WorldWideScience

Sample records for sweet taste receptor

  1. Sweet Taste Receptor Signaling Network: Possible Implication for Cognitive Functioning

    Directory of Open Access Journals (Sweden)

    Menizibeya O. Welcome

    2015-01-01

    Full Text Available Sweet taste receptors are transmembrane protein network specialized in the transmission of information from special “sweet” molecules into the intracellular domain. These receptors can sense the taste of a range of molecules and transmit the information downstream to several acceptors, modulate cell specific functions and metabolism, and mediate cell-to-cell coupling through paracrine mechanism. Recent reports indicate that sweet taste receptors are widely distributed in the body and serves specific function relative to their localization. Due to their pleiotropic signaling properties and multisubstrate ligand affinity, sweet taste receptors are able to cooperatively bind multiple substances and mediate signaling by other receptors. Based on increasing evidence about the role of these receptors in the initiation and control of absorption and metabolism, and the pivotal role of metabolic (glucose regulation in the central nervous system functioning, we propose a possible implication of sweet taste receptor signaling in modulating cognitive functioning.

  2. Positive allosteric modulators of the human sweet taste receptor enhance sweet taste.

    Science.gov (United States)

    Servant, Guy; Tachdjian, Catherine; Tang, Xiao-Qing; Werner, Sara; Zhang, Feng; Li, Xiaodong; Kamdar, Poonit; Petrovic, Goran; Ditschun, Tanya; Java, Antoniette; Brust, Paul; Brune, Nicole; DuBois, Grant E; Zoller, Mark; Karanewsky, Donald S

    2010-03-09

    To identify molecules that could enhance sweetness perception, we undertook the screening of a compound library using a cell-based assay for the human sweet taste receptor and a panel of selected sweeteners. In one of these screens we found a hit, SE-1, which significantly enhanced the activity of sucralose in the assay. At 50 microM, SE-1 increased the sucralose potency by >20-fold. On the other hand, SE-1 exhibited little or no agonist activity on its own. SE-1 effects were strikingly selective for sucralose. Other popular sweeteners such as aspartame, cyclamate, and saccharin were not enhanced by SE-1 whereas sucrose and neotame potency were increased only by 1.3- to 2.5-fold at 50 microM. Further assay-guided chemical optimization of the initial hit SE-1 led to the discovery of SE-2 and SE-3, selective enhancers of sucralose and sucrose, respectively. SE-2 (50 microM) and SE-3 (200 microM) increased sucralose and sucrose potencies in the assay by 24- and 4.7-fold, respectively. In human taste tests, 100 microM of SE-1 and SE-2 allowed for a reduction of 50% to >80% in the concentration of sucralose, respectively, while maintaining the sweetness intensity, and 100 microM SE-3 allowed for a reduction of 33% in the concentration of sucrose while maintaining the sweetness intensity. These enhancers did not exhibit any sweetness when tasted on their own. Positive allosteric modulators of the human sweet taste receptor could help reduce the caloric content in food and beverages while maintaining the desired taste.

  3. A2BR adenosine receptor modulates sweet taste in circumvallate taste buds.

    Directory of Open Access Journals (Sweden)

    Shinji Kataoka

    Full Text Available In response to taste stimulation, taste buds release ATP, which activates ionotropic ATP receptors (P2X2/P2X3 on taste nerves as well as metabotropic (P2Y purinergic receptors on taste bud cells. The action of the extracellular ATP is terminated by ectonucleotidases, ultimately generating adenosine, which itself can activate one or more G-protein coupled adenosine receptors: A1, A2A, A2B, and A3. Here we investigated the expression of adenosine receptors in mouse taste buds at both the nucleotide and protein expression levels. Of the adenosine receptors, only A2B receptor (A2BR is expressed specifically in taste epithelia. Further, A2BR is expressed abundantly only in a subset of taste bud cells of posterior (circumvallate, foliate, but not anterior (fungiform, palate taste fields in mice. Analysis of double-labeled tissue indicates that A2BR occurs on Type II taste bud cells that also express Gα14, which is present only in sweet-sensitive taste cells of the foliate and circumvallate papillae. Glossopharyngeal nerve recordings from A2BR knockout mice show significantly reduced responses to both sucrose and synthetic sweeteners, but normal responses to tastants representing other qualities. Thus, our study identified a novel regulator of sweet taste, the A2BR, which functions to potentiate sweet responses in posterior lingual taste fields.

  4. A novel functional screening assay to monitor sweet taste receptor activation in vitro

    NARCIS (Netherlands)

    Bastiaan-Net, Shanna; Berg-Somhorst, van den Dianne B.P.M.; Ariëns, Renata M.C.; Paques, Marcel; Mes, Jurriaan J.

    2018-01-01

    The human sweet taste receptor is a heterodimer comprised of the class C G protein-coupled receptor (GPCR) subunits TAS1R2 and TAS1R3. A wide collection of sweet tasting compounds and modulators of sweet taste interact with this receptor. Although TAS1R2/TAS1R3-mediated signaling is well-studied,

  5. Adenosine enhances sweet taste through A2B receptors in the taste bud.

    Science.gov (United States)

    Dando, Robin; Dvoryanchikov, Gennady; Pereira, Elizabeth; Chaudhari, Nirupa; Roper, Stephen D

    2012-01-04

    Mammalian taste buds use ATP as a neurotransmitter. Taste Receptor (type II) cells secrete ATP via gap junction hemichannels into the narrow extracellular spaces within a taste bud. This ATP excites primary sensory afferent fibers and also stimulates neighboring taste bud cells. Here we show that extracellular ATP is enzymatically degraded to adenosine within mouse vallate taste buds and that this nucleoside acts as an autocrine neuromodulator to selectively enhance sweet taste. In Receptor cells in a lingual slice preparation, Ca(2+) mobilization evoked by focally applied artificial sweeteners was significantly enhanced by adenosine (50 μM). Adenosine had no effect on bitter or umami taste responses, and the nucleoside did not affect Presynaptic (type III) taste cells. We also used biosensor cells to measure transmitter release from isolated taste buds. Adenosine (5 μM) enhanced ATP release evoked by sweet but not bitter taste stimuli. Using single-cell reverse transcriptase (RT)-PCR on isolated vallate taste cells, we show that many Receptor cells express the adenosine receptor, Adora2b, while Presynaptic (type III) and Glial-like (type I) cells seldom do. Furthermore, Adora2b receptors are significantly associated with expression of the sweet taste receptor subunit, Tas1r2. Adenosine is generated during taste stimulation mainly by the action of the ecto-5'-nucleotidase, NT5E, and to a lesser extent, prostatic acid phosphatase. Both these ecto-nucleotidases are expressed by Presynaptic cells, as shown by single-cell RT-PCR, enzyme histochemistry, and immunofluorescence. Our findings suggest that ATP released during taste reception is degraded to adenosine to exert positive modulation particularly on sweet taste.

  6. Modulation of sweet taste by umami compounds via sweet taste receptor subunit hT1R2.

    Directory of Open Access Journals (Sweden)

    Jaewon Shim

    Full Text Available Although the five basic taste qualities-sweet, sour, bitter, salty and umami-can be recognized by the respective gustatory system, interactions between these taste qualities are often experienced when food is consumed. Specifically, the umami taste has been investigated in terms of whether it enhances or reduces the other taste modalities. These studies, however, are based on individual perception and not on a molecular level. In this study we investigated umami-sweet taste interactions using umami compounds including monosodium glutamate (MSG, 5'-mononucleotides and glutamyl-dipeptides, glutamate-glutamate (Glu-Glu and glutamate-aspartic acid (Glu-Asp, in human sweet taste receptor hT1R2/hT1R3-expressing cells. The sensitivity of sucrose to hT1R2/hT1R3 was significantly attenuated by MSG and umami active peptides but not by umami active nucleotides. Inhibition of sweet receptor activation by MSG and glutamyl peptides is obvious when sweet receptors are activated by sweeteners that target the extracellular domain (ECD of T1R2, such as sucrose and acesulfame K, but not by cyclamate, which interact with the T1R3 transmembrane domain (TMD. Application of umami compounds with lactisole, inhibitory drugs that target T1R3, exerted a more severe inhibitory effect. The inhibition was also observed with F778A sweet receptor mutant, which have the defect in function of T1R3 TMD. These results suggest that umami peptides affect sweet taste receptors and this interaction prevents sweet receptor agonists from binding to the T1R2 ECD in an allosteric manner, not to the T1R3. This is the first report to define the interaction between umami and sweet taste receptors.

  7. Caffeine May Reduce Perceived Sweet Taste in Humans, Supporting Evidence That Adenosine Receptors Modulate Taste.

    Science.gov (United States)

    Choo, Ezen; Picket, Benjamin; Dando, Robin

    2017-09-01

    Multiple recent reports have detailed the presence of adenosine receptors in sweet sensitive taste cells of mice. These receptors are activated by endogenous adenosine in the plasma to enhance sweet signals within the taste bud, before reporting to the primary afferent. As we commonly consume caffeine, a powerful antagonist for such receptors, in our daily lives, an intriguing question we sought to answer was whether the caffeine we habitually consume in coffee can inhibit the perception of sweet taste in humans. 107 panelists were randomly assigned to 2 groups, sampling decaffeinated coffee supplemented with either 200 mg of caffeine, about the level found in a strong cup of coffee, or an equally bitter concentration of quinine. Participants subsequently performed sensory testing, with the session repeated in the alternative condition in a second session on a separate day. Panelists rated both the sweetened coffee itself and subsequent sucrose solutions as less sweet in the caffeine condition, despite the treatment having no effect on bitter, sour, salty, or umami perception. Panelists were also unable to discern whether they had consumed the caffeinated or noncaffeinated coffee, with ratings of alertness increased equally, but no significant improvement in reaction times, highlighting coffee's powerful placebo effect. This work validates earlier observations in rodents in a human population. © 2017 Institute of Food Technologists®.

  8. Human sweet taste receptor mediates acid-induced sweetness of miraculin.

    Science.gov (United States)

    Koizumi, Ayako; Tsuchiya, Asami; Nakajima, Ken-ichiro; Ito, Keisuke; Terada, Tohru; Shimizu-Ibuka, Akiko; Briand, Loïc; Asakura, Tomiko; Misaka, Takumi; Abe, Keiko

    2011-10-04

    Miraculin (MCL) is a homodimeric protein isolated from the red berries of Richadella dulcifica. MCL, although flat in taste at neutral pH, has taste-modifying activity to convert sour stimuli to sweetness. Once MCL is held on the tongue, strong sweetness is sensed over 1 h each time we taste a sour solution. Nevertheless, no molecular mechanism underlying the taste-modifying activity has been clarified. In this study, we succeeded in quantitatively evaluating the acid-induced sweetness of MCL using a cell-based assay system and found that MCL activated hT1R2-hT1R3 pH-dependently as the pH decreased from 6.5 to 4.8, and that the receptor activation occurred every time an acid solution was applied. Although MCL per se is sensory-inactive at pH 6.7 or higher, it suppressed the response of hT1R2-hT1R3 to other sweeteners at neutral pH and enhanced the response at weakly acidic pH. Using human/mouse chimeric receptors and molecular modeling, we revealed that the amino-terminal domain of hT1R2 is required for the response to MCL. Our data suggest that MCL binds hT1R2-hT1R3 as an antagonist at neutral pH and functionally changes into an agonist at acidic pH, and we conclude this may cause its taste-modifying activity.

  9. Human sweet taste receptor mediates acid-induced sweetness of miraculin

    Science.gov (United States)

    Koizumi, Ayako; Tsuchiya, Asami; Nakajima, Ken-ichiro; Ito, Keisuke; Terada, Tohru; Shimizu-Ibuka, Akiko; Briand, Loïc; Asakura, Tomiko; Misaka, Takumi; Abe, Keiko

    2011-01-01

    Miraculin (MCL) is a homodimeric protein isolated from the red berries of Richadella dulcifica. MCL, although flat in taste at neutral pH, has taste-modifying activity to convert sour stimuli to sweetness. Once MCL is held on the tongue, strong sweetness is sensed over 1 h each time we taste a sour solution. Nevertheless, no molecular mechanism underlying the taste-modifying activity has been clarified. In this study, we succeeded in quantitatively evaluating the acid-induced sweetness of MCL using a cell-based assay system and found that MCL activated hT1R2-hT1R3 pH-dependently as the pH decreased from 6.5 to 4.8, and that the receptor activation occurred every time an acid solution was applied. Although MCL per se is sensory-inactive at pH 6.7 or higher, it suppressed the response of hT1R2-hT1R3 to other sweeteners at neutral pH and enhanced the response at weakly acidic pH. Using human/mouse chimeric receptors and molecular modeling, we revealed that the amino-terminal domain of hT1R2 is required for the response to MCL. Our data suggest that MCL binds hT1R2-hT1R3 as an antagonist at neutral pH and functionally changes into an agonist at acidic pH, and we conclude this may cause its taste-modifying activity. PMID:21949380

  10. Evolution of sweet taste perception in hummingbirds by transformation of the ancestral umami receptor

    Science.gov (United States)

    Baldwin, Maude W.; Toda, Yasuka; Nakagita, Tomoya; O'Connell, Mary J.; Klasing, Kirk C.; Misaka, Takumi; Edwards, Scott V.; Liberles, Stephen D.

    2015-01-01

    Sensory systems define an animal's capacity for perception and can evolve to promote survival in new environmental niches. We have uncovered a noncanonical mechanism for sweet taste perception that evolved in hummingbirds since their divergence from insectivorous swifts, their closest relatives. We observed the widespread absence in birds of an essential subunit (T1R2) of the only known vertebrate sweet receptor, raising questions about how specialized nectar feeders such as hummingbirds sense sugars. Receptor expression studies revealed that the ancestral umami receptor (the T1R1-T1R3 heterodimer) was repurposed in hummingbirds to function as a carbohydrate receptor. Furthermore, the molecular recognition properties of T1R1-T1R3 guided taste behavior in captive and wild hummingbirds. We propose that changing taste receptor function enabled hummingbirds to perceive and use nectar, facilitating the massive radiation of hummingbird species. PMID:25146290

  11. Sensory biology. Evolution of sweet taste perception in hummingbirds by transformation of the ancestral umami receptor.

    Science.gov (United States)

    Baldwin, Maude W; Toda, Yasuka; Nakagita, Tomoya; O'Connell, Mary J; Klasing, Kirk C; Misaka, Takumi; Edwards, Scott V; Liberles, Stephen D

    2014-08-22

    Sensory systems define an animal's capacity for perception and can evolve to promote survival in new environmental niches. We have uncovered a noncanonical mechanism for sweet taste perception that evolved in hummingbirds since their divergence from insectivorous swifts, their closest relatives. We observed the widespread absence in birds of an essential subunit (T1R2) of the only known vertebrate sweet receptor, raising questions about how specialized nectar feeders such as hummingbirds sense sugars. Receptor expression studies revealed that the ancestral umami receptor (the T1R1-T1R3 heterodimer) was repurposed in hummingbirds to function as a carbohydrate receptor. Furthermore, the molecular recognition properties of T1R1-T1R3 guided taste behavior in captive and wild hummingbirds. We propose that changing taste receptor function enabled hummingbirds to perceive and use nectar, facilitating the massive radiation of hummingbird species. Copyright © 2014, American Association for the Advancement of Science.

  12. Evolution of sweet taste perception in hummingbirds by transformation of the ancestral umami receptor

    OpenAIRE

    Baldwin, Maude Wheeler; Toda, Y.; Nakagita, T.; O'Connell, Mary J.; Klasing, Kirk C.; Misaka, T.; Edwards, Scott V.; Liberles, Stephen D

    2014-01-01

    Sensory systems define an animal's capacity for perception and can evolve to promote survival in new environmental niches. We have uncovered a noncanonical mechanism for sweet taste perception that evolved in hummingbirds since their divergence from insectivorous swifts, their closest relatives. We observed the widespread absence in birds of an essential subunit (T1R2) of the only known vertebrate sweet receptor, raising questions about how specialized nectar feeders such as hummingbirds sens...

  13. The binding site for neohesperidin dihydrochalcone at the human sweet taste receptor

    Directory of Open Access Journals (Sweden)

    Kratochwil Nicole A

    2007-10-01

    Full Text Available Abstract Background Differences in sweet taste perception among species depend on structural variations of the sweet taste receptor. The commercially used isovanillyl sweetener neohesperidin dihydrochalcone activates the human but not the rat sweet receptor TAS1R2+TAS1R3. Analysis of interspecies combinations and chimeras of rat and human TAS1R2+TAS1R3 suggested that the heptahelical domain of human TAS1R3 is crucial for the activation of the sweet receptor by neohesperidin dihydrochalcone. Results By mutational analysis combined with functional studies and molecular modeling we identified a set of different amino acid residues within the heptahelical domain of human TAS1R3 that forms the neohesperidin dihydrochalcone binding pocket. Sixteen amino acid residues in the transmembrane domains 2 to 7 and one in the extracellular loop 2 of hTAS1R3 influenced the receptor's response to neohesperidin dihydrochalcone. Some of these seventeen residues are also part of the binding sites for the sweetener cyclamate or the sweet taste inhibitor lactisole. In line with this observation, lactisole inhibited activation of the sweet receptor by neohesperidin dihydrochalcone and cyclamate competitively, whereas receptor activation by aspartame, a sweetener known to bind to the N-terminal domain of TAS1R2, was allosterically inhibited. Seven of the amino acid positions crucial for activation of hTAS1R2+hTAS1R3 by neohesperidin dihydrochalcone are thought to play a role in the binding of allosteric modulators of other class C GPCRs, further supporting our model of the neohesperidin dihydrochalcone pharmacophore. Conclusion From our data we conclude that we identified the neohesperidin dihydrochalcone binding site at the human sweet taste receptor, which overlaps with those for the sweetener cyclamate and the sweet taste inhibitor lactisole. This readily delivers a molecular explanation of our finding that lactisole is a competitive inhibitor of the receptor

  14. The binding site for neohesperidin dihydrochalcone at the human sweet taste receptor.

    Science.gov (United States)

    Winnig, Marcel; Bufe, Bernd; Kratochwil, Nicole A; Slack, Jay P; Meyerhof, Wolfgang

    2007-10-12

    Differences in sweet taste perception among species depend on structural variations of the sweet taste receptor. The commercially used isovanillyl sweetener neohesperidin dihydrochalcone activates the human but not the rat sweet receptor TAS1R2+TAS1R3. Analysis of interspecies combinations and chimeras of rat and human TAS1R2+TAS1R3 suggested that the heptahelical domain of human TAS1R3 is crucial for the activation of the sweet receptor by neohesperidin dihydrochalcone. By mutational analysis combined with functional studies and molecular modeling we identified a set of different amino acid residues within the heptahelical domain of human TAS1R3 that forms the neohesperidin dihydrochalcone binding pocket. Sixteen amino acid residues in the transmembrane domains 2 to 7 and one in the extracellular loop 2 of hTAS1R3 influenced the receptor's response to neohesperidin dihydrochalcone. Some of these seventeen residues are also part of the binding sites for the sweetener cyclamate or the sweet taste inhibitor lactisole. In line with this observation, lactisole inhibited activation of the sweet receptor by neohesperidin dihydrochalcone and cyclamate competitively, whereas receptor activation by aspartame, a sweetener known to bind to the N-terminal domain of TAS1R2, was allosterically inhibited. Seven of the amino acid positions crucial for activation of hTAS1R2+hTAS1R3 by neohesperidin dihydrochalcone are thought to play a role in the binding of allosteric modulators of other class C GPCRs, further supporting our model of the neohesperidin dihydrochalcone pharmacophore. From our data we conclude that we identified the neohesperidin dihydrochalcone binding site at the human sweet taste receptor, which overlaps with those for the sweetener cyclamate and the sweet taste inhibitor lactisole. This readily delivers a molecular explanation of our finding that lactisole is a competitive inhibitor of the receptor activation by neohesperidin dihydrochalcone and cyclamate. Some

  15. Characterization of the modes of binding between human sweet taste receptor and low-molecular-weight sweet compounds.

    Directory of Open Access Journals (Sweden)

    Katsuyoshi Masuda

    Full Text Available One of the most distinctive features of human sweet taste perception is its broad tuning to chemically diverse compounds ranging from low-molecular-weight sweeteners to sweet-tasting proteins. Many reports suggest that the human sweet taste receptor (hT1R2-hT1R3, a heteromeric complex composed of T1R2 and T1R3 subunits belonging to the class C G protein-coupled receptor family, has multiple binding sites for these sweeteners. However, it remains unclear how the same receptor recognizes such diverse structures. Here we aim to characterize the modes of binding between hT1R2-hT1R3 and low-molecular-weight sweet compounds by functional analysis of a series of site-directed mutants and by molecular modeling-based docking simulation at the binding pocket formed on the large extracellular amino-terminal domain (ATD of hT1R2. We successfully determined the amino acid residues responsible for binding to sweeteners in the cleft of hT1R2 ATD. Our results suggest that individual ligands have sets of specific residues for binding in correspondence with the chemical structures and other residues responsible for interacting with multiple ligands.

  16. Sweet taste receptor in the hypothalamus: a potential new player in glucose sensing in the hypothalamus.

    Science.gov (United States)

    Kohno, Daisuke

    2017-07-01

    The hypothalamic feeding center plays an important role in energy homeostasis. The feeding center senses the systemic energy status by detecting hormone and nutrient levels for homeostatic regulation, resulting in the control of food intake, heat production, and glucose production and uptake. The concentration of glucose is sensed by two types of glucose-sensing neurons in the feeding center: glucose-excited neurons and glucose-inhibited neurons. Previous studies have mainly focused on glucose metabolism as the mechanism underlying glucose sensing. Recent studies have indicated that receptor-mediated pathways also play a role in glucose sensing. This review describes sweet taste receptors in the hypothalamus and explores the role of sweet taste receptors in energy homeostasis.

  17. Humans Can Taste Glucose Oligomers Independent of the hT1R2/hT1R3 Sweet Taste Receptor.

    Science.gov (United States)

    Lapis, Trina J; Penner, Michael H; Lim, Juyun

    2016-08-23

    It is widely accepted that humans can taste mono- and disaccharides as sweet substances, but they cannot taste longer chain oligo- and polysaccharides. From the evolutionary standpoint, the ability to taste starch or its oligomeric hydrolysis products would be highly adaptive, given their nutritional value. Here, we report that humans can taste glucose oligomer preparations (average degree of polymerization 7 and 14) without any other sensorial cues. The same human subjects could not taste the corresponding glucose polymer preparation (average degree of polymerization 44). When the sweet taste receptor was blocked by lactisole, a known sweet inhibitor, subjects could not detect sweet substances (glucose, maltose, and sucralose), but they could still detect the glucose oligomers. This suggests that glucose oligomer detection is independent of the hT1R2/hT1R3 sweet taste receptor. Human subjects described the taste of glucose oligomers as "starchy," while they describe sugars as "sweet." The dose-response function of glucose oligomer was also found to be indistinguishable from that of glucose on a molar basis. © The Author 2016. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  18. Artificial sweeteners stimulate adipogenesis and suppress lipolysis independently of sweet taste receptors.

    Science.gov (United States)

    Simon, Becky R; Parlee, Sebastian D; Learman, Brian S; Mori, Hiroyuki; Scheller, Erica L; Cawthorn, William P; Ning, Xiaomin; Gallagher, Katherine; Tyrberg, Björn; Assadi-Porter, Fariba M; Evans, Charles R; MacDougald, Ormond A

    2013-11-08

    G protein-coupled receptors mediate responses to a myriad of ligands, some of which regulate adipocyte differentiation and metabolism. The sweet taste receptors T1R2 and T1R3 are G protein-coupled receptors that function as carbohydrate sensors in taste buds, gut, and pancreas. Here we report that sweet taste receptors T1R2 and T1R3 are expressed throughout adipogenesis and in adipose tissues. Treatment of mouse and human precursor cells with artificial sweeteners, saccharin and acesulfame potassium, enhanced adipogenesis. Saccharin treatment of 3T3-L1 cells and primary mesenchymal stem cells rapidly stimulated phosphorylation of Akt and downstream targets with functions in adipogenesis such as cAMP-response element-binding protein and FOXO1; however, increased expression of peroxisome proliferator-activated receptor γ and CCAAT/enhancer-binding protein α was not observed until relatively late in differentiation. Saccharin-stimulated Akt phosphorylation at Thr-308 occurred within 5 min, was phosphatidylinositol 3-kinase-dependent, and occurred in the presence of high concentrations of insulin and dexamethasone; phosphorylation of Ser-473 occurred more gradually. Surprisingly, neither saccharin-stimulated adipogenesis nor Thr-308 phosphorylation was dependent on expression of T1R2 and/or T1R3, although Ser-473 phosphorylation was impaired in T1R2/T1R3 double knock-out precursors. In mature adipocytes, artificial sweetener treatment suppressed lipolysis even in the presence of forskolin, and lipolytic responses were correlated with phosphorylation of hormone-sensitive lipase. Suppression of lipolysis by saccharin in adipocytes was also independent of T1R2 and T1R3. These results suggest that some artificial sweeteners have previously uncharacterized metabolic effects on adipocyte differentiation and metabolism and that effects of artificial sweeteners on adipose tissue biology may be largely independent of the classical sweet taste receptors, T1R2 and T1R3.

  19. Artificial Sweeteners Stimulate Adipogenesis and Suppress Lipolysis Independently of Sweet Taste Receptors*

    Science.gov (United States)

    Simon, Becky R.; Parlee, Sebastian D.; Learman, Brian S.; Mori, Hiroyuki; Scheller, Erica L.; Cawthorn, William P.; Ning, Xiaomin; Gallagher, Katherine; Tyrberg, Björn; Assadi-Porter, Fariba M.; Evans, Charles R.; MacDougald, Ormond A.

    2013-01-01

    G protein-coupled receptors mediate responses to a myriad of ligands, some of which regulate adipocyte differentiation and metabolism. The sweet taste receptors T1R2 and T1R3 are G protein-coupled receptors that function as carbohydrate sensors in taste buds, gut, and pancreas. Here we report that sweet taste receptors T1R2 and T1R3 are expressed throughout adipogenesis and in adipose tissues. Treatment of mouse and human precursor cells with artificial sweeteners, saccharin and acesulfame potassium, enhanced adipogenesis. Saccharin treatment of 3T3-L1 cells and primary mesenchymal stem cells rapidly stimulated phosphorylation of Akt and downstream targets with functions in adipogenesis such as cAMP-response element-binding protein and FOXO1; however, increased expression of peroxisome proliferator-activated receptor γ and CCAAT/enhancer-binding protein α was not observed until relatively late in differentiation. Saccharin-stimulated Akt phosphorylation at Thr-308 occurred within 5 min, was phosphatidylinositol 3-kinase-dependent, and occurred in the presence of high concentrations of insulin and dexamethasone; phosphorylation of Ser-473 occurred more gradually. Surprisingly, neither saccharin-stimulated adipogenesis nor Thr-308 phosphorylation was dependent on expression of T1R2 and/or T1R3, although Ser-473 phosphorylation was impaired in T1R2/T1R3 double knock-out precursors. In mature adipocytes, artificial sweetener treatment suppressed lipolysis even in the presence of forskolin, and lipolytic responses were correlated with phosphorylation of hormone-sensitive lipase. Suppression of lipolysis by saccharin in adipocytes was also independent of T1R2 and T1R3. These results suggest that some artificial sweeteners have previously uncharacterized metabolic effects on adipocyte differentiation and metabolism and that effects of artificial sweeteners on adipose tissue biology may be largely independent of the classical sweet taste receptors, T1R2 and T1R3. PMID

  20. Sweet taste in man: a review.

    Science.gov (United States)

    Meyers, B; Brewer, M S

    2008-08-01

    A greater understanding of the molecular mechanisms of sweet taste has profound significance for the food industry as well as for consumers. Understanding the mechanism by which sweet taste is elicited by saccharides, peptides, and proteins will assist science and industry in their search for sweet substances with fewer negative health effects. The original AH-B theories have been supplanted by detailed structural models. Recent identification of the human sweet receptor as a dimeric G-protein coupled receptor comprising T1R2 and T1R3 subunits has greatly increased the understanding of the mechanisms involved in sweet molecule binding and sweet taste transduction. This review discusses early theories of the sweet receptor, recent research of sweetener chemoreception of nonprotein and protein ligands, homology modeling, the transduction pathway, the possibility of the sweet receptor functioning allosterically, as well as the implications of allelic variation.

  1. Bitter, sweet and umami taste receptors and downstream signaling effectors: Expression in embryonic and growing chicken gastrointestinal tract.

    Science.gov (United States)

    Cheled-Shoval, Shira L; Druyan, Shelly; Uni, Zehava

    2015-08-01

    Taste perception is a crucial biological mechanism affecting food and water choices and consumption in the animal kingdom. Bitter taste perception is mediated by a G-protein-coupled receptor (GPCR) family-the taste 2 receptors (T2R)-and their downstream proteins, whereas sweet and umami tastes are mediated by the GPCR family -taste 1 receptors (T1R) and their downstream proteins. Taste receptors and their downstream proteins have been identified in extra-gustatory tissues in mammals, such as the lungs and gastrointestinal tract (GIT), and their GIT activation has been linked with different metabolic and endocrinic pathways in the GIT. The chicken genome contains three bitter taste receptors termed ggTas2r1, ggTas2r2, and ggTas2r7, and the sweet/umami receptors ggTas1r1 and ggTas1r3, but it lacks the sweet receptor ggTas1r2. The aim of this study was to identify and determine the expression of genes related to taste perception in the chicken GIT, both at the embryonic stage and in growing chickens. The results of this study demonstrate for the first time, using real-time PCR, expression of the chicken taste receptor genes ggTas2r1, ggTas2r2, ggTas2r7, ggTas1r1, and ggTas1r3 and of their downstream protein-encoding genes TRPM5, α-gustducin, and PLCβ2 in both gustatory tissues-the palate and tongue, and extra-gustatory tissues-the proventriculus, duodenum, jejunum, ileum, cecum, and colon of embryonic day 19 (E19) and growing (21 d old) chickens. Expression of these genes suggests the involvement of taste pathways for sensing carbohydrates, amino acids and bitter compounds in the chicken GIT. © 2015 Poultry Science Association Inc.

  2. Genetics of taste receptors.

    Science.gov (United States)

    Bachmanov, Alexander A; Bosak, Natalia P; Lin, Cailu; Matsumoto, Ichiro; Ohmoto, Makoto; Reed, Danielle R; Nelson, Theodore M

    2014-01-01

    Taste receptors function as one of the interfaces between internal and external milieus. Taste receptors for sweet and umami (T1R [taste receptor, type 1]), bitter (T2R [taste receptor, type 2]), and salty (ENaC [epithelial sodium channel]) have been discovered in the recent years, but transduction mechanisms of sour taste and ENaC-independent salt taste are still poorly understood. In addition to these five main taste qualities, the taste system detects such noncanonical "tastes" as water, fat, and complex carbohydrates, but their reception mechanisms require further research. Variations in taste receptor genes between and within vertebrate species contribute to individual and species differences in taste-related behaviors. These variations are shaped by evolutionary forces and reflect species adaptations to their chemical environments and feeding ecology. Principles of drug discovery can be applied to taste receptors as targets in order to develop novel taste compounds to satisfy demand in better artificial sweeteners, enhancers of sugar and sodium taste, and blockers of bitterness of food ingredients and oral medications.

  3. Identification of key neoculin residues responsible for the binding and activation of the sweet taste receptor

    Science.gov (United States)

    Koizumi, Taichi; Terada, Tohru; Nakajima, Ken-ichiro; Kojima, Masaki; Koshiba, Seizo; Matsumura, Yoshitaka; Kaneda, Kohei; Asakura, Tomiko; Shimizu-Ibuka, Akiko; Abe, Keiko; Misaka, Takumi

    2015-01-01

    Neoculin (NCL) is a heterodimeric protein isolated from the edible fruit of Curculigo latifolia. It exerts a taste-modifying activity by converting sourness to sweetness. We previously demonstrated that NCL changes its action on the human sweet receptor hT1R2-hT1R3 from antagonism to agonism as the pH changes from neutral to acidic values, and that the histidine residues of NCL molecule play critical roles in this pH-dependent functional change. Here, we comprehensively screened key amino acid residues of NCL using nuclear magnetic resonance (NMR) spectroscopy and alanine scanning mutagenesis. We found that the mutations of Arg48, Tyr65, Val72 and Phe94 of NCL basic subunit increased or decreased both the antagonist and agonist activities. The mutations had only a slight effect on the pH-dependent functional change. These residues should determine the affinity of NCL for the receptor regardless of pH. Their locations were separated from the histidine residues responsible for the pH-dependent functional change in the tertiary structure. From these results, we concluded that NCL interacts with hT1R2-hT1R3 through a pH-independent affinity interface including the four residues and a pH-dependent activation interface including the histidine residues. Thus, the receptor activation is induced by local structural changes in the pH-dependent interface. PMID:26263392

  4. Sweet Taste Receptor Activation in the Gut Is of Limited Importance for Glucose-Stimulated GLP-1 and GIP Secretion

    DEFF Research Database (Denmark)

    Saltiel, Monika Yosifova; Kuhre, Rune Ehrenreich; Christiansen, Charlotte Bayer

    2017-01-01

    Glucose stimulates the secretion of the incretin hormones: glucagon-like peptide-1 (GLP-1) and glucose-dependent insulinotropic peptide (GIP). It is debated whether the sweet taste receptor (STR) triggers this secretion. We investigated the role of STR activation for glucose-stimulated incretin...

  5. Pharmacogenetics of taste: turning bitter pills sweet?

    Science.gov (United States)

    Nagtegaal, Mariëlle J; Swen, Jesse J; Hanff, Lidwien M; Schimmel, Kirsten Jm; Guchelaar, Henk-Jan

    2014-01-01

    Poor palatability of oral drug formulations used for young children negatively influences medication intake, resulting in suboptimal treatment. Some children are more sensitive to bitter tastes than others. Bitter tasting status is currently assessed by phenotyping with 6-n-propylthiouracil (PROP) as a bitter probe. Recent studies showed that interindividual differences in PROP sensitivity can be largely explained by three SNPs in TAS2R38, encoding a bitter taste receptor. Gustin, involved in the development of taste buds, and the sweet receptor genotype potentially explain remaining parts of PROP sensitivity variability. Other TAS2 receptor bitter receptor genes may also play a role in bitter aversions. Dependent on their genotype, children may have different medication formulation preferences. Taste genetics could improve drug acceptance by enabling better-informed choices on adapting oral formulations to children's taste preferences. This paper presents an overview of recent findings concerning bitter taste genetics and discusses these in the context of pediatric drug formulation.

  6. Potential arms race in the coevolution of primates and angiosperms: brazzein sweet proteins and gorilla taste receptors.

    Science.gov (United States)

    Guevara, Elaine E; Veilleux, Carrie C; Saltonstall, Kristin; Caccone, Adalgisa; Mundy, Nicholas I; Bradley, Brenda J

    2016-09-01

    We explored whether variation in the sweet taste receptor protein T1R3 in primates could contribute to differences in sweet taste repertoire among species, potentially reflecting coevolution with local plants. Specifically, we examined which primates are likely to be sweet "tasters" of brazzein, a protein found in the fruit of the African plant Pentadiplandra brazzeana that tastes intensely sweet to humans, but provides little energy. Sweet proteins like brazzein are thought to mimic the taste of sugars to entice seed dispersers. We examined the evolution of T1R3 and assessed whether primates are likely "deceived" by such biochemical mimicry. Using published and new sequence data for TAS1R3, we characterized 57 primates and other mammals at the two amino acid sites necessary to taste brazzein to determine which species are tasters. We further used dN/dS-based methods to look for statistical evidence of accelerated evolution in this protein across primate lineages. The taster genotype is shared across most catarrhines, suggesting that most African primates can be "tricked" into eating and dispersing P. brazzeana's seeds for little caloric gain. Western gorillas (Gorilla gorilla), however, exhibit derived mutations at the two brazzein-critical positions, and although fruit is a substantial portion of the western gorilla diet, they have not been observed to eat P. brazzeana. Our analyses of protein evolution found no signature of positive selection on TAS1R3 along the gorilla lineage. We propose that the gorilla-specific mutations at the TAS1R3 locus encoding T1R3 could be a counter-adaptation to the false sweet signal of brazzein. © 2016 Wiley Periodicals, Inc.

  7. Sweet Taste Receptors Mediated ROS-NLRP3 Inflammasome Signaling Activation: Implications for Diabetic Nephropathy

    Directory of Open Access Journals (Sweden)

    Luping Zhou

    2018-01-01

    Full Text Available Previous studies demonstrated that ROS-NLRP3 inflammasome signaling activation was involved in the pathogenesis of diabetic nephropathy (DN. Recent research has shown that sweet taste receptors (STRs are important sentinels of innate immunity. Whether high glucose primes ROS-NLRP3 inflammasome signaling via STRs is unclear. In this study, diabetic mouse model was induced by streptozotocin (STZ in vivo; mouse glomerular mesangial cells (GMCs and human proximal tubular cells were stimulated by high glucose (10, 20, and 30 mmol/L in vitro; STR inhibitor lactisole was used as an intervention reagent to evaluate the role and mechanism of the STRs in the pathogenesis of DN. Our results showed that the expression of STRs and associated signaling components (Gα-gustducin, PLCβ2, and TRPM5 was obviously downregulated under the condition of diabetes in vivo and in vitro. Furthermore, lactisole significantly mitigated the production of intracellular ROS and reversed the high glucose-induced decrease of Ca2+ and the activation of NLRP3 inflammasome signaling in vitro (p<0.05. These combined results support the hypothesis that STRs could be involved in the activation of ROS-NLRP3 inflammasome signaling in the pathogenesis of DN, suggesting that STRs may act as new therapeutic targets of DN.

  8. Acid-induced sweetness of neoculin is ascribed to its pH-dependent agonistic-antagonistic interaction with human sweet taste receptor.

    Science.gov (United States)

    Nakajima, Ken-ichiro; Morita, Yuji; Koizumi, Ayako; Asakura, Tomiko; Terada, Tohru; Ito, Keisuke; Shimizu-Ibuka, Akiko; Maruyama, Jun-ichi; Kitamoto, Katsuhiko; Misaka, Takumi; Abe, Keiko

    2008-07-01

    Neoculin (NCL) is a sweet protein that also has taste-modifying activity to convert sourness to sweetness. However, it has been unclear how NCL induces this unique sensation. Here we quantitatively evaluated the pH-dependent acid-induced sweetness of NCL using a cell-based assay system. The human sweet taste receptor, hT1R2-hT1R3, was functionally expressed in HEK293T cells together with G alpha protein. When NCL was applied to the cells under different pH conditions, it activated hT1R2-hT1R3 in a pH-dependent manner as the condition changed from pH 8 to 5. The pH-response sigmoidal curve resembled the imidazole titration curve, suggesting that His residues were involved in the taste-modifying activity. We then constructed an NCL variant in which all His residues were replaced with Ala and found that the variant elicited strong sweetness at neutral pH as well as at acidic pH. Since NCL and the variant elicited weak and strong sweetness at the same neutral pH, respectively, we applied different proportions of NCL-variant mixtures to the cells at this pH. As a result, NCL competitively inhibits the variant-induced receptor activation. All these data suggest that NCL acts as an hT1R2-hT1R3 agonist at acidic pH but functionally changes into its antagonist at neutral pH.

  9. Sweet Taste Receptor Serves to Activate Glucose- and Leptin-Responsive Neurons in the Hypothalamic Arcuate Nucleus and Participates in Glucose Responsiveness.

    Science.gov (United States)

    Kohno, Daisuke; Koike, Miho; Ninomiya, Yuzo; Kojima, Itaru; Kitamura, Tadahiro; Yada, Toshihiko

    2016-01-01

    The hypothalamic feeding center plays an important role in energy homeostasis. In the feeding center, whole-body energy signals including hormones and nutrients are sensed, processed, and integrated. As a result, food intake and energy expenditure are regulated. Two types of glucose-sensing neurons exist in the hypothalamic arcuate nucleus (ARC): glucose-excited neurons and glucose-inhibited neurons. While some molecules are known to be related to glucose sensing in the hypothalamus, the mechanisms underlying glucose sensing in the hypothalamus are not fully understood. The sweet taste receptor is a heterodimer of taste type 1 receptor 2 (T1R2) and taste type 1 receptor 3 (T1R3) and senses sweet tastes. T1R2 and T1R3 are distributed in multiple organs including the tongue, pancreas, adipose tissue, and hypothalamus. However, the role of sweet taste receptors in the ARC remains to be clarified. To examine the role of sweet taste receptors in the ARC, cytosolic Ca 2+ concentration ([Ca 2+ ] i ) in isolated single ARC neurons were measured using Fura-2 fluorescent imaging. An artificial sweetener, sucralose at 10 -5 -10 -2 M dose dependently increased [Ca 2+ ] i in 12-16% of ARC neurons. The sucralose-induced [Ca 2+ ] i increase was suppressed by a sweet taste receptor inhibitor, gurmarin. The sucralose-induced [Ca 2+ ] i increase was inhibited under an extracellular Ca 2+ -free condition and in the presence of an L-type Ca 2+ channel blocker, nitrendipine. Sucralose-responding neurons were activated by high-concentration of glucose. This response to glucose was markedly suppressed by gurmarin. More than half of sucralose-responding neurons were activated by leptin but not ghrelin. Percentages of proopiomelanocortin (POMC) neurons among sucralose-responding neurons and sweet taste receptor expressing neurons were low, suggesting that majority of sucralose-responding neurons are non-POMC neurons. These data suggest that sweet taste receptor-mediated cellular activation

  10. Anticonvulsant activity of artificial sweeteners: a structural link between sweet-taste receptor T1R3 and brain glutamate receptors.

    Science.gov (United States)

    Talevi, Alan; Enrique, Andrea V; Bruno-Blanch, Luis E

    2012-06-15

    A virtual screening campaign based on application of a topological discriminant function capable of identifying novel anticonvulsant agents indicated several widely-used artificial sweeteners as potential anticonvulsant candidates. Acesulfame potassium, cyclamate and saccharin were tested in the Maximal Electroshock Seizure model (mice, ip), showing moderate anticonvulsant activity. We hypothesized a probable structural link between the receptor responsible of sweet taste and anticonvulsant molecular targets. Bioinformatic tools confirmed a highly significant sequence-similarity between taste-related protein T1R3 and several metabotropic glutamate receptors from different species, including glutamate receptors upregulated in epileptogenesis and certain types of epilepsy. Copyright © 2012 Elsevier Ltd. All rights reserved.

  11. Characterization of the Sweet Taste Receptor Tas1r2 from an Old World Monkey Species Rhesus Monkey and Species-Dependent Activation of the Monomeric Receptor by an Intense Sweetener Perillartine.

    Directory of Open Access Journals (Sweden)

    Chenggu Cai

    Full Text Available Sweet state is a basic physiological sensation of humans and other mammals which is mediated by the broadly acting sweet taste receptor-the heterodimer of Tas1r2 (taste receptor type 1 member 2 and Tas1r3 (taste receptor type 1 member 3. Various sweeteners interact with either Tas1r2 or Tas1r3 and then activate the receptor. In this study, we cloned, expressed and functionally characterized the taste receptor Tas1r2 from a species of Old World monkeys, the rhesus monkey. Paired with the human TAS1R3, it was shown that the rhesus monkey Tas1r2 could respond to natural sugars, amino acids and their derivates. Furthermore, similar to human TAS1R2, rhesus monkey Tas1r2 could respond to artificial sweeteners and sweet-tasting proteins. However, the responses induced by rhesus monkey Tas1r2 could not be inhibited by the sweet inhibitor amiloride. Moreover, we found a species-dependent activation of the Tas1r2 monomeric receptors of human, rhesus monkey and squirrel monkey but not mouse by an intense sweetener perillartine. Molecular modeling and sequence analysis indicate that the receptor has the conserved domains and ligand-specific interactive residues, which have been identified in the characterized sweet taste receptors up to now. This is the first report of the functional characterization of sweet taste receptors from an Old World monkey species.

  12. Distinct human and mouse membrane trafficking systems for sweet taste receptors T1r2 and T1r3.

    Science.gov (United States)

    Shimizu, Madoka; Goto, Masao; Kawai, Takayuki; Yamashita, Atsuko; Kusakabe, Yuko

    2014-01-01

    The sweet taste receptors T1r2 and T1r3 are included in the T1r taste receptor family that belongs to class C of the G protein-coupled receptors. Heterodimerization of T1r2 and T1r3 is required for the perception of sweet substances, but little is known about the mechanisms underlying this heterodimerization, including membrane trafficking. We developed tagged mouse T1r2 and T1r3, and human T1R2 and T1R3 and evaluated membrane trafficking in human embryonic kidney 293 (HEK293) cells. We found that human T1R3 surface expression was only observed when human T1R3 was coexpressed with human T1R2, whereas mouse T1r3 was expressed without mouse T1r2 expression. A domain-swapped chimera and truncated human T1R3 mutant showed that the Venus flytrap module and cysteine-rich domain (CRD) of human T1R3 contain a region related to the inhibition of human T1R3 membrane trafficking and coordinated regulation of human T1R3 membrane trafficking. We also found that the Venus flytrap module of both human T1R2 and T1R3 are needed for membrane trafficking, suggesting that the coexpression of human T1R2 and T1R3 is required for this event. These results suggest that the Venus flytrap module and CRD receive taste substances and play roles in membrane trafficking of human T1R2 and T1R3. These features are different from those of mouse receptors, indicating that human T1R2 and T1R3 are likely to have a novel membrane trafficking system.

  13. Leptin Suppresses Mouse Taste Cell Responses to Sweet Compounds.

    Science.gov (United States)

    Yoshida, Ryusuke; Noguchi, Kenshi; Shigemura, Noriatsu; Jyotaki, Masafumi; Takahashi, Ichiro; Margolskee, Robert F; Ninomiya, Yuzo

    2015-11-01

    Leptin is known to selectively suppress neural and behavioral responses to sweet-tasting compounds. However, the molecular basis for the effect of leptin on sweet taste is not known. Here, we report that leptin suppresses sweet taste via leptin receptors (Ob-Rb) and KATP channels expressed selectively in sweet-sensitive taste cells. Ob-Rb was more often expressed in taste cells that expressed T1R3 (a sweet receptor component) than in those that expressed glutamate-aspartate transporter (a marker for Type I taste cells) or GAD67 (a marker for Type III taste cells). Systemically administered leptin suppressed taste cell responses to sweet but not to bitter or sour compounds. This effect was blocked by a leptin antagonist and was absent in leptin receptor-deficient db/db mice and mice with diet-induced obesity. Blocking the KATP channel subunit sulfonylurea receptor 1, which was frequently coexpressed with Ob-Rb in T1R3-expressing taste cells, eliminated the effect of leptin on sweet taste. In contrast, activating the KATP channel with diazoxide mimicked the sweet-suppressing effect of leptin. These results indicate that leptin acts via Ob-Rb and KATP channels that are present in T1R3-expressing taste cells to selectively suppress their responses to sweet compounds. © 2015 by the American Diabetes Association. Readers may use this article as long as the work is properly cited, the use is educational and not for profit, and the work is not altered.

  14. Activation of the sweet taste receptor, T1R3, by the artificial sweetener sucralose regulates the pulmonary endothelium.

    Science.gov (United States)

    Harrington, Elizabeth O; Vang, Alexander; Braza, Julie; Shil, Aparna; Chichger, Havovi

    2018-01-01

    A hallmark of acute respiratory distress syndrome (ARDS) is pulmonary vascular permeability. In these settings, loss of barrier integrity is mediated by cell-contact disassembly and actin remodeling. Studies into molecular mechanisms responsible for improving microvascular barrier function are therefore vital in the development of therapeutic targets for reducing vascular permeability in ARDS. The sweet taste receptor T1R3 is a G protein-coupled receptor, activated following exposure to sweet molecules, to trigger a gustducin-dependent signal cascade. In recent years, extraoral locations for T1R3 have been identified; however, no studies have focused on T1R3 within the vasculature. We hypothesize that activation of T1R3, in the pulmonary vasculature, plays a role in regulating endothelial barrier function in settings of ARDS. Our study demonstrated expression of T1R3 within the pulmonary vasculature, with a drop in expression levels following exposure to barrier-disruptive agents. Exposure of lung microvascular endothelial cells to the intensely sweet molecule sucralose attenuated LPS- and thrombin-induced endothelial barrier dysfunction. Likewise, sucralose exposure attenuated bacteria-induced lung edema formation in vivo. Inhibition of sweet taste signaling, through zinc sulfate, T1R3, or G-protein siRNA, blunted the protective effects of sucralose on the endothelium. Sucralose significantly reduced LPS-induced increased expression or phosphorylation of the key signaling molecules Src, p21-activated kinase (PAK), myosin light chain-2 (MLC2), heat shock protein 27 (HSP27), and p110α phosphatidylinositol 3-kinase (p110αPI3K). Activation of T1R3 by sucralose protects the pulmonary endothelium from edemagenic agent-induced barrier disruption, potentially through abrogation of Src/PAK/p110αPI3K-mediated cell-contact disassembly and Src/MLC2/HSP27-mediated actin remodeling. Identification of sweet taste sensing in the pulmonary vasculature may represent a novel

  15. Sweet taste receptor expressed in pancreatic beta-cells activates the calcium and cyclic AMP signaling systems and stimulates insulin secretion.

    Directory of Open Access Journals (Sweden)

    Yuko Nakagawa

    Full Text Available BACKGROUND: Sweet taste receptor is expressed in the taste buds and enteroendocrine cells acting as a sugar sensor. We investigated the expression and function of the sweet taste receptor in MIN6 cells and mouse islets. METHODOLOGY/PRINCIPAL FINDINGS: The expression of the sweet taste receptor was determined by RT-PCR and immunohistochemistry. Changes in cytoplasmic Ca(2+ ([Ca(2+](c and cAMP ([cAMP](c were monitored in MIN6 cells using fura-2 and Epac1-camps. Activation of protein kinase C was monitored by measuring translocation of MARCKS-GFP. Insulin was measured by radioimmunoassay. mRNA for T1R2, T1R3, and gustducin was expressed in MIN6 cells. In these cells, artificial sweeteners such as sucralose, succharin, and acesulfame-K increased insulin secretion and augmented secretion induced by glucose. Sucralose increased biphasic increase in [Ca(2+](c. The second sustained phase was blocked by removal of extracellular calcium and addition of nifedipine. An inhibitor of inositol(1, 4, 5-trisphophate receptor, 2-aminoethoxydiphenyl borate, blocked both phases of [Ca(2+](c response. The effect of sucralose on [Ca(2+](c was inhibited by gurmarin, an inhibitor of the sweet taste receptor, but not affected by a G(q inhibitor. Sucralose also induced sustained elevation of [cAMP](c, which was only partially inhibited by removal of extracellular calcium and nifedipine. Finally, mouse islets expressed T1R2 and T1R3, and artificial sweeteners stimulated insulin secretion. CONCLUSIONS: Sweet taste receptor is expressed in beta-cells, and activation of this receptor induces insulin secretion by Ca(2+ and cAMP-dependent mechanisms.

  16. Bitter and sweet tasting molecules: it's complicated.

    Science.gov (United States)

    Di Pizio, Antonella; Ben Shoshan-Galeczki, Yaron; Hayes, John E; Niv, Masha Y

    2018-04-18

    "Bitter" and "sweet" are frequently framed in opposition, both functionally and metaphorically, in regard to affective responses, emotion, and nutrition. This oppositional relationship is complicated by the fact that some molecules are simultaneously bitter and sweet. In some cases, a small chemical modification, or a chirality switch, flips the taste from sweet to bitter. Molecules humans describe as bitter are recognized by a 25 member subfamily of class A G-protein coupled receptors (GPCRs) known as TAS2Rs. Molecules humans describe as sweet are recognized by a TAS1R2/TAS1R3 heterodimer of class C GPCRs. Here we characterize the chemical space of bitter and sweet molecules: the majority of bitter compounds show higher hydrophobicity compared to sweet compounds, while sweet molecules have a wider range of sizes. Critically, recent evidence indicates that TAS1Rs and TAS2Rs are not limited to the oral cavity; moreover, some bitterants are pharmacologically promiscuous, with the hERG potassium channel, cytochrome P450 enzymes and carbonic anhydrases as common off-targets. Further focus on polypharmacology may unravel new physiological roles for tastant molecules. Copyright © 2018. Published by Elsevier B.V.

  17. Sweet taste receptor expression in ruminant intestine and its activation by artificial sweeteners to regulate glucose absorption.

    Science.gov (United States)

    Moran, A W; Al-Rammahi, M; Zhang, C; Bravo, D; Calsamiglia, S; Shirazi-Beechey, S P

    2014-01-01

    Absorption of glucose from the lumen of the intestine into enterocytes is accomplished by sodium-glucose co-transporter 1 (SGLT1). In the majority of mammalian species, expression (this includes activity) of SGLT1 is upregulated in response to increased dietary monosaccharides. This regulatory pathway is initiated by sensing of luminal sugar by the gut-expressed sweet taste receptor. The objectives of our studies were to determine (1) if the ruminant intestine expresses the sweet taste receptor, which consists of two subunits [taste 1 receptor 2 (T1R2) and 3 (T1R3)], and other key signaling molecules required for SGLT1 upregulation in nonruminant intestines, and (2) whether T1R2-T1R3 sensing of artificial sweeteners induces release of glucagon-like peptide-2 (GLP-2) and enhances SGLT1 expression. We found that the small intestine of sheep and cattle express T1R2, T1R3, G-protein gustducin, and GLP-2 in enteroendocrine L-cells. Maintaining 110-d-old ruminating calves for 60d on a diet containing a starter concentrate and the artificial sweetener Sucram (consisting of saccharin and neohesperidin dihydrochalcone; Pancosma SA, Geneva, Switzerland) enhances (1) Na(+)-dependent d-glucose uptake by over 3-fold, (2) villus height and crypt depth by 1.4- and 1.2-fold, and (3) maltase- and alkaline phosphatase-specific activity by 1.5-fold compared to calves maintained on the same diet without Sucram. No statistically significant differences were observed for rates of intestinal glucose uptake, villus height, crypt depth, or enzyme activities between 50-d-old milk-fed calves and calves maintained on the same diet containing Sucram. When adult cows were kept on a diet containing 80:20 ryegrass hay-to-concentrate supplemented with Sucram, more than a 7-fold increase in SGLT1 protein abundance was noted. Collectively, the data indicate that inclusion of this artificial sweetener enhances SGLT1 expression and mucosal growth in ruminant animals. Exposure of ruminant sheep

  18. The T1R2/T1R3 sweet receptor and TRPM5 ion channel taste targets with therapeutic potential.

    Science.gov (United States)

    Sprous, Dennis; Palmer, Kyle R

    2010-01-01

    Taste signaling is a critical determinant of ingestive behaviors and thereby linked to obesity and related metabolic dysfunctions. Recent evidence of taste signaling pathways in the gut suggests the link to be more direct, raising the possibility that taste receptor systems could be regarded as therapeutic targets. T1R2/T1R3, the G protein coupled receptor that mediates sweet taste, and the TRPM5 ion channel have been the focus of discovery programs seeking novel compounds that could be useful in modifying taste. We review in this chapter the hypothesis of gastrointestinal taste signaling and discuss the potential for T1R2/T1R3 and TRPM5 as targets of therapeutic intervention in obesity and diabetes. Critical to the development of a drug discovery program is the creation of libraries that enhance the likelihood of identifying novel compounds that modulate the target of interest. We advocate a computer-based chemoinformatic approach for assembling natural and synthetic compound libraries as well as for supporting optimization of structure activity relationships. Strategies for discovering modulators of T1R2/T1R3 and TRPM5 using methods of chemoinformatics are presented herein. Copyright 2010 Elsevier Inc. All rights reserved.

  19. Is Sweet Taste Perception Associated with Sweet Food Liking and Intake?

    OpenAIRE

    Jayasinghe, Shakeela N.; Kruger, Rozanne; Walsh, Daniel C. I.; Cao, Guojiao; Rivers, Stacey; Richter, Marilize; Breier, Bernhard H.

    2017-01-01

    A range of psychophysical taste measurements are used to characterize an individual?s sweet taste perception and to assess links between taste perception and dietary intake. The aims of this study were to investigate the relationship between four different psychophysical measurements of sweet taste perception, and to explore which measures of sweet taste perception relate to sweet food intake. Forty-four women aged 20?40 years were recruited for the study. Four measures of sweet taste percept...

  20. Hypothesis/review: the structural basis of sweetness perception of sweet-tasting plant proteins can be deduced from sequence analysis.

    Science.gov (United States)

    Wintjens, René; Viet, Tran Melody Vu Ngoc; Mbosso, Emmanuel; Huet, Joëlle

    2011-10-01

    Human perception of sweetness, behind the felt pleasure, is thought to play a role as an indicator of energy density of foods. For humans, only a small number of plant proteins taste sweet. As non-caloric sweeteners, these plant proteins have attracted attention as candidates for the control of obesity, oral health and diabetic management. Significant advances have been made in the characterization of the sweet-tasting plant proteins, as well as their binding interactions with the appropriate receptors. The elucidation of sweet-taste receptor gene sequences represents an important step towards the understanding of sweet taste perception. However, many questions on the molecular basis of sweet-taste elicitation by plant proteins remain unanswered. In particular, why homologues of these proteins do not elicit similar responses? This question is discussed in this report, on the basis of available sequences and structures of sweet-tasting proteins, as well as of sweetness-sensing receptors. A simple procedure based on sequence comparisons between sweet-tasting protein and its homologous counterparts was proposed to identify critical residues for sweetness elicitation. The open question on the physiological function of sweet-tasting plant proteins is also considered. In particular, this review leads us to suggest that sweet-tasting proteins may interact with taste receptor in a serendipity manner. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.

  1. Thermodynamics of the interaction of sweeteners and lactisole with fullerenols as an artificial sweet taste receptor model.

    Science.gov (United States)

    Chen, Zhong-Xiu; Wu, Wen; Zhang, Wei-Bin; Deng, Shao-Ping

    2011-09-01

    The thermodynamics of the mimetic interaction of lactisole and sweeteners with fullerenols as a synthetic sweet receptor model was elucidated by Isothermal Titration Calorimetry (ITC) technique. The presence of lactisole resulted in great differences in thermodynamics of the sweeteners binding with fullerenols in which lactisole led to much more entropy contribution to the free energy compared with the interaction of sweeteners with fullerenols. Two interaction equilibrium states were found in ITC titration profiles and competitive binding of lactisole and sweeteners with fullerenols was disclosed. Our results indicated that the larger value of the ratio of two equilibrium constant K1/K2, the more effectively lactisole inhibited the sweetness of the sweetener. The combined results of sensory evaluation and ITC thermodynamics revealed that introducing a synthetic receptor model to interact with the sweeteners and inhibitors helps to understand the inhibition mechanism and the thermodynamic basis for the initiation of sweetness inhibition. Copyright © 2011 Elsevier Ltd. All rights reserved.

  2. Molecular mechanism of species-dependent sweet taste toward artificial sweeteners.

    Science.gov (United States)

    Liu, Bo; Ha, Matthew; Meng, Xuan-Yu; Kaur, Tanno; Khaleduzzaman, Mohammed; Zhang, Zhe; Jiang, Peihua; Li, Xia; Cui, Meng

    2011-07-27

    The heterodimer of Tas1R2 and Tas1R3 is a broadly acting sweet taste receptor, which mediates mammalian sweet taste toward natural and artificial sweeteners and sweet-tasting proteins. Perception of sweet taste is a species-selective physiological process. For instance, artificial sweeteners aspartame and neotame taste sweet to humans, apes, and Old World monkeys but not to New World monkeys and rodents. Although specific regions determining the activation of the receptors by these sweeteners have been identified, the molecular mechanism of species-dependent sweet taste remains elusive. Using human/squirrel monkey chimeras, mutagenesis, and molecular modeling, we reveal that the different responses of mammalian species toward the artificial sweeteners aspartame and neotame are determined by the steric effect of a combination of a few residues in the ligand binding pocket. Residues S40 and D142 in the human Tas1R2, which correspond to residues T40 and E142 in the squirrel monkey Tas1R2, were found to be the critical residues for the species-dependent difference in sweet taste. In addition, human Tas1R2 residue I67, which corresponds to S67 in squirrel monkey receptor, modulates the higher affinity of neotame than of aspartame. Our studies not only shed light on the molecular mechanism of species-dependent sweet taste toward artificial sweeteners, but also provide guidance for designing novel effective artificial sweet compounds.

  3. T1R3 homomeric sweet taste receptor regulates adipogenesis through Gαs-mediated microtubules disassembly and Rho activation in 3T3-L1 cells.

    Directory of Open Access Journals (Sweden)

    Yosuke Masubuchi

    Full Text Available We previously reported that 3T3-L1 cells express a functional sweet taste receptor possibly as a T1R3 homomer that is coupled to Gs and negatively regulates adipogenesis by a Gαs-mediated but cAMP-independent mechanism. Here, we show that stimulation of this receptor with sucralose or saccharin induced disassembly of the microtubules in 3T3-L1 preadipocytes, which was attenuated by overexpression of the dominant-negative mutant of Gαs (Gαs-G226A. In contrast, overexpression of the constitutively active mutant of Gαs (Gαs-Q227L as well as treatment with cholera toxin or isoproterenol but not with forskolin caused disassembly of the microtubules. Sweetener-induced microtubule disassembly was accompanied by activation of RhoA and Rho-associated kinase (ROCK. This was attenuated with by knockdown of GEF-H1, a microtubule-localized guanine nucleotide exchange factor for Rho GTPase. Furthermore, overexpression of the dominant-negative mutant of RhoA (RhoA-T19N blocked sweetener-induced dephosphorylation of Akt and repression of PPARγ and C/EBPα in the early phase of adipogenic differentiation. These results suggest that the T1R3 homomeric sweet taste receptor negatively regulates adipogenesis through Gαs-mediated microtubule disassembly and consequent activation of the Rho/ROCK pathway.

  4. Modulation of sweet taste sensitivities by endogenous leptin and endocannabinoids in mice.

    Science.gov (United States)

    Niki, Mayu; Jyotaki, Masafumi; Yoshida, Ryusuke; Yasumatsu, Keiko; Shigemura, Noriatsu; DiPatrizio, Nicholas V; Piomelli, Daniele; Ninomiya, Yuzo

    2015-06-01

    Potential roles of endogenous leptin and endocannabinoids in sweet taste were examined by using pharmacological antagonists and mouse models including leptin receptor deficient (db/db) and diet-induced obese (DIO) mice. Chorda tympani (CT) nerve responses of lean mice to sweet compounds were increased after administration of leptin antagonist (LA) but not affected by administration of cannabinoid receptor antagonist (AM251). db/db mice showed clear suppression of CT responses to sweet compounds after AM251, increased endocannabinoid levels in the taste organ, and enhanced expression of a biosynthesizing enzyme of endocannabinoids in taste cells. The effect of LA was gradually decreased and that of AM251 was increased during the course of obesity in DIO mice. These findings suggest that circulating leptin, but not local endocannabinoids, is a dominant modulator for sweet taste in lean mice and endocannabinoids become more effective modulators of sweet taste under conditions of deficient leptin signalling. Leptin is an anorexigenic mediator that reduces food intake by acting on hypothalamic receptor Ob-Rb. In contrast, endocannabinoids are orexigenic mediators that act via cannabinoid CB1 receptors in hypothalamus, limbic forebrain, and brainstem. In the peripheral taste system, leptin administration selectively inhibits behavioural, taste nerve and taste cell responses to sweet compounds. Opposing the action of leptin, endocannabinoids enhance sweet taste responses. However, potential roles of endogenous leptin and endocannabinoids in sweet taste remain unclear. Here, we used pharmacological antagonists (Ob-Rb: L39A/D40A/F41A (LA), CB1 : AM251) and examined the effects of their blocking activation of endogenous leptin and endocannabinoid signalling on taste responses in lean control, leptin receptor deficient db/db, and diet-induced obese (DIO) mice. Lean mice exhibited significant increases in chorda tympani (CT) nerve responses to sweet compounds after LA

  5. Oral and intestinal sweet and fat tasting: impact of receptor polymorphisms and dietary modulation for metabolic disease.

    Science.gov (United States)

    Cvijanovic, Nada; Feinle-Bisset, Christine; Young, Richard L; Little, Tanya J

    2015-05-01

    The human body has evolved with a disposition for nutrient storage, allowing for periods of irregular food availability and famine. In contrast, the modern diet is characterized by excessive consumption of fats and sugars, resulting in a surge in the rates of obesity and type 2 diabetes. Although these metabolic disorders arise from a complex interaction of genetic, social, and environmental factors, evidence now points to fundamental changes in nutrient metabolism at the cellular level contributing to the underlying pathology. Taste receptors detect nutrients in the oral cavity and gastrointestinal tract and can influence the hormonal response to nutrients; they may also become maladaptive in conditions of excess fat or sugar consumption. Precise links between taste receptor activity, and downstream effects on energy intake and glycemia are not well defined. This review outlines the candidate taste receptors for carbohydrates and fats in the oral cavity and within the small intestine, highlighting the contributions of underlying genetics (polymorphisms) and sensory challenges (e.g., a high-fat diet) to the development of obesity and type 2 diabetes. © The Author(s) 2015. Published by Oxford University Press on behalf of the International Life Sciences Institute. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  6. Is Sweet Taste Perception Associated with Sweet Food Liking and Intake?

    Science.gov (United States)

    Jayasinghe, Shakeela N; Kruger, Rozanne; Walsh, Daniel C I; Cao, Guojiao; Rivers, Stacey; Richter, Marilize; Breier, Bernhard H

    2017-07-14

    A range of psychophysical taste measurements are used to characterize an individual's sweet taste perception and to assess links between taste perception and dietary intake. The aims of this study were to investigate the relationship between four different psychophysical measurements of sweet taste perception, and to explore which measures of sweet taste perception relate to sweet food intake. Forty-four women aged 20-40 years were recruited for the study. Four measures of sweet taste perception (detection and recognition thresholds, and sweet taste intensity and hedonic liking of suprathreshold concentrations) were assessed using glucose as the tastant. Dietary measurements included a four-day weighed food record, a sweet food-food frequency questionnaire and a sweet beverage liking questionnaire. Glucose detection and recognition thresholds showed no correlation with suprathreshold taste measurements or any dietary intake measurement. Importantly, sweet taste intensity correlated negatively with total energy and carbohydrate (starch, total sugar, fructose, glucose) intakes, frequency of sweet food intake and sweet beverage liking. Furthermore, sweet hedonic liking correlated positively with total energy and carbohydrate (total sugar, fructose, glucose) intakes. The present study shows a clear link between sweet taste intensity and hedonic liking with sweet food liking, and total energy, carbohydrate and sugar intake.

  7. A transient receptor potential channel expressed in taste receptor cells.

    Science.gov (United States)

    Pérez, Cristian A; Huang, Liquan; Rong, Minqing; Kozak, J Ashot; Preuss, Axel K; Zhang, Hailin; Max, Marianna; Margolskee, Robert F

    2002-11-01

    We used differential screening of cDNAs from individual taste receptor cells to identify candidate taste transduction elements in mice. Among the differentially expressed clones, one encoded Trpm5, a member of the mammalian family of transient receptor potential (TRP) channels. We found Trpm5 to be expressed in a restricted manner, with particularly high levels in taste tissue. In taste cells, Trpm5 was coexpressed with taste-signaling molecules such as alpha-gustducin, Ggamma13, phospholipase C-beta2 (PLC-beta2) and inositol 1,4,5-trisphosphate receptor type III (IP3R3). Our heterologous expression studies of Trpm5 indicate that it functions as a cationic channel that is gated when internal calcium stores are depleted. Trpm5 may be responsible for capacitative calcium entry in taste receptor cells that respond to bitter and/or sweet compounds.

  8. Expression of GABAergic receptors in mouse taste receptor cells.

    Directory of Open Access Journals (Sweden)

    Margaret R Starostik

    Full Text Available BACKGROUND: Multiple excitatory neurotransmitters have been identified in the mammalian taste transduction, with few studies focused on inhibitory neurotransmitters. Since the synthetic enzyme glutamate decarboxylase (GAD for gamma-aminobutyric acid (GABA is expressed in a subset of mouse taste cells, we hypothesized that other components of the GABA signaling pathway are likely expressed in this system. GABA signaling is initiated by the activation of either ionotropic receptors (GABA(A and GABA(C or metabotropic receptors (GABA(B while it is terminated by the re-uptake of GABA through transporters (GATs. METHODOLOGY/PRINCIPAL FINDINGS: Using reverse transcriptase-PCR (RT-PCR analysis, we investigated the expression of different GABA signaling molecules in the mouse taste system. Taste receptor cells (TRCs in the circumvallate papillae express multiple subunits of the GABA(A and GABA(B receptors as well as multiple GATs. Immunocytochemical analyses examined the distribution of the GABA machinery in the circumvallate papillae. Both GABA(A-and GABA(B- immunoreactivity were detected in the peripheral taste receptor cells. We also used transgenic mice that express green fluorescent protein (GFP in either the Type II taste cells, which can respond to bitter, sweet or umami taste stimuli, or in the Type III GAD67 expressing taste cells. Thus, we were able to identify that GABAergic receptors are expressed in some Type II and Type III taste cells. Mouse GAT4 labeling was concentrated in the cells surrounding the taste buds with a few positively labeled TRCs at the margins of the taste buds. CONCLUSIONS/SIGNIFICANCE: The presence of GABAergic receptors localized on Type II and Type III taste cells suggests that GABA is likely modulating evoked taste responses in the mouse taste bud.

  9. Expression of Galpha14 in sweet-transducing taste cells of the posterior tongue

    Directory of Open Access Journals (Sweden)

    Kim Soochong

    2008-11-01

    Full Text Available Abstract Background "Type II"/Receptor cells express G protein-coupled receptors (GPCRs for sweet, umami (T1Rs and mGluRs or bitter (T2Rs, as well as the proteins for downstream signalling cascades. Transduction downstream of T1Rs and T2Rs relies on G-protein and PLCβ2-mediated release of stored Ca2+. Whereas Gαgus (gustducin couples to the T2R (bitter receptors, which Gα-subunit couples to the sweet (T1R2 + T1R3 receptor is presently not known. We utilized RT-PCR, immunocytochemistry and single-cell gene expression profiling to examine the expression of the Gαq family (q, 11, 14 in mouse taste buds. Results By RT-PCR, Gα14 is expressed strongly and in a taste selective manner in posterior (vallate and foliate, but not anterior (fungiform and palate taste fields. Gαq and Gα11, although detectable, are not expressed in a taste-selective fashion. Further, expression of Gα14 mRNA is limited to Type II/Receptor cells in taste buds. Immunocytochemistry on vallate papillae using a broad Gαq family antiserum reveals specific staining only in Type II taste cells (i.e. those expressing TrpM5 and PLCβ2. This staining persists in Gαq knockout mice and immunostaining with a Gα11-specific antiserum shows no immunoreactivity in taste buds. Taken together, these data show that Gα14 is the dominant Gαq family member detected. Immunoreactivity for Gα14 strongly correlates with expression of T1R3, the taste receptor subunit present in taste cells responsive to either umami or sweet. Single cell gene expression profiling confirms a tight correlation between the expression of Gα14 and both T1R2 and T1R3, the receptor combination that forms sweet taste receptors. Conclusion Gα14 is co-expressed with the sweet taste receptor in posterior tongue, although not in anterior tongue. Thus, sweet taste transduction may rely on different downstream transduction elements in posterior and anterior taste fields.

  10. Temperature Affects Human Sweet Taste via At Least Two Mechanisms

    Science.gov (United States)

    Nachtigal, Danielle

    2015-01-01

    The reported effects of temperature on sweet taste in humans have generally been small and inconsistent. Here, we describe 3 experiments that follow up a recent finding that cooling from 37 to 21 °C does not reduce the initial sweetness of sucrose but increases sweet taste adaptation. In experiment 1, subjects rated the sweetness of sucrose, glucose, and fructose solutions at 5–41 °C by dipping the tongue tip into the solutions after 0-, 3-, or 10-s pre-exposures to the same solutions or to H2O; experiment 2 compared the effects of temperature on the sweetness of 3 artificial sweeteners (sucralose, aspartame, and saccharin); and experiment 3 employed a flow-controlled gustometer to rule out the possibility the effects of temperature in the preceding experiments were unique to dipping the tongue into a still taste solution. The results (i) confirmed that mild cooling does not attenuate sweetness but can increase sweet taste adaptation; (ii) demonstrated that cooling to 5–12 °C can directly reduce sweetness intensity; and (iii) showed that both effects vary across stimuli. These findings have implications for the TRPM5 hypothesis of thermal effects on sweet taste and raise the possibility that temperature also affects an earlier step in the T1R2–T1R3 transduction cascade. PMID:25963040

  11. Temperature Affects Human Sweet Taste via At Least Two Mechanisms.

    Science.gov (United States)

    Green, Barry G; Nachtigal, Danielle

    2015-07-01

    The reported effects of temperature on sweet taste in humans have generally been small and inconsistent. Here, we describe 3 experiments that follow up a recent finding that cooling from 37 to 21 °C does not reduce the initial sweetness of sucrose but increases sweet taste adaptation. In experiment 1, subjects rated the sweetness of sucrose, glucose, and fructose solutions at 5-41 °C by dipping the tongue tip into the solutions after 0-, 3-, or 10-s pre-exposures to the same solutions or to H2O; experiment 2 compared the effects of temperature on the sweetness of 3 artificial sweeteners (sucralose, aspartame, and saccharin); and experiment 3 employed a flow-controlled gustometer to rule out the possibility the effects of temperature in the preceding experiments were unique to dipping the tongue into a still taste solution. The results (i) confirmed that mild cooling does not attenuate sweetness but can increase sweet taste adaptation; (ii) demonstrated that cooling to 5-12 °C can directly reduce sweetness intensity; and (iii) showed that both effects vary across stimuli. These findings have implications for the TRPM5 hypothesis of thermal effects on sweet taste and raise the possibility that temperature also affects an earlier step in the T1R2-T1R3 transduction cascade. © The Author 2015. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  12. Sweet and bitter taste perception of women during pregnancy

    DEFF Research Database (Denmark)

    Nanou, Evangelia; Brandt, Sarah Østergaard; Weenen, Hugo

    2016-01-01

    Introduction: Changes in sweet and bitter taste perception during pregnancy have been reported in a limited number of studies leading, however, to inconclusive results. The current study aimed to investigate possible differences in perceived intensity and liking of sweetness and bitterness between...... pregnant and nonpregnant women. Methods: Forty-six pregnant and 45 nonpregnant women evaluated taste intensity and liking of five samples of each of four different products: two sweet (cake and apple + berry juice) and two bitter (salad and grapefruit juice). Product samples varied in sweetness...... and bitterness, respectively. Pregnant women completed also a self-administered questionnaire on changes in sweet and bitter taste perception due to pregnancy. Results: Perceived intensity of sweetness and bitterness was not different between pregnant and nonpregnant women for any of the products. However...

  13. Kokumi substances, enhancers of basic tastes, induce responses in calcium-sensing receptor expressing taste cells.

    Directory of Open Access Journals (Sweden)

    Yutaka Maruyama

    Full Text Available Recently, we reported that calcium-sensing receptor (CaSR is a receptor for kokumi substances, which enhance the intensities of salty, sweet and umami tastes. Furthermore, we found that several γ-glutamyl peptides, which are CaSR agonists, are kokumi substances. In this study, we elucidated the receptor cells for kokumi substances, and their physiological properties. For this purpose, we used Calcium Green-1 loaded mouse taste cells in lingual tissue slices and confocal microscopy. Kokumi substances, applied focally around taste pores, induced an increase in the intracellular Ca(2+ concentration ([Ca(2+](i in a subset of taste cells. These responses were inhibited by pretreatment with the CaSR inhibitor, NPS2143. However, the kokumi substance-induced responses did not require extracellular Ca(2+. CaSR-expressing taste cells are a different subset of cells from the T1R3-expressing umami or sweet taste receptor cells. These observations indicate that CaSR-expressing taste cells are the primary detectors of kokumi substances, and that they are an independent population from the influenced basic taste receptor cells, at least in the case of sweet and umami.

  14. Oxytocin decreases sweet taste sensitivity in mice.

    Science.gov (United States)

    Sinclair, Michael S; Perea-Martinez, Isabel; Abouyared, Marianne; St John, Steven J; Chaudhari, Nirupa

    2015-03-15

    Oxytocin (OXT) suppresses food intake and lack of OXT leads to overconsumption of sucrose. Taste bud cells were recently discovered to express OXT-receptor. In the present study we tested whether administering OXT to wild-type mice affects their licking behavior for tastants in a paradigm designed to be sensitive to taste perception. We injected C57BL/6J mice intraperitoneally (i.p.) with 10mg/kg OXT and assayed their brief-access lick responses, motivated by water deprivation, to NaCl (300mM), citric acid (20mM), quinine (0.3mM), saccharin (10mM), and a mix of MSG and IMP (100mM and 0.5mM respectively). OXT had no effect on licking for NaCl, citric acid, or quinine. A possible effect of OXT on saccharin and MSG+IMP was difficult to interpret due to unexpectedly low lick rates to water (the vehicle for all taste solutions), likely caused by the use of a high OXT dose that suppressed licking and other behaviors. A subsequent experiment focused on another preferred tastant, sucrose, and employed a much lower OXT dose (0.1mg/kg). This modification, based on our measurements of plasma OXT following i.p. injection, permitted us to elevate plasma [OXT] sufficiently to preferentially activate taste bud cells. OXT at this low dose significantly reduced licking responses to 0.3M sucrose, and overall shifted the sucrose concentration - behavioral response curves rightward (mean EC50saline=0.362M vs. EC50OXT=0.466M). Males did not differ from females under any condition in this study. We propose that circulating oxytocin is another factor that modulates taste-based behavior. Copyright © 2014 Elsevier Inc. All rights reserved.

  15. The bamboo-eating giant panda (Ailuropoda melanoleuca has a sweet tooth: behavioral and molecular responses to compounds that taste sweet to humans.

    Directory of Open Access Journals (Sweden)

    Peihua Jiang

    Full Text Available A growing body of behavioral and genetic information indicates that taste perception and food sources are highly coordinated across many animal species. For example, sweet taste perception is thought to serve to detect and motivate consumption of simple sugars in plants that provide calories. Supporting this is the observation that most plant-eating mammals examined exhibit functional sweet perception, whereas many obligate carnivores have independently lost function of their sweet taste receptors and exhibit no avidity for simple sugars that humans describe as tasting sweet. As part of a larger effort to compare taste structure/function among species, we examined both the behavioral and the molecular nature of sweet taste in a plant-eating animal that does not consume plants with abundant simple sugars, the giant panda (Ailuropoda melanoleuca. We evaluated two competing hypotheses: as plant-eating mammals, they should have a well-developed sweet taste system; however, as animals that do not normally consume plants with simple sugars, they may have lost sweet taste function, as has occurred in strict carnivores. In behavioral tests, giant pandas avidly consumed most natural sugars and some but not all artificial sweeteners. Cell-based assays revealed similar patterns of sweet receptor responses toward many of the sweeteners. Using mixed pairs of human and giant panda sweet taste receptor units (hT1R2+gpT1R3 and gpT1R2+hT1R3 we identified regions of the sweet receptor that may account for behavioral differences in giant pandas versus humans toward various sugars and artificial sweeteners. Thus, despite the fact that the giant panda's main food, bamboo, is very low in simple sugars, the species has a marked preference for several compounds that taste sweet to humans. We consider possible explanations for retained sweet perception in this species, including the potential extra-oral functions of sweet taste receptors that may be required for animals

  16. Heat activation of TRPM5 underlies thermal sensitivity of sweet taste.

    Science.gov (United States)

    Talavera, Karel; Yasumatsu, Keiko; Voets, Thomas; Droogmans, Guy; Shigemura, Noriatsu; Ninomiya, Yuzo; Margolskee, Robert F; Nilius, Bernd

    2005-12-15

    TRPM5, a cation channel of the TRP superfamily, is highly expressed in taste buds of the tongue, where it has a key role in the perception of sweet, umami and bitter tastes. Activation of TRPM5 occurs downstream of the activation of G-protein-coupled taste receptors and is proposed to generate a depolarizing potential in the taste receptor cells. Factors that modulate TRPM5 activity are therefore expected to influence taste. Here we show that TRPM5 is a highly temperature-sensitive, heat-activated channel: inward TRPM5 currents increase steeply at temperatures between 15 and 35 degrees C. TRPM4, a close homologue of TRPM5, shows similar temperature sensitivity. Heat activation is due to a temperature-dependent shift of the activation curve, in analogy to other thermosensitive TRP channels. Moreover, we show that increasing temperature between 15 and 35 degrees C markedly enhances the gustatory nerve response to sweet compounds in wild-type but not in Trpm5 knockout mice. The strong temperature sensitivity of TRPM5 may underlie known effects of temperature on perceived taste in humans, including enhanced sweetness perception at high temperatures and 'thermal taste', the phenomenon whereby heating or cooling of the tongue evoke sensations of taste in the absence of tastants.

  17. Assignation of sweet cherry selections to 3 taste groupings based on perceived sweetness and sourness.

    Science.gov (United States)

    Ross, Carolyn F; Chauvin, Maite A; Whiting, Matthew

    2010-01-01

    Providing consumers with basic taste properties of sweet cherries at point of purchase would allow consumers to make purchase decisions based on fruit's intrinsic sensory attributes. The objective of this study was to develop a model to predict taste-grouping assignation of cherries into the following categories: (1) low sweetness/high sourness, (2) balance between sweetness and sourness, and (3) high sweetness/low sourness. A sensory panel (n = 10) was trained to recognize sweetness and sourness in 5 cultivars of sweet cherries and assign a taste grouping based on the perceived balance of sweetness and sourness. Four of these same cultivars were then evaluated for sweetness and sourness by a consumer panel (n = 117) and instrumentally for titratable acidity (TA) and soluble solids concentration (SSC). Results showed that for 3 of the 4 cherry cultivars, the sweetness/sourness balance of the cherries was not significantly different as evaluated instrumentally or by the trained panel. However, the balance determined by the consumer and the trained panel was different for 3 of the 4 cherry cultivars (P sweetness and sourness, a multinomial logit model was developed to predict the assignation of cherry taste grouping. The likelihood of group assignment depended on both the perceived sweetness and sourness of the cherry, with taste groupings agreed upon for 3 of 5 sweet cherry cultivars. As previous studies have indicated a positive relationship between cherry sweetness and sourness to consumer acceptance, these groupings show promise for assisting consumers in cherry selection at the point of purchase. The prediction models proposed in this study suggest that both sweetness and sourness are important in the cherry characterization and the ratio between the 2 attributes may be appropriate for making taste-grouping assignments. These groupings may then be used to provide additional sensory information to consumers to assist them in cherry selection at the point of

  18. Sweet Taste Receptor TAS1R2 Polymorphism (Val191Val Is Associated with a Higher Carbohydrate Intake and Hypertriglyceridemia among the Population of West Mexico

    Directory of Open Access Journals (Sweden)

    Omar Ramos-Lopez

    2016-02-01

    Full Text Available Some high-carbohydrate diets may lead to obesity and multiple metabolic disorders, including hypertriglyceridemia (HTG. This lipid abnormality is considered an important risk factor for cardiovascular disease and type 2 diabetes. The sweet taste receptor TAS1R2 polymorphism (Ile191Val has been reported to be associated with carbohydrate intake. The aim of this study was to analyze the association of the TAS1R2 gene polymorphism with carbohydrate intake and HTG among the population of West Mexico. In a cross-sectional study, 441 unrelated subjects were analyzed for TAS1R2 genotypes (Ile/Ile, Ile/Val and Val/Val by an allelic discrimination assay. Biochemical tests and a three-day food record were assessed. The Val/Val genotype carriers had a higher intake of total carbohydrates, fiber and servings of cereals and vegetables than the other genotype carriers. The Val/Val genotype conferred a higher risk for HTG than the Ile/Val and Ile/Ile genotypes (OR = 3.26, 95%CI 1.35–7.86, p = 0.006 and OR = 2.61, 95%CI 1.12–6.07, p = 0.02, respectively. Furthermore, the Val/Val genotype was associated with approximately 30% higher triglycerides compared with Ile/Val and Ile/Ile genotypes (β = 44.09, 95%CI 9.94–78.25, p = 0.01 and β = 45.7, 95%CI 10.85–80.54, p = 0.01, respectively. In conclusion, the Val/Val genotype of TAS1R2 was associated with a higher carbohydrate intake and HTG.

  19. Crystal structure of the sweet-tasting protein thaumatin II at 1.27 A

    International Nuclear Information System (INIS)

    Masuda, Tetsuya; Ohta, Keisuke; Tani, Fumito; Mikami, Bunzo; Kitabatake, Naofumi

    2011-01-01

    Highlights: → X-ray crystallographic structure of sweet-tasting protein, thaumatin II, was determined at a resolution of 1.27 A. → The overall structure of thaumatin II is similar to that of thaumatin I, but a slight shift of the Cα atom of G96 in thaumatin II was observed. → The side chain of two critical residues, 67 and 82, for sweetness was modeled in two alternative conformations. → The flexibility and fluctuation of side chains at 67 and 82 seems to be suitable for interaction of thaumatin molecules with sweet receptors. -- Abstract: Thaumatin, an intensely sweet-tasting protein, elicits a sweet taste sensation at 50 nM. Here the X-ray crystallographic structure of one of its variants, thaumatin II, was determined at a resolution of 1.27 A. Overall structure of thaumatin II is similar to thaumatin I, but a slight shift of the Cα atom of G96 in thaumatin II was observed. Furthermore, the side chain of residue 67 in thaumatin II is highly disordered. Since residue 67 is one of two residues critical to the sweetness of thaumatin, the present results suggested that the critical positive charges at positions 67 and 82 are disordered and the flexibility and fluctuation of these side chains would be suitable for interaction of thaumatin molecules with sweet receptors.

  20. Crystal structure of the sweet-tasting protein thaumatin II at 1.27 A

    Energy Technology Data Exchange (ETDEWEB)

    Masuda, Tetsuya, E-mail: t2masuda@kais.kyoto-u.ac.jp [Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Uji, Kyoto 611-0011 (Japan); Department Natural Resources, Graduate School of Global Environmental Studies, Kyoto University, Uji, Kyoto 611-0011 (Japan); Ohta, Keisuke; Tani, Fumito [Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Uji, Kyoto 611-0011 (Japan); Department Natural Resources, Graduate School of Global Environmental Studies, Kyoto University, Uji, Kyoto 611-0011 (Japan); Mikami, Bunzo [Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Uji, Kyoto 611-0011 (Japan); Kitabatake, Naofumi [Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Uji, Kyoto 611-0011 (Japan); Department Natural Resources, Graduate School of Global Environmental Studies, Kyoto University, Uji, Kyoto 611-0011 (Japan)

    2011-07-08

    Highlights: {yields} X-ray crystallographic structure of sweet-tasting protein, thaumatin II, was determined at a resolution of 1.27 A. {yields} The overall structure of thaumatin II is similar to that of thaumatin I, but a slight shift of the C{alpha} atom of G96 in thaumatin II was observed. {yields} The side chain of two critical residues, 67 and 82, for sweetness was modeled in two alternative conformations. {yields} The flexibility and fluctuation of side chains at 67 and 82 seems to be suitable for interaction of thaumatin molecules with sweet receptors. -- Abstract: Thaumatin, an intensely sweet-tasting protein, elicits a sweet taste sensation at 50 nM. Here the X-ray crystallographic structure of one of its variants, thaumatin II, was determined at a resolution of 1.27 A. Overall structure of thaumatin II is similar to thaumatin I, but a slight shift of the C{alpha} atom of G96 in thaumatin II was observed. Furthermore, the side chain of residue 67 in thaumatin II is highly disordered. Since residue 67 is one of two residues critical to the sweetness of thaumatin, the present results suggested that the critical positive charges at positions 67 and 82 are disordered and the flexibility and fluctuation of these side chains would be suitable for interaction of thaumatin molecules with sweet receptors.

  1. A review of sweet taste potentiation brought about by divalent oxygen and sulfur incorporation.

    Science.gov (United States)

    Roy, G

    1992-01-01

    The plethora of high-potency sweetener research has allowed the construction of important structure-taste relationships. In light of new structure-taste relationships, it is instructive to review sweet taste potentiation brought about by divalent oxygen and sulfur incorporation. The taste of sulfur-containing organic compounds was reviewed in Japanese by Yasuo Ariyoshi in 1977. Several new representative examples of sweet taste potentiation and taste dichotomy (sweet and bitter) found within similar classes of oxygen- and sulfur-containing organic compound: amides, dipeptides, ureas, sulfamates, sulfonamides, oximes, sugars, dihydroisocoumarins, and others are reviewed. Special attention is given to the thioethers and thioureas in sulfamates, dipeptides, aryl ureas, and hybrid dipeptide ureas. The most notable contributions have arisen from the work of Nofre and Tinti at Université Claude Bernard in Lyons, France. A common trend emerges with certain sweeteners when a carbon atom is strategically replaced by sulfur or oxygen atoms. The net result is an increase in the sweetness two- to tenfold. With saccharins, the usual bitter, metallic taste is removed. Sweet taste receptor models that have been published are mainly based on the original Shallenberger and Acree model of the glucophores AH-B with contributions from Kier (AH-B-X). AH is a proton donor group, B is a proton acceptor group, and X is some hydrophobic group. All of the models have overlooked the contributions of divalent sulfur (often in place of oxygen) in bringing about sweetness potentiation. There is no precedence for localizing the energy-minimized structures of sulfur-containing sweeteners in a binding mode that includes sulfur. These sulfur potentiation loci are analyzed and illustrated in a computer-generated sweetener model to show the specific region in which sulfur is being "recognized" as a potentiating feature.

  2. Multiple mutations of the critical amino acid residues for the sweetness of the sweet-tasting protein, brazzein.

    Science.gov (United States)

    Lee, Joo-Won; Cha, Ji-Eun; Jo, Hyun-Joo; Kong, Kwang-Hoon

    2013-06-01

    We have previously identified critical residues important for sweetness of the sweet protein brazzein by site-directed mutagenesis (Yoon, Kong, Jo, & Kong, 2011). In order to elucidate the interaction mechanisms of brazzein with the sweet taste receptor, we made multiple mutations of three residues (His31 in loop 30-33, Glu36 in β-strand III, and Glu41 in loop 40-43). We found that all double mutations (H31R/E36D, H31R/E41A and E36D/E41A) made the molecules sweeter than des-pE1M-brazzein and three single mutants. Moreover, the triple mutation (H31R/E36D/E41A) made the molecule significantly sweeter than three double mutants. These results strongly support the hypothesis that brazzein binds to the multisite surface of the sweet taste receptor. Our findings also suggest that mutations reducing the overall negative charge and/or increasing the positive charge favour sweet-tasting protein potency. Copyright © 2012 Elsevier Ltd. All rights reserved.

  3. Sweet Taste Signaling and the Formation of Memories of Energy Sources

    Directory of Open Access Journals (Sweden)

    Ivan E De Araujo

    2011-11-01

    Full Text Available The last decade witnessed remarkable advances in our knowledge of the gustatory system. Application of molecular biology techniques not only determined the identity of the membrane receptors and downstream effectors that mediate sweetness, but also uncovered the overall logic of gustatory coding in the periphery. However, while the ability to taste sweet may offer the obvious advantage of eliciting rapid and robust intake of sugars, a number of recent studies demonstrate that sweetness is neither necessary nor sufficient for the formation of long-lasting preferences for stimuli associated with sugar intake. Furthermore, uncoupling sweet taste from ensuing energy utilization may disrupt body weight control. This minireview examines recent experiments performed in both rodents and Drosophila revealing the taste-independent rewarding properties of metabolizable sugars. Taken together, these experiments demonstrate the reinforcing actions of sugars in the absence of sweet taste signaling and point to a critical role played by dopamine systems in translating metabolic sensing into behavioral action. From a mechanistic viewpoint, current evidence favors the concept that gastrointestinal and post-absorptive signals contribute in parallel to sweet-independent sugar acceptance and dopamine release.

  4. Patterns of Sweet Taste Liking: A Pilot Study

    OpenAIRE

    Keiko Asao; Jason Miller; Leann Arcori; Julie C. Lumeng; Theresa Han-Markey; William H. Herman

    2015-01-01

    Two distinct patterns of sweet taste liking have been described: one showing a peak liking response in the mid-range of sucrose concentrations and the other showing a monotonic liking response at progressively higher sucrose concentrations. Classification of these patterns has been somewhat arbitrary. In this report, we analyzed patterns of sweet taste liking in a pilot study with 26 adults including 14 women and 12 men, 32.6 ± 14.5 years of age with body mass index 26.4 ± 5.1 kg/m2 (mean ± S...

  5. The sweetness and bitterness of childhood: Insights from basic research on taste preferences.

    Science.gov (United States)

    Mennella, Julie A; Bobowski, Nuala K

    2015-12-01

    In this article, we review findings from basic, experimental research on children that suggest that the liking of sweet and the dislike of bitter tastes reflect children's basic biology. Children are born preferring sweet tastes, which attract them to mother's milk and even act as an analgesic. They prefer higher levels of sweet than do adults, with preferences declining to adult levels during middle to late adolescence, which coincides with the cessation of physical growth. The level of sweetness most preferred by children has remained heightened relative to adults for nearly a decade, despite reductions in sugar, both consumed and in the food environment. In spite of these reductions, however, children's intake of sugar remains higher than that recommended by health organizations worldwide. In contrast to sweet taste, children dislike and reject bitter taste, which protects them from ingesting poisons. Although variation in bitter taste receptor genes such as TAS2R38 accounts for people's marked differences in perceptions of the same bitter-tasting compounds, basic research revealed that these genotype-phenotype relationships are modified with age, with children of the same genotype being more bitter sensitive than adults and the changeover occurring during mid-adolescence. This heightened bitter sensitivity is also evident in the taste of the foods (green vegetables) or medicines (liquid formulations of drugs) they dislike and reject. While bitter taste can be masked or blocked to varying degrees by sugars and salts, their efficacy in modulating bitterness is not only based on the type of bitter ligand but on the person's age. Children's heightened preference for sweet and dislike of bitter, though often detrimental in the modern food environment, reflects their basic biology. Increasing knowledge of individual variation in taste due to both age and genetics will shed light on potential strategies to promote healthier eating since chronic diseases derive in

  6. The taste transduction channel TRPM5 is a locus for bitter-sweet taste interactions.

    Science.gov (United States)

    Talavera, Karel; Yasumatsu, Keiko; Yoshida, Ryusuke; Margolskee, Robert F; Voets, Thomas; Ninomiya, Yuzo; Nilius, Bernd

    2008-05-01

    Ordinary gustatory experiences, which are usually evoked by taste mixtures, are determined by multiple interactions between different taste stimuli. The most studied model for these gustatory interactions is the suppression of the responses to sweeteners by the prototype bitter compound quinine. Here we report that TRPM5, a cation channel involved in sweet taste transduction, is inhibited by quinine (EC(50)=50 microM at -50 mV) owing to a decrease in the maximal whole-cell TRPM5 conductance and an acceleration of channel closure. Notably, quinine inhibits the gustatory responses of sweet-sensitive gustatory nerves in wild-type (EC(50)= approximately 1.6 mM) but not in Trpm5 knockout mice. Quinine induces a dose- and time-dependent inhibition of TRPM5-dependent responses of single sweet-sensitive fibers to sucrose, according to the restricted diffusion of the drug into the taste tissue. Quinidine, the stereoisomer of quinine, has similar effects on TRPM5 currents and on sweet-induced gustatory responses. In contrast, the chemically unrelated bitter compound denatonium benzoate has an approximately 100-fold weaker effect on TRPM5 currents and, accordingly, at 10 mM it does not alter gustatory responses to sucrose. The inhibition of TRPM5 by bitter compounds constitutes the molecular basis of a novel mechanism of taste interactions, whereby the bitter tastant inhibits directly the sweet transduction pathway.

  7. Patterns of Sweet Taste Liking: A Pilot Study

    Directory of Open Access Journals (Sweden)

    Keiko Asao

    2015-08-01

    Full Text Available Two distinct patterns of sweet taste liking have been described: one showing a peak liking response in the mid-range of sucrose concentrations and the other showing a monotonic liking response at progressively higher sucrose concentrations. Classification of these patterns has been somewhat arbitrary. In this report, we analyzed patterns of sweet taste liking in a pilot study with 26 adults including 14 women and 12 men, 32.6 ± 14.5 years of age with body mass index 26.4 ± 5.1 kg/m2 (mean ± SD. Sweet taste liking was measured for 10 levels of sucrose solutions (0.035 M to 1.346 M. Participants rated their liking of each solution using a visual analog scale with 0 indicating strongly disliking and 100 strongly liking. The cluster analysis demonstrated two distinct groups: 13 liked relatively low sucrose concentrations and liked high sucrose concentrations less, and 13 liked high sucrose concentrations greatly. If we use the 0.598 M sucrose solution alone and a cutoff liking score of 50, we can distinguish the two clusters with high sensitivity (100% and specificity (100%. If validated in additional studies, this simple tool may help us to better understand eating behaviors and the impact of sweet taste liking on nutrition-related disorders.

  8. Taste mixture interactions: suppression, additivity, and the predominance of sweetness.

    Science.gov (United States)

    Green, Barry G; Lim, Juyun; Osterhoff, Floor; Blacher, Karen; Nachtigal, Danielle

    2010-12-02

    Most of what is known about taste interactions has come from studies of binary mixtures. The primary goal of this study was to determine whether asymmetries in suppression between stimuli in binary mixtures predict the perception of tastes in more complex mixtures (e.g., ternary and quaternary mixtures). Also of interest was the longstanding question of whether overall taste intensity derives from the sum of the tastes perceived within a mixture (perceptual additivity) or from the sum of the perceived intensities of the individual stimuli (stimulus additivity). Using the general labeled magnitude scale together with a sip-and-spit procedure, we asked subjects to rate overall taste intensity and the sweetness, sourness, saltiness and bitterness of approximately equi-intense sucrose, NaCl, citric acid and QSO(4) stimuli presented alone and in all possible binary, ternary and quaternary mixtures. The results showed a consistent pattern of mixture suppression in which sucrose sweetness tended to be both the least suppressed quality and the strongest suppressor of other tastes. The overall intensity of mixtures was found to be predicted best by perceptual additivity. A second experiment that was designed to rule out potentially confounding effects of the order of taste ratings and the temperature of taste solutions replicated the main findings of the first experiment. Overall, the results imply that mixture suppression favors perception of sweet carbohydrates in foods at the expense of other potentially harmful ingredients, such as high levels of sodium (saltiness) and potential poisons or spoilage (bitterness and sourness). Copyright © 2010 Elsevier Inc. All rights reserved.

  9. Preferences for salty and sweet tastes are elevated and related to each other during childhood.

    Science.gov (United States)

    Mennella, Julie A; Finkbeiner, Susana; Lipchock, Sarah V; Hwang, Liang-Dar; Reed, Danielle R

    2014-01-01

    The present study aimed to determine if salty and sweet taste preferences in children are related to each other, to markers of growth, and to genetic differences. We conducted a 2-day, single-blind experimental study using the Monell two-series, forced-choice, paired-comparison tracking method to determine taste preferences. The volunteer sample consisted of a racially/ethnically diverse group of children, 5-10 years of age (n = 108), and their mothers (n = 83). After excluding those mothers who did not meet eligibility and children who did not understand or comply with study procedures, the final sample was 101 children and 76 adults. The main outcome measures were most preferred concentration of salt in broth and crackers; most preferred concentration of sucrose in water and jelly; reported dietary intake of salty and sweet foods; levels of a bone growth marker; anthropometric measurements such as height, weight, and percent body fat; and TAS1R3 (sweet taste receptor) genotype. Children preferred higher concentrations of salt in broth and sucrose in water than did adults, and for both groups, salty and sweet taste preferences were significantly and positively correlated. In children, preference measures were related to reported intake of sodium but not of added sugars. Children who were tall for their age preferred sweeter solutions than did those that were shorter and percent body fat was correlated with salt preference. In mothers but not in children, sweet preference correlated with TAS1R3 genotype. For children, sweet and salty taste preferences were positively correlated and related to some aspects of real-world food intake. Complying with recommendations to reduce added sugars and salt may be more difficult for some children, which emphasizes the need for new strategies to improve children's diets.

  10. Preferences for salty and sweet tastes are elevated and related to each other during childhood.

    Directory of Open Access Journals (Sweden)

    Julie A Mennella

    Full Text Available BACKGROUND: The present study aimed to determine if salty and sweet taste preferences in children are related to each other, to markers of growth, and to genetic differences. METHODS: We conducted a 2-day, single-blind experimental study using the Monell two-series, forced-choice, paired-comparison tracking method to determine taste preferences. The volunteer sample consisted of a racially/ethnically diverse group of children, 5-10 years of age (n = 108, and their mothers (n = 83. After excluding those mothers who did not meet eligibility and children who did not understand or comply with study procedures, the final sample was 101 children and 76 adults. The main outcome measures were most preferred concentration of salt in broth and crackers; most preferred concentration of sucrose in water and jelly; reported dietary intake of salty and sweet foods; levels of a bone growth marker; anthropometric measurements such as height, weight, and percent body fat; and TAS1R3 (sweet taste receptor genotype. RESULTS: Children preferred higher concentrations of salt in broth and sucrose in water than did adults, and for both groups, salty and sweet taste preferences were significantly and positively correlated. In children, preference measures were related to reported intake of sodium but not of added sugars. Children who were tall for their age preferred sweeter solutions than did those that were shorter and percent body fat was correlated with salt preference. In mothers but not in children, sweet preference correlated with TAS1R3 genotype. CONCLUSIONS AND RELEVANCE: For children, sweet and salty taste preferences were positively correlated and related to some aspects of real-world food intake. Complying with recommendations to reduce added sugars and salt may be more difficult for some children, which emphasizes the need for new strategies to improve children's diets.

  11. High-resolution structure of the recombinant sweet-tasting protein thaumatin I

    International Nuclear Information System (INIS)

    Masuda, Tetsuya; Ohta, Keisuke; Mikami, Bunzo; Kitabatake, Naofumi

    2011-01-01

    The structure of a recombinant form of the sweet-tasting protein thaumatin I was determined at 1.1 Å resolution and refined to an R work of 9.1% and an R free of 11.7%. Comparisons with plant thaumatin revealed the electron density of recombinant thaumatin I to be significantly improved, especially around Asn46 and Ser63. Thaumatin, an intensely sweet-tasting plant protein, elicits a sweet taste at a concentration of 50 nM. The crystal structure of a recombinant form of thaumatin I produced in the yeast Pichia pastoris has been determined to a resolution of 1.1 Å. The model was refined with anisotropic B parameters and riding H atoms. A comparison of the diffraction data and refinement statistics for recombinant thaumatin I with those for plant thaumatin I revealed no significant differences in the diffraction data. The R values for recombinant thaumatin I and plant thaumatin I (F o > 4σ) were 9.11% and 9.91%, respectively, indicating the final model to be of good quality. Notably, the electron-density maps around Asn46 and Ser63, which differ between thaumatin variants, were significantly improved. Furthermore, a number of H atoms became visible in an OMIT map and could be assigned. The high-quality structure of recombinant thaumatin with H atoms should provide details about sweetness determinants in thaumatin and provide valuable insights into the mechanism of its interaction with taste receptors

  12. Extracellular production of neoculin, a sweet-tasting heterodimeric protein with taste-modifying activity, by Aspergillus oryzae.

    Science.gov (United States)

    Nakajima, Ken-ichiro; Asakura, Tomiko; Maruyama, Jun-ichi; Morita, Yuji; Oike, Hideaki; Shimizu-Ibuka, Akiko; Misaka, Takumi; Sorimachi, Hiroyuki; Arai, Soichi; Kitamoto, Katsuhiko; Abe, Keiko

    2006-05-01

    Neoculin (NCL), a protein with sweetness approximately 500-fold that of sugar, can be utilized as a nonglycemic sweetener. It also has taste-modifying activity to convert sourness to sweetness. NCL is a heterodimer composed of an N-glycosylated acidic subunit (NAS) and a basic subunit (NBS), which are conjugated by disulfide bonds. For the production of recombinant NCL (rNCL) by Aspergillus oryzae, alpha-amylase with a KEX2 cleavage site, -K-R-, was fused upstream of each of NAS and NBS and the resulting fusion proteins were simultaneously expressed. For accurate and efficient cleavage of the fusion construct by KEX2-like protease, a triglycine motif was inserted after the KEX2 cleavage site. As NBS showed lower production efficiency than did NAS, a larger amount of the NBS expression plasmid than of NAS expression plasmid was introduced during cotransformation, resulting in successful production of rNCL in the culture medium. Moreover, to obtain a higher production yield of rNCL, the active form of hacA cDNA encoding a transcription factor that induces an unfolded protein response was cloned and expressed constitutively. This resulted in a 1.5-fold increase in the level of rNCL production (2.0 mg/liter). rNCL was purified by chromatography, and its NAS was found to be N-glycosylated as expected. The original sweetness and taste-modifying activity of rNCL were comparable to those of native NCL when confirmed by calcium imaging with human embryonic kidney cells expressing the human sweet taste receptor and by sensory tests.

  13. Sweetness-induced activation of membrane dipole potential in STC-1 taste cells.

    Science.gov (United States)

    Chen, Li-Chun; Xie, Ning-Ning; Deng, Shao-Ping

    2016-12-01

    The biological functions of cell membranes strongly influence the binding and transport of molecular species. We developed STC-1 cell line stably expressing the sweet taste receptor (T1R2/T1R3), and explored the possible correlation between sweeteners and membrane dipole potential of STC-1 cells. In this study, sweetener-induced dipole potential activation was elucidated using a fluorescence-based measurement technique, by monitoring the voltage sensitive probe Di-8-ANEPPS using a dual wavelength ratiometric approach. It indicated that the presence of sweeteners resulted in cell membrane dipole potential change, and interaction of artificial sweeteners with taste cells resulted in a greater reduction in potential compared with natural sweeteners. Our work presents a newly developed approach using a fluorescence-based measurement technique to study sweetener-induced dipole potential activation of STC-1 cells. This new approach could be used as a complementary tool to study the function of sweet taste receptors or other GPCRs and helps to understand the basis sweetness mechanism. Copyright © 2016 Elsevier Ltd. All rights reserved.

  14. Critical molecular regions for elicitation of the sweetness of the sweet-tasting protein, thaumatin I.

    Science.gov (United States)

    Ohta, Keisuke; Masuda, Tetsuya; Ide, Nobuyuki; Kitabatake, Naofumi

    2008-07-01

    Thaumatin is an intensely sweet-tasting protein. To identify the critical amino acid residue(s) responsible for elicitation of the sweetness of thaumatin, we prepared mutant thaumatin proteins, using Pichia pastoris, in which alanine residues were substituted for lysine or arginine residues, and the sweetness of each mutant protein was evaluated by sensory analysis in humans. Four lysine residues (K49, K67, K106 and K163) and three arginine residues (R76, R79 and R82) played significant roles in thaumatin sweetness. Of these residues, K67 and R82 were particularly important for eliciting the sweetness. We also prepared two further mutant thaumatin I proteins: one in which an arginine residue was substituted for a lysine residue, R82K, and one in which a lysine residue was substituted for an arginine residue, K67R. The threshold value for sweetness was higher for R82K than for thaumatin I, indicating that not only the positive charge but also the structure of the side chain of the arginine residue at position 82 influences the sweetness of thaumatin, whereas only the positive charge of the K67 side chain affects sweetness.

  15. Integration of Sweet Taste and Metabolism Determines Carbohydrate Reward.

    Science.gov (United States)

    Veldhuizen, Maria Geraldine; Babbs, Richard Keith; Patel, Barkha; Fobbs, Wambura; Kroemer, Nils B; Garcia, Elizabeth; Yeomans, Martin R; Small, Dana M

    2017-08-21

    Post-ingestive signals related to nutrient metabolism are thought to be the primary drivers of reinforcement potency of energy sources. Here, in a series of neuroimaging and indirect calorimetry human studies, we examine the relative roles of caloric load and perceived sweetness in driving metabolic, perceptual, and brain responses to sugared beverages. Whereas caloric load was manipulated using the tasteless carbohydrate maltodextrin, sweetness levels were manipulated using the non-nutritive sweetener sucralose. By formulating beverages that contain different amounts of maltodextrin+sucralose, we demonstrate a non-linear association between caloric load, metabolic response, and reinforcement potency, which is driven in part by the extent to which sweetness is proportional to caloric load. In particular, we show that (1) lower-calorie beverages can produce greater metabolic response and condition greater brain response and liking than higher-calorie beverages and (2) when sweetness is proportional to caloric load, greater metabolic responses are observed. These results demonstrate a non-linear association between caloric load and reward and describe an unanticipated role for sweet taste in regulating carbohydrate metabolism, revealing a novel mechanism by which sugar-sweetened beverages influence physiological responses to carbohydrate ingestion. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. The Association between Sweet Taste Function, Anthropometry, and Dietary Intake in Adults.

    Science.gov (United States)

    Low, Julia Y Q; Lacy, Kathleen E; McBride, Robert; Keast, Russell S J

    2016-04-23

    Variation in ability to detect, recognize, and perceive sweetness may influence food consumption, and eventually chronic nutrition-related conditions such as overweight and obesity. The aim of this study was to investigate the associations between sweet taste function, anthropometry, and dietary intake in adults. Participants' (n = 60; mean age in years = 26, SD = ±7.8) sweet taste function for a range of sweeteners (glucose, fructose, sucrose, sucralose, erythritol, and Rebaudioside A) was assessed by measuring detection and recognition thresholds and sweetness intensity. Height, weight, and waist circumference were also measured, and participants also completed a Food Frequency Questionnaire. There was large inter-individual variation in detection, recognition and sweetness intensity measures. Pearson's correlation coefficient revealed no robust correlations between measures of sweet taste function, anthropometry, and dietary intake, with the exception of suprathreshold intensity, which was moderately correlated with total energy intake (r = 0.23-0.40). One-way analysis of variance revealed no significant differences between the most and least sensitive participants in terms of BMI, waist circumference, and dietary intake for all measures of sweet taste function and sweeteners (all p > 0.01). When stratified into BMI categories, there were no significant differences in any measure of sweet taste function between the normal weight and overweight/obese participants (all p > 0.01). Results show that that sweet taste function is not associated with anthropometry and sweetness intensity measures are the most appropriate measure when assessing links between sweet taste and food consumption.

  17. TRPM4 and TRPM5 are both required for normal signaling in taste receptor cells.

    Science.gov (United States)

    Dutta Banik, Debarghya; Martin, Laura E; Freichel, Marc; Torregrossa, Ann-Marie; Medler, Kathryn F

    2018-01-23

    Peripheral taste receptor cells use multiple signaling pathways to transduce taste stimuli into output signals that are sent to the brain. Transient receptor potential melastatin 5 (TRPM5), a sodium-selective TRP channel, functions as a common downstream component in sweet, bitter, and umami signaling pathways. In the absence of TRPM5, mice have a reduced, but not abolished, ability to detect stimuli, suggesting that a TRPM5-independent pathway also contributes to these signals. Here, we identify a critical role for the sodium-selective TRP channel TRPM4 in taste transduction. Using live cell imaging and behavioral studies in KO mice, we show that TRPM4 and TRPM5 are both involved in taste-evoked signaling. Loss of either channel significantly impairs taste, and loss of both channels completely abolishes the ability to detect bitter, sweet, or umami stimuli. Thus, both TRPM4 and TRPM5 are required for transduction of taste stimuli.

  18. Investigation of the effects of color on judgments of sweetness using a taste adaptation method.

    Science.gov (United States)

    Hidaka, Souta; Shimoda, Kazumasa

    2014-01-01

    It has been reported that color can affect the judgment of taste. For example, a dark red color enhances the subjective intensity of sweetness. However, the underlying mechanisms of the effect of color on taste have not been fully investigated; in particular, it remains unclear whether the effect is based on cognitive/decisional or perceptual processes. Here, we investigated the effect of color on sweetness judgments using a taste adaptation method. A sweet solution whose color was subjectively congruent with sweetness was judged as sweeter than an uncolored sweet solution both before and after adaptation to an uncolored sweet solution. In contrast, subjective judgment of sweetness for uncolored sweet solutions did not differ between the conditions following adaptation to a colored sweet solution and following adaptation to an uncolored one. Color affected sweetness judgment when the target solution was colored, but the colored sweet solution did not modulate the magnitude of taste adaptation. Therefore, it is concluded that the effect of color on the judgment of taste would occur mainly in cognitive/decisional domains.

  19. Ric-8A, a Gα protein guanine nucleotide exchange factor potentiates taste receptor signaling

    Directory of Open Access Journals (Sweden)

    Claire J Fenech

    2009-10-01

    Full Text Available Taste receptors for sweet, bitter and umami tastants are G-protein coupled receptors (GPCRs. While much effort has been devoted to understanding G-protein-receptor interactions and identifying the components of the signalling cascade downstream of these receptors, at the level of the G-protein the modulation of receptor signal transduction remains relatively unexplored. In this regard a taste-specific regulator of G-protein signaling (RGS, RGS21, has recently been identified. To study whether guanine nucleotide exchange factors (GEFs are involved in the transduction of the signal downstream of the taste GPCRs we investigated the expression of Ric-8A and Ric-8B in mouse taste cells and their interaction with G-protein subunits found in taste buds. Mammalian Ric-8 proteins were initially identified as potent GEFs for a range of Gα subunits and Ric-8B has recently been shown to amplify olfactory signal transduction. We find that both Ric-8A and Ric-8B are expressed in a large portion of taste bud cells and that most of these cells contain IP3R-3 a marker for sweet, umami and bitter taste receptor cells. Ric-8A interacts with Gα-gustducin and Gαi2 through which it amplifies the signal transduction of hTas2R16, a receptor for bitter compounds. Overall, these findings are consistent with a role for Ric-8 in mammalian taste signal transduction.

  20. Massive losses of taste receptor genes in toothed and baleen whales.

    Science.gov (United States)

    Feng, Ping; Zheng, Jinsong; Rossiter, Stephen J; Wang, Ding; Zhao, Huabin

    2014-05-06

    Taste receptor genes are functionally important in animals, with a surprising exception in the bottlenose dolphin, which shows extensive losses of sweet, umami, and bitter taste receptor genes. To examine the generality of taste gene loss, we examined seven toothed whales and five baleen whales and sequenced the complete repertoire of three sweet/umami (T1Rs) and ten bitter (T2Rs) taste receptor genes. We found all amplified T1Rs and T2Rs to be pseudogenes in all 12 whales, with a shared premature stop codon in 10 of the 13 genes, which demonstrated massive losses of taste receptor genes in the common ancestor of whales. Furthermore, we analyzed three genome sequences from two toothed whales and one baleen whale and found that the sour taste marker gene Pkd2l1 is a pseudogene, whereas the candidate salty taste receptor genes are intact and putatively functional. Additionally, we examined three genes that are responsible for taste signal transduction and found the relaxation of functional constraints on taste signaling pathways along the ancestral branch leading to whales. Together, our results strongly suggest extensive losses of sweet, umami, bitter, and sour tastes in whales, and the relaxation of taste function most likely arose in the common ancestor of whales between 36 and 53 Ma. Therefore, whales represent the first animal group to lack four of five primary tastes, probably driven by the marine environment with high concentration of sodium, the feeding behavior of swallowing prey whole, and the dietary switch from plants to meat in the whale ancestor. © The Author(s) 2014. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.

  1. Involvement of the calcium-sensing receptor in human taste perception.

    Science.gov (United States)

    Ohsu, Takeaki; Amino, Yusuke; Nagasaki, Hiroaki; Yamanaka, Tomohiko; Takeshita, Sen; Hatanaka, Toshihiro; Maruyama, Yutaka; Miyamura, Naohiro; Eto, Yuzuru

    2010-01-08

    By human sensory analyses, we found that various extracellular calcium-sensing receptor (CaSR) agonists enhance sweet, salty, and umami tastes, although they have no taste themselves. These characteristics are known as "kokumi taste" and often appear in traditional Japanese cuisine. Although GSH is a typical kokumi taste substance (taste enhancer), its mode of action is poorly understood. Here, we demonstrate how the kokumi taste is enhanced by the CaSR, a close relative of the class C G-protein-coupled receptors T1R1, T1R2, and T1R3 (sweet and umami receptors). We identified a large number of CaSR agonist gamma-glutamyl peptides, including GSH (gamma-Glu-Cys-Gly) and gamma-Glu-Val-Gly, and showed that these peptides elicit the kokumi taste. Further analyses revealed that some known CaSR agonists such as Ca(2+), protamine, polylysine, L-histidine, and cinacalcet (a calcium-mimetic drug) also elicit the kokumi taste and that the CaSR-specific antagonist, NPS-2143, significantly suppresses the kokumi taste. This is the first report indicating a distinct function of the CaSR in human taste perception.

  2. Sweet Taste Perception is Associated with Body Mass Index at the Phenotypic and Genotypic Level.

    Science.gov (United States)

    Hwang, Liang-Dar; Cuellar-Partida, Gabriel; Ong, Jue-Sheng; Breslin, Paul A S; Reed, Danielle R; MacGregor, Stuart; Gharahkhani, Puya; Martin, Nicholas G; Rentería, Miguel E

    2016-10-01

    Investigations on the relationship between sweet taste perception and body mass index (BMI) have been inconclusive. Here, we report a longitudinal analysis using a genetically informative sample of 1,576 adolescent Australian twins to explore the relationship between BMI and sweet taste. First, we estimated the phenotypic correlations between perception scores for four different sweet compounds (glucose, fructose, neohesperidine dihydrochalcone (NHDC), and aspartame) and BMI. Then, we computed the association between adolescent taste perception and BMI in early adulthood (reported 9 years later). Finally, we used twin modeling and polygenic risk prediction analysis to investigate the genetic overlap between BMI and sweet taste perception. Our findings revealed that BMI in early adulthood was significantly associated with each of the sweet perception scores, with the strongest correlation observed in aspartame with r = 0.09 (p = .007). However, only limited evidence of association was observed between sweet taste perception and BMI that was measured at the same time (in adolescence), with the strongest evidence of association observed for glucose with a correlation coefficient of r = 0.06 (p = .029) and for aspartame with r = 0.06 (p = .035). We found a significant (p sweet taste perception in adolescence can be a potential indicator of BMI in early adulthood. This association is further supported by evidence of genetic overlap between the traits, suggesting that some BMI genes may be acting through biological pathways of taste perception.

  3. Mouse taste cells with G protein-coupled taste receptors lack voltage-gated calcium channels and SNAP-25

    Directory of Open Access Journals (Sweden)

    Medler Kathryn F

    2006-03-01

    Full Text Available Abstract Background Taste receptor cells are responsible for transducing chemical stimuli from the environment and relaying information to the nervous system. Bitter, sweet and umami stimuli utilize G-protein coupled receptors which activate the phospholipase C (PLC signaling pathway in Type II taste cells. However, it is not known how these cells communicate with the nervous system. Previous studies have shown that the subset of taste cells that expresses the T2R bitter receptors lack voltage-gated Ca2+ channels, which are normally required for synaptic transmission at conventional synapses. Here we use two lines of transgenic mice expressing green fluorescent protein (GFP from two taste-specific promoters to examine Ca2+ signaling in subsets of Type II cells: T1R3-GFP mice were used to identify sweet- and umami-sensitive taste cells, while TRPM5-GFP mice were used to identify all cells that utilize the PLC signaling pathway for transduction. Voltage-gated Ca2+ currents were assessed with Ca2+ imaging and whole cell recording, while immunocytochemistry was used to detect expression of SNAP-25, a presynaptic SNARE protein that is associated with conventional synapses in taste cells. Results Depolarization with high K+ resulted in an increase in intracellular Ca2+ in a small subset of non-GFP labeled cells of both transgenic mouse lines. In contrast, no depolarization-evoked Ca2+ responses were observed in GFP-expressing taste cells of either genotype, but GFP-labeled cells responded to the PLC activator m-3M3FBS, suggesting that these cells were viable. Whole cell recording indicated that the GFP-labeled cells of both genotypes had small voltage-dependent Na+ and K+ currents, but no evidence of Ca2+ currents. A subset of non-GFP labeled taste cells exhibited large voltage-dependent Na+ and K+ currents and a high threshold voltage-gated Ca2+ current. Immunocytochemistry indicated that SNAP-25 was expressed in a separate population of taste cells

  4. Sweet taste liking is associated with subjective response to amphetamine in women but not men.

    Science.gov (United States)

    Weafer, Jessica; Lyon, Nicholas; Hedeker, Donald; de Wit, Harriet

    2017-11-01

    Preference for sweet taste rewards has been linked to the propensity for drug use in both animals and humans. Here, we tested the association between sweet taste liking and sensitivity to amphetamine reward in healthy adults. We hypothesized that sweet likers would report greater euphoria and stimulation following D-amphetamine (20 mg) compared to sweet dislikers. Men (n = 36) and women (n = 34) completed a sweet taste test in which they rated their liking of various concentrations of sucrose and filtered water (0.05, 0.10, 0.21, 0.42, and 0.83 M). Participants who preferred the highest concentration were classified as "sweet likers." All others were classified as "sweet dislikers." They then completed four sessions in which they received D-amphetamine (20 mg) and placebo in alternating order, providing self-report measures of euphoria and stimulation on the Addiction Research Center Inventory (ARCI) at regular intervals. We conducted linear mixed effects models to examine relationships between sweet liking and drug-induced euphoria and stimulation. Sweet likers reported significantly greater amphetamine-induced euphoria than did sweet dislikers among women. By contrast, sweet liking was not associated with amphetamine response in men. No associations with stimulation were observed. The association between sweet preference and amphetamine response in women is consistent with animal studies linking sweet taste preference and drug reward and also fits with observations that individuals who use drugs show a preference for sweet tastes. Whether the sex difference is related to circulating hormones, or other variables, remains to be determined.

  5. The Association between Sweet Taste Function, Anthropometry, and Dietary Intake in Adults

    Directory of Open Access Journals (Sweden)

    Julia Y. Q. Low

    2016-04-01

    Full Text Available Variation in ability to detect, recognize, and perceive sweetness may influence food consumption, and eventually chronic nutrition-related conditions such as overweight and obesity. The aim of this study was to investigate the associations between sweet taste function, anthropometry, and dietary intake in adults. Participants’ (n = 60; mean age in years = 26, SD = ±7.8 sweet taste function for a range of sweeteners (glucose, fructose, sucrose, sucralose, erythritol, and Rebaudioside A was assessed by measuring detection and recognition thresholds and sweetness intensity. Height, weight, and waist circumference were also measured, and participants also completed a Food Frequency Questionnaire. There was large inter-individual variation in detection, recognition and sweetness intensity measures. Pearson’s correlation coefficient revealed no robust correlations between measures of sweet taste function, anthropometry, and dietary intake, with the exception of suprathreshold intensity, which was moderately correlated with total energy intake (r = 0.23–0.40. One-way analysis of variance revealed no significant differences between the most and least sensitive participants in terms of BMI, waist circumference, and dietary intake for all measures of sweet taste function and sweeteners (all p > 0.01. When stratified into BMI categories, there were no significant differences in any measure of sweet taste function between the normal weight and overweight/obese participants (all p > 0.01. Results show that that sweet taste function is not associated with anthropometry and sweetness intensity measures are the most appropriate measure when assessing links between sweet taste and food consumption.

  6. The Association between Sweet Taste Function, Anthropometry, and Dietary Intake in Adults

    Science.gov (United States)

    Low, Julia Y. Q.; Lacy, Kathleen E.; McBride, Robert; Keast, Russell S. J.

    2016-01-01

    Variation in ability to detect, recognize, and perceive sweetness may influence food consumption, and eventually chronic nutrition-related conditions such as overweight and obesity. The aim of this study was to investigate the associations between sweet taste function, anthropometry, and dietary intake in adults. Participants’ (n = 60; mean age in years = 26, SD = ±7.8) sweet taste function for a range of sweeteners (glucose, fructose, sucrose, sucralose, erythritol, and Rebaudioside A) was assessed by measuring detection and recognition thresholds and sweetness intensity. Height, weight, and waist circumference were also measured, and participants also completed a Food Frequency Questionnaire. There was large inter-individual variation in detection, recognition and sweetness intensity measures. Pearson’s correlation coefficient revealed no robust correlations between measures of sweet taste function, anthropometry, and dietary intake, with the exception of suprathreshold intensity, which was moderately correlated with total energy intake (r = 0.23–0.40). One-way analysis of variance revealed no significant differences between the most and least sensitive participants in terms of BMI, waist circumference, and dietary intake for all measures of sweet taste function and sweeteners (all p > 0.01). When stratified into BMI categories, there were no significant differences in any measure of sweet taste function between the normal weight and overweight/obese participants (all p > 0.01). Results show that that sweet taste function is not associated with anthropometry and sweetness intensity measures are the most appropriate measure when assessing links between sweet taste and food consumption. PMID:27120614

  7. Multiple sweet receptors and transduction pathways revealed in knockout mice by temperature dependence and gurmarin sensitivity.

    Science.gov (United States)

    Ohkuri, Tadahiro; Yasumatsu, Keiko; Horio, Nao; Jyotaki, Masafumi; Margolskee, Robert F; Ninomiya, Yuzo

    2009-04-01

    Sweet taste transduction involves taste receptor type 1, member 2 (T1R2), taste receptor type 1, member 3 (T1R3), gustducin, and TRPM5. Because knockout (KO) mice lacking T1R3, gustducin's Galpha subunit (Galphagust), or TRPM5 exhibited greatly reduced, but not abolished responses of the chorda tympani (CT) nerve to sweet compounds, it is likely that multiple sweet transduction pathways exist. That gurmarin (Gur), a sweet taste inhibitor, inhibits some but not all mouse CT responses to sweet compounds supports the existence of multiple sweet pathways. Here, we investigated Gur inhibition of CT responses to sweet compounds as a function of temperature in KO mice lacking T1R3, Galphagust, or TRPM5. In T1R3-KO mice, responses to sucrose and glucose were Gur sensitive (GS) and displayed a temperature-dependent increase (TDI). In Galphagust-KO mice, responses to sucrose and glucose were Gur-insensitive (GI) and showed a TDI. In TRPM5-KO mice, responses to glucose were GS and showed a TDI. All three KO mice exhibited no detectable responses to SC45647, and their responses to saccharin displayed neither GS nor a TDI. For all three KO mice, the lingual application of pronase, another sweet response inhibitor, almost fully abolished responses to sucrose and glucose but did not affect responses to saccharin. These results provide evidence for 1) the existence of multiple transduction pathways underlying responses to sugars: a T1R3-independent GS pathway for sucrose and glucose, and a TRPM5-independent temperature sensitive GS pathway for glucose; 2) the requirement for Galphagust in GS sweet taste responses; and 3) the existence of a sweet independent pathway for saccharin, in mouse taste cells on the anterior tongue.

  8. A taste of sweet pepper: Volatile and non-volatile chemical composition of fresh sweet pepper (Capsicum annuum) in relation to sensory evaluation of taste.

    Science.gov (United States)

    Eggink, P M; Maliepaard, C; Tikunov, Y; Haanstra, J P W; Bovy, A G; Visser, R G F

    2012-05-01

    In this study volatile and non-volatile compounds, as well as some breeding parameters, were measured in mature fruits of elite sweet pepper (Capsicum annuum) lines and hybrids from a commercial breeding program, several cultivated genotypes and one gene bank accession. In addition, all genotypes were evaluated for taste by a trained descriptive sensory expert panel. Metabolic contrasts between genotypes were caused by clusters of volatile and non-volatile compounds, which could be related to metabolic pathways and common biochemical precursors. Clusters of phenolic derivatives, higher alkanes, sesquiterpenes and lipid derived volatiles formed the major determinants of the genotypic differences. Flavour was described with the use of 14 taste attributes, of which the texture related attributes and the sweet-sour contrast were the most discriminatory factors. The attributes juiciness, toughness, crunchiness, stickiness, sweetness, aroma, sourness and fruity/apple taste could be significantly predicted with combined volatile and non-volatile data. Fructose and (E)-2-hexen-1-ol were highly correlated with aroma, fruity/apple taste and sweetness. New relations were found for fruity/apple taste and sweetness with the compounds p-menth-1-en-9-al, (E)-β-ocimene, (Z)-2-penten-1-ol and (E)-geranylacetone. Based on the overall biochemical and sensory results, the perspectives for flavour improvement by breeding are discussed. Copyright © 2011 Elsevier Ltd. All rights reserved.

  9. Salivary leptin and TAS1R2/TAS1R3 polymorphisms are related to sweet taste sensitivity and carbohydrate intake from a buffet meal in healthy young adults.

    Science.gov (United States)

    Han, Pengfei; Keast, Russell S J; Roura, Eugeni

    2017-11-01

    The influence of sweet taste sensitivity on food intake is not well understood. We investigated the involvement of salivary leptin and SNP of the sweet taste receptor genes (TAS1R2/TAS1R3) on sweet taste sensitivity, sensory-specific satiety (SSS) and macronutrient intake in healthy human adults. In all, nineteen high sweet sensitivity (HS) and eleven low sweet sensitivity (LS) subjects were classified based on the sweetness perception of one solution (9 mm sucrose) forced-choice triangle test. All participants completed a randomised crossover design experiment where they consumed one of three iso-energetic soup preloads differing in primary taste quality (sweet, non-sweet taste-control or no-taste energy-control). A period of 1 h after the preload, participants were offered a buffet meal consisting of foods varying in taste (sweet or non-sweet) and fat content. Subjective measures included hunger/fullness and SSS for sweetness. Saliva and buccal cells were collected to measure leptin level and to study the TAS1R2/TAS1R3 specific SNP, respectively. Salivary leptin concentrations were significantly higher in LS than HS participants (P<0·05). In addition, HS showed stronger sweet SSS compared with LH participants (P<0·05), and consumed less carbohydrate (% energy) and more non-sweet foods than LS (P<0·01 and P<0·05, respectively). Alleles from each TAS1R2 locus (GG compared with AA alleles of rs12033832, and CT/CC compared with TT alleles of rs35874116) were related to higher consumption of carbohydrates (% energy) and higher amount of sweet foods, respectively (P<0·05). In contrast, no associations were found for the TAS1R3 alleles. These results contribute to understand the links between taste sensitivity, macronutrient appetite and food consumption.

  10. Sweet taste exposure and the subsequent acceptance and preference for sweet taste in the diet: systematic review of the published literature.

    Science.gov (United States)

    Appleton, K M; Tuorila, H; Bertenshaw, E J; de Graaf, C; Mela, D J

    2018-03-01

    There are consistent, evidence-based global public health recommendations to reduce intakes of free sugars. However, the corresponding evidence for recommending reduced exposure to sweetness is less clear. Our aim was to identify and review the published evidence investigating the impact of dietary exposure to sweet-tasting foods or beverages on the subsequent generalized acceptance, preference, or choice of sweet foods and beverages in the diet. Systematic searches were conducted to identify all studies testing relations of variation in exposure to sweetness through foods and beverages with subsequent variation in the generalized acceptance, preference, or choice of sweetened foods or beverages, in humans aged >6 mo. Twenty-one studies met our inclusion criteria, comprising 7 population cohort studies involving 2320 children and 14 controlled trials involving 1113 individuals. These studies were heterogeneous in study design, population, exposure, and outcomes measured, and few were explicitly designed to address our research question. The findings from these were inconsistent. We found equivocal evidence from population cohort studies. The evidence from controlled studies suggests that a higher sweet taste exposure tends to lead to reduced preferences for sweetness in the shorter term, but very limited effects were found in the longer term. A small and heterogeneous body of research currently has considered the impact of varying exposure to sweet taste on subsequent generalized sweet taste preferences, and this evidence is equivocal regarding the presence and possible direction of a relation. Future work should focus on adequately powered studies with well-characterized exposures of sufficient duration. This review was registered with PROSPERO as CRD42016051840, 24 November 2016.

  11. Sweet Taste and Nutrient Value Subdivide Rewarding Dopaminergic Neurons in Drosophila

    Science.gov (United States)

    Huetteroth, Wolf; Perisse, Emmanuel; Lin, Suewei; Klappenbach, Martín; Burke, Christopher; Waddell, Scott

    2015-01-01

    Summary Dopaminergic neurons provide reward learning signals in mammals and insects [1–4]. Recent work in Drosophila has demonstrated that water-reinforcing dopaminergic neurons are different to those for nutritious sugars [5]. Here, we tested whether the sweet taste and nutrient properties of sugar reinforcement further subdivide the fly reward system. We found that dopaminergic neurons expressing the OAMB octopamine receptor [6] specifically convey the short-term reinforcing effects of sweet taste [4]. These dopaminergic neurons project to the β′2 and γ4 regions of the mushroom body lobes. In contrast, nutrient-dependent long-term memory requires different dopaminergic neurons that project to the γ5b regions, and it can be artificially reinforced by those projecting to the β lobe and adjacent α1 region. Surprisingly, whereas artificial implantation and expression of short-term memory occur in satiated flies, formation and expression of artificial long-term memory require flies to be hungry. These studies suggest that short-term and long-term sugar memories have different physiological constraints. They also demonstrate further functional heterogeneity within the rewarding dopaminergic neuron population. PMID:25728694

  12. Sweet taste disorder and vascular complications in patients with abnormal glucose tolerance.

    Science.gov (United States)

    Tsujimoto, Tetsuro; Imai, Kenjiro; Kanda, Sayaka; Kakei, Masafumi; Kajio, Hiroshi; Sugiyama, Takehiro

    2016-10-15

    It remains unknown whether taste disorders can be a risk factor for micro- and macro-vascular diseases in patients with abnormal glucose tolerance. A cross-sectional study in a nationally representative samples of 848 and 849 US adults (aged ≥40years) with diabetes or prediabetes who had sweet and salt taste disorders, respectively, from the National Health and Nutrition Examination Survey 2011-2012. Among the study population, 5.7% had sweet taste disorder and 8.6% had salt taste disorder. These data correspond to approximately 1.5 million and 1.8 million individuals with abnormal glucose tolerance aged 40years or older in the US population, respectively. In the adjusted model, sweet taste disorder was significantly associated with complication of ischemic heart disease (adjusted odds ratio [OR], 2.45; 95% confidence interval [CI], 1.03-5.81; P=0.04). Moreover, sweet taste disorder in patients with diabetes was significantly associated with diabetic retinopathy (adjusted OR, 2.89; 95% CI, 1.09-7.69; P=0.03) and diabetic nephropathy (adjusted OR, 3.17; 95% CI, 1.07-9.36; P=0.03). Meanwhile, salt taste disorder was not significantly associated with diabetic retinopathy, diabetic nephropathy, ischemic heart disease, or stroke. Total sugar intake was significantly higher in patients with sweet taste disorder than in those without it, whereas total daily intake of carbohydrate did not differ significantly. No significant association was observed between salt taste disorder and daily intake of sodium after multivariate analysis. Sweet taste disorder in patients with abnormal glucose tolerance was associated with increased sugar intake and vascular complications. Copyright © 2016 The Authors. Published by Elsevier Ireland Ltd.. All rights reserved.

  13. Impact of obesity on taste receptor expression in extra-oral tissues : emphasis on hypothalamus and brainstem

    NARCIS (Netherlands)

    Herrera Moro Chao, D; Argmann, C; Van Eijk, M; Boot, R G; Ottenhoff, R; Van Roomen, C; Foppen, E; Siljee, J E; Unmehopa, U A; Kalsbeek, A; Aerts, J M F G

    2016-01-01

    Sweet perception promotes food intake, whereas that of bitterness is inhibitory. Surprisingly, the expression of sweet G protein-coupled taste receptor (GPCTR) subunits (T1R2 and T1R3) and bitter GPCTRs (T2R116, T2R118, T2R138 and T2R104), as well as the α-subunits of the associated signalling

  14. Impact of obesity on taste receptor expression in extra-oral tissues: emphasis on hypothalamus and brainstem

    NARCIS (Netherlands)

    Herrera Moro Chao, D.; Argmann, C.; van Eijk, M.; Boot, R. G.; Ottenhoff, R.; van Roomen, C.; Foppen, E.; Siljee, J. E.; Unmehopa, U. A.; Kalsbeek, A.; Aerts, J. M. F. G.

    2016-01-01

    Sweet perception promotes food intake, whereas that of bitterness is inhibitory. Surprisingly, the expression of sweet G protein-coupled taste receptor (GPCTR) subunits (T1R2 and T1R3) and bitter GPCTRs (T2R116, T2R118, T2R138 and T2R104), as well as the alpha-subunits of the associated signalling

  15. The role of sweet and savoury taste in food intake and food preferences

    NARCIS (Netherlands)

    Griffioen-Roose, S.

    2012-01-01

    Background and aim

    The sensory attributes of food play a key role in the selection and termination of meals and their rewarding properties. The majority of our foods are either sweet or savoury tasting. In addition, within our food range, savoury-tasting foods contain in

  16. Sweet taste in apple: the role of sorbitol, individual sugars, organic acids and volatile compounds

    OpenAIRE

    Aprea, Eugenio; Charles, Mathilde; Endrizzi, Isabella; Laura Corollaro, Maria; Betta, Emanuela; Biasioli, Franco; Gasperi, Flavia

    2017-01-01

    Sweetness is one of the main drivers of consumer preference, and thus is given high priority in apple breeding programmes. Due to the complexity of sweetness evaluation, soluble solid content (SSC) is commonly used as an estimation of this trait. Nevertheless, it has been demonstrated that SSC and sweet taste are poorly correlated. Though individual sugar content may vary greatly between and within apple cultivars, no previous study has tried to investigate the relationship between the amount...

  17. New Sweet-Tasting Oleanane-Type Triterpenoid Saponins from "Tugancao" (Derris eriocarpa How).

    Science.gov (United States)

    Zhang, Hong-Xia; Sun, Guo; Gu, Jian-Long; Du, Zhi-Zhi

    2017-03-22

    With the aim to investigate the sweet-tasting compounds in Derris eriocarpa How (a substitute for licorice in "Zhuang" and "Dai" ethnopharmacy in Guangxi and Yunnan provinces of China) as well as to ascertain why the stem of D. eriocarpa can be used to substitute for licorice in the sweetness taste aspect, taste sensory-guided fractionation was conducted to isolate sweet constituents from the extract of D. eriocarpa. Four sweet-tasting triterpenoid saponins were obtained, including millettiasaponin A (1) and three new saponins named derrisaponins A-C (2-4). The sweetness potency was evaluated by a human sensory panel test. The sweetness intensities of compounds 1-4 were determined to be approximately 150, 80, 2, and 0.5 times relative to sucrose at the concentration of 1%, respectively, of which compounds 1 and 2, with a free carboxyl group at the C-30 position, showed more potent sweetness intensity. In addition, compounds 1 and 2 showed no acute toxic activity at doses of 250 and 400 mg/kg of body weight, respectively, assessed through caudal vein injection to ICR mice. The contents of the sweetest compounds in stems were analyzed quantitatively as 352.80 mg/kg for compound 1 and 1887.60 mg/kg for compound 2 performed by ultra-performance liquid chromatography-tandem mass spectrometry.

  18. Sweet taste preferences before and after an intensive medical weight loss intervention.

    Science.gov (United States)

    Asao, K; Rothberg, A E; Arcori, L; Kaur, M; Fowler, C E; Herman, W H

    2016-06-01

    Medical weight loss could change sweet taste threshold and preferences. The decrease in sweet taste preferences may, in turn, help in the maintenance of weight loss. This study examined the association between sweet taste preferences at baseline and weight change during a medical weight management programme and the impact of diet-induced weight loss on sweet taste preferences. Adult patients with body mass index ≥32 kg m -2 were recruited from a medical weight management clinic. Sweet taste preference was assessed using a forced-choice, paired-comparison tracking method before and after a very-low-calorie diet (VLCD). Twenty participants were included in the analysis: mean age was 53.1 (standard deviation [SD]: 11.4) years, and 14 were female. The mean body mass index was 41.4 (SD: 7.5) kg m -2 . The median preferred sucrose concentration before VLCD was 0.45 M. Following VLCD, mean change in weight was -13.3 (SD: 6.6) kg, and percentage weight change was -11.3% (SD: 5.9%). Based on mixed models with and without adjustment for demographic factors, diabetes status and smoking history, preferred sucrose concentration at baseline did not predict change in longer-term body weight. The change of preferred sucrose concentration following 12 weeks of VLCD was not significant ( P -value 0.95). Change in weight during and after VLCD was not associated with sweet taste preferences at baseline. After diet-induced weight loss, sweet taste preferences did not change.

  19. Umami taste in mice uses multiple receptors and transduction pathways.

    Science.gov (United States)

    Yasumatsu, Keiko; Ogiwara, Yoko; Takai, Shingo; Yoshida, Ryusuke; Iwatsuki, Ken; Torii, Kunio; Margolskee, Robert F; Ninomiya, Yuzo

    2012-03-01

    The distinctive umami taste elicited by l-glutamate and some other amino acids is thought to be initiated by G-protein-coupled receptors. Proposed umami receptors include heteromers of taste receptor type 1, members 1 and 3 (T1R1+T1R3), and metabotropic glutamate receptors 1 and 4 (mGluR1 and mGluR4). Multiple lines of evidence support the involvement of T1R1+T1R3 in umami responses of mice. Although several studies suggest the involvement of receptors other than T1R1+T1R3 in umami, the identity of those receptors remains unclear. Here, we examined taste responsiveness of umami-sensitive chorda tympani nerve fibres from wild-type mice and mice genetically lacking T1R3 or its downstream transduction molecule, the ion channel TRPM5. Our results indicate that single umami-sensitive fibres in wild-type mice fall into two major groups: sucrose-best (S-type) and monopotassium glutamate (MPG)-best (M-type). Each fibre type has two subtypes; one shows synergism between MPG and inosine monophosphate (S1, M1) and the other shows no synergism (S2, M2). In both T1R3 and TRPM5 null mice, S1-type fibres were absent, whereas S2-, M1- and M2-types remained. Lingual application of mGluR antagonists selectively suppressed MPG responses of M1- and M2-type fibres. These data suggest the existence of multiple receptors and transduction pathways for umami responses in mice. Information initiated from T1R3-containing receptors may be mediated by a transduction pathway including TRPM5 and conveyed by sweet-best fibres, whereas umami information from mGluRs may be mediated by TRPM5-independent pathway(s) and conveyed by glutamate-best fibres.

  20. Pseudogenization of a Sweet-Receptor Gene Accounts for Cats' Indifference toward Sugar.

    Directory of Open Access Journals (Sweden)

    2005-07-01

    Full Text Available Although domestic cats (Felis silvestris catus possess an otherwise functional sense of taste, they, unlike most mammals, do not prefer and may be unable to detect the sweetness of sugars. One possible explanation for this behavior is that cats lack the sensory system to taste sugars and therefore are indifferent to them. Drawing on work in mice, demonstrating that alleles of sweet-receptor genes predict low sugar intake, we examined the possibility that genes involved in the initial transduction of sweet perception might account for the indifference to sweet-tasting foods by cats. We characterized the sweet-receptor genes of domestic cats as well as those of other members of the Felidae family of obligate carnivores, tiger and cheetah. Because the mammalian sweet-taste receptor is formed by the dimerization of two proteins (T1R2 and T1R3; gene symbols Tas1r2 and Tas1r3, we identified and sequenced both genes in the cat by screening a feline genomic BAC library and by performing PCR with degenerate primers on cat genomic DNA. Gene expression was assessed by RT-PCR of taste tissue, in situ hybridization, and immunohistochemistry. The cat Tas1r3 gene shows high sequence similarity with functional Tas1r3 genes of other species. Message from Tas1r3 was detected by RT-PCR of taste tissue. In situ hybridization and immunohistochemical studies demonstrate that Tas1r3 is expressed, as expected, in taste buds. However, the cat Tas1r2 gene shows a 247-base pair microdeletion in exon 3 and stop codons in exons 4 and 6. There was no evidence of detectable mRNA from cat Tas1r2 by RT-PCR or in situ hybridization, and no evidence of protein expression by immunohistochemistry. Tas1r2 in tiger and cheetah and in six healthy adult domestic cats all show the similar deletion and stop codons. We conclude that cat Tas1r3 is an apparently functional and expressed receptor but that cat Tas1r2 is an unexpressed pseudogene. A functional sweet-taste receptor heteromer

  1. Pseudogenization of a sweet-receptor gene accounts for cats' indifference toward sugar.

    Directory of Open Access Journals (Sweden)

    Xia Li

    2005-07-01

    Full Text Available Although domestic cats (Felis silvestris catus possess an otherwise functional sense of taste, they, unlike most mammals, do not prefer and may be unable to detect the sweetness of sugars. One possible explanation for this behavior is that cats lack the sensory system to taste sugars and therefore are indifferent to them. Drawing on work in mice, demonstrating that alleles of sweet-receptor genes predict low sugar intake, we examined the possibility that genes involved in the initial transduction of sweet perception might account for the indifference to sweet-tasting foods by cats. We characterized the sweet-receptor genes of domestic cats as well as those of other members of the Felidae family of obligate carnivores, tiger and cheetah. Because the mammalian sweet-taste receptor is formed by the dimerization of two proteins (T1R2 and T1R3; gene symbols Tas1r2 and Tas1r3, we identified and sequenced both genes in the cat by screening a feline genomic BAC library and by performing PCR with degenerate primers on cat genomic DNA. Gene expression was assessed by RT-PCR of taste tissue, in situ hybridization, and immunohistochemistry. The cat Tas1r3 gene shows high sequence similarity with functional Tas1r3 genes of other species. Message from Tas1r3 was detected by RT-PCR of taste tissue. In situ hybridization and immunohistochemical studies demonstrate that Tas1r3 is expressed, as expected, in taste buds. However, the cat Tas1r2 gene shows a 247-base pair microdeletion in exon 3 and stop codons in exons 4 and 6. There was no evidence of detectable mRNA from cat Tas1r2 by RT-PCR or in situ hybridization, and no evidence of protein expression by immunohistochemistry. Tas1r2 in tiger and cheetah and in six healthy adult domestic cats all show the similar deletion and stop codons. We conclude that cat Tas1r3 is an apparently functional and expressed receptor but that cat Tas1r2 is an unexpressed pseudogene. A functional sweet-taste receptor heteromer

  2. Pseudogenization of a sweet-receptor gene accounts for cats' indifference toward sugar.

    Science.gov (United States)

    Li, Xia; Li, Weihua; Wang, Hong; Cao, Jie; Maehashi, Kenji; Huang, Liquan; Bachmanov, Alexander A; Reed, Danielle R; Legrand-Defretin, Véronique; Beauchamp, Gary K; Brand, Joseph G

    2005-07-01

    Although domestic cats (Felis silvestris catus) possess an otherwise functional sense of taste, they, unlike most mammals, do not prefer and may be unable to detect the sweetness of sugars. One possible explanation for this behavior is that cats lack the sensory system to taste sugars and therefore are indifferent to them. Drawing on work in mice, demonstrating that alleles of sweet-receptor genes predict low sugar intake, we examined the possibility that genes involved in the initial transduction of sweet perception might account for the indifference to sweet-tasting foods by cats. We characterized the sweet-receptor genes of domestic cats as well as those of other members of the Felidae family of obligate carnivores, tiger and cheetah. Because the mammalian sweet-taste receptor is formed by the dimerization of two proteins (T1R2 and T1R3; gene symbols Tas1r2 and Tas1r3), we identified and sequenced both genes in the cat by screening a feline genomic BAC library and by performing PCR with degenerate primers on cat genomic DNA. Gene expression was assessed by RT-PCR of taste tissue, in situ hybridization, and immunohistochemistry. The cat Tas1r3 gene shows high sequence similarity with functional Tas1r3 genes of other species. Message from Tas1r3 was detected by RT-PCR of taste tissue. In situ hybridization and immunohistochemical studies demonstrate that Tas1r3 is expressed, as expected, in taste buds. However, the cat Tas1r2 gene shows a 247-base pair microdeletion in exon 3 and stop codons in exons 4 and 6. There was no evidence of detectable mRNA from cat Tas1r2 by RT-PCR or in situ hybridization, and no evidence of protein expression by immunohistochemistry. Tas1r2 in tiger and cheetah and in six healthy adult domestic cats all show the similar deletion and stop codons. We conclude that cat Tas1r3 is an apparently functional and expressed receptor but that cat Tas1r2 is an unexpressed pseudogene. A functional sweet-taste receptor heteromer cannot form, and

  3. The Influence of Sweet Taste Perception on Dietary Intake in Relation to Dental Caries and BMI in Saudi Arabian Schoolchildren

    Directory of Open Access Journals (Sweden)

    Heba Ashi

    2017-01-01

    Full Text Available Objectives. The aim of the study was to evaluate the influence of sweet taste perception on dietary habits in Saudi schoolchildren. In addition, the relationship between dietary habits and both caries and BMI was studied. Methods. A cross-sectional observational study comprising 225 schoolchildren aged 13–15 years from Jeddah, Saudi Arabia, was conducted. The consumption frequency of certain food items was analysed from a beverage and snack questionnaire and a three-day estimated dietary record was obtained. The sweet taste perception level was determined as sweet taste threshold (TT and sweet taste preference (TP. Children were grouped into low, medium, and high, according to their sweet taste perception level. ICDAS and DMFS indices were used for caries registration and anthropometric measurements using BMI were collected. Results. Sweet taste perception was found to be negatively correlated to the number of main meals and positively correlated to both snack and sweet intake occasions. Statistically significant differences were found between the TT and TP groups with regard to the number of main meals and sweet intake (p≤0.01. No significant correlation between the dietary variables and caries or BMI was found. Conclusions. The dietary habits and sweet intake were found to be influenced by the sweet taste perception level, while the relation between the dietary habits and the caries and BMI was found insignificant.

  4. The Role of 5-HT3 Receptors in Signaling from Taste Buds to Nerves.

    Science.gov (United States)

    Larson, Eric D; Vandenbeuch, Aurelie; Voigt, Anja; Meyerhof, Wolfgang; Kinnamon, Sue C; Finger, Thomas E

    2015-12-02

    Activation of taste buds triggers the release of several neurotransmitters, including ATP and serotonin (5-hydroxytryptamine; 5-HT). Type III taste cells release 5-HT directly in response to acidic (sour) stimuli and indirectly in response to bitter and sweet tasting stimuli. Although ATP is necessary for activation of nerve fibers for all taste stimuli, the role of 5-HT is unclear. We investigated whether gustatory afferents express functional 5-HT3 receptors and, if so, whether these receptors play a role in transmission of taste information from taste buds to nerves. In mice expressing GFP under the control of the 5-HT(3A) promoter, a subset of cells in the geniculate ganglion and nerve fibers in taste buds are GFP-positive. RT-PCR and in situ hybridization confirmed the presence of 5-HT(3A) mRNA in the geniculate ganglion. Functional studies show that only those geniculate ganglion cells expressing 5-HT3A-driven GFP respond to 10 μM 5-HT and this response is blocked by 1 μM ondansetron, a 5-HT3 antagonist, and mimicked by application of 10 μM m-chlorophenylbiguanide, a 5-HT3 agonist. Pharmacological blockade of 5-HT3 receptors in vivo or genetic deletion of the 5-HT3 receptors reduces taste nerve responses to acids and other taste stimuli compared with controls, but only when urethane was used as the anesthetic. We find that anesthetic levels of pentobarbital reduce taste nerve responses apparently by blocking the 5-HT3 receptors. Our results suggest that 5-HT released from type III cells activates gustatory nerve fibers via 5-HT3 receptors, accounting for a significant proportion of the neural taste response. Copyright © 2015 the authors 0270-6474/15/3515984-12$15.00/0.

  5. Do People Eat the Pain Away? The Effects of Acute Physical Pain on Subsequent Consumption of Sweet-Tasting Food.

    Directory of Open Access Journals (Sweden)

    Kathleen E Darbor

    Full Text Available Sweet tasting foods have been found to have an analgesic effect. Therefore people might consume more sweet-tasting food when they feel pain. In Study 1, participants were randomly assigned to a pain or non-pain condition and their consumption of cheesecake was measured. Participants ate more cheesecake (a sweet-tasting food following a painful experience than a non-painful one. In Study 2, participants were randomly assigned to a painful experience or a resource depleting experience (i.e., squeezing a handgrip and then were asked to taste test two foods, one sweet and one not sweet. Participants ate more sweet-tasting food following a painful experience than a non-painful or a resource-depleting experience. These differences were not present for consumption of non-sweet food. Further, habitual self-control predicted consumption of sweet-tasting food when in pain, with those lower in self-control particularly likely to eat more. Results suggest that people do eat more sweet-tasting food when they feel pain, particularly if they are not in the habit of controlling their impulses. These findings have implications for health given rising rates of obesity and pain-related diagnoses.

  6. Do People Eat the Pain Away? The Effects of Acute Physical Pain on Subsequent Consumption of Sweet-Tasting Food.

    Science.gov (United States)

    Darbor, Kathleen E; Lench, Heather C; Carter-Sowell, Adrienne R

    2016-01-01

    Sweet tasting foods have been found to have an analgesic effect. Therefore people might consume more sweet-tasting food when they feel pain. In Study 1, participants were randomly assigned to a pain or non-pain condition and their consumption of cheesecake was measured. Participants ate more cheesecake (a sweet-tasting food) following a painful experience than a non-painful one. In Study 2, participants were randomly assigned to a painful experience or a resource depleting experience (i.e., squeezing a handgrip) and then were asked to taste test two foods, one sweet and one not sweet. Participants ate more sweet-tasting food following a painful experience than a non-painful or a resource-depleting experience. These differences were not present for consumption of non-sweet food. Further, habitual self-control predicted consumption of sweet-tasting food when in pain, with those lower in self-control particularly likely to eat more. Results suggest that people do eat more sweet-tasting food when they feel pain, particularly if they are not in the habit of controlling their impulses. These findings have implications for health given rising rates of obesity and pain-related diagnoses.

  7. Glucosyl Rubusosides by Dextransucrases Improve the Quality of Taste and Sweetness.

    Science.gov (United States)

    Ko, Jin-A; Ryu, Young Bae; Park, Ji-Young; Kim, Cha Young; Kim, Joong Su; Nam, Seung-Hee; Lee, Woo Song; Kim, Young-Min

    2016-03-01

    Glucosyl rubusosides were synthesized by two dextransucrases. LcDexT was obtained from Leuconosotoc citreum, that LlDexT was obtained from Leuconostoc lactis. LcDexT and LlDexT regioselectively transferred a glucosyl residue to the 13-O-glucosyl moiety of rubusoside with high yield of 59-66% as analyzed by TLC and HPLC. Evaluation of the sweetness of these glucosyl rubusosides showed that their quality of taste, in particular, was superior to that of rubusoside. These results indicate that transglucosylation at the 13-O-glucosyl moiety of rubusoside by different regioselective dextransucrases can be applicable for increasing its sweetness and quality of taste.

  8. Altered insula response to sweet taste processing after recovery from anorexia and bulimia nervosa.

    Science.gov (United States)

    Oberndorfer, Tyson A; Frank, Guido K W; Simmons, Alan N; Wagner, Angela; McCurdy, Danyale; Fudge, Julie L; Yang, Tony T; Paulus, Martin P; Kaye, Walter H

    2013-10-01

    Recent studies suggest that altered function of higher-order appetitive neural circuitry may contribute to restricted eating in anorexia nervosa and overeating in bulimia nervosa. This study used sweet tastes to interrogate gustatory neurocircuitry involving the anterior insula and related regions that modulate sensory-interoceptive-reward signals in response to palatable foods. Participants who had recovered from anorexia nervosa and bulimia nervosa were studied to avoid confounding effects of altered nutritional state. Functional MRI measured brain response to repeated tastes of sucrose and sucralose to disentangle neural processing of caloric and noncaloric sweet tastes. Whole-brain functional analysis was constrained to anatomical regions of interest. Relative to matched comparison women (N=14), women recovered from anorexia nervosa (N=14) had significantly diminished and women recovered from bulimia nervosa (N=14) had significantly elevated hemodynamic response to tastes of sucrose in the right anterior insula. Anterior insula response to sucrose compared with sucralose was exaggerated in the recovered group (lower in women recovered from anorexia nervosa and higher in women recovered from bulimia nervosa). The anterior insula integrates sensory reward aspects of taste in the service of nutritional homeostasis. One possibility is that restricted eating and weight loss occur in anorexia nervosa because of a failure to accurately recognize hunger signals, whereas overeating in bulimia nervosa could represent an exaggerated perception of hunger signals. This response may reflect the altered calibration of signals related to sweet taste and the caloric content of food and may offer a pathway to novel and more effective treatments.

  9. Sweet taste in apple: the role of sorbitol, individual sugars, organic acids and volatile compounds

    Science.gov (United States)

    Aprea, Eugenio; Charles, Mathilde; Endrizzi, Isabella; Laura Corollaro, Maria; Betta, Emanuela; Biasioli, Franco; Gasperi, Flavia

    2017-03-01

    Sweetness is one of the main drivers of consumer preference, and thus is given high priority in apple breeding programmes. Due to the complexity of sweetness evaluation, soluble solid content (SSC) is commonly used as an estimation of this trait. Nevertheless, it has been demonstrated that SSC and sweet taste are poorly correlated. Though individual sugar content may vary greatly between and within apple cultivars, no previous study has tried to investigate the relationship between the amount of individual sugars, or ratios of these, and apple sweetness. In this work, we quantified the major sugars (sucrose, glucose, fructose, xylose) and sorbitol and explored their influence on perceived sweetness in apple; we also related this to malic acid content, SSC and volatile compounds. Our data confirmed that the correlation between sweetness and SSC is weak. We found that sorbitol content correlates (similarly to SSC) with perceived sweetness better than any other single sugar or total sugar content. The single sugars show no differentiable importance in determining apple sweetness. Our predictive model based on partial least squares regression shows that after sorbitol and SSC, the most important contribution to apple sweetness is provided by several volatile compounds, mainly esters and farnesene.

  10. Fruit and snack consumption related to sweet, sour and salty taste preferences

    NARCIS (Netherlands)

    Sijtsema, S.J.; Reinders, M.J.; Hiller, S.; Guardia, D.

    2012-01-01

    Purpose – To better understand fruit consumption and its determinants this paper aims to explore the relationship between the consumption of different types of fruit and other snacks and consumer taste preferences for sweet, salty and sour is explored. Design/methodology/approach – Respondents

  11. Desire for Sweet Taste Unchanged After Eating: Evidence of a Dessert Mentality?

    Science.gov (United States)

    Harington, Kate; Smeele, Rebecca; Van Loon, Fiona; Yuan, Jannie; Haszard, Jillian Joy; Drewer, Amanda; Venn, Bernard Joseph

    2016-08-01

    Added sugars provide calories and desirability to foods and beverages. Our aim was to test whether desire for a sweet taste would be better maintained than a desire for other tastes for 3 hours after a test meal. Eighty-three young adults ate 2 slices of bread on 2 separate occasions after which they were asked to rate their desire for savory, sweet, fatty, or salty tastes and to specify the number of servings of white rice, pizza, cheese and crackers, sweet biscuits, and pasta they could consume. Desirability was assessed using 100-mm visual analog scales (VAS), with 0 mm representing no desire and 100 mm great desire. When participants provided a quantitative assessment of the servings of foods that they wanted to eat following the bread meal, desire decreased on average for all foods measured, χ 2 (3) = 2.63, p = 0.452. Mean (95% confidence interval [CI]) change in VAS taste desirability 30 minutes after eating declined for salty (14.5 mm [10.5, 18.6]), fatty (11.2 mm [7.1, 15.2]), and savory (24.1 mm [19.7, 28.5]) tastes (p foods and beverages. Targeting familial and cultural practices that discourage the consumption of added sugar foods might be useful to combat desire-driven food intake.

  12. Effect of Heavy Consumption of Alcoholic Beverages on the Perception of Sweet and Salty Taste.

    Science.gov (United States)

    Silva, Camile S; Dias, Vaneria R; Almeida, Juliane A Regis; Brazil, Jamile M; Santos, Ramon A; Milagres, Maria P

    2016-05-01

    To determine the threshold index of sweet and salty tastes in alcoholics undergoing treatment. Taste threshold was assessed using type 3-Alternative Forced Choice in a control group (92 non-alcoholic volunteers) and a test group (92 alcoholics in therapy). The test group completed a structured questionnaire on lifestyle and habits. Significant difference were found between the threshold rates found in the test (3.78) and control groups (1.39). In the salty stimulus, no significant difference was noted in the threshold detection between the control (0.17) and test groups (0.30). A significant correlation was observed between the index Pearson's threshold to sweet taste in the test group and their reported alcohol consumption. The test group reported characteristics such as loss of appetite (93%), weight loss during consumption (62%) and weight gain after quitting drinking (72%). That the alcoholic group reported less sensitivity to sweet taste suggests that drinking habits may influence choice of foods, with a greater preference for foods with higher sucrose concentration. This contribute to poor health, because excess consumption of sugar raises risk for several diseases. No conclusive results were found for the salty stimulus. © The Author 2015. Medical Council on Alcohol and Oxford University Press. All rights reserved.

  13. Sweet taste preference in binge-eating disorder: A preliminary investigation.

    Science.gov (United States)

    Goodman, Erica L; Breithaupt, Lauren; Watson, Hunna J; Peat, Christine M; Baker, Jessica H; Bulik, Cynthia M; Brownley, Kimberly A

    2018-01-01

    Research suggests that individuals with high liking for sweets are at increased risk for binge eating, which has been minimally investigated in individuals with binge-eating disorder (BED). Forty-one adults (85% female, 83% white) with binge eating concerns completed a sweet taste test and measures of eating disorder behaviors and food cravings. A subset of participants with BED completed an oral glucose tolerance test (OGTT; N=21) and a 24-hour dietary recall (N=26). Regression models were used to compare highest sweet preferers (HSP [N=18]) to other sweet preferers (OSP [N=23]) and were used to assess associations between sweet taste preference and outcome variables. Effect sizes (ηp 2 ) for differences between HSP and OSP ranged from small (≤0.01) to large (≥0.24); group differences were statistically nonsignificant except for 24-hour caloric intake (ηp 2 =0.16, p=0.04), protein intake (ηp 2 =0.16, p=0.04), and insulin sensitivity index (ηp 2 =0.24, p=0.04), which were higher in HSP, and postprandial insulin, which was smaller in HSP (ηp 2 =0.27, p=0.03). Continuous analyses replicated postprandial insulin response. Compared with OSP, HSP reported numerically higher binge-eating frequency (ηp 2 =0.04), over-eating frequency (ηp 2 =0.06), and carbohydrate intake (ηp 2 =0.14), and they exhibited numerically smaller postprandial glucose AUC (ηp 2 =0.16). Sweet taste preference may have implications for glucose regulation, binge-eating frequency, and nutrient intake in BED. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Behavioral genetics and taste

    Directory of Open Access Journals (Sweden)

    Bachmanov Alexander A

    2007-09-01

    Full Text Available Abstract This review focuses on behavioral genetic studies of sweet, umami, bitter and salt taste responses in mammals. Studies involving mouse inbred strain comparisons and genetic analyses, and their impact on elucidation of taste receptors and transduction mechanisms are discussed. Finally, the effect of genetic variation in taste responsiveness on complex traits such as drug intake is considered. Recent advances in development of genomic resources make behavioral genetics a powerful approach for understanding mechanisms of taste.

  15. Impact of Prior Consumption on Sour, Sweet, Salty, and Bitter Tastes.

    Science.gov (United States)

    Christina, Josephine; Palma-Salgado, Sindy; Clark, Diana; Kahraman, Ozan; Lee, Soo-Yeun

    2016-02-01

    Food sensory tests generally require panelists to abstain from food or beverage consumption 30 min to an hour before a tasting session. However, investigators do not have a complete control over panelists' intentional or unintentional consumption prior to a tasting session. Currently, it is unclear how prior consumption impacts the results of the tasting session. The aim of this study was to determine the effects of temporary and lingering mouth irritation caused by the consumption of coffee, orange juice, and gum within 1, 15, or 30 min prior to the tasting session on the perception of 4 basic tastes: sweet, salty, sour, and bitter. Fifty-two panelists were served a beverage (orange juice, coffee, and water) or were asked to chew a piece of gum, and then, remained in the waiting room for 1, 15, or 30 min. They were then asked to report taste intensities using 15-cm unstructured line scales. Mean intensities of all tastes were not significantly different when orange juice was a primer at 1, 15, and 30 min when compared to water. Mean intensities of bitter were significantly lower when coffee was a primer at 1, 15, and 30 min than when water was a primer. Mean intensities of sweet were significantly lower when gum was a primer at 1 and 15 min than when water was a primer. The findings showed that it is necessary for 30 min or more waiting period of no food or beverage consumption prior to sensory testing. © 2015 Institute of Food Technologists®

  16. Human biology of taste.

    Science.gov (United States)

    Gravina, Stephen A; Yep, Gregory L; Khan, Mehmood

    2013-01-01

    Taste or gustation is one of the 5 traditional senses including hearing, sight, touch, and smell. The sense of taste has classically been limited to the 5 basic taste qualities: sweet, salty, sour, bitter, and umami or savory. Advances from the Human Genome Project and others have allowed the identification and determination of many of the genes and molecular mechanisms involved in taste biology. The ubiquitous G protein-coupled receptors (GPCRs) make up the sweet, umami, and bitter receptors. Although less clear in humans, transient receptor potential ion channels are thought to mediate salty and sour taste; however, other targets have been identified. Furthermore, taste receptors have been located throughout the body and appear to be involved in many regulatory processes. An emerging interplay is revealed between chemical sensing in the periphery, cortical processing, performance, and physiology and likely the pathophysiology of diseases such as diabetes.

  17. Selecting odorant compounds to enhance sweet flavor perception by gas chromatography/olfactometry-associated taste (GC/O-AT).

    Science.gov (United States)

    Barba, Carmen; Beno, Noelle; Guichard, Elisabeth; Thomas-Danguin, Thierry

    2018-08-15

    Gas chromatography/olfactometry-associated taste (GC/O-AT) analysis combined with mass spectrometry allowed identification of odorant compounds associated with taste attributes (sweet, salty, bitter and sour) in a multi-fruit juice. Nine compounds were selected for their odor-associated sweetness enhancement in a multi-fruit juice odor context using Olfactoscan and for their odor-induced sweet taste enhancement in sucrose solution and sugar-reduced fruit juice through sensory tests. Sweetness of the fruit juice odor was significantly enhanced by methyl 2-methylbutanoate, ethyl butanoate, ethyl 2-methylbutanoate and linalool; sweet perception was significantly enhanced in 7% sucrose solution by ethyl 2-methylbutanoate, furaneol and γ-decalactone, and in 32% sugar-reduced fruit juice by ethyl 2-methylbutanoate. GC/O-AT analysis is a novel, efficient approach to select odorants associated with a given taste. The further screening of taste-associated odorants by Olfactoscan helps to identify the most efficient odorants to enhance a target taste perception and may be used to find new ways to modulate taste perception in foods and beverages. Copyright © 2018 Elsevier Ltd. All rights reserved.

  18. Sweet love: The effects of sweet taste experience on romantic perceptions

    NARCIS (Netherlands)

    Ren, D.N.; Tan, K.; Arriaga, X.B.; Chan, K.Q.

    2015-01-01

    Terms of endearment such as sweetie, honey, and sugar are commonly used in the context of describing romantic partners. This article explores how a relatively subtle manipulation, namely taste sensations, might influence romantic perceptions of a nonestablished relationship. Consistent with

  19. New Sweet-Tasting C21-Pregnane Glycosides from Pericarps of Myriopteron extensum.

    Science.gov (United States)

    Sun, Guo; Dai, Qin; Zhang, Hong-Xia; Li, Zhi-Jian; Du, Zhi-Zhi

    2016-12-14

    Ten novel C21 pregnane glycosides, extensumside C-L (1-10), were isolated as highly sweet-tasting substances from the edible pericarps of Myriopteron extensum (Wight) K. Schum by sensory-guided fractionation and purification. Their structures were determined through 1D and 2D NMR, such as HSQC, HMBC, 1 H- 1 H COSY, HSQC-TOCSY, and ROESY, as well as other spectroscopic analysis combined with chemical evidence. These compounds shared the same aglycone, 3β,16α-dihydroxy-pregn-5-en-20-one, and contained the deoxysugar chain and the glucose chain which were linked to C-3 and C-16 of the aglycone, respectively. The sweetness potency was evaluated by a human sensory panel test and preliminary structure-taste relationship was discussed. The sweetness intensities of these compounds are between 50 and 400 times greater than that of sucrose. Furthermore, quantitation analyses of compounds 1, 3, 4, and 6 in different parts of M. extensum indicated that the concentrations of these sweet components in the pericarps are obviously higher than those in stems and roots.

  20. Genetic diversity of bitter taste receptor gene family in Sichuan ...

    Indian Academy of Sciences (India)

    Roura E., Baldwin M. W. and Klasing K. C. 2013 The avian taste system: potential implications in poultry nutrition. Anim. Feed. Sci. Tech. 180, 1–9. Striem B., Pace U., Zehavi U., Naim M. and Lancet D. 1989 Sweet tastants stimulate adenylate cyclase coupled to GTP-binding protein in rat tongue membranes. Biochem. J. 260 ...

  1. Expression of taste receptors in Solitary Chemosensory Cells of rodent airways

    Directory of Open Access Journals (Sweden)

    Sbarbati Andrea

    2011-01-01

    Full Text Available Abstract Background Chemical irritation of airway mucosa elicits a variety of reflex responses such as coughing, apnea, and laryngeal closure. Inhaled irritants can activate either chemosensitive free nerve endings, laryngeal taste buds or solitary chemosensory cells (SCCs. The SCC population lies in the nasal respiratory epithelium, vomeronasal organ, and larynx, as well as deeper in the airway. The objective of this study is to map the distribution of SCCs within the airways and to determine the elements of the chemosensory transduction cascade expressed in these SCCs. Methods We utilized a combination of immunohistochemistry and molecular techniques (rtPCR and in situ hybridization on rats and transgenic mice where the Tas1R3 or TRPM5 promoter drives expression of green fluorescent protein (GFP. Results Epithelial SCCs specialized for chemoreception are distributed throughout much of the respiratory tree of rodents. These cells express elements of the taste transduction cascade, including Tas1R and Tas2R receptor molecules, α-gustducin, PLCβ2 and TrpM5. The Tas2R bitter taste receptors are present throughout the entire respiratory tract. In contrast, the Tas1R sweet/umami taste receptors are expressed by numerous SCCs in the nasal cavity, but decrease in prevalence in the trachea, and are absent in the lower airways. Conclusions Elements of the taste transduction cascade including taste receptors are expressed by SCCs distributed throughout the airways. In the nasal cavity, SCCs, expressing Tas1R and Tas2R taste receptors, mediate detection of irritants and foreign substances which trigger trigeminally-mediated protective airway reflexes. Lower in the respiratory tract, similar chemosensory cells are not related to the trigeminal nerve but may still trigger local epithelial responses to irritants. In total, SCCs should be considered chemoreceptor cells that help in preventing damage to the respiratory tract caused by inhaled irritants and

  2. Expression and Purification of Functional Ligand-binding Domains of T1R3 Taste Receptors

    Energy Technology Data Exchange (ETDEWEB)

    Nie,Y.; Hobbs, J.; Vigues, S.; Olson, W.; Conn, G.; Munger, S.

    2006-01-01

    Chemosensory receptors, including odor, taste, and vomeronasal receptors, comprise the largest group of G protein-coupled receptors (GPCRs) in the mammalian genome. However, little is known about the molecular determinants that are critical for the detection and discrimination of ligands by most of these receptors. This dearth of understanding is due in part to difficulties in preparing functional receptors suitable for biochemical and biophysical analyses. Here we describe in detail two strategies for the expression and purification of the ligand-binding domain of T1R taste receptors, which are constituents of the sweet and umami taste receptors. These class C GPCRs contain a large extracellular N-terminal domain (NTD) that is the site of interaction with most ligands and that is amenable to expression as a separate polypeptide in heterologous cells. The NTD of mouse T1R3 was expressed as two distinct fusion proteins in Escherichia coli and purified by column chromatography. Spectroscopic analysis of the purified NTD proteins shows them to be properly folded and capable of binding ligands. This methodology should not only facilitate the characterization of T1R ligand interactions but may also be useful for dissecting the function of other class C GPCRs such as the large family of orphan V2R vomeronasal receptors.

  3. Sweet Taste Perception and Dental Caries in 13- to 15-Year-Olds: A Multicenter Cross-Sectional Study.

    Science.gov (United States)

    Ashi, H; Lara-Capi, C; Campus, G; Klingberg, G; Lingström, P

    2017-01-01

    Dietary habits and, in particular, the intake frequency of sucrose are of major importance for the development of dental caries. The perception of sweet taste is believed to have an influence on sucrose intake and therefore affects the predisposition to dental caries. The aim was to study the caries experience and sweet taste perception and to further analyze the possible relationship between the 2 tested variables in 13- to 15-year-old children from 3 different geographical areas. A cross-sectional survey comprising 669 children (220 Italian, 224 Mexican, and 225 Saudi Arabian) was conducted. The children were examined in their school setting. A sweet taste perception level was determined by the sweet taste threshold (TT) and sweet taste preference (TP). The sweet test was performed with sucrose solutions varying in concentration from 1.63 to 821.52 g/L. The International Caries Detection and Assessment System (ICDAS) and DMFS indices were used to diagnose caries. The highest mean value for TT was found for Italian children followed by Saudi and Mexican. Saudi schoolchildren showed the highest mean values for TP and DMFS, followed by Italian and Mexican. A statistically significant difference for TP, TT, DMFS, and initial caries was found between the 3 countries. A weak yet positive correlation was found between taste perception (TT and TP) versus DMFS and manifest caries in all 3 countries (r = 0.137-0.313). The findings of the present study showed a variation in sweet taste perception between the 3 countries, which may influence the caries outcome of the children in the individual countries. © 2017 S. Karger AG, Basel.

  4. Positive Charges on the Surface of Thaumatin Are Crucial for the Multi-Point Interaction with the Sweet Receptor.

    Science.gov (United States)

    Masuda, Tetsuya; Kigo, Satomi; Mitsumoto, Mayuko; Ohta, Keisuke; Suzuki, Mamoru; Mikami, Bunzo; Kitabatake, Naofumi; Tani, Fumito

    2018-01-01

    Thaumatin, an intensely sweet-tasting protein, elicits sweet taste with a threshold of only 50 nM. Previous studies from our laboratory suggested that the complex model between the T1R2-T1R3 sweet receptor and thaumatin depends critically on the complementarity of electrostatic potentials. In order to further validate this model, we focused on three lysine residues (Lys78, Lys106, and Lys137), which were expected to be part of the interaction sites. Three thaumatin mutants (K78A, K106A, and K137A) were prepared and their threshold values of sweetness were examined. The results showed that the sweetness of K106A was reduced by about three times and those of K78A and K137A were reduced by about five times when compared to wild-type thaumatin. The three-dimensional structures of these mutants were also determined by X-ray crystallographic analyses at atomic resolutions. The overall structures of mutant proteins were similar to that of wild-type but the electrostatic potentials around the mutated sites became more negative. Since the three lysine residues are located in 20-40 Å apart each other on the surface of thaumatin molecule, these results suggest the positive charges on the surface of thaumatin play a crucial role in the interaction with the sweet receptor, and are consistent with a large surface is required for interaction with the sweet receptor, as proposed by the multipoint interaction model named wedge model.

  5. Altered learning, memory, and social behavior in type 1 taste receptor subunit 3 knock-out mice are associated with neuronal dysfunction.

    Science.gov (United States)

    Martin, Bronwen; Wang, Rui; Cong, Wei-Na; Daimon, Caitlin M; Wu, Wells W; Ni, Bin; Becker, Kevin G; Lehrmann, Elin; Wood, William H; Zhang, Yongqing; Etienne, Harmonie; van Gastel, Jaana; Azmi, Abdelkrim; Janssens, Jonathan; Maudsley, Stuart

    2017-07-07

    The type 1 taste receptor member 3 (T1R3) is a G protein-coupled receptor involved in sweet-taste perception. Besides the tongue, the T1R3 receptor is highly expressed in brain areas implicated in cognition, including the hippocampus and cortex. As cognitive decline is often preceded by significant metabolic or endocrinological dysfunctions regulated by the sweet-taste perception system, we hypothesized that a disruption of the sweet-taste perception in the brain could have a key role in the development of cognitive dysfunction. To assess the importance of the sweet-taste receptors in the brain, we conducted transcriptomic and proteomic analyses of cortical and hippocampal tissues isolated from T1R3 knock-out (T1R3KO) mice. The effect of an impaired sweet-taste perception system on cognition functions were examined by analyzing synaptic integrity and performing animal behavior on T1R3KO mice. Although T1R3KO mice did not present a metabolically disrupted phenotype, bioinformatic interpretation of the high-dimensionality data indicated a strong neurodegenerative signature associated with significant alterations in pathways involved in neuritogenesis, dendritic growth, and synaptogenesis. Furthermore, a significantly reduced dendritic spine density was observed in T1R3KO mice together with alterations in learning and memory functions as well as sociability deficits. Taken together our data suggest that the sweet-taste receptor system plays an important neurotrophic role in the extralingual central nervous tissue that underpins synaptic function, memory acquisition, and social behavior. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  6. Sonic hedgehog-expressing basal cells are general post-mitotic precursors of functional taste receptor cells

    Science.gov (United States)

    Miura, Hirohito; Scott, Jennifer K.; Harada, Shuitsu; Barlow, Linda A.

    2014-01-01

    Background Taste buds contain ~60 elongate cells and several basal cells. Elongate cells comprise three functional taste cell types: I - glial cells, II - bitter/sweet/umami receptor cells, and III - sour detectors. Although taste cells are continuously renewed, lineage relationships among cell types are ill-defined. Basal cells have been proposed as taste bud stem cells, a subset of which express Sonic hedgehog (Shh). However, Shh+ basal cells turnover rapidly suggesting that Shh+ cells are precursors of some or all taste cell types. Results To fate map Shh-expressing cells, mice carrying ShhCreERT2 and a high (CAG-CAT-EGFP) or low (R26RLacZ) efficiency reporter allele were given tamoxifen to activate Cre in Shh+ cells. Using R26RLacZ, lineage-labeled cells occur singly within buds, supporting a post-mitotic state for Shh+ cells. Using either reporter, we show that Shh+ cells differentiate into all three taste cell types, in proportions reflecting cell type ratios in taste buds (I > II > III). Conclusions Shh+ cells are not stem cells, but are post-mitotic, immediate precursors of taste cells. Shh+ cells differentiate into each of the three taste cell types, and the choice of a specific taste cell fate is regulated to maintain the proper ratio within buds. PMID:24590958

  7. Study of sweet taste evaluation using taste sensor with lipid/polymer membranes.

    Science.gov (United States)

    Habara, Masaaki; Ikezaki, Hidekazu; Toko, Kiyoshi

    2004-07-15

    The higher sensitivity for sweeteners can be achieved by newly developed lipid/polymer membranes. The membrane is composed of lipids such as phosphoric acid di-n-hexadecyl ester and tetradodecylammoniumbromid, and a plasticizer, dioctyl phenylphosphonate. As a result of changing electric charge of the membrane surface, the newly developed membrane shows 5-10 times higher sensitivity for sucrose than the conventional ones. We also applied the sensor to other sugars such as sugar alcohol which is used as alternative sweetness or food additives. The experimental results of other sweeteners relatively correspond to human sensory evaluation, though the sensitivity for some sugars need to be improved.

  8. Genetic diversity of bitter taste receptor gene family in Sichuan ...

    Indian Academy of Sciences (India)

    Abstract. The sense of bitter taste plays a critical role in animals as it can help them to avoid intake of toxic and harmful substances. Previous research had revealed that chicken has only three bitter taste receptor genes (Tas2r1, Tas2r2 and Tas2r7). To better understand the genetic polymorphisms and importance of bitter ...

  9. A Matter of Taste: Lineage-Specific Loss of Function of Taste Receptor Genes in Vertebrates

    Directory of Open Access Journals (Sweden)

    Marco Antinucci

    2017-11-01

    Full Text Available Vertebrates can perceive at least five different taste qualities, each of which is thought to have a specific role in the evolution of different species. The avoidance of potentially poisonous foods, which are generally bitter or sour tasting, and the search for more nutritious ones, those with high-fat and high-sugar content, are two of the most well-known examples. The study of taste genes encoding receptors that recognize ligands triggering taste sensations has helped to reconstruct several evolutionary adaptations to dietary changes. In addition, an increasing number of studies have focused on pseudogenes, genomic DNA sequences that have traditionally been considered defunct relatives of functional genes mostly because of the presence of deleterious mutations interrupting their open reading frames. The study of taste receptor pseudogenes has helped to shed light on how the evolutionary history of taste in vertebrates has been the result of a succession of gene gain and loss processes. This dynamic role in evolution has been explained by the “less-is-more” hypothesis, suggesting gene loss as a mechanism of evolutionary change in response to a dietary shift. This mini-review aims at depicting the major lineage-specific loss of function of taste receptor genes in vertebrates, stressing their evolutionary importance and recapitulating signatures of natural selection and their correlations with food habits.

  10. Sweeteners and sweetness enhancers.

    Science.gov (United States)

    Belloir, Christine; Neiers, Fabrice; Briand, Loïc

    2017-07-01

    The current review summarizes and discusses current knowledge on sweeteners and sweetness enhancers. The perception of sweet taste is mediated by the type 1 taste receptor 2 (T1R2)/type 1 taste receptor 3 (T1R3) receptor, which is expressed in the oral cavity, where it provides input on the caloric and macronutrient contents of ingested food. This receptor recognizes all the compounds (natural or artificial) perceived as sweet by people. Sweeteners are highly chemically diverse including natural sugars, sugar alcohols, natural and synthetic sweeteners, and sweet-tasting proteins. This single receptor is also the target for developing novel sweet enhancers. Importantly, the expression of a functional T1R2/T1R3 receptor is described in numerous extraoral tissues. In this review, the physiological impact of sweeteners is discussed. Sweeteners and sweetness enhancers are perceived through the T1R2/T1R3 taste receptor present both in mouth and numerous extraoral tissues. The accumulated knowledge on sugar substitutes raises the issue of potential health effects.

  11. Sweet taste perception not altered after acute sleep deprivation in healthy young men.

    Science.gov (United States)

    Hogenkamp, P S; Nilsson, E; Chapman, C D; Cedernaes, J; Vogel, H; Dickson, S L; Broman, J-E; Schiöth, H B; Benedict, C

    2013-06-01

    We hypothesized that acutely sleep-deprived participants would rate ascending concentrations of sucrose as more intense and pleasant, than they would do after one night of normal sleep. Such a finding would offer a potential mechanism through which acute sleep loss could promote overeating in humans. A total of 16 healthy normal-weight men participated in 2 conditions: sleep (permitted between 22:30 and 06:30 h) and total sleep deprivation (TSD) respectively. On the morning after regular sleep and TSD, circulating concentrations of ghrelin and glucose were measured. In addition, participants hunger level was assessed by means of visual analogue scales, both before and after a caloric preload. Finally, following the preload, participants rated both intensity and pleasantness of six orally presented yogurt probes with varying sucrose concentrations (2-29 %). Feelings of hunger were significantly more intense under both fasted and sated conditions when subjects were sleep-deprived. In contrast, the change in hunger induced by the preload was similar between the sleep and TSD conditions. Plasma concentrations of ghrelin were significantly higher under conditions of TSD, whereas plasma glucose did not differ between the conditions. No effects were found either on sweet taste intensity or on pleasantness after TSD. One night of TSD increases morning plasma concentrations of the hunger-promoting hormone ghrelin in healthy young men. In contrast, sweet taste perception was not affected by nocturnal wakefulness. This suggests that an altered sweet taste perception is an unlikely mechanism by which TSD enhances food intake.

  12. Differential effects of bitter compounds on the taste transduction channels TRPM5 and IP3 receptor type 3.

    Science.gov (United States)

    Gees, Maarten; Alpizar, Yeranddy A; Luyten, Tomas; Parys, Jan B; Nilius, Bernd; Bultynck, Geert; Voets, Thomas; Talavera, Karel

    2014-05-01

    Transient receptor potential cation channel subfamily M member 5 (TRPM5) is a Ca(2+)-activated nonselective cation channel involved in the transduction of sweet, bitter, and umami tastes. We previously showed that TRPM5 is a locus for the modulation of taste perception by temperature changes, and by quinine and quinidine, 2 bitter compounds that suppress gustatory responses. Here, we determined whether other bitter compounds known to modulate taste perception also affect TRPM5. We found that nicotine inhibits TRPM5 currents with an effective inhibitory concentration of ~1.3mM at -50 mV. This effect may contribute to the inhibitory effect of nicotine on gustatory responses in therapeutic and experimental settings, where nicotine is often employed at millimolar concentrations. In addition, it implies the existence of a TRPM5-independent pathway for the detection of nicotine bitterness. Nicotine seems to act from the extracellular side of the channel, reducing the maximal whole-cell conductance and inducing an acceleration of channel closure that leads to a negative shift of the activation curve. TRPM5 currents were unaffected by nicotine's metabolite cotinine, the intensive sweetener saccharin or by the bitter xanthines caffeine, theobromine, and theophylline. We also tested the effects of bitter compounds on another essential element of the sweet taste transduction pathway, the type 3 IP3 receptor (IP3R3). We found that IP3R3-mediated Ca(2+) flux is slightly enhanced by nicotine, not affected by saccharin, modestly inhibited by caffeine, theobromine, and theophylline, and strongly inhibited by quinine. Our results demonstrate that bitter compounds have differential effects on key elements of the sweet taste transduction pathway, suggesting for heterogeneous mechanisms of bitter-sweet taste interactions.

  13. [Importance of taste in maintaining homeostasis and pathological impact of orosensory reflexes distraction in relation to sweet taste after non-caloric sweeteners consumption].

    Science.gov (United States)

    Neuwirthová, Jana; Gál, Břetislav; Smilek, Pavel; Kostřica, Rom

    2014-01-01

    Taste signals and their reflexes have important signalling function in nature. They protect organism against toxic substances in food with help of taste aversion, they help to cope nutrition deficiencies through taste preferences, on the other hand, they act in many postprandial reflexes to maintain energy homeostasis. It is well-known that sweet taste is important oro-sensory stimulus for mammals. It acts as predictor of caloric food intake even before its entry into stomach and circulation. Taste and other oro-sensory signals from oral cavity affect not only the intake regulation, but also influence hormonal, neural and metabolic pathways to maintain homeostasis. The aim is to utilize effectively food energy and prevent energy instability of organism. Oro-sensory reflexes mediated by taste cells develop naturally from the first contact with sweet breast milk in infancy. It has been proven that the attenuation of reflexes due to the use of artificial sweeteners that don´t bring any caloric value to human body leads to hormonal and energetic dysregulation of organism and may contribute to metabolic syndrome.

  14. Identification of protein-damaging mutations in 10 swine taste receptors and 191 appetite-reward genes

    DEFF Research Database (Denmark)

    Clop, Alex; Sharaf, Abdoallah; Castelló, Anna

    2016-01-01

    BACKGROUND: Taste receptors (TASRs) are essential for the body's recognition of chemical compounds. In the tongue, TASRs sense the sweet and umami and the toxin-related bitter taste thus promoting a particular eating behaviour. Moreover, their relevance in other organs is now becoming evident. In...... in taste preferences, appetite or reward and ultimately impact on food intake. A genotyping array with 57 variants in 31 of these genes is now available for genotyping and start elucidating the impact of genetic variation in these genes on pig biology and breeding....... in the appetite and the reward mechanisms. Some of these genes have been already associated to taste preferences, appetite or behaviour in humans and mouse. We have also detected indications of a potential relationship of some of these genes with growth and fat deposition, which could have been caused by changes...

  15. Taste dysfunction in BTBR mice due to a mutation of Itpr3, the inositol triphosphate receptor 3 gene

    Science.gov (United States)

    Ellis, Hillary T.

    2013-01-01

    The BTBR T+ tf/J (BTBR) mouse strain is indifferent to exemplars of sweet, Polycose, umami, bitter, and calcium tastes, which share in common transduction by G protein-coupled receptors (GPCRs). To investigate the genetic basis for this taste dysfunction, we screened 610 BTBR × NZW/LacJ F2 hybrids, identified a potent QTL on chromosome 17, and isolated this in a congenic strain. Mice carrying the BTBR/BTBR haplotype in the 0.8-Mb (21-gene) congenic region were indifferent to sweet, Polycose, umami, bitter, and calcium tastes. To assess the contribution of a likely causative culprit, Itpr3, the inositol triphosphate receptor 3 gene, we produced and tested Itpr3 knockout mice. These were also indifferent to GPCR-mediated taste compounds. Sequencing the BTBR form of Itpr3 revealed a unique 12 bp deletion in Exon 23 (Chr 17: 27238069; Build 37). We conclude that a spontaneous mutation of Itpr3 in a progenitor of the BTBR strain produced a heretofore unrecognized dysfunction of GPCR-mediated taste transduction. PMID:23859941

  16. Sweetness and bitterness taste of meals per se does not mediate gastric emptying in humans.

    Science.gov (United States)

    Little, Tanya J; Gupta, Nili; Case, R Maynard; Thompson, David G; McLaughlin, John T

    2009-09-01

    In cell line and animal models, sweet and bitter tastants induce secretion of signaling peptides (e.g., glucagon-like peptide-1 and cholecystokinin) and slow gastric emptying (GE). Whether human GE and appetite responses are regulated by the sweetness or bitterness per se of ingested food is, however, unknown. We aimed to determine whether intragastric infusion of "equisweet" (Study A) or "equibitter" (Study B) solutions slow GE to the same extent, and whether a glucose solution made sweeter by the addition of saccharin will slow GE more potently than glucose alone. Healthy nonobese subjects were studied in a single-blind, randomized fashion. Subjects received 500-ml intragastric infusions of predetermined equisweet solutions of glucose (560 mosmol/kgH(2)O), fructose (290 mosmol/kgH(2)O), aspartame (200 mg), and saccharin (50 mg); twice as sweet glucose + saccharin, water (volumetric control) (Study A); or equibitter solutions of quinine (0.198 mM), naringin (1 mM), or water (Study B). GE was evaluated using a [(13)C]acetate breath test, and hunger and fullness were scored using visual analog scales. In Study A, equisweet solutions did not empty similarly. Fructose, aspartame, and saccharin did not slow GE compared with water, but glucose did (P solution (P > 0.05, compared with glucose alone). In Study B, neither bitter tastant slowed GE compared with water. None of the solutions modulated perceptions of hunger or fullness. We conclude that, in humans, the presence of sweetness and bitterness taste per se in ingested solutions does not appear to signal to influence GE or appetite perceptions.

  17. Sweetness and bitterness taste of meals per se does not mediate gastric emptying in humans

    Science.gov (United States)

    Little, Tanya J.; Gupta, Nili; Case, R. Maynard; Thompson, David G.; McLaughlin, John T.

    2009-01-01

    In cell line and animal models, sweet and bitter tastants induce secretion of signaling peptides (e.g., glucagon-like peptide-1 and cholecystokinin) and slow gastric emptying (GE). Whether human GE and appetite responses are regulated by the sweetness or bitterness per se of ingested food is, however, unknown. We aimed to determine whether intragastric infusion of “equisweet” (Study A) or “equibitter” (Study B) solutions slow GE to the same extent, and whether a glucose solution made sweeter by the addition of saccharin will slow GE more potently than glucose alone. Healthy nonobese subjects were studied in a single-blind, randomized fashion. Subjects received 500-ml intragastric infusions of predetermined equisweet solutions of glucose (560 mosmol/kgH2O), fructose (290 mosmol/kgH2O), aspartame (200 mg), and saccharin (50 mg); twice as sweet glucose + saccharin, water (volumetric control) (Study A); or equibitter solutions of quinine (0.198 mM), naringin (1 mM), or water (Study B). GE was evaluated using a [13C]acetate breath test, and hunger and fullness were scored using visual analog scales. In Study A, equisweet solutions did not empty similarly. Fructose, aspartame, and saccharin did not slow GE compared with water, but glucose did (P 0.05, compared with glucose alone). In Study B, neither bitter tastant slowed GE compared with water. None of the solutions modulated perceptions of hunger or fullness. We conclude that, in humans, the presence of sweetness and bitterness taste per se in ingested solutions does not appear to signal to influence GE or appetite perceptions. PMID:19535679

  18. Polymorphisms in sweet taste genes (TAS1R2 and GLUT2), sweet liking, and dental caries prevalence in an adult Italian population.

    Science.gov (United States)

    Robino, Antonietta; Bevilacqua, Lorenzo; Pirastu, Nicola; Situlin, Roberta; Di Lenarda, Roberto; Gasparini, Paolo; Navarra, Chiara Ottavia

    2015-09-01

    The aim of the study was to assess the relationship between sweet taste genes and dental caries prevalence in a large sample of adults. In addition, the association between sweet liking and sugar intake with dental caries was investigated. Caries was measured by the decayed, missing, filled teeth (DMFT) index in 647 Caucasian subjects (285 males and 362 females, aged 18-65 years), coming from six villages in northeastern Italy. Sweet liking was assessed using a 9-point scale, and the mean of the liking given by each individual to specific sweet food and beverages was used to create a sweet liking score. Simple sugar consumption was estimated by a dietary history interview, considering both added sugars and sugar present naturally in foods. Our study confirmed that polymorphisms in TAS1R2 and GLUT2 genes are related to DMFT index. In particular, GG homozygous individuals for rs3935570 in TAS1R2 gene (p value = 0.0117) and GG homozygous individuals for rs1499821 in GLUT2 gene (p value = 0.0273) showed higher DMFT levels compared to both heterozygous and homozygous for the alternative allele. Furthermore, while the relationship sugar intake-DMFT did not achieve statistical significance (p value = 0.075), a significant association was identified between sweet liking and DMFT (p value = 0.004), independent of other variables. Our study showed that sweet taste genetic factors contribute to caries prevalence and highlighted the role of sweet liking as a predictor of caries risk. Therefore, these results may open new perspectives for individual risk identification and implementation of target preventive strategies, such as identifying high-risk patients before caries development.

  19. Role of Endocannabinoids on Sweet Taste Perception, Food Preference, and Obesity-related Disorders.

    Science.gov (United States)

    Tarragon, Ernesto; Moreno, Juan José

    2017-12-25

    The prevalence of obesity and obesity-related disorders such as type 2 diabetes (T2D) and metabolic syndrome has increased significantly in the past decades, reaching epidemic levels and therefore becoming a major health issue worldwide. Chronic overeating of highly palatable foods is one of the main responsible aspects behind overweight. Food choice is driven by food preference, which is influenced by environmental and internal factors, from availability to rewarding properties of food. Consequently, the acquisition of a dietary habit that may lead to metabolic alterations is the result of a learning process in which many variables take place. From genetics to socioeconomic status, the response to food and how this food affects energy metabolism is heavily influenced, even before birth. In this work, we review how food preference is acquired and established, particularly as regards sweet taste; towards which flavors and tastes we are positively predisposed by our genetic background, our early experience, further lifestyle, and our surroundings; and, especially, the role that the endocannabinoid system (ECS) plays in all of this. Ultimately, we try to summarize why this system is relevant for health purposes and how this is linked to important aspects of eating behavior, as its function as a modulator of energy homeostasis affects, and is affected by, physiological responses directly associated with obesity. © The Author(s) 2017. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  20. Characterization of the porcine nutrient and taste receptor gene repertoire in domestic and wild populations across the globe.

    Science.gov (United States)

    da Silva, Elizabete C; de Jager, Nadia; Burgos-Paz, William; Reverter, Antonio; Perez-Enciso, Miguel; Roura, Eugeni

    2014-12-03

    The oral GPCR nutrient/taste receptor gene repertoire consists of the Tas1r family (sweet and umami tastes), the Tas2r family (bitter taste) as well as several other potential candidate sensors of amino acids, peptones and fatty acids. Taste/nutrient receptors play a fundamental role in survival through the identification of dietary nutrients or potentially toxic compounds. In humans and rodents some variations in taste sensitivity have been related to receptor polymorphisms. Some allelic variants, in turn, have been linked to the adaptation to specific geographical locations and dietary regimes. In contrast, the porcine taste/nutrient receptor repertoire has been only partially characterized and limited information on genetic variation across breeds and geographical location exists. The present study aims at filling this void which in turn will form the bases for future improvements in pig nutrition. Our results show that the pig oral repertoire of taste/nutrient receptors consists of at least 28 receptor genes with significant transcription measured for 27. When compared to humans and rodents, the porcine gene sequences encoding sensors for carbohydrates, amino acids and fatty acids were highly conserved whilst the bitter taste gene family (known as Tas2rs) showed high divergence. We identified 15 porcine Tas2rs of which 13 are orthologous to human sequences. The single nucleotide polymorphism (SNP) sequence analysis using 79 pig genomes, representing 14 different breeds/populations, revealed that the Tas2r subset had higher variability (average π =2.8 × 10-3) than for non-bitter taste genes (π =1.2-1.5 × 10-3). In addition, our results show that the difference in nutrient receptor genes between Asian and European breeds accounts for only a small part of the variability, which is in contrast with previous findings involving genome wide data. We have defined twenty-eight oral nutrient sensing related genes for the pig. The homology with the human repertoire is

  1. Structural Basis of pH Dependence of Neoculin, a Sweet Taste-Modifying Protein.

    Directory of Open Access Journals (Sweden)

    Takayuki Ohkubo

    Full Text Available Among proteins utilized as sweeteners, neoculin and miraculin are taste-modifying proteins that exhibit pH-dependent sweetness. Several experiments on neoculin have shown that His11 of neoculin is responsible for pH dependence. We investigated the molecular mechanism of the pH dependence of neoculin by molecular dynamics (MD calculations. The MD calculations for the dimeric structures of neoculin and His11 mutants showed no significant structural changes for each monomer at neutral and acidic pH levels. The dimeric structure of neoculin dissociated to form isolated monomers under acidic conditions but was maintained at neutral pH. The dimeric structure of the His11Ala mutant, which is sweet at both neutral and acidic pH, showed dissociation at both pH 3 and 7. The His11 residue is located at the interface of the dimer in close proximity to the Asp91 residue of the other monomer. The MD calculations for His11Phe and His11Tyr mutants demonstrated the stability of the dimeric structures at neutral pH and the dissociation of the dimers to isolated monomers. The dissociation of the dimer caused a flexible backbone at the surface that was different from the dimeric interface at the point where the other monomer interacts to form an oligomeric structure. Further MD calculations on the tetrameric structure of neoculin suggested that the flexible backbone contributed to further dissociation of other monomers under acidic conditions. These results suggest that His11 plays a role in the formation of oligomeric structures at pH 7 and that the isolated monomer of neoculin at acidic pH is responsible for sweetness.

  2. Structural Basis of pH Dependence of Neoculin, a Sweet Taste-Modifying Protein

    Science.gov (United States)

    Ohkubo, Takayuki; Tamiya, Minoru; Abe, Keiko; Ishiguro, Masaji

    2015-01-01

    Among proteins utilized as sweeteners, neoculin and miraculin are taste-modifying proteins that exhibit pH-dependent sweetness. Several experiments on neoculin have shown that His11 of neoculin is responsible for pH dependence. We investigated the molecular mechanism of the pH dependence of neoculin by molecular dynamics (MD) calculations. The MD calculations for the dimeric structures of neoculin and His11 mutants showed no significant structural changes for each monomer at neutral and acidic pH levels. The dimeric structure of neoculin dissociated to form isolated monomers under acidic conditions but was maintained at neutral pH. The dimeric structure of the His11Ala mutant, which is sweet at both neutral and acidic pH, showed dissociation at both pH 3 and 7. The His11 residue is located at the interface of the dimer in close proximity to the Asp91 residue of the other monomer. The MD calculations for His11Phe and His11Tyr mutants demonstrated the stability of the dimeric structures at neutral pH and the dissociation of the dimers to isolated monomers. The dissociation of the dimer caused a flexible backbone at the surface that was different from the dimeric interface at the point where the other monomer interacts to form an oligomeric structure. Further MD calculations on the tetrameric structure of neoculin suggested that the flexible backbone contributed to further dissociation of other monomers under acidic conditions. These results suggest that His11 plays a role in the formation of oligomeric structures at pH 7 and that the isolated monomer of neoculin at acidic pH is responsible for sweetness. PMID:26010443

  3. Involvement of multiple taste receptors in umami taste: analysis of gustatory nerve responses in metabotropic glutamate receptor 4 knockout mice.

    Science.gov (United States)

    Yasumatsu, Keiko; Manabe, Tomohiro; Yoshida, Ryusuke; Iwatsuki, Ken; Uneyama, Hisayuki; Takahashi, Ichiro; Ninomiya, Yuzo

    2015-02-15

    The taste receptor T1R1 + T1R3 heterodimer and metabotropic glutamate receptors (mGluR) may function as umami taste receptors. Here, we used mGluR4 knockout (mGluR4-KO) mice and examined the function of mGluR4 in peripheral taste responses of mice. The mGluR4-KO mice showed reduced responses to glutamate and L-AP4 (mGluR4 agonist) in the chorda tympani and glossopharyngeal nerves without affecting responses to other taste stimuli. Residual glutamate responses in mGluR4-KO mice were suppressed by gurmarin (T1R3 blocker) and AIDA (group I mGluR antagonist). The present study not only provided functional evidence for the involvement of mGluR4 in umami taste responses, but also suggested contributions of T1R1 + T1R3 and mGluR1 receptors in glutamate responses. Umami taste is elicited by L-glutamate and some other amino acids and is thought to be initiated by G-protein-coupled receptors. Proposed umami receptors include heterodimers of taste receptor type 1, members 1 and 3 (T1R1 + T1R3), and metabotropic glutamate receptors 1 and 4 (mGluR1 and mGluR4). Accumulated evidences support the involvement of T1R1 + T1R3 in umami responses in mice. However, little is known about the in vivo function of mGluR in umami taste. Here, we examined taste responses of the chorda tympani (CT) and the glossopharyngeal (GL) nerves in wild-type mice and mice genetically lacking mGluR4 (mGluR4-KO). Our results indicated that compared to wild-type mice, mGluR4-KO mice showed significantly smaller gustatory nerve responses to glutamate and L-(+)-2-amino-4-phosphonobutyrate (an agonist for group III mGluR) in both the CT and GL nerves without affecting responses to other taste stimuli. Residual glutamate responses in mGluR4-KO mice were not affected by (RS)-alpha-cyclopropyl-4-phosphonophenylglycine (an antagonist for group III mGluR), but were suppressed by gurmarin (a T1R3 blocker) in the CT and (RS)-1-aminoindan-1,5-dicarboxylic acid (an antagonist for group I mGluR) in the CT and GL nerve

  4. Effect of Roux-en-Y gastric bypass and sleeve gastrectomy on taste acuity and sweetness acceptability in postsurgical subjects.

    Science.gov (United States)

    El Labban, Sibelle; Safadi, Bassem; Olabi, Ammar

    2016-01-01

    Data on taste acuity after bariatric surgery are scarce, and taste perception after sleeve gastrectomy, to our knowledge, has never been investigated. The objective of this work was to retrospectively compare taste acuity and sweetness acceptability after Roux-en-Y gastric bypass and sleeve gastrectomy. Subjects with a postoperative period ≥6 mo were recruited (between January and June 2012) for a non-randomized, observational study. Subjects completed sensory evaluation sessions consisting of measurement of detection thresholds for bitterness and sweetness (N = 21), saltiness and sourness (N = 19), and sweetness acceptability (N = 19). Significance was established with Tukey's honest significant difference test and analysis of variance using the SAS GLM procedure. Sourness threshold was significantly higher among subjects who had undergone Roux-en-Y gastric bypass (P = 0.0045). No other differences were obtained for the other thresholds or sweetness acceptability (P > 0.05). Further randomized studies are needed to clarify these differences. Copyright © 2016 Elsevier Inc. All rights reserved.

  5. Sixth taste – starch taste?

    Directory of Open Access Journals (Sweden)

    Zygmunt Zdrojewicz

    2017-06-01

    Full Text Available Scientists from Oregon State University, USA, came up with the newest theory of the sixth taste – starch taste that might soon join the basic five tastes. This argument is supported by studies done on both animals and humans, the results of which seem to indicate the existence of separate receptors for starch taste, others than for sweet taste. Starch is a glucose homopolymer that forms an α-glucoside chain called glucosan or glucan. This polysaccharide constitutes the most important source of carbohydrates in food. It can be found in groats, potatoes, legumes, grains, manioc and corn. Apart from its presence in food, starch is also used in textile, pharmaceutical, cosmetic and stationery industries as well as in glue production. This polysaccharide is made of an unbranched helical structure – amylose (15–20%, and a structure that forms branched chains – amylopectin (80–85%. The starch structure, degree of its crystallisation or hydration as well as its availability determine the speed of food-contained starch hydrolysis by amylase. So far, starch has been considered tasteless, but the newest report shows that for people of different origins it is associated with various aliments specific for each culture. Apart from a number of scientific experiments using sweet taste inhibitors, the existence of the sixth taste is also confirmed by molecular studies. However, in order to officially include starch taste to the basic human tastes, it must fulfil certain criteria. The aim of the study is to present contemporary views on starch.

  6. On the Emerging Role of the Taste Receptor Type 1 (T1R Family of Nutrient-Sensors in the Musculoskeletal System

    Directory of Open Access Journals (Sweden)

    Shoichiro Kokabu

    2017-03-01

    Full Text Available The special sense of taste guides and guards food intake and is essential for body maintenance. Salty and sour tastes are sensed via ion channels or gated ion channels while G protein-coupled receptors (GPCRs of the taste receptor type 1 (T1R family sense sweet and umami tastes and GPCRs of the taste receptor type 2 (T2R family sense bitter tastes. T1R and T2R receptors share similar downstream signaling pathways that result in the stimulation of phospholipase-C-β2. The T1R family includes three members that form heterodimeric complexes to recognize either amino acids or sweet molecules such as glucose. Although these functions were originally described in gustatory tissue, T1R family members are expressed in numerous non-gustatory tissues and are now viewed as nutrient sensors that play important roles in monitoring global glucose and amino acid status. Here, we highlight emerging evidence detailing the function of T1R family members in the musculoskeletal system and review these findings in the context of the musculoskeletal diseases sarcopenia and osteoporosis, which are major public health problems among the elderly that affect locomotion, activities of daily living, and quality of life. These studies raise the possibility that T1R family member function may be modulated for therapeutic benefit.

  7. Positive Charges on the Surface of Thaumatin Are Crucial for the Multi-Point Interaction with the Sweet Receptor

    Science.gov (United States)

    Masuda, Tetsuya; Kigo, Satomi; Mitsumoto, Mayuko; Ohta, Keisuke; Suzuki, Mamoru; Mikami, Bunzo; Kitabatake, Naofumi; Tani, Fumito

    2018-01-01

    Thaumatin, an intensely sweet-tasting protein, elicits sweet taste with a threshold of only 50 nM. Previous studies from our laboratory suggested that the complex model between the T1R2-T1R3 sweet receptor and thaumatin depends critically on the complementarity of electrostatic potentials. In order to further validate this model, we focused on three lysine residues (Lys78, Lys106, and Lys137), which were expected to be part of the interaction sites. Three thaumatin mutants (K78A, K106A, and K137A) were prepared and their threshold values of sweetness were examined. The results showed that the sweetness of K106A was reduced by about three times and those of K78A and K137A were reduced by about five times when compared to wild-type thaumatin. The three-dimensional structures of these mutants were also determined by X-ray crystallographic analyses at atomic resolutions. The overall structures of mutant proteins were similar to that of wild-type but the electrostatic potentials around the mutated sites became more negative. Since the three lysine residues are located in 20–40 Å apart each other on the surface of thaumatin molecule, these results suggest the positive charges on the surface of thaumatin play a crucial role in the interaction with the sweet receptor, and are consistent with a large surface is required for interaction with the sweet receptor, as proposed by the multipoint interaction model named wedge model. PMID:29487853

  8. Genetic diversity of bitter taste receptor gene family in Sichuan ...

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Genetics; Volume 95; Issue 3. Genetic diversity of bitter taste receptor gene family in Sichuan domestic and Tibetan chicken populations. YUAN SU DIYAN LI UMA GAUR YAN WANG NAN WU BINLONG CHEN HONGXIAN XU HUADONG YIN YAODONG HU QING ZHU. RESEARCH ARTICLE ...

  9. Elevated and sustained desire for sweet taste in african-americans: a potential factor in the development of obesity.

    Science.gov (United States)

    Schiffman, S S; Graham, B G; Sattely-Miller, E A; Peterson-Dancy, M

    2000-10-01

    Oral habituation is a relatively long-lasting decrease in oral responsiveness that results from the repeated presentation of a single stimulus. The purpose of this study was to evaluate the degree of habituation to sweet-tasting foods and to determine whether there are differences in the rate of habituation between African Americans and European Americans. These two groups were compared because the prevalence of obesity and obesity-related disorders such as diabetes and hypertension is significantly higher among African Americans than among European Americans. Nine different commercial foods and beverages that differed in sweetness intensity and caloric density served as stimuli. Subjects tasted and rated each food once per minute for a 30-min period on scales related to desire for another taste of the same sample and desire for a different taste. The stimuli and portion size for each of the 30 samples were two candy bars (Ultra Slim-Fast Cocoa Almond Crunch Bar, 1/16 of a bar; Natural Nectar Peanut Butter Granola Bar, 1/16 of a bar), three beverages (Nestea Lemon Flavored Instant Tea with NutraSweet, 5 mL; Welch's Grape Juice, 5 mL; Pink Swimmingo Kool-Aid, 5 mL), two gelatin desserts (Cherry Flavored Jell-O Gelatin, 5 g; Cherry Flavored Jell-O Gelatin with NutraSweet, 5 g), one enteral nutrition drink (Vanilla Ensure Plus, 5 mL), and one pudding (Ultra Slim-Fast Chocolate Pudding, 5 g). Subjects consumed the entire portion of each sample. Habituation occurred for seven of the nine foods as judged by a decrease in the desire for another taste of the same food. The degree of habituation for European Americans and African Americans was similar except for the sweetest food (Cherry Flavored Jell-O Gelatin with NutraSweet), for which African Americans showed no habituation. The degree of habituation in both groups was unrelated to caloric density. Overall, young African Americans had a significantly greater desire for another taste of the same food than did young

  10. TRPM5, a taste-signaling transient receptor potential ion-channel, is a ubiquitous signaling component in chemosensory cells

    Directory of Open Access Journals (Sweden)

    Hofmann Thomas

    2007-07-01

    Full Text Available Abstract Background A growing number of TRP channels have been identified as key players in the sensation of smell, temperature, mechanical forces and taste. TRPM5 is known to be abundantly expressed in taste receptor cells where it participates in sweet, amino acid and bitter perception. A role of TRPM5 in other sensory systems, however, has not been studied so far. Results Here, we systematically investigated the expression of TRPM5 in rat and mouse tissues. Apart from taste buds, where we found TRPM5 to be predominantly localized on the basolateral surface of taste receptor cells, TRPM5 immunoreactivity was seen in other chemosensory organs – the main olfactory epithelium and the vomeronasal organ. Most strikingly, we found solitary TRPM5-enriched epithelial cells in all parts of the respiratory and gastrointestinal tract. Based on their tissue distribution, the low cell density, morphological features and co-immunostaining with different epithelial markers, we identified these cells as brush cells (also known as tuft, fibrillovesicular, multivesicular or caveolated cells. In terms of morphological characteristics, brush cells resemble taste receptor cells, while their origin and biological role are still under intensive debate. Conclusion We consider TRPM5 to be an intrinsic signaling component of mammalian chemosensory organs, and provide evidence for brush cells being an important cellular correlate in the periphery.

  11. TRPM5, a taste-signaling transient receptor potential ion-channel, is a ubiquitous signaling component in chemosensory cells.

    Science.gov (United States)

    Kaske, Silke; Krasteva, Gabriele; König, Peter; Kummer, Wolfgang; Hofmann, Thomas; Gudermann, Thomas; Chubanov, Vladimir

    2007-07-04

    A growing number of TRP channels have been identified as key players in the sensation of smell, temperature, mechanical forces and taste. TRPM5 is known to be abundantly expressed in taste receptor cells where it participates in sweet, amino acid and bitter perception. A role of TRPM5 in other sensory systems, however, has not been studied so far. Here, we systematically investigated the expression of TRPM5 in rat and mouse tissues. Apart from taste buds, where we found TRPM5 to be predominantly localized on the basolateral surface of taste receptor cells, TRPM5 immunoreactivity was seen in other chemosensory organs - the main olfactory epithelium and the vomeronasal organ. Most strikingly, we found solitary TRPM5-enriched epithelial cells in all parts of the respiratory and gastrointestinal tract. Based on their tissue distribution, the low cell density, morphological features and co-immunostaining with different epithelial markers, we identified these cells as brush cells (also known as tuft, fibrillovesicular, multivesicular or caveolated cells). In terms of morphological characteristics, brush cells resemble taste receptor cells, while their origin and biological role are still under intensive debate. We consider TRPM5 to be an intrinsic signaling component of mammalian chemosensory organs, and provide evidence for brush cells being an important cellular correlate in the periphery.

  12. Functional Analyses of Bitter Taste Receptors in Domestic Cats (Felis catus.

    Directory of Open Access Journals (Sweden)

    Weiwei Lei

    Full Text Available Cats are obligate carnivores and under most circumstances eat only animal products. Owing to the pseudogenization of one of two subunits of the sweet receptor gene, they are indifferent to sweeteners, presumably having no need to detect plant-based sugars in their diet. Following this reasoning and a recent report of a positive correlation between the proportion of dietary plants and the number of Tas2r (bitter receptor genes in vertebrate species, we tested the hypothesis that if bitter perception exists primarily to protect animals from poisonous plant compounds, the genome of the domestic cat (Felis catus should have lost functional bitter receptors and they should also have reduced bitter receptor function. To test functionality of cat bitter receptors, we expressed cat Tas2R receptors in cell-based assays. We found that they have at least 7 functional receptors with distinct receptive ranges, showing many similarities, along with some differences, with human bitter receptors. To provide a comparative perspective, we compared the cat repertoire of intact receptors with those of a restricted number of members of the order Carnivora, with a range of dietary habits as reported in the literature. The numbers of functional bitter receptors in the terrestrial Carnivora we examined, including omnivorous and herbivorous species, were roughly comparable to that of cats thereby providing no strong support for the hypothesis that a strict meat diet influences bitter receptor number or function. Maintenance of bitter receptor function in terrestrial obligate carnivores may be due to the presence of bitter compounds in vertebrate and invertebrate prey, to the necessary role these receptors play in non-oral perception, or to other unknown factors. We also found that the two aquatic Carnivora species examined had fewer intact bitter receptors. Further comparative studies of factors driving numbers and functions of bitter taste receptors will aid in

  13. Evaluation of the Monell forced-choice, paired-comparison tracking procedure for determining sweet taste preferences across the lifespan.

    Science.gov (United States)

    Mennella, Julie A; Lukasewycz, Laura D; Griffith, James W; Beauchamp, Gary K

    2011-05-01

    Lack of methodology to assess taste in children limits its measurement in research studies that include pediatric populations. We used the Monell 2-series, forced-choice tracking method to measure sucrose preferences of a racially/ethnically diverse sample (n = 949) of children, adolescents, and adults. Reliability was assessed by comparing the results of the first series with the second series. Validity was assessed by relating participants' sucrose preferences to their preferences for foods varying in sweetness. The task required, on average, 7 presentations of aqueous sucrose solution pairs. Children and adolescents preferred more concentrated sweetness than adults (P sweet preferences. Level of sweetness preferred significantly correlated with the sugar content of favorite cereals (P < 0.001) and beverages (P < 0.02). This method is brief and has evidence of reliability and external validity. Although a single series will yield useful information about age-related differences in taste preferences, the 2-series version should be considered when differences in race/ethnicity are of interest.

  14. Intrauterine Growth Restriction and the Fetal Programming of the Hedonic Response to Sweet Taste in Newborn Infants

    Directory of Open Access Journals (Sweden)

    Caroline Ayres

    2012-01-01

    Full Text Available Intrauterine growth restriction is associated with increased risk for adult metabolic syndrome and cardiovascular disease, which seems to be related to altered food preferences in these individuals later in life. In this study, we sought to understand whether intrauterine growth leads to fetal programming of the hedonic responses to sweet. Sixteen 1-day-old preterm infants received 24% sucrose solution or water and the taste reactivity was filmed and analyzed. Spearman correlation demonstrated a positive correlation between fetal growth and the hedonic response to the sweet solution in the first 15 seconds after the offer (r=0.864, P=0.001, without correlation when the solution given is water (r=0.314, P=0.455. In fact, the more intense the intrauterine growth restriction, the lower the frequency of the hedonic response observed. IUGR is strongly correlated with the hedonic response to a sweet solution in the first day of life in preterm infants. This is the first evidence in humans to demonstrate that the hedonic response to sweet taste is programmed very early during the fetal life by the degree of intrauterine growth. The altered hedonic response at birth and subsequent differential food preference may contribute to the increased risk of obesity and related disorders in adulthood in intrauterine growth-restricted individuals.

  15. Modification of the Sweetness and Stability of Sweet-Tasting Protein Monellin by Gene Mutation and Protein Engineering.

    Science.gov (United States)

    Liu, Qiulei; Li, Lei; Yang, Liu; Liu, Tianming; Cai, Chenggu; Liu, Bo

    2016-01-01

    Natural sweet protein monellin has a high sweetness and low calorie, suggesting its potential in food applications. However, due to its low heat and acid resistance, the application of monellin is limited. In this study, we show that the thermostability of monellin can be improved with no sweetness decrease by means of sequence, structure analysis, and site-directed mutagenesis. We analyzed residues located in the α-helix as well as an ionizable residue C41. Of the mutants investigated, the effects of E23A and C41A mutants were most remarkable. The former displayed significantly improved thermal stability, while its sweetness was not changed. The mutated protein was stable after 30 min incubation at 85°C. The latter showed increased sweetness and slight improvement of thermostability. Furthermore, we found that most mutants enhancing the thermostability of the protein were distributed at the two ends of α-helix. Molecular biophysics analysis revealed that the state of buried ionizable residues may account for the modulated properties of mutated proteins. Our results prove that the properties of sweet protein monellin can be modified by means of bioinformatics analysis, gene manipulation, and protein modification, highlighting the possibility of designing novel effective sweet proteins based on structure-function relationships.

  16. Taste Perception of Sweet, Sour, Salty, Bitter, and Umami and Changes Due to l-Arginine Supplementation, as a Function of Genetic Ability to Taste 6-n-Propylthiouracil

    Science.gov (United States)

    Melis, Melania; Tomassini Barbarossa, Iole

    2017-01-01

    Behavioral reaction to different taste qualities affects nutritional status and health. 6-n-Propylthiouracil (PROP) tasting has been reported to be a marker of variation in taste perception, food preferences, and eating behavior, but results have been inconsistent. We showed that l-Arg can enhance the bitterness intensity of PROP, whilst others have demonstrated a suppression of the bitterness of quinine. Here, we analyze the taste perception of sweet, sour, salty, bitter, and umami and the modifications caused by l-Arg supplementation, as a function of PROP-taster status. Taste perception was assessed by testing the ability to recognize, and the responsiveness to, representative solutions of the five primary taste qualities, also when supplemented with l-Arg, in subjects classified as PROP-tasting. Super-tasters, who showed high papilla density, gave higher ratings to sucrose, citric acid, caffeine, and monosodium l-glutamate than non-tasters. l-Arg supplementation mainly modified sucrose perception, enhanced the umami taste, increased NaCl saltiness and caffeine bitterness only in tasters, and decreased citric acid sourness. Our findings confirm the role of PROP phenotype in the taste perception of sweet, sour, and bitter and show its role in umami. The results suggest that l-Arg could be used as a strategic tool to specifically modify taste responses related to eating behaviors. PMID:28587069

  17. Taste Perception of Sweet, Sour, Salty, Bitter, and Umami and Changes Due to l-Arginine Supplementation, as a Function of Genetic Ability to Taste 6-n-Propylthiouracil.

    Science.gov (United States)

    Melis, Melania; Tomassini Barbarossa, Iole

    2017-05-25

    Behavioral reaction to different taste qualities affects nutritional status and health. 6- n -Propylthiouracil (PROP) tasting has been reported to be a marker of variation in taste perception, food preferences, and eating behavior, but results have been inconsistent. We showed that l-Arg can enhance the bitterness intensity of PROP, whilst others have demonstrated a suppression of the bitterness of quinine. Here, we analyze the taste perception of sweet, sour, salty, bitter, and umami and the modifications caused by l-Arg supplementation, as a function of PROP-taster status. Taste perception was assessed by testing the ability to recognize, and the responsiveness to, representative solutions of the five primary taste qualities, also when supplemented with l-Arg, in subjects classified as PROP-tasting. Super-tasters, who showed high papilla density, gave higher ratings to sucrose, citric acid, caffeine, and monosodium l-glutamate than non-tasters. l-Arg supplementation mainly modified sucrose perception, enhanced the umami taste, increased NaCl saltiness and caffeine bitterness only in tasters, and decreased citric acid sourness. Our findings confirm the role of PROP phenotype in the taste perception of sweet, sour, and bitter and show its role in umami. The results suggest that l-Arg could be used as a strategic tool to specifically modify taste responses related to eating behaviors.

  18. Taste Perception of Sweet, Sour, Salty, Bitter, and Umami and Changes Due to l-Arginine Supplementation, as a Function of Genetic Ability to Taste 6-n-Propylthiouracil

    Directory of Open Access Journals (Sweden)

    Melania Melis

    2017-05-01

    Full Text Available Behavioral reaction to different taste qualities affects nutritional status and health. 6-n-Propylthiouracil (PROP tasting has been reported to be a marker of variation in taste perception, food preferences, and eating behavior, but results have been inconsistent. We showed that l-Arg can enhance the bitterness intensity of PROP, whilst others have demonstrated a suppression of the bitterness of quinine. Here, we analyze the taste perception of sweet, sour, salty, bitter, and umami and the modifications caused by l-Arg supplementation, as a function of PROP-taster status. Taste perception was assessed by testing the ability to recognize, and the responsiveness to, representative solutions of the five primary taste qualities, also when supplemented with l-Arg, in subjects classified as PROP-tasting. Super-tasters, who showed high papilla density, gave higher ratings to sucrose, citric acid, caffeine, and monosodium l-glutamate than non-tasters. l-Arg supplementation mainly modified sucrose perception, enhanced the umami taste, increased NaCl saltiness and caffeine bitterness only in tasters, and decreased citric acid sourness. Our findings confirm the role of PROP phenotype in the taste perception of sweet, sour, and bitter and show its role in umami. The results suggest that l-Arg could be used as a strategic tool to specifically modify taste responses related to eating behaviors.

  19. Impaired Glucose Metabolism in Mice Lacking the Tas1r3 Taste Receptor Gene.

    Directory of Open Access Journals (Sweden)

    Vladimir O Murovets

    Full Text Available The G-protein-coupled sweet taste receptor dimer T1R2/T1R3 is expressed in taste bud cells in the oral cavity. In recent years, its involvement in membrane glucose sensing was discovered in endocrine cells regulating glucose homeostasis. We investigated importance of extraorally expressed T1R3 taste receptor protein in age-dependent control of blood glucose homeostasis in vivo, using nonfasted mice with a targeted mutation of the Tas1r3 gene that encodes the T1R3 protein. Glucose and insulin tolerance tests, as well as behavioral tests measuring taste responses to sucrose solutions, were performed with C57BL/6ByJ (Tas1r3+/+ inbred mice bearing the wild-type allele and C57BL/6J-Tas1r3tm1Rfm mice lacking the entire Tas1r3 coding region and devoid of the T1R3 protein (Tas1r3-/-. Compared with Tas1r3+/+ mice, Tas1r3-/- mice lacked attraction to sucrose in brief-access licking tests, had diminished taste preferences for sucrose solutions in the two-bottle tests, and had reduced insulin sensitivity and tolerance to glucose administered intraperitoneally or intragastrically, which suggests that these effects are due to absence of T1R3. Impairment of glucose clearance in Tas1r3-/- mice was exacerbated with age after intraperitoneal but not intragastric administration of glucose, pointing to a compensatory role of extraoral T1R3-dependent mechanisms in offsetting age-dependent decline in regulation of glucose homeostasis. Incretin effects were similar in Tas1r3+/+ and Tas1r3-/- mice, which suggests that control of blood glucose clearance is associated with effects of extraoral T1R3 in tissues other than the gastrointestinal tract. Collectively, the obtained data demonstrate that the T1R3 receptor protein plays an important role in control of glucose homeostasis not only by regulating sugar intake but also via its extraoral function, probably in the pancreas and brain.

  20. Peripheral ghrelin enhances sweet taste food consumption and preference, regardless of its caloric content.

    Science.gov (United States)

    Disse, Emmanuel; Bussier, Anne-Lise; Veyrat-Durebex, Christelle; Deblon, Nicolas; Pfluger, Paul T; Tschöp, Matthias H; Laville, Martine; Rohner-Jeanrenaud, Françoise

    2010-09-01

    Ghrelin is one of the most potent orexigens known to date. While the prevailing view is that ghrelin participates in the homeostatic control of feeding, the question arose as to whether consummatory responses evoked by this compound could be related to search for reward. We therefore attempted to delineate the involvement of ghrelin in the modulation of non-caloric but highly rewarding consumption. We tested the effect of intraperitoneally injected ghrelin on the acceptance and preference for a 0.3% saccharin solution using single bottle tests and free-choice preference test procedures in C57BL6/J mice, as well as in mice lacking the ghrelin receptor (GHSR1a -/-) and their wild-type (WT) littermates. In the single bottle tests, peripheral ghrelin consistently increased the consumption of saccharin, independently of availability of caloric food. In the free-choice preference test procedures, ghrelin increased the preference for saccharin in WT mice, while it did had not effect in GHSR1a -/-animals, indicating that the ghrelin receptor pathway is necessary to mediate this parameter. Peripheral ghrelin enhances intake and preference for a sweet food, regardless of whether the food has caloric content. This effect, mediated through the ghrelin receptor pathway, may serve as additional enhancers of energy intake. Copyright 2010 Elsevier Inc. All rights reserved.

  1. [Oral medicine 3. Anatomy, physiology and diagnostic considerations of taste and smell disorders].

    Science.gov (United States)

    Vissink, A; Jager-Wittenaar, H; Visser, A; Spijkervet, F K L; van Weissenbruch, R; van Nieuw Amerongen, A

    2013-01-01

    Taste and smell perception are closely related. The taste perception is performed by taste buds which can distinguish salt, sour, sweet, bitter, and umami. Moreover, 2,000-4,000 smells can be recognized. Many taste disorders are in fact smell disorders. Saliva affects taste perception because it serves as a solvent for taste substances and as a protecting agent for the taste receptors. Therefore, hyposalivation leads to a reduction in taste perception, in which the concentration of zinc ions and specific proteins in saliva play an important role. In addition, zinc and iron deficiencies may cause diminished taste and smell perception.

  2. Independent Evolution of Strychnine Recognition by Bitter Taste Receptor Subtypes.

    Science.gov (United States)

    Xue, Ava Yuan; Di Pizio, Antonella; Levit, Anat; Yarnitzky, Tali; Penn, Osnat; Pupko, Tal; Niv, Masha Y

    2018-01-01

    The 25 human bitter taste receptors (hT2Rs) recognize thousands of structurally and chemically diverse bitter substances. The binding modes of human bitter taste receptors hT2R10 and hT2R46, which are responsible for strychnine recognition, were previously established using site-directed mutagenesis, functional assays, and molecular modeling. Here we construct a phylogenetic tree and reconstruct ancestral sequences of the T2R10 and T2R46 clades. We next analyze the binding sites in view of experimental data to predict their ability to recognize strychnine. This analysis suggests that the common ancestor of hT2R10 and hT2R46 is unlikely to bind strychnine in the same mode as either of its two descendants. Estimation of relative divergence times shows that hT2R10 evolved earlier than hT2R46. Strychnine recognition was likely acquired first by the earliest common ancestor of the T2R10 clade before the separation of primates from other mammals, and was highly conserved within the clade. It was probably independently acquired by the common ancestor of T2R43-47 before the homo-ape speciation, lost in most T2Rs within this clade, but enhanced in the hT2R46 after humans diverged from the rest of primates. Our findings suggest hypothetical strychnine T2R receptors in several species, and serve as an experimental guide for further study. Improved understanding of how bitter taste receptors acquire the ability to be activated by particular ligands is valuable for the development of sensors for bitterness and for potential toxicity.

  3. Independent Evolution of Strychnine Recognition by Bitter Taste Receptor Subtypes

    Directory of Open Access Journals (Sweden)

    Ava Yuan Xue

    2018-03-01

    Full Text Available The 25 human bitter taste receptors (hT2Rs recognize thousands of structurally and chemically diverse bitter substances. The binding modes of human bitter taste receptors hT2R10 and hT2R46, which are responsible for strychnine recognition, were previously established using site-directed mutagenesis, functional assays, and molecular modeling. Here we construct a phylogenetic tree and reconstruct ancestral sequences of the T2R10 and T2R46 clades. We next analyze the binding sites in view of experimental data to predict their ability to recognize strychnine. This analysis suggests that the common ancestor of hT2R10 and hT2R46 is unlikely to bind strychnine in the same mode as either of its two descendants. Estimation of relative divergence times shows that hT2R10 evolved earlier than hT2R46. Strychnine recognition was likely acquired first by the earliest common ancestor of the T2R10 clade before the separation of primates from other mammals, and was highly conserved within the clade. It was probably independently acquired by the common ancestor of T2R43-47 before the homo-ape speciation, lost in most T2Rs within this clade, but enhanced in the hT2R46 after humans diverged from the rest of primates. Our findings suggest hypothetical strychnine T2R receptors in several species, and serve as an experimental guide for further study. Improved understanding of how bitter taste receptors acquire the ability to be activated by particular ligands is valuable for the development of sensors for bitterness and for potential toxicity.

  4. A taste of sweet pepper: Volatile and non-volatile chemical composition of fresh sweet pepper (Capsicum annuum) in relation to sensory evaluation of taste

    NARCIS (Netherlands)

    Eggink, P.M.; Maliepaard, C.A.; Tikunov, Y.M.; Haanstra, J.P.W.; Bovy, A.G.; Visser, R.G.F.

    2012-01-01

    In this study volatile and non-volatile compounds, as well as some breeding parameters, were measured in mature fruits of elite sweet pepper (Capsicum annuum) lines and hybrids from a commercial breeding program, several cultivated genotypes and one gene bank accession. In addition, all genotypes

  5. Effects of floral honey and pressed flax seeds on intensity of yogurt aroma, sweetness and sour taste of yogurts during storage

    Directory of Open Access Journals (Sweden)

    Zuzana Remeňová

    2017-01-01

    Full Text Available The aim of this study was to evaluate chosen sensory properties of yogurts without any additions of honey and pressed flax seeds (K and with the different addition of floral honey (1, 3 and 5% and with the same addition (0.5% of pressed flax seeds (PA, PB and PC during storage. These samples were analysed during 14 days of storage at cooling temperature (6 ±1 °C. Sensory properties - intensity of yogurt aroma, sweetness and sour taste were evaluated. Sensory evaluation was carried out in the 1st, 7th and 14th day following the yogurts production. The control samples had the most significant yogurt aroma this sample had also the highest sour taste and the lowest sweet taste throughout the storage. In all of analysed samples, the sourest taste was observed 14th day of storage. The sweet taste of yogurts with honey addition increased compared to control samples however the sweetest taste of samples with addition of honey was 1st day following the yogurt production. Optimum sweetness was determined with the samples of yogurts containing 5% of floral honey. Floral honey added into the yogurts has positive effect on their sensory properties. The pressed flax seeds have no effect on sensory properties of yogurts. The enrichment of yogurts with honey and pressed flax seeds is high recommended because they have a lot of beneficial nutritional properties and improve the sensory quality of the final product.

  6. Angiotensin II and taste sensitivity

    Directory of Open Access Journals (Sweden)

    Noriatsu Shigemura, DDS, PhD

    2015-05-01

    Full Text Available The sense of taste plays a major role in evaluating the quality of food components in the oral cavity. Sweet, salty, umami, sour and bitter taste are generally accepted as five basic taste qualities. Among them, salty taste is attractive to animals and influences sodium intake. Angiotensin II (ANG II and aldosterone (ALDO, which is stimulated by ANG II are key hormones that regulate sodium homeostasis and water balance. At the peripheral gustatory organs, it has been reported that ALDO increases the amiloride-sensitivity of the rat gustatory neural responses to NaCl in a time course of several hours. A recent study demonstrated that ANG II suppresses amiloride-sensitivity of the mouse gustatory and behavioral responses to NaCl via its receptor AT1 within an hour. Moreover, ANG II enhances sweet taste sensitivity without affecting umami, sour and bitter tastes. These results suggest that the reciprocal and sequential regulatory mechanisms by ANG II (as an acute suppressor together with ALDO (as a slow enhancer on the salt taste sensitivity may exist in peripheral taste organs, contribute to salt intake, and play an important role in sodium homeostasis. Furthermore, the linkage between salty and sweet taste modulations via the ANG II signaling may optimize sodium and calorie intakes.

  7. A subset of sweet-sensing neurons identified by IR56d are necessary and sufficient for fatty acid taste.

    Directory of Open Access Journals (Sweden)

    John M Tauber

    2017-11-01

    Full Text Available Fat represents a calorically potent food source that yields approximately twice the amount of energy as carbohydrates or proteins per unit of mass. The highly palatable taste of free fatty acids (FAs, one of the building blocks of fat, promotes food consumption, activates reward circuitry, and is thought to contribute to hedonic feeding underlying many metabolism-related disorders. Despite a role in the etiology of metabolic diseases, little is known about how dietary fats are detected by the gustatory system to promote feeding. Previously, we showed that a broad population of sugar-sensing taste neurons expressing Gustatory Receptor 64f (Gr64f is required for reflexive feeding responses to both FAs and sugars. Here, we report a genetic silencing screen to identify specific populations of taste neurons that mediate fatty acid (FA taste. We find neurons identified by expression of Ionotropic Receptor 56d (IR56d are necessary and sufficient for reflexive feeding response to FAs. Functional imaging reveals that IR56d-expressing neurons are responsive to short- and medium-chain FAs. Silencing IR56d neurons selectively abolishes FA taste, and their activation is sufficient to drive feeding responses. Analysis of co-expression with Gr64f identifies two subpopulations of IR56d-expressing neurons. While physiological imaging reveals that both populations are responsive to FAs, IR56d/Gr64f neurons are activated by medium-chain FAs and are sufficient for reflexive feeding response to FAs. Moreover, flies can discriminate between sugar and FAs in an aversive taste memory assay, indicating that FA taste is a unique modality in Drosophila. Taken together, these findings localize FA taste within the Drosophila gustatory center and provide an opportunity to investigate discrimination between different categories of appetitive tastants.

  8. A subset of sweet-sensing neurons identified by IR56d are necessary and sufficient for fatty acid taste.

    Science.gov (United States)

    Tauber, John M; Brown, Elizabeth B; Li, Yuanyuan; Yurgel, Maria E; Masek, Pavel; Keene, Alex C

    2017-11-01

    Fat represents a calorically potent food source that yields approximately twice the amount of energy as carbohydrates or proteins per unit of mass. The highly palatable taste of free fatty acids (FAs), one of the building blocks of fat, promotes food consumption, activates reward circuitry, and is thought to contribute to hedonic feeding underlying many metabolism-related disorders. Despite a role in the etiology of metabolic diseases, little is known about how dietary fats are detected by the gustatory system to promote feeding. Previously, we showed that a broad population of sugar-sensing taste neurons expressing Gustatory Receptor 64f (Gr64f) is required for reflexive feeding responses to both FAs and sugars. Here, we report a genetic silencing screen to identify specific populations of taste neurons that mediate fatty acid (FA) taste. We find neurons identified by expression of Ionotropic Receptor 56d (IR56d) are necessary and sufficient for reflexive feeding response to FAs. Functional imaging reveals that IR56d-expressing neurons are responsive to short- and medium-chain FAs. Silencing IR56d neurons selectively abolishes FA taste, and their activation is sufficient to drive feeding responses. Analysis of co-expression with Gr64f identifies two subpopulations of IR56d-expressing neurons. While physiological imaging reveals that both populations are responsive to FAs, IR56d/Gr64f neurons are activated by medium-chain FAs and are sufficient for reflexive feeding response to FAs. Moreover, flies can discriminate between sugar and FAs in an aversive taste memory assay, indicating that FA taste is a unique modality in Drosophila. Taken together, these findings localize FA taste within the Drosophila gustatory center and provide an opportunity to investigate discrimination between different categories of appetitive tastants.

  9. FGF21 Mediates Endocrine Control of Simple Sugar Intake and Sweet Taste Preference by the Liver

    DEFF Research Database (Denmark)

    von Holstein-Rathlou, Stephanie; BonDurant, Lucas D; Peltekian, Lila

    2016-01-01

    not affect chorda tympani nerve responses to sweet tastants, instead reducing sweet-seeking behavior and meal size via neurons in the hypothalamus. This liver-to-brain hormonal axis likely represents a negative feedback loop as hepatic FGF21 production is elevated by sucrose ingestion. We conclude...... that the liver functions to regulate macronutrient-specific intake by producing an endocrine satiety signal that acts centrally to suppress the intake of "sweets."...

  10. Non-caloric sweeteners, sweetness modulators, and sweetener enhancers.

    Science.gov (United States)

    DuBois, Grant E; Prakash, Indra

    2012-01-01

    For a new sweetness technology to realize strong commercial success, it must be safe, exhibit good taste quality, be sufficiently soluble and stable in food and beverage systems, and be cost effective and patentable. Assessments of the commercial promise of eight synthetic and eight natural non-caloric sweeteners are made relevant to these metrics. High-potency (HP) non-caloric sweeteners, both synthetic and natural, are generally limited in taste quality by (a) low maximal sweetness response, (b) "off" tastes, (c) slow-onset sweet tastes that linger, and (d) sweet tastes that adapt or desensitize the gustatory system. Formulation approaches to address these limitations are discussed. Enhancement of the normal sucrose sensory response by action of a sweetener receptor positive allosteric modulator (PAM) has been achieved with very significant calorie reduction and with retention of the taste quality of sucrose. Research on PAM discovery over the past decade is summarized.

  11. Arachidonic acid can function as a signaling modulator by activating the TRPM5 cation channel in taste receptor cells.

    Science.gov (United States)

    Oike, Hideaki; Wakamori, Minoru; Mori, Yasuo; Nakanishi, Hiroki; Taguchi, Ryo; Misaka, Takumi; Matsumoto, Ichiro; Abe, Keiko

    2006-09-01

    Vertebrate sensory cells such as vomeronasal neurons and Drosophila photoreceptor cells use TRP channels to respond to exogenous stimuli. In mammalian taste cells, bitter and sweet substances as well as some amino acids are received by G protein-coupled receptors (T2Rs or T1Rs). As a result of activation of G protein and phospholipase Cbeta2, the TRPM5 channel is activated. Intracellular Ca(2+) is known to be a TRPM5 activator, but the participation of lipid activators remains unreported. To clarify the effect of arachidonic acid on TRPM5 in taste cells, we investigated the expression profile of a series of enzymes involved in controlling the intracellular free arachidonic acid level, with the result that in a subset of taste bud cells, monoglyceride lipase (MGL) and cyclooxygenase-2 (COX-2) are expressed as well as the previously reported group IIA phospholipase A(2) (PLA(2)-IIA). Double-labeling analysis revealed that MGL, COX-2 and PLA(2)-IIA are co-expressed in some cells that express TRPM5. We then investigated whether arachidonic acid activates TRPM5 via a heterologous expression system in HEK293 cells, and found that its activation occurred at 10 microM arachidonic acid. These results strongly suggest the possibility that arachidonic acid acts as a modulator of TRPM5 in taste signaling pathways.

  12. Genomic evidence of bitter taste in snakes and phylogenetic analysis of bitter taste receptor genes in reptiles

    Directory of Open Access Journals (Sweden)

    Huaming Zhong

    2017-08-01

    Full Text Available As nontraditional model organisms with extreme physiological and morphological phenotypes, snakes are believed to possess an inferior taste system. However, the bitter taste sensation is essential to distinguish the nutritious and poisonous food resources and the genomic evidence of bitter taste in snakes is largely scarce. To explore the genetic basis of the bitter taste of snakes and characterize the evolution of bitter taste receptor genes (Tas2rs in reptiles, we identified Tas2r genes in 19 genomes (species corresponding to three orders of non-avian reptiles. Our results indicated contractions of Tas2r gene repertoires in snakes, however dramatic gene expansions have occurred in lizards. Phylogenetic analysis of the Tas2rs with NJ and BI methods revealed that Tas2r genes of snake species formed two clades, whereas in lizards the Tas2r genes clustered into two monophyletic clades and four large clades. Evolutionary changes (birth and death of intact Tas2r genes in reptiles were determined by reconciliation analysis. Additionally, the taste signaling pathway calcium homeostasis modulator 1 (Calhm1 gene of snakes was putatively functional, suggesting that snakes still possess bitter taste sensation. Furthermore, Phylogenetically Independent Contrasts (PIC analyses reviewed a significant correlation between the number of Tas2r genes and the amount of potential toxins in reptilian diets, suggesting that insectivores such as some lizards may require more Tas2rs genes than omnivorous and carnivorous reptiles.

  13. Taste receptors and gustatory associated G proteins in channel catfish, Ictalurus punctatus.

    Science.gov (United States)

    Gao, Sen; Liu, Shikai; Yao, Jun; Zhou, Tao; Li, Ning; Li, Qi; Dunham, Rex; Liu, Zhanjiang

    2017-03-01

    Taste sensation plays a pivotal role in nutrient identification and acquisition. This is particularly true for channel catfish (Ictalurus punctatus) that live in turbid waters with limited visibility. This biological process is mainly mediated by taste receptors expressed in taste buds that are distributed in several organs and tissues, including the barbels and skin. In the present study, we identified a complete repertoire of taste receptor and gustatory associated G protein genes in the channel catfish genome. A total of eight taste receptor genes were identified, including five type I and three type II taste receptor genes. Their genomic locations, phylogenetic relations, orthologies and expression were determined. Phylogenetic and collinear analyses provided understanding of the evolution dynamics of this gene family. Furthermore, the motif and dN/dS analyses indicated that selection pressures of different degrees were imposed on these receptors. Additionally, four genes of gustatory associated G proteins were also identified. It was indicated that expression patterns of catfish taste receptors and gustatory associated G proteins across organs mirror the distribution of taste buds across organs. Finally, the expression comparison between catfish and zebrafish organs provided evidence of potential roles of catfish skin and gill involved in taste sensation. Copyright © 2016 Elsevier Inc. All rights reserved.

  14. Effects of Sleeve Gastrectomy vs. Roux-en-Y Gastric Bypass on Eating Behavior and Sweet Taste Perception in Subjects with Obesity.

    Science.gov (United States)

    Nance, Katie; Eagon, J Christopher; Klein, Samuel; Pepino, Marta Yanina

    2017-12-24

    The goal of this study was to test the hypothesis that weight loss induced by Roux-en-Y gastric bypass (RYGB) has greater effects on taste perception and eating behavior than comparable weight loss induced by sleeve gastrectomy (SG). We evaluated the following outcomes in 31 subjects both before and after ~20% weight loss induced by RYGB ( n = 23) or SG ( n = 8): (1) sweet, savory, and salty taste sensitivity; (2) the most preferred concentrations of sucrose and monosodium glutamate; (3) sweetness palatability, by using validated sensory testing techniques; and (4) eating behavior, by using the Food Craving Inventory and the Dutch Eating Behavior Questionnaire. We found that neither RYGB nor SG affected sweetness or saltiness sensitivity. However, weight loss induced by either RYGB or SG caused the same decrease in: (1) frequency of cravings for foods; (2) influence of emotions and external food cues on eating behavior; and (3) shifted sweetness palatability from pleasant to unpleasant when repetitively tasting sucrose (all p -values ≤ 0.01). Therefore, when matched on weight loss, SG and RYGB cause the same beneficial effects on key factors involved in the regulation of eating behavior and hedonic component of taste perception.

  15. Effects of Sleeve Gastrectomy vs. Roux-en-Y Gastric Bypass on Eating Behavior and Sweet Taste Perception in Subjects with Obesity

    Directory of Open Access Journals (Sweden)

    Katie Nance

    2017-12-01

    Full Text Available The goal of this study was to test the hypothesis that weight loss induced by Roux-en-Y gastric bypass (RYGB has greater effects on taste perception and eating behavior than comparable weight loss induced by sleeve gastrectomy (SG. We evaluated the following outcomes in 31 subjects both before and after ~20% weight loss induced by RYGB (n = 23 or SG (n = 8: (1 sweet, savory, and salty taste sensitivity; (2 the most preferred concentrations of sucrose and monosodium glutamate; (3 sweetness palatability, by using validated sensory testing techniques; and (4 eating behavior, by using the Food Craving Inventory and the Dutch Eating Behavior Questionnaire. We found that neither RYGB nor SG affected sweetness or saltiness sensitivity. However, weight loss induced by either RYGB or SG caused the same decrease in: (1 frequency of cravings for foods; (2 influence of emotions and external food cues on eating behavior; and (3 shifted sweetness palatability from pleasant to unpleasant when repetitively tasting sucrose (all p-values ≤ 0.01. Therefore, when matched on weight loss, SG and RYGB cause the same beneficial effects on key factors involved in the regulation of eating behavior and hedonic component of taste perception.

  16. Changes in taste sensation of sour, salty, sweet, bitter, umami, and spicy, as well as levels of malondialdehyde serum in radiographers

    Directory of Open Access Journals (Sweden)

    Agniz Nur Aulia

    2016-06-01

    on the effects of radiation on cancer patients show that radiation can cause an increase in bitterness and metal taste [in cancer patients] leading to discomfort in the oral cavity. In body, free radicals then can cause lipid peroxidation process. Lipid peroxidation is an oxidative destruction of polyunsaturated fatty acid producing malondialdehyde (MDA. Purpose: This study aimed to determine the effects of radiation on changes in the taste sensation of sour, salty, sweet, bitter, umami, and spicy as well as the levels of MDA serum in radiographers. Method: This study was an observational laboratory research using post- test control design. Samples were selected using simple random sampling technique. The samples were seven radiographers who have been working for five years in the laboratory and radiographic units in Surabaya. Result: Based on the results of statistical tests, it showed that there were no differences in the sensitivity of all tastes between the groups tested. Moreover, the results also depicted considerable value for the sour taste was 0.550, the saltiness was 0.775, the sweetness was 0.294, the bitter taste was 0.065, the umami taste was 0.705, and the spicy taste was 0.319 (p>0.05. However, the dramatic increase was higlighted in levels of MDA serum with a significant value of 0.065 (p>0.005. Conclusion. There were no changes in the sensitivity of sour, salty, sweet, bitter, umami, and spicy tastes, but there was a significant increased in level of MDA serum in the radiographers compared to the control group.

  17. Differences in food intake and genetic variability in taste receptors between Czech pregnant women with and without gestational diabetes mellitus.

    Science.gov (United States)

    Bartáková, Vendula; Kuricová, Katarína; Zlámal, Filip; Bělobrádková, Jana; Kaňková, Katetřina

    2018-03-01

    Gestational diabetes mellitus (GDM) represents the most frequent metabolic disorder in pregnancy. Since dietary intake plays an important role in obesity and type 2 diabetes development, it is likely to be for the susceptibility to GDM too. Food preferences, driving partly the diet composition, are changing during pregnancy. Taste and genetic variability in taste receptors is an important factor in determining food preferences. Aims of our study were (1) to characterize dietary habits of pregnant women and to find possible differences in food preferences between healthy pregnant women and those with GDM and (2) to ascertain possible association of several single nucleotide polymorphisms (SNPs) in taste receptor (TR) genes with GDM. A total of 363 pregnant women (293 with GDM and 70 with physiologic pregnancy) were included in the study. Dietary pattern spanning the period of approx. 6 months preceding the time of GDM screening was assessed using a semi-quantitative food frequency questionnaire. A total of five SNPs in TR genes were selected for genotyping based on their functionality or previous associations. Women with GDM exhibited significantly more frequent meat consumption (esp. poultry, pork and smoked meat), dairy products and sweet beverages consumption. The legumes consumption was found to be inversely correlated with fasting glycaemia (P = 0.007, Spearman). CC genotype in TAS2R9 gene (SNP rs3741845) was significantly associated with GDM (P = 0.0087, Chi-square test). Our study showed differences in dietary intake of selected food items between healthy pregnant women and those with GDM and genetic association of bitter taste receptor allele with GDM.

  18. Taste Receptors Mediate Sinonasal Immunity and Respiratory Disease.

    Science.gov (United States)

    Douglas, Jennifer E; Cohen, Noam A

    2017-02-17

    The bitter taste receptor T2R38 has been shown to play a role in the pathogenesis of chronic rhinosinusitis (CRS), where the receptor functions to enhance upper respiratory innate immunity through a triad of beneficial immune responses. Individuals with a functional version of T2R38 are tasters for the bitter compound phenylthiocarbamide (PTC) and exhibit an anti-microbial response in the upper airway to certain invading pathogens, while those individuals with a non-functional version of the receptor are PTC non-tasters and lack this beneficial response. The clinical ramifications are significant, with the non-taster genotype being an independent risk factor for CRS requiring surgery, poor quality-of-life (QOL) improvements post-operatively, and decreased rhinologic QOL in patients with cystic fibrosis. Furthermore, indirect evidence suggests that non-tasters also have a larger burden of biofilm formation. This new data may influence the clinical management of patients with infectious conditions affecting the upper respiratory tract and possibly at other mucosal sites throughout the body.

  19. The Role of Cholecystokinin in Peripheral Taste Signaling in Mice

    Directory of Open Access Journals (Sweden)

    Ryusuke Yoshida

    2017-10-01

    Full Text Available Cholecystokinin (CCK is a gut hormone released from enteroendocrine cells. CCK functions as an anorexigenic factor by acting on CCK receptors expressed on the vagal afferent nerve and hypothalamus with a synergistic interaction between leptin. In the gut, tastants such as amino acids and bitter compounds stimulate CCK release from enteroendocrine cells via activation of taste transduction pathways. CCK is also expressed in taste buds, suggesting potential roles of CCK in taste signaling in the peripheral taste organ. In the present study, we focused on the function of CCK in the initial responses to taste stimulation. CCK was coexpressed with type II taste cell markers such as Gα-gustducin, phospholipase Cβ2, and transient receptor potential channel M5. Furthermore, a small subset (~30% of CCK-expressing taste cells expressed a sweet/umami taste receptor component, taste receptor type 1 member 3, in taste buds. Because type II taste cells are sweet, umami or bitter taste cells, the majority of CCK-expressing taste cells may be bitter taste cells. CCK-A and -B receptors were expressed in both taste cells and gustatory neurons. CCK receptor knockout mice showed reduced neural responses to bitter compounds compared with wild-type mice. Consistently, intravenous injection of CCK-Ar antagonist lorglumide selectively suppressed gustatory nerve responses to bitter compounds. Intravenous injection of CCK-8 transiently increased gustatory nerve activities in a dose-dependent manner whereas administration of CCK-8 did not affect activities of bitter-sensitive taste cells. Collectively, CCK may be a functionally important neurotransmitter or neuromodulator to activate bitter nerve fibers in peripheral taste tissues.

  20. Sugar receptor response of the food-canal taste sensilla in a nectar-feeding swallowtail butterfly, Papilio xuthus

    Science.gov (United States)

    Inoue, Takashi A.; Asaoka, Kiyoshi; Seta, Kazuaki; Imaeda, Daisuke; Ozaki, Mamiko

    2009-03-01

    The feeding behavior in nectar-feeding insects is triggered by a sugar-receptor response in contact chemosensilla. The contact chemosensilla are distributed not only on tarsi and the outside of the proboscis but also on the inside of the food canal in Lepidoptera. Although the chemosensilla inside the food canal are assumed to detect sweet taste during the passage of nectar through the food canal, their electrophysiological function has received little attention. In the nectar-feeding Asian swallowtail butterfly, Papilio xuthus (Lepidoptera: Papilionidae), we found 15- to 30-μm-long sensilla neatly lined up along the inside galea wall, which forms the food canal in the proboscis. The receptor neurons of these sensilla responded to sucrose. We hypothesized that starch and sucrose compete with each other for a taste receptor site on the sensilla. When we added starch and sucrose to the food-canal sensilla, the electrophysiological responses of food-canal sensilla were inhibited in parallel with the food-sucking behavior of the butterflies. These results suggest that the food-canal sensilla are involved in the behavioral control of nectar-sucking in this butterfly species.

  1. Incidental learning and memory for food varied in sweet taste in children

    NARCIS (Netherlands)

    Laureati, M.; Pagliarini, E.; Mojet, J.; Köster, E.P.

    2011-01-01

    This experiment investigated incidental learning and memory in children (age 7–10 years) for three different foods (fruit juice, fruit purée and biscuit), varied in sweetness. Children (N = 286) were exposed to three target foods and 24 h later their incidental learning was tested for one of the

  2. Diet-induced regulation of bitter taste receptor subtypes in the mouse gastrointestinal tract.

    Directory of Open Access Journals (Sweden)

    Gaia Vegezzi

    Full Text Available Bitter taste receptors and signaling molecules, which detect bitter taste in the mouth, are expressed in the gut mucosa. In this study, we tested whether two distinct bitter taste receptors, the bitter taste receptor 138 (T2R138, selectively activated by isothiocyanates, and the broadly tuned bitter taste receptor 108 (T2R108 are regulated by luminal content. Quantitative RT-PCR analysis showed that T2R138 transcript is more abundant in the colon than the small intestine and lowest in the stomach, whereas T2R108 mRNA is more abundant in the stomach compared to the intestine. Both transcripts in the stomach were markedly reduced by fasting and restored to normal levels after 4 hours re-feeding. A cholesterol-lowering diet, mimicking a diet naturally low in cholesterol and rich in bitter substances, increased T2R138 transcript, but not T2R108, in duodenum and jejunum, and not in ileum and colon. Long-term ingestion of high-fat diet increased T2R138 RNA, but not T2R108, in the colon. Similarly, α-gustducin, a bitter taste receptor signaling molecule, was reduced by fasting in the stomach and increased by lowering cholesterol in the small intestine and by high-fat diet in the colon. These data show that both short and long term changes in the luminal contents alter expression of bitter taste receptors and associated signaling molecules in the mucosa, supporting the proposed role of bitter taste receptors in luminal chemosensing in the gastrointestinal tract. Bitter taste receptors might serve as regulatory and defensive mechanism to control gut function and food intake and protect the body from the luminal environment.

  3. Diet-Induced Regulation of Bitter Taste Receptor Subtypes in the Mouse Gastrointestinal Tract

    Science.gov (United States)

    Vegezzi, Gaia; Anselmi, Laura; Huynh, Jennifer; Barocelli, Elisabetta; Rozengurt, Enrique; Raybould, Helen; Sternini, Catia

    2014-01-01

    Bitter taste receptors and signaling molecules, which detect bitter taste in the mouth, are expressed in the gut mucosa. In this study, we tested whether two distinct bitter taste receptors, the bitter taste receptor 138 (T2R138), selectively activated by isothiocyanates, and the broadly tuned bitter taste receptor 108 (T2R108) are regulated by luminal content. Quantitative RT-PCR analysis showed that T2R138 transcript is more abundant in the colon than the small intestine and lowest in the stomach, whereas T2R108 mRNA is more abundant in the stomach compared to the intestine. Both transcripts in the stomach were markedly reduced by fasting and restored to normal levels after 4 hours re-feeding. A cholesterol-lowering diet, mimicking a diet naturally low in cholesterol and rich in bitter substances, increased T2R138 transcript, but not T2R108, in duodenum and jejunum, and not in ileum and colon. Long-term ingestion of high-fat diet increased T2R138 RNA, but not T2R108, in the colon. Similarly, α-gustducin, a bitter taste receptor signaling molecule, was reduced by fasting in the stomach and increased by lowering cholesterol in the small intestine and by high-fat diet in the colon. These data show that both short and long term changes in the luminal contents alter expression of bitter taste receptors and associated signaling molecules in the mucosa, supporting the proposed role of bitter taste receptors in luminal chemosensing in the gastrointestinal tract. Bitter taste receptors might serve as regulatory and defensive mechanism to control gut function and food intake and protect the body from the luminal environment. PMID:25238152

  4. Sweet success, bitter defeat: a taste phenotype predicts social status in selectively bred rats.

    Directory of Open Access Journals (Sweden)

    John M Eaton

    Full Text Available For social omnivores such as rats and humans, taste is far more than a chemical sense activated by food. By virtue of evolutionary and epigenetic elaboration, taste is associated with negative affect, stress vulnerability, responses to psychoactive substances, pain, and social judgment. A crucial gap in this literature, which spans behavior genetics, affective and social neuroscience, and embodied cognition, concerns links between taste and social behavior in rats. Here we show that rats selectively bred for low saccharin intake are subordinate to high-saccharin-consuming rats when they compete in weight-matched dyads for food, a task used to model depression. Statistical and experimental controls suggest that differential resource utilization within dyads is not an artifact of individual-level processes such as apparatus habituation or ingestive motivation. Tail skin temperature measurements showed that LoS rats display larger hyperthermic responses to social interaction after status is established, evidence linking taste, social stress, autonomic reactivity, and depression-like symptoms. Based on regression using early- and late-competition predictors to predict dyadic disparity in final competition scores, we tentatively suggest that HiS rats emerge as dominant both because of an "early surge" on their part and because LoS acquiesce later. These findings should invigorate the comparative study of individual differences in social status and its relationship to mental and physical health.

  5. Single Nucleotide Polymorphisms in Taste Receptor Genes Are Associated with Snacking Patterns of Preschool-Aged Children in the Guelph Family Health Study: A Pilot Study.

    Science.gov (United States)

    Chamoun, Elie; Hutchinson, Joy M; Krystia, Owen; Mirotta, Julia A; Mutch, David M; Buchholz, Andrea C; Duncan, Alison M; Darlington, Gerarda; Haines, Jess; Ma, David W L

    2018-01-30

    Snacking is an integral component of eating habits in young children that is often overlooked in nutrition research. While snacking is a substantial source of calories in preschoolers' diets, there is limited knowledge about the factors that drive snacking patterns. The genetics of taste may help to better understand the snacking patterns of children. The rs1761667 single nucleotide polymorphism (SNP) in the CD36 gene has been linked to fat taste sensitivity, the rs35874116 SNP in the TAS1R2 gene has been related to sweet taste preference, and the rs713598 SNP in the TAS2R38 gene has been associated with aversion to bitter, green leafy vegetables. This study seeks to determine the cross-sectional associations between three taste receptor SNPs and snacking patterns among preschoolers in the Guelph Family Health Study. Preschoolers' snack quality, quantity, and frequency were assessed using three-day food records and saliva was collected for SNP genotyping ( n = 47). Children with the TT genotype in TAS1R2 consumed snacks with significantly more calories from sugar, and these snacks were consumed mostly in the evening. Total energy density of snacks was highest in the CC and CG genotypes compared to the GG genotype in TAS2R38 , and also greater in the AA genotype in CD36 compared to G allele carriers, however this difference was not individually attributable to energy from fat, carbohydrates, sugar, or protein. Genetic variation in taste receptors may influence snacking patterns of preschoolers.

  6. Single Nucleotide Polymorphisms in Taste Receptor Genes Are Associated with Snacking Patterns of Preschool-Aged Children in the Guelph Family Health Study: A Pilot Study

    Directory of Open Access Journals (Sweden)

    Elie Chamoun

    2018-01-01

    Full Text Available Snacking is an integral component of eating habits in young children that is often overlooked in nutrition research. While snacking is a substantial source of calories in preschoolers’ diets, there is limited knowledge about the factors that drive snacking patterns. The genetics of taste may help to better understand the snacking patterns of children. The rs1761667 single nucleotide polymorphism (SNP in the CD36 gene has been linked to fat taste sensitivity, the rs35874116 SNP in the TAS1R2 gene has been related to sweet taste preference, and the rs713598 SNP in the TAS2R38 gene has been associated with aversion to bitter, green leafy vegetables. This study seeks to determine the cross-sectional associations between three taste receptor SNPs and snacking patterns among preschoolers in the Guelph Family Health Study. Preschoolers’ snack quality, quantity, and frequency were assessed using three-day food records and saliva was collected for SNP genotyping (n = 47. Children with the TT genotype in TAS1R2 consumed snacks with significantly more calories from sugar, and these snacks were consumed mostly in the evening. Total energy density of snacks was highest in the CC and CG genotypes compared to the GG genotype in TAS2R38, and also greater in the AA genotype in CD36 compared to G allele carriers, however this difference was not individually attributable to energy from fat, carbohydrates, sugar, or protein. Genetic variation in taste receptors may influence snacking patterns of preschoolers.

  7. Genetics of Amino Acid Taste and Appetite.

    Science.gov (United States)

    Bachmanov, Alexander A; Bosak, Natalia P; Glendinning, John I; Inoue, Masashi; Li, Xia; Manita, Satoshi; McCaughey, Stuart A; Murata, Yuko; Reed, Danielle R; Tordoff, Michael G; Beauchamp, Gary K

    2016-07-01

    The consumption of amino acids by animals is controlled by both oral and postoral mechanisms. We used a genetic approach to investigate these mechanisms. Our studies have shown that inbred mouse strains differ in voluntary amino acid consumption, and these differences depend on sensory and nutritive properties of amino acids. Like humans, mice perceive some amino acids as having a sweet (sucrose-like) taste and others as having an umami (glutamate-like) taste. Mouse strain differences in the consumption of some sweet-tasting amino acids (d-phenylalanine, d-tryptophan, and l-proline) are associated with polymorphisms of a taste receptor, type 1, member 3 gene (Tas1r3), and involve differential peripheral taste responsiveness. Strain differences in the consumption of some other sweet-tasting amino acids (glycine, l-alanine, l-glutamine, and l-threonine) do not depend on Tas1r3 polymorphisms and so must be due to allelic variation in other, as yet unknown, genes involved in sweet taste. Strain differences in the consumption of l-glutamate may depend on postingestive rather than taste mechanisms. Thus, genes and physiologic mechanisms responsible for strain differences in the consumption of each amino acid depend on the nature of its taste and postingestive properties. Overall, mouse strain differences in amino acid taste and appetite have a complex genetic architecture. In addition to the Tas1r3 gene, these differences depend on other genes likely involved in determining the taste and postingestive effects of amino acids. The identification of these genes may lead to the discovery of novel mechanisms that regulate amino acid taste and appetite. © 2016 American Society for Nutrition.

  8. Expression of a high sweetness and heat-resistant mutant of sweet-tasting protein, monellin, in Pichia pastoris with a constitutive GAPDH promoter and modified N-terminus.

    Science.gov (United States)

    Cai, Chenggu; Li, Lei; Lu, Nan; Zheng, Weiwei; Yang, Liu; Liu, Bo

    2016-11-01

    To improve the stability and sweetness of the sweet-tasting protein, monellin, by using site-directed mutagenesis and a Pichia pastoris expression system with a GAPDH constitutive promoter. Both wild-type and E2 N mutant of single-chain monellin gene were cloned into the PGAPZαA vector and expressed in Pichia pastoris. The majority of the secreted recombinant protein, at 0.15 g/l supernatant, was monellin. This was purified by Sephadex G50 chromatography. The sweetness threshold of wild-type and E2 N were 30 μg/ml and 20 μg/ml, respectively. Compared with the proteins expressed in Escherichia coli, the thermostability of both proteins was improved. The N-terminal sequence is determinative for the sweetness of the proteins expressed in yeast strains. Site-directed mutagenesis, modification of the N-terminus of monellin, and without the need of methanol induction in P. pastoris expression system, indicate the possibility for large-scale production of this sweet-tasting protein.

  9. Double P2X2/P2X3 Purinergic Receptor Knockout Mice Do Not Taste NaCl or the Artificial Sweetener SC45647

    Science.gov (United States)

    Eddy, Meghan C.; Eschle, Benjamin K.; Barrows, Jennell; Hallock, Robert M.; Finger, Thomas E.

    2009-01-01

    The P2X ionotropic purinergic receptors, P2X2 and P2X3, are essential for transmission of taste information from taste buds to the gustatory nerves. Mice lacking both P2X2 and P2X3 purinergic receptors (P2X2/P2X3Dbl−/−) exhibit no taste-evoked activity in the chorda tympani and glossopharyngeal nerves when stimulated with taste stimuli from any of the 5 classical taste quality groups (salt, sweet, sour, bitter, and umami) nor do the mice show taste preferences for sweet or umami, or avoidance of bitter substances (Finger et al. 2005. ATP signaling is crucial for communication from taste buds to gustatory nerves. Science. 310[5753]:1495–1499). Here, we compare the ability of P2X2/P2X3Dbl−/− mice and P2X2/P2X3Dbl+/+ wild-type (WT) mice to detect NaCl in brief-access tests and conditioned aversion paradigms. Brief-access testing with NaCl revealed that whereas WT mice decrease licking at 300 mM and above, the P2X2/P2X3Dbl−/− mice do not show any change in lick rates. In conditioned aversion tests, P2X2/P2X3Dbl−/− mice did not develop a learned aversion to NaCl or the artificial sweetener SC45647, both of which are easily avoided by conditioned WT mice. The inability of P2X2/P2X3Dbl−/− mice to show avoidance of these taste stimuli was not due to an inability to learn the task because both WT and P2X2/P2X3Dbl−/− mice learned to avoid a combination of SC45647 and amyl acetate (an odor cue). These data suggest that P2X2/P2X3Dbl−/− mice are unable to respond to NaCl or SC45647 as taste stimuli, mirroring the lack of gustatory nerve responses to these substances. PMID:19833661

  10. Vampire bats exhibit evolutionary reduction of bitter taste receptor genes common to other bats

    Science.gov (United States)

    Hong, Wei; Zhao, Huabin

    2014-01-01

    The bitter taste serves as an important natural defence against the ingestion of poisonous foods and is thus believed to be indispensable in animals. However, vampire bats are obligate blood feeders that show a reduced behavioural response towards bitter-tasting compounds. To test whether bitter taste receptor genes (T2Rs) have been relaxed from selective constraint in vampire bats, we sampled all three vampire bat species and 11 non-vampire bats, and sequenced nine one-to-one orthologous T2Rs that are assumed to be functionally conserved in all bats. We generated 85 T2R sequences and found that vampire bats have a significantly greater percentage of pseudogenes than other bats. These results strongly suggest a relaxation of selective constraint and a reduction of bitter taste function in vampire bats. We also found that vampire bats retain many intact T2Rs, and that the taste signalling pathway gene Calhm1 remains complete and intact with strong functional constraint. These results suggest the presence of some bitter taste function in vampire bats, although it is not likely to play a major role in food selection. Together, our study suggests that the evolutionary reduction of bitter taste function in animals is more pervasive than previously believed, and highlights the importance of extra-oral functions of taste receptor genes. PMID:24966321

  11. The Impact of Pregnancy on Taste Function.

    Science.gov (United States)

    Choo, Ezen; Dando, Robin

    2017-05-01

    It is common for women to report a change in taste (for instance an increased bitter or decreased sweet response) during pregnancy, however specifics of any variation in taste with pregnancy remain elusive. Here we review studies of taste in pregnancy, and discuss how physiological changes occurring during pregnancy may influence taste signaling. We aim to consolidate studies of human pregnancy and "taste function" (studies of taste thresholds, discrimination, and intensity perception, rather than hedonic response or self-report), discussing differences in methodology and findings. Generally, the majority of studies report either no change, or an increase in threshold/decrease in perceived taste intensity, particularly in the early stages of pregnancy, suggesting a possible decrease in taste acuity when pregnant. We further discuss several non-human studies of taste and pregnancy that may extend our understanding. Findings demonstrate that taste buds express receptors for many of the same hormones and circulating factors that vary with pregnancy. Circulating gonadal hormones or other contributions from the endocrine system, as well as physiological changes in weight and immune response could all bear some responsibility for such a modulation of taste during pregnancy. Given our growing understanding of taste, we propose that a change in taste function during pregnancy may not be solely driven by hormonal fluctuations of progesterone and estrogen, as many have suggested. © The Author 2017. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  12. Intracellular Ca2+ and TRPM5-mediated membrane depolarization produce ATP secretion from taste receptor cells

    Science.gov (United States)

    Huang, Yijen A; Roper, Stephen D

    2010-01-01

    ATP is a transmitter secreted from taste bud receptor (Type II) cells through ATP-permeable gap junction hemichannels most probably composed of pannexin 1. The elevation of intracellular Ca2+ and membrane depolarization are both believed to be involved in transmitter secretion from receptor cells, but their specific roles have not been fully elucidated. In the present study, we show that taste-evoked ATP secretion from mouse vallate receptor cells is evoked by the combination of intracellular Ca2+ release and membrane depolarization. Unexpectedly, ATP secretion is not blocked by tetrodotoxin, indicating that transmitter release from these cells still takes place in the absence of action potentials. Taste-evoked ATP secretion is absent in receptor cells isolated from TRPM5 knockout mice or in taste cells from wild type mice where current through TRPM5 channels has been eliminated. These findings suggest that membrane voltage initiated by TRPM5 channels is required for ATP secretion during taste reception. Nonetheless, even in the absence of TRPM5 channel activity, ATP release could be triggered by depolarizing cells with KCl. Collectively, the findings indicate that taste-evoked elevation of intracellular Ca2+ has a dual role: (1) Ca2+ opens TRPM5 channels to depolarize receptor cells and (2) Ca2+ plus membrane depolarization opens ATP-permeable gap junction hemichannels. PMID:20498227

  13. Intracellular Ca(2+) and TRPM5-mediated membrane depolarization produce ATP secretion from taste receptor cells.

    Science.gov (United States)

    Huang, Yijen A; Roper, Stephen D

    2010-07-01

    ATP is a transmitter secreted from taste bud receptor (Type II) cells through ATP-permeable gap junction hemichannels most probably composed of pannexin 1. The elevation of intracellular Ca(2+) and membrane depolarization are both believed to be involved in transmitter secretion from receptor cells, but their specific roles have not been fully elucidated. In the present study, we show that taste-evoked ATP secretion from mouse vallate receptor cells is evoked by the combination of intracellular Ca(2+) release and membrane depolarization. Unexpectedly, ATP secretion is not blocked by tetrodotoxin, indicating that transmitter release from these cells still takes place in the absence of action potentials. Taste-evoked ATP secretion is absent in receptor cells isolated from TRPM5 knockout mice or in taste cells from wild type mice where current through TRPM5 channels has been eliminated. These findings suggest that membrane voltage initiated by TRPM5 channels is required for ATP secretion during taste reception. Nonetheless, even in the absence of TRPM5 channel activity, ATP release could be triggered by depolarizing cells with KCl. Collectively, the findings indicate that taste-evoked elevation of intracellular Ca(2+) has a dual role: (1) Ca(2+) opens TRPM5 channels to depolarize receptor cells and (2) Ca(2+) plus membrane depolarization opens ATP-permeable gap junction hemichannels.

  14. The insular cortex controls food preferences independently of taste receptor signaling

    Directory of Open Access Journals (Sweden)

    Albino J Oliveira-Maia

    2012-03-01

    Full Text Available The insular cortex (IC contains the primary sensory cortex for oral chemosensation including gustation, and its integrity is required for appropriate control of feeding behavior. However, it remains unknown whether the role of this brain area in food selection relies on the presence of peripheral taste input. Using multielectrode recordings, we found that the responses of populations of neurons in the IC of freely licking, sweet-blind Trpm5-/- mice are modulated by the rewarding postingestive effects of sucrose. FOS immunoreactivity analyses revealed that these responses are restricted to the dorsal insula. Furthermore, bilateral lesions in this area abolished taste-independent preferences for sucrose that can be conditioned in these Trpm5-/- animals while preserving their ability to detect sucrose. Overall, these findings demonstrate that even in the absence of peripheral taste input, IC regulates food choices based on postingestive signals.

  15. The insular cortex controls food preferences independently of taste receptor signaling.

    Science.gov (United States)

    Oliveira-Maia, Albino J; de Araujo, Ivan E; Monteiro, Clara; Workman, Virginia; Galhardo, Vasco; Nicolelis, Miguel A L

    2012-01-01

    The insular cortex (IC) contains the primary sensory cortex for oral chemosensation including gustation, and its integrity is required for appropriate control of feeding behavior. However, it remains unknown whether the role of this brain area in food selection relies on the presence of peripheral taste input. Using multielectrode recordings, we found that the responses of populations of neurons in the IC of freely licking, sweet-blind Trpm5(-/-) mice are modulated by the rewarding postingestive effects of sucrose. FOS immunoreactivity analyses revealed that these responses are restricted to the dorsal insula. Furthermore, bilateral lesions in this area abolished taste-independent preferences for sucrose that can be conditioned in these Trpm5(-/-) animals while preserving their ability to detect sucrose. Overall, these findings demonstrate that, even in the absence of peripheral taste input, IC regulates food choices based on postingestive signals.

  16. Molecular neurobiology of Drosophila taste.

    Science.gov (United States)

    Freeman, Erica Gene; Dahanukar, Anupama

    2015-10-01

    Drosophila is a powerful model in which to study the molecular and cellular basis of taste coding. Flies sense tastants via populations of taste neurons that are activated by compounds of distinct categories. The past few years have borne witness to studies that define the properties of taste neurons, identifying functionally distinct classes of sweet and bitter taste neurons that express unique subsets of gustatory receptor (Gr) genes, as well as water, salt, and pheromone sensing neurons that express members of the pickpocket (ppk) or ionotropic receptor (Ir) families. There has also been significant progress in terms of understanding how tastant information is processed and conveyed to higher brain centers, and modulated by prior dietary experience or starvation. Copyright © 2015. Published by Elsevier Ltd.

  17. Sweetness characterization of recombinant human lysozyme.

    Science.gov (United States)

    Matano, Mami; Nakajima, Kana; Kashiwagi, Yutaka; Udaka, Shigezo; Maehashi, Kenji

    2015-10-01

    Lysozyme, a bacteriolytic enzyme, is widely distributed in nature and is a component of the innate immune system. It is established that chicken egg lysozyme elicits sweetness. However, the sweetness of human milk lysozyme, which is vital for combating microbial infections of the gastrointestinal tract of breast-fed infants, has not been characterized. This study aimed to assess the elicitation of sweetness using recombinant mammalian lysozymes expressed in Pichia pastoris. Recombinant human lysozyme (h-LZ) and other mammalian lysozymes of mouse, dog, cat and bovine milk elicited similar sweetness as determined using a sensory test, whereas bovine stomach lysozyme (bs-LZ) did not. Assays of cell cultures showed that h-LZ activated the human sweet taste receptor hT1R2/hT1R3, whereas bs-LZ did not. Point mutations confirmed that the sweetness of h-LZ was independent of enzyme activity and substrate-binding sites, although acidic amino acid residues of bs-LZ played a significant role in diminishing sweetness. Therefore, we conclude that elicitation of sweetness is a ubiquitous function among all lysozymes including mammalian lysozymes. These findings may provide novel insights into the biological implications of T1R2/T1R3-activation by mammalian lysozyme in the oral cavity and gastrointestinal tract. However, the function of lysozyme within species lacking the functional sweet taste receptor gene, such as cat, is currently unknown. Copyright © 2015 Elsevier Inc. All rights reserved.

  18. Voltage-gated sodium channels in taste bud cells.

    Science.gov (United States)

    Gao, Na; Lu, Min; Echeverri, Fernando; Laita, Bianca; Kalabat, Dalia; Williams, Mark E; Hevezi, Peter; Zlotnik, Albert; Moyer, Bryan D

    2009-03-12

    Taste bud cells transmit information regarding the contents of food from taste receptors embedded in apical microvilli to gustatory nerve fibers innervating basolateral membranes. In particular, taste cells depolarize, activate voltage-gated sodium channels, and fire action potentials in response to tastants. Initial cell depolarization is attributable to sodium influx through TRPM5 in sweet, bitter, and umami cells and an undetermined cation influx through an ion channel in sour cells expressing PKD2L1, a candidate sour taste receptor. The molecular identity of the voltage-gated sodium channels that sense depolarizing signals and subsequently initiate action potentials coding taste information to gustatory nerve fibers is unknown. We describe the molecular and histological expression profiles of cation channels involved in electrical signal transmission from apical to basolateral membrane domains. TRPM5 was positioned immediately beneath tight junctions to receive calcium signals originating from sweet, bitter, and umami receptor activation, while PKD2L1 was positioned at the taste pore. Using mouse taste bud and lingual epithelial cells collected by laser capture microdissection, SCN2A, SCN3A, and SCN9A voltage-gated sodium channel transcripts were expressed in taste tissue. SCN2A, SCN3A, and SCN9A were expressed beneath tight junctions in subsets of taste cells. SCN3A and SCN9A were expressed in TRPM5 cells, while SCN2A was expressed in TRPM5 and PKD2L1 cells. HCN4, a gene previously implicated in sour taste, was expressed in PKD2L1 cells and localized to cell processes beneath the taste pore. SCN2A, SCN3A and SCN9A voltage-gated sodium channels are positioned to sense initial depolarizing signals stemming from taste receptor activation and initiate taste cell action potentials. SCN2A, SCN3A and SCN9A gene products likely account for the tetrodotoxin-sensitive sodium currents in taste receptor cells.

  19. Sweet taste of prosocial status signaling: When eating organic foods makes you happy and hopeful.

    Science.gov (United States)

    Puska, Petteri; Kurki, Sami; Lähdesmäki, Merja; Siltaoja, Marjo; Luomala, Harri

    2018-02-01

    As the current research suggests that there are links between prosocial acts and status signaling (including sustainable consumer choices), we empirically study (with three experiments) whether food consumers go green to be seen. First, we examine how activating a motive for status influences prosocial organic food preferences. Then, we examine how the social visibility of the choice (private vs. public) affects these preferences. We found that when consumers' desire for status was elicited, they preferred organic food products significantly over their nonorganic counterparts; making the choice situation visible created the same effect. Finally, we go beyond consumers' evaluative and behavioral domains that have typically been addressed to investigate whether this (nonconscious) "going green to be seen" effect is also evident at the level of more physiologically-driven food responses. Indeed, status motives and reputational concerns created an improved senso-emotional experience of organic food. Specifically, when consumers were led to believe that they have to share their organic food taste experiences with others, an elevation could be detected not only in the pleasantness ratings but also in how joyful and hopeful they felt after eating a food sample. We claim that the reason for this is that a tendency to favor organic foods can be viewed as a costly signaling trait, leading to flaunting about one's prosocial tendencies. According to these findings, highlighting socially disapproved consumption motives, such as reputation management, may be an effective way to increase the relatively low sales of organic foods and thereby promote sustainable consumer behavior. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. β-catenin is required for taste bud cell renewal and behavioral taste perception in adult mice

    Science.gov (United States)

    Gaillard, Dany; Xu, Mingang; Millar, Sarah E.

    2017-01-01

    Taste stimuli are transduced by taste buds and transmitted to the brain via afferent gustatory fibers. Renewal of taste receptor cells from actively dividing progenitors is finely tuned to maintain taste sensitivity throughout life. We show that conditional β-catenin deletion in mouse taste progenitors leads to rapid depletion of progenitors and Shh+ precursors, which in turn causes taste bud loss, followed by loss of gustatory nerve fibers. In addition, our data suggest LEF1, TCF7 and Wnt3 are involved in a Wnt pathway regulatory feedback loop that controls taste cell renewal in the circumvallate papilla epithelium. Unexpectedly, taste bud decline is greater in the anterior tongue and palate than in the posterior tongue. Mutant mice with this regional pattern of taste bud loss were unable to discern sweet at any concentration, but could distinguish bitter stimuli, albeit with reduced sensitivity. Our findings are consistent with published reports wherein anterior taste buds have higher sweet sensitivity while posterior taste buds are better tuned to bitter, and suggest β-catenin plays a greater role in renewal of anterior versus posterior taste buds. PMID:28846687

  1. β-catenin is required for taste bud cell renewal and behavioral taste perception in adult mice.

    Directory of Open Access Journals (Sweden)

    Dany Gaillard

    2017-08-01

    Full Text Available Taste stimuli are transduced by taste buds and transmitted to the brain via afferent gustatory fibers. Renewal of taste receptor cells from actively dividing progenitors is finely tuned to maintain taste sensitivity throughout life. We show that conditional β-catenin deletion in mouse taste progenitors leads to rapid depletion of progenitors and Shh+ precursors, which in turn causes taste bud loss, followed by loss of gustatory nerve fibers. In addition, our data suggest LEF1, TCF7 and Wnt3 are involved in a Wnt pathway regulatory feedback loop that controls taste cell renewal in the circumvallate papilla epithelium. Unexpectedly, taste bud decline is greater in the anterior tongue and palate than in the posterior tongue. Mutant mice with this regional pattern of taste bud loss were unable to discern sweet at any concentration, but could distinguish bitter stimuli, albeit with reduced sensitivity. Our findings are consistent with published reports wherein anterior taste buds have higher sweet sensitivity while posterior taste buds are better tuned to bitter, and suggest β-catenin plays a greater role in renewal of anterior versus posterior taste buds.

  2. Transient receptor potential channel type M5 is essential for fat taste.

    Science.gov (United States)

    Liu, Pin; Shah, Bhavik P; Croasdell, Stephanie; Gilbertson, Timothy A

    2011-06-08

    Until recently, dietary fat was considered to be tasteless, and its primary sensory attribute was believed to be its texture (Rolls et al., 1999; Verhagen et al., 2003). However, a number of studies have demonstrated the ability of components in fats, specifically free fatty acids, to activate taste cells and elicit behavioral responses consistent with there being a taste of fat. Here we show for the first time that long-chain unsaturated free fatty acid, linoleic acid (LA), depolarizes mouse taste cells and elicits a robust intracellular calcium rise via the activation of transient receptor potential channel type M5 (TRPM5). The LA-induced responses depend on G-protein-phospholipase C pathway, indicative of the involvement of G-protein-coupled receptors (GPCRs) in the transduction of fatty acids. Mice lacking TRPM5 channels exhibit no preference for and show reduced sensitivity to LA. Together, these studies show that TRPM5 channels play an essential role in fatty acid transduction in mouse taste cells and suggest that fatty acids are capable of activating taste cells in a manner consistent with other GPCR-mediated tastes.

  3. Making sense with TRP channels: store-operated calcium entry and the ion channel Trpm5 in taste receptor cells.

    Science.gov (United States)

    Pérez, Cristian A; Margolskee, Robert F; Kinnamon, Sue C; Ogura, Tatsuya

    2003-01-01

    The sense of taste plays a critical role in the life and nutritional status of organisms. During the last decade, several molecules involved in taste detection and transduction have been identified, providing a better understanding of the molecular physiology of taste receptor cells. However, a comprehensive catalogue of the taste receptor cell signaling machinery is still unavailable. We have recently described the occurrence of calcium signaling mechanisms in taste receptor cells via apparent store-operated channels and identified Trpm5, a novel candidate taste transduction element belonging to the mammalian family of transient receptor potential channels. Trpm5 is expressed in a tissue-restricted manner, with high levels in gustatory tissue. In taste cells, Trpm5 is co-expressed with taste-signaling molecules such as alpha-gustducin, Ggamma(13), phospholipase C beta(2) and inositol 1,4,5-trisphosphate receptor type III. Biophysical studies of Trpm5 heterologously expressed in Xenopus oocytes and mammalian CHO-K1 cells indicate that it functions as a store-operated channel that mediates capacitative calcium entry. The role of store-operated channels and Trpm5 in capacitative calcium entry in taste receptor cells in response to bitter compounds is discussed.

  4. Role of protein surface charge in monellin sweetness.

    Science.gov (United States)

    Xue, Wei-Feng; Szczepankiewicz, Olga; Thulin, Eva; Linse, Sara; Carey, Jannette

    2009-03-01

    A small number of proteins have the unusual property of tasting intensely sweet. Despite many studies aimed at identifying their sweet taste determinants, the molecular basis of protein sweetness is not fully understood. Recent mutational studies of monellin have implicated positively charged residues in sweetness. In the present work, the effect of overall net charge was investigated using the complementary approach of negative charge alterations. Multiple substitutions of Asp/Asn and Glu/Gln residues radically altered the surface charge of single-chain monellin by removing six negative charges or adding four negative charges. Biophysical characterization using circular dichroism, fluorescence, and two-dimensional NMR demonstrates that the native fold of monellin is preserved in the variant proteins under physiological solution conditions although their stability toward chemical denaturation is altered. A human taste test was employed to determine the sweetness detection threshold of the variants. Removal of negative charges preserves monellin sweetness, whereas added negative charge has a large negative impact on sweetness. Meta-analysis of published charge variants of monellin and other sweet proteins reveals a general trend toward increasing sweetness with increasing positive net charge. Structural mapping of monellin variants identifies a hydrophobic surface predicted to face the receptor where introduced positive or negative charge reduces sweetness, and a polar surface where charges modulate long-range electrostatic complementarity.

  5. Genetics of Amino Acid Taste and Appetite123

    Science.gov (United States)

    Bosak, Natalia P; Glendinning, John I; Inoue, Masashi; Li, Xia; Manita, Satoshi; McCaughey, Stuart A; Murata, Yuko; Beauchamp, Gary K

    2016-01-01

    The consumption of amino acids by animals is controlled by both oral and postoral mechanisms. We used a genetic approach to investigate these mechanisms. Our studies have shown that inbred mouse strains differ in voluntary amino acid consumption, and these differences depend on sensory and nutritive properties of amino acids. Like humans, mice perceive some amino acids as having a sweet (sucrose-like) taste and others as having an umami (glutamate-like) taste. Mouse strain differences in the consumption of some sweet-tasting amino acids (d-phenylalanine, d-tryptophan, and l-proline) are associated with polymorphisms of a taste receptor, type 1, member 3 gene (Tas1r3), and involve differential peripheral taste responsiveness. Strain differences in the consumption of some other sweet-tasting amino acids (glycine, l-alanine, l-glutamine, and l-threonine) do not depend on Tas1r3 polymorphisms and so must be due to allelic variation in other, as yet unknown, genes involved in sweet taste. Strain differences in the consumption of l-glutamate may depend on postingestive rather than taste mechanisms. Thus, genes and physiologic mechanisms responsible for strain differences in the consumption of each amino acid depend on the nature of its taste and postingestive properties. Overall, mouse strain differences in amino acid taste and appetite have a complex genetic architecture. In addition to the Tas1r3 gene, these differences depend on other genes likely involved in determining the taste and postingestive effects of amino acids. The identification of these genes may lead to the discovery of novel mechanisms that regulate amino acid taste and appetite. PMID:27422518

  6. Functional expression of the extracellular-Ca2+-sensing receptor in mouse taste cells.

    Science.gov (United States)

    Bystrova, Marina F; Romanov, Roman A; Rogachevskaja, Olga A; Churbanov, Gleb D; Kolesnikov, Stanislav S

    2010-03-15

    Three types of morphologically and functionally distinct taste cells operate in the mammalian taste bud. We demonstrate here the expression of two G-protein-coupled receptors from the family C, CASR and GPRC6A, in the taste tissue and identify transcripts for both receptors in type I cells, no transcripts in type II cells and only CASR transcripts in type III cells, by using the SMART-PCR RNA amplification method at the level of individual taste cells. Type I taste cells responded to calcimimetic NPS R-568, a stereoselective CASR probe, with Ca(2+) transients, whereas type I and type II cells were not specifically responsive. Consistent with these findings, certain amino acids stimulated PLC-dependent Ca(2+) signaling in type III cells, but not in type I and type II cells, showing the following order of efficacies: Phe~Glu>Arg. Thus, CASR is coupled to Ca(2+) mobilization solely in type III cells. CASR was cloned from the circumvallate papilla into a pIRES2-EGFP plasmid and heterologously expressed in HEK-293 cells. The transfection with CASR enabled HEK-293 cells to generate Ca(2+) transients in response to the amino acids, of which, Phe was most potent. This observation and some other facts favor CASR as the predominant receptor subtype endowing type III cells with the ability to detect amino acids. Altogether, our results indicate that type III cells can serve a novel chemosensory function by expressing the polymodal receptor CASR. A role for CASR and GPRC6A in physiology of taste cells of the type I remains to be unveiled.

  7. Expression, purification and characterization of a novel double-sites mutant of the single-chain sweet-tasting protein monellin (MNEI) with both improved sweetness and stability.

    Science.gov (United States)

    Zheng, Weiwei; Yang, Liu; Cai, Chenggu; Ni, Jinfeng; Liu, Bo

    2018-03-01

    The sweet protein monellin has high sweet potency with limited stability. In this study, 3 double-sites mutants (E2N/E23A, E2N/Y65R and E23A/Y65R) of the single-chain monellin (MNEI) were constructed. The proteins were expressed in E. coli BL21 and purified to homogeneity by nickel affinity chromatography with yields above 10 mg/L cell culture. Introduction of a sweeter mutant E2N into E23A or Y65R (E2N/E23A and E2N/Y65R) led to about 3-fold increase of sweetness, while addition of a more stable mutant E23A into E2N or Y65R (E2N/E23A and E23A/Y65R) resulted in improved thermal stability (about 10 °C). The results indicate that residues E2 and E23 mediate the sweetness and thermal stability of the protein, respectively. Multiple mutations of different residues (E2N/E23A) led to an additive performance with both improved sweetness and stability, suggesting that the sweetness and stability could be modulated by the independent molecular mechanism. The sweeter and thermal stable variant has a potential in further industrial applications. Copyright © 2017 Elsevier Inc. All rights reserved.

  8. Identification of protein-damaging mutations in 10 swine taste receptors and 191 appetite-reward genes.

    Science.gov (United States)

    Clop, Alex; Sharaf, Abdoallah; Castelló, Anna; Ramos-Onsins, Sebastián; Cirera, Susanna; Mercadé, Anna; Derdak, Sophia; Beltran, Sergi; Huisman, Abe; Fredholm, Merete; van As, Pieter; Sánchez, Armand

    2016-08-26

    Taste receptors (TASRs) are essential for the body's recognition of chemical compounds. In the tongue, TASRs sense the sweet and umami and the toxin-related bitter taste thus promoting a particular eating behaviour. Moreover, their relevance in other organs is now becoming evident. In the intestine, they regulate nutrient absorption and gut motility. Upon ligand binding, TASRs activate the appetite-reward circuitry to signal the nervous system and keep body homeostasis. With the aim to identify genetic variation in the swine TASRs and in the genes from the appetite and the reward pathways, we have sequenced the exons of 201 TASRs and appetite-reward genes from 304 pigs belonging to ten breeds, wild boars and to two phenotypically extreme groups from a F2 resource with data on growth and fat deposition. We identified 2,766 coding variants 395 of which were predicted to have a strong impact on protein sequence and function. 334 variants were present in only one breed and at predicted alternative allele frequency (pAAF) ≥ 0.1. The Asian pigs and the wild boars showed the largest proportion of breed specific variants. We also compared the pAAF of the two F2 groups and found that variants in TAS2R39 and CD36 display significant differences suggesting that these genes could influence growth and fat deposition. We developed a 128-variant genotyping assay and confirmed 57 of these variants. We have identified thousands of variants affecting TASRs as well as genes involved in the appetite and the reward mechanisms. Some of these genes have been already associated to taste preferences, appetite or behaviour in humans and mouse. We have also detected indications of a potential relationship of some of these genes with growth and fat deposition, which could have been caused by changes in taste preferences, appetite or reward and ultimately impact on food intake. A genotyping array with 57 variants in 31 of these genes is now available for genotyping and start elucidating

  9. Postsynaptic P2X3-containing receptors in gustatory nerve fibres mediate responses to all taste qualities in mice.

    Science.gov (United States)

    Vandenbeuch, Aurelie; Larson, Eric D; Anderson, Catherine B; Smith, Steven A; Ford, Anthony P; Finger, Thomas E; Kinnamon, Sue C

    2015-03-01

    Taste buds release ATP to activate ionotropic purinoceptors composed of P2X2 and P2X3 subunits, present on the taste nerves. Mice with genetic deletion of P2X2 and P2X3 receptors (double knockout mice) lack responses to all taste stimuli presumably due to the absence of ATP-gated receptors on the afferent nerves. Recent experiments on the double knockout mice showed, however, that their taste buds fail to release ATP, suggesting the possibility of pleiotropic deficits in these global knockouts. To test further the role of postsynaptic P2X receptors in afferent signalling, we used AF-353, a selective antagonist of P2X3-containing receptors to inhibit the receptors acutely during taste nerve recording and behaviour. The specificity of AF-353 for P2X3-containing receptors was tested by recording Ca(2+) transients to exogenously applied ATP in fura-2 loaded isolated geniculate ganglion neurons from wild-type and P2X3 knockout mice. ATP responses were completely inhibited by 10 μm or 100 μm AF-353, but neither concentration blocked responses in P2X3 single knockout mice wherein the ganglion cells express only P2X2-containing receptors. Furthermore, AF-353 had no effect on taste-evoked ATP release from taste buds. In wild-type mice, i.p. injection of AF-353 or simple application of the drug directly to the tongue, inhibited taste nerve responses to all taste qualities in a dose-dependent fashion. A brief access behavioural assay confirmed the electrophysiological results and showed that preference for a synthetic sweetener, SC-45647, was abolished following i.p. injection of AF-353. These data indicate that activation of P2X3-containing receptors is required for transmission of all taste qualities. © 2015 The Authors. The Journal of Physiology © 2015 The Physiological Society.

  10. Taste buds as peripheral chemosensory processors.

    Science.gov (United States)

    Roper, Stephen D

    2013-01-01

    Taste buds are peripheral chemosensory organs situated in the oral cavity. Each taste bud consists of a community of 50-100 cells that interact synaptically during gustatory stimulation. At least three distinct cell types are found in mammalian taste buds - Type I cells, Receptor (Type II) cells, and Presynaptic (Type III) cells. Type I cells appear to be glial-like cells. Receptor cells express G protein-coupled taste receptors for sweet, bitter, or umami compounds. Presynaptic cells transduce acid stimuli (sour taste). Cells that sense salt (NaCl) taste have not yet been confidently identified in terms of these cell types. During gustatory stimulation, taste bud cells secrete synaptic, autocrine, and paracrine transmitters. These transmitters include ATP, acetylcholine (ACh), serotonin (5-HT), norepinephrine (NE), and GABA. Glutamate is an efferent transmitter that stimulates Presynaptic cells to release 5-HT. This chapter discusses these transmitters, which cells release them, the postsynaptic targets for the transmitters, and how cell-cell communication shapes taste bud signaling via these transmitters. Copyright © 2012 Elsevier Ltd. All rights reserved.

  11. Intense sweetness surpasses cocaine reward.

    Directory of Open Access Journals (Sweden)

    Magalie Lenoir

    Full Text Available BACKGROUND: Refined sugars (e.g., sucrose, fructose were absent in the diet of most people until very recently in human history. Today overconsumption of diets rich in sugars contributes together with other factors to drive the current obesity epidemic. Overconsumption of sugar-dense foods or beverages is initially motivated by the pleasure of sweet taste and is often compared to drug addiction. Though there are many biological commonalities between sweetened diets and drugs of abuse, the addictive potential of the former relative to the latter is currently unknown. METHODOLOGY/PRINCIPAL FINDINGS: Here we report that when rats were allowed to choose mutually-exclusively between water sweetened with saccharin-an intense calorie-free sweetener-and intravenous cocaine-a highly addictive and harmful substance-the large majority of animals (94% preferred the sweet taste of saccharin. The preference for saccharin was not attributable to its unnatural ability to induce sweetness without calories because the same preference was also observed with sucrose, a natural sugar. Finally, the preference for saccharin was not surmountable by increasing doses of cocaine and was observed despite either cocaine intoxication, sensitization or intake escalation-the latter being a hallmark of drug addiction. CONCLUSIONS: Our findings clearly demonstrate that intense sweetness can surpass cocaine reward, even in drug-sensitized and -addicted individuals. We speculate that the addictive potential of intense sweetness results from an inborn hypersensitivity to sweet tastants. In most mammals, including rats and humans, sweet receptors evolved in ancestral environments poor in sugars and are thus not adapted to high concentrations of sweet tastants. The supranormal stimulation of these receptors by sugar-rich diets, such as those now widely available in modern societies, would generate a supranormal reward signal in the brain, with the potential to override self

  12. A regulatory gene network related to the porcine umami taste receptor (TAS1R1/TAS1R3).

    Science.gov (United States)

    Kim, J M; Ren, D; Reverter, A; Roura, E

    2016-02-01

    Taste perception plays an important role in the mediation of food choices in mammals. The first porcine taste receptor genes identified, sequenced and characterized, TAS1R1 and TAS1R3, were related to the dimeric receptor for umami taste. However, little is known about their regulatory network. The objective of this study was to unfold the genetic network involved in porcine umami taste perception. We performed a meta-analysis of 20 gene expression studies spanning 480 porcine microarray chips and screened 328 taste-related genes by selective mining steps among the available 12,320 genes. A porcine umami taste-specific regulatory network was constructed based on the normalized coexpression data of the 328 genes across 27 tissues. From the network, we revealed the 'taste module' and identified a coexpression cluster for the umami taste according to the first connector with the TAS1R1/TAS1R3 genes. Our findings identify several taste-related regulatory genes and extend previous genetic background of porcine umami taste. © 2015 Stichting International Foundation for Animal Genetics.

  13. Molecular mechanisms for sweet-suppressing effect of gymnemic acids.

    Science.gov (United States)

    Sanematsu, Keisuke; Kusakabe, Yuko; Shigemura, Noriatsu; Hirokawa, Takatsugu; Nakamura, Seiji; Imoto, Toshiaki; Ninomiya, Yuzo

    2014-09-12

    Gymnemic acids are triterpene glycosides that selectively suppress taste responses to various sweet substances in humans but not in mice. This sweet-suppressing effect of gymnemic acids is diminished by rinsing the tongue with γ-cyclodextrin (γ-CD). However, little is known about the molecular mechanisms underlying the sweet-suppressing effect of gymnemic acids and the interaction between gymnemic acids versus sweet taste receptor and/or γ-CD. To investigate whether gymnemic acids directly interact with human (h) sweet receptor hT1R2 + hT1R3, we used the sweet receptor T1R2 + T1R3 assay in transiently transfected HEK293 cells. Similar to previous studies in humans and mice, gymnemic acids (100 μg/ml) inhibited the [Ca(2+)]i responses to sweet compounds in HEK293 cells heterologously expressing hT1R2 + hT1R3 but not in those expressing the mouse (m) sweet receptor mT1R2 + mT1R3. The effect of gymnemic acids rapidly disappeared after rinsing the HEK293 cells with γ-CD. Using mixed species pairings of human and mouse sweet receptor subunits and chimeras, we determined that the transmembrane domain of hT1R3 was mainly required for the sweet-suppressing effect of gymnemic acids. Directed mutagenesis in the transmembrane domain of hT1R3 revealed that the interaction site for gymnemic acids shared the amino acid residues that determined the sensitivity to another sweet antagonist, lactisole. Glucuronic acid, which is the common structure of gymnemic acids, also reduced sensitivity to sweet compounds. In our models, gymnemic acids were predicted to dock to a binding pocket within the transmembrane domain of hT1R3. © 2014 by The American Society for Biochemistry and Molecular Biology, Inc.

  14. Association between Salivary Leptin Levels and Taste Perception in Children

    Directory of Open Access Journals (Sweden)

    Lénia Rodrigues

    2017-01-01

    Full Text Available The satiety inducing hormone leptin acts not only at central nervous system but also at peripheral level. Leptin receptors are found in several sense related organs, including the mouth. A role of leptin in sweet taste response has been suggested but, until now, studies have been based on in vitro experiments, or in assessing the levels of the hormone in circulation. The present study investigated whether the levels of leptin in saliva are related to taste perception in children and whether Body Mass Index (BMI affects such relationship. Sweet and bitter taste sensitivity was assessed for 121 children aged 9-10 years and unstimulated whole saliva was collected for leptin quantification, using ELISA technique. Children females with lower sweet taste sensitivity presented higher salivary leptin levels, but this is only in the normal weight ones. For bitter taste, association between salivary leptin and caffeine threshold detection was observed only in preobese boys, with higher levels of salivary hormone in low sensitive individuals. This study is the first presenting evidences of a relationship between salivary leptin levels and taste perception, which is sex and BMI dependent. The mode of action of salivary leptin at taste receptor level should be elucidated in future studies.

  15. Functions of human bitter taste receptors depend on N-glycosylation.

    Science.gov (United States)

    Reichling, Claudia; Meyerhof, Wolfgang; Behrens, Maik

    2008-08-01

    Human bitter taste receptors of the TAS2R gene family play a crucial role as warning sensors against the ingestion of toxic food compounds. Moreover, the genetically highly polymorphic hTAS2Rs recognize an enormous number of structurally diverse toxic and non-toxic bitter substances, and hence, may substantially influence our individual eating habits. Heterologous expression in mammalian cells is a useful tool to investigate interactions between these receptors and their agonists. However, many bitter taste receptors are poorly expressed at the cell surface of heterologous cells requiring the addition of plasma membrane export promoting epitopes to the native receptor proteins. Currently, nothing is known about amino acid motifs or other receptor-intrinsic features of TAS2Rs affecting plasma membrane association. In the present study, we analyzed the Asn-linked glycosylation of hTAS2Rs at a consensus sequence in the second extracellular loop, which is conserved among all 25 hTAS2Rs. Non-glycosylated receptors exhibit substantially lower cell surface localization and reduced association with the cellular chaperone calnexin. As the auxiliary factors receptor transporting proteins 3 and 4 are able to restore the function of non-glycosylated hTAS2R16 partially, we conclude that glycosylation is important for receptor maturation but not for its function per se.

  16. CALHM1 Deletion in Mice Affects Glossopharyngeal Taste Responses, Food Intake, Body Weight, and Life Span.

    Science.gov (United States)

    Hellekant, Göran; Schmolling, Jared; Marambaud, Philippe; Rose-Hellekant, Teresa A

    2015-07-01

    Stimulation of Type II taste receptor cells (TRCs) with T1R taste receptors causes sweet or umami taste, whereas T2Rs elicit bitter taste. Type II TRCs contain the calcium channel, calcium homeostasis modulator protein 1 (CALHM1), which releases adenosine triphosphate (ATP) transmitter to taste fibers. We have previously demonstrated with chorda tympani nerve recordings and two-bottle preference (TBP) tests that mice with genetically deleted Calhm1 (knockout [KO]) have severely impaired perception of sweet, bitter, and umami compounds, whereas their sour and salty tasting ability is unaltered. Here, we present data from KO mice of effects on glossopharyngeal (NG) nerve responses, TBP, food intake, body weight, and life span. KO mice have no NG response to sweet and a suppressed response to bitter compared with control (wild-type [WT]) mice. KO mice showed some NG response to umami, suggesting that umami taste involves both CALHM1- and non-CALHM1-modulated signals. NG responses to sour and salty were not significantly different between KO and WT mice. Behavioral data conformed in general with the NG data. Adult KO mice consumed less food, weighed significantly less, and lived almost a year longer than WT mice. Taken together, these data demonstrate that sweet taste majorly influences food intake, body weight, and life span. © The Author 2015. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  17. New Thermal Taste Actuation Technology for Future Multisensory Virtual Reality and Internet.

    Science.gov (United States)

    Karunanayaka, Kasun; Johari, Nurafiqah; Hariri, Surina; Camelia, Hanis; Bielawski, Kevin Stanley; Cheok, Adrian David

    2018-04-01

    Today's virtual reality (VR) applications such as gaming, multisensory entertainment, remote dining, and online shopping are mainly based on audio, visual, and touch interactions between humans and virtual worlds. Integrating the sense of taste into VR is difficult since humans are dependent on chemical-based taste delivery systems. This paper presents the 'Thermal Taste Machine', a new digital taste actuation technology that can effectively produce and modify thermal taste sensations on the tongue. It modifies the temperature of the surface of the tongue within a short period of time (from 25°C to 40 °C while heating, and from 25°C to 10 °C while cooling). We tested this device on human subjects and described the experience of thermal taste using 20 known (taste and non-taste) sensations. Our results suggested that rapidly heating the tongue produces sweetness, fatty/oiliness, electric taste, warmness, and reduces the sensibility for metallic taste. Similarly, cooling the tongue produced mint taste, pleasantness, and coldness. By conducting another user study on the perceived sweetness of sucrose solutions after the thermal stimulation, we found that heating the tongue significantly enhances the intensity of sweetness for both thermal tasters and non-thermal tasters. Also, we found that faster temperature rises on the tongue produce more intense sweet sensations for thermal tasters. This technology will be useful in two ways: First, it can produce taste sensations without using chemicals for the individuals who are sensitive to thermal taste. Second, the temperature rise of the device can be used as a way to enhance the intensity of sweetness. We believe that this technology can be used to digitally produce and enhance taste sensations in future virtual reality applications. The key novelties of this paper are as follows: 1. Development of a thermal taste actuation technology for stimulating the human taste receptors, 2. Characterization of the thermal taste

  18. Sour taste responses in mice lacking PKD channels.

    Directory of Open Access Journals (Sweden)

    Nao Horio

    Full Text Available The polycystic kidney disease-like ion channel PKD2L1 and its associated partner PKD1L3 are potential candidates for sour taste receptors. PKD2L1 is expressed in type III taste cells that respond to sour stimuli and genetic elimination of cells expressing PKD2L1 substantially reduces chorda tympani nerve responses to sour taste stimuli. However, the contribution of PKD2L1 and PKD1L3 to sour taste responses remains unclear.We made mice lacking PKD2L1 and/or PKD1L3 gene and investigated whole nerve responses to taste stimuli in the chorda tympani or the glossopharyngeal nerve and taste responses in type III taste cells. In mice lacking PKD2L1 gene, chorda tympani nerve responses to sour, but not sweet, salty, bitter, and umami tastants were reduced by 25-45% compared with those in wild type mice. In contrast, chorda tympani nerve responses in PKD1L3 knock-out mice and glossopharyngeal nerve responses in single- and double-knock-out mice were similar to those in wild type mice. Sour taste responses of type III fungiform taste cells (GAD67-expressing taste cells were also reduced by 25-45% by elimination of PKD2L1.These findings suggest that PKD2L1 partly contributes to sour taste responses in mice and that receptors other than PKDs would be involved in sour detection.

  19. Selective expression of muscarinic acetylcholine receptor subtype M3 by mouse type III taste bud cells.

    Science.gov (United States)

    Mori, Yusuke; Eguchi, Kohgaku; Yoshii, Kiyonori; Ohtubo, Yoshitaka

    2016-11-01

    Each taste bud cell (TBC) type responds to a different taste. Previously, we showed that an unidentified cell type(s) functionally expresses a muscarinic acetylcholine (ACh) receptor subtype, M3, and we suggested the ACh-dependent modification of its taste responsiveness. In this study, we found that M3 is expressed by type III TBCs, which is the only cell type that possesses synaptic contacts with taste nerve fibers in taste buds. The application of ACh to the basolateral membrane of mouse fungiform TBCs in situ increased the intracellular Ca 2+ concentration in 2.4 ± 1.4 cells per taste bud (mean ± SD, n = 14). After Ca 2+ imaging, we supravitally labeled type II cells (phospholipase C β2 [PLCβ2]-immunoreactive cells) with Lucifer yellow CH (LY), a fluorescent dye and investigated the positional relationship between ACh-responding cells and LY-labeled cells. After fixation, the TBCs were immunohistostained to investigate the positional relationships between immunohistochemically classified cells and LY-labeled cells. The overlay of the two positional relationships obtained by superimposing the LY-labeled cells showed that all of the ACh-responding cells were type III cells (synaptosomal-associated protein 25 [SNAP-25]-immunoreactive cells). The ACh responses required no added Ca 2+ in the bathing solution. The addition of 1 μM U73122, a phospholipase C inhibitor, decreased the magnitude of the ACh response, whereas that of 1 μM U73343, a negative control, had no effect. These results suggest that type III cells respond to ACh and release Ca 2+ from intracellular stores. We also discuss the underlying mechanism of the Ca 2+ response and the role of M3 in type III cells.

  20. The impact of bitter taste receptor genetics on culturable bacteria in chronic rhinosinusitis.

    Science.gov (United States)

    Rom, D I; Christensen, J M; Alvarado, R; Sacks, R; Harvey, R J

    2017-03-01

    Extra-oral bitter taste receptors have been associated with innate bacterial defence mechanisms. Genetic variation in T2R38 functionality has been shown to be associated with susceptibility to upper respiratory tract infections and chronic rhinosinusitis (CRS). We sought to independently assess the influence of bitter taste receptor genotype on the presence of culturable bacteria in the sinuses. A cross-sectional analysis of patients with CRS undergoing surgery was performed. Middle meatal nasal swabs were sent for microbiological evaluation at the time of the procedure. Mucosal biopsies were taken and sent for bitter taste receptor genotype analysis. Sequencing of 3 polymorphisms in the TAS2R38 gene was performed to identify genotypes as super-tasters (PAV/PAV), non-tasters (AVI/AVI) or heterozygous expression (PAV/AVI). The presence of culturable organisms and common pathogens were compared with bitter taste receptor genotypes. 25 patients (age 52.4 +/- 18.28 years, 51% female) were assessed. Super-tasters comprised 16% of the group, 24% were non-tasters and 48% had heterozygous expression. A cultured pathogen was grown in 48% of patients; 32% gram-positive, 20% gram-negative, 28% grew Staphylococcus aureus and 12% Pseudomonas aeruginosa. A non-taster genotype was predictive of colonised pathogens. Tissue eosinophilia (more than 10 HPF) was seen in 48%. Even in a small sample of patients with CRS, non-taster T2R38 genotype appears to predict the presence of culturable bacteria colonising the sinus cavity at the time of surgery for their condition. A genetic link to patients more likely to become infected is likely.

  1. Lineage-Specific Loss of Function of Bitter Taste Receptor Genes in Humans and Nonhuman Primates

    OpenAIRE

    Go, Yasuhiro; Satta, Yoko; Takenaka, Osamu; Takahata, Naoyuki

    2005-01-01

    Since the process of becoming dead genes or pseudogenes (pseudogenization) is irreversible and can occur rather rapidly under certain environmental circumstances, it is one plausible determinant for characterizing species specificity. To test this evolutionary hypothesis, we analyzed the tempo and mode of duplication and pseudogenization of bitter taste receptor (T2R) genes in humans as well as in 12 nonhuman primates. The results show that primates have accumulated more pseudogenes than mice...

  2. Solitary chemosensory cells and bitter taste receptor signaling in human sinonasal mucosa.

    Science.gov (United States)

    Barham, Henry P; Cooper, Sarah E; Anderson, Catherine B; Tizzano, Marco; Kingdom, Todd T; Finger, Tom E; Kinnamon, Sue C; Ramakrishnan, Vijay R

    2013-06-01

    Solitary chemosensory cells (SCCs) are specialized cells in the respiratory epithelium that respond to noxious chemicals including bacterial signaling molecules. SCCs express components of bitter taste transduction including the taste receptor type 2 (TAS2R) bitter taste receptors and downstream signaling effectors: α-Gustducin, phospholipase Cβ2 (PLCβ2), and transient receptor potential cation channel subfamily M member 5 (TRPM5). When activated, SCCs evoke neurogenic reflexes, resulting in local inflammation. The purpose of this study was to test for the presence SCCs in human sinonasal epithelium, and to test for a correlation with inflammatory disease processes such as allergic rhinitis and chronic rhinosinusitis. Patient demographics and biopsies of human sinonasal mucosa were obtained from control patients (n = 7) and those with allergic rhinitis and/or chronic rhinosinusitis (n = 15). Reverse transcription polymerase chain reaction (RT-PCR), quantitative PCR (qPCR), and immunohistochemistry were used to determine whether expression of signaling effectors was altered in diseased patients. RT-PCR demonstrated that bitter taste receptors TAS2R4, TAS2R14, and TAS2R46, and downstream signaling effectors α-Gustducin, PLCβ2, and TRPM5 are expressed in the inferior turbinate, middle turbinate, septum, and uncinate of both control and diseased patients. PLCβ2/TRPM5-immunoreactive SCCs were identified in the sinonasal mucosa of both control and diseased patients. qPCR showed similar expression of α-Gustducin and TRPM5 in the uncinate process of control and diseased groups, and there was no correlation between level of expression and 22-item Sino-Nasal Outcomes Test (SNOT-22) or pain scores. SCCs are present in human sinonasal mucosa in functionally relevant areas. Expression level of signaling effectors was similar in control and diseased patients and did not correlate with measures of pain and inflammation. Further study into these pathways may provide insight

  3. SuperSweet--a resource on natural and artificial sweetening agents.

    Science.gov (United States)

    Ahmed, Jessica; Preissner, Saskia; Dunkel, Mathias; Worth, Catherine L; Eckert, Andreas; Preissner, Robert

    2011-01-01

    A vast number of sweet tasting molecules are known, encompassing small compounds, carbohydrates, d-amino acids and large proteins. Carbohydrates play a particularly big role in human diet. The replacement of sugars in food with artificial sweeteners is common and is a general approach to prevent cavities, obesity and associated diseases such as diabetes and hyperlipidemia. Knowledge about the molecular basis of taste may reveal new strategies to overcome diet-induced diseases. In this context, the design of safe, low-calorie sweeteners is particularly important. Here, we provide a comprehensive collection of carbohydrates, artificial sweeteners and other sweet tasting agents like proteins and peptides. Additionally, structural information and properties such as number of calories, therapeutic annotations and a sweetness-index are stored in SuperSweet. Currently, the database consists of more than 8000 sweet molecules. Moreover, the database provides a modeled 3D structure of the sweet taste receptor and binding poses of the small sweet molecules. These binding poses provide hints for the design of new sweeteners. A user-friendly graphical interface allows similarity searching, visualization of docked sweeteners into the receptor etc. A sweetener classification tree and browsing features allow quick requests to be made to the database. The database is freely available at: http://bioinformatics.charite.de/sweet/.

  4. Molecular mechanisms of the action of miraculin, a taste-modifying protein.

    Science.gov (United States)

    Misaka, Takumi

    2013-03-01

    Miraculin (MCL) is a homodimeric protein isolated from the fruits of Richadella dulcifica, a shrub native to West Africa. Although it is flat in taste at neutral pH, MCL has taste-modifying activity in which sour stimuli produce a sweet perception. Once MCL enters the mouth, strong sweetness can be detected for more than 1 h each time we taste a sour solution. While the human sweet taste receptor (hT1R2-hT1R3) has been identified, the molecular mechanisms underlying the taste-modifying activity of MCL remain unclear. Recently, experimental evidence has been published demonstrating the successful quantitative evaluation of the acid-induced sweetness of MCL using a cell-based assay system. The results strongly suggested that MCL binds hT1R2-hT1R3 as an antagonist at neutral pH and functionally changes into an agonist at acidic pH. Since sweet-tasting proteins may be used as low-calorie sweeteners because they contain almost no calories, it is expected that MCL will be used in the near future as a new low-calorie sweetener or to modify the taste of sour fruits. Copyright © 2013 Elsevier Ltd. All rights reserved.

  5. Progress and renewal in gustation: new insights into taste bud development.

    Science.gov (United States)

    Barlow, Linda A

    2015-11-01

    The sense of taste, or gustation, is mediated by taste buds, which are housed in specialized taste papillae found in a stereotyped pattern on the surface of the tongue. Each bud, regardless of its location, is a collection of ∼100 cells that belong to at least five different functional classes, which transduce sweet, bitter, salt, sour and umami (the taste of glutamate) signals. Taste receptor cells harbor functional similarities to neurons but, like epithelial cells, are rapidly and continuously renewed throughout adult life. Here, I review recent advances in our understanding of how the pattern of taste buds is established in embryos and discuss the cellular and molecular mechanisms governing taste cell turnover. I also highlight how these findings aid our understanding of how and why many cancer therapies result in taste dysfunction. © 2015. Published by The Company of Biologists Ltd.

  6. Birds Generally Carry a Small Repertoire of Bitter Taste Receptor Genes.

    Science.gov (United States)

    Wang, Kai; Zhao, Huabin

    2015-09-04

    As they belong to the most species-rich class of tetrapod vertebrates, birds have long been believed to possess an inferior taste system. However, the bitter taste is fundamental in birds to recognize dietary toxins (which are typically bitter) in potential food sources. To characterize the evolution of avian bitter taste receptor genes (Tas2rs) and to test whether dietary toxins have shaped the repertoire size of avian Tas2rs, we examined 48 genomes representing all but 3 avian orders. The total number of Tas2r genes was found to range from 1 in the domestic pigeon to 12 in the bar-tailed trogon, with an average of 4, which suggested that a much smaller Tas2r gene repertoire exists in birds than in other vertebrates. Furthermore, we uncovered a positive correlation between the number of putatively functional Tas2rs and the abundance of potential toxins in avian diets. Because plant products contain more toxins than animal tissues and insects release poisonous defensive secretions, we hypothesized that herbivorous and insectivorous birds may demand more functional Tas2rs than carnivorous birds feeding on noninsect animals. Our analyses appear to support this hypothesis and highlight the critical role of taste perception in birds. © The Author(s) 2015. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.

  7. L-Amino Acids Elicit Diverse Response Patterns in Taste Sensory Cells: A Role for Multiple Receptors.

    Directory of Open Access Journals (Sweden)

    Shreoshi Pal Choudhuri

    Full Text Available Umami, the fifth basic taste, is elicited by the L-amino acid, glutamate. A unique characteristic of umami taste is the response potentiation by 5' ribonucleotide monophosphates, which are also capable of eliciting an umami taste. Initial reports using human embryonic kidney (HEK cells suggested that there is one broadly tuned receptor heterodimer, T1r1+T1r3, which detects L-glutamate and all other L-amino acids. However, there is growing evidence that multiple receptors detect glutamate in the oral cavity. While much is understood about glutamate transduction, the mechanisms for detecting the tastes of other L-amino acids are less well understood. We used calcium imaging of isolated taste sensory cells and taste cell clusters from the circumvallate and foliate papillae of C57BL/6J and T1r3 knockout mice to determine if other receptors might also be involved in detection of L-amino acids. Ratiometric imaging with Fura-2 was used to study calcium responses to monopotassium L-glutamate, L-serine, L-arginine, and L-glutamine, with and without inosine 5' monophosphate (IMP. The results of these experiments showed that the response patterns elicited by L-amino acids varied significantly across taste sensory cells. L-amino acids other than glutamate also elicited synergistic responses in a subset of taste sensory cells. Along with its role in synergism, IMP alone elicited a response in a large number of taste sensory cells. Our data indicate that synergistic and non-synergistic responses to L-amino acids and IMP are mediated by multiple receptors or possibly a receptor complex.

  8. Stevia Glycosides : Chemical and Enzymatic Modifications of Their Carbohydrate Moieties to Improve the Sweet-Tasting Quality

    NARCIS (Netherlands)

    Gerwig, Gerrit J; Te Poele, Evelien M; Dijkhuizen, Lubbert; Kamerling, Johannis P

    2016-01-01

    Stevia glycosides, extracted from the leaves of the plant Stevia rebaudiana Bertoni, display an amazing high degree of sweetness. As processed plant products, they are considered as excellent bio-alternatives for sucrose and artificial sweeteners. Being noncaloric and having beneficial properties

  9. Modern 'junk food' and minimally-processed 'natural food' cafeteria diets alter the response to sweet taste but do not impair flavor-nutrient learning in rats.

    Science.gov (United States)

    Palframan, Kristen M; Myers, Kevin P

    2016-04-01

    Animals learn to prefer and increase consumption of flavors paired with postingestive nutrient sensing. Analogous effects have been difficult to observe in human studies. One possibility is experience with the modern, processed diet impairs learning. Food processing manipulates flavor, texture, sweetness, and nutrition, obscuring ordinary correspondences between sensory cues and postingestive consequences. Over time, a diet of these processed 'junk' foods may impair flavor-nutrient learning. This 'flavor-confusion' hypothesis was tested by providing rats long-term exposure to cafeteria diets of unusual breadth (2 or 3 foods per day, 96 different foods over 3 months, plus ad libitum chow). One group was fed processed foods (PF) with added sugars/fats and manipulated flavors, to mimic the sensory-nutrient properties of the modern processed diet. Another group was fed only 'natural' foods (NF) meaning minimally-processed foods without manipulated flavors or added sugars/fats (e.g., fresh fruits, vegetables, whole grains) ostensibly preserving the ordinary correspondence between flavors and nutrition. A CON group was fed chow only. In subsequent tests of flavor-nutrient learning, PF and NF rats consistently acquired strong preferences for novel nutrient-paired flavors and PF rats exhibited enhanced learned acceptance, contradicting the 'flavor-confusion' hypothesis. An unexpected finding was PF and NF diets both caused lasting reduction in ad lib sweet solution intake. Groups did not differ in reinforcing value of sugar in a progressive ratio task. In lick microstructure analysis the NF group paradoxically showed increased sucrose palatability relative to PF and CON, suggesting the diets have different effects on sweet taste evaluation. Copyright © 2016 Elsevier Inc. All rights reserved.

  10. Genetic diversity of bitter taste receptor gene family in Sichuan domestic and Tibetan chicken populations.

    Science.gov (United States)

    Su, Yuan; Li, Diyan; Gaur, Uma; Wang, Yan; Wu, Nan; Chen, Binlong; Xu, Zhongxian; Yin, Huadong; Hu, Yaodong; Zhu, Qing

    2016-09-01

    The sense of bitter taste plays a critical role in animals as it can help them to avoid intake of toxic and harmful substances. Previous research had revealed that chicken has only three bitter taste receptor genes (Tas2r1, Tas2r2 and Tas2r7). To better understand the genetic polymorphisms and importance of bitter taste receptor genes (Tas2rs) in chicken, here, we sequenced Tas2rs of 30 Sichuan domestic chickens and 30 Tibetan chickens. Thirteen single-nucleotide polymorphisms (SNPs) including three nonsynonymous mutations (m.359G>C, m.503C>A and m.583A>G) were detected in Tas2r1 (m. is the abbreviation for mutation); three SNPs were detected in Tas2r2, but none of them were missense mutation; eight SNPs were detected in Tas2r7 including six nonsynonymous substitutions (m.178G>A, m.421A>C, m.787C>T, m.832G>T, m.907A>T and m.943G>A). Tajima's D neutral test indicates that there is no population expansion in both populations, and the size of the population is relatively stable. All the three networks indicate that red jungle fowls share haplotypes with domestic chickens. In addition, we found that haplotypes H1 and HE1 were positively associated with high-altitude adaptation, whereas haplotypes H4 and HE4 showed a negative correlation with high-altitude adaptation in Tas2rs. Although, chicken has only three Tas2rs, our results showed that both Sichuan domestic chickens and Tibetan chickens have abundant haplotypes in Tas2rs, especially in Tas2r7, which might help chickens to recognize a wide variety of bitter-tasting compounds.

  11. Glucose and Mannose: A Link between Hydration and Sweetness.

    Science.gov (United States)

    Rhys, N H; Bruni, F; Imberti, S; McLain, S E; Ricci, M A

    2017-08-24

    Glucose and mannose have a different degree of sweetness, implying different affinity to the sweet taste receptor. While the receptor structure is still undefined, there are several geometrical models for their binding mechanism. A detailed study of the hydration structure of sugars with known degree of sweetness is bound to provide information on the accuracy of such models. Our neutron diffraction study on the hydration of glucose and mannose show that both α- and β-glucose form strong hydrogen bonds with water, and that the steric hindrance of their first hydration shell matches the receptor geometrical model. The α-anomer of mannose has a similar, well-defined first hydration shell, but with fewer and weaker hydrogen bonds compared to glucose. Conversely, the hydration shell of β-mannose (reported as bitter) does not match the receptor geometrical model. These findings suggest a link between the hydration shell of sugars and their degree of sweetness.

  12. Clinical Significance of Umami Taste and Umami-Related Gene Expression Analysis for the Objective Assessment of Umami Taste Loss.

    Science.gov (United States)

    Shoji, Noriaki; Satoh-Ku Riwada, Shizuko; Sasano, Takashi

    2016-01-01

    Loss of umami taste sensation affects quality of life and causes weight loss and health problems, particularly in the elderly. We recently expanded the use of the filter paper disc method to include assessment of umami taste sensitivity, using monosodium glutamate as the test solution. This test showed high diagnostic performance for discriminating between normal taste function and disorders in sensation of the umami taste, according to established cut-off values. The test also revealed: (1) some elderly patients suffered from specific loss of umami taste sensation with preservation of the other four taste sensations (sweet, salty, sour, and bitter); (2) umami taste disorder caused a loss of appetite and decline in weight, resulting in poor health; (3) appetite, weight and overall health improved after appropriate treatment for umami taste disorder. Because of the subjective nature of the test, however, it may not be useful for patients who cannot express which taste sensation is induced by a tastant, such as those with dementia. Most recently, using tissue samples collected from the tongue by scraping the foliate papillae, we showed that evaluation of umami taste receptor gene expression may be clinically useful for the objective genetic diagnosis of umami taste disorders.

  13. Evaluation of the Monell Forced-Choice, Paired-Comparison Tracking Procedure for Determining Sweet Taste Preferences across the Lifespan

    OpenAIRE

    Mennella, Julie A.; Lukasewycz, Laura D.; Griffith, James W.; Beauchamp, Gary K.

    2011-01-01

    Lack of methodology to assess taste in children limits its measurement in research studies that include pediatric populations. We used the Monell 2-series, forced-choice tracking method to measure sucrose preferences of a racially/ethnically diverse sample (n = 949) of children, adolescents, and adults. Reliability was assessed by comparing the results of the first series with the second series. Validity was assessed by relating participants’ sucrose preferences to their preferences for foods...

  14. Genetic Variation in the TAS2R38 Bitter Taste Receptor and Smoking Behaviors.

    Directory of Open Access Journals (Sweden)

    Davide S Risso

    Full Text Available Common TAS2R38 taste receptor gene variants specify the ability to taste phenylthiocarbamide (PTC, 6-n-propylthiouracil (PROP and structurally related compounds. Tobacco smoke contains a complex mixture of chemical substances of varying structure and functionality, some of which activate different taste receptors. Accordingly, it has been suggested that non-taster individuals may be more likely to smoke because of their inability to taste bitter compounds present in tobacco smoke, but results to date have been conflicting. We studied three cohorts: 237 European-Americans from the state of Georgia, 1,353 European-Americans and 2,363 African-Americans from the Dallas Heart Study (DHS, and 4,973 African-Americans from the Dallas Biobank. Tobacco use data was collected and TAS2R38 polymorphisms were genotyped for all participants, and PTC taste sensitivity was assessed in the Georgia population. In the Georgia group, PTC tasters were less common among those who smoke: 71.5% of smokers were PTC tasters while 82.5% of non-smokers were PTC tasters (P = 0.03. The frequency of the TAS2R38 PAV taster haplotype showed a trend toward being lower in smokers (38.4% than in non-smokers (43.1%, although this was not statistically significant (P = 0.31. In the DHS European-Americans, the taster haplotype was less common in smokers (37.0% vs. 44.0% in non-smokers, P = 0.003, and conversely the frequency of the non-taster haplotype was more common in smokers (58.7% vs. 51.5% in non-smokers, P = 0.002. No difference in the frequency of these haplotypes was observed in African Americans in either the Dallas Heart Study or the Dallas Biobank. We conclude that TAS2R38 haplotypes are associated with smoking status in European-Americans but not in African-American populations. PTC taster status may play a role in protecting individuals from cigarette smoking in specific populations.

  15. Sarco/Endoplasmic reticulum Ca2+-ATPases (SERCA contribute to GPCR-mediated taste perception.

    Directory of Open Access Journals (Sweden)

    Naoko Iguchi

    Full Text Available The sense of taste is important for providing animals with valuable information about the qualities of food, such as nutritional or harmful nature. Mammals, including humans, can recognize at least five primary taste qualities: sweet, umami (savory, bitter, sour, and salty. Recent studies have identified molecules and mechanisms underlying the initial steps of tastant-triggered molecular events in taste bud cells, particularly the requirement of increased cytosolic free Ca(2+ concentration ([Ca(2+](c for normal taste signal transduction and transmission. Little, however, is known about the mechanisms controlling the removal of elevated [Ca(2+](c from the cytosol of taste receptor cells (TRCs and how the disruption of these mechanisms affects taste perception. To investigate the molecular mechanism of Ca(2+ clearance in TRCs, we sought the molecules involved in [Ca(2+](c regulation using a single-taste-cell transcriptome approach. We found that Serca3, a member of the sarco/endoplasmic reticulum Ca(2+-ATPase (SERCA family that sequesters cytosolic Ca(2+ into endoplasmic reticulum, is exclusively expressed in sweet/umami/bitter TRCs, which rely on intracellular Ca(2+ release for signaling. Serca3-knockout (KO mice displayed significantly increased aversive behavioral responses and greater gustatory nerve responses to bitter taste substances but not to sweet or umami taste substances. Further studies showed that Serca2 was mainly expressed in the T1R3-expressing sweet and umami TRCs, suggesting that the loss of function of Serca3 was possibly compensated by Serca2 in these TRCs in the mutant mice. Our data demonstrate that the SERCA family members play an important role in the Ca(2+ clearance in TRCs and that mutation of these proteins may alter bitter and perhaps sweet and umami taste perception.

  16. Defects in the peripheral taste structure and function in the MRL/lpr mouse model of autoimmune disease.

    Directory of Open Access Journals (Sweden)

    Agnes Kim

    Full Text Available While our understanding of the molecular and cellular aspects of taste reception and signaling continues to improve, the aberrations in these processes that lead to taste dysfunction remain largely unexplored. Abnormalities in taste can develop in a variety of diseases, including infections and autoimmune disorders. In this study, we used a mouse model of autoimmune disease to investigate the underlying mechanisms of taste disorders. MRL/MpJ-Fas(lpr/J (MRL/lpr mice develop a systemic autoimmunity with phenotypic similarities to human systemic lupus erythematosus and Sjögren's syndrome. Our results show that the taste tissues of MRL/lpr mice exhibit characteristics of inflammation, including infiltration of T lymphocytes and elevated levels of some inflammatory cytokines. Histological studies reveal that the taste buds of MRL/lpr mice are smaller than those of wild-type congenic control (MRL/+/+ mice. 5-Bromo-2'-deoxyuridine (BrdU pulse-chase experiments show that fewer BrdU-labeled cells enter the taste buds of MRL/lpr mice, suggesting an inhibition of taste cell renewal. Real-time RT-PCR analyses show that mRNA levels of several type II taste cell markers are lower in MRL/lpr mice. Immunohistochemical analyses confirm a significant reduction in the number of gustducin-positive taste receptor cells in the taste buds of MRL/lpr mice. Furthermore, MRL/lpr mice exhibit reduced gustatory nerve responses to the bitter compound quinine and the sweet compound saccharin and reduced behavioral responses to bitter, sweet, and umami taste substances compared with controls. In contrast, their responses to salty and sour compounds are comparable to those of control mice in both nerve recording and behavioral experiments. Together, our results suggest that type II taste receptor cells, which are essential for bitter, sweet, and umami taste reception and signaling, are selectively affected in MRL/lpr mice, a model for autoimmune disease with chronic

  17. Voltage-gated sodium channels in taste bud cells

    Directory of Open Access Journals (Sweden)

    Williams Mark E

    2009-03-01

    Full Text Available Abstract Background Taste bud cells transmit information regarding the contents of food from taste receptors embedded in apical microvilli to gustatory nerve fibers innervating basolateral membranes. In particular, taste cells depolarize, activate voltage-gated sodium channels, and fire action potentials in response to tastants. Initial cell depolarization is attributable to sodium influx through TRPM5 in sweet, bitter, and umami cells and an undetermined cation influx through an ion channel in sour cells expressing PKD2L1, a candidate sour taste receptor. The molecular identity of the voltage-gated sodium channels that sense depolarizing signals and subsequently initiate action potentials coding taste information to gustatory nerve fibers is unknown. Results We describe the molecular and histological expression profiles of cation channels involved in electrical signal transmission from apical to basolateral membrane domains. TRPM5 was positioned immediately beneath tight junctions to receive calcium signals originating from sweet, bitter, and umami receptor activation, while PKD2L1 was positioned at the taste pore. Using mouse taste bud and lingual epithelial cells collected by laser capture microdissection, SCN2A, SCN3A, and SCN9A voltage-gated sodium channel transcripts were expressed in taste tissue. SCN2A, SCN3A, and SCN9A were expressed beneath tight junctions in subsets of taste cells. SCN3A and SCN9A were expressed in TRPM5 cells, while SCN2A was expressed in TRPM5 and PKD2L1 cells. HCN4, a gene previously implicated in sour taste, was expressed in PKD2L1 cells and localized to cell processes beneath the taste pore. Conclusion SCN2A, SCN3A and SCN9A voltage-gated sodium channels are positioned to sense initial depolarizing signals stemming from taste receptor activation and initiate taste cell action potentials. SCN2A, SCN3A and SCN9A gene products likely account for the tetrodotoxin-sensitive sodium currents in taste receptor cells.

  18. A Hypersweet Protein: Removal of The Specific Negative Charge at Asp21 Enhances Thaumatin Sweetness.

    Science.gov (United States)

    Masuda, Tetsuya; Ohta, Keisuke; Ojiro, Naoko; Murata, Kazuki; Mikami, Bunzo; Tani, Fumito; Temussi, Piero Andrea; Kitabatake, Naofumi

    2016-02-03

    Thaumatin is an intensely sweet-tasting protein that elicits sweet taste at a concentration of 50 nM, a value 100,000 times larger than that of sucrose on a molar basis. Here we attempted to produce a protein with enhanced sweetness by removing negative charges on the interacting side of thaumatin with the taste receptor. We obtained a D21N mutant which, with a threshold value 31 nM is much sweeter than wild type thaumatin and, together with the Y65R mutant of single chain monellin, one of the two sweetest proteins known so far. The complex model between the T1R2-T1R3 sweet receptor and thaumatin, derived from tethered docking in the framework of the wedge model, confirmed that each of the positively charged residues critical for sweetness is close to a receptor residue of opposite charge to yield optimal electrostatic interaction. Furthermore, the distance between D21 and its possible counterpart D433 (located on the T1R2 protomer of the receptor) is safely large to avoid electrostatic repulsion but, at the same time, amenable to a closer approach if D21 is mutated into the corresponding asparagine. These findings clearly confirm the importance of electrostatic potentials in the interaction of thaumatin with the sweet receptor.

  19. Human bitter perception correlates with bitter receptor messenger RNA expression in taste cells123

    Science.gov (United States)

    Lipchock, Sarah V; Mennella, Julie A; Spielman, Andrew I; Reed, Danielle R

    2013-01-01

    Background: Alleles of the receptor gene TAS2R38 are responsible in part for the variation in bitter taste perception of 6-n-propylthiouracil (PROP) and structurally similar compounds (eg, glucosinolates in cruciferous vegetables). At low concentrations, people with the PAV (“taster” amino acid sequence) form of TAS2R38 perceive these bitter compounds, whereas most with the AVI (“nontaster” amino acid sequence) form do not; heterozygotes (PAV/AVI) show the widest range of bitter perception. Objectives: The objectives were to examine individual differences in expression of PAV-TAS2R38 messenger RNA (mRNA) among heterozygotes, to test the hypotheses that the abundance of allele-specific gene expression accounts for the variation in human bitter taste perception, and to relate to dietary intake of bitter-tasting beverages and foods. Design: Heterozygous individuals (n = 22) provided psychophysical evaluation of the bitterness of PROP, glucosinolate-containing broccoli juice, non–glucosinolate-containing carrot juice, and several bitter non-TAS2R38 ligands as well as dietary recalls. Fungiform taste papillae were examined for allele-specific TAS2R38 expression by using quantitative polymerase chain reaction. Results: PAV-TAS2R38 mRNA expression was measured in 18 of 22 heterozygous subjects. Relative expression varied widely and positively correlated with ratings of bitterness intensity of PROP (P = 0.007) and broccoli juice (P = 0.004) but not of the control solutions carrot juice (P = 0.26), NaCl (P = 0.68), caffeine (P = 0.24), or urea (P = 0.47). Expression amounts were related to self-reported recent and habitual caffeine intake (P = 0.060, P = 0.005); vegetable intake was too low to analyze. Conclusions: We provide evidence that PAV-TAS2R38 expression amount correlates with individual differences in bitter sensory perception and diet. The nature of this correlation calls for additional research on the molecular mechanisms associated with some individual

  20. The Miracle Fruit: An Undergraduate Laboratory Exercise in Taste Sensation and Perception.

    Science.gov (United States)

    Lipatova, Olga; Campolattaro, Matthew M

    2016-01-01

    "Miracle Fruit" is a taste-altering berry that causes sour foods to be perceived as sweet. The present paper describes a laboratory exercise that uses Miracle Fruit to educate students about the sensation and perception of taste. This laboratory exercise reinforces course material pertaining to the function of sweet taste receptors covered in a Sensation and Perception course at Christopher Newport University. Here we provide a step-by-step explanation of the methodology, and an example of data collected and analyzed by one group of students who participated in this laboratory exercise. The origins of the Miracle Fruit, the structure and the physiological function of miraculin (the glycoprotein responsible for the taste-modifying effect found in the pulp of the Miracle Fruit) were discussed before the laboratory exercise. Students then sampled foods known to target different types of tastes (i.e., sweet, sour, bitter and salty) and rated their perception of taste intensity for each food item. Next, students each consumed Miracle Fruit berries, then resampled each original food item and again recorded their perception of taste intensity ratings for these foods. The data confirmed that the sour food items were perceived sweeter after the Miracle Fruit was consumed. The students also completed a written assignment to assess what they learned about the origins, structure, and physiological function of Miracle Fruit. This hands-on laboratory exercise received positive feedback from students. The exercise can be used by other neuroscience educators to teach concepts related to the sensory system of taste.

  1. Intracellular Ca2+ and the phospholipid PIP2 regulate the taste transduction ion channel TRPM5

    OpenAIRE

    Liu, Dan; Liman, Emily R.

    2003-01-01

    The transduction of taste is a fundamental process that allows animals to discriminate nutritious from noxious substances. Three taste modalities, bitter, sweet, and amino acid, are mediated by G protein-coupled receptors that signal through a common transduction cascade: activation of phospholipase C β2, leading to a breakdown of phosphatidylinositol-4,5-bisphosphate (PIP2) into diacylglycerol and inositol 1,4,5-trisphosphate, which causes release of Ca2+ from intracellular stores. The ion c...

  2. Ancient protostome origin of chemosensory ionotropic glutamate receptors and the evolution of insect taste and olfaction.

    Directory of Open Access Journals (Sweden)

    Vincent Croset

    2010-08-01

    Full Text Available Ionotropic glutamate receptors (iGluRs are a highly conserved family of ligand-gated ion channels present in animals, plants, and bacteria, which are best characterized for their roles in synaptic communication in vertebrate nervous systems. A variant subfamily of iGluRs, the Ionotropic Receptors (IRs, was recently identified as a new class of olfactory receptors in the fruit fly, Drosophila melanogaster, hinting at a broader function of this ion channel family in detection of environmental, as well as intercellular, chemical signals. Here, we investigate the origin and evolution of IRs by comprehensive evolutionary genomics and in situ expression analysis. In marked contrast to the insect-specific Odorant Receptor family, we show that IRs are expressed in olfactory organs across Protostomia--a major branch of the animal kingdom that encompasses arthropods, nematodes, and molluscs--indicating that they represent an ancestral protostome chemosensory receptor family. Two subfamilies of IRs are distinguished: conserved "antennal IRs," which likely define the first olfactory receptor family of insects, and species-specific "divergent IRs," which are expressed in peripheral and internal gustatory neurons, implicating this family in taste and food assessment. Comparative analysis of drosophilid IRs reveals the selective forces that have shaped the repertoires in flies with distinct chemosensory preferences. Examination of IR gene structure and genomic distribution suggests both non-allelic homologous recombination and retroposition contributed to the expansion of this multigene family. Together, these findings lay a foundation for functional analysis of these receptors in both neurobiological and evolutionary studies. Furthermore, this work identifies novel targets for manipulating chemosensory-driven behaviours of agricultural pests and disease vectors.

  3. Taste receptor plasticity in relation to feeding history in two congeneric species of Papilionidae (Lepidoptera).

    Science.gov (United States)

    Sollai, Giorgia; Biolchini, Maurizio; Crnjar, Roberto

    2018-02-15

    In the peripheral taste system of insects, the responsiveness of gustatory receptor neurons (GRNs) depends on several factors, such as larval instar, feeding history, physiological state and time of day. To study the role of the feeding history, the spike activity of the maxillary taste chemosensilla in the larvae of two related species of Lepidoptera (Papilio machaon L. and Papilio hospiton Géné) raised on different host plants, was recorded with electrophysiological techniques after stimulation with simple stimuli (sugars, bitters and inorganic salt) and host plant saps, with the aim of cross-comparing their response patterns and evaluating any effects of different feeding histories. For this purpose the larvae were raised each on their preferential host plant and, in addition, P. machaon larvae was also raised on Ferula communis, the host plant preferred by P. hospiton. The GRN spike activity of the lateral and medial sensilla of each test group was measured in response to simple and complex stimuli. The taste discrimination capabilities and modalities of the two species were measured and cross-compared with the aim of studying convergence and/or divergence linked to the insect feeding history. The results show that: a) the GRN responsiveness of both sensilla in P. machaon raised on Fe. communis differs significantly from that of P. machaon on Foeniculum vulgare, but is not different from P. hospiton on Fe. communis; b) P. machaon larvae raised on Fe. communis exhibit response spectra somewhat intermediate between those of P. machaon on fennel and of P. hospiton on Fe. communis, the latter two exhibiting a wider difference from each other; c) the pattern of GRNs activity generated by each plant sap in both sensilla of P. machaon raised on Fe. communis is different from that generated when raised on Fo. vulgare, while no difference is observed with P. hospiton. The data support the hypothesis that diet-related factors may influence peripheral chemosensitivity

  4. Nicotinic acetylcholine receptors (nAChRs are expressed in Trpm5 positive taste receptor cells (TRCs.

    Directory of Open Access Journals (Sweden)

    Jie Qian

    Full Text Available Nicotine evokes chorda tympani (CT taste nerve responses and an aversive behavior in Trpm5 knockout (KO mice. The agonists and antagonists of nicotinic acetylcholine receptors (nAChRs modulate neural and behavioral responses to nicotine in wildtype (WT mice, Trpm5 KO mice and rats. This indicates that nicotine evokes bitter taste by activating a Trpm5-dependent pathway and a Trpm5-independent but nAChR-dependent pathway. Rat CT responses to ethanol are also partially inhibited by nAChR blockers, mecamylamine and dihydro-β-erythroidine. This indicates that a component of the bitter taste of ethanol is also nAChR-dependent. However, at present the expression and localization of nAChR subunits has not been investigated in detail in taste receptor cells (TRCs. To this end, in situ hybridization, immunohistochemistry and q-RT-PCR techniques were utilized to localize nAChR subunits in fungiform and circumvallate TRCs in WT mice, Trpm5-GFP transgenic mice, nAChR KO mice, and rats. The expression of mRNAs for α7, β2 and β4 nAChR subunits was observed in a subset of rat and WT mouse circumvallate and fungiform TRCs. Specific α3, α4, α7, β2, and β4 antibodies localized to a subset of WT mouse circumvallate and fungiform TRCs. In Trpm5-GFP mice α3, α4, α7, and β4 antibody binding was observed in a subset of Trpm5-positive circumvallate TRCs. Giving nicotine (100 μg/ml in drinking water to WT mice for 3 weeks differentially increased the expression of α3, α4, α5, α6, α7, β2 and β4 mRNAs in circumvallate TRCs to varying degrees. Giving ethanol (5% in drinking water to WT mice induced an increase in the expression of α5 and β4 mRNAs in circumvallate TRCs with a significant decrease in the expression of α3, α6 and β2 mRNAs. We conclude that nAChR subunits are expressed in Trpm5-positive TRCs and their expression levels are differentially altered by chronic oral exposure to nicotine and ethanol.

  5. Nicotinic acetylcholine receptors (nAChRs) are expressed in Trpm5 positive taste receptor cells (TRCs).

    Science.gov (United States)

    Qian, Jie; Mummalaneni, Shobha; Grider, John R; Damaj, M Imad; Lyall, Vijay

    2018-01-01

    Nicotine evokes chorda tympani (CT) taste nerve responses and an aversive behavior in Trpm5 knockout (KO) mice. The agonists and antagonists of nicotinic acetylcholine receptors (nAChRs) modulate neural and behavioral responses to nicotine in wildtype (WT) mice, Trpm5 KO mice and rats. This indicates that nicotine evokes bitter taste by activating a Trpm5-dependent pathway and a Trpm5-independent but nAChR-dependent pathway. Rat CT responses to ethanol are also partially inhibited by nAChR blockers, mecamylamine and dihydro-β-erythroidine. This indicates that a component of the bitter taste of ethanol is also nAChR-dependent. However, at present the expression and localization of nAChR subunits has not been investigated in detail in taste receptor cells (TRCs). To this end, in situ hybridization, immunohistochemistry and q-RT-PCR techniques were utilized to localize nAChR subunits in fungiform and circumvallate TRCs in WT mice, Trpm5-GFP transgenic mice, nAChR KO mice, and rats. The expression of mRNAs for α7, β2 and β4 nAChR subunits was observed in a subset of rat and WT mouse circumvallate and fungiform TRCs. Specific α3, α4, α7, β2, and β4 antibodies localized to a subset of WT mouse circumvallate and fungiform TRCs. In Trpm5-GFP mice α3, α4, α7, and β4 antibody binding was observed in a subset of Trpm5-positive circumvallate TRCs. Giving nicotine (100 μg/ml) in drinking water to WT mice for 3 weeks differentially increased the expression of α3, α4, α5, α6, α7, β2 and β4 mRNAs in circumvallate TRCs to varying degrees. Giving ethanol (5%) in drinking water to WT mice induced an increase in the expression of α5 and β4 mRNAs in circumvallate TRCs with a significant decrease in the expression of α3, α6 and β2 mRNAs. We conclude that nAChR subunits are expressed in Trpm5-positive TRCs and their expression levels are differentially altered by chronic oral exposure to nicotine and ethanol.

  6. 6-methoxyflavanones as bitter taste receptor blockers for hTAS2R39.

    Directory of Open Access Journals (Sweden)

    Wibke S U Roland

    Full Text Available Many (dietary bitter compounds, e.g. flavonoids, activate bitter receptor hTAS2R39 in cell-based assays. Several flavonoids, amongst which some flavanones, are known not to activate this receptor. As certain flavanones are known to mask bitter taste sensorially, flavanones might act as bitter receptor antagonists. Fourteen flavanones were investigated for their potential to reduce activation of hTAS2R39 by epicatechin gallate (ECG, one of the main bitter compounds occurring in green tea. Three flavanones showed inhibitory behavior towards the activation of hTAS2R39 by ECG: 4'-fluoro-6-methoxyflavanone, 6,3'-dimethoxyflavanone, and 6-methoxyflavanone (in order of decreasing potency. The 6-methoxyflavanones also inhibited activation of hTAS2R14 (another bitter receptor activated by ECG, though to a lesser extent. Dose-response curves of ECG at various concentrations of the full antagonist 4'-fluoro-6-methoxyflavanone and wash-out experiments indicated reversible insurmountable antagonism. The same effect was observed for the structurally different agonist denatonium benzoate.

  7. Design and evaluation of new analogs of the sweet protein brazzein.

    Science.gov (United States)

    Walters, D Eric; Cragin, Tiffany; Jin, Zheyuan; Rumbley, Jon N; Hellekant, Göran

    2009-10-01

    We have previously modeled the interaction of the sweet protein brazzein with the extracellular domains of the sweet taste receptor. Here, we describe the application of that model to the design of 12 new highly potent analogs of brazzein. Eight of the 12 analogs have higher sweetness potency than wild-type brazzein. Results are consistent with our brazzein-receptor interaction model. The model predicts binding of brazzein to the open form of T1R2 in the T1R2-T1R3 heterodimer.

  8. Ingestion of bacterial lipopolysaccharide inhibits peripheral taste responses to sucrose in mice

    Science.gov (United States)

    Zhu, Xiaobin; He, Lianying; McCluskey, Lynnette Phillips

    2013-01-01

    A fundamental role of the taste system is to discriminate between nutritive and toxic foods. However, it is unknown whether bacterial pathogens that might contaminate food and water modulate the transmission of taste input to the brain. We hypothesized that exogenous, bacterially-derived lipopolysaccharide (LPS), modulates neural responses to taste stimuli. Neurophysiological responses from the chorda tympani nerve, which innervates taste cells on the anterior tongue, were unchanged by acute exposure to LPS. Instead, neural responses to sucrose were selectively inhibited in mice that drank LPS during a single overnight period. Decreased sucrose sensitivity appeared 7 days after LPS ingestion, in parallel with decreased lingual expression of Tas1r2 and Tas1r3 transcripts, which are translated to T1R2+T1R3 subunits forming the sweet taste receptor. Tas1r2 and Tas1r3 mRNA expression levels and neural responses to sucrose were restored by 14 days after LPS consumption. Ingestion of LPS, rather than contact with taste receptor cells, appears to be necessary to suppress sucrose responses. Furthermore, mice lacking the Toll-like receptor (TLR) 4 for LPS were resistant to neurophysiological changes following LPS consumption. These findings demonstrate that ingestion of LPS during a single period specifically and transiently inhibits neural responses to sucrose. We suggest that LPS drinking initiates TLR4-dependent hormonal signals that downregulate sweet taste receptor genes in taste buds. Delayed inhibition of sweet taste signaling may influence food selection and the complex interplay between gastrointestinal bacteria and obesity. PMID:24215981

  9. Crystal structure of Mabinlin II: a novel structural type of sweet proteins and the main structural basis for its sweetness.

    Science.gov (United States)

    Li, De-Feng; Jiang, Peihua; Zhu, De-Yu; Hu, Yonglin; Max, Marianna; Wang, Da-Cheng

    2008-04-01

    The crystal structure of a sweet protein Mabinlin II (Mab II) isolated from the mature seeds of Capparis masaikai Levl. grown in Southern China has been determined at 1.7A resolution by the SIRAS method. The Mab II 3D structure features in an "all alpha" fold mode consisting of A- and B-chains crosslinked by four disulfide bridges, which is distinct from all known sweet protein structures. The Mabinlin II molecule shows an amphiphilic surface, a cationic face (Face A) and a neutral face (Face B). A unique structural motif consisting of B54-B64 was found in Face B, which adopts a special sequence, NL-P-NI-C-NI-P-NI, featuring four [Asn-Leu/Ile] units connected by three conformational-constrained residues, thus is called the [NL/I] tetralet motif. The experiments for testing the possible interactions of separated A-chain and B-chain and the native Mabinlin II to the sweet-taste receptor were performed through the calcium imaging experiments with the HEK293E cells coexpressed hT1R2/T1R3. The result shows that hT1R2/T1R3 responds to both the integrated Mabinlin II and the individual B-chain in the same scale, but not to A-chain. The sweetness evaluation further identified that the separated B-chain can elicit the sweetness alone, but A-chain does not. All data in combination revealed that the sweet protein Mabinlin II can interact with the sweet-taste receptor hT1R2/T1R3 to elicit its sweet taste, and the B-chain with a unique [NL/I] tetralet motif is the essential structural element for the interaction with sweet-taste receptor to elicit the sweetness, while the A-chain may play a role in gaining a long aftertaste for the integrate Mabinlin II. The findings reported in this paper will be advantage for understanding the diversity of sweet proteins and engineering research for development of a unique sweetener for the food and agriculture based on the Mabinlin II structure as a native model.

  10. High-runner mice have reduced incentive salience for a sweet-taste reward when housed with wheel access.

    Science.gov (United States)

    Thompson, Zoe; Kolb, Erik M; Garland, Theodore

    2018-01-01

    To explore reward substitution in the context of voluntary exercise, female mice from four replicate high-runner (HR) lines (bred for wheel running) and four non-selected control (C) lines were given simultaneous access to wheels and palatable solutions as competing rewards (two doses of saccharin [0.1, 0.2% w/v]; two doses of common artificial sweetener blends containing saccharin [Sweet 'N Low ® : 0.1, 0.2% w/v], aspartame [Equal ® : 0.04, 0.08% w/v], or sucralose [Splenda ® : 0.08, 0.16% w/v]; or two doses of sucrose [3.5, 10.5% w/v]). Wheel running and fluid consumption were measured daily, with each dose (including plain water) lasting two days and two "washout" days between solutions. In a separate set of mice, the experiment was repeated without wheel access. The artificial sweeteners had no statistical effect on wheel running. However, based on proportional responses, both doses of sucrose significantly elevated wheel running in C but not HR mice. In contrast, the high dose of sucrose suppressed home-cage activity for both linetypes. Both sucrose and the artificial blends generally increased fluid consumption in a dose-dependent manner. When they had access to wheels, HR had a significantly smaller increase in consumption of artificial sweetener blends when compared with C mice, but not when housed without wheels. Overall, these results provide further evidence that the reward system of HR mice has evolved, and specifically suggest that HR mice have a reduced incentive salience for some artificial sweetener blends, likely attributable to the stronger competing reward of wheel running that has evolved in these lines. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. Expression levels of taste-related genes in palate and tongue tip, and involvement of transient receptor potential subfamily M member 5 (TRPM5) in taste sense in chickens.

    Science.gov (United States)

    Yoshida, Yuta; Kawabata, Fuminori; Kawabata, Yuko; Nishimura, Shotaro; Tabata, Shoji

    2018-02-01

    The elucidation of the mechanisms underlying the taste sense of chickens will contribute to improvements in poultry feeding, because the molecular mechanism of chickens' taste sense defines the feeding behavior of chickens. Here we focused on the gene expressions in two different oral tissues of chickens - the palate, which contains many taste buds, and the tongue tip, which contains few taste buds. Using the quantitative real-time polymerase chain reaction method, we found that the molecular markers for taste buds of chickens, that is α-gustducin and vimentin, were expressed significantly highly in the palate compared to the tongue tip. Our analyses also revealed that transient receptor potential subfamily M member 5 (TRPM5), a cation channel involved in taste transduction in mammals, was also highly expressed in the palate compared to the tongue tip. Our findings demonstrated that the expression patterns of these genes were significantly correlated. We showed that the aversion to bitter solution was alleviated by a TRPM5 inhibitor in behavior of chickens. Taken together, our findings enabled us to develop a simple method for screening taste-related genes in chickens. The use of this method demonstrated that TRPM5 was involved in chickens' taste transduction, and that a TRPM5 inhibitor can alleviate chickens' bitter taste perception of feed ingredients. © 2017 Japanese Society of Animal Science.

  12. Umami the Fifth Basic Taste: History of Studies on Receptor Mechanisms and Role as a Food Flavor

    Directory of Open Access Journals (Sweden)

    Kenzo Kurihara

    2015-01-01

    Full Text Available Three umami substances (glutamate, 5′-inosinate, and 5′-guanylate were found by Japanese scientists, but umami has not been recognized in Europe and America for a long time. In the late 1900s, umami was internationally recognized as the fifth basic taste based on psychophysical, electrophysiological, and biochemical studies. Three umami receptors (T1R1 + T1R3, mGluR4, and mGluR1 were identified. There is a synergism between glutamate and the 5′-nucleotides. Among the above receptors, only T1R1 + T1R3 receptor exhibits the synergism. In rats, the response to a mixture of glutamate and 5′-inosinate is about 1.7 times larger than that to glutamate alone. In human, the response to the mixture is about 8 times larger than that to glutamate alone. Since glutamate and 5′-inosinate are contained in various foods, we taste umami induced by the synergism in daily eating. Hence umami taste induced by the synergism is a main umami taste in human.

  13. Association of TAS2R38 variants with sweet food intake in children aged 1-6 years.

    Science.gov (United States)

    Pawellek, Ingrid; Grote, Veit; Rzehak, Peter; Xhonneux, Annick; Verduci, Elvira; Stolarczyk, Anna; Closa-Monasterolo, Ricardo; Reischl, Eva; Koletzko, Berthold

    2016-12-01

    We aimed at studying whether genetic variants of the TAS2R38 gene are associated with energy intake from sweet tasting foods, total energy and macronutrient intake and body weight in children. Children (n = 691) from five European countries were genotyped for the first variant site rs713598 of the TAS2R38 bitter receptor gene. Three-day dietary records were obtained yearly from one to six years of age. Foods were categorized in sweet and non-sweet-tasting. Mixed models were used to describe group differences in food and nutrient intake and BMI z-score over time. TAS2R38 genotype was related to energy intake from sweet tasting foods: Children with PP and PA genotype consumed an average 83 kJ/d (95% CI 21 to 146; p = 0.009) more sweet tasting foods than children with AA genotype and a mean 56 kJ/d (95% CI 15 to 98; p = 0.007) more energy from energy dense sweet products. Intake of sweet tasting foods was lower in girls than boys and differed between countries. TAS2R38 genotype was not associated with the intake of energy, macronutrients, sugar, single food groups and BMI z-score. Despite many other factors influencing food preference and intake in children, actual intake of sweet food items is associated with TAS2R38 genotype. Children with PP or PA genotype consume more (energy dense) sweet tasting foods. Copyright © 2016 Elsevier Ltd. All rights reserved.

  14. Sweet proteins – Potential replacement for artificial low calorie sweeteners

    Science.gov (United States)

    Kant, Ravi

    2005-01-01

    Exponential growth in the number of patients suffering from diseases caused by the consumption of sugar has become a threat to mankind's health. Artificial low calorie sweeteners available in the market may have severe side effects. It takes time to figure out the long term side effects and by the time these are established, they are replaced by a new low calorie sweetener. Saccharine has been used for centuries to sweeten foods and beverages without calories or carbohydrate. It was also used on a large scale during the sugar shortage of the two world wars but was abandoned as soon as it was linked with development of bladder cancer. Naturally occurring sweet and taste modifying proteins are being seen as potential replacements for the currently available artificial low calorie sweeteners. Interaction aspects of sweet proteins and the human sweet taste receptor are being investigated. PMID:15703077

  15. Sweet proteins – Potential replacement for artificial low calorie sweeteners

    Directory of Open Access Journals (Sweden)

    Kant Ravi

    2005-02-01

    Full Text Available Abstract Exponential growth in the number of patients suffering from diseases caused by the consumption of sugar has become a threat to mankind's health. Artificial low calorie sweeteners available in the market may have severe side effects. It takes time to figure out the long term side effects and by the time these are established, they are replaced by a new low calorie sweetener. Saccharine has been used for centuries to sweeten foods and beverages without calories or carbohydrate. It was also used on a large scale during the sugar shortage of the two world wars but was abandoned as soon as it was linked with development of bladder cancer. Naturally occurring sweet and taste modifying proteins are being seen as potential replacements for the currently available artificial low calorie sweeteners. Interaction aspects of sweet proteins and the human sweet taste receptor are being investigated.

  16. Molecular mechanism of sweetness sensation.

    Science.gov (United States)

    DuBois, Grant E

    2016-10-01

    The current understanding of peripheral molecular events involved in sweet taste sensation in humans is reviewed. Included are discussions of the sweetener receptor T1R2/T1R3, its agonists, antagonists, positive allosteric modulators, the transduction of its activation in taste bud cells and the coding of its signaling to the CNS. Areas of incomplete understanding include 1) signal communication with afferent nerve fibers, 2) contrasting concentration/response (C/R) functions for high-potency (HP) sweeteners (hyperbolic) and carbohydrate (CHO) sweeteners (linear), 3) contrasting temporal profiles for HP sweeteners (delayed onset and extinction) and CHO sweeteners (rapid onset and extinction) and 4) contrasting adaptation behaviors for HP sweeteners (moderate to strong adaptation) and CHO sweeteners (low adaptation). Evidence based on the sweet water aftertastes of several novel sweetness inhibitors is presented providing new support for constitutive activity in T1R2/T1R3. And a model is developed to rationalize the linear C/R functions of CHO sweeteners and hyperbolic C/R functions of HP sweeteners, where the former may activate T1R2/T1R3 by both binding and constitutive activity modulation (i.e., without binding) and the latter activate T1R2/T1R3 only by binding. Copyright © 2016 Elsevier Inc. All rights reserved.

  17. Molecular and Cellular Organization of Taste Neurons in Adult Drosophila Pharynx

    Directory of Open Access Journals (Sweden)

    Yu-Chieh David Chen

    2017-12-01

    Full Text Available Summary: The Drosophila pharyngeal taste organs are poorly characterized despite their location at important sites for monitoring food quality. Functional analysis of pharyngeal neurons has been hindered by the paucity of molecular tools to manipulate them, as well as their relative inaccessibility for neurophysiological investigations. Here, we generate receptor-to-neuron maps of all three pharyngeal taste organs by performing a comprehensive chemoreceptor-GAL4/LexA expression analysis. The organization of pharyngeal neurons reveals similarities and distinctions in receptor repertoires and neuronal groupings compared to external taste neurons. We validate the mapping results by pinpointing a single pharyngeal neuron required for feeding avoidance of L-canavanine. Inducible activation of pharyngeal taste neurons reveals functional differences between external and internal taste neurons and functional subdivision within pharyngeal sweet neurons. Our results provide roadmaps of pharyngeal taste organs in an insect model system for probing the role of these understudied neurons in controlling feeding behaviors. : Chen and Dahanukar carry out a large-scale, systematic analysis to understand the molecular organization of pharyngeal taste neurons. Taking advantage of the molecular genetic toolkit that arises from this map, they use genetic dissection strategies to probe the functional roles of selected pharyngeal neurons in food choice. Keywords: Drosophila, taste, pharynx, chemosensory receptors, gustatory receptors, ionotropic receptors, feeding

  18. Atomic structure of recombinant thaumatin II reveals flexible conformations in two residues critical for sweetness and three consecutive glycine residues.

    Science.gov (United States)

    Masuda, Tetsuya; Mikami, Bunzo; Tani, Fumito

    2014-11-01

    Thaumatin, an intensely sweet-tasting protein used as a sweetener, elicits a sweet taste at 50 nM. Although two major variants designated thaumatin I and thaumatin II exist in plants, there have been few dedicated thaumatin II structural studies and, to date, data beyond atomic resolution had not been obtained. To identify the detailed structural properties explaining why thaumatin elicits a sweet taste, the structure of recombinant thaumatin II was determined at the resolution of 0.99 Å. Atomic resolution structural analysis with riding hydrogen atoms illustrated the differences in the direction of the side-chains more precisely and the electron density maps of the C-terminal regions were markedly improved. Though it had been suggested that the three consecutive glycine residues (G142-G143-G144) have highly flexible conformations, G143, the central glycine residue was successfully modelled in two conformations for the first time. Furthermore, the side chain r.m.s.d. values for two residues (R67 and R82) critical for sweetness exhibited substantially higher values, suggesting that these residues are highly disordered. These results demonstrated that the flexible conformations in two critical residues favoring their interaction with sweet taste receptors are prominent features of the intensely sweet taste of thaumatin. Copyright © 2014 Elsevier B.V. and Société française de biochimie et biologie Moléculaire (SFBBM). All rights reserved.

  19. Nicotinic Acetylcholine Receptor (nAChR) Dependent Chorda Tympani Taste Nerve Responses to Nicotine, Ethanol and Acetylcholine

    Science.gov (United States)

    Ren, Zuo Jun; Mummalaneni, Shobha; Qian, Jie; Baumgarten, Clive M.; DeSimone, John A.; Lyall, Vijay

    2015-01-01

    Nicotine elicits bitter taste by activating TRPM5-dependent and TRPM5-independent but neuronal nAChR-dependent pathways. The nAChRs represent common targets at which acetylcholine, nicotine and ethanol functionally interact in the central nervous system. Here, we investigated if the nAChRs also represent a common pathway through which the bitter taste of nicotine, ethanol and acetylcholine is transduced. To this end, chorda tympani (CT) taste nerve responses were monitored in rats, wild-type mice and TRPM5 knockout (KO) mice following lingual stimulation with nicotine free base, ethanol, and acetylcholine, in the absence and presence of nAChR agonists and antagonists. The nAChR modulators: mecamylamine, dihydro-β-erythroidine, and CP-601932 (a partial agonist of the α3β4* nAChR), inhibited CT responses to nicotine, ethanol, and acetylcholine. CT responses to nicotine and ethanol were also inhibited by topical lingual application of 8-chlorophenylthio (CPT)-cAMP and loading taste cells with [Ca2+]i by topical lingual application of ionomycin + CaCl2. In contrast, CT responses to nicotine were enhanced when TRC [Ca2+]i was reduced by topical lingual application of BAPTA-AM. In patch-clamp experiments, only a subset of isolated rat fungiform taste cells exposed to nicotine responded with an increase in mecamylamine-sensitive inward currents. We conclude that nAChRs expressed in a subset of taste cells serve as common receptors for the detection of the TRPM5-independent bitter taste of nicotine, acetylcholine and ethanol. PMID:26039516

  20. Nicotinic Acetylcholine Receptor (nAChR Dependent Chorda Tympani Taste Nerve Responses to Nicotine, Ethanol and Acetylcholine.

    Directory of Open Access Journals (Sweden)

    Zuo Jun Ren

    Full Text Available Nicotine elicits bitter taste by activating TRPM5-dependent and TRPM5-independent but neuronal nAChR-dependent pathways. The nAChRs represent common targets at which acetylcholine, nicotine and ethanol functionally interact in the central nervous system. Here, we investigated if the nAChRs also represent a common pathway through which the bitter taste of nicotine, ethanol and acetylcholine is transduced. To this end, chorda tympani (CT taste nerve responses were monitored in rats, wild-type mice and TRPM5 knockout (KO mice following lingual stimulation with nicotine free base, ethanol, and acetylcholine, in the absence and presence of nAChR agonists and antagonists. The nAChR modulators: mecamylamine, dihydro-β-erythroidine, and CP-601932 (a partial agonist of the α3β4* nAChR, inhibited CT responses to nicotine, ethanol, and acetylcholine. CT responses to nicotine and ethanol were also inhibited by topical lingual application of 8-chlorophenylthio (CPT-cAMP and loading taste cells with [Ca2+]i by topical lingual application of ionomycin + CaCl2. In contrast, CT responses to nicotine were enhanced when TRC [Ca2+]i was reduced by topical lingual application of BAPTA-AM. In patch-clamp experiments, only a subset of isolated rat fungiform taste cells exposed to nicotine responded with an increase in mecamylamine-sensitive inward currents. We conclude that nAChRs expressed in a subset of taste cells serve as common receptors for the detection of the TRPM5-independent bitter taste of nicotine, acetylcholine and ethanol.

  1. Nicotinic Acetylcholine Receptor (nAChR) Dependent Chorda Tympani Taste Nerve Responses to Nicotine, Ethanol and Acetylcholine.

    Science.gov (United States)

    Ren, Zuo Jun; Mummalaneni, Shobha; Qian, Jie; Baumgarten, Clive M; DeSimone, John A; Lyall, Vijay

    2015-01-01

    Nicotine elicits bitter taste by activating TRPM5-dependent and TRPM5-independent but neuronal nAChR-dependent pathways. The nAChRs represent common targets at which acetylcholine, nicotine and ethanol functionally interact in the central nervous system. Here, we investigated if the nAChRs also represent a common pathway through which the bitter taste of nicotine, ethanol and acetylcholine is transduced. To this end, chorda tympani (CT) taste nerve responses were monitored in rats, wild-type mice and TRPM5 knockout (KO) mice following lingual stimulation with nicotine free base, ethanol, and acetylcholine, in the absence and presence of nAChR agonists and antagonists. The nAChR modulators: mecamylamine, dihydro-β-erythroidine, and CP-601932 (a partial agonist of the α3β4* nAChR), inhibited CT responses to nicotine, ethanol, and acetylcholine. CT responses to nicotine and ethanol were also inhibited by topical lingual application of 8-chlorophenylthio (CPT)-cAMP and loading taste cells with [Ca2+]i by topical lingual application of ionomycin + CaCl2. In contrast, CT responses to nicotine were enhanced when TRC [Ca2+]i was reduced by topical lingual application of BAPTA-AM. In patch-clamp experiments, only a subset of isolated rat fungiform taste cells exposed to nicotine responded with an increase in mecamylamine-sensitive inward currents. We conclude that nAChRs expressed in a subset of taste cells serve as common receptors for the detection of the TRPM5-independent bitter taste of nicotine, acetylcholine and ethanol.

  2. Association of a bitter taste receptor mutation with Balkan Endemic Nephropathy (BEN

    Directory of Open Access Journals (Sweden)

    Wooding Stephen P

    2012-10-01

    Full Text Available Abstract Background Balkan Endemic Nephropathy (BEN is late-onset kidney disease thought to arise from chronic exposure to aristolochic acid, a phytotoxin that contaminates wheat supplies in rural areas of Eastern Europe. It has recently been demonstrated that humans are capable of perceiving aristolochic acid at concentrations below 40 nM as the result of high-affinity interactions with the TAS2R43 bitter taste receptor. Further, TAS2R43 harbors high-frequency loss-of-function mutations resulting in 50-fold variability in perception. This suggests that genetic variation in TAS2R43 might affect susceptibility to BEN, with individuals carrying functional forms of the receptor being protected by an ability to detect tainted foods. Methods To determine whether genetic variation in TAS2R43 predicts BEN susceptibility, we examined genotype-phenotype associations in a case–control study. A cohort of 88 affected and 99 control subjects from western Bulgaria were genotyped with respect to two key missense variants and a polymorphic whole-gene deletion of TAS2R43 (W35S, H212R, and wt/Δ, which are known to affect taste sensitivity to aristolochic acid. Tests for association between haplotypes and BEN status were then performed. Results Three major TAS2R43 haplotypes observed in previous studies (TAS2R43-W35/H212, -S35/R212 and –Δ were present at high frequencies (0.17, 0.36, and 0.47 respectively in our sample, and a significant association between genotype and BEN status was present (P = 0.020; odds ratio 1.18. However, contrary to expectation, BEN was positively associated with TAS2R43-W35/H212, a highly responsive allele previously shown to confer elevated bitter sensitivity to aristolochic acid, which should drive aversion but might also affect absorption, altering toxin activation. Conclusions Our findings are at strong odds with the prediction that carriers of functional alleles of TAS2R43 are protected from BEN by an ability to detect and

  3. Zizyphin modulates calcium signalling in human taste bud cells and fat taste perception in the mouse.

    Science.gov (United States)

    Murtaza, Babar; Berrichi, Meryem; Bennamar, Chahid; Tordjmann, Thierry; Djeziri, Fatima Z; Hichami, Aziz; Leemput, Julia; Belarbi, Meriem; Ozdener, Hakan; Khan, Naim A

    2017-10-01

    Zizyphin, isolated from Zizyphus sps. leaf extracts, has been shown to modulate sugar taste perception, and the palatability of a sweet solution is increased by the addition of fatty acids. We, therefore, studied whether zizyphin also modulates fat taste perception. Zizyphin was purified from edible fruit of Zizyphus lotus L. Zizyphin-induced increases in [Ca 2+ ]i in human taste bud cells (hTBC). Zizyphin shared the endoplasmic reticulum Ca 2+ pool and also recruited, in part, Ca 2+ from extracellular environment via the opening of store-operated Ca 2+ channels. Zizyphin exerted additive actions on linoleic acid (LA)-induced increases in [Ca 2+ ]i in these cells, indicating that zizyphin does not exert its action via fatty acid receptors. However, zizyphin seemed to exert, at least in part, its action via bile acid receptor Takeda-G-protein-receptor-5 in hTBC. In behavioural tests, mice exhibited preference for both LA and zizyphin. Interestingly, zizyphin increased the preference for a solution containing-LA. This study is the first evidence of the modulation of fat taste perception by zizyphin at the cellular level in hTBC. Our study might be helpful for considering the synthesis of zizyphin analogues as 'taste modifiers' with a potential in the management of obesity and lipid-mediated disorders. © 2017 Société Française de Pharmacologie et de Thérapeutique.

  4. Anatomy, physiology and diagnostic considerations of taste and smell disorders

    NARCIS (Netherlands)

    A. Visser; R. van Weissenbruch; A. Vissink; A. van Nieuw Amerongen; F.K.L. Spijkervet; Dr. Harriët Jager-Wittenaar

    2013-01-01

    Taste and smell perception are closely related. The taste perception is performed by taste buds which can distinguish salt, sour, sweet, bitter, and umami. Moreover, 2,000-4,000 smells can be recognized. Many taste disorders are in fact smell disorders. Saliva affects taste perception because it

  5. Frequently consumed vegetables have almost no taste : Posterpresentatie

    NARCIS (Netherlands)

    Vera van Stokkom; P.S Teo; M Mars; C de Graaf; M Stieger; Prof. dr Olaf van Kooten

    2015-01-01

    Taste is a main driver in preferences and food choices. Humans are predispositioned to prefer sweet and salty tastes and reject bitter and sour tastes, therefore bitter taste is often thought to cause the rejection of vegetables by children. In our study we investigated the taste and fattiness

  6. Is there a relationship between sweet taste and seizures? Anticonvulsant and proconvulsant effects of non-nutritive sweeteners.

    Science.gov (United States)

    Di Ianni, Mauricio E; Enrique, Andrea V; Del Valle, María E; Aldana, Blanca; Rosella, María A; Rocha, Luisa; Castro, Eduardo A; Bruno-Blanch, Luis E; Talevi, Alan

    2015-01-01

    From a virtual screening campaign, a number of artificial and natural sweeteners were predicted as potential anticonvulsant agents with protective effects in the seizure animal model Maximal Electroshock Seizure (MES) test. In all cases, the predictions were experimentally confirmed in the aforementioned preclinical seizure model. The article reviews and expands previous reports from our group on anticonvulsant activity of those non-nutritive sweeteners, illustrating the potential of virtual screening approaches to propose new medical uses of food additives. This constitutes a particular case of knowledge-based drug repositioning, which may greatly shorten the development time and investment required to introduce novel medications to the pharmaceutical market. We also briefly overview evidence on possible molecular explanations on the anticonvulsant and proconvulsant effects of different non-nutritive sweeteners. Our analysis -based on Swanson's ABC model- suggests that group I metabotropic glutamate receptors and carbonic anhydrase isoform VII (both proposed or validated molecular targets of antiepileptic drugs) might be involved in the anticonvulsant effect of artificial sweeteners. The first hypothesis is in line with recent advances on development of selective modulators of group I metabotropic glutamate receptors as potential antiepileptic agents.

  7. Steviol glycosides enhance pancreatic beta-cell function and taste sensation by potentiation of TRPM5 channel activity

    OpenAIRE

    Philippaert, Koenraad; Pironet, Andy; Mesuere, Margot; Sones, William; Vermeiren, Laura; Kerselaers, Sara; Pinto, S?lvia; Segal, Andrei; Antoine, Nancy; Gysemans, Conny; Laureys, Jos; Lemaire, Katleen; Gilon, Patrick; Cuypers, Eva; Tytgat, Jan

    2017-01-01

    Steviol glycosides (SGs), such as stevioside and rebaudioside A, are natural, non-caloric sweet-tasting organic molecules, present in extracts of the scrub plant Stevia rebaudiana, which are widely used as sweeteners in consumer foods and beverages. TRPM5 is a Ca(2+)-activated cation channel expressed in type II taste receptor cells and pancreatic β-cells. Here we show that stevioside, rebaudioside A and their aglycon steviol potentiate the activity of TRPM5. We find that SGs potentiate perce...

  8. Probenecid inhibits the human bitter taste receptor TAS2R16 and suppresses bitter perception of salicin.

    Science.gov (United States)

    Greene, Tiffani A; Alarcon, Suzanne; Thomas, Anu; Berdougo, Eli; Doranz, Benjamin J; Breslin, Paul A S; Rucker, Joseph B

    2011-01-01

    Bitter taste stimuli are detected by a diverse family of G protein-coupled receptors (GPCRs) expressed in gustatory cells. Each bitter taste receptor (TAS2R) responds to an array of compounds, many of which are toxic and can be found in nature. For example, human TAS2R16 (hTAS2R16) responds to β-glucosides such as salicin, and hTAS2R38 responds to thiourea-containing molecules such as glucosinolates and phenylthiocarbamide (PTC). While many substances are known to activate TAS2Rs, only one inhibitor that specifically blocks bitter receptor activation has been described. Here, we describe a new inhibitor of bitter taste receptors, p-(dipropylsulfamoyl)benzoic acid (probenecid), that acts on a subset of TAS2Rs and inhibits through a novel, allosteric mechanism of action. Probenecid is an FDA-approved inhibitor of the Multidrug Resistance Protein 1 (MRP1) transporter and is clinically used to treat gout in humans. Probenecid is also commonly used to enhance cellular signals in GPCR calcium mobilization assays. We show that probenecid specifically inhibits the cellular response mediated by the bitter taste receptor hTAS2R16 and provide molecular and pharmacological evidence for direct interaction with this GPCR using a non-competitive (allosteric) mechanism. Through a comprehensive analysis of hTAS2R16 point mutants, we define amino acid residues involved in the probenecid interaction that result in decreased sensitivity to probenecid while maintaining normal responses to salicin. Probenecid inhibits hTAS2R16, hTAS2R38, and hTAS2R43, but does not inhibit the bitter receptor hTAS2R31 or non-TAS2R GPCRs. Additionally, structurally unrelated MRP1 inhibitors, such as indomethacin, fail to inhibit hTAS2R16 function. Finally, we demonstrate that the inhibitory activity of probenecid in cellular experiments translates to inhibition of bitter taste perception of salicin in humans. This work identifies probenecid as a pharmacological tool for understanding the cell biology of

  9. Probenecid inhibits the human bitter taste receptor TAS2R16 and suppresses bitter perception of salicin.

    Directory of Open Access Journals (Sweden)

    Tiffani A Greene

    Full Text Available Bitter taste stimuli are detected by a diverse family of G protein-coupled receptors (GPCRs expressed in gustatory cells. Each bitter taste receptor (TAS2R responds to an array of compounds, many of which are toxic and can be found in nature. For example, human TAS2R16 (hTAS2R16 responds to β-glucosides such as salicin, and hTAS2R38 responds to thiourea-containing molecules such as glucosinolates and phenylthiocarbamide (PTC. While many substances are known to activate TAS2Rs, only one inhibitor that specifically blocks bitter receptor activation has been described. Here, we describe a new inhibitor of bitter taste receptors, p-(dipropylsulfamoylbenzoic acid (probenecid, that acts on a subset of TAS2Rs and inhibits through a novel, allosteric mechanism of action. Probenecid is an FDA-approved inhibitor of the Multidrug Resistance Protein 1 (MRP1 transporter and is clinically used to treat gout in humans. Probenecid is also commonly used to enhance cellular signals in GPCR calcium mobilization assays. We show that probenecid specifically inhibits the cellular response mediated by the bitter taste receptor hTAS2R16 and provide molecular and pharmacological evidence for direct interaction with this GPCR using a non-competitive (allosteric mechanism. Through a comprehensive analysis of hTAS2R16 point mutants, we define amino acid residues involved in the probenecid interaction that result in decreased sensitivity to probenecid while maintaining normal responses to salicin. Probenecid inhibits hTAS2R16, hTAS2R38, and hTAS2R43, but does not inhibit the bitter receptor hTAS2R31 or non-TAS2R GPCRs. Additionally, structurally unrelated MRP1 inhibitors, such as indomethacin, fail to inhibit hTAS2R16 function. Finally, we demonstrate that the inhibitory activity of probenecid in cellular experiments translates to inhibition of bitter taste perception of salicin in humans. This work identifies probenecid as a pharmacological tool for understanding the cell

  10. Phytochemicals from Ruta graveolens Activate TAS2R Bitter Taste Receptors and TRP Channels Involved in Gustation and Nociception.

    Science.gov (United States)

    Mancuso, Giuseppe; Borgonovo, Gigliola; Scaglioni, Leonardo; Bassoli, Angela

    2015-10-16

    Ruta graveolens (rue) is a spontaneous plant in the Mediterranean area with a strong aroma and a very intense bitter taste, used in gastronomy and in folk medicine. From the leaves, stems and fruits of rue, we isolated rutin, rutamarin, three furanocoumarins, two quinolinic alkaloids, a dicoumarin and two long chain ketones. Bitter taste and chemesthetic properties have been evaluated by in vitro assays with twenty receptors of the TAS2R family and four TRP ion channels involved in gustation and nociception. Among the alkaloids, skimmianine was active as a specific agonist of T2R14, whereas kokusaginin did not activate any of the tested receptors. The furanocoumarins activates TAS2R10, 14, and 49 with different degrees of selectivity, as well as the TRPA1 somatosensory ion channel. Rutamarin is an agonist of TRPM5 and TRPV1 and a strong antagonist of TRPM8 ion channels.

  11. Phytochemicals from Ruta graveolens Activate TAS2R Bitter Taste Receptors and TRP Channels Involved in Gustation and Nociception

    Directory of Open Access Journals (Sweden)

    Giuseppe Mancuso

    2015-10-01

    Full Text Available Ruta graveolens (rue is a spontaneous plant in the Mediterranean area with a strong aroma and a very intense bitter taste, used in gastronomy and in folk medicine. From the leaves, stems and fruits of rue, we isolated rutin, rutamarin, three furanocoumarins, two quinolinic alkaloids, a dicoumarin and two long chain ketones. Bitter taste and chemesthetic properties have been evaluated by in vitro assays with twenty receptors of the TAS2R family and four TRP ion channels involved in gustation and nociception. Among the alkaloids, skimmianine was active as a specific agonist of T2R14, whereas kokusaginin did not activate any of the tested receptors. The furanocoumarins activates TAS2R10, 14, and 49 with different degrees of selectivity, as well as the TRPA1 somatosensory ion channel. Rutamarin is an agonist of TRPM5 and TRPV1 and a strong antagonist of TRPM8 ion channels.

  12. Sweetness and food preference.

    Science.gov (United States)

    Drewnowski, Adam; Mennella, Julie A; Johnson, Susan L; Bellisle, France

    2012-06-01

    Human desire for sweet taste spans all ages, races, and cultures. Throughout evolution, sweetness has had a role in human nutrition, helping to orient feeding behavior toward foods providing both energy and essential nutrients. Infants and young children in particular base many of their food choices on familiarity and sweet taste. The low cost and ready availability of energy-containing sweeteners in the food supply has led to concerns that the rising consumption of added sugars is the driving force behind the obesity epidemic. Low-calorie sweeteners are one option for maintaining sweet taste while reducing the energy content of children's diets. However, their use has led to further concerns that dissociating sweetness from energy may disrupt the balance between taste response, appetite, and consumption patterns, especially during development. Further studies, preferably based on longitudinal cohorts, are needed to clarify the developmental trajectory of taste responses to low-calorie sweeteners and their potential impact on the diet quality of children and youth.

  13. A workshop on 'Dietary sweetness-Is it an issue?'

    Science.gov (United States)

    Wittekind, A; Higgins, K; McGale, L; Schwartz, C; Stamataki, N S; Beauchamp, G K; Bonnema, A; Dussort, P; Gibson, S; de Graaf, C; Halford, J C G; Marsaux, C F M; Mattes, R D; McLaughlin, J; Mela, D J; Nicklaus, S; Rogers, P J; Macdonald, I A

    2017-12-06

    This report summarises a workshop convened by ILSI Europe on 3rd and 4th April 2017 to discuss the issue of dietary sweetness. The objectives were to understand the roles of sweetness in the diet; establish whether exposure to sweetness affects diet quality and energy intake; and consider whether sweetness per se affects health. Although there may be evidence for tracking of intake of some sweet components of the diet through childhood, evidence for tracking of whole diet sweetness, or through other stages of maturity are lacking. The evidence to date does not support adverse effects of sweetness on diet quality or energy intake, except where sweet food choices increase intake of free sugars. There is some evidence for improvements in diet quality and reduced energy intake where sweetness without calories replaces sweetness with calories. There is a need to understand the physiological and metabolic relevance of sweet taste receptors on the tongue, in the gut and elsewhere in the body, as well as possible differentiation in the effects of sustained consumption of individual sweeteners. Despite a plethora of studies, there is no consistent evidence for an association of sweetness sensitivity/preference with obesity or type 2 diabetes. A multifaceted integrated approach, characterising nutritive and sensory aspects of the whole diet or dietary patterns, may be more valuable in providing contextual insight. The outcomes of the workshop could be used as a scientific basis to inform the expert community and create more useful dialogue among health care professionals.International Journal of Obesity accepted article preview online, 06 December 2017. doi:10.1038/ijo.2017.296.

  14. Preferências por alimentos doces e cárie dentária em pré-escolares Taste preference for sweetness and caries prevalence in preschoolchildren

    Directory of Open Access Journals (Sweden)

    Nilce E Tomita

    1999-12-01

    Full Text Available OBJETIVO: Avaliar as preferências pelo sabor doce e sua associação com as condições socioeconômicas e a prevalência de cárie dentária em pré-escolares. MÉTODOS: A amostra foi composta por 572 crianças de 4 a 6 anos, matriculadas em pré-escolas, dividida em estratos socioeconômicos segundo a procedência (um bairro central, um periférico e Programa de Desfavelamento. Estudo transversal, foi desenvolvido em duas etapas. A preferência pelo sabor doce foi avaliada através do Sweet Preference Inventory modificado. A concentração das soluções variou de 0 a 400 g/litro (0 a 1,17 molar. Foi utilizado o índice ceos para verificar a prevalência de cárie. RESULTADOS: Foram encontradas diferenças estatisticamente significantes entre as crianças do Programa de Desfavelamento e dos demais grupos na preferência pelo sabor doce e no consumo de açúcar, bem como associação entre a procedência e o percentual de crianças livres de cárie, sendo o grupo do Desfavelamento o menos favorecido (pOBJECTIVE: To assess the preference for sweetness among preschool children and differences between less and more deprived groups. In addition, to assess whether sweet taste preference was associated with presence of caries. METHODS: The sample was composed by 572 preschool children aged between 4 and 6, distributed in three day nurseries of varied socioeconomic background. Cross-sectional study developed in two steps. Preference for sweetness was assessed using a modified version of the Sweet Preference Inventory. The solutions varied in sugar concentration from 0 to 1,17 molar (0 to 400 g / litre. The presence of caries was assessed using the defs index. The socioeconomic status of the sample was classified according to the origin of domicile. RESULTS: The variation in preference for sweetness in our sample was too small. Most children preferred the sweetest juice. This reduced the ability of this variable to explain variation in caries

  15. Bitter taste receptor agonists alter mitochondrial function and induce autophagy in airway smooth muscle cells.

    Science.gov (United States)

    Pan, Shi; Sharma, Pawan; Shah, Sushrut D; Deshpande, Deepak A

    2017-07-01

    Airway remodeling, including increased airway smooth muscle (ASM) mass, is a hallmark feature of asthma and COPD. We previously identified the expression of bitter taste receptors (TAS2Rs) on human ASM cells and demonstrated that known TAS2R agonists could promote ASM relaxation and bronchodilation and inhibit mitogen-induced ASM growth. In this study, we explored cellular mechanisms mediating the antimitogenic effect of TAS2R agonists on human ASM cells. Pretreatment of ASM cells with TAS2R agonists chloroquine and quinine resulted in inhibition of cell survival, which was largely reversed by bafilomycin A1, an autophagy inhibitor. Transmission electron microscope studies demonstrated the presence of double-membrane autophagosomes and deformed mitochondria. In ASM cells, TAS2R agonists decreased mitochondrial membrane potential and increased mitochondrial ROS and mitochondrial fragmentation. Inhibiting dynamin-like protein 1 (DLP1) reversed TAS2R agonist-induced mitochondrial membrane potential change and attenuated mitochondrial fragmentation and cell death. Furthermore, the expression of mitochondrial protein BCL2/adenovirus E1B 19-kDa protein-interacting protein 3 (Bnip3) and mitochondrial localization of DLP1 were significantly upregulated by TAS2R agonists. More importantly, inhibiting Bnip3 mitochondrial localization by dominant-negative Bnip3 significantly attenuated cell death induced by TAS2R agonist. Collectively the TAS2R agonists chloroquine and quinine modulate mitochondrial structure and function, resulting in ASM cell death. Furthermore, Bnip3 plays a central role in TAS2R agonist-induced ASM functional changes via a mitochondrial pathway. These findings further establish the cellular mechanisms of antimitogenic effects of TAS2R agonists and identify a novel class of receptors and pathways that can be targeted to mitigate airway remodeling as well as bronchoconstriction in obstructive airway diseases. Copyright © 2017 the American Physiological

  16. Determination of taste receptor type 1 member 1 (TAS1R1) gene ...

    African Journals Online (AJOL)

    Jane

    2011-10-10

    Oct 10, 2011 ... Most of the previous studies laid particular emphasis on the taste sensitivity to umami substances or the relation of umami taste ... AB, and BB with the frequency distribution of allele B from 0.59 to 0.67 in analyzed populations. The ... locus within TAS1R1 gene possessed moderate genetic diversity in goat.

  17. Copy Number Variation in TAS2R Bitter Taste Receptor Genes: Structure, Origin, and Population Genetics.

    Science.gov (United States)

    Roudnitzky, Natacha; Risso, Davide; Drayna, Dennis; Behrens, Maik; Meyerhof, Wolfgang; Wooding, Stephen P

    2016-10-01

    Bitter taste receptor genes (TAS2Rs) harbor extensive diversity, which is broadly distributed across human populations and strongly associated with taste response phenotypes. The majority of TAS2R variation is composed of single-nucleotide polymorphisms. However, 2 closely positioned loci at 12p13, TAS2R43 and -45, harbor high-frequency deletion (Δ) alleles in which genomic segments are absent, resulting in copy number variation (CNV). To resolve their chromosomal structure and organization, we generated maps using long-range contig alignments and local sequencing across the TAS2R43-45 region. These revealed that the deletion alleles (43Δ and 45Δ) are 37.8 and 32.2kb in length, respectively and span the complete coding region of each gene (~1kb) along with extensive up- and downstream flanking sequence, producing separate CNVs at the 2 loci. Comparisons with a chimpanzee genome, which contained intact homologs of TAS2R43, -45, and nearby TAS2Rs, indicated that the deletions evolved recently, through unequal recombination in a cluster of closely related loci. Population genetic analyses in 946 subjects from 52 worldwide populations revealed that copy number ranged from 0 to 2 at both TAS2R43 and TAS2R45, with 43Δ and 45Δ occurring at high global frequencies (0.33 and 0.18). Estimated recombination rates between the loci were low (ρ = 2.7×10(-4); r = 6.6×10(-9)) and linkage disequilibrium was high (D' = 1.0), consistent with their adjacent genomic positioning and recent origin. Geographic variation pointed to an African origin for the deletions. However, no signatures of natural selection were found in population structure or integrated haplotype scores spanning the region, suggesting that patterns of diversity at TAS2R43 and -45 are primarily due to genetic drift. © The Author 2016. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  18. Toll-like receptor 4 mediates fat, sugar, and umami taste preference and food intake and body weight regulation.

    Science.gov (United States)

    Camandola, Simonetta; Mattson, Mark P

    2017-07-01

    Immune and inflammatory pathways play important roles in the pathogenesis of metabolic disorders. This study investigated the role of toll-like receptor 4 (TLR4) in orosensory detection of dietary lipids and sugars. Taste preferences of TLR4 knockout (KO) and wild-type (WT) male mice under a standard and a high-fat, high-sugar diet were assessed with two-bottle tests. Gene expression of taste signaling molecules was analyzed in the tongue epithelium. The role of TLR4 in food intake and weight gain was investigated in TLR4 KO and WT mice fed a high-fat and high-sugar diet for 12 weeks. Compared to WT mice, TLR4 KO mice showed reduced preference for lipids, sugars, and umami in a two-bottle preference test. The altered taste perception was associated with decreased levels of key taste regulatory molecules in the tongue epithelium. TLR4 KO mice on a high-fat and high-sugar diet consumed less food and drink, resulting in diminished weight gain. TLR4 signaling promotes ingestion of sugar and fat by a mechanism involving increased preference for such obesogenic foods. © 2017 The Obesity Society.

  19. Suprathreshold measures of taste perception in children - Association with dietary quality and body weight.

    Science.gov (United States)

    Feeney, Emma L; O'Brien, Sinead A; Scannell, Amalia G M; Markey, Anne; Gibney, Eileen R

    2017-06-01

    Childhood obesity is an increasing problem in the Western world, and is affected by a multitude of interacting factors. Recent evidence suggests that taste perception may differ between obese and normal weight children. Evidence also suggests that perception of sweet and bitter taste is linked to differential food liking of various foods. To date, most studies have focused on single food items or food groups, rather than an overall view of dietary quality, and mainly on bitterness. Thus it is unclear whether taste perception is associated with dietary quality in children. Our objective was to examine the link between taste perception, dietary quality and body weight in Irish school children, in conjunction with other known influences of body weight. Taste perception was measured using the gLMS for bitter, salty and sweet stimuli. Detailed dietary intake data were collected from 525 children aged 7-13 via a 3-day diet history. Energy misreporters were identified and excluded from the dietary analyses, leaving n = 483 children. Dietary quality was assessed using Healthy Eating Index. Salivary DNA was collected and analyzed for variations in the bitter receptor gene TAS2R38. Sex differences were observed whereby intensity perception of sweetness was lower in the overweight/obese males, while no association was observed for sweet taste in the females. Despite the differences in weight status, taste perception was not associated with differences in overall dietary quality, measured via HEI score, in this cohort. Prospective cohort studies in children are necessary to better understand the association between taste intensity, food intake and weight over time. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. Polycose Taste Pre-Exposure Fails to Influence Behavioral and Neural Indices of Taste Novelty

    OpenAIRE

    Barot, Sabiha K.; Bernstein, Ilene L.

    2005-01-01

    Taste novelty can strongly modulate the speed and efficacy of taste aversion learning. Novel sweet tastes enhance c-Fos-like immunoreactivity (FLI) in the central amygdala and insular cortex. The present studies examined whether this neural correlate of novelty extends to different taste types by measuring FLI signals after exposure to novel and familiar polysaccharide (Polycose®) and salt (NaCl) tastes. Novel Polycose not only failed to elevate FLI expression in central amygdala and insular ...

  1. Human cell-based taste perception - a bittersweet job for industry.

    Science.gov (United States)

    Riedel, K; Sombroek, D; Fiedler, B; Siems, K; Krohn, M

    2017-05-10

    Covering: 2000 to 2016On the molecular level humans sense food by a variety of specialized tissues which express sensory receptors to handle nutritive value. In general, this means the interplay of gustatory, olfactory, trigeminal and haptic sensation is translated into perception and leads, in terms of taste, to descriptions like sweet, bitter, salty, sour and umami. Further perceptions include astringent, cool, hot, prickle, lingering, kokumi and fatty to name predominant characterizations. It is still not fully understood how this plethora of impressions can be perceived by quite a limited number of receptors obviously being the initial compilers to judge palatability. However, since the discovery of mammalian taste receptors (TASRs) almost 30 years ago the use of taste receptors in cell-based screening campaigns is advancing in industrial approaches. The article will highlight the impacts and the limits of cell-based guided identification of taste modulators for food applications with an emphasis on sweet, bitter and savory taste as well as implications emerging from natural products.

  2. Conditioned taste aversion: modulation by 5-HT receptor activity and corticosterone

    DEFF Research Database (Denmark)

    Boris, Gorzalka; Hanson, Laura; Harrington, J

    2003-01-01

    Two experiments were designed to elucidate the involvement of the hypothalamic-pituitary-adrenal axis and the 5-hydroxytryptamine (5-HT) system in the acquisition of lithium chloride-conditioned taste aversion. In Experiment 1, rats were administered either vehicle or 50 mg/kg nefazodone daily fo......, corticosterone-treated animals required more trials to reach extinction. These results suggest the involvement of both the 5-HT system and the hypothalamic-pituitary-adrenal axis in lithium chloride-conditioned taste aversion....

  3. β-Catenin Signaling Biases Multipotent Lingual Epithelial Progenitors to Differentiate and Acquire Specific Taste Cell Fates.

    Directory of Open Access Journals (Sweden)

    Dany Gaillard

    2015-05-01

    Full Text Available Continuous taste bud cell renewal is essential to maintain taste function in adults; however, the molecular mechanisms that regulate taste cell turnover are unknown. Using inducible Cre-lox technology, we show that activation of β-catenin signaling in multipotent lingual epithelial progenitors outside of taste buds diverts daughter cells from a general epithelial to a taste bud fate. Moreover, while taste buds comprise 3 morphological types, β-catenin activation drives overproduction of primarily glial-like Type I taste cells in both anterior fungiform (FF and posterior circumvallate (CV taste buds, with a small increase in Type II receptor cells for sweet, bitter and umami, but does not alter Type III sour detector cells. Beta-catenin activation in post-mitotic taste bud precursors likewise regulates cell differentiation; forced activation of β-catenin in these Shh+ cells promotes Type I cell fate in both FF and CV taste buds, but likely does so non-cell autonomously. Our data are consistent with a model where β-catenin signaling levels within lingual epithelial progenitors dictate cell fate prior to or during entry of new cells into taste buds; high signaling induces Type I cells, intermediate levels drive Type II cell differentiation, while low levels may drive differentiation of Type III cells.

  4. β-Catenin Signaling Biases Multipotent Lingual Epithelial Progenitors to Differentiate and Acquire Specific Taste Cell Fates.

    Science.gov (United States)

    Gaillard, Dany; Xu, Mingang; Liu, Fei; Millar, Sarah E; Barlow, Linda A

    2015-05-01

    Continuous taste bud cell renewal is essential to maintain taste function in adults; however, the molecular mechanisms that regulate taste cell turnover are unknown. Using inducible Cre-lox technology, we show that activation of β-catenin signaling in multipotent lingual epithelial progenitors outside of taste buds diverts daughter cells from a general epithelial to a taste bud fate. Moreover, while taste buds comprise 3 morphological types, β-catenin activation drives overproduction of primarily glial-like Type I taste cells in both anterior fungiform (FF) and posterior circumvallate (CV) taste buds, with a small increase in Type II receptor cells for sweet, bitter and umami, but does not alter Type III sour detector cells. Beta-catenin activation in post-mitotic taste bud precursors likewise regulates cell differentiation; forced activation of β-catenin in these Shh+ cells promotes Type I cell fate in both FF and CV taste buds, but likely does so non-cell autonomously. Our data are consistent with a model where β-catenin signaling levels within lingual epithelial progenitors dictate cell fate prior to or during entry of new cells into taste buds; high signaling induces Type I cells, intermediate levels drive Type II cell differentiation, while low levels may drive differentiation of Type III cells.

  5. Ventral Pallidal Coding of a Learned Taste Aversion

    OpenAIRE

    Itoga, Christy A.; Berridge, Kent C.; Aldridge, J. Wayne

    2015-01-01

    The hedonic value of a sweet food reward, or how much a taste is ?liked?, has been suggested to be encoded by neuronal firing in the posterior ventral pallidum (VP). Hedonic impact can be altered by psychological manipulations, such as taste aversion conditioning, which can make an initially pleasant sweet taste become perceived as disgusting. Pairing nausea-inducing LiCl injection as a Pavlovian unconditioned stimulus (UCS) with a novel taste that is normally palatable as the predictive cond...

  6. Reduced sweetness of a monellin (MNEI) mutant results from increased protein flexibility and disruption of a distant poly-(L-proline) II helix.

    Science.gov (United States)

    Templeton, Catherine M; Ostovar pour, Saeideh; Hobbs, Jeanette R; Blanch, Ewan W; Munger, Steven D; Conn, Graeme L

    2011-06-01

    Monellin is a highly potent sweet-tasting protein but relatively little is known about how it interacts with the sweet taste receptor. We determined X-ray crystal structures of 3 single-chain monellin (MNEI) proteins with alterations at 2 core residues (G16A, V37A, and G16A/V37A) that induce 2- to 10-fold reductions in sweetness relative to the wild-type protein. Surprisingly, no changes were observed in the global protein fold or the positions of surface amino acids important for MNEI sweetness that could explain these differences in protein activity. Differential scanning calorimetry showed that while the thermal stability of each mutant MNEI was reduced, the least sweet mutant, G16A-MNEI, was not the least stable protein. In contrast, solution spectroscopic measurements revealed that changes in protein flexibility and the C-terminal structure correlate directly with protein activity. G16A mutation-induced disorder in the protein core is propagated via changes to hydrophobic interactions that disrupt the formation and/or position of a critical C-terminal poly-(L-proline) II helix. These findings suggest that MNEI interaction with the sweet taste receptor is highly sensitive to the relative positions of key residues across its protein surface and that loss of sweetness in G16A-MNEI may result from an increased entropic cost of binding.

  7. Regulation of Rac1 GTPase activity by quinine through G-protein and bitter taste receptor T2R4.

    Science.gov (United States)

    Sidhu, Crystal; Jaggupilli, Appalaraju; Chelikani, Prashen; Bhullar, Rajinder P

    2017-02-01

    Rac1 belongs to the Rho family of small GTPases and regulates actin cytoskeleton reorganization. T2R4 is a bitter taste receptor belonging to the G protein-coupled receptor family of proteins. In addition to mediating bitter taste perception from the tongue, T2R4s are found in extra-oral tissues, e.g., nasal epithelium, airways, brain, testis suggesting a much broader physiological function for these receptors. Anti-malarial drug and a bitter tasting compound, quinine, is a known agonist for T2R4, whereas BCML (Nα,Nα-Bis(carboxymethyl)-L-lysine) acts as an inverse agonist. Using western blot and Ca ++ mobilization assays, the effects of quinine on Rac1 activity in HEK293T cells stably expressing T2R4/Gα 16/44 , T2R4, or Gα 16/44 and transiently transfected with HA-Rac1 were investigated. Quinine treatment caused a significant reduction in the amount of active Rac1, whereas in the presence of BCML, quinine failed to cause any significant change in active Rac1. No significant change in Rac1 activity was observed in BAPTA-AM plus quinine-treated Gα 16/44 cells, suggesting possibility of a pathway in addition to the canonical Ca ++ -dependent pathway. A noticeable role for Gα 16/44 independent of T2R4 is observed in quinine-mediated Rac1 inactivation. Further, a significant difference in quinine-induced Ca ++ response in T2R4/Gα 16/44 or T2R4 cells was observed validating the partial role of calcium and importance of Gα 16/44 . This study is the first to show an inhibitory downstream action of a T2R4 agonist on Rac1 function. Further investigation will help in better understanding the downstream signal transduction network of T2R4 and its extra-oral physiological roles.

  8. TRPM5 and taste transduction.

    Science.gov (United States)

    Liman, E R

    2007-01-01

    TRPM5 is a cation channel that it is essential for transduction of bitter, sweet and umami tastes. Signaling of these tastes involves the activation of G protein-coupled receptors that stimulate phospholipase C (PLC) beta2, leading to the breakdown of phosphatidylinositol bisphosphate (PIP2) into diacylglycerol (DAG) and inositol trisphosphate (IP3), and release of Ca2+ from intracellular stores. TRPM5 forms a nonselective cation channel that is directly activated by Ca2+ and it is likely to be the downstream target of this signaling cascade. Therefore, study of TRPM5 promises to provide insight into fundamental mechanisms of taste transduction. This review highlights recent work on the mechanisms of activation of the TRPM5 channel. The mouse TRPM5 gene encodes a protein of 1,158 amino acids that is proposed to have six transmembrane domains and to function as a tetramer. TRPM5 is structurally most closely related to the Ca(2+)-activated channel TRPM4 and it is more distantly related to the cold-activated channel TRPM8. In patch clamp recordings, TRPM5 channels are activated by micromolar concentrations of Ca2+ and are permeable to monovalent but not divalent cations. TRPM5 channel activity is strongly regulated by voltage, phosphoinositides and temperature, and is blocked by acid pH. Study of TRPM4 and TRPM8, which show similar modes of regulation, has yielded insights into possible structural domains of TRPM5. Understanding the structural basis for TRPM5 function will ultimately allow the design of pharmaceuticals to enhance or interfere with taste sensations.

  9. Genotype-specific regulation of oral innate immunity by T2R38 taste receptor.

    Science.gov (United States)

    Gil, Sucheol; Coldwell, Susan; Drury, Jeanie L; Arroyo, Fabiola; Phi, Tran; Saadat, Sanaz; Kwong, Danny; Chung, Whasun Oh

    2015-12-01

    The bitter taste receptor T2R38 has been shown to regulate mucosal innate immune responses in the upper airway epithelium. Furthermore, SNPs in T2R38 influence the sensitivity to 6-n-propylthiouracil (PROP) and are associated with caries risk/protection. However, no study has been reported on the role of T2R38 in the innate immune responses to oral bacteria. We hypothesize that T2R38 regulates oral innate immunity and that this regulation is genotype-specific. Primary gingival epithelial cells carrying three common genotypes, PAV/PAV (PROP super-taster), AVI/PAV (intermediate) and AVI/AVI (non-taster) were stimulated with cariogenic bacteria Streptococcus mutans, periodontal pathogen Porphyromonas gingivalis or non-pathogen Fusobacterium nucleatum. QRT-PCR analyzed T2R38 mRNA, and T2R38-specific siRNA and ELISA were utilized to evaluate induction of hBD-2 (antimicrobial peptide), IL-1α and IL-8 in various donor-lines. Experiments were set up in duplicate and repeated three times. T2R38 mRNA induction in response to S. mutans was highest in PAV/PAV (4.3-fold above the unstimulated controls; pPAV/PAV, hBD-2 secretion in response to S. mutans was decreased by 77% when T2R38 was silenced. IL-1α secretion was higher in PAV/PAV compared to AVI/PAV or AVI/AVI with S. mutans stimulation, but it was reduced by half when T2R38 was silenced (pPAV/PAV and AVI/PAV remained close to that of the controls. Secretion levels of IL-1α and IL-8 decreased in AVI/AVI in response to P. gingivalis when T2R38 was silenced (pPAV/PAV. Our data suggest that the regulation of gingival innate immunity by T2R38 is genotype-dependent and that the ability to induce a high level of hBD-2 by PAV/PAV carriers may be a reason for protection against caries in this group. Copyright © 2015 Elsevier Ltd. All rights reserved.

  10. Sweet Preference Associated with the Risk of Hypercholesterolemia Among Middle-Aged Women in Korea.

    Science.gov (United States)

    Shin, Yoonjin; Lee, Soojin; Kim, Yangha

    2018-04-05

    Sweet preference has been reported to be associated with various health problems. This study examined the influence of sweet taste preference on the risk of dyslipidemia in Korean middle-aged women. The study selected 3,609 middle-aged women from the Korean Genome and Epidemiology Study (KoGES) and classified them into two groups on the basis of whether or not they preferred sweet taste. Dietary intake was analyzed using a semiquantitative food frequency questionnaire. Serum lipid profiles and anthropometric variables were measured. Subjects who preferred the sweet taste had significantly higher intakes of sugar products and sweet drink than those who did not prefer the sweet taste. Subjects who preferred the sweet taste showed higher carbohydrate and fat intake and less fiber intake than those who did not prefer the sweet taste. The serum concentrations of total cholesterol and low-density lipoprotein (LDL) cholesterol were significantly higher in subjects who preferred the sweet taste than those who did not prefer. Furthermore, subjects who preferred the sweet taste showed a significantly higher odds ratio (OR) for hypercholesterolemia (OR 1.22; 95% CI (1.01-1.45)) and hyper-LDL cholesterolemia (OR 1.33; 95% CI (1.11-1.60)) than those who did not prefer the sweet taste. Our results suggested that preference for sweet taste may increase the consumption of sugar products and sweet drinks, which is partially linked to the risk of hypercholesterolemia and hyper-LDL cholesterolemia in Korean middle-aged women.

  11. Structural Role of the Terminal Disulfide Bond in the Sweetness of Brazzein

    Science.gov (United States)

    Dittli, Sannali M.; Rao, Hongyu; Tonelli, Marco; Quijada, Jeniffer; Markley, John L.; Max, Marianna

    2011-01-01

    Brazzein, a 54 residue sweet-tasting protein, is thought to participate in a multipoint binding interaction with the sweet taste receptor. Proposed sites for interaction with the receptor include 2 surface loops and the disulfide bond that connects the N- and C-termini. However, the importance of each site is not well understood. To characterize the structural role of the termini in the sweetness of brazzein, the position of the disulfide bond connecting the N- and C-termini was shifted by substituting K3-C4-K5 with C3-K4-R5. The apparent affinity and Vmax of the C3-K4-R5-brazzein (CKR-brazzein) variant were only modestly decreased compared with the wild-type (WT) brazzein. We determined a high-resolution structure of CKR-brazzein by nuclear magnetic resonance spectroscopy (backbone root mean square deviation of 0.39 Å). Comparing the structure of CKR-brazzein with that of WT-brazzein revealed that the terminal β-strands of the variant display extended β-structure and increased dynamics relative to WT-brazzein. These results support previous mutagenesis studies and further suggest that, whereas interactions involving the termini are necessary for full function of brazzein, the termini do not constitute the primary site of interaction between brazzein and the sweet taste receptor. PMID:21765060

  12. Lineage-specific evolution of bitter taste receptor genes in the giant and red pandas implies dietary adaptation.

    Science.gov (United States)

    Shan, Lei; Wu, Qi; Wang, Le; Zhang, Lei; Wei, Fuwen

    2018-03-01

    Taste 2 receptors (TAS2R) mediate bitterness perception in mammals, thus are called bitter taste receptors. It is believed that these genes evolved in response to species-specific diets. The giant panda (Ailuropoda melanoleuca) and red panda (Ailurus fulgens styani) in the order Carnivora are specialized herbivores with an almost exclusive bamboo diet (>90% bamboo). Because bamboo is full of bitter tasting compounds, we hypothesized that adaptive evolution has occurred at TAS2R genes in giant and red pandas throughout the course of their dietary shift. Here, we characterized 195 TAS2R genes in 9 Carnivora species and examined selective pressures on these genes. We found that both pandas harbor more putative functional TAS2R genes than other carnivores, and pseudogenized TAS2R genes in the giant panda are different from the red panda. The purifying selection on TAS2R1, TAS2R9 and TAS2R38 in the giant panda, and TAS2R62 in the red panda, has been strengthened throughout the course of adaptation to bamboo diet, while selective constraint on TAS2R4 and TAS2R38 in the red panda is relaxed. Remarkably, a few positively selected sites on TAS2R42 have been specifically detected in the giant panda. These results suggest an adaptive response in both pandas to a dietary shift from carnivory to herbivory, and TAS2R genes evolved independently in the 2 pandas. Our findings provide new insight into the molecular basis of mammalian sensory evolution and the process of adaptation to new ecological niches. © 2017 The Authors. Integrative Zoology published by International Society of Zoological Sciences, Institute of Zoology/Chinese Academy of Sciences and John Wiley & Sons Australia, Ltd.

  13. The transduction channel TRPM5 is gated by intracellular calcium in taste cells.

    Science.gov (United States)

    Zhang, Zheng; Zhao, Zhen; Margolskee, Robert; Liman, Emily

    2007-05-23

    Bitter, sweet, and umami tastants are detected by G-protein-coupled receptors that signal through a common second-messenger cascade involving gustducin, phospholipase C beta2, and the transient receptor potential M5 (TRPM5) ion channel. The mechanism by which phosphoinositide signaling activates TRPM5 has been studied in heterologous cell types with contradictory results. To resolve this issue and understand the role of TRPM5 in taste signaling, we took advantage of mice in which the TRPM5 promoter drives expression of green fluorescent protein and mice that carry a targeted deletion of the TRPM5 gene to unequivocally identify TRPM5-dependent currents in taste receptor cells. Our results show that brief elevation of intracellular inositol trisphosphate or Ca2+ is sufficient to gate TRPM5-dependent currents in intact taste cells, but only intracellular Ca2+ is able to activate TRPM5-dependent currents in excised patches. Detailed study in excised patches showed that TRPM5 forms a nonselective cation channel that is half-activated by 8 microM Ca2+ and that desensitizes in response to prolonged exposure to intracellular Ca2+. In addition to channels encoded by the TRPM5 gene, we found that taste cells have a second type of Ca2+-activated nonselective cation channel that is less sensitive to intracellular Ca2+. These data constrain proposed models for taste transduction and suggest a link between receptor signaling and membrane potential in taste cells.

  14. Expression of genes encoding multi-transmembrane proteins in specific primate taste cell populations.

    Directory of Open Access Journals (Sweden)

    Bryan D Moyer

    Full Text Available BACKGROUND: Using fungiform (FG and circumvallate (CV taste buds isolated by laser capture microdissection and analyzed using gene arrays, we previously constructed a comprehensive database of gene expression in primates, which revealed over 2,300 taste bud-associated genes. Bioinformatics analyses identified hundreds of genes predicted to encode multi-transmembrane domain proteins with no previous association with taste function. A first step in elucidating the roles these gene products play in gustation is to identify the specific taste cell types in which they are expressed. METHODOLOGY/PRINCIPAL FINDINGS: Using double label in situ hybridization analyses, we identified seven new genes expressed in specific taste cell types, including sweet, bitter, and umami cells (TRPM5-positive, sour cells (PKD2L1-positive, as well as other taste cell populations. Transmembrane protein 44 (TMEM44, a protein with seven predicted transmembrane domains with no homology to GPCRs, is expressed in a TRPM5-negative and PKD2L1-negative population that is enriched in the bottom portion of taste buds and may represent developmentally immature taste cells. Calcium homeostasis modulator 1 (CALHM1, a component of a novel calcium channel, along with family members CALHM2 and CALHM3; multiple C2 domains; transmembrane 1 (MCTP1, a calcium-binding transmembrane protein; and anoctamin 7 (ANO7, a member of the recently identified calcium-gated chloride channel family, are all expressed in TRPM5 cells. These proteins may modulate and effect calcium signalling stemming from sweet, bitter, and umami receptor activation. Synaptic vesicle glycoprotein 2B (SV2B, a regulator of synaptic vesicle exocytosis, is expressed in PKD2L1 cells, suggesting that this taste cell population transmits tastant information to gustatory afferent nerve fibers via exocytic neurotransmitter release. CONCLUSIONS/SIGNIFICANCE: Identification of genes encoding multi-transmembrane domain proteins

  15. Age-Related Changes in Gustatory, Homeostatic, Reward, and Memory Processing of Sweet Taste in the Metabolic Syndrome: An fMRI Study.

    Science.gov (United States)

    Jacobson, Aaron; Green, Erin; Haase, Lori; Szajer, Jacquelyn; Murphy, Claire

    2017-01-01

    Age affects the human taste system at peripheral and central levels. Metabolic syndrome is a constellation of risk factors (e.g., abdominal obesity and hypertension) that co-occur, increase with age, and heighten risk for cardiovascular disease, diabetes, and cognitive decline. Little is known about how age, metabolic syndrome, and hunger state interact to influence how the brain processes information about taste. We investigated brain activation during the hedonic evaluation of a pleasant, nutritive stimulus (sucrose) within regions critical for taste, homeostatic energy regulation, and reward, as a function of the interactions among age, metabolic syndrome, and hunger condition. We scanned young and elderly adults, half with risk factors associated with metabolic syndrome twice: Once fasted overnight and once after a preload. Functional magnetic resonance imaging data indicated significant effects of age as well as interactive effects with metabolic syndrome and hunger condition. Age-related differences in activation were dependent on the hunger state in regions critical for homoeostatic energy regulation and basic as well as higher order sensory processing and integration. The effects of age and metabolic syndrome on activation in the insula, orbital frontal cortex, caudate, and the hypothalamus may have particularly important implications for taste processing, energy regulation, and dietary choices.

  16. Atomic structure of the sweet-tasting protein thaumatin I at pH 8.0 reveals the large disulfide-rich region in domain II to be sensitive to a pH change

    Energy Technology Data Exchange (ETDEWEB)

    Masuda, Tetsuya, E-mail: t2masuda@kais.kyoto-u.ac.jp [Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Gokasho, Uji, Kyoto 611-0011 (Japan); Department of Natural Resources, Graduate School of Global Environmental Studies, Kyoto University, Gokasho, Uji, Kyoto 611-0011 (Japan); Ohta, Keisuke [Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Gokasho, Uji, Kyoto 611-0011 (Japan); Department of Natural Resources, Graduate School of Global Environmental Studies, Kyoto University, Gokasho, Uji, Kyoto 611-0011 (Japan); Mikami, Bunzo [Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Gokasho, Uji, Kyoto 611-0011 (Japan); Kitabatake, Naofumi [Department of Foods and Human Nutrition, Notre Dame Seishin University, Okayama 700-8516 (Japan); Tani, Fumito [Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Gokasho, Uji, Kyoto 611-0011 (Japan); Department of Natural Resources, Graduate School of Global Environmental Studies, Kyoto University, Gokasho, Uji, Kyoto 611-0011 (Japan)

    2012-03-02

    Highlights: Black-Right-Pointing-Pointer Structure of a recombinant thaumatin at pH 8.0 determined at a resolution of 1.0 A. Black-Right-Pointing-Pointer Substantial fluctuations of a loop in domain II was found in the structure at pH 8.0. Black-Right-Pointing-Pointer B-factors for Lys137, Lys163, and Lys187 were significantly affected by pH change. Black-Right-Pointing-Pointer An increase in mobility might play an important role in the heat-induced aggregation. -- Abstract: Thaumatin, an intensely sweet-tasting plant protein, elicits a sweet taste at 50 nM. Although the sweetness remains when thaumatin is heated at 80 Degree-Sign C for 4 h under acid conditions, it rapidly declines when heating at a pH above 6.5. To clarify the structural difference at high pH, the atomic structure of a recombinant thaumatin I at pH 8.0 was determined at a resolution of 1.0 A. Comparison to the crystal structure of thaumatin at pH 7.3 and 7.0 revealed the root-mean square deviation value of a C{alpha} atom to be substantially greater in the large disulfide-rich region of domain II, especially residues 154-164, suggesting that a loop region in domain II to be affected by solvent conditions. Furthermore, B-factors of Lys137, Lys163, and Lys187 were significantly affected by pH change, suggesting that a striking increase in the mobility of these lysine residues, which could facilitate a reaction with a free sulfhydryl residue produced via the {beta}-elimination of disulfide bonds by heating at a pH above 7.0. The increase in mobility of lysine residues as well as a loop region in domain II might play an important role in the heat-induced aggregation of thaumatin above pH 7.0.

  17. Association between taste receptor (TAS) genes and the perception of wine characteristics

    Czech Academy of Sciences Publication Activity Database

    Carrai, M.; Campa, D.; Vodička, Pavel; Flamini, R.; Martelli, I.; Slyšková, Jana; Jirásková, Kateřina; Rejhová, Alexandra; Vodenková, Soňa; Canzian, F.; Bertelli, A.; Dalla Vedova, A.; Bavaresco, L.; Vodičková, Ludmila; Barale, R.

    2017-01-01

    Roč. 7, aug (2017), s. 9239 ISSN 2045-2322 R&D Projects: GA MZd(CZ) NV15-27580A; GA MŠk(CZ) LD14050 Institutional support: RVO:68378041 Keywords : single-nucleotide polymorphisms * bitter-taste * alcohol-consumption Subject RIV: EB - Genetics ; Molecular Biology OBOR OECD: Biochemistry and molecular biology Impact factor: 4.259, year: 2016

  18. REVIEW ARTICLE: A taste sensor

    Science.gov (United States)

    Toko, Kiyoshi

    1998-12-01

    A multichannel taste sensor, namely an electronic tongue, with global selectivity is composed of several kinds of lipid/polymer membranes for transforming information about substances producing taste into electrical signals, which are input to a computer. The sensor output exhibits different patterns for chemical substances which have different taste qualities such as saltiness, sourness and bitterness, whereas it exhibits similar patterns for chemical substances with similar tastes. The sensor responds to the taste itself, as can be understood from the fact that taste interactions such as the suppression effect, which appears for mixtures of sweet and bitter substances, can be reproduced well. The suppression of the bitterness of quinine and a drug substance by sucrose can be quantified. Amino acids can be classified into several groups according to their own tastes on the basis of sensor outputs. The tastes of foodstuffs such as beer, coffee, mineral water, milk, sake, rice, soybean paste and vegetables can be discussed quantitatively using the taste sensor, which provides the objective scale for the human sensory expression. The flavour of a wine is also discriminated using the taste-odour sensory fusion conducted by combining the taste sensor and an odour-sensor array using conducting polymer elements. The taste sensor can also be applied to measurements of water pollution. Miniaturization of the taste sensor using FET produces the same characteristics as those of the above taste sensor by measuring the gate-source voltage. Use of the taste sensor will lead to a new era of food and environmental sciences.

  19. Basolateral Na+–H+ exchanger-1 in rat taste receptor cells is involved in neural adaptation to acidic stimuli

    Science.gov (United States)

    Lyall, Vijay; Alam, Rammy I; Malik, Shahbaz A; Phan, Tam-Hao T; Vinnikova, Anna K; Heck, Gerard L; DeSimone, John A

    2004-01-01

    The role of basolateral Na+–H+ exchanger isoform-1 (NHE-1) was investigated in neural adaptation of rat taste responses to acidic stimuli, by direct measurement of intracellular pH (pHi) in polarized taste receptor cells (TRCs) and by chorda tympani (CT) taste nerve recordings. In TRCs perfused with CO2/HCO3−-free solution (pH 7.4), removal of basolateral Na+ decreased pHi reversibly and zoniporide, a specific NHE-1 blocker, inhibited the Na+-induced changes in pHi. The spontaneous rate of TRC pHi recovery from NH4Cl pulses was inhibited by basolateral zoniporide with a Ki of 0.33μm. Exposure to basolateral ionomycin, reversibly increased TRC Ca2+, resting pHi, and the spontaneous rate of pHi recovery from an NH4Cl pulse. These effects of Ca2+ on pHi were blocked by zoniporide. In in vivo experiments, topical lingual application of zoniporide increased the magnitude of the CT responses to acetic acid and CO2, but not to HCl. Topical lingual application of ionomycin did not affect the phasic part of the CT responses to acidic stimuli, but decreased the tonic part by 50% of control over a period of about 1 min. This increased adaptation in the CT response was inhibited by zoniporide. Topical lingual application of 8-CPT-cAMP increased the CT responses to HCl, but not to CO2, and acetic acid. In the presence of cAMP, ionomycin increased sensory adaptation to HCl, CO2, and acetic acid. Thus, cAMP and Ca2+ independently modulate CT responses to acidic stimuli. While cAMP enhances TRC apical H+ entry and CT responses to strong acid, an increase in Ca2+ activates NHE-1, and increases neural adaptation to all acidic stimuli. PMID:14724181

  20. Basolateral Na+-H+ exchanger-1 in rat taste receptor cells is involved in neural adaptation to acidic stimuli.

    Science.gov (United States)

    Lyall, Vijay; Alam, Rammy I; Malik, Shahbaz A; Phan, Tam-Hao T; Vinnikova, Anna K; Heck, Gerard L; DeSimone, John A

    2004-04-01

    The role of basolateral Na(+)-H(+) exchanger isoform-1 (NHE-1) was investigated in neural adaptation of rat taste responses to acidic stimuli, by direct measurement of intracellular pH (pH(i)) in polarized taste receptor cells (TRCs) and by chorda tympani (CT) taste nerve recordings. In TRCs perfused with CO(2)/HCO(3)(-)-free solution (pH 7.4), removal of basolateral Na(+) decreased pH(i) reversibly and zoniporide, a specific NHE-1 blocker, inhibited the Na(+)-induced changes in pH(i). The spontaneous rate of TRC pH(i) recovery from NH(4)Cl pulses was inhibited by basolateral zoniporide with a K(i) of 0.33microm. Exposure to basolateral ionomycin, reversibly increased TRC Ca(2+), resting pH(i), and the spontaneous rate of pH(i) recovery from an NH(4)Cl pulse. These effects of Ca(2+) on pH(i) were blocked by zoniporide. In in vivo experiments, topical lingual application of zoniporide increased the magnitude of the CT responses to acetic acid and CO(2), but not to HCl. Topical lingual application of ionomycin did not affect the phasic part of the CT responses to acidic stimuli, but decreased the tonic part by 50% of control over a period of about 1 min. This increased adaptation in the CT response was inhibited by zoniporide. Topical lingual application of 8-CPT-cAMP increased the CT responses to HCl, but not to CO(2), and acetic acid. In the presence of cAMP, ionomycin increased sensory adaptation to HCl, CO(2), and acetic acid. Thus, cAMP and Ca(2+) independently modulate CT responses to acidic stimuli. While cAMP enhances TRC apical H(+) entry and CT responses to strong acid, an increase in Ca(2+) activates NHE-1, and increases neural adaptation to all acidic stimuli.

  1. Trpm5 null mice respond to bitter, sweet, and umami compounds.

    Science.gov (United States)

    Damak, Sami; Rong, Minqing; Yasumatsu, Keiko; Kokrashvili, Zaza; Pérez, Cristian A; Shigemura, Noriatsu; Yoshida, Ryusuke; Mosinger, Bedrich; Glendinning, John I; Ninomiya, Yuzo; Margolskee, Robert F

    2006-03-01

    Trpm5 is a calcium-activated cation channel expressed selectively in taste receptor cells. A previous study reported that mice with an internal deletion of Trpm5, lacking exons 15-19 encoding transmembrane segments 1-5, showed no taste-mediated responses to bitter, sweet, and umami compounds. We independently generated knockout mice null for Trpm5 protein expression due to deletion of Trpm5's promoter region and exons 1-4 (including the translation start site). We examined the taste-mediated responses of Trpm5 null mice and wild-type (WT) mice using three procedures: gustatory nerve recording [chorda tympani (CT) and glossopharyngeal (NG) nerves], initial lick responses, and 24-h two-bottle preference tests. With bitter compounds, the Trpm5 null mice showed reduced, but not abolished, avoidance (as indicated by licking responses and preference ratios higher than those of WT), a normal CT response, and a greatly diminished NG response. With sweet compounds, Trpm5 null mice showed no licking response, a diminished preference ratio, and absent or greatly reduced nerve responses. With umami compounds, Trpm5 null mice showed no licking response, a diminished preference ratio, a normal NG response, and a greatly diminished CT response. Our results demonstrate that the consequences of eliminating Trmp5 expression vary depending upon the taste quality and the lingual taste field examined. Thus, while Trpm5 is an important factor in many taste responses, its absence does not eliminate all taste responses. We conclude that Trpm5-dependent and Trpm5-independent pathways underlie bitter, sweet, and umami tastes.

  2. Steviol glycosides enhance pancreatic beta-cell function and taste sensation by potentiation of TRPM5 channel activity.

    Science.gov (United States)

    Philippaert, Koenraad; Pironet, Andy; Mesuere, Margot; Sones, William; Vermeiren, Laura; Kerselaers, Sara; Pinto, Sílvia; Segal, Andrei; Antoine, Nancy; Gysemans, Conny; Laureys, Jos; Lemaire, Katleen; Gilon, Patrick; Cuypers, Eva; Tytgat, Jan; Mathieu, Chantal; Schuit, Frans; Rorsman, Patrik; Talavera, Karel; Voets, Thomas; Vennekens, Rudi

    2017-03-31

    Steviol glycosides (SGs), such as stevioside and rebaudioside A, are natural, non-caloric sweet-tasting organic molecules, present in extracts of the scrub plant Stevia rebaudiana, which are widely used as sweeteners in consumer foods and beverages. TRPM5 is a Ca 2+ -activated cation channel expressed in type II taste receptor cells and pancreatic β-cells. Here we show that stevioside, rebaudioside A and their aglycon steviol potentiate the activity of TRPM5. We find that SGs potentiate perception of bitter, sweet and umami taste, and enhance glucose-induced insulin secretion in a Trpm5-dependent manner. Daily consumption of stevioside prevents development of high-fat-diet-induced diabetic hyperglycaemia in wild-type mice, but not in Trpm5 -/- mice. These results elucidate a molecular mechanism of action of SGs and identify TRPM5 as a potential target to prevent and treat type 2 diabetes.

  3. Purple sweet potato color attenuates domoic acid-induced cognitive deficits by promoting estrogen receptor-α-mediated mitochondrial biogenesis signaling in mice.

    Science.gov (United States)

    Lu, Jun; Wu, Dong-Mei; Zheng, Yuan-Lin; Hu, Bin; Cheng, Wei; Zhang, Zi-Feng

    2012-02-01

    Recent findings suggest that endoplasmic reticulum stress may be involved in the pathogenesis of domoic acid-induced neurodegeneration. Purple sweet potato color, a class of naturally occurring anthocyanins, has beneficial health and biological effects. Recent studies have also shown that anthocyanins have estrogenic activity and can enhance estrogen receptor-α expression. In this study, we evaluated the effect of purple sweet potato color on cognitive deficits induced by hippocampal mitochondrial dysfunction in domoic acid-treated mice and explored the potential mechanisms underlying this effect. Our results showed that the oral administration of purple sweet potato color to domoic acid-treated mice significantly improved their behavioral performance in a step-through passive avoidance task and a Morris water maze task. These improvements were mediated, at least in part, by a stimulation of estrogen receptor-α-mediated mitochondrial biogenesis signaling and by decreases in the expression of p47phox and gp91phox. Decreases in reactive oxygen species and protein carbonylation were also observed, along with a blockade of the endoplasmic reticulum stress pathway. Furthermore, purple sweet potato color significantly suppressed endoplasmic reticulum stress-induced apoptosis, which prevented neuron loss and restored the expression of memory-related proteins. However, knockdown of estrogen receptor-α using short hairpin RNA only partially blocked the neuroprotective effects of purple sweet potato color in the hippocampus of mice cotreated with purple sweet potato color and domoic acid, indicating that purple sweet potato color acts through multiple pathways. These results suggest that purple sweet potato color could be a possible candidate for the prevention and treatment of cognitive deficits in excitotoxic and other brain disorders. Crown Copyright © 2011. Published by Elsevier Inc. All rights reserved.

  4. Amiloride-sensitive channels in type I fungiform taste cells in mouse

    Directory of Open Access Journals (Sweden)

    Clapp Tod R

    2008-01-01

    Full Text Available Abstract Background Taste buds are the sensory organs of taste perception. Three types of taste cells have been described. Type I cells have voltage-gated outward currents, but lack voltage-gated inward currents. These cells have been presumed to play only a support role in the taste bud. Type II cells have voltage-gated Na+ and K+ current, and the receptors and transduction machinery for bitter, sweet, and umami taste stimuli. Type III cells have voltage-gated Na+, K+, and Ca2+ currents, and make prominent synapses with afferent nerve fibers. Na+ salt transduction in part involves amiloride-sensitive epithelial sodium channels (ENaCs. In rodents, these channels are located in taste cells of fungiform papillae on the anterior part of the tongue innervated by the chorda tympani nerve. However, the taste cell type that expresses ENaCs is not known. This study used whole cell recordings of single fungiform taste cells of transgenic mice expressing GFP in Type II taste cells to identify the taste cells responding to amiloride. We also used immunocytochemistry to further define and compare cell types in fungiform and circumvallate taste buds of these mice. Results Taste cell types were identified by their response to depolarizing voltage steps and their presence or absence of GFP fluorescence. TRPM5-GFP taste cells expressed large voltage-gated Na+ and K+ currents, but lacked voltage-gated Ca2+ currents, as expected from previous studies. Approximately half of the unlabeled cells had similar membrane properties, suggesting they comprise a separate population of Type II cells. The other half expressed voltage-gated outward currents only, typical of Type I cells. A single taste cell had voltage-gated Ca2+ current characteristic of Type III cells. Responses to amiloride occurred only in cells that lacked voltage-gated inward currents. Immunocytochemistry showed that fungiform taste buds have significantly fewer Type II cells expressing PLC signalling

  5. Sweetness and Food Preference123

    Science.gov (United States)

    Drewnowski, Adam; Mennella, Julie A.; Johnson, Susan L.; Bellisle, France

    2012-01-01

    Human desire for sweet taste spans all ages, races, and cultures. Throughout evolution, sweetness has had a role in human nutrition, helping to orient feeding behavior toward foods providing both energy and essential nutrients. Infants and young children in particular base many of their food choices on familiarity and sweet taste. The low cost and ready availability of energy-containing sweeteners in the food supply has led to concerns that the rising consumption of added sugars is the driving force behind the obesity epidemic. Low-calorie sweeteners are one option for maintaining sweet taste while reducing the energy content of children’s diets. However, their use has led to further concerns that dissociating sweetness from energy may disrupt the balance between taste response, appetite, and consumption patterns, especially during development. Further studies, preferably based on longitudinal cohorts, are needed to clarify the developmental trajectory of taste responses to low-calorie sweeteners and their potential impact on the diet quality of children and youth. PMID:22573785

  6. Variation in thermally induced taste response across thermal tasters.

    Science.gov (United States)

    Skinner, Martha; Eldeghaidy, Sally; Ford, Rebecca; Giesbrecht, Timo; Thomas, Anna; Francis, Susan; Hort, Joanne

    2018-02-01

    Thermal tasters (TTs) perceive thermally induced taste (thermal taste) sensations when the tongue is stimulated with temperature in the absence of gustatory stimuli, while thermal non tasters (TnTs) only perceive temperature. This is the first study to explore detailed differences in thermal taste responses across TTs. Using thermal taster status phenotyping, 37 TTs were recruited, and the temporal characteristics of thermal taste responses collected during repeat exposure to temperature stimulation. Phenotyping found sweet most frequently reported during warming stimulation, and bitter and sour when cooling, but a range of other sensations were stated. The taste quality, intensity, and number of tastes reported greatly varied. Furthermore, the temperature range when thermal taste was perceived differed across TTs and taste qualities, with some TTs perceiving a taste for a small temperature range, and others the whole trial. The onset of thermal sweet taste ranged between 22 and 38°C during temperature increase. This supports the hypothesis that TRPM5 may be involved in thermal sweet taste perception as TRPM5 is temperature activated between 15 and 35°C, and involved in sweet taste transduction. These findings also raised questions concerning the phenotyping protocol and classification currently used, thus indicating the need to review practices for future testing. This study has highlighted the hitherto unknown variation that exists in thermal taste response across TTs, provides some insights into possible mechanisms, and importantly emphasises the need for more research into this sensory phenomenon. Copyright © 2018. Published by Elsevier Inc.

  7. The human taste receptor hTAS2R14 responds to a variety of different bitter compounds

    International Nuclear Information System (INIS)

    Behrens, Maik; Brockhoff, Anne; Kuhn, Christina; Bufe, Bernd; Winnig, Marcel; Meyerhof, Wolfgang

    2004-01-01

    The recent advances in the functional expression of TAS2Rs in heterologous systems resulted in the identification of bitter tastants that specifically activate receptors of this family. All bitter taste receptors reported to date exhibit a pronounced selectivity for single substances or structurally related bitter compounds. In the present study we demonstrate the expression of the hTAS2R14 gene by RT-PCR analyses and in situ hybridisation in human circumvallate papillae. By functional expression in HEK-293T cells we show that hTAS2R14 displays a, so far, unique broad tuning towards a variety of structurally diverse bitter compounds, including the potent neurotoxins, (-)-α-thujone, the pharmacologically active component of absinthe, and picrotoxinin, a poisonous substance of fishberries. The observed activation of heterologously expressed hTAS2R14 by low concentrations of (-)-α-thujone and picrotoxinin suggests that the receptor is sufficiently sensitive to caution us against the ingestion of toxic amounts of these substances

  8. Polycose taste pre-exposure fails to influence behavioral and neural indices of taste novelty.

    Science.gov (United States)

    Barot, Sabiha K; Bernstein, Ilene L

    2005-12-01

    Taste novelty can strongly modulate the speed and efficacy of taste aversion learning. Novel sweet tastes enhance c-Fos-like immunoreactivity (FLI) in the central amygdala and insular cortex. The present studies examined whether this neural correlate of novelty extends to different taste types by measuring FLI signals after exposure to novel and familiar polysaccharide (Polycose) and salt (NaCl) tastes. Novel Polycose not only failed to elevate FLI expression in central amygdala and insular cortex, but also failed to induce stronger taste aversion learning than familiar Polycose. Novel NaCl, on the other hand, showed patterns of FLI activation and aversion learning similar to that of novel sweet tastes. Possible reasons for the resistance of Polycose to typical pre-exposure effects are discussed. Copyright (c) 2006 APA, all rights reserved.

  9. Taste Disturbance After Palatopharyngeal Surgery for Obstructive Sleep Apnea

    Directory of Open Access Journals (Sweden)

    Han-Ren Hsiao

    2007-04-01

    Full Text Available Taste disorder is a rare complication of uvulopalatopharyngoplasty, and may have a significant impact on quality of life. Herein, we report a case of obstructive sleep apnea syndrome in a 51- year-old man who experienced taste disturbance after palatopharyngeal surgery using electrocautery for developing a uvulopalatal flap. Gustatory function test using three-drop-method with solutions of highest concentration was implemented to assess the deficiency of four basic tastes. The results showed deficit of sweet taste associated with phantom of bitter taste. The patient reported constant spontaneous bitter taste and dysgeusia in sweet taste with poor quality of life at the 2-year follow-up. We suggest that patients are informed of the potential for taste impairment from palatopharyngeal surgery, as well as reducing the use of electrocautery in developing uvulopalatal flap to reduce damage to taste function.

  10. Taste perception, associated hormonal modulation, and nutrient intake.

    Science.gov (United States)

    Loper, Hillary B; La Sala, Michael; Dotson, Cedrick; Steinle, Nanette

    2015-02-01

    It is well known that taste perception influences food intake. After ingestion, gustatory receptors relay sensory signals to the brain, which segregates, evaluates, and distinguishes the stimuli, leading to the experience known as "flavor." It is well accepted that five taste qualities – sweet, salty, bitter, sour, and umami – can be perceived by animals. In this review, the anatomy and physiology of human taste buds, the hormonal modulation of taste function, the importance of genetic chemosensory variation, and the influence of gustatory functioning on macronutrient selection and eating behavior are discussed. Individual genotypic variation results in specific phenotypes of food preference and nutrient intake. Understanding the role of taste in food selection and ingestive behavior is important for expanding our understanding of the factors involved in body weight maintenance and the risk of chronic diseases including obesity, atherosclerosis, cancer, diabetes, liver disease, and hypertension. © The Author(s) 2015. Published by Oxford University Press on behalf of the International Life Sciences Institute. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  11. The insular taste cortex contributes to odor quality coding

    Directory of Open Access Journals (Sweden)

    Maria G Veldhuizen

    2010-07-01

    Full Text Available Despite distinct peripheral and central pathways, stimulation of both the olfactory and the gustatory systems may give rise to the sensation of sweetness. Whether there is a common central mechanism producing sweet quality sensations or two discrete mechanisms associated independently with gustatory and olfactory stimuli is currently unknown. Here we used fMRI to determine whether odor sweetness is represented in the piriform olfactory cortex, which is thought to code odor quality, or in the insular taste cortex, which is thought to code taste quality. Fifteen participants sampled two concentrations of a pure sweet taste (sucrose, two sweet food odors (chocolate and strawberry, and two sweet floral odors (lilac and rose. Replicating prior work we found that olfactory stimulation activated the piriform, orbitofrontal and insular cortices. Of these regions, only the insula also responded to sweet taste. More importantly, the magnitude of the response to the food odors, but not to the non-food odors, in this region of insula was positively correlated with odor sweetness rating. These findings demonstrate that insular taste cortex contributes to odor quality coding by representing the taste-like aspects of food odors. Since the effect was specific to the food odors, and only food odors are experienced with taste, we suggest this common central mechanism develops as a function of experiencing flavors.

  12. Changed preference for sweet taste in adulthood induced by perinatal exposure to bisphenol A-A probable link to overweight and obesity.

    Science.gov (United States)

    Xu, Xiaobin; Tan, Luei; Himi, Toshiyuki; Sadamatsu, Miyuki; Tsutsumi, Shunsuke; Akaike, Masashi; Kato, Nobumasa

    2011-01-01

    The preference of obesity has risen dramatically worldwide over the past decades. Some latest reports showed significant increase of obesity in men compared to women. Implication of environmental endocrine disruptors has been focused more and more. Numerous studies in vitro and vivo implied metabolic actions of bisphenol A (BPA), however much less consideration is given to the possibility of BPA exposure-induced change in gender-specific behaviors which result in obesity and overweight. To examine whether perinatal exposure to BPA at relative dose to environmental levels can influence sweet preference of male and female rats and consequently lead to alteration in bodyweight. Rats perinatally exposed to BPA at doses of 0.01, 0.1 and 1.0 mg/L were tested sweet preference for 0.25%, 0.5% saccharin and 15% sucrose by two-bottle choice (water vs. saccharin/sucrose). The food intake, liquid consumption and bodyweight of each rat were monitored daily. At the end of the test, the fat percentage and tail blood pressure were measured. Significant sex difference of preference for 0.25% and 0.5% saccharin was shown in control and all BPA-treated groups (p researches concerning the mechanism are required, the results of the present study are particularly important with regards to the more significant increasing prevalence of obesity in men and the environmental endocrine disruptors. Copyright © 2011 Elsevier Inc. All rights reserved.

  13. Taste and hypertension in humans

    DEFF Research Database (Denmark)

    Roura, Eugeni; Foster, Simon; Winklebach, Anja

    2016-01-01

    of hypertension. This goes hand in hand with the medical concept of sodium sensitivity, which also increases with age, particularly in hypertensive patients. The association of hypertension with the loss of taste acuity less definitive with some data/conclusions masked by the use of anti-hypertensive drugs......The association between salty taste and NaCl intake with hypertension is well-established, although it is far from completely understood. Other taste types such as sweet, umami or bitter have also been related to alterations in blood pressure. Here, we review the mutual relationship between taste...... and hypertension to identify potential avenues to better control blood pressure. This review focuses on published data involving humans, with the exception of a section on molecular mechanisms. There is compelling evidence to suggest that changes in salty taste sensitivity can be used to predict the onset...

  14. Immunocytochemical analysis of P2X2 in rat circumvallate taste buds

    Directory of Open Access Journals (Sweden)

    Yang Ruibiao

    2012-05-01

    Full Text Available Abstract Background Our laboratory has shown that classical synapses and synaptic proteins are associated with Type III cells. Yet it is generally accepted that Type II cells transduce bitter, sweet and umami stimuli. No classical synapses, however, have been found associated with Type II cells. Recent studies indicate that the ionotropic purinergic receptors P2X2/P2X3 are present in rodent taste buds. Taste nerve processes express the ionotropic purinergic receptors (P2X2/P2X3. P2X2/P2X3Dbl−/− mice are not responsive to sweet, umami and bitter stimuli, and it has been proposed that ATP acts as a neurotransmitter in taste buds. The goal of the present study is to learn more about the nature of purinergic contacts in rat circumvallate taste buds by examining immunoreactivity to antisera directed against the purinergic receptor P2X2. Results P2X2-like immunoreactivity is present in intragemmal nerve processes in rat circumvallate taste buds. Intense immunoreactivity can also be seen in the subgemmal nerve plexuses located below the basal lamina. The P2X2 immunoreactive nerve processes also display syntaxin-1-LIR. The immunoreactive nerves are in close contact with the IP3R3-LIR Type II cells and syntaxin-1-LIR and/or 5-HT-LIR Type III cells. Taste cell synapses are observed only from Type III taste cells onto P2X2-LIR nerve processes. Unusually large, “atypical” mitochondria in the Type II taste cells are found only at close appositions with P2X2-LIR nerve processes. P2X2 immunogold particles are concentrated at the membranes of nerve processes at close appositions with taste cells. Conclusions Based on our immunofluorescence and immunoelectron microscopical studies we believe that both perigemmal and most all intragemmal nerve processes display P2X2-LIR. Moreover, colloidal gold immunoelectron microscopy indicates that P2X2-LIR in nerve processes is concentrated at sites of close apposition with Type II cells. This supports the hypothesis

  15. Strain differences in the neural, behavioral, and molecular correlates of sweet and salty taste in naive, ethanol- and sucrose-exposed P and NP rats.

    Science.gov (United States)

    Coleman, Jamison; Williams, Ashley; Phan, Tam-Hao T; Mummalaneni, Shobha; Melone, Pamela; Ren, Zuojun; Zhou, Huiping; Mahavadi, Sunila; Murthy, Karnam S; Katsumata, Tadayoshi; DeSimone, John A; Lyall, Vijay

    2011-11-01

    Strain differences between naive, sucrose- and ethanol-exposed alcohol-preferring (P) and alcohol-nonpreferring (NP) rats were investigated in their consumption of ethanol, sucrose, and NaCl; chorda tympani (CT) nerve responses to sweet and salty stimuli; and gene expression in the anterior tongue of T1R3 and TRPV1/TRPV1t. Preference for 5% ethanol and 10% sucrose, CT responses to sweet stimuli, and T1R3 expression were greater in naive P rats than NP rats. The enhancement of the CT response to 0.5 M sucrose in the presence of varying ethanol concentrations (0.5-40%) in naive P rats was higher and shifted to lower ethanol concentrations than NP rats. Chronic ingestion of 5% sucrose or 5% ethanol decreased T1R3 mRNA in NP and P rats. Naive P rats also demonstrated bigger CT responses to NaCl+benzamil and greater TRPV1/TRPV1t expression. TRPV1t agonists produced biphasic effects on NaCl+benzamil CT responses, enhancing the response at low concentrations and inhibiting it at high concentrations. The concentration of a TRPV1/TRPV1t agonist (Maillard reacted peptides conjugated with galacturonic acid) that produced a maximum enhancement in the NaCl+benzamil CT response induced a decrease in NaCl intake and preference in P rats. In naive P rats and NP rats exposed to 5% ethanol in a no-choice paradigm, the biphasic TRPV1t agonist vs. NaCl+benzamil CT response profiles were higher and shifted to lower agonist concentrations than in naive NP rats. TRPV1/TRPV1t mRNA expression increased in NP rats but not in P rats exposed to 5% ethanol in a no-choice paradigm. We conclude that P and NP rats differ in T1R3 and TRPV1/TRPV1t expression and neural and behavioral responses to sweet and salty stimuli and to chronic sucrose and ethanol exposure.

  16. A physiologic role for serotonergic transmission in adult rat taste buds.

    Directory of Open Access Journals (Sweden)

    Luc Jaber

    Full Text Available Of the multiple neurotransmitters and neuropeptides expressed in the mammalian taste bud, serotonin remains both the most studied and least understood. Serotonin is expressed in a subset of taste receptor cells that form synapses with afferent nerve fibers (type III cells and was once thought to be essential to neurotransmission (now understood as purinergic. However, the discovery of the 5-HT1A serotonin receptor in a subset of taste receptor cells paracrine to type III cell suggested a role in cell-to-cell communication during the processing of taste information. Functional data describing this role are lacking. Using anatomical and neurophysiological techniques, this study proposes a modulatory role for serotonin during the processing of taste information. Double labeling immunocytochemical and single cell RT-PCR technique experiments documented that 5-HT1A-expressing cells co-expressed markers for type II cells, cells which express T1R or T2R receptors and release ATP. These cells did not co-express type III cells markers. Neurophysiological recordings from the chorda tympani nerve, which innervates anterior taste buds, were performed prior to and during intravenous injection of a 5-HT1A receptor antagonist. These experiments revealed that serotonin facilitates processing of taste information for tastants representing sweet, sour, salty, and bitter taste qualities. On the other hand, injection of ondansetron, a 5-HT3 receptor antagonist, was without effect. Collectively, these data support the hypothesis that serotonin is a crucial element in a finely-tuned feedback loop involving the 5-HT1A receptor, ATP, and purinoceptors. It is hypothesized that serotonin facilitates gustatory signals by regulating the release of ATP through ATP-release channels possibly through phosphatidylinositol 4,5-bisphosphate resynthesis. By doing so, 5-HT1A activation prevents desensitization of post-synaptic purinergic receptors expressed on afferent nerve fibers

  17. Application of agonist-receptor modeling to the sweetness synergy between high fructose corn syrup and sucralose, and between high-potency sweeteners.

    Science.gov (United States)

    Wolf, P A; Bridges, J R; Wicklund, R

    2010-03-01

    The agonist-receptor-transducer model of D. Ennis is applied to beverage formulations sweetened with high fructose corn syrup, sucralose, and other high-potency sweeteners, confirming the utility of the model, and supports the growing volume of evidence for multiple binding sites on the sweetness receptor. The model is further simplified to require less parameters for other sweetener blend systems whenever potency information is available for the single sweeteners.

  18. Efficacy of monitoring the sensory taste characteristics in pomegranate juice with electronic tongue, and chemical measurements

    Science.gov (United States)

    In addition to flavor attributes, pomegranate juices have sweet, sour, bitter tastes, astringent, and toothetch feeling factors. Many factors influence tastes and feeling factors. Measuring these attributes without a sensory panel makes economic sense. This investigation compares descriptive sensory...

  19. Anti-cancer stemness and anti-invasive activity of bitter taste receptors, TAS2R8 and TAS2R10, in human neuroblastoma cells.

    Directory of Open Access Journals (Sweden)

    Yoona Seo

    Full Text Available Neuroblastoma (NB originates from immature neuronal cells and currently has a poor clinical outcome. NB cells possess cancer stem cells (CSCs characteristics that facilitate the initiation of a tumor, as well as its metastasis. Human bitter taste receptors, referred to as TAS2Rs, are one of five types of basic taste receptors and they belong to a family of G-protein coupled receptors. The recent finding that taste receptors are expressed in non-gustatory tissues suggest that they mediate additional functions distinct from taste perception. While it is generally admitted that the recognition of bitter tastes may be associated with a self-defense system to prevent the ingestion of poisonous food compounds, this recognition may also serve as a disease-related function in the human body. In particular, the anti-cancer stemness and invasion effects of TAS2Rs on NB cells remain poorly understood. In the present study, endogenous expression of TAS2R8 and TAS2R10 in SK-N-BE(2C and SH-SY5Y cells was examined. In addition, higher levels of TAS2R8 and TAS2R10 expression were investigated in more differentiated SY5Y cells. Both TAS2Rs were up-regulated following the induction of neuronal cell differentiation by retinoic acid. In addition, ectopic transfection of the two TAS2Rs induced neurite elongation in the BE(2C cells, and down-regulated CSCs markers (including DLK1, CD133, Notch1, and Sox2, and suppressed self-renewal characteristics. In particular, TAS2RS inhibited tumorigenicity. Furthermore, when TAS2Rs was over-expressed, cell migration, cell invasion, and matrix metalloproteinases activity were inhibited. Expression levels of hypoxia-inducible factor-1α, a well-known regulator of tumor metastasis, as well as its downstream targets, vascular endothelial growth factor and glucose transporter-1, were also suppressed by TAS2Rs. Taken together, these novel findings suggest that TAS2Rs targets CSCs by suppressing cancer stemness characteristics and NB

  20. Effects of chemical modification of lysine residues on the sweetness of lysozyme.

    Science.gov (United States)

    Masuda, Tetsuya; Ide, Nobuyuki; Kitabatake, Naofumi

    2005-03-01

    Lysozyme is a sweet-tasting protein with a sweetness threshold value of around 7 microM. To clarify the effect of basicity at the side chain of lysine residues on the threshold values of sweetness, charge-specific chemical modifications such as guanidination, acetylation and phosphopyridoxylation of lysine residues were performed. Sensory analysis showed that the sweetness threshold value of lysozyme was not changed by guanidination, whereas it was increased markedly by acetylation and phosphopyridoxylation. To confirm the importance of the basicity in the lysine residues in detail, purification of acetylated (Ac-) and phosphopyridoxylated (PLP-) lysozymes using SP-ion exchange column chromatography was performed. The threshold values were not changed by modification with fewer than two residues (approximately 7 microM), whereas the threshold values significantly increased to 15 and 34 microM when tetra-Ac and tri-PLP, respectively. Furthermore, sweetness was not detected at 30 microM (hexa-, penta-Ac and tetra-PLP). It should be noted that removal of the negative charges of the phosphate groups in the tri-PLP lysozyme by acid phosphatase resulted in the recovery of sweetness (6.4 microM), indicating that basicity at the position of the lysine residues is responsible for lysozyme sweetness and that strict charge complementarities might be required for interaction to its putative receptor.

  1. Habitual Tastes and Embedded Taste

    DEFF Research Database (Denmark)

    Hedegaard, Liselotte

    2016-01-01

    The interest of this paper is to position taste within the framework of time. This might seem peculiar given that taste, in its physical sense, is referred to as an ephemeral experience taking place in the mouth. Taste, however, is more than that. It is the transient experience that infiltrates t...

  2. The Gustatory Signaling Pathway and Bitter Taste Receptors Affect the Development of Obesity and Adipocyte Metabolism in Mice.

    Directory of Open Access Journals (Sweden)

    Bert Avau

    Full Text Available Intestinal chemosensory signaling pathways involving the gustatory G-protein, gustducin, and bitter taste receptors (TAS2R have been implicated in gut hormone release. Alterations in gut hormone profiles may contribute to the success of bariatric surgery. This study investigated the involvement of the gustatory signaling pathway in the development of diet-induced obesity and the therapeutic potential of targeting TAS2Rs to induce body weight loss. α-gustducin-deficient (α-gust-/- mice became less obese than wild type (WT mice when fed a high-fat diet (HFD. White adipose tissue (WAT mass was lower in α-gust-/- mice due to increased heat production as a result of increases in brown adipose tissue (BAT thermogenic activity, involving increased protein expression of uncoupling protein 1. Intra-gastric treatment of obese WT and α-gust-/- mice with the bitter agonists denatonium benzoate (DB or quinine (Q during 4 weeks resulted in an α-gustducin-dependent decrease in body weight gain associated with a decrease in food intake (DB, but not involving major changes in gut peptide release. Both WAT and 3T3-F442A pre-adipocytes express TAS2Rs. Treatment of pre-adipocytes with DB or Q decreased differentiation into mature adipocytes. In conclusion, interfering with the gustatory signaling pathway protects against the development of HFD-induced obesity presumably through promoting BAT activity. Intra-gastric bitter treatment inhibits weight gain, possibly by directly affecting adipocyte metabolism.

  3. Enhancement of Retronasal Odors by Taste

    OpenAIRE

    Green, Barry G.; Nachtigal, Danielle; Hammond, Samuel; Lim, Juyun

    2011-01-01

    Psychophysical studies of interactions between retronasal olfaction and taste have focused most often on the enhancement of tastes by odors, which has been attributed primarily to a response bias (i.e., halo dumping). Based upon preliminary evidence that retronasal odors could also be enhanced by taste, the present study measured both forms of enhancement using appropriate response categories. In the first experiment, subjects rated taste (“sweet,” “sour,” “salty,” and “bitter”) and odor (“ot...

  4. Expression and Functional Activity of the Human Bitter Taste Receptor TAS2R38 in Human Placental Tissues and JEG-3 Cells

    Directory of Open Access Journals (Sweden)

    Ute Wölfle

    2016-03-01

    Full Text Available Bitter taste receptors (TAS2Rs are expressed in mucous epithelial cells of the tongue but also outside the gustatory system in epithelial cells of the colon, stomach and bladder, in the upper respiratory tract, in the cornified squamous epithelium of the skin as well as in airway smooth muscle cells, in the testis and in the brain. In the present work we addressed the question if bitter taste receptors might also be expressed in other epithelial tissues as well. By staining a tissue microarray with 45 tissue spots from healthy human donors with an antibody directed against the best characterized bitter taste receptor TAS2R38, we observed an unexpected strong TAS2R38 expression in the amniotic epithelium, syncytiotrophoblast and decidua cells of the human placenta. To analyze the functionality we first determined the TAS2R38 expression in the placental cell line JEG-3. Stimulation of these cells with diphenidol, a clinically used antiemetic agent that binds TAS2Rs including TAS2R38, demonstrated the functionality of the TAS2Rs by inducing calcium influx. Restriction enzyme based detection of the TAS2R38 gene allele identified JEG-3 cells as PTC (phenylthiocarbamide-taster cell line. Calcium influx induced by PTC in JEG-3 cells could be inhibited with the recently described TAS2R38 inhibitor probenecid and proved the specificity of the TAS2R38 activation. The expression of TAS2R38 in human placental tissues points to further new functions and hitherto unknown endogenous ligands of TAS2Rs far beyond bitter tasting.

  5. Participants with pharmacologically impaired taste function seek out more intense, higher calorie stimuli.

    Science.gov (United States)

    Noel, Corinna A; Sugrue, Meaghan; Dando, Robin

    2017-10-01

    Research suggests a weaker sense of taste in people with obesity, with the assumption that a debilitated taste response increases the desire for more intensely tasting stimuli to compensate for decreased taste input. However, empirical testing of this supposition remains largely absent. In a randomized, repeated measures design, 51 healthy subjects were treated with varying concentrations of a tea containing Gymnema sylvestre (GS), to temporarily and selectively diminish sweet taste perception, or a control tea. Following treatment in the four testing sessions, taste intensity ratings for various sweet stimuli were captured on the generalized Labeled Magnitude Scale (gLMS), liking for real foods assessed on the hedonic gLMS, and optimal level of sweetness quantified via an ad-libitum mixing task. Data were analyzed with mixed models assessing both treatment condition and each subject's resultant sweet response with various taste-related outcomes, controlling for covariates. GS treatment diminished sweet intensity perception (p sweet foods (p sweet taste response was associated with a 0.40 g/L increase in optimal concentration of sucrose (p sweet foods. This suggests that those with a diminished sense of taste may desire more intense stimuli to attain a satisfactory level of reward, potentially influencing eating habits to compensate for a lower gustatory input. Copyright © 2017. Published by Elsevier Ltd.

  6. Expression of Tas1 Taste Receptors in Mammalian Spermatozoa: Functional Role of Tas1r1 in Regulating Basal Ca2+ and cAMP Concentrations in Spermatozoa

    Science.gov (United States)

    Meyer, Dorke; Voigt, Anja; Widmayer, Patricia; Borth, Heike; Huebner, Sandra; Breit, Andreas; Marschall, Susan; de Angelis, Martin Hrabé; Boehm, Ulrich; Meyerhof, Wolfgang; Gudermann, Thomas; Boekhoff, Ingrid

    2012-01-01

    Background During their transit through the female genital tract, sperm have to recognize and discriminate numerous chemical compounds. However, our current knowledge of the molecular identity of appropriate chemosensory receptor proteins in sperm is still rudimentary. Considering that members of the Tas1r family of taste receptors are able to discriminate between a broad diversity of hydrophilic chemosensory substances, the expression of taste receptors in mammalian spermatozoa was examined. Methodology/Principal Findings The present manuscript documents that Tas1r1 and Tas1r3, which form the functional receptor for monosodium glutamate (umami) in taste buds on the tongue, are expressed in murine and human spermatozoa, where their localization is restricted to distinct segments of the flagellum and the acrosomal cap of the sperm head. Employing a Tas1r1-deficient mCherry reporter mouse strain, we found that Tas1r1 gene deletion resulted in spermatogenic abnormalities. In addition, a significant increase in spontaneous acrosomal reaction was observed in Tas1r1 null mutant sperm whereas acrosomal secretion triggered by isolated zona pellucida or the Ca2+ ionophore A23187 was not different from wild-type spermatozoa. Remarkably, cytosolic Ca2+ levels in freshly isolated Tas1r1-deficient sperm were significantly higher compared to wild-type cells. Moreover, a significantly higher basal cAMP concentration was detected in freshly isolated Tas1r1-deficient epididymal spermatozoa, whereas upon inhibition of phosphodiesterase or sperm capacitation, the amount of cAMP was not different between both genotypes. Conclusions/Significance Since Ca2+ and cAMP control fundamental processes during the sequential process of fertilization, we propose that the identified taste receptors and coupled signaling cascades keep sperm in a chronically quiescent state until they arrive in the vicinity of the egg - either by constitutive receptor activity and/or by tonic receptor activation by

  7. Salty taste deficits in CALHM1 knockout mice.

    Science.gov (United States)

    Tordoff, Michael G; Ellis, Hillary T; Aleman, Tiffany R; Downing, Arnelle; Marambaud, Philippe; Foskett, J Kevin; Dana, Rachel M; McCaughey, Stuart A

    2014-07-01

    Genetic ablation of calcium homeostasis modulator 1 (CALHM1), which releases adenosine triphosphate from Type 2 taste cells, severely compromises the behavioral and electrophysiological responses to tastes detected by G protein-coupled receptors, such as sweet and bitter. However, the contribution of CALHM1 to salty taste perception is less clear. Here, we evaluated several salty taste-related phenotypes of CALHM1 knockout (KO) mice and their wild-type (WT) controls: 1) In a conditioned aversion test, CALHM1 WT and KO mice had similar NaCl avoidance thresholds. 2) In two-bottle choice tests, CALHM1 WT mice showed the classic inverted U-shaped NaCl concentration-preference function but CALHM1 KO mice had a blunted peak response. 3) In brief-access tests, CALHM1 KO mice showed less avoidance than did WT mice of high concentrations of NaCl, KCl, NH(4)Cl, and sodium lactate (NaLac). Amiloride further ameliorated the NaCl avoidance of CALHM1 KO mice, so that lick rates to a mixture of 1000 mM NaCl + 10 µM amiloride were statistically indistinguishable from those to water. 4) Relative to WT mice, CALHM1 KO mice had reduced chorda tympani nerve activity elicited by oral application of NaCl, NaLac, and sucrose but normal responses to HCl and NH(4)Cl. Chorda tympani responses to NaCl and NaLac were amiloride sensitive in WT but not KO mice. These results reinforce others demonstrating that multiple transduction pathways make complex, concentration-dependent contributions to salty taste perception. One of these pathways depends on CALHM1 to detect hypertonic NaCl in the mouth and signal the aversive taste of concentrated salt. © The Author 2014. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  8. Enhancement of retronasal odors by taste.

    Science.gov (United States)

    Green, Barry G; Nachtigal, Danielle; Hammond, Samuel; Lim, Juyun

    2012-01-01

    Psychophysical studies of interactions between retronasal olfaction and taste have focused most often on the enhancement of tastes by odors, which has been attributed primarily to a response bias (i.e., halo dumping). Based upon preliminary evidence that retronasal odors could also be enhanced by taste, the present study measured both forms of enhancement using appropriate response categories. In the first experiment, subjects rated taste ("sweet," "sour," "salty," and "bitter") and odor ("other") intensity for aqueous samples of 3 tastants (sucrose, NaCl, and citric acid) and 3 odorants (vanillin, citral, and furaneol), both alone and in taste-odor mixtures. The results showed that sucrose, but not the other taste stimuli, significantly increased the perceived intensity of all 3 odors. Enhancement of tastes by odors was inconsistent and generally weaker than enhancement of odors by sucrose. A second experiment used a flavored beverage and a custard dessert to test whether the findings from the first experiment would hold for the perception of actual foods. Adding sucrose significantly enhanced the intensity of "cherry" and "vanilla" flavors, whereas adding vanillin did not significantly enhance the intensity of sweetness. It is proposed that enhancement of retronasal odors by a sweet stimulus results from an adaptive sensory mechanism that serves to increase the salience of the flavor of nutritive foods. © The Author 2011. Published by Oxford University Press. All rights reserved.

  9. Sensory attributes of complex tasting divalent salts are mediated by TRPM5 and TRPV1 channels.

    Science.gov (United States)

    Riera, Céline E; Vogel, Horst; Simon, Sidney A; Damak, Sami; le Coutre, Johannes

    2009-02-25

    Complex tasting divalent salts (CTDS) are present in our daily diet, contributing to multiple poorly understood taste sensations. CTDS evoking metallic, bitter, salty, and astringent sensations include the divalent salts of iron, zinc, copper, and magnesium. To identify pathways involved with the complex perception of the above salts, taste preference tests (two bottles, brief access) were performed in wild-type (WT) mice and in mice lacking (1) the T1R3 receptor, (2) TRPV1, the capsaicin receptor, or (3) the TRPM5 channel, the latter being necessary for the perception of sweet, bitter, and umami tasting stimuli. At low concentrations, FeSO(4) and ZnSO(4) were perceived as pleasant stimuli by WT mice, and this effect was fully reversed in TRPM5 knock-out mice. In contrast, MgSO(4) and CuSO(4) were aversive to WT mice, but for MgSO(4) the aversion was abolished in TRPM5 knock-out animals, and for CuSO(4), aversion decreased in both TRPV1- and TRPM5-deficient animals. Behavioral tests revealed that the T1R3 subunit of the sweet and umami receptors is implicated in the hedonically positive perception of FeSO(4) and ZnSO(4). For high concentrations of CTDS, the omission of TRPV1 reduced aversion. Imaging studies on heterologously expressed TRPM5 and TRPV1 channels are consistent with the behavioral experiments. Together, these results rationalize the complexity of metallic taste by showing that at low concentrations, compounds such as FeSO(4) and ZnSO(4) stimulate the gustatory system through the hedonically positive T1R3-TRPM5 pathway, and at higher concentrations, their aversion is mediated, in part, by the activation of TRPV1.

  10. Evaluation of plant extracts for sweetness using the Mongolian gerbil.

    Science.gov (United States)

    Jakinovich, W; Moon, C; Choi, Y H; Kinghorn, A D

    1990-01-01

    Extracts of Thladiantha grosvenorii fruits, Stevia rebaudiana leaves, and Abrus precatorius leaves were investigated using Mongolian gerbil electrophysiological and conditioned taste aversion procedures, which were designed to respond to sucrose. A close correlation was observed between extracts of these sweet plants known to contain sweet principles and those extracts indicated as being sweet by a combination of these gerbil bioassays. The methods employed seem to be suitable for use in aiding the purification of highly sweet compounds of plant origin.

  11. An Artemisia-derived natural product-based fluorescent probe for the bitter taste receptor hTAS2R38.

    Science.gov (United States)

    Pollastro, Federica; Talmon, Maria; Gaeta, Simone; Rossi, Silvia; Lopatriello, Annalisa; Fresu, Luigia Grazia

    2018-02-27

    The discovery of taste receptors hTAS2Rs expression in extra oral tissue, especially in the gastrointestinal tract and in the respiratory system, has endowed bitter receptors of functionalities that exceed the simple perception of taste and flavour. In particular, stimulation of hTAS2Rs by bitter agents in the airway smooth muscle triggers bronchodilation of possible pharmacological relevance. To study the receptor localization in pulmonary smooth muscle cells and to investigate their biological response to hTAS2R38 activation, we have developed a fluorescent probe for hTAS2R38 starting from the sesquiterpene lactone costunolide, available in multigram amounts from Artemisia umbelliformis Lam. The N-methylanthranilate-containing probe demonstrated a very low cytotoxicity compared to the natural product toward human airway smooth muscle cells and epithelial bronchial cells, but fully retained its binding to hTAS2R38, making it possible the fluorescent detection of cells expressing this bitter receptor. Copyright © 2018 Elsevier B.V. All rights reserved.

  12. Next generation semiconductor based sequencing of bitter taste receptor genes in different pig populations and association analysis using a selective DNA pool-seq approach.

    Science.gov (United States)

    Ribani, A; Bertolini, F; Schiavo, G; Scotti, E; Utzeri, V J; Dall'Olio, S; Trevisi, P; Bosi, P; Fontanesi, L

    2017-02-01

    Taste perception in animals affects feed intake and may influence production traits. In particular, bitter is sensed by receptors encoded by the family of TAS2R genes. In this research, using a DNA pool-seq approach coupled with next generation semiconductor based target resequencing, we analysed nine porcine TAS2R genes (TAS2R1, TAS2R3, TAS2R4, TAS2R7, TAS2R9, TAS2R10, TAS2R16, TAS2R38 and TAS2R39) to identify variability and, at the same time, estimate single nucleotide polymorphism (SNP) allele frequencies in several populations and testing differences in an association analysis. Equimolar DNA pools were prepared for five pig breeds (Italian Duroc, Italian Landrace, Pietrain, Meishan and Casertana) and wild boars (5-10 individuals each) and for two groups of Italian Large White pigs with extreme and divergent back fat thickness (50 + 50 pigs). About 1.8 million reads were obtained by sequencing amplicons generated from these pools. A total of 125 SNPs were identified, of which 37 were missense mutations. Three of them (p.Ile53Phe and p.Trp85Leu in TAS2R4; p.Leu37Ser in TAS2R39) could have important effects on the function of these bitter taste receptors, based on in silico predictions. Variability in wild boars seems lower than that in domestic breeds potentially as a result of selective pressure in the wild towards defensive bitter taste perception. Three SNPs in TAS2R38 and TAS2R39 were significantly associated with back fat thickness. These results may be important to understand the complexity of taste perception and their associated effects that could be useful to develop nutrigenetic approaches in pig breeding and nutrition. © 2016 Stichting International Foundation for Animal Genetics.

  13. TRPs in Taste and Chemesthesis

    Science.gov (United States)

    2015-01-01

    TRP channels are expressed in taste buds, nerve fibers, and keratinocytes in the oronasal cavity. These channels play integral roles in transducing chemical stimuli, giving rise to sensations of taste, irritation, warmth, coolness, and pungency. Specifically, TRPM5 acts downstream of taste receptors in the taste transduction pathway. TRPM5 channels convert taste-evoked intracellular Ca2+ release into membrane depolarization to trigger taste transmitter secretion. PKD2L1 is expressed in acid-sensitive (sour) taste bud cells but is unlikely to be the transducer for sour taste. TRPV1 is a receptor for pungent chemical stimuli such as capsaicin and for several irritants (chemesthesis). It is controversial whether TRPV1 is present in the taste buds and plays a direct role in taste. Instead, TRPV1 is expressed in non-gustatory sensory afferent fibers and in keratinocytes of the oronasal cavity. In many sensory fibers and epithelial cells lining the oronasal cavity, TRPA1 is also co-expressed with TRPV1. As with TRPV1, TRPA1 transduces a wide variety of irritants and, in combination with TRPV1, assures that there is a broad response to noxious chemical stimuli. Other TRP channels, including TRPM8, TRPV3, and TRPV4, play less prominent roles in chemesthesis and no known role in taste, per se. The pungency of foods and beverages is likely highly influenced by the temperature at which they are consumed, their acidity, and, for beverages, their carbonation. All these factors modulate the activity of TRP channels in taste buds and in the oronasal mucosa. PMID:24961971

  14. Análise tempo-intensidade dos estímulos doce e amargo de extrato de folhas de estévia [Stevia rebaudiana (Bert. Bertoni] em doçura equivalente a sacarose Time-intensity of sweet and bitter taste of stevia leaves (Stevia rebaudiana Bertoni extract in equi-sweet on sucrose

    Directory of Open Access Journals (Sweden)

    Helena Maria André Bolini CARDELLO

    1999-05-01

    Full Text Available O extrato de folhas de estévia (Stevia rebaudiana Bertoni é o único edulcorante utilizado na substituição da sacarose, que pode ser produzido totalmente no Brasil. O objetivo deste estudo foi determinar os comportamentos de características temporais dos estímulos doce e amargo da estevia em doçuras equivalentes a soluções de sacarose (DESS a 3 e 10%. As curvas tempo-intensidade (T-I para cada substância foram coletadas utilizando-se o programa "Sistema de Coleta de Dados Tempo-Intensidade - SCDTI" para Windows, onde os provadores registravam com auxílio do "mouse" a percepção de cada estímulo solicitado em função do tempo, para cada amostra. Os parâmetros das curvas T-I coletados foram: tempo de intensidade máxima (TImax, intensidade máxima (Imax, tempo onde a intensidade máxima começa a declinar (Td, tempo de platô (Platô, área sob a curva (Área e tempo total de duração do estímulo (Ttot. Os parâmetros Td, Ttot, Área e Platô das curvas T-I para o estímulo doce nos dois níveis de doçura foram significativamente superiores para estévia, enquanto TImax e Imax foram significativamente menores (p£0,05, sendo que as diferenças entre os valores para as duas substâncias foram muito maiores a DESS a 10%. A sacarose não apresentou nenhum registro para o estímulo amargo tanto a 3 como a 10%, enquanto a estévia apresentou curvas T-I características, com intensidade e o tempo total de duração dependente da concentração.The extract of stevia leaves (Stevia rebaudiana Bertoni is the only sweetener utilized in sucrose substitution which can be produced totally in Brazil. The objective of this study, was determine the temporal characteristic of sweet and bitter taste of stevia and compare with sucrose at 3 and 10% in the same equi-sweet. The time-intensity curves (T-I for each substance were collected through the software "Sistema de Coleta de Dados Tempo-Intensidade - SCDTI" for Windows, where the judges recorded

  15. A bitter pill for type 2 diabetes? The activation of bitter taste receptor TAS2R38 can stimulate GLP-1 release from enteroendocrine L-cells.

    Science.gov (United States)

    Pham, Hung; Hui, Hongxiang; Morvaridi, Susan; Cai, Jiena; Zhang, Sanqi; Tan, Jun; Wu, Vincent; Levin, Nancy; Knudsen, Beatrice; Goddard, William A; Pandol, Stephen J; Abrol, Ravinder

    2016-07-01

    The bitter taste receptor TAS2R38 is a G protein coupled receptor (GPCR) that has been found in many extra-oral locations like the gastrointestinal (GI) system, respiratory system, and brain, though its function at these locations is only beginning to be understood. To probe the receptor's potential metabolic role, immunohistochemistry of human ileum tissues was performed, which showed that the receptor was co-localized with glucagon-like peptide 1 (GLP-1) in L-cells. In a previous study, we had modeled the structure of this receptor for its many taste-variant haplotypes (Tan et al. 2011), including the taster haplotype PAV. The structure of this haplotype was then used in a virtual ligand screening pipeline using a collection of ∼2.5 million purchasable molecules from the ZINC database. Three compounds (Z7, Z3, Z1) were purchased from the top hits and tested along with PTU (known TAS2R38 agonist) in in vitro and in vivo assays. The dose-response study of the effect of PTU and Z7 on GLP-1 release using wild-type and TAS2R38 knockout HuTu-80 cells showed that the receptor TAS2R38 plays a major role in GLP-1 release due to these molecules. In vivo studies of PTU and the three compounds showed that they each increase GLP-1 release. PTU was also chemical linked to cellulose to slow its absorption and when tested in vivo, it showed an enhanced and prolonged GLP-1 release. These results suggest that the GI lumen location of TAS2R38 on the L-cell makes it a relatively safe drug target as systemic absorption is not needed for a TAS2R38 agonist drug to effect GLP-1 release. Copyright © 2016 Elsevier Inc. All rights reserved.

  16. Genomic regression of claw keratin, taste receptor and light-associated genes provides insights into biology and evolutionary origins of snakes.

    Science.gov (United States)

    Emerling, Christopher A

    2017-10-01

    Regressive evolution of anatomical traits often corresponds with the regression of genomic loci underlying such characters. As such, studying patterns of gene loss can be instrumental in addressing questions of gene function, resolving conflicting results from anatomical studies, and understanding the evolutionary history of clades. The evolutionary origins of snakes involved the regression of a number of anatomical traits, including limbs, taste buds and the visual system, and by analyzing serpent genomes, I was able to test three hypotheses associated with the regression of these features. The first concerns two keratins that are putatively specific to claws. Both genes that encode these keratins are pseudogenized/deleted in snake genomes, providing additional evidence of claw-specificity. The second hypothesis is that snakes lack taste buds, an issue complicated by conflicting results in the literature. I found evidence that different snakes have lost one or more taste receptors, but all snakes examined retained at least one gustatory channel. The final hypothesis addressed is that the earliest snakes were adapted to a dim light niche. I found evidence of deleted and pseudogenized genes with light-associated functions in snakes, demonstrating a pattern of gene loss similar to other dim light-adapted clades. Molecular dating estimates suggest that dim light adaptation preceded the loss of limbs, providing some bearing on interpretations of the ecological origins of snakes. Copyright © 2017 Elsevier Inc. All rights reserved.

  17. A targeted genotyping approach enhances identification of variants in taste receptor and appetite/reward genes of potential functional importance for obesity-related porcine traits

    DEFF Research Database (Denmark)

    Cirera, S.; Clop, A.; Jacobsen, M. J.

    2018-01-01

    Taste receptors (TASRs) and appetite and reward (AR) mechanisms influence eating behaviour, which in turn affects food intake and risk of obesity. In a previous study, we used next generation sequencing to identify potentially functional mutations in TASR and AR genes and found indications...... for genetic associations between identified variants and growth and fat deposition in a subgroup of animals (n = 38) from the UNIK resource pig population. This population was created for studying obesity and obesity-related diseases. In the present study we validated results from our previous study...

  18. Taste Disorders

    Science.gov (United States)

    ... could make life-saving medicines more acceptable to children. Taste cells—as well as sensory cells that help you smell—are the only sensory cells in the human body that are regularly replaced throughout life. Researchers are ...

  19. Subthreshold olfactory stimulation can enhance sweetness.

    Science.gov (United States)

    Labbe, D; Rytz, A; Morgenegg, C; Ali, S; Martin, N

    2007-03-01

    The impact of olfactory perception on sweetness was explored in a model solution using odorants at subthreshold concentrations. First, the impact of 6 odorants, previously described in the literature as congruent with sweetness, was investigated at suprathreshold level in a sucrose solution. Ethyl butyrate and maltol were selected as they had the highest and the lowest sweetness-enhancing properties, respectively. Second, the impact on sweetness of the 2 odorants was investigated at subthreshold concentrations. A system delivering a continuous liquid flow at the same sucrose level, but with varying odorant concentrations, was used. At a subthreshold level, ethyl butyrate but not maltol significantly enhanced the sweetness of the sucrose solution. This study highlights that olfactory perception induced by odorants at a subthreshold level can significantly modulate taste perception. Finally, contrary to results observed with ethyl butyrate at suprathreshold levels, at subthreshold levels, the intensity of sweetness enhancement was not proportional to ethyl butyrate concentration.

  20. Coarse-grained/molecular mechanics of the TAS2R38 bitter taste receptor: experimentally-validated detailed structural prediction of agonist binding.

    Directory of Open Access Journals (Sweden)

    Alessandro Marchiori

    Full Text Available Bitter molecules in humans are detected by ∼25 G protein-coupled receptors (GPCRs. The lack of atomic resolution structure for any of them is complicating an in depth understanding of the molecular mechanisms underlying bitter taste perception. Here, we investigate the molecular determinants of the interaction of the TAS2R38 bitter taste receptor with its agonists phenylthiocarbamide (PTC and propylthiouracil (PROP. We use the recently developed hybrid Molecular Mechanics/Coarse Grained (MM/CG method tailored specifically for GPCRs. The method, through an extensive exploration of the conformational space in the binding pocket, allows the identification of several residues important for agonist binding that would have been very difficult to capture from the standard bioinformatics/docking approach. Our calculations suggest that both agonists bind to Asn103, Phe197, Phe264 and Trp201, whilst they do not interact with the so-called extra cellular loop 2, involved in cis-retinal binding in the GPCR rhodopsin. These predictions are consistent with data sets based on more than 20 site-directed mutagenesis and functional calcium imaging experiments of TAS2R38. The method could be readily used for other GPCRs for which experimental information is currently lacking.

  1. Fungal pathogens-a sweet and sour treat for toll-like receptors.

    Science.gov (United States)

    Bourgeois, Christelle; Kuchler, Karl

    2012-01-01

    Hundred-thousands of fungal species are present in our environment, including normal colonizers that constitute part of the human microbiota. The homeostasis of host-fungus interactions encompasses efficient fungal sensing, tolerance at mucosal surfaces, as well as antifungal defenses. Decrease in host immune fitness or increase in fungal burden may favor pathologies, ranging from superficial mucocutaneous diseases to invasive life-threatening fungal infections. Toll-like receptors (TLRs) are essential players in this balance, due to their ability to control both inflammatory and anti-inflammatory processes upon recognition of fungal-specific pathogen-associated molecular patterns (PAMPs). Certain members of the TLR family participate to the initial recognition of fungal PAMPs on the cell surface, as well as inside phagosomes of innate immune cells. Active signaling cascades in phagocytes ultimately enable fungus clearance and the release of cytokines that shape and instruct other innate immune cells and the adaptive immune system. Some TLRs cooperate with other pattern recognition receptors (PRRs) (e.g., C-type lectins and Galectins), thus allowing for a tailored immune response. The spatio-temporal and physiological contributions of individual TLRs in fungal infections remains ill-defined, although in humans, TLR gene polymorphisms have been linked to increased susceptibility to fungal infections. This review focuses entirely on the role of TLRs that control the host susceptibility to environmental fungi (e.g., Aspergillus, Cryptoccocus, and Coccidoides), as well as to the most frequent human fungal pathogens represented by the commensal Candida species. The emerging roles of TLRs in modulating host tolerance to fungi, and the strategies that evolved in some of these fungi to evade or use TLR recognition to their advantage will also be discussed, as well as their potential suitability as targets in vaccine therapies.

  2. Psychophysical Evaluation of Sweetness Functions Across Multiple Sweeteners.

    Science.gov (United States)

    Low, Julia Y Q; McBride, Robert L; Lacy, Kathleen E; Keast, Russell S J

    2017-02-01

    Sweetness is one of the 5 prototypical tastes and is activated by sugars and non-nutritive sweeteners (NNS). The aim of this study was to investigate measures of sweet taste function [detection threshold (DT), recognition threshold (RT), and suprathreshold intensity ratings] across multiple sweeteners. Sixty participants, 18-52 years of age (mean age in years = 26, SD = ±7.8), were recruited to participate in the study. DT and RT were collected for caloric sweeteners (glucose, fructose, sucrose, erythritol) and NNS (sucralose, rebaudioside A). Sweetness intensity for all sweeteners was measured using a general Labeled Magnitude Scale. There were strong correlations between DT and RT of all 4 caloric sweeteners across people (r = 0.62-0.90, P 0.05). In contrast, there were strong correlations between the sweetness intensity ratings of all sweeteners (r = 0.70-0.96, P sweet taste mechanism for the perceived intensity range. © The Author 2016. Published by Oxford University Press.

  3. The semantic basis of taste-shape associations

    Directory of Open Access Journals (Sweden)

    Carlos Velasco

    2016-02-01

    Full Text Available Previous research shows that people systematically match tastes with shapes. Here, we assess the extent to which matched taste and shape stimuli share a common semantic space and whether semantically congruent versus incongruent taste/shape associations can influence the speed with which people respond to both shapes and taste words. In Experiment 1, semantic differentiation was used to assess the semantic space of both taste words and shapes. The results suggest a common semantic space containing two principal components (seemingly, intensity and hedonics and two principal clusters, one including round shapes and the taste word “sweet,” and the other including angular shapes and the taste words “salty,” “sour,” and “bitter.” The former cluster appears more positively-valenced whilst less potent than the latter. In Experiment 2, two speeded classification tasks assessed whether congruent versus incongruent mappings of stimuli and responses (e.g., sweet with round versus sweet with angular would influence the speed of participants’ responding, to both shapes and taste words. The results revealed an overall effect of congruence with congruent trials yielding faster responses than their incongruent counterparts. These results are consistent with previous evidence suggesting a close relation (or crossmodal correspondence between tastes and shape curvature that may derive from common semantic coding, perhaps along the intensity and hedonic dimensions.

  4. Primacy and Recency Effects for Taste

    Science.gov (United States)

    Daniel, Thomas A.; Katz, Jeffrey S.

    2018-01-01

    Historically, much of what we know about human memory has been discovered in experiments using visual and verbal stimuli. In two experiments, participants demonstrated reliably high recognition for nonverbal liquids. In Experiment 1, participants showed high accuracy for recognizing tastes (bitter, salty, sour, sweet) over a 30-s delay in a…

  5. Differences in Swallowing between High and Low Concentration Taste Stimuli

    Directory of Open Access Journals (Sweden)

    Ahmed Nagy

    2014-01-01

    Full Text Available Taste is a property that is thought to potentially modulate swallowing behavior. Whether such effects depend on taste, intensity remains unclear. This study explored differences in the amplitudes of tongue-palate pressures in swallowing as a function of taste stimulus concentration. Tongue-palate pressures were collected in 80 healthy women, in two age groups (under 40, over 60, stratified by genetic taste status (nontasters, supertasters. Liquids with different taste qualities (sweet, sour, salty, and bitter were presented in high and low concentrations. General labeled magnitude scale ratings captured perceived taste intensity and liking/disliking of the test liquids. Path analysis explored whether factors of taste, concentration, age group, and/or genetic taste status impacted: (1 perceived intensity; (2 palatability; and (3 swallowing pressures. Higher ratings of perceived intensity were found in supertasters and with higher concentrations, which were more liked/disliked than lower concentrations. Sweet stimuli were more palatable than sour, salty, or bitter stimuli. Higher concentrations elicited stronger tongue-palate pressures independently and in association with intensity ratings. The perceived intensity of a taste stimulus varies as a function of stimulus concentration, taste quality, participant age, and genetic taste status and influences swallowing pressure amplitudes. High-concentration salty and sour stimuli elicit the greatest tongue-palate pressures.

  6. Quantitative taste evaluation of total enteral nutrients.

    Science.gov (United States)

    Mukai, Junji; Miyanaga, Yohko; Ishizaka, Toshihiko; Asaka, Kiyokazu; Nakai, Yuka; Tsuji, Eriko; Uchida, Takahiro

    2004-12-01

    The purpose of this study was to evaluate quantitatively the taste of the various total enteral nutrients marketed in Japan using human gustatory sensation tests and an artificial taste sensor. In the human gustatory sensation test, four basic taste intensities (sweetness, saltiness, sourness, and bitterness), as well as 15 kinds of palatability scales, were evaluated according to the semantic differential (SD) method. Among 15 palatability items, the item; difficult to drink/easy to drink, was adopted as an overall palatability since it shows the highest factor loading by factor analysis. The overall palatability was found to be highly positively correlated with sweetness and sourness, but negatively correlated with bitterness and saltiness. Addition of a flavour to the amino acid-based enteral nutrient AminolebanEN significantly improved its palatability. This effect is presumably due to sour components of the flavour, such as citric acid, which reduce the bitterness intensity of branched-chain amino acids in the product. The sweetness and sourness intensities predicted by the taste sensor showed a high correlation with the results obtained in the human gustatory sensation tests. The taste sensor was able to predict the overall palatability of the total enteral nutrients with high accuracy. The products could be classified into three groups (peptide-based, amino-acid-based, and protein-based) by principal component analysis using sensor output of 8 channels. The products could be also classified into four groups; peptide-based, amino-acid-based, and protein-based and flavor addition group by principal component analysis using sensor output of channels 1, 3, 4 and 7, which are specific to basic tastes. The taste sensor could therefore be useful in predicting the taste or palatability of total enteral nutrients, and could contribute to attempts to improve compliance for such products and for enteral nutrients.

  7. Biophysical and functional characterization of the N-terminal domain of the cat T1R1 umami taste receptor expressed in Escherichia coli.

    Directory of Open Access Journals (Sweden)

    Christine Belloir

    Full Text Available Umami taste perception is mediated by the heterodimeric G-protein coupled receptors (GPCRs, formed by the assembly of T1R1 and T1R3 subunits. T1R1 and T1R3 subunits are class C GPCRs whose members share common structural homologies including a long N-terminal domain (NTD linked to a seven transmembrane domain by a short cysteine-rich region. The NTD of the T1R1 subunit contains the primary binding site for umami stimuli, such as L-glutamate (L-Glu for humans. Inosine-5'-monophosphate (IMP binds at a location close to the opening of the T1R1-NTD "flytrap", thus creating the observed synergistic response between L-Glu and IMP. T1R1/T1R3 binding studies have revealed species-dependent differences. While human T1R1/T1R3 is activated specifically by L-Glu, the T1R1/T1R3 in other species is a broadly tuned receptor, sensitive to a range of L-amino acids. Because domestic cats are obligate carnivores, they display strong preferences for some specific amino acids. To better understand the structural basis of umami stimuli recognition by non-human taste receptors, we measured the binding of selected amino acids to cat T1R1/T1R3 (cT1R1/cT1R3 umami taste receptor. For this purpose, we expressed cT1R1-NTD in bacteria as inclusion bodies. After purification, refolding of the protein was achieved. Circular dichroism spectroscopic studies revealed that cT1R1-NTD was well renatured with evidence of secondary structures. Using size-exclusion chromatography coupled to light scattering, we found that the cT1R1-NTD behaves as a monomer. Ligand binding quantified by intrinsic tryptophan fluorescence showed that cT1R1-NTD is capable of binding L-amino acids with Kd values in the micromolar range. We demonstrated that IMP potentiates L-amino acid binding onto renatured cT1R1-NTD. Interestingly, our results revealed that IMP binds the extracellular domain in the absence of L-amino acids. Thus, this study demonstrates that the feasibility to produce milligram quantities

  8. Sweet Stuff

    Science.gov (United States)

    Williams, Kathryn R.

    2001-11-01

    Readers wanting to nibble some sweet stuff can find a sizable collection of Journal articles via an online search with "sugar" in the title field. The papers cover topics varying from structure and nomenclature, demonstrations, and experiments for laboratories at all levels, to the history and technology of commercial sugar production. A separate search using the title word "sweet" locates additional articles covering all types of sweeteners and models relating sweetness to chemical structure.

  9. Identification of the taste enhancer alapyridaine in beef broth and evaluation of its sensory impact by taste reconstitution experiments.

    Science.gov (United States)

    Ottinger, Harald; Hofmann, Thomas

    2003-11-05

    An essential compound imparting the sweet taste to beef broth was investigated. Taste activity-guided fractionation of beef broth by ultrafiltration, gel permeation chromatography, and HPLC in combination with the recently developed comparative taste dilution analysis enabled the localization of a fraction possessing sweetness-enhancing activity upon degustation. Comparison of the chromatographic, spectroscopic, and sensory data with those of the synthetic reference compound led to the identification of the sweetness-enhancing N-(1-carboxyethyl)-6-(hydroxymethyl)pyridinium-3-ol inner salt, named alapyridaine, which was recently isolated from heated aqueous solutions of hexoses and l-alanine. After quantification of alapyridaine in beef broth, sensory analysis of synthetic beef taste recombinates spiked with synthetic alapyridaine in its "natural" concentration of 419 mug/L and comparison to the taste quality of a tastant recombinate lacking the alapyridaine revealed a significant increase in sweetness and umami character only when the alapyridaine was present in the recombinate. These data demonstrate for the first time that, in "natural" concentrations, the alapyridaine exhibited a pronounced effect on the overall taste quality of beef broth, in particular, on the sweet and umami character.

  10. Genetic variation in taste perception: does it have a role in healthy eating?

    Science.gov (United States)

    Feeney, E; O'Brien, S; Scannell, A; Markey, A; Gibney, E R

    2011-02-01

    Taste is often cited as the factor of greatest significance in food choice, and has been described as the body's 'nutritional gatekeeper'. Variation in taste receptor genes can give rise to differential perception of sweet, umami and bitter tastes, whereas less is known about the genetics of sour and salty taste. Over twenty-five bitter taste receptor genes exist, of which TAS2R38 is one of the most studied. This gene is broadly tuned to the perception of the bitter-tasting thiourea compounds, which are found in brassica vegetables and other foods with purported health benefits, such as green tea and soya. Variations in this gene contribute to three thiourea taster groups of people: supertasters, medium tasters and nontasters. Differences in taster status have been linked to body weight, alcoholism, preferences for sugar and fat levels in food and fruit and vegetable preferences. However, genetic predispositions to food preferences may be outweighed by environmental influences, and few studies have examined both. The Tastebuddies study aimed at taking a holistic approach, examining both genetic and environmental factors in children and adults. Taster status, age and gender were the most significant influences in food preferences, whereas genotype was less important. Taster perception was associated with BMI in women; nontasters had a higher mean BMI than medium tasters or supertasters. Nutrient intakes were influenced by both phenotype and genotype for the whole group, and in women, the AVI variation of the TAS2R38 gene was associated with a nutrient intake pattern indicative of healthy eating.

  11. A Comparative Study of the Taste Choice of Adolescents in Terms of Gender and BMI

    Directory of Open Access Journals (Sweden)

    Saime Kucukkmurler

    2014-12-01

    Full Text Available AIM: The aim of the study was to investigate the attitudes and choices of taste of adolescents, the conditions that affect these choices, and its variations with respect to BMI and gender. METHODS: 385 adolescents between the ages of 11 and 14, in Ankara, Turkey, participated in the research. In order to determine taste choices and attitudes towards taste, a Likert-type questionnaire was applied. Independent Samples t-test and correlational analysis were conducted. RESULTS: Boys preferred sweet and bitter tastes more than girls, but girls preferred salty tastes more than boys (p<0.05. It was found that when the BMI of adolescents increases, their taste scores decrease significantly (p<0.05. As the BMI increases, the sum preferences of sweet, sour, umami and salty taste scores decrease. There is a positive relation between sour and bitter and umami and bitter with umami (p< 0.01 CONCLUSION: . It is fair to argue that as BMI increases tendencies towards tastes decrease and that boys preferred sweet and bitter tastes more than girls did whereas girls preferred salty tastes more than boys.The fact that the tendencies towards tastes decrease with increasing BMI, and that taste preferences vary with respect to gender may imply that physiological requirements drive taste preferences. [TAF Prev Med Bull 2014; 13(6.000: 451-458

  12. De Gustibus: time scale of loss and recovery of tastes caused by radiotherapy

    International Nuclear Information System (INIS)

    Maes, Annelies; Huygh, Ingrid; Weltens, Caroline; Vandevelde, Guy; Delaere, Pierre; Evers, Georges; Bogaert, Walter van den

    2002-01-01

    Purpose: To quantify the prevalence and distress of taste loss at different intervals after radiotherapy (RT) for head and neck cancer. Materials and methods: In four different groups of head and neck cancer patients (73 patients in total), taste loss and distress due to taste loss were evaluated by taste acuity tests and taste questionnaires. Group 1 (n=17) was analyzed prior to RT. Groups 2 (n=17), 3 (n=17) and 4 (n=22) were at 2, 6 and 12-24 months after treatment, respectively. A cross-sectional analysis was performed between these four groups. Results: Prior to initiation of RT (group 1), partial taste loss was observed in 35, 18 and 6% of patients for bitter, salt and sweet, respectively. At 2 months after RT (group 2), taste loss (partial or total) was seen in 88, 82, 76 and 53% for bitter, salt, sweet and sour, respectively. At 6 months (group 3), partial taste loss was seen in 71, 65, 41 and 41% (bitter, salt, sweet, sour) and after 1-2 years (group 4) in 41, 50, 27 and 27% (bitter, salt, sweet, sour). Distress caused by taste loss was most frequent in group 2 (82%). Conclusions: In this study, loss of taste after RT was found to be most pronounced after 2 months. Bitter and salt qualities were most impaired. Gradual recovery was seen during the first year after treatment. Partial taste loss still persisted 1-2 years after treatment and was responsible for slight to moderate discomfort

  13. Developing and regenerating a sense of taste

    Science.gov (United States)

    Barlow, Linda A.; Klein, Ophir D.

    2015-01-01

    Taste is one of the fundamental senses, and it is essential for our ability to ingest nutritious substances and to detect and avoid potentially toxic ones. Taste buds, which are clusters of neuroepithelial receptor cells, are housed in highly organized structures called taste papillae in the oral cavity. Whereas the overall structure of the taste periphery is conserved in almost all vertebrates examined to date, the anatomical, histological, and cell biological, as well as potentially the molecular details of taste buds in the oral cavity are diverse across species and even among individuals. In mammals, several types of gustatory papillae reside on the tongue in highly ordered arrangements, and the patterning and distribution of the mature papillae depends on coordinated molecular events in embryogenesis. In this review, we highlight new findings in the field of taste development, including how taste buds are patterned and how taste cell fate is regulated. We discuss whether a specialized taste bud stem cell population exists and how extrinsic signals can define which cell lineages are generated. We also address the question of whether molecular regulation of taste cell renewal is analogous to that of taste bud development. Finally, we conclude with suggestions for future directions, including the potential influence of the maternal diet and maternal health on the sense of taste in utero. PMID:25662267

  14. Sweet Play

    Science.gov (United States)

    Leung, Shuk-kwan S.; Lo, Jane-Jane

    2010-01-01

    This article features Sweet play math, a "math by the month" activity that involves decorating and making sugar cubes. Teachers may want to substitute straws, paper squares, alphabet blocks, or such commercially made manipulatives as Unifix[R] cubes for the real sweets. Given no allergy concerns, teachers and students alike would enjoy some sweet…

  15. Sweet Conclusion

    Science.gov (United States)

    Shirley, Britt M.; Wooldridge, Barbara Ross; Camp, Kerri M.

    2012-01-01

    Jen Harrington is the owner and pastry chef of Sweet Conclusion, a bakery in Tampa, Florida. Most of Harrington's business comes from baking wedding cakes, but she has been attempting to attract customers to her retail bakery, where she sells cupcakes, pies, ice cream, and coffee. Nearly four years she opened Sweet Conclusion, the retail part of…

  16. Taste perception abnormalities after acute stroke in postmenopausal women.

    Science.gov (United States)

    Kim, Jong S; Choi-Kwon, Smi; Kwon, Sun U; Kwon, Jee-Hyun

    2009-06-01

    The study aims to elucidate the characteristics of post-stroke taste dysfunction in postmenopausal women. Taste function in 120 consecutive postmenopausal women with acute (sweetness, glacial acetic acid for sourness and quinine hemisulfate for bitterness. Detection and recognition thresholds were performed by the three-stimulus drop technique. Taste threshold values beyond two standard deviations of normal were considered "abnormal". For postmenopausal women after acute stroke, abnormal detection thresholds for the ability to taste sweetness, saltiness, sourness and bitterness were found in 33%, 21%, 35% and 30% of women, respectively, and abnormal recognition thresholds were found in 40%, 34%, 42% and 33% of women respectively. The taste dysfunction occurred ipsilaterally, contralaterally or bilaterally, and was not related to the side or location of the lesion. Large (>2 cm) lesions were more frequently associated with sweet and salty taste dysfunction than small lesions (pevaluation showed that the taste abnormality persisted in 8 (35%) patients. Taste perception abnormalities are common and often persistent in stroke patients. The dysfunction can occur ipsilaterally, contralaterally or bilaterally.

  17. Using Single Colors and Color Pairs to Communicate Basic Tastes

    Directory of Open Access Journals (Sweden)

    Andy T. Woods

    2016-07-01

    Full Text Available Recently, it has been demonstrated that people associate each of the basic tastes (e.g., sweet, sour, bitter, and salty with specific colors (e.g., red, green, black, and white. In the present study, we investigated whether pairs of colors (both associated with a particular taste or taste word would give rise to stronger associations relative to pairs of colors that were associated with different tastes. We replicate the findings of previous studies highlighting the existence of a robust crossmodal correspondence between individual colors and basic tastes. However, while there was evidence that pairs of colors could indeed communicate taste information more consistently than single colors, our participants took more than twice as long to match the color pairs with tastes than the single colors. Possible reasons for these results are discussed.

  18. Using Single Colors and Color Pairs to Communicate Basic Tastes.

    Science.gov (United States)

    Woods, Andy T; Spence, Charles

    2016-01-01

    Recently, it has been demonstrated that people associate each of the basic tastes (e.g., sweet, sour, bitter, and salty) with specific colors (e.g., red, green, black, and white). In the present study, we investigated whether pairs of colors (both associated with a particular taste or taste word) would give rise to stronger associations relative to pairs of colors that were associated with different tastes. We replicate the findings of previous studies highlighting the existence of a robust crossmodal correspondence between individual colors and basic tastes. However, while there was evidence that pairs of colors could indeed communicate taste information more consistently than single colors, our participants took more than twice as long to match the color pairs with tastes than the single colors. Possible reasons for these results are discussed.

  19. On the connection between nonmonotonic taste behavior and molecular conformation in solution: The case of rebaudioside-A

    International Nuclear Information System (INIS)

    Chopade, Prashant D.; Sarma, Bipul; Santiso, Erik E.; Chen, Jie; Trout, Bernhardt L.; Myerson, Allan S.; Simpson, Jeffrey; Fry, John C.; Biermann, Kari L.; Yurttas, Nese

    2015-01-01

    The diterpene steviol glycoside, rebaudioside A, is a natural high potency non-caloric sweetener extracted from the leaves of Stevia rebaudiana. This compound shows a parabolic change in sweet taste intensity with temperature which contrasts with the general finding for other synthetic or natural sweeteners whose sweet taste increases with temperature. The nonmonotonic taste behavior was determined by sensory analysis using large taste panels. The conformational landscape of rebaudioside A was established at a range of temperatures by means of nuclear magnetic resonance and molecular dynamics simulation. The relationship between various conformations and the observed sweetness of rebaudioside A is described

  20. On the connection between nonmonotonic taste behavior and molecular conformation in solution: The case of rebaudioside-A

    Energy Technology Data Exchange (ETDEWEB)

    Chopade, Prashant D.; Sarma, Bipul; Santiso, Erik E.; Chen, Jie; Trout, Bernhardt L.; Myerson, Allan S., E-mail: myerson@mit.edu [Department of Chemical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, 66-568, Cambridge, Massachusetts 02139 (United States); Simpson, Jeffrey [Department of Chemistry Instrumentation Facility, Massachusetts Institute of Technology, 77 Massachusetts Avenue, 18-0090, Cambridge, Massachusetts 02139 (United States); Fry, John C.; Biermann, Kari L. [Connect Consulting, 6 Hollands Field, Horsham RH123HQ (United Kingdom); Yurttas, Nese [Cargill, Inc., Global Food Technology, 2301 Crosby Road, Wayzata, Minnesota 55391 (United States)

    2015-12-28

    The diterpene steviol glycoside, rebaudioside A, is a natural high potency non-caloric sweetener extracted from the leaves of Stevia rebaudiana. This compound shows a parabolic change in sweet taste intensity with temperature which contrasts with the general finding for other synthetic or natural sweeteners whose sweet taste increases with temperature. The nonmonotonic taste behavior was determined by sensory analysis using large taste panels. The conformational landscape of rebaudioside A was established at a range of temperatures by means of nuclear magnetic resonance and molecular dynamics simulation. The relationship between various conformations and the observed sweetness of rebaudioside A is described.

  1. On the connection between nonmonotonic taste behavior and molecular conformation in solution: The case of rebaudioside-A

    Science.gov (United States)

    Chopade, Prashant D.; Sarma, Bipul; Santiso, Erik E.; Simpson, Jeffrey; Fry, John C.; Yurttas, Nese; Biermann, Kari L.; Chen, Jie; Trout, Bernhardt L.; Myerson, Allan S.

    2015-12-01

    The diterpene steviol glycoside, rebaudioside A, is a natural high potency non-caloric sweetener extracted from the leaves of Stevia rebaudiana. This compound shows a parabolic change in sweet taste intensity with temperature which contrasts with the general finding for other synthetic or natural sweeteners whose sweet taste increases with temperature. The nonmonotonic taste behavior was determined by sensory analysis using large taste panels. The conformational landscape of rebaudioside A was established at a range of temperatures by means of nuclear magnetic resonance and molecular dynamics simulation. The relationship between various conformations and the observed sweetness of rebaudioside A is described.

  2. Shrinkage of ipsilateral taste buds and hyperplasia of contralateral taste buds following chorda tympani nerve transection

    Directory of Open Access Journals (Sweden)

    Yi-ke Li

    2015-01-01

    Full Text Available The morphological changes that occur in the taste buds after denervation are not well understood in rats, especially in the contralateral tongue epithelium. In this study, we investigated the time course of morphological changes in the taste buds following unilateral nerve transection. The role of the trigeminal component of the lingual nerve in maintaining the structural integrity of the taste buds was also examined. Twenty-four Sprague-Dawley rats were randomly divided into three groups: control, unilateral chorda tympani nerve transection and unilateral chorda tympani nerve transection + lingual nerve transection. Rats were allowed up to 42 days of recovery before being euthanized. The taste buds were visualized using a cytokeratin 8 antibody. Taste bud counts, volumes and taste receptor cell numbers were quantified and compared among groups. No significant difference was detected between the chorda tympani nerve transection and chorda tympani nerve transection + lingual nerve transection groups. Taste bud counts, volumes and taste receptor cell numbers on the ipsilateral side all decreased significantly compared with control. On the contralateral side, the number of taste buds remained unchanged over time, but they were larger, and taste receptor cells were more numerous postoperatively. There was no evidence for a role of the trigeminal branch of the lingual nerve in maintaining the structural integrity of the anterior taste buds.

  3. Loss of ethanol conditioned taste aversion and motor stimulation in knockin mice with ethanol-insensitive α2-containing GABA(A) receptors.

    Science.gov (United States)

    Blednov, Y A; Borghese, C M; McCracken, M L; Benavidez, J M; Geil, C R; Osterndorff-Kahanek, E; Werner, D F; Iyer, S; Swihart, A; Harrison, N L; Homanics, G E; Harris, R A

    2011-01-01

    GABA type A receptors (GABA(A)-Rs) are potential targets of ethanol. However, there are multiple subtypes of this receptor, and, thus far, individual subunits have not been definitively linked with specific ethanol behavioral actions. Interestingly, though, a chromosomal cluster of four GABA(A)-R subunit genes, including α2 (Gabra2), was associated with human alcoholism (Am J Hum Genet 74:705-714, 2004; Pharmacol Biochem Behav 90:95-104, 2008; J Psychiatr Res 42:184-191, 2008). The goal of our study was to determine the role of receptors containing this subunit in alcohol action. We designed an α2 subunit with serine 270 to histidine and leucine 277 to alanine mutations that was insensitive to potentiation by ethanol yet retained normal GABA sensitivity in a recombinant expression system. Knockin mice containing this mutant subunit were tested in a range of ethanol behavioral tests. These mutant mice did not develop the typical conditioned taste aversion in response to ethanol and showed complete loss of the motor stimulant effects of ethanol. Conversely, they also demonstrated changes in ethanol intake and preference in multiple tests. The knockin mice showed increased ethanol-induced hypnosis but no difference in anxiolytic effects or recovery from acute ethanol-induced motor incoordination. Overall, these studies demonstrate that the effects of ethanol at GABAergic synapses containing the α2 subunit are important for specific behavioral effects of ethanol that may be relevant to the genetic linkage of this subunit with human alcoholism.

  4. Leaving a Flat Taste in Your Mouth: Task Load Reduces Taste Perception

    NARCIS (Netherlands)

    Wal, R.C. van der; Dillen, L.F. van

    2013-01-01

    In recent years, people have tended to pay less attention to their meals, often consuming them while engaging in other activities. At the same time, foods have become increasingly sweet and salty. We therefore investigated how performing concurrent activities affects taste perception and how this

  5. What do love and jealousy taste like?

    Science.gov (United States)

    Chan, Kai Qin; Tong, Eddie M W; Tan, Deborah H; Koh, Alethea H Q

    2013-12-01

    Metaphorical expressions linking love and jealousy to sweet, sour, and bitter tastes are common in normal language use and suggest that these emotions may influence perceptual taste judgments. Hence, we investigated whether the phenomenological experiences of love and jealousy are embodied in the taste sensations of sweetness, sourness, and bitterness. Studies 1A and 1B validated that these metaphors are widely endorsed. In three subsequent studies, participants induced to feel love rated a variety of tastants (sweet-sour candy, bitter-sweet chocolates, and distilled water) as sweeter than those who were induced to feel jealous, neutral, or happy. However, those induced to feel jealous did not differ from those induced to feel happy or neutral on bitter and sour ratings. These findings imply that emotions can influence basic perceptual judgments, but metaphors that refer to the body do not necessarily influence perceptual judgments the way they imply. We further suggest that future research in metaphoric social cognition and metaphor theory may benefit from investigating how such metaphors could have originated.

  6. Fluid Mechanics of Taste

    Science.gov (United States)

    Noel, Alexis; Bhatia, Nitesh; Carter, Taren; Hu, David

    2015-11-01

    Saliva plays a key role in digestion, speech and tactile sensation. Lack of saliva, also known as dry mouth syndrome, increases risk of tooth decay and alters sense of taste; nearly 10% of the general population suffer from this syndrome. In this experimental study, we investigate the spreading of water drops on wet and dry tongues of pigs and cows. We find that drops spread faster on a wet tongue than a dry tongue. We rationalize the spreading rate by consideration of the tongue microstructure, such as as papillae, in promoting wicking. By investigating how tongue microstructure affects spreading of fluids, we may begin to how understand taste receptors are activated by eating and drinking.

  7. Acquired hedonic and sensory characteristics of odours: influence of sweet liker and propylthiouracil taster status.

    Science.gov (United States)

    Yeomans, Martin R; Prescott, John; Gould, Natalie J

    2009-08-01

    Repeated pairings of novel food-related odours with sweet tastes can result in enduring changes in sweetness of the odour alone, but have less consistent effects on odour liking. Variation in ability to taste propylthiouracil (PROP) might account for this, since PROP supertasters (ST) have been reported both to experience stronger sweetness intensity and to be more likely to dislike sweetness than do PROP nontasters (NT). Alternatively, individual differences in liking for sweetness may transfer to sweet-paired odours independently of PROP sensitivity. To explore this, evaluations of sucrose, saccharin, and PROP solutions were used to classify 92 volunteers as either sweet likers or dislikers and as PROP ST, NT, or medium tasters (MT). Changes in pleasantness of odours that had been paired with the taste of saccharin increased in sweet likers but decreased in dislikers. Odour sweetness increased regardless of PROP taster or sweet liker status. PROP ST rated saccharin as more bitter than did other taster groups and also showed greater increases in acquired bitterness of the saccharin-paired odour. Overall, these data suggest that individual differences in evaluation of saccharin reliably predict subsequent changes in evaluation of saccharin-paired odours, with hedonic changes corresponding with liking for sweet tastes and sensory changes reflecting differences in sensory quality between PROP taster groups.

  8. Behavioral Evidence for More than One Taste Signaling Pathway for Sugars in Rats.

    Science.gov (United States)

    Schier, Lindsey A; Spector, Alan C

    2016-01-06

    By conventional behavioral measures, rodents respond to natural sugars, such as glucose and fructose, as though they elicit an identical perceptual taste quality. Beyond that, the metabolic and sensory effects of these two sugars are quite different. Considering the capacity to immediately respond to the more metabolically expedient sugar, glucose, would seem advantageous for energy intake, the present experiment assessed whether experience consuming these two sugars would modify taste-guided ingestive responses to their yet unknown distinguishing orosensory properties. One group (GvF) had randomized access to three concentrations of glucose and fructose (0.316, 0.56, 1.1 m) in separate 30-min single access training sessions, whereas control groups received equivalent exposure to the three glucose or fructose concentrations only, or remained sugar naive. Comparison of the microstructural licking patterns for the two sugars revealed that GvF responded more positively to glucose (increased total intake, increased burst size, decreased number of pauses), relative to fructose, across training. As training progressed, GvF rats began to respond more positively to glucose in the first minute of the session when intake is principally taste-driven. During post-training brief-access taste tests, GvF rats licked more for glucose than for fructose, whereas the other training groups did not respond differentially to the two sugars. Additional brief access testing showed that this did not generalize to Na-saccharin or galactose. Thus, in addition to eliciting a common taste signal, glucose and fructose produce distinct signals that are apparently rendered behaviorally relevant and hedonically distinct through experience. The taste pathway(s) underlying this remain to be identified. The T1R2+T1R3 heterodimer is thought by many to be the only taste receptor for sugars. Although most sugars have been conventionally shown to correspondingly produce a unitary taste percept (sweet

  9. Bitter Taste Responses of Gustducin-positive Taste Cells in Mouse Fungiform and Circumvallate Papillae.

    Science.gov (United States)

    Yoshida, Ryusuke; Takai, Shingo; Sanematsu, Keisuke; Margolskee, Robert F; Shigemura, Noriatsu; Ninomiya, Yuzo

    2018-01-15

    Bitter taste serves as an important signal for potentially poisonous compounds in foods to avoid their ingestion. Thousands of compounds are estimated to taste bitter and presumed to activate taste receptor cells expressing bitter taste receptors (Tas2rs) and coupled transduction components including gustducin, phospholipase Cβ2 (PLCβ2) and transient receptor potential channel M5 (TRPM5). Indeed, some gustducin-positive taste cells have been shown to respond to bitter compounds. However, there has been no systematic characterization of their response properties to multiple bitter compounds and the role of transduction molecules in these cells. In this study, we investigated bitter taste responses of gustducin-positive taste cells in situ in mouse fungiform (anterior tongue) and circumvallate (posterior tongue) papillae using transgenic mice expressing green fluorescent protein in gustducin-positive cells. The overall response profile of gustducin-positive taste cells to multiple bitter compounds (quinine, denatonium, cyclohexamide, caffeine, sucrose octaacetate, tetraethylammonium, phenylthiourea, L-phenylalanine, MgSO 4 , and high concentration of saccharin) was not significantly different between fungiform and circumvallate papillae. These bitter-sensitive taste cells were classified into several groups according to their responsiveness to multiple bitter compounds. Bitter responses of gustducin-positive taste cells were significantly suppressed by inhibitors of TRPM5 or PLCβ2. In contrast, several bitter inhibitors did not show any effect on bitter responses of taste cells. These results indicate that bitter-sensitive taste cells display heterogeneous responses and that TRPM5 and PLCβ2 are indispensable for eliciting bitter taste responses of gustducin-positive taste cells. Copyright © 2017 IBRO. Published by Elsevier Ltd. All rights reserved.

  10. Structure-sweetness relationship in egg white lysozyme: role of lysine and arginine residues on the elicitation of lysozyme sweetness.

    Science.gov (United States)

    Masuda, Tetsuya; Ide, Nobuyuki; Kitabatake, Naofumi

    2005-10-01

    Lysozyme is one of the sweet-tasting proteins. To clarify the structure-sweetness relationship and the basicity-sweetness relationship in lysozyme, we have generated lysozyme mutants with Pichia systems. Alanine substitution of lysine residues demonstrated that two out of six lysine residues, Lys13 and Lys96, are required for lysozyme sweetness, while the remaining four lysine residues do not play a significant role in the perception of sweetness. Arginine substitution of lysine residues revealed that the basicity, but not the shape, of the side chain plays a significant role in sweetness. Single alanine substitutions of arginine residues showed that three arginine residues, Arg14, Arg21, and Arg73, play significant roles in lysozyme sweetness, whereas Arg45, Arg68, Arg125 and chemical modification by 1,2-cyclohexanedione did not affect sweetness. From investigation of the charge-specific mutations, we found that the basicity of a broad surface region formed by five positively charged residues, Lys13, Lys96, Arg14, Arg21, and Arg73, is required for lysozyme sweetness. Differences in the threshold values among sweet-tasting proteins might be caused by the broadness and/or the density of charged residues on the protein surface.

  11. The effect of barium on perceptions of taste intensity and palatability

    Science.gov (United States)

    Dietsch, Angela M.; Solomon, Nancy Pearl; Steele, Catriona M.; Pelletier, Cathy A.

    2015-01-01

    Purpose Barium may affect the perception of taste intensity and palatability. Such differences are important considerations in the selection of dysphagia assessment strategies and interpretation of results. Methods Eighty healthy women grouped by age (younger, older) and genetic taste status (supertaster, non-taster) rated intensity and palatability for seven tastants prepared in deionized water with and without 40% w/v barium: non-carbonated and carbonated water, diluted ethanol, and high concentrations of citric acid (sour), sodium chloride (salty), caffeine (bitter) and sucrose (sweet). Mixed model analyses explored the effects of barium, taster status, and age on perceived taste intensity and acceptability of stimuli. Results Barium was associated with lower taste intensity ratings for sweet, salty, and bitter tastants, higher taste intensity in carbonated water, and lower palatability in water, sweet, sour, and carbonated water. Older subjects reported lower palatability (all barium samples, sour) and higher taste intensity scores (ethanol, sweet, sour) compared to younger subjects. Supertasters reported higher taste intensity (ethanol, sweet, sour, salty, bitter) and lower palatability (ethanol, salty, bitter) than non-tasters. Refusal rates were highest for younger subjects and supertasters, and for barium (regardless of tastant), bitter, and ethanol. Conclusions Barium suppressed the perceived intensity of some tastes and reduced palatability. These effects are more pronounced in older subjects and supertasters, but younger supertasters are least likely to tolerate trials of barium and strong tastant solutions. PMID:24037100

  12. Influence of carboxymethyl cellulose and sodium alginate on sweetness intensity of Aspartame.

    Science.gov (United States)

    Han, Xue; Xu, Shu-Zhen; Dong, Wen-Rui; Wu, Zhai; Wang, Ren-Hai; Chen, Zhong-Xiu

    2014-12-01

    Sensory evaluation of Aspartame in the presence of sodium carboxymethyl cellulose (CMC-L) and sodium alginate (SA) revealed that only CMC-L showed a suppression effect, while SA did not. By using an artificial taste receptor model, we found that the presence of SA or CMC-L resulted in a decrease in association constants. Further investigation of CMC-L solution revealed that the decrease in water mobility and diffusion also contribute to the suppression effect. In the case of SA, the decreased viscosity and comparatively higher amount of free water facilitated the diffusion of sweetener, which might compensate for the decreased binding constant between Aspartame and receptor. This may suppress the impact of SA on sweetness intensity. The results suggest that exploring the binding affinity of taste molecules with the receptor, along with water mobility and diffusion in hydrocolloidal structures, provide sufficient information for understanding the mechanism behind the effect of macromolecular hydrocolloids on taste. Copyright © 2014 Elsevier Ltd. All rights reserved.

  13. Development of a Sweetness Sensor for Aspartame, a Positively Charged High-Potency Sweetener

    OpenAIRE

    Masato Yasuura; Yusuke Tahara; Hidekazu Ikezaki; Kiyoshi Toko

    2014-01-01

    Taste evaluation technology has been developed by several methods, such as sensory tests, electronic tongues and a taste sensor based on lipid/polymer membranes. In particular, the taste sensor can individually quantify five basic tastes without multivariate analysis. However, it has proven difficult to develop a sweetness sensor, because sweeteners are classified into three types according to the electric charges in an aqueous solution; that is, no charge, negative charge and positive charge...

  14. Taste hedonics influence the disposition of fat by modulating gastric emptying in rats.

    Directory of Open Access Journals (Sweden)

    Katsuyoshi Saitou

    Full Text Available We investigated how preferred and nonpreferred tastes influence the disposition of fat. Adult male Sprague Dawley rats were infused with 5 ml of 20% intralipid through an intragastric catheter and with 0.3 ml of a taste solution through an intraoral catheter. At 120 min postinfusion, plasma concentrations of fat fuels (triglycerides and non-esterified fatty acids were either unchanged or slightly higher after rats tasted a preferred sweet taste solution (0.125% saccharin +3% glucose than after they tasted water. They were markedly lower after rats tasted a non-preferred solution-either a bitter solution (0.15% quinine hydrochloride or a sweet solution that had previously been the conditioned stimulus for lithium-induced taste aversion. The distribution of 14C-triolein mixed with the gastric load was determined at 4 h postinfusion. Rats that received a non-preferred bitter taste had significantly more 14C remaining in the stomach than did those that received a preferred sweet taste. These results suggest that taste hedonics--either unconditioned or conditioned aversive tastes--influence fat disposition by altering gastric emptying.

  15. Taste Preference Assay for Adult Drosophila.

    Science.gov (United States)

    Bantel, Andrew P; Tessier, Charles R

    2016-09-08

    Olfactory and gustatory perception of the environment is vital for animal survival. The most obvious application of these chemosenses is to be able to distinguish good food sources from potentially dangerous food sources. Gustation requires physical contact with a chemical compound which is able to signal through taste receptors that are expressed on the surface of neurons. In insects, these gustatory neurons can be located across the animal's body allowing taste to play an important role in many different behaviors. Insects typically prefer compounds containing sugars, while compounds that are considered bitter tasting are avoided. Given the basic biological importance of taste, there is intense interest in understanding the molecular mechanisms underlying this sensory modality. We describe an adult Drosophila taste assay which reflects the preference of the animals for a given tastant compound. This assay may be applied to animals of any genetic background to examine the taste preference for a desired soluble compound.

  16. Taste and Smell Disorders

    Science.gov (United States)

    Our senses of taste and smell give us great pleasure. Taste helps us enjoy food and beverages. Smell lets us enjoy the scents and fragrances like roses or coffee. Taste and smell also protect us, letting us know when food ...

  17. Individual Differences Among Children in Sucrose Detection Thresholds: Relationship With Age, Gender, and Bitter Taste Genotype.

    Science.gov (United States)

    Joseph, Paule Valery; Reed, Danielle R; Mennella, Julie A

    2016-01-01

    Little research has focused on whether there are individual differences among children in their sensitivity to sweet taste and, if so, the biological correlates of such differences. Our goal was to understand how variations in children's sucrose detection thresholds relate to their age and gender, taste genotype, body composition, and dietary intake of added sugars. Sucrose detection thresholds in 7- to 14-year-old children were tested individually using a validated, two-alternative, forced-choice, paired-comparison tracking method. Five genetic variants of taste genes were assayed: TAS1R3 and GNAT3 (sweet genes; one variant each) and the bitter receptor gene TAS2R38 (three variants). All children were measured for body weight and height. A subset of these children were measured for the percentage of body fat and waist circumference and provided added sugar intake by 24-hour dietary recall. Sucrose thresholds ranged from 0.23 to 153.8 mM with most of the children completing the threshold task (216/235; 92%). Some children were biologically related (i.e., siblings), and for the genetic analysis, one sibling from each family was studied. Variants in the bitter but not the sweet genes were related to sucrose threshold and sugar intake; children with two bitter-sensitive alleles could detect sucrose at lower concentrations (F(2,165) = 4.55, p = .01; rs1726866) and reported eating more added sugar (% kcal; F(2, 62) = 3.64, p = .03) than did children with less sensitive alleles. Age, gender, and indices of obesity also were related to child-to-child differences in sucrose threshold; girls were more sensitive than boys (t(214) = 2.0, p = .05), older children were more sensitive than younger children (r(214) = -.16, p = .02), and fatter (r(84) = -.22, p = .05) or more centrally obese children (r(84) = -.26, p = .02) were more sensitive relative to others. Inborn differences in bitter sensitivity may affect childhood dietary sugar intake with long-term health consequences

  18. Calcitonin Gene-Related Peptide Reduces Taste-Evoked ATP Secretion from Mouse Taste Buds.

    Science.gov (United States)

    Huang, Anthony Y; Wu, Sandy Y

    2015-09-16

    Immunoelectron microscopy revealed that peripheral afferent nerve fibers innervating taste buds contain calcitonin gene-related peptide (CGRP), which may be as an efferent transmitter released from peripheral axon terminals. In this report, we determined the targets of CGRP within taste buds and studied what effect CGRP exerts on taste bud function. We isolated mouse taste buds and taste cells, conducted functional imaging using Fura-2, and used cellular biosensors to monitor taste-evoked transmitter release. The findings showed that a subset of Presynaptic (Type III) taste cells (53%) responded to 0.1 μm CGRP with an increase in intracellular Ca(2+). In contrast, Receptor (Type II) taste cells rarely (4%) responded to 0.1 μm CGRP. Using pharmacological tools, the actions of CGRP were probed and elucidated by the CGRP receptor antagonist CGRP(8-37). We demonstrated that this effect of CGRP was dependent on phospholipase C activation and was prevented by the inhibitor U73122. Moreover, applying CGRP caused taste buds to secrete serotonin (5-HT), a Presynaptic (Type III) cell transmitter, but not ATP, a Receptor (Type II) cell transmitter. Further, our previous studies showed that 5-HT released from Presynaptic (Type III) cells provides negative paracrine feedback onto Receptor (Type II) cells by activating 5-HT1A receptors, and reducing ATP secretion. Our data showed that CGRP-evoked 5-HT release reduced taste-evoked ATP secretion. The findings are consistent with a role for CGRP as an inhibitory transmitter that shapes peripheral taste signals via serotonergic signaling during processing gustatory information in taste buds. The taste sensation is initiated with a highly complex set of interactions between a variety of cells located within the taste buds before signal propagation to the brain. Afferent signals from the oral cavity are carried to the brain in chemosensory fibers that contribute to chemesthesis, the general chemical sensitivity of the mucus

  19. Sodium/glucose cotransporter-1, sweet receptor, and disaccharidase expression in the intestine of the domestic dog and cat: two species of different dietary habit.

    Science.gov (United States)

    Batchelor, D J; Al-Rammahi, M; Moran, A W; Brand, J G; Li, X; Haskins, M; German, A J; Shirazi-Beechey, S P

    2011-01-01

    The domestic cat (Felis catus), a carnivore, naturally eats a very low carbohydrate diet. In contrast, the dog (Canis familiaris), a carno-omnivore, has a varied diet. This study was performed to determine the expression of the intestinal brush border membrane sodium/glucose cotransporter, SGLT1, sweet receptor, T1R2/T1R3, and disaccharidases in these species adapted to contrasting diets. The expression (this includes function) of SGLT1, sucrase, maltase and lactase were determined using purified brush border membrane vesicles and by quantitative immunohistochemistry of fixed tissues. The pattern of expression of subunits of the sweet receptor T1R2 and T1R3 was assessed using fluorescent immunohistochemistry. In proximal, middle, and distal small intestine, SGLT1 function in dogs was 1.9- to 2.3-fold higher than in cats (P = 0.037, P = 0.0011, P = 0.027, respectively), and SGLT1 protein abundance followed an identical pattern. Both cats and dogs express T1R3 in a subset of intestinal epithelial cells, and dogs, but not cats, express T1R2. In proximal and middle regions, there were 3.1- and 1.6-fold higher lactase (P = 0.006 and P = 0.019), 4.4- and 2.9-fold higher sucrase (both P cats. Dogs have a potential higher capacity to digest and absorb carbohydrates than cats. Cats may suffer from carbohydrate malabsorption following ingestion of high-carbohydrate meals. However, dogs have a digestive ability to cope with diets containing significant levels of carbohydrate.

  20. Does Consuming Sugar and Artificial Sweeteners Change Taste Preferences?

    Science.gov (United States)

    Bartolotto, Carole

    2015-01-01

    Americans consume 22.3 teaspoons of added caloric sweeteners a day. Sweeteners range from 180 to 13,000 times sweeter than sugar. In summer 2014, 20 people from Kaiser Permanente California facilities cut out all added sugars and artificial sweeteners for 2 weeks: 95% of participants found that sweet foods and drinks tasted sweeter or too sweet, 75% found that other foods tasted sweeter, and 95% said moving forward they would use less or even no sugar. Additionally, 86.6% of participants stopped craving sugar after 6 days.

  1. Potential sweetening agents of plant origin. III. Organoleptic evaluation of Stevia leaf herbarium samples for sweetness.

    Science.gov (United States)

    Soejarto, D D; Kinghorn, A D; Farnsworth, N R

    1982-01-01

    A total of 184 Stevia leaf samples taken from herbarium specimens, representing 110 species and 121 taxa, were screened organoleptically for their taste sensation. Fragments of a 62-year-old leaf of S. rebaudiana exhibited a potent and prolonged sensation of sweetness, thereby indicating the stability of its sweet ent-kaurene glycoside constituents to drying, preservation, mounting and storage. No other leaf samples exhibited an intensity of sweetness equivalent to that of S. rebaudiana, though 18 species and varieties were considered to exhibit a sweet taste. These taxa appear to be promising candidates for future phytochemical investigation for new and known ent-kaurene glycosides.

  2. Tasting calories differentially affects brain activation during hunger and satiety.

    Science.gov (United States)

    van Rijn, Inge; de Graaf, Cees; Smeets, Paul A M

    2015-02-15

    An important function of eating is ingesting energy. Our objectives were to assess whether oral exposure to caloric and non-caloric stimuli elicits discriminable responses in the brain and to determine in how far these responses are modulated by hunger state and sweetness. Thirty women tasted three stimuli in two motivational states (hunger and satiety) while their brain responses were measured using functional magnetic resonance imaging in a randomized crossover design. Stimuli were solutions of sucralose (sweet, no energy), maltodextrin (non-sweet, energy) and sucralose+maltodextrin (sweet, energy). We found no main effect of energy content and no interaction between energy content and sweetness. However, there was an interaction between hunger state and energy content in the median cingulate (bilaterally), ventrolateral prefrontal cortex, anterior insula and thalamus. This indicates that the anterior insula and thalamus, areas in which hunger state and taste of a stimulus are integrated, also integrate hunger state with caloric content of a taste stimulus. Furthermore, in the median cingulate and ventrolateral prefrontal cortex, tasting energy resulted in more activation during satiety compared to hunger. This finding indicates that these areas, which are known to be involved in processes that require approach and avoidance, are also involved in guiding ingestive behavior. In conclusion, our results suggest that energy sensing is a hunger state dependent process, in which the median cingulate, ventrolateral prefrontal cortex, anterior insula and thalamus play a central role by integrating hunger state with stimulus relevance. Copyright © 2014 Elsevier B.V. All rights reserved.

  3. Genetics of Amino Acid Taste and Appetite123

    OpenAIRE

    Bachmanov, Alexander A; Bosak, Natalia P; Glendinning, John I; Inoue, Masashi; Li, Xia; Manita, Satoshi; McCaughey, Stuart A; Murata, Yuko; Reed, Danielle R; Tordoff, Michael G; Beauchamp, Gary K

    2016-01-01

    The consumption of amino acids by animals is controlled by both oral and postoral mechanisms. We used a genetic approach to investigate these mechanisms. Our studies have shown that inbred mouse strains differ in voluntary amino acid consumption, and these differences depend on sensory and nutritive properties of amino acids. Like humans, mice perceive some amino acids as having a sweet (sucrose-like) taste and others as having an umami (glutamate-like) taste. Mouse strain differences in the ...

  4. Sweetness, satiation, and satiety.

    Science.gov (United States)

    Bellisle, France; Drewnowski, Adam; Anderson, G Harvey; Westerterp-Plantenga, Margriet; Martin, Corby K

    2012-06-01

    Satiation and satiety are central concepts in the understanding of appetite control and both have to do with the inhibition of eating. Satiation occurs during an eating episode and brings it to an end. Satiety starts after the end of eating and prevents further eating before the return of hunger. Enhancing satiation and satiety derived from foodstuffs was perceived as a means to facilitate weight control. Many studies have examined the various sensory, cognitive, postingestive, and postabsorptive factors that can potentially contribute to the inhibition of eating. In such studies, careful attention to study design is crucial for correct interpretation of the results. Although sweetness is a potent sensory stimulus of intake, sweet-tasting products produce satiation and satiety as a result of their volume as well as their nutrient and energy content. The particular case of energy intake from fluids has generated much research and it is still debated whether energy from fluids is as satiating as energy ingested from solid foods. This review discusses the satiating power of foods and drinks containing nutritive and nonnutritive sweeteners. The brain mechanisms of food reward (in terms of "liking" and "wanting") are also addressed. Finally, we highlight the importance of reward homeostasis, which can help prevent eating in the absence of hunger, for the control of intake.

  5. Revisiting sugar-fat mixtures: sweetness and creaminess vary with phenotypic markers of oral sensation.

    Science.gov (United States)

    Hayes, John E; Duffy, Valerie B

    2007-03-01

    Genetic variation in oral sensation presumably influences ingestive behaviors through sensations arising from foods and beverages. Here, we investigated the influence of taste phenotype [6-n-propylthiouracil (PROP) bitterness, fungiform papillae (FP) density] on sweet and creamy sensations from sugar/fat mixtures. Seventy-nine subjects (43 males) reported the sweetness and creaminess of water or milk (skim, whole, heavy cream) varying in sucrose (0-20% w/v) on the general Labeled Magnitude Scale. Sweetness grew with sucrose concentration and when shifting from water to milk mixtures--the growth was greatest for those tasting PROP as most bitter. At higher sucrose levels, increasing fat blunted the PROP-sweet relationship, whereas at lower levels, the relationship was effectively eliminated. Perceived sweetness of the mixture exceeded that predicted from the sum of components at low sucrose concentrations (especially for those tasting PROP most bitter) but fell below predicted at high concentrations, irrespective of fat level. Creaminess increased greatly with fat level and somewhat with sucrose. Those tasting PROP most bitter perceived greater creaminess in the heavy cream across all sucrose levels. Perceived creaminess was somewhat lower than predicted, irrespective of PROP bitterness. The FP density generally showed similar effects as PROP on sweetness and creaminess, (but to a lesser degree) and revealed potential taste-somatosensory interactions in weakly sweet stimuli. These data support that taste phenotype affects the nature of enhancement or suppression of sweetness and creaminess in liquid fat/sugar mixtures. Taste phenotype effects on sweetness and creaminess likely involve differential taste, retronasal olfactory, and somatosensory contributions to these perceptual experiences.

  6. 5-HT1A receptor antagonists reduce food intake and body weight by reducing total meals with no conditioned taste aversion.

    Science.gov (United States)

    Dill, M Joelle; Shaw, Janice; Cramer, Jeff; Sindelar, Dana K

    2013-11-01

    Serotonin acts through receptors controlling several physiological functions, including energy homeostasis regulation and food intake. Recent experiments demonstrated that 5-HT1A receptor antagonists reduce food intake. We sought to examine the microstructure of feeding with 5-HT1A receptor antagonists using a food intake monitoring system. We also examined the relationship between food intake, inhibition of binding and pharmacokinetic (PK) profiles of the antagonists. Ex vivo binding revealed that, at doses used in this study to reduce food intake, inhibition of binding of a 5-HT1A agonist by ~40% was reached in diet-induced obese (DIO) mice with a trend for higher binding in DIO vs. lean animals. Additionally, PK analysis detected levels from 2 to 24h post-compound administration. Male DIO mice were administered 5-HT1A receptor antagonists LY439934 (10 or 30 mg/kg, p.o.), WAY100635 (3 or 10mg/kg, s.c.), SRA-333 (10 or 30 mg/kg, p.o.), or NAD-299 (3 or 10mg/kg, s.c.) for 3 days and meal patterns were measured. Analyses revealed that for each antagonist, 24-h food intake was reduced through a specific decrease in the total number of meals. Compared to controls, meal number was decreased 14-35% in the high dose. Average meal size was not changed by any of the compounds. The reduction in food intake reduced body weight 1-4% compared to Vehicle controls. Subsequently, a conditioned taste aversion (CTA) assay was used to determine whether the feeding decrease might be an indicator of aversion, nausea, or visceral illness caused by the antagonists. Using a two bottle preference test, it was found that none of the compounds produced a CTA. The decrease in food intake does not appear to be a response to nausea or malaise. These results indicate that 5-HT1A receptor antagonist suppresses feeding, specifically by decreasing the number of meals, and induce weight loss without an aversive side effect. © 2013 Elsevier Inc. All rights reserved.

  7. Changing Tastes

    DEFF Research Database (Denmark)

    Hillersdal, Line; Christensen, Bodil Just; Holm, Lotte

    2017-01-01

    Gastric bypass surgery is a specific medical technology that alters the body in ways that force the patient to fundamentally change his or her eating habits. When patients enrol for surgery, they enter a learning process, encountering new and at times contested ways of sensing their bodies, tasting......, and experiencing hunger and fullness. In this paper, we explore how patients begin to eat again after gastric bypass surgery. The empirical data used here are drawn from a Danish fieldwork study of persons undergoing obesity surgery. The material presented shows how the patients used instructions on how to eat. We...... explore the ways in which diverse new experiences and practices of hunger and fullness are part of the process of undergoing surgery for severe obesity. New sensory experiences lead to uncertainty; as a result, patients practice what we term mimetic eating, which reflects a ‘sensory displacement...

  8. Colorimetric Sensor Array for White Wine Tasting.

    Science.gov (United States)

    Chung, Soo; Park, Tu San; Park, Soo Hyun; Kim, Joon Yong; Park, Seongmin; Son, Daesik; Bae, Young Min; Cho, Seong In

    2015-07-24

    A colorimetric sensor array was developed to characterize and quantify the taste of white wines. A charge-coupled device (CCD) camera captured images of the sensor array from 23 different white wine samples, and the change in the R, G, B color components from the control were analyzed by principal component analysis. Additionally, high performance liquid chromatography (HPLC) was used to analyze the chemical components of each wine sample responsible for its taste. A two-dimensional score plot was created with 23 data points. It revealed clusters created from the same type of grape, and trends of sweetness, sourness, and astringency were mapped. An artificial neural network model was developed to predict the degree of sweetness, sourness, and astringency of the white wines. The coefficients of determination (R2) for the HPLC results and the sweetness, sourness, and astringency were 0.96, 0.95, and 0.83, respectively. This research could provide a simple and low-cost but sensitive taste prediction system, and, by helping consumer selection, will be able to have a positive effect on the wine industry.

  9. Acquisition and expression of Conditioned Taste Aversion differentially affects Extracellular signal Regulated Kinase and Glutamate receptor phosphorylation in rat Prefrontal Cortex and Nucleus Accumbens

    Directory of Open Access Journals (Sweden)

    Roberto eMarotta

    2014-05-01

    Full Text Available Conditioned taste aversion (CTA can be applied to study associative learning and its relevant underpinning molecular mechanisms in discrete brain regions. The present study examined, by immunohistochemistry and immunocytochemistry, the effects of acquisition and expression of lithium-induced CTA on activated Extracellular signal Regulated Kinase (p-ERK in the prefrontal cortex (PFCx and nucleus accumbens (Acb of male Sprague-Dawley rats. The study also examined, by immunoblotting, whether acquisition and expression of lithium-induced CTA resulted in modified levels of phosphorylation of glutamate receptor subunits (NR1 and GluR1 and Thr34- and Thr75-Dopamine-and-cAMP-Regulated PhosphoProtein (DARPP-32. CTA acquisition was associated with an increase of p-ERK-positive neurons and phosphorylated NR1 receptor subunit (p-NR1 in the PFCx, whereas p-GluR1, p-Thr34- and p-Thr75-DARPP-32 levels were not changed in this brain region. CTA expression increased the number of p-ERK-positive neurons in the shell (AcbSh and core (AcbC but left unmodified p-NR1, p-GluR1, p-Thr34- and p-Thr75-DARPP-32 levels. Furthermore, post-embedding immunogold quantitative analysis in AcbSh revealed that CTA expression significantly increased nuclear p-ERK immunostaining as well as p-ERK-labeled axo-spinous contacts. Overall, these results indicate that ERK and NR1, but not GluR1 and DARPP-32, are differentially phosphorylated as a consequence of acquisition and expression of aversive associative learning. Moreover, these results confirm that CTA represents an useful approach to study the molecular basis of associative learning in rats and suggest the involvement of ERK cascade in learning-associated synaptic plasticity.

  10. Genetic variations in taste perception modify alcohol drinking behavior in Koreans.

    Science.gov (United States)

    Choi, Jeong-Hwa; Lee, Jeonghee; Yang, Sarah; Kim, Jeongseon

    2017-06-01

    The sensory components of alcohol affect the onset of individual's drinking. Therefore, variations in taste receptor genes may lead to differential sensitivity for alcohol taste, which may modify an individual's drinking behavior. This study examined the influence of genetic variants in the taste-sensing mechanism on alcohol drinking behavior and the choice of alcoholic beverages. A total of 1829 Koreans were analyzed for their alcohol drinking status (drinker/non-drinker), total alcohol consumption (g/day), heavy drinking (≥30 g/day) and type of regularly consumed alcoholic beverages. Twenty-one genetic variations in bitterness, sweetness, umami and fatty acid sensing were also genotyped. Our findings suggested that multiple genetic variants modified individuals' alcohol drinking behavior. Genetic variations in the T2R bitterness receptor family were associated with overall drinking behavior. Subjects with the TAS2R38 AVI haplotype were less likely to be a drinker [odds ratio (OR): 0.75, 95% confidence interval (CI): 0.59-0.95], and TAS2R5 rs2227264 predicted the level of total alcohol consumption (p = 0.01). In contrast, the T1R sweet and umami receptor family was associated with heavy drinking. TAS1R3 rs307355 CT carriers were more likely to be heavy drinkers (OR: 1.53, 95% CI: 1.06-2.19). The genetic variants were also associated with the choice of alcoholic beverages. The homo-recessive type of TAS2R4 rs2233998 (OR: 1.62, 95% CI: 1.11-2.37) and TAS2R5 rs2227264 (OR: 1.72, 95% CI: 1.14-2.58) were associated with consumption of rice wine. However, TAS1R2 rs35874116 was associated with wine drinking (OR: 0.65, 95% CI: 0.43-0.98) and the consumption level (p = 0.04). These findings suggest that multiple genetic variations in taste receptors influence drinking behavior in Koreans. Genetic variations are also responsible for the preference of particular alcoholic beverages, which may contribute to an individual's alcohol drinking behavior. Copyright © 2017

  11. Temporal, Affective, and Embodied Characteristics of Taste Experiences: A Framework for Design

    NARCIS (Netherlands)

    Obrist, M.; Comber, R.; Subramanian, S.; Piqueras Fiszman, B.; Velasco, C.; Spence, C.

    2014-01-01

    We present rich descriptions of taste experience through an analysis of the diachronic and synchronic experiences of each of the five basic taste qualities: sweet, sour, salt, bitter, and umami. Our findings, based on a combination of user experience evaluation techniques highlight three main

  12. Basic taste stimuli elicit unique responses in facial skin blood flow.

    Directory of Open Access Journals (Sweden)

    Hideaki Kashima

    Full Text Available Facial expression changes characteristically with the emotions induced by basic tastes in humans. We tested the hypothesis that the five basic tastes also elicit unique responses in facial skin blood flow. Facial skin blood flow was measured using laser speckle flowgraphy in 16 healthy subjects before and during the application of basic taste stimuli in the oral cavity for 20 s. The skin blood flow in the eyelid increased in response to sweet and umami taste stimuli, while that in the nose decreased in response to a bitter stimulus. There was a significant correlation between the subjective hedonic scores accompanying these taste stimuli and the above changes in skin blood flow. These results demonstrate that sweet, umami, and bitter tastes induce unique changes in facial skin blood flow that reflect subjective hedonic scores.

  13. Drosophila fatty acid taste signals through the PLC pathway in sugar-sensing neurons.

    Directory of Open Access Journals (Sweden)

    Pavel Masek

    Full Text Available Taste is the primary sensory system for detecting food quality and palatability. Drosophila detects five distinct taste modalities that include sweet, bitter, salt, water, and the taste of carbonation. Of these, sweet-sensing neurons appear to have utility for the detection of nutritionally rich food while bitter-sensing neurons signal toxicity and confer repulsion. Growing evidence in mammals suggests that taste for fatty acids (FAs signals the presence of dietary lipids and promotes feeding. While flies appear to be attracted to fatty acids, the neural basis for fatty acid detection and attraction are unclear. Here, we demonstrate that a range of FAs are detected by the fly gustatory system and elicit a robust feeding response. Flies lacking olfactory organs respond robustly to FAs, confirming that FA attraction is mediated through the gustatory system. Furthermore, flies detect FAs independent of pH, suggesting the molecular basis for FA taste is not due to acidity. We show that low and medium concentrations of FAs serve as an appetitive signal and they are detected exclusively through the same subset of neurons that sense appetitive sweet substances, including most sugars. In mammals, taste perception of sweet and bitter substances is dependent on phospholipase C (PLC signaling in specialized taste buds. We find that flies mutant for norpA, a Drosophila ortholog of PLC, fail to respond to FAs. Intriguingly, norpA mutants respond normally to other tastants, including sucrose and yeast. The defect of norpA mutants can be rescued by selectively restoring norpA expression in sweet-sensing neurons, corroborating that FAs signal through sweet-sensing neurons, and suggesting PLC signaling in the gustatory system is specifically involved in FA taste. Taken together, these findings reveal that PLC function in Drosophila sweet-sensing neurons is a conserved molecular signaling pathway that confers attraction to fatty acids.

  14. Technique to collect fungiform (taste) papillae from human tongue.

    Science.gov (United States)

    Spielman, Andrew I; Pepino, M Yanina; Feldman, Roy; Brand, Joseph G

    2010-09-18

    The sense of taste is critical for human life. It informs the body about the quality of food that will be potentially ingested and stimulates metabolic processes that prepare the alimentary canal for digestion. Steady progress is being made towards understanding the early biochemical and molecular events underlying taste transduction (for a review, Breslin and Spector, 2008). However, progress to date has largely resulted from animal models. Yet, since marked differences in receptor specificity and receptor density vary among species, human taste transduction will only be understood by using human taste tissue. Here we describe a biopsy technique to collect human fungiform papillae, visible as rounded pink anterior structures, about 0.5 mm in diameter that contain taste buds. These biopsied papillae are used for several purposes including the isolation of viable taste bud cells, in situ hybridization, immunohistochemistry and, through techniques of molecular biology, the identification of taste-specific novel proteins.

  15. Molecular mechanisms involved in taste learning and memory

    Directory of Open Access Journals (Sweden)

    Andrés Molero-Chamizo

    2017-09-01

    Full Text Available Taste learning, and particularly conditioned taste aversion (CTA, is an adaptive learning involving complex brain mechanisms and molecular pathways. Taste learning and CTA are critical behaviors for survival, and the knowledge of the molecular bases involved in the acquisition, retention and extinction of CTA can help to understand the brain mechanisms of normal and altered taste learning. The aim of this review is to describe recent findings on the molecular mechanisms of taste learning, from the genetic, receptors, and intracellular and extracellular signaling biological levels. We can conclude that some molecular pathways and processes for the acquisition of taste learning and the formation of taste memories are well identified. However, new molecular, neurobiological and behavioral studies are needed to thoroughly elucidate the complexity of the taste system and the neural mechanisms of CTA.

  16. Intracellular Ca2+ and the phospholipid PIP2 regulate the taste transduction ion channel TRPM5.

    Science.gov (United States)

    Liu, Dan; Liman, Emily R

    2003-12-09

    The transduction of taste is a fundamental process that allows animals to discriminate nutritious from noxious substances. Three taste modalities, bitter, sweet, and amino acid, are mediated by G protein-coupled receptors that signal through a common transduction cascade: activation of phospholipase C beta2, leading to a breakdown of phosphatidylinositol-4,5-bisphosphate (PIP2) into diacylglycerol and inositol 1,4,5-trisphosphate, which causes release of Ca2+ from intracellular stores. The ion channel, TRPM5, is an essential component of this cascade; however, the mechanism by which it is activated is not known. Here we show that heterologously expressed TRPM5 forms a cation channel that is directly activated by micromolar concentrations of intracellular Ca2+ (K1/2 = 21 microM). Sustained exposure to Ca2+ desensitizes TRPM5 channels, but PIP2 reverses desensitization, partially restoring channel activity. Whole-cell TRPM5 currents can be activated by intracellular Ca2+ and show strong outward rectification because of voltage-sensitive gating of the channels. TRPM5 channels are nonselective among monovalent cations and not detectably permeable to divalent cations. We propose that the regulation of TRPM5 by Ca2+ mediates sensory activation in the taste system.

  17. Evidence for a novel mechanism of binding and release of stimuli in the primate taste bud.

    Science.gov (United States)

    Farbman, A I; Hellekant, G

    1989-10-01

    In previous work, we showed that thaumatin, an intensely sweet protein, binds to certain formed elements in taste pores of Rhesus monkey foliate papillae, namely, microvilli and small vesicles shed from microvilli, in addition to amorphous secretions (Farbman et al., 1987). We suggested that the taste bud responds to a thaumatin stimulus by shedding the small vesicles containing fragments of microvillar membrane bearing the stimulus-binding site complex. To examine this hypothesis further, we used electron microscopy to examine taste pores of both vallate and foliate papillae from Rhesus monkeys before or after stimulation with thaumatin or sucrose. We also recorded the neural activity from the glossopharyngeal nerve during stimulation with thaumatin, sucrose, citric acid, and NaCl. The results indicate (1) with no stimulation, vesicles are found in pores of foliate papilla taste buds much more frequently than in pores of vallate papilla buds, (2) in both types of papillae, stimulation with sucrose has no apparent effect on the number of pores containing vesicles, (3) stimulation with thaumatin elicits release of vesicles into pores of both foliate and vallate buds, (4) repeated stimulation of taste buds with thaumatin results in a declining neural response, not seen after repeated stimulation with sucrose, citric acid, or NaCl, and (5) stimulation with thaumatin suppresses the neural response to sucrose, but the reverse does not occur. The combined morphological and physiological data support our original hypothesis that, in response to thaumatin stimulation, binding sites on taste microvillar membranes may be shed as a stimulus-receptor complex into the pore. Alternatively, the binding sites may in some way be altered by the shedding of part of the membrane. The data suggest further that the binding site for sucrose may be close to that for thaumatin because it too is lost or altered after thaumatin stimulation. The reduced neural response after repeated

  18. Tasting calories differentially affects brain activation during hunger and satiety

    NARCIS (Netherlands)

    van Rijn, Inge; de Graaf, Cees; Smeets, Paul A M

    2015-01-01

    Our objectives were to assess whether oral exposure to caloric and non-caloric stimuli elicits discriminable responses in the brain and to determine in how far these responses are modulated by hunger state and sweetness. Thirty women tasted three stimuli in two motivational states (hunger and

  19. Tasting calories differentially affects brain activation during hunger and satiety

    NARCIS (Netherlands)

    Rijn, van I.; Graaf, de C.; Smeets, P.A.M.

    2015-01-01

    An important function of eating is ingesting energy. Our objectives were to assess whether oral exposure to caloric and non-caloric stimuli elicits discriminable responses in the brain and to determine in how far these responses are modulated by hunger state and sweetness. Thirty women tasted three

  20. The Elements of Taste: How Many Are There?

    Science.gov (United States)

    Wertz, S. K.

    2013-01-01

    What is the number of tastes or flavors we have? Is it five, as most Chinese believe? None, as the ancient Taoists asserted? Four, as Western science traditionally claims? Recently, "umami" has been added to the traditional four: sweet, sour, salty, and bitter (the Chinese added another: spicy or pungent). Aristotle and Raghavan Iyer (of India)…

  1. Habituation to the pleasure elicited by sweetness in lean and obese women.

    Science.gov (United States)

    Pepino, M Yanina; Mennella, Julie A

    2012-06-01

    In this study, we used a validated psychophysical tool, the hedonic general magnitude scale (hedonic gLMS), to examine whether hedonic responsivity after repetitive tasting of a sweet-tasting liquid follows a habituation pattern that is independent of adaptation to the sweet taste at the orosensory level, and whether the pattern of response is different between obese (N=22) and lean (N=32) women. The perceived sweet intensity and hedonic value of a 24% w/v sucrose solution was measured with the gLMS and sucrose preferences with the Monell two-series, forced-choice tracking method. Although women perceived the same intensity of sweetness across trials, obese women responded with a slower rate of habituation to the liking of repetitive sweet-taste orosensory stimulation than did lean women. Therefore, the decreased hedonic response observed in obese women cannot be explained by adaptation processes at the orosensory level or by differential perception of taste intensity or scale bias between the groups. The groups did not differ in the level of sweetness preferred. Because obesity was associated with slower patterns of habituation to the palatability elicited by sweetness in women, this characteristic could contribute to slower satiation rates, prolongation of eating episodes, and excessive food consumption in obese women. Copyright © 2012 Elsevier Ltd. All rights reserved.

  2. Roux-en-Y gastric bypass in rats increases sucrose taste-related motivated behavior independent of pharmacological GLP-1-receptor modulation

    Science.gov (United States)

    Mathes, C. M.; Bueter, M.; Smith, K. R.; Lutz, T. A.; le Roux, C. W.

    2012-01-01

    Roux-en-Y gastric bypass (RYGB) surgery has been shown to decrease consummatory responsiveness of rats to high sucrose concentrations, and genetic deletion of glucagon-like peptide-1 receptors (GLP-1R) has been shown to decrease consummatory responsiveness of mice to low-sucrose concentrations. Here we assessed the effects of RYGB and pharmacological GLP-1R modulation on sucrose licking by chow-fed rats in a brief-access test that assessed consummatory and appetitive behaviors. Rats were tested while fasted presurgically and postsurgically and while nondeprived postsurgically and 5 h after intraperitoneal injections with the GLP-1R antagonist exendin-3(9–39) (30 μg/kg), agonist exendin-4 (1 μg/kg), and vehicle in 30-min sessions during which a sucrose concentration series (0.01–1.0 M) was presented in 10-s trials. Other rats were tested postsurgically or 15 min after peptide or vehicle injection while fasted and while nondeprived. Independent of food-deprivation state, sucrose experience, or GLP-1R modulation, RYGB rats took 1.5–3× as many trials as sham-operated rats, indicating increased appetitive behavior. Under nondeprived conditions, RYGB rats with presurgical sucrose experience licked more to sucrose relative to water compared with sham-operated rats. Exendin-4 and exendin-3(9–39) impacted 0.3 M sucrose intake in a one-bottle test, but never interacted with surgical group to affect brief-access responding. Unlike prior reports in both clearly obese and relatively leaner rats given RYGB and in GLP-1R knockout mice, we found that neither RYGB nor GLP-1R blockade decreased consummatory responsiveness to sucrose in our less obese chow-fed rats. Collectively, these results highlight the fact that changes in taste-driven motivated behavior to sucrose after RYGB and/or GLP-1R modulation are very model and measure dependent. PMID:22170618

  3. Effects of visual priming on taste-odor interaction.

    Directory of Open Access Journals (Sweden)

    Marije van Beilen

    Full Text Available Little is known about the influence of visual characteristics other than colour on flavor perception, and the complex interactions between more than two sensory modalities. This study focused on the effects of recognizability of visual (texture information on flavor perception of odorized sweet beverages. Participants rated the perceived sweetness of odorized sucrose solutions in the presence or absence of either a congruent or incongruent visual context. Odors were qualitatively reminiscent of sweet foods (strawberry and caramel or not (savoury. Visual context was either an image of the same sweet foods (figurative context or a visual texture derived from this product (non-figurative context. Textures were created using a texture synthesis method that preserved perceived food qualities while removing object information. Odor-taste combinations were rated sweeter within a figurative than a non-figurative context. This behaviour was exhibited for all odor-taste combinations, even in trials without images, indicating sustained priming by figurative visual context. A non-figurative context showed a transient sweetening effect. Sweetness was generally enhanced most by the strawberry odor. We conclude that the degree of recognizability of visual information (figurative versus non-figurative, influences flavor perception differently. Our results suggest that this visual context priming is mediated by separate sustained and transient processes that are differently evoked by figurative and non-figurative visual contexts. These components operate independent of the congruency of the image-odor-taste combinations.

  4. Late taste disorders in bone marrow transplantation: clinical evaluation with taste solutions in autologous and allogeneic bone marrow recipients.

    Science.gov (United States)

    Marinone, M G; Rizzoni, D; Ferremi, P; Rossi, G; Izzi, T; Brusotti, C

    1991-01-01

    The aim of this work was to determine the type and the significance of taste disorders in allogeneic bone marrow transplanted patients. In a retrospective study the taste threshold of a cohort of 15 allogeneic bone marrow transplanted patients, 4-51 months after transplantation (mean: 30.6 +/- 15.8), was compared to the taste threshold of 8 autologous bone marrow recipients, 4-48 months after transplantation (mean: 24.12 +/- 12.18), and to the taste threshold of a group of 20 consecutive normal subjects. Allogeneic bone marrow transplanted patients showed a significant hypogeusia for salt (Pearson's chi square p = 0.0002; Yates' correction p = 0.0007) and sour (Pearson's chi square p = 0.001; Yates' correction p = 0.008). No significant variations were observed for sweet and bitter. Autologous bone marrow recipients did not show any significant variation of taste acuity for sweet, salt or sour; a constant reduction of the taste threshold for bitter was observed, but the values were not significantly different from normal (Pearson's chi square p = 0.47; Yates' correction p = 0.83). So, late and selective taste disorders are observed in allogeneic bone marrow transplanted patients. Since the severity of the disorders is not strictly related to the severity of chronic oral G.V.H.D., taste analysis could discover the slightest, clinically undetectable cases of chronic oral G.V.H.D. The mechanism of immune aggression on the sensorial taste cells is poorly understood. Further trials are needed to define variations of taste acuity not only after allogeneic bone marrow transplantation, but also in systemic immune diseases.

  5. Potential of Heterorhabditis indica to control Cylas formicarius in field culled sweet potato roots

    Science.gov (United States)

    Sweet potato weevil, Cylas formicarius, is one of the most destructive insect pests of sweet potato in Hawaii. The larvae feed and tunnel inside the root causing malformation and a bitter taste that makes the product unmarketable. During harvest, farmers leave off-grade roots in the field which se...

  6. Food Science of Dashi and Umami Taste.

    Science.gov (United States)

    Ninomiya, Kumiko

    2016-01-01

    Umami is a basic tastes, along with sweet, salty, bitter and sour, which is imparted by glutamate, one of the free amino acids in foods. Since its discovery of umami by a Japanese scientist in 1908, umami is now perceived globally a basic taste. Recent collaboration among chefs and researchers on traditional soup stocks showed a difference in taste profiles of Japanese soup stock 'dashi' and Western style soup stock. The free amino acids profile's in dashi and soup stock showed how Japanese have traditionally adopted a simple umami taste. The exchange of knowledge on cooking methods and diverse types of umami rich foods in different countries displays the blending of the culinary arts, food science and technology for healthy and tasty solutions. Since Japanese cuisine 'WASHOKU' was listed in the 'Intangible Heritage of UNESCO' in 2013, many people in the world now have great interest in Japanese cuisine. One of the unique characteristics of this cuisine is that 'dashi' is an indispensable material for cooking a variety of Japanese dishes. Many chefs from Europe, US and South America have come to Japan to learn Japanese cuisine in the last 10 years, and umami has become recognized as a common taste worldwide. Researchers and culinary professionals have begun to pay attention to the traditional seasonings and condiments rich in glutamate available throughout the world.

  7. Glutamate may be an efferent transmitter that elicits inhibition in mouse taste buds.

    Directory of Open Access Journals (Sweden)

    Yijen A Huang

    Full Text Available Recent studies suggest that l-glutamate may be an efferent transmitter released from axons innervating taste buds. In this report, we determined the types of ionotropic synaptic glutamate receptors present on taste cells and that underlie this postulated efferent transmission. We also studied what effect glutamate exerts on taste bud function. We isolated mouse taste buds and taste cells, conducted functional imaging using Fura 2, and used cellular biosensors to monitor taste-evoked transmitter release. The findings show that a large fraction of Presynaptic (Type III taste bud cells (∼50% respond to 100 µM glutamate, NMDA, or kainic acid (KA with an increase in intracellular Ca(2+. In contrast, Receptor (Type II taste cells rarely (4% responded to 100 µM glutamate. At this concentration and with these compounds, these agonists activate glutamatergic synaptic receptors, not glutamate taste (umami receptors. Moreover, applying glutamate, NMDA, or KA caused taste buds to secrete 5-HT, a Presynaptic taste cell transmitter, but not ATP, a Receptor cell transmitter. Indeed, glutamate-evoked 5-HT release inhibited taste-evoked ATP secretion. The findings are consistent with a role for glutamate in taste buds as an inhibitory efferent transmitter that acts via ionotropic synaptic glutamate receptors.

  8. Sour ageusia in two individuals implicates ion channels of the ASIC and PKD families in human sour taste perception at the anterior tongue.

    Science.gov (United States)

    Huque, Taufiqul; Cowart, Beverly J; Dankulich-Nagrudny, Luba; Pribitkin, Edmund A; Bayley, Douglas L; Spielman, Andrew I; Feldman, Roy S; Mackler, Scott A; Brand, Joseph G

    2009-10-08

    The perception of sour taste in humans is incompletely understood at the receptor cell level. We report here on two patients with an acquired sour ageusia. Each patient was unresponsive to sour stimuli, but both showed normal responses to bitter, sweet, and salty stimuli. Lingual fungiform papillae, containing taste cells, were obtained by biopsy from the two patients, and from three sour-normal individuals, and analyzed by RT-PCR. The following transcripts were undetectable in the patients, even after 50 cycles of amplification, but readily detectable in the sour-normal subjects: acid sensing ion channels (ASICs) 1a, 1beta, 2a, 2b, and 3; and polycystic kidney disease (PKD) channels PKD1L3 and PKD2L1. Patients and sour-normals expressed the taste-related phospholipase C-beta2, the delta-subunit of epithelial sodium channel (ENaC) and the bitter receptor T2R14, as well as beta-actin. Genomic analysis of one patient, using buccal tissue, did not show absence of the genes for ASIC1a and PKD2L1. Immunohistochemistry of fungiform papillae from sour-normal subjects revealed labeling of taste bud cells by antibodies to ASICs 1a and 1beta, PKD2L1, phospholipase C-beta2, and delta-ENaC. An antibody to PKD1L3 labeled tissue outside taste bud cells. These data suggest a role for ASICs and PKDs in human sour perception. This is the first report of sour ageusia in humans, and the very existence of such individuals ("natural knockouts") suggests a cell lineage for sour that is independent of the other taste modalities.

  9. Radiogenic damage to the sense of taste

    International Nuclear Information System (INIS)

    Schulz-Freywald, G.

    1975-01-01

    In order to determine radiogenic impairment of taste and the natural laws it obeys, gustometric investigations were carried out on 11 patients under radiation treatment. From the investigations it could be seen that the first measurable impairment is present after about 2,000 rad and the climax of the sensory radiation injury occurs after 4,000 rad. The individual taste qualities are damaged in the sequence bitter, sweet, salty and sour. Then the taste surprisingly improves somewhat although irradiation continues. Our observation that the interval between sensation threshold and recognition threshold during radiotherapy grows indicating an apparently stronger damage to the recognition threshold and only later goes back to the standard, is also new and has so far no explanation. It was seen in all posttherapeutical taste tests that the taste function was only fully normalized with a few patients, while in most cases a more or less large function defect remained. This result contradicts the general opinion that there is a complete restitution at the latest 3 months after terminating the irradiation. The present result is fully confirmed by the post-investigation of 55 patients whose irradiation went back up to 13 years. A significant, remaining reduction of the average taste function can also be found here. As the extent of the remaining taste impairment is measurable but very small, it is hardly ever noticed by the patients. Similar to in the course investigations, one could see here, too, that the sensation thresholds on the long run are less damaged than the recognition thresholds. (orig./MG) [de

  10. Accuracy of self-report in detecting taste dysfunction.

    Science.gov (United States)

    Soter, Ana; Kim, John; Jackman, Alexis; Tourbier, Isabelle; Kaul, Arti; Doty, Richard L

    2008-04-01

    To determine the sensitivity, specificity, and positive and negative predictive value of responses to the following questionnaire statements in detecting taste loss: "I can detect salt in chips, pretzels, or salted nuts," "I can detect sourness in vinegar, pickles, or lemon," "I can detect sweetness in soda, cookies, or ice cream," and "I can detect bitterness, in coffee, beer, or tonic water." Responses to an additional item, "I can detect chocolate in cocoa, cake or candy," was examined to determine whether patients clearly differentiate between taste loss and flavor loss secondary to olfactory dysfunction. A total of 469 patients (207 men, mean age = 54 years, standard deviation = 15 years; and 262 women, mean age = 54 years, standard deviation = 14 years) were administered a questionnaire containing these questions with the response categories of "easily," "somewhat," and "not at all," followed by a comprehensive taste and smell test battery. The questionnaire items poorly detected bona fide taste problems. However, they were sensitive in detecting persons without such problems (i.e., they exhibited low positive but high negative predictive value). Dysfunction categories of the University of Pennsylvania Smell Identification Test (UPSIT) were not meaningfully related to subjects' responses to the questionnaire statements. Both sex and age influenced performance on most of the taste tests, with older persons performing more poorly than younger ones and women typically outperforming men. Although it is commonly assumed that straight-forward questions concerning taste may be useful in detecting taste disorders, this study suggests this is not the case. However, patients who specifically report having no problems with taste perception usually do not exhibit taste dysfunction. The difficulty in detecting true taste problems by focused questionnaire items likely reflects a combination of factors. These include the relatively low prevalence of taste deficits in the

  11. A large-scale expression strategy for multimeric extracellular protein complexes using Drosophila S2 cells and its application to the recombinant expression of heterodimeric ligand-binding domains of taste receptor.

    Science.gov (United States)

    Yamashita, Atsuko; Nango, Eriko; Ashikawa, Yuji

    2017-11-01

    Many of the extracellular proteins or extracellular domains of plasma membrane proteins exist or function as homo- or heteromeric multimer protein complexes. Successful recombinant production of such proteins is often achieved by co-expression of the components using eukaryotic cells via the secretory pathway. Here we report a strategy addressing large-scale expression of hetero-multimeric extracellular domains of plasma membrane proteins and its application to the extracellular domains of a taste receptor. The target receptor consists of a heterodimer of T1r2 and T1r3 proteins, and their extracellular ligand binding domains (LBDs) are responsible for the perception of major taste substances. However, despite the functional importance, recombinant production of the heterodimeric proteins has so far been unsuccessful. We achieved the successful preparation of the heterodimeric LBD by use of Drosophila S2 cells, which have a high secretory capacity, and by the establishment of a stable high-expression clone producing both subunits at a comparable level. The method overcame the problems encountered in the conventional transient expression of the receptor protein in insect cells using baculovirus or vector lipofection, which failed in the proper heterodimer production because of the biased expression of T1r3LBD over T1r2LBD. The large-scale expression methodology reported here may serve as one of the considerable strategies for the preparation of multimeric extracellular protein complexes. © 2017 The Protein Society.

  12. Taste: The Bedrock of Flavor

    Directory of Open Access Journals (Sweden)

    Gary K Beauchamp

    2014-07-01

    There are two general approaches to reducing dietary sodium. First, there is considerable interest in developing salt substitutes and salt enhancers. Potassium chloride is widely used (usually in combination with NaCl as a substitute but it is not ideal since many find it has an unpleasant off-taste. There is considerable academic and industry research to identify new substitutes but to date there are none for salty as there are for sweet taste. A second approach to lowering sodium intake on a population-wide level in the United States, where more than 80% of the average person’s salt intake comes from food purchased and not from being added during cooking or at the table, is for food manufacturers and restaurants to gradually reduce the amount of salt in prepared foods. Experimental studies have demonstrated that if one reduces salt intake preferences for salt are similarly reduced. Based on this, the Institute of Medicine (IOM recommended that the Food and Drug Administration require gradual reduction by food manufacturers and large restaurant chains (IOM. The FDA has not acted on this recommendation. Conclusion. As illustrated by the difficulties in reducing salt in spite of the health benefits (a similar set of arguments for reducing excess consumption of carbohydrate sugars could be made, the sense of taste is a powerful driver of food intake. A deeper understanding of this important but neglected sensory system is required if we are to adequately address critical health problems in modern society that are often driven by excess consumption of tasty nutrients.

  13. Differential changes in taste perception induced by benzoic acid prickling.

    Science.gov (United States)

    Otero-Losada, M E

    2003-03-01

    Benzoic acid (Bz) is a prickling compound used to preserve foods. However, its effects on taste are unknown. This work examines Bz-taste interaction using psychophysical methods [magnitude estimation (ME) and paired comparison (PC)] to measure taste intensity in aqueous solutions of pure tastants (T) and their respective mixtures with 10 mM Bz (Mix). Prototypical tastants induced basic taste qualities (mM): sucrose [90-1440, sweetness (Sw)], citric acid [1-64, sourness (So)], NaCl [15-960, saltiness (Sa)], quinine [0.01-0.64, bitterness (Bitt)], KCl (12.5-400, Sa and Bitt). MEs were analysed using Steven's and Beidler's equations. Bz increased Sw (all concentrations) and ionic tastes (low concentrations) and Bz effects were reduced by concentration increase according with quality and tastant Bz reduced Bitt(Quinine) (high concentrations). Bz reduced taste slopes (percentage decrease): Sw 45% (PT(intensity)' answers/total answers): Sw 79-69% (90-1440 mM sucrose), So 75% (1 mM citric acid) and 71% (2 mM citric acid), Sa 75-71% (15-120 mM NaCl). Negative concentration dependence of taste increases by Bz suggests different levels of interaction. Biophysical and neurophysiological changes are discussed in relation with Bz properties and mechanism of interaction with taste.

  14. Development of a sweetness sensor for aspartame, a positively charged high-potency sweetener.

    Science.gov (United States)

    Yasuura, Masato; Tahara, Yusuke; Ikezaki, Hidekazu; Toko, Kiyoshi

    2014-04-23

    Taste evaluation technology has been developed by several methods, such as sensory tests, electronic tongues and a taste sensor based on lipid/polymer membranes. In particular, the taste sensor can individually quantify five basic tastes without multivariate analysis. However, it has proven difficult to develop a sweetness sensor, because sweeteners are classified into three types according to the electric charges in an aqueous solution; that is, no charge, negative charge and positive charge. Using membrane potential measurements, the taste-sensing system needs three types of sensor membrane for each electric charge type of sweetener. Since the commercially available sweetness sensor was only intended for uncharged sweeteners, a sweetness sensor for positively charged high-potency sweeteners such as aspartame was developed in this study. Using a lipid and plasticizers, we fabricated various lipid/polymer membranes for the sweetness sensor to identify the suitable components of the sensor membranes. As a result, one of the developed sensors showed responses of more than 20 mV to 10 mM aspartame and less than 5 mV to any other taste. The responses of the sensor depended on the concentration of aspartame. These results suggested that the developed sweetness sensor had high sensitivity to and high selectivity for aspartame.

  15. Development of a Sweetness Sensor for Aspartame, a Positively Charged High-Potency Sweetener

    Directory of Open Access Journals (Sweden)

    Masato Yasuura

    2014-04-01

    Full Text Available Taste evaluation technology has been developed by several methods, such as sensory tests, electronic tongues and a taste sensor based on lipid/polymer membranes. In particular, the taste sensor can individually quantify five basic tastes without multivariate analysis. However, it has proven difficult to develop a sweetness sensor, because sweeteners are classified into three types according to the electric charges in an aqueous solution; that is, no charge, negative charge and positive charge. Using membrane potential measurements, the taste-sensing system needs three types of sensor membrane for each electric charge type of sweetener. Since the commercially available sweetness sensor was only intended for uncharged sweeteners, a sweetness sensor for positively charged high-potency sweeteners such as aspartame was developed in this study. Using a lipid and plasticizers, we fabricated various lipid/polymer membranes for the sweetness sensor to identify the suitable components of the sensor membranes. As a result, one of the developed sensors showed responses of more than 20 mV to 10 mM aspartame and less than 5 mV to any other taste. The responses of the sensor depended on the concentration of aspartame. These results suggested that the developed sweetness sensor had high sensitivity to and high selectivity for aspartame.

  16. Taste disorders: A review

    Directory of Open Access Journals (Sweden)

    Vijay Kumar Ambaldhage

    2014-01-01

    Full Text Available For maintenance of the health of an individual, taste sensation is very important. It is an important sensation that serves to assess the nutritious content of food, support oral intake, and prevent ingestion of potentially toxic substances. Disturbances in the perception of taste can lead to loss of appetite, causing malnutrition and thus distressing both the physical and psychological well-being of the patient. Oral physicians are often the first clinicians who hear complaints about alteration in taste from the patients. In spite of the effect of taste changes on health, literature on the diagnosis, pathogenesis, and precise treatment of taste disorders are less. Taste changes may lead patients to seek inappropriate dental treatments. Proper diagnosis of the etiology is the foremost step in the treatment of taste disorders. Thus, it is important that dental clinicians to be familiar with the various causes and proper management of taste changes. In this article, we have reviewed related articles focusing on taste disorders and their management, to provide a quick sketch for the clinicians. A detailed search was performed to identify the systematic reviews and research articles on taste disorders, using PUBMED and Cochrane. All the authors independently extracted data for analysis and review. Ultimately, 26 articles underwent a full text review. In conclusion, the research to date certainly offers us valid management strategies for taste disorders. Meanwhile, practical strategies with the highest success are needed for further intervention.

  17. Use of gamma radiation as a form of preservation of sweet potatoes. [Final technical] quarterly progress report

    International Nuclear Information System (INIS)

    1985-01-01

    This document covers: harvest and conditioning following harvest, harvest-curing-storage-irradiation schemes, irradiation, control sweet potatoes, analyses, enzymes results, and procedures for taste evaluation, storage rot, weevil

  18. Saliva pH affects the sweetness sense.

    Science.gov (United States)

    Aoyama, Ken-Ichi; Okino, Yuichiro; Yamazaki, Hiroshi; Kojima, Rena; Uchibori, Masahiro; Nakanishi, Yaushiro; Ota, Yoshihide

    2017-03-01

    The aim of this study was to establish a prediction system for taste sense according to the biochemical data of saliva. The present study included 100 participants ages ≥20 y without physical, mental, or dental disabilities. Saliva samples were collected from the participants and subjected to biochemical analyses. Taste examination (sweetness, saltiness, sourness, and bitterness) was performed using the dropped disk method. Correlation analysis and multiple regression analysis were performed between the taste sense properties and biochemical data of saliva. Multiple regression analysis demonstrated that sweetness sensitivity (in which a higher score indicates lower sensitivity) was significantly affected by various biochemical properties, with the strongest influence being pH. The following prediction equation was determined: Sweetness sensitivity = 1.38 + (-0.12 × low pH [1: If pH 7.3, 0: otherwise]) + (0.04 × Fe [μg/dL]). Analysis of variance showed an overall significant effect of these variables on sweetness sensitivity (R 2  = 0.74; P sweetness sensitivity. This prediction can be used for evaluations of variations in dietary choices and to help individuals make healthy food choices to maintain health. Copyright © 2016 Elsevier Inc. All rights reserved.

  19. Taste and smell dysfunction in childhood cancer survivors.

    Science.gov (United States)

    Cohen, Jennifer; Laing, David G; Wilkes, Fiona J; Chan, Ada; Gabriel, Melissa; Cohn, Richard J

    2014-04-01

    Reduced or altered taste and smell function may occur as a side-effect of cancer therapy. This can lead to altered nutrient and energy intake. Some studies have suggested that taste and smell dysfunction can persist many years after treatment completion but this has not been previously assessed in survivors of childhood cancer. The aim of this study is to determine if taste and smell dysfunction is present in childhood cancer survivors (CCS). Food preference and Quality of Life was also assessed. Fifty-one child cancer survivors (mean age: 19.69±7.09years), more than five years since treatment completion, (mean: 12.4years) were recruited from the long term follow-up clinics at two Sydney-based children's hospitals. Taste function was assessed using a 25 sample taste identification test comprising five concentrations each of sweet, salty, sour and bitter tastes and water. Smell function was assessed by determining the ability of participants to identify 16 common odorants. The participants' Quality of Life was assessed using the Functional Assessment of Anorexia Cachexia scale and food preferences were assessed using a 94-item food liking tool. Taste dysfunction was found in 27.5% of participants (n=14), and smell dysfunction in 3.9% (n=2) of participants. The prevalence of taste dysfunction was higher than that seen in the non-cancer population. The child cancer survivors' appeared to "like" the less healthy food groups such as flavoured beverages, takeaway and snacks over healthier food groups such as vegetables and salad. No correlation was found between those with a taste dysfunction and their food "likes". A high level of taste dysfunction was found in CCS though there did not appear to be an issue with smell dysfunction. Further work is also needed to assess whether a taste dysfunction do play a role in the dietary habits of CCS. Copyright © 2014 Elsevier Ltd. All rights reserved.

  20. EFFECTS OF MONOSODIUM GLUTAMATE (UMAMI TASTE) WITH AND WITHOUT GUANOSINE 5'-MONOPHOSPHATE ON RAT AUTONOMIC RESPONSES TO MEALS

    NARCIS (Netherlands)

    STEFFENS, AB; LEUVENINK, H; SCHEURINK, AJW

    Monosodium glutamate (MSG) is used as a food additive to improve the taste of food. The effect of MSG on sweet taste is enhanced by guanosine 5'-monophosphate (GMP). Because increased palatability is known to increase the vagally mediated preabsorptive insulin response (PIR), we hypothesized that

  1. A conditioned aversion study of sucrose and SC45647 taste in TRPM5 knockout mice.

    Science.gov (United States)

    Eddy, Meghan C; Eschle, Benjamin K; Peterson, Darlene; Lauras, Nathan; Margolskee, Robert F; Delay, Eugene R

    2012-06-01

    Previously, published studies have reported mixed results regarding the role of the TRPM5 cation channel in signaling sweet taste by taste sensory cells. Some studies have reported a complete loss of sweet taste preference in TRPM5 knockout (KO) mice, whereas others have reported only a partial loss of sweet taste preference. This study reports the results of conditioned aversion studies designed to motivate wild-type (WT) and KO mice to respond to sweet substances. In conditioned taste aversion experiments, WT mice showed nearly complete LiCl-induced response suppression to sucrose and SC45647. In contrast, TRPM5 KO mice showed a much smaller conditioned aversion to either sweet substance, suggesting a compromised, but not absent, ability to detect sweet taste. A subsequent conditioned flavor aversion experiment was conducted to determine if TRPM5 KO mice were impaired in their ability to learn a conditioned aversion. In this experiment, KO and WT mice were conditioned to a mixture of SC45647 and amyl acetate (an odor cue). Although WT mice avoided both components of the stimulus mixture, they avoided SC45647 more than the odor cue. The KO mice also avoided both stimuli, but they avoided the odor component more than SC45647, suggesting that while the KO mice are capable of learning an aversion, to them the odor cue was more salient than the taste cue. Collectively, these findings suggest the TRPM5 KO mice have some residual ability to detect SC45647 and sucrose, and, like bitter, there may be a TRPM5-independent transduction pathway for detecting these substances.

  2. Nutrigenomics of taste - impact on food preferences and food production.

    Science.gov (United States)

    El-Sohemy, Ahmed; Stewart, Lindsay; Khataan, Nora; Fontaine-Bisson, Bénédicte; Kwong, Pauline; Ozsungur, Stephen; Cornelis, Marilyn C

    2007-01-01

    Food preferences are influenced by a number of factors such as personal experiences, cultural adaptations and perceived health benefits. Taste, however, is the most important determinant of how much a food is liked or disliked. Based on the response to bitter-tasting compounds such as phenylthiocarbamide (PTC) or 6-n-propylthiouracil (PROP), individuals can be classified as supertasters, tasters or nontasters. Sensitivity to bitter-tasting compounds is a genetic trait that has been recognized for more than 70 years. Genetic differences in bitter taste perception may account for individual differences in food preferences. Other factors such as age, sex and ethnicity may also modify the response to bitter-tasting compounds. There are several members of the TAS2R receptor gene family that encode taste receptors on the tongue, and genetic polymorphisms of TAS2R38 have been associated with marked differences in the perception of PTC and PROP. However, the association between TAS2R38 genotypes and aversion to bitter-tasting foods is not clear. Single nucleotide polymorphisms in other taste receptor genes have recently been identified, but their role in bitter taste perception is not known. Establishing a genetic basis for food likes/dislikes may explain, in part, some of the inconsistencies among epidemiologic studies relating diet to risk of chronic diseases. Identifying populations with preferences for particular flavors or foods may lead to the development of novel food products targeted to specific genotypes or ethnic populations.

  3. Learned liking versus inborn delight: can sweetness give sensual pleasure or is it just motivating?

    Science.gov (United States)

    Booth, David A; Higgs, Suzanne; Schneider, Jennifer; Klinkenberg, Isabelle

    2010-11-01

    In this study, we separated for the first time the learned liking for a particular level of sweetness in a familiar drink from the infantile delight in sweetness as such ("the sweeter, the better"). It is widely assumed that sensing a liked food or drink evokes a pleasurable experience, but the only psychological evidence for this assumption has been tongue movements that are elicited specifically by sweet taste in animals and human neonates. We found that adults felt such movements in response to drinking juice at both their personally preferred level of sweetness and levels they deemed so sweet as to be undrinkable. Yet only the intolerably strong level of sweetness elicited enjoyment of the experienced movements, elevation of mood, and a sense of smiling. Hence, the pleasure that adults experience during ingestion could be exclusively linked with the congenital sweetness reflex that sends mother's milk down an infant's throat.

  4. Patterns of sweetness preference in red wine according to consumer characterisation.

    Science.gov (United States)

    Sena-Esteves, Maria Madalena; Mota, Mariana; Malfeito-Ferreira, Manuel

    2018-04-01

    The preference for sweet taste in red wine was examined according to consumer categories of age, gender, drinking experience and personality type (Big-5 personality-test). A total of 114 subjects revealed their preferences for sweetness after tasting dry red wine spiked with equal concentrations of glucose and fructose at 2g/L, 4g/L, 8g/L, 16g/L and 32g/L, following an ascending forced choice paired comparison method (2-AFC). The overall preference for sweetness was shown within the range of 4.8 to 21.9g/L, with maximal liking at 8g/L. Three patterns of response to sweetness were observed (sweet dislikers, sweet likers and indifferent to sweet) according to the different categories of consumers. Differences (p>0.05) were not found in sweetness preference among the categories up to 16g/L sugar except for the trait extraversion at 8g/L, where low extraverts showed a higher proportion of responses preferring the sweeter sample. Most significant differences were found only under the highest tasted concentration (32g/L). Females and novices preferred sweeter samples (p<0.05) when compared with the response of males and experienced consumers, respectively. Copyright © 2017. Published by Elsevier Ltd.

  5. Tachykinins stimulate a subset of mouse taste cells.

    Science.gov (United States)

    Grant, Jeff

    2012-01-01

    The tachykinins substance P (SP) and neurokinin A (NKA) are present in nociceptive sensory fibers expressing transient receptor potential cation channel, subfamily V, member 1 (TRPV1). These fibers are found extensively in and around the taste buds of several species. Tachykinins are released from nociceptive fibers by irritants such as capsaicin, the active compound found in chili peppers commonly associated with the sensation of spiciness. Using real-time Ca(2+)-imaging on isolated taste cells, it was observed that SP induces Ca(2+) -responses in a subset of taste cells at concentrations in the low nanomolar range. These responses were reversibly inhibited by blocking the SP receptor NK-1R. NKA also induced Ca(2+)-responses in a subset of taste cells, but only at concentrations in the high nanomolar range. These responses were only partially inhibited by blocking the NKA receptor NK-2R, and were also inhibited by blocking NK-1R indicating that NKA is only active in taste cells at concentrations that activate both receptors. In addition, it was determined that tachykinin signaling in taste cells requires Ca(2+)-release from endoplasmic reticulum stores. RT-PCR analysis further confirmed that mouse taste buds express NK-1R and NK-2R. Using Ca(2+)-imaging and single cell RT-PCR, it was determined that the majority of tachykinin-responsive taste cells were Type I (Glial-like) and umami-responsive Type II (Receptor) cells. Importantly, stimulating NK-1R had an additive effect on Ca(2+) responses evoked by umami stimuli in Type II (Receptor) cells. This data indicates that tachykinin release from nociceptive sensory fibers in and around taste buds may enhance umami and other taste modalities, providing a possible mechanism for the increased palatability of spicy foods.

  6. Tachykinins stimulate a subset of mouse taste cells.

    Directory of Open Access Journals (Sweden)

    Jeff Grant

    Full Text Available The tachykinins substance P (SP and neurokinin A (NKA are present in nociceptive sensory fibers expressing transient receptor potential cation channel, subfamily V, member 1 (TRPV1. These fibers are found extensively in and around the taste buds of several species. Tachykinins are released from nociceptive fibers by irritants such as capsaicin, the active compound found in chili peppers commonly associated with the sensation of spiciness. Using real-time Ca(2+-imaging on isolated taste cells, it was observed that SP induces Ca(2+ -responses in a subset of taste cells at concentrations in the low nanomolar range. These responses were reversibly inhibited by blocking the SP receptor NK-1R. NKA also induced Ca(2+-responses in a subset of taste cells, but only at concentrations in the high nanomolar range. These responses were only partially inhibited by blocking the NKA receptor NK-2R, and were also inhibited by blocking NK-1R indicating that NKA is only active in taste cells at concentrations that activate both receptors. In addition, it was determined that tachykinin signaling in taste cells requires Ca(2+-release from endoplasmic reticulum stores. RT-PCR analysis further confirmed that mouse taste buds express NK-1R and NK-2R. Using Ca(2+-imaging and single cell RT-PCR, it was determined that the majority of tachykinin-responsive taste cells were Type I (Glial-like and umami-responsive Type II (Receptor cells. Importantly, stimulating NK-1R had an additive effect on Ca(2+ responses evoked by umami stimuli in Type II (Receptor cells. This data indicates that tachykinin release from nociceptive sensory fibers in and around taste buds may enhance umami and other taste modalities, providing a possible mechanism for the increased palatability of spicy foods.

  7. A map of taste neuron projections in the Drosophila CNS

    Indian Academy of Sciences (India)

    We provide a map of the projections of taste neurons in the CNS of Drosophila. Using a collection of 67 GAL4 drivers representing the entire repertoire of Gr taste receptors, we systematically map the projections of neurons expressing these drivers in the thoracico-abdominal ganglion and the suboesophageal ganglion ...

  8. Sensory characteristics and relative sweetness of tagatose and other sweeteners.

    Science.gov (United States)

    Fujimaru, Tomomi; Park, Jin-Hee; Lim, Juyun

    2012-09-01

    The present study investigated the sensory characteristics and relative sweetness of tagatose, an emerging natural low-calorie sweetener with various functional properties, compared to other sweeteners (sucrose, sucralose, erythritol, rebaudioside A), over a wide range of sweetness commonly found in foods and beverages (3% to 20% sucrose [w/v]). A total of 34 subjects evaluated aqueous solutions of the 5 sweeteners for the perceived intensities of sweetness, bitterness, astringency, chemical-like sensations, and sweet aftertaste, using the general version of the Labeled Magnitude Scale. The relationship between the physical concentrations of the sweeteners and their perceived sweetness (that is, psychophysical functions) was derived to quantify the relative sweetness and potency of the sweeteners. The results suggest that tagatose elicits a sweet taste without undesirable qualities (bitterness, astringency, chemical-like sensations). Out of the 5 sweeteners tested, rebaudioside A was the only sweetener with notable bitterness and chemical-like sensations, which became progressively intense with increasing concentration (P sweeteners (tagatose, erythritol, sucrose) had similar sweetness growth rates (slopes > 1), whereas the high-potency sweeteners (sucralose, rebaudioside A) yielded much flatter sweetness functions (slopes sweeteners to sucrose was highly concentration dependent. Consequently, sweetness potencies of other sweeteners varied across the concentrations tested, ranging from 0.50 to 0.78 for erythritol, 220 to 1900 for sucralose, and 300 to 440 for rebaudioside A, while tagatose was estimated to be approximately 0.90 times as potent as sucrose irrespective of concentration. The present study investigated the sensory characteristics and relative sweetness of tagatose, an emerging natural low-calorie sweetener, compared to other sweeteners. Study results suggest that tagatose elicits a sweet taste without undesirable qualities over a wide range of

  9. Abstract: Taste - no waste

    DEFF Research Database (Denmark)

    Mithril, Charlotte Elisabeth; Kamuk, Anette; Hoffmeyer, Agnete

    The aim of a so-called research day was to give schoolchildren from 6th to 7th grade a day of learning about taste, sustainability and future foods. The children were invited to University College Absalon in Soroe, Denmark to a day with workshops involving taste experiments. Based on sensory...... of different foods. In addition, the aim was to create experiences which could show how taste and taste courage are influenced by social interactions and relations. A final aim was to bring awareness of how you can reduce waste with the example of how to use all parts of fruits and vegetables. In total......, approximately 120 children aged 10-12 years participated. In one workshop, children experimented with making juice to explore the basic tastes and worked with the pulp as an example of how to reduce food waste. In another workshop, the children prepared and tasted roasted insects as an example of a future novel...

  10. Video: Taste - no waste

    DEFF Research Database (Denmark)

    Mithril, Charlotte Elisabeth; Kamuk, Anette; Mortensen, Birthe Kofoed

    2017-01-01

    The aim of a so-called research day was to give schoolchildren from 6th to 7th grade a day of learning about taste, sustainability and future foods. The children were invited to University College Absalon in Soroe, Denmark to a day with workshops involving taste experiments. Based on sensory...... of different foods. In addition, the aim was to create experiences which could show how taste and taste courage are influenced by social interactions and relations. A final aim was to bring awareness of how you can reduce waste with the example of how to use all parts of fruits and vegetables. In total......, approximately 120 children aged 10-12 years participated. In one workshop, children experimented with making juice to explore the basic tastes and worked with the pulp as an example of how to reduce food waste. In another workshop, the children prepared and tasted roasted insects as an example of a future novel...

  11. Taste in holon paradigm

    Directory of Open Access Journals (Sweden)

    Klimova G. P.

    2016-07-01

    Full Text Available in this research the authors tried to investigate and generalize theoretic and applied studies of aesthetic taste, as well as, opportunities of its productivity distribution in terms of socio-cultural, person-professional and psychological levels. The article deals with traditional outlooks upon the origin of taste and its relationship with art and its current situation of taste functioning in terms of increasing globalization, virtualization and informatization of modern society.

  12. Induction of ectopic taste buds by SHH reveals the competency and plasticity of adult lingual epithelium.

    Science.gov (United States)

    Castillo, David; Seidel, Kerstin; Salcedo, Ernesto; Ahn, Christina; de Sauvage, Frederic J; Klein, Ophir D; Barlow, Linda A

    2014-08-01

    Taste buds are assemblies of elongated epithelial cells, which are innervated by gustatory nerves that transmit taste information to the brain stem. Taste cells are continuously renewed throughout life via proliferation of epithelial progenitors, but the molecular regulation of this process remains unknown. During embryogenesis, sonic hedgehog (SHH) negatively regulates taste bud patterning, such that inhibition of SHH causes the formation of more and larger taste bud primordia, including in regions of the tongue normally devoid of taste buds. Here, using a Cre-lox system to drive constitutive expression of SHH, we identify the effects of SHH on the lingual epithelium of adult mice. We show that misexpression of SHH transforms lingual epithelial cell fate, such that daughter cells of lingual epithelial progenitors form cell type-replete, onion-shaped taste buds, rather than non-taste, pseudostratified epithelium. These SHH-induced ectopic taste buds are found in regions of the adult tongue previously thought incapable of generating taste organs. The ectopic buds are composed of all taste cell types, including support cells and detectors of sweet, bitter, umami, salt and sour, and recapitulate the molecular differentiation process of endogenous taste buds. In contrast to the well-established nerve dependence of endogenous taste buds, however, ectopic taste buds form independently of both gustatory and somatosensory innervation. As innervation is required for SHH expression by endogenous taste buds, our data suggest that SHH can replace the need for innervation to drive the entire program of taste bud differentiation. © 2014. Published by The Company of Biologists Ltd.

  13. Physiological responses to taste signals of functional food components.

    Science.gov (United States)

    Narukawa, Masataka

    2018-02-01

    The functions of food have three categories: nutrition, palatability, and bioregulation. As the onset of lifestyle-related diseases has increased, many people have shown interest in functional foods that are beneficial to bioregulation. We believe that functional foods should be highly palatable for increased acceptance from consumers. In order to design functional foods with a high palatability, we have investigated about the palatability, especially in relation to the taste of food. In this review, we discuss (1) the identification of taste receptors that respond to functional food components; (2) an analysis of the peripheral taste transduction system; and (3) the investigation of the relationship between physiological functions and taste signals.

  14. TRPM5-dependent amiloride- and benzamil-insensitive NaCl chorda tympani taste nerve response.

    Science.gov (United States)

    Ren, ZuoJun; Rhyu, Mee-Ra; Phan, Tam-Hao T; Mummalaneni, Shobha; Murthy, Karnam S; Grider, John R; DeSimone, John A; Lyall, Vijay

    2013-07-01

    Transient receptor potential (TRP) subfamily M member 5 (TRPM5) cation channel is involved in sensing sweet, bitter, umami, and fat taste stimuli, complex-tasting divalent salts, and temperature-induced changes in sweet taste. To investigate if the amiloride- and benzamil (Bz)-insensitive NaCl chorda tympani (CT) taste nerve response is also regulated in part by TRPM5, CT responses to 100 mM NaCl + 5 μM Bz (NaCl + Bz) were monitored in Sprague-Dawley rats, wild-type (WT) mice, and TRP vanilloid subfamily member 1 (TRPV1) and TRPM5 knockout (KO) mice in the presence of resiniferatoxin (RTX), a TRPV1 agonist. In rats, NaCl + Bz + RTX CT responses were also monitored in the presence of triphenylphosphine oxide, a specific TRPM5 blocker, and capsazepine and N-(3-methoxyphenyl)-4-chlorocinnamid (SB-366791), specific TRPV1 blockers. In rats and WT mice, RTX produced biphasic effects on the NaCl + Bz CT response, enhancing the response at 0.5-1 μM and inhibiting it at >1 μM. The NaCl + Bz + SB-366791 CT response in rats and WT mice and the NaCl + Bz CT response in TRPV1 KO mice were inhibited to baseline level and were RTX-insensitive. In rats, blocking TRPV1 by capsazepine or TRPM5 by triphenylphosphine oxide inhibited the tonic NaCl + Bz CT response and shifted the relationship between RTX concentration and the magnitude of the tonic CT response to higher RTX concentrations. TRPM5 KO mice elicited no constitutive NaCl + Bz tonic CT response. The relationship between RTX concentration and the magnitude of the tonic NaCl + Bz CT response was significantly attenuated and shifted to higher RTX concentrations. The results suggest that pharmacological or genetic alteration of TRPM5 activity modulates the Bz-insensitive NaCl CT response and its modulation by TRPV1 agonists.

  15. Factors affecting quality and health promoting compounds during growth and postharvest life of sweet cherry (Prunus avium L.)

    NARCIS (Netherlands)

    Correia, Sofia; Schouten, Rob; Silva, Ana P.; Gonçalves, Berta

    2017-01-01

    Sweet cherries are attractive fruits due to their taste, color, nutritional value, and beneficial health effects. Sweet cherry is a highly perishable fruit and all quality attributes and the level of health promoting compounds are affected by growth conditions, picking, packing, transport, and

  16. Susceptibility to Overeating Affects the Impact of Savory of Sweet Drinks on Satiation, Reward, and Food Intake in Nonobese Women

    NARCIS (Netherlands)

    Finlayson, G.; Bordes, I.; Griffioen-Roose, S.; Graaf, de C.; Blundell, J.E.

    2012-01-01

    Taste is involved in food preference and choice, and it is thought that it can modulate appetite and food intake. The present study investigated the effect of savory or sweet taste on satiation, reward, and food intake and according to individual differences in eating behavior traits underlying

  17. The Bad Taste of Medicines: Overview of Basic Research on Bitter Taste

    Science.gov (United States)

    Mennella, Julie A.; Spector, Alan C.; Reed, Danielle R.; Coldwell, Susan E.

    2013-01-01

    Background Many active pharmaceutical ingredients taste bitter and thus are aversive to children, as well as many adults. Encapsulation of the medicine in pill or tablet form, an effective method for adults to avoid the unpleasant taste, is problematic for children. Many children cannot or will not swallow solid dosage forms. Objective This review highlights basic principles of gustatory function, with a special focus on the science of bitter taste, derived from studies of animal models and human psychophysics. We focus on the set of genes that encode the proteins that function as bitter receptors, as well as the cascade of events that lead to multidimensional aspects of taste function, highlighting the role that animal models played in these discoveries. We also summarize psychophysical approaches to studying bitter taste in adult and pediatric populations, highlighting evidence of the similarities and differences in bitter taste perception and acceptance between adults and children and drawing on useful strategies from animal models. Results Medicine often tastes bitter, and because children are more bitter sensitive than are adults, this creates problems with compliance. Bitter arises from stimulating receptors in taste receptor cells, with signals processed in the taste bud and relayed to the brain. However, there are many gaps in our understanding of how best to measure bitterness and how to ameliorate it, including whether it is more efficiently addressed at the level of receptor and sensory signaling, at the level of central processing, or by masking techniques. All methods of measuring responsiveness to bitter ligands—in animal models, through human psychophysics, or with “electronic tongues”—have limitations. Conclusions Better-tasting medications may enhance pediatric adherence to drug therapy. Sugars, acids, salt, and other substances reduce perceived bitterness of several pharmaceuticals, and although pleasant flavorings may help children

  18. Investigating age-related changes in taste and affects on sensory perceptions of oral nutritional supplements.

    Science.gov (United States)

    Kennedy, Orla; Law, Clara; Methven, Lisa; Mottram, Donald; Gosney, Margot

    2010-11-01

    sip feeds are oral nutritional supplements (ONSs) that are commonly prescribed to malnourished patients to improve their nutritional and clinical status. However, ONSs are poorly consumed and frequently wasted, with sweetness being identified as one of the factors leading to patients' dislike of ONSs. to investigate if age affects sweetness thresholds and if this impacts upon perceived sweetness intensity, hedonic (sweetness and overall) and ranked preference of ONS products. prospective, observational. thirty-six young adults (18-33 years) and 48 healthy older adults (63-85 years). Department of Food and Nutritional Sciences and the Clinical Health Sciences at the University of Reading. detection and recognition threshold levels, basic taste identification and 'just about right' level of sweetness were examined. Three ONSs (chocolate, vanilla, strawberry) and sucrose solutions were evaluated for hedonic sweetness, overall hedonic liking, sweetness intensity and rank preference. significant differences were found in both sweetness detection and recognition thresholds (P = 0.0001) between young and older adults, with older adults more likely to incorrectly identify the taste (P = 0.0001). Despite the deterioration in sweetness sensitivity among the older adults, there were no significant differences found in sweetness intensity perceived for the ONS products presented (P > 0.05) when compared with the young adults. However, across both groups sweetness intensity was found to be correlated with overall product dislike across all flavour variants tested (R = 0.398, P = 0.0001). sweetness appears to be one of many factors contributing to the dislike of ONSs. Manufacturers are encouraged to reconsider the formulations of these products so that beneficial effects of ONSs can be delivered in a more palatable and acceptable form and wastage reduced.

  19. When music is salty: The crossmodal associations between sound and taste.

    Science.gov (United States)

    Guetta, Rachel; Loui, Psyche

    2017-01-01

    Here we investigate associations between complex auditory and complex taste stimuli. A novel piece of music was composed and recorded in four different styles of musical articulation to reflect the four basic tastes groups (sweet, sour, salty, bitter). In Experiment 1, participants performed above chance at pairing the music clips with corresponding taste words. Experiment 2 uses multidimensional scaling to interpret how participants categorize these musical stimuli, and to show that auditory categories can be organized in a similar manner as taste categories. Experiment 3 introduces four different flavors of custom-made chocolate ganache and shows that participants can match music clips with the corresponding taste stimuli with above-chance accuracy. Experiment 4 demonstrates the partial role of pleasantness in crossmodal mappings between sound and taste. The present findings confirm that individuals are able to make crossmodal associations between complex auditory and gustatory stimuli, and that valence may mediate multisensory integration in the general population.