoglobus multicellularis following an isolation process using high magnetic fields from magnets. The proportion of north- and south-seeking organisms was counted as a function of the magnetic field intensity used during the isolation of the organisms from sediment. It was observed that the proportion of north-seeking organisms increased when the magnetic field was increased. The magnetic moment for north- and south-seeking populations was estimated using the U-turn method. The average magnetic moment was higher for north- than south-seeking organisms. The results suggest that the reversal of swimming polarity must occur during the isolation process in the presence of high magnetic fields and magnetic field gradients. It is shown for the first time that the swimming polarity reversal depends on the magnetic moment intensity of multicellular magnetotactic prokaryotes, and new studies must be undertaken to understand the role of magnetic moment polarity and oxygen gradients in determination of swimming polarity.

  5. Anisotropic swim stress in active matter with nematic order

    Science.gov (United States)

    Yan, Wen; Brady, John F.

    2018-05-01

    Active Brownian particles (ABPs) transmit a swim pressure {{{\\Pi }}}{{swim}}=n\\zeta {D}{{swim}} to the container boundaries, where ζ is the drag coefficient, D swim is the swim diffusivity and n is the uniform bulk number density far from the container walls. In this work we extend the notion of the isotropic swim pressure to the anisotropic tensorial swim stress {{\\boldsymbol{σ }}}{{swim}}=-n\\zeta {{\\boldsymbol{D}}}{{swim}}, which is related to the anisotropic swim diffusivity {{\\boldsymbol{D}}}{{swim}}. We demonstrate this relationship with ABPs that achieve nematic orientational order via a bulk external field. The anisotropic swim stress is obtained analytically for dilute ABPs in both 2D and 3D systems. The anisotropy, defined as the ratio of the maximum to the minimum of the three principal stresses, is shown to grow exponentially with the strength of the external field. We verify that the normal component of the anisotropic swim stress applies a pressure {{{\\Pi }}}{{swim}}=-({{\\boldsymbol{σ }}}{{swim}}\\cdot {\\boldsymbol{n}})\\cdot {\\boldsymbol{n}} on a wall with normal vector {\\boldsymbol{n}}, and, through Brownian dynamics simulations, this pressure is shown to be the force per unit area transmitted by the active particles. Since ABPs have no friction with a wall, the difference between the normal and tangential stress components—the normal stress difference—generates a net flow of ABPs along the wall, which is a generic property of active matter systems.

  6. Swimming Pools and Molluscum Contagiosum

    Science.gov (United States)

    ... Travelers’ Health: Smallpox & Other Orthopoxvirus-Associated Infections Poxvirus Swimming Pools Recommend on Facebook Tweet Share Compartir The ... often ask if molluscum virus can spread in swimming pools. There is also concern that it can ...

  7. Sex differences in elite swimming with advanced age are less than marathon running.

    Science.gov (United States)

    Senefeld, J; Joyner, M J; Stevens, A; Hunter, S K

    2016-01-01

    The sex difference in marathon performance increases with finishing place and age of the runner but whether this occurs among swimmers is unknown. The purpose was to compare sex differences in swimming velocity across world record place (1st-10th), age group (25-89 years), and event distance. We also compared sex differences between freestyle swimming and marathon running. The world's top 10 swimming times of both sexes for World Championship freestyle stroke, backstroke, breaststroke, and butterfly events and the world's top 10 marathon times in 5-year age groups were obtained. Men were faster than women for freestyle (12.4 ± 4.2%), backstroke (12.8 ± 3.0%), and breaststroke (14.5 ± 3.2%), with the greatest sex differences for butterfly (16.7 ± 5.5%). The sex difference in swimming velocity increased across world record place for freestyle (P swimming (P swimming increased with world record place and age, but was less than for marathon running. Collectively, these results suggest more depth in women's swimming than marathon running. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  8. Are parents just treading water? The impact of participation in swim lessons on parents' judgments of children's drowning risk, swimming ability, and supervision needs.

    Science.gov (United States)

    Morrongiello, Barbara A; Sandomierski, Megan; Schwebel, David C; Hagel, Brent

    2013-01-01

    Drowning is a leading cause of child mortality globally. Strategies that have been suggested to reduce pediatric drowning risk include increased parental awareness of children's swimming ability and drowning risk, improved adult supervision of child swimmers, and providing swim lessons to children. This study explored how parents' beliefs relevant to children's drowning risk, perception of children's swimming ability, and judgments of supervision needs changed as children aged two through 5 years accumulated experience in swim lessons, and compared a parent group who received regular, detailed feedback about their child's swim skills with one that did not. Parents completed questionnaire measures near the beginning and end of a series of 10 weekly swim lessons. Results revealed that parental accuracy in judging children's swimming abilities remained relatively poor even though it improved from the beginning to the end of the swim lessons. Supervision needs were underestimated and did not vary with program or change over the course of swim lessons. Children's ability to keep themselves from drowning was overestimated and did not change over lessons or vary with program; parents believed that children could save themselves from drowning by the age of 6.21 years. Parents who had experienced a close call for drowning showed greater awareness of children's drowning risk and endorsed more watchful and proximal supervision. Results suggest that expanding learn-to-swim programs to include a parent-focused component that provides detailed tracking of swim skills and delivers messaging targeting perceptions of children's drowning risk and supervision needs may serve to maximize the drowning protection afforded by these programs. Delivering messaging in the form of 'close-call' drowning stories may prove especially effective to impact parents' supervision practices in drowning risk situations. Copyright © 2012 Elsevier Ltd. All rights reserved.

  9. Biochemical and hematological changes following the 120-km open-water marathon swim.

    Science.gov (United States)

    Drygas, Wojciech; Rębowska, Ewa; Stępień, Ewa; Golański, Jacek; Kwaśniewska, Magdalena

    2014-09-01

    Data on physiological effects and potential risks of a ultraendurance swimming are scarce. This report presents the unique case of a 61-year old athlete who completed a non-stop open-water 120-km ultramarathon swim on the Warta River, Poland. Pre-swimming examinations revealed favorable conditions (blood pressure, 110/70 mmHg; rest heart rate, 54 beats/minute, ejection fraction, 60%, 20.2 metabolic equivalents in a maximal exercise test). The swimming time and distance covered were 27 h 33 min and 120 km, respectively. Blood samples for hematological and biochemical parameters were collected 30 min, 4 hrs, 10 hrs and 8 days after the swim. The body temperature of the swimmer was 36.7°C before and 35.1°C after the swim. The hematological parameters remained within the reference range in the postexercise period except for leucocytes (17.5 and 10.6 x G/l noted 30 minutes and 4 hours after the swim, respectively). Serum urea, aspartate aminotransferase and C-reactive protein increased above the reference range reaching 11.3 mmol/l, 1054 nmol/l/s and 25.9 mg/l, respectively. Symptomatic hyponatremia was not observed. Although the results demonstrate that an experienced athlete is able to complete an ultra-marathon swim without negative health consequences, further studies addressing the potential risks of marathon swimming are required. Key pointsData on biochemical changes due to long-distance swimming are scarce.This report presents the unique case of a 61-year old athlete who completed a non-stop open-water 120-km ultramarathon swim.An experienced athlete is able to complete an ultra-marathon swim without serious health consequences.Regarding the growing popularity of marathon swimming further studies addressing the potential risks of such exhaustive exercise are required.

  10. Paramecium swimming and ciliary beating patterns: a study on four RNA interference mutations.

    Science.gov (United States)

    Funfak, Anette; Fisch, Cathy; Abdel Motaal, Hatem T; Diener, Julien; Combettes, Laurent; Baroud, Charles N; Dupuis-Williams, Pascale

    2015-01-01

    Paramecium cells swim and feed by beating their thousands of cilia in coordinated patterns. The organization of these patterns and its relationship with cell motility has been the subject of a large body of work, particularly as a model for ciliary beating in human organs where similar organization is seen. However the rapid motion of the cells makes quantitative measurements very challenging. Here we provide detailed measurements of the swimming of Paramecium cells from high-speed video at high magnification, as they move in microfluidic channels. An image analysis protocol allows us to decouple the cell movement from the motion of the cilia, thus allowing us to measure the ciliary beat frequency (CBF) and the spatio-temporal organization into metachronal waves along the cell periphery. Two distinct values of the CBF appear at different regions of the cell: most of the cilia beat in the range of 15 to 45 Hz, while the cilia in the peristomal region beat at almost double the frequency. The body and peristomal CBF display a nearly linear relation with the swimming velocity. Moreover the measurements do not display a measurable correlation between the swimming velocity and the metachronal wave velocity on the cell periphery. These measurements are repeated for four RNAi silenced mutants, where proteins specific to the cilia or to their connection to the cell base are depleted. We find that the mutants whose ciliary structure is affected display similar swimming to the control cells albeit with a reduced efficiency, while the mutations that affect the cilia's anchoring to the cell lead to strongly reduced ability to swim. This reduction in motility can be related to a loss of coordination between the ciliary beating in different parts of the cell.

  11. Unsteady turbulent boundary layers in swimming rainbow trout.

    Science.gov (United States)

    Yanase, Kazutaka; Saarenrinne, Pentti

    2015-05-01

    The boundary layers of rainbow trout, Oncorhynchus mykiss, swimming at 1.02±0.09 L s(-1) (mean±s.d., N=4), were measured by the particle image velocimetry (PIV) technique at a Reynolds number of 4×10(5). The boundary layer profile showed unsteadiness, oscillating above and beneath the classical logarithmic law of the wall with body motion. Across the entire surface regions that were measured, local Reynolds numbers based on momentum thickness, which is the distance that is perpendicular to the fish surface through which the boundary layer momentum flows at free-stream velocity, were greater than the critical value of 320 for the laminar-to-turbulent transition. The skin friction was dampened on the convex surface while the surface was moving towards a free-stream flow and increased on the concave surface while retreating. These observations contradict the result of a previous study using different species swimming by different methods. Boundary layer compression accompanied by an increase in local skin friction was not observed. Thus, the overall results may not support absolutely the Bone-Lighthill boundary layer thinning hypothesis that the undulatory motions of swimming fish cause a large increase in their friction drag because of the compression of the boundary layer. In some cases, marginal flow separation occurred on the convex surface in the relatively anterior surface region, but the separated flow reattached to the fish surface immediately downstream. Therefore, we believe that a severe impact due to induced drag components (i.e. pressure drag) on the swimming performance, an inevitable consequence of flow separation, was avoided. © 2015. Published by The Company of Biologists Ltd.

  12. EFFECTS OF THREE FEEDBACK CONDITIONS ON AEROBIC SWIM SPEEDS

    Directory of Open Access Journals (Sweden)

    Pedro Pérez Soriano

    2009-03-01

    Full Text Available The purpose of this study was twofold: (a to develop an underwater chronometer capable to provide feedback while the athlete is swimming, as well as being a control tool for the coach, and (b to analyse its feedback effect on swim pace control compared with feedback provided by the coach and with no feedback, in 25 m and 50 m swimming pools. 30 male swimmers of national level volunteer to participate. Each swimmer swam 3 x 200 m at aerobic speed (AS and 3 x 200 m just under the anaerobic threshold speed (AnS, each swam repetition with a different feedback condition: chronometer, coach and without feedback. Results (a validate the chronometer system developed and (b show that swimmers pace control is affected by the type of feedback provided, the swim speed elected and the size of the swimming pool

  13. Brain Metabolism Alterations Induced by Pregnancy Swimming Decreases Neurological Impairments Following Neonatal Hypoxia-Ischemia in Very Immature Rats

    Directory of Open Access Journals (Sweden)

    Eduardo F. Sanches

    2018-06-01

    Full Text Available Introduction: Prematurity, through brain injury and altered development is a major cause of neurological impairments and can result in motor, cognitive and behavioral deficits later in life. Presently, there are no well-established effective therapies for preterm brain injury and the search for new strategies is needed. Intra-uterine environment plays a decisive role in brain maturation and interventions using the gestational window have been shown to influence long-term health in the offspring. In this study, we investigated whether pregnancy swimming can prevent the neurochemical metabolic alterations and damage that result from postnatal hypoxic-ischemic brain injury (HI in very immature rats.Methods: Female pregnant Wistar rats were divided into swimming (SW or sedentary (SE groups. Following a period of adaptation before mating, swimming was performed during the entire gestation. At postnatal day (PND3, rat pups from SW and SE dams had right common carotid artery occluded, followed by systemic hypoxia. At PND4 (24 h after HI, the early neurochemical profile was measured by 1H-magnetic resonance spectroscopy. Astrogliosis, apoptosis and neurotrophins protein expression were assessed in the cortex and hippocampus. From PND45, behavioral testing was performed. Diffusion tensor imaging and neurite orientation dispersion and density imaging were used to evaluate brain microstructure and the levels of proteins were quantified.Results: Pregnancy swimming was able to prevent early metabolic changes induced by HI preserving the energetic balance, decreasing apoptotic cell death and astrogliosis as well as maintaining the levels of neurotrophins. At adult age, swimming preserved brain microstructure and improved the performance in the behavioral tests.Conclusion: Our study points out that swimming during gestation in rats could prevent prematurity related brain damage in progeny with high translational potential and possibly interesting cost

  14. Warm-up for Sprint Swimming: Race-Pace or Aerobic Stimulation? A Randomized Study.

    Science.gov (United States)

    Neiva, Henrique P; Marques, Mário C; Barbosa, Tiago M; Izquierdo, Mikel; Viana, João L; Teixeira, Ana M; Marinho, Daniel A

    2017-09-01

    Neiva, HP, Marques, MC, Barbosa, TM, Izquierdo, M, Viana, JL, Teixeira, AM, and Marinho, DA. Warm-up for sprint swimming: race-pace or aerobic stimulation? A randomized study. J Strength Cond Res 31(9): 2423-2431, 2017-The aim of this study was to compare the effects of 2 different warm-up intensities on 100-m swimming performance in a randomized controlled trial. Thirteen competitive swimmers performed two 100-m freestyle time-trials on separate days after either control or experimental warm-up in a randomized design. The control warm-up included a typical race-pace set (4 × 25 m), whereas the experimental warm-up included an aerobic set (8 × 50 m at 98-102% of critical velocity). Cortisol, testosterone, blood lactate ([La]), oxygen uptake (V[Combining Dot Above]O2), heart rate, core (Tcore and Tcorenet) and tympanic temperatures, and rating of perceived exertion (RPE) were monitored. Stroke length (SL), stroke frequency (SF), stroke index (SI), and propelling efficiency (ηp) were assessed for each 50-m lap. We found that V[Combining Dot Above]O2, heart rate, and Tcorenet were higher after experimental warm-up (d > 0.73), but only the positive effect for Tcorenet was maintained until the trial. Performance was not different between conditions (d = 0.07). Experimental warm-up was found to slow SF (mean change ±90% CL = 2.06 ± 1.48%) and increase SL (1.65 ± 1.40%) and ηp (1.87 ± 1.33%) in the first lap. After the time-trials, this warm-up had a positive effect on Tcorenet (d = 0.69) and a negative effect on [La] (d = 0.56). Although the warm-ups had similar outcomes in the 100-m freestyle, performance was achieved through different biomechanical strategies. Stroke length and efficiency were higher in the first lap after the experimental warm-up, whereas SF was higher after control warm-up. Physiological adaptations were observed mainly through an increased Tcore after experimental warm-up. In this condition, the lower [La] after the trial suggests lower

  15. Contrasting effects of nitrogenous pollution on fitness and swimming performance of Iberian waterfrog, Pelophylax perezi (Seoane, 1885), larvae in mesocosms and field enclosures.

    Science.gov (United States)

    Egea-Serrano, A; Tejedo, M

    2014-01-01

    Amphibians are declining worldwide and pollutants have been implicated as a major contributor to these declines. To understand these declines, many studies have assessed the impact of pollutants on amphibian behaviour. However, information regarding their effect on locomotor abilities, as well as the intra-specific variation of the tolerance to pollutants, is extremely rare. Further, the majority of studies examining the impact of pollutants on amphibians have been conducted in simplified laboratory settings. Given the complexity of natural systems, determining whether amphibian responses in laboratory studies can be generalized to more realistic natural scenarios is critical. Towards this goal, this study assessed the impact of nitrogenous pollution on survival and fitness-related larval traits (growth, mass and swimming performance) for three populations of the frog Pelophylax perezi, exposed to different degrees of eutrophication in two different and complementary experiments: (1) pond mesocosms, with NH4Cl isolated or combined with NaNO2 and NaNO3, and (2) field enclosures placed in natural streams differing in their degree of pollution. For both mesocosm and field enclosure experiments, larval mortality was unaffected by nitrogenous pollution. However, in the mesocosm experiment, exposure to nitrogenous compounds reduced final larvae mass and growth. In contrast, in the enclosure experiment, polluted locations facilitated final mass and growth of surviving tadpoles. Population-level variation in the effect of pollution was observed for final larval mass in the mesocosm but not in the field enclosure experiment. In addition, although nitrogenous compounds in both mesocosm and natural conditions had no direct effect on absolute larval swimming performance, they may impact the viability of larvae by affecting the relationships between growth and the swimming abilities. The differential pattern found in the impacts of nitrogenous compounds on larvae of P. perezi

  16. Effect of ozonation of swimming pool water on formation of volatile disinfection by-products - A laboratory study

    DEFF Research Database (Denmark)

    Hansen, Kamilla Marie Speht; Spiliotopoulou, Aikaterini; Cheema, Waqas Akram

    2016-01-01

    Ozonation experiments were performed using unchlorinated tap water used for filling municipal swimming pools, actual pool water and pool water polluted by addition of fresh tap water and artificial body fluid to evaluate ozone kinetics and water quality effects on formation of volatile disinfecti...

  17. Is Swimming Safe in Heart Failure? A Systematic Review.

    Science.gov (United States)

    Shah, Parin; Pellicori, Pierpaolo; Macnamara, Alexandra; Urbinati, Alessia; Clark, Andrew L

    It is not clear whether swimming is safe in patients with chronic heart failure. Ten studies examining the hemodynamic effects of acute water immersion (WI) (155 patients; average age 60 years; 86% male; mean left ventricular ejection fraction (LVEF) 29%) and 6 randomized controlled trials of rehabilitation comparing swimming with either medical treatment only (n = 3) or cycling (n = 1) or aerobic exercise (n = 2), (136 patients, average age 59 years; 84% male, mean LVEF 31%) were considered. In 7 studies of warm WI (30-35°C): heart rate (HR) fell (2% to -15%), and both cardiac output (CO) (7-37%) and stroke volume (SV) increased (13-41%). In 1 study of hot WI (41°C), systemic vascular resistance (SVR) fell (41%) and HR increased (33%). In 2 studies of cold WI (12-22°C), there were no consistent effects on HR and CO. Compared with medical management, swimming led to a greater increase in peak VO2 (7-14%) and 6 minute walk test (6MWT) (7-13%). Compared with cycle training, combined swimming and cycle training led to a greater reduction in resting HR (16%), a greater increase in resting SV (23%) and SVR (15%), but no changes in resting CO and a lesser increase in peak VO2 (6%). Compared with aerobic training, combined swimming and aerobic training lead to a reduction in resting HR (19%) and SVR (54%) and a greater increase in SV (34%), resting CO (28%), LVEF (9%), and 6MWT (70%). Although swimming appears to be safe, the studies conducted have been small, very heterogeneous, and inconclusive.

  18. 2012 Swimming Season Fact Sheets

    Science.gov (United States)

    To help beachgoers make informed decisions about swimming at U.S. beaches, EPA annually publishes state-by-state data about beach closings and advisories for the previous year's swimming season. These fact sheets summarize that information by state.

  19. Kinematics of swimming and thrust production during powerstroking bouts of the swim frenzy in green turtle hatchlings

    Directory of Open Access Journals (Sweden)

    David T. Booth

    2014-09-01

    Full Text Available Hatchling sea turtles emerge from nests, crawl down the beach and enter the sea where they typically enter a stereotypical hyperactive swimming frenzy. During this swim the front flippers are moved up and down in a flapping motion and are the primary source of thrust production. I used high-speed video linked with simultaneous measurement of thrust production in tethered hatchlings, along with high-speed video of free swimming hatchlings swimming at different water speeds in a swim flume to investigate the links between kinematics of front flipper movement, thrust production and swimming speed. In particular I tested the hypotheses that (1 increased swimming speed is achieved through an increased stroke rate; (2 force produced per stroke is proportional to stroke amplitude, (3 that forward thrust is produced during both the down and up phases of stroking; and (4 that peak thrust is produced towards the end of the downstroke cycle. Front flipper stroke rate was independent of water speed refuting the hypothesis that swimming speed is increased by increasing stroke rate. Instead differences in swimming speed were caused by a combination of varying flipper amplitude and the proportion of time spent powerstroking. Peak thrust produced per stroke varied within and between bouts of powerstroking, and these peaks in thrust were correlated with both flipper amplitude and flipper angular momentum during the downstroke supporting the hypothesis that stroke force is a function of stroke amplitude. Two distinct thrust production patterns were identified, monophasic in which a single peak in thrust was recorded during the later stages of the downstroke, and biphasic in which a small peak in thrust was recorded at the very end of the upstroke and this followed by a large peak in thrust during the later stages of the downstroke. The biphasic cycle occurs in ∼20% of hatchlings when they first started swimming, but disappeared after one to two hours of

  20. A swimming robot actuated by living muscle tissue

    Directory of Open Access Journals (Sweden)

    Herr Hugh

    2004-10-01

    Full Text Available Abstract Biomechatronics is the integration of biological components with artificial devices, in which the biological component confers a significant functional capability to the system, and the artificial component provides specific cellular and tissue interfaces that promote the maintenance and functional adaptation of the biological component. Based upon functional performance, muscle is potentially an excellent mechanical actuator, but the larger challenge of developing muscle-actuated, biomechatronic devices poses many scientific and engineering challenges. As a demonstratory proof of concept, we designed, built, and characterized a swimming robot actuated by two explanted frog semitendinosus muscles and controlled by an embedded microcontroller. Using open loop stimulation protocols, the robot performed basic swimming maneuvers such as starting, stopping, turning (turning radius ~400 mm and straight-line swimming (max speed >1/3 body lengths/second. A broad spectrum antibiotic/antimycotic ringer solution surrounded the muscle actuators for long term maintenance, ex vivo. The robot swam for a total of 4 hours over a 42 hour lifespan (10% duty cycle before its velocity degraded below 75% of its maximum. The development of functional biomechatronic prototypes with integrated musculoskeletal tissues is the first critical step toward the long term objective of controllable, adaptive and robust biomechatronic robots and prostheses.

  1. Prey capture by freely swimming flagellates

    Science.gov (United States)

    Andersen, Anders; Dolger, Julia; Nielsen, Lasse Tor; Kiorboe, Thomas

    2017-11-01

    Flagellates are unicellular microswimmers that propel themselves using one or several beating flagella. Here, we explore the dependence of swimming kinematics and prey clearance rate on flagellar arrangement and determine optimal flagellar arrangements and essential trade-offs. To describe near-cell flows around freely swimming flagellates we consider a model in which the cell is represented by a no-slip sphere and each flagellum by a point force. For uniflagellates pulled by a single flagellum the model suggests that a long flagellum favors fast swimming, whereas high clearance rate is favored by a very short flagellum. For biflagellates with both a longitudinal and a transversal flagellum we explore the helical swimming kinematics and the prey capture sites. We compare our predictions with observations of swimming kinematics, prey capture, and flows around common marine flagellates. The Centre for Ocean Life is a VKR Centre of Excellence supported by the Villum Foundation.

  2. Predictors of Swimming Ability among Children and Adolescents in the United States

    Directory of Open Access Journals (Sweden)

    Jennifer Pharr

    2018-02-01

    Full Text Available Swimming is an important source of physical activity and a life skill to prevent drowning. However, little research has been conducted to understand predictors of swimming ability. The purpose of this study was to understand factors that predict swimming ability among children and adolescents in the United States (US. This was a cross-sectional survey conducted between February and April of 2017 across five geographically diverse cities. Participants were accessed through the Young Christian Men’s Association (YMCA and included parents of children aged 4–11 years old and adolescents aged 12–17 years old. Independent t-test, analysis of variance (ANOVA, and univariate and multivariate analyses were conducted. Several factors were significant (p ≤ 0.05 predictors of swimming ability and explained 53% of the variance in swimming ability. Variables that were positively associated with swimming ability included: ability of parent(s to swim, child/adolescent age, a best friend who enjoys swimming, water-safety knowledge, pool open all year, and encouragement to swim from parent(s. Variables that were negatively associated with swimming ability included: fear of drowning, being African American, and being female. Interventions and programs to improve the swimming ability of children and adolescents could be developed with these predictors in mind.

  3. Changes over swim lessons in parents' perceptions of children's supervision needs in drowning risk situations: "His swimming has improved so now he can keep himself safe".

    Science.gov (United States)

    Morrongiello, Barbara A; Sandomierski, Megan; Spence, Jeffrey R

    2014-07-01

    The aim of this longitudinal study was to determine how children's participation in swim lessons impacts parents' appraisals of children's drowning risk and need for supervision. Parents with 2-5-year old children enrolled in community swim lessons completed the same survey measures up to 4 times over an 8-month period. Multilevel regression analyses examining temporal relationships between parents' perceptions of their child's swim ability, supervision needs around water, and children's ability to keep themselves safe in drowning risk situations revealed that as children progressed through swim lessons, parents' perceptions of their child's swim ability and their belief that children are capable of keeping themselves safe around water increased. Further, the relation between parents' perceptions of swim ability and judgments of children's supervision needs was mediated through parents' judgment about their child's ability to secure their own safety near water. As parents perceive their child to be accumulating swim skills, they increasingly believe that children are capable of keeping themselves from drowning, and as a result, that less active parent supervision of their child is necessary. Implications of these findings for intervention efforts to counter this unwelcome way of thinking that may arise through continued participation in swim lessons are discussed. Incorporating a parent-focused component into children's learn-to-swim programs to promote more realistic appraisals of children's supervision needs and drowning risks may further enhance the positive benefits that swim lessons have for children's safety.

  4. Impaired swim bladder inflation in early-life stage fathead ...

    Science.gov (United States)

    The present study investigated whether inhibition of deiodinase, the enzyme which converts thyroxine (T4) to the more biologically-active form, 3,5,3'-triiodothyronine (T3), would impact inflation of the posterior and/or anterior chamber of the swim bladder, processes previously demonstrated to be thyroid-hormone regulated. Two experiments were conducted using a model deiodinase inhibitor, iopanoic acid (IOP). In the first study, fathead minnow (Pimephales promelas) embryos were exposed to 0.6, 1.9, or 6.0 mg IOP/L or control water in a flow-through system until reaching 6 days post-fertilization (dpf) at which time posterior swim bladder inflation was assessed. To examine effects on anterior swim bladder inflation, a second study was conducted with 6 dpf larvae exposed to the same IOP concentrations until reaching 21 dpf. Fish from both studies were sampled for T4/T3 measurements, gene transcription analyses, and thyroid histopathology. In the embryo study, incidence and length of inflated posterior swim bladders were significantly reduced in the 6.0 mg/L treatment at 6 dpf. Incidence of inflation and length of anterior swim bladder in larval fish were significantly reduced in all IOP treatments at 14 dpf, but inflation recovered by 18 dpf. Throughout the larval study, whole body T4 concentrations were significantly increased and T3 concentrations were significantly decreased in all IOP treatments. Consistent with hypothesized compensatory responses, sig

  5. Optimal swimming strategies in mate searching pelagic copepods

    DEFF Research Database (Denmark)

    Kiørboe, Thomas

    2008-01-01

    Male copepods must swim to find females, but swimming increases the risk of meeting predators and is expensive in terms of energy expenditure. Here I address the trade-offs between gains and risks and the question of how much and how fast to swim using simple models that optimise the number...... of lifetime mate encounters. Radically different swimming strategies are predicted for different feeding behaviours, and these predictions are tested experimentally using representative species. In general, male swimming speeds and the difference in swimming speeds between the genders are predicted...... and observed to increase with increasing conflict between mate searching and feeding. It is high in ambush feeders, where searching (swimming) and feeding are mutually exclusive and low in species, where the matured males do not feed at all. Ambush feeding males alternate between stationary ambush feeding...

  6. Swimming efficiency in a shear-thinning fluid

    Science.gov (United States)

    Nganguia, Herve; Pietrzyk, Kyle; Pak, On Shun

    2017-12-01

    Micro-organisms expend energy moving through complex media. While propulsion speed is an important property of locomotion, efficiency is another factor that may determine the swimming gait adopted by a micro-organism in order to locomote in an energetically favorable manner. The efficiency of swimming in a Newtonian fluid is well characterized for different biological and artificial swimmers. However, these swimmers often encounter biological fluids displaying shear-thinning viscosities. Little is known about how this nonlinear rheology influences the efficiency of locomotion. Does the shear-thinning rheology render swimming more efficient or less? How does the swimming efficiency depend on the propulsion mechanism of a swimmer and rheological properties of the surrounding shear-thinning fluid? In this work, we address these fundamental questions on the efficiency of locomotion in a shear-thinning fluid by considering the squirmer model as a general locomotion model to represent different types of swimmers. Our analysis reveals how the choice of surface velocity distribution on a squirmer may reduce or enhance the swimming efficiency. We determine optimal shear rates at which the swimming efficiency can be substantially enhanced compared with the Newtonian case. The nontrivial variations of swimming efficiency prompt questions on how micro-organisms may tune their swimming gaits to exploit the shear-thinning rheology. The findings also provide insights into how artificial swimmers should be designed to move through complex media efficiently.

  7. Do trout swim better than eels? Challenges for estimating performance based on the wake of self-propelled bodies

    Science.gov (United States)

    Tytell, Eric D.

    Engineers and biologists have long desired to compare propulsive performance for fishes and underwater vehicles of different sizes, shapes, and modes of propulsion. Ideally, such a comparison would be made on the basis of either propulsive efficiency, total power output or both. However, estimating the efficiency and power output of self-propelled bodies, and particularly fishes, is methodologically challenging because it requires an estimate of thrust. For such systems traveling at a constant velocity, thrust and drag are equal, and can rarely be separated on the basis of flow measured in the wake. This problem is demonstrated using flow fields from swimming American eels, Anguilla rostrata, measured using particle image velocimetry (PIV) and high-speed video. Eels balance thrust and drag quite evenly, resulting in virtually no wake momentum in the swimming (axial) direction. On average, their wakes resemble those of self-propelled jet propulsors, which have been studied extensively. Theoretical studies of such wakes may provide methods for the estimation of thrust separately from drag. These flow fields are compared with those measured in the wakes of rainbow trout, Oncorhynchus mykiss, and bluegill sunfish, Lepomis macrochirus. In contrast to eels, these fishes produce wakes with axial momentum. Although the net momentum flux must be zero on average, it is neither spatially nor temporally homogeneous; the heterogeneity may provide an alternative route for estimating thrust. This review shows examples of wakes and velocity profiles from the three fishes, indicating challenges in estimating efficiency and power output and suggesting several routes for further experiments. Because these estimates will be complicated, a much simpler method for comparing performance is outlined, using as a point of comparison the power lost producing the wake. This wake power, a component of the efficiency and total power, can be estimated in a straightforward way from the flow

  8. Laboratory studies on the effect of ozonation on THM formation in swimming pool water

    DEFF Research Database (Denmark)

    Hansen, Kamilla Marie Speht; Spiliotopoulou, Aikaterini; Cheema, Waqas Akram

    2015-01-01

    Water samples from indoor swimming pool were ozonated at different pH values to evaluate the effect of pH on decomposition of ozone in swimming pool water. Furthermore, drinking and pool water were repeatedly ozonated followed by chlorination to evaluate THM formation. Decomposition of ozone...... was not affected by pH in the range relevant to swimming pools (pH 6.8 – 7.8) and a half-life time at 10-12 min was obtained. Repeating the ozonation, the decomposition of ozone increased at the second dose of ozone added (t½,2=8 min) and then decreased again at the third and fourth dose of ozone (t½,3=17 min; t...... chlorine for drinking water as lower TTHM formation occurred than in non-ozonated samples. For pool water, a higher TTHM formation was observed in ozonated than non-ozonated pool water. Thus, it was observed that ozone reacts markedly different in swimming pool water from the known pattern in drinking...

  9. Free Swimming in Ground Effect

    Science.gov (United States)

    Cochran-Carney, Jackson; Wagenhoffer, Nathan; Zeyghami, Samane; Moored, Keith

    2017-11-01

    A free-swimming potential flow analysis of unsteady ground effect is conducted for two-dimensional airfoils via a method of images. The foils undergo a pure pitching motion about their leading edge, and the positions of the body in the streamwise and cross-stream directions are determined by the equations of motion of the body. It is shown that the unconstrained swimmer is attracted to a time-averaged position that is mediated by the flow interaction with the ground. The robustness of this fluid-mediated equilibrium position is probed by varying the non-dimensional mass, initial conditions and kinematic parameters of motion. Comparisons to the foil's fixed-motion counterpart are also made to pinpoint the effect that free swimming near the ground has on wake structures and the fluid-mediated forces over time. Optimal swimming regimes for near-boundary swimming are determined by examining asymmetric motions.

  10. Visually driven chaining of elementary swim patterns into a goal-directed motor sequence: a virtual reality study of zebrafish prey capture

    Directory of Open Access Journals (Sweden)

    Chintan A Trivedi

    2013-05-01

    Full Text Available Prey capture behavior critically depends on rapid processing of sensory input in order to track, approach and catch the target. When using vision, the nervous system faces the problem of extracting relevant information from a continuous stream of input in order to detect and categorize visible objects as potential prey and to select appropriate motor patterns for approach. For prey capture, many vertebrates exhibit intermittent locomotion, in which discrete motor patterns are chained into a sequence, interrupted by short periods of rest. Here, using high-speed recordings of full-length prey capture sequences performed by freely swimming zebrafish larvae in the presence of a single paramecium, we provide a detailed kinematic analysis of first and subsequent swim bouts during prey capture. Using Fourier analysis, we show that individual swim bouts represent an elementary motor pattern. Changes in orientation are directed towards the target on a graded scale and are implemented by an asymmetric tail bend component superimposed on this basic motor pattern. To further investigate the role of visual feedback on the efficiency and speed of this complex behavior, we developed a closed-loop virtual reality setup in which minimally restrained larvae recapitulated interconnected swim patterns closely resembling those observed during prey capture in freely moving fish. Systematic variation of stimulus properties showed that prey capture is initiated within a narrow range of stimulus size and velocity. Furthermore, variations in the delay and location of swim-triggered visual feedback showed that the reaction time of secondary and later swims is shorter for stimuli that appear within a narrow spatio-temporal window following a swim. This suggests that the larva may generate an expectation of stimulus position, which enables accelerated motor sequencing if the expectation is met by appropriate visual feedback.

  11. Visually driven chaining of elementary swim patterns into a goal-directed motor sequence: a virtual reality study of zebrafish prey capture

    Science.gov (United States)

    Trivedi, Chintan A.; Bollmann, Johann H.

    2013-01-01

    Prey capture behavior critically depends on rapid processing of sensory input in order to track, approach, and catch the target. When using vision, the nervous system faces the problem of extracting relevant information from a continuous stream of input in order to detect and categorize visible objects as potential prey and to select appropriate motor patterns for approach. For prey capture, many vertebrates exhibit intermittent locomotion, in which discrete motor patterns are chained into a sequence, interrupted by short periods of rest. Here, using high-speed recordings of full-length prey capture sequences performed by freely swimming zebrafish larvae in the presence of a single paramecium, we provide a detailed kinematic analysis of first and subsequent swim bouts during prey capture. Using Fourier analysis, we show that individual swim bouts represent an elementary motor pattern. Changes in orientation are directed toward the target on a graded scale and are implemented by an asymmetric tail bend component superimposed on this basic motor pattern. To further investigate the role of visual feedback on the efficiency and speed of this complex behavior, we developed a closed-loop virtual reality setup in which minimally restrained larvae recapitulated interconnected swim patterns closely resembling those observed during prey capture in freely moving fish. Systematic variation of stimulus properties showed that prey capture is initiated within a narrow range of stimulus size and velocity. Furthermore, variations in the delay and location of swim triggered visual feedback showed that the reaction time of secondary and later swims is shorter for stimuli that appear within a narrow spatio-temporal window following a swim. This suggests that the larva may generate an expectation of stimulus position, which enables accelerated motor sequencing if the expectation is met by appropriate visual feedback. PMID:23675322

  12. Undulatory fish swimming : from muscles to flow

    NARCIS (Netherlands)

    Müller, U.K.; Leeuwen, van J.L.

    2006-01-01

    Undulatory swimming is employed by many fish for routine swimming and extended sprints. In this biomechanical review, we address two questions: (i) how the fish's axial muscles power swimming; and (ii) how the fish's body and fins generate thrust. Fish have adapted the morphology of their axial

  13. Forced sustained swimming exercise at optimal speed enhances growth of juvenile yellowtail kingfish (Seriola lalandi).

    Science.gov (United States)

    Palstra, Arjan P; Mes, Daan; Kusters, Kasper; Roques, Jonathan A C; Flik, Gert; Kloet, Kees; Blonk, Robbert J W

    2014-01-01

    Swimming exercise at optimal speed may optimize growth performance of yellowtail kingfish in a recirculating aquaculture system. Therefore, optimal swimming speeds (U opt in m s(-1) or body lengths s(-1), BL s(-1)) were assessed and then applied to determine the effects of long-term forced and sustained swimming at U opt on growth performance of juvenile yellowtail kingfish. U opt was quantified in Blazka-type swim-tunnels for 145, 206, and 311 mm juveniles resulting in values of: (1) 0.70 m s(-1) or 4.83 BL s(-1), (2) 0.82 m s(-1) or 3.25 BL s(-1), and (3) 0.85 m s(-1) or 2.73 BL s(-1). Combined with literature data from larger fish, a relation of U opt (BL s(-1)) = 234.07(BL)(-0.779) (R (2) = 0.9909) was established for this species. Yellowtail kingfish, either forced to perform sustained swimming exercise at an optimal speed of 2.46 BL s(-1) ("swimmers") or allowed to perform spontaneous activity at low water flow ("resters") in a newly designed 3600 L oval flume (with flow created by an impeller driven by an electric motor), were then compared. At the start of the experiment, ten fish were sampled representing the initial condition. After 18 days, swimmers (n = 23) showed a 92% greater increase in BL and 46% greater increase in BW as compared to resters (n = 23). As both groups were fed equal rations, feed conversion ratio (FCR) for swimmers was 1.21 vs. 1.74 for resters. Doppler ultrasound imaging showed a statistically significant higher blood flow (31%) in the ventral aorta of swimmers vs. resters (44 ± 3 vs. 34 ± 3 mL min(-1), respectively, under anesthesia). Thus, growth performance can be rapidly improved by optimal swimming, without larger feed investments.

  14. To Swim or Not to Swim: Potential Transmission of Balaenophilus manatorum (Copepoda: Harpacticoida) in Marine Turtles.

    Science.gov (United States)

    Domènech, Francesc; Tomás, Jesús; Crespo-Picazo, José Luis; García-Párraga, Daniel; Raga, Juan Antonio; Aznar, Francisco Javier

    2017-01-01

    Species of Balaenophilus are the only harpacticoid copepods that exhibit a widespread, obligate association with vertebrates, i.e., B. unisetus with whales and B. manatorum with marine turtles and manatees. In the western Mediterranean, juveniles of the loggerhead sea turtle, Caretta caretta are the only available hosts for B. manatorum, which has been found occurring at high prevalence (>80%) on them. A key question is how these epibionts are transmitted from host to host. We investigated this issue based on experiments with live specimens of B. manatorum that were cultured with turtle skin. Specimens were obtained from head-started hatchlings of C. caretta from the western Mediterranean. Hatched nauplii crawled only on rough substrates and lacked the ability to swim. Only copepodites IV and V, and adults, were able to perform directional swimming. Legs 2, 3 and 4 played a major role in swimming and were only well-developed in these stages. Nauplii reared in wells with turtle skin readily fed on this item. Late copepodites and adults also fed on turtle skin but did not consume other potential food items such as fish skin, baleen plates or planktonic algae. Evidences suggest that the transmission of B. manatorum should rely on hosts' bodily contacts and/or swimming of late developmental stages between spatially close hosts. The possibility of long-ranged dispersal is unlikely for two reasons. First, all developmental stages seem to depend on turtle skin as a food resource. Second, the average clutch size of ovigerous females was small (turtles that occur at very low densities (turtles·km-2) in the western Mediterranean. The high prevalence of B. manatorum in loggerhead turtles in this area raises the question whether these turtles have contacts, or tend to closely aggregate, more than is currently believed.

  15. To Swim or Not to Swim: Potential Transmission of Balaenophilus manatorum (Copepoda: Harpacticoida in Marine Turtles.

    Directory of Open Access Journals (Sweden)

    Francesc Domènech

    Full Text Available Species of Balaenophilus are the only harpacticoid copepods that exhibit a widespread, obligate association with vertebrates, i.e., B. unisetus with whales and B. manatorum with marine turtles and manatees. In the western Mediterranean, juveniles of the loggerhead sea turtle, Caretta caretta are the only available hosts for B. manatorum, which has been found occurring at high prevalence (>80% on them. A key question is how these epibionts are transmitted from host to host. We investigated this issue based on experiments with live specimens of B. manatorum that were cultured with turtle skin. Specimens were obtained from head-started hatchlings of C. caretta from the western Mediterranean. Hatched nauplii crawled only on rough substrates and lacked the ability to swim. Only copepodites IV and V, and adults, were able to perform directional swimming. Legs 2, 3 and 4 played a major role in swimming and were only well-developed in these stages. Nauplii reared in wells with turtle skin readily fed on this item. Late copepodites and adults also fed on turtle skin but did not consume other potential food items such as fish skin, baleen plates or planktonic algae. Evidences suggest that the transmission of B. manatorum should rely on hosts' bodily contacts and/or swimming of late developmental stages between spatially close hosts. The possibility of long-ranged dispersal is unlikely for two reasons. First, all developmental stages seem to depend on turtle skin as a food resource. Second, the average clutch size of ovigerous females was small (< 70 eggs for free-living phases to successfully contact turtles that occur at very low densities (< 0.6 turtles·km-2 in the western Mediterranean. The high prevalence of B. manatorum in loggerhead turtles in this area raises the question whether these turtles have contacts, or tend to closely aggregate, more than is currently believed.

  16. Feeding of swimming Paramecium with fore-aft asymmetry in viscous fluid

    Science.gov (United States)

    Zhang, Peng; Jana, Saikat; Giarra, Matthew; Vlachos, Pavlos; Jung, Sunghwan

    2013-11-01

    Swimming behaviours and feeding efficiencies of Paramecium Multimicronucleatum with fore-aft asymmetric body shapes are studied experimentally and numerically. Among various possible swimming ways, ciliates typically exhibit only one preferred swimming directions in favorable conditions. Ciliates, like Paramecia, with fore-aft asymmetric shapes preferably swim towards the slender anterior while feeding fluid to the oral groove located at the center of the body. Since both feeding and swimming efficiencies are influenced by fluid motions around the body, it is important to reveal the fluid mechanics around a moving object. Experimentally, μ-PIV methods are employed to characterize the source-dipole streamline patterns and fluid motions around Paramecium. Numerical simulations by boundary element methods are also used to evaluate surface stresses and velocities, which give insights into the efficiencies of swimming and feeding depending on body asymmetry. It is concluded that a slender anterior and fat posterior increases the combined efficiency of swimming and feeding, which matches well with actual shapes of Paramecium. Discrepancies between experiments and simulations are also discussed.

  17. The correlation between sports results in swimming and general and special muscle strength

    Directory of Open Access Journals (Sweden)

    Wioletta Lubkowska

    2017-12-01

    Full Text Available Introduction. Swimming as a sport encompasses various styles and distances (from 50 up to 1,500 meters. The correlation between sports results and general/special muscle strength seems unquestionable. Aim. The purpose of this paper is to answer the question related to maintaining the proportion between muscle strength development (which depends mainly on land-based trainings and endurance trainings in water. Material and methods. The study covered 14 leading swimmers from MKP Szczecin who specialized mainly in short and medium distances; they were members of the national senior and junior teams in the 2013/14 training year. The general strength tests were conducted at the beginning and at the end of the winter and summer preparatory periods. The following tests were performed: bench-pressing, pull-ups and bar dips. At the end of the main research period, a thrust test was conducted on land (on a swim bench, as well as a thrust test in the water. Results. All participants demonstrated progress in results between the summer season and the winter season. The range of training loads was higher in the summer due to the length of preparation (by about 100%. The individual progress was, however, very varied. Conclusions. The level of sports progress achieved by individual swimmers was greatly diversified. The relatively high level of general and special strength in the tested swimmers was linked to their need to display these motor skills while swimming. Subjects who showed the greatest progress in the general and special strength trials, displayed the biggest improvement in their swimming performance during the competition season. Swimmers with a fairly high level of strength, but a moderate sports level should analyze and improve their swimming technique. Subjects whose progress in general and special strength tests was the least significant, should try and achieve progress by developing other technical and coordination skills.

  18. Krill (Meganyctiphanes norvegica) swim faster at night

    KAUST Repository

    Klevjer, Thor A.

    2011-05-01

    Krill are key members in marine food webs, and measurement of swimming speed is vital to assess their bioenergetic budgets, feeding, and encounters with predators. We document a consistent and marked diel signal in swimming speed of krill in their natural habitat that is not related to diel vertical migration. The results were obtained using a bottom-mounted, upward-looking echo sounder at 150-m depth in the Oslofjord, Norway, spanning 5 months from late autumn to spring at a temporal resolution of ~1–2 records s−1. Swimming speed was assessed using acoustic target tracking of individual krill. At the start of the registration period, both daytime and nocturnal average swimming speeds of Meganyctiphanes norvegica were ~ 3.5 cm s−1 (~ 1 body lengths ([bl] s−1) in waters with oxygen concentrations of ~ 15–20% O2 saturation. Following intrusion of more oxygenated water, nocturnal average swimming speeds increased to ~ 10 cm s−1 (~ 3 bl s−1), i.e., more than double that of daytime swimming speeds in the same period. We hypothesize that krill activity during the first period was limited by oxygen, and the enhanced swimming at night subsequent to the water renewal is due to increased feeding activity under lessened danger of predation in darkness.

  19. Krill (Meganyctiphanes norvegica) swim faster at night

    KAUST Repository

    Klevjer, Thor A.; Kaartvedt, Stein

    2011-01-01

    Krill are key members in marine food webs, and measurement of swimming speed is vital to assess their bioenergetic budgets, feeding, and encounters with predators. We document a consistent and marked diel signal in swimming speed of krill in their natural habitat that is not related to diel vertical migration. The results were obtained using a bottom-mounted, upward-looking echo sounder at 150-m depth in the Oslofjord, Norway, spanning 5 months from late autumn to spring at a temporal resolution of ~1–2 records s−1. Swimming speed was assessed using acoustic target tracking of individual krill. At the start of the registration period, both daytime and nocturnal average swimming speeds of Meganyctiphanes norvegica were ~ 3.5 cm s−1 (~ 1 body lengths ([bl] s−1) in waters with oxygen concentrations of ~ 15–20% O2 saturation. Following intrusion of more oxygenated water, nocturnal average swimming speeds increased to ~ 10 cm s−1 (~ 3 bl s−1), i.e., more than double that of daytime swimming speeds in the same period. We hypothesize that krill activity during the first period was limited by oxygen, and the enhanced swimming at night subsequent to the water renewal is due to increased feeding activity under lessened danger of predation in darkness.

  20. Swimming Improves Pain and Functional Capacity of Patients With Fibromyalgia: A Randomized Controlled Trial.

    Science.gov (United States)

    Fernandes, Giovana; Jennings, Fabio; Nery Cabral, Michele Vieira; Pirozzi Buosi, Ana Letícia; Natour, Jamil

    2016-08-01

    To evaluate the effect of swimming on pain, functional capacity, aerobic capacity, and quality of life in patients with fibromyalgia (FM). Randomized controlled trial. Rheumatology outpatient clinics of a university hospital. Women with FM (N=75; age range, 18-60y) randomly assigned to a swimming group (SG) (n=39) or a walking group (WG) (n=36). The SG performed 50 minutes of swimming 3 times a week for 12 weeks, with a heart rate at 11 beats under the anaerobic threshold. The WG performed walking with a heart rate at the anaerobic threshold, with the same duration and frequency as the SG. Participants were evaluated before the exercise protocols (t0), at 6 weeks (t6), and at 12 weeks (t12) after the onset of the protocols. The primary outcome measure was the visual analog scale for pain. The secondary measurements were the Fibromyalgia Impact Questionnaire and the Medical Outcomes Study 36-Item Short-Form Health Survey for quality of life; a spiroergometric test for cardiorespiratory variables; and the timed Up & Go test for functional performance. Patients in both groups experienced improvement in pain after the 12-week program, with no difference between groups (P=.658). The same results were found regarding functional capacity and quality of life. Moreover, no statistical difference between groups was found regarding aerobic capacity over time. Swimming, like walking, is an effective method for reducing pain and improving both functional capacity and quality of life in patients with FM. Copyright © 2016 American Congress of Rehabilitation Medicine. Published by Elsevier Inc. All rights reserved.

  1. Estimating fish swimming metrics and metabolic rates with accelerometers: the influence of sampling frequency.

    Science.gov (United States)

    Brownscombe, J W; Lennox, R J; Danylchuk, A J; Cooke, S J

    2018-06-21

    Accelerometry is growing in popularity for remotely measuring fish swimming metrics, but appropriate sampling frequencies for accurately measuring these metrics are not well studied. This research examined the influence of sampling frequency (1-25 Hz) with tri-axial accelerometer biologgers on estimates of overall dynamic body acceleration (ODBA), tail-beat frequency, swimming speed and metabolic rate of bonefish Albula vulpes in a swim-tunnel respirometer and free-swimming in a wetland mesocosm. In the swim tunnel, sampling frequencies of ≥ 5 Hz were sufficient to establish strong relationships between ODBA, swimming speed and metabolic rate. However, in free-swimming bonefish, estimates of metabolic rate were more variable below 10 Hz. Sampling frequencies should be at least twice the maximum tail-beat frequency to estimate this metric effectively, which is generally higher than those required to estimate ODBA, swimming speed and metabolic rate. While optimal sampling frequency probably varies among species due to tail-beat frequency and swimming style, this study provides a reference point with a medium body-sized sub-carangiform teleost fish, enabling researchers to measure these metrics effectively and maximize study duration. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  2. Swimming of a Sea Butterfly with an Elongated Shell

    Science.gov (United States)

    Karakas, Ferhat; Maas, Amy E.; Murphy, David W.

    2017-11-01

    Sea butterflies (pteropods) are small, zooplanktonic marine snails which swim by flapping highly flexible parapodia. Previous studies show that the swimming hydrodynamics of Limacina helicina, a polar pteropod with a spiraled shell, is similar to tiny insect flight aerodynamics and that forward-backward pitching is key for lift generation. However, swimming by diverse pteropod species with different shell shapes has not been examined. We present measurements of the swimming of Cuvierina columnella, a warm water species with an elongated non-spiraled shell collected off the coast of Bermuda. With a body length of 9 mm, wing beat frequency of 4-6 Hz and swimming speed of 35 mm/s, these organisms swim at a Reynolds number of approximately 300, larger than that of L. helicina. High speed 3D kinematics acquired via two orthogonal cameras reveals that the elongated shell correlates with reduced body pitching and that the wings bend approximately 180 degrees in each direction, overlapping at the end of each half-stroke. Time resolved 2D flow measurements collected with a micro-PIV system reveal leading edge vortices present in both power and recovery strokes. Interactions between the overlapping wings and the shell also likely play a role in lift generation.

  3. The economics of age-group swimming in Ontario.

    Science.gov (United States)

    Eynon, R B; Kitchen, P D; Semotiuk, D M

    1980-09-01

    This study investigated the socio-economic status of the parents of Ontario swimmers and parental expenditures, in terms of time and money, in support of competitive swimming. Questionnaires were mailed to a sample of 400 families of Ontario competitive swimmers. Spearman rho analyses were used to determine the relationships of membership fee, total cost and total time spent by the parents to the ability and age of the swimmer and the number of hours of practice and swim meets. Parents of Ontario competitive swimmers are upper middle class and devote a great deal of their time (X = 433 hours) and money (X = $744.00) annually to competitive swimming. Total expenditures and time spend by the parents were greater for those children were young and also for those whose children demonstrated greater ability (i.e., closer to Ontario record). Spearman rho analyses suggested that membership fees are not determined on the basis of age, number of practice hours or number of swim meets.

  4. Body Fineness Ratio as a Predictor of Maximum Prolonged-Swimming Speed in Coral Reef Fishes

    Science.gov (United States)

    Walker, Jeffrey A.; Alfaro, Michael E.; Noble, Mae M.; Fulton, Christopher J.

    2013-01-01

    The ability to sustain high swimming speeds is believed to be an important factor affecting resource acquisition in fishes. While we have gained insights into how fin morphology and motion influences swimming performance in coral reef fishes, the role of other traits, such as body shape, remains poorly understood. We explore the ability of two mechanistic models of the causal relationship between body fineness ratio and endurance swimming-performance to predict maximum prolonged-swimming speed (Umax) among 84 fish species from the Great Barrier Reef, Australia. A drag model, based on semi-empirical data on the drag of rigid, submerged bodies of revolution, was applied to species that employ pectoral-fin propulsion with a rigid body at U max. An alternative model, based on the results of computer simulations of optimal shape in self-propelled undulating bodies, was applied to the species that swim by body-caudal-fin propulsion at Umax. For pectoral-fin swimmers, Umax increased with fineness, and the rate of increase decreased with fineness, as predicted by the drag model. While the mechanistic and statistical models of the relationship between fineness and Umax were very similar, the mechanistic (and statistical) model explained only a small fraction of the variance in Umax. For body-caudal-fin swimmers, we found a non-linear relationship between fineness and Umax, which was largely negative over most of the range of fineness. This pattern fails to support either predictions from the computational models or standard functional interpretations of body shape variation in fishes. Our results suggest that the widespread hypothesis that a more optimal fineness increases endurance-swimming performance via reduced drag should be limited to fishes that swim with rigid bodies. PMID:24204575

  5. Surface Waters Information Management System (SWIMS)

    Data.gov (United States)

    Kansas Data Access and Support Center — The Surface Waters Information Management System (SWIMS) has been designed to meet multi-agency hydrologic database needs for Kansas. The SWIMS project was supported...

  6. Swimming in an Unsteady World

    Science.gov (United States)

    Koehl, M. A. R.

    2016-02-01

    When animals swim in marine habitats, the water through which they move is usually flowing. Therefore, an important part of understanding the physics of how animals swim in nature is determining how they interact with the fluctuating turbulent water currents in their environment. The research systems we have been using to address this question are microscopic marine animals swimming in turbulent, wavy water flow over spatially-complex communities of organisms growing on surfaces. Field measurements of water motion were used to design realistic turbulent flow in a laboratory wave-flume over different substrata, particle-image velocimetry was used to measure fine-scale, rapidly-varying water velocity vector fields, and planar laser-induced fluorescence was used to measure concentrations of chemical cues from the substratum. We used individual-based models of small animals swimming in this unsteady flow to determine how their trajectories and contacts with substrata were affected by their locomotion through the water, rotation by local shear, response to odors, and transport by ambient flow. We found that the shears, accelerations, and odor concentrations encountered by small swimmers fluctuate rapidly, with peaks much higher than mean values lasting fractions of a second. We identified ways in which the behavior of small, weak swimmers can bias how they are transported by ambient flow (e.g. sinking during brief encounters with shear or odor enhances settlement onto substrata below, whereas constant swimming enhances contact with surfaces above or beside larvae). Although microscopic organisms swim slowly relative to ambient water flow, their locomotory behavior in response to the rapidly-fluctuating shears and odors they encounter can affect where they are transported by ambient water movement.

  7. Strategies for swimming: explorations of the behaviour of a neuro-musculo-mechanical model of the lamprey

    Directory of Open Access Journals (Sweden)

    Thelma L. Williams

    2015-02-01

    Full Text Available Experiments were performed on a neuro-musculo-mechanical model of a lamprey, to explore the strategies for controlling swimming speed. The muscle component of the model was based on previous experiments on isolated lamprey muscle. The patterns of muscle activation were those found in EMG studies on swimming lampreys. The fluid mechanics were modelled with G.I. Taylor's simplification. Tail beat frequencies of 2–6 sec−1 were combined with muscle activation strengths of 0.1% to 20% of maximum tetanic isometric strength. The resulting forward swimming speed and changing body shape were recorded. From the changing body shape the speed of the backward-travelling wave of curvature was calculated, as well as the ratio between the speeds of the waves of activation and curvature. For any given activation strength there was a tail beat frequency that gave maximal forward speed. Furthermore, for all the combinations of activation strength and tail beat frequency that gave such maximum swimming speeds, the ratio of the speed of the wave of curvature to the wave of muscle activation was approximately 0.75. This is similar to the ratio found in swimming lampreys.

  8. SWIMMING BEHAVIOR OF DEVELOPMENTAL STAGES OF THE CALANOID COPEPOD TEMORA-LONGICORNIS AT DIFFERENT FOOD CONCENTRATIONS

    NARCIS (Netherlands)

    VANDUREN, LA; VIDELER, JJ

    1995-01-01

    The swimming behaviour of developmental stages of the marine calanoid copepod Temora longicornis was studied using 2-dimensional observations under a microscope and a 3-dimensional filming technique to analyze swimming mode, swimming speed and swimming trajectories under different food

  9. The interest for the masters swimming competitions in 2010 – the managerial perspective. A case study: Timişoara

    Directory of Open Access Journals (Sweden)

    Marcel Răsădean

    2011-06-01

    Full Text Available Masters swimmers are adults that systematically practise this sportive activity as amateurs in an organized environment. They have very different sportive abilities and their interest for practising swimming is linked to the benefits of this type of activity. In relation to the public perception existing in Romania, both in the mainstream public and in the specialists’ circle, the competitive dimension is the most visible as opposed to the other forms of masters swimming: fitness swimming, recreational swimming, therapeutic swimming etc. The Timişoara Masters Swimming Club, which came into being in 2007, is the first club dedicated to masters swimming in our country. Its primary objective is to promote the practice of swimming by adults. The club’s image and, implicitly, its marketing and, respectively, its financial management are influenced to a significant extent by the results achieved in masters swimming competitions. In this sense, statistics show that in 2010, compared to the precedent year, all the measurement indicators of the club’s participation in competitions have decreased. The present paper focuses on the development of this amateur sportive movement by optimizing the organizational management in the sportive environment. The purpose of this paper is to identify the causes that have determined the decreasing tendencies of the Timişoara club members’ participation and, respectively, of the results achieved in masters swimming competitions in 2010 as opposed to 2009.

  10. Cardiac and Metabolic Physiology of Early Larval Zebrafish (Danio rerio) Reflects Parental Swimming Stamina.

    Science.gov (United States)

    Gore, Matthew; Burggren, Warren W

    2012-01-01

    Swimming stamina in adult fish is heritable, it is unknown if inherited traits that support enhanced swimming stamina in offspring appear only in juveniles and/or adults, or if these traits actually appear earlier in the morphologically quite different larvae. To answer this question, mature adult zebrafish (Danio rerio) were subjected to a swimming performance test that allowed separation into low swimming stamina or high swimming stamina groups. Adults were then bred within their own performance groups. Larval offspring from each of the two groups, designated high (L(HSD)) and low stamina-derived larvae (L(LSD)), were then reared at 27°C in aerated water (21% O(2)). Routine (f(H),r) and active (f(H),a) heart rate, and routine [Formula: see text] and active [Formula: see text] mass-specific oxygen consumption were recorded from 5 days post fertilization (dpf) through 21 dpf, and gross cost of transport and factorial aerobic metabolic scope were derived from [Formula: see text] measurements. Heart rate generally ranged between 150 and 225 bpm in both L(HSD) and L(LSD) populations. However, significant (P stamina in adult parents also appear in their larval offspring well before attainment of juvenile or adult features.

  11. Assessing the impact of a targeted plyometric training on changes in selected kinematic parameters of the swimming start.

    Science.gov (United States)

    Rejman, Marek; Bilewski, Marek; Szczepan, Stefan; Klarowicz, Andrzej; Rudnik, Daria; Maćkała, Krzysztof

    2017-01-01

    The aim of this study was to analyse changes taking place within selected kinematic parameters of the swimming start, after completing a six-week plyometric training, assuming that the take-off power training improves its effectiveness. The experiment included nine male swimmers. In the pre-test the swimmers performed three starts focusing on the best performance. Next, a plyometric training programme, adapted from sprint running, was introduced in order to increase a power of the lower extremities. The programme entailed 75 minute sessions conducted twice a week. Afterwards, a post-test was performed, analogous to the pre-test. Spatio-temporal structure data of the swimming start were gathered from video recordings of the swimmer above and under water. Impulses triggered by the plyometric training contributed to a shorter start time (the main measure of start effectiveness) and glide time as well as increasing average take-off, flight and glide velocities including take-off, entry and glide instantaneous velocities. The glide angle decreased. The changes in selected parameters of the swimming start and its confirmed diagnostic values, showed the areas to be susceptible to plyometric training and suggested that applied plyometric training programme aimed at increasing take-off power enhances the effectiveness of the swimming start.

  12. Cortisol treatment affects locomotor activity and swimming behaviour of male smallmouth bass engaged in paternal care: A field study using acceleration biologgers.

    Science.gov (United States)

    Algera, Dirk A; Brownscombe, Jacob W; Gilmour, Kathleen M; Lawrence, Michael J; Zolderdo, Aaron J; Cooke, Steven J

    2017-11-01

    Paternal care, where the male provides sole care for the developing brood, is a common form of reproductive investment among teleost fish and ubiquitous in the Centrarchidae family. Throughout the parental care period, nesting males expend energy in a variety of swimming behaviours, including routine and burst swimming, vigilantly monitoring the nest area and protecting the brood from predators. Parental care is an energetically demanding period, which is presumably made even more difficult if fish are exposed to additional challenges such as those arising from human disturbance, resulting in activation of the hypothalamic-pituitary-interrenal axis (i.e., elevation of cortisol). To study this situation, we examined the effects of experimental manipulation of the stress hormone cortisol on locomotor activity and behaviour of nest guarding male smallmouth bass (Micropterus dolomieu). We exogenously elevated circulating cortisol levels (via intracoelomic implants) and attached tri-axial accelerometers to wild smallmouth bass for three days. During the recovery period (i.e., ≤4h post-release), cortisol-treated fish exhibited significantly reduced locomotor activity and performed significantly less burst and routine swimming relative to control fish, indicating cortisol uptake was rapid, as were the associated behavioural responses. Post-recovery (i.e., >4h post-release), fish with high cortisol exhibited lower locomotor activity and reduced routine swimming relative to controls. Fish were less active and reduced routine and burst swimming at night compared to daylight hours, an effect independent of cortisol treatment. Collectively, our results suggest that cortisol treatment (as a proxy for anthropogenic disturbance and stress) contributed to altered behaviour, and consequently cortisol-treated males decreased parental investment in their brood, which could have potential fitness implications. Copyright © 2017 Elsevier Inc. All rights reserved.

  13. (Important hygienic aspects for swimming pools (author's transl))

    Energy Technology Data Exchange (ETDEWEB)

    Somosi, G

    1981-01-01

    The major epidemics which occurred in Hungary and originated from water in swimming pools are reported. The difficulties encountered in producing epidemiological evidence and in monitoring infections originating from water in swimming pools are mentioned. The possibilities of controlling the water quality in swimming pools and of preventing infections are discussed. Reference is made to the existing bacteriological limit values in Hungary to be observed in the recirculation of water in swimming pools.

  14. Effect of intraperitoneal selenium administration on liver glycogen levels in rats subjected to acute forced swimming.

    Science.gov (United States)

    Akil, Mustafa; Bicer, Mursel; Kilic, Mehmet; Avunduk, Mustafa Cihat; Mogulkoc, Rasim; Baltaci, Abdulkerim Kasim

    2011-03-01

    There are a few of studies examining how selenium, which is known to reduce oxidative damage in exercise, influences glucose metabolism and exhaustion in physical activity. The present study aims to examine how selenium administration affects liver glycogen levels in rats subjected to acute swimming exercise. The study included 32 Sprague-Dawley type male rats, which were equally allocated to four groups: Group 1, general control; Group 2; selenium-supplemented control (6 mg/kg/day sodium selenite); Group 3, swimming control; Group 4, selenium-supplemented swimming (6 mg/kg/day sodium selenite). Liver tissue samples collected from the animals at the end of the study were fixed in 95% ethyl alcohol. From the tissue samples buried into paraffin, 5-µm cross-sections were obtained using a microtome, put on a microscope slide, and stained with PAS. Stained preparations were assessed using a Nikon Eclipse E400 light microscope. All images obtained with the light microscope were transferred to a PC and evaluated using Clemex PE 3.5 image analysis software. The highest liver glycogen levels were found in groups 1 and 2 (p swimming exercise can be restored by selenium administration. It can be argued that physiological doses of selenium administration can contribute to performance.

  15. Paramecium swimming in a capillary tube

    Science.gov (United States)

    Jana, Saikat; Jung, Sunghwan

    2010-03-01

    Micro-organisms exhibit different strategies for swimming in complex environments. Many micro-swimmers such as paramecium congregate and tend to live near wall. We investigate how paramecium moves in a confined space as compared to its motion in an unbounded fluid. A new theoretical model based on Taylor's sheet is developed, to study such boundary effects. In experiments, paramecia are put inside capillary tubes and their swimming behavior is observed. The data obtained from experiments is used to test the validity of our theoretical model and understand how the cilia influence the locomotion of paramecia in confined geometries.

  16. Assessment of three-dimensional joint kinematics of the upper limb during simulated swimming using wearable inertial-magnetic measurement units.

    Science.gov (United States)

    Fantozzi, Silvia; Giovanardi, Andrea; Magalhães, Fabrício Anício; Di Michele, Rocco; Cortesi, Matteo; Gatta, Giorgio

    2016-01-01

    The analysis of the joint kinematics during swimming plays a fundamental role both in sports conditioning and in clinical contexts. Contrary to the traditional video analysis, wearable inertial-magnetic measurements units (IMMUs) allow to analyse both the underwater and aerial phases of the swimming stroke over the whole length of the swimming pool. Furthermore, the rapid calibration and short data processing required by IMMUs provide coaches and athletes with an immediate feedback on swimming kinematics during training. This study aimed to develop a protocol to assess the three-dimensional kinematics of the upper limbs during swimming using IMMUs. Kinematics were evaluated during simulated dry-land swimming trials performed in the laboratory by eight swimmers. A stereo-photogrammetric system was used as the gold standard. The results showed high coefficient of multiple correlation (CMC) values, with median (first-third quartile) of 0.97 (0.93-0.95) and 0.99 (0.97-0.99) for simulated front-crawl and breaststroke, respectively. Furthermore, the joint angles were estimated with an accuracy increasing from distal to proximal joints, with wrist indices showing median CMC values always higher than 0.90. The present findings represent an important step towards the practical use of technology based on IMMUs for the kinematic analysis of swimming in applied contexts.

  17. Analysis of speed, stroke rate, and stroke distance for world-class breaststroke swimming.

    Science.gov (United States)

    Garland Fritzdorf, Stephen; Hibbs, Angela; Kleshnev, Valery

    2009-02-15

    Speed in aquatic locomotion is determined by stroke distance and stroke rate, but it does not always follow that an increase in stroke rate will lead to an increase in speed. Kleshnev (2006) developed a method to evaluate the relationship between speed and stroke rate during rowing - the effective work per stroke. In this case study, the effective work per stroke was determined for a male world-class 100-m breaststroke swimmer for seven races in major championships and compared between: each of the seven races; each quarter within each race; and the best swims of this case study and seven other world-class swimmers. The effective work per stroke was related to race performance, with the fastest race having the highest effective work per stroke and lowest stroke rate, with slower races having low effectiveness and high stroke rate (R(2) = 0.85). The effective work per stroke was reduced in a race as the swimmer fatigued. The within-race standard deviation of effectiveness was lower in fast swims (R(2) = 0.84). This analysis has identified some characteristics of fast swimming: high effectiveness, optimal stroke rate, and a flat effectiveness profile. Training and racing strategies can now be devised to improve performance by increasing the sensitivity of assessment of strengths and weaknesses in individuals.

  18. Swimming behavior and prey retention of the polychaete larvae Polydora ciliata (Johnston)

    DEFF Research Database (Denmark)

    Hansen, B.W.; Jakobsen, Hans Henrik; Andersen, Anders Peter

    2010-01-01

    in specific feeding rates and the observed increase in the difference between upward and downward swimming speeds with larval size. We estimated a critical larval length above which the buoyancy-corrected weight of the larva exceeds the propulsion force generated by the ciliary swimming apparatus and thus......The behavior of the ubiquitous estuarine planktotrophic spionid polychaete larvae Polydora ciliata was studied. We describe ontogenetic changes in morphology, swimming speed and feeding rates and have developed a simple swimming model using low Reynolds number hydrodynamics. In the model we assumed...... that the ciliary swimming apparatus is primarily composed of the prototroch and secondarily by the telotroch. The model predicted swimming speeds and feeding rates that corresponded well with the measured speeds and rates. Applying empirical data to the model, we were able to explain the profound decrease...

  19. The Hydrodynamic Study of the Swimming Gliding: a Two-Dimensional Computational Fluid Dynamics (CFD) Analysis.

    Science.gov (United States)

    Marinho, Daniel A; Barbosa, Tiago M; Rouboa, Abel I; Silva, António J

    2011-09-01

    Nowadays the underwater gliding after the starts and the turns plays a major role in the overall swimming performance. Hence, minimizing hydrodynamic drag during the underwater phases should be a main aim during swimming. Indeed, there are several postures that swimmers can assume during the underwater gliding, although experimental results were not conclusive concerning the best body position to accomplish this aim. Therefore, the purpose of this study was to analyse the effect in hydrodynamic drag forces of using different body positions during gliding through computational fluid dynamics (CFD) methodology. For this purpose, two-dimensional models of the human body in steady flow conditions were studied. Two-dimensional virtual models had been created: (i) a prone position with the arms extended at the front of the body; (ii) a prone position with the arms placed alongside the trunk; (iii) a lateral position with the arms extended at the front and; (iv) a dorsal position with the arms extended at the front. The drag forces were computed between speeds of 1.6 m/s and 2 m/s in a two-dimensional Fluent(®) analysis. The positions with the arms extended at the front presented lower drag values than the position with the arms aside the trunk. The lateral position was the one in which the drag was lower and seems to be the one that should be adopted during the gliding after starts and turns.

  20. Swimming physiology of European silver eels (Anguilla anguilla L.): energetic costs and effects on sexual maturation and reproduction.

    Science.gov (United States)

    Palstra, Arjan P; van den Thillart, Guido E E J M

    2010-09-01

    The European eel migrates 5,000-6,000 km to the Sargasso Sea to reproduce. Because they venture into the ocean in a pre-pubertal state and reproduce after swimming for months, a strong interaction between swimming and sexual maturation is expected. Many swimming trials have been performed in 22 swim tunnels to elucidate their performance and the impact on maturation. European eels are able to swim long distances at a cost of 10-12 mg fat/km which is 4-6 times more efficient than salmonids. The total energy costs of reproduction correspond to 67% of the fat stores. During long distance swimming, the body composition stays the same showing that energy consumption calculations cannot be based on fat alone but need to be compensated for protein oxidation. The optimal swimming speed is 0.61-0.67 m s(-1), which is approximately 60% higher than the generally assumed cruise speed of 0.4 m s(-1) and implies that female eels may reach the Sargasso Sea within 3.5 months instead of the assumed 6 months. Swimming trials showed lipid deposition and oocyte growth, which are the first steps of sexual maturation. To investigate effects of oceanic migration on maturation, we simulated group-wise migration in a large swim-gutter with seawater. These trials showed suppressed gonadotropin expression and vitellogenesis in females, while in contrast continued sexual maturation was observed in silver males. The induction of lipid deposition in the oocytes and the inhibition of vitellogenesis by swimming in females suggest a natural sequence of events quite different from artificial maturation protocols.

  1. Forced sustained swimming exercise at optimal speed enhances growth of juvenile yellowtail kingfish (Seriola lalandi)

    NARCIS (Netherlands)

    Palstra, A.P.; Mes, D.; Kusters, K.; Roques, J.A.C.; Flik, G.; Kloet, K.; Blonk, R.J.W.

    2015-01-01

    Swimming exercise at optimal speed may optimize growth performance of yellowtail kingfish in a recirculating aquaculture system. Therefore, optimal swimming speeds (U-opt in m s(-1) or body lengths s(-1), BL s(-1)) were assessed and then applied to determine the effects of long-term forced and

  2. Muscle Activity during Dryland Swimming while Wearing a Triathlon Wetsuit

    Directory of Open Access Journals (Sweden)

    Ciro Agnelli

    2018-01-01

    Full Text Available Background: Triathletes typically wear a wetsuit during the swim portion of an event, but it is not clear if muscle activity is influenced by wearing a wetsuit. Purpose: To investigate if shoulder muscle activity was influenced by wearing a full-sleeve wetsuit vs. no wetsuit during dryland swimming. Methods: Participants (n=10 males; 179.1±13.2 cm; 91.2±7.25 kg; 45.6±10.5 years completed two dry land swimming conditions on a swim ergometer: No Wetsuit (NW and with Wetsuit (W. Electromyography (EMG of four upper extremity muscles was recorded (Noraxon telemetry EMG, 500 Hz during each condition: Trapezius (TRAP, Triceps (TRI, Anterior Deltoid (AD and Posterior Deltoid (PD. Each condition lasted 90 seconds with data collected during the last 60 seconds. Resistance setting was self-selected and remained constant for both conditions. Stroke rate was controlled at 60 strokes per minute by having participants match a metronome. Average (AVG and Root Mean Square (RMS EMG were calculated over 45 seconds and each were compared between conditions using a paired t-test (α=0.05 for each muscle. Results: PD and AD AVG and RMS EMG were each greater (on average 40.0% and 66.8% greater, respectively during W vs. NW (p0.05. Conclusion: The greater PD and AD muscle activity while wearing a wetsuit might affect swimming performance and /or stroke technique on long distance event.

  3. A Review of Prevention, Diagnosis and Treatment of Relative Energy Deficiency in Sport (RED-S) in Artistic (Synchronized) Swimming.

    Science.gov (United States)

    Robertson, Sherry; Mountjoy, Margo

    2018-05-03

    The syndrome Relative Energy Deficiency in Sport (RED-S) is a clinical entity characterized by low energy availability (LEA), which can negatively affect the health and performance of both male and female athletes. The underlying mechanism of RED-S is an inadequacy of dietary energy to support optimal health and performance. This syndrome refers to impaired physiological function including metabolic rate, menstrual function, bone health, immunity, protein synthesis, and cardiovascular health, with psychological consequences which can either precede (through restrictive dietary habits) or result from RED-S. The term RED-S extends beyond the condition termed the "Female Athlete Triad". Formerly known as synchronized swimming, artistic swimming is an Olympic sport requiring a high level of fitness as well as technical skill and artistry. The risk of RED-S is high in artistic swimming as it is an aesthetic, judged sport with an emphasis on a lean physique. RED-S is of significant concern in the sport of artistic swimming because of the potential negative effects on physical and mental health as well as consequences on athletic performance. This paper reviews health and performance consequences associated with LEA resulting in RED-S in artistic swimming. Medical and nutritional considerations specific to artistic swimming are reviewed and methods to help detect and manage RED-S are discussed. Prevention and management of RED-S in this athlete population should be a priority for coaches and the sport medicine professionals working with artistic swimming athletes should utilize the RED-S CAT, a Clinical Assessment Tool for screening and managing RED-S.

  4. Swimming and feeding of mixotrophic biflagellates

    DEFF Research Database (Denmark)

    Dölger, Julia; Nielsen, Lasse Tor; Kiørboe, Thomas

    2017-01-01

    Many unicellular flagellates are mixotrophic and access resources through both photosynthesis and prey capture. Their fitness depends on those processes as well as on swimming and predator avoidance. How does the flagellar arrangement and beat pattern of the flagellate affect swimming speed...... with variable position next to a no-slip sphere. Utilizing the observations and the model we find that puller force arrangements favour feeding, whereas equatorial force arrangements favour fast and quiet swimming. We determine the capture rates of both passive and motile prey, and we show that the flow...

  5. Geometric Aspects of Force Controllability for a Swimming Model

    International Nuclear Information System (INIS)

    Khapalov, A. Y.

    2008-01-01

    We study controllability properties (swimming capabilities) of a mathematical model of an abstract object which 'swims' in the 2-D Stokes fluid. Our goal is to investigate how the geometric shape of this object affects the forces acting upon it. Such problems are of interest in biology and engineering applications dealing with propulsion systems in fluids

  6. Forced sustained swimming exercise at optimal speed enhances growth of juvenile yellowtail kingfish (Seriola lalandi

    Directory of Open Access Journals (Sweden)

    Arjan P. Palstra

    2015-01-01

    Full Text Available Swimming exercise at optimal speed may optimize growth performance of yellowtail kingfish in a recirculating aquaculture system. Therefore, optimal swimming speeds (Uopt in m s-1 or body lengths s-1, BL s-1 were assessed and then applied to determine the effects of long-term forced and sustained swimming at Uopt on growth performance of juvenile yellowtail kingfish. Uopt was quantified in Blazka-type swim-tunnels for 145 mm, 206 mm and 311 mm juveniles resulting in values of: 1 0.70 m s-1 or 4.83 BL s-1, 2 0.82 m s-1 or 3.25 BL s-1 and 3 0.85 m s-1 or 2.73 BL s-1. Combined with literature data from larger fish, a relation of Uopt (BL s-1 = 234.07(BL-0.779 (R2= 0.9909 was established for this species. Yellowtail kingfish, either forced to perform sustained swimming exercise at an optimal speed of 2.46 BL s-1 (‘swimmers’ or allowed to perform spontaneous activity at low water flow (‘resters’ in a newly designed 3,600 L oval flume (with flow created by an impeller driven by an electric motor, were then compared. At the start of the experiment, ten fish were sampled representing the initial condition. After 18 days, swimmers (n= 23 showed a 92% greater increase in BL and 46% greater increase in BW as compared to resters (n= 23. As both groups were fed equal rations, feed conversion ratio (FCR for swimmers was 1.21 vs. 1.74 for resters. Doppler ultrasound imaging showed a statistically significant higher blood flow (31% in the ventral aorta of swimmers vs. resters (44 ± 3 mL min-1 vs. 34 ± 3 mL min-1, respectively, under anesthesia. Thus growth performance can be rapidly improved by optimal swimming, without larger feed investments.

  7. Performance of four different rat strains in the autoshaping, two-object discrimination, and swim maze tests of learning and memory.

    Science.gov (United States)

    Andrews, J S; Jansen, J H; Linders, S; Princen, A; Broekkamp, C L

    1995-04-01

    The performance of four strains of rats commonly used in behavioural research was assessed in three different tests of learning and memory. The four strains included three outbred lines (Long-Evans, Sprague-Dawley, Wistar) and one inbred strain (S3). Learning and memory were tested using three different paradigms: autoshaping of a lever press, a two-object discrimination test, and performance in a two-island swim maze task. The pigmented strains showed better performance in the autoshaping procedure: the majority of the Long-Evans and the S3 rats acquired the response, and the majority of the Wistar and Sprague-Dawley failed to acquire the response in the set time. The albino strains were slightly better in the swim maze than the pigmented strains. There appeared to be a speed/accuracy trade-off in the strategy used to solve the task. This was also evident following treatment with the cholinergic-depleting agent hemicholinium-3. The performance of the Long-Evans rats was most affected by the treatment in terms of accuracy and the Wistar and Sprague-Dawleys in terms of speed. In the two-object discrimination test only the Long-Evans showed satisfactory performance and were able to discriminate a novel from a known object a short interval after initial exposure. These results show large task- and strain-dependent differences in performance in tests of learning and memory. Some of the performance variation may be due to emotional differences between the strains and may be alleviated by extra training. However, the response to pharmacological manipulation may require more careful evaluation.(ABSTRACT TRUNCATED AT 250 WORDS)

  8. The influence of winter swimming on the rheological properties of blood.

    Science.gov (United States)

    Teległów, Aneta; Dąbrowski, Zbigniew; Marchewka, Anna; Tyka, Aleksander; Krawczyk, Marcin; Głodzik, Jacek; Szyguła, Zbigniew; Mleczko, Edward; Bilski, Jan; Tyka, Anna; Tabarowski, Zbigniew; Czepiel, Jacek; Filar-Mierzwa, Katarzyna

    2014-01-01

    The aim of this study was to analyze the changes in blood rheology resulting from regular winter swimming. The study was carried out on 12 male winter swimmers. Venous blood for morphological, biochemical and rheological analysis was sampled twice from each winter swimmer - at the beginning of the season and after its completion. There were no significant changes detected in the median values of most blood morphological parameters. The only exception pertained to MCHC which was significantly lower after the season. Winter swimming entailed significant decrease in median elongation index values at shear stress levels of 0.30 Pa and 0.58 Pa, and significant increase in median values of this parameter at shear stress levels ≥1.13 Pa. No significant changes were observed in winter swimmers' median values of aggregation indices and plasma viscosity. The median level of glucose was lower post winter swimming in comparison to the pre-seasonal values. In contrast, one season of winter swimming did not influence swimmers' median value of fibrinogen concentration. In summary, this study revealed positive effects of winter swimming on the rheological properties of blood, manifested by an increase in erythrocyte deformability without accompanying changes in erythrocyte aggregation.

  9. Kick, Stroke and Swim: Complement Your Swimming Program by Engaging the Whole Body on Dry Land and in the Pool

    Science.gov (United States)

    Flynn, Susan; Duell, Kelly; Dehaven, Carole; Heidorn, Brent

    2017-01-01

    The Kick, Stroke and Swim (KSS) program can be used to engage students in swimming-skill acquisition and fitness training using a variety of modalities, strategies and techniques on dry land. Practicing swim strokes and techniques on land gives all levels of swimmers--from beginner to competitive--a kinesthetic awareness of the individual…

  10. Transitions between three swimming gaits in Paramecium escape.

    Science.gov (United States)

    Hamel, Amandine; Fisch, Cathy; Combettes, Laurent; Dupuis-Williams, Pascale; Baroud, Charles N

    2011-05-03

    Paramecium and other protists are able to swim at velocities reaching several times their body size per second by beating their cilia in an organized fashion. The cilia beat in an asymmetric stroke, which breaks the time reversal symmetry of small scale flows. Here we show that Paramecium uses three different swimming gaits to escape from an aggression, applied in the form of a focused laser heating. For a weak aggression, normal swimming is sufficient and produces a steady swimming velocity. As the heating amplitude is increased, a higher acceleration and faster swimming are achieved through synchronized beating of the cilia, which begin by producing oscillating swimming velocities and later give way to the usual gait. Finally, escape from a life-threatening aggression is achieved by a "jumping" gait, which does not rely on the cilia but is achieved through the explosive release of a group of trichocysts in the direction of the hot spot. Measurements through high-speed video explain the role of trichocysts in defending against aggressions while showing unexpected transitions in the swimming of microorganisms. These measurements also demonstrate that Paramecium optimizes its escape pattern by taking advantage of its inertia.

  11. Biochemical and Hematological Changes Following the 120-Km Open-Water Marathon Swim

    Directory of Open Access Journals (Sweden)

    Wojciech Drygas, Ewa Rębowska, Ewa Stępień, Jacek Golański, Magdalena Kwaśniewska

    2014-09-01

    Full Text Available Data on physiological effects and potential risks of a ultraendurance swimming are scarce. This report presents the unique case of a 61-year old athlete who completed a non-stop open-water 120-km ultramarathon swim on the Warta River, Poland. Pre-swimming examinations revealed favorable conditions (blood pressure, 110/70 mmHg; rest heart rate, 54 beats/minute, ejection fraction, 60%, 20.2 metabolic equivalents in a maximal exercise test. The swimming time and distance covered were 27 h 33 min and 120 km, respectively. Blood samples for hematological and biochemical parameters were collected 30 min, 4 hrs, 10 hrs and 8 days after the swim. The body temperature of the swimmer was 36.7°C before and 35.1°C after the swim. The hematological parameters remained within the reference range in the postexercise period except for leucocytes (17.5 and 10.6 x G/l noted 30 minutes and 4 hours after the swim, respectively. Serum urea, aspartate aminotransferase and C-reactive protein increased above the reference range reaching 11.3 mmol/l, 1054 nmol/l/s and 25.9 mg/l, respectively. Symptomatic hyponatremia was not observed. Although the results demonstrate that an experienced athlete is able to complete an ultra-marathon swim without negative health consequences, further studies addressing the potential risks of marathon swimming are required.

  12. Pacing the phasing of leg and arm movements in breaststroke swimming to minimize intra-cyclic velocity fluctuations.

    Directory of Open Access Journals (Sweden)

    Josje van Houwelingen

    Full Text Available In swimming propelling efficiency is partly determined by intra-cyclic velocity fluctuations. The higher these fluctuations are at a given average swimming velocity, the less efficient is the propulsion. This study explored whether the leg-arm coordination (i.e. phase relation ϕ within the breaststroke cycle can be influenced with acoustic pacing, and whether the so induced changes are accompanied by changes in intra-cyclic velocity fluctuations. Twenty-six participants were asked to couple their propulsive leg and arm movements to a double-tone metronome beat and to keep their average swimming velocity constant over trials. The metronome imposed five different phase relations ϕi (90, 135, 180, 225 and 270° of leg-arm coordination. Swimmers adjusted their technique under the influence of the metronome, but failed to comply to the velocity requirement for ϕ = 90 and 135°. For imposed ϕ = 180, 225 and 270°, the intra-cyclic velocity fluctuations increased with increasing ϕ, while average swimming velocity did not differ. This suggests that acoustic pacing may be used to adjust ϕ and thereby performance of breaststroke swimming given the dependence of propelling efficiency on ϕ.

  13. Development of Swimming Human Simulation Model Considering Rigid Body Dynamics and Unsteady Fluid Force for Whole Body

    Science.gov (United States)

    Nakashima, Motomu; Satou, Ken; Miura, Yasufumi

    The purpose of this study is to develop a swimming human simulation model considering rigid body dynamics and unsteady fluid force for the whole body, which will be utilized to analyze various dynamical problems in human swimming. First, the modeling methods and their formulations for the human body and the fluid force are respectively described. Second, experiments to identify the coefficients of the normal drag and the added mass are conducted by use of an experimental setup, in which a limb model rotates in the water, and its rotating angle and the bending moment at the root are measured. As the result of the identification, the present model for the fluid force was found to have satisfactory performance in order to represent the unsteady fluctuations of the experimental data, although it has 10% error. Third, a simulation for the gliding position is conducted in order to identify the tangential drag coefficient. Finally, a simulation example of standard six beat front crawl swimming is shown. The swimming speed of the simulation became a reasonable value, indicating the validity of the present simulation model, although it is 7.5% lower than the actual swimming.

  14. Sex differences associated with intermittent swim stress.

    Science.gov (United States)

    Warner, Timothy A; Libman, Matthew K; Wooten, Katherine L; Drugan, Robert C

    2013-11-01

    Various animal models of depression have been used to seek a greater understanding of stress-related disorders. However, there is still a great need for novel research in this area, as many individuals suffering from depression are resistant to current treatment methods. Women have a higher rate of depression, highlighting the need to investigate mechanisms of sex differences. Therefore, we employed a new animal model to assess symptoms of depression, known as intermittent swim stress (ISS). In this model, the animal experiences 100 trials of cold water swim stress. ISS has already been shown to cause signs of behavioral depression in males, but has yet to be assessed in females. Following ISS exposure, we looked at sex differences in the Morris water maze and forced swim test. The results indicated a spatial learning effect only in the hidden platform task between male and female controls, and stressed and control males. A consistent spatial memory effect was only seen for males exposed to ISS. In the forced swim test, both sexes exposed to ISS exhibited greater immobility, and the same males and females also showed attenuated climbing and swimming, respectively. The sex differences could be due to different neural substrates for males and females. The goal of this study was to provide the first behavioral examination of sex differences following ISS exposure, so the stage of estrous cycle was not assessed for the females. This is a necessary future direction for subsequent experiments. The current article highlights the importance of sex differences in response to stress.

  15. SWIMMING CLASSES IN JUNIOR HIGH SCHOOL STUDENTS’ OPINION

    Directory of Open Access Journals (Sweden)

    Grzegorz Bielec

    2013-02-01

    Full Text Available The role of modern physical education is not only to develop motor abilities of the students, but most of all prevent them from epidemic youth diseases such as obesity or postural defects. Positive attitudes to swimming as a long-life physical activity, instilled in adolescence should be beneficial in adult life. The group of 130 boys and 116 girls of 7th grade junior high school (mean age 14.6 was asked in the survey to present their opinion of obligatory swimming lessons at school. Students of both sexes claimed that they liked swimming classes because they could improve their swimming skills (59% of answers and because of health-related character of water exercises (38%. 33% of students regarded swimming lessons as boring and monotonous, and 25% of them complained about poor pool conditions like chlorine smell, crowded lanes, too low temperature. Majority of the surveyed students saw practical role of swimming in saving others life.

  16. Dynamic Shape Capture of Free-Swimming Aquatic Life using Multi-view Stereo

    Science.gov (United States)

    Daily, David

    2017-11-01

    The reconstruction and tracking of swimming fish in the past has either been restricted to flumes, small volumes, or sparse point tracking in large tanks. The purpose of this research is to use an array of cameras to automatically track 50-100 points on the surface of a fish using the multi-view stereo computer vision technique. The method is non-invasive thus allowing the fish to swim freely in a large volume and to perform more advanced maneuvers such as rolling, darting, stopping, and reversing which have not been studied. The techniques for obtaining and processing the 3D kinematics and maneuvers of tuna, sharks, stingrays, and other species will be presented and compared. The National Aquarium and the Naval Undersea Warfare Center and.

  17. On the swimming motion of spheroidal magnetotactic bacteria

    Energy Technology Data Exchange (ETDEWEB)

    Cui Zhen; Kong Dali; Zhang Keke [Department of Mathematical Sciences, University of Exeter, Exeter EX4 4QF (United Kingdom); Pan Yongxin, E-mail: kzhang@ex.ac.uk [Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing (China)

    2012-10-15

    We investigate, via both theoretical and experimental methods, the swimming motion of magnetotactic bacteria having the shape of an elongated prolate spheroid in a viscous liquid under the influence of an imposed magnetic field. A fully three-dimensional Stokes flow, driven by the translation and rotation of a swimming bacterium, exerts a complicated viscous drag/torque on the motion of a non-spherical bacterium. By assuming that the body of the bacterium is non-deformable and that the interaction between different bacteria is weak and hence negligible, we have derived a system of 12 coupled nonlinear ordinary differential equations that govern both the motion and the orientation of a swimming spheroidal magnetotactic bacterium. The focus of the study is on how the shape of a non-spherical magnetotactic bacterium, marked by the size of its eccentricity, affects the pattern of its swimming motion. It is revealed that the pattern/speed of a swimming spheroidal magnetotactic bacterium is highly sensitive not only to the direction of its magnetic moment but also to its shape. We also compare the theoretical pattern obtained from the solutions of the 12 coupled differential equations with that observed in the laboratory experiments using the magnetotactic bacteria found in Lake Miyun near Beijing, China, showing that the observed pattern can be largely reproduced with an appropriate set of parameters in our theoretical model. (paper)

  18. On the swimming motion of spheroidal magnetotactic bacteria

    International Nuclear Information System (INIS)

    Cui Zhen; Kong Dali; Zhang Keke; Pan Yongxin

    2012-01-01

    We investigate, via both theoretical and experimental methods, the swimming motion of magnetotactic bacteria having the shape of an elongated prolate spheroid in a viscous liquid under the influence of an imposed magnetic field. A fully three-dimensional Stokes flow, driven by the translation and rotation of a swimming bacterium, exerts a complicated viscous drag/torque on the motion of a non-spherical bacterium. By assuming that the body of the bacterium is non-deformable and that the interaction between different bacteria is weak and hence negligible, we have derived a system of 12 coupled nonlinear ordinary differential equations that govern both the motion and the orientation of a swimming spheroidal magnetotactic bacterium. The focus of the study is on how the shape of a non-spherical magnetotactic bacterium, marked by the size of its eccentricity, affects the pattern of its swimming motion. It is revealed that the pattern/speed of a swimming spheroidal magnetotactic bacterium is highly sensitive not only to the direction of its magnetic moment but also to its shape. We also compare the theoretical pattern obtained from the solutions of the 12 coupled differential equations with that observed in the laboratory experiments using the magnetotactic bacteria found in Lake Miyun near Beijing, China, showing that the observed pattern can be largely reproduced with an appropriate set of parameters in our theoretical model. (paper)

  19. Water Evaporation in Swimming Baths

    DEFF Research Database (Denmark)

    Hyldgård, Carl-Erik

    This paper is publishing measuring results from models and full-scale baths of the evaporation in swimming baths, both public baths and retraining baths. Moreover, the heat balance of the basin water is measured. In addition the full-scale measurements have given many experiences which are repres......This paper is publishing measuring results from models and full-scale baths of the evaporation in swimming baths, both public baths and retraining baths. Moreover, the heat balance of the basin water is measured. In addition the full-scale measurements have given many experiences which...... are represented in instructions for carrying out and running swimming baths. If you follow the instructions you can achieve less investments, less heat consumption and a better comfort to the bathers....

  20. London 2012 Paralympic swimming: passive drag and the classification system.

    Science.gov (United States)

    Oh, Yim-Taek; Burkett, Brendan; Osborough, Conor; Formosa, Danielle; Payton, Carl

    2013-09-01

    The key difference between the Olympic and Paralympic Games is the use of classification systems within Paralympic sports to provide a fair competition for athletes with a range of physical disabilities. In 2009, the International Paralympic Committee mandated the development of new, evidence-based classification systems. This study aims to assess objectively the swimming classification system by determining the relationship between passive drag and level of swimming-specific impairment, as defined by the current swimming class. Data were collected on participants at the London 2012 Paralympic Games. The passive drag force of 113 swimmers (classes 3-14) was measured using an electro-mechanical towing device and load cell. Swimmers were towed on the surface of a swimming pool at 1.5 m/s while holding their most streamlined position. Passive drag ranged from 24.9 to 82.8 N; the normalised drag (drag/mass) ranged from 0.45 to 1.86 N/kg. Significant negative associations were found between drag and the swimming class (τ = -0.41, p < 0.01) and normalised drag and the swimming class (τ = -0.60, p < 0.01). The mean difference in drag between adjacent classes was inconsistent, ranging from 0 N (6 vs 7) to 11.9 N (5 vs 6). Reciprocal Ponderal Index (a measure of slenderness) correlated moderately with normalised drag (r(P) = -0.40, p < 0.01). Although swimmers with the lowest swimming class experienced the highest passive drag and vice versa, the inconsistent difference in mean passive drag between adjacent classes indicates that the current classification system does not always differentiate clearly between swimming groups.

  1. Muscle dynamics in fish during steady swimming

    DEFF Research Database (Denmark)

    Shadwick, RE; Steffensen, JF; Katz, SL

    1998-01-01

    SYNOPSIS. Recent research in fish locomotion has been dominated by an interest in the dynamic mechanical properties of the swimming musculature. Prior observations have indicated that waves of muscle activation travel along the body of an undulating fish faster than the resulting waves of muscular...... position in swimming fish. Quantification of muscle contractile properties in cyclic contractions relies on in vitro experiments using strain and activation data collected in vivo. In this paper we discuss the relation between these parameters and body kinematics. Using videoradiographic data from swimming...... constant cross-section of red muscle along much of the body suggests that positive power for swimming is generated fairly uniformly along the length of the fish....

  2. [A comparative study on behaviors of two depression models in rats induced by chronic forced swimming stress].

    Science.gov (United States)

    Han, Ming-Fei; Gao, Dong; Sun, Xue-Li

    2010-01-01

    To compare the behaviors of rats with depressions induced by chronic forced swimming stress under two different conditions. Eighteen male rats were randomly divided into 3 groups, with 6 rats in each group. The rats in the control group (C group) were not forced into swimming, while the rats in the stress groups (S1 and S2) were forced to swim for 14 consecutive days. The rats in S1 group and S2 group swam for five minutes every morning, in water with (23 +/- 1) degree C, and (10 +/- 0.5) degree C in temperature, respectively. The weight gain, food intake, open-field test and saccharin solution test were observed on the seventh day and fourteenth day. On the seventh day following chronic swim stress, the rats in the S2 group had significant lower ratio in weight gain and food intake than the controls (P forced swimming. On the fourteenth day, the rats in the S1 group still had lower ratio in weight gain, but had higher ratio in food intake and preference for saccharin solution, and greater number of crossing than the controls. Chronic forced swimming at a lower temperature could induce depression better than at a higher temperature.

  3. Mechanics of undulatory swimming in a frictional fluid.

    Science.gov (United States)

    Ding, Yang; Sharpe, Sarah S; Masse, Andrew; Goldman, Daniel I

    2012-01-01

    The sandfish lizard (Scincus scincus) swims within granular media (sand) using axial body undulations to propel itself without the use of limbs. In previous work we predicted average swimming speed by developing a numerical simulation that incorporated experimentally measured biological kinematics into a multibody sandfish model. The model was coupled to an experimentally validated soft sphere discrete element method simulation of the granular medium. In this paper, we use the simulation to study the detailed mechanics of undulatory swimming in a "granular frictional fluid" and compare the predictions to our previously developed resistive force theory (RFT) which models sand-swimming using empirically determined granular drag laws. The simulation reveals that the forward speed of the center of mass (CoM) oscillates about its average speed in antiphase with head drag. The coupling between overall body motion and body deformation results in a non-trivial pattern in the magnitude of lateral displacement of the segments along the body. The actuator torque and segment power are maximal near the center of the body and decrease to zero toward the head and the tail. Approximately 30% of the net swimming power is dissipated in head drag. The power consumption is proportional to the frequency in the biologically relevant range, which confirms that frictional forces dominate during sand-swimming by the sandfish. Comparison of the segmental forces measured in simulation with the force on a laterally oscillating rod reveals that a granular hysteresis effect causes the overestimation of the body thrust forces in the RFT. Our models provide detailed testable predictions for biological locomotion in a granular environment.

  4. Prioritizing Anthropometric, Biomechanical and Physiological Characteristics of the Elite Boys in 200m Backstroke Swimming for Identification of their Talents and Prediction of their Performance

    Directory of Open Access Journals (Sweden)

    Ameneh PourrahimGhouroghchi

    2017-06-01

    Full Text Available Objective: Talent identification reduces stint to achieve better sports performances by elite athletes and enables application of scientific training. The purpose of this study was prioritizing the anthropometric, biomechanical and physiological characteristics of the elite boys in 200m Backstroke swimming for identifying their talents and predicting their performances. Methods: 34 elite young swimmers, age11-12 years, who had ranked top in the championships in their province signed the letter consent and a questionnaire tapping into their biographical data. Three subject, due to lack of cooperation on the measurement of parameters and 4 subject, due to measurement errors, missed in the study. The anthropometrical, biomechanical and physiological parameters from 27 subjects were measured by Rydkv questionnaires. Data were analyzed using Friedman test. Results: The most important anthropometrical parameters were subscapularis fat (8.32 mm, triceps fat (8.93 mm and supraspinatus fat (9.15 mm; the most important range of motions parameters were elbow hyperextension (3.59 degree, ankle dorsi flexion (6.50 degree and hip hyperextension (40.65 degree; and the most important physiological parameters were action and reaction velocity (20.76 cm, left hand strength (23.56 kg and right hand strength (23.78 kg and flexibility (27.41 cm in 200m Backstroke swimming. Conclusion: Anthropometrical, biomechanical and physiological parameters for identifying talents and predicting the performance of the elite swimmers in 200m Backstroke should be considered by authorities, practitioners and educators.

  5. Shoulder and hip roll changes during 200-m front crawl swimming.

    Science.gov (United States)

    Psycharakis, Stelios G; Sanders, Ross H

    2008-12-01

    To determine accurately the magnitude and changes in shoulder roll (SR) and hip roll (HR) throughout a 200-m maximum front crawl swim and whether SR and HR were associated with swimming velocity (V). Bilateral roll asymmetries and timing differences between SR and HR were also investigated. Ten male swimmers of national/international level performed a maximum 200-m front crawl swim. Performance was recorded with four below- and two above-water synchronized cameras and four nonbreathing stroke cycles (SC) were analyzed (one for each 50 m). SR and HR were calculated separately. Swimmers rolled their shoulders significantly more than their hips (P < 0.001). V generally decreased during the test, and HR was significantly higher in SC4 than in SC1 (P = 0.001). SR had a negative and significant correlation with V in each SC (-0.663 swimming. Faster swimmers tended to roll their shoulders less than slower swimmers. The increase in HR as the test progressed is possibly associated with a decrease in stroke frequency and increase in SC duration. Given that all swimmers were right-handed and that SR was significantly greater to the left than to the right side, it seems that factors related to handedness might affect SR symmetry in swimming.

  6. The hydrodynamics of swimming microorganisms

    International Nuclear Information System (INIS)

    Lauga, Eric; Powers, Thomas R

    2009-01-01

    Cell motility in viscous fluids is ubiquitous and affects many biological processes, including reproduction, infection and the marine life ecosystem. Here we review the biophysical and mechanical principles of locomotion at the small scales relevant to cell swimming, tens of micrometers and below. At this scale, inertia is unimportant and the Reynolds number is small. Our emphasis is on the simple physical picture and fundamental flow physics phenomena in this regime. We first give a brief overview of the mechanisms for swimming motility, and of the basic properties of flows at low Reynolds number, paying special attention to aspects most relevant for swimming such as resistance matrices for solid bodies, flow singularities and kinematic requirements for net translation. Then we review classical theoretical work on cell motility, in particular early calculations of swimming kinematics with prescribed stroke and the application of resistive force theory and slender-body theory to flagellar locomotion. After examining the physical means by which flagella are actuated, we outline areas of active research, including hydrodynamic interactions, biological locomotion in complex fluids, the design of small-scale artificial swimmers and the optimization of locomotion strategies.

  7. Quiet swimming at low Reynolds number

    DEFF Research Database (Denmark)

    Andersen, Anders Peter; Wadhwa, Navish; Kiørboe, Thomas

    2015-01-01

    The stresslet provides a simple model of the flow created by a small, freely swimming and neutrally buoyant aquatic organism and shows that the far field fluid disturbance created by such an organism in general decays as one over distance squared. Here we discuss a quieter swimming mode that elim......The stresslet provides a simple model of the flow created by a small, freely swimming and neutrally buoyant aquatic organism and shows that the far field fluid disturbance created by such an organism in general decays as one over distance squared. Here we discuss a quieter swimming mode...... that eliminates the stresslet component of the flow and leads to a faster spatial decay of the fluid disturbance described by a force quadrupole that decays as one over distance cubed. Motivated by recent experimental results on fluid disturbances due to small aquatic organisms, we demonstrate that a three......-Stokeslet model of a swimming organism which uses breast stroke type kinematics is an example of such a quiet swimmer. We show that the fluid disturbance in both the near field and the far field is significantly reduced by appropriately arranging the propulsion apparatus, and we find that the far field power laws...

  8. The fluid dynamics of swimming by jumping in copepods

    DEFF Research Database (Denmark)

    Jiang, Houshuo; Kiørboe, Thomas

    2011-01-01

    Copepods swim either continuously by vibrating their feeding appendages or erratically by repeatedly beating their swimming legs resulting in a series of small jumps. The two swimming modes generate different hydrodynamic disturbances and therefore expose the swimmers differently to rheotactic...... limited and temporally ephemeral owing to jump-impulsiveness and viscous decay. In contrast, continuous steady swimming generates two well-extended long-lasting momentum jets both in front of and behind the swimmer, as suggested by the well-known steady stresslet model. Based on the observed jump-swimming...... kinematics of a small copepod Oithona davisae, we further showed that jump-swimming produces a hydrodynamic disturbance with much smaller spatial extension and shorter temporal duration than that produced by a same-size copepod cruising steadily at the same average translating velocity. Hence, small copepods...

  9. The effect of microinjection of dimethyl sulfoxide into the rostral ventromedial medulla on swim stress-induced analgesia

    Directory of Open Access Journals (Sweden)

    S. Nazemi

    2018-02-01

    Full Text Available Background: Dimethyl sulfoxide (DMSO is an important solvent for compounds that used in pain research. Rostral ventromedial medulla (RVM plays an important role in modulating nociception and stress-induced analgesia (SIA. Objective: The aim of this study was to investigate the effect of DMSO administration into the RVM on SIA by using formalin test. Methods: This experimental study was conducted on 27 Wistar male rats (200±30 gr were randomly assigned to control, stress and stress+DMSO groups. Animals were placed in a water reservoir (20±1°C for 3 minutes to induce forced swimming stress. Stereotaxic surgery was performed to microinjection of DMSO (0.5μl, 100% into RVM. The pain behavior score was evaluated by subcutaneous injection of formalin 2% in the dorsal plantar region of hid paw. Findings: The pain score of phase 1, interphase and phase 2 of formalin test in swim stress group decreased significantly in comparison to control group (P<0.001, P< 0.05, P<0.001 respectively. In addition, the pain score of three phase of formalin test after DMSO injection in swim stress group decreased significantly in comparison to control and stress group (P<0.001, P<0.05 respectively. Conclusion: Also microinjections of DMSO into the RVM potentiate the swim stress analgesia. According to the analgesic effects of dimethyl sulfoxide, as well as its ability to potentiate stressinduced analgesia, DMSO should be used with caution as a solvent in pain studies. Conclusion: Force swim stress induces analgesia in, and microinjections of DMSO into the RVM potentiate the swim stress analgesia. According to the analgesic effects of DMSO, as well as its ability to potentiate stress-induced analgesia, it should be used with caution as solvent in pain studies.

  10. Swimming of Paramecium in confined channels

    Science.gov (United States)

    Jung, Sunghwan

    2012-02-01

    Many living organisms in nature have developed a few different swimming modes, presumably derived from hydrodynamic advantage. Paramecium is a ciliated protozoan covered by thousands of cilia with a few nanometers in diameter and tens of micro-meters in length and is able to exhibit both ballistic and meandering motions. First, we characterize ballistic swimming behaviors of ciliated microorganisms in glass capillaries of different diameters and explain the trajectories they trace out. We develop a theoretical model of an undulating sheet with a pressure gradient and discuss how it affects the swimming speed. Secondly, investigation into meandering swimmings within rectangular PDMS channels of dimension smaller than Paramecium length. We find that Paramecium executes a body-bend (an elastic buckling) using the cilia while it meanders. By considering an elastic beam model, we estimate and show the universal profile of forces it exerts on the walls. Finally, we discuss a few other locomotion of Paramecium in other extreme environments like gel.

  11. Unsteady propulsion by an intermittent swimming gait

    Science.gov (United States)

    Akoz, Emre; Moored, Keith W.

    2018-01-01

    Inviscid computational results are presented on a self-propelled swimmer modeled as a virtual body combined with a two-dimensional hydrofoil pitching intermittently about its leading edge. Lighthill (1971) originally proposed that this burst-and-coast behavior can save fish energy during swimming by taking advantage of the viscous Bone-Lighthill boundary layer thinning mechanism. Here, an additional inviscid Garrick mechanism is discovered that allows swimmers to control the ratio of their added mass thrust-producing forces to their circulatory drag-inducing forces by decreasing their duty cycle, DC, of locomotion. This mechanism can save intermittent swimmers as much as 60% of the energy it takes to swim continuously at the same speed. The inviscid energy savings are shown to increase with increasing amplitude of motion, increase with decreasing Lighthill number, Li, and switch to an energetic cost above continuous swimming for sufficiently low DC. Intermittent swimmers are observed to shed four vortices per cycle that form into groups that are self-similar with the DC. In addition, previous thrust and power scaling laws of continuous self-propelled swimming are further generalized to include intermittent swimming. The key is that by averaging the thrust and power coefficients over only the bursting period then the intermittent problem can be transformed into a continuous one. Furthermore, the intermittent thrust and power scaling relations are extended to predict the mean speed and cost of transport of swimmers. By tuning a few coefficients with a handful of simulations these self-propelled relations can become predictive. In the current study, the mean speed and cost of transport are predicted to within 3% and 18% of their full-scale values by using these relations.

  12. Swimming: Effects on Stress Urinary Incontinence and the Expression of Nerve Growth Factor in Rats Following Transabdominal Urethrolysis

    Directory of Open Access Journals (Sweden)

    Il Gyu Ko

    2011-06-01

    Full Text Available PurposeStress urinary incontinence (SUI commonly occurs in women, and it has an enormous impact on quality of life. Surgery, drugs, and exercise have been recommended for the treatment of this disease. Among these, exercise is known to be effective for the relief of symptoms of SUI; however, the efficacy and underlying mechanisms of the effect of exercise on SUI are poorly understood. We investigated the effect of swimming the symptom of SUI in relation to the expression of nerve growth factor (NGF in rats.MethodsTransabdominal urethrolysis was used to induce SUI, in Sprague-Dawley rats. The experimental groups were divided into the following three groups: sham-operation group, transabdominal urethrolysis-induced group, and transabdominal urethrolysis-induced and swimming group. The rats in the swimming group were forced to swim for 30 minutes once daily starting 2 weeks after SUI induction and continuing for 4 weeks. For this study, determination of abdominal leak point pressure and immunohistochemistry for NGF in the urethra and in the neuronal voiding centers (medial preoptic nucleus [MPA], ventrolateral periaqueductal gray [vlPAG], pontine micturition center [PMC], and spinal cord [L4-L5] were performed.ResultsTransabdominal urethrolysis significantly reduced the abdominal leak point pressure, thereby contributing to the induction of SUI. Abdominal leak point pressure, however, was significantly improved by swimming. The expression of NGF in the urethra and in the neuronal voiding centers (MPA, vlPAG, PMC, and L4-L5 relating to micturition was enhanced by the induction of SUI. Swimming, however, significantly suppressed SUI-induced NGF expression.ConclusionsSwimming alleviated symptoms of transabdominal urethrolysis-induced SUI, as assessed by an increase in abdominal leak point pressure. The underlying mechanisms of these effects of swimming might be ascribed to the inhibitory effect of swimming on NGF expression.

  13. Water-tunnel studies of heat balance in swimming mako sharks.

    Science.gov (United States)

    Bernal, D; Sepulveda, C; Graham, J B

    2001-12-01

    The mako shark (Isurus oxyrinchus) has specialized vascular networks (retia mirabilia) forming counter-current heat exchangers that allow metabolic heat retention in certain regions of the body, including the aerobic, locomotor red muscle and the viscera. Red muscle, white muscle and stomach temperatures were measured in juvenile (5-13.6 kg) makos swimming steadily in a water tunnel and exposed to stepwise square-wave changes in ambient temperature (T(a)) to estimate the rates of heat transfer and to determine their capacity for the activity-independent control of heat balance. The rates of heat gain of red muscle during warming were significantly higher than the rates of heat loss during cooling, and neither the magnitude of the change in T(a) nor the direction of change in T(a) had a significant effect on red muscle latency time. Our findings for mako red muscle are similar to those recorded for tunas and suggest modulation of retial heat-exchange efficiency as the underlying mechanism controlling heat balance. However, the red muscle temperatures measured in swimming makos (0.3-3 degrees C above T(a)) are cooler than those measured previously in larger decked makos. Also, the finding of non-stable stomach temperatures contrasts with the predicted independence from T(a) recorded in telemetry studies of mako and white sharks. Our studies on live makos provide new evidence that, in addition to the unique convergent morphological properties between makos and tunas, there is a strong functional similarity in the mechanisms used to regulate heat transfer.

  14. Forced swimming stress does not affect monoamine levels and neurodegeneration in rats.

    Science.gov (United States)

    Abbas, Ghulam; Naqvi, Sabira; Mehmood, Shahab; Kabir, Nurul; Dar, Ahsana

    2011-10-01

    The current study was aimed to investigate the correlations between immobility time in the forced swimming test (FST, a behavioral indicator of stress level) and hippocampal monoamine levels (markers of depression), plasma adrenalin level (a peripheral marker of stress) as well as fluoro-jade C staining (a marker of neurodegeneration). Male Sprague-Dawley rats were subjected to acute, sub-chronic (7 d) or chronic (14 d) FSTs and immobility time was recorded. Levels of noradrenalin, serotonin and dopamine in the hippocampus, and adrenalin level in the plasma were quantified by high-performance liquid chromatography with electrochemical detection. Brain sections from rats after chronic forced swimming or rotenone treatment (3 mg/kg subcutaneously for 4 d) were stained with fluoro-jade C. The rats subjected to swimming stress (acute, sub-chronic and chronic) showed long immobility times [(214 +/- 5), (220 +/- 4) and (231 +/- 7) s, respectively], indicating that the animals were under stress. However, the rats did not exhibit significant declines in hippocampal monoamine levels, and the plasma adrenalin level was not significantly increased compared to that in unstressed rats. The rats that underwent chronic swimming stress did not manifest fluoro-jade C staining in brain sections, while degenerating neurons were evident after rotenone treatment. The immobility time in the FST does not correlate with markers of depression (monoamine levels) and internal stress (adrenalin levels and neurodegeneration), hence this parameter may not be a true indicator of stress level.

  15. The Effect of Swimming on the Lung Functions in Healthy Young Male Population of Amritsar

    Directory of Open Access Journals (Sweden)

    Mahajan Shashi

    2013-12-01

    Full Text Available Aim of this research is to study the effects of swimming on the lung functions in adult male population of Amritsar. Many exercise physiologists study the effect of exercise on pathology, and the mechanisms by which exercise can reduce or reverse disease progression. The present study was undertaken to study the effects swimming on the lung functions. Pulmonary function tests (PFTs of swimming trainees were compared with those of controls. We evaluated PFTs in 50 healthy subjects who participated in a 3 months of swimming plan. Pulmonary function tests were recorded before the commencement of swimming and at the end of swimming and compared the values so obtained with 50 healthy non- swimmers who were chosen as controls. The controls were the physiotherapy students from Khalsa College Amritsar. Both were in the age group of 18- 20 years. The PFTs were carried out with a computerized spirometer “Med-Spiror”. The various data was collected, compiled, statistically analysed and valid conclusions were drawn. Higher lung volumes and flow rates were achieved in swimming trainees after their training period, as compared to their own values obtained before their training period and to those of controls. Regular exercise enhances physical capabilities and physiological responses of the human body and also in the lungs. The cause of improved of various respiratory functions and flow rates after  swimming duration was better mechanical factors and lower airway resistance influenced during the training period. Key words: Pulmonary; Expiration; Swimming; Pulmonary Function Test

  16. Propulsive force calculations in swimming frogs I. A momentum-impulse approach

    NARCIS (Netherlands)

    Nauwelaerts, S; Stamhuis, EJ; Aerts, P

    Frogs are animals that are capable of locomotion in two physically different media, aquatic and terrestrial. A comparison of the kinematics of swimming frogs in a previous study revealed a difference in propulsive impulse between jumping and swimming. To explore this difference further, we

  17. Determining the influence of muscle operating length on muscle performance during frog swimming using a bio-robotic model

    International Nuclear Information System (INIS)

    Clemente, Christofer J; Richards, Christopher

    2012-01-01

    Frogs are capable of impressive feats of jumping and swimming. Recent work has shown that anuran hind limb muscles can operate at lengths longer than the ‘optimal length’. To address the implications of muscle operating length on muscle power output and swimming mechanics, we built a robotic frog hind limb model based upon Xenopus laevis. The model simulated the force–length and force–velocity properties of vertebrate muscle, within the skeletal environment. We tested three muscle starting lengths, representing long, optimal and short starting lengths. Increasing starting length increased maximum muscle power output by 27% from 98.1 W kg −1 when muscle begins shortening from the optimal length, to 125.1 W kg −1 when the muscle begins at longer initial lengths. Therefore, longer starting lengths generated greater hydrodynamic force for extended durations, enabling faster swimming speeds of the robotic frog. These swimming speeds increased from 0.15 m s −1 at short initial muscle lengths, to 0.39 m s −1 for the longest initial lengths. Longer starting lengths were able to increase power as the muscle's force–length curve was better synchronized with the muscle's activation profile. We further dissected the underlying components of muscle force, separating force–length versus force–velocity effects, showing a transition from force–length limitations to force–velocity limitations as starting length increased. (paper)

  18. GROWTH PERFORMANCE AND MEAT QUALITY OF DOMESTICATED BLUE SWIMMING CRAB (Portunus pelagicus)

    OpenAIRE

    Fujaya, Yushinta; Trijuno, Dody Dharmawan; Aslamyah, Siti; Alam, Nur

    2015-01-01

    Blue Swimming Crab (Portunus pelagicus) is one of the commercial crabs traded widely around the world. But, crab aquaculture has not made a significant contribution in meeting the increasing overseas market demand. Some constraints in crab cultivation were high mortality, low and variable growth rate, and low of meat quality. The aims of this research were to produce a superior broodstock through domestication and selective breeding. Superior broodstock was expected to produce a high qual...

  19. The effects of swimming pattern on the energy use of gilthead seabream (Sparus aurata L.)

    DEFF Research Database (Denmark)

    Steinhausen, Maria Faldborg; Steffensen, John Fleng; Andersen, Niels Gerner

    2010-01-01

    Oxygen consumption ( ) was measured for gilthead seabream (Sparus aurata) during spontaneous and forced activities. During spontaneous activity, the swimming pattern was analysed for the effect on   on the average speed (U), turning rate (¿) and change in speed (¿U). All swimming characteristics...... and   during forced activity was also established. During spontaneous activity, 2.5 times more energy was used than in forced swimming at a speed of 0.5 BL s-1. This indicates that spontaneous swimming costs may be considerably higher compared with those of a fixed swimming speed. However, comparing...... contributed significantly to the source of spontaneous swimming costs, and the models explained up to 58% of the variation in   Prediction of   of fish in field studies can thereby be improved if changes in speed and direction are determined in addition to swimming speed. A relationship between swimming speed...

  20. Swimming-pool piles; Piles piscines

    Energy Technology Data Exchange (ETDEWEB)

    Trioulaire, M [Commissariat a l' Energie Atomique, Saclay (France).Centre d' Etudes Nucleaires

    1959-07-01

    In France two swimming-pool piles, Melusine and Triton, have just been set in operation. The swimming-pool pile is the ideal research tool for neutron fluxes of the order of 10{sup 13}. This type of pile can be of immediate interest to many research centres, but its cost must be reduced and a break with tradition should be observed in its design. It would be an advantage: - to bury the swimming-pool; - to reject the experimental channel; - to concentrate the cooling circuit in the swimming-pool; - to carry out all manipulations in the water; - to double the core. (author) [French] En France, deux piles piscines, Melusine et Triton, viennent d'entrer en service. La pile piscine est l'outil de recherche ideal pour des flux de neutrons de l'ordre de 10{sup 13}. Ce type de pile peut interesser des maintenant de nombreux centres de recherches mais il faut reduire son prix de revient et rompre avec le conformisme de sa conception. Il y a avantage: - a enterrer la piscine; - a supprimer les canaux experimentaux; - a concentrer le circuit de refrigeration dans la piscine; - a effectuer toutes les manipulations dans l'eau; - a doubler le coeur. (auteur)

  1. Upward swimming of a sperm cell in shear flow.

    Science.gov (United States)

    Omori, Toshihiro; Ishikawa, Takuji

    2016-03-01

    Mammalian sperm cells are required to swim over long distances, typically around 1000-fold their own length. They must orient themselves and maintain a swimming motion to reach the ovum, or egg cell. Although the mechanism of long-distance navigation is still unclear, one possible mechanism, rheotaxis, was reported recently. This work investigates the mechanism of the rheotaxis in detail by simulating the motions of a sperm cell in shear flow adjacent to a flat surface. A phase diagram was developed to show the sperm's swimming motion under different shear rates, and for varying flagellum waveform conditions. The results showed that, under shear flow, the sperm is able to hydrodynamically change its swimming direction, allowing it to swim upwards against the flow, which suggests that the upward swimming of sperm cells can be explained using fluid mechanics, and this can then be used to further understand physiology of sperm cell navigation.

  2. Optimal swimming of a sheet.

    Science.gov (United States)

    Montenegro-Johnson, Thomas D; Lauga, Eric

    2014-06-01

    Propulsion at microscopic scales is often achieved through propagating traveling waves along hairlike organelles called flagella. Taylor's two-dimensional swimming sheet model is frequently used to provide insight into problems of flagellar propulsion. We derive numerically the large-amplitude wave form of the two-dimensional swimming sheet that yields optimum hydrodynamic efficiency: the ratio of the squared swimming speed to the rate-of-working of the sheet against the fluid. Using the boundary element method, we show that the optimal wave form is a front-back symmetric regularized cusp that is 25% more efficient than the optimal sine wave. This optimal two-dimensional shape is smooth, qualitatively different from the kinked form of Lighthill's optimal three-dimensional flagellum, not predicted by small-amplitude theory, and different from the smooth circular-arc-like shape of active elastic filaments.

  3. Effects of high-intensity swimming training on the bones of ovariectomized rats.

    Science.gov (United States)

    Oh, Taewoong; Tanaka, Sakura; Naka, Tatsuki; Igawa, Shoji

    2016-09-01

    This study was performed to assess the effects of high-intensity intermittent swimming training(HIT) on bone in ovariectomized rats. Six-week-old female Sprague-Dawley rats were randomly assigned to either sham operation or bilateral ovariectomy. After surgery, they were divided into the following four groups: 1) sham-operated sedentary (S), 2) sham-operated exercise training (SE), 3) OVX sedentary (O), 4) OVX exercise training (OE) 5) OVX given 17β-estradiol (OE2) and 6) OVX exercise training and given 17β-estradiol (OEE). SE, OE and OEE rats were used extremely high-intensity swim exercise. The rats repeated fourteen 20-s swimming bouts with a weight equivalent to 14, 15, and 16% of body weight for the first 5, the next 9, and the last 5 days, respectively. Between exercise bouts, a 10-s pause was allowed. HIT was originally designed as an exercise method; a method that very quickly induces an increase in the maximum oxygen intake (Tabata I et al., 1996). OEE and OE2 rats were subcutaneously injected ethanol with 25μg/kg body weight 17β-estradiol 3 times per week. Bone strength, bone mineral density and trabecular bone parameters were measured after a 8-weeks experimental period. Bone strength was significantly higher in the SE, OE, OE2 and OEE group compared with the O group. BV/TV was significant increase in the SE, OE groups compared with the O group. BMD showed no difference in the OE group compared with the O group. This study demonstrate some beneficial effects of postmenopausal osteoporosis of high-intensity intermittent swimming training on bone structure and strength.

  4. Relative Contribution of Arms and Legs in 30 s Fully Tethered Front Crawl Swimming

    Directory of Open Access Journals (Sweden)

    Pedro G. Morouço

    2015-01-01

    Full Text Available The relative contribution of arm stroke and leg kicking to maximal fully tethered front crawl swimming performance remains to be solved. Twenty-three national level young swimmers (12 male and 11 female randomly performed 3 bouts of 30 s fully tethered swimming (using the whole body, only the arm stroke, and only the leg kicking. A load-cell system permitted the continuous measurement of the exerted forces, and swimming velocity was calculated from the time taken to complete a 50 m front crawl swim. As expected, with no restrictions swimmers were able to exert higher forces than that using only their arm stroke or leg kicking. Estimated relative contributions of arm stroke and leg kicking were 70.3% versus 29.7% for males and 66.6% versus 33.4% for females, with 15.6% and 13.1% force deficits, respectively. To obtain higher velocities, male swimmers are highly dependent on the maximum forces they can exert with the arm stroke (r=0.77, P<0.01, whereas female swimmers swimming velocity is more related to whole-body mean forces (r=0.81, P<0.01. The obtained results point that leg kicking plays an important role over short duration high intensity bouts and that the used methodology may be useful to identify strength and/or coordination flaws.

  5. Effects of 4 Weeks of β-Alanine Supplementation on Swim-Performance Parameters in Water Polo Players.

    Science.gov (United States)

    Brisola, Gabriel Motta Pinheiro; Milioni, Fabio; Papoti, Marcelo; Zagatto, Alessandro Moura

    2017-08-01

    In water polo, several high-intensity efforts are performed, leading to the fatigue process due to accumulation of hydrogen ions, and thus β-alanine supplementation could be an efficient strategy to increase the intramuscular acid buffer. Purpose To investigate whether 4 wk of β-alanine supplementation enhances parameters related to water polo performance. Methods Twenty-two highly trained male water polo players of national level were randomly assigned to receive 28 d of either β-alanine or a placebo (4.8 g/d of the supplement in the first 10 d and 6.4 g/d in the final 18 d). The participants performed 30-s maximal tethered swimming (30TS), 200-m swimming (P200m), and 30-s crossbar jumps (30CJ) before and after the supplementation period. Results The β-alanine group presented significant increases in 30TS for mean force (P = .04; Δ = 30.5% ± 40.4%) and integral of force (P = .05; Δ = 28.0% ± 38.0%), as well as P200m (P = .05; Δ = -2.2% ± 2.6%), while the placebo group did not significantly differ for mean force (P = .13; Δ = 24.1% ± 33.7%), integral of force (P = .12; Δ = 24.3% ± 35.1%), or P200m (P = .10; Δ = -1.6% ± 3.8%). However, there was no significant group effect for any variable, and the magnitude-based-inference analysis showed unclear outcomes between groups (Cohen d ± 95%CL mean force = 0.16 ± 0.83, integral of force = 0.12 ± 0.84, and P200m = 0.05 ± 0.30). For 30CJ the results were similar, with improvements in both groups (placebo, Δ = 14.9% ± 14.1%; β-alanine, Δ = 16.9% ± 18.5%) but with no significant interaction effect between groups and an unclear effect (0.14 ± 0.75). Conclusion Four weeks of β-alanine supplementation does not substantially improve performance of 30TS, P200m, or 30CJ in highly trained water polo athletes compared with a control group.

  6. Grundfoss: Chlorination of Swimming Pools

    DEFF Research Database (Denmark)

    Hjorth, Poul G.; Hogan, John; Andreassen, Viggo

    1998-01-01

    Grundfos asked for a model, describing the problem of mixing chemicals, being dosed into water systems, to be developed. The application of the model should be dedicated to dosing aqueous solution of chlorine into swimming pools.......Grundfos asked for a model, describing the problem of mixing chemicals, being dosed into water systems, to be developed. The application of the model should be dedicated to dosing aqueous solution of chlorine into swimming pools....

  7. A forced damped oscillation framework for undulatory swimming provides new insights into how propulsion arises in active and passive swimming.

    Science.gov (United States)

    Bhalla, Amneet Pal Singh; Griffith, Boyce E; Patankar, Neelesh A

    2013-01-01

    A fundamental issue in locomotion is to understand how muscle forcing produces apparently complex deformation kinematics leading to movement of animals like undulatory swimmers. The question of whether complicated muscle forcing is required to create the observed deformation kinematics is central to the understanding of how animals control movement. In this work, a forced damped oscillation framework is applied to a chain-link model for undulatory swimming to understand how forcing leads to deformation and movement. A unified understanding of swimming, caused by muscle contractions ("active" swimming) or by forces imparted by the surrounding fluid ("passive" swimming), is obtained. We show that the forcing triggers the first few deformation modes of the body, which in turn cause the translational motion. We show that relatively simple forcing patterns can trigger seemingly complex deformation kinematics that lead to movement. For given muscle activation, the forcing frequency relative to the natural frequency of the damped oscillator is important for the emergent deformation characteristics of the body. The proposed approach also leads to a qualitative understanding of optimal deformation kinematics for fast swimming. These results, based on a chain-link model of swimming, are confirmed by fully resolved computational fluid dynamics (CFD) simulations. Prior results from the literature on the optimal value of stiffness for maximum speed are explained.

  8. Flow disturbances generated by feeding and swimming zooplankton

    DEFF Research Database (Denmark)

    Kiørboe, Thomas; Jiang, Haisong; Goncalves, R. J.

    2014-01-01

    that zooplankton, in which feeding and swimming are separate processes, produce flow disturbances during swimming with a much faster spatial attenuation (velocity u varies with distance r as u ∝ r−3 to r−4) than that produced by zooplankton for which feeding and propulsion are the same process (u ∝ r−1 to r−2...... vortex rings, or by “breast-stroke swimming.” Both produce rapidly attenuating flows. The more “noisy” swimming of those that are constrained by a need to simultaneously feed is due to constantly beating flagella or appendages that are positioned either anteriorly or posteriorly on the (cell) body...

  9. Propulsive efficiency and non- expert swimmers performance

    Directory of Open Access Journals (Sweden)

    Tiago Barbosa

    2009-12-01

    Full Text Available Propulsive efficiency is one of the most interesting issues for competitive swimming researchers, has it presents significant relationships with the swimmer’s biophysical behavior and his/her performance. Although propulsive efficiency is a variable that has been quite studied in elite swimmers, there is no research on this issue in young and non-expert swimmers. Thus, the aim of this study was to: (i estimate the propulsive efficiency on non-expert swimmers; (ii identify biomechanical and anthropometrical parameters that are associated with propulsive efficiency; (iii identify the association between the propulsive efficiency and swim performance. Twenty-eight non-expert swimmers participated on this study. It was assessed the propulsive efficiency, biomechanical and anthropometrical parameters, as well as, the swim performance. The propulsive efficiency of non-expert swimmers is lower than data reported in the literature to higher competitive levels swimmers and there are no significant differences between boys and girls. It was also noted that several biomechanical and anthropometrical parameters, as well as, the swim performance are associated with the propulsive efficiency.

  10. Forced swimming and imipramine modify plasma and brain amino acid concentrations in mice.

    Science.gov (United States)

    Murakami, Tatsuro; Yamane, Haruka; Tomonaga, Shozo; Furuse, Mitsuhiro

    2009-01-05

    The relationships between monoamine metabolism and forced swimming or antidepressants have been well studied, however information is lacking regarding amino acid metabolism under these conditions. Therefore, the aim of the present study was to investigate the effects of forced swimming and imipramine on amino acid concentrations in plasma, the cerebral cortex and the hypothalamus in mice. Forced swimming caused cerebral cortex concentrations of L-glutamine, L-alanine, and taurine to be increased, while imipramine treatment caused decreased concentrations of L-glutamate, L-alanine, L-tyrosine, L-methionine, and L-ornithine. In the hypothalamus, forced swimming decreased the concentration of L-serine while imipramine treatment caused increased concentration of beta-alanine. Forced swimming caused increased plasma concentration of taurine, while concentrations of L-serine, L-asparagine, L-glutamine and beta-alanine were decreased. Imipramine treatment caused increased plasma concentration of all amino acid, except for L-aspartate and taurine. In conclusion, forced swimming and imipramine treatment modify central and peripheral amino acid metabolism. These results may aid in the identification of amino acids that have antidepressant-like effects, or may help to refine the dosages of antidepressant drugs.

  11. Swimming exercise reverses aging-related contractile abnormalities of female heart by improving structural alterations.

    Science.gov (United States)

    Ozturk, Nihal; Olgar, Yusuf; Er, Hakan; Kucuk, Murathan; Ozdemir, Semir

    2017-01-01

    The objective of this study was to examine the effect of swimming exercise on aging-related Ca2+ handling alterations and structural abnormalities of female rat heart. For this purpose, 4-month and 24-month old female rats were used and divided into three following groups: sedentary young (SY), sedentary old (SO), and exercised old (Ex-O). Swimming exercise was performed for 8 weeks (60 min/day, 5 days/week). Myocyte shortening, L-type Ca2+ currents and associated Ca2+ transients were measured from ventricular myocytes at 36 ± 1°C. NOX-4 levels, aconitase activity, glutathione measurements and ultrastructural examination by electron microscopy were conducted in heart tissue. Swimming exercise reversed the reduced shortening and slowed kinetics of aged cardiomyocytes. Although the current density was similar for all groups, Ca2+ transients were higher in SO and Ex-O myocytes with respect to the SY group. Caffeine-induced Ca2+ transients and the integrated NCX current were lower in cardiomyocytes of SY rats compared with other groups, suggesting an increased sarcoplasmic reticulum Ca2+ content in an aged heart. Aging led to upregulated cardiac NOX-4 along with declined aconitase activity. Although it did not reverse these oxidative parameters, swimming exercise achieved a significant increase in glutathione levels and improved structural alterations of old rats' hearts. We conclude that swimming exercise upregulates antioxidant defense capacity and improves structural abnormalities of senescent female rat heart, although it does not change Ca2+ handling alterations further. Thereby, it improves contractile function of aged myocardium by mitigating detrimental effects of oxidative stress.

  12. The effect of temperature and thermal acclimation on the sustainable performance of swimming scup.

    Science.gov (United States)

    Rome, Lawrence C

    2007-11-29

    There is a significant reduction in overall maximum power output of muscle at low temperatures due to reduced steady-state (i.e. maximum activation) power-generating capabilities of muscle. However, during cyclical locomotion, a further reduction in power is due to the interplay between non-steady-state contractile properties of muscle (i.e. rates of activation and relaxation) and the stimulation and the length-change pattern muscle undergoes in vivo. In particular, even though the relaxation rate of scup red muscle is slowed greatly at cold temperatures (10 degrees C), warm-acclimated scup swim with the same stimulus duty cycles at cold as they do at warm temperature, not affording slow-relaxing muscle any additional time to relax. Hence, at 10 degrees C, red muscle generates extremely low or negative work in most parts of the body, at all but the slowest swimming speeds. Do scup shorten their stimulation duration and increase muscle relaxation rate during cold acclimation? At 10 degrees C, electromyography (EMG) duty cycles were 18% shorter in cold-acclimated scup than in warm-acclimated scup. But contrary to the expectations, the red muscle did not have a faster relaxation rate, rather, cold-acclimated muscle had an approximately 50% faster activation rate. By driving cold- and warm-acclimated muscle through cold- and warm-acclimated conditions, we found a very large increase in red muscle power during swimming at 10 degrees C. As expected, reducing stimulation duration markedly increased power output. However, the increased rate of activation alone produced an even greater effect. Hence, to fully understand thermal acclimation, it is necessary to examine the whole system under realistic physiological conditions.

  13. Swimming of a sphere in a viscous incompressible fluid with inertia

    International Nuclear Information System (INIS)

    Felderhof, B U; Jones, R B

    2017-01-01

    The swimming of a sphere immersed in a viscous incompressible fluid with inertia is studied for surface modulations of small amplitude on the basis of the Navier–Stokes equations. The mean swimming velocity and the mean rate of dissipation are expressed as quadratic forms in term of the surface displacements. With a choice of a basis set of modes the quadratic forms correspond to two Hermitian matrices. Optimization of the mean swimming velocity for given rate of dissipation requires the solution of a generalized eigenvalue problem involving the two matrices. It is found for surface modulations of low multipole order that the optimal swimming efficiency depends in intricate fashion on a dimensionless scale number involving the radius of the sphere, the period of the cycle, and the kinematic viscosity of the fluid. (paper)

  14. Swimming of a sphere in a viscous incompressible fluid with inertia

    Energy Technology Data Exchange (ETDEWEB)

    Felderhof, B U [Institut für Theorie der Statistischen Physik RWTH Aachen University, Templergraben 55, D-52056 Aachen (Germany); Jones, R B, E-mail: ufelder@physik.rwth-aachen.de, E-mail: r.b.jones@qmul.ac.uk [Queen Mary University of London, The School of Physics and Astronomy, Mile End Road, London E1 4NS (United Kingdom)

    2017-08-15

    The swimming of a sphere immersed in a viscous incompressible fluid with inertia is studied for surface modulations of small amplitude on the basis of the Navier–Stokes equations. The mean swimming velocity and the mean rate of dissipation are expressed as quadratic forms in term of the surface displacements. With a choice of a basis set of modes the quadratic forms correspond to two Hermitian matrices. Optimization of the mean swimming velocity for given rate of dissipation requires the solution of a generalized eigenvalue problem involving the two matrices. It is found for surface modulations of low multipole order that the optimal swimming efficiency depends in intricate fashion on a dimensionless scale number involving the radius of the sphere, the period of the cycle, and the kinematic viscosity of the fluid. (paper)

  15. Swimming of a sphere in a viscous incompressible fluid with inertia

    Science.gov (United States)

    Felderhof, B. U.; Jones, R. B.

    2017-08-01

    The swimming of a sphere immersed in a viscous incompressible fluid with inertia is studied for surface modulations of small amplitude on the basis of the Navier-Stokes equations. The mean swimming velocity and the mean rate of dissipation are expressed as quadratic forms in term of the surface displacements. With a choice of a basis set of modes the quadratic forms correspond to two Hermitian matrices. Optimization of the mean swimming velocity for given rate of dissipation requires the solution of a generalized eigenvalue problem involving the two matrices. It is found for surface modulations of low multipole order that the optimal swimming efficiency depends in intricate fashion on a dimensionless scale number involving the radius of the sphere, the period of the cycle, and the kinematic viscosity of the fluid.

  16. Helicobacter pylori displays spiral trajectories while swimming like a cork-screw in solutions

    Science.gov (United States)

    Constantino, Maira A.; Hardcastle, Joseph M.; Bansil, Rama; Jabbarzadeh, Mehdi; Fu, Henry C.

    Helicobacter pylori is a helical shaped bacterium that causes gastritis, ulcers and gastric cancer in humans and other animals. In order to colonize the harsh acidic environment of the stomach H. pylori has evolved a unique biochemical mechanism to go across the viscoelastic gel-like gastric mucus layer. Many studies have been conducted on the swimming of H. pylori in viscous media. However a yet unanswered question is if the helical cell shape influences bacterial swimming dynamics or confers any advantage when swimming in viscous solution. We will present measurements of H. pylori trajectories displaying corkscrew motion while swimming in solution obtained by tracking single cells using 2-dimensional phase contrast imaging at high magnification and fast frame rates and simultaneously imaging their shape. We observe a linear relationship between swimming speed and rotation rate. The experimental trajectories show good agreement with trajectories calculated using a regularized Stokeslet method to model the low Reynolds number swimming behavior. Supported by NSF PHY 1410798 (PI: RB).

  17. Swimming trajectories of a three-sphere microswimmer near a wall

    Science.gov (United States)

    Daddi-Moussa-Ider, Abdallah; Lisicki, Maciej; Hoell, Christian; Löwen, Hartmut

    2018-04-01

    The hydrodynamic flow field generated by self-propelled active particles and swimming microorganisms is strongly altered by the presence of nearby boundaries in a viscous flow. Using a simple model three-linked sphere swimmer, we show that the swimming trajectories near a no-slip wall reveal various scenarios of motion depending on the initial orientation and the distance separating the swimmer from the wall. We find that the swimmer can either be trapped by the wall, completely escape, or perform an oscillatory gliding motion at a constant mean height above the wall. Using a far-field approximation, we find that, at leading order, the wall-induced correction has a source-dipolar or quadrupolar flow structure where the translational and angular velocities of the swimmer decay as inverse third and fourth powers with distance from the wall, respectively. The resulting equations of motion for the trajectories and the relevant order parameters fully characterize the transition between the states and allow for an accurate description of the swimming behavior near a wall. We demonstrate that the transition between the trapping and oscillatory gliding states is first order discontinuous, whereas the transition between the trapping and escaping states is continuous, characterized by non-trivial scaling exponents of the order parameters. In order to model the circular motion of flagellated bacteria near solid interfaces, we further assume that the spheres can undergo rotational motion around the swimming axis. We show that the general three-dimensional motion can be mapped onto a quasi-two-dimensional representational model by an appropriate redefinition of the order parameters governing the transition between the swimming states.

  18. Scaling of hydrodynamics and swimming kinematics of shelled Antarctic sea butterfly

    Science.gov (United States)

    Adhikari, Deepak; Webster, Donald; Yen, Jeannette

    2016-11-01

    A portable tomographic PIV system was used to study fluid dynamics and kinematics of pteropods (aquatic snails nicknamed 'sea butterflies') in Antarctica. These pteropods (Limacina helicina antarctica) swim with a pair of parapodia (or "wings") via a unique flapping propulsion mechanism that incorporates similar techniques as observed in small flying insects. The swimming velocity is typically 14 - 30 mm/s for pteropod size ranging 1.5 - 5 mm, and the pteropod shell pitches forward-and-backward at 1.9 - 3 Hz. It has been shown that pitching motion of the shell effectively positions the parapodia such that they flap downwards during both power and recovery strokes. The non-dimensional variables characterizing the motion of swimming pteropods are flapping, translating, and pitching Reynolds numbers (i.e. Ref, ReU, and ReΩ) . We found that the relationship between these Reynolds numbers show an existence of a critical ReΩ, below which pteropods fail to swim successfully. We explore the importance of this critical ReΩ by changing the viscosity of the seawater using methylcellulose. At higher viscosity, our results indicate that pteropods do not swim with optimal propulsion efficiency. Finally, we examine the wake signature of swimming pteropod, consisting of a pair of vortex rings, in the modified viscosity environment.

  19. A Review of Swimming Cues and Tips for Physical Education

    Science.gov (United States)

    Higginson, Kelsey; Barney, David

    2016-01-01

    Swimming is a low-impact activity that causes little stress on joints so it can be done for a lifetime. Many teachers may wish to teach swimming but do not have cues or ideas for doing so. This article reviews swimming cues, relays and equipment that can help a physical education teacher include a swimming unit in their curriculum. Certification…

  20. Swimming in a contained space: Understanding the experience of indoor lap swimmers.

    Science.gov (United States)

    Ward, Miranda

    2017-07-01

    Drawing on ethnographic work, this paper explores the convergence of bodies, materialities and practices found at the indoor swimming pool - a space that has not often been the subject of geographical study, in spite of the fact that swimming is one of the most popular forms of exercise in countries such as the UK. The paper focuses on the "contained" nature of the indoor pool environment, examining the distinct experience this can create for lap swimmers. This focus is placed in the context of a broader politics of exercise, with an emphasis on the popularity and potential benefits of swimming, as well as less encouraging facts about participation and facility provision, suggesting that in order to encourage further uptake of swimming and preservation of swimming facilities the voices and experiences of regular swimmers should be considered. Copyright © 2016 Elsevier Ltd. All rights reserved.

  1. Does Helicobacter pylori exhibit corkscrew motion while swimming?

    Science.gov (United States)

    Constantino, Maira; Hardcastle, Joseph; Bansil, Rama

    2015-03-01

    Helicobacter pylori is a spiral shaped bacterium associated with ulcers, gastric cancer, gastritis among other diseases. In order to colonize the harsh acidic environment of the stomach H. pylori has to go across the viscoelastic mucus layer of the stomach. Many studies have been conducted on the swimming of H. pylori in viscous media however none have taken into account the influence of cell-body shape on the trajectory. We present an experimental study of the effects of body shape in the swimming trajectory of H. pylori in viscous media by a quantitative analysis of the bacterium rotation and translation in gels using phase contrast microscopy and particle tracking techniques. Preliminary microscopic tracking measurements show very well defined helical trajectories in the spiral-shaped wild type H. pylori. These helical trajectories are not seen in rod-shaped mutants which sometimes display whirling motion about one end acting as a hinge. We will present an analysis of the different trajectories for bacteria swimming in media with different viscoelastic parameters. Supported by the National Science Foundation PHY PoLS.

  2. Simulation of swimming strings immersed in a viscous fluid flow

    Science.gov (United States)

    Huang, Wei-Xi; Sung, Hyung Jin

    2006-11-01

    In nature, many phenomena involve interactions between flexible bodies and their surrounding viscous fluid, such as a swimming fish or a flapping flag. The intrinsic dynamics is complicate and not well understood. A flexible string can be regarded as a one-dimensional flag model. Many similarities can be found between the flapping string and swimming fish, although different wake speed results in a drag force for the flapping string and a propulsion force for the swimming fish. In the present study, we propose a mathematical formulation for swimming strings immersed in a viscous fluid flow. Fluid motion is governed by the Navier-Stokes equations and a momentum forcing is added in order to bring the fluid to move at the same velocity with the immersed surface. A flexible inextensible string model is described by another set of equations with an additional momentum forcing which is a result of the fluid viscosity and the pressure difference across the string. The momentum forcing is calculated by a feedback loop. Simulations of several numerical examples are carried out, including a hanging string which starts moving under gravity without ambient fluid, a swinging string immersed in a quiescent viscous fluid, a string swimming within a uniform surrounding flow, and flow over two side-by-side strings. The numerical results agree well with the theoretical analysis and previous experimental observations. Further simulation of a swimming fish is under consideration.

  3. Gastrodia elata Bl. Attenuated learning deficits induced by forced-swimming stress in the inhibitory avoidance task and Morris water maze.

    Science.gov (United States)

    Chen, Pei-Ju; Liang, Keng-Chen; Lin, Hui-Chen; Hsieh, Ching-Liang; Su, Kuan-Pin; Hung, Mei-Chu; Sheen, Lee-Yan

    2011-06-01

    This study adopted the forced-swimming paradigm to induce depressive symptoms in rats and evaluated the effects on learning and memory processing. Furthermore, the effects of the water extract of Gastrodia elata Bl., a well-known Chinese traditional medicine, on amnesia in rats subjected to the forced-swimming procedure were studied. Rats were subjected to the forced-swimming procedure, and the inhibitory avoidance task and Morris water maze were used to assess learning and memory performance. The acquisition of the two tasks was mostly impaired after the 15-minute forced-swimming procedure. Administration of the water extract of G. elata Bl. for 21 consecutive days at a dosage of 0.5 or 1.0 g/kg of body weight significantly improved retention in the inhibitory avoidance test, and the lower dose showed a better effect than the higher one and the antidepressant fluoxetine (18 mg/kg of body weight). In the Morris water maze, the lower dose of the water extract of G. elata Bl. significantly improved retention by shortening escape latency in the first test session and increasing the time in searching the target zone during the probe test. These findings suggest that water extracts of G. elata Bl. ameliorate the learning and memory deficits induced by forced swimming.

  4. A Forced Damped Oscillation Framework for Undulatory Swimming Provides New Insights into How Propulsion Arises in Active and Passive Swimming

    Science.gov (United States)

    Bhalla, Amneet Pal Singh; Griffith, Boyce E.; Patankar, Neelesh A.

    2013-01-01

    A fundamental issue in locomotion is to understand how muscle forcing produces apparently complex deformation kinematics leading to movement of animals like undulatory swimmers. The question of whether complicated muscle forcing is required to create the observed deformation kinematics is central to the understanding of how animals control movement. In this work, a forced damped oscillation framework is applied to a chain-link model for undulatory swimming to understand how forcing leads to deformation and movement. A unified understanding of swimming, caused by muscle contractions (“active” swimming) or by forces imparted by the surrounding fluid (“passive” swimming), is obtained. We show that the forcing triggers the first few deformation modes of the body, which in turn cause the translational motion. We show that relatively simple forcing patterns can trigger seemingly complex deformation kinematics that lead to movement. For given muscle activation, the forcing frequency relative to the natural frequency of the damped oscillator is important for the emergent deformation characteristics of the body. The proposed approach also leads to a qualitative understanding of optimal deformation kinematics for fast swimming. These results, based on a chain-link model of swimming, are confirmed by fully resolved computational fluid dynamics (CFD) simulations. Prior results from the literature on the optimal value of stiffness for maximum speed are explained. PMID:23785272

  5. A forced damped oscillation framework for undulatory swimming provides new insights into how propulsion arises in active and passive swimming.

    Directory of Open Access Journals (Sweden)

    Amneet Pal Singh Bhalla

    Full Text Available A fundamental issue in locomotion is to understand how muscle forcing produces apparently complex deformation kinematics leading to movement of animals like undulatory swimmers. The question of whether complicated muscle forcing is required to create the observed deformation kinematics is central to the understanding of how animals control movement. In this work, a forced damped oscillation framework is applied to a chain-link model for undulatory swimming to understand how forcing leads to deformation and movement. A unified understanding of swimming, caused by muscle contractions ("active" swimming or by forces imparted by the surrounding fluid ("passive" swimming, is obtained. We show that the forcing triggers the first few deformation modes of the body, which in turn cause the translational motion. We show that relatively simple forcing patterns can trigger seemingly complex deformation kinematics that lead to movement. For given muscle activation, the forcing frequency relative to the natural frequency of the damped oscillator is important for the emergent deformation characteristics of the body. The proposed approach also leads to a qualitative understanding of optimal deformation kinematics for fast swimming. These results, based on a chain-link model of swimming, are confirmed by fully resolved computational fluid dynamics (CFD simulations. Prior results from the literature on the optimal value of stiffness for maximum speed are explained.

  6. Behavioral Dynamics in Swimming: The Appropriate Use of Inertial Measurement Units.

    Science.gov (United States)

    Guignard, Brice; Rouard, Annie; Chollet, Didier; Seifert, Ludovic

    2017-01-01

    Motor control in swimming can be analyzed using low- and high-order parameters of behavior. Low-order parameters generally refer to the superficial aspects of movement (i.e., position, velocity, acceleration), whereas high-order parameters capture the dynamics of movement coordination. To assess human aquatic behavior, both types have usually been investigated with multi-camera systems, as they offer high three-dimensional spatial accuracy. Research in ecological dynamics has shown that movement system variability can be viewed as a functional property of skilled performers, helping them adapt their movements to the surrounding constraints. Yet to determine the variability of swimming behavior, a large number of stroke cycles (i.e., inter-cyclic variability) has to be analyzed, which is impossible with camera-based systems as they simply record behaviors over restricted volumes of water. Inertial measurement units (IMUs) were designed to explore the parameters and variability of coordination dynamics. These light, transportable and easy-to-use devices offer new perspectives for swimming research because they can record low- to high-order behavioral parameters over long periods. We first review how the low-order behavioral parameters (i.e., speed, stroke length, stroke rate) of human aquatic locomotion and their variability can be assessed using IMUs. We then review the way high-order parameters are assessed and the adaptive role of movement and coordination variability in swimming. We give special focus to the circumstances in which determining the variability between stroke cycles provides insight into how behavior oscillates between stable and flexible states to functionally respond to environmental and task constraints. The last section of the review is dedicated to practical recommendations for coaches on using IMUs to monitor swimming performance. We therefore highlight the need for rigor in dealing with these sensors appropriately in water. We explain the

  7. Analysis of Relationships between the Level of Errors in Leg and Monofin Movement and Stroke Parameters in Monofin Swimming

    Science.gov (United States)

    Rejman, Marek

    2013-01-01

    The aim of this study was to analyze the error structure in propulsive movements with regard to its influence on monofin swimming speed. The random cycles performed by six swimmers were filmed during a progressive test (900m). An objective method to estimate errors committed in the area of angular displacement of the feet and monofin segments was employed. The parameters were compared with a previously described model. Mutual dependences between the level of errors, stroke frequency, stroke length and amplitude in relation to swimming velocity were analyzed. The results showed that proper foot movements and the avoidance of errors, arising at the distal part of the fin, ensure the progression of swimming speed. The individual stroke parameters distribution which consists of optimally increasing stroke frequency to the maximal possible level that enables the stabilization of stroke length leads to the minimization of errors. Identification of key elements in the stroke structure based on the analysis of errors committed should aid in improving monofin swimming technique. Key points The monofin swimming technique was evaluated through the prism of objectively defined errors committed by the swimmers. The dependences between the level of errors, stroke rate, stroke length and amplitude in relation to swimming velocity were analyzed. Optimally increasing stroke rate to the maximal possible level that enables the stabilization of stroke length leads to the minimization of errors. Propriety foot movement and the avoidance of errors arising at the distal part of fin, provide for the progression of swimming speed. The key elements improving monofin swimming technique, based on the analysis of errors committed, were designated. PMID:24149742

  8. Velocity, aerobic power and metabolic cost of whole body and arms only front crawl swimming at various stroke rates.

    Science.gov (United States)

    Morris, Kirstin S; Osborne, Mark A; Shephard, Megan E; Skinner, Tina L; Jenkins, David G

    2016-05-01

    Stroke rate (SR) has not been considered in previous research examining the relative roles of the limbs in front-crawl performance. This study compared velocity, aerobic power ([Formula: see text]) and metabolic cost (C) between whole body (WB) and arms only (AO) front-crawl swimming across various intensities while controlling SR. Twenty Australian national swimmers performed six 200 m front-crawl efforts under two conditions: (1) WB swimming and, (2) AO swimming. Participants completed the 200 m trials under three SR conditions: "low" (22-26 stroke-cycles min(-1)), "moderate" (30-34 stroke-cycles min(-1) and "high" (38-42 stroke-cycles min(-1)). [Formula: see text] was continuously measured, with C, velocity, SR, and kick rate calculated for each effort. Regardless of the SR condition and sex, AO velocity was consistently lower than WB velocity by ~11.0 % (p  0.01). When C was expressed as a function of velocity, WB and AO regression equations differed for males (p = 0.01) but not for females (p = 0.087). Kick rate increased as SR increased (p swimming is the same. Coaches should consider these results when prescribing AO sets if their intention is to reduce the metabolic load.

  9. Energy savings in sea bass swimming in a school: measurements of tail beat frequency and oxygen consumption at different swimming speeds

    DEFF Research Database (Denmark)

    Herskin, J; Steffensen, JF

    1998-01-01

    Tail beat frequency of sea bass, Dicentrarchus labrax (L.) (23.5 ± 0·5 cm, LT), swimming at the front of a school was significantly higher than when swimming at the rear, for all water velocities tested from 14·8 to 32 cm s-1. The logarithm of oxygen consumption rate, and the tail beat frequency...... of solitary swimming sea bass (28·8 ± 0·4 cm, LT), were each correlated linearly with swimming speed, and also with one another. The tail beat frequency of individual fish was 9-14% lower when at the rear of a school than when at the front, corresponding to a 9-23% reduction in oxygen consumption rate....

  10. [Swimming, physical activity and health: a historical perspective].

    Science.gov (United States)

    Conti, A A

    2015-01-01

    Swimming, which is the coordinated and harmonic movement of the human body inside a liquid medium by means of the combined action of the superior and inferior limbs, is a physical activity which is diffused throughout the whole world and it is practiced by healthy and non-healthy subjects. Swimming is one of the physical activities with less contraindications and, with limited exceptions, can be suggested to individuals of both sexes and of every age range, including the most advanced. Swimming requires energy both for the floating process and for the anterograde progression, with a different and variable osteo-arthro-muscular involvement according to the different styles. The energetic requirement is about four times that for running, with an overall efficiency inferior to 10%; the energetic cost of swimming in the female subject is approximately two thirds of that in the male subject. The moderate aerobic training typical of swimming is useful for diabetic and hypertensive individuals, for people with painful conditions of rachis, as also for obese and orthopaedic patients. Motor activity inside the water reduces the risk of muscular-tendinous lesions and, without loading the joints in excess, requires the harmonic activation of the whole human musculature. Swimming is an activity requiring multiple abilities, ranging from a sense of equilibrium to that of rhythm, from reaction speed to velocity, from joint mobility to resistance. The structured interest for swimming in the perspective of human health from the beginning of civilization, as described in this contribution, underlines the relevance attributed to this activity in the course of human history.

  11. Effect of horizontal strong static magnetic field on swimming behaviour of Paramecium caudatum

    Science.gov (United States)

    Fujiwara, Yoshihisa; Tomishige, Masahiko; Itoh, Yasuhiro; Fujiwara, Masao; Shibata, Naho; Kosaka, Toshikazu; Hosoya, Hiroshi; Tanimoto, Yoshifumi

    2006-05-01

    Effect of horizontal strong static magnetic field on swimming behaviour of Paramecium caudatum was studied by using a superconducting magnet. Around a centre of a round vessel, random swimming at 0 T and aligned swimming parallel to the magnetic field (MF) of 8 T were observed. Near a wall of the vessel, however, swimming round and round along the wall at 0 T and aligned swimming of turning at right angles upon collision with the wall, which was remarkable around 1-4 T, were detected. It was experimentally revealed that the former MF-induced parallel swimming at the vessel centre was caused physicochemically by the parallel magnetic orientation of the cell itself. From magnetic field dependence of the extent of the orientation, the magnetic susceptibility anisotropy (χ ∥-χ ⊥) was first obtained to be 3.4× 10-23 emu cell-1 at 298 K for Paramecium caudatum. The orientation of the cell was considered to result from the magnetic orientation of the cell membrane. On the other hand, although mechanisms of the latter swimming near the vessel wall regardless of the absence and presence of the magnetic field are unclear at present, these experimental results indicate that whether the cell exists near the wall alters the magnetic field effect on the swimming in the horizontal magnetic field.

  12. Thermodynamic analysis of the squid mantle muscles and giant axon during slow swimming and jet escape propulsion

    International Nuclear Information System (INIS)

    Yalçınkaya, Bahar Hazal; Erikli, Şükrü; Özilgen, Burak Arda; Olcay, Ali Bahadır; Sorgüven, Esra; Özilgen, Mustafa

    2016-01-01

    Squids have two substantially different types of muscle fibers: superficial mitochondria rich fibers, which perform aerobic respiration during slow swimming, and central mitochondria poor fibers, which perform anaerobic respiration during jet escape. A detailed thermodynamic analysis shows that during slow swimming, 3.82 J/(kg s) of chemical exergy is consumed, and a total muscle work of 0.28 J/(kg s) is produced. 0.27 J/(kg s) of this is produced by the fin to generate lift, and the rest by the mantle volume contraction. During the jet escape at a speed of 3 mantle length/s, squid consumes an exergy of 9.97 J/(kg s) and produces a muscle work of 0.16 J/(kg s). Exergy destruction rates during slow swimming and jet escape modes are 3.54 and 9.81 J/(kg s), respectively. Exergy destroyed because of the action potential propagation in the squid giant axon is calculated as 0.03 and 0.10 J/(kg s) for the slow and fast swimming modes, respectively. - Highlights: • Slow and fast swimming modes of a squid is thermodynamically analyzed. • As swimming speed increases, respiration mode switches from aerobic to anaerobic, and respiration efficiency decreases. • During fast swimming ca. 2.6 times more chemical exergy is consumed. • Both muscles and giant axon destroy nearly 3 times more exergy during jet escape. • Contraction efficiency decreases from 36.8% to 4.7% as the volume of the passive tissue increases from 5% to 95%.

  13. A meta-analysis of steady undulatory swimming

    NARCIS (Netherlands)

    van Weerden, J. Fransje; Reid, Daniel A. P.; Hemelrijk, Charlotte K.

    The mechanics underlying undulatory swimming are of great general interest, both to biologists and to engineers. Over the years, more data of the kinematics of undulatory swimming have been reported. At present, an integrative analysis is needed to determine which general relations hold between

  14. Perception and action in swimming: Effects of aquatic environment on upper limb inter-segmental coordination.

    Science.gov (United States)

    Guignard, Brice; Rouard, Annie; Chollet, Didier; Ayad, Omar; Bonifazi, Marco; Dalla Vedova, Dario; Seifert, Ludovic

    2017-10-01

    This study assessed perception-action coupling in expert swimmers by focusing on their upper limb inter-segmental coordination in front crawl. To characterize this coupling, we manipulated the fluid flow and compared trials performed in a swimming pool and a swimming flume, both at a speed of 1.35ms -1 . The temporal structure of the stroke cycle and the spatial coordination and its variability for both hand/lower arm and lower arm/upper arm couplings of the right body side were analyzed as a function of fluid flow using inertial sensors positioned on the corresponding segments. Swimmers' perceptions in both environments were assessed using the Borg rating of perceived exertion scale. Results showed that manipulating the swimming environment impacts low-order (e.g., temporal, position, velocity or acceleration parameters) and high-order (i.e., spatial-temporal coordination) variables. The average stroke cycle duration and the relative duration of the catch and glide phases were reduced in the flume trial, which was perceived as very intense, whereas the pull and push phases were longer. Of the four coordination patterns (in-phase, anti-phase, proximal and distal: when the appropriate segment is leading the coordination of the other), flume swimming demonstrated more in-phase coordination for the catch and glide (between hand and lower arm) and recovery (hand/lower arm and lower arm/upper arm couplings). Conversely, the variability of the spatial coordination was not significantly different between the two environments, implying that expert swimmers maintain consistent and stable coordination despite constraints and whatever the swimming resistances. Investigations over a wider range of velocities are needed to better understand coordination dynamics when the aquatic environment is modified by a swimming flume. Since the design of flumes impacts significantly the hydrodynamics and turbulences of the fluid flow, previous results are mainly related to the

  15. The effects of swimming exercise and dissolved oxygen on growth performance, fin condition and precocious maturation of early-rearing Atlantic salmon Salmo salar

    Science.gov (United States)

    Waldrop, Thomas; Summerfelt, Steven T.; Mazik, Patricia M.; Good, Christopher

    2018-01-01

    Swimming exercise, typically measured in body-lengths per second (BL/s), and dissolved oxygen (DO), are important environmental variables in fish culture. While there is an obvious physiological association between these two parameters, their interaction has not been adequately studied in Atlantic salmon Salmo salar. Because exercise and DO are variables that can be easily manipulated in modern aquaculture systems, we sought to assess the impact of these parameters, alone and in combination, on the performance, health and welfare of juvenile Atlantic salmon. In our study, Atlantic salmon fry were stocked into 12 circular 0.5 m3 tanks in a flow-through system and exposed to either high (1.5–2 BL/s) or low (salmon early rearing can result in improved growth performance and a lower incidence of precocious parr.

  16. Fluid-mediated stability and speed-increase for heaving hydrofoils swimming side-by-side

    Science.gov (United States)

    Newbolt, Joel; Zhang, Jun; Ristroph, Leif

    2017-11-01

    As an example of collective motion in active swimmers we study the fluid-mediated interaction between two heaving hydrofoils that swim with a fixed transverse separation (between the heaving mid-heights) but are free to independently choose their forward swimming speeds and positions. Experiments reveal that out-of-phase foils are attracted to a side-by-side configuration which also increases the swimming speed of the pair (up to 59% faster for our parameters), while in-phase foils are repelled from this configuration. Because this type of swimming is qualitatively similar to that of fish and birds this interaction could be important to schooling and flocking.

  17. Effect of chronic forced swimming stress on whole brain radiation induced cognitive dysfunction and related mechanism

    International Nuclear Information System (INIS)

    Zhang Yuan; Sun Rui; Zhu Yaqun; Zhang Liyuan; Ji Jianfeng; Li Kun; Tian Ye

    2014-01-01

    Objective: To explore whether chronic forced swimming stress could improve whole brain radiation induced cognitive dysfunction and possible mechanism. Methods: Thirty-nine one month old male Sprague-Dawley rats were randomized into sham control group(C), swimming group(C-S), radiation group(R), and radiation plus swimming group(R-S). Radiation groups were given a single dose of 20 Gy on whole-brain. Rats in the swimming groups were trained with swimming of 15 min/d, 5 d/w. Rat behavior was performed 3 months after radiation in an order of free activity in an open field and the Morris water maze test including the place navigation and spatial probe tests. Then, the protein expressions of BDNF, P-ERK, T-ERK, P-CREB and T-CREB in the rat hippocampus tissue were assayed by Western blot. Results: On the day 2, in the place navigation test of Morris water maze, the latency of swimming group was significantly shorter than that of sham group, the latency of sham group was significantly shorter than that of radiation group, and the latency of radiation swimming group was significantly shorter than that of radiation group(P 0.05). Western blot assay showed that the expressions of BDNF and its downstream signals including P-ERK and P-CREB were markedly reduced by radiation (P < 0.05), but this reduction was attenuated by the chronic forced swimming stress. Conclusion: The chronic forced swimming stress could improve whole brain radiation induced cognitive dysfunction by up-regulating the expressions of BDNF and its downstream signal molecules of P-ERK and P-CREB in hippocampus. (authors)

  18. Swimming Pool Safety

    Science.gov (United States)

    ... Spread the Word Shop AAP Find a Pediatrician Safety & Prevention Immunizations All Around At Home At Play ... Español Text Size Email Print Share Swimming Pool Safety Page Content ​What is the best way to ...

  19. TECHNIQUE AND METHODOLOGY OF TRAINING IN SWIMMING CRAWL

    Directory of Open Access Journals (Sweden)

    Selim Alili

    2013-07-01

    Full Text Available The paper shows the technique and methodology training crawl swimming. Developed: the position of the head and body, footwork, hand movements, exercises for training footwork training drills and exercises for improving coordination technique on dry land and in water. Stated that accomplishes this swimmer swimming technique allows fast and is the fastest discipline. Therefore we can say that it is a favorite way of swimming and a pleasure to watch on the big stage.

  20. Do swimming goggles limit microbial contamination of contact lenses?

    Science.gov (United States)

    Wu, Yvonne T; Tran, Jess; Truong, Michelle; Harmis, Najat; Zhu, Hua; Stapleton, Fiona

    2011-04-01

    Wearing goggles over contact lenses while swimming is often recommended by eye care professionals. Limited data are available to assess this recommendation. The purpose of this study was to examine whether wearing goggles while swimming limits bacterial colonization on contact lenses and whether the type of lens worn affects contamination rates. Twenty-three subjects underwent two swimming sessions at an ocean (salt water) pool (Maroubra beach Rock Pool, Sydney, Australia). Silicone hydrogel (Ciba Focus Night and Day) or hydrogel lenses (Ciba Focus Daily) were inserted into subjects' eyes before 30 min of swimming sessions, and subjects used modified goggles to mimic goggled and non-goggled conditions. At the end of each session, lenses were collected for microbial investigation. Viable bacterial colonies were classified as gram positive and gram negative and enumerated. The level of bacterial colonization on contact lenses between goggled and non-goggled conditions and between the two lens materials were compared. The range of colony forming units recovered from goggled lenses were 0 to 930 compared with 0 to 1210 on non-goggled lenses. The majority of subjects (16/23) had more microorganisms in the non-goggled condition than when wearing goggles (p = 0.03). Gram negative organisms were found in three non-goggled lenses. No significant difference was shown in the number of bacteria isolated from silicone hydrogel and hydrogel lenses (p > 0.6) irrespective of wearing goggles. Water samples had consistently higher numbers of bacterial counts than those adhered to the lenses; however, no association was found between the number of bacteria in the water sample and those found on the contact lenses. Consistently, fewer bacterial colonies were found on the goggled contact lens, thus suggesting goggles offer some protection against bacterial colonization of contact lenses while swimming. These data would support the recommendation encouraging lens wearers to use goggles

  1. An Evaluation of the Usefulness of Stroke Index Values in the Swimming Training of People with Disabilities

    Directory of Open Access Journals (Sweden)

    Seidel Wojciech

    2016-09-01

    Full Text Available Introduction. When evaluating the swimming technique of people with disabilities, a particularly important factor, besides physiological aspects, is the efficiency of the effort expended. This suggests that assessing and monitoring the effectiveness of swimming should be a regular part of training for swimmers with disabilities. Therefore, it seems important to distinguish how changes occur in the parameters that determine the effectiveness of swimming. This is especially true of anaerobic lactic exercise as the lactic acid concentration in the blood increases significantly. The aim of this study was to evaluate the usefulness of calculating velocity and the stroke index in the swimming training of people with disabilities, along with the progressive fatigue of a high-intensity interval training workout. Material and methods. The sample comprised 12 elite competitors with a disability. The experiment consisted in swimming sequential distances of 48 m, 50 m, 52 m, and 54 m at maximum intensity. Competitors performed four sets of four repetitions with a 75-second interval between repetitions and 15 minutes of active resting between sets. All sets were recorded using five digital cameras with a frequency of 50 frames per second. The recorded material was analysed with the use of motion analysis software, and the stroke index was calculated. Results. There was found to be no significant change in the average swimming velocity during each set and corresponding repetition, which means that the participants were able to tolerate the training intensity. Also, the stroke index did not change to a statistically significant degree in either of the subsequent sets or the subsequent repetitions (p < 0.05. Conclusions. We conclude that analysing the value of the swimming stroke index for people with disabilities can be a diagnostic method for assessing the effectiveness of high-intensity interval training.

  2. The Unique Propulsive Wake Pattern of the Swimming Sea Slug Aplysia

    Science.gov (United States)

    Zhou, Zhuoyu; Mittal, Rajat

    2017-11-01

    The Aplysia, also sometimes referred to as the `Sea Hare,' is a sea slug that swims elegantly using large-amplitude flapping of its mantle. The Sea Hare has become a very valuable laboratory animal for investigation into nervous systems and brain behavior due to its simple neural system with large neurons and axons. Recently, attempts have also been made to develop biohybrid robots with both organic actuation and organic motor-pattern control inspired by the locomotion of Aplysia. While extensive works have been done to investigate this animal's neurobiology, relatively little is known about its propulsive mechanisms and swimming energetics. In this study, incompressible flow simulations with a simple kinematical model are used to gain insights into vortex dynamics, thrust generation and energetics of locomotion. The effect of mantle kinematics on the propulsive performance is examined, and simulations indicate a unique vortex wake pattern that is responsible for thrust generation. The research is supported by NSF Grant PLR-1246317 and NSF XSEDE Grant TG-CTS100002.

  3. Swimming Lessons: Learning, New Materialisms, Posthumanism, and Post Qualitative Research Emerge through a Pool Poem

    Science.gov (United States)

    McKnight, Lucinda

    2016-01-01

    This article shifts from the formal learning spaces of school and university to an Australian public swimming pool to playfully engage some of the dilemmas that recent theory poses for curriculum studies. The article enacts multiple diffractions (Barad, 2007) as theory becomes swimming and swimming becomes theory, and ideas and movements are…

  4. Effect of wearing clothes on oxygen uptake and ratings of perceived exertion while swimming.

    Science.gov (United States)

    Choi, S W; Kurokawa, T; Ebisu, Y; Kikkawa, K; Shiokawa, M; Yamasaki, M

    2000-07-01

    For a comparative study between swimming in swimwear (control-sw) and swimming in clothes (clothes-sw), oxygen uptake (VO2) and ratings of perceived exertion (RPE) were measured. The subjects were six male members of a university swimming team. Three swimming strokes--the breaststroke, the front crawl stroke and the elementary backstroke--were applied. With regards to clothes-sw, swimmers wore T-shirts, sportswear (shirt and pants) over swimwear and running shoes. In both cases of control-sw and clothes-sw, the VO2 was increased exponentially with increased swimming speed. The VO2 of the subjects during the clothed tests did not exceed 1.4 times of that in the case of control-sw at swimming speeds below 0.3 m/s. As swimming speeds increased, VO2 difference in both cases increased. Consequently, VO2 in the clothed tests was equal to 1.5-1.6 times and 1.5-1.8 times of that in the swimwear tests at speeds of 0.5 and 0.7 m/s, respectively. At speeds below 0.6 m/s in clothes-sw, the breaststroke showed lower VO2 than the front crawl stroke, and the elementary backstroke showed higher VO2 than the other two swimming strokes. RPE increased linearly with %peak VO2. In addition, any RPE differences among the three swimming strokes were not shown in the control-sw tests. At an exercise intensity above 60 %peak VO2, clothed swimmers showed slightly higher RPE in the front crawl stroke compared to that in the two other swimming strokes.

  5. Swimming in an anisotropic fluid: How speed depends on alignment angle

    Science.gov (United States)

    Shi, Juan; Powers, Thomas R.

    2017-12-01

    Orientational order in a fluid affects the swimming behavior of flagellated microorganisms. For example, bacteria tend to swim along the director in lyotropic nematic liquid crystals. To better understand how anisotropy affects propulsion, we study the problem of a sheet supporting small-amplitude traveling waves, also known as the Taylor swimmer, in a nematic liquid crystal. For the case of weak anchoring of the nematic director at the swimmer surface and in the limit of a minimally anisotropic model, we calculate the swimming speed as a function of the angle between the swimmer and the nematic director. The effect of the anisotropy can be to increase or decrease the swimming speed, depending on the angle of alignment. We also show that elastic torque dominates the viscous torque for small-amplitude waves and that the torque tends to align the swimmer along the local director.

  6. Effect of forced swim stress on wistar albino rats in various behavioral parameters

    Directory of Open Access Journals (Sweden)

    Ambareesha Kondam, Nilesh N Kate, Gaja Lakshmi, Suresh M, Chandrashekar M.

    2012-09-01

    Full Text Available Introduction: Stress is an important factor of depression that causes the changes in various body systems. The forced swim test is a commonly used stressor test where rats are forced to swim in specially constructed tanks for a particular period where there is behavioral activation characterized by vigorous swimming and diving to search for alternate routes of escape. Animal health including human has been shown to be affected by the stressful events of life inducing situation which alters cognition, learning memory and emotional responses, causing mental disorders like depression and anxiety and stress in rats. Methods: The experiment was carried out with 12 healthy albino Wistar female rats weighing about 150-180gms. The animals were randomly divided into two groups of six animals each. Group – I (control, Group – II (Stressed Group. Group –II rats are placed in plastic tanks for 45minutes for15 days. Temperature of water was maintained at 20˚C. During stress phase, the animals will be trained for forced swim test, behavioral changes observed by open field apparatus for emotions, and eight arm maze for memory & leaning, elevated plus maze for anxiety. Results: Forced swim stress causes to a significant change (p<0.05 on cognitive functions: motivation, learning and memory. Forced swim stress is the factor damaging the hippocampus causes repeated immobilization and produce atrophy of dendrites of pyramidal neurons and neuroendocrinological disturbances, controlled by the hypothalamo-pituitary-adrenal axis (HPA. Repeated stress in the form of forced swimming activates the free radical processes leading to an increase in lipid peroxidation in many tissues. Conclusion: This study reveals the effect of repeated forced swim stress causes wide range of adaptive changes in the central nervous system including the elevation of serotonin (5-HT metabolism and an increased susceptibility to affective disorders. The earlier findings have reported

  7. Guide for decontaminating swimming pool at schools

    International Nuclear Information System (INIS)

    Matsuhashi, Shimpei; Kurikami, Hiroshi; Yasuda, Ryo; Takano, Takao; Seko, Noriaki; Naganawa, Hirochika; Kuroki, Ryota; Saegusa, Jun

    2012-07-01

    Because of TEPCO Fukushima Dai-ichi Nuclear Power Plant accident due to the Great East Japan Earthquake, a huge amount of radioactive materials was widely dispersed and precipitated into the environment. Swimming pools in Fukushima prefectures were contaminated with the radioactives. We JAEA carried out several demonstration tests to decontaminate the radioactives and discharge the pool water safely. We concluded the results obtained from the tests as 'Guide for decontaminating Swimming Pool at School' and released it quickly. Following this, we also released the guide in English. This manuscript, as an experimental report of the swimming pool water decontamination, is consisted from the guide in Japanese and English prepared. (author)

  8. Guide for decontaminating swimming pool at schools

    Energy Technology Data Exchange (ETDEWEB)

    Matsuhashi, Shimpei; Kurikami, Hiroshi; Yasuda, Ryo; Takano, Takao; Seko, Noriaki; Naganawa, Hirochika; Kuroki, Ryota; Saegusa, Jun

    2012-07-15

    Because of TEPCO Fukushima Dai-ichi Nuclear Power Plant accident due to the Great East Japan Earthquake, a huge amount of radioactive materials was widely dispersed and precipitated into the environment. Swimming pools in Fukushima prefectures were contaminated with the radioactives. We JAEA carried out several demonstration tests to decontaminate the radioactives and discharge the pool water safely. We concluded the results obtained from the tests as 'Guide for decontaminating Swimming Pool at School' and released it quickly. Following this, we also released the guide in English. This manuscript, as an experimental report of the swimming pool water decontamination, is consisted from the guide in Japanese and English prepared. (author)

  9. Effect of swimming suit design on the energy demands of swimming.

    Science.gov (United States)

    Starling, R D; Costill, D L; Trappe, T A; Jozsi, A C; Trappe, S W; Goodpaster, B H

    1995-07-01

    Eight competitive male swimmers completed a standardized 365.8 m (400 yd) freestyle swimming trial at a fixed pace (approximately 90% of maximal effort) while wearing a torso swim suit (TOR) or a standard racing suit (STD). Oxygen uptake (VO2), blood lactate, heart rate (HR), and distance per stroke (DPS) measurements were obtained. In addition, a video-computer system was used to collect velocity data during a prone underwater glide following a maximal leg push-off from the side of the pool while wearing the TOR and STD suits. These data were used to calculate the total distance covered during the glides. VO2 (3.76 +/- 0.16 vs 3.92 +/- 0.18 l.min-1) and lactate (8.08 +/- 0.53 vs, 9.66 +/- 0.66 mM) were significantly (P 0.05) between the TOR (170.1 +/- 5.1 b.min-1) and STD (173.5 +/- 5.7 b.min-1) trials. DPS was significantly greater during the TOR (2.70 +/- 0.066 m.stroke-1) versus STD (2.58 +/- 0.054 m.stroke-1) trial. A significantly greater total distance was covered during the prone glide while wearing the TOR (2.05 +/- 0.067 m) compared to the STD (2.00 +/- 0.080 m) suit. These findings demonstrate that a specially designed torso suit reduces the energy demand of swimming compared to a standard racing suit which may be due to a reduction in body drag.

  10. 76 FR 60732 - Drawbridge Operation Regulations; Navesink (Swimming) River, NJ

    Science.gov (United States)

    2011-09-30

    ... Operation Regulations; Navesink (Swimming) River, NJ AGENCY: Coast Guard, DHS. ACTION: Notice of temporary... (Swimming) River between Oceanic and Locust Point, New Jersey. The deviation is necessary to facilitate...: The Oceanic Bridge, across the Navesink (Swimming) River, mile 4.5, between Oceanic and Locust Point...

  11. Body size, swimming speed, or thermal sensitivity? Predator-imposed selection on amphibian larvae.

    Science.gov (United States)

    Gvoždík, Lumír; Smolinský, Radovan

    2015-11-02

    Many animals rely on their escape performance during predator encounters. Because of its dependence on body size and temperature, escape velocity is fully characterized by three measures, absolute value, size-corrected value, and its response to temperature (thermal sensitivity). The primary target of the selection imposed by predators is poorly understood. We examined predator (dragonfly larva)-imposed selection on prey (newt larvae) body size and characteristics of escape velocity using replicated and controlled predation experiments under seminatural conditions. Specifically, because these species experience a wide range of temperatures throughout their larval phases, we predict that larvae achieving high swimming velocities across temperatures will have a selective advantage over more thermally sensitive individuals. Nonzero selection differentials indicated that predators selected for prey body size and both absolute and size-corrected maximum swimming velocity. Comparison of selection differentials with control confirmed selection only on body size, i.e., dragonfly larvae preferably preyed on small newt larvae. Maximum swimming velocity and its thermal sensitivity showed low group repeatability, which contributed to non-detectable selection on both characteristics of escape performance. In the newt-dragonfly larvae interaction, body size plays a more important role than maximum values and thermal sensitivity of swimming velocity during predator escape. This corroborates the general importance of body size in predator-prey interactions. The absence of an appropriate control in predation experiments may lead to potentially misleading conclusions about the primary target of predator-imposed selection. Insights from predation experiments contribute to our understanding of the link between performance and fitness, and further improve mechanistic models of predator-prey interactions and food web dynamics.

  12. Social motivation and health in college club swimming.

    Science.gov (United States)

    Anderson, Austin R; Ramos, William D

    2018-03-22

    Participation in recreational sport clubs on campus is a popular student activity nationwide. These sport-based organizations provide a host of benefits within recognized dimensions of health and wellness. Understanding participants' motives for engaging in these types of activities can provide insight in design and delivery and enhance participant health. This study focuses on outcomes related to the social motivations for participation in a recreational sport swim club and their potential relationship to social health. Current members of recreational swimming clubs were contacted for participation in the study from March-April 2016. A Leisure Motivation Scale (LMS) survey was sent electronically to 196 collegiate swim clubs nationwide. Aggregate and multivariate analyses from 1011 responses were conducted to examine the social motivation and motivational differences of participants. Social motivations emerged as the predominate motivational construct, indicating important implications for social health improvement through participation. Demographically, results indicated no statistically significant differences in social motivation factors based on participant gender, and statistically significant differences within participant race, university affiliation and practice frequency. Impacts of these findings are important for practitioners and participants when evaluating the potential these programs have to influence participant social health.

  13. Analysis of the swimming velocity of cadmium-stressed Daphnia magna

    International Nuclear Information System (INIS)

    Baillieul, M.; Blust, R.

    1999-01-01

    The swimming velocity of the waterflea Daphnia magna is dependent on its body size. Therefore, environmental factors like toxic stress that influence growth also influence swimming velocity. An experiment was set up to test whether exposure to cadmium would reduce only growth, with a concomitant decrease in velocity, or whether it would reduce velocity below the swimming velocity of similarly-sized control animals. Daphnids were exposed for 10 days to free cadmium ion concentrations ranging from 1x10 -8 to 1x10 -7 M Cd 2+ , and body size and swimming velocity were measured every 2 days. The results showed that cadmium decreased both growth and velocity, i.e. exposed daphnids swam slower than similarly-sized control daphnids. Swimming velocity provided no indication of successful acclimation in any cadmium treatment. Food consumption and assimilation were reduced by exposure to cadmium. This reduced food intake may have, at least partially, caused the decreased growth rates. However, since reduced food intake does not affect swimming velocity, the reduced swimming velocity must be attributed to toxic effects of cadmium, other than those on food intake. (Copyright (c) 1999 Elsevier Science B.V., Amsterdam. All rights reserved.)

  14. Optimal swimming speed in head currents and effects on distance movement of winter-migrating fish

    DEFF Research Database (Denmark)

    Brodersen, J.; Nilsson, P.A.; Ammitzbøl, J.

    2008-01-01

    ecologically and economically important. We here use passive and active telemetry to study how winter migrating roach regulate swimming speed and distance travelled per day in response to variations in head current velocity. Furthermore, we provide theoretical predictions on optimal swimming speeds in head...... currents and relate these to our empirical results. We show that fish migrate farther on days with low current velocity, but travel at a greater ground speed on days with high current velocity. The latter result agrees with our predictions on optimal swimming speed in head currents, but disagrees...... with previously reported predictions suggesting that fish ground speed should not change with head current velocity. We suggest that this difference is due to different assumptions on fish swimming energetics. We conclude that fish are able to adjust both swimming speed and timing of swimming activity during...

  15. Infections Unlikely to be Spread Through Swimming Pools

    Science.gov (United States)

    ... Water Home Infections Unlikely to be Spread Through Swimming Pools Language: English (US) Español (Spanish) Recommend on ... included below. Infections Unlikely to be Spread by Swimming Pools Head Lice Head lice are unlikely to ...

  16. ANALYSIS OF RELATIONSHIPS BETWEEN THE LEVEL OF ERRORS IN LEG AND MONOFIN MOVEMENT AND STROKE PARAMETERS IN MONOFIN SWIMMING

    Directory of Open Access Journals (Sweden)

    Marek Rejman

    2013-03-01

    Full Text Available The aim of this study was to analyze the error structure in propulsive movements with regard to its influence on monofin swimming speed. The random cycles performed by six swimmers were filmed during a progressive test (900m. An objective method to estimate errors committed in the area of angular displacement of the feet and monofin segments was employed. The parameters were compared with a previously described model. Mutual dependences between the level of errors, stroke frequency, stroke length and amplitude in relation to swimming velocity were analyzed. The results showed that proper foot movements and the avoidance of errors, arising at the distal part of the fin, ensure the progression of swimming speed. The individual stroke parameters distribution which consists of optimally increasing stroke frequency to the maximal possible level that enables the stabilization of stroke length leads to the minimization of errors. Identification of key elements in the stroke structure based on the analysis of errors committed should aid in improving monofin swimming technique

  17. THE EFFECTS OF DIFFERENT MODELS OF SWIMMING TRAINING (DEFINED IN RELATION TO ANAEROBIC THRESHOLD ON THE INCREASE OF SWIM SPEED

    Directory of Open Access Journals (Sweden)

    Dragan Krivokapić

    2007-05-01

    Full Text Available On the sample of 32 fourth grade students of some Belgrade highs schools, who had the physical education classes carried out at the city’s swimming pools, an attempt was made to evaluate the effects of the two different programmes of swimming training in different intensity zones, defi ned relative to the anaerobic threshold. The examinees were divided into two groups out of 15 i.e. 17 participants who were not (according to statistics signifi cantly different in terms of average time and heart frequency during the 400 m swimming test and heart frequency and time measured after 50 m in the moment of reaching the anaerobic threshold. The fi rst training model consisted of swimming at the intensity level within the zone below anaerobic threshold, while the second model involved occasional swimming at a higher intensity sometimes surpassing the anaerobic threshold. The experimentalprogramme with both sub-groups lasted 8 weeks with 3 training sessions per week, 2 ‘of which we’re identical for both experimental groups, with the third one differing regarding the swimming intensity, this in the fi rst group being still in the zone below, and in the second group occasionally in the zone above the anaerobic threshold. The amount of training and the duration were the same in both programmes. The aim of the research , was to evaluate and to compare the effects of the two training models, using as the basic criteria possible changes of average time and heart frequency during the 400 m swimming test and heart frequency and time measured after 50 m in the moment of reaching the anaerobic thereshold. On the basis of the statistical analysis of the obtained data, it is possible to conclude that in both experimental groups there were statistically signifi cant changes of average values concerning all the physiological variables. Although the difference in effi ciency of applied experimental programmes is not defi ned, we can claim that both of experimental

  18. Genotoxic Effects in Swimmers Exposed to Disinfection By-products in Indoor Swimming Pool

    Science.gov (United States)

    BACKGROUND: Exposure to disinfection by-products (DBPs) in drinking water has been associated with cancer risk, and a recent study found an increased bladder cancer risk among subjects attending swimming pools. OBJECTIVES: To evaluate whether swimming in pools is associated with ...

  19. Indoor swimming pool attendance and respiratory and dermal health in schoolchildren: HITEA Catalonia.

    NARCIS (Netherlands)

    Font-Ribera, L.; Villanueva, C.M.; Gracia-Lavedan, E.; Borràs-Santos, A.; Kogevinas, M.; Zock, J.P.

    2014-01-01

    Background: Health benefits of swimming in pools may outweigh adverse health outcomes in children, but evidence from epidemiological studies is scarce or inconclusive for different health outcomes. We evaluated the association between indoor swimming pool attendance during childhood and respiratory

  20. Basic Land Drills for Swimming Stroke Acquisition

    Science.gov (United States)

    Zhang, Peng

    2014-01-01

    Teaching swimming strokes can be a challenging task in physical education. The purpose of the article is to introduce 12 on land drills that can be utilized to facilitate the learning of swimming strokes, including elementary back stroke, sidestroke, front crawl, back stroke, breaststroke, and butterfly. Each drill consists of four components…

  1. The interest for the masters swimming competitions in 2010 – the managerial perspective. A case study: Timişoara

    OpenAIRE

    Marcel Răsădean; Mihai Liseţchi

    2011-01-01

    Masters swimmers are adults that systematically practise this sportive activity as amateurs in an organized environment. They have very different sportive abilities and their interest for practising swimming is linked to the benefits of this type of activity. In relation to the public perception existing in Romania, both in the mainstream public and in the specialists’ circle, the competitive dimension is the most visible as opposed to the other forms of masters swimming: fitness swimming, re...

  2. Turtle mimetic soft robot with two swimming gaits.

    Science.gov (United States)

    Song, Sung-Hyuk; Kim, Min-Soo; Rodrigue, Hugo; Lee, Jang-Yeob; Shim, Jae-Eul; Kim, Min-Cheol; Chu, Won-Shik; Ahn, Sung-Hoon

    2016-05-04

    This paper presents a biomimetic turtle flipper actuator consisting of a shape memory alloy composite structure for implementation in a turtle-inspired autonomous underwater vehicle. Based on the analysis of the Chelonia mydas, the flipper actuator was divided into three segments containing a scaffold structure fabricated using a 3D printer. According to the filament stacking sequence of the scaffold structure in the actuator, different actuating motions can be realized and three different types of scaffold structures were proposed to replicate the motion of the different segments of the flipper of the Chelonia mydas. This flipper actuator can mimic the continuous deformation of the forelimb of Chelonia mydas which could not be realized in previous motor based robot. This actuator can also produce two distinct motions that correspond to the two different swimming gaits of the Chelonia mydas, which are the routine and vigorous swimming gaits, by changing the applied current sequence of the SMA wires embedded in the flipper actuator. The generated thrust and the swimming efficiency in each swimming gait of the flipper actuator were measured and the results show that the vigorous gait has a higher thrust but a relatively lower swimming efficiency than the routine gait. The flipper actuator was implemented in a biomimetic turtle robot, and its average swimming speed in the routine and vigorous gaits were measured with the vigorous gait being capable of reaching a maximum speed of 11.5 mm s(-1).

  3. One foot out the door: limb function during swimming in terrestrial versus aquatic turtles.

    Science.gov (United States)

    Young, Vanessa K Hilliard; Vest, Kaitlyn G; Rivera, Angela R V; Espinoza, Nora R; Blob, Richard W

    2017-01-01

    Specialization for a new habitat often entails a cost to performance in the ancestral habitat. Although aquatic lifestyles are ancestral among extant cryptodiran turtles, multiple lineages, including tortoises (Testudinidae) and emydid box turtles (genus Terrapene), independently specialized for terrestrial habitats. To what extent is swimming function retained in such lineages despite terrestrial specialization? Because tortoises diverged from other turtles over 50 Ma, but box turtles did so only 5 Ma, we hypothesized that swimming kinematics for box turtles would more closely resemble those of aquatic relatives than those of tortoises. To test this prediction, we compared high-speed video of swimming Russian tortoises (Testudo horsfieldii), box turtles (Terrapene carolina) and two semi-aquatic emydid species: sliders (Trachemys scripta) and painted turtles (Chrysemys picta). We identified different kinematic patterns between limbs. In the forelimb, box turtle strokes most resemble those of tortoises; for the hindlimb, box turtles are more similar to semi-aquatic species. Such patterns indicate functional convergence of the forelimb of terrestrial species, whereas the box turtle hindlimb exhibits greater retention of ancestral swimming motions. © 2017 The Author(s).

  4. Getting in Shape : Swimming with Stokes and Surfing with Brinkman

    NARCIS (Netherlands)

    Bet, B.P.

    2018-01-01

    In this dissertation, we investigate the effect of shape on the motion of microscopic particles that perform a swimming motion or ‘surf’, driven by an external flow, through microscopic channels. These motions take place in a fluid, and fluid motion is in general described by the Navier-Stokes

  5. Mammal-like muscles power swimming in a cold-water shark.

    Science.gov (United States)

    Bernal, Diego; Donley, Jeanine M; Shadwick, Robert E; Syme, Douglas A

    2005-10-27

    Effects of temperature on muscle contraction and powering movement are profound, outwardly obvious, and of great consequence to survival. To cope with the effects of environmental temperature fluctuations, endothermic birds and mammals maintain a relatively warm and constant body temperature, whereas most fishes and other vertebrates are ectothermic and conform to their thermal niche, compromising performance at colder temperatures. However, within the fishes the tunas and lamnid sharks deviate from the ectothermic strategy, maintaining elevated core body temperatures that presumably confer physiological advantages for their roles as fast and continuously swimming pelagic predators. Here we show that the salmon shark, a lamnid inhabiting cold, north Pacific waters, has become so specialized for endothermy that its red, aerobic, locomotor muscles, which power continuous swimming, seem mammal-like, functioning only within a markedly elevated temperature range (20-30 degrees C). These muscles are ineffectual if exposed to the cool water temperatures, and when warmed even 10 degrees C above ambient they still produce only 25-50% of the power produced at 26 degrees C. In contrast, the white muscles, powering burst swimming, do not show such a marked thermal dependence and work well across a wide range of temperatures.

  6. Presence and select determinants of organophosphate flame retardants in public swimming pools

    International Nuclear Information System (INIS)

    Teo, Tiffany L.L.; Coleman, Heather M.; Khan, Stuart J.

    2016-01-01

    The occurrence of five organophosphate flame retardants (PFRs) consisting of tributyl phosphate (TNBP), tris(2-chloroethyl) phosphate (TCEP), tris(1-chloro-2-propyl) phosphate (TCIPP), tris(1.3-dichloro-2-propyl) phosphate (TDCIPP) and triphenyl phosphate (TPHP) in swimming pools were investigated. Fifteen chlorinated public swimming pools were sampled, including indoor pools, outdoor pools and spa pools. The analyses were carried out using isotope dilution gas chromatography tandem mass spectrometry. All five PFRs were detected in swimming pool waters with concentrations ranging from 5–27 ng/L (TNBP), 7–293 ng/L (TCEP), 62–1180 ng/L (TCIPP), 10–670 ng/L (TDCIPP) and 8–132 ng/L (TPHP). The concentrations of PFRs were generally higher in indoor swimming pools compared to outdoor swimming pools. In municipal water supplies, used to fill the swimming pools in three of the sampling locations, the five PFRs were all below the limit of quantifications, eliminating this as the source. Potential leaching of PFRs from commonly used swimming equipment, including newly purchased kickboards and swimsuits was investigated. These experiments revealed that PFRs leached from swimsuits, and may be a source of PFRs in swimming pools. A quantitative risk assessment revealed that the health risk to PFRs via swimming pools was generally low and below commonly applied health risk benchmarks. - Highlights: • TNBP, TCEP, TCIPP, TDCIPP and TPHP were detected in chlorinated swimming pools. • PFRs were below the LOQ in fill water samples collected from 3 locations. • TCIPP was observed to have the highest concentrations in swimming pools. • PFRs are leaching from swimsuits and may be a source in swimming pools. • Health risks through oral and dermal exposure to PFRs in swimming pools were low.

  7. Presence and select determinants of organophosphate flame retardants in public swimming pools

    Energy Technology Data Exchange (ETDEWEB)

    Teo, Tiffany L.L., E-mail: tiffany.teo@unsw.edu.au [UNSW Water Research Centre, School of Civil and Environmental Engineering, University of New South Wales, Kensington NSW 2052 (Australia); Coleman, Heather M., E-mail: h.coleman@ulster.ac.uk [Nanotechnology and Integrated BioEngineering Centre, School of Engineering, University of Ulster, Jordanstown, County Antrim BT37 0QB, Northern Ireland (United Kingdom); Khan, Stuart J., E-mail: s.khan@unsw.edu.au [UNSW Water Research Centre, School of Civil and Environmental Engineering, University of New South Wales, Kensington NSW 2052 (Australia)

    2016-11-01

    The occurrence of five organophosphate flame retardants (PFRs) consisting of tributyl phosphate (TNBP), tris(2-chloroethyl) phosphate (TCEP), tris(1-chloro-2-propyl) phosphate (TCIPP), tris(1.3-dichloro-2-propyl) phosphate (TDCIPP) and triphenyl phosphate (TPHP) in swimming pools were investigated. Fifteen chlorinated public swimming pools were sampled, including indoor pools, outdoor pools and spa pools. The analyses were carried out using isotope dilution gas chromatography tandem mass spectrometry. All five PFRs were detected in swimming pool waters with concentrations ranging from 5–27 ng/L (TNBP), 7–293 ng/L (TCEP), 62–1180 ng/L (TCIPP), 10–670 ng/L (TDCIPP) and 8–132 ng/L (TPHP). The concentrations of PFRs were generally higher in indoor swimming pools compared to outdoor swimming pools. In municipal water supplies, used to fill the swimming pools in three of the sampling locations, the five PFRs were all below the limit of quantifications, eliminating this as the source. Potential leaching of PFRs from commonly used swimming equipment, including newly purchased kickboards and swimsuits was investigated. These experiments revealed that PFRs leached from swimsuits, and may be a source of PFRs in swimming pools. A quantitative risk assessment revealed that the health risk to PFRs via swimming pools was generally low and below commonly applied health risk benchmarks. - Highlights: • TNBP, TCEP, TCIPP, TDCIPP and TPHP were detected in chlorinated swimming pools. • PFRs were below the LOQ in fill water samples collected from 3 locations. • TCIPP was observed to have the highest concentrations in swimming pools. • PFRs are leaching from swimsuits and may be a source in swimming pools. • Health risks through oral and dermal exposure to PFRs in swimming pools were low.

  8. No evidence for a bioenergetic advantage from forced swimming in rainbow trout under a restrictive feeding regime

    Directory of Open Access Journals (Sweden)

    Peter Vilhelm Skov

    2015-02-01

    Full Text Available Sustained swimming at moderate speeds is considered beneficial in terms of the productive performance of salmonids, but the causative mechanisms have yet to be unequivocally established. In the present study, the effects of moderate exercise on the bioenergetics of rainbow trout were assessed during a 15 week growth experiment, in which fish were reared at three different current speeds: 1 BL s-1, 0.5 BL s-1 and still water (≈ 0 BL s-1. Randomly selected groups of 100 fish were distributed among twelve 600 L tanks and maintained on a restricted diet regime. Specific growth rate (SGR and feed conversion ratio (FCR were calculated from weight and length measurements every three weeks. Routine metabolic rate (RMR was measured every hour as rate of oxygen consumption in the tanks, and was positively correlated with swimming speed. Total ammonia nitrogen (TAN excretion rates showed a tendency to decrease with increasing swimming speeds, yet neither they nor the resulting nitrogen quotients (NQ indicated that swimming significantly reduced the fraction of dietary protein used to fuel metabolism. Energetic budgets revealed a positive correlation between energy expenditure and the current speed at which fish were reared, fish that were forced to swim and were fed restrictively consequentially had poorer growth and feed utilization. The results show that for rainbow trout, water current can negatively affect growth despite promoting minor positive changes in substrate utilization. We hypothesize that this may be the result of either a limited dietary energy supply from diet restriction being insufficient for both covering the extra costs of swimming and supporting enhanced growth.

  9. Swimming-induced pulmonary oedema an uncommon condition diagnosed with POCUS ultrasound.

    Science.gov (United States)

    Alonso, Joaquín Valle; Chowdhury, Motiur; Borakati, Raju; Gankande, Upali

    2017-12-01

    Swimming Induced Pulmonary Edema, or SIPE, is an emerging condition occurring in otherwise healthy individuals during surface swimming or diving that is characterized by cough, dyspnea, hemoptysis, and hypoxemia. It is typically found in those who spend time in cold water exercise with heavy swimming and surface swimming, such as civilian training for iron Man, triathalon, and military training. We report the case of a highly trained young female swimmer in excellent cardiopulmonary health, who developed acute alveolar pulmonary oedema in an open water swimming training diagnosed in the emergency department using POCUS ultrasound. Copyright © 2017 Elsevier Inc. All rights reserved.

  10. Biogenic mixing induced by intermediate Reynolds number swimming in stratified fluids

    Science.gov (United States)

    Wang, Shiyan; Ardekani, Arezoo M.

    2015-01-01

    We study fully resolved motion of interacting swimmers in density stratified fluids using an archetypal swimming model called “squirmer”. The intermediate Reynolds number regime is particularly important, because the vast majority of organisms in the aphotic ocean (i.e. regions that are 200 m beneath the sea surface) are small (mm-cm) and their motion is governed by the balance of inertial and viscous forces. Our study shows that the mixing efficiency and the diapycnal eddy diffusivity, a measure of vertical mass flux, within a suspension of squirmers increases with Reynolds number. The mixing efficiency is in the range of O(0.0001–0.04) when the swimming Reynolds number is in the range of O(0.1–100). The values of diapycnal eddy diffusivity and Cox number are two orders of magnitude larger for vertically swimming cells compared to horizontally swimming cells. For a suspension of squirmers in a decaying isotropic turbulence, we find that the diapycnal eddy diffusivity enhances due to the strong viscous dissipation generated by squirmers as well as the interaction of squirmers with the background turbulence. PMID:26628288

  11. Dynamic simulation and thermo-economic analysis of a PhotoVoltaic/Thermal collector heating system for an indoor–outdoor swimming pool

    International Nuclear Information System (INIS)

    Buonomano, Annamaria; De Luca, Giuseppina; Figaj, Rafal Damian; Vanoli, Laura

    2015-01-01

    Highlights: • A PV/T heating system for indoor–outdoor swimming pools is proposed. • A comparison among some thermal pool models available in literature is carried out. • Dynamic simulations of the thermal behavior of the swimming-pools are performed. • PV/T thermal energy is used to heat the swimming pool and for DHW production. • Energy and economic parametric analyses of the proposed system are presented. - Abstract: This paper presents an analysis of an innovative renewable energy plant serving an existing indoor/outdoor swimming pool located in Naples. The proposed solar hybrid system is designed in order to balance the remarkable energy demand of the swimming pool facility and to ensure suitable comfort conditions for swimmers. With the aim to accomplish such goals, the dynamic thermal behavior of the swimming pool was analyzed as a function of the thermo-hygrometric conditions of the indoor space and on the meteorological conditions of the pool site. In order to properly design and size the proposed renewable energy system, different thermal pool loss formulations for the calculation of the swimming pool thermal balance, in indoor and outdoor regimes, are adopted. The solar hybrid system consists of a water cooled photovoltaic/thermal collectors plant (PV/T), designed to meet a part of the facility demands of electricity and heat. Electricity is completely utilized by the facility, while the produced thermal energy is primarily used to meet the pool thermal demand and secondarily for sanitary hot water scopes. In order to carry out dynamic simulations and sensitivity analyses, the system performance is designed and dynamically simulated in TRNSYS environment. The developed simulation model enables the calculation of both the indoor and outdoor swimming pool thermal losses and the overall energy and economic system performance. Such results are obtained as a function of the thermo-hygrometric conditions of the environment, of the occupants and the

  12. Study of Microbial Contamination of the Public Swimming Pools with Escherichia coli and Pseudomonas aeruginosa and Their Physical Parameters in Kermanshah, Iran

    Directory of Open Access Journals (Sweden)

    Afsaneh Haghmorad Korasti

    2016-09-01

    Full Text Available Background and Objectives: Public swimming pools' waters are contaminated with a wide variety of pathogenic microorganisms and are a suitable environment for transmission of different diseases. The aim of this study was to investigate the microbial contamination of the public swimming pools' waters with Escherichia coli and Pseudomonas aeruginosa and to determine certain parameters such as residual chlorine, pH, temperature and turbidity in these pools' waters in Kermanshah. In this descriptive, cross-sectional study, 129 water samples were taken from all active pools in Kermanshah and their bacteriologic and physicochemical properties were investigated. Phosphatase alkaline (PHO-A gene was used for molecular confirmation of E. coli isolates, and exotoxin A (ETA gene in PCR was employed to confirm pathogenicity of P. aeruginosa isolates. Data were analyzed by chi-square and t-test. p0.05. Conclusion: The results of this study indicated that appropriate amount of residual chlorine caused reduction in microbial contamination in the public swimming pools' waters in Kermanshah.

  13. Stirring by swimming bodies

    International Nuclear Information System (INIS)

    Thiffeault, Jean-Luc; Childress, Stephen

    2010-01-01

    We consider the stirring of an inviscid fluid caused by the locomotion of bodies through it. The swimmers are approximated by non-interacting cylinders or spheres moving steadily along straight lines. We find the displacement of fluid particles caused by the nearby passage of a swimmer as a function of an impact parameter. We use this to compute the effective diffusion coefficient from the random walk of a fluid particle under the influence of a distribution of swimming bodies. We compare with the results of simulations. For typical sizes, densities and swimming velocities of schools of krill, the effective diffusivity in this model is five times the thermal diffusivity. However, we estimate that viscosity increases this value by two orders of magnitude.

  14. Observations on side-swimming rainbow trout Oncorhynchus mykiss in water recirculation aquaculture systems

    Science.gov (United States)

    During a controlled 6-month study using six replicated water recirculation aquaculture systems (WRAS), it was observed that rainbow trout Oncorhynchus mykiss in all WRAS exhibited a higher-than-normal prevalence of side-swimming (i.e. controlled, forward swimming, but with misaligned orientation suc...

  15. The Evaluation of t he Nutritional Habits of Athletes Between the Ages of 17 - 18 Who Perform t he Swimming Sports

    Directory of Open Access Journals (Sweden)

    Mine TURGUT

    2014-08-01

    Full Text Available Purpose of this research is to determine dietary habits of sporters actively involved in swimming and between ages 17 - 18. 98 sporters (60 male and 38 female who swam in the “Anatolian Cup” swimming competition organized in Malatya province in the East Anatolian Region, constitute popu lation of the study. Sporters have participated in a survey that consisted of two parts. First part of the survey is about personal information, and second part inclu des questions about nutrition. When the results of the survey were evaluated, it was est ablished that most of the sporters made exercise between 3 and 5 hours in one week, and they are doing this sports for about 4 years. It was determined that sporters generally acquired their knowledge about nutrition from their coaches or sports friends. They indicated that they usually eat their last meal 3 - 4 hours before the competition, they pay attention this meal to consist from light food, they prefer food like honey and butter in order to increase their energy before the competition, and the energy they need is between 4000 - 5000 kcal. It is observed that they received protein for contribution to recovery period after the competition and training. It is also revealed that most of the sporters skip breakfast and eat only 2 meals in a day, and they a re not taking any snacks. They explained the reason as they don‟t have enough time and they wake up late. Sporters in the research group think that doping is harmful even though it improves the performance; however most of them state that they can take d oping for a prize or money. It will be beneficial to organize trainings, seminars for sporters and coaches on the subject of foods to be eaten by the sporters and their importance on the performance of the sporters.

  16. 36 CFR 3.17 - What regulations apply to swimming areas and beaches?

    Science.gov (United States)

    2010-07-01

    ... swimming areas and beaches? 3.17 Section 3.17 Parks, Forests, and Public Property NATIONAL PARK SERVICE, DEPARTMENT OF THE INTERIOR BOATING AND WATER USE ACTIVITIES § 3.17 What regulations apply to swimming areas and beaches? (a) The superintendent may designate areas as swimming areas or swimming beaches in...

  17. On the development of inexpensive speed and position tracking system for swimming

    DEFF Research Database (Denmark)

    Trangbæk, Søren; Rasmussen, Cuno; Andersen, Thomas Bull

    2016-01-01

    A semi-automated tracking system was developed for the analysis of swimming, using cameras, an LED diode marker, and a red swim cap. Four experienced young swimmers were equipped with a marker and a swim cap and their position and speed was tracked throughout above-water and under-water swimming...

  18. Intra- and Intersexual swim bladder dimorphisms in the plainfin midshipman fish (Porichthys notatus): Implications of swim bladder proximity to the inner ear for sound pressure detection.

    Science.gov (United States)

    Mohr, Robert A; Whitchurch, Elizabeth A; Anderson, Ryan D; Forlano, Paul M; Fay, Richard R; Ketten, Darlene R; Cox, Timothy C; Sisneros, Joseph A

    2017-11-01

    The plainfin midshipman fish, Porichthys notatus, is a nocturnal marine teleost that uses social acoustic signals for communication during the breeding season. Nesting type I males produce multiharmonic advertisement calls by contracting their swim bladder sonic muscles to attract females for courtship and spawning while subsequently attracting cuckholding type II males. Here, we report intra- and intersexual dimorphisms of the swim bladder in a vocal teleost fish and detail the swim bladder dimorphisms in the three sexual phenotypes (females, type I and II males) of plainfin midshipman fish. Micro-computerized tomography revealed that females and type II males have prominent, horn-like rostral swim bladder extensions that project toward the inner ear end organs (saccule, lagena, and utricle). The rostral swim bladder extensions were longer, and the distance between these swim bladder extensions and each inner-ear end organ type was significantly shorter in both females and type II males compared to that in type I males. Our results revealed that the normalized swim bladder length of females and type II males was longer than that in type I males while there was no difference in normalized swim bladder width among the three sexual phenotypes. We predict that these intrasexual and intersexual differences in swim bladder morphology among midshipman sexual phenotypes will afford greater sound pressure sensitivity and higher frequency detection in females and type II males and facilitate the detection and localization of conspecifics in shallow water environments, like those in which midshipman breed and nest. © 2017 Wiley Periodicals, Inc.

  19. Swimming Dynamics of the Lyme Disease Spirochete

    Science.gov (United States)

    Vig, Dhruv K.; Wolgemuth, Charles W.

    2012-11-01

    The Lyme disease spirochete, Borrelia burgdorferi, swims by undulating its cell body in the form of a traveling flat wave, a process driven by rotating internal flagella. We study B. burgdorferi’s swimming by treating the cell body and flagella as linearly elastic filaments. The dynamics of the cell are then determined from the balance between elastic and resistive forces and moments. We find that planar, traveling waves only exist when the flagella are effectively anchored at both ends of the bacterium and that these traveling flat waves rotate as they undulate. The model predicts how the undulation frequency is related to the torque from the flagellar motors and how the stiffness of the cell body and flagella affect the undulations and morphology.

  20. Energetics of swimming of schooling fish

    DEFF Research Database (Denmark)

    Steffensen, John Fleng

    2012-01-01

    , i.e. nearest neighbour distance, water temperature, gill oxygen extraction, gill ventilation capacity, etc. Fish swimming in a school have been shown to have energetic advantages when trailing behind neighbours, resulting in up to 20% energy saving. The effect of this energy saving is that the fish......Soc for experimental Biol Annual Meeting - Salzburg 2012 John F. Steffensen (University of Copenhagen, Denmark) When a fish school swims through the water, every individual consumes a certain amount of oxygen, which means that less will be available for the trailing fish in the school. In 1967 Mc......Farland and Moss reported that the oxygen saturation decreased approximately 30% from the front to the rear of an approximately 150-m long school of mullets swimming in normoxic water. They also observed that the decline in oxygen saturation at the rear resulted in the school disintegrating into smaller separate...

  1. In-channel experiments on vertical swimming with bacteria-like robots

    OpenAIRE

    Tabak, Ahmet Fatih; Yeşilyurt, Serhat; Yesilyurt, Serhat

    2013-01-01

    Bio-inspired micro-robots are of great importance as to implement versatile microsystems for a variety of in vivo and in vitro applications in medicine and biology. Accurate models are necessary to understand the swimming and rigidbody dynamics of such systems. In this study, a series of experiments are conducted with a two-link cm-scale bioinspired robot moving vertically without a tether, in siliconefilled narrow cylindrical glass channels. Swimming velocities are obtained for a set of v...

  2. Roll and Yaw of Paramecium swimming in a viscous fluid

    Science.gov (United States)

    Jung, Sunghwan; Jana, Saikat; Giarra, Matt; Vlachos, Pavlos

    2012-11-01

    Many free-swimming microorganisms like ciliates, flagellates, and invertebrates exhibit helical trajectories. In particular, the Paramecium spirally swims along its anterior direction by the beating of cilia. Due to the oblique beating stroke of cilia, the Paramecium rotates along its long axis as it swims forward. Simultaneously, this long axis turns toward the oral groove side. Combined roll and yaw motions of Paramecium result in swimming along a spiral course. Using Particle Image Velocimetry, we measure and quantify the flow field and fluid stress around Paramecium. We will discuss how the non-uniform stress distribution around the body induces this yaw motion.

  3. Optimally efficient swimming in hyper-redundant mechanisms: control, design, and energy recovery

    International Nuclear Information System (INIS)

    Wiens, A J; Nahon, M

    2012-01-01

    Hyper-redundant mechanisms (HRMs), also known as snake-like robots, are highly adaptable during locomotion on land. Researchers are currently working to extend their capabilities to aquatic environments through biomimetic undulatory propulsion. In addition to increasing the versatility of the system, truly biomimetic swimming could also provide excellent locomotion efficiency. Unfortunately, the complexity of the system precludes the development of a functional solution to achieve this. To explore this problem, a rapid optimization process is used to generate efficient HRM swimming gaits. The low computational cost of the approach allows for multiple optimizations over a broad range of system conditions. By observing how these conditions affect optimal kinematics, a number of new insights are developed regarding undulatory swimming in robotic systems. Two key conditions are varied within the study, swimming speed and energy recovery. It is found that the swimmer mimics the speed control behaviour of natural fish and that energy recovery drastically increases the system's efficiency. Remarkably, this efficiency increase is accompanied by a distinct change in swimming kinematics. With energy recovery, the swimmer converges to a clearly anguilliform gait, without, it tends towards the carangiform mode. (paper)

  4. Swimming pool special; Zwembadspecial

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2010-05-15

    This issue includes a few articles and messages on the use of heat pump systems in swimming pools. [Dutch] Dit nummer bevat onder meer een paar artikelen over het gebruik van warmtepompsystemen in zwembaden.

  5. Comparison of expert and nonexpert swimmers' opinions about the value, potency, and activity of four standard swimming strokes and underwater undulatory swimming.

    Science.gov (United States)

    Collard, L; Oboeuf, A

    2009-04-01

    Underwater undulatory swimming (UUS) is often perceived to be a nonessential aspect of aquatic propulsion. Given their solid theoretical and practical training in swimming, physical education students should be capable of judging the true value of the "fifth stroke," since it appears to be the most efficient technique in high level, competitive swimming. To compare opinions and connotations associated with the stroke and the four official strokes (butterfly, backstroke, breaststroke, and crawl), 198 students (32 of whom were expert swimmers; M age = 20.6 yr., SD = 1.2), were surveyed using the semantic differential of Osgood, Suci, and Tannenbaum. Although answers of expert and nonexpert swimmers differed significantly (p stroke was less attractive, less powerful, and less rapid than the four surface strokes (d = 2.88 for the expert swimmers). Putting one arm in front of the other and repeating the sequence still remains the most solidly held representation of "the right way" to swim. However, the high observed standard deviations for the underwater undulatory stimulus (SD > or = 1.1 with SD max = 3 for the expert swimmers) attests to the view being less strongly held by swimming specialists.

  6. Swimming at small Reynolds number of a planar assembly of spheres in an incompressible viscous fluid with inertia

    Science.gov (United States)

    Felderhof, B. U.

    2017-09-01

    Translational and rotational swimming at small Reynolds numbers of a planar assembly of identical spheres immersed in an incompressible viscous fluid is studied on the basis of a set of equations of motion for the individual spheres. The motion of the spheres is caused by actuating forces and forces derived from a direct interaction potential, as well as hydrodynamic forces exerted by the fluid as frictional and added mass hydrodynamic interactions. The translational and rotational swimming velocities of the assembly are deduced from momentum and angular momentum balance equations. The mean power required during a period is calculated from an instantaneous power equation. Expressions are derived for the mean swimming velocities and the mean power, valid to second order in the amplitude of displacements from the relative equilibrium positions. Hence these quantities can be evaluated for prescribed periodic displacements. Explicit calculations are performed for three spheres interacting such that they form an equilateral triangle in the rest frame of the configuration.

  7. Effects of nitrite exposure on functional haemoglobin levels, bimodal respiration, and swimming performance in the facultative air-breathing fish Pangasianodon hypophthalmus

    Energy Technology Data Exchange (ETDEWEB)

    Lefevre, Sjannie, E-mail: sjannie.lefevre@biology.au.dk [Zoophysiology, Department of Biological Sciences, Aarhus University, Aarhus (Denmark); Jensen, Frank B. [Department of Biology, University of Southern Denmark, Odense (Denmark); Huong, Do.T.T. [College of Aquaculture and Fisheries, Can Tho University, Can Tho City (Viet Nam); Wang, Tobias [Zoophysiology, Department of Biological Sciences, Aarhus University, Aarhus (Denmark); Phuong, Nguyen T. [College of Aquaculture and Fisheries, Can Tho University, Can Tho City (Viet Nam); Bayley, Mark [Zoophysiology, Department of Biological Sciences, Aarhus University, Aarhus (Denmark)

    2011-07-15

    In this study we investigated nitrite (NO{sub 2}{sup -}) effects in striped catfish, a facultative air-breather. Fish were exposed to 0, 0.4, and 0.9 mM nitrite for 0, 1, 2, 4, and 7 days, and levels of functional haemoglobin, methaemoglobin (metHb) and nitrosyl haemoglobin (HbNO) were assessed using spectral deconvolution. Plasma concentrations of nitrite, nitrate, chloride, potassium, and sodium were also measured. Partitioning of oxygen consumption was determined to reveal whether elevated metHb (causing functional hypoxia) induced air-breathing. The effects of nitrite on maximum oxygen uptake (MO{sub 2max}) and critical swimming speed (U{sub crit}) were also assessed. Striped catfish was highly tolerant to nitrite exposure, as reflected by a 96 h LC{sub 50} of 1.65 mM and a moderate nitrite uptake into the blood. Plasma levels of nitrite reached a maximum after 1 day of exposure, and then decreased, never exceeding ambient levels. MetHb, HbNO and nitrate (a nitrite detoxification product) also peaked after 1 day and then decreased. Only high levels of nitrite and metHb caused reductions in MO{sub 2max} and U{sub crit}. The response of striped catfish contrasts with that seen in most other fish species and discloses efficient mechanisms of combating nitrite threats. Furthermore, even though striped catfish is an efficient air-breather, this species has the ability to sustain aerobic scope and swimming performance without air-breathing, even when faced with nitrite-induced reductions in blood oxygen carrying capacity. Our study is the first to confirm that high levels of nitrite and metHb reduce MO{sub 2max} and thereby aerobic scope, while more moderate elevations fail to do so. Further studies are needed to elucidate the mechanisms underlying the low nitrite accumulation in striped catfish.

  8. Effects of nitrite exposure on functional haemoglobin levels, bimodal respiration, and swimming performance in the facultative air-breathing fish Pangasianodon hypophthalmus.

    Science.gov (United States)

    Lefevre, Sjannie; Jensen, Frank B; Huong, Do T T; Wang, Tobias; Phuong, Nguyen T; Bayley, Mark

    2011-07-01

    In this study we investigated nitrite (NO₂⁻) effects in striped catfish, a facultative air-breather. Fish were exposed to 0, 0.4, and 0.9 mM nitrite for 0, 1, 2, 4, and 7 days, and levels of functional haemoglobin, methaemoglobin (metHb) and nitrosyl haemoglobin (HbNO) were assessed using spectral deconvolution. Plasma concentrations of nitrite, nitrate, chloride, potassium, and sodium were also measured. Partitioning of oxygen consumption was determined to reveal whether elevated metHb (causing functional hypoxia) induced air-breathing. The effects of nitrite on maximum oxygen uptake (MO(2max)) and critical swimming speed (U(crit)) were also assessed. Striped catfish was highly tolerant to nitrite exposure, as reflected by a 96 h LC₅₀ of 1.65 mM and a moderate nitrite uptake into the blood. Plasma levels of nitrite reached a maximum after 1 day of exposure, and then decreased, never exceeding ambient levels. MetHb, HbNO and nitrate (a nitrite detoxification product) also peaked after 1 day and then decreased. Only high levels of nitrite and metHb caused reductions in MO(2max) and U(crit). The response of striped catfish contrasts with that seen in most other fish species and discloses efficient mechanisms of combating nitrite threats. Furthermore, even though striped catfish is an efficient air-breather, this species has the ability to sustain aerobic scope and swimming performance without air-breathing, even when faced with nitrite-induced reductions in blood oxygen carrying capacity. Our study is the first to confirm that high levels of nitrite and metHb reduce MO(2max) and thereby aerobic scope, while more moderate elevations fail to do so. Further studies are needed to elucidate the mechanisms underlying the low nitrite accumulation in striped catfish. Copyright © 2011 Elsevier B.V. All rights reserved.

  9. Effects of nitrite exposure on functional haemoglobin levels, bimodal respiration, and swimming performance in the facultative air-breathing fish Pangasianodon hypophthalmus

    International Nuclear Information System (INIS)

    Lefevre, Sjannie; Jensen, Frank B.; Huong, Do.T.T.; Wang, Tobias; Phuong, Nguyen T.; Bayley, Mark

    2011-01-01

    In this study we investigated nitrite (NO 2 - ) effects in striped catfish, a facultative air-breather. Fish were exposed to 0, 0.4, and 0.9 mM nitrite for 0, 1, 2, 4, and 7 days, and levels of functional haemoglobin, methaemoglobin (metHb) and nitrosyl haemoglobin (HbNO) were assessed using spectral deconvolution. Plasma concentrations of nitrite, nitrate, chloride, potassium, and sodium were also measured. Partitioning of oxygen consumption was determined to reveal whether elevated metHb (causing functional hypoxia) induced air-breathing. The effects of nitrite on maximum oxygen uptake (MO 2max ) and critical swimming speed (U crit ) were also assessed. Striped catfish was highly tolerant to nitrite exposure, as reflected by a 96 h LC 50 of 1.65 mM and a moderate nitrite uptake into the blood. Plasma levels of nitrite reached a maximum after 1 day of exposure, and then decreased, never exceeding ambient levels. MetHb, HbNO and nitrate (a nitrite detoxification product) also peaked after 1 day and then decreased. Only high levels of nitrite and metHb caused reductions in MO 2max and U crit . The response of striped catfish contrasts with that seen in most other fish species and discloses efficient mechanisms of combating nitrite threats. Furthermore, even though striped catfish is an efficient air-breather, this species has the ability to sustain aerobic scope and swimming performance without air-breathing, even when faced with nitrite-induced reductions in blood oxygen carrying capacity. Our study is the first to confirm that high levels of nitrite and metHb reduce MO 2max and thereby aerobic scope, while more moderate elevations fail to do so. Further studies are needed to elucidate the mechanisms underlying the low nitrite accumulation in striped catfish.

  10. Effects of high-intensity swimming training on the bones of ovariectomized rats

    OpenAIRE

    Oh, Taewoong; Tanaka, Sakura; Naka, Tatsuki; Igawa, Shoji

    2016-01-01

    [Purpose] This study was performed to assess the effects of high-intensity intermittent swimming training(HIT) on bone in ovariectomized rats. [Methods] Six-week-old female Sprague-Dawley rats were randomly assigned to either sham operation or bilateral ovariectomy. After surgery, they were divided into the following four groups: 1) sham-operated sedentary (S), 2) sham-operated exercise training (SE), 3) OVX sedentary (O), 4) OVX exercise training (OE) 5) OVX given 17?-estradiol (OE2) and 6) ...

  11. Is swimming during pregnancy a safe exercise?

    DEFF Research Database (Denmark)

    Juhl, Mette; Kogevinas, Manolis; Andersen, Per Kragh

    2010-01-01

    ,486 singleton pregnancies. Recruitment to The Danish National Birth Cohort took place 1996-2002. Using Cox, linear and logistic regression analyses, depending on the outcome, we compared swimmers with physically inactive pregnant women; to separate a possible swimming effect from an effect of exercise......BACKGROUND: Exercise in pregnancy is recommended in many countries, and swimming is considered by many to be an ideal activity for pregnant women. Disinfection by-products in swimming pool water may, however, be associated with adverse effects on various reproductive outcomes. We examined......, bicyclists were included as an additional comparison group. RESULTS: Risk estimates were similar for swimmers and bicyclists, including those who swam throughout pregnancy and those who swam more than 1.5 hours per week. Compared with nonexercisers, women who swam in early/mid-pregnancy had a slightly...

  12. Comparative physiology and relative swimming performance of three redhorse (Moxostoma spp.) species: associations with fishway passage success.

    Science.gov (United States)

    Hatry, Charles; Thiem, Jason D; Binder, Thomas R; Hatin, Daniel; Dumont, Pierre; Stamplecoskie, Keith M; Molina, Juan M; Smokorowski, Karen E; Cooke, Steven J

    2014-01-01

    Our understanding of biological criteria to inform fish passage design is limited, partially due to the lack of understanding of biological motivators, cues, and constraints, as well as a lack of biological performance evaluations of structures once they are built. The Vianney-Legendre vertical slot fishway on the Richelieu River, Quebec, Canada, passes large numbers of migrating redhorse (Moxostoma spp.) upriver to spawning grounds each year. We evaluated the physiological capacity and relative swimming ability of three redhorse species (Moxostoma anisurum, Moxostoma carinatum, Moxostoma macrolepidotum; silver, river, and shorthead redhorse, respectively) to determine how these biotic factors relate to variation in fishway passage success and duration. Shorthead redhorse had higher maximum metabolic rates and were faster swimmers than silver and river redhorse at their species-specific peak migration temperatures. Blood lactate and glucose concentrations recovered more quickly for river redhorse than for silver and shorthead redhorse, and river redhorse placed second in terms of metabolic recovery and swim speed. Interestingly, fish sampled from the top of the fishway had nearly identical lactate, glucose, and pH values compared to control fish. Using passive integrated transponders in 2010 and 2012, we observed that passage success and duration were highly variable among redhorse species and were not consistent among years, suggesting that other factors such as water temperature and river flows may modulate passage success. Clearly, additional research is needed to understand how organismal performance, environmental conditions, and other factors (including abundance of conspecifics and other comigrants) interact with fishway features to dictate which fish will be successful and to inform research of future fishways. Our research suggests that there may be an opportunity for a rapid assessment approach where fish chased to exhaustion to determine maximal values

  13. Why Children Join and Stay in Sports Clubs: Case Studies in Australian, French and German Swimming Clubs

    Science.gov (United States)

    Light, Richard L.; Harvey, Stephen; Memmert, Daniel

    2013-01-01

    This article builds upon research on youth sport clubs conducted from a socio-cultural perspective by reporting on a study that inquired into the reasons why children aged 9-12 joined swimming clubs in France, Germany and Australia. Comprising three case studies it employed a mixed method approach with results considered within the framework of…

  14. 33 CFR 117.734 - Navesink River (Swimming River).

    Science.gov (United States)

    2010-07-01

    ... 33 Navigation and Navigable Waters 1 2010-07-01 2010-07-01 false Navesink River (Swimming River). 117.734 Section 117.734 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY... (Swimming River). The Oceanic Bridge, mile 4.5, shall open on signal; except that, from December 1 through...

  15. Repeated swim stress alters brain benzodiazepine receptors measured in vivo

    International Nuclear Information System (INIS)

    Weizman, R.; Weizman, A.; Kook, K.A.; Vocci, F.; Deutsch, S.I.; Paul, S.M.

    1989-01-01

    The effects of repeated swim stress on brain benzodiazepine receptors were examined in the mouse using both an in vivo and in vitro binding method. Specific in vivo binding of [ 3 H]Ro15-1788 to benzodiazepine receptors was decreased in the hippocampus, cerebral cortex, hypothalamus, midbrain and striatum after repeated swim stress (7 consecutive days of daily swim stress) when compared to nonstressed mice. In vivo benzodiazepine receptor binding was unaltered after repeated swim stress in the cerebellum and pons medulla. The stress-induced reduction in in vivo benzodiazepine receptor binding did not appear to be due to altered cerebral blood flow or to an alteration in benzodiazepine metabolism or biodistribution because there was no difference in [14C]iodoantipyrine distribution or whole brain concentrations of clonazepam after repeated swim stress. Saturation binding experiments revealed a change in both apparent maximal binding capacity and affinity after repeated swim stress. Moreover, a reduction in clonazepam's anticonvulsant potency was also observed after repeated swim stress [an increase in the ED50 dose for protection against pentylenetetrazol-induced seizures], although there was no difference in pentylenetetrazol-induced seizure threshold between the two groups. In contrast to the results obtained in vivo, no change in benzodiazepine receptor binding kinetics was observed using the in vitro binding method. These data suggest that environmental stress can alter the binding parameters of the benzodiazepine receptor and that the in vivo and in vitro binding methods can yield substantially different results

  16. Repeated swim stress alters brain benzodiazepine receptors measured in vivo

    Energy Technology Data Exchange (ETDEWEB)

    Weizman, R.; Weizman, A.; Kook, K.A.; Vocci, F.; Deutsch, S.I.; Paul, S.M.

    1989-06-01

    The effects of repeated swim stress on brain benzodiazepine receptors were examined in the mouse using both an in vivo and in vitro binding method. Specific in vivo binding of (/sup 3/H)Ro15-1788 to benzodiazepine receptors was decreased in the hippocampus, cerebral cortex, hypothalamus, midbrain and striatum after repeated swim stress (7 consecutive days of daily swim stress) when compared to nonstressed mice. In vivo benzodiazepine receptor binding was unaltered after repeated swim stress in the cerebellum and pons medulla. The stress-induced reduction in in vivo benzodiazepine receptor binding did not appear to be due to altered cerebral blood flow or to an alteration in benzodiazepine metabolism or biodistribution because there was no difference in (14C)iodoantipyrine distribution or whole brain concentrations of clonazepam after repeated swim stress. Saturation binding experiments revealed a change in both apparent maximal binding capacity and affinity after repeated swim stress. Moreover, a reduction in clonazepam's anticonvulsant potency was also observed after repeated swim stress (an increase in the ED50 dose for protection against pentylenetetrazol-induced seizures), although there was no difference in pentylenetetrazol-induced seizure threshold between the two groups. In contrast to the results obtained in vivo, no change in benzodiazepine receptor binding kinetics was observed using the in vitro binding method. These data suggest that environmental stress can alter the binding parameters of the benzodiazepine receptor and that the in vivo and in vitro binding methods can yield substantially different results.

  17. Thermal analysis and modeling of a swimming pool heating system by utilizing waste energy rejected from a chiller unit of an ice rink

    Directory of Open Access Journals (Sweden)

    Kuyumcu Muhammed Enes

    2017-01-01

    Full Text Available This study deals with the thermal analysis and modeling of a swimming pool heating system in which the waste energy rejected from the chiller unit of an ice rink is used as an energy source. The system consists of a swimming pool and an ice rink coupled by a chiller unit. The swimming pool and the ice rink both indoor types and were constructed in city of Gaziantep, Turkey. The thermal energy requirement for each section is determined by thermal analysis of each component of the system. Effects of different design parameters such as ceiling insulation thickness, ceiling emissivity, Carnot efficiency factor and size of the ice rink on the thermal energy requirements and coefficient of performance of the chiller unit are investigated. As a result of analyses of the system, the minimum ice rink area is determined in order to meet annual total heat energy demand of the olympic-sized swimming pool.

  18. THE INFLUENCE OF LOWER LIMB MOVEMENT ON UPPER LIMB MOVEMENT SYMMETRY WHILE SWIMMING THE BREASTSTROKE

    Directory of Open Access Journals (Sweden)

    M. Jaszczak

    2011-09-01

    Full Text Available This study 1 examined the influence of lower limb movement on upper limb movement symmetry, 2 determined the part of the propulsion phase displaying the greatest hand movement asymmetry, 3 diagnosed the range of upper limb propulsion phase which is the most prone to the influence of the lower limbs while swimming the breaststroke. Twenty-four participants took part in two tests. Half of them performed an asymmetrical leg movement. The propulsion in the first test was generated by four limbs while in the second one only by the upper limbs. The pressure differentials exerted by the water on the back and on the palm of the right and left hand were measured. Then, the asymmetry coefficient of the hand movement was determined. No changes in the level of the asymmetry index in participants performing correct (symmetrical lower limb movement were observed. Incorrect (asymmetrical leg motion resulted in an increase of hand asymmetry. It could be concluded that lower limb faults neutralize upper limb performance when swimming on a rectilinear path. However, most asymmetrical arm performance should be identified with the conversion of propulsion into recovery. Nevertheless, its proneness to influence improper leg performance might be expected at the beginning of arm propulsion.

  19. The influence of anthropometric, kinematic and energetic variables and gender on swimming performance in youth athletes.

    Science.gov (United States)

    Morais, Jorge E; Garrido, Nuno D; Marques, Mário C; Silva, António J; Marinho, Daniel A; Barbosa, Tiago M

    2013-12-18

    (i) gender; (ii) performance and; (iii) gender versus performance interactions in young swimmers' anthropometric, kinematic and energetic variables. One hundred and thirty six young swimmers (62 boys: 12.76 ± 0.72 years old at Tanner stages 1-2 by self-evaluation; and 64 girls: 11.89 ± 0.93 years old at Tanner stages 1-2 by self-evaluation) were evaluated. Performance, anthropometrics, kinematics and energetic variables were selected. There was a non-significant gender effect on performance, body mass, height, arm span, trunk transverse surface area, stroke length, speed fluctuation, swimming velocity, propulsive efficiency, stroke index and critical velocity. A significant gender effect was found for foot surface area, hand surface area and stroke frequency. A significant sports level effect was verified for all variables, except for stroke frequency, speed fluctuation and propulsive efficiency. Overall, swimmers in quartile 1 (the ones with highest sports level) had higher anthropometric dimensions, better stroke mechanics and energetics. These traits decrease consistently throughout following quartiles up to the fourth one (i.e. swimmers with the lowest sports level). There was a non-significant interaction between gender and sports level for all variables. Our main conclusions were as follows: (i) there are non-significant differences in performance, anthropometrics, kinematics and energetics between boys and girls; (ii) swimmers with best performance are taller, have higher surface areas and better stroke mechanics; (iii) there are non-significant interactions between sports level and gender for anthropometrics, kinematics and energetics.

  20. Water Penetration into Middle Ear Through Ventilation Tubes in Children While Swimming

    Directory of Open Access Journals (Sweden)

    Mao-Che Wang

    2009-02-01

    Conclusion: Water penetration into the middle ear through ventilation tubes and middle ear infection are not likely when surface swimming. Children with ventilation tubes can enjoy swimming without protection in clean chlorinated swimming pools.

  1. A swimming pool array for ultra high energy showers

    Science.gov (United States)

    Yodh, Gaurang B.; Shoup, Anthony; Barwick, Steve; Goodman, Jordan A.

    1992-11-01

    A very preliminary design concept for an array using water Cherenkov counters, built out of commercially available backyard swimming pools, to sample the electromagnetic and muonic components of ultra high energy showers at large lateral distances is presented. The expected performance of the pools is estimated using the observed lateral distributions by scintillator and water Cherenkov arrays at energies above 1019 eV and simulations.

  2. Solar collectors for swimming pools still going strong

    Energy Technology Data Exchange (ETDEWEB)

    1975-01-01

    According to the opinion of the experts, solar energy heating may be technically 'mature' but the profitability is by no means that far. However, solar systems are a good alternative for heating the water in swimming pools. Four solar collector systems developed by different firms to heat swimming pools, including prices, are presented.

  3. Noncontact Cohesive Swimming of Bacteria in Two-Dimensional Liquid Films.

    Science.gov (United States)

    Li, Ye; Zhai, He; Sanchez, Sandra; Kearns, Daniel B; Wu, Yilin

    2017-07-07

    Bacterial swimming in confined two-dimensional environments is ubiquitous in nature and in clinical settings. Characterizing individual interactions between swimming bacteria in 2D confinement will help to understand diverse microbial processes, such as bacterial swarming and biofilm formation. Here we report a novel motion pattern displayed by flagellated bacteria in 2D confinement: When two nearby cells align their moving directions, they tend to engage in cohesive swimming without direct cell body contact, as a result of hydrodynamic interaction but not flagellar intertwining. We further found that cells in cohesive swimming move with higher directional persistence, which can increase the effective diffusivity of cells by ∼3 times as predicted by computational modeling. As a conserved behavior for peritrichously flagellated bacteria, cohesive swimming in 2D confinement may be key to collective motion and self-organization in bacterial swarms; it may also promote bacterial dispersal in unsaturated soils and in interstitial space during infections.

  4. Fluid mechanics of swimming bacteria with multiple flagella.

    Science.gov (United States)

    Kanehl, Philipp; Ishikawa, Takuji

    2014-04-01

    It is known that some kinds of bacteria swim by forming a bundle of their multiple flagella. However, the details of flagella synchronization as well as the swimming efficiency of such bacteria have not been fully understood. In this study, swimming of multiflagellated bacteria is investigated numerically by the boundary element method. We assume that the cell body is a rigid ellipsoid and the flagella are rigid helices suspended on flexible hooks. Motors apply constant torque to the hooks, rotating the flagella either clockwise or counterclockwise. Rotating all flagella clockwise, bundling of all flagella is observed in every simulated case. It is demonstrated that the counter rotation of the body speeds up the bundling process. During this procedure the flagella synchronize due to hydrodynamic interactions. Moreover, the results illustrated that during running the multiflagellated bacterium shows higher propulsive efficiency (distance traveled per one flagellar rotation) over a bacterium with a single thick helix. With an increasing number of flagella the propulsive efficiency increases, whereas the energetic efficiency decreases, which indicates that efficiency is something multiflagellated bacteria are assigning less priority to than to motility. These findings form a fundamental basis in understanding bacterial physiology and metabolism.

  5. The Effect of Swimming Activity on Lung Function Parameters Among Smoking and Non-Smoking Youth – Research Extended

    Directory of Open Access Journals (Sweden)

    Michalak Katarzyna

    2015-12-01

    Full Text Available Purpose. The purpose of this study was to evaluate the effect of regular swimming activity on the respiratory system of smokers and non-smokers. Methods. The study included 196 students, aged 19 to 24 years, attending weekly swimming classes. All students underwent pulmonary function testing before and after participating in a swimming program for 10 months. Measurements included forced vital capacity (FVC, forced expiratory volume in one second (FEV1, and peak expiratory flow (PEF. Maximal inspiratory and expiratory pressure at the mouth (PImax, PEmax and the percentage carboxyhemoglobin level in blood (%CoHb were also measured. Results. After 10 months of regular swimming activity the values of FVC, PEF, MIP and MEP increased in the non-smoking as well as in the smoking group, while the FEV1 increased only among smokers. The percentage of CoHB level in the blood decreased in both groups. Conclusions. The study confirmed the positive effect of swimming on respiratory system function and the importance of promoting physical activity such as swimming among cigarette smokers as well as non-smokers.

  6. A wearable biofeedback control system based body area network for freestyle swimming.

    Science.gov (United States)

    Rui Li; Zibo Cai; WeeSit Lee; Lai, Daniel T H

    2016-08-01

    Wearable posture measurement units are capable of enabling real-time performance evaluation and providing feedback to end users. This paper presents a wearable feedback prototype designed for freestyle swimming with focus on trunk rotation measurement. The system consists of a nine-degree-of-freedom inertial sensor, which is built in a central data collection and processing unit, and two vibration motors for delivering real-time feedback. Theses devices form a fundamental body area network (BAN). In the experiment setup, four recreational swimmers were asked to do two sets of 4 x 25m freestyle swimming without and with feedback provided respectively. Results showed that real-time biofeedback mechanism improves swimmers kinematic performance by an average of 4.5% reduction in session time. Swimmers can gradually adapt to feedback signals, and the biofeedback control system can be employed in swimmers daily training for fitness maintenance.

  7. Does the hearing sensitivity in thorny catfishes depend on swim bladder morphology?

    Directory of Open Access Journals (Sweden)

    Angelika Zebedin

    Full Text Available BACKGROUND: Thorny catfishes exhibit large variations in swim bladder morphology. These organs are of different sizes, forms and may have simple or branched diverticula. The swim bladder plays an important role in otophysans because it enhances their hearing sensitivity by transmitting sound pressure fluctuations via ossicles to the inner ear. METHODOLOGY/PRINCIPAL FINDINGS: To investigate if a form-function relationship exists, the swim bladder morphology and hearing ability were analyzed in six species. The morphology was quantified by measuring the length, width and height and calculating a standardized swim bladder length (sSBL, which was then used to calculate the relative swim bladder length (rSBL. Hearing was measured using the auditory evoked potential (AEP recording technique. Two species had simple apple-shaped and four species heart-shaped (cordiform bladders. One of the latter species had short unbranched diverticula on the terminal margin, two had a secondary bladder and two had many long, branched diverticula. The rSBL differed significantly between most of the species. All species were able to detect frequencies between 70 Hz and 6 kHz, with lowest thresholds found between 0.5 and 1 kHz (60 dB re 1 µPa. Hearing curves were U-shaped except in Hemidoras morrisi in which it was ramp-like. Mean hearing thresholds of species possessing smaller rSBLs were slightly lower (maximum 8.5 dB than those of species having larger rSBLs. CONCLUSIONS/SIGNIFICANCE: The current findings reveal a relationship between swim bladder form and its function among thorny catfishes. Relatively smaller swim bladders resulted in relatively better hearing. This is in contrast to a prior inter-familial study on catfishes in which species with large unpaired bladders possessed higher sensitivity at higher frequencies than species having tiny paired and encapsulated bladders.

  8. Influence of robotic shoal size, configuration, and activity on zebrafish behavior in a free-swimming environment.

    Science.gov (United States)

    Butail, Sachit; Polverino, Giovanni; Phamduy, Paul; Del Sette, Fausto; Porfiri, Maurizio

    2014-12-15

    In animal studies, robots have been recently used as a valid tool for testing a wide spectrum of hypotheses. These robots often exploit visual or auditory cues to modulate animal behavior. The propensity of zebrafish, a model organism in biological studies, toward fish with similar color patterns and shape has been leveraged to design biologically inspired robots that successfully attract zebrafish in preference tests. With an aim of extending the application of such robots to field studies, here, we investigate the response of zebrafish to multiple robotic fish swimming at different speeds and in varying arrangements. A soft real-time multi-target tracking and control system remotely steers the robots in circular trajectories during the experimental trials. Our findings indicate a complex behavioral response of zebrafish to biologically inspired robots. More robots produce a significant change in salient measures of stress, with a fast robot swimming alone causing more freezing and erratic activity than two robots swimming slowly together. In addition, fish spend more time in the proximity of a robot when they swim far apart than when the robots swim close to each other. Increase in the number of robots also significantly alters the degree of alignment of fish motion with a robot. Results from this study are expected to advance our understanding of robot perception by live animals and aid in hypothesis-driven studies in unconstrained free-swimming environments. Copyright © 2014 Elsevier B.V. All rights reserved.

  9. Effect of endurance swimming on rat cardiac myofibrillar ATPase with experimental diabetes.

    Science.gov (United States)

    Belcastro, A N; Maybank, P; Rossiter, M; Secord, D

    1985-09-01

    Diabetes is characterized by depressed cardiac functional properties attributed to Ca2+-activated ATPase activity. In contrast, endurance swimming enhances the cardiac functional properties and Ca2+-activated myofibril ATPase. Thus, the purpose of this study was to observe if the changes associated with experimental diabetes can be ameliorated with training. Diabetes was induced with a single i.v. injection of streptozotocin (60 mg/kg). Blood and urine glucose concentrations were 802 +/- 44 and 6965 +/- 617 mg/dL, respectively. The training control and training diabetic animals were made to swim (+/- 2% body weight) 4 days/week for 8 weeks. Cardiac myofibril, at 10 microM free Ca2+ concentration was reduced by 54% in the sedentary diabetics compared with sedentary control animals (p less than 0.05). Swim training enhanced the Ca2+-activated myofibril ATPase activities for the normal animals. The diabetic animals, which swam for 8 weeks, had further reduced their Ca2+-activated myofibril ATPase activity when compared with sedentary diabetics (p less than 0.05). Similarly, the Mg2+-stimulated myofibril ATPase activity was depressed by 31% in diabetics following endurance swimming. It is concluded that the depressed Ca2+-activated myofibril ATPase activity of diabetic hearts is not reversible with endurance swimming.

  10. Health effects from swimming training in chlorinated pools and the corresponding metabolic stress pathways.

    Directory of Open Access Journals (Sweden)

    Jiang-Hua Li

    Full Text Available Chlorination is the most popular method for disinfecting swimming pool water; however, although pathogens are being killed, many toxic compounds, called disinfection by-products (DBPs, are formed. Numerous epidemiological publications have associated the chlorination of pools with dysfunctions of the respiratory system and with some other diseases. However, the findings concerning these associations are not always consistent and have not been confirmed by toxicological studies. Therefore, the health effects from swimming in chlorinated pools and the corresponding stress reactions in organisms are unclear. In this study, we show that although the growth and behaviors of experimental rats were not affected, their health, training effects and metabolic profiles were significantly affected by a 12-week swimming training program in chlorinated water identical to that of public pools. Interestingly, the eyes and skin are the organs that are more directly affected than the lungs by the irritants in chlorinated water; instead of chlorination, training intensity, training frequency and choking on water may be the primary factors for lung damage induced by swimming. Among the five major organs (the heart, liver, spleen, lungs and kidneys, the liver is the most likely target of DBPs. Through metabolomics analysis, the corresponding metabolic stress pathways and a defensive system focusing on taurine were presented, based on which the corresponding countermeasures can be developed for swimming athletes and for others who spend a lot of time in chlorinated swimming pools.

  11. Health risks associated with swimming at an inland river

    Science.gov (United States)

    Swimming exposure to fecally-contaminated oceans and lakes has been associated with an increased risk of gastrointestinal (GI) illness. Although treated and untreated sewage are often discharged to rivers, the health risks of swimming exposure on rivers has been less frequently ...

  12. New method for determination of trihalomethanes in exhaled breath: Applications to swimming pool and bath environments

    International Nuclear Information System (INIS)

    Lourencetti, Carolina; Ballester, Clara; Fernandez, Pilar; Marco, Esther; Prado, Celia; Periago, Juan F.; Grimalt, Joan O.

    2010-01-01

    A method for the estimation of the human intake of trihalomethanes (THMs), namely chloroform, bromodichloromethane, dibromochloromethane and bromoform, during showering and bathing is reported. The method is based on the determination of these compounds in exhaled breath that is collected by solid adsorption on Tenax using a device specifically designed for this purpose. Instrumental measurements were performed by automatic thermal desorption coupled to gas chromatography with electron capture detection. THMs in exhaled breath samples were determined during showering and swimming pool attendance. The levels of these compounds in indoor air and water were also determined as reference for interpretation of the exhaled breath results. The THM concentrations in exhaled breath of the volunteers measured before the exposure experiments showed a close correspondence with the THMs levels in indoor air where the sampler was located. Limits of detection in exhaled breath were dependent on THM analytes and experimental sites. They ranged between 170 and 710 ng m -3 in the swimming pool studies and between 97 and 460 ng m -3 in the showering studies. Application of this method to THMs determination during showering and swimming pool activities revealed statistically significant increases in THMs concentrations when comparing exhaled breath before and after exposure.

  13. Deep RNA sequencing of the skeletal muscle transcriptome in swimming fish.

    Directory of Open Access Journals (Sweden)

    Arjan P Palstra

    Full Text Available Deep RNA sequencing (RNA-seq was performed to provide an in-depth view of the transcriptome of red and white skeletal muscle of exercised and non-exercised rainbow trout (Oncorhynchus mykiss with the specific objective to identify expressed genes and quantify the transcriptomic effects of swimming-induced exercise. Pubertal autumn-spawning seawater-raised female rainbow trout were rested (n = 10 or swum (n = 10 for 1176 km at 0.75 body-lengths per second in a 6,000-L swim-flume under reproductive conditions for 40 days. Red and white muscle RNA of exercised and non-exercised fish (4 lanes was sequenced and resulted in 15-17 million reads per lane that, after de novo assembly, yielded 149,159 red and 118,572 white muscle contigs. Most contigs were annotated using an iterative homology search strategy against salmonid ESTs, the zebrafish Danio rerio genome and general Metazoan genes. When selecting for large contigs (>500 nucleotides, a number of novel rainbow trout gene sequences were identified in this study: 1,085 and 1,228 novel gene sequences for red and white muscle, respectively, which included a number of important molecules for skeletal muscle function. Transcriptomic analysis revealed that sustained swimming increased transcriptional activity in skeletal muscle and specifically an up-regulation of genes involved in muscle growth and developmental processes in white muscle. The unique collection of transcripts will contribute to our understanding of red and white muscle physiology, specifically during the long-term reproductive migration of salmonids.

  14. Changes in the flagellar bundling time account for variations in swimming behavior of flagellated bacteria in viscous media

    NARCIS (Netherlands)

    Qu, Zijie; Temel, Fatma Zeynep; Henderikx, Rene; Breuer, Kenneth S.

    2018-01-01

    Although the motility of the flagellated bacteria, Escherichia coli, has been widely studied, the effect of viscosity on swimming speed remains controversial. The swimming mode of wild-type E. coli is often idealized as a run-and-tumble sequence in which periods of swimming at a constant speed are

  15. Determination of Monochloroacetic Acid in Swimming Pool Water by Ion Chromatography-Conductivity Detection

    Directory of Open Access Journals (Sweden)

    Maria Pythias B. Espino

    2013-12-01

    Full Text Available In this study, an analytical method involving ion chromatography with conductivity detection was developed and optimized for the determination of monochloroacetic acid in swimming pool water. The ion chromatographic method has a detection limit of 0.02 mg L-1 and linear range of 0.05 to 1.0 mg L-1 with correlation coeff icient of 0.9992. The method is reproducible with percent RSD of 0.052% (n=10. The recovery of monochloroacetic acid spiked in different water types (bottled, tap and swimming pool water ranged from 28 to 122%. In dilute solutions, chloride and bromide were simultaneously analyzed along with monochloroacetic acid using the optimized method. Chloride and bromide have detection limits of 0.01 to 0.05 mg L-1, respectively. The usefulness of the ion chromatographic method was demonstrated in the analysis of monochloroacetic acid in swimming pool water samples. In such highly-chlorinated samples, an Ag/H cartridge was used prior to the ion chromatographic determination so as to minimize the signal due to chloride ion. Monochloroacetic acid was detected in concentrations between 0.020 and 0.093 mg L-1 in three of the six swimming pool water samples studied. The presence of monochloroacetic acid in the swimming pool water samples suggests the possible occurrence of other disinfection by-products in these waters.

  16. Determination of Monochloroacetic Acid in Swimming Pool Water by Ion Chromatography-Conductivity Detection

    Directory of Open Access Journals (Sweden)

    Maria Pythias B. Espino

    2013-02-01

    Full Text Available In this study, an analytical method involving ion chromatography with conductivity detection was developed and optimized for the determination of monochloroacetic acid in swimming pool water. The ion chromatographic method has a detection limit of 0.02 mg L-1 and linear range of 0.05 to 1.0 mg L-1 with correlation coeff icient of 0.9992. The method is reproducible with percent RSD of 0.052% (n=10. The recovery of monochloroacetic acid spiked in different water types (bottled, tap and swimming pool water ranged from 28 to 122%. In dilute solutions, chloride and bromide were simultaneously analyzed along with monochloroacetic acid using the optimized method. Chloride and bromide have detection limits of 0.01 to 0.05 mg L-1, respectively. The usefulness of the ion chromatographic method was demonstrated in the analysis of monochloroacetic acid in swimming pool water samples. In such highly-chlorinated samples, an Ag/H cartridge was used prior to the ion chromatographic determination so as to minimize the signal due to chloride ion. Monochloroacetic acid was detected in concentrations between 0.020 and 0.093 mg L-1 in three of the six swimming pool water samples studied. The presence of monochloroacetic acid in the swimming pool water samples suggests the possible occurrence of other disinfection by-products in these waters.

  17. Copepod swimming behavior, respiration, and expression of stress-related genes in response to high stocking densities

    DEFF Research Database (Denmark)

    Nilsson, Birgitte; Jakobsen, Hans H.; Stief, Peter

    2017-01-01

    ,000 ind. L−1. Three biological/physiological end-points were studied: swimming behavior, respiration rate and expression level of stress-related genes. None of the elevated densities caused any significant change in swimming behavior, respiration rate or gene expression level. This study suggests...

  18. Swimming black-crowned night-herons (Nycticorax nycticorax) Kleptoparasitize American coots (Fulica americana)

    DEFF Research Database (Denmark)

    Graves, Gary R.

    2015-01-01

    I observed black-crowned night-herons (Nycticorax nycticorax) swimming and kleptoparasitizing American coots (Fulica americana) at an artificial lake in Pinal County, Arizona. This appears to be the first record of interspecific kleptoparasitism by a swimming ardeid.......I observed black-crowned night-herons (Nycticorax nycticorax) swimming and kleptoparasitizing American coots (Fulica americana) at an artificial lake in Pinal County, Arizona. This appears to be the first record of interspecific kleptoparasitism by a swimming ardeid....

  19. Volumetric flow imaging reveals the importance of vortex ring formation in squid swimming tail-first and arms-first.

    Science.gov (United States)

    Bartol, Ian K; Krueger, Paul S; Jastrebsky, Rachel A; Williams, Sheila; Thompson, Joseph T

    2016-02-01

    Squids use a pulsed jet and fin movements to swim both arms-first (forward) and tail-first (backward). Given the complexity of the squid multi-propulsor system, 3D velocimetry techniques are required for the comprehensive study of wake dynamics. Defocusing digital particle tracking velocimetry, a volumetric velocimetry technique, and high-speed videography were used to study arms-first and tail-first swimming of brief squid Lolliguncula brevis over a broad range of speeds [0-10 dorsal mantle lengths (DML) s(-1)] in a swim tunnel. Although there was considerable complexity in the wakes of these multi-propulsor swimmers, 3D vortex rings and their derivatives were prominent reoccurring features during both tail-first and arms-first swimming, with the greatest jet and fin flow complexity occurring at intermediate speeds (1.5-3.0 DML s(-1)). The jet generally produced the majority of thrust during rectilinear swimming, increasing in relative importance with speed, and the fins provided no thrust at speeds >4.5 DML s(-1). For both swimming orientations, the fins sometimes acted as stabilizers, producing negative thrust (drag), and consistently provided lift at low/intermediate speeds (swimming orientation, and η for swimming sequences with clear isolated jet vortex rings was significantly greater (η=78.6±7.6%, mean±s.d.) than that for swimming sequences with clear elongated regions of concentrated jet vorticity (η=67.9±19.2%). This study reveals the complexity of 3D vortex wake flows produced by nekton with hydrodynamically distinct propulsors. © 2016. Published by The Company of Biologists Ltd.

  20. Schooling reduces energy consumption in swimming male European eels, Anguilla anguilla L.

    NARCIS (Netherlands)

    Burgerhout, E.; Tudorache, C.; Brittijn, S.A.; Palstra, A.P.; Dirks, R.P.; Thillart, G.E.E.J.M.

    2013-01-01

    During migration, swimming in schools provides fish with a number of behavioural and ecological advantages, including increased food supply and reduced predation risk. Previous work shows that carangiform and tunniform swimming result in energetic advantages for individuals using a diamond swimming

  1. The Shark Random Swim - (Lévy Flight with Memory)

    Science.gov (United States)

    Businger, Silvia

    2018-05-01

    The Elephant Random Walk (ERW), first introduced by Schütz and Trimper (Phys Rev E 70:045101, 2004), is a one-dimensional simple random walk on Z having a memory about the whole past. We study the Shark Random Swim, a random walk with memory about the whole past, whose steps are α -stable distributed with α \\in (0,2] . Our aim in this work is to study the impact of the heavy tailed step distributions on the asymptotic behavior of the random walk. We shall see that, as for the ERW, the asymptotic behavior of the Shark Random Swim depends on its memory parameter p, and that a phase transition can be observed at the critical value p=1/α.

  2. Swim-training changes the spatio-temporal dynamics of skeletogenesis in zebrafish larvae (Danio rerio.

    Directory of Open Access Journals (Sweden)

    Ansa W Fiaz

    Full Text Available Fish larvae experience many environmental challenges during development such as variation in water velocity, food availability and predation. The rapid development of structures involved in feeding, respiration and swimming increases the chance of survival. It has been hypothesized that mechanical loading induced by muscle forces plays a role in prioritizing the development of these structures. Mechanical loading by muscle forces has been shown to affect larval and embryonic bone development in vertebrates, but these investigations were limited to the appendicular skeleton. To explore the role of mechanical load during chondrogenesis and osteogenesis of the cranial, axial and appendicular skeleton, we subjected zebrafish larvae to swim-training, which increases physical exercise levels and presumably also mechanical loads, from 5 until 14 days post fertilization. Here we show that an increased swimming activity accelerated growth, chondrogenesis and osteogenesis during larval development in zebrafish. Interestingly, swim-training accelerated both perichondral and intramembranous ossification. Furthermore, swim-training prioritized the formation of cartilage and bone structures in the head and tail region as well as the formation of elements in the anal and dorsal fins. This suggests that an increased swimming activity prioritized the development of structures which play an important role in swimming and thereby increasing the chance of survival in an environment where water velocity increases. Our study is the first to show that already during early zebrafish larval development, skeletal tissue in the cranial, axial and appendicular skeleton is competent to respond to swim-training due to increased water velocities. It demonstrates that changes in water flow conditions can result into significant spatio-temporal changes in skeletogenesis.

  3. Quiet swimming at low Reynolds number

    Science.gov (United States)

    Andersen, Anders; Wadhwa, Navish; Kiørboe, Thomas

    2015-04-01

    The stresslet provides a simple model of the flow created by a small, freely swimming and neutrally buoyant aquatic organism and shows that the far field fluid disturbance created by such an organism in general decays as one over distance squared. Here we discuss a quieter swimming mode that eliminates the stresslet component of the flow and leads to a faster spatial decay of the fluid disturbance described by a force quadrupole that decays as one over distance cubed. Motivated by recent experimental results on fluid disturbances due to small aquatic organisms, we demonstrate that a three-Stokeslet model of a swimming organism which uses breast stroke type kinematics is an example of such a quiet swimmer. We show that the fluid disturbance in both the near field and the far field is significantly reduced by appropriately arranging the propulsion apparatus, and we find that the far field power laws are valid surprisingly close to the organism. Finally, we discuss point force models as a general framework for hypothesis generation and experimental exploration of fluid mediated predator-prey interactions in the planktonic world.

  4. Adaptation of the pituitary-adrenal axis to daily repeated forced swim exposure in rats is dependent on the temperature of water.

    Science.gov (United States)

    Rabasa, Cristina; Delgado-Morales, Raúl; Gómez-Román, Almudena; Nadal, Roser; Armario, Antonio

    2013-11-01

    Comparison of exposure to certain predominantly emotional stressors reveals a qualitatively similar neuroendocrine response profile as well as a reduction of physiological responses after daily repeated exposure (adaptation). However, particular physical components of the stressor may interfere with adaptation. As defective adaptation to stress can enhance the probability to develop pathologies, we studied in adult male rats (n = 10/group) swimming behavior (struggling, immobility and mild swim) and physiological responses (ACTH, corticosterone and rectal temperature) to daily repeated exposure to forced swim (20 min, 13 d) at 25 or 36 °C (swim25 or swim36). Rats were repeatedly blood-sampled by tail-nick and hormones measured by radioimmunoassay. Some differences were observed between the two swim temperature groups after the first exposure to forced swim: (a) active behaviors were greater in swim25 than swim36 groups; (b) swim25 but not swim36 caused hypothermia; and (c) swim36 elicited the same ACTH response as swim25, but plasma corticosterone concentration was lower for swim36 at 30 min post-swim. After daily repeated exposure, adaptation in ACTH secretion was observed with swim36 already on day 4, whereas with swim25 adaptation was not observed until day 13 and was of lower magnitude. Nevertheless, after repeated exposure to swim25 a partial protection from hypothermia was observed and the two swim conditions resulted in progressive reduction of active behaviors. Thus, daily repeated swim at 25 °C impairs adaptation of the hypothalamic-pituitary-adrenal axis as compared to swim at 36 °C, supporting the hypothesis that certain physical components of predominantly emotional stressors can interfere with the process of adaptation.

  5. Histomorphometric analysis of the response of rat skeletal muscle to swimming, immobilization and rehabilitation

    Directory of Open Access Journals (Sweden)

    C.C.F. Nascimento

    2008-09-01

    Full Text Available The objective of the present study was to determine to what extent, if any, swimming training applied before immobilization in a cast interferes with the rehabilitation process in rat muscles. Female Wistar rats, mean weight 260.52 ± 16.26 g, were divided into 4 groups of 6 rats each: control, 6 weeks under baseline conditions; trained, swimming training for 6 weeks; trained-immobilized, swimming training for 6 weeks and then immobilized for 1 week; trained-immobilized-rehabilitated, swimming training for 6 weeks, immobilized for 1 week and then remobilized with swimming for 2 weeks. The animals were then sacrificed and the soleus and tibialis anterior muscles were dissected, frozen in liquid nitrogen and processed histochemically (H&E and mATPase. Data were analyzed statistically by the mixed effects linear model (P < 0.05. Cytoarchitectural changes such as degenerative characteristics in the immobilized group and regenerative characteristics such as centralized nucleus, fiber size variation and cell fragmentation in the groups submitted to swimming were more significant in the soleus muscle. The diameters of the lesser soleus type 1 and type 2A fibers were significantly reduced in the trained-immobilized group compared to the trained group (P < 0.001. In the tibialis anterior, there was an increase in the number of type 2B fibers and a reduction in type 2A fibers when trained-immobilized rats were compared to trained rats (P < 0.001. In trained-immobilized-rehabilitated rats, there was a reduction in type 2B fibers and an increase in type 2A fibers compared to trained-immobilized rats (P < 0.009. We concluded that swimming training did not minimize the deleterious effects of immobilization on the muscles studied and that remobilization did not favor tissue re-adaptation.

  6. The Fastskin Revolution From Human Fish to Swimming Androids

    Directory of Open Access Journals (Sweden)

    Jennifer Craik

    2011-04-01

    Full Text Available The story of fastskin swimsuits reflects some of the challenges facing the impact of technology in postmodern culture. Introduced in 1999 and ratified for the Sydney 2000 Olympic Games, fastskin swimsuits were touted as revolutionising competitive swimming. Ten years later, they were banned by the world’s swimming regulatory body FINA (the Fédération Internationale de Natation, with the ban taking effect from January 2010 (Shipley 2009. The reason was the controversy caused by the large number of world records that were broken by competitors wearing polyurethane swimsuits, the next generation of the original fast skin suits. These suits were deemed to be providing an artificial advantage by increasing buoyancy and reducing drag. This had been an issue ever since they were introduced, yet FINA had approved the suits and, thereby, unleashed an unstoppable technological revolution of the sport of competitive swimming. Underlying this was the issue about its implications of the transformation of a sport based on the movement of the human body through water without the aid of artificial devices or apparatus. This article argues that the advent of the fastskin has not only transformed the art of swimming but has created a new image of the swimmer as a virtual android rather than a human fish. In turn, the image of the sport of swimming has been re-mapped as a technical artefact and sci-fi spectacle based on a radically transformed concept of the swimming body as a material object that has implications for the ideal of the fashionable body.

  7. Coordination and propulsion and non-propulsion phases in 100 meter breaststroke swimming.

    Science.gov (United States)

    Strzała, Marek; Krężałek, Piotr; Kucia-Czyszczoń, Katarzyna; Ostrowski, Andrzej; Stanula, Arkadiusz; Tyka, Anna K; Sagalara, Andrzej

    2014-01-01

    The main purpose of this study was to analyze the coordination, propulsion and non-propulsion phases in the 100 meter breaststroke race. Twenty-seven male swimmers (15.7 ± 1.98 years old) with the total body length (TBL) of 247.0 ± 10.60 [cm] performed an all-out 100 m breaststroke bout. The bouts were recorded with an underwater camera installed on a portable trolley. The swimming kinematic parameters, stroke rate (SR) and stroke length (SL), as well as the coordination indices based on propulsive or non-propulsive movement phases of the arms and legs were distinguished. Swimming speed (V100surface breast) was associated with SL (R = 0.41, p study were measured using partial correlations with controlled age. SL interplayed negatively with the limbs propulsive phase Overlap indicator (R = -0.46, p propulsion Glide indicator. The propulsion in-sweep (AP3) phase of arms and their non-propulsion partial air recovery (ARair) phase interplayed with V100surface breast (R = 0.51, p < 0.05 and 0.48 p < 0.05) respectively, displaying the importance of proper execution of this phase (AP3) and in reducing the resistance recovery phases in consecutive ones.

  8. Intracyclic Velocity Variation of the Center of Mass and Hip in Breaststroke Swimming With Maximal Intensity.

    Science.gov (United States)

    Gourgoulis, Vassilios; Koulexidis, Stylianos; Gketzenis, Panagiotis; Tzouras, Grigoris

    2018-03-01

    Gourgoulis, V, Koulexidis, S, Gketzenis, P, and Tzouras, G. Intra-cyclic velocity variation of the center of mass and hip in breaststroke swimming with maximal intensity. J Strength Cond Res 32(3): 830-840, 2018-The aim of the study was to compare the center of mass (CM) and hip (HIP) intracyclic velocity variation in breaststroke swimming using 3-dimensional kinematic analysis. Nine male breaststrokes, of moderate performance level, swam 25-m breaststroke with maximal intensity, and their movements were recorded, both under and above the water surface, using 8 digital cameras. Their CM and HIP velocities and their intracyclic variations were estimated after manual digitization of 28 selected points on the body in a complete arm and leg breaststroke cycle. Paired sample t-tests or Wilcoxon tests, when the assumption of normality was broken, were used for statistical analyses. In both, CM and HIP velocity-time curves, the results revealed a similar pattern of 2 clear peaks associated with the leg and arm propulsive phases and 2 minimal velocities that corresponded to the arm and leg recovery phase and the lag time between the leg and arm propulsive phases, respectively. However, despite this similar general pattern, the HIP minimum resultant velocity was significantly lower, whereas its maximal value was significantly greater, than the corresponding CM values. Consequently, the HIP intracyclic swimming velocity fluctuation significantly overestimates the actual variation of the swimmer's velocity in breaststroke swimming.

  9. Vortex re-capturing and kinematics in human underwater undulatory swimming.

    Science.gov (United States)

    Hochstein, Stefan; Blickhan, Reinhard

    2011-10-01

    To maximize swimming speed athletes copy fish undulatory swimming during the underwater period after start and turn. The anatomical limitations may lead to deviations and may enforce compensating strategies. This has been investigated by analyzing the kinematics of two national female swimmers while swimming in a still water pool. Additionally, the flow around and behind the swimmers was measured with the aid of time-resolved particle image velocimetry (TR-2D-PIV). As compared to fish, the swimmers used undulatory waves characterized by much higher Strouhal numbers but very similar amplitude distributions along the body and Froude efficiencies. Vortices generated in the region of strongly flexing joints are suitable to be used pedally to enhance propulsion (vortex re-capturing). Complementing studies using numerical and technical modeling will help us to probe the efficiency of observed mechanisms and further improvements of the human strategy. Copyright © 2010 Elsevier B.V. All rights reserved.

  10. Swimming Exercise Prevents Fibrogenesis in Chronic Kidney Disease by Inhibiting the Myofibroblast Transdifferentiation

    Science.gov (United States)

    Peng, Chiung-Chi; Chen, Kuan-Chou; Hsieh, Chiu-Lan; Peng, Robert Y.

    2012-01-01

    Background The renal function of chronic kidney disease (CKD) patients may be improved by a number of rehabilitative mechanisms. Swimming exercise training was supposed to be beneficial to its recovery. Methodology/Principal Findings Doxorubicin-induced CKD (DRCKD) rat model was performed. Swimming training was programmed three days per week, 30 or 60 min per day for a total period of 11 weeks. Serum biochemical and pathological parameters were examined. In DRCKD, hyperlipidemia was observed. Active mesangial cell activation was evidenced by overexpression of PDGFR, P-PDGFR, MMP-2, MMP-9, α-SMA, and CD34 with a huge amount collagen deposition. Apparent myofibroblast transdifferentiation implicating fibrogenesis in the glomerular mesangium, glomerulonephritis and glomeruloscelorosis was observed with highly elevated proteinuria and urinary BUN excretion. The 60-min swimming exercise but not the 30 min equivalent rescued most of the symptoms. To quantify the effectiveness of exercise training, a physical parameter, i.e. “the strenuosity coefficient” or “the myokine releasing coefficient”, was estimated to be 7.154×10−3 pg/mL-J. Conclusions The 60-min swimming exercise may ameliorate DRCKD by inhibiting the transdifferentiation of myofibroblasts in the glomerular mesangium. Moreover, rehabilitative exercise training to rescue CKD is a personalized remedy. Benefits depend on the duration and strength of exercise, and more importantly, on the individual physiological condition. PMID:22761655

  11. Drag force and jet propulsion investigation of a swimming squid

    Directory of Open Access Journals (Sweden)

    Tabatabaei Mahdi

    2015-01-01

    Full Text Available In this study, CAD model of a squid was obtained by taking computer tomography images of a real squid. The model later placed into a computational domain to calculate drag force and performance of jet propulsion. The drag study was performed on the CAD model so that drag force subjected to real squid was revealed at squid’s different swimming speeds and comparison has been made with other underwater creatures (e.g., a dolphin, sea lion and penguin. The drag coefficient (referenced to total wetted surface area of squid is 0.0042 at Reynolds number 1.6x106 that is a %4.5 difference from Gentoo penguin. Besides, jet flow of squid was simulated to observe the flow region generated in the 2D domain utilizing dynamic mesh method to mimic the movement of squid’s mantle cavity.

  12. A fish-like robot: Mechanics of swimming due to constraints

    Science.gov (United States)

    Tallapragada, Phanindra; Malla, Rijan

    2014-11-01

    It is well known that due to reasons of symmetry, a body with one degree of actuation cannot swim in an ideal fluid. However certain velocity constraints arising in fluid-body interactions, such as the Kutta condition classically applied at the trailing cusp of a Joukowski hydrofoil break this symmetry through vortex shedding. Thus Joukowski foils that vary shape periodically can be shown to be able to swim through vortex shedding. In general it can be shown that vortex shedding due to the Kutta condition is equivalent to nonintegrable constraints arising in the mechanics of finite-dimensional mechanical systems. This equivalence allows hydrodynamic problems involving vortex shedding, especially those pertaining to swimming and related phenomena to be framed in the context of geometric mechanics on manifolds. This formal equivalence also allows the design of bio inspired robots that swim not due to shape change but due to internal moving masses and rotors. Such robots lacking articulated joints are easy to design, build and control. We present such a fish-like robot that swims due to the rotation of internal rotors.

  13. Enhancing swimming pool safety by the use of range-imaging cameras

    Science.gov (United States)

    Geerardyn, D.; Boulanger, S.; Kuijk, M.

    2015-05-01

    Drowning is the cause of death of 372.000 people, each year worldwide, according to the report of November 2014 of the World Health Organization.1 Currently, most swimming pools only use lifeguards to detect drowning people. In some modern swimming pools, camera-based detection systems are nowadays being integrated. However, these systems have to be mounted underwater, mostly as a replacement of the underwater lighting. In contrast, we are interested in range imaging cameras mounted on the ceiling of the swimming pool, allowing to distinguish swimmers at the surface from drowning people underwater, while keeping the large field-of-view and minimizing occlusions. However, we have to take into account that the water surface of a swimming pool is not a flat, but mostly rippled surface, and that the water is transparent for visible light, but less transparent for infrared or ultraviolet light. We investigated the use of different types of 3D cameras to detect objects underwater at different depths and with different amplitudes of surface perturbations. Specifically, we performed measurements with a commercial Time-of-Flight camera, a commercial structured-light depth camera and our own Time-of-Flight system. Our own system uses pulsed Time-of-Flight and emits light of 785 nm. The measured distances between the camera and the object are influenced through the perturbations on the water surface. Due to the timing of our Time-of-Flight camera, our system is theoretically able to minimize the influence of the reflections of a partially-reflecting surface. The combination of a post image-acquisition filter compensating for the perturbations and the use of a light source with shorter wavelengths to enlarge the depth range can improve the current commercial cameras. As a result, we can conclude that low-cost range imagers can increase swimming pool safety, by inserting a post-processing filter and the use of another light source.

  14. Effects of Swim Stress on Neophobia and Reconditioning Using a Conditioned Taste Aversion Procedure

    Science.gov (United States)

    Walker, Jennifer M.; Ramsey, Ashley K.; Fowler, Stephanie W.; Schachtman, Todd R.

    2012-01-01

    Previous research has found that swim stress during a classical conditioning trial attenuates conditioned taste aversion (CTA). In the current study, rats were used to examine the effects of inescapable swim stress on the habituation of neophobia to a flavored solution and reacquisition of an extinguished conditioned taste aversion. In Experiment…

  15. DOES COMBINED DRY LAND STRENGTH AND AEROBIC TRAINING INHIBIT PERFORMANCE OF YOUNG COMPETITIVE SWIMMERS?

    Directory of Open Access Journals (Sweden)

    Nuno Garrido

    2010-06-01

    Full Text Available The aim of the current study was twofold: (i to examine the effects of eight weeks of combined dry land strength and aerobic swimming training for increasing upper and lower body strength, power and swimming performance in young competitive swimmers and, (ii to assess the effects of a detraining period (strength training cessation on strength and swimming performance. The participants were divided into two groups: an experimental group (eight boys and four girls and a control group (six boys and five girls. Apart from normal practice sessions (six training units per week of 1 h and 30 min per day, the experimental group underwent eight weeks (two sessions per week of strength training. The principal strength exercises were the bench press, the leg extension, and two power exercises such as countermovement jump and medicine ball throwing. Immediately following this strength training program, all the swimmers undertook a 6 week detraining period, maintaining the normal swimming program, without any strength training. Swimming (25 m and 50 m performances, and hydrodynamic drag values, and strength (bench press and leg extension and power (throwing medicine ball and countermovement jump performances were tested in three moments: (i before the experimental period, (ii after eight weeks of combined strength and swimming training, and (iii after the six weeks of detraining period. Both experimental and control groups were evaluated. A combined strength and aerobic swimming training allow dry land strength developments in young swimmers. The main data can not clearly state that strength training allowed an enhancement in swimming performance, although a tendency to improve sprint performance due to strength training was noticed. The detraining period showed that, although strength parameters remained stable, swimming performance still improved

  16. Shaping Physiological Indices, Swimming Technique, and Their Influence on 200m Breaststroke Race in Young Swimmers

    Directory of Open Access Journals (Sweden)

    Marek Strzala

    2015-03-01

    Full Text Available The aim of this study was to investigate somatic properties and physiological capacity, and analyze kinematic parameters in the 200 m breaststroke swimming race. Twenty-seven male swimmers participated in the study. They were 15.7±1.98 years old. Their average height was 1.80 ± 0.02 m and lean body mass (LBM was 62.45 ± 8.29 kg. Physiological exercise capacity was measured in two separate 90 sec. all-out tests, one for the arms and second for legs. During the tests total work of arm cranking (TWAR and cycling (TWLG as well as peak of VO2 for arm (VO2peakAR and leg (VO2peakLG were measured. The underwater swimmers body movements were recorded during the all-out swimming 200m breaststroke speed test using an underwater camera installed on a portable trolley. The swimming kinematic parameters and propulsive or non-propulsive movement phases of the arms and legs as well as average speed (V200, surface speed (V200surface and swimming speed in turn zones (V200turns were extracted. V200surface was significantly related to the percentage of leg propulsion and was shown to have large effect on VO2peakLG in the Cohen analysis. V200turns depended significantly on the indicators of physiological performance and body structure: TWAR, VO2peak LG and LBM, LBM, which in turn strongly determined the measured results of TWAR, TWLG, VO2peakAR and VO2peakLG. The V200turns and V200surface were strongly associated with V200, 0.92, p < 0.001 and 0.91, p < 0.001 respectively. In each lap of the 200m swimming there was an increased percentage of propulsion of limb movement observed simultaneously with a reduction in the gliding phase in the breaststroke cycles.

  17. Hydroacoustic measurement of swimming speed of North Sea saithe in the field

    DEFF Research Database (Denmark)

    Pedersen, Jan

    2001-01-01

    Saithe Pollachius virens, tracked diurnally with a split-beam echosounder. showed no relationship between size and swimming speed. The average and the median swimming speeds were 1.05 m s(-1) (+/- 0.09 m s (-1)) and 0.93 m a (-1). respectively. However. ping-to-ping speeds up to 3.34 m s (-1) were...... measured for 25-29 cm fish, whose swimming speeds were significantly higher at night (1.08 m s(-1)) than during the day (0.72 m s(- 1)). The high average swimming speed could be related to the: foraging or streaming part of the population and not to potential weakness of the methodology. However....... the uncertainty or target location increased with depth and resulted in calculated average swimming speeds of 0.15 m s(-1) even for a stationary target. With increasing swimming speed the average error decreased to Om s ' for speeds >0.34 m s(-1). Species identity was verified by trawling in a pelagic layer...

  18. Thermal analyses of solar swimming pool heating in Pakistan

    International Nuclear Information System (INIS)

    Ahmad, I.

    2011-01-01

    Hotels and swimming clubs in Pakistan pay huge gas bills for heating Swimming pools in winter. Winter days in most parts of Pakistan remain sunny and unglazed low cost solar collectors may be used to extend the swimming season. Installing the pool in a wind-protected area, which receives unobstructed solar radiation, may further reduce the size of the solar collectors required to heat the swimming pools. The pools should be covered with plastic sheet to eliminate evaporative heat losses and to prevent dust and tree leaves falling in the pool. The results of the thermal analysis show that in some parts of the country, a solar exposed pool can maintain comfortable temperature simply by using a plastic sheet on the pool surface. On the other hand, there are cities where solar collector array equal to twice the surface area of the pool is required to keep desired temperature in winter. (author)

  19. Melatonin improve the sperm quality in forced swimming test induced oxidative stress in nandrolone treated Wistar rats.

    Science.gov (United States)

    Minaii, Bagher; Moayeri, Ardeshir; Shokri, Saeed; Habibi Roudkenar, Mehryar; Golmohammadi, Taghi; Malek, Fatemeh; Barbarestani, Mohammad

    2014-01-01

    This study investigates the effects of melatonin on the sperm quality and testis weight after the combination of swimming exercise and nandrolone decanoate (DECA). Two groups of male Wistar rats were treated for eight weeks as follows; group A consist of CO (control), Sham, N (DECA), S (swimming) and NS (DECA plus swimming); and group B: Sham M (sham melatonin), M (melatonin), MN (melatonin plus DECA), MS (melatonin plus swimming), MNS (melatonin, DECA plus swimming). The motility of sperm was significantly improved in melatonin groups in comparison to N, S and NS groups (P≤0.05).  The left testes weight was decreased in N, NS and MNS groups, and the right testes weight was decreased in N,S,NS, MS and MNS groups in compare with the control group. This study concluded that melatonin probably could improve the sperm motility and sex organs weight after the combination of DECA and exercise.

  20. Multiple photoreceptor systems control the swim pacemaker activity in box jellyfish

    DEFF Research Database (Denmark)

    Garm, Anders Lydik; Mori, S.

    2009-01-01

    Like all other cnidarian medusae, box jellyfish propel themselves through the water by contracting their bell-shaped body in discrete swim pulses. These pulses are controlled by a swim pacemaker system situated in their sensory structures, the rhopalia. Each medusa has four rhopalia each with a s......Like all other cnidarian medusae, box jellyfish propel themselves through the water by contracting their bell-shaped body in discrete swim pulses. These pulses are controlled by a swim pacemaker system situated in their sensory structures, the rhopalia. Each medusa has four rhopalia each...... with a similar set of six eyes of four morphologically different types. We have examined how each of the four eye types influences the swim pacemaker. Multiple photoreceptor systems, three of the four eye types, plus the rhopalial neuropil, affect the swim pacemaker. The lower lens eye inhibits the pacemaker...... when stimulated and provokes a strong increase in the pacemaker frequency upon light-off. The upper lens eye, the pit eyes and the rhopalial neuropil all have close to the opposite effect. When these responses are compared with all-eye stimulations it is seen that some advanced integration must take...

  1. Development and aminergic neuromodulation of a spinal locomotor network controlling swimming in Xenopus larvae.

    Science.gov (United States)

    Sillar, K T; Reith, C A; McDearmid, J R

    1998-11-16

    In this article we review our research on the development and intrinsic neuromodulation of a spinal network controlling locomotion in a simple vertebrate. Swimming in hatchling Xenopus embryos is generated by a restricted network of well-characterized spinal neurons. This network produces a stereotyped motor pattern which, like real swimming, involves rhythmic activity that alternates across the body and progresses rostrocaudally with a brief delay between muscle segments. The stereotypy results from motoneurons discharging a single impulse in each cycle; because all motoneurons appear to behave similarly there is little scope for altering the output to the myotomes from one cycle to the next. Just one day later, however, Xenopus larvae generate a more complex and flexible motor pattern in which motoneurons can discharge a variable number of impulses which contribute to ventral root bursts in each cycle. This maturation of swimming is due, in part, to the influence of serotonin released from brain-stem raphespinal interneurons whose axonal projections innervate the cord early in larval life. Larval swimming is differentially modulated by both serotonin and by noradrenaline: serotonin leads to relatively fast, intense swimming whereas noradrenaline favors slower, weaker activity. Thus, these two biogenic amines select opposite extremes from the spectrum of possible output patterns that the swimming network can produce. Our studies on the cellular and synaptic effects of the amines indicate that they can control the strength of reciprocal glycinergic inhibition in the spinal cord. Serotonin and noradrenaline act presynaptically on the terminals of glycinergic commissural interneurons to weaken and strengthen, respectively, crossed glycinergic inhibition during swimming. As a result, serotonin reduces and noradrenaline increases interburst intervals. The membrane properties of spinal neurons are also affected by the amines. In particular, serotonin can induce

  2. Ichthyophonus-induced cardiac damage: a mechanism for reduced swimming stamina in salmonids.

    Science.gov (United States)

    Kocan, R; Lapatra, S; Gregg, J; Winton, J; Hershberger, P

    2006-09-01

    Swimming stamina, measured as time-to-fatigue, was reduced by approximately two-thirds in rainbow trout experimentally infected with Ichthyophonus. Intensity of Ichthyophonus infection was most severe in cardiac muscle but multiple organs were infected to a lesser extent. The mean heart weight of infected fish was 40% greater than that of uninfected fish, the result of parasite biomass, infiltration of immune cells and fibrotic (granuloma) tissue surrounding the parasite. Diminished swimming stamina is hypothesized to be due to cardiac failure resulting from the combination of parasite-damaged heart muscle and low myocardial oxygen supply during sustained aerobic exercise. Loss of stamina in Ichthyophonus-infected salmonids could explain the poor performance previously reported for wild Chinook and sockeye salmon stocks during their spawning migration.

  3. Intraspecific variation in aerobic and anaerobic locomotion: gilthead sea bream (Sparus aurata) and Trinidadian guppy (Poecilia reticulata) do not exhibit a trade-off between maximum sustained swimming speed and minimum cost of transport

    Science.gov (United States)

    Svendsen, Jon C.; Tirsgaard, Bjørn; Cordero, Gerardo A.; Steffensen, John F.

    2015-01-01

    Intraspecific variation and trade-off in aerobic and anaerobic traits remain poorly understood in aquatic locomotion. Using gilthead sea bream (Sparus aurata) and Trinidadian guppy (Poecilia reticulata), both axial swimmers, this study tested four hypotheses: (1) gait transition from steady to unsteady (i.e., burst-assisted) swimming is associated with anaerobic metabolism evidenced as excess post exercise oxygen consumption (EPOC); (2) variation in swimming performance (critical swimming speed; Ucrit) correlates with metabolic scope (MS) or anaerobic capacity (i.e., maximum EPOC); (3) there is a trade-off between maximum sustained swimming speed (Usus) and minimum cost of transport (COTmin); and (4) variation in Usus correlates positively with optimum swimming speed (Uopt; i.e., the speed that minimizes energy expenditure per unit of distance traveled). Data collection involved swimming respirometry and video analysis. Results showed that anaerobic swimming costs (i.e., EPOC) increase linearly with the number of bursts in S. aurata, with each burst corresponding to 0.53 mg O2 kg−1. Data are consistent with a previous study on striped surfperch (Embiotoca lateralis), a labriform swimmer, suggesting that the metabolic cost of burst swimming is similar across various types of locomotion. There was no correlation between Ucrit and MS or anaerobic capacity in S. aurata indicating that other factors, including morphological or biomechanical traits, influenced Ucrit. We found no evidence of a trade-off between Usus and COTmin. In fact, data revealed significant negative correlations between Usus and COTmin, suggesting that individuals with high Usus also exhibit low COTmin. Finally, there were positive correlations between Usus and Uopt. Our study demonstrates the energetic importance of anaerobic metabolism during unsteady swimming, and provides intraspecific evidence that superior maximum sustained swimming speed is associated with superior swimming economy and

  4. Physiological Plasticity to Water Flow Habitat in the Damselfish, Acanthochromis polyacanthus: Linking Phenotype to Performance

    Science.gov (United States)

    Binning, Sandra A.; Ros, Albert F. H.; Nusbaumer, David; Roche, Dominique G.

    2015-01-01

    The relationships among animal form, function and performance are complex, and vary across environments. Therefore, it can be difficult to identify morphological and/or physiological traits responsible for enhancing performance in a given habitat. In fishes, differences in swimming performance across water flow gradients are related to morphological variation among and within species. However, physiological traits related to performance have been less well studied. We experimentally reared juvenile damselfish, Acanthochromis polyacanthus, under different water flow regimes to test 1) whether aspects of swimming physiology and morphology show plastic responses to water flow, 2) whether trait divergence correlates with swimming performance and 3) whether flow environment relates to performance differences observed in wild fish. We found that maximum metabolic rate, aerobic scope and blood haematocrit were higher in wave-reared fish compared to fish reared in low water flow. However, pectoral fin shape, which tends to correlate with sustained swimming performance, did not differ between rearing treatments or collection sites. Maximum metabolic rate was the best overall predictor of individual swimming performance; fin shape and fish total length were 3.3 and 3.7 times less likely than maximum metabolic rate to explain differences in critical swimming speed. Performance differences induced in fish reared in different flow environments were less pronounced than in wild fish but similar in direction. Our results suggest that exposure to water motion induces plastic physiological changes which enhance swimming performance in A. polyacanthus. Thus, functional relationships between fish morphology and performance across flow habitats should also consider differences in physiology. PMID:25807560

  5. Cognitive function in middle-aged and older adults participating in synchronized swimming-exercise.

    Science.gov (United States)

    Maeshima, Etsuko; Okumura, Yuka; Tatsumi, Juri; Tomokane, Sayaka; Ikeshima, Akiko

    2017-01-01

    [Purpose] The purpose of the present study was to examine cognitive function in middle-aged and older adults regularly engaging in synchronized swimming-exercise. [Subjects and Methods] Twenty-three female synchronized swimmers ranging in age from 49 to 85 years were recruited for the present study. The duration of synchronized swimming experience ranged from 1 to 39 years. The control group consisted of 36 age- and gender-matched community-dwelling middle-aged and older adults (age range: 49 to 77 years). Cognitive function was evaluated using the Japanese version of the Montreal Cognitive Assessment (MoCA-J) and compared between the synchronized swimmers and control participants. [Results] No significant differences in mean total MoCA-J scores were observed between the synchronized swimmers and control participants (23.2 ± 3.1 and 22.2 ± 3.6, respectively). Twenty-nine subjects in the control group and 17 in the synchronized swimming group scored below 26 on the MoCA-J, indicative of mild cognitive impairment. Significant differences in delayed recall-but not in visuospatial/executive function, naming, attention, language, abstraction, or orientation-were also observed between the two groups. [Conclusion] The results of the present study suggest that synchronized swimming has beneficial effects on cognitive function, particularly with regard to recent memory.

  6. The incidence and health burden of earaches attributable to recreational swimming in natural waters: A prospective cohort study

    Science.gov (United States)

    Background: Earaches and outer ear infections are a common health symptom associated with swimming. In this study, we used estimates from a survey of over 50,000 beachgoers at nine beaches across the United States to estimate the excess risk and health burden of earaches associat...

  7. Solar thermal space heating combined with swimming pool heating: A promising solution for southern Europe climates

    Energy Technology Data Exchange (ETDEWEB)

    Carvalho, M.J.; Neves, Ana [INETI/DER, Lisboa (Portugal)

    2006-07-01

    The system concept evaluation performed focused on systems that can provide hot water, space heating and swimming-pool heating, and are designed for application in southern climates specifically for single-family houses. Due to the climate characteristics of southern Europe, space heating is required only for a few months in the year. In this evaluation it was considered a six month period for space heating and, on the other six months, swimming pool heating was considered. This type of systems are applicable to a niche market of people who are building their houses as single-family houses and want also to take profit of the good climate conditions for the use of solar energy. It is common that the construction of a swimming pool is also planned and constructed. The evaluation is made considering as reference system a factory made with 4m{sup 2} collector area and 300 l storage tank. The system in evaluation offers extra service - space heating and swimming pool heating and is formed by a collector field and a combistore providing solar hot water preparation and space heating in the winter period and providing also swimming pool heating in the summer period. The evaluation made shows that in southern Europe climates this system will give extra service in comparison to the traditional solar systems used and can be economically interesting.

  8. System Wide Information Management (SWIM)

    Science.gov (United States)

    Hritz, Mike; McGowan, Shirley; Ramos, Cal

    2004-01-01

    This viewgraph presentation lists questions regarding the implementation of System Wide Information Management (SWIM). Some of the questions concern policy issues and strategies, technology issues and strategies, or transition issues and strategies.

  9. The Impact of Immediate Verbal Feedback on the Improvement of Swimming Technique

    Science.gov (United States)

    Zatoń, Krystyna; Szczepan, Stefan

    2014-01-01

    The present research attempts to ascertain the impact of immediate verbal feedback (IVF) on modifications of stroke length (SL). In all swimming styles, stroke length is considered an essential kinematic parameter of the swimming cycle. It is important for swimming mechanics and energetics. If SL shortens while the stroke rate (SR) remains unchanged or decreases, the temporal-spatial structure of swimming is considered erroneous. It results in a lower swimming velocity. Our research included 64 subjects, who were divided into two groups: the experimental – E (n=32) and the control – C (n=32) groups. A pretest and a post-test were conducted. The subjects swam the front crawl over the test distance of 25m at Vmax. Only the E group subjects were provided with IVF aiming to increase their SL. All tests were filmed by two cameras (50 samples•s-1). The kinematic parameters of the swimming cycle were analyzed using the SIMI Reality Motion Systems 2D software (SIMI Reality Motion Systems 2D GmbH, Germany). The movement analysis allowed to determine the average horizontal swimming velocity over 15 meters. The repeated measures analysis of variance ANOVA with a post-hoc Tukey range test demonstrated statistically significant (pswimming velocity. IVF brought about a 6.93% (Simi method) and a 5.09% (Hay method) increase in SL, as well as a 2.92% increase in swimming velocity. PMID:25114741

  10. Relationship between the effect of dietary fat on swimming endurance and energy metabolism in aged mice.

    Science.gov (United States)

    Zhang, Guihua; Shirai, Nobuya; Suzuki, Hiramitsu

    2011-10-01

    The aim of this study was to investigate the effect of different dietary fats on alterations in endurance, energy metabolism, and plasma levels of interleukin-6 (IL-6) and minerals in mice. Male mice (aged 58 weeks) were fed diets containing 6% safflower oil, fish oil, or lard for 12 weeks. Swimming time to exhaustion, energy metabolism, and plasma IL-6 levels were subsequently determined. Mice fed safflower oil exhibited a marked increase in swimming time compared to the baseline level. Mice fed lard exhibited a significant decrease in swimming time, while mice on a fish oil diet exhibited a small decrease in swimming time. The final swimming time of mice fed safflower oil was significantly longer than that of animals fed lard. This improvement in endurance with dietary safflower oil was accompanied by decreased accumulation of lactate and less glycogen depletion during swimming. In the safflower oil group, muscle carnitine palmitoyltransferase activity increased significantly after swimming, while the plasma non-esterified fatty acid concentration decreased significantly. A trend to increased plasma IL-6 levels was observed in sedentary animals on a safflower oil diet compared to those on a lard diet. These results suggest that dietary safflower oil improves the swimming endurance of aged mice to a greater extent than lard, and that this effect appears to involve glycogen sparing through increased fatty acid utilization. Copyright © 2011 S. Karger AG, Basel.

  11. Desipramine restricts estral cycle oscillations in swimming.

    Science.gov (United States)

    Contreras, C M; Martínez-Mota, L; Saavedra, M

    1998-10-01

    1. Desipramine (DMI) is a tricyclic antidepressant which reduces the immobility in rats forced to swim; however, it is unknown whether estral cycle phases impinge on DMI actions on immobility in daily swimming tests during several weeks. 2. In female wistar rats, vaginal smears taken before testing defined four estral phases. Afterwards, the authors assessed the latency for the first period of immobility in five-min forced swim tests practiced on 21-day DMI (DMI group), 21-day washout saline given after a 21-day DMI treatment (washout-saline group), or non-treated rats (control group). 3. We observed a longer latency for the first period of immobility in proestrus-estrus from the control and washout-saline groups. The 21-day treatment with DMI (2.1 mg/kg i.p., once a day) significantly (p estral cycle phase. 4. It is concluded that proestrus-estrus relates to increased struggling behavior. DMI enhances struggling behavior independently of hormonal state.

  12. Do all frogs swim alike? The effect of ecological specialization on swimming kinematics in frogs

    Czech Academy of Sciences Publication Activity Database

    Robovská-Havelková, P.; Aerts, P.; Roček, Zbyněk; Přikryl, Tomáš; Fabre, A.-C.; Herrel, A.

    2014-01-01

    Roč. 217, č. 20 (2014), s. 3637-3644 ISSN 0022-0949 Institutional support: RVO:67985831 Keywords : Anura * kinematics * locomotion * swimming Subject RIV: EG - Zoology Impact factor: 2.897, year: 2014

  13. Omega-3 fatty acids have antidepressant activity in forced swimming test in Wistar rats.

    Science.gov (United States)

    Lakhwani, Lalit; Tongia, Sudheer K; Pal, Veerendra S; Agrawal, Rajendra P; Nyati, Prem; Phadnis, Pradeep

    2007-01-01

    Forced swimming test is used to induce a characteristic behavior of immobility in rats, which resembles depression in humans to some extent. We evaluated the effect of omega-3 fatty acids alone as well as compared it with the standard antidepressant therapy with fluoxetine in both acute and chronic studies. In both the studies, rats were divided into 4 groups and subjected to the following drug interventions - Group 1- control: Group 2- fluoxetine in dose of 10 mg/kg subcutaneously 23.5, 5 and 1 h before the test: Group 3- omega-3 fatty acids in dose of 500 mg/kg orally; Group 4- fluoxetine plus omega-3 fatty acids both. In acute study, omega-3 fatty acids were given in single dose 2 h prior to the test while in chronic study omega-3 fatty acids were given daily for a period of 28 days. All animals were subjected to a 15-min pretest followed 24 h later by a 5-min test. A time sampling method was used to score the behavioral activity in each group. The results revealed that in acute study, omega-3 fatty acids do not have any significant effect in forced swimming test. However, in chronic study, omega-3 fatty acids affect the immobility and swimming behavior significantly when compared with control (p fluoxetine is significantly more than that of fluoxetine alone in changing the behavioral activity of rats in forced swimming test. It leads to the conclusion that omega-3 fatty acids have antidepressant activity per se, and the combination of fluoxetine and omega-3 fatty acids has more antidepressant efficacy than fluoxetine alone in forced swimming test in Wistar rats.

  14. Relationship between different push-off variables and start performance in experienced swimmers.

    Science.gov (United States)

    García-Ramos, Amador; Feriche, Belén; de la Fuente, Blanca; Argüelles-Cienfuegos, Javier; Strojnik, Vojko; Strumbelj, Boro; Štirn, Igor

    2015-01-01

    The objective of this study was to determine the relationship between different variables measured with a force plate during the swimming start push-off phase and start performance presented by times to 5, 10 and 15 m. Twenty-one women from the Slovenian national swimming team performed two different swim starts (freestyle and undulatory) on a portable force plate to a distance further than 15 m. Correlations between push-off variables and times to 5, 10 and 15 m were quantified through Pearson's product-moment correlation coefficient (r). The variables that significantly correlated (p  .05). Based on the results of this study, we can conclude that horizontal take-off velocity and average horizontal acceleration (calculated as the average horizontal force divided by swimmer's body mass) are the variables most related to swimming start performance in experienced swimmers, and therefore could be the preferred measures to monitor swimmers' efficiency during the push-off phase.

  15. EFFECTIVENESS OF DOUBLE WASH SWIM-UP VERSUS DOUBLE DENSITY GRADIENT SWIM-UP TECHNIQUE OF SPERM PREPARATION IN IN VITRO FERTILISATION

    OpenAIRE

    Srinivas Sangisapu; Sandeep Karunakaran; Ashok Kumar Pillai

    2017-01-01

    BACKGROUND Recovery of optimum number of good quality of spermatozoa is an important component of In Vitro Fertilisation (IVF). This is achieved by sperm preparation methods involving separation and recovery of capacitated sperms. Double Wash Swim-up (DWSU) and Double Density Gradient Swim-up (DDGSU) are two most accepted methods. Cochrane systematic review (2007) finds no clear benefit of one method over the other in Intrauterine Insemination (IUI). Systematic review on effective...

  16. Gender, age, and sport differences in relative age effects among US Masters swimming and track and field athletes.

    Science.gov (United States)

    Medic, Nikola; Young, Bradley W; Starkes, Janet L; Weir, Patricia L; Grove, J Robert

    2009-12-01

    A relative age effect has been identified in Masters sports (Medic, Starkes, & Young, 2007). Since gender, age, and type of sport have been found to influence the relative age effect in youth sports (Musch & Grondin, 2001), we examined how these three variables influenced possible relative age effects among Masters swimmers and track and field athletes. Using archived data between 1996 and 2006, frequency of participation entries and record-setting performances at the US Masters championships were examined as a function of an individual's constituent year within any 5-year age category. Study 1 investigated the frequency of Master athletes who participated; Study 2 examined the frequency of performance records that were set across constituent years within an age category, while accounting for the distribution of participation frequencies. Results showed that a participation-related relative age effect in Masters sports is stronger for males, that it becomes progressively stronger with each successive decade of life, and that it does not differ across track and field and swimming. In addition, a performance-related relative age effect in Masters sport seems to be stronger for swimming than track and field, but it does not differ across gender and decades of life.

  17. The role of risk management in decrease of lawsuits of swimming pools

    Directory of Open Access Journals (Sweden)

    Behzad Izadi

    2012-01-01

    Full Text Available The purpose of this research is to study of risk management practices in decrease of lawsuits in public and private swimming pools in Tehran. The statistical population of the research included 310 managers of public and private swimming pools which 119 were selected as statistical samples by means of random sampling. The research method was descriptive and survey, and in measurement form. 2 questionnaires were used, on relating to demographic data and general information and the other to risk management practices and their validity was determined by alpha Cronbach method. The required information was collected by personal interviews during the time acting of managers in pools gathered and the data was analyzed by using person correlation coefficient. The result of this study indicated that: Significant relationship existed between incidents of accidents/injuries and lawsuits in swimming pools in Tehran. Significant relationship existed between risk management practice and accidents/injuries and lawsuits. Significant relationship existed between risk management practice and lawsuits and lawsuits.

  18. Flexibility, stroke, and dimensionless parameters: the importance of telling the whole story for swimming micro-organisms in complex fluids

    Science.gov (United States)

    Thomases, Becca; Guy, Robert

    2015-11-01

    The question of how fluid elasticity affects the swimming performance of micro-organisms is complicated and has been the subject of many recent experimental and theoretical studies. The Deborah number, De = λω , is typically used to characterize the strength of the fluid elasticity in these studies, and for swimmers is expressed as the product of the elastic relaxation time and the frequency of the swimmer stroke. In simulations of undulatory flexible swimmers in an Oldroyd-B-type fluid, we find that varying the frequency of the stroke and varying the relaxation time separately results in a significantly different dependence of swimming speed for the same De . Thus the elastic effects on swimming cannot be characterized by a single dimensionless number. The Weissenberg number, defined as the product of elastic relaxation time and characteristic strain rate (Wi = λγ˙), is another dimensionless parameter useful for describing complex fluids. For a fixed swimmer frequency, varying the relaxation time will also vary the Weissenberg number. We conjecture that the different behavior is a consequence of a Weissenberg-number transition in the fluid, which additionally depends on the amplitude of the swimmer stroke.

  19. Scaling in Free-Swimming Fish and Implications for Measuring Size-at-Time in the Wild

    Science.gov (United States)

    Broell, Franziska; Taggart, Christopher T.

    2015-01-01

    This study was motivated by the need to measure size-at-age, and thus growth rate, in fish in the wild. We postulated that this could be achieved using accelerometer tags based first on early isometric scaling models that hypothesize that similar animals should move at the same speed with a stroke frequency that scales with length-1, and second on observations that the speed of primarily air-breathing free-swimming animals, presumably swimming ‘efficiently’, is independent of size, confirming that stroke frequency scales as length-1. However, such scaling relations between size and swimming parameters for fish remain mostly theoretical. Based on free-swimming saithe and sturgeon tagged with accelerometers, we introduce a species-specific scaling relationship between dominant tail beat frequency (TBF) and fork length. Dominant TBF was proportional to length-1 (r2 = 0.73, n = 40), and estimated swimming speed within species was independent of length. Similar scaling relations accrued in relation to body mass-0.29. We demonstrate that the dominant TBF can be used to estimate size-at-time and that accelerometer tags with onboard processing may be able to provide size-at-time estimates among free-swimming fish and thus the estimation of growth rate (change in size-at-time) in the wild. PMID:26673777

  20. Scaling in Free-Swimming Fish and Implications for Measuring Size-at-Time in the Wild.

    Directory of Open Access Journals (Sweden)

    Franziska Broell

    Full Text Available This study was motivated by the need to measure size-at-age, and thus growth rate, in fish in the wild. We postulated that this could be achieved using accelerometer tags based first on early isometric scaling models that hypothesize that similar animals should move at the same speed with a stroke frequency that scales with length-1, and second on observations that the speed of primarily air-breathing free-swimming animals, presumably swimming 'efficiently', is independent of size, confirming that stroke frequency scales as length-1. However, such scaling relations between size and swimming parameters for fish remain mostly theoretical. Based on free-swimming saithe and sturgeon tagged with accelerometers, we introduce a species-specific scaling relationship between dominant tail beat frequency (TBF and fork length. Dominant TBF was proportional to length-1 (r2 = 0.73, n = 40, and estimated swimming speed within species was independent of length. Similar scaling relations accrued in relation to body mass-0.29. We demonstrate that the dominant TBF can be used to estimate size-at-time and that accelerometer tags with onboard processing may be able to provide size-at-time estimates among free-swimming fish and thus the estimation of growth rate (change in size-at-time in the wild.