WorldWideScience

Sample records for swarm based hybrid

  1. From hybrid swarms to swarms of hybrids

    Science.gov (United States)

    The introgression of modern humans (Homo sapiens) with Neanderthals 40,000 YBP after a half-million years of separation, may have led to the best example of a hybrid swarm on earth. Modern trade and transportation in support of the human hybrids has continued to introduce additional species, genotyp...

  2. From hybrid swarms to swarms of hybrids

    Science.gov (United States)

    Stohlgren, Thomas J.; Szalanski, Allen L; Gaskin, John F.; Young, Nicholas E.; West, Amanda; Jarnevich, Catherine S.; Tripodi, Amber

    2014-01-01

    Science has shown that the introgression or hybridization of modern humans (Homo sapiens) with Neanderthals up to 40,000 YBP may have led to the swarm of modern humans on earth. However, there is little doubt that modern trade and transportation in support of the humans has continued to introduce additional species, genotypes, and hybrids to every country on the globe. We assessed the utility of species distributions modeling of genotypes to assess the risk of current and future invaders. We evaluated 93 locations of the genus Tamarix for which genetic data were available. Maxent models of habitat suitability showed that the hybrid, T. ramosissima x T. chinensis, was slightly greater than the parent taxa (AUCs > 0.83). General linear models of Africanized honey bees, a hybrid cross of Tanzanian Apis mellifera scutellata and a variety of European honey bee including A. m. ligustica, showed that the Africanized bees (AUC = 0.81) may be displacing European honey bees (AUC > 0.76) over large areas of the southwestern U.S. More important, Maxent modeling of sub-populations (A1 and A26 mitotypes based on mDNA) could be accurately modeled (AUC > 0.9), and they responded differently to environmental drivers. This suggests that rapid evolutionary change may be underway in the Africanized bees, allowing the bees to spread into new areas and extending their total range. Protecting native species and ecosystems may benefit from risk maps of harmful invasive species, hybrids, and genotypes.

  3. Short-Term Wind Power Forecasting Using the Enhanced Particle Swarm Optimization Based Hybrid Method

    OpenAIRE

    Wen-Yeau Chang

    2013-01-01

    High penetration of wind power in the electricity system provides many challenges to power system operators, mainly due to the unpredictability and variability of wind power generation. Although wind energy may not be dispatched, an accurate forecasting method of wind speed and power generation can help power system operators reduce the risk of an unreliable electricity supply. This paper proposes an enhanced particle swarm optimization (EPSO) based hybrid forecasting method for short-term wi...

  4. Global Optimization Based on the Hybridization of Harmony Search and Particle Swarm Optimization Methods

    Directory of Open Access Journals (Sweden)

    A. P. Karpenko

    2014-01-01

    Full Text Available We consider a class of stochastic search algorithms of global optimization which in various publications are called behavioural, intellectual, metaheuristic, inspired by the nature, swarm, multi-agent, population, etc. We use the last term.Experience in using the population algorithms to solve challenges of global optimization shows that application of one such algorithm may not always effective. Therefore now great attention is paid to hybridization of population algorithms of global optimization. Hybrid algorithms unite various algorithms or identical algorithms, but with various values of free parameters. Thus efficiency of one algorithm can compensate weakness of another.The purposes of the work are development of hybrid algorithm of global optimization based on known algorithms of harmony search (HS and swarm of particles (PSO, software implementation of algorithm, study of its efficiency using a number of known benchmark problems, and a problem of dimensional optimization of truss structure.We set a problem of global optimization, consider basic algorithms of HS and PSO, give a flow chart of the offered hybrid algorithm called PSO HS , present results of computing experiments with developed algorithm and software, formulate main results of work and prospects of its development.

  5. Delay-area trade-off for MPRM circuits based on hybrid discrete particle swarm optimization

    International Nuclear Information System (INIS)

    Jiang Zhidi; Wang Zhenhai; Wang Pengjun

    2013-01-01

    Polarity optimization for mixed polarity Reed—Muller (MPRM) circuits is a combinatorial issue. Based on the study on discrete particle swarm optimization (DPSO) and mixed polarity, the corresponding relation between particle and mixed polarity is established, and the delay-area trade-off of large-scale MPRM circuits is proposed. Firstly, mutation operation and elitist strategy in genetic algorithm are incorporated into DPSO to further develop a hybrid DPSO (HDPSO). Then the best polarity for delay and area trade-off is searched for large-scale MPRM circuits by combining the HDPSO and a delay estimation model. Finally, the proposed algorithm is testified by MCNC Benchmarks. Experimental results show that HDPSO achieves a better convergence than DPSO in terms of search capability for large-scale MPRM circuits. (semiconductor integrated circuits)

  6. An Entropy-Based Adaptive Hybrid Particle Swarm Optimization for Disassembly Line Balancing Problems

    Directory of Open Access Journals (Sweden)

    Shanli Xiao

    2017-11-01

    Full Text Available In order to improve the product disassembly efficiency, the disassembly line balancing problem (DLBP is transformed into a problem of searching for the optimum path in the directed and weighted graph by constructing the disassembly hierarchy information graph (DHIG. Then, combining the characteristic of the disassembly sequence, an entropy-based adaptive hybrid particle swarm optimization algorithm (AHPSO is presented. In this algorithm, entropy is introduced to measure the changing tendency of population diversity, and the dimension learning, crossover and mutation operator are used to increase the probability of producing feasible disassembly solutions (FDS. Performance of the proposed methodology is tested on the primary problem instances available in the literature, and the results are compared with other evolutionary algorithms. The results show that the proposed algorithm is efficient to solve the complex DLBP.

  7. Short-Term Wind Power Forecasting Using the Enhanced Particle Swarm Optimization Based Hybrid Method

    Directory of Open Access Journals (Sweden)

    Wen-Yeau Chang

    2013-09-01

    Full Text Available High penetration of wind power in the electricity system provides many challenges to power system operators, mainly due to the unpredictability and variability of wind power generation. Although wind energy may not be dispatched, an accurate forecasting method of wind speed and power generation can help power system operators reduce the risk of an unreliable electricity supply. This paper proposes an enhanced particle swarm optimization (EPSO based hybrid forecasting method for short-term wind power forecasting. The hybrid forecasting method combines the persistence method, the back propagation neural network, and the radial basis function (RBF neural network. The EPSO algorithm is employed to optimize the weight coefficients in the hybrid forecasting method. To demonstrate the effectiveness of the proposed method, the method is tested on the practical information of wind power generation of a wind energy conversion system (WECS installed on the Taichung coast of Taiwan. Comparisons of forecasting performance are made with the individual forecasting methods. Good agreements between the realistic values and forecasting values are obtained; the test results show the proposed forecasting method is accurate and reliable.

  8. Application of hybrid artificial fish swarm algorithm based on similar fragments in VRP

    Science.gov (United States)

    Che, Jinnuo; Zhou, Kang; Zhang, Xueyu; Tong, Xin; Hou, Lingyun; Jia, Shiyu; Zhen, Yiting

    2018-03-01

    Focused on the issue that the decrease of convergence speed and the precision of calculation at the end of the process in Artificial Fish Swarm Algorithm(AFSA) and instability of results, a hybrid AFSA based on similar fragments is proposed. Traditional AFSA enjoys a lot of obvious advantages in solving complex optimization problems like Vehicle Routing Problem(VRP). AFSA have a few limitations such as low convergence speed, low precision and instability of results. In this paper, two improvements are introduced. On the one hand, change the definition of the distance for artificial fish, as well as increase vision field of artificial fish, and the problem of speed and precision can be improved when solving VRP. On the other hand, mix artificial bee colony algorithm(ABC) into AFSA - initialize the population of artificial fish by the ABC, and it solves the problem of instability of results in some extend. The experiment results demonstrate that the optimal solution of the hybrid AFSA is easier to approach the optimal solution of the standard database than the other two algorithms. In conclusion, the hybrid algorithm can effectively solve the problem that instability of results and decrease of convergence speed and the precision of calculation at the end of the process.

  9. Swarm Intelligence-Based Hybrid Models for Short-Term Power Load Prediction

    Directory of Open Access Journals (Sweden)

    Jianzhou Wang

    2014-01-01

    Full Text Available Swarm intelligence (SI is widely and successfully applied in the engineering field to solve practical optimization problems because various hybrid models, which are based on the SI algorithm and statistical models, are developed to further improve the predictive abilities. In this paper, hybrid intelligent forecasting models based on the cuckoo search (CS as well as the singular spectrum analysis (SSA, time series, and machine learning methods are proposed to conduct short-term power load prediction. The forecasting performance of the proposed models is augmented by a rolling multistep strategy over the prediction horizon. The test results are representative of the out-performance of the SSA and CS in tuning the seasonal autoregressive integrated moving average (SARIMA and support vector regression (SVR in improving load forecasting, which indicates that both the SSA-based data denoising and SI-based intelligent optimization strategy can effectively improve the model’s predictive performance. Additionally, the proposed CS-SSA-SARIMA and CS-SSA-SVR models provide very impressive forecasting results, demonstrating their strong robustness and universal forecasting capacities in terms of short-term power load prediction 24 hours in advance.

  10. Hybrid chaotic ant swarm optimization

    International Nuclear Information System (INIS)

    Li Yuying; Wen Qiaoyan; Li Lixiang; Peng Haipeng

    2009-01-01

    Chaotic ant swarm optimization (CASO) is a powerful chaos search algorithm that is used to find the global optimum solution in search space. However, the CASO algorithm has some disadvantages, such as lower solution precision and longer computational time, when solving complex optimization problems. To resolve these problems, an improved CASO, called hybrid chaotic swarm optimization (HCASO), is proposed in this paper. The new algorithm introduces preselection operator and discrete recombination operator into the CASO; meanwhile it replaces the best position found by own and its neighbors' ants with the best position found by preselection operator and discrete recombination operator in evolution equation. Through testing five benchmark functions with large dimensionality, the experimental results show the new method enhances the solution accuracy and stability greatly, as well as reduces the computational time and computer memory significantly when compared to the CASO. In addition, we observe the results can become better with swarm size increasing from the sensitivity study to swarm size. And we gain some relations between problem dimensions and swam size according to scalability study.

  11. A new hybrid teaching–learning particle swarm optimization ...

    Indian Academy of Sciences (India)

    This paper proposes a novel hybrid teaching–learning particle swarm optimization (HTLPSO) algorithm, which merges two established nature-inspired algorithms, namely, optimization based on teaching–learning (TLBO) and particle swarm optimization (PSO). The HTLPSO merges the best half of population obtained after ...

  12. OPTIMIZED PARTICLE SWARM OPTIMIZATION BASED DEADLINE CONSTRAINED TASK SCHEDULING IN HYBRID CLOUD

    Directory of Open Access Journals (Sweden)

    Dhananjay Kumar

    2016-01-01

    Full Text Available Cloud Computing is a dominant way of sharing of computing resources that can be configured and provisioned easily. Task scheduling in Hybrid cloud is a challenge as it suffers from producing the best QoS (Quality of Service when there is a high demand. In this paper a new resource allocation algorithm, to find the best External Cloud provider when the intermediate provider’s resources aren’t enough to satisfy the customer’s demand is proposed. The proposed algorithm called Optimized Particle Swarm Optimization (OPSO combines the two metaheuristic algorithms namely Particle Swarm Optimization and Ant Colony Optimization (ACO. These metaheuristic algorithms are used for the purpose of optimization in the search space of the required solution, to find the best resource from the pool of resources and to obtain maximum profit even when the number of tasks submitted for execution is very high. This optimization is performed to allocate job requests to internal and external cloud providers to obtain maximum profit. It helps to improve the system performance by improving the CPU utilization, and handle multiple requests at the same time. The simulation result shows that an OPSO yields 0.1% - 5% profit to the intermediate cloud provider compared with standard PSO and ACO algorithms and it also increases the CPU utilization by 0.1%.

  13. Particle swarm optimization of driving torque demand decision based on fuel economy for plug-in hybrid electric vehicle

    International Nuclear Information System (INIS)

    Shen, Peihong; Zhao, Zhiguo; Zhan, Xiaowen; Li, Jingwei

    2017-01-01

    In this paper, an energy management strategy based on logic threshold is proposed for a plug-in hybrid electric vehicle. The plug-in hybrid electric vehicle powertrain model is established using MATLAB/Simulink based on experimental tests of the power components, which is validated by the comparison with the verified simulation model which is built in the AVL Cruise. The influence of the driving torque demand decision on the fuel economy of plug-in hybrid electric vehicle is studied using a simulation. The optimization method for the driving torque demand decision, which refers to the relationship between the accelerator pedal opening and driving torque demand, from the perspective of fuel economy is formulated. The dynamically changing inertia weight particle swarm optimization is used to optimize the decision parameters. The simulation results show that the optimized driving torque demand decision can improve the PHEV fuel economy by 15.8% and 14.5% in the fuel economy test driving cycle of new European driving cycle and worldwide harmonized light vehicles test respectively, using the same rule-based energy management strategy. The proposed optimization method provides a theoretical guide for calibrating the parameters of driving torque demand decision to improve the fuel economy of the real plug-in hybrid electric vehicle. - Highlights: • The influence of the driving torque demand decision on the fuel economy is studied. • The optimization method for the driving torque demand decision is formulated. • An improved particle swarm optimization is utilized to optimize the parameters. • Fuel economy is improved by using the optimized driving torque demand decision.

  14. Swarm-based medicine.

    Science.gov (United States)

    Putora, Paul Martin; Oldenburg, Jan

    2013-09-19

    Occasionally, medical decisions have to be taken in the absence of evidence-based guidelines. Other sources can be drawn upon to fill in the gaps, including experience and intuition. Authorities or experts, with their knowledge and experience, may provide further input--known as "eminence-based medicine". Due to the Internet and digital media, interactions among physicians now take place at a higher rate than ever before. With the rising number of interconnected individuals and their communication capabilities, the medical community is obtaining the properties of a swarm. The way individual physicians act depends on other physicians; medical societies act based on their members. Swarm behavior might facilitate the generation and distribution of knowledge as an unconscious process. As such, "swarm-based medicine" may add a further source of information to the classical approaches of evidence- and eminence-based medicine. How to integrate swarm-based medicine into practice is left to the individual physician, but even this decision will be influenced by the swarm.

  15. PS-FW: A Hybrid Algorithm Based on Particle Swarm and Fireworks for Global Optimization

    Directory of Open Access Journals (Sweden)

    Shuangqing Chen

    2018-01-01

    Full Text Available Particle swarm optimization (PSO and fireworks algorithm (FWA are two recently developed optimization methods which have been applied in various areas due to their simplicity and efficiency. However, when being applied to high-dimensional optimization problems, PSO algorithm may be trapped in the local optima owing to the lack of powerful global exploration capability, and fireworks algorithm is difficult to converge in some cases because of its relatively low local exploitation efficiency for noncore fireworks. In this paper, a hybrid algorithm called PS-FW is presented, in which the modified operators of FWA are embedded into the solving process of PSO. In the iteration process, the abandonment and supplement mechanism is adopted to balance the exploration and exploitation ability of PS-FW, and the modified explosion operator and the novel mutation operator are proposed to speed up the global convergence and to avoid prematurity. To verify the performance of the proposed PS-FW algorithm, 22 high-dimensional benchmark functions have been employed, and it is compared with PSO, FWA, stdPSO, CPSO, CLPSO, FIPS, Frankenstein, and ALWPSO algorithms. Results show that the PS-FW algorithm is an efficient, robust, and fast converging optimization method for solving global optimization problems.

  16. The Weighted Support Vector Machine Based on Hybrid Swarm Intelligence Optimization for Icing Prediction of Transmission Line

    Directory of Open Access Journals (Sweden)

    Xiaomin Xu

    2015-01-01

    Full Text Available Not only can the icing coat on transmission line cause the electrical fault of gap discharge and icing flashover but also it will lead to the mechanical failure of tower, conductor, insulators, and others. It will bring great harm to the people’s daily life and work. Thus, accurate prediction of ice thickness has important significance for power department to control the ice disaster effectively. Based on the analysis of standard support vector machine, this paper presents a weighted support vector machine regression model based on the similarity (WSVR. According to the different importance of samples, this paper introduces the weighted support vector machine and optimizes its parameters by hybrid swarm intelligence optimization algorithm with the particle swarm and ant colony (PSO-ACO, which improves the generalization ability of the model. In the case study, the actual data of ice thickness and climate in a certain area of Hunan province have been used to predict the icing thickness of the area, which verifies the validity and applicability of this proposed method. The predicted results show that the intelligent model proposed in this paper has higher precision and stronger generalization ability.

  17. Swarm Intelligence-Based Smart Energy Allocation Strategy for Charging Stations of Plug-In Hybrid Electric Vehicles

    Directory of Open Access Journals (Sweden)

    Imran Rahman

    2015-01-01

    Full Text Available Recent researches towards the use of green technologies to reduce pollution and higher penetration of renewable energy sources in the transportation sector have been gaining popularity. In this wake, extensive participation of plug-in hybrid electric vehicles (PHEVs requires adequate charging allocation strategy using a combination of smart grid systems and smart charging infrastructures. Daytime charging stations will be needed for daily usage of PHEVs due to the limited all-electric range. Intelligent energy management is an important issue which has already drawn much attention of researchers. Most of these works require formulation of mathematical models with extensive use of computational intelligence-based optimization techniques to solve many technical problems. In this paper, gravitational search algorithm (GSA has been applied and compared with another member of swarm family, particle swarm optimization (PSO, considering constraints such as energy price, remaining battery capacity, and remaining charging time. Simulation results obtained for maximizing the highly nonlinear objective function evaluate the performance of both techniques in terms of best fitness.

  18. A novel hybrid approach based on Particle Swarm Optimization and Ant Colony Algorithm to forecast energy demand of Turkey

    International Nuclear Information System (INIS)

    Kıran, Mustafa Servet; Özceylan, Eren; Gündüz, Mesut; Paksoy, Turan

    2012-01-01

    Highlights: ► PSO and ACO algorithms are hybridized for forecasting energy demands of Turkey. ► Linear and quadratic forms are developed to meet the fluctuations of indicators. ► GDP, population, export and import have significant impacts on energy demand. ► Quadratic form provides better fit solution than linear form. ► Proposed approach gives lower estimation error than ACO and PSO, separately. - Abstract: This paper proposes a new hybrid method (HAP) for estimating energy demand of Turkey using Particle Swarm Optimization (PSO) and Ant Colony Optimization (ACO). Proposed energy demand model (HAPE) is the first model which integrates two mentioned meta-heuristic techniques. While, PSO, developed for solving continuous optimization problems, is a population based stochastic technique; ACO, simulating behaviors between nest and food source of real ants, is generally used for discrete optimizations. Hybrid method based PSO and ACO is developed to estimate energy demand using gross domestic product (GDP), population, import and export. HAPE is developed in two forms which are linear (HAPEL) and quadratic (HAPEQ). The future energy demand is estimated under different scenarios. In order to show the accuracy of the algorithm, a comparison is made with ACO and PSO which are developed for the same problem. According to obtained results, relative estimation errors of the HAPE model are the lowest of them and quadratic form (HAPEQ) provides better-fit solutions due to fluctuations of the socio-economic indicators.

  19. Intelligent sizing of a series hybrid electric power-train system based on Chaos-enhanced accelerated particle swarm optimization

    International Nuclear Information System (INIS)

    Zhou, Quan; Zhang, Wei; Cash, Scott; Olatunbosun, Oluremi; Xu, Hongming; Lu, Guoxiang

    2017-01-01

    Highlights: • A novel algorithm for hybrid electric powertrain intelligent sizing is introduced and applied. • The proposed CAPSO algorithm is capable of finding the real optimal result with much higher reputation. • Logistic mapping is the most effective strategy to build CAPSO. • The CAPSO gave more reliable results and increased the efficiency by 1.71%. - Abstract: This paper firstly proposed a novel HEV sizing method using the Chaos-enhanced Accelerated Particle Swarm Optimization (CAPSO) algorithm and secondly provided a demonstration on sizing a series hybrid electric powertrain with investigations of chaotic mapping strategies to achieve the global optimization. In this paper, the intelligent sizing of a series hybrid electric powertrain is formulated as an integer multi-objective optimization issue by modelling the powertrain system. The intelligent sizing mechanism based on APSO is then introduced, and 4 types of the most effective chaotic mapping strategy are investigated to upgrade the standard APSO into CAPSO algorithms for intelligent sizing. The evaluation of the intelligent sizing systems based on standard APSO and CAPSOs are then performed. The Monte Carlo analysis and reputation evaluation indicate that the CAPSO outperforms the standard APSO for finding the real optimal sizing result with much higher reputation, and CAPSO with logistic mapping strategy is the most effective algorithm for HEV powertrain components intelligent sizing. In addition, this paper also performs the sensitivity analysis and Pareto analysis to help engineers customize the intelligent sizing system.

  20. Hybrid Particle Swarm Optimization based Day-Ahead Self-Scheduling for Thermal Generator in Competitive Electricity Market

    DEFF Research Database (Denmark)

    Pindoriya, Naran M.; Singh, S.N.; Østergaard, Jacob

    2009-01-01

    This paper presents a hybrid particle swarm optimization algorithm (HPSO) to solve the day-ahead self-scheduling for thermal power producer in competitive electricity market. The objective functions considered to model the self-scheduling problem are 1) to maximize the profit from selling energy...

  1. Identification of transformer fault based on dissolved gas analysis using hybrid support vector machine-modified evolutionary particle swarm optimisation.

    Directory of Open Access Journals (Sweden)

    Hazlee Azil Illias

    Full Text Available Early detection of power transformer fault is important because it can reduce the maintenance cost of the transformer and it can ensure continuous electricity supply in power systems. Dissolved Gas Analysis (DGA technique is commonly used to identify oil-filled power transformer fault type but utilisation of artificial intelligence method with optimisation methods has shown convincing results. In this work, a hybrid support vector machine (SVM with modified evolutionary particle swarm optimisation (EPSO algorithm was proposed to determine the transformer fault type. The superiority of the modified PSO technique with SVM was evaluated by comparing the results with the actual fault diagnosis, unoptimised SVM and previous reported works. Data reduction was also applied using stepwise regression prior to the training process of SVM to reduce the training time. It was found that the proposed hybrid SVM-Modified EPSO (MEPSO-Time Varying Acceleration Coefficient (TVAC technique results in the highest correct identification percentage of faults in a power transformer compared to other PSO algorithms. Thus, the proposed technique can be one of the potential solutions to identify the transformer fault type based on DGA data on site.

  2. Identification of transformer fault based on dissolved gas analysis using hybrid support vector machine-modified evolutionary particle swarm optimisation.

    Science.gov (United States)

    Illias, Hazlee Azil; Zhao Liang, Wee

    2018-01-01

    Early detection of power transformer fault is important because it can reduce the maintenance cost of the transformer and it can ensure continuous electricity supply in power systems. Dissolved Gas Analysis (DGA) technique is commonly used to identify oil-filled power transformer fault type but utilisation of artificial intelligence method with optimisation methods has shown convincing results. In this work, a hybrid support vector machine (SVM) with modified evolutionary particle swarm optimisation (EPSO) algorithm was proposed to determine the transformer fault type. The superiority of the modified PSO technique with SVM was evaluated by comparing the results with the actual fault diagnosis, unoptimised SVM and previous reported works. Data reduction was also applied using stepwise regression prior to the training process of SVM to reduce the training time. It was found that the proposed hybrid SVM-Modified EPSO (MEPSO)-Time Varying Acceleration Coefficient (TVAC) technique results in the highest correct identification percentage of faults in a power transformer compared to other PSO algorithms. Thus, the proposed technique can be one of the potential solutions to identify the transformer fault type based on DGA data on site.

  3. Identification of transformer fault based on dissolved gas analysis using hybrid support vector machine-modified evolutionary particle swarm optimisation

    Science.gov (United States)

    2018-01-01

    Early detection of power transformer fault is important because it can reduce the maintenance cost of the transformer and it can ensure continuous electricity supply in power systems. Dissolved Gas Analysis (DGA) technique is commonly used to identify oil-filled power transformer fault type but utilisation of artificial intelligence method with optimisation methods has shown convincing results. In this work, a hybrid support vector machine (SVM) with modified evolutionary particle swarm optimisation (EPSO) algorithm was proposed to determine the transformer fault type. The superiority of the modified PSO technique with SVM was evaluated by comparing the results with the actual fault diagnosis, unoptimised SVM and previous reported works. Data reduction was also applied using stepwise regression prior to the training process of SVM to reduce the training time. It was found that the proposed hybrid SVM-Modified EPSO (MEPSO)-Time Varying Acceleration Coefficient (TVAC) technique results in the highest correct identification percentage of faults in a power transformer compared to other PSO algorithms. Thus, the proposed technique can be one of the potential solutions to identify the transformer fault type based on DGA data on site. PMID:29370230

  4. Issues concerning reproductive isolation in a rice hybrid swarm ...

    African Journals Online (AJOL)

    The study reveals post-zygotic mechanism involving segregational as well as developmental hybrid sterility to be the major isolating mechanism involved the reproductive isolation existing among the parent populations in the swarm. Hybridization and introgression have played significant roles in creating this hybrid swarm ...

  5. A Hybrid Method for Image Segmentation Based on Artificial Fish Swarm Algorithm and Fuzzy c-Means Clustering.

    Science.gov (United States)

    Ma, Li; Li, Yang; Fan, Suohai; Fan, Runzhu

    2015-01-01

    Image segmentation plays an important role in medical image processing. Fuzzy c-means (FCM) clustering is one of the popular clustering algorithms for medical image segmentation. However, FCM has the problems of depending on initial clustering centers, falling into local optimal solution easily, and sensitivity to noise disturbance. To solve these problems, this paper proposes a hybrid artificial fish swarm algorithm (HAFSA). The proposed algorithm combines artificial fish swarm algorithm (AFSA) with FCM whose advantages of global optimization searching and parallel computing ability of AFSA are utilized to find a superior result. Meanwhile, Metropolis criterion and noise reduction mechanism are introduced to AFSA for enhancing the convergence rate and antinoise ability. The artificial grid graph and Magnetic Resonance Imaging (MRI) are used in the experiments, and the experimental results show that the proposed algorithm has stronger antinoise ability and higher precision. A number of evaluation indicators also demonstrate that the effect of HAFSA is more excellent than FCM and suppressed FCM (SFCM).

  6. Performance Evaluation of Hybrid Acoustic-Optical Underwater Swarm Networks

    Directory of Open Access Journals (Sweden)

    Samuela PERSIA

    2016-04-01

    Full Text Available The Underwater Swarm is a particular Underwater Network configuration characterized by nodes very close one to each other, with mobility capability. The structure of the network is that of a distributed network, in which the nodes, through the exchange of control information, will take decisions in collaborative manner. This type of network raises challenges for its effective design and development, for which the only use of acoustic communication as traditionally suggested in underwater communication could be not enough. A new emerging solution could be a hybrid solution that combines the use of acoustic and optical channel in order to overcome the acoustic channel limitations in underwater environment. In this work, we want to investigate how the acoustic and optical communications influence the Underwater Swarm performance by considering the Low Layers Protocols (Physical Layer, Data Link Layer and Network Layer effects over the two different propagation technologies. Performance simulations have been carried out to suggest how the new hybrid system could be designed. This study will permit to provide useful analysis for the real implementation of an Underwater Swarm based on hybrid communication technology.

  7. A Hybrid Method for Image Segmentation Based on Artificial Fish Swarm Algorithm and Fuzzy c-Means Clustering

    Directory of Open Access Journals (Sweden)

    Li Ma

    2015-01-01

    Full Text Available Image segmentation plays an important role in medical image processing. Fuzzy c-means (FCM clustering is one of the popular clustering algorithms for medical image segmentation. However, FCM has the problems of depending on initial clustering centers, falling into local optimal solution easily, and sensitivity to noise disturbance. To solve these problems, this paper proposes a hybrid artificial fish swarm algorithm (HAFSA. The proposed algorithm combines artificial fish swarm algorithm (AFSA with FCM whose advantages of global optimization searching and parallel computing ability of AFSA are utilized to find a superior result. Meanwhile, Metropolis criterion and noise reduction mechanism are introduced to AFSA for enhancing the convergence rate and antinoise ability. The artificial grid graph and Magnetic Resonance Imaging (MRI are used in the experiments, and the experimental results show that the proposed algorithm has stronger antinoise ability and higher precision. A number of evaluation indicators also demonstrate that the effect of HAFSA is more excellent than FCM and suppressed FCM (SFCM.

  8. Performance Analysis of Hybrid Swarm Intelligence Rule Induction Algorithm

    OpenAIRE

    Nalini, C.; Kongu Engineering College; Balasubramnaie, P.; Kongu Engineering College

    2010-01-01

    Data mining is used to extract potential information from data base. Rule induction is used to extract information from data base and display it in IF-THEN rule format. First the classification algorithm builds a predictive model from the training data set and then measure the accuracy of the model by using test data set.This work proposes a hybrid rule induction algorithm using Cooperative Particle Swarm (PSO) with Tabu search (TS), and Ant Colony Optimization (ACO). Real world data base cons...

  9. Discordant introgression in a rapidly expanding hybrid swarm

    Science.gov (United States)

    Ward, Jessica L.; Blum, Mike J.; Walters, David M.; Porter, Brady A.; Burkhead, Noel; Freeman, Byron

    2012-01-01

    The erosion of species boundaries can involve rapid evolutionary change. Consequently, many aspects of the process remain poorly understood, including the formation, expansion, and evolution of hybrid swarms. Biological invasions involving hybridization present exceptional opportunities to study the erosion of species boundaries because timelines of interactions and outcomes are frequently well known. Here, we examined clinal variation across codominant and maternally inherited genetic markers as well as phenotypic traits to characterize the expansion and evolution of a hybrid swarm between native Cyprinella venusta and invasive Cyprinella lutrensis minnows. Discordant introgression of phenotype, microsatellite multilocus genotype, and mtDNA haplotype indicates that the observable expansion of the C. venusta x C. lutrensis hybrid swarm is a false invasion front. Both parental and hybrid individuals closely resembling C. lutrensis are numerically dominant in the expansion wake, indicating that the non-native parental phenotype may be selectively favored. These findings show that cryptic introgression can extend beyond the phenotypic boundaries of hybrid swarms and that hybrid swarms likely expand more rapidly than can be documented from phenotypic variation alone. Similarly, dominance of a single parental phenotype following an introduction event may lead to instances of species erosion being mistaken for species displacement without hybridization.

  10. Hybrid ANN optimized artificial fish swarm algorithm based classifier for classification of suspicious lesions in breast DCE-MRI

    Science.gov (United States)

    Janaki Sathya, D.; Geetha, K.

    2017-12-01

    Automatic mass or lesion classification systems are developed to aid in distinguishing between malignant and benign lesions present in the breast DCE-MR images, the systems need to improve both the sensitivity and specificity of DCE-MR image interpretation in order to be successful for clinical use. A new classifier (a set of features together with a classification method) based on artificial neural networks trained using artificial fish swarm optimization (AFSO) algorithm is proposed in this paper. The basic idea behind the proposed classifier is to use AFSO algorithm for searching the best combination of synaptic weights for the neural network. An optimal set of features based on the statistical textural features is presented. The investigational outcomes of the proposed suspicious lesion classifier algorithm therefore confirm that the resulting classifier performs better than other such classifiers reported in the literature. Therefore this classifier demonstrates that the improvement in both the sensitivity and specificity are possible through automated image analysis.

  11. Rapid movement and instability of an invasive hybrid swarm.

    Science.gov (United States)

    Glotzbecker, Gregory J; Walters, David M; Blum, Michael J

    2016-07-01

    Unstable hybrid swarms that arise following the introduction of non-native species can overwhelm native congeners, yet the stability of invasive hybrid swarms has not been well documented over time. Here, we examine genetic variation and clinal stability across a recently formed hybrid swarm involving native blacktail shiner (Cyprinella venusta) and non-native red shiner (C. lutrensis) in the Upper Coosa River basin, which is widely considered to be a global hot spot of aquatic biodiversity. Examination of phenotypic, multilocus genotypic, and mitochondrial haplotype variability between 2005 and 2011 revealed that the proportion of hybrids has increased over time, with more than a third of all sampled individuals exhibiting admixture in the final year of sampling. Comparisons of clines over time indicated that the hybrid swarm has been rapidly progressing upstream, but at a declining and slower pace than rates estimated from historical collection records. Clinal comparisons also showed that the hybrid swarm has been expanding and contracting over time. Additionally, we documented the presence of red shiner and hybrids farther downstream than prior studies have detected, which suggests that congeners in the Coosa River basin, including all remaining populations of the threatened blue shiner (Cyprinella caerulea), are at greater risk than previously thought.

  12. Solving Unconstrained Global Optimization Problems via Hybrid Swarm Intelligence Approaches

    Directory of Open Access Journals (Sweden)

    Jui-Yu Wu

    2013-01-01

    Full Text Available Stochastic global optimization (SGO algorithms such as the particle swarm optimization (PSO approach have become popular for solving unconstrained global optimization (UGO problems. The PSO approach, which belongs to the swarm intelligence domain, does not require gradient information, enabling it to overcome this limitation of traditional nonlinear programming methods. Unfortunately, PSO algorithm implementation and performance depend on several parameters, such as cognitive parameter, social parameter, and constriction coefficient. These parameters are tuned by using trial and error. To reduce the parametrization of a PSO method, this work presents two efficient hybrid SGO approaches, namely, a real-coded genetic algorithm-based PSO (RGA-PSO method and an artificial immune algorithm-based PSO (AIA-PSO method. The specific parameters of the internal PSO algorithm are optimized using the external RGA and AIA approaches, and then the internal PSO algorithm is applied to solve UGO problems. The performances of the proposed RGA-PSO and AIA-PSO algorithms are then evaluated using a set of benchmark UGO problems. Numerical results indicate that, besides their ability to converge to a global minimum for each test UGO problem, the proposed RGA-PSO and AIA-PSO algorithms outperform many hybrid SGO algorithms. Thus, the RGA-PSO and AIA-PSO approaches can be considered alternative SGO approaches for solving standard-dimensional UGO problems.

  13. The occurence of a hybrid swarm involving O. longistaminata A ...

    African Journals Online (AJOL)

    A hybrid swarm involving Oryza longistaminata, O. glaberrima and O. sativa was discovered at Jebba in Nigeria. A preliminary study in 2000 paved the way for this study which used extensive morphological and anatomical markers to identify and characterise putative hybrids and their advanced generation segregants.

  14. THE OCCURENCE OF A HYBRID SWARM INVOLVING A. CHEV ...

    African Journals Online (AJOL)

    BIG TIMMY

    A hybrid swarm involving O. , and was discovered at Jebba in Nigeria. A preliminary study in 2000 paved the way for this study which used extensive morphological and anatomical markers to identify and characterise putative hybrids and their advanced generation segregants. The factors favouring the occurrence of the ...

  15. Quantum Behaved Particle Swarm Optimization Algorithm Based on Artificial Fish Swarm

    OpenAIRE

    Yumin, Dong; Li, Zhao

    2014-01-01

    Quantum behaved particle swarm algorithm is a new intelligent optimization algorithm; the algorithm has less parameters and is easily implemented. In view of the existing quantum behaved particle swarm optimization algorithm for the premature convergence problem, put forward a quantum particle swarm optimization algorithm based on artificial fish swarm. The new algorithm based on quantum behaved particle swarm algorithm, introducing the swarm and following activities, meanwhile using the a...

  16. Inverse Modeling of Soil Hydraulic Parameters Based on a Hybrid of Vector-Evaluated Genetic Algorithm and Particle Swarm Optimization

    Directory of Open Access Journals (Sweden)

    Yi-Bo Li

    2018-01-01

    Full Text Available The accurate estimation of soil hydraulic parameters (θs, α, n, and Ks of the van Genuchten–Mualem model has attracted considerable attention. In this study, we proposed a new two-step inversion method, which first estimated the hydraulic parameter θs using objective function by the final water content, and subsequently estimated the soil hydraulic parameters α, n, and Ks, using a vector-evaluated genetic algorithm and particle swarm optimization (VEGA-PSO method based on objective functions by cumulative infiltration and infiltration rate. The parameters were inversely estimated for four types of soils (sand, loam, silt, and clay under an in silico experiment simulating the tension disc infiltration at three initial water content levels. The results indicated that the method is excellent and robust. Because the objective function had multilocal minima in a tiny range near the true values, inverse estimation of the hydraulic parameters was difficult; however, the estimated soil water retention curves and hydraulic conductivity curves were nearly identical to the true curves. In addition, the proposed method was able to estimate the hydraulic parameters accurately despite substantial measurement errors in initial water content, final water content, and cumulative infiltration, proving that the method was feasible and practical for field application.

  17. A new hybrid teaching–learning particle swarm optimization ...

    Indian Academy of Sciences (India)

    Ramanpreet Singh

    2017-11-07

    Nov 7, 2017 ... A new hybrid teaching–learning particle swarm optimization algorithm for synthesis of linkages to generate path. RAMANPREET SINGH*, HIMANSHU CHAUDHARY and AMIT K SINGH. Department of Mechanical Engineering, Malaviya National Institute of Technology Jaipur, Jaipur 302017, India e-mail: ...

  18. Operation management of daily economic dispatch using novel hybrid particle swarm optimization and gravitational search algorithm with hybrid mutation strategy

    Science.gov (United States)

    Wang, Yan; Huang, Song; Ji, Zhicheng

    2017-07-01

    This paper presents a hybrid particle swarm optimization and gravitational search algorithm based on hybrid mutation strategy (HGSAPSO-M) to optimize economic dispatch (ED) including distributed generations (DGs) considering market-based energy pricing. A daily ED model was formulated and a hybrid mutation strategy was adopted in HGSAPSO-M. The hybrid mutation strategy includes two mutation operators, chaotic mutation, Gaussian mutation. The proposed algorithm was tested on IEEE-33 bus and results show that the approach is effective for this problem.

  19. Strength Pareto particle swarm optimization and hybrid EA-PSO for multi-objective optimization.

    Science.gov (United States)

    Elhossini, Ahmed; Areibi, Shawki; Dony, Robert

    2010-01-01

    This paper proposes an efficient particle swarm optimization (PSO) technique that can handle multi-objective optimization problems. It is based on the strength Pareto approach originally used in evolutionary algorithms (EA). The proposed modified particle swarm algorithm is used to build three hybrid EA-PSO algorithms to solve different multi-objective optimization problems. This algorithm and its hybrid forms are tested using seven benchmarks from the literature and the results are compared to the strength Pareto evolutionary algorithm (SPEA2) and a competitive multi-objective PSO using several metrics. The proposed algorithm shows a slower convergence, compared to the other algorithms, but requires less CPU time. Combining PSO and evolutionary algorithms leads to superior hybrid algorithms that outperform SPEA2, the competitive multi-objective PSO (MO-PSO), and the proposed strength Pareto PSO based on different metrics.

  20. Hybrid Particle Swarm Optimization for Hybrid Flowshop Scheduling Problem with Maintenance Activities

    Science.gov (United States)

    Li, Jun-qing; Pan, Quan-ke; Mao, Kun

    2014-01-01

    A hybrid algorithm which combines particle swarm optimization (PSO) and iterated local search (ILS) is proposed for solving the hybrid flowshop scheduling (HFS) problem with preventive maintenance (PM) activities. In the proposed algorithm, different crossover operators and mutation operators are investigated. In addition, an efficient multiple insert mutation operator is developed for enhancing the searching ability of the algorithm. Furthermore, an ILS-based local search procedure is embedded in the algorithm to improve the exploitation ability of the proposed algorithm. The detailed experimental parameter for the canonical PSO is tuning. The proposed algorithm is tested on the variation of 77 Carlier and Néron's benchmark problems. Detailed comparisons with the present efficient algorithms, including hGA, ILS, PSO, and IG, verify the efficiency and effectiveness of the proposed algorithm. PMID:24883414

  1. Hybrid Particle Swarm Optimization for Hybrid Flowshop Scheduling Problem with Maintenance Activities

    Directory of Open Access Journals (Sweden)

    Jun-qing Li

    2014-01-01

    Full Text Available A hybrid algorithm which combines particle swarm optimization (PSO and iterated local search (ILS is proposed for solving the hybrid flowshop scheduling (HFS problem with preventive maintenance (PM activities. In the proposed algorithm, different crossover operators and mutation operators are investigated. In addition, an efficient multiple insert mutation operator is developed for enhancing the searching ability of the algorithm. Furthermore, an ILS-based local search procedure is embedded in the algorithm to improve the exploitation ability of the proposed algorithm. The detailed experimental parameter for the canonical PSO is tuning. The proposed algorithm is tested on the variation of 77 Carlier and Néron’s benchmark problems. Detailed comparisons with the present efficient algorithms, including hGA, ILS, PSO, and IG, verify the efficiency and effectiveness of the proposed algorithm.

  2. Hybrid particle swarm optimization for hybrid flowshop scheduling problem with maintenance activities.

    Science.gov (United States)

    Li, Jun-qing; Pan, Quan-ke; Mao, Kun

    2014-01-01

    A hybrid algorithm which combines particle swarm optimization (PSO) and iterated local search (ILS) is proposed for solving the hybrid flowshop scheduling (HFS) problem with preventive maintenance (PM) activities. In the proposed algorithm, different crossover operators and mutation operators are investigated. In addition, an efficient multiple insert mutation operator is developed for enhancing the searching ability of the algorithm. Furthermore, an ILS-based local search procedure is embedded in the algorithm to improve the exploitation ability of the proposed algorithm. The detailed experimental parameter for the canonical PSO is tuning. The proposed algorithm is tested on the variation of 77 Carlier and Néron's benchmark problems. Detailed comparisons with the present efficient algorithms, including hGA, ILS, PSO, and IG, verify the efficiency and effectiveness of the proposed algorithm.

  3. Consensus reaching in swarms ruled by a hybrid metric-topological distance

    Science.gov (United States)

    Shang, Yilun; Bouffanais, Roland

    2014-12-01

    Recent empirical observations of three-dimensional bird flocks and human crowds have challenged the long-prevailing assumption that a metric interaction distance rules swarming behaviors. In some cases, individual agents are found to be engaged in local information exchanges with a fixed number of neighbors, i.e. a topological interaction. However, complex system dynamics based on pure metric or pure topological distances both face physical inconsistencies in low and high density situations. Here, we propose a hybrid metric-topological interaction distance overcoming these issues and enabling a real-life implementation in artificial robotic swarms. We use network- and graph-theoretic approaches combined with a dynamical model of locally interacting self-propelled particles to study the consensus reaching process for a swarm ruled by this hybrid interaction distance. Specifically, we establish exactly the probability of reaching consensus in the absence of noise. In addition, simulations of swarms of self-propelled particles are carried out to assess the influence of the hybrid distance and noise.

  4. PARTICLE SWARM OPTIMIZATION BASED OF THE MAXIMUM ...

    African Journals Online (AJOL)

    2010-06-30

    Jun 30, 2010 ... PARTICLE SWARM OPTIMIZATION BASED OF THE MAXIMUM. PHOTOVOLTAIC POWER TRACTIOQG UNDER DIFFERENT CONDITIONS. Y. Labbi*, D. Ben Attous and H. Sarhoud. Department of Electrotechnics, Faculty of Electrical Engineering El-Oued University. Center, Algeria. Received: 01 ...

  5. A Hybrid Chaos-Particle Swarm Optimization Algorithm for the Vehicle Routing Problem with Time Window

    Directory of Open Access Journals (Sweden)

    Qi Hu

    2013-04-01

    Full Text Available State-of-the-art heuristic algorithms to solve the vehicle routing problem with time windows (VRPTW usually present slow speeds during the early iterations and easily fall into local optimal solutions. Focusing on solving the above problems, this paper analyzes the particle encoding and decoding strategy of the particle swarm optimization algorithm, the construction of the vehicle route and the judgment of the local optimal solution. Based on these, a hybrid chaos-particle swarm optimization algorithm (HPSO is proposed to solve VRPTW. The chaos algorithm is employed to re-initialize the particle swarm. An efficient insertion heuristic algorithm is also proposed to build the valid vehicle route in the particle decoding process. A particle swarm premature convergence judgment mechanism is formulated and combined with the chaos algorithm and Gaussian mutation into HPSO when the particle swarm falls into the local convergence. Extensive experiments are carried out to test the parameter settings in the insertion heuristic algorithm and to evaluate that they are corresponding to the data’s real-distribution in the concrete problem. It is also revealed that the HPSO achieves a better performance than the other state-of-the-art algorithms on solving VRPTW.

  6. Reproductive isolation and the expansion of an invasive hybrid swarm

    Science.gov (United States)

    Blum, Michael J.; Walters, David M.; Burkhead, Noel M.; Freeman, Byron J.; Porter, Brady A.

    2010-01-01

    Biological invasions involving hybridization proceed according to prezygotic and postzygotic reproductive isolating mechanisms. Yet few comparisons of reproductive isolation have been carried out to understand how different mechanisms prevent or promote invasions involving hybridization. Here we present a study of prezygotic and postzygotic isolation between non-native red shiner (Cyprinella lutrensis) and native blacktail shiner (C. venusta stigmatura) from the Coosa River basin (USA) to better understand the formation and expansion of invasive hybrid swarms. We conducted spawning trials to measure mating preferences and raised broods from crosses to assay hybrid viability through early juvenile development. Females of both species were more responsive to conspecific mates, although blacktail shiner females responded more often to heterospecific mates than did red shiner females. Fecundity of red shiner females was also higher than blacktail shiner females. Heterospecific crosses resulted in lower fertilization and egg hatching rates, but we found no other evidence of inviability. Rather, we found comparatively low larval mortality of F1 hybrids, which is suggestive of heterosis. These findings support prior inferences of assortative mating from genetic descriptions of hybridization, and that the invasion in the Coosa River is likely proceeding due to interspecific competition and intrinsic hybrid viability.

  7. Parameter estimation of Lorenz chaotic system using a hybrid swarm intelligence algorithm

    Science.gov (United States)

    Lazzús, Juan A.; Rivera, Marco; López-Caraballo, Carlos H.

    2016-03-01

    A novel hybrid swarm intelligence algorithm for chaotic system parameter estimation is present. For this purpose, the parameters estimation on Lorenz systems is formulated as a multidimensional problem, and a hybrid approach based on particle swarm optimization with ant colony optimization (PSO-ACO) is implemented to solve this problem. Firstly, the performance of the proposed PSO-ACO algorithm is tested on a set of three representative benchmark functions, and the impact of the parameter settings on PSO-ACO efficiency is studied. Secondly, the parameter estimation is converted into an optimization problem on a three-dimensional Lorenz system. Numerical simulations on Lorenz model and comparisons with results obtained by other algorithms showed that PSO-ACO is a very powerful tool for parameter estimation with high accuracy and low deviations.

  8. Software Engineering and Swarm-Based Systems

    Science.gov (United States)

    Hinchey, Michael G.; Sterritt, Roy; Pena, Joaquin; Rouff, Christopher A.

    2006-01-01

    We discuss two software engineering aspects in the development of complex swarm-based systems. NASA researchers have been investigating various possible concept missions that would greatly advance future space exploration capabilities. The concept mission that we have focused on exploits the principles of autonomic computing as well as being based on the use of intelligent swarms, whereby a (potentially large) number of similar spacecraft collaborate to achieve mission goals. The intent is that such systems not only can be sent to explore remote and harsh environments but also are endowed with greater degrees of protection and longevity to achieve mission goals.

  9. A new hybrid optimization method inspired from swarm intelligence: Fuzzy adaptive swallow swarm optimization algorithm (FASSO

    Directory of Open Access Journals (Sweden)

    Mehdi Neshat

    2015-11-01

    Full Text Available In this article, the objective was to present effective and optimal strategies aimed at improving the Swallow Swarm Optimization (SSO method. The SSO is one of the best optimization methods based on swarm intelligence which is inspired by the intelligent behaviors of swallows. It has been able to offer a relatively strong method for solving optimization problems. However, despite its many advantages, the SSO suffers from two shortcomings. Firstly, particles movement speed is not controlled satisfactorily during the search due to the lack of an inertia weight. Secondly, the variables of the acceleration coefficient are not able to strike a balance between the local and the global searches because they are not sufficiently flexible in complex environments. Therefore, the SSO algorithm does not provide adequate results when it searches in functions such as the Step or Quadric function. Hence, the fuzzy adaptive Swallow Swarm Optimization (FASSO method was introduced to deal with these problems. Meanwhile, results enjoy high accuracy which are obtained by using an adaptive inertia weight and through combining two fuzzy logic systems to accurately calculate the acceleration coefficients. High speed of convergence, avoidance from falling into local extremum, and high level of error tolerance are the advantages of proposed method. The FASSO was compared with eleven of the best PSO methods and SSO in 18 benchmark functions. Finally, significant results were obtained.

  10. A Hybrid Forecasting Model Based on Bivariate Division and a Backpropagation Artificial Neural Network Optimized by Chaos Particle Swarm Optimization for Day-Ahead Electricity Price

    Directory of Open Access Journals (Sweden)

    Zhilong Wang

    2014-01-01

    Full Text Available In the electricity market, the electricity price plays an inevitable role. Nevertheless, accurate price forecasting, a vital factor affecting both government regulatory agencies and public power companies, remains a huge challenge and a critical problem. Determining how to address the accurate forecasting problem becomes an even more significant task in an era in which electricity is increasingly important. Based on the chaos particle swarm optimization (CPSO, the backpropagation artificial neural network (BPANN, and the idea of bivariate division, this paper proposes a bivariate division BPANN (BD-BPANN method and the CPSO-BD-BPANN method for forecasting electricity price. The former method creatively transforms the electricity demand and price to be a new variable, named DV, which is calculated using the division principle, to forecast the day-ahead electricity by multiplying the forecasted values of the DVs and forecasted values of the demand. Next, to improve the accuracy of BD-BPANN, chaos particle swarm optimization and BD-BPANN are synthesized to form a novel model, CPSO-BD-BPANN. In this study, CPSO is utilized to optimize the initial parameters of BD-BPANN to make its output more stable than the original model. Finally, two forecasting strategies are proposed regarding different situations.

  11. Parameter estimation of Lorenz chaotic system using a hybrid swarm intelligence algorithm

    Energy Technology Data Exchange (ETDEWEB)

    Lazzús, Juan A., E-mail: jlazzus@dfuls.cl; Rivera, Marco; López-Caraballo, Carlos H.

    2016-03-11

    A novel hybrid swarm intelligence algorithm for chaotic system parameter estimation is present. For this purpose, the parameters estimation on Lorenz systems is formulated as a multidimensional problem, and a hybrid approach based on particle swarm optimization with ant colony optimization (PSO–ACO) is implemented to solve this problem. Firstly, the performance of the proposed PSO–ACO algorithm is tested on a set of three representative benchmark functions, and the impact of the parameter settings on PSO–ACO efficiency is studied. Secondly, the parameter estimation is converted into an optimization problem on a three-dimensional Lorenz system. Numerical simulations on Lorenz model and comparisons with results obtained by other algorithms showed that PSO–ACO is a very powerful tool for parameter estimation with high accuracy and low deviations. - Highlights: • PSO–ACO combined particle swarm optimization with ant colony optimization. • This study is the first research of PSO–ACO to estimate parameters of chaotic systems. • PSO–ACO algorithm can identify the parameters of the three-dimensional Lorenz system with low deviations. • PSO–ACO is a very powerful tool for the parameter estimation on other chaotic system.

  12. Parameter estimation of Lorenz chaotic system using a hybrid swarm intelligence algorithm

    International Nuclear Information System (INIS)

    Lazzús, Juan A.; Rivera, Marco; López-Caraballo, Carlos H.

    2016-01-01

    A novel hybrid swarm intelligence algorithm for chaotic system parameter estimation is present. For this purpose, the parameters estimation on Lorenz systems is formulated as a multidimensional problem, and a hybrid approach based on particle swarm optimization with ant colony optimization (PSO–ACO) is implemented to solve this problem. Firstly, the performance of the proposed PSO–ACO algorithm is tested on a set of three representative benchmark functions, and the impact of the parameter settings on PSO–ACO efficiency is studied. Secondly, the parameter estimation is converted into an optimization problem on a three-dimensional Lorenz system. Numerical simulations on Lorenz model and comparisons with results obtained by other algorithms showed that PSO–ACO is a very powerful tool for parameter estimation with high accuracy and low deviations. - Highlights: • PSO–ACO combined particle swarm optimization with ant colony optimization. • This study is the first research of PSO–ACO to estimate parameters of chaotic systems. • PSO–ACO algorithm can identify the parameters of the three-dimensional Lorenz system with low deviations. • PSO–ACO is a very powerful tool for the parameter estimation on other chaotic system.

  13. Swarm behavioral sorting based on robotic hardware variation

    OpenAIRE

    Shang, Beining; Crowder, Richard; Zauner, Klaus-Peter

    2014-01-01

    Swarm robotic systems can offer advantages of robustness, flexibility and scalability, just like social insects. One of the issues that researchers are facing is the hardware variation when implementing real robotic swarms. Identical software cannot guarantee identical behaviors among all robots due to hardware differences between swarm members. We propose a novel approach for sorting swarm robots according to their hardware differences. This method is based on the large number of interaction...

  14. Hybrid swarm intelligence optimization approach for optimal data storage position identification in wireless sensor networks.

    Science.gov (United States)

    Mohanasundaram, Ranganathan; Periasamy, Pappampalayam Sanmugam

    2015-01-01

    The current high profile debate with regard to data storage and its growth have become strategic task in the world of networking. It mainly depends on the sensor nodes called producers, base stations, and also the consumers (users and sensor nodes) to retrieve and use the data. The main concern dealt here is to find an optimal data storage position in wireless sensor networks. The works that have been carried out earlier did not utilize swarm intelligence based optimization approaches to find the optimal data storage positions. To achieve this goal, an efficient swam intelligence approach is used to choose suitable positions for a storage node. Thus, hybrid particle swarm optimization algorithm has been used to find the suitable positions for storage nodes while the total energy cost of data transmission is minimized. Clustering-based distributed data storage is utilized to solve clustering problem using fuzzy-C-means algorithm. This research work also considers the data rates and locations of multiple producers and consumers to find optimal data storage positions. The algorithm is implemented in a network simulator and the experimental results show that the proposed clustering and swarm intelligence based ODS strategy is more effective than the earlier approaches.

  15. Microwave imaging for conducting scatterers by hybrid particle swarm optimization with simulated annealing

    International Nuclear Information System (INIS)

    Mhamdi, B.; Grayaa, K.; Aguili, T.

    2011-01-01

    In this paper, a microwave imaging technique for reconstructing the shape of two-dimensional perfectly conducting scatterers by means of a stochastic optimization approach is investigated. Based on the boundary condition and the measured scattered field derived by transverse magnetic illuminations, a set of nonlinear integral equations is obtained and the imaging problem is reformulated in to an optimization problem. A hybrid approximation algorithm, called PSO-SA, is developed in this work to solve the scattering inverse problem. In the hybrid algorithm, particle swarm optimization (PSO) combines global search and local search for finding the optimal results assignment with reasonable time and simulated annealing (SA) uses certain probability to avoid being trapped in a local optimum. The hybrid approach elegantly combines the exploration ability of PSO with the exploitation ability of SA. Reconstruction results are compared with exact shapes of some conducting cylinders; and good agreements with the original shapes are observed.

  16. Swarm-based algorithm for phase unwrapping.

    Science.gov (United States)

    da Silva Maciel, Lucas; Albertazzi, Armando G

    2014-08-20

    A novel algorithm for phase unwrapping based on swarm intelligence is proposed. The algorithm was designed based on three main goals: maximum coverage of reliable information, focused effort for better efficiency, and reliable unwrapping. Experiments were performed, and a new agent was designed to follow a simple set of five rules in order to collectively achieve these goals. These rules consist of random walking for unwrapping and searching, ambiguity evaluation by comparing unwrapped regions, and a replication behavior responsible for the good distribution of agents throughout the image. The results were comparable with the results from established methods. The swarm-based algorithm was able to suppress ambiguities better than the flood-fill algorithm without relying on lengthy processing times. In addition, future developments such as parallel processing and better-quality evaluation present great potential for the proposed method.

  17. Swarm.

    Science.gov (United States)

    Petersen, Hugh

    2002-01-01

    Describes an eighth grade art project for which students created bug swarms on scratchboard. Explains that the project also teaches students about design principles, such as balance. Discusses how the students created their drawings. (CMK)

  18. A Hybrid Multiobjective Discrete Particle Swarm Optimization Algorithm for a SLA-Aware Service Composition Problem

    Directory of Open Access Journals (Sweden)

    Hao Yin

    2014-01-01

    Full Text Available For SLA-aware service composition problem (SSC, an optimization model for this algorithm is built, and a hybrid multiobjective discrete particle swarm optimization algorithm (HMDPSO is also proposed in this paper. According to the characteristic of this problem, a particle updating strategy is designed by introducing crossover operator. In order to restrain particle swarm’s premature convergence and increase its global search capacity, the swarm diversity indicator is introduced and a particle mutation strategy is proposed to increase the swarm diversity. To accelerate the process of obtaining the feasible particle position, a local search strategy based on constraint domination is proposed and incorporated into the proposed algorithm. At last, some parameters in the algorithm HMDPSO are analyzed and set with relative proper values, and then the algorithm HMDPSO and the algorithm HMDPSO+ incorporated by local search strategy are compared with the recently proposed related algorithms on different scale cases. The results show that algorithm HMDPSO+ can solve the SSC problem more effectively.

  19. Hybrid particle swarm optimization algorithm and its application in nuclear engineering

    International Nuclear Information System (INIS)

    Liu, C.Y.; Yan, C.Q.; Wang, J.J.

    2014-01-01

    Highlights: • We propose a hybrid particle swarm optimization algorithm (HPSO). • Modified Nelder–Mead simplex search method is applied in HPSO. • The algorithm has a high search precision and rapidly calculation speed. • HPSO can be used in the nuclear engineering optimization design problems. - Abstract: A hybrid particle swarm optimization algorithm with a feasibility-based rule for solving constrained optimization problems has been developed in this research. Firstly, the global optimal solution zone can be obtained through particle swarm optimization process, and then the refined search of the global optimal solution will be achieved through the modified Nelder–Mead simplex algorithm. Simulations based on two well-studied benchmark problems demonstrate the proposed algorithm will be an efficient alternative to solving constrained optimization problems. The vertical electrical heating pressurizer is one of the key components in reactor coolant system. The mathematical model of pressurizer has been established in steady state. The optimization design of pressurizer weight has been carried out through HPSO algorithm. The results show the pressurizer weight can be reduced by 16.92%. The thermal efficiencies of conventional PWR nuclear power plants are about 31–35% so far, which are much lower than fossil fueled plants based in a steam cycle as PWR. The thermal equilibrium mathematic model for nuclear power plant secondary loop has been established. An optimization case study has been conducted to improve the efficiency of the nuclear power plant with the proposed algorithm. The results show the thermal efficiency is improved by 0.5%

  20. Solving Unconstrained Global Optimization Problems via Hybrid Swarm Intelligence Approaches

    OpenAIRE

    Wu, Jui-Yu

    2013-01-01

    Stochastic global optimization (SGO) algorithms such as the particle swarm optimization (PSO) approach have become popular for solving unconstrained global optimization (UGO) problems. The PSO approach, which belongs to the swarm intelligence domain, does not require gradient information, enabling it to overcome this limitation of traditional nonlinear programming methods. Unfortunately, PSO algorithm implementation and performance depend on several parameters, such as cognitive parameter, so...

  1. A Dynamic Multistage Hybrid Swarm Intelligence Optimization Algorithm for Function Optimization

    Directory of Open Access Journals (Sweden)

    Daqing Wu

    2012-01-01

    Full Text Available A novel dynamic multistage hybrid swarm intelligence optimization algorithm is introduced, which is abbreviated as DM-PSO-ABC. The DM-PSO-ABC combined the exploration capabilities of the dynamic multiswarm particle swarm optimizer (PSO and the stochastic exploitation of the cooperative artificial bee colony algorithm (CABC for solving the function optimization. In the proposed hybrid algorithm, the whole process is divided into three stages. In the first stage, a dynamic multiswarm PSO is constructed to maintain the population diversity. In the second stage, the parallel, positive feedback of CABC was implemented in each small swarm. In the third stage, we make use of the particle swarm optimization global model, which has a faster convergence speed to enhance the global convergence in solving the whole problem. To verify the effectiveness and efficiency of the proposed hybrid algorithm, various scale benchmark problems are tested to demonstrate the potential of the proposed multistage hybrid swarm intelligence optimization algorithm. The results show that DM-PSO-ABC is better in the search precision, and convergence property and has strong ability to escape from the local suboptima when compared with several other peer algorithms.

  2. Multispecies Coevolution Particle Swarm Optimization Based on Previous Search History

    Directory of Open Access Journals (Sweden)

    Danping Wang

    2017-01-01

    Full Text Available A hybrid coevolution particle swarm optimization algorithm with dynamic multispecies strategy based on K-means clustering and nonrevisit strategy based on Binary Space Partitioning fitness tree (called MCPSO-PSH is proposed. Previous search history memorized into the Binary Space Partitioning fitness tree can effectively restrain the individuals’ revisit phenomenon. The whole population is partitioned into several subspecies and cooperative coevolution is realized by an information communication mechanism between subspecies, which can enhance the global search ability of particles and avoid premature convergence to local optimum. To demonstrate the power of the method, comparisons between the proposed algorithm and state-of-the-art algorithms are grouped into two categories: 10 basic benchmark functions (10-dimensional and 30-dimensional, 10 CEC2005 benchmark functions (30-dimensional, and a real-world problem (multilevel image segmentation problems. Experimental results show that MCPSO-PSH displays a competitive performance compared to the other swarm-based or evolutionary algorithms in terms of solution accuracy and statistical tests.

  3. Daily River Flow Forecasting with Hybrid Support Vector Machine – Particle Swarm Optimization

    Science.gov (United States)

    Zaini, N.; Malek, M. A.; Yusoff, M.; Mardi, N. H.; Norhisham, S.

    2018-04-01

    The application of artificial intelligence techniques for river flow forecasting can further improve the management of water resources and flood prevention. This study concerns the development of support vector machine (SVM) based model and its hybridization with particle swarm optimization (PSO) to forecast short term daily river flow at Upper Bertam Catchment located in Cameron Highland, Malaysia. Ten years duration of historical rainfall, antecedent river flow data and various meteorology parameters data from 2003 to 2012 are used in this study. Four SVM based models are proposed which are SVM1, SVM2, SVM-PSO1 and SVM-PSO2 to forecast 1 to 7 day ahead of river flow. SVM1 and SVM-PSO1 are the models with historical rainfall and antecedent river flow as its input, while SVM2 and SVM-PSO2 are the models with historical rainfall, antecedent river flow data and additional meteorological parameters as input. The performances of the proposed model are measured in term of RMSE and R2 . It is found that, SVM2 outperformed SVM1 and SVM-PSO2 outperformed SVM-PSO1 which meant the additional meteorology parameters used as input to the proposed models significantly affect the model performances. Hybrid models SVM-PSO1 and SVM-PSO2 yield higher performances as compared to SVM1 and SVM2. It is found that hybrid models are more effective in forecasting river flow at 1 to 7 day ahead at the study area.

  4. Rare hybrid swarm of Pilosella polymastix × P. officinarum: cytotype structure and modes of reproduction

    Czech Academy of Sciences Publication Activity Database

    Krahulec, František; Krahulcová, Anna; Hlaváček, R.

    2014-01-01

    Roč. 86, č. 2 (2014), s. 179-192 ISSN 0032-7786 R&D Projects: GA ČR GAP506/10/1363; GA ČR GA206/08/0890 Institutional support: RVO:67985939 Keywords : chromosome numbers * hybrid swarm composition * reproductive models Subject RIV: EF - Botanics Impact factor: 4.104, year: 2014

  5. Human disturbance causes the formation of a hybrid swarm between two naturally sympatric fish species.

    Science.gov (United States)

    Hasselman, Daniel J; Argo, Emily E; McBride, Meghan C; Bentzen, Paul; Schultz, Thomas F; Perez-Umphrey, Anna A; Palkovacs, Eric P

    2014-03-01

    Most evidence for hybrid swarm formation stemming from anthropogenic habitat disturbance comes from the breakdown of reproductive isolation between incipient species, or introgression between allopatric species following secondary contact. Human impacts on hybridization between divergent species that naturally occur in sympatry have received considerably less attention. Theory predicts that reinforcement should act to preserve reproductive isolation under such circumstances, potentially making reproductive barriers resistant to human habitat alteration. Using 15 microsatellites, we examined hybridization between sympatric populations of alewife (Alosa pseudoharengus) and blueback herring (A. aestivalis) to test whether the frequency of hybridization and pattern of introgression have been impacted by the construction of a dam that isolated formerly anadromous populations of both species in a landlocked freshwater reservoir. The frequency of hybridization and pattern of introgression differed markedly between anadromous and landlocked populations. The rangewide frequency of hybridization among anadromous populations was generally 0-8%, whereas all landlocked individuals were hybrids. Although neutral introgression was observed among anadromous hybrids, directional introgression leading to increased prevalence of alewife genotypes was detected among landlocked hybrids. We demonstrate that habitat alteration can lead to hybrid swarm formation between divergent species that naturally occur sympatrically, and provide empirical evidence that reinforcement does not always sustain reproductive isolation under such circumstances. © 2014 John Wiley & Sons Ltd.

  6. Swarm-based Sequencing Recommendations in E-learning

    NARCIS (Netherlands)

    Van den Berg, Bert; Tattersall, Colin; Janssen, José; Brouns, Francis; Kurvers, Hub; Koper, Rob

    2005-01-01

    Van den Berg, B., Tattersall, C., Janssen, J., Brouns, F., Kurvers, H., & Koper, R. (2006). Swarm-based Sequencing Recommendations in E-learning. International Journal of Computer Science & Applications, III(III), 1-11.

  7. Decision support tool for Virtual Power Players: Hybrid Particle Swarm Optimization applied to Day-ahead Vehicle-To-Grid Scheduling

    DEFF Research Database (Denmark)

    Soares, João; Valle, Zita; Morais, Hugo

    2013-01-01

    of a new hybrid method combing a particle swarm approach and a deterministic technique based on mixedinteger linear programming (MILP) to solve the day-ahead scheduling minimizing total operation costs from the aggregator point of view. A realistic mathematical formulation, considering the electric network...

  8. Investigating Ground Swarm Robotics Using Agent Based Simulation

    Science.gov (United States)

    2006-12-01

    interesting to see how alternatives like MANA (and even Pythagoras 3 ) measure up to the calling. If indeed MANA has rarely been dedicated to model swarm... Pythagoras is an agent based simulation package developed by Northrop Grumman 5 Figure 2. Simulation packages used to models robot swarms... Pythagoras , an agent based software platform developed by Northrop Grumman. 93 As mentioned before, the model is not complete without modeling the

  9. Hybridization in East African swarm-raiding army ants

    DEFF Research Database (Denmark)

    Kronauer, Daniel Jc; Peters, Marcell K; Schöning, Caspar

    2011-01-01

    Hybridization can have complex effects on evolutionary dynamics in ants because of the combination of haplodiploid sex-determination and eusociality. While hybrid non-reproductive workers have been found in a range of species, examples of gene-flow via hybrid queens and males are rare. We studied...... hybridization in East African army ants (Dorylus subgenus Anomma) using morphology, mitochondrial DNA sequences, and nuclear microsatellites....

  10. Behavior-Based Formation Control of Swarm Robots

    Directory of Open Access Journals (Sweden)

    Dongdong Xu

    2014-01-01

    Full Text Available Swarm robotics is a specific research field of multirobotics where a large number of mobile robots are controlled in a coordinated way. Formation control is one of the most challenging goals for the coordination control of swarm robots. In this paper, a behavior-based control design approach is proposed for two kinds of important formation control problems: efficient initial formation and formation control while avoiding obstacles. In this approach, a classification-based searching method for generating large-scale robot formation is presented to reduce the computational complexity and speed up the initial formation process for any desired formation. The behavior-based method is applied for the formation control of swarm robot systems while navigating in an unknown environment with obstacles. Several groups of experimental results demonstrate the success of the proposed approach. These methods have potential applications for various swarm robot systems in both the simulation and the practical environments.

  11. A Multi Time Scale Wind Power Forecasting Model of a Chaotic Echo State Network Based on a Hybrid Algorithm of Particle Swarm Optimization and Tabu Search

    Directory of Open Access Journals (Sweden)

    Xiaomin Xu

    2015-11-01

    Full Text Available The uncertainty and regularity of wind power generation are caused by wind resources’ intermittent and randomness. Such volatility brings severe challenges to the wind power grid. The requirements for ultrashort-term and short-term wind power forecasting with high prediction accuracy of the model used, have great significance for reducing the phenomenon of abandoned wind power , optimizing the conventional power generation plan, adjusting the maintenance schedule and developing real-time monitoring systems. Therefore, accurate forecasting of wind power generation is important in electric load forecasting. The echo state network (ESN is a new recurrent neural network composed of input, hidden layer and output layers. It can approximate well the nonlinear system and achieves great results in nonlinear chaotic time series forecasting. Besides, the ESN is simpler and less computationally demanding than the traditional neural network training, which provides more accurate training results. Aiming at addressing the disadvantages of standard ESN, this paper has made some improvements. Combined with the complementary advantages of particle swarm optimization and tabu search, the generalization of ESN is improved. To verify the validity and applicability of this method, case studies of multitime scale forecasting of wind power output are carried out to reconstruct the chaotic time series of the actual wind power generation data in a certain region to predict wind power generation. Meanwhile, the influence of seasonal factors on wind power is taken into consideration. Compared with the classical ESN and the conventional Back Propagation (BP neural network, the results verify the superiority of the proposed method.

  12. Human behavior-based particle swarm optimization.

    Science.gov (United States)

    Liu, Hao; Xu, Gang; Ding, Gui-Yan; Sun, Yu-Bo

    2014-01-01

    Particle swarm optimization (PSO) has attracted many researchers interested in dealing with various optimization problems, owing to its easy implementation, few tuned parameters, and acceptable performance. However, the algorithm is easy to trap in the local optima because of rapid losing of the population diversity. Therefore, improving the performance of PSO and decreasing the dependence on parameters are two important research hot points. In this paper, we present a human behavior-based PSO, which is called HPSO. There are two remarkable differences between PSO and HPSO. First, the global worst particle was introduced into the velocity equation of PSO, which is endowed with random weight which obeys the standard normal distribution; this strategy is conducive to trade off exploration and exploitation ability of PSO. Second, we eliminate the two acceleration coefficients c 1 and c 2 in the standard PSO (SPSO) to reduce the parameters sensitivity of solved problems. Experimental results on 28 benchmark functions, which consist of unimodal, multimodal, rotated, and shifted high-dimensional functions, demonstrate the high performance of the proposed algorithm in terms of convergence accuracy and speed with lower computation cost.

  13. Hybridization in East African swarm-raiding army ants

    Directory of Open Access Journals (Sweden)

    Peters Marcell K

    2011-08-01

    Full Text Available Abstract Background Hybridization can have complex effects on evolutionary dynamics in ants because of the combination of haplodiploid sex-determination and eusociality. While hybrid non-reproductive workers have been found in a range of species, examples of gene-flow via hybrid queens and males are rare. We studied hybridization in East African army ants (Dorylus subgenus Anomma using morphology, mitochondrial DNA sequences, and nuclear microsatellites. Results While the mitochondrial phylogeny had a strong geographic signal, different species were not recovered as monophyletic. At our main study site at Kakamega Forest, a mitochondrial haplotype was shared between a "Dorylus molestus-like" and a "Dorylus wilverthi-like" form. This pattern is best explained by introgression following hybridization between D. molestus and D. wilverthi. Microsatellite data from workers showed that the two morphological forms correspond to two distinct genetic clusters, with a significant proportion of individuals being classified as hybrids. Conclusions We conclude that hybridization and gene-flow between the two army ant species D. molestus and D. wilverthi has occurred, and that mating between the two forms continues to regularly produce hybrid workers. Hybridization is particularly surprising in army ants because workers have control over which males are allowed to mate with a young virgin queen inside the colony.

  14. On the performance of accelerated particle swarm optimization for charging plug-in hybrid electric vehicles

    Directory of Open Access Journals (Sweden)

    Imran Rahman

    2016-03-01

    Full Text Available Transportation electrification has undergone major changes since the last decade. Success of smart grid with renewable energy integration solely depends upon the large-scale penetration of plug-in hybrid electric vehicles (PHEVs for a sustainable and carbon-free transportation sector. One of the key performance indicators in hybrid electric vehicle is the State-of-Charge (SoC which needs to be optimized for the betterment of charging infrastructure using stochastic computational methods. In this paper, a newly emerged Accelerated particle swarm optimization (APSO technique was applied and compared with standard particle swarm optimization (PSO considering charging time and battery capacity. Simulation results obtained for maximizing the highly nonlinear objective function indicate that APSO achieves some improvements in terms of best fitness and computation time.

  15. Long-term persisting hybrid swarm and geographic difference in hybridization pattern: genetic consequences of secondary contact between two Vincetoxicum species (Apocynaceae-Asclepiadoideae).

    Science.gov (United States)

    Li, Yue; Tada, Fumito; Yamashiro, Tadashi; Maki, Masayuki

    2016-01-22

    During glacial periods, glacial advances caused temperate plant extirpation or retreat into localized warmer areas, and subsequent postglacial glacial retreats resulted in range expansions, which facilitated secondary contact of previously allopatric isolated lineages. The evolutionary outcomes of secondary contact, including hybrid zones, dynamic hybrid swarm, and resultant hybrid speciation, depends on the strengths of reproductive barriers that have arisen through epistatic and pleiotropic effects during allopatric isolation. The aim of this study was to demonstrate refugia isolation and subsequent secondary contact between two perennial Asclepioid species and to assess the genetic consequences of the secondary contact. We modeled the range shift of two ecologically distinct Vincetoxicum species using the species distribution model (SDM) and assessed the genetic consequences of secondary contact by combining morphological and genetic approaches. We performed morphometric analysis (592 individuals) and examined 10 nuclear microsatellites (671 individuals) in V. atratum, V. japonicum, and putative hybrid populations. Multivariate analysis, model-based Bayesian analysis, and non-model-based discriminant analysis of principal components confirmed the hybridization between V. atratum and V. japonicum. High pollen fertility and a lack of linkage disequilibrium suggested that the hybrid populations may be self-sustaining and have persisted since V. atratum and V. japonicum came into contact during the post-glacial period. Moreover, our findings show that the pattern of hybridization between V. atratum and V. japonicum is unidirectional and differs among populations. Geographically-isolated hybrid populations exist as genetically distinct hybrid swarms that consist of V. atratum-like genotypes, V. japonicum-like genotypes, or admixed genotypes. In addition, Bayesian-based clustering analysis and coalescent-based estimates of long-term gene flow showed patterns of

  16. A Hybrid Multi-Step Rolling Forecasting Model Based on SSA and Simulated Annealing—Adaptive Particle Swarm Optimization for Wind Speed

    Directory of Open Access Journals (Sweden)

    Pei Du

    2016-08-01

    Full Text Available With the limitations of conventional energy becoming increasing distinct, wind energy is emerging as a promising renewable energy source that plays a critical role in the modern electric and economic fields. However, how to select optimization algorithms to forecast wind speed series and improve prediction performance is still a highly challenging problem. Traditional single algorithms are widely utilized to select and optimize parameters of neural network algorithms, but these algorithms usually ignore the significance of parameter optimization, precise searching, and the application of accurate data, which results in poor forecasting performance. With the aim of overcoming the weaknesses of individual algorithms, a novel hybrid algorithm was created, which can not only easily obtain the real and effective wind speed series by using singular spectrum analysis, but also possesses stronger adaptive search and optimization capabilities than the other algorithms: it is faster, has fewer parameters, and is less expensive. For the purpose of estimating the forecasting ability of the proposed combined model, 10-min wind speed series from three wind farms in Shandong Province, eastern China, are employed as a case study. The experimental results were considerably more accurately predicted by the presented algorithm than the comparison algorithms.

  17. a New Hybrid Yin-Yang Swarm Optimization Algorithm for Uncapacitated Warehouse Location Problems

    Science.gov (United States)

    Heidari, A. A.; Kazemizade, O.; Hakimpour, F.

    2017-09-01

    Yin-Yang-pair optimization (YYPO) is one of the latest metaheuristic algorithms (MA) proposed in 2015 that tries to inspire the philosophy of balance between conflicting concepts. Particle swarm optimizer (PSO) is one of the first population-based MA inspired by social behaviors of birds. In spite of PSO, the YYPO is not a nature inspired optimizer. It has a low complexity and starts with only two initial positions and can produce more points with regard to the dimension of target problem. Due to unique advantages of these methodologies and to mitigate the immature convergence and local optima (LO) stagnation problems in PSO, in this work, a continuous hybrid strategy based on the behaviors of PSO and YYPO is proposed to attain the suboptimal solutions of uncapacitated warehouse location (UWL) problems. This efficient hierarchical PSO-based optimizer (PSOYPO) can improve the effectiveness of PSO on spatial optimization tasks such as the family of UWL problems. The performance of the proposed PSOYPO is verified according to some UWL benchmark cases. These test cases have been used in several works to evaluate the efficacy of different MA. Then, the PSOYPO is compared to the standard PSO, genetic algorithm (GA), harmony search (HS), modified HS (OBCHS), and evolutionary simulated annealing (ESA). The experimental results demonstrate that the PSOYPO can reveal a better or competitive efficacy compared to the PSO and other MA.

  18. A NEW HYBRID YIN-YANG-PAIR-PARTICLE SWARM OPTIMIZATION ALGORITHM FOR UNCAPACITATED WAREHOUSE LOCATION PROBLEMS

    Directory of Open Access Journals (Sweden)

    A. A. Heidari

    2017-09-01

    Full Text Available Yin-Yang-pair optimization (YYPO is one of the latest metaheuristic algorithms (MA proposed in 2015 that tries to inspire the philosophy of balance between conflicting concepts. Particle swarm optimizer (PSO is one of the first population-based MA inspired by social behaviors of birds. In spite of PSO, the YYPO is not a nature inspired optimizer. It has a low complexity and starts with only two initial positions and can produce more points with regard to the dimension of target problem. Due to unique advantages of these methodologies and to mitigate the immature convergence and local optima (LO stagnation problems in PSO, in this work, a continuous hybrid strategy based on the behaviors of PSO and YYPO is proposed to attain the suboptimal solutions of uncapacitated warehouse location (UWL problems. This efficient hierarchical PSO-based optimizer (PSOYPO can improve the effectiveness of PSO on spatial optimization tasks such as the family of UWL problems. The performance of the proposed PSOYPO is verified according to some UWL benchmark cases. These test cases have been used in several works to evaluate the efficacy of different MA. Then, the PSOYPO is compared to the standard PSO, genetic algorithm (GA, harmony search (HS, modified HS (OBCHS, and evolutionary simulated annealing (ESA. The experimental results demonstrate that the PSOYPO can reveal a better or competitive efficacy compared to the PSO and other MA.

  19. A Novel Hybrid Statistical Particle Swarm Optimization for Multimodal Functions and Frequency Control of Hybrid Wind-Solar System

    Science.gov (United States)

    Verma, Harish Kumar; Jain, Cheshta

    2016-09-01

    In this article, a hybrid algorithm of particle swarm optimization (PSO) with statistical parameter (HSPSO) is proposed. Basic PSO for shifted multimodal problems have low searching precision due to falling into a number of local minima. The proposed approach uses statistical characteristics to update the velocity of the particle to avoid local minima and help particles to search global optimum with improved convergence. The performance of the newly developed algorithm is verified using various standard multimodal, multivariable, shifted hybrid composition benchmark problems. Further, the comparative analysis of HSPSO with variants of PSO is tested to control frequency of hybrid renewable energy system which comprises solar system, wind system, diesel generator, aqua electrolyzer and ultra capacitor. A significant improvement in convergence characteristic of HSPSO algorithm over other variants of PSO is observed in solving benchmark optimization and renewable hybrid system problems.

  20. A Comparison Study of Validity Indices on Swarm-Intelligence-Based Clustering.

    Science.gov (United States)

    Rui Xu; Jie Xu; Wunsch, D C

    2012-08-01

    Swarm intelligence has emerged as a worthwhile class of clustering methods due to its convenient implementation, parallel capability, ability to avoid local minima, and other advantages. In such applications, clustering validity indices usually operate as fitness functions to evaluate the qualities of the obtained clusters. However, as the validity indices are usually data dependent and are designed to address certain types of data, the selection of different indices as the fitness functions may critically affect cluster quality. Here, we compare the performances of eight well-known and widely used clustering validity indices, namely, the Caliński-Harabasz index, the CS index, the Davies-Bouldin index, the Dunn index with two of its generalized versions, the I index, and the silhouette statistic index, on both synthetic and real data sets in the framework of differential-evolution-particle-swarm-optimization (DEPSO)-based clustering. DEPSO is a hybrid evolutionary algorithm of the stochastic optimization approach (differential evolution) and the swarm intelligence method (particle swarm optimization) that further increases the search capability and achieves higher flexibility in exploring the problem space. According to the experimental results, we find that the silhouette statistic index stands out in most of the data sets that we examined. Meanwhile, we suggest that users reach their conclusions not just based on only one index, but after considering the results of several indices to achieve reliable clustering structures.

  1. Multi-objective particle swarm optimization using Pareto-based set and aggregation approach

    Science.gov (United States)

    Huang, Song; Wang, Yan; Ji, Zhicheng

    2017-07-01

    Multi-objective optimization problems (MOPs) need to be solved in real world recently. In this paper, a multi-objective particle swarm optimization based on Pareto set and aggregation approach was proposed to deal with MOPs. Firstly, velocities and positions were updated similar to PSO. Then, global-best set was defined in particle swarm optimizer to preserve Pareto-based set obtained by the population. Specifically, a hybrid updating strategy based on Pareto set and aggregation approach was introduced to update the global-best set and local search was carried on global-best set. Thirdly, personal-best positions were updated in decomposition way, and global-best position was selected from global-best set. Finally, ZDT instances and DTLZ instances were selected to evaluate the performance of MULPSO and the results show validity of the proposed algorithm for MOPs.

  2. Optimal energy management of a hybrid electric powertrain system using improved particle swarm optimization

    International Nuclear Information System (INIS)

    Chen, Syuan-Yi; Hung, Yi-Hsuan; Wu, Chien-Hsun; Huang, Siang-Ting

    2015-01-01

    Highlights: • Online sub-optimal energy management using IPSO. • A second-order HEV model with 5 major segments was built. • IPSO with equivalent-fuel fitness function using 5 particles. • Engine, rule-based control, PSO, IPSO and ECMS are compared. • Max. 31+% fuel economy and 56+% energy consumption improved. - Abstract: This study developed an online suboptimal energy management system by using improved particle swarm optimization (IPSO) for engine/motor hybrid electric vehicles. The vehicle was modeled on the basis of second-order dynamics, and featured five major segments: a battery, a spark ignition engine, a lithium battery, transmission and vehicle dynamics, and a driver model. To manage the power distribution of dual power sources, the IPSO was equipped with three inputs (rotational speed, battery state-of-charge, and demanded torque) and one output (power split ratio). Five steps were developed for IPSO: (1) initialization; (2) determination of the fitness function; (3) selection and memorization; (4) modification of position and velocity; and (5) a stopping rule. Equivalent fuel consumption by the engine and motor was used as the fitness function with five particles, and the IPSO-based vehicle control unit was completed and integrated with the vehicle simulator. To quantify the energy improvement of IPSO, a four-mode rule-based control (system ready, motor only, engine only, and hybrid modes) was designed according to the engine efficiency and rotational speed. A three-loop Equivalent Consumption Minimization Strategy (ECMS) was coded as the best case. The simulation results revealed that IPSO searches the optimal solution more efficiently than conventional PSO does. In two standard driving cycles, ECE and FTP, the improvements in the equivalent fuel consumption and energy consumption compared to baseline were (24.25%, 45.27%) and (31.85%, 56.41%), respectively, for the IPSO. The CO 2 emission for all five cases (pure engine, rule-based, PSO

  3. Swarm-based adaptation: wayfinding support for lifelong learners

    NARCIS (Netherlands)

    Tattersall, Colin; Van den Berg, Bert; Van Es, René; Janssen, José; Manderveld, Jocelyn; Koper, Rob

    2004-01-01

    Powerpoint presentation of a paper with the same title (Swarm-Based Adaptation: Wayfinding Support for Lifelong Learners) at the Adaptive Hypermedia 2004 Conference, held in Eindhoven, The Netherlands, August 2004. The presentation explains the use of self-organisation principles (feedback,

  4. Swarm-based wayfinding support in open and distance learning

    NARCIS (Netherlands)

    Tattersall, Colin; Manderveld, Jocelyn; Van den Berg, Bert; Van Es, René; Janssen, José; Koper, Rob

    2005-01-01

    Please refer to the original source: Tattersall, C. Manderveld, J., Van den Berg, B., Van Es, R., Janssen, J., & Koper, R. (2005). Swarm-based wayfinding support in open and distance learning. In Alkhalifa, E.M. (Ed). Cognitively Informed Systems: Utilizing Practical Approaches to Enrich Information

  5. Hybrid firefly and Particle Swarm Optimization algorithm for the detection of Bundle Branch Block

    Directory of Open Access Journals (Sweden)

    Padmavathi Kora

    2016-03-01

    Full Text Available Abnormal Cardiac beat identification is a key process in the detection of heart ailments. This work proposes a technique for the detection of Bundle Branch Block (BBB using hybrid Firefly and Particle Swarm Optimization (FFPSO technique in combination with Levenberg Marquardt Neural Network (LMNN classifier. BBB is developed when there is a block along the electrical impulses travel to make heart to beat. ECG feature extraction is a key process in detecting heart ailments. Our present study comes up with a hybrid method combining the two meta-heuristic optimization methods, Firefly algorithm (FFA and Particle Swarm Optimization (PSO, for feature optimization of ECG (BBB and normal patterns. One of the major controlling forces is the light intensity attraction of FFA algorithm that models the optimum solution. The light intensity attraction process of the FFA algorithm depends on random directions for search, this may delay in achieving the global optimization solution. The hybrid technique FFPSO, integrates the concepts from FF algorithm and PSO and creates new individuals. In the FFPSO method the local search is performed through the modified light intensity attraction step with PSO operator. The FFPSO features are compared with the classical FF, PSO features. The FFPSO feature values are given as the input to the Levenberg Marquardt Neural Network (LM NN classifier. It has been observed that the performance of the classifier is improved with the help of the optimized features.

  6. A hybrid Radio-vision fault tolerant localization for mini UAV flying in swarm

    DEFF Research Database (Denmark)

    Latroch, Maamar; Abdelhafid, Omari; Koivo, Heikki N.

    2013-01-01

    This paper discuss the localization of one Unmanned Aerial Vehicle (UAV) when a failure of its GPS occurs and will propose a new solution based on the information collected by the swarm to localize it. we propose here an architecture for localization of a UAV with GPS signal failure in three...

  7. Machining Parameters Optimization using Hybrid Firefly Algorithm and Particle Swarm Optimization

    Science.gov (United States)

    Farahlina Johari, Nur; Zain, Azlan Mohd; Haszlinna Mustaffa, Noorfa; Udin, Amirmudin

    2017-09-01

    Firefly Algorithm (FA) is a metaheuristic algorithm that is inspired by the flashing behavior of fireflies and the phenomenon of bioluminescent communication and the algorithm is used to optimize the machining parameters (feed rate, depth of cut, and spindle speed) in this research. The algorithm is hybridized with Particle Swarm Optimization (PSO) to discover better solution in exploring the search space. Objective function of previous research is used to optimize the machining parameters in turning operation. The optimal machining cutting parameters estimated by FA that lead to a minimum surface roughness are validated using ANOVA test.

  8. A hybrid search algorithm for swarm robots searching in an unknown environment.

    Science.gov (United States)

    Li, Shoutao; Li, Lina; Lee, Gordon; Zhang, Hao

    2014-01-01

    This paper proposes a novel method to improve the efficiency of a swarm of robots searching in an unknown environment. The approach focuses on the process of feeding and individual coordination characteristics inspired by the foraging behavior in nature. A predatory strategy was used for searching; hence, this hybrid approach integrated a random search technique with a dynamic particle swarm optimization (DPSO) search algorithm. If a search robot could not find any target information, it used a random search algorithm for a global search. If the robot found any target information in a region, the DPSO search algorithm was used for a local search. This particle swarm optimization search algorithm is dynamic as all the parameters in the algorithm are refreshed synchronously through a communication mechanism until the robots find the target position, after which, the robots fall back to a random searching mode. Thus, in this searching strategy, the robots alternated between two searching algorithms until the whole area was covered. During the searching process, the robots used a local communication mechanism to share map information and DPSO parameters to reduce the communication burden and overcome hardware limitations. If the search area is very large, search efficiency may be greatly reduced if only one robot searches an entire region given the limited resources available and time constraints. In this research we divided the entire search area into several subregions, selected a target utility function to determine which subregion should be initially searched and thereby reduced the residence time of the target to improve search efficiency.

  9. A novel hybrid chaotic ant swarm algorithm for heat exchanger networks synthesis

    International Nuclear Information System (INIS)

    Zhang, Chunwei; Cui, Guomin; Peng, Fuyu

    2016-01-01

    Highlights: • The chaotic ant swarm algorithm is proposed to avoid trapping into a local optimum. • The organization variables update strategy makes full use of advantages of the chaotic search. • The structure evolution strategy is developed to handle integer variables optimization. • Overall three cases taken form the literatures are investigated with better optima. - Abstract: The heat exchanger networks synthesis (HENS) still remains an open problem due to its combinatorial nature, which can easily result in suboptimal design and unacceptable calculation effort. In this paper, a novel hybrid chaotic ant swarm algorithm is proposed. The presented algorithm, which consists of a combination of chaotic ant swarm (CAS) algorithm, structure evolution strategy, local optimization strategy and organization variables update strategy, can simultaneously optimize continuous variables and integer variables. The CAS algorithm chaotically searches and generates new solutions in the given space, and subsequently the structure evolution strategy evolves the structures represented by the solutions and limits the search space. Furthermore, the local optimizing strategy and the organization variables update strategy are introduced to enhance the performance of the algorithm. The study of three different cases, found in the literature, revealed special search abilities in both structure space and continuous variable space.

  10. Hybrid Swarm Intelligence Energy Efficient Clustered Routing Algorithm for Wireless Sensor Networks

    Directory of Open Access Journals (Sweden)

    Rajeev Kumar

    2016-01-01

    Full Text Available Currently, wireless sensor networks (WSNs are used in many applications, namely, environment monitoring, disaster management, industrial automation, and medical electronics. Sensor nodes carry many limitations like low battery life, small memory space, and limited computing capability. To create a wireless sensor network more energy efficient, swarm intelligence technique has been applied to resolve many optimization issues in WSNs. In many existing clustering techniques an artificial bee colony (ABC algorithm is utilized to collect information from the field periodically. Nevertheless, in the event based applications, an ant colony optimization (ACO is a good solution to enhance the network lifespan. In this paper, we combine both algorithms (i.e., ABC and ACO and propose a new hybrid ABCACO algorithm to solve a Nondeterministic Polynomial (NP hard and finite problem of WSNs. ABCACO algorithm is divided into three main parts: (i selection of optimal number of subregions and further subregion parts, (ii cluster head selection using ABC algorithm, and (iii efficient data transmission using ACO algorithm. We use a hierarchical clustering technique for data transmission; the data is transmitted from member nodes to the subcluster heads and then from subcluster heads to the elected cluster heads based on some threshold value. Cluster heads use an ACO algorithm to discover the best route for data transmission to the base station (BS. The proposed approach is very useful in designing the framework for forest fire detection and monitoring. The simulation results show that the ABCACO algorithm enhances the stability period by 60% and also improves the goodput by 31% against LEACH and WSNCABC, respectively.

  11. Optimal Capacity Configuration of a Hybrid Energy Storage System for an Isolated Microgrid Using Quantum-Behaved Particle Swarm Optimization

    Directory of Open Access Journals (Sweden)

    Hui Wang

    2018-02-01

    Full Text Available The capacity of an energy storage device configuration not only affects the economic operation of a microgrid, but also affects the power supply’s reliability. An isolated microgrid is considered with typical loads, renewable energy resources, and a hybrid energy storage system (HESS composed of batteries and ultracapacitors in this paper. A quantum-behaved particle swarm optimization (QPSO algorithm that optimizes the HESS capacity is used. Based on the respective power compensation capabilities of ultracapacitors and batteries, a rational energy scheduling strategy is proposed using the principle of a low-pass filter and can help to avoid frequent batteries charging and discharging. Considering the rated power of each energy storage type, the respective compensation power is corrected. By determining whether the charging state reaches the limit, the value is corrected again. Additionally, a mathematical model that minimizes the daily cost of the HESS is derived. This paper takes an isolated micrgrid in north China as an example to verify the effectiveness of this method. The comparison between QPSO and a traditional particle swarm algorithm shows that QPSO can find the optimal solution faster and the HESS has lower daily cost. Simulation results for an isolated microgrid verified the effectiveness of the HESS optimal capacity configuration method.

  12. Discrete particle swarm optimization to solve multi-objective limited-wait hybrid flow shop scheduling problem

    Science.gov (United States)

    Santosa, B.; Siswanto, N.; Fiqihesa

    2018-04-01

    This paper proposes a discrete Particle Swam Optimization (PSO) to solve limited-wait hybrid flowshop scheduing problem with multi objectives. Flow shop schedulimg represents the condition when several machines are arranged in series and each job must be processed at each machine with same sequence. The objective functions are minimizing completion time (makespan), total tardiness time, and total machine idle time. Flow shop scheduling model always grows to cope with the real production system accurately. Since flow shop scheduling is a NP-Hard problem then the most suitable method to solve is metaheuristics. One of metaheuristics algorithm is Particle Swarm Optimization (PSO), an algorithm which is based on the behavior of a swarm. Originally, PSO was intended to solve continuous optimization problems. Since flow shop scheduling is a discrete optimization problem, then, we need to modify PSO to fit the problem. The modification is done by using probability transition matrix mechanism. While to handle multi objectives problem, we use Pareto Optimal (MPSO). The results of MPSO is better than the PSO because the MPSO solution set produced higher probability to find the optimal solution. Besides the MPSO solution set is closer to the optimal solution

  13. Development of IR-Based Short-Range Communication Techniques for Swarm Robot Applications

    Directory of Open Access Journals (Sweden)

    RAMLI, A. R.

    2010-11-01

    Full Text Available This paper proposes several designs for a reliable infra-red based communication techniques for swarm robotic applications. The communication system was deployed on an autonomous miniature mobile robot (AMiR, a swarm robotic platform developed earlier. In swarm applications, all participating robots must be able to communicate and share data. Hence a suitable communication medium and a reliable technique are required. This work uses infrared radiation for transmission of swarm robots messages. Infrared transmission methods such as amplitude and frequency modulations will be presented along with experimental results. Finally the effects of the modulation techniques and other parameters on collective behavior of swarm robots will be analyzed.

  14. Celestial Navigation Fix Based on Particle Swarm Optimization

    Directory of Open Access Journals (Sweden)

    Tsou Ming-Cheng

    2015-09-01

    Full Text Available A technique for solving celestial fix problems is proposed in this study. This method is based on Particle Swarm Optimization from the field of swarm intelligence, utilizing its superior optimization and searching abilities to obtain the most probable astronomical vessel position. In addition to being applicable to two-body fix, multi-body fix, and high-altitude observation problems, it is also less reliant on the initial dead reckoning position. Moreover, by introducing spatial data processing and display functions in a Geographical Information System, calculation results and chart work used in Circle of Position graphical positioning can both be integrated. As a result, in addition to avoiding tedious and complicated computational and graphical procedures, this work has more flexibility and is more robust when compared to other analytical approaches.

  15. A hybrid search algorithm for swarm robots searching in an unknown environment.

    Directory of Open Access Journals (Sweden)

    Shoutao Li

    Full Text Available This paper proposes a novel method to improve the efficiency of a swarm of robots searching in an unknown environment. The approach focuses on the process of feeding and individual coordination characteristics inspired by the foraging behavior in nature. A predatory strategy was used for searching; hence, this hybrid approach integrated a random search technique with a dynamic particle swarm optimization (DPSO search algorithm. If a search robot could not find any target information, it used a random search algorithm for a global search. If the robot found any target information in a region, the DPSO search algorithm was used for a local search. This particle swarm optimization search algorithm is dynamic as all the parameters in the algorithm are refreshed synchronously through a communication mechanism until the robots find the target position, after which, the robots fall back to a random searching mode. Thus, in this searching strategy, the robots alternated between two searching algorithms until the whole area was covered. During the searching process, the robots used a local communication mechanism to share map information and DPSO parameters to reduce the communication burden and overcome hardware limitations. If the search area is very large, search efficiency may be greatly reduced if only one robot searches an entire region given the limited resources available and time constraints. In this research we divided the entire search area into several subregions, selected a target utility function to determine which subregion should be initially searched and thereby reduced the residence time of the target to improve search efficiency.

  16. Support Vector Machine Based on Adaptive Acceleration Particle Swarm Optimization

    Science.gov (United States)

    Abdulameer, Mohammed Hasan; Othman, Zulaiha Ali

    2014-01-01

    Existing face recognition methods utilize particle swarm optimizer (PSO) and opposition based particle swarm optimizer (OPSO) to optimize the parameters of SVM. However, the utilization of random values in the velocity calculation decreases the performance of these techniques; that is, during the velocity computation, we normally use random values for the acceleration coefficients and this creates randomness in the solution. To address this problem, an adaptive acceleration particle swarm optimization (AAPSO) technique is proposed. To evaluate our proposed method, we employ both face and iris recognition based on AAPSO with SVM (AAPSO-SVM). In the face and iris recognition systems, performance is evaluated using two human face databases, YALE and CASIA, and the UBiris dataset. In this method, we initially perform feature extraction and then recognition on the extracted features. In the recognition process, the extracted features are used for SVM training and testing. During the training and testing, the SVM parameters are optimized with the AAPSO technique, and in AAPSO, the acceleration coefficients are computed using the particle fitness values. The parameters in SVM, which are optimized by AAPSO, perform efficiently for both face and iris recognition. A comparative analysis between our proposed AAPSO-SVM and the PSO-SVM technique is presented. PMID:24790584

  17. Hybrid particle swarm optimization with Cauchy distribution for solving reentrant flexible flow shop with blocking constraint

    Directory of Open Access Journals (Sweden)

    Chatnugrob Sangsawang

    2016-06-01

    Full Text Available This paper addresses a problem of the two-stage flexible flow shop with reentrant and blocking constraints in Hard Disk Drive Manufacturing. This problem can be formulated as a deterministic FFS|stage=2,rcrc, block|Cmax problem. In this study, adaptive Hybrid Particle Swarm Optimization with Cauchy distribution (HPSO was developed to solve the problem. The objective of this research is to find the sequences in order to minimize the makespan. To show their performances, computational experiments were performed on a number of test problems and the results are reported. Experimental results show that the proposed algorithms give better solutions than the classical Particle Swarm Optimization (PSO for all test problems. Additionally, the relative improvement (RI of the makespan solutions obtained by the proposed algorithms with respect to those of the current practice is performed in order to measure the quality of the makespan solutions generated by the proposed algorithms. The RI results show that the HPSO algorithm can improve the makespan solution by averages of 14.78%.

  18. Solving Fractional Programming Problems based on Swarm Intelligence

    Science.gov (United States)

    Raouf, Osama Abdel; Hezam, Ibrahim M.

    2014-04-01

    This paper presents a new approach to solve Fractional Programming Problems (FPPs) based on two different Swarm Intelligence (SI) algorithms. The two algorithms are: Particle Swarm Optimization, and Firefly Algorithm. The two algorithms are tested using several FPP benchmark examples and two selected industrial applications. The test aims to prove the capability of the SI algorithms to solve any type of FPPs. The solution results employing the SI algorithms are compared with a number of exact and metaheuristic solution methods used for handling FPPs. Swarm Intelligence can be denoted as an effective technique for solving linear or nonlinear, non-differentiable fractional objective functions. Problems with an optimal solution at a finite point and an unbounded constraint set, can be solved using the proposed approach. Numerical examples are given to show the feasibility, effectiveness, and robustness of the proposed algorithm. The results obtained using the two SI algorithms revealed the superiority of the proposed technique among others in computational time. A better accuracy was remarkably observed in the solution results of the industrial application problems.

  19. Biobotic insect swarm based sensor networks for search and rescue

    Science.gov (United States)

    Bozkurt, Alper; Lobaton, Edgar; Sichitiu, Mihail; Hedrick, Tyson; Latif, Tahmid; Dirafzoon, Alireza; Whitmire, Eric; Verderber, Alexander; Marin, Juan; Xiong, Hong

    2014-06-01

    The potential benefits of distributed robotics systems in applications requiring situational awareness, such as search-and-rescue in emergency situations, are indisputable. The efficiency of such systems requires robotic agents capable of coping with uncertain and dynamic environmental conditions. For example, after an earthquake, a tremendous effort is spent for days to reach to surviving victims where robotic swarms or other distributed robotic systems might play a great role in achieving this faster. However, current technology falls short of offering centimeter scale mobile agents that can function effectively under such conditions. Insects, the inspiration of many robotic swarms, exhibit an unmatched ability to navigate through such environments while successfully maintaining control and stability. We have benefitted from recent developments in neural engineering and neuromuscular stimulation research to fuse the locomotory advantages of insects with the latest developments in wireless networking technologies to enable biobotic insect agents to function as search-and-rescue agents. Our research efforts towards this goal include development of biobot electronic backpack technologies, establishment of biobot tracking testbeds to evaluate locomotion control efficiency, investigation of biobotic control strategies with Gromphadorhina portentosa cockroaches and Manduca sexta moths, establishment of a localization and communication infrastructure, modeling and controlling collective motion by learning deterministic and stochastic motion models, topological motion modeling based on these models, and the development of a swarm robotic platform to be used as a testbed for our algorithms.

  20. Particle Swarm and Bacterial Foraging Inspired Hybrid Artificial Bee Colony Algorithm for Numerical Function Optimization

    Directory of Open Access Journals (Sweden)

    Li Mao

    2016-01-01

    Full Text Available Artificial bee colony (ABC algorithm has good performance in discovering the optimal solutions to difficult optimization problems, but it has weak local search ability and easily plunges into local optimum. In this paper, we introduce the chemotactic behavior of Bacterial Foraging Optimization into employed bees and adopt the principle of moving the particles toward the best solutions in the particle swarm optimization to improve the global search ability of onlooker bees and gain a hybrid artificial bee colony (HABC algorithm. To obtain a global optimal solution efficiently, we make HABC algorithm converge rapidly in the early stages of the search process, and the search range contracts dynamically during the late stages. Our experimental results on 16 benchmark functions of CEC 2014 show that HABC achieves significant improvement at accuracy and convergence rate, compared with the standard ABC, best-so-far ABC, directed ABC, Gaussian ABC, improved ABC, and memetic ABC algorithms.

  1. A hybrid swarm population of Pinus densiflora x P. sylvestris hybrids inferred from sequence analysis of chloroplast DNA and morphological characters

    Science.gov (United States)

    To confirm a hybrid swarm population of Pinus densiflora × P. sylvestris in Jilin, China and to study whether shoot apex morphology of 4-year old seedlings can be correlated with the sequence of a chloroplast DNA simple sequence repeat marker (cpDNA SSR), needles and seeds from P. densiflora, P. syl...

  2. An Orthogonal Multi-Swarm Cooperative PSO Algorithm with a Particle Trajectory Knowledge Base

    Directory of Open Access Journals (Sweden)

    Jun Yang

    2017-01-01

    Full Text Available A novel orthogonal multi-swarm cooperative particle swarm optimization (PSO algorithm with a particle trajectory knowledge base is presented in this paper. Different from the traditional PSO algorithms and other variants of PSO, the proposed orthogonal multi-swarm cooperative PSO algorithm not only introduces an orthogonal initialization mechanism and a particle trajectory knowledge base for multi-dimensional optimization problems, but also conceives a new adaptive cooperation mechanism to accomplish the information interaction among swarms and particles. Experiments are conducted on a set of benchmark functions, and the results show its better performance compared with traditional PSO algorithm in aspects of convergence, computational efficiency and avoiding premature convergence.

  3. A Hybrid Swarm Intelligence Algorithm for Intrusion Detection Using Significant Features.

    Science.gov (United States)

    Amudha, P; Karthik, S; Sivakumari, S

    2015-01-01

    Intrusion detection has become a main part of network security due to the huge number of attacks which affects the computers. This is due to the extensive growth of internet connectivity and accessibility to information systems worldwide. To deal with this problem, in this paper a hybrid algorithm is proposed to integrate Modified Artificial Bee Colony (MABC) with Enhanced Particle Swarm Optimization (EPSO) to predict the intrusion detection problem. The algorithms are combined together to find out better optimization results and the classification accuracies are obtained by 10-fold cross-validation method. The purpose of this paper is to select the most relevant features that can represent the pattern of the network traffic and test its effect on the success of the proposed hybrid classification algorithm. To investigate the performance of the proposed method, intrusion detection KDDCup'99 benchmark dataset from the UCI Machine Learning repository is used. The performance of the proposed method is compared with the other machine learning algorithms and found to be significantly different.

  4. A Hybrid Swarm Intelligence Algorithm for Intrusion Detection Using Significant Features

    Directory of Open Access Journals (Sweden)

    P. Amudha

    2015-01-01

    Full Text Available Intrusion detection has become a main part of network security due to the huge number of attacks which affects the computers. This is due to the extensive growth of internet connectivity and accessibility to information systems worldwide. To deal with this problem, in this paper a hybrid algorithm is proposed to integrate Modified Artificial Bee Colony (MABC with Enhanced Particle Swarm Optimization (EPSO to predict the intrusion detection problem. The algorithms are combined together to find out better optimization results and the classification accuracies are obtained by 10-fold cross-validation method. The purpose of this paper is to select the most relevant features that can represent the pattern of the network traffic and test its effect on the success of the proposed hybrid classification algorithm. To investigate the performance of the proposed method, intrusion detection KDDCup’99 benchmark dataset from the UCI Machine Learning repository is used. The performance of the proposed method is compared with the other machine learning algorithms and found to be significantly different.

  5. Analysis of the Emergence in Swarm Model Based on Largest Lyapunov Exponent

    Directory of Open Access Journals (Sweden)

    Yu Wu

    2011-01-01

    Full Text Available Emergent behaviors of collective intelligence systems, exemplified by swarm model, have attracted broad interests in recent years. However, current research mostly stops at observational interpretations and qualitative descriptions of emergent phenomena and is essentially short of quantitative analysis and evaluation. In this paper, we conduct a quantitative study on the emergence of swarm model by using chaos analysis of complex dynamic systems. This helps to achieve a more exact understanding of emergent phenomena. In particular, we evaluate the emergent behaviors of swarm model quantitatively by using the chaos and stability analysis of swarm model based on largest Lyapunov exponent. It is concluded that swarm model is at the edge of chaos when emergence occurs, and whether chaotic or stable at the beginning, swarm model will converge to stability with the elapse of time along with interactions among agents.

  6. A Swarm Optimization Genetic Algorithm Based on Quantum-Behaved Particle Swarm Optimization.

    Science.gov (United States)

    Sun, Tao; Xu, Ming-Hai

    2017-01-01

    Quantum-behaved particle swarm optimization (QPSO) algorithm is a variant of the traditional particle swarm optimization (PSO). The QPSO that was originally developed for continuous search spaces outperforms the traditional PSO in search ability. This paper analyzes the main factors that impact the search ability of QPSO and converts the particle movement formula to the mutation condition by introducing the rejection region, thus proposing a new binary algorithm, named swarm optimization genetic algorithm (SOGA), because it is more like genetic algorithm (GA) than PSO in form. SOGA has crossover and mutation operator as GA but does not need to set the crossover and mutation probability, so it has fewer parameters to control. The proposed algorithm was tested with several nonlinear high-dimension functions in the binary search space, and the results were compared with those from BPSO, BQPSO, and GA. The experimental results show that SOGA is distinctly superior to the other three algorithms in terms of solution accuracy and convergence.

  7. Hybrid Artificial Bee Colony Algorithm and Particle Swarm Search for Global Optimization

    Directory of Open Access Journals (Sweden)

    Wang Chun-Feng

    2014-01-01

    Full Text Available Artificial bee colony (ABC algorithm is one of the most recent swarm intelligence based algorithms, which has been shown to be competitive to other population-based algorithms. However, there is still an insufficiency in ABC regarding its solution search equation, which is good at exploration but poor at exploitation. To overcome this problem, we propose a novel artificial bee colony algorithm based on particle swarm search mechanism. In this algorithm, for improving the convergence speed, the initial population is generated by using good point set theory rather than random selection firstly. Secondly, in order to enhance the exploitation ability, the employed bee, onlookers, and scouts utilize the mechanism of PSO to search new candidate solutions. Finally, for further improving the searching ability, the chaotic search operator is adopted in the best solution of the current iteration. Our algorithm is tested on some well-known benchmark functions and compared with other algorithms. Results show that our algorithm has good performance.

  8. CFSO3: A New Supervised Swarm-Based Optimization Algorithm

    Directory of Open Access Journals (Sweden)

    Antonino Laudani

    2013-01-01

    Full Text Available We present CFSO3, an optimization heuristic within the class of the swarm intelligence, based on a synergy among three different features of the Continuous Flock-of-Starlings Optimization. One of the main novelties is that this optimizer is no more a classical numerical algorithm since it now can be seen as a continuous dynamic system, which can be treated by using all the mathematical instruments available for managing state equations. In addition, CFSO3 allows passing from stochastic approaches to supervised deterministic ones since the random updating of parameters, a typical feature for numerical swam-based optimization algorithms, is now fully substituted by a supervised strategy: in CFSO3 the tuning of parameters is a priori designed for obtaining both exploration and exploitation. Indeed the exploration, that is, the escaping from a local minimum, as well as the convergence and the refinement to a solution can be designed simply by managing the eigenvalues of the CFSO state equations. Virtually in CFSO3, just the initial values of positions and velocities of the swarm members have to be randomly assigned. Both standard and parallel versions of CFSO3 together with validations on classical benchmarks are presented.

  9. Agent-Based Simulation and Analysis of a Defensive UAV Swarm Against an Enemy UAV Swarm

    Science.gov (United States)

    2011-06-01

    energy options” [10]. The research of swarm robotics derives much of its inspiration from natural systems. Social insects are known to coordinate their...Monterey, California 9. CPT. Francisco J. Hederra Direccion de Investigacion , Programas y Desarrollo de la Armada Armada de Chile CHILE 10. CAPT Jeffrey Kline, USN(ret.) Naval Postgraduate School Monterey, California 91

  10. PSOVina: The hybrid particle swarm optimization algorithm for protein-ligand docking.

    Science.gov (United States)

    Ng, Marcus C K; Fong, Simon; Siu, Shirley W I

    2015-06-01

    Protein-ligand docking is an essential step in modern drug discovery process. The challenge here is to accurately predict and efficiently optimize the position and orientation of ligands in the binding pocket of a target protein. In this paper, we present a new method called PSOVina which combined the particle swarm optimization (PSO) algorithm with the efficient Broyden-Fletcher-Goldfarb-Shannon (BFGS) local search method adopted in AutoDock Vina to tackle the conformational search problem in docking. Using a diverse data set of 201 protein-ligand complexes from the PDBbind database and a full set of ligands and decoys for four representative targets from the directory of useful decoys (DUD) virtual screening data set, we assessed the docking performance of PSOVina in comparison to the original Vina program. Our results showed that PSOVina achieves a remarkable execution time reduction of 51-60% without compromising the prediction accuracies in the docking and virtual screening experiments. This improvement in time efficiency makes PSOVina a better choice of a docking tool in large-scale protein-ligand docking applications. Our work lays the foundation for the future development of swarm-based algorithms in molecular docking programs. PSOVina is freely available to non-commercial users at http://cbbio.cis.umac.mo .

  11. An intelligent scheduling method based on improved particle swarm optimization algorithm for drainage pipe network

    Science.gov (United States)

    Luo, Yaqi; Zeng, Bi

    2017-08-01

    This paper researches the drainage routing problem in drainage pipe network, and propose an intelligent scheduling method. The method relates to the design of improved particle swarm optimization algorithm, the establishment of the corresponding model from the pipe network, and the process by using the algorithm based on improved particle swarm optimization to find the optimum drainage route in the current environment.

  12. Gene selection using hybrid binary black hole algorithm and modified binary particle swarm optimization.

    Science.gov (United States)

    Pashaei, Elnaz; Pashaei, Elham; Aydin, Nizamettin

    2018-04-14

    In cancer classification, gene selection is an important data preprocessing technique, but it is a difficult task due to the large search space. Accordingly, the objective of this study is to develop a hybrid meta-heuristic Binary Black Hole Algorithm (BBHA) and Binary Particle Swarm Optimization (BPSO) (4-2) model that emphasizes gene selection. In this model, the BBHA is embedded in the BPSO (4-2) algorithm to make the BPSO (4-2) more effective and to facilitate the exploration and exploitation of the BPSO (4-2) algorithm to further improve the performance. This model has been associated with Random Forest Recursive Feature Elimination (RF-RFE) pre-filtering technique. The classifiers which are evaluated in the proposed framework are Sparse Partial Least Squares Discriminant Analysis (SPLSDA); k-nearest neighbor and Naive Bayes. The performance of the proposed method was evaluated on two benchmark and three clinical microarrays. The experimental results and statistical analysis confirm the better performance of the BPSO (4-2)-BBHA compared with the BBHA, the BPSO (4-2) and several state-of-the-art methods in terms of avoiding local minima, convergence rate, accuracy and number of selected genes. The results also show that the BPSO (4-2)-BBHA model can successfully identify known biologically and statistically significant genes from the clinical datasets. Copyright © 2018 Elsevier Inc. All rights reserved.

  13. DualTrust: A Trust Management Model for Swarm-Based Autonomic Computing Systems

    Energy Technology Data Exchange (ETDEWEB)

    Maiden, Wendy M. [Washington State Univ., Pullman, WA (United States)

    2010-05-01

    Trust management techniques must be adapted to the unique needs of the application architectures and problem domains to which they are applied. For autonomic computing systems that utilize mobile agents and ant colony algorithms for their sensor layer, certain characteristics of the mobile agent ant swarm -- their lightweight, ephemeral nature and indirect communication -- make this adaptation especially challenging. This thesis looks at the trust issues and opportunities in swarm-based autonomic computing systems and finds that by monitoring the trustworthiness of the autonomic managers rather than the swarming sensors, the trust management problem becomes much more scalable and still serves to protect the swarm. After analyzing the applicability of trust management research as it has been applied to architectures with similar characteristics, this thesis specifies the required characteristics for trust management mechanisms used to monitor the trustworthiness of entities in a swarm-based autonomic computing system and describes a trust model that meets these requirements.

  14. A Swarm Optimization Genetic Algorithm Based on Quantum-Behaved Particle Swarm Optimization

    Directory of Open Access Journals (Sweden)

    Tao Sun

    2017-01-01

    Full Text Available Quantum-behaved particle swarm optimization (QPSO algorithm is a variant of the traditional particle swarm optimization (PSO. The QPSO that was originally developed for continuous search spaces outperforms the traditional PSO in search ability. This paper analyzes the main factors that impact the search ability of QPSO and converts the particle movement formula to the mutation condition by introducing the rejection region, thus proposing a new binary algorithm, named swarm optimization genetic algorithm (SOGA, because it is more like genetic algorithm (GA than PSO in form. SOGA has crossover and mutation operator as GA but does not need to set the crossover and mutation probability, so it has fewer parameters to control. The proposed algorithm was tested with several nonlinear high-dimension functions in the binary search space, and the results were compared with those from BPSO, BQPSO, and GA. The experimental results show that SOGA is distinctly superior to the other three algorithms in terms of solution accuracy and convergence.

  15. Formations of Robotic Swarm: An Artificial Force Based Approach

    Directory of Open Access Journals (Sweden)

    Samitha W. Ekanayake

    2009-03-01

    Full Text Available Cooperative control of multiple mobile robots is an attractive and challenging problem which has drawn considerable attention in the recent past. This paper introduces a scalable decentralized control algorithm to navigate a group of mobile robots (swarm into a predefined shape in 2D space. The proposed architecture uses artificial forces to control mobile agents into the shape and spread them inside the shape while avoiding inter- member collisions. The theoretical analysis of the swarm behavior describes the motion of the complete swarm and individual members in relevant situations. We use computer simulated case studies to verify the theoretical assertions and to demonstrate the robustness of the swarm under external disturbances such as death of agents, change of shape etc. Also the performance of the proposed distributed swarm control architecture was investigated in the presence of realistic implementation issues such as localization errors, communication range limitations, boundedness of forces etc.

  16. Formations of Robotic Swarm: An Artificial Force Based Approach

    Directory of Open Access Journals (Sweden)

    Samitha W. Ekanayake

    2010-09-01

    Full Text Available Cooperative control of multiple mobile robots is an attractive and challenging problem which has drawn considerable attention in the recent past. This paper introduces a scalable decentralized control algorithm to navigate a group of mobile robots (swarm into a predefined shape in 2D space. The proposed architecture uses artificial forces to control mobile agents into the shape and spread them inside the shape while avoiding inter- member collisions. The theoretical analysis of the swarm behavior describes the motion of the complete swarm and individual members in relevant situations. We use computer simulated case studies to verify the theoretical assertions and to demonstrate the robustness of the swarm under external disturbances such as death of agents, change of shape etc. Also the performance of the proposed distributed swarm control architecture was investigated in the presence of realistic implementation issues such as localization errors, communication range limitations, boundedness of forces etc.

  17. Formations of Robotic Swarm: An Artificial Force Based Approach

    Directory of Open Access Journals (Sweden)

    Samitha W. Ekanayake

    2010-09-01

    Full Text Available Cooperative control of multiple mobile robots is an attractive and challenging problem which has drawn considerable attention in the recent past. This paper introduces a scalable decentralized control algorithm to navigate a group of mobile robots (swarm into a predefined shape in 2D space. The proposed architecture uses artificial forces to control mobile agents into the shape and spread them inside the shape while avoiding inter-member collisions. The theoretical analysis of the swarm behavior describes the motion of the complete swarm and individual members in relevant situations. We use computer simulated case studies to verify the theoretical assertions and to demonstrate the robustness of the swarm under external disturbances such as death of agents, change of shape etc. Also the performance of the proposed distributed swarm control architecture was investigated in the presence of realistic implementation issues such as localization errors, communication range limitations, boundedness of forces etc.

  18. Formations of Robotic Swarm: An Artificial Force Based Approach

    Directory of Open Access Journals (Sweden)

    Samitha W. Ekanayake

    2009-03-01

    Full Text Available Cooperative control of multiple mobile robots is an attractive and challenging problem which has drawn considerable attention in the recent past. This paper introduces a scalable decentralized control algorithm to navigate a group of mobile robots (swarm into a predefined shape in 2D space. The proposed architecture uses artificial forces to control mobile agents into the shape and spread them inside the shape while avoiding inter-member collisions. The theoretical analysis of the swarm behavior describes the motion of the complete swarm and individual members in relevant situations. We use computer simulated case studies to verify the theoretical assertions and to demonstrate the robustness of the swarm under external disturbances such as death of agents, change of shape etc. Also the performance of the proposed distributed swarm control architecture was investigated in the presence of realistic implementation issues such as localization errors, communication range limitations, boundedness of forces etc.

  19. Lifecycle-Based Swarm Optimization Method for Numerical Optimization

    Directory of Open Access Journals (Sweden)

    Hai Shen

    2014-01-01

    Full Text Available Bioinspired optimization algorithms have been widely used to solve various scientific and engineering problems. Inspired by biological lifecycle, this paper presents a novel optimization algorithm called lifecycle-based swarm optimization (LSO. Biological lifecycle includes four stages: birth, growth, reproduction, and death. With this process, even though individual organism died, the species will not perish. Furthermore, species will have stronger ability of adaptation to the environment and achieve perfect evolution. LSO simulates Biological lifecycle process through six optimization operators: chemotactic, assimilation, transposition, crossover, selection, and mutation. In addition, the spatial distribution of initialization population meets clumped distribution. Experiments were conducted on unconstrained benchmark optimization problems and mechanical design optimization problems. Unconstrained benchmark problems include both unimodal and multimodal cases the demonstration of the optimal performance and stability, and the mechanical design problem was tested for algorithm practicability. The results demonstrate remarkable performance of the LSO algorithm on all chosen benchmark functions when compared to several successful optimization techniques.

  20. Single image defogging based on particle swarm optimization

    Science.gov (United States)

    Guo, Fan; Zhou, Cong; Liu, Li-jue; Tang, Jin

    2017-11-01

    Due to the lack of enough information to solve the equation of image degradation model, existing defogging methods generally introduce some parameters and set these values fixed. Inappropriate parameter setting leads to difficulty in obtaining the best defogging results for different input foggy images. Therefore, a single image defogging algorithm based on particle swarm optimization (PSO) is proposed in this letter to adaptively and automatically select optimal parameter values for image defogging algorithms. The proposed method is applied to two representative defogging algorithms by selecting the two main parameters and optimizing them using the PSO algorithm. Comparative study and qualitative evaluation demonstrate that the better quality results are obtained by using the proposed parameter selection method.

  1. R2-Based Multi/Many-Objective Particle Swarm Optimization

    Science.gov (United States)

    Toscano, Gregorio; Barron-Zambrano, Jose Hugo; Tello-Leal, Edgar

    2016-01-01

    We propose to couple the R2 performance measure and Particle Swarm Optimization in order to handle multi/many-objective problems. Our proposal shows that through a well-designed interaction process we could maintain the metaheuristic almost inalterable and through the R2 performance measure we did not use neither an external archive nor Pareto dominance to guide the search. The proposed approach is validated using several test problems and performance measures commonly adopted in the specialized literature. Results indicate that the proposed algorithm produces results that are competitive with respect to those obtained by four well-known MOEAs. Additionally, we validate our proposal in many-objective optimization problems. In these problems, our approach showed its main strength, since it could outperform another well-known indicator-based MOEA. PMID:27656200

  2. A Hybrid Strategy of Differential Evolution and Modified Particle Swarm Optimization for Numerical Solution of a Parallel Manipulator

    Directory of Open Access Journals (Sweden)

    Bingyan Mao

    2018-01-01

    Full Text Available This paper presents a hybrid strategy combined with a differential evolution (DE algorithm and a modified particle swarm optimization (PSO, denominated as DEMPSO, to solve the nonlinear model of the forward kinematics. The proposed DEMPSO takes the best advantage of the convergence rate of MPSO and the global optimization of DE. A comparison study between the DEMPSO and the other optimization algorithms such as the DE algorithm, PSO algorithm, and MPSO algorithm is performed to obtain the numerical solution of the forward kinematics of a 3-RPS parallel manipulator. The forward kinematic model of the 3-RPS parallel manipulator has been developed and it is essentially a nonlinear algebraic equation which is dependent on the structure of the mechanism. A constraint equation based on the assembly relationship is utilized to express the position and orientation of the manipulator. Five configurations with different positions and orientations are used as an example to illustrate the effectiveness of the proposed DEMPSO for solving the kinematic problem of parallel manipulators. And the comparison study results of DEMPSO and the other optimization algorithms also show that DEMPSO can provide a better performance regarding the convergence rate and global searching properties.

  3. Improved cuckoo search with particle swarm optimization for ...

    Indian Academy of Sciences (India)

    Content based image retrieval (CBIR); image compression; partial recurrent neural network (PRNN); particle swarm optimization (PSO); HAARwavelet; Cuckoo Search ... are NP hard, a hybrid Particle Swarm Optimization (PSO) – Cuckoo Search algorithm (CS) is proposed to optimize the learning rate of the neural network.

  4. Improved cuckoo search with particle swarm optimization for ...

    Indian Academy of Sciences (India)

    work are NP hard, a hybrid Particle Swarm Optimization (PSO) – Cuckoo Search algorithm (CS) is proposed to optimize the learning rate of the neural network. Keywords. Content based image retrieval (CBIR); image compression; partial recurrent neural network (PRNN); particle swarm optimization (PSO); HAAR wavelet;.

  5. Cloud-Based Perception and Control of Sensor Nets and Robot Swarms

    Science.gov (United States)

    2016-04-01

    AFRL-AFOSR-VA-TR-2016-0149 Cloud-Based Perception and Control of Sensor Nets and Robot Swarms Geoffrey Fox TRUSTEES OF INDIANA UNIVERSITY Final...AND SUBTITLE Cloud-Based Perception and Control of Sensor Nets and Robot Swarms 5a. CONTRACT NUMBER 5b. GRANT NUMBER FA9550-13-1-0225 5c. PROGRAM...NOTES 14. ABSTRACT This project "Cloud-Based Perception and Control of Sensor Nets and Robot Swarms" was performed by an interdisciplinary team at

  6. A new ARMAX model based on evolutionary algorithm and particle swarm optimization for short-term load forecasting

    International Nuclear Information System (INIS)

    Wang, Bo; Tai, Neng-ling; Zhai, Hai-qing; Ye, Jian; Zhu, Jia-dong; Qi, Liang-bo

    2008-01-01

    In this paper, a new ARMAX model based on evolutionary algorithm and particle swarm optimization for short-term load forecasting is proposed. Auto-regressive (AR) and moving average (MA) with exogenous variables (ARMAX) has been widely applied in the load forecasting area. Because of the nonlinear characteristics of the power system loads, the forecasting function has many local optimal points. The traditional method based on gradient searching may be trapped in local optimal points and lead to high error. While, the hybrid method based on evolutionary algorithm and particle swarm optimization can solve this problem more efficiently than the traditional ways. It takes advantage of evolutionary strategy to speed up the convergence of particle swarm optimization (PSO), and applies the crossover operation of genetic algorithm to enhance the global search ability. The new ARMAX model for short-term load forecasting has been tested based on the load data of Eastern China location market, and the results indicate that the proposed approach has achieved good accuracy. (author)

  7. Investigating Ground Swarm Robotics Using Agent Based Simulation

    National Research Council Canada - National Science Library

    Ho, Sze-Tek T

    2006-01-01

    The concept of employing ground swarm robotics to accomplish tasks has been proposed for future use in humanitarian de-mining, plume monitoring, searching for survivors in a disaster site, and other hazardous activities...

  8. Swarm Optimization-Based Magnetometer Calibration for Personal Handheld Devices

    Science.gov (United States)

    Ali, Abdelrahman; Siddharth, Siddharth; Syed, Zainab; El-Sheimy, Naser

    2012-01-01

    Inertial Navigation Systems (INS) consist of accelerometers, gyroscopes and a processor that generates position and orientation solutions by integrating the specific forces and rotation rates. In addition to the accelerometers and gyroscopes, magnetometers can be used to derive the user heading based on Earth's magnetic field. Unfortunately, the measurements of the magnetic field obtained with low cost sensors are usually corrupted by several errors, including manufacturing defects and external electro-magnetic fields. Consequently, proper calibration of the magnetometer is required to achieve high accuracy heading measurements. In this paper, a Particle Swarm Optimization (PSO)-based calibration algorithm is presented to estimate the values of the bias and scale factor of low cost magnetometers. The main advantage of this technique is the use of the artificial intelligence which does not need any error modeling or awareness of the nonlinearity. Furthermore, the proposed algorithm can help in the development of Pedestrian Navigation Devices (PNDs) when combined with inertial sensors and GPS/Wi-Fi for indoor navigation and Location Based Services (LBS) applications.

  9. Swarm Optimization-Based Magnetometer Calibration for Personal Handheld Devices

    Directory of Open Access Journals (Sweden)

    Naser El-Sheimy

    2012-09-01

    Full Text Available Inertial Navigation Systems (INS consist of accelerometers, gyroscopes and a processor that generates position and orientation solutions by integrating the specific forces and rotation rates. In addition to the accelerometers and gyroscopes, magnetometers can be used to derive the user heading based on Earth’s magnetic field. Unfortunately, the measurements of the magnetic field obtained with low cost sensors are usually corrupted by several errors, including manufacturing defects and external electro-magnetic fields. Consequently, proper calibration of the magnetometer is required to achieve high accuracy heading measurements. In this paper, a Particle Swarm Optimization (PSO-based calibration algorithm is presented to estimate the values of the bias and scale factor of low cost magnetometers. The main advantage of this technique is the use of the artificial intelligence which does not need any error modeling or awareness of the nonlinearity. Furthermore, the proposed algorithm can help in the development of Pedestrian Navigation Devices (PNDs when combined with inertial sensors and GPS/Wi-Fi for indoor navigation and Location Based Services (LBS applications.

  10. Research on Multiple Particle Swarm Algorithm Based on Analysis of Scientific Materials

    Directory of Open Access Journals (Sweden)

    Zhao Hongwei

    2017-01-01

    Full Text Available This paper proposed an improved particle swarm optimization algorithm based on analysis of scientific materials. The core thesis of MPSO (Multiple Particle Swarm Algorithm is to improve the single population PSO to interactive multi-swarms, which is used to settle the problem of being trapped into local minima during later iterations because it is lack of diversity. The simulation results show that the convergence rate is fast and the search performance is good, and it has achieved very good results.

  11. A PSO-based hybrid metaheuristic for permutation flowshop scheduling problems.

    Science.gov (United States)

    Zhang, Le; Wu, Jinnan

    2014-01-01

    This paper investigates the permutation flowshop scheduling problem (PFSP) with the objectives of minimizing the makespan and the total flowtime and proposes a hybrid metaheuristic based on the particle swarm optimization (PSO). To enhance the exploration ability of the hybrid metaheuristic, a simulated annealing hybrid with a stochastic variable neighborhood search is incorporated. To improve the search diversification of the hybrid metaheuristic, a solution replacement strategy based on the pathrelinking is presented to replace the particles that have been trapped in local optimum. Computational results on benchmark instances show that the proposed PSO-based hybrid metaheuristic is competitive with other powerful metaheuristics in the literature.

  12. A hybrid particle swarm optimization-SVM classification for automatic cardiac auscultation

    Directory of Open Access Journals (Sweden)

    Prasertsak Charoen

    2017-04-01

    Full Text Available Cardiac auscultation is a method for a doctor to listen to heart sounds, using a stethoscope, for examining the condition of the heart. Automatic cardiac auscultation with machine learning is a promising technique to classify heart conditions without need of doctors or expertise. In this paper, we develop a classification model based on support vector machine (SVM and particle swarm optimization (PSO for an automatic cardiac auscultation system. The model consists of two parts: heart sound signal processing part and a proposed PSO for weighted SVM (WSVM classifier part. In this method, the PSO takes into account the degree of importance for each feature extracted from wavelet packet (WP decomposition. Then, by using principle component analysis (PCA, the features can be selected. The PSO technique is used to assign diverse weights to different features for the WSVM classifier. Experimental results show that both continuous and binary PSO-WSVM models achieve better classification accuracy on the heart sound samples, by reducing system false negatives (FNs, compared to traditional SVM and genetic algorithm (GA based SVM.

  13. Self-organizing control strategy for asteroid intelligent detection swarm based on attraction and repulsion

    Science.gov (United States)

    An, Meiyan; Wang, Zhaokui; Zhang, Yulin

    2017-01-01

    The self-organizing control strategy for asteroid intelligent detection swarm, which is considered as a space application instance of intelligent swarm, is developed. The leader-follower model for the asteroid intelligent detection swarm is established, and the further analysis is conducted for massive asteroid and small asteroid. For a massive asteroid, the leader spacecraft flies under the gravity field of the asteroid. For a small asteroid, the asteroid gravity is negligible, and a trajectory planning method is proposed based on elliptic cavity virtual potential field. The self-organizing control strategy for the follower spacecraft is developed based on a mechanism of velocity planning and velocity tracking. The simulation results show that the self-organizing control strategy is valid for both massive asteroid and small asteroid, and the exploration swarm forms a stable configuration.

  14. Manipulator inverse kinematics control based on particle swarm optimization neural network

    Science.gov (United States)

    Wen, Xiulan; Sheng, Danghong; Guo, Jing

    2008-10-01

    The inverse kinematics control of a robotic manipulator requires solving non-linear equations having transcendental functions and involving time-consuming calculations. Particle Swarm Optimization (PSO), which is based on the behaviour of insect swarms and exploits the solution space by taking into account the experience of the single particle as well as that of the entire swarm, is similar to the genetic algorithm (GA) in that it performs a structured randomized search of an unknown parameter space by manipulating a population of parameter estimates to converge on a suitable solution. In this paper, PSO is firstly proposed to optimize feed-forward neural network for manipulator inverse kinematics. Compared with the results of the fast back propagation learning algorithm (FBP), conventional GA genetic algorithm based elitist reservation (EGA), improved GA (IGA) and immune evolutionary computation (IEC), the simulation results verify the particle swarm optimization neural network (PSONN) is effective for manipulator inverse kinematics control.

  15. Swarm-Aurora: A web-based tool for quickly identifying multi-instrument auroral events

    Science.gov (United States)

    Chaddock, D.; Donovan, E.; Spanswick, E.; Knudsen, D. J.; Frey, H. U.; Kauristie, K.; Partamies, N.; Jackel, B. J.; Gillies, M.; Holmdahl Olsen, P. E.

    2016-12-01

    In recent years there has been a dramatic increase in ground-based auroral imaging systems. These include the continent-wide THEMIS-ASI network, and imagers operated by other programs including GO-Canada, MIRACLE, AGO, OMTI, and more. In the near future, a new Canadian program called TREx will see the deployment of new narrow-band ASIs that will provide multi-wavelength imaging across Western Canada. At the same time, there is an unprecedented fleet of international spacecraft probing geospace at low and high altitudes. We are now in the position to simultaneously observe the magnetospheric drivers of aurora, observe in situ the waves, currents, and particles associated with MI coupling, and the conjugate aurora. Whereas a decade ago, a single magnetic conjunction between one ASI and a low altitude satellite was a relatively rare event, we now have a plethora of triple conjunctions between imagers, low-altitude spacecraft, and near-equatorial magnetospheric probes. But with these riches comes a new level of complexity. It is often difficult to identify the many useful conjunctions for a specific line of inquiry from the multitude of conjunctions where the geospace conditions are often not relevant and/or the imaging is compromised by clouds, moon, or other factors. Swarm-Aurora was designed to facilitate and drive the use of Swarm in situ measurements in auroral science. The project seeks to build a bridge between the Swarm science community, Swarm data, and the complimentary auroral data and community. Swarm-Aurora (http://swarm-aurora.phys.ucalgary.ca) incorporates a web-based tool which provides access to quick-look summary data for a large array of instruments, with Swarm in situ and ground-based ASI data as the primary focus. This web interface allows researchers to quickly and efficiently browse Swarm and ASI data to identify auroral events of interest to them. This allows researchers to be able to easily and quickly identify Swarm overflights of ASIs that

  16. Optimal sensor placement for large structures using the nearest neighbour index and a hybrid swarm intelligence algorithm

    International Nuclear Information System (INIS)

    Lian, Jijian; He, Longjun; Ma, Bin; Peng, Wenxiang; Li, Huokun

    2013-01-01

    Research on optimal sensor placement (OSP) has become very important due to the need to obtain effective testing results with limited testing resources in health monitoring. In this study, a new methodology is proposed to select the best sensor locations for large structures. First, a novel fitness function derived from the nearest neighbour index is proposed to overcome the drawbacks of the effective independence method for OSP for large structures. This method maximizes the contribution of each sensor to modal observability and simultaneously avoids the redundancy of information between the selected degrees of freedom. A hybrid algorithm combining the improved discrete particle swarm optimization (DPSO) with the clonal selection algorithm is then implemented to optimize the proposed fitness function effectively. Finally, the proposed method is applied to an arch dam for performance verification. The results show that the proposed hybrid swarm intelligence algorithm outperforms a genetic algorithm with decimal two-dimension array encoding and DPSO in the capability of global optimization. The new fitness function is advantageous in terms of sensor distribution and ensuring a well-conditioned information matrix and orthogonality of modes, indicating that this method may be used to provide guidance for OSP in various large structures. (paper)

  17. Analysis of swarm behaviors based on an inversion of the fluctuation theorem.

    Science.gov (United States)

    Hamann, Heiko; Schmickl, Thomas; Crailsheim, Karl

    2014-01-01

    A grand challenge in the field of artificial life is to find a general theory of emergent self-organizing systems. In swarm systems most of the observed complexity is based on motion of simple entities. Similarly, statistical mechanics focuses on collective properties induced by the motion of many interacting particles. In this article we apply methods from statistical mechanics to swarm systems. We try to explain the emergent behavior of a simulated swarm by applying methods based on the fluctuation theorem. Empirical results indicate that swarms are able to produce negative entropy within an isolated subsystem due to frozen accidents. Individuals of a swarm are able to locally detect fluctuations of the global entropy measure and store them, if they are negative entropy productions. By accumulating these stored fluctuations over time the swarm as a whole is producing negative entropy and the system ends up in an ordered state. We claim that this indicates the existence of an inverted fluctuation theorem for emergent self-organizing dissipative systems. This approach bears the potential of general applicability.

  18. Plant-herbivore interactions in a trispecific hybrid swarm of Populus: assessing support for hypotheses of hybrid bridges, evolutionary novelty and genetic similarity.

    Science.gov (United States)

    Floate, Kevin D; Godbout, Julie; Lau, Matthew K; Isabel, Nathalie; Whitham, Thomas G

    2016-01-01

    Natural systems of hybridizing plants are powerful tools with which to assess evolutionary processes between parental species and their associated arthropods. Here we report on these processes in a trispecific hybrid swarm of Populus trees. Using field observations, common garden experiments and genetic markers, we tested the hypothesis that genetic similarities among hosts underlie the distributions of 10 species of gall-forming arthropods and their ability to adapt to new host genotypes. the degree of genetic relatedness among parental species determines whether hybridization is primarily bidirectional or unidirectional; host genotype and genetic similarity strongly affect the distributions of gall-forming species, individually and as a community. These effects were detected observationally in the wild and experimentally in common gardens; correlations between the diversity of host genotypes and their associated arthropods identify hybrid zones as centres of biodiversity and potential species interactions with important ecological and evolutionary consequences. These findings support both hybrid bridge and evolutionary novelty hypotheses. However, the lack of parallel genetic studies on gall-forming arthropods limits our ability to define the host of origin with their subsequent shift to other host species or their evolution on hybrids as their final destination. © 2015 Government of Canada, Ministry of Agriculture and AgriFood Canada. New Phytologist © 2015 New Phytologist Trust.

  19. Emergence of Swarming Behavior: Foraging Agents Evolve Collective Motion Based on Signaling

    Science.gov (United States)

    Ikegami, Takashi

    2016-01-01

    Swarming behavior is common in biology, from cell colonies to insect swarms and bird flocks. However, the conditions leading to the emergence of such behavior are still subject to research. Since Reynolds’ boids, many artificial models have reproduced swarming behavior, focusing on details ranging from obstacle avoidance to the introduction of fixed leaders. This paper presents a model of evolved artificial agents, able to develop swarming using only their ability to listen to each other’s signals. The model simulates a population of agents looking for a vital resource they cannot directly detect, in a 3D environment. Instead of a centralized algorithm, each agent is controlled by an artificial neural network, whose weights are encoded in a genotype and adapted by an original asynchronous genetic algorithm. The results demonstrate that agents progressively evolve the ability to use the information exchanged between each other via signaling to establish temporary leader-follower relations. These relations allow agents to form swarming patterns, emerging as a transient behavior that improves the agents’ ability to forage for the resource. Once they have acquired the ability to swarm, the individuals are able to outperform the non-swarmers at finding the resource. The population hence reaches a neutral evolutionary space which leads to a genetic drift of the genotypes. This reductionist approach to signal-based swarming not only contributes to shed light on the minimal conditions for the evolution of a swarming behavior, but also more generally it exemplifies the effect communication can have on optimal search patterns in collective groups of individuals. PMID:27119340

  20. Particle Swarm Optimization Based of the Maximum Photovoltaic ...

    African Journals Online (AJOL)

    Photovoltaic electricity is seen as an important source of renewable energy. The photovoltaic array is an unstable source of power since the peak power point depends on the temperature and the irradiation level. A maximum peak power point tracking is then necessary for maximum efficiency. In this work, a Particle Swarm ...

  1. Particle swarm optimization based optimal bidding strategy in an ...

    African Journals Online (AJOL)

    user

    Test results indicate that the proposed algorithm outperforms the Genetic. Algorithm approach with respect to total profit and convergence time. Keywords: Electricity Market, Market Clearing Price (MCP), Optimal bidding strategy, Particle Swarm Optimization (PSO). DOI: http://dx.doi.org/10.4314/ijest.v3i6.23. 1. Introduction.

  2. An Aerial Robot for Rice Farm Quality Inspection With Type-2 Fuzzy Neural Networks Tuned by Particle Swarm Optimization-Sliding Mode Control Hybrid Algorithm

    DEFF Research Database (Denmark)

    Camci, Efe; Kripalan, Devesh Raju; Ma, Linlu

    2017-01-01

    particle swarm optimization-sliding mode control (PSO-SMC) theory-based hybrid algorithm is proposed for the training of T2-FNNs. In particular, continuous version of PSO is adopted for the identification of the antecedent part of T2-FNNs while SMCbased update rules are utilized for online learning......, an autonomous quality inspection over rice farms is proposed by employing quadcopters. Real-time control of these vehicles, however, is still challenging as they exhibit highly nonlinear behavior especially for agile maneuvers. What is more, these vehicles have to operate under uncertain working conditions...... such as wind and gust disturbances as well as positioning errors caused by inertial measurement units and global positioning system. To handle these difficulties, as a model-free and learning control algorithm, type-2 fuzzy neural networks (T2-FNNs) are designed for the control of quadcopter. The novel...

  3. Swarm Intelligence systems

    International Nuclear Information System (INIS)

    Beni, G.

    1994-01-01

    We review the characteristics of Swarm Intelligence and discuss systems exhibiting it. The recently developed mathematical description of Swarm behavior is also reviewed and discussed. The self-organization of Swarms is described as the reconfiguring asynchronously and conservatively of a distribution. Swarm reconfigurations are based on producing distributions that are solutions to systems of linear equations. Conservation and asynchronicity are related, respectively, to the global and local nature of the Swarm problem. The conditions for the convergence of the Swarm algorithm are presented. The important point is that, under very general conditions, the Swarm reconfigures in a time which is independent of the size of the Swarm. This fact implies that a centralized controller can never reconfigure as fast as a Swarm provided the size of the Swarm is large enough. This result is related to the unpredictability of the Swarm, a basic property of Swarm Intelligence. Finally, the conditions under which Swarm algorithms become of practical importance are discussed and examples given. (author)

  4. Location Prediction-Based Data Dissemination Using Swarm Intelligence in Opportunistic Cognitive Networks

    Directory of Open Access Journals (Sweden)

    Jie Li

    2014-01-01

    Full Text Available Swarm intelligence is widely used in the application of communication networks. In this paper we adopt a biologically inspired strategy to investigate the data dissemination problem in the opportunistic cognitive networks (OCNs. We model the system as a centralized and distributed hybrid system including a location prediction server and a pervasive environment deploying the large-scale human-centric devices. To exploit such environment, data gathering and dissemination are fundamentally based on the contact opportunities. To tackle the lack of contemporaneous end-to-end connectivity in opportunistic networks, we apply ant colony optimization as a cognitive heuristic technology to formulate a self-adaptive dissemination-based routing scheme in opportunistic cognitive networks. This routing strategy has attempted to find the most appropriate nodes conveying messages to the destination node based on the location prediction information and intimacy between nodes, which uses the online unsupervised learning on geographical locations and the biologically inspired algorithm on the relationship of nodes to estimate the delivery probability. Extensive simulation is carried out on the real-world traces to evaluate the accuracy of the location prediction and the proposed scheme in terms of transmission cost, delivery ratio, average hops, and delivery latency, which achieves better routing performances compared to the typical routing schemes in OCNs.

  5. Hybrid support vector regression and autoregressive integrated moving average models improved by particle swarm optimization for property crime rates forecasting with economic indicators.

    Science.gov (United States)

    Alwee, Razana; Shamsuddin, Siti Mariyam Hj; Sallehuddin, Roselina

    2013-01-01

    Crimes forecasting is an important area in the field of criminology. Linear models, such as regression and econometric models, are commonly applied in crime forecasting. However, in real crimes data, it is common that the data consists of both linear and nonlinear components. A single model may not be sufficient to identify all the characteristics of the data. The purpose of this study is to introduce a hybrid model that combines support vector regression (SVR) and autoregressive integrated moving average (ARIMA) to be applied in crime rates forecasting. SVR is very robust with small training data and high-dimensional problem. Meanwhile, ARIMA has the ability to model several types of time series. However, the accuracy of the SVR model depends on values of its parameters, while ARIMA is not robust to be applied to small data sets. Therefore, to overcome this problem, particle swarm optimization is used to estimate the parameters of the SVR and ARIMA models. The proposed hybrid model is used to forecast the property crime rates of the United State based on economic indicators. The experimental results show that the proposed hybrid model is able to produce more accurate forecasting results as compared to the individual models.

  6. A Communications Modeling System for Swarm-Based Sensors

    Science.gov (United States)

    2003-09-01

    nest-building behavior, and birds in their flocking behavior(69). The population members in PSO algorithms move through the solution landscape in an...Applet: Boids in Java. Reynolds Engineering and Design, 2000. http://www.red3d.com/cwr/ boids /applet. 99. Reynolds, Craig W. “ Flocks , Herds, and Schools...6 4.1.3 Swarm algorithm . . . . . . . . . . . . . . . . . . . . 4-7 4.2 Simulator Implementation . . . . . . . . . . . . . . . . . . . . 4-17 4.2.1

  7. Genetic Particle Swarm Optimization-Based Feature Selection for Very-High-Resolution Remotely Sensed Imagery Object Change Detection.

    Science.gov (United States)

    Chen, Qiang; Chen, Yunhao; Jiang, Weiguo

    2016-07-30

    In the field of multiple features Object-Based Change Detection (OBCD) for very-high-resolution remotely sensed images, image objects have abundant features and feature selection affects the precision and efficiency of OBCD. Through object-based image analysis, this paper proposes a Genetic Particle Swarm Optimization (GPSO)-based feature selection algorithm to solve the optimization problem of feature selection in multiple features OBCD. We select the Ratio of Mean to Variance (RMV) as the fitness function of GPSO, and apply the proposed algorithm to the object-based hybrid multivariate alternative detection model. Two experiment cases on Worldview-2/3 images confirm that GPSO can significantly improve the speed of convergence, and effectively avoid the problem of premature convergence, relative to other feature selection algorithms. According to the accuracy evaluation of OBCD, GPSO is superior at overall accuracy (84.17% and 83.59%) and Kappa coefficient (0.6771 and 0.6314) than other algorithms. Moreover, the sensitivity analysis results show that the proposed algorithm is not easily influenced by the initial parameters, but the number of features to be selected and the size of the particle swarm would affect the algorithm. The comparison experiment results reveal that RMV is more suitable than other functions as the fitness function of GPSO-based feature selection algorithm.

  8. A distance weighted-based approach for self-organized aggregation in robot swarms

    KAUST Repository

    Khaldi, Belkacem

    2017-12-14

    In this paper, a Distance-Weighted K Nearest Neighboring (DW-KNN) topology is proposed to study self-organized aggregation as an emergent swarming behavior within robot swarms. A virtual physics approach is applied among the proposed neighborhood topology to keep the robots together. A distance-weighted function based on a Smoothed Particle Hydrodynamic (SPH) interpolation approach is used as a key factor to identify the K-Nearest neighbors taken into account when aggregating the robots. The intra virtual physical connectivity among these neighbors is achieved using a virtual viscoelastic-based proximity model. With the ARGoS based-simulator, we model and evaluate the proposed approach showing various self-organized aggregations performed by a swarm of N foot-bot robots.

  9. Modified Sigmoid Function Based Gray Scale Image Contrast Enhancement Using Particle Swarm Optimization

    Science.gov (United States)

    Verma, Harish Kumar; Pal, Sandeep

    2016-06-01

    The main objective of an image enhancement is to improve eminence by maximizing the information content in the test image. Conventional contrast enhancement techniques either often fails to produce reasonable results for a broad variety of low-contrast and high contrast images, or cannot be automatically applied to different images, because they are parameters dependent. Hence this paper introduces a novel hybrid image enhancement approach by taking both the local and global information of an image. In the present work, sigmoid function is being modified on the basis of contrast of the images. The gray image enhancement problem is treated as nonlinear optimization problem with several constraints and solved by particle swarm optimization. The entropy and edge information is included in the objective function as quality measure of an image. The effectiveness of modified sigmoid function based enhancement over conventional methods namely linear contrast stretching, histogram equalization, and adaptive histogram equalization are better revealed by the enhanced images and further validated by statistical analysis of these images.

  10. Image de-noising based on mathematical morphology and multi-objective particle swarm optimization

    Science.gov (United States)

    Dou, Liyun; Xu, Dan; Chen, Hao; Liu, Yicheng

    2017-07-01

    To overcome the problem of image de-noising, an efficient image de-noising approach based on mathematical morphology and multi-objective particle swarm optimization (MOPSO) is proposed in this paper. Firstly, constructing a series and parallel compound morphology filter based on open-close (OC) operation and selecting a structural element with different sizes try best to eliminate all noise in a series link. Then, combining multi-objective particle swarm optimization (MOPSO) to solve the parameters setting of multiple structural element. Simulation result shows that our algorithm can achieve a superior performance compared with some traditional de-noising algorithm.

  11. Agent based Particle Swarm Optimization for Load Frequency Control of Distribution Grid

    DEFF Research Database (Denmark)

    Cha, Seung-Tae; Saleem, Arshad; Wu, Qiuwei

    2012-01-01

    This paper presents a Particle Swarm Optimization (PSO) based on multi-agent controller. Real-time digital simulator (RTDS) is used for modelling the power system, while a PSO based multi-agent LFC algorithm is developed in JAVA for communicating with resource agents and determines the scenario...

  12. Applying Adaptive Swarm Intelligence Technology with Structuration in Web-Based Collaborative Learning

    Science.gov (United States)

    Huang, Yueh-Min; Liu, Chien-Hung

    2009-01-01

    One of the key challenges in the promotion of web-based learning is the development of effective collaborative learning environments. We posit that the structuration process strongly influences the effectiveness of technology used in web-based collaborative learning activities. In this paper, we propose an ant swarm collaborative learning (ASCL)…

  13. A measurement-based fault detection approach applied to monitor robots swarm

    KAUST Repository

    Khaldi, Belkacem

    2017-07-10

    Swarm robotics requires continuous monitoring to detect abnormal events and to sustain normal operations. Indeed, swarm robotics with one or more faulty robots leads to degradation of performances complying with the target requirements. This paper present an innovative data-driven fault detection method for monitoring robots swarm. The method combines the flexibility of principal component analysis (PCA) models and the greater sensitivity of the exponentially-weighted moving average control chart to incipient changes. We illustrate through simulated data collected from the ARGoS simulator that a significant improvement in fault detection can be obtained by using the proposed methods as compared to the use of the conventional PCA-based methods.

  14. A Parameter Estimation Method for Nonlinear Systems Based on Improved Boundary Chicken Swarm Optimization

    Directory of Open Access Journals (Sweden)

    Shaolong Chen

    2016-01-01

    Full Text Available Parameter estimation is an important problem in nonlinear system modeling and control. Through constructing an appropriate fitness function, parameter estimation of system could be converted to a multidimensional parameter optimization problem. As a novel swarm intelligence algorithm, chicken swarm optimization (CSO has attracted much attention owing to its good global convergence and robustness. In this paper, a method based on improved boundary chicken swarm optimization (IBCSO is proposed for parameter estimation of nonlinear systems, demonstrated and tested by Lorenz system and a coupling motor system. Furthermore, we have analyzed the influence of time series on the estimation accuracy. Computer simulation results show it is feasible and with desirable performance for parameter estimation of nonlinear systems.

  15. Swarm Robots Search for Multiple Targets Based on an Improved Grouping Strategy.

    Science.gov (United States)

    Tang, Qirong; Ding, Lu; Yu, Fangchao; Zhang, Yuan; Li, Yinghao; Tu, Haibo

    2017-03-14

    Swarm robots search for multiple targets in collaboration in unknown environments has been addressed in this paper. An improved grouping strategy based on constriction factors Particle Swarm Optimization is proposed. Robots are grouped under this strategy after several iterations of stochastic movements, which considers the influence range of targets and environmental information they have sensed. The group structure may change dynamically and each group focuses on searching one target. All targets are supposed to be found finally. Obstacle avoidance is considered during the search process. Simulation compared with previous method demonstrates the adaptability, accuracy and efficiency of the proposed strategy in multiple targets searching.

  16. The Inertia Weight Updating Strategies in Particle Swarm Optimisation Based on the Beta Distribution

    Directory of Open Access Journals (Sweden)

    Petr Maca

    2015-01-01

    Full Text Available The presented paper deals with the comparison of selected random updating strategies of inertia weight in particle swarm optimisation. Six versions of particle swarm optimization were analysed on 28 benchmark functions, prepared for the Special Session on Real-Parameter Single Objective Optimisation at CEC2013. The random components of tested inertia weight were generated from Beta distribution with different values of shape parameters. The best analysed PSO version is the multiswarm PSO, which combines two strategies of updating the inertia weight. The first is driven by the temporally varying shape parameters, while the second is based on random control of shape parameters of Beta distribution.

  17. Roundness error assessment based on particle swarm optimization

    International Nuclear Information System (INIS)

    Zhao, J W; Chen, G Q

    2005-01-01

    Roundness error assessment is always a nonlinear optimization problem without constraints. The method of particle swarm optimization (PSO) is proposed to evaluate the roundness error. PSO is an evolution algorithm derived from the behavior of preying birds. PSO regards each feasible solution as a particle (point in n-dimensional space). It initializes a swarm of random particles in the feasible region. All particles always trace two particles in which one is the best position itself; another is the best position of all particles. According to the inertia weight and two best particles, all particles update their positions and velocities according to the fitness function. After iterations, it converges to an optimized solution. The reciprocal of the error assessment objective function is adopted as the fitness. In this paper the calculating procedures with PSO are given. Finally, an assessment example is used to verify this method. The results show that the method proposed provides a new way for other form and position error assessment because it can always converge to the global optimal solution

  18. Design for Sustainability of Industrial Symbiosis based on Emergy and Multi-objective Particle Swarm Optimization

    DEFF Research Database (Denmark)

    Ren, Jingzheng; Liang, Hanwei; Dong, Liang

    2016-01-01

    performance of the integrated industrial system. A set of emergy based evaluation index are designed. Multi-objective Particle Swarm Algorithm is proposed to solve the model, and the decision-makers are allowed to choose the suitable solutions form the Pareto solutions. An illustrative case has been studied...

  19. Log-linear model based behavior selection method for artificial fish swarm algorithm.

    Science.gov (United States)

    Huang, Zhehuang; Chen, Yidong

    2015-01-01

    Artificial fish swarm algorithm (AFSA) is a population based optimization technique inspired by social behavior of fishes. In past several years, AFSA has been successfully applied in many research and application areas. The behavior of fishes has a crucial impact on the performance of AFSA, such as global exploration ability and convergence speed. How to construct and select behaviors of fishes are an important task. To solve these problems, an improved artificial fish swarm algorithm based on log-linear model is proposed and implemented in this paper. There are three main works. Firstly, we proposed a new behavior selection algorithm based on log-linear model which can enhance decision making ability of behavior selection. Secondly, adaptive movement behavior based on adaptive weight is presented, which can dynamically adjust according to the diversity of fishes. Finally, some new behaviors are defined and introduced into artificial fish swarm algorithm at the first time to improve global optimization capability. The experiments on high dimensional function optimization showed that the improved algorithm has more powerful global exploration ability and reasonable convergence speed compared with the standard artificial fish swarm algorithm.

  20. Coarse-grained variables for particle-based models: diffusion maps and animal swarming simulations

    Science.gov (United States)

    Liu, Ping; Safford, Hannah R.; Couzin, Iain D.; Kevrekidis, Ioannis G.

    2014-12-01

    As microscopic (e.g. atomistic, stochastic, agent-based, particle-based) simulations become increasingly prevalent in the modeling of complex systems, so does the need to systematically coarse-grain the information they provide. Before even starting to formulate relevant coarse-grained equations, we need to determine the right macroscopic observables—the right variables in terms of which emergent behavior will be described. This paper illustrates the use of data mining (and, in particular, diffusion maps, a nonlinear manifold learning technique) in coarse-graining the dynamics of a particle-based model of animal swarming. Our computational data-driven coarse-graining approach extracts two coarse (collective) variables from the detailed particle-based simulations, and helps formulate a low-dimensional stochastic differential equation in terms of these two collective variables; this allows the efficient quantification of the interplay of "informed" and "naive" individuals in the collective swarm dynamics. We also present a brief exploration of swarm breakup and use data-mining in an attempt to identify useful predictors for it. In our discussion of the scope and limitations of the approach we focus on the key step of selecting an informative metric, allowing us to usefully compare different particle swarm configurations.

  1. Synthesis of a Controller for Swarming Robots Performing Underwater Mine Countermeasures

    National Research Council Canada - National Science Library

    Tan, Yong

    2004-01-01

    ...). The main objective of this research project was to combine behavior-based robot control methods with systems-theoretic swarm control techniques to achieve a hybrid that has the best characteristics of both. The sub-goals...

  2. Swarm algorithms with chaotic jumps for optimization of multimodal functions

    Science.gov (United States)

    Krohling, Renato A.; Mendel, Eduardo; Campos, Mauro

    2011-11-01

    In this article, the use of some well-known versions of particle swarm optimization (PSO) namely the canonical PSO, the bare bones PSO (BBPSO) and the fully informed particle swarm (FIPS) is investigated on multimodal optimization problems. A hybrid approach which consists of swarm algorithms combined with a jump strategy in order to escape from local optima is developed and tested. The jump strategy is based on the chaotic logistic map. The hybrid algorithm was tested for all three versions of PSO and simulation results show that the addition of the jump strategy improves the performance of swarm algorithms for most of the investigated optimization problems. Comparison with the off-the-shelf PSO with local topology (l best model) has also been performed and indicates the superior performance of the standard PSO with chaotic jump over the standard both using local topology (l best model).

  3. Compressive Sensing Image Fusion Based on Particle Swarm Optimization Algorithm

    Science.gov (United States)

    Li, X.; Lv, J.; Jiang, S.; Zhou, H.

    2017-09-01

    In order to solve the problem that the spatial matching is difficult and the spectral distortion is large in traditional pixel-level image fusion algorithm. We propose a new method of image fusion that utilizes HIS transformation and the recently developed theory of compressive sensing that is called HIS-CS image fusion. In this algorithm, the particle swarm optimization algorithm is used to select the fusion coefficient ω. In the iterative process, the image fusion coefficient ω is taken as particle, and the optimal value is obtained by combining the optimal objective function. Then we use the compression-aware weighted fusion algorithm for remote sensing image fusion, taking the coefficient ω as the weight value. The algorithm ensures the optimal selection of fusion effect with a certain degree of self-adaptability. To evaluate the fused images, this paper uses five kinds of index parameters such as Entropy, Standard Deviation, Average Gradient, Degree of Distortion and Peak Signal-to-Noise Ratio. The experimental results show that the image fusion effect of the algorithm in this paper is better than that of traditional methods.

  4. A Novel Cluster Head Selection Algorithm Based on Fuzzy Clustering and Particle Swarm Optimization.

    Science.gov (United States)

    Ni, Qingjian; Pan, Qianqian; Du, Huimin; Cao, Cen; Zhai, Yuqing

    2017-01-01

    An important objective of wireless sensor network is to prolong the network life cycle, and topology control is of great significance for extending the network life cycle. Based on previous work, for cluster head selection in hierarchical topology control, we propose a solution based on fuzzy clustering preprocessing and particle swarm optimization. More specifically, first, fuzzy clustering algorithm is used to initial clustering for sensor nodes according to geographical locations, where a sensor node belongs to a cluster with a determined probability, and the number of initial clusters is analyzed and discussed. Furthermore, the fitness function is designed considering both the energy consumption and distance factors of wireless sensor network. Finally, the cluster head nodes in hierarchical topology are determined based on the improved particle swarm optimization. Experimental results show that, compared with traditional methods, the proposed method achieved the purpose of reducing the mortality rate of nodes and extending the network life cycle.

  5. Particle Swarm Optimization

    Science.gov (United States)

    Venter, Gerhard; Sobieszczanski-Sobieski Jaroslaw

    2002-01-01

    The purpose of this paper is to show how the search algorithm known as particle swarm optimization performs. Here, particle swarm optimization is applied to structural design problems, but the method has a much wider range of possible applications. The paper's new contributions are improvements to the particle swarm optimization algorithm and conclusions and recommendations as to the utility of the algorithm, Results of numerical experiments for both continuous and discrete applications are presented in the paper. The results indicate that the particle swarm optimization algorithm does locate the constrained minimum design in continuous applications with very good precision, albeit at a much higher computational cost than that of a typical gradient based optimizer. However, the true potential of particle swarm optimization is primarily in applications with discrete and/or discontinuous functions and variables. Additionally, particle swarm optimization has the potential of efficient computation with very large numbers of concurrently operating processors.

  6. A Hybrid Algorithm Based on ACO and PSO for Capacitated Vehicle Routing Problems

    Directory of Open Access Journals (Sweden)

    Yucheng Kao

    2012-01-01

    Full Text Available The vehicle routing problem (VRP is a well-known combinatorial optimization problem. It has been studied for several decades because finding effective vehicle routes is an important issue of logistic management. This paper proposes a new hybrid algorithm based on two main swarm intelligence (SI approaches, ant colony optimization (ACO and particle swarm optimization (PSO, for solving capacitated vehicle routing problems (CVRPs. In the proposed algorithm, each artificial ant, like a particle in PSO, is allowed to memorize the best solution ever found. After solution construction, only elite ants can update pheromone according to their own best-so-far solutions. Moreover, a pheromone disturbance method is embedded into the ACO framework to overcome the problem of pheromone stagnation. Two sets of benchmark problems were selected to test the performance of the proposed algorithm. The computational results show that the proposed algorithm performs well in comparison with existing swarm intelligence approaches.

  7. WALL-FOLLOWING BEHAVIOR-BASED MOBILE ROBOT USING PARTICLE SWARM FUZZY CONTROLLER

    Directory of Open Access Journals (Sweden)

    Andi Adriansyah

    2016-02-01

    Full Text Available Behavior-based control architecture has been broadly recognized due to their compentence in mobile robot development. Fuzzy logic system characteristics are appropriate to address the behavior design problems. Nevertheless, there are problems encountered when setting fuzzy variables manually. Consequently, most of the efforts in the field, produce certain works for the study of fuzzy systems with added learning abilities. This paper presents the improvement of fuzzy behavior-based control architecture using Particle Swarm Optimization (PSO. A wall-following behaviors used on Particle Swarm Fuzzy Controller (PSFC are developed using the modified PSO with two stages of the PSFC process. Several simulations have been accomplished to analyze the algorithm. The promising performance have proved that the proposed control architecture for mobile robot has better capability to accomplish useful task in real office-like environment.

  8. Optimization of wireless sensor networks based on chicken swarm optimization algorithm

    Science.gov (United States)

    Wang, Qingxi; Zhu, Lihua

    2017-05-01

    In order to reduce the energy consumption of wireless sensor network and improve the survival time of network, the clustering routing protocol of wireless sensor networks based on chicken swarm optimization algorithm was proposed. On the basis of LEACH agreement, it was improved and perfected that the points on the cluster and the selection of cluster head using the chicken group optimization algorithm, and update the location of chicken which fall into the local optimum by Levy flight, enhance population diversity, ensure the global search capability of the algorithm. The new protocol avoided the die of partial node of intensive using by making balanced use of the network nodes, improved the survival time of wireless sensor network. The simulation experiments proved that the protocol is better than LEACH protocol on energy consumption, also is better than that of clustering routing protocol based on particle swarm optimization algorithm.

  9. The Multitasking System of Swarm Robot based on Null-Space-Behavioral Control Combined with Fuzzy Logic

    Directory of Open Access Journals (Sweden)

    Nga Le Thi Thuy

    2017-12-01

    Full Text Available A swarm robot is a collection of large numbers of simple robots used to perform complex tasks that a single robot cannot perform or only perform ineffectively. The swarm robot works successfully only when the cooperation mechanism among individual robots is satisfied. The cooperation mechanism studied in this article ensures the formation and the distance between each pair of individual robots while moving to their destination while avoiding obstacles. The solved problems in this article include; controlling the suction/thrust force between each pair of individual robots in the swarm based on the fuzzy logic structure of the Singer-Input-Singer-Output under Mamdani law; demonstrating the stability of the system based on the Lyapunov theory; and applying control to the multitasking system of the swarm robot based on Null-Space-Behavioral control. Finally, the simulation results make certain that all the individual robots assemble after moving and avoid obstacles.

  10. Analog Circuit Fault Diagnosis Approach Based on Improved Particle Swarm Optimization Algorithm

    Directory of Open Access Journals (Sweden)

    Ming-Fang WANG

    2014-07-01

    Full Text Available The basic thought of particle swarm optimization is introduced firstly, then particle swarm optimization algorithm model is established. The application of the improved particle swarm optimization algorithm to power supply system fault diagnosis is analyzed in accordance with problem of the algorithm, and migration strategy is added to particle swarm optimization algorithm. Finally the parameters of the wide area damping controller are adjusted by the improved particle swarm optimization algorithm.

  11. Foraging on the potential energy surface: a swarm intelligence-based optimizer for molecular geometry.

    Science.gov (United States)

    Wehmeyer, Christoph; Falk von Rudorff, Guido; Wolf, Sebastian; Kabbe, Gabriel; Schärf, Daniel; Kühne, Thomas D; Sebastiani, Daniel

    2012-11-21

    We present a stochastic, swarm intelligence-based optimization algorithm for the prediction of global minima on potential energy surfaces of molecular cluster structures. Our optimization approach is a modification of the artificial bee colony (ABC) algorithm which is inspired by the foraging behavior of honey bees. We apply our modified ABC algorithm to the problem of global geometry optimization of molecular cluster structures and show its performance for clusters with 2-57 particles and different interatomic interaction potentials.

  12. Power System Stabilizer Design Based on a Particle Swarm Optimization Multiobjective Function Implemented Under Graphical Interface

    OpenAIRE

    Ghouraf Djamel Eddine

    2016-01-01

    Power system stability considered a necessary condition for normal functioning of an electrical network. The role of regulation and control systems is to ensure that stability by determining the essential elements that influence it. This paper proposes a Particle Swarm Optimization (PSO) based multiobjective function to tuning optimal parameters of Power System Stabilizer (PSS); this later is used as auxiliary to generator excitation system in order to damp electro mechanicals oscillations of...

  13. Auto-Clustering using Particle Swarm Optimization and Bacterial Foraging

    DEFF Research Database (Denmark)

    Rutkowski Olesen, Jakob; Cordero, Jorge; Zeng, Yifeng

    2009-01-01

    This paper presents a hybrid approach for clustering based on particle swarm optimization (PSO) and bacteria foraging algorithms (BFA). The new method AutoCPB (Auto-Clustering based on particle bacterial foraging) makes use of autonomous agents whose primary objective is to cluster chunks of data...... by using simplistic collaboration. Inspired by the advances in clustering using particle swarm optimization, we suggest further improvements. Moreover, we gathered standard benchmark datasets and compared our new approach against the standard K-means algorithm, obtaining promising results. Our hybrid...

  14. Swarm intelligence based on modified PSO algorithm for the optimization of axial-flow pump impeller

    Energy Technology Data Exchange (ETDEWEB)

    Miao, Fuqing; Kim, Chol Min; Ahn, Seok Young [Pusan National University, Busan (Korea, Republic of); Park, Hong Seok [Ulsan University, Ulsan (Korea, Republic of)

    2015-11-15

    This paper presents a multi-objective optimization of the impeller shape of an axial-flow pump based on the Modified particle swarm optimization (MPSO) algorithm. At first, an impeller shape was designed and used as a reference in the optimization process then NPSHr and η of the axial flow pump were numerically investigated by using the commercial software ANSYS with the design variables concerning hub angle β{sub h}, chord angle β{sub c}, cascade solidity of chord σ{sub c} and maximum thickness of blade H. By using the Group method of data handling (GMDH) type neural networks in commercial software DTREG, the corresponding polynomial representation for NPSHr and η with respect to the design variables were obtained. A benchmark test was employed to evaluate the performance of the MPSO algorithm in comparison with other particle swarm algorithms. Later the MPSO approach was used for Pareto based optimization. Finally, the MPSO optimization result and CFD simulation result were compared in a re-evaluation process. By using swarm intelligence based on the modified PSO algorithm, better performance pump with higher efficiency and lower NPSHr could be obtained. This novel algorithm was successfully applied for the optimization of axial-flow pump impeller shape design.

  15. Swarm intelligence based on modified PSO algorithm for the optimization of axial-flow pump impeller

    International Nuclear Information System (INIS)

    Miao, Fuqing; Kim, Chol Min; Ahn, Seok Young; Park, Hong Seok

    2015-01-01

    This paper presents a multi-objective optimization of the impeller shape of an axial-flow pump based on the Modified particle swarm optimization (MPSO) algorithm. At first, an impeller shape was designed and used as a reference in the optimization process then NPSHr and η of the axial flow pump were numerically investigated by using the commercial software ANSYS with the design variables concerning hub angle β h , chord angle β c , cascade solidity of chord σ c and maximum thickness of blade H. By using the Group method of data handling (GMDH) type neural networks in commercial software DTREG, the corresponding polynomial representation for NPSHr and η with respect to the design variables were obtained. A benchmark test was employed to evaluate the performance of the MPSO algorithm in comparison with other particle swarm algorithms. Later the MPSO approach was used for Pareto based optimization. Finally, the MPSO optimization result and CFD simulation result were compared in a re-evaluation process. By using swarm intelligence based on the modified PSO algorithm, better performance pump with higher efficiency and lower NPSHr could be obtained. This novel algorithm was successfully applied for the optimization of axial-flow pump impeller shape design

  16. Competitive Swarm Optimizer Based Gateway Deployment Algorithm in Cyber-Physical Systems.

    Science.gov (United States)

    Huang, Shuqiang; Tao, Ming

    2017-01-22

    Wireless sensor network topology optimization is a highly important issue, and topology control through node selection can improve the efficiency of data forwarding, while saving energy and prolonging lifetime of the network. To address the problem of connecting a wireless sensor network to the Internet in cyber-physical systems, here we propose a geometric gateway deployment based on a competitive swarm optimizer algorithm. The particle swarm optimization (PSO) algorithm has a continuous search feature in the solution space, which makes it suitable for finding the geometric center of gateway deployment; however, its search mechanism is limited to the individual optimum (pbest) and the population optimum (gbest); thus, it easily falls into local optima. In order to improve the particle search mechanism and enhance the search efficiency of the algorithm, we introduce a new competitive swarm optimizer (CSO) algorithm. The CSO search algorithm is based on an inter-particle competition mechanism and can effectively avoid trapping of the population falling into a local optimum. With the improvement of an adaptive opposition-based search and its ability to dynamically parameter adjustments, this algorithm can maintain the diversity of the entire swarm to solve geometric K -center gateway deployment problems. The simulation results show that this CSO algorithm has a good global explorative ability as well as convergence speed and can improve the network quality of service (QoS) level of cyber-physical systems by obtaining a minimum network coverage radius. We also find that the CSO algorithm is more stable, robust and effective in solving the problem of geometric gateway deployment as compared to the PSO or Kmedoids algorithms.

  17. Joint global optimization of tomographic data based on particle swarm optimization and decision theory

    Science.gov (United States)

    Paasche, H.; Tronicke, J.

    2012-04-01

    In many near surface geophysical applications multiple tomographic data sets are routinely acquired to explore subsurface structures and parameters. Linking the model generation process of multi-method geophysical data sets can significantly reduce ambiguities in geophysical data analysis and model interpretation. Most geophysical inversion approaches rely on local search optimization methods used to find an optimal model in the vicinity of a user-given starting model. The final solution may critically depend on the initial model. Alternatively, global optimization (GO) methods have been used to invert geophysical data. They explore the solution space in more detail and determine the optimal model independently from the starting model. Additionally, they can be used to find sets of optimal models allowing a further analysis of model parameter uncertainties. Here we employ particle swarm optimization (PSO) to realize the global optimization of tomographic data. PSO is an emergent methods based on swarm intelligence characterized by fast and robust convergence towards optimal solutions. The fundamental principle of PSO is inspired by nature, since the algorithm mimics the behavior of a flock of birds searching food in a search space. In PSO, a number of particles cruise a multi-dimensional solution space striving to find optimal model solutions explaining the acquired data. The particles communicate their positions and success and direct their movement according to the position of the currently most successful particle of the swarm. The success of a particle, i.e. the quality of the currently found model by a particle, must be uniquely quantifiable to identify the swarm leader. When jointly inverting disparate data sets, the optimization solution has to satisfy multiple optimization objectives, at least one for each data set. Unique determination of the most successful particle currently leading the swarm is not possible. Instead, only statements about the Pareto

  18. Power System Stabilizer Design Based on a Particle Swarm Optimization Multiobjective Function Implemented Under Graphical Interface

    Directory of Open Access Journals (Sweden)

    Ghouraf Djamel Eddine

    2016-05-01

    Full Text Available Power system stability considered a necessary condition for normal functioning of an electrical network. The role of regulation and control systems is to ensure that stability by determining the essential elements that influence it. This paper proposes a Particle Swarm Optimization (PSO based multiobjective function to tuning optimal parameters of Power System Stabilizer (PSS; this later is used as auxiliary to generator excitation system in order to damp electro mechanicals oscillations of the rotor and consequently improve Power system stability. The computer simulation results obtained by developed graphical user interface (GUI have proved the efficiency of PSS optimized by a Particle Swarm Optimization, in comparison with a conventional PSS, showing stable   system   responses   almost   insensitive   to   large parameter variations.Our present study was performed using a GUI realized under MATLAB in our work.

  19. A particle-based simplified swarm optimization algorithm for reliability redundancy allocation problems

    International Nuclear Information System (INIS)

    Huang, Chia-Ling

    2015-01-01

    This paper proposes a new swarm intelligence method known as the Particle-based Simplified Swarm Optimization (PSSO) algorithm while undertaking a modification of the Updating Mechanism (UM), called N-UM and R-UM, and simultaneously applying an Orthogonal Array Test (OA) to solve reliability–redundancy allocation problems (RRAPs) successfully. One difficulty of RRAP is the need to maximize system reliability in cases where the number of redundant components and the reliability of corresponding components in each subsystem are simultaneously decided with nonlinear constraints. In this paper, four RRAP benchmarks are used to display the applicability of the proposed PSSO that advances the strengths of both PSO and SSO to enable optimizing the RRAP that belongs to mixed-integer nonlinear programming. When the computational results are compared with those of previously developed algorithms in existing literature, the findings indicate that the proposed PSSO is highly competitive and performs well. - Highlights: • This paper proposes a particle-based simplified swarm optimization algorithm (PSSO) to optimize RRAP. • Furthermore, the UM and an OA are adapted to advance in optimizing RRAP. • Four systems are introduced and the results demonstrate the PSSO performs particularly well

  20. Feature and Intensity Based Medical Image Registration Using Particle Swarm Optimization.

    Science.gov (United States)

    Abdel-Basset, Mohamed; Fakhry, Ahmed E; El-Henawy, Ibrahim; Qiu, Tie; Sangaiah, Arun Kumar

    2017-11-03

    Image registration is an important aspect in medical image analysis, and kinds use in a variety of medical applications. Examples include diagnosis, pre/post surgery guidance, comparing/merging/integrating images from multi-modal like Magnetic Resonance Imaging (MRI), and Computed Tomography (CT). Whether registering images across modalities for a single patient or registering across patients for a single modality, registration is an effective way to combine information from different images into a normalized frame for reference. Registered datasets can be used for providing information relating to the structure, function, and pathology of the organ or individual being imaged. In this paper a hybrid approach for medical images registration has been developed. It employs a modified Mutual Information (MI) as a similarity metric and Particle Swarm Optimization (PSO) method. Computation of mutual information is modified using a weighted linear combination of image intensity and image gradient vector flow (GVF) intensity. In this manner, statistical as well as spatial image information is included into the image registration process. Maximization of the modified mutual information is effected using the versatile Particle Swarm Optimization which is developed easily with adjusted less parameter. The developed approach has been tested and verified successfully on a number of medical image data sets that include images with missing parts, noise contamination, and/or of different modalities (CT, MRI). The registration results indicate the proposed model as accurate and effective, and show the posture contribution in inclusion of both statistical and spatial image data to the developed approach.

  1. Optimum selection of mechanism type for heavy manipulators based on particle swarm optimization method

    Science.gov (United States)

    Zhao, Yong; Chen, Genliang; Wang, Hao; Lin, Zhongqin

    2013-07-01

    The mechanism type plays a decisive role in the mechanical performance of robotic manipulators. Feasible mechanism types can be obtained by applying appropriate type synthesis theory, but there is still a lack of effective and efficient methods for the optimum selection among different types of mechanism candidates. This paper presents a new strategy for the purpose of optimum mechanism type selection based on the modified particle swarm optimization method. The concept of sub-swarm is introduced to represent the different mechanisms generated by the type synthesis, and a competitive mechanism is employed between the sub-swarms to reassign their population size according to the relative performances of the mechanism candidates to implement the optimization. Combining with a modular modeling approach for fast calculation of the performance index of the potential candidates, the proposed method is applied to determine the optimum mechanism type among the potential candidates for the desired manipulator. The effectiveness and efficiency of the proposed method is demonstrated through a case study on the optimum selection of mechanism type of a heavy manipulator where six feasible candidates are considered with force capability as the specific performance index. The optimization result shows that the fitness of the optimum mechanism type for the considered heavy manipulator can be up to 0.578 5. This research provides the instruction in optimum selection of mechanism types for robotic manipulators.

  2. Particle Swarm Optimization Based on Local Attractors of Ordinary Differential Equation System

    Directory of Open Access Journals (Sweden)

    Wenyu Yang

    2014-01-01

    Full Text Available Particle swarm optimization (PSO is inspired by sociological behavior. In this paper, we interpret PSO as a finite difference scheme for solving a system of stochastic ordinary differential equations (SODE. In this framework, the position points of the swarm converge to an equilibrium point of the SODE and the local attractors, which are easily defined by the present position points, also converge to the global attractor. Inspired by this observation, we propose a class of modified PSO iteration methods (MPSO based on local attractors of the SODE. The idea of MPSO is to choose the next update state near the present local attractor, rather than the present position point as in the original PSO, according to a given probability density function. In particular, the quantum-behaved particle swarm optimization method turns out to be a special case of MPSO by taking a special probability density function. The MPSO methods with six different probability density functions are tested on a few benchmark problems. These MPSO methods behave differently for different problems. Thus, our framework not only gives an interpretation for the ordinary PSO but also, more importantly, provides a warehouse of PSO-like methods to choose from for solving different practical problems.

  3. Particle Swarm Optimization with Power-Law Parameter Based on the Cross-Border Reset Mechanism

    Directory of Open Access Journals (Sweden)

    WANG, H.

    2017-11-01

    Full Text Available In order to improve the performance of traditional particle swarm optimization, this paper introduces the principle of Levy flight and cross-border reset mechanism. In the proposed particle swarm optimization, the dynamic variation of parameters meets the power-law distribution and the pattern of particles transition conforms to the Levy flight in the process of algorithm optimization. It means the particles make long distance movements in the search space with a small probability and make short distance movements with a large probability. Therefore, the particles can jump out of local optimum more easily and coordinate the global search and local search of particle swarm optimization. This paper also designs the cross-border reset mechanism to make particles regain optimization ability when stranding on the border of search space after a long distance movement. The simulation results demonstrate the proposed algorithms are easier to jump out of local optimum and have higher accuracy when compared with the existing similar algorithms based on benchmark test functions and handwriting character recognition system.

  4. Color Feature-Based Object Tracking through Particle Swarm Optimization with Improved Inertia Weight.

    Science.gov (United States)

    Guo, Siqiu; Zhang, Tao; Song, Yulong; Qian, Feng

    2018-04-23

    This paper presents a particle swarm tracking algorithm with improved inertia weight based on color features. The weighted color histogram is used as the target feature to reduce the contribution of target edge pixels in the target feature, which makes the algorithm insensitive to the target non-rigid deformation, scale variation, and rotation. Meanwhile, the influence of partial obstruction on the description of target features is reduced. The particle swarm optimization algorithm can complete the multi-peak search, which can cope well with the object occlusion tracking problem. This means that the target is located precisely where the similarity function appears multi-peak. When the particle swarm optimization algorithm is applied to the object tracking, the inertia weight adjustment mechanism has some limitations. This paper presents an improved method. The concept of particle maturity is introduced to improve the inertia weight adjustment mechanism, which could adjust the inertia weight in time according to the different states of each particle in each generation. Experimental results show that our algorithm achieves state-of-the-art performance in a wide range of scenarios.

  5. Physics-based approach to chemical source localization using mobile robotic swarms

    Science.gov (United States)

    Zarzhitsky, Dimitri

    2008-07-01

    Recently, distributed computation has assumed a dominant role in the fields of artificial intelligence and robotics. To improve system performance, engineers are combining multiple cooperating robots into cohesive collectives called swarms. This thesis illustrates the application of basic principles of physicomimetics, or physics-based design, to swarm robotic systems. Such principles include decentralized control, short-range sensing and low power consumption. We show how the application of these principles to robotic swarms results in highly scalable, robust, and adaptive multi-robot systems. The emergence of these valuable properties can be predicted with the help of well-developed theoretical methods. In this research effort, we have designed and constructed a distributed physicomimetics system for locating sources of airborne chemical plumes. This task, called chemical plume tracing (CPT), is receiving a great deal of attention due to persistent homeland security threats. For this thesis, we have created a novel CPT algorithm called fluxotaxis that is based on theoretical principles of fluid dynamics. Analytically, we show that fluxotaxis combines the essence, as well as the strengths, of the two most popular biologically-inspired CPT methods-- chemotaxis and anemotaxis. The chemotaxis strategy consists of navigating in the direction of the chemical density gradient within the plume, while the anemotaxis approach is based on an upwind traversal of the chemical cloud. Rigorous and extensive experimental evaluations have been performed in simulated chemical plume environments. Using a suite of performance metrics that capture the salient aspects of swarm-specific behavior, we have been able to evaluate and compare the three CPT algorithms. We demonstrate the improved performance of our fluxotaxis approach over both chemotaxis and anemotaxis in these realistic simulation environments, which include obstacles. To test our understanding of CPT on actual hardware

  6. DNA-based hybrid catalysis.

    Science.gov (United States)

    Rioz-Martínez, Ana; Roelfes, Gerard

    2015-04-01

    In the past decade, DNA-based hybrid catalysis has merged as a promising novel approach to homogeneous (asymmetric) catalysis. A DNA hybrid catalysts comprises a transition metal complex that is covalently or supramolecularly bound to DNA. The chiral microenvironment and the second coordination sphere interactions provided by the DNA are key to achieve high enantioselectivities and, often, additional rate accelerations in catalysis. Nowadays, current efforts are focused on improved designs, understanding the origin of the enantioselectivity and DNA-induced rate accelerations, expanding the catalytic scope of the concept and further increasing the practicality of the method for applications in synthesis. Herein, the recent developments will be reviewed and the perspectives for the emerging field of DNA-based hybrid catalysis will be discussed. Copyright © 2015 Elsevier Ltd. All rights reserved.

  7. A hybrid particle swarm optimization and genetic algorithm for closed-loop supply chain network design in large-scale networks

    DEFF Research Database (Denmark)

    Soleimani, Hamed; Kannan, Govindan

    2015-01-01

    Today, tracking the growing interest in closed-loop supply chain shown by both practitioners and academia is easily possible. There are many factors, which transform closed-loop supply chain issues into a unique and vital subject in supply chain management, such as environmental legislation...... is proposed and a complete validation process is undertaken using CPLEX and MATLAB software. In small instances, the global optimum points of CPLEX for the proposed hybrid algorithm are compared to genetic algorithm, and particle swarm optimization. Then, in small, mid, and large-size instances, performances...

  8. Feed-Forward Neural Network Soft-Sensor Modeling of Flotation Process Based on Particle Swarm Optimization and Gravitational Search Algorithm

    Directory of Open Access Journals (Sweden)

    Jie-Sheng Wang

    2015-01-01

    Full Text Available For predicting the key technology indicators (concentrate grade and tailings recovery rate of flotation process, a feed-forward neural network (FNN based soft-sensor model optimized by the hybrid algorithm combining particle swarm optimization (PSO algorithm and gravitational search algorithm (GSA is proposed. Although GSA has better optimization capability, it has slow convergence velocity and is easy to fall into local optimum. So in this paper, the velocity vector and position vector of GSA are adjusted by PSO algorithm in order to improve its convergence speed and prediction accuracy. Finally, the proposed hybrid algorithm is adopted to optimize the parameters of FNN soft-sensor model. Simulation results show that the model has better generalization and prediction accuracy for the concentrate grade and tailings recovery rate to meet the online soft-sensor requirements of the real-time control in the flotation process.

  9. A Two Teraflop Swarm

    Directory of Open Access Journals (Sweden)

    Simon Jones

    2018-02-01

    Full Text Available We introduce the Xpuck swarm, a research platform with an aggregate raw processing power in excess of two teraflops. The swarm uses 16 e-puck robots augmented with custom hardware that uses the substantial CPU and GPU processing power available from modern mobile system-on-chip devices. The augmented robots, called Xpucks, have at least an order of magnitude greater performance than previous swarm robotics platforms. The platform enables new experiments that require high individual robot computation and multiple robots. Uses include online evolution or learning of swarm controllers, simulation for answering what-if questions about possible actions, distributed super-computing for mobile platforms, and real-world applications of swarm robotics that requires image processing, or SLAM. The teraflop swarm could also be used to explore swarming in nature by providing platforms with similar computational power as simple insects. We demonstrate the computational capability of the swarm by implementing a fast physics-based robot simulator and using this within a distributed island model evolutionary system, all hosted on the Xpucks.

  10. Modeling dynamic swarms

    KAUST Repository

    Ghanem, Bernard

    2013-01-01

    This paper proposes the problem of modeling video sequences of dynamic swarms (DSs). We define a DS as a large layout of stochastically repetitive spatial configurations of dynamic objects (swarm elements) whose motions exhibit local spatiotemporal interdependency and stationarity, i.e., the motions are similar in any small spatiotemporal neighborhood. Examples of DS abound in nature, e.g., herds of animals and flocks of birds. To capture the local spatiotemporal properties of the DS, we present a probabilistic model that learns both the spatial layout of swarm elements (based on low-level image segmentation) and their joint dynamics that are modeled as linear transformations. To this end, a spatiotemporal neighborhood is associated with each swarm element, in which local stationarity is enforced both spatially and temporally. We assume that the prior on the swarm dynamics is distributed according to an MRF in both space and time. Embedding this model in a MAP framework, we iterate between learning the spatial layout of the swarm and its dynamics. We learn the swarm transformations using ICM, which iterates between estimating these transformations and updating their distribution in the spatiotemporal neighborhoods. We demonstrate the validity of our method by conducting experiments on real and synthetic video sequences. Real sequences of birds, geese, robot swarms, and pedestrians evaluate the applicability of our model to real world data. © 2012 Elsevier Inc. All rights reserved.

  11. Particle Swarm Based Approach of a Real-Time Discrete Neural Identifier for Linear Induction Motors

    Directory of Open Access Journals (Sweden)

    Alma Y. Alanis

    2013-01-01

    Full Text Available This paper focusses on a discrete-time neural identifier applied to a linear induction motor (LIM model, whose model is assumed to be unknown. This neural identifier is robust in presence of external and internal uncertainties. The proposed scheme is based on a discrete-time recurrent high-order neural network (RHONN trained with a novel algorithm based on extended Kalman filter (EKF and particle swarm optimization (PSO, using an online series-parallel con…figuration. Real-time results are included in order to illustrate the applicability of the proposed scheme.

  12. A Review of Particle Swarm Optimization

    Science.gov (United States)

    Jain, N. K.; Nangia, Uma; Jain, Jyoti

    2018-03-01

    This paper presents an overview of the research progress in Particle Swarm Optimization (PSO) during 1995-2017. Fifty two papers have been reviewed. They have been categorized into nine categories based on various aspects. This technique has attracted many researchers because of its simplicity which led to many improvements and modifications of the basic PSO. Some researchers carried out the hybridization of PSO with other evolutionary techniques. This paper discusses the progress of PSO, its improvements, modifications and applications.

  13. Swarm-based Sequencing Recommendations in E-learning

    NARCIS (Netherlands)

    Van den Berg, Bert; Van Es, René; Tattersall, Colin; Janssen, José; Manderveld, Jocelyn; Brouns, Francis; Kurvers, Hub; Koper, Rob

    2005-01-01

    To be presented at the International Workshop on Recommender Agents and Adaptive Web-based Systems (RAAWS 2005) held in conjunction with the Intelligent Systems Design and Applications 2005 Conference (ISDA 2005), Wroclaw, Poland, September 8-10, 2005. Proceedings 5th International Conference on

  14. Approach to analytically minimize the LCD moiré by image-based particle swarm optimization.

    Science.gov (United States)

    Tsai, Yu-Lin; Tien, Chung-Hao

    2015-10-01

    In this paper, we proposed a methodology to optimize the parametric window of a liquid crystal display (LCD) system, whose visual performance was deteriorated by the pixel moiré arising in between multiple periodic structures. Conventional analysis and minimization of moiré patterns are limited by few parameters. With the proposed image-based particle swarm optimization (PSO), we enable a multivariable optimization at the same time. A series of experiments was conducted to validate the methodology. Due to its versatility, the proposed technique will certainly have a promising impact on the fast optimization in LCD design with more complex configuration.

  15. Application of Fuzzy C-Means Clustering Algorithm Based on Particle Swarm Optimization in Computer Forensics

    Science.gov (United States)

    Wang, Deguang; Han, Baochang; Huang, Ming

    Computer forensics is the technology of applying computer technology to access, investigate and analysis the evidence of computer crime. It mainly include the process of determine and obtain digital evidence, analyze and take data, file and submit result. And the data analysis is the key link of computer forensics. As the complexity of real data and the characteristics of fuzzy, evidence analysis has been difficult to obtain the desired results. This paper applies fuzzy c-means clustering algorithm based on particle swarm optimization (FCMP) in computer forensics, and it can be more satisfactory results.

  16. Material quality assessment of silk nanofibers based on swarm intelligence

    International Nuclear Information System (INIS)

    Brandoli Machado, Bruno; Nunes Gonçalves, Wesley; Martinez Bruno, Odemir

    2013-01-01

    In this paper, we propose a novel approach for texture analysis based on artificial crawler model. Our method assumes that each agent can interact with the environment and each other. The evolution process converges to an equilibrium state according to the set of rules. For each textured image, the feature vector is composed by signatures of the live agents curve at each time. Experimental results revealed that combining the minimum and maximum signatures into one increase the classification rate. In addition, we pioneer the use of autonomous agents for characterizing silk fibroin scaffolds. The results strongly suggest that our approach can be successfully employed for texture analysis.

  17. Material quality assessment of silk nanofibers based on swarm intelligence

    Science.gov (United States)

    Brandoli Machado, Bruno; Nunes Gonçalves, Wesley; Martinez Bruno, Odemir

    2013-02-01

    In this paper, we propose a novel approach for texture analysis based on artificial crawler model. Our method assumes that each agent can interact with the environment and each other. The evolution process converges to an equilibrium state according to the set of rules. For each textured image, the feature vector is composed by signatures of the live agents curve at each time. Experimental results revealed that combining the minimum and maximum signatures into one increase the classification rate. In addition, we pioneer the use of autonomous agents for characterizing silk fibroin scaffolds. The results strongly suggest that our approach can be successfully employed for texture analysis.

  18. A novel progressively swarmed mixed integer genetic algorithm for ...

    African Journals Online (AJOL)

    A novel progressively swarmed mixed integer genetic algorithm for security constrained optimal power flow (SCOPF) ... International Journal of Engineering, Science and Technology. Journal Home ... This paper proposes a superior Mixed Integer based hybrid Genetic Algorithm (MIGA) which inherits the advantages of

  19. Pressure Prediction of Coal Slurry Transportation Pipeline Based on Particle Swarm Optimization Kernel Function Extreme Learning Machine

    Directory of Open Access Journals (Sweden)

    Xue-cun Yang

    2015-01-01

    Full Text Available For coal slurry pipeline blockage prediction problem, through the analysis of actual scene, it is determined that the pressure prediction from each measuring point is the premise of pipeline blockage prediction. Kernel function of support vector machine is introduced into extreme learning machine, the parameters are optimized by particle swarm algorithm, and blockage prediction method based on particle swarm optimization kernel function extreme learning machine (PSOKELM is put forward. The actual test data from HuangLing coal gangue power plant are used for simulation experiments and compared with support vector machine prediction model optimized by particle swarm algorithm (PSOSVM and kernel function extreme learning machine prediction model (KELM. The results prove that mean square error (MSE for the prediction model based on PSOKELM is 0.0038 and the correlation coefficient is 0.9955, which is superior to prediction model based on PSOSVM in speed and accuracy and superior to KELM prediction model in accuracy.

  20. Multi-robot task allocation based on two dimensional artificial fish swarm algorithm

    Science.gov (United States)

    Zheng, Taixiong; Li, Xueqin; Yang, Liangyi

    2007-12-01

    The problem of task allocation for multiple robots is to allocate more relative-tasks to less relative-robots so as to minimize the processing time of these tasks. In order to get optimal multi-robot task allocation scheme, a twodimensional artificial swarm algorithm based approach is proposed in this paper. In this approach, the normal artificial fish is extended to be two dimension artificial fish. In the two dimension artificial fish, each vector of primary artificial fish is extended to be an m-dimensional vector. Thus, each vector can express a group of tasks. By redefining the distance between artificial fish and the center of artificial fish, the behavior of two dimension fish is designed and the task allocation algorithm based on two dimension artificial swarm algorithm is put forward. At last, the proposed algorithm is applied to the problem of multi-robot task allocation and comparer with GA and SA based algorithm is done. Simulation and compare result shows the proposed algorithm is effective.

  1. A Framework for Constrained Optimization Problems Based on a Modified Particle Swarm Optimization

    Directory of Open Access Journals (Sweden)

    Biwei Tang

    2016-01-01

    Full Text Available This paper develops a particle swarm optimization (PSO based framework for constrained optimization problems (COPs. Aiming at enhancing the performance of PSO, a modified PSO algorithm, named SASPSO 2011, is proposed by adding a newly developed self-adaptive strategy to the standard particle swarm optimization 2011 (SPSO 2011 algorithm. Since the convergence of PSO is of great importance and significantly influences the performance of PSO, this paper first theoretically investigates the convergence of SASPSO 2011. Then, a parameter selection principle guaranteeing the convergence of SASPSO 2011 is provided. Subsequently, a SASPSO 2011-based framework is established to solve COPs. Attempting to increase the diversity of solutions and decrease optimization difficulties, the adaptive relaxation method, which is combined with the feasibility-based rule, is applied to handle constraints of COPs and evaluate candidate solutions in the developed framework. Finally, the proposed method is verified through 4 benchmark test functions and 2 real-world engineering problems against six PSO variants and some well-known methods proposed in the literature. Simulation results confirm that the proposed method is highly competitive in terms of the solution quality and can be considered as a vital alternative to solve COPs.

  2. Short-term cascaded hydroelectric system scheduling based on chaotic particle swarm optimization using improved logistic map

    Science.gov (United States)

    He, Yaoyao; Yang, Shanlin; Xu, Qifa

    2013-07-01

    In order to solve the model of short-term cascaded hydroelectric system scheduling, a novel chaotic particle swarm optimization (CPSO) algorithm using improved logistic map is introduced, which uses the water discharge as the decision variables combined with the death penalty function. According to the principle of maximum power generation, the proposed approach makes use of the ergodicity, symmetry and stochastic property of improved logistic chaotic map for enhancing the performance of particle swarm optimization (PSO) algorithm. The new hybrid method has been examined and tested on two test functions and a practical cascaded hydroelectric system. The experimental results show that the effectiveness and robustness of the proposed CPSO algorithm in comparison with other traditional algorithms.

  3. Particle Swarm Optimization and harmony search based clustering and routing in Wireless Sensor Networks

    Directory of Open Access Journals (Sweden)

    Veena Anand

    2017-01-01

    Full Text Available Wireless Sensor Networks (WSN has the disadvantage of limited and non-rechargeable energy resource in WSN creates a challenge and led to development of various clustering and routing algorithms. The paper proposes an approach for improving network lifetime by using Particle swarm optimization based clustering and Harmony Search based routing in WSN. So in this paper, global optimal cluster head are selected and Gateway nodes are introduced to decrease the energy consumption of the CH while sending aggregated data to the Base station (BS. Next, the harmony search algorithm based Local Search strategy finds best routing path for gateway nodes to the Base Station. Finally, the proposed algorithm is presented.

  4. Weighted Fuzzy Interpolative Reasoning Based on the Slopes of Fuzzy Sets and Particle Swarm Optimization Techniques.

    Science.gov (United States)

    Chen, Shyi-Ming; Hsin, Wen-Chyuan

    2015-07-01

    In this paper, we propose a new weighted fuzzy interpolative reasoning method for sparse fuzzy rule-based systems based on the slopes of fuzzy sets. We also propose a particle swarm optimization (PSO)-based weights-learning algorithm to automatically learn the optimal weights of the antecedent variables of fuzzy rules for weighted fuzzy interpolative reasoning. We apply the proposed weighted fuzzy interpolative reasoning method using the proposed PSO-based weights-learning algorithm to deal with the computer activity prediction problem, the multivariate regression problems, and the time series prediction problems. The experimental results show that the proposed weighted fuzzy interpolative reasoning method using the proposed PSO-based weights-learning algorithm outperforms the existing methods for dealing with the computer activity prediction problem, the multivariate regression problems, and the time series prediction problems.

  5. Genomic replacement of native Cobitis lutheri with introduced C. tetralineata through a hybrid swarm following the artificial connection of river systems.

    Science.gov (United States)

    Kwan, Ye-Seul; Ko, Myeong-Hun; Won, Yong-Jin

    2014-04-01

    River connections via artificial canals will bring about secondary contacts between previously isolated fish species. Here, we present a genetic consequence of such a secondary contact between Cobitis fish species, C. lutheri in the Dongjin River, and C. tetralineata in the Seomjin River in Korea. The construction of water canals about 80 years ago has unidirectionally introduced C. tetralineata into the native habitat of C. lutheri, and then these species have hybridized in the main stream section of the Dongjin River. According to the divergence population genetic analyses of DNA sequence data, the two species diverged about 3.3 million years ago, which is interestingly coincident with the unprecedented paleoceanographic change that caused isolations of the paleo-river systems in northeast Asia due to sea-level changes around the late Pliocene. Multilocus genotypic data of nine microsatellites and three nuclear loci revealed an extensively admixed structure in the hybrid zone with a high proportion of various post-F1 hybrids. Surprisingly, pure native C. lutheri was absent in the hybrid zone in contrast to the 7% of pure C. tetralineata. Such a biased proportion must have resulted from the dominant influence of continually introducing C. tetralineata on the native C. lutheri which has no supply of natives from other tributaries to the hybrid zone due to numerous low-head dams. In addition, mating experiments indicated that there is no discernible reproductive isolation between them. All the results suggest that the gene pool of native C. lutheri is being rapidly replaced by that of continually introducing C. tetralineata through a hybrid swarm for the last 80 years, which will ultimately lead to the genomic extinction of natives in this hybrid zone.

  6. Research on Multiaircraft Cooperative Suppression Interference Array Based on an Improved Multiobjective Particle Swarm Optimization Algorithm

    Directory of Open Access Journals (Sweden)

    Huan Zhang

    2017-01-01

    Full Text Available For the problem of multiaircraft cooperative suppression interference array (MACSIA against the enemy air defense radar network in electronic warfare mission planning, firstly, the concept of route planning security zone is proposed and the solution to get the minimum width of security zone based on mathematical morphology is put forward. Secondly, the minimum width of security zone and the sum of the distance between each jamming aircraft and the center of radar network are regarded as objective function, and the multiobjective optimization model of MACSIA is built, and then an improved multiobjective particle swarm optimization algorithm is used to solve the model. The decomposition mechanism is adopted and the proportional distribution is used to maintain diversity of the new found nondominated solutions. Finally, the Pareto optimal solutions are analyzed by simulation, and the optimal MACSIA schemes of each jamming aircraft suppression against the enemy air defense radar network are obtained and verify that the built multiobjective optimization model is corrected. It also shows that the improved multiobjective particle swarm optimization algorithm for solving the problem of MACSIA is feasible and effective.

  7. A Survey on GPU-Based Implementation of Swarm Intelligence Algorithms.

    Science.gov (United States)

    Tan, Ying; Ding, Ke

    2016-09-01

    Inspired by the collective behavior of natural swarm, swarm intelligence algorithms (SIAs) have been developed and widely used for solving optimization problems. When applied to complex problems, a large number of fitness function evaluations are needed to obtain an acceptable solution. To tackle this vital issue, graphical processing units (GPUs) have been used to accelerate the optimization procedure of SIAs. Thanks to their inherent parallelism, SIAs are very suitable for parallel implementation under the GPU platform which have achieved a great success in recent years. This paper presents a comprehensive review of GPU-based parallel SIAs in accordance with a newly proposed taxonomy. Critical concerns for the efficient parallel implementation of SIAs are also described in detail. Moreover, novel criteria are also proposed to evaluate and compare the parallel implementation and algorithm performance universally. The rationality and practicability of the proposed optimization methodology and criteria are verified by careful case study. Finally, our opinions and perspectives on the trends and prospects on the relatively new research domain are also presented for future development.

  8. Modified Chaos Particle Swarm Optimization-Based Optimized Operation Model for Stand-Alone CCHP Microgrid

    Directory of Open Access Journals (Sweden)

    Fei Wang

    2017-07-01

    Full Text Available The optimized dispatch of different distributed generations (DGs in stand-alone microgrid (MG is of great significance to the operation’s reliability and economy, especially for energy crisis and environmental pollution. Based on controllable load (CL and combined cooling-heating-power (CCHP model of micro-gas turbine (MT, a multi-objective optimization model with relevant constraints to optimize the generation cost, load cut compensation and environmental benefit is proposed in this paper. The MG studied in this paper consists of photovoltaic (PV, wind turbine (WT, fuel cell (FC, diesel engine (DE, MT and energy storage (ES. Four typical scenarios were designed according to different day types (work day or weekend and weather conditions (sunny or rainy in view of the uncertainty of renewable energy in variable situations and load fluctuation. A modified dispatch strategy for CCHP is presented to further improve the operation economy without reducing the consumers’ comfort feeling. Chaotic optimization and elite retention strategy are introduced into basic particle swarm optimization (PSO to propose modified chaos particle swarm optimization (MCPSO whose search capability and convergence speed are improved greatly. Simulation results validate the correctness of the proposed model and the effectiveness of MCPSO algorithm in the optimized operation application of stand-alone MG.

  9. Energy-Aware Multipath Routing Scheme Based on Particle Swarm Optimization in Mobile Ad Hoc Networks

    Directory of Open Access Journals (Sweden)

    Y. Harold Robinson

    2015-01-01

    Full Text Available Mobile ad hoc network (MANET is a collection of autonomous mobile nodes forming an ad hoc network without fixed infrastructure. Dynamic topology property of MANET may degrade the performance of the network. However, multipath selection is a great challenging task to improve the network lifetime. We proposed an energy-aware multipath routing scheme based on particle swarm optimization (EMPSO that uses continuous time recurrent neural network (CTRNN to solve optimization problems. CTRNN finds the optimal loop-free paths to solve link disjoint paths in a MANET. The CTRNN is used as an optimum path selection technique that produces a set of optimal paths between source and destination. In CTRNN, particle swarm optimization (PSO method is primly used for training the RNN. The proposed scheme uses the reliability measures such as transmission cost, energy factor, and the optimal traffic ratio between source and destination to increase routing performance. In this scheme, optimal loop-free paths can be found using PSO to seek better link quality nodes in route discovery phase. PSO optimizes a problem by iteratively trying to get a better solution with regard to a measure of quality. The proposed scheme discovers multiple loop-free paths by using PSO technique.

  10. Short communication. Platform for bee-hives monitoring based on sound analysis. A perpetual warehouse for swarms daily activity

    Energy Technology Data Exchange (ETDEWEB)

    Atauri Mezquida, D.; Llorente Martinez, J.

    2009-07-01

    Bees and beekeeping are suffering a global crisis. Constant information on swarms conditions would be a key to study new diseases like colony collapse disorder and to develop new beekeeping tools to improve the hive management and make it more efficient. A platform for beehives monitoring is presented. It is based on the analysis of the colonies buzz which is registered by a bunch of sensors sending the data to a common database. Data obtained through sound processing shows plenty of patterns and tendency lines related to colonies activities and their conditions. It shows the potential of the sound as a swarm activity gauge. The goal of the platform is the possibility to store information about the swarms activity. The objective is to build a global net of monitored hives covering apiaries with different climates, razes and managements. (Author) 21 refs.

  11. [A method of endmember extraction in hyperspectral remote sensing images based on discrete particle swarm optimization (D-PSO)].

    Science.gov (United States)

    Zhang, Bing; Sun, Xu; Gao, Lian-Ru; Yang, Li-Na

    2011-09-01

    For the inaccuracy of endmember extraction caused by abnormal noises of data during the mixed pixel decomposition process, particle swarm optimization (PSO), a swarm intelligence algorithm was introduced and improved in the present paper. By re-defining the position and velocity representation and data updating strategies, the algorithm of discrete particle swarm optimization (D-PSO) was proposed, which made it possible to search resolutions in discrete space and ultimately resolve combinatorial optimization problems. In addition, by defining objective functions and feasible solution spaces, endmember extraction was converted to combinatorial optimization problem, which can be resolved by D-PSO. After giving the detailed flow of applying D-PSO to endmember extraction and experiments based on simulative data and real data, it has been verified the algorithm's flexibility to handle data with abnormal noise and the reliability of endmember extraction were verified. Furthermore, the influence of different parameters on the algorithm's performances was analyzed thoroughly.

  12. Cooperative Search and Rescue with Artificial Fishes Based on Fish-Swarm Algorithm for Underwater Wireless Sensor Networks

    Science.gov (United States)

    Zhao, Wei; Tang, Zhenmin; Yang, Yuwang; Wang, Lei; Lan, Shaohua

    2014-01-01

    This paper presents a searching control approach for cooperating mobile sensor networks. We use a density function to represent the frequency of distress signals issued by victims. The mobile nodes' moving in mission space is similar to the behaviors of fish-swarm in water. So, we take the mobile node as artificial fish node and define its operations by a probabilistic model over a limited range. A fish-swarm based algorithm is designed requiring local information at each fish node and maximizing the joint detection probabilities of distress signals. Optimization of formation is also considered for the searching control approach and is optimized by fish-swarm algorithm. Simulation results include two schemes: preset route and random walks, and it is showed that the control scheme has adaptive and effective properties. PMID:24741341

  13. A Parallel Particle Swarm Optimizer

    National Research Council Canada - National Science Library

    Schutte, J. F; Fregly, B .J; Haftka, R. T; George, A. D

    2003-01-01

    .... Motivated by a computationally demanding biomechanical system identification problem, we introduce a parallel implementation of a stochastic population based global optimizer, the Particle Swarm...

  14. A Novel Path Planning for Robots Based on Rapidly-Exploring Random Tree and Particle Swarm Optimizer Algorithm

    Directory of Open Access Journals (Sweden)

    Zhou Feng

    2013-09-01

    Full Text Available A based on Rapidly-exploring Random Tree(RRT and Particle Swarm Optimizer (PSO for path planning of the robot is proposed.First the grid method is built to describe the working space of the mobile robot,then the Rapidly-exploring Random Tree algorithm is used to obtain the global navigation path,and the Particle Swarm Optimizer algorithm is adopted to get the better path.Computer experiment results demonstrate that this novel algorithm can plan an optimal path rapidly in a cluttered environment.The successful obstacle avoidance is achieved,and the model is robust and performs reliably.

  15. Artificial Fish Swarm Algorithm-Based Particle Filter for Li-Ion Battery Life Prediction

    Directory of Open Access Journals (Sweden)

    Ye Tian

    2014-01-01

    Full Text Available An intelligent online prognostic approach is proposed for predicting the remaining useful life (RUL of lithium-ion (Li-ion batteries based on artificial fish swarm algorithm (AFSA and particle filter (PF, which is an integrated approach combining model-based method with data-driven method. The parameters, used in the empirical model which is based on the capacity fade trends of Li-ion batteries, are identified dependent on the tracking ability of PF. AFSA-PF aims to improve the performance of the basic PF. By driving the prior particles to the domain with high likelihood, AFSA-PF allows global optimization, prevents particle degeneracy, thereby improving particle distribution and increasing prediction accuracy and algorithm convergence. Data provided by NASA are used to verify this approach and compare it with basic PF and regularized PF. AFSA-PF is shown to be more accurate and precise.

  16. Optimal PID Controller Tuning for Multivariable Aircraft Longitudinal Autopilot Based on Particle Swarm Optimization Algorithm

    Directory of Open Access Journals (Sweden)

    Mostafa Lotfi Forushani

    2012-04-01

    Full Text Available This paper presents an optimized controller around the longitudinal axis of multivariable system in one of the aircraft flight conditions. The controller is introduced in order to control the angle of attack from the pitch attitude angle independently (that is required for designing a set of direct force-modes for the longitudinal axis based on particle swarm optimization (PSO algorithm. The autopilot system for military or civil aircraft is an essential component and in this paper, the autopilot system via 6 degree of freedom model for the control and guidance of aircraft in which the autopilot design will perform based on defining the longitudinal and the lateral-directional axes are supposed. The effectiveness of the proposed controller is illustrated by considering HIMAT aircraft. The simulation results verify merits of the proposed controller.

  17. Particle swarm optimization based PID controller tuning for level control of two tank system

    Science.gov (United States)

    Vincent, Anju K.; Nersisson, Ruban

    2017-11-01

    Automatic control plays a vital role in industrial operation. In process industries, in order to have an improved and stable control system, we need a robust tuning method. In this paper Particle Swarm Optimization (PSO) based algorithm is proposed for the optimization of a PID controller for level control process. A two tank system is considered. Initially a PID controller is designed using an Internal Model Control (IMC). The results are compared with the PSO based controller setting. The performance of the controller is compared and analyzed by time domain specification. In order to validate the robustness of PID controller, disturbance is imposed. The system is simulated using MATLAB. The results show that the proposed method provides better controller performance.

  18. Multi-modulus algorithm based on global artificial fish swarm intelligent optimization of DNA encoding sequences.

    Science.gov (United States)

    Guo, Y C; Wang, H; Wu, H P; Zhang, M Q

    2015-12-21

    Aimed to address the defects of the large mean square error (MSE), and the slow convergence speed in equalizing the multi-modulus signals of the constant modulus algorithm (CMA), a multi-modulus algorithm (MMA) based on global artificial fish swarm (GAFS) intelligent optimization of DNA encoding sequences (GAFS-DNA-MMA) was proposed. To improve the convergence rate and reduce the MSE, this proposed algorithm adopted an encoding method based on DNA nucleotide chains to provide a possible solution to the problem. Furthermore, the GAFS algorithm, with its fast convergence and global search ability, was used to find the best sequence. The real and imaginary parts of the initial optimal weight vector of MMA were obtained through DNA coding of the best sequence. The simulation results show that the proposed algorithm has a faster convergence speed and smaller MSE in comparison with the CMA, the MMA, and the AFS-DNA-MMA.

  19. Maximum Power Point Tracking Method Based on Modified Particle Swarm Optimization for Photovoltaic Systems

    Directory of Open Access Journals (Sweden)

    Kuei-Hsiang Chao

    2013-01-01

    Full Text Available This study investigated the output characteristics of photovoltaic module arrays with partial module shading. Accordingly, we presented a maximum power point tracking (MPPT method that can effectively track the global optimum of multipeak curves. This method was based on particle swarm optimization (PSO. The concept of linear decreases in weighting was added to improve the tracking performance of the maximum power point tracker. Simulation results were used to verify that this method could successfully track maximum power points in the output characteristic curves of photovoltaic modules with multipeak values. The results also established that the performance of the modified PSO-based MPPT method was superior to that of conventional PSO methods.

  20. Research on torsional vibration modelling and control of printing cylinder based on particle swarm optimization

    Science.gov (United States)

    Wang, Y. M.; Xu, W. C.; Wu, S. Q.; Chai, C. W.; Liu, X.; Wang, S. H.

    2018-03-01

    The torsional oscillation is the dominant vibration form for the impression cylinder of printing machine (printing cylinder for short), directly restricting the printing speed up and reducing the quality of the prints. In order to reduce torsional vibration, the active control method for the printing cylinder is obtained. Taking the excitation force and moment from the cylinder gap and gripper teeth open & closing cam mechanism as variable parameters, authors establish the dynamic mathematical model of torsional vibration for the printing cylinder. The torsional active control method is based on Particle Swarm Optimization(PSO) algorithm to optimize input parameters for the serve motor. Furthermore, the input torque of the printing cylinder is optimized, and then compared with the numerical simulation results. The conclusions are that torsional vibration active control based on PSO is an availability method to the torsional vibration of printing cylinder.

  1. Application of Swarm Intelligence Based Routingprotocols for Wireless Adhoc Sensor Network

    Directory of Open Access Journals (Sweden)

    Mrutyunjaya PANDA

    2011-07-01

    Full Text Available The enormous growth of wireless sensor network (WSN research has opined challenges about their ease in implementation and performance evaluation. Efficient swarm intelligence based routing protocols that can be used to obtain the application specific service guarantee are the key design issues in designing a WSN model. In this paper, an experimental testbed is designed with 100 sensor nodes deployed in a dense environment to address the scalability and performance issues of WSN. In this paper, we use Flooded Piggyback (FP and SC-MCBR ant colony based routing along with AODV and MCBR Tree in order to design an efficient WSN model. Finally, simulation results are presented with various performance measures to understand the efficacy of the proposed WSN design.

  2. Diagnostics of Nuclear Reactor Accidents Based on Particle Swarm Optimization Trained Neural Networks

    International Nuclear Information System (INIS)

    Abdel-Aal, M.M.Z.

    2004-01-01

    Automation in large, complex systems such as chemical plants, electrical power generation, aerospace and nuclear plants has been steadily increasing in the recent past. automated diagnosis and control forms a necessary part of these systems,this contains thousands of alarms processing in every component, subsystem and system. so the accurate and speed of diagnosis of faults is an important factors in operation and maintaining their health and continued operation and in reducing of repair and recovery time. using of artificial intelligence facilitates the alarm classifications and faults diagnosis to control any abnormal events during the operation cycle of the plant. thesis work uses the artificial neural network as a powerful classification tool. the work basically is has two components, the first is to effectively train the neural network using particle swarm optimization, which non-derivative based technique. to achieve proper training of the neural network to fault classification problem and comparing this technique to already existing techniques

  3. Double global optimum genetic algorithm-particle swarm optimization-based welding robot path planning

    Science.gov (United States)

    Wang, Xuewu; Shi, Yingpan; Ding, Dongyan; Gu, Xingsheng

    2016-02-01

    Spot-welding robots have a wide range of applications in manufacturing industries. There are usually many weld joints in a welding task, and a reasonable welding path to traverse these weld joints has a significant impact on welding efficiency. Traditional manual path planning techniques can handle a few weld joints effectively, but when the number of weld joints is large, it is difficult to obtain the optimal path. The traditional manual path planning method is also time consuming and inefficient, and cannot guarantee optimality. Double global optimum genetic algorithm-particle swarm optimization (GA-PSO) based on the GA and PSO algorithms is proposed to solve the welding robot path planning problem, where the shortest collision-free paths are used as the criteria to optimize the welding path. Besides algorithm effectiveness analysis and verification, the simulation results indicate that the algorithm has strong searching ability and practicality, and is suitable for welding robot path planning.

  4. Simulation on Vessel Intelligent Collision Avoidance Based on Artificial Fish Swarm Algorithm

    Directory of Open Access Journals (Sweden)

    Li Weifeng

    2016-10-01

    Full Text Available TAs the rapid development of the ship equipments and navigation technology, vessel intelligent collision avoidance theory was researched world widely. Meantime, more and more ship intelligent collision avoidance products are put into use. It not only makes the ship much safer, but also lighten the officers work intensity and improve the ship’s economy. The paper based on the International Regulation for Preventing Collision at sea and ship domain theories, with the ship proceeding distance when collision avoidance as the objective function, through the artificial fish swarm algorithm to optimize the collision avoidance path, and finally simulates overtaking situation, crossing situation and head-on situation three classic meeting situation of ships on the sea by VC++ computer language. Calculation and simulation results are basically consistent with the actual situation which certifies that its validity.

  5. Combining Biometric Fractal Pattern and Particle Swarm Optimization-Based Classifier for Fingerprint Recognition

    Directory of Open Access Journals (Sweden)

    Chia-Hung Lin

    2010-01-01

    Full Text Available This paper proposes combining the biometric fractal pattern and particle swarm optimization (PSO-based classifier for fingerprint recognition. Fingerprints have arch, loop, whorl, and accidental morphologies, and embed singular points, resulting in the establishment of fingerprint individuality. An automatic fingerprint identification system consists of two stages: digital image processing (DIP and pattern recognition. DIP is used to convert to binary images, refine out noise, and locate the reference point. For binary images, Katz's algorithm is employed to estimate the fractal dimension (FD from a two-dimensional (2D image. Biometric features are extracted as fractal patterns using different FDs. Probabilistic neural network (PNN as a classifier performs to compare the fractal patterns among the small-scale database. A PSO algorithm is used to tune the optimal parameters and heighten the accuracy. For 30 subjects in the laboratory, the proposed classifier demonstrates greater efficiency and higher accuracy in fingerprint recognition.

  6. Enhancing service discovery using cat swarm optimisation based web service clustering

    Directory of Open Access Journals (Sweden)

    Sunaina Kotekar

    2016-09-01

    Full Text Available Web service discovery is a critical task in service oriented application development. Due to extensive proliferation in the number of available services, it is challenging to obtain all the relevant services available for a given task. For the retrieval of most relevant Web services, a user would have to use those service-specific terms that best describe and match the natural language documentation contained within a service description. This process can be time intensive, due to functional diversity of available services in a repository. Domain specific clustering of Web Services based on the similarities of their functionalities would greatly boost the ability of a Web service search engine to retrieve the most relevant service. In this paper, we propose a novel technique to cluster service documents into functionally similar service groups using the Cat Swarm Optimisation Algorithm. We present experimental results that show that the proposed technique was effective and enhanced the process of service discovery.

  7. Analysis in nuclear power accident emergency based on random network and particle swarm optimization

    International Nuclear Information System (INIS)

    Gong Dichen; Fang Fang; Ding Weicheng; Chen Zhi

    2014-01-01

    The GERT random network model of nuclear power accident emergency was built in this paper, and the intelligent computation was combined with the random network based on the analysis of Fukushima nuclear accident in Japan. The emergency process was divided into the series link and parallel link, and the parallel link was the part of series link. The overall allocation of resources was firstly optimized, and then the parallel link was analyzed. The effect of the resources for emergency used in different links was analyzed, and it was put forward that the corresponding particle velocity vector was limited under the condition of limited emergency resources. The resource-constrained particle swarm optimization was obtained by using velocity projection matrix to correct the motion of particles. The optimized allocation of resources in emergency process was obtained and the time consumption of nuclear power accident emergency was reduced. (authors)

  8. Simplified Swarm Optimization-Based Function Module Detection in Protein–Protein Interaction Networks

    Directory of Open Access Journals (Sweden)

    Xianghan Zheng

    2017-04-01

    Full Text Available Proteomics research has become one of the most important topics in the field of life science and natural science. At present, research on protein–protein interaction networks (PPIN mainly focuses on detecting protein complexes or function modules. However, existing approaches are either ineffective or incomplete. In this paper, we investigate detection mechanisms of functional modules in PPIN, including open database, existing detection algorithms, and recent solutions. After that, we describe the proposed approach based on the simplified swarm optimization (SSO algorithm and the knowledge of Gene Ontology (GO. The proposed solution implements the SSO algorithm for clustering proteins with similar function, and imports biological gene ontology knowledge for further identifying function complexes and improving detection accuracy. Furthermore, we use four different categories of species datasets for experiment: fruitfly, mouse, scere, and human. The testing and analysis result show that the proposed solution is feasible, efficient, and could achieve a higher accuracy of prediction than existing approaches.

  9. Trafficability Analysis at Traffic Crossing and Parameters Optimization Based on Particle Swarm Optimization Method

    Directory of Open Access Journals (Sweden)

    Bin He

    2014-01-01

    Full Text Available In city traffic, it is important to improve transportation efficiency and the spacing of platoon should be shortened when crossing the street. The best method to deal with this problem is automatic control of vehicles. In this paper, a mathematical model is established for the platoon’s longitudinal movement. A systematic analysis of longitudinal control law is presented for the platoon of vehicles. However, the parameter calibration for the platoon model is relatively difficult because the platoon model is complex and the parameters are coupled with each other. In this paper, the particle swarm optimization method is introduced to effectively optimize the parameters of platoon. The proposed method effectively finds the optimal parameters based on simulations and makes the spacing of platoon shorter.

  10. Color Image Enhancement Using Multiscale Retinex Based on Particle Swarm Optimization Method

    Science.gov (United States)

    Matin, F.; Jeong, Y.; Kim, K.; Park, K.

    2018-01-01

    This paper introduces, a novel method for the image enhancement using multiscale retinex and practical swarm optimization. Multiscale retinex is widely used image enhancement technique which intemperately pertains on parameters such as Gaussian scales, gain and offset, etc. To achieve the privileged effect, the parameters need to be tuned manually according to the image. In order to handle this matter, a developed retinex algorithm based on PSO has been used. The PSO method adjusted the parameters for multiscale retinex with chromaticity preservation (MSRCP) attains better outcome to compare with other existing methods. The experimental result indicates that the proposed algorithm is an efficient one and not only provides true color loyalty in low light conditions but also avoid color distortion at the same time.

  11. Channel impulse response equalization scheme based on particle swarm optimization algorithm in mode division multiplexing

    Science.gov (United States)

    Yasear, Shaymah; Amphawan, Angela

    2017-11-01

    Mode division multiplexing (MDM) technique has been introduced as a promising solution to the rapid increase of data traffic. However, although MDM has the potential to increase transmission capacity and significantly reduce the cost and complexity of parallel systems, it also has its challenges. Along the optical fibre link, the deficient characteristics always exist. These characteristics, damage the orthogonality of the modes and lead to mode coupling, causing Inter-symbol interference (SI) which limit the capacity of MDM system. In order to mitigate the effects of mode coupling, an adaptive equalization scheme based on particle swarm optimization (PSO) algorithm has been proposed. Compared to other traditional algorithms that have been used in the equalization process on the MDM system such as least mean square (LMS) and recursive least squares (RLS) algorithms, simulation results demonstrate that the PSO algorithm has flexibility and higher convergence speed for mitigating the effects of nonlinear mode coupling.

  12. A Particle Swarm Optimization-Based Approach with Local Search for Predicting Protein Folding.

    Science.gov (United States)

    Yang, Cheng-Hong; Lin, Yu-Shiun; Chuang, Li-Yeh; Chang, Hsueh-Wei

    2017-10-01

    The hydrophobic-polar (HP) model is commonly used for predicting protein folding structures and hydrophobic interactions. This study developed a particle swarm optimization (PSO)-based algorithm combined with local search algorithms; specifically, the high exploration PSO (HEPSO) algorithm (which can execute global search processes) was combined with three local search algorithms (hill-climbing algorithm, greedy algorithm, and Tabu table), yielding the proposed HE-L-PSO algorithm. By using 20 known protein structures, we evaluated the performance of the HE-L-PSO algorithm in predicting protein folding in the HP model. The proposed HE-L-PSO algorithm exhibited favorable performance in predicting both short and long amino acid sequences with high reproducibility and stability, compared with seven reported algorithms. The HE-L-PSO algorithm yielded optimal solutions for all predicted protein folding structures. All HE-L-PSO-predicted protein folding structures possessed a hydrophobic core that is similar to normal protein folding.

  13. Wireless Sensor Network Congestion Control Based on Standard Particle Swarm Optimization and Single Neuron PID.

    Science.gov (United States)

    Yang, Xiaoping; Chen, Xueying; Xia, Riting; Qian, Zhihong

    2018-04-19

    Aiming at the problem of network congestion caused by the large number of data transmissions in wireless routing nodes of wireless sensor network (WSN), this paper puts forward an algorithm based on standard particle swarm⁻neural PID congestion control (PNPID). Firstly, PID control theory was applied to the queue management of wireless sensor nodes. Then, the self-learning and self-organizing ability of neurons was used to achieve online adjustment of weights to adjust the proportion, integral and differential parameters of the PID controller. Finally, the standard particle swarm optimization to neural PID (NPID) algorithm of initial values of proportion, integral and differential parameters and neuron learning rates were used for online optimization. This paper describes experiments and simulations which show that the PNPID algorithm effectively stabilized queue length near the expected value. At the same time, network performance, such as throughput and packet loss rate, was greatly improved, which alleviated network congestion and improved network QoS.

  14. Subpixel displacement measurement method based on the combination of particle swarm optimization and gradient algorithm

    Science.gov (United States)

    Guang, Chen; Qibo, Feng; Keqin, Ding; Zhan, Gao

    2017-10-01

    A subpixel displacement measurement method based on the combination of particle swarm optimization (PSO) and gradient algorithm (GA) was proposed for accuracy and speed optimization in GA, which is a subpixel displacement measurement method better applied in engineering practice. An initial integer-pixel value was obtained according to the global searching ability of PSO, and then gradient operators were adopted for a subpixel displacement search. A comparison was made between this method and GA by simulated speckle images and rigid-body displacement in metal specimens. The results showed that the computational accuracy of the combination of PSO and GA method reached 0.1 pixel in the simulated speckle images, or even 0.01 pixels in the metal specimen. Also, computational efficiency and the antinoise performance of the improved method were markedly enhanced.

  15. Intelligent Mobile Olfaction of Swarm Robots

    Directory of Open Access Journals (Sweden)

    Siti Nurmaini

    2013-06-01

    Full Text Available This work presents intelligent mobile olfaction design and experimental results of intelligent swarm robots to detection a gas/odour source in an indoor environment by using multi agent based on hybrid algorithm. We examine the problem for deciding when, how and where the gas/odour sensor should be activated. Simple form of cooperation between Interval Type-2 Fuzzy Logic and Particle Swarm Optimization (IT2FL-PSO algorithm is implemented in the olfaction strategies. The real experiments performed on smaller five mobile robots equipped with dynamic gas/odour sensor TGS2600 and three infra-red sensors. The results show that single robot-based olfaction system with 5 behaviors capable for searching source of a simulated chemical leak in unknown environment and flooking behavior can be done by 3 robots to find the source of gas/odour.

  16. An improved hybrid of particle swarm optimization and the gravitational search algorithm to produce a kinetic parameter estimation of aspartate biochemical pathways.

    Science.gov (United States)

    Ismail, Ahmad Muhaimin; Mohamad, Mohd Saberi; Abdul Majid, Hairudin; Abas, Khairul Hamimah; Deris, Safaai; Zaki, Nazar; Mohd Hashim, Siti Zaiton; Ibrahim, Zuwairie; Remli, Muhammad Akmal

    2017-12-01

    Mathematical modelling is fundamental to understand the dynamic behavior and regulation of the biochemical metabolisms and pathways that are found in biological systems. Pathways are used to describe complex processes that involve many parameters. It is important to have an accurate and complete set of parameters that describe the characteristics of a given model. However, measuring these parameters is typically difficult and even impossible in some cases. Furthermore, the experimental data are often incomplete and also suffer from experimental noise. These shortcomings make it challenging to identify the best-fit parameters that can represent the actual biological processes involved in biological systems. Computational approaches are required to estimate these parameters. The estimation is converted into multimodal optimization problems that require a global optimization algorithm that can avoid local solutions. These local solutions can lead to a bad fit when calibrating with a model. Although the model itself can potentially match a set of experimental data, a high-performance estimation algorithm is required to improve the quality of the solutions. This paper describes an improved hybrid of particle swarm optimization and the gravitational search algorithm (IPSOGSA) to improve the efficiency of a global optimum (the best set of kinetic parameter values) search. The findings suggest that the proposed algorithm is capable of narrowing down the search space by exploiting the feasible solution areas. Hence, the proposed algorithm is able to achieve a near-optimal set of parameters at a fast convergence speed. The proposed algorithm was tested and evaluated based on two aspartate pathways that were obtained from the BioModels Database. The results show that the proposed algorithm outperformed other standard optimization algorithms in terms of accuracy and near-optimal kinetic parameter estimation. Nevertheless, the proposed algorithm is only expected to work well in

  17. Support vector machine based diagnostic system for breast cancer using swarm intelligence.

    Science.gov (United States)

    Chen, Hui-Ling; Yang, Bo; Wang, Gang; Wang, Su-Jing; Liu, Jie; Liu, Da-You

    2012-08-01

    Breast cancer is becoming a leading cause of death among women in the whole world, meanwhile, it is confirmed that the early detection and accurate diagnosis of this disease can ensure a long survival of the patients. In this paper, a swarm intelligence technique based support vector machine classifier (PSO_SVM) is proposed for breast cancer diagnosis. In the proposed PSO-SVM, the issue of model selection and feature selection in SVM is simultaneously solved under particle swarm (PSO optimization) framework. A weighted function is adopted to design the objective function of PSO, which takes into account the average accuracy rates of SVM (ACC), the number of support vectors (SVs) and the selected features simultaneously. Furthermore, time varying acceleration coefficients (TVAC) and inertia weight (TVIW) are employed to efficiently control the local and global search in PSO algorithm. The effectiveness of PSO-SVM has been rigorously evaluated against the Wisconsin Breast Cancer Dataset (WBCD), which is commonly used among researchers who use machine learning methods for breast cancer diagnosis. The proposed system is compared with the grid search method with feature selection by F-score. The experimental results demonstrate that the proposed approach not only obtains much more appropriate model parameters and discriminative feature subset, but also needs smaller set of SVs for training, giving high predictive accuracy. In addition, Compared to the existing methods in previous studies, the proposed system can also be regarded as a promising success with the excellent classification accuracy of 99.3% via 10-fold cross validation (CV) analysis. Moreover, a combination of five informative features is identified, which might provide important insights to the nature of the breast cancer disease and give an important clue for the physicians to take a closer attention. We believe the promising result can ensure that the physicians make very accurate diagnostic decision in

  18. Real/binary co-operative and co-evolving swarms based multivariable PID controller design of ball mill pulverizing system

    International Nuclear Information System (INIS)

    Menhas, Muhammad Ilyas; Fei Minrui; Wang Ling; Qian Lin

    2012-01-01

    Highlights: ► We extend the concept of co-operation and co-evolution in some PSO variants. ► We use developed co-operative PSOs in multivariable PID controller design/tuning. ► We find that co-operative PSOs converge faster and give high quality solutions. ► Dividing the search space among swarms improves search efficiency. ► The proposed methods allow the practitioner for heterogeneous problem formulation. - Abstract: In this paper, multivariable PID controller design based on cooperative and coevolving multiple swarms is demonstrated. A simplified multi-variable MIMO process model of a ball mill pulverizing system with steady state decoupler is considered. In order to formulate computational models of cooperative and coevolving multiple swarms three different algorithms like real coded PSO, discrete binary PSO (DBPSO) and probability based discrete binary PSO (PBPSO) are employed. Simulations are carried out on three composite functions simultaneously considering multiple objectives. The cooperative and coevolving multiple swarms based results are compared with the results obtained through single swarm based methods like real coded particle swarm optimization (PSO), discrete binary PSO (DBPSO), and probability based discrete binary PSO (PBPSO) algorithms. The cooperative and coevolving swarms based techniques outperform the real coded PSO, PBPSO, and the standard discrete binary PSO (DBPSO) algorithm in escaping from local optima. Furthermore, statistical analysis of the simulation results is performed to calculate the comparative reliability of various techniques. All of the techniques employed are suitable for controller tuning, however, the multiple cooperative and coevolving swarms based results are considerably better in terms of mean fitness, variance of fitness, and success rate in finding a feasible solution in comparison to those obtained using single swarm based methods.

  19. A Review of Swarm-Based 1D/2D Signal Processing

    Directory of Open Access Journals (Sweden)

    Horia Mihail Teodorescu

    2012-10-01

    Full Text Available While swarming behavior, widely encountered in nature, has recently sparked numerous models and interest in domains as optimization, data clustering, and control, their application to signal processing remains sporadic. In this paper I provide a unitary treatment and a review of former results obtained in signal filtering and enhancement using swarms. General equations are presented for these procedures and stability issues are considered, with examples. The paper overviews several swarming model I introduced in previous papers and provides new evidence of the applicability of these models in signal processing. In all the models for 1D signal processing, the key idea is that the swarm hunts a prey that impersonates the filtered signal. In the 2D models, the signal (image represents the “landscape” over which the swarm moves at a distance, while the swarm interacts with the signal (landscape. I provide and discuss details of the underlying theory of the models for processing time-domain signals and images. While this paper partly follows and summarizes previous papers, it nevertheless includes supplementary theoretical and algorithmic considerations and new results for both 1D and 2D signal processing. Although following either biological models or physical models in swarm algorithms is not generally accepted for technical applications, we prefer to emphasize the analogies established by our biomimetic approach with these two groups of models.

  20. Optimal reactive power and voltage control in distribution networks with distributed generators by fuzzy adaptive hybrid particle swarm optimisation method

    DEFF Research Database (Denmark)

    Chen, Shuheng; Hu, Weihao; Su, Chi

    2015-01-01

    A new and efficient methodology for optimal reactive power and voltage control of distribution networks with distributed generators based on fuzzy adaptive hybrid PSO (FAHPSO) is proposed. The objective is to minimize comprehensive cost, consisting of power loss and operation cost of transformers...... algorithm is implemented in VC++ 6.0 program language and the corresponding numerical experiments are finished on the modified version of the IEEE 33-node distribution system with two newly installed distributed generators and eight newly installed capacitors banks. The numerical results prove...... that the proposed method can search a more promising control schedule of all transformers, all capacitors and all distributed generators with less time consumption, compared with other listed artificial intelligent methods....

  1. Optimal configuration of power grid sources based on optimal particle swarm algorithm

    Science.gov (United States)

    Wen, Yuanhua

    2018-04-01

    In order to optimize the distribution problem of power grid sources, an optimized particle swarm optimization algorithm is proposed. First, the concept of multi-objective optimization and the Pareto solution set are enumerated. Then, the performance of the classical genetic algorithm, the classical particle swarm optimization algorithm and the improved particle swarm optimization algorithm are analyzed. The three algorithms are simulated respectively. Compared with the test results of each algorithm, the superiority of the algorithm in convergence and optimization performance is proved, which lays the foundation for subsequent micro-grid power optimization configuration solution.

  2. Optimization of multi-objective micro-grid based on improved particle swarm optimization algorithm

    Science.gov (United States)

    Zhang, Jian; Gan, Yang

    2018-04-01

    The paper presents a multi-objective optimal configuration model for independent micro-grid with the aim of economy and environmental protection. The Pareto solution set can be obtained by solving the multi-objective optimization configuration model of micro-grid with the improved particle swarm algorithm. The feasibility of the improved particle swarm optimization algorithm for multi-objective model is verified, which provides an important reference for multi-objective optimization of independent micro-grid.

  3. A Modified Particle Swarm Optimization Algorithm

    OpenAIRE

    Jie He; Hui Guo

    2013-01-01

    In optimizing the particle swarm optimization (PSO) that inevitable existence problem of prematurity and the local convergence, this paper base on this aspects is put forward a kind of modified particle swarm optimization algorithm, take the gradient descent method (BP algorithm) as a particle swarm operator embedded in particle swarm algorithm, and at the same time use to attenuation wall (Damping) approach to make fly off the search area of the particles of size remain unchanged and avoid t...

  4. Swarm intelligence based wavelet coefficient feature selection for mass spectral classification: an application to proteomics data.

    Science.gov (United States)

    Zhao, Weixiang; Davis, Cristina E

    2009-09-28

    This paper introduces the ant colony algorithm, a novel swarm intelligence based optimization method, to select appropriate wavelet coefficients from mass spectral data as a new feature selection method for ovarian cancer diagnostics. By determining the proper parameters for the ant colony algorithm (ACA) based searching algorithm, we perform the feature searching process for 100 times with the number of selected features fixed at 5. The results of this study show: (1) the classification accuracy based on the five selected wavelet coefficients can reach up to 100% for all the training, validating and independent testing sets; (2) the eight most popular selected wavelet coefficients of the 100 runs can provide 100% accuracy for the training set, 100% accuracy for the validating set, and 98.8% accuracy for the independent testing set, which suggests the robustness and accuracy of the proposed feature selection method; and (3) the mass spectral data corresponding to the eight popular wavelet coefficients can be located by reverse wavelet transformation and these located mass spectral data still maintain high classification accuracies (100% for the training set, 97.6% for the validating set, and 98.8% for the testing set) and also provide sufficient physical and medical meaning for future ovarian cancer mechanism studies. Furthermore, the corresponding mass spectral data (potential biomarkers) are in good agreement with other studies which have used the same sample set. Together these results suggest this feature extraction strategy will benefit the development of intelligent and real-time spectroscopy instrumentation based diagnosis and monitoring systems.

  5. Potential Odor Intensity Grid Based UAV Path Planning Algorithm with Particle Swarm Optimization Approach

    Directory of Open Access Journals (Sweden)

    Yang Liu

    2016-01-01

    Full Text Available This paper proposes a potential odor intensity grid based optimization approach for unmanned aerial vehicle (UAV path planning with particle swarm optimization (PSO technique. Odor intensity is created to color the area in the searching space with highest probability where candidate particles may locate. A potential grid construction operator is designed for standard PSO based on different levels of odor intensity. The potential grid construction operator generates two potential location grids with highest odor intensity. Then the middle point will be seen as the final position in current particle dimension. The global optimum solution will be solved as the average. In addition, solution boundaries of searching space in each particle dimension are restricted based on properties of threats in the flying field to avoid prematurity. Objective function is redesigned by taking minimum direction angle to destination into account and a sampling method is introduced. A paired samples t-test is made and an index called straight line rate (SLR is used to evaluate the length of planned path. Experiments are made with other three heuristic evolutionary algorithms. The results demonstrate that the proposed method is capable of generating higher quality paths efficiently for UAV than any other tested optimization techniques.

  6. Enhancing Speech Recognition Using Improved Particle Swarm Optimization Based Hidden Markov Model

    Directory of Open Access Journals (Sweden)

    Lokesh Selvaraj

    2014-01-01

    Full Text Available Enhancing speech recognition is the primary intention of this work. In this paper a novel speech recognition method based on vector quantization and improved particle swarm optimization (IPSO is suggested. The suggested methodology contains four stages, namely, (i denoising, (ii feature mining (iii, vector quantization, and (iv IPSO based hidden Markov model (HMM technique (IP-HMM. At first, the speech signals are denoised using median filter. Next, characteristics such as peak, pitch spectrum, Mel frequency Cepstral coefficients (MFCC, mean, standard deviation, and minimum and maximum of the signal are extorted from the denoised signal. Following that, to accomplish the training process, the extracted characteristics are given to genetic algorithm based codebook generation in vector quantization. The initial populations are created by selecting random code vectors from the training set for the codebooks for the genetic algorithm process and IP-HMM helps in doing the recognition. At this point the creativeness will be done in terms of one of the genetic operation crossovers. The proposed speech recognition technique offers 97.14% accuracy.

  7. Charging Guidance of Electric Taxis Based on Adaptive Particle Swarm Optimization

    Science.gov (United States)

    Niu, Liyong; Zhang, Di

    2015-01-01

    Electric taxis are playing an important role in the application of electric vehicles. The actual operational data of electric taxis in Shenzhen, China, is analyzed, and, in allusion to the unbalanced time availability of the charging station equipment, the electric taxis charging guidance system is proposed basing on the charging station information and vehicle information. An electric taxis charging guidance model is established and guides the charging based on the positions of taxis and charging stations with adaptive mutation particle swarm optimization. The simulation is based on the actual data of Shenzhen charging stations, and the results show that electric taxis can be evenly distributed to the appropriate charging stations according to the charging pile numbers in charging stations after the charging guidance. The even distribution among the charging stations in the area will be achieved and the utilization of charging equipment will be improved, so the proposed charging guidance method is verified to be feasible. The improved utilization of charging equipment can save public charging infrastructure resources greatly. PMID:26236770

  8. A particle swarm-based algorithm for optimization of multi-layered and graded dental ceramics.

    Science.gov (United States)

    Askari, Ehsan; Flores, Paulo; Silva, Filipe

    2018-01-01

    The thermal residual stresses (TRSs) generated owing to the cooling down from the processing temperature in layered ceramic systems can lead to crack formation as well as influence the bending stress distribution and the strength of the structure. The purpose of this study is to minimize the thermal residual and bending stresses in dental ceramics to enhance their strength as well as to prevent the structure failure. Analytical parametric models are developed to evaluate thermal residual stresses in zirconia-porcelain multi-layered and graded discs and to simulate the piston-on-ring test. To identify optimal designs of zirconia-based dental restorations, a particle swarm optimizer is also developed. The thickness of each interlayer and compositional distribution are referred to as design variables. The effect of layers number constituting the interlayer between two based materials on the performance of graded prosthetic systems is also investigated. The developed methodology is validated against results available in literature and a finite element model constructed in the present study. Three different cases are considered to determine the optimal design of graded prosthesis based on minimizing (a) TRSs; (b) bending stresses; and (c) both TRS and bending stresses. It is demonstrated that each layer thickness and composition profile have important contributions into the resulting stress field and magnitude. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. Stochastic Optimized Relevance Feedback Particle Swarm Optimization for Content Based Image Retrieval

    Directory of Open Access Journals (Sweden)

    Muhammad Imran

    2014-01-01

    Full Text Available One of the major challenges for the CBIR is to bridge the gap between low level features and high level semantics according to the need of the user. To overcome this gap, relevance feedback (RF coupled with support vector machine (SVM has been applied successfully. However, when the feedback sample is small, the performance of the SVM based RF is often poor. To improve the performance of RF, this paper has proposed a new technique, namely, PSO-SVM-RF, which combines SVM based RF with particle swarm optimization (PSO. The aims of this proposed technique are to enhance the performance of SVM based RF and also to minimize the user interaction with the system by minimizing the RF number. The PSO-SVM-RF was tested on the coral photo gallery containing 10908 images. The results obtained from the experiments showed that the proposed PSO-SVM-RF achieved 100% accuracy in 8 feedback iterations for top 10 retrievals and 80% accuracy in 6 iterations for 100 top retrievals. This implies that with PSO-SVM-RF technique high accuracy rate is achieved at a small number of iterations.

  10. Particle Swarm-Based Translation Control for Immersed Tunnel Element in the Hong Kong-Zhuhai-Macao Bridge Project

    Science.gov (United States)

    Li, Jun-jun; Yang, Xiao-jun; Xiao, Ying-jie; Xu, Bo-wei; Wu, Hua-feng

    2018-03-01

    Immersed tunnel is an important part of the Hong Kong-Zhuhai-Macao Bridge (HZMB) project. In immersed tunnel floating, translation which includes straight and transverse movements is the main working mode. To decide the magnitude and direction of the towing force for each tug, a particle swarm-based translation control method is presented for non-power immersed tunnel element. A sort of linear weighted logarithmic function is exploited to avoid weak subgoals. In simulation, the particle swarm-based control method is evaluated and compared with traditional empirical method in the case of the HZMB project. Simulation results show that the presented method delivers performance improvement in terms of the enhanced surplus towing force.

  11. Modeling of pedestrian evacuation based on the particle swarm optimization algorithm

    Science.gov (United States)

    Zheng, Yaochen; Chen, Jianqiao; Wei, Junhong; Guo, Xiwei

    2012-09-01

    By applying the evolutionary algorithm of Particle Swarm Optimization (PSO), we have developed a new pedestrian evacuation model. In the new model, we first introduce the local pedestrian’s density concept which is defined as the number of pedestrians distributed in a certain area divided by the area. Both the maximum velocity and the size of a particle (pedestrian) are supposed to be functions of the local density. An attempt to account for the impact consequence between pedestrians is also made by introducing a threshold of injury into the model. The updating rule of the model possesses heterogeneous spatial and temporal characteristics. Numerical examples demonstrate that the model is capable of simulating the typical features of evacuation captured by CA (Cellular Automata) based models. As contrast to CA-based simulations, in which the velocity (via step size) of a pedestrian in each time step is a constant value and limited in several directions, the new model is more flexible in describing pedestrians’ velocities since they are not limited in discrete values and directions according to the new updating rule.

  12. New chaff point based fuzzy vault for multimodal biometric cryptosystem using particle swarm optimization

    Directory of Open Access Journals (Sweden)

    Gandhimathi Amirthalingam

    2016-10-01

    Full Text Available An effective fusion method for combining information from single modality system requires Multimodal biometric crypto system. Fuzzy vault has been widely used for providing security, but the disadvantage is that the biometric data are easily visible and chaff points generated randomly can be easily found, so that there is a chance for the data to be hacked by the attackers. In order to improve the security by hiding the secret key within the biometric data, a new chaff point based fuzzy vault is proposed. For the generation of the secret key in the fuzzy vault, grouped feature vectors are generated by combining the extracted shape and texture feature vectors with the new chaff point feature vectors. With the help of the locations of the extracted feature vector points, x and y co-ordinate chaff matrixes are generated. New chaff points can be made, by picking best locations from the feature vectors. The optimal locations are found out by using particle swarm optimization (PSO algorithm. In PSO, extracted feature locations are considered particles and from these locations, best location for generating the chaff feature point is selected based on the fitness value. The experimentation of the proposed work is done on Yale face and IIT Delhi ear databases and its performance are evaluated using the measures such as Jaccard coefficient (JC, Genuine Acceptance Rate (GAR, False Matching Rate (FMR, Dice Coefficient (DC and False Non Matching Rate (FNMR. The results of the implementation give better recognition of person by facilitating 90% recognition result.

  13. A Novel Strategy for Minimum Attribute Reduction Based on Rough Set Theory and Fish Swarm Algorithm

    Directory of Open Access Journals (Sweden)

    Yuebin Su

    2017-01-01

    Full Text Available For data mining, reducing the unnecessary redundant attributes which was known as attribute reduction (AR, in particular, reducts with minimal cardinality, is an important preprocessing step. In the paper, by a coding method of combination subset of attributes set, a novel search strategy for minimal attribute reduction based on rough set theory (RST and fish swarm algorithm (FSA is proposed. The method identifies the core attributes by discernibility matrix firstly and all the subsets of noncore attribute sets with the same cardinality were encoded into integers as the individuals of FSA. Then, the evolutionary direction of the individual is limited to a certain extent by the coding method. The fitness function of an individual is defined based on the attribute dependency of RST, and FSA was used to find the optimal set of reducts. In each loop, if the maximum attribute dependency and the attribute dependency of condition attribute set are equal, then the algorithm terminates, otherwise adding a single attribute to the next loop. Some well-known datasets from UCI were selected to verify this method. The experimental results show that the proposed method searches the minimal attribute reduction set effectively and it has the excellent global search ability.

  14. A Novel Optimal Control Method for Impulsive-Correction Projectile Based on Particle Swarm Optimization

    Directory of Open Access Journals (Sweden)

    Ruisheng Sun

    2016-01-01

    Full Text Available This paper presents a new parametric optimization approach based on a modified particle swarm optimization (PSO to design a class of impulsive-correction projectiles with discrete, flexible-time interval, and finite-energy control. In terms of optimal control theory, the task is described as the formulation of minimum working number of impulses and minimum control error, which involves reference model linearization, boundary conditions, and discontinuous objective function. These result in difficulties in finding the global optimum solution by directly utilizing any other optimization approaches, for example, Hp-adaptive pseudospectral method. Consequently, PSO mechanism is employed for optimal setting of impulsive control by considering the time intervals between two neighboring lateral impulses as design variables, which makes the briefness of the optimization process. A modification on basic PSO algorithm is developed to improve the convergence speed of this optimization through linearly decreasing the inertial weight. In addition, a suboptimal control and guidance law based on PSO technique are put forward for the real-time consideration of the online design in practice. Finally, a simulation case coupled with a nonlinear flight dynamic model is applied to validate the modified PSO control algorithm. The results of comparative study illustrate that the proposed optimal control algorithm has a good performance in obtaining the optimal control efficiently and accurately and provides a reference approach to handling such impulsive-correction problem.

  15. Earthquake swarms in South America

    Science.gov (United States)

    Holtkamp, S. G.; Pritchard, M. E.; Lohman, R. B.

    2011-10-01

    We searched for earthquake swarms in South America between 1973 and 2009 using the global Preliminary Determination of Epicenters (PDE) catalogue. Seismicity rates vary greatly over the South American continent, so we employ a manual search approach that aims to be insensitive to spatial and temporal scales or to the number of earthquakes in a potential swarm. We identify 29 possible swarms involving 5-180 earthquakes each (with total swarm moment magnitudes between 4.7 and 6.9) within a range of tectonic and volcanic locations. Some of the earthquake swarms on the subduction megathrust occur as foreshocks and delineate the limits of main shock rupture propagation for large earthquakes, including the 2010 Mw 8.8 Maule, Chile and 2007 Mw 8.1 Pisco, Peru earthquakes. Also, subduction megathrust swarms commonly occur at the location of subduction of aseismic ridges, including areas of long-standing seismic gaps in Peru and Ecuador. The magnitude-frequency relationship of swarms we observe appears to agree with previously determined magnitude-frequency scaling for swarms in Japan. We examine geodetic data covering five of the swarms to search for an aseismic component. Only two of these swarms (at Copiapó, Chile, in 2006 and near Ticsani Volcano, Peru, in 2005) have suitable satellite-based Interferometric Synthetic Aperture Radar (InSAR) observations. We invert the InSAR geodetic signal and find that the ground deformation associated with these swarms does not require a significant component of aseismic fault slip or magmatic intrusion. Three swarms in the vicinity of the volcanic arc in southern Peru appear to be triggered by the Mw= 8.5 2001 Peru earthquake, but predicted static Coulomb stress changes due to the main shock were very small at the swarm locations, suggesting that dynamic triggering processes may have had a role in their occurrence. Although we identified few swarms in volcanic regions, we suggest that particularly large volcanic swarms (those that

  16. Multisensors Cooperative Detection Task Scheduling Algorithm Based on Hybrid Task Decomposition and MBPSO

    Directory of Open Access Journals (Sweden)

    Changyun Liu

    2017-01-01

    Full Text Available A multisensor scheduling algorithm based on the hybrid task decomposition and modified binary particle swarm optimization (MBPSO is proposed. Firstly, aiming at the complex relationship between sensor resources and tasks, a hybrid task decomposition method is presented, and the resource scheduling problem is decomposed into subtasks; then the sensor resource scheduling problem is changed into the match problem of sensors and subtasks. Secondly, the resource match optimization model based on the sensor resources and tasks is established, which considers several factors, such as the target priority, detecting benefit, handover times, and resource load. Finally, MBPSO algorithm is proposed to solve the match optimization model effectively, which is based on the improved updating means of particle’s velocity and position through the doubt factor and modified Sigmoid function. The experimental results show that the proposed algorithm is better in terms of convergence velocity, searching capability, solution accuracy, and efficiency.

  17. Particle Swarm Optimization Toolbox

    Science.gov (United States)

    Grant, Michael J.

    2010-01-01

    The Particle Swarm Optimization Toolbox is a library of evolutionary optimization tools developed in the MATLAB environment. The algorithms contained in the library include a genetic algorithm (GA), a single-objective particle swarm optimizer (SOPSO), and a multi-objective particle swarm optimizer (MOPSO). Development focused on both the SOPSO and MOPSO. A GA was included mainly for comparison purposes, and the particle swarm optimizers appeared to perform better for a wide variety of optimization problems. All algorithms are capable of performing unconstrained and constrained optimization. The particle swarm optimizers are capable of performing single and multi-objective optimization. The SOPSO and MOPSO algorithms are based on swarming theory and bird-flocking patterns to search the trade space for the optimal solution or optimal trade in competing objectives. The MOPSO generates Pareto fronts for objectives that are in competition. A GA, based on Darwin evolutionary theory, is also included in the library. The GA consists of individuals that form a population in the design space. The population mates to form offspring at new locations in the design space. These offspring contain traits from both of the parents. The algorithm is based on this combination of traits from parents to hopefully provide an improved solution than either of the original parents. As the algorithm progresses, individuals that hold these optimal traits will emerge as the optimal solutions. Due to the generic design of all optimization algorithms, each algorithm interfaces with a user-supplied objective function. This function serves as a "black-box" to the optimizers in which the only purpose of this function is to evaluate solutions provided by the optimizers. Hence, the user-supplied function can be numerical simulations, analytical functions, etc., since the specific detail of this function is of no concern to the optimizer. These algorithms were originally developed to support entry

  18. Cooperative Control of Swarms of Unmanned Aerial Vehicles

    NARCIS (Netherlands)

    De Vries, E.; Subbarao, K.

    2011-01-01

    Potential function based swarm control is a technique using artificial potential functions to generate steering commands resulting in swarming behavior. This means that the vehicles in the swarm autonomously take care of flying in formation, resulting in steering the swarm, instead of all the

  19. Design for sustainability of industrial symbiosis based on emergy and multi-objective particle swarm optimization.

    Science.gov (United States)

    Ren, Jingzheng; Liang, Hanwei; Dong, Liang; Sun, Lu; Gao, Zhiqiu

    2016-08-15

    Industrial symbiosis provides novel and practical pathway to the design for the sustainability. Decision support tool for its verification is necessary for practitioners and policy makers, while to date, quantitative research is limited. The objective of this work is to present an innovative approach for supporting decision-making in the design for the sustainability with the implementation of industrial symbiosis in chemical complex. Through incorporating the emergy theory, the model is formulated as a multi-objective approach that can optimize both the economic benefit and sustainable performance of the integrated industrial system. A set of emergy based evaluation index are designed. Multi-objective Particle Swarm Algorithm is proposed to solve the model, and the decision-makers are allowed to choose the suitable solutions form the Pareto solutions. An illustrative case has been studied by the proposed method, a few of compromises between high profitability and high sustainability can be obtained for the decision-makers/stakeholders to make decision. Copyright © 2016 Elsevier B.V. All rights reserved.

  20. Enhanced Particle Swarm Optimization-Based Feeder Reconfiguration Considering Uncertain Large Photovoltaic Powers and Demands

    Directory of Open Access Journals (Sweden)

    Ying-Yi Hong

    2014-01-01

    Full Text Available The Kyoto protocol recommended that industrialized countries limit their green gas emissions in 2012 to 5.2% below 1990 levels. Photovoltaic (PV arrays provide clear and sustainable renewable energy to electric power systems. Solar PV arrays can be installed in distribution systems of rural and urban areas, as opposed to wind-turbine generators, which cause noise in surrounding environments. However, a large PV array (several MW may incur several operation problems, for example, low power quality and reverse power. This work presents a novel method to reconfigure the distribution feeders in order to prevent the injection of reverse power into a substation connected to the transmission level. Moreover, a two-stage algorithm is developed, in which the uncertain bus loads and PV powers are clustered by fuzzy-c-means to gain representative scenarios; optimal reconfiguration is then achieved by a novel mean-variance-based particle swarm optimization. The system loss is minimized while the operational constraints, including reverse power and voltage variation, are satisfied due to the optimal feeder reconfiguration. Simulation results obtained from a 70-bus distribution system with 4 large PV arrays validate the proposed method.

  1. A Fault Diagnosis Scheme for Rolling Bearing Based on Particle Swarm Optimization in Variational Mode Decomposition

    Directory of Open Access Journals (Sweden)

    Cancan Yi

    2016-01-01

    Full Text Available Variational mode decomposition (VMD is a new method of signal adaptive decomposition. In the VMD framework, the vibration signal is decomposed into multiple mode components by Wiener filtering in Fourier domain, and the center frequency of each mode component is updated as the center of gravity of the mode’s power spectrum. Therefore, each decomposed mode is compact around a center pulsation and has a limited bandwidth. In view of the situation that the penalty parameter and the number of components affect the decomposition effect in VMD algorithm, a novel method of fault feature extraction based on the combination of VMD and particle swarm optimization (PSO algorithm is proposed. In this paper, the numerical simulation and the measured fault signals of the rolling bearing experiment system are analyzed by the proposed method. The results indicate that the proposed method is much more robust to sampling and noise. Additionally, the proposed method has an advantage over the EMD in complicated signal decomposition and can be utilized as a potential method in extracting the faint fault information of rolling bearings compared with the common method of envelope spectrum analysis.

  2. Parameter Improved Particle Swarm Optimization Based Direct-Current Vector Control Strategy for Solar PV System

    Directory of Open Access Journals (Sweden)

    NAMMALVAR, P.

    2018-02-01

    Full Text Available This paper projects Parameter Improved Particle Swarm Optimization (PIPSO based direct current vector control technology for the integration of photovoltaic array in an AC micro-grid to enhance the system performance and stability. A photovoltaic system incorporated with AC micro-grid is taken as the pursuit of research study. The test system features two power converters namely, PV side converter which consists of DC-DC boost converter with Perturbation and Observe (P&O MPPT control to reap most extreme power from the PV array, and grid side converter which consists of Grid Side-Voltage Source Converter (GS-VSC with proposed direct current vector control strategy. The gain of the proposed controller is chosen from a set of three values obtained using apriori test and tuned through the PIPSO algorithm so that the Integral of Time multiplied Absolute Error (ITAE between the actual and the desired DC link capacitor voltage reaches a minimum and allows the system to extract maximum power from PV system, whereas the existing d-q control strategy is found to perform slowly to control the DC link voltage under varying solar insolation and load fluctuations. From simulation results, it is evident that the proposed optimal control technique provides robust control and improved efficiency.

  3. Parametric Optimization of Regenerative Organic Rankine Cycle System for Diesel Engine Based on Particle Swarm Optimization

    Directory of Open Access Journals (Sweden)

    Hongjin Wang

    2015-09-01

    Full Text Available To efficiently recover the waste heat from a diesel engine exhaust, a regenerative organic Rankine cycle (RORC system was employed, and butane, R124, R416A, and R134a were used as the working fluids. The resulting diesel engine-RORC combined system was defined and the relevant evaluation indexes were proposed. First, the variation tendency of the exhaust energy rate under various diesel engine operating conditions was analyzed using experimental data. The thermodynamic model of the RORC system was established based on the first and second laws of thermodynamics, and the net power output and exergy destruction rate of the RORC system were selected as the objective functions. A particle swarm optimization (PSO algorithm was used to optimize the operating parameters of the RORC system, including evaporating pressure, intermediate pressure, and degree of superheat. The operating performances of the RORC system and diesel engine-RORC combined system were studied for the four selected working fluids under various operating conditions of the diesel engine. The results show that the operating performances of the RORC system and the combined system using butane are optimal on the basis of optimizing the operating parameters; when the engine speed is 2200 r/min and engine torque is 1215 N·m, the net power output of the RORC system using butane is 36.57 kW, and the power output increasing ratio (POIR of the combined system using butane is 11.56%.

  4. Recurrent neural network-based modeling of gene regulatory network using elephant swarm water search algorithm.

    Science.gov (United States)

    Mandal, Sudip; Saha, Goutam; Pal, Rajat Kumar

    2017-08-01

    Correct inference of genetic regulations inside a cell from the biological database like time series microarray data is one of the greatest challenges in post genomic era for biologists and researchers. Recurrent Neural Network (RNN) is one of the most popular and simple approach to model the dynamics as well as to infer correct dependencies among genes. Inspired by the behavior of social elephants, we propose a new metaheuristic namely Elephant Swarm Water Search Algorithm (ESWSA) to infer Gene Regulatory Network (GRN). This algorithm is mainly based on the water search strategy of intelligent and social elephants during drought, utilizing the different types of communication techniques. Initially, the algorithm is tested against benchmark small and medium scale artificial genetic networks without and with presence of different noise levels and the efficiency was observed in term of parametric error, minimum fitness value, execution time, accuracy of prediction of true regulation, etc. Next, the proposed algorithm is tested against the real time gene expression data of Escherichia Coli SOS Network and results were also compared with others state of the art optimization methods. The experimental results suggest that ESWSA is very efficient for GRN inference problem and performs better than other methods in many ways.

  5. Parameter Identification of Electrochemical Model for Vehicular Lithium-Ion Battery Based on Particle Swarm Optimization

    Directory of Open Access Journals (Sweden)

    Xiao Yang

    2017-11-01

    Full Text Available The dynamic characteristics of power batteries directly affect the performance of electric vehicles, and the mathematical model is the basis for the design of a battery management system (BMS.Based on the electrode-averaged model of a lithium-ion battery, in view of the solid phase lithium-ion diffusion equation, the electrochemical model is simplified through the finite difference method. By analyzing the characteristics of the model and the type of parameters, the solid state diffusion kinetics are separated, and then the cascade parameter identifications are implemented with Particle Swarm Optimization. Eventually, the validity of the electrochemical model and the accuracy of model parameters are verified through 0.2–2 C multi-rates battery discharge tests of cell and road simulation tests of a micro pure electric vehicle under New European Driving Cycle (NEDC conditions. The results show that the estimated parameters can guarantee the output accuracy. In the test of cell, the voltage deviation of discharge is generally less than 0.1 V except the end; in road simulation test, the output is close to the actual value at low speed with the error around ±0.03 V, and at high speed around ±0.08 V.

  6. Particle Swarm Optimization with Double Learning Patterns.

    Science.gov (United States)

    Shen, Yuanxia; Wei, Linna; Zeng, Chuanhua; Chen, Jian

    2016-01-01

    Particle Swarm Optimization (PSO) is an effective tool in solving optimization problems. However, PSO usually suffers from the premature convergence due to the quick losing of the swarm diversity. In this paper, we first analyze the motion behavior of the swarm based on the probability characteristic of learning parameters. Then a PSO with double learning patterns (PSO-DLP) is developed, which employs the master swarm and the slave swarm with different learning patterns to achieve a trade-off between the convergence speed and the swarm diversity. The particles in the master swarm and the slave swarm are encouraged to explore search for keeping the swarm diversity and to learn from the global best particle for refining a promising solution, respectively. When the evolutionary states of two swarms interact, an interaction mechanism is enabled. This mechanism can help the slave swarm in jumping out of the local optima and improve the convergence precision of the master swarm. The proposed PSO-DLP is evaluated on 20 benchmark functions, including rotated multimodal and complex shifted problems. The simulation results and statistical analysis show that PSO-DLP obtains a promising performance and outperforms eight PSO variants.

  7. The modification of hybrid method of ant colony optimization, particle swarm optimization and 3-OPT algorithm in traveling salesman problem

    Science.gov (United States)

    Hertono, G. F.; Ubadah; Handari, B. D.

    2018-03-01

    The traveling salesman problem (TSP) is a famous problem in finding the shortest tour to visit every vertex exactly once, except the first vertex, given a set of vertices. This paper discusses three modification methods to solve TSP by combining Ant Colony Optimization (ACO), Particle Swarm Optimization (PSO) and 3-Opt Algorithm. The ACO is used to find the solution of TSP, in which the PSO is implemented to find the best value of parameters α and β that are used in ACO.In order to reduce the total of tour length from the feasible solution obtained by ACO, then the 3-Opt will be used. In the first modification, the 3-Opt is used to reduce the total tour length from the feasible solutions obtained at each iteration, meanwhile, as the second modification, 3-Opt is used to reduce the total tour length from the entire solution obtained at every iteration. In the third modification, 3-Opt is used to reduce the total tour length from different solutions obtained at each iteration. Results are tested using 6 benchmark problems taken from TSPLIB by calculating the relative error to the best known solution as well as the running time. Among those modifications, only the second and third modification give satisfactory results except the second one needs more execution time compare to the third modifications.

  8. Particle Swarm Social Adaptive Model for Multi-Agent Based Insurgency Warfare Simulation

    Energy Technology Data Exchange (ETDEWEB)

    Cui, Xiaohui [ORNL; Potok, Thomas E [ORNL

    2009-12-01

    To better understand insurgent activities and asymmetric warfare, a social adaptive model for modeling multiple insurgent groups attacking multiple military and civilian targets is proposed and investigated. This report presents a pilot study using the particle swarm modeling, a widely used non-linear optimal tool to model the emergence of insurgency campaign. The objective of this research is to apply the particle swarm metaphor as a model of insurgent social adaptation for the dynamically changing environment and to provide insight and understanding of insurgency warfare. Our results show that unified leadership, strategic planning, and effective communication between insurgent groups are not the necessary requirements for insurgents to efficiently attain their objective.

  9. Observatory data and the Swarm mission

    DEFF Research Database (Denmark)

    Macmillan, S.; Olsen, Nils

    2013-01-01

    The ESA Swarm mission to identify and measure very accurately the different magnetic signals that arise in the Earth’s core, mantle, crust, oceans, ionosphere and magnetosphere, which together form the magnetic field around the Earth, has increased interest in magnetic data collected on the surface...... of the Earth at observatories. The scientific use of Swarm data and Swarm-derived products is greatly enhanced by combination with observatory data and indices. As part of the Swarm Level-2 data activities plans are in place to distribute such ground-based data along with the Swarm data as auxiliary data...

  10. Optimization of a Heliostat Field Layout on Annual Basis Using a Hybrid Algorithm Combining Particle Swarm Optimization Algorithm and Genetic Algorithm

    Directory of Open Access Journals (Sweden)

    Chao Li

    2017-11-01

    Full Text Available Of all the renewable power generation technologies, solar tower power system is expected to be the most promising technology that is capable of large-scale electricity production. However, the optimization of heliostat field layout is a complicated process, in which thousands of heliostats have to be considered for any heliostat field optimization process. Therefore, in this paper, in order to optimize the heliostat field to obtain the highest energy collected per unit cost (ECUC, a mathematical model of a heliostat field and a hybrid algorithm combining particle swarm optimization algorithm and genetic algorithm (PSO-GA are coded in Matlab and the heliostat field in Lhasa is investigated as an example. The results show that, after optimization, the annual efficiency of the heliostat field increases by approximately six percentage points, and the ECUC increases from 12.50 MJ/USD to 12.97 MJ/USD, increased about 3.8%. Studies on the key parameters indicate that: for un-optimized filed, ECUC first peaks and then decline with the increase of the number of heliostats in the first row of the field (Nhel1. By contrast, for optimized field, ECUC increases with Nhel1. What is more, for both the un-optimized and optimized field, ECUC increases with tower height and decreases with the cost of heliostat mirror collector.

  11. Full-waveform LiDAR echo decomposition based on wavelet decomposition and particle swarm optimization

    Science.gov (United States)

    Li, Duan; Xu, Lijun; Li, Xiaolu

    2017-04-01

    To measure the distances and properties of the objects within a laser footprint, a decomposition method for full-waveform light detection and ranging (LiDAR) echoes is proposed. In this method, firstly, wavelet decomposition is used to filter the noise and estimate the noise level in a full-waveform echo. Secondly, peak and inflection points of the filtered full-waveform echo are used to detect the echo components in the filtered full-waveform echo. Lastly, particle swarm optimization (PSO) is used to remove the noise-caused echo components and optimize the parameters of the most probable echo components. Simulation results show that the wavelet-decomposition-based filter is of the best improvement of SNR and decomposition success rates than Wiener and Gaussian smoothing filters. In addition, the noise level estimated using wavelet-decomposition-based filter is more accurate than those estimated using other two commonly used methods. Experiments were carried out to evaluate the proposed method that was compared with our previous method (called GS-LM for short). In experiments, a lab-build full-waveform LiDAR system was utilized to provide eight types of full-waveform echoes scattered from three objects at different distances. Experimental results show that the proposed method has higher success rates for decomposition of full-waveform echoes and more accurate parameters estimation for echo components than those of GS-LM. The proposed method based on wavelet decomposition and PSO is valid to decompose the more complicated full-waveform echoes for estimating the multi-level distances of the objects and measuring the properties of the objects in a laser footprint.

  12. Gold rush - A swarm dynamics in games

    Science.gov (United States)

    Zelinka, Ivan; Bukacek, Michal

    2017-07-01

    This paper is focused on swarm intelligence techniques and its practical use in computer games. The aim is to show how a swarm dynamics can be generated by multiplayer game, then recorded, analyzed and eventually controlled. In this paper we also discuss possibility to use swarm intelligence instead of game players. Based on our previous experiments two games, using swarm algorithms are mentioned briefly here. The first one is strategy game StarCraft: Brood War, and TicTacToe in which SOMA algorithm has also take a role of player against human player. Open research reported here has shown potential benefit of swarm computation in the field of strategy games and players strategy based on swarm behavior record and analysis. We propose new game called Gold Rush as an experimental environment for human or artificial swarm behavior and consequent analysis.

  13. ECG based Myocardial Infarction detection using Hybrid Firefly Algorithm.

    Science.gov (United States)

    Kora, Padmavathi

    2017-12-01

    Myocardial Infarction (MI) is one of the most frequent diseases, and can also cause demise, disability and monetary loss in patients who suffer from cardiovascular disorder. Diagnostic methods of this ailment by physicians are typically invasive, even though they do not fulfill the required detection accuracy. Recent feature extraction methods, for example, Auto Regressive (AR) modelling; Magnitude Squared Coherence (MSC); Wavelet Coherence (WTC) using Physionet database, yielded a collection of huge feature set. A large number of these features may be inconsequential containing some excess and non-discriminative components that present excess burden in computation and loss of execution performance. So Hybrid Firefly and Particle Swarm Optimization (FFPSO) is directly used to optimise the raw ECG signal instead of extracting features using the above feature extraction techniques. Provided results in this paper show that, for the detection of MI class, the FFPSO algorithm with ANN gives 99.3% accuracy, sensitivity of 99.97%, and specificity of 98.7% on MIT-BIH database by including NSR database also. The proposed approach has shown that methods that are based on the feature optimization of the ECG signals are the perfect to diagnosis the condition of the heart patients. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. Localization for robotic capsule looped by axially magnetized permanent-magnet ring based on hybrid strategy

    Science.gov (United States)

    Yang, Wanan; Li, Yan; Qin, Fengqing

    2015-01-01

    To actively maneuver a robotic capsule for interactive diagnosis in the gastrointestinal tract, visualizing accurate position and orientation of the capsule when it moves in the gastrointestinal tract is essential. A possible method that encloses the circuits, batteries, imaging device, etc into the capsule looped by an axially magnetized permanent-magnet ring is proposed. Based on expression of the axially magnetized permanent-magnet ring’s magnetic fields, a localization and orientation model was established. An improved hybrid strategy that combines the advantages of particle-swarm optimization, clone algorithm, and the Levenberg–Marquardt algorithm was found to solve the model. Experiments showed that the hybrid strategy has good accuracy, convergence, and real time performance. PMID:25733935

  15. New sunshine-based models for predicting global solar radiation using PSO (particle swarm optimization) technique

    International Nuclear Information System (INIS)

    Behrang, M.A.; Assareh, E.; Noghrehabadi, A.R.; Ghanbarzadeh, A.

    2011-01-01

    PSO (particle swarm optimization) technique is applied to estimate monthly average daily GSR (global solar radiation) on horizontal surface for different regions of Iran. To achieve this, five new models were developed as well as six models were chosen from the literature. First, for each city, the empirical coefficients for all models were separately determined using PSO technique. The results indicate that new models which are presented in this study have better performance than existing models in the literature for 10 cities from 17 considered cities in this study. It is also shown that the empirical coefficients found for a given latitude can be generalized to estimate solar radiation in cities at similar latitude. Some case studies are presented to demonstrate this generalization with the result showing good agreement with the measurements. More importantly, these case studies further validate the models developed, and demonstrate the general applicability of the models developed. Finally, the obtained results of PSO technique were compared with the obtained results of SRTs (statistical regression techniques) on Angstrom model for all 17 cities. The results showed that obtained empirical coefficients for Angstrom model based on PSO have more accuracy than SRTs for all 17 cities. -- Highlights: → The first study to apply an intelligent optimization technique to more accurately determine empirical coefficients in solar radiation models. → New models which are presented in this study have better performance than existing models. → The empirical coefficients found for a given latitude can be generalized to estimate solar radiation in cities at similar latitude. → A fair comparison between the performance of PSO and SRTs on GSR modeling.

  16. Committee-Based Active Learning for Surrogate-Assisted Particle Swarm Optimization of Expensive Problems.

    Science.gov (United States)

    Wang, Handing; Jin, Yaochu; Doherty, John

    2017-09-01

    Function evaluations (FEs) of many real-world optimization problems are time or resource consuming, posing a serious challenge to the application of evolutionary algorithms (EAs) to solve these problems. To address this challenge, the research on surrogate-assisted EAs has attracted increasing attention from both academia and industry over the past decades. However, most existing surrogate-assisted EAs (SAEAs) either still require thousands of expensive FEs to obtain acceptable solutions, or are only applied to very low-dimensional problems. In this paper, a novel surrogate-assisted particle swarm optimization (PSO) inspired from committee-based active learning (CAL) is proposed. In the proposed algorithm, a global model management strategy inspired from CAL is developed, which searches for the best and most uncertain solutions according to a surrogate ensemble using a PSO algorithm and evaluates these solutions using the expensive objective function. In addition, a local surrogate model is built around the best solution obtained so far. Then, a PSO algorithm searches on the local surrogate to find its optimum and evaluates it. The evolutionary search using the global model management strategy switches to the local search once no further improvement can be observed, and vice versa. This iterative search process continues until the computational budget is exhausted. Experimental results comparing the proposed algorithm with a few state-of-the-art SAEAs on both benchmark problems up to 30 decision variables as well as an airfoil design problem demonstrate that the proposed algorithm is able to achieve better or competitive solutions with a limited budget of hundreds of exact FEs.

  17. Drone Swarms

    Science.gov (United States)

    2017-05-25

    accessed December 20, 2016, http://nationalinterest.org/ blog /the-buzz/swarming-mini-drones-inside- the-pentagons-plan-overwhelm-16135. 43 United States Air...2014, accessed January 26, 2017, http://www.popsci.com/ blog -network/eastern- arsenal/chinas-new-military-robots-pack-more-robots-inside-starcraft...January 21, 2016, accessed February 2, 2017, http://nationalinterest.org/ blog /the-buzz/america-vs-russia- the-race-underwater-spy-drones-14981. 19

  18. Hybrid LSA-ANN Based Home Energy Management Scheduling Controller for Residential Demand Response Strategy

    Directory of Open Access Journals (Sweden)

    Maytham S. Ahmed

    2016-09-01

    Full Text Available Demand response (DR program can shift peak time load to off-peak time, thereby reducing greenhouse gas emissions and allowing energy conservation. In this study, the home energy management scheduling controller of the residential DR strategy is proposed using the hybrid lightning search algorithm (LSA-based artificial neural network (ANN to predict the optimal ON/OFF status for home appliances. Consequently, the scheduled operation of several appliances is improved in terms of cost savings. In the proposed approach, a set of the most common residential appliances are modeled, and their activation is controlled by the hybrid LSA-ANN based home energy management scheduling controller. Four appliances, namely, air conditioner, water heater, refrigerator, and washing machine (WM, are developed by Matlab/Simulink according to customer preferences and priority of appliances. The ANN controller has to be tuned properly using suitable learning rate value and number of nodes in the hidden layers to schedule the appliances optimally. Given that finding proper ANN tuning parameters is difficult, the LSA optimization is hybridized with ANN to improve the ANN performances by selecting the optimum values of neurons in each hidden layer and learning rate. Therefore, the ON/OFF estimation accuracy by ANN can be improved. Results of the hybrid LSA-ANN are compared with those of hybrid particle swarm optimization (PSO based ANN to validate the developed algorithm. Results show that the hybrid LSA-ANN outperforms the hybrid PSO based ANN. The proposed scheduling algorithm can significantly reduce the peak-hour energy consumption during the DR event by up to 9.7138% considering four appliances per 7-h period.

  19. Design of a vision-based control system for quadrotor swarm autonomy

    Science.gov (United States)

    Wesley, Christopher

    Recently, small radio-controllable aircraft known as quadrotors, or quadcopters, have become very popular. These aircraft have the ability to vertically takeoff and move in any direction with great stability. They are also capable of carrying small loads, depending on the size of the quadrotor and strength of its motors. The most common applications of quadrotors for the average consumers are recreational activities such as recording video from high altitudes and other angles not accessible by humans. However, the applications of quadrotors and their usefulness in data acquisition extend far beyond leisure and simple delivery. The precision with which a quadrotor can move makes this aircraft a perfect candidate for reconnaissance of dangerous environments. When several quadrotors are networked together, this forms what is called a swarm. A quadrotor swarm can be a very effective way of performing tasks. The research that will be presented shall convey how this type of technology can be achieved.

  20. Identification of fast-steering mirror based on chicken swarm optimization algorithm

    Science.gov (United States)

    Ren, Wei; Deng, Chao; Zhang, Chao; Mao, Yao

    2017-06-01

    According to the transfer function identification method of fast steering mirror exists problems which estimate the initial value is complicated in the process of using, put forward using chicken swarm algorithm to simplify the identification operation, reducing the workload of identification. chicken swarm algorithm is a meta heuristic intelligent population algorithm, which shows global convergence is efficient in the identification experiment, and the convergence speed is fast. The convergence precision is also high. Especially there are many parameters are needed to identificate in the transfer function without considering the parameters estimation problem. Therefore, compared with the traditional identification methods, the proposed approach is more convenient, and greatly achieves the intelligent design of fast steering mirror control system in enginerring application, shorten time of controller designed.

  1. Parameters identification for photovoltaic module based on an improved artificial fish swarm algorithm.

    Science.gov (United States)

    Han, Wei; Wang, Hong-Hua; Chen, Ling

    2014-01-01

    A precise mathematical model plays a pivotal role in the simulation, evaluation, and optimization of photovoltaic (PV) power systems. Different from the traditional linear model, the model of PV module has the features of nonlinearity and multiparameters. Since conventional methods are incapable of identifying the parameters of PV module, an excellent optimization algorithm is required. Artificial fish swarm algorithm (AFSA), originally inspired by the simulation of collective behavior of real fish swarms, is proposed to fast and accurately extract the parameters of PV module. In addition to the regular operation, a mutation operator (MO) is designed to enhance the searching performance of the algorithm. The feasibility of the proposed method is demonstrated by various parameters of PV module under different environmental conditions, and the testing results are compared with other studied methods in terms of final solutions and computational time. The simulation results show that the proposed method is capable of obtaining higher parameters identification precision.

  2. The Study of Intelligent Vehicle Navigation Path Based on Behavior Coordination of Particle Swarm.

    Science.gov (United States)

    Han, Gaining; Fu, Weiping; Wang, Wen

    2016-01-01

    In the behavior dynamics model, behavior competition leads to the shock problem of the intelligent vehicle navigation path, because of the simultaneous occurrence of the time-variant target behavior and obstacle avoidance behavior. Considering the safety and real-time of intelligent vehicle, the particle swarm optimization (PSO) algorithm is proposed to solve these problems for the optimization of weight coefficients of the heading angle and the path velocity. Firstly, according to the behavior dynamics model, the fitness function is defined concerning the intelligent vehicle driving characteristics, the distance between intelligent vehicle and obstacle, and distance of intelligent vehicle and target. Secondly, behavior coordination parameters that minimize the fitness function are obtained by particle swarm optimization algorithms. Finally, the simulation results show that the optimization method and its fitness function can improve the perturbations of the vehicle planning path and real-time and reliability.

  3. Integrated Swarming Operations for Air Base Defense: Applications in Irregular Warfare

    Science.gov (United States)

    2006-06-01

    Anytime the enemy attempts to target forces overtly, they are now fighting in a conventional manner – which is the ‘bread and butter ’ of how the U.S...networked “areas of influence” under the tight control of U.S. forces. This synergistic effect is also known as the oil spot method of counter...swarming depends upon the operation of a vast, integrated sensory system that can distribute not only specific targeting information but also

  4. Swarm: robust and fast clustering method for amplicon-based studies

    Science.gov (United States)

    Rognes, Torbjørn; Quince, Christopher; de Vargas, Colomban; Dunthorn, Micah

    2014-01-01

    Popular de novo amplicon clustering methods suffer from two fundamental flaws: arbitrary global clustering thresholds, and input-order dependency induced by centroid selection. Swarm was developed to address these issues by first clustering nearly identical amplicons iteratively using a local threshold, and then by using clusters’ internal structure and amplicon abundances to refine its results. This fast, scalable, and input-order independent approach reduces the influence of clustering parameters and produces robust operational taxonomic units. PMID:25276506

  5. Estimation of Ion temperatures in the Ionosphere using Swarm Langmuir Probe data and a Physics-Based Model

    Science.gov (United States)

    Lomidze, L.; Knudsen, D. J.; Burchill, J. K.; Kouznetsov, A.

    2017-12-01

    Ion temperature is one of the key parameters that provides insight into the thermal balance of the coupled ionosphere-thermosphere system. Together with the temperatures of neutral and electron gases it controls various physical and chemical processes in the upper atmosphere. These include the ion-neutral collision frequencies, chemical reaction rates and plasma scale height, all of which affect the variation and distribution of the electron density. Yet, the modeling of ionospheric ion temperature has received relatively little attention compared to other parameters. The Electric Field Instruments on the European Space Agency's (ESA's) polar orbiting Swarm satellites consist of a pair of Thermal Ion Imagers (TII) and a pair of Langmuir probes (LP) measuring ionospheric plasma parameters at around 500 km. The TII was designed to image ion velocity distribution functions and provide ionospheric electric fields and ion temperatures along the satellites' orbits. Currently, the TII instruments are operating only during limited time intervals, while the measurements of ionospheric electron temperatures and densities are carried out continuously. In this work we estimate the ion temperatures along the orbits of Swarm satellites at low and middle latitudes using a heat balance equation for the ions gas under steady-state conditions. The physics-based ion temperature model assumes ions are heated by the hotter electron gas through elastic Coulomb collisions and cooled by resonance charge transfer collisions with the parent atoms and by elastic collisions with unlike atoms and molecules. The corrected Swarm LP data represent key input parameters for the model. To evaluate the validity of the proposed method, we perform two types of analysis. The first is based on the synthetic (model-generated) inputs by a physics-based ionosphere model which solves the complete ion heat balance equation. In another, the estimates of ion temperatures are obtained using actual data for those

  6. Fault detection and isolation in GPS receiver autonomous integrity monitoring based on chaos particle swarm optimization-particle filter algorithm

    Science.gov (United States)

    Wang, Ershen; Jia, Chaoying; Tong, Gang; Qu, Pingping; Lan, Xiaoyu; Pang, Tao

    2018-03-01

    The receiver autonomous integrity monitoring (RAIM) is one of the most important parts in an avionic navigation system. Two problems need to be addressed to improve this system, namely, the degeneracy phenomenon and lack of samples for the standard particle filter (PF). However, the number of samples cannot adequately express the real distribution of the probability density function (i.e., sample impoverishment). This study presents a GPS receiver autonomous integrity monitoring (RAIM) method based on a chaos particle swarm optimization particle filter (CPSO-PF) algorithm with a log likelihood ratio. The chaos sequence generates a set of chaotic variables, which are mapped to the interval of optimization variables to improve particle quality. This chaos perturbation overcomes the potential for the search to become trapped in a local optimum in the particle swarm optimization (PSO) algorithm. Test statistics are configured based on a likelihood ratio, and satellite fault detection is then conducted by checking the consistency between the state estimate of the main PF and those of the auxiliary PFs. Based on GPS data, the experimental results demonstrate that the proposed algorithm can effectively detect and isolate satellite faults under conditions of non-Gaussian measurement noise. Moreover, the performance of the proposed novel method is better than that of RAIM based on the PF or PSO-PF algorithm.

  7. Particle swarm optimization based artificial neural network model for forecasting groundwater level in Udupi district

    Science.gov (United States)

    Balavalikar, Supreetha; Nayak, Prabhakar; Shenoy, Narayan; Nayak, Krishnamurthy

    2018-04-01

    The decline in groundwater is a global problem due to increase in population, industries, and environmental aspects such as increase in temperature, decrease in overall rainfall, loss of forests etc. In Udupi district, India, the water source fully depends on the River Swarna for drinking and agriculture purposes. Since the water storage in Bajae dam is declining day-by-day and the people of Udupi district are under immense pressure due to scarcity of drinking water, alternatively depend on ground water. As the groundwater is being heavily used for drinking and agricultural purposes, there is a decline in its water table. Therefore, the groundwater resources must be identified and preserved for human survival. This research proposes a data driven approach for forecasting the groundwater level. The monthly variations in groundwater level and rainfall data in three observation wells located in Brahmavar, Kundapur and Hebri were investigated and the scenarios were examined for 2000-2013. The focus of this research work is to develop an ANN based groundwater level forecasting model and compare with hybrid ANN-PSO forecasting model. The model parameters are tested using different combinations of the data. The results reveal that PSO-ANN based hybrid model gives a better prediction accuracy, than ANN alone.

  8. Fault Diagnosis of Plunger Pump in Truck Crane Based on Relevance Vector Machine with Particle Swarm Optimization Algorithm

    Directory of Open Access Journals (Sweden)

    Wenliao Du

    2013-01-01

    Full Text Available Promptly and accurately dealing with the equipment breakdown is very important in terms of enhancing reliability and decreasing downtime. A novel fault diagnosis method PSO-RVM based on relevance vector machines (RVM with particle swarm optimization (PSO algorithm for plunger pump in truck crane is proposed. The particle swarm optimization algorithm is utilized to determine the kernel width parameter of the kernel function in RVM, and the five two-class RVMs with binary tree architecture are trained to recognize the condition of mechanism. The proposed method is employed in the diagnosis of plunger pump in truck crane. The six states, including normal state, bearing inner race fault, bearing roller fault, plunger wear fault, thrust plate wear fault, and swash plate wear fault, are used to test the classification performance of the proposed PSO-RVM model, which compared with the classical models, such as back-propagation artificial neural network (BP-ANN, ant colony optimization artificial neural network (ANT-ANN, RVM, and support vectors, machines with particle swarm optimization (PSO-SVM, respectively. The experimental results show that the PSO-RVM is superior to the first three classical models, and has a comparative performance to the PSO-SVM, the corresponding diagnostic accuracy achieving as high as 99.17% and 99.58%, respectively. But the number of relevance vectors is far fewer than that of support vector, and the former is about 1/12–1/3 of the latter, which indicates that the proposed PSO-RVM model is more suitable for applications that require low complexity and real-time monitoring.

  9. Intelligent-based multi-robot path planning inspired by improved classical Q-learning and improved particle swarm optimization with perturbed velocity

    Directory of Open Access Journals (Sweden)

    P.K. Das

    2016-03-01

    Full Text Available Classical Q-learning takes huge computation to calculate the Q-value for all possible actions in a particular state and takes large space to store its Q-value for all actions, as a result of which its convergence rate is slow. This paper proposed a new methodology to determine the optimize trajectory of the path for multi-robots in clutter environment using hybridization of improving classical Q-learning based on four fundamental principles with improved particle swarm optimization (IPSO by modifying parameters and differentially perturbed velocity (DV algorithm for improving the convergence. The algorithms are used to minimize path length and arrival time of all the robots to their respective destination in the environment and reducing the turning angle of each robot to reduce the energy consumption of each robot. In this proposed scheme, the improve classical Q-learning stores the Q-value of the best action of the state and thus save the storage space, which is used to decide the Pbest and gbest of the improved PSO in each iteration, and the velocity of the IPSO is adjusted by the vector differential operator inherited from differential evolution (DE. The validation of the algorithm is studied in simulated and Khepera-II robot.

  10. Short-term traffic flow prediction model using particle swarm optimization–based combined kernel function-least squares support vector machine combined with chaos theory

    Directory of Open Access Journals (Sweden)

    Qiang Shang

    2016-08-01

    Full Text Available Short-term traffic flow prediction is an important part of intelligent transportation systems research and applications. For further improving the accuracy of short-time traffic flow prediction, a novel hybrid prediction model (multivariate phase space reconstruction–combined kernel function-least squares support vector machine based on multivariate phase space reconstruction and combined kernel function-least squares support vector machine is proposed. The C-C method is used to determine the optimal time delay and the optimal embedding dimension of traffic variables’ (flow, speed, and occupancy time series for phase space reconstruction. The G-P method is selected to calculate the correlation dimension of attractor which is an important index for judging chaotic characteristics of the traffic variables’ series. The optimal input form of combined kernel function-least squares support vector machine model is determined by multivariate phase space reconstruction, and the model’s parameters are optimized by particle swarm optimization algorithm. Finally, case validation is carried out using the measured data of an expressway in Xiamen, China. The experimental results suggest that the new proposed model yields better predictions compared with similar models (combined kernel function-least squares support vector machine, multivariate phase space reconstruction–generalized kernel function-least squares support vector machine, and phase space reconstruction–combined kernel function-least squares support vector machine, which indicates that the new proposed model exhibits stronger prediction ability and robustness.

  11. Sizing an isolated wind-solar-fuel cell generation system based on the particle swarm optimization method; Dimensionamiento de un sistema de generacion aislado eolico-solar-celda de combustible basado en el metodo de optimizacion de enjambre de particulas

    Energy Technology Data Exchange (ETDEWEB)

    Sanchez-Huerta, V; Ramirez-Arredondo, Juan M. [Universidad de Quintana Roo, Chetumal, Quintana Roo (Mexico)]. E-mail: vsanchez@gdl.cinvestav.mx; Arriaga-Hurtado, L. G. [CIDETEQ, Queretaro (Mexico)

    2009-09-15

    Sizing an electric energy system requires an analysis of investment, maintenance and operating costs. In the case of a generation system that uses renewable sources, optimal capacity becomes more complex compared to a conventional system, because of the randomness of renewable resources (wind, solar) and the still high costs of wind and photovoltage generator modules. This work presents the optimal sizing of a wind-solar-fuel cell generation system, minimizing the costs of the system while satisfying the energy demands of an isolated charge. The optimization method used is based on an evolutionary programming technique known as particle swarms (PSO-particle swarm optimization). The generation of energy with a hybrid system is discussed, based on the profile of insolation and wind availability at the site, with the objective of satisfying a specific electric demand. [Spanish] El dimensionamiento de un sistema de generacion de energia electrica requiere un analisis de los costos de inversion, mantenimiento y operacion. En el caso de un sistema de generacion que utiliza fuentes renovables la capacidad optima resulta mas compleja con respecto a un sistema convencional, debido a la aleatoriedad de los recursos renovables (eolico, solar), y a los aun altos costos de generadores eolicos y modulos fotovoltaicos. En este trabajo se presenta el dimensionamiento optimo de un sistema de generacion eolico-solar-celda de combustible minimizando los costos del sistema que satisfaga la energia demandada por una carga aislada. El metodo de optimizacion utilizado esta basado en una tecnica de programacion evolutiva conocida como enjambre de particulas (PSO por sus siglas en ingles: particle swarm optimization). Se plantea la generacion de energia del sistema hibrido con base a la insolacion y el perfil del viento disponible en sitio, con objeto de satisfacer una demanda electrica determinada.

  12. Quinoline-based antimalarial hybrid compounds.

    Science.gov (United States)

    Vandekerckhove, Stéphanie; D'hooghe, Matthias

    2015-08-15

    Quinoline-containing compounds, such as quinine and chloroquine, have a long-standing history as potent antimalarial agents. However, the increasing resistance of the Plasmodium parasite against these drugs and the lack of licensed malaria vaccines have forced chemists to develop synthetic strategies toward novel biologically active molecules. A strategy that has attracted considerable attention in current medicinal chemistry is based on the conjugation of two biologically active molecules into one hybrid compound. Since quinolines are considered to be privileged antimalarial building blocks, the synthesis of quinoline-containing antimalarial hybrids has been elaborated extensively in recent years. This review provides a literature overview of antimalarial hybrid molecules containing a quinoline core, covering publications between 2009 and 2014. Copyright © 2014 Elsevier Ltd. All rights reserved.

  13. Interacting Brownian Swarms: Some Analytical Results

    Directory of Open Access Journals (Sweden)

    Guillaume Sartoretti

    2016-01-01

    Full Text Available We consider the dynamics of swarms of scalar Brownian agents subject to local imitation mechanisms implemented using mutual rank-based interactions. For appropriate values of the underlying control parameters, the swarm propagates tightly and the distances separating successive agents are iid exponential random variables. Implicitly, the implementation of rank-based mutual interactions, requires that agents have infinite interaction ranges. Using the probabilistic size of the swarm’s support, we analytically estimate the critical interaction range below that flocked swarms cannot survive. In the second part of the paper, we consider the interactions between two flocked swarms of Brownian agents with finite interaction ranges. Both swarms travel with different barycentric velocities, and agents from both swarms indifferently interact with each other. For appropriate initial configurations, both swarms eventually collide (i.e., all agents interact. Depending on the values of the control parameters, one of the following patterns emerges after collision: (i Both swarms remain essentially flocked, or (ii the swarms become ultimately quasi-free and recover their nominal barycentric speeds. We derive a set of analytical flocking conditions based on the generalized rank-based Brownian motion. An extensive set of numerical simulations corroborates our analytical findings.

  14. Swarming Overlay Construction Strategies

    OpenAIRE

    Al Hamra, Anwar; Liogkas, Nikitas; Legout, Arnaud; Barakat, Chadi

    2009-01-01

    International audience; Swarming peer-to-peer systems play an increasingly instrumental role in Internet content distribution. It is therefore important to better understand how these systems behave in practice. Recent research efforts have looked at various protocol parameters and have measured how they affect system performance and robustness. However, the importance of the strategy based on which peers establish connections has been largely overlooked. This work utilizes extensive simulati...

  15. Convergence Time Analysis of Particle Swarm Optimization Based on Particle Interaction

    Directory of Open Access Journals (Sweden)

    Chao-Hong Chen

    2011-01-01

    Full Text Available We analyze the convergence time of particle swarm optimization (PSO on the facet of particle interaction. We firstly introduce a statistical interpretation of social-only PSO in order to capture the essence of particle interaction, which is one of the key mechanisms of PSO. We then use the statistical model to obtain theoretical results on the convergence time. Since the theoretical analysis is conducted on the social-only model of PSO, instead of on common models in practice, to verify the validity of our results, numerical experiments are executed on benchmark functions with a regular PSO program.

  16. A swarm intelligence-based tuning method for the Sliding Mode Generalized Predictive Control.

    Science.gov (United States)

    Oliveira, J B; Boaventura-Cunha, J; Moura Oliveira, P B; Freire, H

    2014-09-01

    This work presents an automatic tuning method for the discontinuous component of the Sliding Mode Generalized Predictive Controller (SMGPC) subject to constraints. The strategy employs Particle Swarm Optimization (PSO) to minimize a second aggregated cost function. The continuous component is obtained by the standard procedure, by Quadratic Programming (QP), thus yielding an online dual optimization scheme. Simulations and performance indexes for common process models in industry, such as nonminimum phase and time delayed systems, result in a better performance, improving robustness and tracking accuracy. Copyright © 2014 ISA. Published by Elsevier Ltd. All rights reserved.

  17. Bluetooth Based Chaos Synchronization Using Particle Swarm Optimization and Its Applications to Image Encryption

    Directory of Open Access Journals (Sweden)

    Tzu-Hsiang Hung

    2012-06-01

    Full Text Available This study used the complex dynamic characteristics of chaotic systems and Bluetooth to explore the topic of wireless chaotic communication secrecy and develop a communication security system. The PID controller for chaos synchronization control was applied, and the optimum parameters of this PID controller were obtained using a Particle Swarm Optimization (PSO algorithm. Bluetooth was used to realize wireless transmissions, and a chaotic wireless communication security system was developed in the design concept of a chaotic communication security system. The experimental results show that this scheme can be used successfully in image encryption.

  18. Bluetooth based chaos synchronization using particle swarm optimization and its applications to image encryption.

    Science.gov (United States)

    Yau, Her-Terng; Hung, Tzu-Hsiang; Hsieh, Chia-Chun

    2012-01-01

    This study used the complex dynamic characteristics of chaotic systems and Bluetooth to explore the topic of wireless chaotic communication secrecy and develop a communication security system. The PID controller for chaos synchronization control was applied, and the optimum parameters of this PID controller were obtained using a Particle Swarm Optimization (PSO) algorithm. Bluetooth was used to realize wireless transmissions, and a chaotic wireless communication security system was developed in the design concept of a chaotic communication security system. The experimental results show that this scheme can be used successfully in image encryption.

  19. The Prediction of the Gas Utilization Ratio based on TS Fuzzy Neural Network and Particle Swarm Optimization

    Directory of Open Access Journals (Sweden)

    Sen Zhang

    2018-02-01

    Full Text Available Gas utilization ratio (GUR is an important indicator that is used to evaluate the energy consumption of blast furnaces (BFs. Currently, the existing methods cannot predict the GUR accurately. In this paper, we present a novel data-driven model for predicting the GUR. The proposed approach utilized both the TS fuzzy neural network (TS-FNN and the particle swarm algorithm (PSO to predict the GUR. The particle swarm algorithm (PSO is applied to optimize the parameters of the TS-FNN in order to decrease the error caused by the inaccurate initial parameter. This paper also applied the box graph (Box-plot method to eliminate the abnormal value of the raw data during the data preprocessing. This method can deal with the data which does not obey the normal distribution which is caused by the complex industrial environments. The prediction results demonstrate that the optimization model based on PSO and the TS-FNN approach achieves higher prediction accuracy compared with the TS-FNN model and SVM model and the proposed approach can accurately predict the GUR of the blast furnace, providing an effective way for the on-line blast furnace distribution control.

  20. A Chaotic Particle Swarm Optimization-Based Heuristic for Market-Oriented Task-Level Scheduling in Cloud Workflow Systems.

    Science.gov (United States)

    Li, Xuejun; Xu, Jia; Yang, Yun

    2015-01-01

    Cloud workflow system is a kind of platform service based on cloud computing. It facilitates the automation of workflow applications. Between cloud workflow system and its counterparts, market-oriented business model is one of the most prominent factors. The optimization of task-level scheduling in cloud workflow system is a hot topic. As the scheduling is a NP problem, Ant Colony Optimization (ACO) and Particle Swarm Optimization (PSO) have been proposed to optimize the cost. However, they have the characteristic of premature convergence in optimization process and therefore cannot effectively reduce the cost. To solve these problems, Chaotic Particle Swarm Optimization (CPSO) algorithm with chaotic sequence and adaptive inertia weight factor is applied to present the task-level scheduling. Chaotic sequence with high randomness improves the diversity of solutions, and its regularity assures a good global convergence. Adaptive inertia weight factor depends on the estimate value of cost. It makes the scheduling avoid premature convergence by properly balancing between global and local exploration. The experimental simulation shows that the cost obtained by our scheduling is always lower than the other two representative counterparts.

  1. Long-term observations of theWeddell Sea Anomaly based on the Swarm, CHAMP and DEMETER missions

    Science.gov (United States)

    Slominska, E.

    2016-12-01

    Normalized density difference index (INDD) was introduced for the purpose of detection of such phenomena as the Weddell Sea Anomaly (WSA). With this basic approach, we are capable of identifying spatial and temporal occurrence of anomalies exhibiting reversed diurnal cycle, characterized by greater ionospheric plasma densities observed in the post-sunset hours, when compared to day-time ones. Development of the WSA together with similar phenomenon observed in the Northern Hemisphere, named as the Mid-latitude Summer Nighttime Anomaly is documented with three satellite missions Swarm, DEMETER, and CHAMP. Since the generation of discussed anomalies is still an open issue, multi-mission and multi-instrumental observations at various altitudes should improve our understanding of the phenomena, and verify the role of several potential mechanisms used for explanation. Among mentioned mechanisms, combined result of thermospheric wind, solar photo-ionization, and the local magnetic field configuration is taken as a most comprehensive explanation. Analysis based on long-term trends of observations from three missions and six satellites are aimed at the proper parametrization of the phenomenon. Using spatial gradients in the magnetic field components derived from Swarm A/B/C magnetometers, we discuss longitudinal distributions and variations of anomalies. The study quantifies hemispheric differences between two anomalies, as well as temporal trends concerning the solar cycle.

  2. The Prediction of the Gas Utilization Ratio based on TS Fuzzy Neural Network and Particle Swarm Optimization.

    Science.gov (United States)

    Zhang, Sen; Jiang, Haihe; Yin, Yixin; Xiao, Wendong; Zhao, Baoyong

    2018-02-20

    Gas utilization ratio (GUR) is an important indicator that is used to evaluate the energy consumption of blast furnaces (BFs). Currently, the existing methods cannot predict the GUR accurately. In this paper, we present a novel data-driven model for predicting the GUR. The proposed approach utilized both the TS fuzzy neural network (TS-FNN) and the particle swarm algorithm (PSO) to predict the GUR. The particle swarm algorithm (PSO) is applied to optimize the parameters of the TS-FNN in order to decrease the error caused by the inaccurate initial parameter. This paper also applied the box graph (Box-plot) method to eliminate the abnormal value of the raw data during the data preprocessing. This method can deal with the data which does not obey the normal distribution which is caused by the complex industrial environments. The prediction results demonstrate that the optimization model based on PSO and the TS-FNN approach achieves higher prediction accuracy compared with the TS-FNN model and SVM model and the proposed approach can accurately predict the GUR of the blast furnace, providing an effective way for the on-line blast furnace distribution control.

  3. A Chaotic Particle Swarm Optimization-Based Heuristic for Market-Oriented Task-Level Scheduling in Cloud Workflow Systems

    Directory of Open Access Journals (Sweden)

    Xuejun Li

    2015-01-01

    Full Text Available Cloud workflow system is a kind of platform service based on cloud computing. It facilitates the automation of workflow applications. Between cloud workflow system and its counterparts, market-oriented business model is one of the most prominent factors. The optimization of task-level scheduling in cloud workflow system is a hot topic. As the scheduling is a NP problem, Ant Colony Optimization (ACO and Particle Swarm Optimization (PSO have been proposed to optimize the cost. However, they have the characteristic of premature convergence in optimization process and therefore cannot effectively reduce the cost. To solve these problems, Chaotic Particle Swarm Optimization (CPSO algorithm with chaotic sequence and adaptive inertia weight factor is applied to present the task-level scheduling. Chaotic sequence with high randomness improves the diversity of solutions, and its regularity assures a good global convergence. Adaptive inertia weight factor depends on the estimate value of cost. It makes the scheduling avoid premature convergence by properly balancing between global and local exploration. The experimental simulation shows that the cost obtained by our scheduling is always lower than the other two representative counterparts.

  4. A Novel Consensus-Based Particle Swarm Optimization-Assisted Trust-Tech Methodology for Large-Scale Global Optimization.

    Science.gov (United States)

    Zhang, Yong-Feng; Chiang, Hsiao-Dong

    2017-09-01

    A novel three-stage methodology, termed the "consensus-based particle swarm optimization (PSO)-assisted Trust-Tech methodology," to find global optimal solutions for nonlinear optimization problems is presented. It is composed of Trust-Tech methods, consensus-based PSO, and local optimization methods that are integrated to compute a set of high-quality local optimal solutions that can contain the global optimal solution. The proposed methodology compares very favorably with several recently developed PSO algorithms based on a set of small-dimension benchmark optimization problems and 20 large-dimension test functions from the CEC 2010 competition. The analytical basis for the proposed methodology is also provided. Experimental results demonstrate that the proposed methodology can rapidly obtain high-quality optimal solutions that can contain the global optimal solution. The scalability of the proposed methodology is promising.

  5. Robot Swarms

    Science.gov (United States)

    Morring, Frank, Jr.

    2005-01-01

    Engineers and interns at this NASA field center are building the prototype of a robotic rover that could go where no wheeled rover has gone before-into the dark cold craters at the lunar poles and across the Moon s rugged highlands-like a walking tetrahedron. With NASA pushing to meet President Bush's new exploration objectives, the robots taking shape here today could be on the Moon in a decade. In the longer term, the concept could lead to shape-shifting robot swarms designed to explore distant planetary surfaces in advance of humans. "If you look at all of NASA s projections of the future, anyone s projections of the space program, they re all rigid-body architecture," says Steven Curtis, principal investigator on the effort. "This is not rigid-body. The whole key here is flexibility and reconfigurability with a capital R."

  6. Swarm intelligence.

    Science.gov (United States)

    Chambers, David W

    2011-01-01

    The standard view of how things work is that an outside force impacts a group of individuals and causes outcomes they are interested in. The outside force may not affect all individuals to the same extent, but we can summarize the effect by taking the average. Effective influence is thought to come from the top, not from the group that is being led. The alternative considered here is that a substantial degree of intelligence resided in the individuals or elements that someone wants to study or change. And these elements of the system interact with each other. This phenomenon goes by many names, but will be called swarm intelligence here. There are many cases where simple rules followed at the local level trump or outperform understanding or control from above. Five examples will be given: (a) ethics; (b) the progression of periodontal diseases; (b) dental continuing education; (c) leadership from within; and (d) the wisdom of group decision making.

  7. Swarm Verification

    Science.gov (United States)

    Holzmann, Gerard J.; Joshi, Rajeev; Groce, Alex

    2008-01-01

    Reportedly, supercomputer designer Seymour Cray once said that he would sooner use two strong oxen to plow a field than a thousand chickens. Although this is undoubtedly wise when it comes to plowing a field, it is not so clear for other types of tasks. Model checking problems are of the proverbial "search the needle in a haystack" type. Such problems can often be parallelized easily. Alas, none of the usual divide and conquer methods can be used to parallelize the working of a model checker. Given that it has become easier than ever to gain access to large numbers of computers to perform even routine tasks it is becoming more and more attractive to find alternate ways to use these resources to speed up model checking tasks. This paper describes one such method, called swarm verification.

  8. Ant-based distributed protocol for coordination of a swarm of robots in demining mission

    Science.gov (United States)

    De Rango, Floriano; Palmieri, Nunzia

    2016-05-01

    Coordination among multiple robots has been extensively studied, since a number of practical real problem s can be performed using an effective approach. In this paper is investigated a collective task that requires a multi-robot system to search for randomly distributed mines in an unknown environment and disarm them cooperatively. The communication among the swarm of robots influences the overall performance in terms of time to execute the task or consumed energy. To address this problem, a new distributed recruiting protocol to coordinate a swarm of robots in demining mission, is described. This problem is a multi-objective problem and two bio inspired strategies are used. The novelty of this approach lies in the combination of direct and indirect communication: on one hand an indirect communication among robots is used for the exploration of the environment, on the other hand a novel protocol is used to accomplish the recruiting and coordination of the robots for demining task. This protocol attempts to tackle the question of how autonomous robot can coordinate themselves into an unknown environment relying on simple low-level capabilities. The strategy is able to adapt the current system dynamics if the number of robots or the environment structure or both change. The proposed approach has been implemented and has been evaluated in several simulated environments. We analyzed the impact of our approach in the overall performance of a robot team. Experimental results indicated the effectiveness and efficiency of the proposed protocol to spread the robots in the environment.

  9. Optimization of C4.5 algorithm-based particle swarm optimization for breast cancer diagnosis

    Science.gov (United States)

    Muslim, M. A.; Rukmana, S. H.; Sugiharti, E.; Prasetiyo, B.; Alimah, S.

    2018-03-01

    Data mining has become a basic methodology for computational applications in the field of medical domains. Data mining can be applied in the health field such as for diagnosis of breast cancer, heart disease, diabetes and others. Breast cancer is most common in women, with more than one million cases and nearly 600,000 deaths occurring worldwide each year. The most effective way to reduce breast cancer deaths was by early diagnosis. This study aims to determine the level of breast cancer diagnosis. This research data uses Wisconsin Breast Cancer dataset (WBC) from UCI machine learning. The method used in this research is the algorithm C4.5 and Particle Swarm Optimization (PSO) as a feature option and to optimize the algorithm. C4.5. Ten-fold cross-validation is used as a validation method and a confusion matrix. The result of this research is C4.5 algorithm. The particle swarm optimization C4.5 algorithm has increased by 0.88%.

  10. Swarm robotics and minimalism

    Science.gov (United States)

    Sharkey, Amanda J. C.

    2007-09-01

    Swarm Robotics (SR) is closely related to Swarm Intelligence, and both were initially inspired by studies of social insects. Their guiding principles are based on their biological inspiration and take the form of an emphasis on decentralized local control and communication. Earlier studies went a step further in emphasizing the use of simple reactive robots that only communicate indirectly through the environment. More recently SR studies have moved beyond these constraints to explore the use of non-reactive robots that communicate directly, and that can learn and represent their environment. There is no clear agreement in the literature about how far such extensions of the original principles could go. Should there be any limitations on the individual abilities of the robots used in SR studies? Should knowledge of the capabilities of social insects lead to constraints on the capabilities of individual robots in SR studies? There is a lack of explicit discussion of such questions, and researchers have adopted a variety of constraints for a variety of reasons. A simple taxonomy of swarm robotics is presented here with the aim of addressing and clarifying these questions. The taxonomy distinguishes subareas of SR based on the emphases and justifications for minimalism and individual simplicity.

  11. Hybrid fuzzy charged system search algorithm based state estimation in distribution networks

    Directory of Open Access Journals (Sweden)

    Sachidananda Prasad

    2017-06-01

    Full Text Available This paper proposes a new hybrid charged system search (CSS algorithm based state estimation in radial distribution networks in fuzzy framework. The objective of the optimization problem is to minimize the weighted square of the difference between the measured and the estimated quantity. The proposed method of state estimation considers bus voltage magnitude and phase angle as state variable along with some equality and inequality constraints for state estimation in distribution networks. A rule based fuzzy inference system has been designed to control the parameters of the CSS algorithm to achieve better balance between the exploration and exploitation capability of the algorithm. The efficiency of the proposed fuzzy adaptive charged system search (FACSS algorithm has been tested on standard IEEE 33-bus system and Indian 85-bus practical radial distribution system. The obtained results have been compared with the conventional CSS algorithm, weighted least square (WLS algorithm and particle swarm optimization (PSO for feasibility of the algorithm.

  12. Geometrical quality evaluation in laser cutting of Inconel-718 sheet by using Taguchi based regression analysis and particle swarm optimization

    Science.gov (United States)

    Shrivastava, Prashant Kumar; Pandey, Arun Kumar

    2018-03-01

    The Inconel-718 is one of the most demanding advanced engineering materials because of its superior quality. The conventional machining techniques are facing many problems to cut intricate profiles on these materials due to its minimum thermal conductivity, minimum elastic property and maximum chemical affinity at magnified temperature. The laser beam cutting is one of the advanced cutting method that may be used to achieve the geometrical accuracy with more precision by the suitable management of input process parameters. In this research work, the experimental investigation during the pulsed Nd:YAG laser cutting of Inconel-718 has been carried out. The experiments have been conducted by using the well planned orthogonal array L27. The experimentally measured values of different quality characteristics have been used for developing the second order regression models of bottom kerf deviation (KD), bottom kerf width (KW) and kerf taper (KT). The developed models of different quality characteristics have been utilized as a quality function for single-objective optimization by using particle swarm optimization (PSO) method. The optimum results obtained by the proposed hybrid methodology have been compared with experimental results. The comparison of optimized results with the experimental results shows that an individual improvement of 75%, 12.67% and 33.70% in bottom kerf deviation, bottom kerf width, and kerf taper has been observed. The parametric effects of different most significant input process parameters on quality characteristics have also been discussed.

  13. Wide-area Power System Damping Control Coordination Based on Particle Swarm Optimization with Time Delay Considered

    Science.gov (United States)

    Zhang, J. Y.; Jiang, Y.

    2017-10-01

    To ensure satisfactory dynamic performance of controllers in time-delayed power systems, a WAMS-based control strategy is investigated in the presence of output feedback delay. An integrated approach based on Pade approximation and particle swarm optimization (PSO) is employed for parameter configuration of PSS. The coordination configuration scheme of power system controllers is achieved by a series of stability constraints at the aim of maximizing the minimum damping ratio of inter-area mode of power system. The validity of this derived PSS is verified on a prototype power system. The findings demonstrate that the proposed approach for control design could damp the inter-area oscillation and enhance the small-signal stability.

  14. Interval-value Based Particle Swarm Optimization algorithm for cancer-type specific gene selection and sample classification.

    Science.gov (United States)

    Ramyachitra, D; Sofia, M; Manikandan, P

    2015-09-01

    Microarray technology allows simultaneous measurement of the expression levels of thousands of genes within a biological tissue sample. The fundamental power of microarrays lies within the ability to conduct parallel surveys of gene expression using microarray data. The classification of tissue samples based on gene expression data is an important problem in medical diagnosis of diseases such as cancer. In gene expression data, the number of genes is usually very high compared to the number of data samples. Thus the difficulty that lies with data are of high dimensionality and the sample size is small. This research work addresses the problem by classifying resultant dataset using the existing algorithms such as Support Vector Machine (SVM), K-nearest neighbor (KNN), Interval Valued Classification (IVC) and the improvised Interval Value based Particle Swarm Optimization (IVPSO) algorithm. Thus the results show that the IVPSO algorithm outperformed compared with other algorithms under several performance evaluation functions.

  15. Interval-value Based Particle Swarm Optimization algorithm for cancer-type specific gene selection and sample classification

    Directory of Open Access Journals (Sweden)

    D. Ramyachitra

    2015-09-01

    Full Text Available Microarray technology allows simultaneous measurement of the expression levels of thousands of genes within a biological tissue sample. The fundamental power of microarrays lies within the ability to conduct parallel surveys of gene expression using microarray data. The classification of tissue samples based on gene expression data is an important problem in medical diagnosis of diseases such as cancer. In gene expression data, the number of genes is usually very high compared to the number of data samples. Thus the difficulty that lies with data are of high dimensionality and the sample size is small. This research work addresses the problem by classifying resultant dataset using the existing algorithms such as Support Vector Machine (SVM, K-nearest neighbor (KNN, Interval Valued Classification (IVC and the improvised Interval Value based Particle Swarm Optimization (IVPSO algorithm. Thus the results show that the IVPSO algorithm outperformed compared with other algorithms under several performance evaluation functions.

  16. On the spatial dynamics and oscillatory behavior of a predator-prey model based on cellular automata and local particle swarm optimization.

    Science.gov (United States)

    Molina, Mario Martínez; Moreno-Armendáriz, Marco A; Carlos Seck Tuoh Mora, Juan

    2013-11-07

    A two-dimensional lattice model based on Cellular Automata theory and swarm intelligence is used to study the spatial and population dynamics of a theoretical ecosystem. It is found that the social interactions among predators provoke the formation of clusters, and that by increasing the mobility of predators the model enters into an oscillatory behavior. © 2013 Elsevier Ltd. All rights reserved.

  17. Polyester based hybrid organic coatings

    Science.gov (United States)

    Wang, Xiaojiang

    Polyesters are a class of polymers widely used in organic coatings applications. In this work, four types of organic coatings based on polyester polyols were prepared: UV-curable polyester/poly(meth)acrylate coatings, thermal curable polyester polyurethane-urea coatings, thermal curable non-isocyanate polyurethane coatings, and UV-curable non-isocyanate polyurethane coatings. Polyester/poly(meth)acrylate block copolymers are synthesized using a combination of polycondensation and Atom-Transfer Radical Polymerization (ATRP). All block copolymers are characterized by means of Nuclear Magnetic Resonance (NMR) and Gel Permeation Chromatography (GPC). In the case of unsaturated-polyester-based block copolymers the main chain double bond in the polyester backbone remains almost unaffected during ATRP. The unsaturated block copolymers are crosslinkable and can form networks upon photo-irradiation in the presence of a suitable photoinitiator. These copolymers might be interesting candidates for coatings with better overall properties than those based on neat polyesters. Thermal curable polyester polyol based Polyurethane-Urea (PUU) coatings were formulated using Partially Blocked HDI isocyanurate (PBH), Isophorone Diamine (IPDA), and polyester polyol. As a comparison, the polyurethane coatings (PU) without adding IPDA were also prepared. The mechanical and viscoelastic properties of the PUU and PU coating were investigated by using tensile test and Dynamic Mechanical Thermal Analyzer (DMTA). It was found that PUU coating exhibited higher crosslink density, Tg, tensile modulus and strength than the corresponding PU coating. Thermal curable non-isocyanate polyurethane coatings were prepared by using polyamine and cyclic carbonate terminated polyester. Cyclic carbonate terminated polyester was synthesized from the reaction of the carbon dioxide and epoxidized polyester which was prepared from the polyester polyol. The properties of the epoxidized and cyclic carbonate

  18. A hybrid ACO/PSO based algorithm for QoS multicast routing problem

    Directory of Open Access Journals (Sweden)

    Manoj Kumar Patel

    2014-03-01

    Full Text Available Many Internet multicast applications such as videoconferencing, distance education, and online simulation require to send information from a source to some selected destinations. These applications have stringent Quality-of-Service (QoS requirements that include delay, loss rate, bandwidth, and delay jitter. This leads to the problem of routing multicast traffic satisfying QoS requirements. The above mentioned problem is known as the QoS constrained multicast routing problem and is NP Complete. In this paper, we present a swarming agent based intelligent algorithm using a hybrid Ant Colony Optimization (ACO/Particle Swarm Optimization (PSO technique to optimize the multicast tree. The algorithm starts with generating a large amount of mobile agents in the search space. The ACO algorithm guides the agents’ movement by pheromones in the shared environment locally, and the global maximum of the attribute values are obtained through the random interaction between the agents using PSO algorithm. The performance of the proposed algorithm is evaluated through simulation. The simulation results reveal that our algorithm performs better than the existing algorithms.

  19. PARTICLE SWARM OPTIMIZATION BASED OF THE MAXIMUM PHOTOVOLTAIC POWER TRACTIOQG UNDER DIFFERENT CONDITIONS

    Directory of Open Access Journals (Sweden)

    Y. Labbi

    2015-08-01

    Full Text Available Photovoltaic electricity is seen as an important source of renewable energy. The photovoltaic array is an unstable source of power since the peak power point depends on the temperature and the irradiation level. A maximum peak power point tracking is then necessary for maximum efficiency.In this work, a Particle Swarm Optimization (PSO is proposed for maximum power point tracker for photovoltaic panel, are used to generate the optimal MPP, such that solar panel maximum power is generated under different operating conditions. A photovoltaic system including a solar panel and PSO MPP tracker is modelled and simulated, it has been has been carried out which has shown the effectiveness of PSO to draw much energy and fast response against change in working conditions.

  20. Dynamic path planning for mobile robot based on particle swarm optimization

    Science.gov (United States)

    Wang, Yong; Cai, Feng; Wang, Ying

    2017-08-01

    In the contemporary, robots are used in many fields, such as cleaning, medical treatment, space exploration, disaster relief and so on. The dynamic path planning of robot without collision is becoming more and more the focus of people's attention. A new method of path planning is proposed in this paper. Firstly, the motion space model of the robot is established by using the MAKLINK graph method. Then the A* algorithm is used to get the shortest path from the start point to the end point. Secondly, this paper proposes an effective method to detect and avoid obstacles. When an obstacle is detected on the shortest path, the robot will choose the nearest safety point to move. Moreover, calculate the next point which is nearest to the target. Finally, the particle swarm optimization algorithm is used to optimize the path. The experimental results can prove that the proposed method is more effective.

  1. Multi-objective Reactive Power Optimization Based on Improved Particle Swarm Algorithm

    Science.gov (United States)

    Cui, Xue; Gao, Jian; Feng, Yunbin; Zou, Chenlu; Liu, Huanlei

    2018-01-01

    In this paper, an optimization model with the minimum active power loss and minimum voltage deviation of node and maximum static voltage stability margin as the optimization objective is proposed for the reactive power optimization problems. By defining the index value of reactive power compensation, the optimal reactive power compensation node was selected. The particle swarm optimization algorithm was improved, and the selection pool of global optimal and the global optimal of probability (p-gbest) were introduced. A set of Pareto optimal solution sets is obtained by this algorithm. And by calculating the fuzzy membership value of the pareto optimal solution sets, individuals with the smallest fuzzy membership value were selected as the final optimization results. The above improved algorithm is used to optimize the reactive power of IEEE14 standard node system. Through the comparison and analysis of the results, it has been proven that the optimization effect of this algorithm was very good.

  2. Chaotic System Identification Based on a Fuzzy Wiener Model with Particle Swarm Optimization

    International Nuclear Information System (INIS)

    Yong, Li; Ying-Gan, Tang

    2010-01-01

    A fuzzy Wiener model is proposed to identify chaotic systems. The proposed fuzzy Wiener model consists of two parts, one is a linear dynamic subsystem and the other is a static nonlinear part, which is represented by the Takagi–Sugeno fuzzy model. Identification of chaotic systems is converted to find optimal parameters of the fuzzy Wiener model by minimizing the state error between the original chaotic system and the fuzzy Wiener model. Particle swarm optimization algorithm, a global optimizer, is used to search the optimal parameter of the fuzzy Wiener model. The proposed method can identify the parameters of the linear part and nonlinear part simultaneously. Numerical simulations for Henón and Lozi chaotic system identification show the effectiveness of the proposed method

  3. A new logistic dynamic particle swarm optimization algorithm based on random topology.

    Science.gov (United States)

    Ni, Qingjian; Deng, Jianming

    2013-01-01

    Population topology of particle swarm optimization (PSO) will directly affect the dissemination of optimal information during the evolutionary process and will have a significant impact on the performance of PSO. Classic static population topologies are usually used in PSO, such as fully connected topology, ring topology, star topology, and square topology. In this paper, the performance of PSO with the proposed random topologies is analyzed, and the relationship between population topology and the performance of PSO is also explored from the perspective of graph theory characteristics in population topologies. Further, in a relatively new PSO variant which named logistic dynamic particle optimization, an extensive simulation study is presented to discuss the effectiveness of the random topology and the design strategies of population topology. Finally, the experimental data are analyzed and discussed. And about the design and use of population topology on PSO, some useful conclusions are proposed which can provide a basis for further discussion and research.

  4. A New Logistic Dynamic Particle Swarm Optimization Algorithm Based on Random Topology

    Directory of Open Access Journals (Sweden)

    Qingjian Ni

    2013-01-01

    Full Text Available Population topology of particle swarm optimization (PSO will directly affect the dissemination of optimal information during the evolutionary process and will have a significant impact on the performance of PSO. Classic static population topologies are usually used in PSO, such as fully connected topology, ring topology, star topology, and square topology. In this paper, the performance of PSO with the proposed random topologies is analyzed, and the relationship between population topology and the performance of PSO is also explored from the perspective of graph theory characteristics in population topologies. Further, in a relatively new PSO variant which named logistic dynamic particle optimization, an extensive simulation study is presented to discuss the effectiveness of the random topology and the design strategies of population topology. Finally, the experimental data are analyzed and discussed. And about the design and use of population topology on PSO, some useful conclusions are proposed which can provide a basis for further discussion and research.

  5. Optimal Sensor Placement for Latticed Shell Structure Based on an Improved Particle Swarm Optimization Algorithm

    Directory of Open Access Journals (Sweden)

    Xun Zhang

    2014-01-01

    Full Text Available Optimal sensor placement is a key issue in the structural health monitoring of large-scale structures. However, some aspects in existing approaches require improvement, such as the empirical and unreliable selection of mode and sensor numbers and time-consuming computation. A novel improved particle swarm optimization (IPSO algorithm is proposed to address these problems. The approach firstly employs the cumulative effective modal mass participation ratio to select mode number. Three strategies are then adopted to improve the PSO algorithm. Finally, the IPSO algorithm is utilized to determine the optimal sensors number and configurations. A case study of a latticed shell model is implemented to verify the feasibility of the proposed algorithm and four different PSO algorithms. The effective independence method is also taken as a contrast experiment. The comparison results show that the optimal placement schemes obtained by the PSO algorithms are valid, and the proposed IPSO algorithm has better enhancement in convergence speed and precision.

  6. Retinal Vessel Segmentation Based on Primal-Dual Asynchronous Particle Swarm Optimisation (pdAPSO Algorithm

    Directory of Open Access Journals (Sweden)

    E. G. Dada

    2017-04-01

    Full Text Available Acute damage to the retina vessel has been identified to be main reason for blindness and impaired vision all over the world. A timely detection and control of these illnesses can greatly decrease the number of loss of sight cases. Developing a high performance unsupervised retinal vessel segmentation technique poses an uphill task. This paper presents study on the Primal-Dual Asynchronous Particle Swarm Optimisation (pdAPSO method for the segmentation of retinal vessels. A maximum average accuracy rate 0.9243 with an average specificity of sensitivity rate of 0.9834 and average sensitivity rate of 0.5721 were achieved on DRIVE database. The proposed method produces higher mean sensitivity and accuracy rates in the same range of very good specificity.

  7. PARALLEL IMPLEMENTATION OF CROSS-LAYER OPTIMIZATION - A PERFORMANCE EVALUATION BASED ON SWARM INTELLIGENCE

    Directory of Open Access Journals (Sweden)

    Vanaja Gokul

    2012-01-01

    Full Text Available In distributed systems real time optimizations need to be performed dynamically for better utilization of the network resources. Real time optimizations can be performed effectively by using Cross Layer Optimization (CLO within the network operating system. This paper presents the performance evaluation of Cross Layer Optimization (CLO in comparison with the traditional approach of Single-Layer Optimization (SLO. In the parallel implementation of the approaches the experimental study carried out indicates that the CLO results in a significant improvement in network utilization when compared to SLO. A variant of the Particle Swarm Optimization technique that utilizes Digital Pheromones (PSODP for better performance has been used here. A significantly higher speed up in performance was observed from the parallel implementation of CLO that used PSODP on a cluster of nodes.

  8. Planning of distributed generation in distribution network based on improved particle swarm optimization algorithm

    Science.gov (United States)

    Li, Jinze; Qu, Zhi; He, Xiaoyang; Jin, Xiaoming; Li, Tie; Wang, Mingkai; Han, Qiu; Gao, Ziji; Jiang, Feng

    2018-02-01

    Large-scale access of distributed power can improve the current environmental pressure, at the same time, increasing the complexity and uncertainty of overall distribution system. Rational planning of distributed power can effectively improve the system voltage level. To this point, the specific impact on distribution network power quality caused by the access of typical distributed power was analyzed and from the point of improving the learning factor and the inertia weight, an improved particle swarm optimization algorithm (IPSO) was proposed which could solve distributed generation planning for distribution network to improve the local and global search performance of the algorithm. Results show that the proposed method can well reduce the system network loss and improve the economic performance of system operation with distributed generation.

  9. An Image Filter Based on Shearlet Transformation and Particle Swarm Optimization Algorithm

    Directory of Open Access Journals (Sweden)

    Kai Hu

    2015-01-01

    Full Text Available Digital image is always polluted by noise and made data postprocessing difficult. To remove noise and preserve detail of image as much as possible, this paper proposed image filter algorithm which combined the merits of Shearlet transformation and particle swarm optimization (PSO algorithm. Firstly, we use classical Shearlet transform to decompose noised image into many subwavelets under multiscale and multiorientation. Secondly, we gave weighted factor to those subwavelets obtained. Then, using classical Shearlet inverse transform, we obtained a composite image which is composed of those weighted subwavelets. After that, we designed fast and rough evaluation method to evaluate noise level of the new image; by using this method as fitness, we adopted PSO to find the optimal weighted factor we added; after lots of iterations, by the optimal factors and Shearlet inverse transform, we got the best denoised image. Experimental results have shown that proposed algorithm eliminates noise effectively and yields good peak signal noise ratio (PSNR.

  10. DISTRIBUTED UAV-SWARM-BASED REAL-TIME GEOMATIC DATA COLLECTION UNDER DYNAMICALLY CHANGING RESOLUTION REQUIREMENTS

    Directory of Open Access Journals (Sweden)

    M. Almeida

    2017-08-01

    Full Text Available Unmanned Aerial Vehicles (UAVs have been used for reconnaissance and surveillance missions as far back as the Vietnam War, but with the recent rapid increase in autonomy, precision and performance capabilities – and due to the massive reduction in cost and size – UAVs have become pervasive products, available and affordable for the general public. The use cases for UAVs are in the areas of disaster recovery, environmental mapping & protection and increasingly also as extended eyes and ears of civil security forces such as fire-fighters and emergency response units. In this paper we present a swarm algorithm that enables a fleet of autonomous UAVs to collectively perform sensing tasks related to environmental and rescue operations and to dynamically adapt to e.g. changing resolution requirements. We discuss the hardware used to build our own drones and the settings under which we validate the proposed approach.

  11. A hybrid multiuser detector based on MMSE and AFSA for TDRS system forward link.

    Science.gov (United States)

    Yin, Zhendong; Jiang, Xu; Wu, Zhilu; Liu, Xiaohui

    2014-01-01

    This study mainly focuses on multiuser detection in tracking and data relay satellite (TDRS) system forward link. Minimum mean square error (MMSE) is a low complexity multiuser detection method, but MMSE detector cannot achieve satisfactory bit error ratio and near-far resistance, whereas artificial fish swarm algorithm (AFSA) is expert in optimization and it can realize the global convergence efficiently. Therefore, a hybrid multiuser detector based on MMSE and AFSA (MMSE-AFSA) is proposed in this paper. The result of MMSE and its modified formations are used as the initial values of artificial fishes to accelerate the speed of global convergence and reduce the iteration times for AFSA. The simulation results show that the bit error ratio and near-far resistance performances of the proposed detector are much better, compared with MF, DEC, and MMSE, and are quite close to OMD. Furthermore, the proposed MMSE-AFSA detector also has a large system capacity.

  12. Study on Vibration of Heavy-Precision Robot Cantilever Based on Time-varying Glowworm Swarm Optimization Algorithm

    Science.gov (United States)

    Luo, T. H.; Liang, S.; Miao, C. B.

    2017-12-01

    A method of terminal vibration analysis based on Time-varying Glowworm Swarm Optimization algorithm is proposed in order to solve the problem that terminal vibration of the large flexible robot cantilever under heavy load precision.The robot cantilever of the ballastless track is used as the research target and the natural parameters of the flexible cantilever such as the natural frequency, the load impact and the axial deformation is considered. Taking into account the change of the minimum distance between the glowworm individuals, the terminal vibration response and adaptability could meet. According to the Boltzmann selection mechanism, the dynamic parameters in the motion simulation process are determined, while the influence of the natural frequency and the load impact as well as the axial deformation on the terminal vibration is studied. The method is effective and stable, which is of great theoretical basis for the study of vibration control of flexible cantilever terminal.

  13. Optimization of hydrofoil for tidal current turbine based on particle swarm optimization and computational fluid dynamic method

    Directory of Open Access Journals (Sweden)

    Zhang De-Sheng

    2016-01-01

    Full Text Available Both efficiency and cavitation performance of the hydrofoil are the key technologies to design the tidal current turbine. In this paper, the hydrofoil efficiency and lift coefficient were improved based on particle swarm optimization method and XFoil codes. The cavitation performance of the optimized hydrofoil was also discussed by the computational fluid dynamic. Numerical results show the efficiency of the optimized hydrofoil was improved 11% ranging from the attack angle of 0-7° compared to the original NACA63-818 hydrofoil. The minimum pressure on leading edge of the optimized hydrofoil dropped above 15% at the high attack angle conditions of 10°, 15°, and 20°, respectively, which is benefit for the hydrofoil to avoiding the cavitation.

  14. Neuro-fuzzy GMDH based particle swarm optimization for prediction of scour depth at downstream of grade control structures

    Directory of Open Access Journals (Sweden)

    Mohammad Najafzadeh

    2015-03-01

    Full Text Available In the present study, neuro-fuzzy based-group method of data handling (NF-GMDH as an adaptive learning network was utilized to predict the maximum scour depth at the downstream of grade-control structures. The NF-GMDH network was developed using particle swarm optimization (PSO. Effective parameters on the scour depth include sediment size, geometry of weir, and flow characteristics in the upstream and downstream of structure. Training and testing of performances were carried out using non-dimensional variables. Datasets were divided into three series of dataset (DS. The testing results of performances were compared with the gene-expression programming (GEP, evolutionary polynomial regression (EPR model, and conventional techniques. The NF-GMDH-PSO network produced lower error of the scour depth prediction than those obtained using the other models. Also, the effective input parameter on the maximum scour depth was determined through a sensitivity analysis.

  15. RBF neural network based PI pitch controller for a class of 5-MW wind turbines using particle swarm optimization algorithm.

    Science.gov (United States)

    Poultangari, Iman; Shahnazi, Reza; Sheikhan, Mansour

    2012-09-01

    In order to control the pitch angle of blades in wind turbines, commonly the proportional and integral (PI) controller due to its simplicity and industrial usability is employed. The neural networks and evolutionary algorithms are tools that provide a suitable ground to determine the optimal PI gains. In this paper, a radial basis function (RBF) neural network based PI controller is proposed for collective pitch control (CPC) of a 5-MW wind turbine. In order to provide an optimal dataset to train the RBF neural network, particle swarm optimization (PSO) evolutionary algorithm is used. The proposed method does not need the complexities, nonlinearities and uncertainties of the system under control. The simulation results show that the proposed controller has satisfactory performance. Copyright © 2012 ISA. Published by Elsevier Ltd. All rights reserved.

  16. Integrative modeling and novel particle swarm-based optimal design of wind farms

    Science.gov (United States)

    Chowdhury, Souma

    To meet the energy needs of the future, while seeking to decrease our carbon footprint, a greater penetration of sustainable energy resources such as wind energy is necessary. However, a consistent growth of wind energy (especially in the wake of unfortunate policy changes and reported under-performance of existing projects) calls for a paradigm shift in wind power generation technologies. This dissertation develops a comprehensive methodology to explore, analyze and define the interactions between the key elements of wind farm development, and establish the foundation for designing high-performing wind farms. The primary contribution of this research is the effective quantification of the complex combined influence of wind turbine features, turbine placement, farm-land configuration, nameplate capacity, and wind resource variations on the energy output of the wind farm. A new Particle Swarm Optimization (PSO) algorithm, uniquely capable of preserving population diversity while addressing discrete variables, is also developed to provide powerful solutions towards optimizing wind farm configurations. In conventional wind farm design, the major elements that influence the farm performance are often addressed individually. The failure to fully capture the critical interactions among these factors introduces important inaccuracies in the projected farm performance and leads to suboptimal wind farm planning. In this dissertation, we develop the Unrestricted Wind Farm Layout Optimization (UWFLO) methodology to model and optimize the performance of wind farms. The UWFLO method obviates traditional assumptions regarding (i) turbine placement, (ii) turbine-wind flow interactions, (iii) variation of wind conditions, and (iv) types of turbines (single/multiple) to be installed. The allowance of multiple turbines, which demands complex modeling, is rare in the existing literature. The UWFLO method also significantly advances the state of the art in wind farm optimization by

  17. Hybrid PSO-ASVR-based method for data fitting in the calibration of infrared radiometer.

    Science.gov (United States)

    Yang, Sen; Li, Chengwei

    2016-06-01

    The present paper describes a hybrid particle swarm optimization-adaptive support vector regression (PSO-ASVR)-based method for data fitting in the calibration of infrared radiometer. The proposed hybrid PSO-ASVR-based method is based on PSO in combination with Adaptive Processing and Support Vector Regression (SVR). The optimization technique involves setting parameters in the ASVR fitting procedure, which significantly improves the fitting accuracy. However, its use in the calibration of infrared radiometer has not yet been widely explored. Bearing this in mind, the PSO-ASVR-based method, which is based on the statistical learning theory, is successfully used here to get the relationship between the radiation of a standard source and the response of an infrared radiometer. Main advantages of this method are the flexible adjustment mechanism in data processing and the optimization mechanism in a kernel parameter setting of SVR. Numerical examples and applications to the calibration of infrared radiometer are performed to verify the performance of PSO-ASVR-based method compared to conventional data fitting methods.

  18. Hybrid PSO-ASVR-based method for data fitting in the calibration of infrared radiometer

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Sen; Li, Chengwei, E-mail: heikuanghit@163.com [School of Electrical Engineering and Automation, Harbin Institute of Technology, Harbin 150001 (China)

    2016-06-15

    The present paper describes a hybrid particle swarm optimization-adaptive support vector regression (PSO-ASVR)-based method for data fitting in the calibration of infrared radiometer. The proposed hybrid PSO-ASVR-based method is based on PSO in combination with Adaptive Processing and Support Vector Regression (SVR). The optimization technique involves setting parameters in the ASVR fitting procedure, which significantly improves the fitting accuracy. However, its use in the calibration of infrared radiometer has not yet been widely explored. Bearing this in mind, the PSO-ASVR-based method, which is based on the statistical learning theory, is successfully used here to get the relationship between the radiation of a standard source and the response of an infrared radiometer. Main advantages of this method are the flexible adjustment mechanism in data processing and the optimization mechanism in a kernel parameter setting of SVR. Numerical examples and applications to the calibration of infrared radiometer are performed to verify the performance of PSO-ASVR-based method compared to conventional data fitting methods.

  19. MAGNAS - Magnetic Nanoprobe SWARM

    DEFF Research Database (Denmark)

    Lubberstedt, H.; Koebel, D.; Hansen, Flemming

    2005-01-01

    This paper presents the Magnetic Nano-Probe Swarm mission utilising a constellation of several swarms of nano-satellites in order to acquire simultaneous measurements of the geomagnetic field resolving the local field gradients. The space segment comprises of up to 4 S/C swarms each consisting...... control and maintenance of the swarm constellation and serve as communication relay to the ground. The systems design relies on near-to-medium term technology....

  20. Hybrid employment recommendation algorithm based on Spark

    Science.gov (United States)

    Li, Zuoquan; Lin, Yubei; Zhang, Xingming

    2017-08-01

    Aiming at the real-time application of collaborative filtering employment recommendation algorithm (CF), a clustering collaborative filtering recommendation algorithm (CCF) is developed, which applies hierarchical clustering to CF and narrows the query range of neighbour items. In addition, to solve the cold-start problem of content-based recommendation algorithm (CB), a content-based algorithm with users’ information (CBUI) is introduced for job recommendation. Furthermore, a hybrid recommendation algorithm (HRA) which combines CCF and CBUI algorithms is proposed, and implemented on Spark platform. The experimental results show that HRA can overcome the problems of cold start and data sparsity, and achieve good recommendation accuracy and scalability for employment recommendation.

  1. Residential Consumer-Centric Demand-Side Management Based on Energy Disaggregation-Piloting Constrained Swarm Intelligence: Towards Edge Computing.

    Science.gov (United States)

    Lin, Yu-Hsiu; Hu, Yu-Chen

    2018-04-27

    The emergence of smart Internet of Things (IoT) devices has highly favored the realization of smart homes in a down-stream sector of a smart grid. The underlying objective of Demand Response (DR) schemes is to actively engage customers to modify their energy consumption on domestic appliances in response to pricing signals. Domestic appliance scheduling is widely accepted as an effective mechanism to manage domestic energy consumption intelligently. Besides, to residential customers for DR implementation, maintaining a balance between energy consumption cost and users’ comfort satisfaction is a challenge. Hence, in this paper, a constrained Particle Swarm Optimization (PSO)-based residential consumer-centric load-scheduling method is proposed. The method can be further featured with edge computing. In contrast with cloud computing, edge computing—a method of optimizing cloud computing technologies by driving computing capabilities at the IoT edge of the Internet as one of the emerging trends in engineering technology—addresses bandwidth-intensive contents and latency-sensitive applications required among sensors and central data centers through data analytics at or near the source of data. A non-intrusive load-monitoring technique proposed previously is utilized to automatic determination of physical characteristics of power-intensive home appliances from users’ life patterns. The swarm intelligence, constrained PSO, is used to minimize the energy consumption cost while considering users’ comfort satisfaction for DR implementation. The residential consumer-centric load-scheduling method proposed in this paper is evaluated under real-time pricing with inclining block rates and is demonstrated in a case study. The experimentation reported in this paper shows the proposed residential consumer-centric load-scheduling method can re-shape loads by home appliances in response to DR signals. Moreover, a phenomenal reduction in peak power consumption is achieved

  2. A new hybrid evolutionary algorithm based on new fuzzy adaptive PSO and NM algorithms for Distribution Feeder Reconfiguration

    International Nuclear Information System (INIS)

    Niknam, Taher; Azadfarsani, Ehsan; Jabbari, Masoud

    2012-01-01

    Highlights: ► Network reconfiguration is a very important way to save the electrical energy. ► This paper proposes a new algorithm to solve the DFR. ► The algorithm combines NFAPSO with NM. ► The proposed algorithm is tested on two distribution test feeders. - Abstract: Network reconfiguration for loss reduction in distribution system is a very important way to save the electrical energy. This paper proposes a new hybrid evolutionary algorithm to solve the Distribution Feeder Reconfiguration problem (DFR). The algorithm is based on combination of a New Fuzzy Adaptive Particle Swarm Optimization (NFAPSO) and Nelder–Mead simplex search method (NM) called NFAPSO–NM. In the proposed algorithm, a new fuzzy adaptive particle swarm optimization includes two parts. The first part is Fuzzy Adaptive Binary Particle Swarm Optimization (FABPSO) that determines the status of tie switches (open or close) and second part is Fuzzy Adaptive Discrete Particle Swarm Optimization (FADPSO) that determines the sectionalizing switch number. In other side, due to the results of binary PSO(BPSO) and discrete PSO(DPSO) algorithms highly depends on the values of their parameters such as the inertia weight and learning factors, a fuzzy system is employed to adaptively adjust the parameters during the search process. Moreover, the Nelder–Mead simplex search method is combined with the NFAPSO algorithm to improve its performance. Finally, the proposed algorithm is tested on two distribution test feeders. The results of simulation show that the proposed method is very powerful and guarantees to obtain the global optimization.

  3. Characteristics of Swarm Seismicity in Northern California

    Science.gov (United States)

    Chiorini, S.; Lekic, V.

    2017-12-01

    Seismic swarms are characterized by an anomalously large number of earthquakes compared to the background rate of seismicity that are tightly clustered in space (typically, one to tens of kilometers) and time (typically, days to weeks). However, why and how swarms occur is poorly understood, partly because of the difficulty of identifying the range of swarm behaviors within large seismic catalogs. Previous studies have found that swarms, compared to other earthquake sequences, appear to be more common in extensional (Vidale & Shearer, 2006) and volcanic settings (Hayashi & Morita, 2003). In addition, swarms more commonly exhibit migration patterns, consistent with either fluid diffusion (Chen & Shearer, 2011; Chen et al., 2012) or aseismic creep (Lohman & McGuire, 2007), and are preferentially found in areas of enhanced heat flow (Enescu, 2009; Zaliapin & Ben Zion, 2016). While the swarm seismicity of Southern California has been studied extensively, that of Northern California has not been systematically documented and characterized. We employed two complementary methods of swarm identification: the approach of Vidale and Shearer (2006; henceforth VS2006) based on a priori threshold distances and timings of quakes, and the spatio-temporal distance metric proposed by Zaliapin et al. (2008; henceforth Z2008) in order to build a complete catalog of swarm seismicity in Northern California spanning 1984-2016 (Waldhauser & Schaff, 2008). Once filtered for aftershocks, the catalog allows us to describe the main features of swarm seismicity in Northern California, including spatial distribution, association or lack thereof with known faults and volcanic systems, and seismically quiescent regions. We then apply a robust technique to characterize the morphology of swarms, leading to subsets of swarms that are oriented either vertically or horizontally in space. When mapped, vertical swarms show a significant association with volcanic regions, and horizontal swarms with

  4. Optimization of the reflux ratio for a stage distillation column based on an improved particle swarm algorithm

    DEFF Research Database (Denmark)

    Ren, Jingzheng; Tan, Shiyu; Dong, Lichun

    2010-01-01

    the searching ability of basic particle swarm algorithm significantly. An example of utilizing the improved algorithm to solve the mathematical model was demonstrated; the result showed that it is efficient and convenient to optimize the reflux ratio for a distillation column by using the mathematical model......A mathematical model relating operation profits with reflux ratio of a stage distillation column was established. In order to optimize the reflux ratio by solving the nonlinear objective function, an improved particle swarm algorithm was developed and has been proved to be able to enhance...... and improved particle swarm algorithm....

  5. A fluid-driven earthquake swarm on the margin of the Yellowstone caldera

    Science.gov (United States)

    Shelly, David R.; Hill, David P.; Massin, Frederick; Farrell, Jamie; Smith, Robert B.; Taira, Taka'aki

    2013-01-01

    Over the past several decades, the Yellowstone caldera has experienced frequent earthquake swarms and repeated cycles of uplift and subsidence, reflecting dynamic volcanic and tectonic processes. Here, we examine the detailed spatial-temporal evolution of the 2010 Madison Plateau swarm, which occurred near the northwest boundary of the Yellowstone caldera. To fully explore the evolution of the swarm, we integrated procedures for seismic waveform-based earthquake detection with precise double-difference relative relocation. Using cross-correlation of continuous seismic data and waveform templates constructed from cataloged events, we detected and precisely located 8710 earthquakes during the three-week swarm, nearly four times the number of events included in the standard catalog. This high-resolution analysis reveals distinct migration of earthquake activity over the course of the swarm. The swarm initiated abruptly on January 17, 2010 at about 10 km depth and expanded dramatically outward (both shallower and deeper) over time, primarily along a NNW-striking, ~55º ENE-dipping structure. To explain these characteristics, we hypothesize that the swarm was triggered by the rupture of a zone of confined high-pressure aqueous fluids into a pre-existing crustal fault system, prompting release of accumulated stress. The high-pressure fluid injection may have been accommodated by hybrid shear and dilatational failure, as is commonly observed in exhumed hydrothermally affected fault zones. This process has likely occurred repeatedly in Yellowstone as aqueous fluids exsolved from magma migrate into the brittle crust, and it may be a key element in the observed cycles of caldera uplift and subsidence.

  6. Performance of swarm based optimization techniques for designing digital FIR filter: A comparative study

    Directory of Open Access Journals (Sweden)

    I. Sharma

    2016-09-01

    Full Text Available In this paper, a linear phase FIR filter is designed through recently proposed nature inspired optimization algorithm known as Cuckoo search (CS. A comparative study of Cuckoo search (CS, particle swarm optimization (PSO and artificial bee colony (ABC nature inspired optimization methods in the field of linear phase FIR filter design is also presented. For this purpose, an improved L1 weighted error function is formulated in frequency domain, and minimized through CS, PSO and ABC respectively. The error or objective function has a controlling parameter wt which controls the amount of ripple in the desired band of frequency. The performance of FIR filter is examined through three key parameters; Maximum Pass Band Ripple (MPR, Maximum Stopband Ripple (MSR and Stopband Attenuation (As. Comparative study and the simulation results reveal that the designed filter with CS gives better performance in terms of Maximum Stopband Ripple (MSR, and Stopband Attenuation (As for low order filter design, and for higher order it also gives better performance in term of Maximum Passband Ripple (MPR. Superiority of the proposed technique is also shown through comparison with other recently proposed methods.

  7. pso@autodock: a fast flexible molecular docking program based on Swarm intelligence.

    Science.gov (United States)

    Namasivayam, Vigneshwaran; Günther, Robert

    2007-12-01

    On the quest of novel therapeutics, molecular docking methods have proven to be valuable tools for screening large libraries of compounds determining the interactions of potential drugs with the target proteins. A widely used docking approach is the simulation of the docking process guided by a binding energy function. On the basis of the molecular docking program autodock, we present pso@autodock as a tool for fast flexible molecular docking. Our novel Particle Swarm Optimization (PSO) algorithms varCPSO and varCPSO-ls are suited for rapid docking of highly flexible ligands. Thus, a ligand with 23 rotatable bonds was successfully docked within as few as 100 000 computing steps (rmsd = 0.87 A), which corresponds to only 10% of the computing time demanded by autodock. In comparison to other docking techniques as gold 3.0, dock 6.0, flexx 2.2.0, autodock 3.05, and sodock, pso@autodock provides the smallest rmsd values for 12 in 37 protein-ligand complexes. The average rmsd value of 1.4 A is significantly lower then those obtained with the other docking programs, which are all above 2.0 A. Thus, pso@autodock is suggested as a highly efficient docking program in terms of speed and quality for flexible peptide-protein docking and virtual screening studies.

  8. A Novel Maximum Power Point Tracking Algorithm Based on Glowworm Swarm Optimization for Photovoltaic Systems

    Directory of Open Access Journals (Sweden)

    Wenhui Hou

    2016-01-01

    Full Text Available In order to extract the maximum power from PV system, the maximum power point tracking (MPPT technology has always been applied in PV system. At present, various MPPT control methods have been presented. The perturb and observe (P&O and conductance increment methods are the most popular and widely used under the constant irradiance. However, these methods exhibit fluctuations among the maximum power point (MPP. In addition, the changes of the environmental parameters, such as cloud cover, plant shelter, and the building block, will lead to the radiation change and then have a direct effect on the location of MPP. In this paper, a feasible MPPT method is proposed to adapt to the variation of the irradiance. This work applies the glowworm swarm optimization (GSO algorithm to determine the optimal value of a reference voltage in the PV system. The performance of the proposed GSO algorithm is evaluated by comparing it with the conventional P&O method in terms of tracking speed and accuracy by utilizing MATLAB/SIMULINK. The simulation results demonstrate that the tracking capability of the GSO algorithm is superior to that of the traditional P&O algorithm, particularly under low radiance and sudden mutation irradiance conditions.

  9. Robust Weighted Sum Harvested Energy Maximization for SWIPT Cognitive Radio Networks Based on Particle Swarm Optimization.

    Science.gov (United States)

    Tuan, Pham Viet; Koo, Insoo

    2017-10-06

    In this paper, we consider multiuser simultaneous wireless information and power transfer (SWIPT) for cognitive radio systems where a secondary transmitter (ST) with an antenna array provides information and energy to multiple single-antenna secondary receivers (SRs) equipped with a power splitting (PS) receiving scheme when multiple primary users (PUs) exist. The main objective of the paper is to maximize weighted sum harvested energy for SRs while satisfying their minimum required signal-to-interference-plus-noise ratio (SINR), the limited transmission power at the ST, and the interference threshold of each PU. For the perfect channel state information (CSI), the optimal beamforming vectors and PS ratios are achieved by the proposed PSO-SDR in which semidefinite relaxation (SDR) and particle swarm optimization (PSO) methods are jointly combined. We prove that SDR always has a rank-1 solution, and is indeed tight. For the imperfect CSI with bounded channel vector errors, the upper bound of weighted sum harvested energy (WSHE) is also obtained through the S-Procedure. Finally, simulation results demonstrate that the proposed PSO-SDR has fast convergence and better performance as compared to the other baseline schemes.

  10. A methodology based in particle swarm optimization algorithm for preventive maintenance focused in reliability and cost

    International Nuclear Information System (INIS)

    Luz, Andre Ferreira da

    2009-01-01

    In this work, a Particle Swarm Optimization Algorithm (PSO) is developed for preventive maintenance optimization. The proposed methodology, which allows the use flexible intervals between maintenance interventions, instead of considering fixed periods (as usual), allows a better adaptation of scheduling in order to deal with the failure rates of components under aging. Moreover, because of this flexibility, the planning of preventive maintenance becomes a difficult task. Motivated by the fact that the PSO has proved to be very competitive compared to other optimization tools, this work investigates the use of PSO as an alternative tool of optimization. Considering that PSO works in a real and continuous space, it is a challenge to use it for discrete optimization, in which scheduling may comprise variable number of maintenance interventions. The PSO model developed in this work overcome such difficulty. The proposed PSO searches for the best policy for maintaining and considers several aspects, such as: probability of needing repair (corrective maintenance), the cost of such repairs, typical outage times, costs of preventive maintenance, the impact of maintaining the reliability of systems as a whole, and the probability of imperfect maintenance. To evaluate the proposed methodology, we investigate an electro-mechanical system consisting of three pumps and four valves, High Pressure Injection System (HPIS) of a PWR. Results show that PSO is quite efficient in finding the optimum preventive maintenance policies for the HPIS. (author)

  11. Particle swarm approach based on quantum mechanics and harmonic oscillator potential well for economic load dispatch with valve-point effects

    Energy Technology Data Exchange (ETDEWEB)

    dos Santos Coelho, Leandro [Pontifical Catholic University of Parana, PUCPR Industrial and Systems Engineering Graduate Program, PPGEPS, Imaculada Conceicao, 1155, Zip code 80215-901, Curitiba, PR (Brazil); Mariani, Viviana Cocco [Pontifical Catholic University of Parana, PUCPR Mechanical Engineering Graduate Program, PPGEM, Imaculada Conceicao, 1155, Zip code 80215-901, Curitiba, PR (Brazil)

    2008-11-15

    Particle swarm optimization (PSO) algorithm is population-based heuristic global search algorithm inspired by social behavior patterns of organisms that live and interact within large groups. The PSO is based on researches on swarms such as fish schooling and bird flocking. Inspired by the classical PSO method and quantum mechanics theories, this work presents a quantum-inspired version of the PSO (QPSO) using the harmonic oscillator potential well (HQPSO) to solve economic dispatch problems. A 13-units test system with incremental fuel cost function that takes into account the valve-point loading effects is used to illustrate the effectiveness of the proposed HQPSO method compared with the simulation results based on the classical PSO, the QPSO, and other optimization algorithms reported in the literature. (author)

  12. Particle swarm approach based on quantum mechanics and harmonic oscillator potential well for economic load dispatch with valve-point effects

    Energy Technology Data Exchange (ETDEWEB)

    Santos Coelho, Leandro dos [Pontifical Catholic University of Parana, PUCPR Industrial and Systems Engineering Graduate Program, PPGEPS, Imaculada Conceicao, 1155, Zip code 80215-901, Curitiba, PR (Brazil)], E-mail: leandro.coelho@pucpr.br; Mariani, Viviana Cocco [Pontifical Catholic University of Parana, PUCPR Mechanical Engineering Graduate Program, PPGEM, Imaculada Conceicao, 1155, Zip code 80215-901, Curitiba, PR (Brazil)], E-mail: viviana.mariani@pucpr.br

    2008-11-15

    Particle swarm optimization (PSO) algorithm is population-based heuristic global search algorithm inspired by social behavior patterns of organisms that live and interact within large groups. The PSO is based on researches on swarms such as fish schooling and bird flocking. Inspired by the classical PSO method and quantum mechanics theories, this work presents a quantum-inspired version of the PSO (QPSO) using the harmonic oscillator potential well (HQPSO) to solve economic dispatch problems. A 13-units test system with incremental fuel cost function that takes into account the valve-point loading effects is used to illustrate the effectiveness of the proposed HQPSO method compared with the simulation results based on the classical PSO, the QPSO, and other optimization algorithms reported in the literature.

  13. Siting and sizing of distributed generators based on improved simulated annealing particle swarm optimization.

    Science.gov (United States)

    Su, Hongsheng

    2017-12-18

    Distributed power grids generally contain multiple diverse types of distributed generators (DGs). Traditional particle swarm optimization (PSO) and simulated annealing PSO (SA-PSO) algorithms have some deficiencies in site selection and capacity determination of DGs, such as slow convergence speed and easily falling into local trap. In this paper, an improved SA-PSO (ISA-PSO) algorithm is proposed by introducing crossover and mutation operators of genetic algorithm (GA) into SA-PSO, so that the capabilities of the algorithm are well embodied in global searching and local exploration. In addition, diverse types of DGs are made equivalent to four types of nodes in flow calculation by the backward or forward sweep method, and reactive power sharing principles and allocation theory are applied to determine initial reactive power value and execute subsequent correction, thus providing the algorithm a better start to speed up the convergence. Finally, a mathematical model of the minimum economic cost is established for the siting and sizing of DGs under the location and capacity uncertainties of each single DG. Its objective function considers investment and operation cost of DGs, grid loss cost, annual purchase electricity cost, and environmental pollution cost, and the constraints include power flow, bus voltage, conductor current, and DG capacity. Through applications in an IEEE33-node distributed system, it is found that the proposed method can achieve desirable economic efficiency and safer voltage level relative to traditional PSO and SA-PSO algorithms, and is a more effective planning method for the siting and sizing of DGs in distributed power grids.

  14. A Localization Method for Underwater Wireless Sensor Networks Based on Mobility Prediction and Particle Swarm Optimization Algorithms

    Directory of Open Access Journals (Sweden)

    Ying Zhang

    2016-02-01

    Full Text Available Due to their special environment, Underwater Wireless Sensor Networks (UWSNs are usually deployed over a large sea area and the nodes are usually floating. This results in a lower beacon node distribution density, a longer time for localization, and more energy consumption. Currently most of the localization algorithms in this field do not pay enough consideration on the mobility of the nodes. In this paper, by analyzing the mobility patterns of water near the seashore, a localization method for UWSNs based on a Mobility Prediction and a Particle Swarm Optimization algorithm (MP-PSO is proposed. In this method, the range-based PSO algorithm is used to locate the beacon nodes, and their velocities can be calculated. The velocity of an unknown node is calculated by using the spatial correlation of underwater object’s mobility, and then their locations can be predicted. The range-based PSO algorithm may cause considerable energy consumption and its computation complexity is a little bit high, nevertheless the number of beacon nodes is relatively smaller, so the calculation for the large number of unknown nodes is succinct, and this method can obviously decrease the energy consumption and time cost of localizing these mobile nodes. The simulation results indicate that this method has higher localization accuracy and better localization coverage rate compared with some other widely used localization methods in this field.

  15. A Localization Method for Underwater Wireless Sensor Networks Based on Mobility Prediction and Particle Swarm Optimization Algorithms.

    Science.gov (United States)

    Zhang, Ying; Liang, Jixing; Jiang, Shengming; Chen, Wei

    2016-02-06

    Due to their special environment, Underwater Wireless Sensor Networks (UWSNs) are usually deployed over a large sea area and the nodes are usually floating. This results in a lower beacon node distribution density, a longer time for localization, and more energy consumption. Currently most of the localization algorithms in this field do not pay enough consideration on the mobility of the nodes. In this paper, by analyzing the mobility patterns of water near the seashore, a localization method for UWSNs based on a Mobility Prediction and a Particle Swarm Optimization algorithm (MP-PSO) is proposed. In this method, the range-based PSO algorithm is used to locate the beacon nodes, and their velocities can be calculated. The velocity of an unknown node is calculated by using the spatial correlation of underwater object's mobility, and then their locations can be predicted. The range-based PSO algorithm may cause considerable energy consumption and its computation complexity is a little bit high, nevertheless the number of beacon nodes is relatively smaller, so the calculation for the large number of unknown nodes is succinct, and this method can obviously decrease the energy consumption and time cost of localizing these mobile nodes. The simulation results indicate that this method has higher localization accuracy and better localization coverage rate compared with some other widely used localization methods in this field.

  16. Pareto front–based multi-objective real-time traffic signal control model for intersections using particle swarm optimization algorithm

    Directory of Open Access Journals (Sweden)

    Pengpeng Jiao

    2016-08-01

    Full Text Available Real-time traffic control is very important for urban transportation systems. Due to conflicts among different optimization objectives, the existing multi-objective models often convert into single-objective problems through weighted sum method. To obtain real-time signal parameters and evaluation indices, this article puts forward a Pareto front–based multi-objective traffic signal control model using particle swarm optimization algorithm. The article first formulates a control model for intersections based on detected real-time link volumes, with minimum delay time, minimum number of stops, and maximum effective capacity as three objectives. Moreover, this article designs a step-by-step particle swarm optimization algorithm based on Pareto front for solution. Pareto dominance relation and density distance are employed for ranking, tournament selection is used to select and weed out particles, and Pareto front for the signal timing plan is then obtained, including time-varying cycle length and split. Finally, based on actual survey data, scenario analyses determine the optimal parameters of the particle swarm algorithm, comparisons with the current situation and existing models demonstrate the excellent performances, and the experiments incorporating outliers in the input data or total failure of detectors further prove the robustness. Generally, the proposed methodology is effective and robust enough for real-time traffic signal control.

  17. Towards Cost and Comfort Based Hybrid Optimization for Residential Load Scheduling in a Smart Grid

    Directory of Open Access Journals (Sweden)

    Nadeem Javaid

    2017-10-01

    Full Text Available In a smart grid, several optimization techniques have been developed to schedule load in the residential area. Most of these techniques aim at minimizing the energy consumption cost and the comfort of electricity consumer. Conversely, maintaining a balance between two conflicting objectives: energy consumption cost and user comfort is still a challenging task. Therefore, in this paper, we aim to minimize the electricity cost and user discomfort while taking into account the peak energy consumption. In this regard, we implement and analyse the performance of a traditional dynamic programming (DP technique and two heuristic optimization techniques: genetic algorithm (GA and binary particle swarm optimization (BPSO for residential load management. Based on these techniques, we propose a hybrid scheme named GAPSO for residential load scheduling, so as to optimize the desired objective function. In order to alleviate the complexity of the problem, the multi dimensional knapsack is used to ensure that the load of electricity consumer will not escalate during peak hours. The proposed model is evaluated based on two pricing schemes: day-ahead and critical peak pricing for single and multiple days. Furthermore, feasible regions are calculated and analysed to develop a relationship between power consumption, electricity cost, and user discomfort. The simulation results are compared with GA, BPSO and DP, and validate that the proposed hybrid scheme reflects substantial savings in electricity bills with minimum user discomfort. Moreover, results also show a phenomenal reduction in peak power consumption.

  18. A Hybrid PSO-DEFS Based Feature Selection for the Identification of Diabetic Retinopathy.

    Science.gov (United States)

    Balakrishnan, Umarani; Venkatachalapathy, Krishnamurthi; Marimuthu, Girirajkumar S

    2015-01-01

    Diabetic Retinopathy (DR) is an eye disease, which may cause blindness by the upsurge of insulin in blood. The major cause of visual loss in diabetic patient is macular edema. To diagnose and follow up Diabetic Macular Edema (DME), a powerful Optical Coherence Tomography (OCT) technique is used for the clinical assessment. Many existing methods found out the DME affected patients by estimating the fovea thickness. These methods have the issues of lower accuracy and higher time complexity. In order to overwhelm the above limitations, a hybrid approaches based DR detection is introduced in the proposed work. At first, the input image is preprocessed using green channel extraction and median filter. Subsequently, the features are extracted by gradient-based features like Histogram of Oriented Gradient (HOG) with Complete Local Binary Pattern (CLBP). The texture features are concentrated with various rotations to calculate the edges. We present a hybrid feature selection that combines the Particle Swarm Optimization (PSO) and Differential Evolution Feature Selection (DEFS) for minimizing the time complexity. A binary Support Vector Machine (SVM) classifier categorizes the 13 normal and 75 abnormal images from 60 patients. Finally, the patients affected by DR are further classified by Multi-Layer Perceptron (MLP). The experimental results exhibit better performance of accuracy, sensitivity, and specificity than the existing methods.

  19. Tough hybrid ceramic-based material with high strength

    International Nuclear Information System (INIS)

    Guo, Shuqi; Kagawa, Yutaka; Nishimura, Toshiyuki

    2012-01-01

    This study describes a tough and strong hybrid ceramic material consisting of platelet-like zirconium compounds and metal. A mixture of boron carbide and excess zirconium powder was heated to 1900 °C using a liquid-phase reaction sintering technique to produce a platelet-like ZrB 2 -based hybrid ceramic bonded by a thin zirconium layer. The platelet-like ZrB 2 grains were randomly present in the as-sintered hybrid ceramic. Relative to non-hybrid ceramics, the fracture toughness and flexural strength of the hybrid ceramic increased by approximately 2-fold.

  20. Fourier transform and particle swarm optimization based modified LQR algorithm for mitigation of vibrations using magnetorheological dampers

    Science.gov (United States)

    Kumar, Gaurav; Kumar, Ashok

    2017-11-01

    Structural control has gained significant attention in recent times. The standalone issue of power requirement during an earthquake has already been solved up to a large extent by designing semi-active control systems using conventional linear quadratic control theory, and many other intelligent control algorithms such as fuzzy controllers, artificial neural networks, etc. In conventional linear-quadratic regulator (LQR) theory, it is customary to note that the values of the design parameters are decided at the time of designing the controller and cannot be subsequently altered. During an earthquake event, the response of the structure may increase or decrease, depending the quasi-resonance occurring between the structure and the earthquake. In this case, it is essential to modify the value of the design parameters of the conventional LQR controller to obtain optimum control force to mitigate the vibrations due to the earthquake. A few studies have been done to sort out this issue but in all these studies it was necessary to maintain a database of the earthquake. To solve this problem and to find the optimized design parameters of the LQR controller in real time, a fast Fourier transform and particle swarm optimization based modified linear quadratic regulator method is presented here. This method comprises four different algorithms: particle swarm optimization (PSO), the fast Fourier transform (FFT), clipped control algorithm and the LQR. The FFT helps to obtain the dominant frequency for every time window. PSO finds the optimum gain matrix through the real-time update of the weighting matrix R, thereby, dispensing with the experimentation. The clipped control law is employed to match the magnetorheological (MR) damper force with the desired force given by the controller. The modified Bouc-Wen phenomenological model is taken to recognize the nonlinearities in the MR damper. The assessment of the advised method is done by simulation of a three-story structure

  1. Nanomembrane-based mesoscopic superconducting hybrid junctions.

    Science.gov (United States)

    Thurmer, Dominic J; Bof Bufon, Carlos Cesar; Deneke, Christoph; Schmidt, Oliver G

    2010-09-08

    A new method for combining top-down and bottom-up approaches to create superconductor-normal metal-superconductor niobium-based Josephson junctions is presented. Using a rolled-up semiconductor nanomembrane as scaffolding, we are able to create mesoscopic gold filament proximity junctions. These are created by electromigration of gold filaments after inducing an electric field mediated breakdown in the semiconductor nanomembrane, which can generate nanometer sized structures merely using conventional optical lithography techniques. We find that the created point contact junctions exhibit large critical currents of a few milliamps at 4.2 K and an I(c)R(n) product placing their characteristic frequency in the terahertz region. These nanometer-sized filament devices can be further optimized and integrated on a chip for their use in superconductor hybrid electronics circuits.

  2. Particle Swarm Optimization-Based Direct Inverse Control for Controlling the Power Level of the Indonesian Multipurpose Reactor

    Directory of Open Access Journals (Sweden)

    Yoyok Dwi Setyo Pambudi

    2016-01-01

    Full Text Available A neural network-direct inverse control (NN-DIC has been simulated to automatically control the power level of nuclear reactors. This method has been tested on an Indonesian pool type multipurpose reactor, namely, Reaktor Serba Guna-GA Siwabessy (RSG-GAS. The result confirmed that this method still cannot minimize errors and shorten the learning process time. A new method is therefore needed which will improve the performance of the DIC. The objective of this study is to develop a particle swarm optimization-based direct inverse control (PSO-DIC to overcome the weaknesses of the NN-DIC. In the proposed PSO-DIC, the PSO algorithm is integrated into the DIC technique to train the weights of the DIC controller. This integration is able to accelerate the learning process. To improve the performance of the system identification, a backpropagation (BP algorithm is introduced into the PSO algorithm. To show the feasibility and effectiveness of this proposed PSO-DIC technique, a case study on power level control of RSG-GAS is performed. The simulation results confirm that the PSO-DIC has better performance than NN-DIC. The new developed PSO-DIC has smaller steady-state error and less overshoot and oscillation.

  3. Multi-Patches IRIS Based Person Authentication System Using Particle Swarm Optimization and Fuzzy C-Means Clustering

    Science.gov (United States)

    Shekar, B. H.; Bhat, S. S.

    2017-05-01

    Locating the boundary parameters of pupil and iris and segmenting the noise free iris portion are the most challenging phases of an automated iris recognition system. In this paper, we have presented person authentication frame work which uses particle swarm optimization (PSO) to locate iris region and circular hough transform (CHT) to device the boundary parameters. To undermine the effect of the noise presented in the segmented iris region we have divided the candidate region into N patches and used Fuzzy c-means clustering (FCM) to classify the patches into best iris region and not so best iris region (noisy region) based on the probability density function of each patch. Weighted mean Hammimng distance is adopted to find the dissimilarity score between the two candidate irises. We have used Log-Gabor, Riesz and Taylor's series expansion (TSE) filters and combinations of these three for iris feature extraction. To justify the feasibility of the proposed method, we experimented on the three publicly available data sets IITD, MMU v-2 and CASIA v-4 distance.

  4. Optimization of Indoor Thermal Comfort Parameters with the Adaptive Network-Based Fuzzy Inference System and Particle Swarm Optimization Algorithm

    Directory of Open Access Journals (Sweden)

    Jing Li

    2017-01-01

    Full Text Available The goal of this study is to improve thermal comfort and indoor air quality with the adaptive network-based fuzzy inference system (ANFIS model and improved particle swarm optimization (PSO algorithm. A method to optimize air conditioning parameters and installation distance is proposed. The methodology is demonstrated through a prototype case, which corresponds to a typical laboratory in colleges and universities. A laboratory model is established, and simulated flow field information is obtained with the CFD software. Subsequently, the ANFIS model is employed instead of the CFD model to predict indoor flow parameters, and the CFD database is utilized to train ANN input-output “metamodels” for the subsequent optimization. With the improved PSO algorithm and the stratified sequence method, the objective functions are optimized. The functions comprise PMV, PPD, and mean age of air. The optimal installation distance is determined with the hemisphere model. Results show that most of the staff obtain a satisfactory degree of thermal comfort and that the proposed method can significantly reduce the cost of building an experimental device. The proposed methodology can be used to determine appropriate air supply parameters and air conditioner installation position for a pleasant and healthy indoor environment.

  5. Ascent phase trajectory optimization for vehicle with multi-combined cycle engine based on improved particle swarm optimization

    Science.gov (United States)

    Zhou, Hongyu; Wang, Xiaogang; Bai, Yuliang; Cui, Naigang

    2017-11-01

    An improved particle swarm optimization (IPSO) algorithm is proposed to optimize the ascent phase trajectory for vehicle with multi-combined cycle engine. Aerodynamic and thrust models are formulated in couple with flying states and environment. Conventional PSO has advantages in solving complicated optimization problems but has troubles in constraints handling and premature convergence preventing. To handle constraints, a modification in the fitness function of infeasible particles is executed based on the constraints violation and a comparation is executed to choose the better particle according to the fitness. To prevent premature, a diminishing number of particles are chosen to be mutated on the velocity by random times and directions. The ascent trajectory is divided into sub-phases according to engine modes. Different constraints, control parameters and engine models are considered in each sub-phase. Though the proposed algorithm is straightforward in comprehension and implementation, the numerical examples demonstrate that the algorithm has better performance than other PSO variants. In comparation with the commercial software GPOPS, the performance index of IPSO is almost the same as GPOPS but the results are less oscillating and dependent on initial values.

  6. A Novel Adaptive Elite-Based Particle Swarm Optimization Applied to VAR Optimization in Electric Power Systems

    Directory of Open Access Journals (Sweden)

    Ying-Yi Hong

    2014-01-01

    Full Text Available Particle swarm optimization (PSO has been successfully applied to solve many practical engineering problems. However, more efficient strategies are needed to coordinate global and local searches in the solution space when the studied problem is extremely nonlinear and highly dimensional. This work proposes a novel adaptive elite-based PSO approach. The adaptive elite strategies involve the following two tasks: (1 appending the mean search to the original approach and (2 pruning/cloning particles. The mean search, leading to stable convergence, helps the iterative process coordinate between the global and local searches. The mean of the particles and standard deviation of the distances between pairs of particles are utilized to prune distant particles. The best particle is cloned and it replaces the pruned distant particles in the elite strategy. To evaluate the performance and generality of the proposed method, four benchmark functions were tested by traditional PSO, chaotic PSO, differential evolution, and genetic algorithm. Finally, a realistic loss minimization problem in an electric power system is studied to show the robustness of the proposed method.

  7. Big Data: A Parallel Particle Swarm Optimization-Back-Propagation Neural Network Algorithm Based on MapReduce.

    Science.gov (United States)

    Cao, Jianfang; Cui, Hongyan; Shi, Hao; Jiao, Lijuan

    2016-01-01

    A back-propagation (BP) neural network can solve complicated random nonlinear mapping problems; therefore, it can be applied to a wide range of problems. However, as the sample size increases, the time required to train BP neural networks becomes lengthy. Moreover, the classification accuracy decreases as well. To improve the classification accuracy and runtime efficiency of the BP neural network algorithm, we proposed a parallel design and realization method for a particle swarm optimization (PSO)-optimized BP neural network based on MapReduce on the Hadoop platform using both the PSO algorithm and a parallel design. The PSO algorithm was used to optimize the BP neural network's initial weights and thresholds and improve the accuracy of the classification algorithm. The MapReduce parallel programming model was utilized to achieve parallel processing of the BP algorithm, thereby solving the problems of hardware and communication overhead when the BP neural network addresses big data. Datasets on 5 different scales were constructed using the scene image library from the SUN Database. The classification accuracy of the parallel PSO-BP neural network algorithm is approximately 92%, and the system efficiency is approximately 0.85, which presents obvious advantages when processing big data. The algorithm proposed in this study demonstrated both higher classification accuracy and improved time efficiency, which represents a significant improvement obtained from applying parallel processing to an intelligent algorithm on big data.

  8. Swarm formation control utilizing elliptical surfaces and limiting functions.

    Science.gov (United States)

    Barnes, Laura E; Fields, Mary Anne; Valavanis, Kimon P

    2009-12-01

    In this paper, we present a strategy for organizing swarms of unmanned vehicles into a formation by utilizing artificial potential fields that were generated from normal and sigmoid functions. These functions construct the surface on which swarm members travel, controlling the overall swarm geometry and the individual member spacing. Nonlinear limiting functions are defined to provide tighter swarm control by modifying and adjusting a set of control variables that force the swarm to behave according to set constraints, formation, and member spacing. The artificial potential functions and limiting functions are combined to control swarm formation, orientation, and swarm movement as a whole. Parameters are chosen based on desired formation and user-defined constraints. This approach is computationally efficient and scales well to different swarm sizes, to heterogeneous systems, and to both centralized and decentralized swarm models. Simulation results are presented for a swarm of 10 and 40 robots that follow circle, ellipse, and wedge formations. Experimental results are included to demonstrate the applicability of the approach on a swarm of four custom-built unmanned ground vehicles (UGVs).

  9. A Common Coordinates/Heading Direction Generation Method for a Robot Swarm with Only RSSI-Based Ranging

    Directory of Open Access Journals (Sweden)

    Shinsuke Hara

    2009-01-01

    Full Text Available In the motion control of a microrobot swarm, a key issue is how to autonomously generate a set of common coordinates among all robots and how to notify each robot of its heading direction in the generated common coordinates without any special devices for estimating location and bearing. This paper proposes a set of common coordinates and a heading direction generation method for a robot swarm with only received signal strength indicator (RSSI measured through wireless communications. We explain the principle of the proposed method and show some computer simulation results on the location and direction estimation errors. Finally, we demonstrate some experimental results using a swarm composed of five robots with the IEEE 802.15.4 standard as its wireless communication tool.

  10. Setting value optimization method in integration for relay protection based on improved quantum particle swarm optimization algorithm

    Science.gov (United States)

    Yang, Guo Sheng; Wang, Xiao Yang; Li, Xue Dong

    2018-03-01

    With the establishment of the integrated model of relay protection and the scale of the power system expanding, the global setting and optimization of relay protection is an extremely difficult task. This paper presents a kind of application in relay protection of global optimization improved particle swarm optimization algorithm and the inverse time current protection as an example, selecting reliability of the relay protection, selectivity, quick action and flexibility as the four requires to establish the optimization targets, and optimizing protection setting values of the whole system. Finally, in the case of actual power system, the optimized setting value results of the proposed method in this paper are compared with the particle swarm algorithm. The results show that the improved quantum particle swarm optimization algorithm has strong search ability, good robustness, and it is suitable for optimizing setting value in the relay protection of the whole power system.

  11. Do small swarms have an advantage when house hunting? The effect of swarm size on nest-site selection by Apis mellifera.

    Science.gov (United States)

    Schaerf, T M; Makinson, J C; Myerscough, M R; Beekman, M

    2013-10-06

    Reproductive swarms of honeybees are faced with the problem of finding a good site to establish a new colony. We examined the potential effects of swarm size on the quality of nest-site choice through a combination of modelling and field experiments. We used an individual-based model to examine the effects of swarm size on decision accuracy under the assumption that the number of bees actively involved in the decision-making process (scouts) is an increasing function of swarm size. We found that the ability of a swarm to choose the best of two nest sites decreases as swarm size increases when there is some time-lag between discovering the sites, consistent with Janson & Beekman (Janson & Beekman 2007 Proceedings of European Conference on Complex Systems, pp. 204-211.). However, when simulated swarms were faced with a realistic problem of choosing between many nest sites discoverable at all times, larger swarms were more accurate in their decisions than smaller swarms owing to their ability to discover nest sites more rapidly. Our experimental fieldwork showed that large swarms invest a larger number of scouts into the decision-making process than smaller swarms. Preliminary analysis of waggle dances from experimental swarms also suggested that large swarms could indeed discover and advertise nest sites at a faster rate than small swarms.

  12. Hybrid materials based on organic luminophores in inorganic glass matrix

    Science.gov (United States)

    Petrova, O. B.; Avetisov, R. I.; Avetisov, I. Kh.; Mushkalo, O. A.; Khomyakov, A. V.; Cherednichenko, A. G.

    2013-06-01

    Hybrid materials were synthesized based on borate glass matrix and the tris(8-hydroxyquinoline) aluminum (Alq3) organic luminophore, which is used as a green luminophore in OLED devices. The luminescent properties of hybrid materials with 0.02-0.1 wt % of Alq3 in glass were studied. The luminescence peak of the hybrid material is significantly shifted to shorter wavelengths (443 nm versus 518 nm in pure Alq3 powder).

  13. Microemulsion based hybrid biofuels using glycerol monooleate

    International Nuclear Information System (INIS)

    Bora, Plaban; Konwar, Lakhya Jyoti; Deka, Dhanapati

    2016-01-01

    Highlights: • Fuel quality of GMO based MHBFs. • Effect of externally added monoglyceride surfactant (GMO) on fuel characteristics of MHBF. • Structural and dynamic behaviors of GMO based MHBFs. • Can offer strong candidature for future biofuel industry. - Abstract: The present investigation aims to highlighten the effect of monoglyceride surfactant (GMO) on structure and dynamic behavior and other fuel characteristics of microemulsion based hybrid biofuels (MHBFs). Fuel quality of MHBFs formulated using purified GMO (>90%), which was prepared by esterification of glycerol, was investigated in the study. Phase behaviors, droplet size distribution, number of droplets present in the system, average droplet size and average length of surface active agents were studied as a part of structural investigations of the GMO based MHBFs. Diffusion coefficient, energy barrier to droplet coalescence and rate of coalescence of droplets were also investigated for the formulated MHBFs. The number of droplets, length of surface active agent and the diffusion co-efficient were in the ranges of 1.87 × 10 21 –5.66 × 10 21 /m 3 , 0.92–1.07 nm and 1.00 × 10 −11 –1.79 × 10 −11 m 2 /s, respectively. The rate of droplet coalescence was obtained in the range 2.77 × 10 −4 –8.78 × 10 −4 times the collision factor. MHBFs incorporating the glycerol derived bio-based nonionic surfactant GMO exhibited viscosity of 4.12 mm 2 /s (at 40 °C), gross calorific value (GCV) of 39.17 MJ/kg and pour point of −7 °C.

  14. The Swarm Magnetometry Package

    DEFF Research Database (Denmark)

    Merayo, José M.G.; Jørgensen, John Leif; Friis-Christensen, Eigil

    2008-01-01

    The Swarm mission under the ESA's Living Planet Programme is planned for launch in 2010 and consists of a constellation of three satellites at LEO. The prime objective of Swarm is to measure the geomagnetic field with unprecedented accuracy in space and time. The magnetometry package consists...

  15. Classification of Two Class Motor Imagery Tasks Using Hybrid GA-PSO Based K-Means Clustering.

    Science.gov (United States)

    Suraj; Tiwari, Purnendu; Ghosh, Subhojit; Sinha, Rakesh Kumar

    2015-01-01

    Transferring the brain computer interface (BCI) from laboratory condition to meet the real world application needs BCI to be applied asynchronously without any time constraint. High level of dynamism in the electroencephalogram (EEG) signal reasons us to look toward evolutionary algorithm (EA). Motivated by these two facts, in this work a hybrid GA-PSO based K-means clustering technique has been used to distinguish two class motor imagery (MI) tasks. The proposed hybrid GA-PSO based K-means clustering is found to outperform genetic algorithm (GA) and particle swarm optimization (PSO) based K-means clustering techniques in terms of both accuracy and execution time. The lesser execution time of hybrid GA-PSO technique makes it suitable for real time BCI application. Time frequency representation (TFR) techniques have been used to extract the feature of the signal under investigation. TFRs based features are extracted and relying on the concept of event related synchronization (ERD) and desynchronization (ERD) feature vector is formed.

  16. Electric load simulator system control based on adaptive particle swarm optimization wavelet neural network with double sliding modes

    Directory of Open Access Journals (Sweden)

    Chao Wang

    2016-08-01

    Full Text Available In this article, an adaptive particle swarm optimization wavelet neural network with double sliding modes controller is proposed to address the complex nonlinearities and uncertainties in the electric load simulator. The adaptive double sliding modes–particle swarm optimization wavelet neural network algorithm with the self-learning structures and parameters is designed as a torque tracking controller, in which a number of hidden nodes are added and pruned by the structure learning algorithm, and the parameters are online adjusted by the adaptive particle swarm optimization at the same time. Moreover, one conventional sliding mode is introduced to track the time-varying reference command, and the other complementary sliding mode is adopted to attenuate the effect of the approximation error. Furthermore, the relative parameters should comply with some estimation laws on the basis of the Lyapunov theory used to guarantee the system stability. Finally, the simulation experiments are carried out on the hardware-in-the-loop platform for the electric load simulator, the performance of the adaptive double sliding modes–particle swarm optimization wavelet neural network with structure learning is verified compared with some similar control methods. In addition, different amplitudes and frequencies of the reference commands are introduced to further evaluate the effectiveness and robustness of the proposed algorithms.

  17. Multi-objective based on parallel vector evaluated particle swarm optimization for optimal steady-state performance of power systems

    DEFF Research Database (Denmark)

    Vlachogiannis, Ioannis (John); Lee, K Y

    2009-01-01

    In this paper the state-of-the-art extended particle swarm optimization (PSO) methods for solving multi-objective optimization problems are represented. We emphasize in those, the co-evolution technique of the parallel vector evaluated PSO (VEPSO), analysed and applied in a multi-objective problem...

  18. The Swarm Computing Approach to Business Intelligence

    Directory of Open Access Journals (Sweden)

    Schumann Andrew

    2015-07-01

    Full Text Available We have proposed to use some features of swarm behaviours in modelling business processes. Due to these features we deal with a propagation of business processes in all accessible directions. This propagation is involved into our formalization instead of communicating sequential processes. As a result, we have constructed a business process diagram language based on the swarm behavior and an extension of that language in the form of reflexive management language.

  19. A hybrid of traditional telephone service and computer based ...

    African Journals Online (AJOL)

    Abstract. A Hybrid of Traditional Telephony and Internet Telephony is a communications network that integrates the traditional Public Switched Telephone, Network (PSTN) and the Internet Protocol (IP) based packet switched network. In this work various types of hybrid PSTN-IP telephony connections including the currently ...

  20. New MPPT algorithm based on hybrid dynamical theory

    KAUST Repository

    Elmetennani, Shahrazed

    2014-11-01

    This paper presents a new maximum power point tracking algorithm based on the hybrid dynamical theory. A multiceli converter has been considered as an adaptation stage for the photovoltaic chain. The proposed algorithm is a hybrid automata switching between eight different operating modes, which has been validated by simulation tests under different working conditions. © 2014 IEEE.

  1. Design, analysis and modeling of a novel hybrid powertrain system based on hybridized automated manual transmission

    Science.gov (United States)

    Wu, Guang; Dong, Zuomin

    2017-09-01

    Hybrid electric vehicles are widely accepted as a promising short to mid-term technical solution due to noticeably improved efficiency and lower emissions at competitive costs. In recent years, various hybrid powertrain systems were proposed and implemented based on different types of conventional transmission. Power-split system, including Toyota Hybrid System and Ford Hybrid System, are well-known examples. However, their relatively low torque capacity, and the drive of alternative and more advanced designs encouraged other innovative hybrid system designs. In this work, a new type of hybrid powertrain system based hybridized automated manual transmission (HAMT) is proposed. By using the concept of torque gap filler (TGF), this new hybrid powertrain type has the potential to overcome issue of torque gap during gearshift. The HAMT design (patent pending) is described in details, from gear layout and design of gear ratios (EV mode and HEV mode) to torque paths at different gears. As an analytical tool, mutli-body model of vehicle equipped with this HAMT was built to analyze powertrain dynamics at various steady and transient modes. A gearshift was decomposed and analyzed based basic modes. Furthermore, a Simulink-SimDriveline hybrid vehicle model was built for the new transmission, driveline and vehicle modular. Control strategy has also been built to harmonically coordinate different powertrain components to realize TGF function. A vehicle launch simulation test has been completed under 30% of accelerator pedal position to reveal details during gearshift. Simulation results showed that this HAMT can eliminate most torque gap that has been persistent issue of traditional AMT, improving both drivability and performance. This work demonstrated a new type of transmission that features high torque capacity, high efficiency and improved drivability.

  2. A hybrid multi-objective evolutionary algorithm approach for ...

    Indian Academy of Sciences (India)

    V K MANUPATI

    algorithm has been compared to that of multi-objective particle swarm optimization (MOPSO) and conventional non-dominated sorting genetic algorithm (CNSGA-II), and it is found that the proposed multi-objective-based hybrid meta-heuristic produces high-quality solutions. Finally, the results obtained from benchmark ...

  3. A REVIEW OF SWARMING UNMANNED AERIAL VEHICLES

    Directory of Open Access Journals (Sweden)

    CORNEA Mihai

    2016-11-01

    Full Text Available This paper in if fact an overview of state of the art in mobile multi-robot systems as an initial part of our research in implementing a system based on swarm robotics concepts to be used in natural disaster search and rescue missions. The system is to be composed of a group of drones that can detect survivor mobile cell signals and exhibit some other features as well. This paper surveys the swarm robotics research landscape to provide a theoretical background to the implementation and help determine the techniques available to create the system. The Particle swarm optimization (PSO and Glowworm swarm optimization (GSO algorithms are briefly described and there is also insight into Bird flocking behavior and the model behind it

  4. Virtual spring damper method for nonholonomic robotic swarm self-organization and leader following

    Science.gov (United States)

    Wiech, Jakub; Eremeyev, Victor A.; Giorgio, Ivan

    2018-04-01

    In this paper, we demonstrate a method for self-organization and leader following of nonholonomic robotic swarm based on spring damper mesh. By self-organization of swarm robots we mean the emergence of order in a swarm as the result of interactions among the single robots. In other words the self-organization of swarm robots mimics some natural behavior of social animals like ants among others. The dynamics of two-wheel robot is derived, and a relation between virtual forces and robot control inputs is defined in order to establish stable swarm formation. Two cases of swarm control are analyzed. In the first case the swarm cohesion is achieved by virtual spring damper mesh connecting nearest neighboring robots without designated leader. In the second case we introduce a swarm leader interacting with nearest and second neighbors allowing the swarm to follow the leader. The paper ends with numeric simulation for performance evaluation of the proposed control method.

  5. A New Stochastic Technique for Painlevé Equation-I Using Neural Network Optimized with Swarm Intelligence

    Science.gov (United States)

    Raja, Muhammad Asif Zahoor; Khan, Junaid Ali; Ahmad, Siraj-ul-Islam; Qureshi, Ijaz Mansoor

    2012-01-01

    A methodology for solution of Painlevé equation-I is presented using computational intelligence technique based on neural networks and particle swarm optimization hybridized with active set algorithm. The mathematical model of the equation is developed with the help of linear combination of feed-forward artificial neural networks that define the unsupervised error of the model. This error is minimized subject to the availability of appropriate weights of the networks. The learning of the weights is carried out using particle swarm optimization algorithm used as a tool for viable global search method, hybridized with active set algorithm for rapid local convergence. The accuracy, convergence rate, and computational complexity of the scheme are analyzed based on large number of independents runs and their comprehensive statistical analysis. The comparative studies of the results obtained are made with MATHEMATICA solutions, as well as, with variational iteration method and homotopy perturbation method. PMID:22919371

  6. A new stochastic technique for Painlevé equation-I using neural network optimized with swarm intelligence.

    Science.gov (United States)

    Raja, Muhammad Asif Zahoor; Khan, Junaid Ali; Ahmad, Siraj-ul-Islam; Qureshi, Ijaz Mansoor

    2012-01-01

    A methodology for solution of Painlevé equation-I is presented using computational intelligence technique based on neural networks and particle swarm optimization hybridized with active set algorithm. The mathematical model of the equation is developed with the help of linear combination of feed-forward artificial neural networks that define the unsupervised error of the model. This error is minimized subject to the availability of appropriate weights of the networks. The learning of the weights is carried out using particle swarm optimization algorithm used as a tool for viable global search method, hybridized with active set algorithm for rapid local convergence. The accuracy, convergence rate, and computational complexity of the scheme are analyzed based on large number of independents runs and their comprehensive statistical analysis. The comparative studies of the results obtained are made with MATHEMATICA solutions, as well as, with variational iteration method and homotopy perturbation method.

  7. Supervised hybrid feature selection based on PSO and rough sets for medical diagnosis.

    Science.gov (United States)

    Inbarani, H Hannah; Azar, Ahmad Taher; Jothi, G

    2014-01-01

    Medical datasets are often classified by a large number of disease measurements and a relatively small number of patient records. All these measurements (features) are not important or irrelevant/noisy. These features may be especially harmful in the case of relatively small training sets, where this irrelevancy and redundancy is harder to evaluate. On the other hand, this extreme number of features carries the problem of memory usage in order to represent the dataset. Feature Selection (FS) is a solution that involves finding a subset of prominent features to improve predictive accuracy and to remove the redundant features. Thus, the learning model receives a concise structure without forfeiting the predictive accuracy built by using only the selected prominent features. Therefore, nowadays, FS is an essential part of knowledge discovery. In this study, new supervised feature selection methods based on hybridization of Particle Swarm Optimization (PSO), PSO based Relative Reduct (PSO-RR) and PSO based Quick Reduct (PSO-QR) are presented for the diseases diagnosis. The experimental result on several standard medical datasets proves the efficiency of the proposed technique as well as enhancements over the existing feature selection techniques. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  8. Optimization of a Fuzzy-Logic-Control-Based MPPT Algorithm Using the Particle Swarm Optimization Technique

    OpenAIRE

    Po-Chen Cheng; Bo-Rei Peng; Yi-Hua Liu; Yu-Shan Cheng; Jia-Wei Huang

    2015-01-01

    In this paper, an asymmetrical fuzzy-logic-control (FLC)-based maximum power point tracking (MPPT) algorithm for photovoltaic (PV) systems is presented. Two membership function (MF) design methodologies that can improve the effectiveness of the proposed asymmetrical FLC-based MPPT methods are then proposed. The first method can quickly determine the input MF setting values via the power–voltage (P–V) curve of solar cells under standard test conditions (STC). The second method uses the particl...

  9. Survey of Methods and Algorithms of Robot Swarm Aggregation

    Science.gov (United States)

    E Shlyakhov, N.; Vatamaniuk, I. V.; Ronzhin, A. L.

    2017-01-01

    The paper considers the problem of swarm aggregation of autonomous robots with the use of three methods based on the analogy of the behavior of biological objects. The algorithms substantiating the requirements for hardware realization of sensor, computer and network resources and propulsion devices are presented. Techniques for efficiency estimation of swarm aggregation via space-time characteristics are described. The developed model of the robot swarm reconfiguration into a predetermined three-dimensional shape is presented.

  10. Weather forecasting based on hybrid neural model

    Science.gov (United States)

    Saba, Tanzila; Rehman, Amjad; AlGhamdi, Jarallah S.

    2017-11-01

    Making deductions and expectations about climate has been a challenge all through mankind's history. Challenges with exact meteorological directions assist to foresee and handle problems well in time. Different strategies have been investigated using various machine learning techniques in reported forecasting systems. Current research investigates climate as a major challenge for machine information mining and deduction. Accordingly, this paper presents a hybrid neural model (MLP and RBF) to enhance the accuracy of weather forecasting. Proposed hybrid model ensure precise forecasting due to the specialty of climate anticipating frameworks. The study concentrates on the data representing Saudi Arabia weather forecasting. The main input features employed to train individual and hybrid neural networks that include average dew point, minimum temperature, maximum temperature, mean temperature, average relative moistness, precipitation, normal wind speed, high wind speed and average cloudiness. The output layer composed of two neurons to represent rainy and dry weathers. Moreover, trial and error approach is adopted to select an appropriate number of inputs to the hybrid neural network. Correlation coefficient, RMSE and scatter index are the standard yard sticks adopted for forecast accuracy measurement. On individual standing MLP forecasting results are better than RBF, however, the proposed simplified hybrid neural model comes out with better forecasting accuracy as compared to both individual networks. Additionally, results are better than reported in the state of art, using a simple neural structure that reduces training time and complexity.

  11. Hybrid PSO–SVM-based method for forecasting of the remaining useful life for aircraft engines and evaluation of its reliability

    International Nuclear Information System (INIS)

    García Nieto, P.J.; García-Gonzalo, E.; Sánchez Lasheras, F.; Cos Juez, F.J. de

    2015-01-01

    The present paper describes a hybrid PSO–SVM-based model for the prediction of the remaining useful life of aircraft engines. The proposed hybrid model combines support vector machines (SVMs), which have been successfully adopted for regression problems, with the particle swarm optimization (PSO) technique. This optimization technique involves kernel parameter setting in the SVM training procedure, which significantly influences the regression accuracy. However, its use in reliability applications has not been yet widely explored. Bearing this in mind, remaining useful life values have been predicted here by using the hybrid PSO–SVM-based model from the remaining measured parameters (input variables) for aircraft engines with success. A coefficient of determination equal to 0.9034 was obtained when this hybrid PSO–RBF–SVM-based model was applied to experimental data. The agreement of this model with experimental data confirmed its good performance. One of the main advantages of this predictive model is that it does not require information about the previous operation states of the engine. Finally, the main conclusions of this study are exposed. - Highlights: • A hybrid PSO–SVM-based model is built as a predictive model of the RUL values for aircraft engines. • The remaining physical–chemical variables in this process are studied in depth. • The obtained regression accuracy of our method is about 95%. • The results show that PSO–SVM-based model can assist in the diagnosis of the RUL values with accuracy

  12. A Semiactive and Adaptive Hybrid Control System for a Tracked Vehicle Hydropneumatic Suspension Based on Disturbance Identification

    Directory of Open Access Journals (Sweden)

    Shousong Han

    2017-01-01

    Full Text Available The riding conditions for a high-speed tracked vehicle are quite complex. To enhance the adaptability of suspension systems to different riding conditions, a semiactive and self-adaptive hybrid control strategy based on disturbance velocity and frequency identification was proposed. A mathematical model of the semiactive, self-adaptive hybrid suspension control system, along with a performance evaluation function, was established. Based on a two-degree-of-freedom (DOF suspension system, the kinematic relations and frequency zero-crossing detection method were defined, and expressions for the disturbance velocity and disturbance frequency of the road were obtained. Optimal scheduling of the semiactive hybrid damping control gain (csky, cground, chybrid and self-adaptive control gain (cv under different disturbances were realized by exploiting the particle swarm multiobjective optimization algorithm. An experimental study using a carefully designed test rig was performed under a number of typical riding conditions of tracked vehicles, and the results showed that the proposed control strategy is capable of accurately recognizing different disturbances, shifting between control modes (semiactive/self-adaptive, and scheduling the damping control gain according to the disturbance identification outcomes; hence, the proposed strategy could achieve a good trade-off between ride comfort and ride safety and efficiently increase the overall performance of the suspension under various riding conditions.

  13. The Effect of Swarming on a Voltage Potential-Based Conflict Resolution Algorithm

    NARCIS (Netherlands)

    Maas, J.B.; Sunil, E.; Ellerbroek, J.; Hoekstra, J.M.; Tra, M.A.P.

    2016-01-01

    Several conflict resolution algorithms for airborne self-separation rely on principles derived from the repulsive forces that exist between similarly charged particles. This research investigates whether the performance of the Modified Voltage Potential algorithm, which is based on this algorithm,

  14. CM5: A pre-Swarm magnetic field model based upon the comprehensive modeling approach

    DEFF Research Database (Denmark)

    Sabaka, T.; Olsen, Nils; Tyler, Robert

    2014-01-01

    We have developed a model based upon the very successful Comprehensive Modeling (CM) approach using recent CHAMP, Ørsted, SAC-C and observatory hourly-means data from September 2000 to the end of 2013. This CM, called CM5, was derived from the algorithm that will provide a consistent line of Leve...

  15. Hybrid Power Management-Based Vehicle Architecture

    Science.gov (United States)

    Eichenberg, Dennis J.

    2011-01-01

    Hybrid Power Management (HPM) is the integration of diverse, state-of-the-art power devices in an optimal configuration for space and terrestrial applications (s ee figure). The appropriate application and control of the various power devices significantly improves overall system performance and efficiency. The basic vehicle architecture consists of a primary power source, and possibly other power sources, that provides all power to a common energy storage system that is used to power the drive motors and vehicle accessory systems. This architecture also provides power as an emergency power system. Each component is independent, permitting it to be optimized for its intended purpose. The key element of HPM is the energy storage system. All generated power is sent to the energy storage system, and all loads derive their power from that system. This can significantly reduce the power requirement of the primary power source, while increasing the vehicle reliability. Ultracapacitors are ideal for an HPM-based energy storage system due to their exceptionally long cycle life, high reliability, high efficiency, high power density, and excellent low-temperature performance. Multiple power sources and multiple loads are easily incorporated into an HPM-based vehicle. A gas turbine is a good primary power source because of its high efficiency, high power density, long life, high reliability, and ability to operate on a wide range of fuels. An HPM controller maintains optimal control over each vehicle component. This flexible operating system can be applied to all vehicles to considerably improve vehicle efficiency, reliability, safety, security, and performance. The HPM-based vehicle architecture has many advantages over conventional vehicle architectures. Ultracapacitors have a much longer cycle life than batteries, which greatly improves system reliability, reduces life-of-system costs, and reduces environmental impact as ultracapacitors will probably never need to be

  16. Hybrid Carbon-Based Clathrates for Energy Storage

    Directory of Open Access Journals (Sweden)

    Kwai S. Chan

    2018-01-01

    Full Text Available Hybrid carbon–silicon, carbon–nitrogen, and carbon–boron clathrates are new classes of Type I carbon-based clathrates that have been identified by first-principles computational methods by substituting atoms on the carbon clathrate framework with Si, N, and/or B atoms. The hybrid framework is further stabilized by embedding appropriate guest atoms within the cavities of the cage structure. Series of hybrid carbon–silicon, carbon–boron, carbon–nitrogen, and carbon-silicon-nitrogen clathrates have been shown to exhibit small positive values for the energy of formation, indicating that they may be metastable compounds and amenable to fabrication. In this overview article, the energy of formation, elastic properties, and electronic properties of selected hybrid carbon-based clathrates are summarized. Theoretical calculations that explore the potential applications of hybrid carbon-based clathrates as energy storage materials, electronic materials, or hard materials are presented. The computational results identify compositions of hybrid carbon–silicon and carbon–nitrogen clathrates that may be considered as candidate materials for use as either electrode materials for Li-ion batteries or as hydrogen storage materials. Prior processing routes for fabricating selected hybrid carbon-based clathrates are highlighted and the difficulties encountered are discussed.

  17. Prediction of coal grindability based on petrography, proximate and ultimate analysis using neural networks and particle swarm optimization technique

    Energy Technology Data Exchange (ETDEWEB)

    Modarres, Hamid Reza; Kor, Mohammad; Abkhoshk, Emad; Alfi, Alireza; Lower, James C.

    2009-06-15

    In recent years, use of artificial neural networks have increased for estimation of Hardgrove grindability index (HGI) of coals. For training of the neural networks, gradient descent methods such as Backpropagaition (BP) method are used frequently. However they originally showed good performance in some non-linearly separable problems, but have a very slow convergence and can get stuck in local minima. In this paper, to overcome the lack of gradient descent methods, a novel particle swarm optimization and artificial neural network was employed for predicting the HGI of Kentucky coals by featuring eight coal parameters. The proposed approach also compared with two kinds of artificial neural network (generalized regression neural network and back propagation neural network). Results indicate that the neural networks - particle swarm optimization method gave the most accurate HGI prediction.

  18. PSO-Based Smart Grid Application for Sizing and Optimization of Hybrid Renewable Energy Systems.

    Science.gov (United States)

    Mohamed, Mohamed A; Eltamaly, Ali M; Alolah, Abdulrahman I

    2016-01-01

    This paper introduces an optimal sizing algorithm for a hybrid renewable energy system using smart grid load management application based on the available generation. This algorithm aims to maximize the system energy production and meet the load demand with minimum cost and highest reliability. This system is formed by photovoltaic array, wind turbines, storage batteries, and diesel generator as a backup source of energy. Demand profile shaping as one of the smart grid applications is introduced in this paper using load shifting-based load priority. Particle swarm optimization is used in this algorithm to determine the optimum size of the system components. The results obtained from this algorithm are compared with those from the iterative optimization technique to assess the adequacy of the proposed algorithm. The study in this paper is performed in some of the remote areas in Saudi Arabia and can be expanded to any similar regions around the world. Numerous valuable results are extracted from this study that could help researchers and decision makers.

  19. PSO-Based Smart Grid Application for Sizing and Optimization of Hybrid Renewable Energy Systems

    Science.gov (United States)

    Mohamed, Mohamed A.; Eltamaly, Ali M.; Alolah, Abdulrahman I.

    2016-01-01

    This paper introduces an optimal sizing algorithm for a hybrid renewable energy system using smart grid load management application based on the available generation. This algorithm aims to maximize the system energy production and meet the load demand with minimum cost and highest reliability. This system is formed by photovoltaic array, wind turbines, storage batteries, and diesel generator as a backup source of energy. Demand profile shaping as one of the smart grid applications is introduced in this paper using load shifting-based load priority. Particle swarm optimization is used in this algorithm to determine the optimum size of the system components. The results obtained from this algorithm are compared with those from the iterative optimization technique to assess the adequacy of the proposed algorithm. The study in this paper is performed in some of the remote areas in Saudi Arabia and can be expanded to any similar regions around the world. Numerous valuable results are extracted from this study that could help researchers and decision makers. PMID:27513000

  20. Hardwood species classification with DWT based hybrid texture ...

    Indian Academy of Sciences (India)

    Coussement & Van den. Poel 2008). It is robust against over fitting, handles large dataset, computationally efficient, and easy to implement. The effectiveness of the DWT based hybrid texture feature extraction techniques has been observed on the basis ...

  1. MO-FG-BRA-08: Swarm Intelligence-Based Personalized Respiratory Gating in Lung SAbR

    International Nuclear Information System (INIS)

    Modiri, A; Sabouri, P; Sawant, A; Gu, X; Timmerman, R

    2016-01-01

    Purpose: Respiratory gating is widely deployed as a clinical motion-management strategy in lung radiotherapy. In conventional gating, the beam is turned on during a pre-determined phase window; typically, around end-exhalation. In this work, we challenge the notion that end-exhalation is always the optimal gating phase. Specifically, we use a swarm-intelligence-based, inverse planning approach to determine the optimal respiratory phase and MU for each beam with respect to (i) the state of the anatomy at each phase and (ii) the time spent in that state, estimated from long-term monitoring of the patient’s breathing motion. Methods: In a retrospective study of five lung cancer patients, we compared the dosimetric performance of our proposed personalized gating (PG) with that of conventional end-of-exhale gating (CEG) and a previously-developed, fully 4D-optimized plan (combined with MLC tracking delivery). For each patient, respiratory phase probabilities (indicative of the time duration of the phase) were estimated over 2 minutes from lung tumor motion traces recorded previously using the Synchrony system (Accuray Inc.). Based on this information, inverse planning optimization was performed to calculate the optimal respiratory gating phase and MU for each beam. To ensure practical deliverability, each PG beam was constrained to deliver the assigned MU over a time duration comparable to that of CEG delivery. Results: Maximum OAR sparing for the five patients achieved by the PG and the 4D plans compared to CEG plans was: Esophagus Dmax [PG:57%, 4D:37%], Heart Dmax [PG:71%, 4D:87%], Spinal cord Dmax [PG:18%, 4D:68%] and Lung V13 [PG:16%, 4D:31%]. While patients spent the most time in exhalation, the PG-optimization chose end-exhale only for 28% of beams. Conclusion: Our novel gating strategy achieved significant dosimetric improvements over conventional gating, and approached the upper limit represented by fully 4D optimized planning while being significantly simpler

  2. MO-FG-BRA-08: Swarm Intelligence-Based Personalized Respiratory Gating in Lung SAbR

    Energy Technology Data Exchange (ETDEWEB)

    Modiri, A; Sabouri, P; Sawant, A [University of Maryland in Baltimore, Baltimore, MD (United States); Gu, X; Timmerman, R [University of Texas Southwestern Medical Center, Dallas, TX (United States)

    2016-06-15

    Purpose: Respiratory gating is widely deployed as a clinical motion-management strategy in lung radiotherapy. In conventional gating, the beam is turned on during a pre-determined phase window; typically, around end-exhalation. In this work, we challenge the notion that end-exhalation is always the optimal gating phase. Specifically, we use a swarm-intelligence-based, inverse planning approach to determine the optimal respiratory phase and MU for each beam with respect to (i) the state of the anatomy at each phase and (ii) the time spent in that state, estimated from long-term monitoring of the patient’s breathing motion. Methods: In a retrospective study of five lung cancer patients, we compared the dosimetric performance of our proposed personalized gating (PG) with that of conventional end-of-exhale gating (CEG) and a previously-developed, fully 4D-optimized plan (combined with MLC tracking delivery). For each patient, respiratory phase probabilities (indicative of the time duration of the phase) were estimated over 2 minutes from lung tumor motion traces recorded previously using the Synchrony system (Accuray Inc.). Based on this information, inverse planning optimization was performed to calculate the optimal respiratory gating phase and MU for each beam. To ensure practical deliverability, each PG beam was constrained to deliver the assigned MU over a time duration comparable to that of CEG delivery. Results: Maximum OAR sparing for the five patients achieved by the PG and the 4D plans compared to CEG plans was: Esophagus Dmax [PG:57%, 4D:37%], Heart Dmax [PG:71%, 4D:87%], Spinal cord Dmax [PG:18%, 4D:68%] and Lung V13 [PG:16%, 4D:31%]. While patients spent the most time in exhalation, the PG-optimization chose end-exhale only for 28% of beams. Conclusion: Our novel gating strategy achieved significant dosimetric improvements over conventional gating, and approached the upper limit represented by fully 4D optimized planning while being significantly simpler

  3. Time Series Prediction based on Hybrid Neural Networks

    Directory of Open Access Journals (Sweden)

    S. A. Yarushev

    2016-01-01

    Full Text Available In this paper, we suggest to use hybrid approach to time series forecasting problem. In first part of paper, we create a literature review of time series forecasting methods based on hybrid neural networks and neuro-fuzzy approaches. Hybrid neural networks especially effective for specific types of applications such as forecasting or classification problem, in contrast to traditional monolithic neural networks. These classes of problems include problems with different characteristics in different modules. The main part of paper create a detailed overview of hybrid networks benefits, its architectures and performance under traditional neural networks. Hybrid neural networks models for time series forecasting are discussed in the paper. Experiments with modular neural networks are given.

  4. Applied Swarm-based medicine: collecting decision trees for patterns of algorithms analysis.

    Science.gov (United States)

    Panje, Cédric M; Glatzer, Markus; von Rappard, Joscha; Rothermundt, Christian; Hundsberger, Thomas; Zumstein, Valentin; Plasswilm, Ludwig; Putora, Paul Martin

    2017-08-16

    The objective consensus methodology has recently been applied in consensus finding in several studies on medical decision-making among clinical experts or guidelines. The main advantages of this method are an automated analysis and comparison of treatment algorithms of the participating centers which can be performed anonymously. Based on the experience from completed consensus analyses, the main steps for the successful implementation of the objective consensus methodology were identified and discussed among the main investigators. The following steps for the successful collection and conversion of decision trees were identified and defined in detail: problem definition, population selection, draft input collection, tree conversion, criteria adaptation, problem re-evaluation, results distribution and refinement, tree finalisation, and analysis. This manuscript provides information on the main steps for successful collection of decision trees and summarizes important aspects at each point of the analysis.

  5. Geomagnetism mission concepts after Swarm

    International Nuclear Information System (INIS)

    Michael Purucker; Sabaka, T.J.; Richard Holme

    2009-01-01

    Complete text of publication follows. While planning for the ESA Swarm mission has been a primary focus of geomagnetism over the past decade, the long time lags necessary for satellite missions dictate that planning for the next mission begin even before the launch of Swarm. Swarm will measure, for the first time, the E-W gradient of the magnetic field. In 2006, NASA launched a minisatellite magnetometer constellation mission (ST-5) to test technologies and software. The ST-5 constellation made the first along-track gradient measurements. One of the concepts under consideration for missions after Swarm is to systematically measure spatial gradients. The radial gradient could be measured using either an 'uncontrolled' fleet of satellites at different altitudes and local times, or by two or more satellites in a cartwheel configuration. Small-scale static features (degrees > 13) of the core field remain unknown because of their overlap with the crustal field, but they are of critical importance in core flow modeling. To what extent can small-scale features of the core field be separated from longer-wavelength crustal fields using radial gradients? We discuss this question in the context of a model study in which we attempt to recover separate core and crustal fields. The long wavelength crustal field model input is based on the seismic 3SMAC model, updated using MF-6. The core field model input is based on CHAOS-2. We will discuss the extent to which such a separation is ill-posed, and dependent on details of the parameterization. We will also discuss the extent to which such a separation is affected by the presence of annihilators.

  6. Longitudinal parameter identification of a small unmanned aerial vehicle based on modified particle swarm optimization

    Directory of Open Access Journals (Sweden)

    Jiang Tieying

    2015-06-01

    Full Text Available This paper describes a longitudinal parameter identification procedure for a small unmanned aerial vehicle (UAV through modified particle swam optimization (PSO. The procedure is demonstrated using a small UAV equipped with only an micro-electro-mechanical systems (MEMS inertial measuring element and a global positioning system (GPS receiver to provide test information. A small UAV longitudinal parameter mathematical model is derived and the modified method is proposed based on PSO with selective particle regeneration (SRPSO. Once modified PSO is applied to the mathematical model, the simulation results show that the mathematical model is correct, and aerodynamic parameters and coefficients of the propeller can be identified accurately. Results are compared with those of PSO and SRPSO and the comparison shows that the proposed method is more robust and faster than the other methods for the longitudinal parameter identification of the small UAV. Some parameter identification results are affected slightly by noise, but the identification results are very good overall. Eventually, experimental validation is employed to test the proposed method, which demonstrates the usefulness of this method.

  7. Performance analysis of switching based hybrid FSO/RF transmission

    KAUST Repository

    Usman, Muneer

    2014-09-01

    Hybrid free space optical (FSO)/ radio frequency (RF) systems have emerged as a promising solution for high data rate wireless back haul.We present and analyze a switching based transmission scheme for hybrid FSO/RF system. Specifically, either FSO or RF link will be active at a certain time instance, with FSO link enjoying a higher priority. Analytical expressions have been obtained for the outage probability, average bit error rate and ergodic capacity for the resulting system. Numerical examples are presented to compare the performance of the hybrid scheme with FSO only scenario.

  8. Hybrid structures based on quantum dots and graphene nanobelts

    Science.gov (United States)

    Reznik, I. A.; Gromova, Yu. A.; Zlatov, A. S.; Baranov, M. A.; Orlova, A. O.; Moshkalev, S. A.; Maslov, V. G.; Baranov, A. V.; Fedorov, A. V.

    2017-01-01

    Luminescence and photoelectric properties of hybrid structures based on CdSe/ZnS quantum dots (QDs) and multilayer graphene have been investigated. A correlation between the luminescence quantum yield of QDs and their photoelectric properties in hybrid structures is established. It is shown that a decrease in the QD luminescence quantum yield due to adsorption of 1-(2-pyridylazo)-2-naphtol azo dye molecules onto the QD surface and a photoinduced increase in the QD luminescence quantum yield are accompanied by a symbate change in the hybrid structure photoconductivity.

  9. Estimating SPT-N Value Based on Soil Resistivity using Hybrid ANN-PSO Algorithm

    Science.gov (United States)

    Nur Asmawisham Alel, Mohd; Ruben Anak Upom, Mark; Asnida Abdullah, Rini; Hazreek Zainal Abidin, Mohd

    2018-04-01

    Standard Penetration Resistance (N value) is used in many empirical geotechnical engineering formulas. Meanwhile, soil resistivity is a measure of soil’s resistance to electrical flow. For a particular site, usually, only a limited N value data are available. In contrast, resistivity data can be obtained extensively. Moreover, previous studies showed evidence of a correlation between N value and resistivity value. Yet, no existing method is able to interpret resistivity data for estimation of N value. Thus, the aim is to develop a method for estimating N-value using resistivity data. This study proposes a hybrid Artificial Neural Network-Particle Swarm Optimization (ANN-PSO) method to estimate N value using resistivity data. Five different ANN-PSO models based on five boreholes were developed and analyzed. The performance metrics used were the coefficient of determination, R2 and mean absolute error, MAE. Analysis of result found that this method can estimate N value (R2 best=0.85 and MAEbest=0.54) given that the constraint, Δ {\\bar{l}}ref, is satisfied. The results suggest that ANN-PSO method can be used to estimate N value with good accuracy.

  10. Design of underwater robot lines based on a hybrid automatic optimization strategy

    Science.gov (United States)

    Lyu, Wenjing; Luo, Weilin

    2014-09-01

    In this paper, a hybrid automatic optimization strategy is proposed for the design of underwater robot lines. Isight is introduced as an integration platform. The construction of this platform is based on the user programming and several commercial software including UG6.0, GAMBIT2.4.6 and FLUENT12.0. An intelligent parameter optimization method, the particle swarm optimization, is incorporated into the platform. To verify the strategy proposed, a simulation is conducted on the underwater robot model 5470, which originates from the DTRC SUBOFF project. With the automatic optimization platform, the minimal resistance is taken as the optimization goal; the wet surface area as the constraint condition; the length of the fore-body, maximum body radius and after-body's minimum radius as the design variables. With the CFD calculation, the RANS equations and the standard turbulence model are used for direct numerical simulation. By analyses of the simulation results, it is concluded that the platform is of high efficiency and feasibility. Through the platform, a variety of schemes for the design of the lines are generated and the optimal solution is achieved. The combination of the intelligent optimization algorithm and the numerical simulation ensures a global optimal solution and improves the efficiency of the searching solutions.

  11. Hybrid method for designing digital FIR filters based on fractional derivative constraints.

    Science.gov (United States)

    Baderia, Kuldeep; Kumar, Anil; Kumar Singh, Girish

    2015-09-01

    In this manuscript, a hybrid approach based on Lagrange multiplier method and cuckoo search (CS) optimization technique is proposed for the design of linear phase finite impulse response (FIR) filters using fractional derivative constraints. In the proposed method, FIR filter is designed by optimizing the integral squares in passband and stopband from ideal response such that the fractional derivatives of designed filter response become zero at a given frequency point. Lagrange multiplier method is exploited for finding the optimized filter coefficients. Optimal value of fractional derivative constraints for optimized filter coefficients are determined by minimizing the objective function constructed using a sum of maximum passband ripple and maximum stopband ripple in frequency domain using CS algorithm. Performance of the proposed method is evaluated by passband error (ϕ(p)), stopband error (ϕ(s)), stopband attenuation (A(s)), maximum passband ripple (MPR), maximum stopband ripple (MSR) and CPU time. A comparative study of the performance of particle swarm optimization (PSO) and artificial bee colony (ABC) for designing FIR filters using the proposed method is also made. Copyright © 2015 ISA. Published by Elsevier Ltd. All rights reserved.

  12. Crop Classification by Forward Neural Network with Adaptive Chaotic Particle Swarm Optimization

    Directory of Open Access Journals (Sweden)

    Yudong Zhang

    2011-05-01

    Full Text Available This paper proposes a hybrid crop classifier for polarimetric synthetic aperture radar (SAR images. The feature sets consisted of span image, the H/A/α decomposition, and the gray-level co-occurrence matrix (GLCM based texture features. Then, the features were reduced by principle component analysis (PCA. Finally, a two-hidden-layer forward neural network (NN was constructed and trained by adaptive chaotic particle swarm optimization (ACPSO. K-fold cross validation was employed to enhance generation. The experimental results on Flevoland sites demonstrate the superiority of ACPSO to back-propagation (BP, adaptive BP (ABP, momentum BP (MBP, Particle Swarm Optimization (PSO, and Resilient back-propagation (RPROP methods. Moreover, the computation time for each pixel is only 1.08 × 10−7 s.

  13. Luminescent hybrid materials based on laponite clay.

    Science.gov (United States)

    Li, Huanrong; Li, Man; Wang, Yu; Zhang, Wenjun

    2014-08-11

    The spectroscopic behavior of ionic Eu(3+) or Tb(3+) complexes of an aromatic carboxyl-functionalized organic salt as well as those of the hybrid materials derived from adsorption of the ionic complexes on Laponite clay are reported. X-ray diffraction (XRD) patterns suggest that the complexes are mainly adsorbed on the outer surfaces of the Laponite disks rather than intercalated within the interlayer spaces. Photophysical data showed that the energy-transfer efficiency from the ligand to Eu(3+) ions in the hybrid material is increased remarkably with respect to the corresponding ionic complex. The hybrid material containing the Eu(3+) complex shows bright red emission from the prominent (5) D0 →(7) F2 transition of Eu(3+) ions, and that containing the Tb(3+) complex exhibits bright green emission due to the dominant (5) D4 →(7) F5 transition of Tb(3+) ions. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Multi-Sensor Detection with Particle Swarm Optimization for Time-Frequency Coded Cooperative WSNs Based on MC-CDMA for Underground Coal Mines

    Directory of Open Access Journals (Sweden)

    Jingjing Xu

    2015-08-01

    Full Text Available In this paper, a wireless sensor network (WSN technology adapted to underground channel conditions is developed, which has important theoretical and practical value for safety monitoring in underground coal mines. According to the characteristics that the space, time and frequency resources of underground tunnel are open, it is proposed to constitute wireless sensor nodes based on multicarrier code division multiple access (MC-CDMA to make full use of these resources. To improve the wireless transmission performance of source sensor nodes, it is also proposed to utilize cooperative sensors with good channel conditions from the sink node to assist source sensors with poor channel conditions. Moreover, the total power of the source sensor and its cooperative sensors is allocated on the basis of their channel conditions to increase the energy efficiency of the WSN. To solve the problem that multiple access interference (MAI arises when multiple source sensors transmit monitoring information simultaneously, a kind of multi-sensor detection (MSD algorithm with particle swarm optimization (PSO, namely D-PSO, is proposed for the time-frequency coded cooperative MC-CDMA WSN. Simulation results show that the average bit error rate (BER performance of the proposed WSN in an underground coal mine is improved significantly by using wireless sensor nodes based on MC-CDMA, adopting time-frequency coded cooperative transmission and D-PSO algorithm with particle swarm optimization.

  15. Multi-Sensor Detection with Particle Swarm Optimization for Time-Frequency Coded Cooperative WSNs Based on MC-CDMA for Underground Coal Mines.

    Science.gov (United States)

    Xu, Jingjing; Yang, Wei; Zhang, Linyuan; Han, Ruisong; Shao, Xiaotao

    2015-08-27

    In this paper, a wireless sensor network (WSN) technology adapted to underground channel conditions is developed, which has important theoretical and practical value for safety monitoring in underground coal mines. According to the characteristics that the space, time and frequency resources of underground tunnel are open, it is proposed to constitute wireless sensor nodes based on multicarrier code division multiple access (MC-CDMA) to make full use of these resources. To improve the wireless transmission performance of source sensor nodes, it is also proposed to utilize cooperative sensors with good channel conditions from the sink node to assist source sensors with poor channel conditions. Moreover, the total power of the source sensor and its cooperative sensors is allocated on the basis of their channel conditions to increase the energy efficiency of the WSN. To solve the problem that multiple access interference (MAI) arises when multiple source sensors transmit monitoring information simultaneously, a kind of multi-sensor detection (MSD) algorithm with particle swarm optimization (PSO), namely D-PSO, is proposed for the time-frequency coded cooperative MC-CDMA WSN. Simulation results show that the average bit error rate (BER) performance of the proposed WSN in an underground coal mine is improved significantly by using wireless sensor nodes based on MC-CDMA, adopting time-frequency coded cooperative transmission and D-PSO algorithm with particle swarm optimization.

  16. Bond graph model-based fault diagnosis of hybrid systems

    CERN Document Server

    Borutzky, Wolfgang

    2015-01-01

    This book presents a bond graph model-based approach to fault diagnosis in mechatronic systems appropriately represented by a hybrid model. The book begins by giving a survey of the fundamentals of fault diagnosis and failure prognosis, then recalls state-of-art developments referring to latest publications, and goes on to discuss various bond graph representations of hybrid system models, equations formulation for switched systems, and simulation of their dynamic behavior. The structured text: • focuses on bond graph model-based fault detection and isolation in hybrid systems; • addresses isolation of multiple parametric faults in hybrid systems; • considers system mode identification; • provides a number of elaborated case studies that consider fault scenarios for switched power electronic systems commonly used in a variety of applications; and • indicates that bond graph modelling can also be used for failure prognosis. In order to facilitate the understanding of fault diagnosis and the presented...

  17. Evolutionary swarm neural network game engine for Capture Go.

    Science.gov (United States)

    Cai, Xindi; Venayagamoorthy, Ganesh K; Wunsch, Donald C

    2010-03-01

    Evaluation of the current board position is critical in computer game engines. In sufficiently complex games, such a task is too difficult for a traditional brute force search to accomplish, even when combined with expert knowledge bases. This motivates the investigation of alternatives. This paper investigates the combination of neural networks, particle swarm optimization (PSO), and evolutionary algorithms (EAs) to train a board evaluator from zero knowledge. By enhancing the survivors of an EA with PSO, the hybrid algorithm successfully trains the high-dimensional neural networks to provide an evaluation of the game board through self-play. Experimental results, on the benchmark game of Capture Go, demonstrate that the hybrid algorithm can be more powerful than its individual parts, with the system playing against EA and PSO trained game engines. Also, the winning results of tournaments against a Hill-Climbing trained game engine confirm that the improvement comes from the hybrid algorithm itself. The hybrid game engine is also demonstrated against a hand-coded defensive player and a web player. Copyright 2009 Elsevier Ltd. All rights reserved.

  18. Reconciling ocean mass content change based on direct and inverse approaches by utilizing data from GRACE, altimetry and Swarm

    Science.gov (United States)

    Rietbroek, R.; Uebbing, B.; Lück, C.; Kusche, J.

    2017-12-01

    Ocean mass content (OMC) change due to the melting of the ice-sheets in Greenland and Antarctica, melting of glaciers and changes in terrestrial hydrology is a major contributor to present-day sea level rise. Since 2002, the GRACE satellite mission serves as a valuable tool for directly measuring the variations in OMC. As GRACE has almost reached the end of its lifetime, efforts are being made to utilize the Swarm mission for the recovery of low degree time-variable gravity fields to bridge a possible gap until the GRACE-FO mission and to fill up periods where GRACE data was not existent. To this end we compute Swarm monthly normal equations and spherical harmonics that are found competitive to other solutions. In addition to directly measuring the OMC, combination of GRACE gravity data with altimetry data in a global inversion approach allows to separate the total sea level change into individual mass-driven and steric contributions. However, published estimates of OMC from the direct and inverse methods differ not only depending on the time window, but also are influenced by numerous post-processing choices. Here, we will look into sources of such differences between direct and inverse approaches and evaluate the capabilities of Swarm to derive OMC. Deriving time series of OMC requires several processing steps; choosing a GRACE (and altimetry) product, data coverage, masks and filters to be applied in either spatial or spectral domain, corrections related to spatial leakage, GIA and geocenter motion. In this study, we compare and quantify the effects of the different processing choices of the direct and inverse methods. Our preliminary results point to the GIA correction as the major source of difference between the two approaches.

  19. A nonlinear support vector machine model with hard penalty function based on glowworm swarm optimization for forecasting daily global solar radiation

    International Nuclear Information System (INIS)

    Jiang, He; Dong, Yao

    2016-01-01

    Highlights: • Eclat data mining algorithm is used to determine the possible predictors. • Support vector machine is converted into a ridge regularization problem. • Hard penalty selects the number of radial basis functions to simply the structure. • Glowworm swarm optimization is utilized to determine the optimal parameters. - Abstract: For a portion of the power which is generated by grid connected photovoltaic installations, an effective solar irradiation forecasting approach must be crucial to ensure the quality and the security of power grid. This paper develops and investigates a novel model to forecast 30 daily global solar radiation at four given locations of the United States. Eclat data mining algorithm is first presented to discover association rules between solar radiation and several meteorological factors laying a theoretical foundation for these correlative factors as input vectors. An effective and innovative intelligent optimization model based on nonlinear support vector machine and hard penalty function is proposed to forecast solar radiation by converting support vector machine into a regularization problem with ridge penalty, adding a hard penalty function to select the number of radial basis functions, and using glowworm swarm optimization algorithm to determine the optimal parameters of the model. In order to illustrate our validity of the proposed method, the datasets at four sites of the United States are split to into training data and test data, separately. The experiment results reveal that the proposed model delivers the best forecasting performances comparing with other competitors.

  20. Adaptive swarm cluster-based dynamic multi-objective synthetic minority oversampling technique algorithm for tackling binary imbalanced datasets in biomedical data classification.

    Science.gov (United States)

    Li, Jinyan; Fong, Simon; Sung, Yunsick; Cho, Kyungeun; Wong, Raymond; Wong, Kelvin K L

    2016-01-01

    An imbalanced dataset is defined as a training dataset that has imbalanced proportions of data in both interesting and uninteresting classes. Often in biomedical applications, samples from the stimulating class are rare in a population, such as medical anomalies, positive clinical tests, and particular diseases. Although the target samples in the primitive dataset are small in number, the induction of a classification model over such training data leads to poor prediction performance due to insufficient training from the minority class. In this paper, we use a novel class-balancing method named adaptive swarm cluster-based dynamic multi-objective synthetic minority oversampling technique (ASCB_DmSMOTE) to solve this imbalanced dataset problem, which is common in biomedical applications. The proposed method combines under-sampling and over-sampling into a swarm optimisation algorithm. It adaptively selects suitable parameters for the rebalancing algorithm to find the best solution. Compared with the other versions of the SMOTE algorithm, significant improvements, which include higher accuracy and credibility, are observed with ASCB_DmSMOTE. Our proposed method tactfully combines two rebalancing techniques together. It reasonably re-allocates the majority class in the details and dynamically optimises the two parameters of SMOTE to synthesise a reasonable scale of minority class for each clustered sub-imbalanced dataset. The proposed methods ultimately overcome other conventional methods and attains higher credibility with even greater accuracy of the classification model.

  1. Biomarker Discovery Based on Hybrid Optimization Algorithm and Artificial Neural Networks on Microarray Data for Cancer Classification.

    Science.gov (United States)

    Moteghaed, Niloofar Yousefi; Maghooli, Keivan; Pirhadi, Shiva; Garshasbi, Masoud

    2015-01-01

    The improvement of high-through-put gene profiling based microarrays technology has provided monitoring the expression value of thousands of genes simultaneously. Detailed examination of changes in expression levels of genes can help physicians to have efficient diagnosing, classification of tumors and cancer's types as well as effective treatments. Finding genes that can classify the group of cancers correctly based on hybrid optimization algorithms is the main purpose of this paper. In this paper, a hybrid particle swarm optimization and genetic algorithm method are used for gene selection and also artificial neural network (ANN) is adopted as the classifier. In this work, we have improved the ability of the algorithm for the classification problem by finding small group of biomarkers and also best parameters of the classifier. The proposed approach is tested on three benchmark gene expression data sets: Blood (acute myeloid leukemia, acute lymphoblastic leukemia), colon and breast datasets. We used 10-fold cross-validation to achieve accuracy and also decision tree algorithm to find the relation between the biomarkers for biological point of view. To test the ability of the trained ANN models to categorize the cancers, we analyzed additional blinded samples that were not previously used for the training procedure. Experimental results show that the proposed method can reduce the dimension of the data set and confirm the most informative gene subset and improve classification accuracy with best parameters based on datasets.

  2. From organized internal traffic to collective navigation of bacterial swarms

    International Nuclear Information System (INIS)

    Ariel, Gil; Shklarsh, Adi; Kalisman, Oren; Ben-Jacob, Eshel; Ingham, Colin

    2013-01-01

    Bacterial swarming resulting in collective navigation over surfaces provides a valuable example of cooperative colonization of new territories. The social bacterium Paenibacillus vortex exhibits successful and diverse swarming strategies. When grown on hard agar surfaces with peptone, P. vortex develops complex colonies of vortices (rotating bacterial aggregates). In contrast, during growth on Mueller–Hinton broth gelled into a soft agar surface, a new strategy of multi-level organization is revealed: the colonies are organized into a special network of swarms (or ‘snakes’ of a fraction of millimeter in width) with intricate internal traffic. More specifically, cell movement is organized in two or three lanes of bacteria traveling between the back and the front of the swarm. This special form of cellular logistics suggests new methods in which bacteria can share resources and risk while searching for food or migrating into new territories. While the vortices-based organization on hard agar surfaces has been modeled before, here, we introduce a new multi-agent bacterial swarming model devised to capture the swarms-based organization on soft surfaces. We test two putative generic mechanisms that may underlie the observed swarming logistics: (i) chemo-activated taxis in response to chemical cues and (ii) special align-and-push interactions between the bacteria and the boundary of the layer of lubricant collectively generated by the swarming bacteria. Using realistic parameters, the model captures the observed phenomena with semi-quantitative agreement in terms of the velocity as well as the dynamics of the swarm and its envelope. This agreement implies that the bacteria interactions with the swarm boundary play a crucial role in mediating the interplay between the collective movement of the swarm and the internal traffic dynamics. (paper)

  3. Quinoline-Based Hybrid Compounds with Antimalarial Activity

    Directory of Open Access Journals (Sweden)

    Xhamla Nqoro

    2017-12-01

    Full Text Available The application of quinoline-based compounds for the treatment of malaria infections is hampered by drug resistance. Drug resistance has led to the combination of quinolines with other classes of antimalarials resulting in enhanced therapeutic outcomes. However, the combination of antimalarials is limited by drug-drug interactions. In order to overcome the aforementioned factors, several researchers have reported hybrid compounds prepared by reacting quinoline-based compounds with other compounds via selected functionalities. This review will focus on the currently reported quinoline-based hybrid compounds and their preclinical studies.

  4. Hybrid materials based on lanthanide organic complexes: a review.

    Science.gov (United States)

    Feng, Jing; Zhang, Hongjie

    2013-01-07

    A great deal of research has been carried out on lanthanide organic complex-based organic-inorganic hybrid materials in the last decade. This critical review begins with a formulation of the fundamentals of lanthanide organic complex luminescence, and presents various current designed ideas, synthetic routes, luminescence behaviors and potentials of the latest advanced (a) sol-gel materials, (b) mesoporous materials, (c) titania materials, (d) ionic liquids and ionogels, (e) polymers, and (f) bifunctional magnetic-optical composites based on lanthanide organic complexes. Finally, challenges and opportunities for further improvement of organic-inorganic hybrid luminescent materials based on lanthanide organic complexes will be discussed.

  5. Multispacecraft current estimates at swarm

    DEFF Research Database (Denmark)

    Dunlop, M. W.; Yang, Y.-Y.; Yang, J.-Y.

    2015-01-01

    During the first several months of the three-spacecraft Swarm mission all three spacecraft camerepeatedly into close alignment, providing an ideal opportunity for validating the proposed dual-spacecraftmethod for estimating current density from the Swarm magnetic field data. Two of the Swarm...

  6. Novelty-driven Particle Swarm Optimization

    DEFF Research Database (Denmark)

    Galvao, Diana; Lehman, Joel Anthony; Urbano, Paulo

    2015-01-01

    Particle Swarm Optimization (PSO) is a well-known population-based optimization algorithm. Most often it is applied to optimize objective-based fitness functions that reward progress towards a desired objective or behavior. As a result, search increasingly focuses on higher-fitness areas. However......, in problems with many local optima, such focus often leads to premature convergence that precludes reaching the intended objective. To remedy this problem in certain types of domains, this paper introduces Novelty-driven Particle Swarm Optimization (NdPSO), which is motivated by the novelty search algorithm...... in genetic programming, this paper implements NdPSO as an extension of the grammatical swarm method, which combines PSO with genetic programming. The resulting NdPSO implementation is tested in three different domains representative of those in which it might provide advantage over objective-driven PSO...

  7. Multi-objective swarm intelligence theoretical advances and applications

    CERN Document Server

    Jagadev, Alok; Panda, Mrutyunjaya

    2015-01-01

    The aim of this book is to understand the state-of-the-art theoretical and practical advances of swarm intelligence. It comprises seven contemporary relevant chapters. In chapter 1, a review of Bacteria Foraging Optimization (BFO) techniques for both single and multiple criterions problem is presented. A survey on swarm intelligence for multiple and many objectives optimization is presented in chapter 2 along with a topical study on EEG signal analysis. Without compromising the extensive simulation study, a comparative study of variants of MOPSO is provided in chapter 3. Intractable problems like subset and job scheduling problems are discussed in chapters 4 and 7 by different hybrid swarm intelligence techniques. An attempt to study image enhancement by ant colony optimization is made in chapter 5. Finally, chapter 7 covers the aspect of uncertainty in data by hybrid PSO.       

  8. Recent advances in swarm intelligence and evolutionary computation

    CERN Document Server

    2015-01-01

    This timely review volume summarizes the state-of-the-art developments in nature-inspired algorithms and applications with the emphasis on swarm intelligence and bio-inspired computation. Topics include the analysis and overview of swarm intelligence and evolutionary computation, hybrid metaheuristic algorithms, bat algorithm, discrete cuckoo search, firefly algorithm, particle swarm optimization, and harmony search as well as convergent hybridization. Application case studies have focused on the dehydration of fruits and vegetables by the firefly algorithm and goal programming, feature selection by the binary flower pollination algorithm, job shop scheduling, single row facility layout optimization, training of feed-forward neural networks, damage and stiffness identification, synthesis of cross-ambiguity functions by the bat algorithm, web document clustering, truss analysis, water distribution networks, sustainable building designs and others. As a timely review, this book can serve as an ideal reference f...

  9. Product demand forecasts using wavelet kernel support vector machine and particle swarm optimization in manufacture system

    Science.gov (United States)

    Wu, Qi

    2010-03-01

    Demand forecasts play a crucial role in supply chain management. The future demand for a certain product is the basis for the respective replenishment systems. Aiming at demand series with small samples, seasonal character, nonlinearity, randomicity and fuzziness, the existing support vector kernel does not approach the random curve of the sales time series in the space (quadratic continuous integral space). In this paper, we present a hybrid intelligent system combining the wavelet kernel support vector machine and particle swarm optimization for demand forecasting. The results of application in car sale series forecasting show that the forecasting approach based on the hybrid PSOWv-SVM model is effective and feasible, the comparison between the method proposed in this paper and other ones is also given, which proves that this method is, for the discussed example, better than hybrid PSOv-SVM and other traditional methods.

  10. A States of Matter Search-Based Approach for Solving the Problem of Intelligent Power Allocation in Plug-in Hybrid Electric Vehicles

    Directory of Open Access Journals (Sweden)

    Arturo Valdivia-Gonzalez

    2017-01-01

    Full Text Available Recently, many researchers have proved that the electrification of the transport sector is a key for reducing both the emissions of green-house pollutants and the dependence on oil for transportation. As a result, Plug-in Hybrid Electric Vehicles (or PHEVs are receiving never before seen increased attention. Consequently, large-scale penetration of PHEVs into the market is expected to take place in the near future, however, an unattended increase in the PHEVs needs may cause several technical problems which could potentially compromise the stability of power systems. As a result of the growing necessity for addressing such issues, topics related to the optimization of PHEVs’ charging infrastructures have captured the attention of many researchers. Related to this, several state-of-the-art swarm optimization methods (such as the well-known Particle Swarm Optimization (PSO or the recently proposed Gravitational Search Algorithm (GSA approach have been successfully applied in the optimization of the average State of Charge (SoC, which represents one of the most important performance indicators in the context of PHEVs’ intelligent power allocation. Many of these swarm optimization methods, however, are known to be subject to several critical flaws, including premature convergence and a lack of balance between the exploration and exploitation of solutions. Such problems are usually related to the evolutionary operators employed by each of the methods on the exploration and exploitation of new solutions. In this paper, the recently proposed States of Matter Search (SMS swarm optimization method is proposed for maximizing the average State of Charge of PHEVs within a charging station. In our experiments, several different scenarios consisting on different numbers of PHEVs were considered. To test the feasibility of the proposed approach, comparative experiments were performed against other popular PHEVs’ State of Charge maximization approaches

  11. Hybrid attacks on model-based social recommender systems

    Science.gov (United States)

    Yu, Junliang; Gao, Min; Rong, Wenge; Li, Wentao; Xiong, Qingyu; Wen, Junhao

    2017-10-01

    With the growing popularity of the online social platform, the social network based approaches to recommendation emerged. However, because of the open nature of rating systems and social networks, the social recommender systems are susceptible to malicious attacks. In this paper, we present a certain novel attack, which inherits characteristics of the rating attack and the relation attack, and term it hybrid attack. Furtherly, we explore the impact of the hybrid attack on model-based social recommender systems in multiple aspects. The experimental results show that, the hybrid attack is more destructive than the rating attack in most cases. In addition, users and items with fewer ratings will be influenced more when attacked. Last but not the least, the findings suggest that spammers do not depend on the feedback links from normal users to become more powerful, the unilateral links can make the hybrid attack effective enough. Since unilateral links are much cheaper, the hybrid attack will be a great threat to model-based social recommender systems.

  12. Multi-objective hybrid PSO-APO algorithm based security constrained optimal power flow with wind and thermal generators

    Directory of Open Access Journals (Sweden)

    Kiran Teeparthi

    2017-04-01

    Full Text Available In this paper, a new low level with teamwork heterogeneous hybrid particle swarm optimization and artificial physics optimization (HPSO-APO algorithm is proposed to solve the multi-objective security constrained optimal power flow (MO-SCOPF problem. Being engaged with the environmental and total production cost concerns, wind energy is highly penetrating to the main grid. The total production cost, active power losses and security index are considered as the objective functions. These are simultaneously optimized using the proposed algorithm for base case and contingency cases. Though PSO algorithm exhibits good convergence characteristic, fails to give near optimal solution. On the other hand, the APO algorithm shows the capability of improving diversity in search space and also to reach a near global optimum point, whereas, APO is prone to premature convergence. The proposed hybrid HPSO-APO algorithm combines both individual algorithm strengths, to get balance between global and local search capability. The APO algorithm is improving diversity in the search space of the PSO algorithm. The hybrid optimization algorithm is employed to alleviate the line overloads by generator rescheduling during contingencies. The standard IEEE 30-bus and Indian 75-bus practical test systems are considered to evaluate the robustness of the proposed method. The simulation results reveal that the proposed HPSO-APO method is more efficient and robust than the standard PSO and APO methods in terms of getting diverse Pareto optimal solutions. Hence, the proposed hybrid method can be used for the large interconnected power system to solve MO-SCOPF problem with integration of wind and thermal generators.

  13. Conceptual design of distillation-based hybrid separation processes.

    Science.gov (United States)

    Skiborowski, Mirko; Harwardt, Andreas; Marquardt, Wolfgang

    2013-01-01

    Hybrid separation processes combine different separation principles and constitute a promising design option for the separation of complex mixtures. Particularly, the integration of distillation with other unit operations can significantly improve the separation of close-boiling or azeotropic mixtures. Although the design of single-unit operations is well understood and supported by computational methods, the optimal design of flowsheets of hybrid separation processes is still a challenging task. The large number of operational and design degrees of freedom requires a systematic and optimization-based design approach. To this end, a structured approach, the so-called process synthesis framework, is proposed. This article reviews available computational methods for the conceptual design of distillation-based hybrid processes for the separation of liquid mixtures. Open problems are identified that must be addressed to finally establish a structured process synthesis framework for such processes.

  14. Vehicle Sideslip Angle Estimation Based on Hybrid Kalman Filter

    Directory of Open Access Journals (Sweden)

    Jing Li

    2016-01-01

    Full Text Available Vehicle sideslip angle is essential for active safety control systems. This paper presents a new hybrid Kalman filter to estimate vehicle sideslip angle based on the 3-DoF nonlinear vehicle dynamic model combined with Magic Formula tire model. The hybrid Kalman filter is realized by combining square-root cubature Kalman filter (SCKF, which has quick convergence and numerical stability, with square-root cubature based receding horizon Kalman FIR filter (SCRHKF, which has robustness against model uncertainty and temporary noise. Moreover, SCKF and SCRHKF work in parallel, and the estimation outputs of two filters are merged by interacting multiple model (IMM approach. Experimental results show the accuracy and robustness of the hybrid Kalman filter.

  15. A persistent homology approach to collective behavior in insect swarms

    Science.gov (United States)

    Sinhuber, Michael; Ouellette, Nicholas T.

    Various animals from birds and fish to insects tend to form aggregates, displaying self-organized collective swarming behavior. Due to their frequent occurrence in nature and their implications for engineered, collective systems, these systems have been investigated and modeled thoroughly for decades. Common approaches range from modeling them with coupled differential equations on the individual level up to continuum approaches. We present an alternative, topology-based approach for describing swarming behavior at the macroscale rather than the microscale. We study laboratory swarms of Chironomus riparius, a flying, non-biting midge. To obtain the time-resolved three-dimensional trajectories of individual insects, we use a multi-camera stereoimaging and particle-tracking setup. To investigate the swarming behavior in a topological sense, we employ a persistent homology approach to identify persisting structures and features in the insect swarm that elude a direct, ensemble-averaging approach. We are able to identify features of sub-clusters in the swarm that show behavior distinct from that of the remaining swarm members. The coexistence of sub-swarms with different features resembles some non-biological systems such as active colloids or even thermodynamic systems.

  16. Model predictive control-based efficient energy recovery control strategy for regenerative braking system of hybrid electric bus

    International Nuclear Information System (INIS)

    Li, Liang; Zhang, Yuanbo; Yang, Chao; Yan, Bingjie; Marina Martinez, C.

    2016-01-01

    Highlights: • A 7-degree-of-freedom model of hybrid electric vehicle with regenerative braking system is built. • A modified nonlinear model predictive control strategy is developed. • The particle swarm optimization algorithm is employed to solve the optimization problem. • The proposed control strategy is verified by simulation and hardware-in-loop tests. • Test results verify the effectiveness of the proposed control strategy. - Abstract: As one of the main working modes, the energy recovered with regenerative braking system provides an effective approach so as to greatly improve fuel economy of hybrid electric bus. However, it is still a challenging issue to ensure braking stability while maximizing braking energy recovery. To solve this problem, an efficient energy recovery control strategy is proposed based on the modified nonlinear model predictive control method. Firstly, combined with the characteristics of the compound braking process of single-shaft parallel hybrid electric bus, a 7 degrees of freedom model of the vehicle longitudinal dynamics is built. Secondly, considering nonlinear characteristic of the vehicle model and the efficiency of regenerative braking system, the particle swarm optimization algorithm within the modified nonlinear model predictive control is adopted to optimize the torque distribution between regenerative braking system and pneumatic braking system at the wheels. So as to reduce the computational time of modified nonlinear model predictive control, a nearest point method is employed during the braking process. Finally, the simulation and hardware-in-loop test are carried out on road conditions with different tire–road adhesion coefficients, and the proposed control strategy is verified by comparing it with the conventional control method employed in the baseline vehicle controller. The simulation and hardware-in-loop test results show that the proposed strategy can ensure vehicle safety during emergency braking

  17. The evolution of cooperation in the Prisoner's Dilemma and the Snowdrift game based on Particle Swarm Optimization

    Science.gov (United States)

    Wang, Xianjia; Lv, Shaojie; Quan, Ji

    2017-09-01

    This paper studies the evolution of cooperation in the Prisoner's Dilemma (PD) and the Snowdrift (SD) game on a square lattice. Each player interacting with their neighbors can adopt mixed strategies describing an individual's propensity to cooperate. Particle Swarm Optimization (PSO) is introduced into strategy update rules to investigate the evolution of cooperation. In the evolutionary game, each player updates its strategy according to the best strategy in all its past actions and the currently best strategy of its neighbors. The simulation results show that the PSO mechanism for strategy updating can promote the evolution of cooperation and sustain cooperation even under unfavorable conditions in both games. However, the spatial structure plays different roles in these two social dilemmas, which presents different characteristics of macroscopic cooperation pattern. Our research provides insights into the evolution of cooperation in both the Prisoner's Dilemma and the Snowdrift game and maybe helpful in understanding the ubiquity of cooperation in natural and social systems.

  18. Optimal Allocation of Generalized Power Sources in Distribution Network Based on Multi-Objective Particle Swarm Optimization Algorithm

    Directory of Open Access Journals (Sweden)

    Li Ran

    2017-01-01

    Full Text Available Optimal allocation of generalized power sources in distribution network is researched. A simple index of voltage stability is put forward. Considering the investment and operation benefit, the stability of voltage and the pollution emissions of generalized power sources in distribution network, a multi-objective optimization planning model is established. A multi-objective particle swarm optimization algorithm is proposed to solve the optimal model. In order to improve the global search ability, the strategies of fast non-dominated sorting, elitism and crowding distance are adopted in this algorithm. Finally, tested the model and algorithm by IEEE-33 node system to find the best configuration of GP, the computed result shows that with the generalized power reasonable access to the active distribution network, the investment benefit and the voltage stability of the system is improved, and the proposed algorithm has better global search capability.

  19. DOA Estimation of Low Altitude Target Based on Adaptive Step Glowworm Swarm Optimization-multiple Signal Classification Algorithm

    Directory of Open Access Journals (Sweden)

    Zhou Hao

    2015-06-01

    Full Text Available The traditional MUltiple SIgnal Classification (MUSIC algorithm requires significant computational effort and can not be employed for the Direction Of Arrival (DOA estimation of targets in a low-altitude multipath environment. As such, a novel MUSIC approach is proposed on the basis of the algorithm of Adaptive Step Glowworm Swarm Optimization (ASGSO. The virtual spatial smoothing of the matrix formed by each snapshot is used to realize the decorrelation of the multipath signal and the establishment of a fullorder correlation matrix. ASGSO optimizes the function and estimates the elevation of the target. The simulation results suggest that the proposed method can overcome the low altitude multipath effect and estimate the DOA of target readily and precisely without radar effective aperture loss.

  20. The Virtual Resistance Control Strategy for HVRT of Doubly Fed Induction Wind Generators Based on Particle Swarm Optimization

    Directory of Open Access Journals (Sweden)

    Zhen Xie

    2014-01-01

    Full Text Available Grid voltage swell will cause transient DC flux component in the doubly fed induction generator (DFIG stator windings, creating serious stator and rotor current and torque oscillation, which is more serious than influence of the voltage dip. It is found that virtual resistance manages effectively to suppress rotor current and torque oscillation, avoid the operation of crowbar circuit, and enhance its high voltage ride through technology capability. In order to acquire the best virtual resistance value, the excellent particle library (EPL of dynamic particle swarm optimization (PSO algorithm is proposed. It takes the rotor voltage and rotor current as two objectives, which has a fast convergence performance and high accuracy. Simulation and experimental results verify the effectiveness of the virtual resistance control strategy.

  1. Optimal Tuning of Decentralized PI Controller of Nonlinear Multivariable Process Using Archival Based Multiobjective Particle Swarm Optimization

    Directory of Open Access Journals (Sweden)

    R. Kotteeswaran

    2014-01-01

    Full Text Available A Multiobjective Particle Swarm Optimization (MOPSO algorithm is proposed to fine-tune the baseline PI controller parameters of Alstom gasifier. The existing baseline PI controller is not able to meet the performance requirements of Alstom gasifier for sinusoidal pressure disturbance at 0% load. This is considered the major drawback of controller design. A best optimal solution for Alstom gasifier is obtained from a set of nondominated solutions using MOPSO algorithm. Performance of gasifier is investigated at all load conditions. The controller with optimized controller parameters meets all the performance requirements at 0%, 50%, and 100% load conditions. The investigations are also extended for variations in coal quality, which shows an improved stability of the gasifier over a wide range of coal quality variations.

  2. Unsupervised learning of mixture models based on swarm intelligence and neural networks with optimal completion using incomplete data

    Directory of Open Access Journals (Sweden)

    Ahmed R. Abas

    2012-07-01

    Full Text Available In this paper, a new algorithm is presented for unsupervised learning of finite mixture models (FMMs using data set with missing values. This algorithm overcomes the local optima problem of the Expectation-Maximization (EM algorithm via integrating the EM algorithm with Particle Swarm Optimization (PSO. In addition, the proposed algorithm overcomes the problem of biased estimation due to overlapping clusters in estimating missing values in the input data set by integrating locally-tuned general regression neural networks with Optimal Completion Strategy (OCS. A comparison study shows the superiority of the proposed algorithm over other algorithms commonly used in the literature in unsupervised learning of FMM parameters that result in minimum mis-classification errors when used in clustering incomplete data set that is generated from overlapping clusters and these clusters are largely different in their sizes.

  3. Enhancing comprehensive inversions using the Swarm constellation

    DEFF Research Database (Denmark)

    Sabaka, T.J.; Olsen, Nils

    2006-01-01

    This paper reports on the findings of a simulation study designed to test various satellite configurations suggested for the upcoming Swarm magnetic mapping mission. The test is to see whether the mission objectives of recovering small-scale core secular variation (SV) and lithospheric magnetic...... to achieve proper signal separation. ne advantage of co-estimation over serial estimation of parameters is demonstrated by example. Synthetic data were calculated for a pool of six Swarm satellites from a model based heavily on the CM4 comprehensive model, but which has more small-scale lithospheric...

  4. The Study of Fuzzy Proportional Integral Controllers Based on Improved Particle Swarm Optimization for Permanent Magnet Direct Drive Wind Turbine Converters

    Directory of Open Access Journals (Sweden)

    Yancai Xiao

    2016-05-01

    Full Text Available In order to meet the requirements of high precision and fast response of permanent magnet direct drive (PMDD wind turbines, this paper proposes a fuzzy proportional integral (PI controller associated with a new control strategy for wind turbine converters. The purpose of the control strategy is to achieve the global optimization for the quantization factors, ke and kec, and scale factors, kup and kui, of the fuzzy PI controller by an improved particle swarm optimization (PSO method. Thus the advantages of the rapidity of the improved PSO and the robustness of the fuzzy controller can be fully applied in the control process. By conducting simulations for 2 MW PMDD wind turbines with Matlab/Simulink, the performance of the fuzzy PI controller based on the improved PSO is demonstrated to be obviously better than that of the PI controller or the fuzzy PI controller without using the improved PSO under the situation when the wind speed changes suddenly.

  5. A novel artificial fish swarm algorithm for recalibration of fiber optic gyroscope error parameters.

    Science.gov (United States)

    Gao, Yanbin; Guan, Lianwu; Wang, Tingjun; Sun, Yunlong

    2015-05-05

    The artificial fish swarm algorithm (AFSA) is one of the state-of-the-art swarm intelligent techniques, which is widely utilized for optimization purposes. Fiber optic gyroscope (FOG) error parameters such as scale factors, biases and misalignment errors are relatively unstable, especially with the environmental disturbances and the aging of fiber coils. These uncalibrated error parameters are the main reasons that the precision of FOG-based strapdown inertial navigation system (SINS) degraded. This research is mainly on the application of a novel artificial fish swarm algorithm (NAFSA) on FOG error coefficients recalibration/identification. First, the NAFSA avoided the demerits (e.g., lack of using artificial fishes' pervious experiences, lack of existing balance between exploration and exploitation, and high computational cost) of the standard AFSA during the optimization process. To solve these weak points, functional behaviors and the overall procedures of AFSA have been improved with some parameters eliminated and several supplementary parameters added. Second, a hybrid FOG error coefficients recalibration algorithm has been proposed based on NAFSA and Monte Carlo simulation (MCS) approaches. This combination leads to maximum utilization of the involved approaches for FOG error coefficients recalibration. After that, the NAFSA is verified with simulation and experiments and its priorities are compared with that of the conventional calibration method and optimal AFSA. Results demonstrate high efficiency of the NAFSA on FOG error coefficients recalibration.

  6. A Novel Artificial Fish Swarm Algorithm for Recalibration of Fiber Optic Gyroscope Error Parameters

    Directory of Open Access Journals (Sweden)

    Yanbin Gao

    2015-05-01

    Full Text Available The artificial fish swarm algorithm (AFSA is one of the state-of-the-art swarm intelligent techniques, which is widely utilized for optimization purposes. Fiber optic gyroscope (FOG error parameters such as scale factors, biases and misalignment errors are relatively unstable, especially with the environmental disturbances and the aging of fiber coils. These uncalibrated error parameters are the main reasons that the precision of FOG-based strapdown inertial navigation system (SINS degraded. This research is mainly on the application of a novel artificial fish swarm algorithm (NAFSA on FOG error coefficients recalibration/identification. First, the NAFSA avoided the demerits (e.g., lack of using artificial fishes’ pervious experiences, lack of existing balance between exploration and exploitation, and high computational cost of the standard AFSA during the optimization process. To solve these weak points, functional behaviors and the overall procedures of AFSA have been improved with some parameters eliminated and several supplementary parameters added. Second, a hybrid FOG error coefficients recalibration algorithm has been proposed based on NAFSA and Monte Carlo simulation (MCS approaches. This combination leads to maximum utilization of the involved approaches for FOG error coefficients recalibration. After that, the NAFSA is verified with simulation and experiments and its priorities are compared with that of the conventional calibration method and optimal AFSA. Results demonstrate high efficiency of the NAFSA on FOG error coefficients recalibration.

  7. An efficient scenario-based and fuzzy self-adaptive learning particle swarm optimization approach for dynamic economic emission dispatch considering load and wind power uncertainties

    International Nuclear Information System (INIS)

    Bahmani-Firouzi, Bahman; Farjah, Ebrahim; Azizipanah-Abarghooee, Rasoul

    2013-01-01

    Renewable energy resources such as wind power plants are playing an ever-increasing role in power generation. This paper extends the dynamic economic emission dispatch problem by incorporating wind power plant. This problem is a multi-objective optimization approach in which total electrical power generation costs and combustion emissions are simultaneously minimized over a short-term time span. A stochastic approach based on scenarios is suggested to model the uncertainty associated with hourly load and wind power forecasts. A roulette wheel technique on the basis of probability distribution functions of load and wind power is implemented to generate scenarios. As a result, the stochastic nature of the suggested problem is emancipated by decomposing it into a set of equivalent deterministic problem. An improved multi-objective particle swarm optimization algorithm is applied to obtain the best expected solutions for the proposed stochastic programming framework. To enhance the overall performance and effectiveness of the particle swarm optimization, a fuzzy adaptive technique, θ-search and self-adaptive learning strategy for velocity updating are used to tune the inertia weight factor and to escape from local optima, respectively. The suggested algorithm goes through the search space in the polar coordinates instead of the Cartesian one; whereby the feasible space is more compact. In order to evaluate the efficiency and feasibility of the suggested framework, it is applied to two test systems with small and large scale characteristics. - Highlights: ► Formulates multi-objective DEED problem under a stochastic programming framework. ► Considers uncertainties related to forecasted values of load demand and wind power. ► Proposes an interactive fuzzy satisfying method based on the novel FSALPSO. ► Presents a new self-adaptive learning strategy to improve original PSO algorithm

  8. Route-Based Control of Hybrid Electric Vehicles: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Gonder, J. D.

    2008-01-01

    Today's hybrid electric vehicle controls cannot always provide maximum fuel savings over all drive cycles. Route-based controls could improve HEV fuel efficiency by 2%-4% and help save nearly 6.5 million gallons of fuel annually.

  9. Hardwood species classification with DWT based hybrid texture ...

    Indian Academy of Sciences (India)

    In this work, discrete wavelet transform (DWT) based hybrid texture feature extraction techniques have been used to categorize the microscopic images of hardwood species into 75 different classes. Initially, the DWT has been employed to decompose the image up to 7 levels using Daubechies (db3) wavelet as ...

  10. Development of bio-hybrid material based on Salmonella ...

    African Journals Online (AJOL)

    Teodoro

    2016-07-13

    Jul 13, 2016 ... Full Length Research Paper. Development of bio-hybrid material based on. Salmonella Typhimurium and layered double hydroxides. Slah Hidouri .... the LDH with co-precipitation synthesis method was successfully done according the study given by Hidouri et al. (2011), Abdelkader et al. (2011), Hidouri et ...

  11. MAS Based Event-Triggered Hybrid Control for Smart Microgrids

    DEFF Research Database (Denmark)

    Dou, Chunxia; Liu, Bin; Guerrero, Josep M.

    2013-01-01

    This paper is focused on an advanced control for autonomous microgrids. In order to improve the performance regarding security and stability, a hierarchical decentralized coordinated control scheme is proposed based on multi-agents structure. Moreover, corresponding to the multi-mode and the hybrid...... haracteristics of microgrids, an event-triggered hybrid control, including three kinds of switching controls, is designed to intelligently reconstruct operation mode when the security stability assessment indexes or the constraint conditions are violated. The validity of proposed control scheme is demonstrated...

  12. A novel chaotic particle swarm optimization approach using Henon map and implicit filtering local search for economic load dispatch

    International Nuclear Information System (INIS)

    Coelho, Leandro dos Santos; Mariani, Viviana Cocco

    2009-01-01

    Particle swarm optimization (PSO) is a population-based swarm intelligence algorithm driven by the simulation of a social psychological metaphor instead of the survival of the fittest individual. Based on the chaotic systems theory, this paper proposed a novel chaotic PSO combined with an implicit filtering (IF) local search method to solve economic dispatch problems. Since chaotic mapping enjoys certainty, ergodicity and the stochastic property, the proposed PSO introduces chaos mapping using Henon map sequences which increases its convergence rate and resulting precision. The chaotic PSO approach is used to produce good potential solutions, and the IF is used to fine-tune of final solution of PSO. The hybrid methodology is validated for a test system consisting of 13 thermal units whose incremental fuel cost function takes into account the valve-point loading effects. Simulation results are promising and show the effectiveness of the proposed approach.

  13. Four-dimensional parameter estimation of plane waves using swarming intelligence

    International Nuclear Information System (INIS)

    Zaman Fawad; Munir Fahad; Khan Zafar Ullah; Qureshi Ijaz Mansoor

    2014-01-01

    This paper proposes an efficient approach for four-dimensional (4D) parameter estimation of plane waves impinging on a 2-L shape array. The 4D parameters include amplitude, frequency and the two-dimensional (2D) direction of arrival, namely, azimuth and elevation angles. The proposed approach is based on memetic computation, in which the global optimizer, particle swarm optimization is hybridized with a rapid local search technique, pattern search. For this purpose, a new multi-objective fitness function is used. This fitness function is the combination of mean square error and the correlation between the normalized desired and estimated vectors. The proposed hybrid scheme is not only compared with individual performances of particle swarm optimization and pattern search, but also with the performance of the hybrid genetic algorithm and that of the traditional approach. A large number of Monte—Carlo simulations are carried out to validate the performance of the proposed scheme. It gives promising results in terms of estimation accuracy, convergence rate, proximity effect and robustness against noise. (interdisciplinary physics and related areas of science and technology)

  14. Chaotic Particle Swarm Optimization with Mutation for Classification

    Science.gov (United States)

    Assarzadeh, Zahra; Naghsh-Nilchi, Ahmad Reza

    2015-01-01

    In this paper, a chaotic particle swarm optimization with mutation-based classifier particle swarm optimization is proposed to classify patterns of different classes in the feature space. The introduced mutation operators and chaotic sequences allows us to overcome the problem of early convergence into a local minima associated with particle swarm optimization algorithms. That is, the mutation operator sharpens the convergence and it tunes the best possible solution. Furthermore, to remove the irrelevant data and reduce the dimensionality of medical datasets, a feature selection approach using binary version of the proposed particle swarm optimization is introduced. In order to demonstrate the effectiveness of our proposed classifier, mutation-based classifier particle swarm optimization, it is checked out with three sets of data classifications namely, Wisconsin diagnostic breast cancer, Wisconsin breast cancer and heart-statlog, with different feature vector dimensions. The proposed algorithm is compared with different classifier algorithms including k-nearest neighbor, as a conventional classifier, particle swarm-classifier, genetic algorithm, and Imperialist competitive algorithm-classifier, as more sophisticated ones. The performance of each classifier was evaluated by calculating the accuracy, sensitivity, specificity and Matthews's correlation coefficient. The experimental results show that the mutation-based classifier particle swarm optimization unequivocally performs better than all the compared algorithms. PMID:25709937

  15. Chaotic particle swarm optimization with mutation for classification.

    Science.gov (United States)

    Assarzadeh, Zahra; Naghsh-Nilchi, Ahmad Reza

    2015-01-01

    In this paper, a chaotic particle swarm optimization with mutation-based classifier particle swarm optimization is proposed to classify patterns of different classes in the feature space. The introduced mutation operators and chaotic sequences allows us to overcome the problem of early convergence into a local minima associated with particle swarm optimization algorithms. That is, the mutation operator sharpens the convergence and it tunes the best possible solution. Furthermore, to remove the irrelevant data and reduce the dimensionality of medical datasets, a feature selection approach using binary version of the proposed particle swarm optimization is introduced. In order to demonstrate the effectiveness of our proposed classifier, mutation-based classifier particle swarm optimization, it is checked out with three sets of data classifications namely, Wisconsin diagnostic breast cancer, Wisconsin breast cancer and heart-statlog, with different feature vector dimensions. The proposed algorithm is compared with different classifier algorithms including k-nearest neighbor, as a conventional classifier, particle swarm-classifier, genetic algorithm, and Imperialist competitive algorithm-classifier, as more sophisticated ones. The performance of each classifier was evaluated by calculating the accuracy, sensitivity, specificity and Matthews's correlation coefficient. The experimental results show that the mutation-based classifier particle swarm optimization unequivocally performs better than all the compared algorithms.

  16. Photomobility and photohealing of cellulose-based hybrids

    Science.gov (United States)

    Ulasevich, Sviatlana A.; Melnyk, Inga; Andreeva, Daria V.; Möhwald, Helmuth; Skorb, Ekaterina V.

    2017-08-01

    In an effort to control the electronic and mechanical interaction between an inorganic surface and a defined polymeric coating, we present a new and easy method of a cellulose-based hybrid formation. We used Schweizer's reagent, a specific copper ammonia hydroxide-based solvent for cotton dissolution and found the optimal concentration for the formation of photosensitive uniform cellulose coating on titania, TiO2-cellulose coating and free-standing hybrid. Photomobility, the material mobility induced by light, of a cellulose layer on a titania surface and of a TiO2-cellulose hybrid on a silicon wafer has been studied. This can be used for photohealing, and the most promising system is the one that can be healed with light due to in situ activation of titania nanoparticles assembled on cellulose fibers in a hydrogel. The interfacial contact between titania particles and fiber is important for local transport of electrons and ions, thus the most promising system was obtained by in situ synthesis of titania nanoparticles on cellulose dispersed in Schweizer's reagent. We propose that cellulose coatings on titania surface and free-standing hybrids can be applicable for a wide range of photochemical devices: films for optics, drug delivery systems, and inks for printing of biologically relevant lab-on-chips. Contribution to the Focus Issue Self-assemblies of Inorganic and Organic Nanomaterials edited by Marie-Paule Pileni.

  17. ECG based Atrial Fibrillation detection using Sequency Ordered Complex Hadamard Transform and Hybrid Firefly Algorithm

    Directory of Open Access Journals (Sweden)

    Padmavathi Kora

    2017-06-01

    Full Text Available Electrocardiogram (ECG, a non-invasive diagnostic technique, used for detecting cardiac arrhythmia. From last decade industry dealing with biomedical instrumentation and research, demanding an advancement in its ability to distinguish different cardiac arrhythmia. Atrial Fibrillation (AF is an irregular rhythm of the human heart. During AF, the atrial moments are quicker than the normal rate. As blood is not completely ejected out of atria, chances for the formation of blood clots in atrium. These abnormalities in the heart can be identified by the changes in the morphology of the ECG. The first step in the detection of AF is preprocessing of ECG, which removes noise using filters. Feature extraction is the next key process in this research. Recent feature extraction methods, such as Auto Regressive (AR modeling, Magnitude Squared Coherence (MSC and Wavelet Coherence (WTC using standard database (MIT-BIH, yielded a lot of features. Many of these features might be insignificant containing some redundant and non-discriminatory features that introduce computational burden and loss of performance. This paper presents fast Conjugate Symmetric Sequency Ordered Complex Hadamard Transform (CS-SCHT for extracting relevant features from the ECG signal. The sparse matrix factorization method is used for developing fast and efficient CS-SCHT algorithm and its computational performance is examined and compared to that of the HT and NCHT. The applications of the CS-SCHT in the ECG-based AF detection is also discussed. These fast CS-SCHT features are optimized using Hybrid Firefly and Particle Swarm Optimization (FFPSO to increase the performance of the classifier.

  18. Cutting Pattern Identification for Coal Mining Shearer through a Swarm Intelligence–Based Variable Translation Wavelet Neural Network

    Science.gov (United States)

    Xu, Jing; Wang, Zhongbin; Tan, Chao; Liu, Xinhua

    2018-01-01

    As a sound signal has the advantages of non-contacted measurement, compact structure, and low power consumption, it has resulted in much attention in many fields. In this paper, the sound signal of the coal mining shearer is analyzed to realize the accurate online cutting pattern identification and guarantee the safety quality of the working face. The original acoustic signal is first collected through an industrial microphone and decomposed by adaptive ensemble empirical mode decomposition (EEMD). A 13-dimensional set composed by the normalized energy of each level is extracted as the feature vector in the next step. Then, a swarm intelligence optimization algorithm inspired by bat foraging behavior is applied to determine key parameters of the traditional variable translation wavelet neural network (VTWNN). Moreover, a disturbance coefficient is introduced into the basic bat algorithm (BA) to overcome the disadvantage of easily falling into local extremum and limited exploration ability. The VTWNN optimized by the modified BA (VTWNN-MBA) is used as the cutting pattern recognizer. Finally, a simulation example, with an accuracy of 95.25%, and a series of comparisons are conducted to prove the effectiveness and superiority of the proposed method. PMID:29382120

  19. Cutting Pattern Identification for Coal Mining Shearer through a Swarm Intelligence-Based Variable Translation Wavelet Neural Network.

    Science.gov (United States)

    Xu, Jing; Wang, Zhongbin; Tan, Chao; Si, Lei; Liu, Xinhua

    2018-01-29

    As a sound signal has the advantages of non-contacted measurement, compact structure, and low power consumption, it has resulted in much attention in many fields. In this paper, the sound signal of the coal mining shearer is analyzed to realize the accurate online cutting pattern identification and guarantee the safety quality of the working face. The original acoustic signal is first collected through an industrial microphone and decomposed by adaptive ensemble empirical mode decomposition (EEMD). A 13-dimensional set composed by the normalized energy of each level is extracted as the feature vector in the next step. Then, a swarm intelligence optimization algorithm inspired by bat foraging behavior is applied to determine key parameters of the traditional variable translation wavelet neural network (VTWNN). Moreover, a disturbance coefficient is introduced into the basic bat algorithm (BA) to overcome the disadvantage of easily falling into local extremum and limited exploration ability. The VTWNN optimized by the modified BA (VTWNN-MBA) is used as the cutting pattern recognizer. Finally, a simulation example, with an accuracy of 95.25%, and a series of comparisons are conducted to prove the effectiveness and superiority of the proposed method.

  20. Particle swarm optimization-based support vector machine for forecasting dissolved gases content in power transformer oil

    Energy Technology Data Exchange (ETDEWEB)

    Fei, Sheng-wei; Wang, Ming-Jun; Miao, Yu-bin; Tu, Jun; Liu, Cheng-liang [School of Mechanical Engineering, Shanghai Jiaotong University, Shanghai 200240 (China)

    2009-06-15

    Forecasting of dissolved gases content in power transformer oil is a complicated problem due to its nonlinearity and the small quantity of training data. Support vector machine (SVM) has been successfully employed to solve regression problem of nonlinearity and small sample. However, the practicability of SVM is effected due to the difficulty of selecting appropriate SVM parameters. Particle swarm optimization (PSO) is a new optimization method, which is motivated by social behaviour of organisms such as bird flocking and fish schooling. The method not only has strong global search capability, but also is very easy to implement. Thus, the proposed PSO-SVM model is applied to forecast dissolved gases content in power transformer oil in this paper, among which PSO is used to determine free parameters of support vector machine. The experimental data from several electric power companies in China is used to illustrate the performance of proposed PSO-SVM model. The experimental results indicate that the PSO-SVM method can achieve greater forecasting accuracy than grey model, artificial neural network under the circumstances of small sample. (author)

  1. Particle swarm optimization-based support vector machine for forecasting dissolved gases content in power transformer oil

    Energy Technology Data Exchange (ETDEWEB)

    Fei Shengwei [School of Mechanical Engineering, Shanghai Jiaotong University, Shanghai 200240 (China)], E-mail: feishengwei@sohu.com; Wang Mingjun; Miao Yubin; Tu Jun; Liu Chengliang [School of Mechanical Engineering, Shanghai Jiaotong University, Shanghai 200240 (China)

    2009-06-15

    Forecasting of dissolved gases content in power transformer oil is a complicated problem due to its nonlinearity and the small quantity of training data. Support vector machine (SVM) has been successfully employed to solve regression problem of nonlinearity and small sample. However, the practicability of SVM is effected due to the difficulty of selecting appropriate SVM parameters. Particle swarm optimization (PSO) is a new optimization method, which is motivated by social behaviour of organisms such as bird flocking and fish schooling. The method not only has strong global search capability, but also is very easy to implement. Thus, the proposed PSO-SVM model is applied to forecast dissolved gases content in power transformer oil in this paper, among which PSO is used to determine free parameters of support vector machine. The experimental data from several electric power companies in China is used to illustrate the performance of proposed PSO-SVM model. The experimental results indicate that the PSO-SVM method can achieve greater forecasting accuracy than grey model, artificial neural network under the circumstances of small sample.

  2. Multi-Agent System based Event-Triggered Hybrid Controls for High-Security Hybrid Energy Generation Systems

    DEFF Research Database (Denmark)

    Dou, Chun-Xia; Yue, Dong; Guerrero, Josep M.

    2017-01-01

    This paper proposes multi-agent system based event- triggered hybrid controls for guaranteeing energy supply of a hybrid energy generation system with high security. First, a mul-ti-agent system is constituted by an upper-level central coordi-nated control agent combined with several lower-level ...

  3. Extending a Hybrid Tag-Based Recommender System with Personalization

    DEFF Research Database (Denmark)

    Durao, Frederico; Dolog, Peter

    2010-01-01

    extension for a hybrid tag-based recommender system, which suggests similar Web pages based on the similarity of their tags. The semantic extension aims at discovering tag relations which are not considered in basic syntax similarity. With the goal of generating more semantically grounded recommendations......, the proposal extends a hybrid tag-based recommender system with a semantic factor, which looks for tag relations in different semantic sources. In order to evaluate the benefits acquired with the semantic extension, we have compared the new findings with results from a previous experiment involving 38 people......Tagging activity has been recently identified as a potential source of knowledge about personal interests, preferences, goals, and other attributes known from user models. Tags themselves can be therefore used for finding personalized recommendations of items. This paper proposes a semantic...

  4. Graphene-based transparent electrodes for hybrid solar cells

    Directory of Open Access Journals (Sweden)

    Pengfei eLi

    2014-11-01

    Full Text Available The graphene-based transparent and conductive films were demonstrated to be cost-effective electrodes working in organic-inorganic hybrid Schottky solar cells. Large area graphene films were produced by chemical vapor deposition (CVD on copper foils and transferred onto glass as transparent electrodes. The hybrid solar cell devices consist of solution processed poly (3, 4-ethlenedioxythiophene: poly (styrenesulfonate (PEDOT: PSS which is sandwiched between silicon wafer and graphene electrode. The solar cells based on graphene electrodes, especially those doped with HNO3, has comparable performance to the reference devices using commercial indium tin oxide (ITO. Our work suggests that graphene-based transparent electrode is a promising candidate to replace ITO.

  5. Collective behaviors of two-component swarms.

    Science.gov (United States)

    You, Sang Koo; Kwon, Dae Hyuk; Park, Yong-ik; Kim, Sun Myong; Chung, Myung-Hoon; Kim, Chul Koo

    2009-12-07

    We present a particle-based simulation study on two-component swarms where there exist two different types of groups in a swarm. Effects of different parameters between the two groups are studied systematically based on Langevin's equation. It is shown that the mass difference can introduce a protective behavior for the lighter members of the swarm in a vortex state. When the self-propelling strength is allowed to differ between two groups, it is observed that the swarm becomes spatially segregated and finally separated into two components at a certain critical value. We also investigate effects of different preferences for shelters on their collective decision making. In particular, it is found that the probability of selecting a shelter from the other varies sigmoidally as a function of the number ratio. The model is shown to describe the dynamics of the shelter choosing process of the cockroach-robot mixed group satisfactorily. It raises the possibility that the present model can be applied to the problems of pest control and fishing using robots and decoys.

  6. POLICE OFFICE MODEL IMPROVEMENT FOR SECURITY OF SWARM ROBOTIC SYSTEMS

    Directory of Open Access Journals (Sweden)

    I. A. Zikratov

    2014-09-01

    Full Text Available This paper focuses on aspects of information security for group of mobile robotic systems with swarm intellect. The ways for hidden attacks realization by the opposing party on swarm algorithm are discussed. We have fulfilled numerical modeling of potentially destructive information influence on the ant shortest path algorithm. We have demonstrated the consequences of attacks on the ant algorithm with different concentration in a swarm of subversive robots. Approaches are suggested for information security mechanisms in swarm robotic systems, based on the principles of centralized security management for mobile agents. We have developed the method of forming a self-organizing information security management system for robotic agents in swarm groups implementing POM (Police Office Model – a security model based on police offices, to provide information security in multi-agent systems. The method is based on the usage of police station network in the graph nodes, which have functions of identification and authentication of agents, identifying subversive robots by both their formal characteristics and their behavior in the swarm. We have suggested a list of software and hardware components for police stations, consisting of: communication channels between the robots in police office, nodes register, a database of robotic agents, a database of encryption and decryption module. We have suggested the variants of logic for the mechanism of information security in swarm systems with different temporary diagrams of data communication between police stations. We present comparative analysis of implementation of protected swarm systems depending on the functioning logic of police offices, integrated in swarm system. It is shown that the security model saves the ability to operate in noisy environments, when the duration of the interference is comparable to the time necessary for the agent to overcome the path between police stations.

  7. A Hybrid Architecture for Vision-Based Obstacle Avoidance

    Directory of Open Access Journals (Sweden)

    Mehmet Serdar Güzel

    2013-01-01

    Full Text Available This paper proposes a new obstacle avoidance method using a single monocular vision camera as the only sensor which is called as Hybrid Architecture. This architecture integrates a high performance appearance-based obstacle detection method into an optical flow-based navigation system. The hybrid architecture was designed and implemented to run both methods simultaneously and is able to combine the results of each method using a novel arbitration mechanism. The proposed strategy successfully fused two different vision-based obstacle avoidance methods using this arbitration mechanism in order to permit a safer obstacle avoidance system. Accordingly, to establish the adequacy of the design of the obstacle avoidance system, a series of experiments were conducted. The results demonstrate the characteristics of the proposed architecture, and the results prove that its performance is somewhat better than the conventional optical flow-based architecture. Especially, the robot employing Hybrid Architecture avoids lateral obstacles in a more smooth and robust manner than when using the conventional optical flow-based technique.

  8. Software Project Scheduling Management by Particle Swarm Optimization

    Directory of Open Access Journals (Sweden)

    Dinesh B. Hanchate

    2014-12-01

    Full Text Available PSO (Particle Swarm Optimization is, like GA, a heuristic global optimization method based on swarm intelligence. In this paper, we present a particle swarm optimization algorithm to solve software project scheduling problem. PSO itself inherits very efficient local search method to find the near optimal and best-known solutions for all instances given as inputs required for SPSM (Software Project Scheduling Management. At last, this paper imparts PSO and research situation with SPSM. The effect of PSO parameter on project cost and time is studied and some better results in terms of minimum SCE (Software Cost Estimation and time as compared to GA and ACO are obtained.

  9. Hybrid uncertainty-based design optimization and its application to hybrid rocket motors for manned lunar landing

    Directory of Open Access Journals (Sweden)

    Hao Zhu

    2017-04-01

    Full Text Available Design reliability and robustness are getting increasingly important for the general design of aerospace systems with many inherently uncertain design parameters. This paper presents a hybrid uncertainty-based design optimization (UDO method developed from probability theory and interval theory. Most of the uncertain design parameters which have sufficient information or experimental data are classified as random variables using probability theory, while the others are defined as interval variables with interval theory. Then a hybrid uncertainty analysis method based on Monte Carlo simulation and Taylor series interval analysis is developed to obtain the uncertainty propagation from the design parameters to system responses. Three design optimization strategies, including deterministic design optimization (DDO, probabilistic UDO and hybrid UDO, are applied to the conceptual design of a hybrid rocket motor (HRM used as the ascent propulsion system in Apollo lunar module. By comparison, the hybrid UDO is a feasible method and can be effectively applied to the general design of aerospace systems.

  10. A Hybrid Brain-Computer Interface-Based Mail Client

    Directory of Open Access Journals (Sweden)

    Tianyou Yu

    2013-01-01

    Full Text Available Brain-computer interface-based communication plays an important role in brain-computer interface (BCI applications; electronic mail is one of the most common communication tools. In this study, we propose a hybrid BCI-based mail client that implements electronic mail communication by means of real-time classification of multimodal features extracted from scalp electroencephalography (EEG. With this BCI mail client, users can receive, read, write, and attach files to their mail. Using a BCI mouse that utilizes hybrid brain signals, that is, motor imagery and P300 potential, the user can select and activate the function keys and links on the mail client graphical user interface (GUI. An adaptive P300 speller is employed for text input. The system has been tested with 6 subjects, and the experimental results validate the efficacy of the proposed method.

  11. A hybrid brain-computer interface-based mail client.

    Science.gov (United States)

    Yu, Tianyou; Li, Yuanqing; Long, Jinyi; Li, Feng

    2013-01-01

    Brain-computer interface-based communication plays an important role in brain-computer interface (BCI) applications; electronic mail is one of the most common communication tools. In this study, we propose a hybrid BCI-based mail client that implements electronic mail communication by means of real-time classification of multimodal features extracted from scalp electroencephalography (EEG). With this BCI mail client, users can receive, read, write, and attach files to their mail. Using a BCI mouse that utilizes hybrid brain signals, that is, motor imagery and P300 potential, the user can select and activate the function keys and links on the mail client graphical user interface (GUI). An adaptive P300 speller is employed for text input. The system has been tested with 6 subjects, and the experimental results validate the efficacy of the proposed method.

  12. A Dynamic Control Strategy for Hybrid Electric Vehicles Based on Parameter Optimization for Multiple Driving Cycles and Driving Pattern Recognition

    Directory of Open Access Journals (Sweden)

    Zhenzhen Lei

    2017-01-01

    Full Text Available The driving pattern has an important influence on the parameter optimization of the energy management strategy (EMS for hybrid electric vehicles (HEVs. A new algorithm using simulated annealing particle swarm optimization (SA-PSO is proposed for parameter optimization of both the power system and control strategy of HEVs based on multiple driving cycles in order to realize the minimum fuel consumption without impairing the dynamic performance. Furthermore, taking the unknown of the actual driving cycle into consideration, an optimization method of the dynamic EMS based on driving pattern recognition is proposed in this paper. The simulation verifications for the optimized EMS based on multiple driving cycles and driving pattern recognition are carried out using Matlab/Simulink platform. The results show that compared with the original EMS, the former strategy reduces the fuel consumption by 4.36% and the latter one reduces the fuel consumption by 11.68%. A road test on the prototype vehicle is conducted and the effectiveness of the proposed EMS is validated by the test data.

  13. Selectively-informed particle swarm optimization.

    Science.gov (United States)

    Gao, Yang; Du, Wenbo; Yan, Gang

    2015-03-19

    Particle swarm optimization (PSO) is a nature-inspired algorithm that has shown outstanding performance in solving many realistic problems. In the original PSO and most of its variants all particles are treated equally, overlooking the impact of structural heterogeneity on individual behavior. Here we employ complex networks to represent the population structure of swarms and propose a selectively-informed PSO (SIPSO), in which the particles choose different learning strategies based on their connections: a densely-connected hub particle gets full information from all of its neighbors while a non-hub particle with few connections can only follow a single yet best-performed neighbor. Extensive numerical experiments on widely-used benchmark functions show that our SIPSO algorithm remarkably outperforms the PSO and its existing variants in success rate, solution quality, and convergence speed. We also explore the evolution process from a microscopic point of view, leading to the discovery of different roles that the particles play in optimization. The hub particles guide the optimization process towards correct directions while the non-hub particles maintain the necessary population diversity, resulting in the optimum overall performance of SIPSO. These findings deepen our understanding of swarm intelligence and may shed light on the underlying mechanism of information exchange in natural swarm and flocking behaviors.

  14. Two hybrids based on Keggin polyoxometalates and dinuclear ...

    Indian Academy of Sciences (India)

    By introducing mixed-ligands en and ox, Cu²⁺ and different polyoxotungstates as synthons, two new polyoxotungstate-based inorganic-organic hybrid compounds {[Cu₂ (en) ₂ (ox)][HPW₁₂O₄₀]} · (en) ₂ · 2H₂O (1) and {[Cu₂ (en) ₂ (ox)] [H₃BW₁₂O₄₀]} · (en) ₂ · 2H₂O (2) (en = ethylenediamine and ox ...

  15. A Hybrid Recommender System Based on User-Recommender Interaction

    OpenAIRE

    Zhang, Heng-Ru; Min, Fan; He, Xu; Xu, Yuan-Yuan

    2015-01-01

    Recommender systems are used to make recommendations about products, information, or services for users. Most existing recommender systems implicitly assume one particular type of user behavior. However, they seldom consider user-recommender interactive scenarios in real-world environments. In this paper, we propose a hybrid recommender system based on user-recommender interaction and evaluate its performance with recall and diversity metrics. First, we define the user-recommender interaction...

  16. Hybrid Neuro-Fuzzy Classifier Based On Nefclass Model

    Directory of Open Access Journals (Sweden)

    Bogdan Gliwa

    2011-01-01

    Full Text Available The paper presents hybrid neuro-fuzzy classifier, based on NEFCLASS model, which wasmodified. The presented classifier was compared to popular classifiers – neural networks andk-nearest neighbours. Efficiency of modifications in classifier was compared with methodsused in original model NEFCLASS (learning methods. Accuracy of classifier was testedusing 3 datasets from UCI Machine Learning Repository: iris, wine and breast cancer wisconsin.Moreover, influence of ensemble classification methods on classification accuracy waspresented.

  17. Electrochemical DNA Hybridization Sensors Based on Conducting Polymers

    Science.gov (United States)

    Rahman, Md. Mahbubur; Li, Xiao-Bo; Lopa, Nasrin Siraj; Ahn, Sang Jung; Lee, Jae-Joon

    2015-01-01

    Conducting polymers (CPs) are a group of polymeric materials that have attracted considerable attention because of their unique electronic, chemical, and biochemical properties. This is reflected in their use in a wide range of potential applications, including light-emitting diodes, anti-static coating, electrochromic materials, solar cells, chemical sensors, biosensors, and drug-release systems. Electrochemical DNA sensors based on CPs can be used in numerous areas related to human health. This review summarizes the recent progress made in the development and use of CP-based electrochemical DNA hybridization sensors. We discuss the distinct properties of CPs with respect to their use in the immobilization of probe DNA on electrode surfaces, and we describe the immobilization techniques used for developing DNA hybridization sensors together with the various transduction methods employed. In the concluding part of this review, we present some of the challenges faced in the use of CP-based DNA hybridization sensors, as well as a future perspective. PMID:25664436

  18. Wavelet-Based DFT calculations on Massively Parallel Hybrid Architectures

    Science.gov (United States)

    Genovese, Luigi

    2011-03-01

    In this contribution, we present an implementation of a full DFT code that can run on massively parallel hybrid CPU-GPU clusters. Our implementation is based on modern GPU architectures which support double-precision floating-point numbers. This DFT code, named BigDFT, is delivered within the GNU-GPL license either in a stand-alone version or integrated in the ABINIT software package. Hybrid BigDFT routines were initially ported with NVidia's CUDA language, and recently more functionalities have been added with new routines writeen within Kronos' OpenCL standard. The formalism of this code is based on Daubechies wavelets, which is a systematic real-space based basis set. As we will see in the presentation, the properties of this basis set are well suited for an extension on a GPU-accelerated environment. In addition to focusing on the implementation of the operators of the BigDFT code, this presentation also relies of the usage of the GPU resources in a complex code with different kinds of operations. A discussion on the interest of present and expected performances of Hybrid architectures computation in the framework of electronic structure calculations is also adressed.

  19. Electrochemical DNA Hybridization Sensors Based on Conducting Polymers

    Directory of Open Access Journals (Sweden)

    Md. Mahbubur Rahman

    2015-02-01

    Full Text Available Conducting polymers (CPs are a group of polymeric materials that have attracted considerable attention because of their unique electronic, chemical, and biochemical properties. This is reflected in their use in a wide range of potential applications, including light-emitting diodes, anti-static coating, electrochromic materials, solar cells, chemical sensors, biosensors, and drug-release systems. Electrochemical DNA sensors based on CPs can be used in numerous areas related to human health. This review summarizes the recent progress made in the development and use of CP-based electrochemical DNA hybridization sensors. We discuss the distinct properties of CPs with respect to their use in the immobilization of probe DNA on electrode surfaces, and we describe the immobilization techniques used for developing DNA hybridization sensors together with the various transduction methods employed. In the concluding part of this review, we present some of the challenges faced in the use of CP-based DNA hybridization sensors, as well as a future perspective.

  20. Visual, base-specific detection of nucleic acid hybridization using polymerization-based amplification.

    Science.gov (United States)

    Hansen, Ryan R; Johnson, Leah M; Bowman, Christopher N

    2009-03-15

    Polymerization-based signal amplification offers sensitive visualization of biotinylated biomolecules functionalized to glass microarrays in a manner suitable for point-of-care use. Here we report using this method for visual detection of multiplexed nucleic acid hybridizations from complex media and develop an application toward point mutation detection and single nucleotide polymorphism (SNP) typing. Primer extension reactions were employed to label selectively and universally all complementary surface DNA hybrids with photoinitiators, permitting simultaneous and dynamic photopolymerization from positive sites to 0.5-nM target concentrations. Dramatic improvements in signal ratios between complementary and mismatched hybrids enabled visual discrimination of single base differences in KRAS codon-12 biomarkers.

  1. Monitoring of beer fermentation based on hybrid electronic tongue.

    Science.gov (United States)

    Kutyła-Olesiuk, Anna; Zaborowski, Michał; Prokaryn, Piotr; Ciosek, Patrycja

    2012-10-01

    Monitoring of biotechnological processes, including fermentation is extremely important because of the rapidly occurring changes in the composition of the samples during the production. In the case of beer, the analysis of physicochemical parameters allows for the determination of the stage of fermentation process and the control of its possible perturbations. As a tool to control the beer production process a sensor array can be used, composed of potentiometric and voltammetric sensors (so-called hybrid Electronic Tongue, h-ET). The aim of this study is to apply electronic tongue system to distinguish samples obtained during alcoholic fermentation. The samples originate from batch of homemade beer fermentation and from two stages of the process: fermentation reaction and maturation of beer. The applied sensor array consists of 10 miniaturized ion-selective electrodes (potentiometric ET) and silicon based 3-electrode voltammetric transducers (voltammetric ET). The obtained results were processed using Partial Least Squares (PLS) and Partial Least Squares-Discriminant Analysis (PLS-DA). For potentiometric data, voltammetric data, and combined potentiometric and voltammetric data, comparison of the classification ability was conducted based on Root Mean Squared Error (RMSE), sensitivity, specificity, and coefficient F calculation. It is shown, that in the contrast to the separately used techniques, the developed hybrid system allowed for a better characterization of the beer samples. Data fusion in hybrid ET enables to obtain better results both in qualitative analysis (RMSE, specificity, sensitivity) and in quantitative analysis (RMSE, R(2), a, b). Copyright © 2012 Elsevier B.V. All rights reserved.

  2. Developing a Novel Hybrid Biogeography-Based Optimization Algorithm for Multilayer Perceptron Training under Big Data Challenge

    Directory of Open Access Journals (Sweden)

    Xun Pu

    2018-01-01

    Full Text Available A Multilayer Perceptron (MLP is a feedforward neural network model consisting of one or more hidden layers between the input and output layers. MLPs have been successfully applied to solve a wide range of problems in the fields of neuroscience, computational linguistics, and parallel distributed processing. While MLPs are highly successful in solving problems which are not linearly separable, two of the biggest challenges in their development and application are the local-minima problem and the problem of slow convergence under big data challenge. In order to tackle these problems, this study proposes a Hybrid Chaotic Biogeography-Based Optimization (HCBBO algorithm for training MLPs for big data analysis and processing. Four benchmark datasets are employed to investigate the effectiveness of HCBBO in training MLPs. The accuracy of the results and the convergence of HCBBO are compared to three well-known heuristic algorithms: (a Biogeography-Based Optimization (BBO, (b Particle Swarm Optimization (PSO, and (c Genetic Algorithms (GA. The experimental results show that training MLPs by using HCBBO is better than the other three heuristic learning approaches for big data processing.

  3. Nanocomposite-Based Bulk Heterojunction Hybrid Solar Cells

    Directory of Open Access Journals (Sweden)

    Bich Phuong Nguyen

    2014-01-01

    Full Text Available Photovoltaic devices based on nanocomposites composed of conjugated polymers and inorganic nanocrystals show promise for the fabrication of low-cost third-generation thin film photovoltaics. In theory, hybrid solar cells can combine the advantages of the two classes of materials to potentially provide high power conversion efficiencies of up to 10%; however, certain limitations on the current within a hybrid solar cell must be overcome. Current limitations arise from incompatibilities among the various intradevice interfaces and the uncontrolled aggregation of nanocrystals during the step in which the nanocrystals are mixed into the polymer matrix. Both effects can lead to charge transfer and transport inefficiencies. This paper highlights potential strategies for resolving these obstacles and presents an outlook on the future directions of this field.

  4. Image reconstruction for an electrical capacitance tomography system based on a least-squares support vector machine and a self-adaptive particle swarm optimization algorithm

    International Nuclear Information System (INIS)

    Chen, Xia; Hu, Hong-li; Liu, Fei; Gao, Xiang Xiang

    2011-01-01

    The task of image reconstruction for an electrical capacitance tomography (ECT) system is to determine the permittivity distribution and hence the phase distribution in a pipeline by measuring the electrical capacitances between sets of electrodes placed around its periphery. In view of the nonlinear relationship between the permittivity distribution and capacitances and the limited number of independent capacitance measurements, image reconstruction for ECT is a nonlinear and ill-posed inverse problem. To solve this problem, a new image reconstruction method for ECT based on a least-squares support vector machine (LS-SVM) combined with a self-adaptive particle swarm optimization (PSO) algorithm is presented. Regarded as a special small sample theory, the SVM avoids the issues appearing in artificial neural network methods such as difficult determination of a network structure, over-learning and under-learning. However, the SVM performs differently with different parameters. As a relatively new population-based evolutionary optimization technique, PSO is adopted to realize parameters' effective selection with the advantages of global optimization and rapid convergence. This paper builds up a 12-electrode ECT system and a pneumatic conveying platform to verify this image reconstruction algorithm. Experimental results indicate that the algorithm has good generalization ability and high-image reconstruction quality

  5. Integrating remotely sensed leaf area index and leaf nitrogen accumulation with RiceGrow model based on particle swarm optimization algorithm for rice grain yield assessment

    Science.gov (United States)

    Wang, Hang; Zhu, Yan; Li, Wenlong; Cao, Weixing; Tian, Yongchao

    2014-01-01

    A regional rice (Oryza sativa) grain yield prediction technique was proposed by integration of ground-based and spaceborne remote sensing (RS) data with the rice growth model (RiceGrow) through a new particle swarm optimization (PSO) algorithm. Based on an initialization/parameterization strategy (calibration), two agronomic indicators, leaf area index (LAI) and leaf nitrogen accumulation (LNA) remotely sensed by field spectra and satellite images, were combined to serve as an external assimilation parameter and integrated with the RiceGrow model for inversion of three model management parameters, including sowing date, sowing rate, and nitrogen rate. Rice grain yield was then predicted by inputting these optimized parameters into the reinitialized model. PSO was used for the parameterization and regionalization of the integrated model and compared with the shuffled complex evolution-University of Arizona (SCE-UA) optimization algorithm. The test results showed that LAI together with LNA as the integrated parameter performed better than each alone for crop model parameter initialization. PSO also performed better than SCE-UA in terms of running efficiency and assimilation results, indicating that PSO is a reliable optimization method for assimilating RS information and the crop growth model. The integrated model also had improved precision for predicting rice grain yield.

  6. Hybrid architecture for encoded measurement-based quantum computation.

    Science.gov (United States)

    Zwerger, M; Briegel, H J; Dür, W

    2014-06-20

    We present a hybrid scheme for quantum computation that combines the modular structure of elementary building blocks used in the circuit model with the advantages of a measurement-based approach to quantum computation. We show how to construct optimal resource states of minimal size to implement elementary building blocks for encoded quantum computation in a measurement-based way, including states for error correction and encoded gates. The performance of the scheme is determined by the quality of the resource states, where within the considered error model a threshold of the order of 10% local noise per particle for fault-tolerant quantum computation and quantum communication.

  7. Multifunctional logic gates based on silicon hybrid plasmonic waveguides

    Science.gov (United States)

    Cui, Luna; Yu, Li

    2018-01-01

    Nano-scale Multifunctional Logic Gates based on Si hybrid plasmonic waveguides (HPWGs) are designed by utilizing the multimode interference (MMI) effect. The proposed device is composed of three input waveguides, three output waveguides and an MMI waveguide. The functional size of the device is only 1000 nm × 3200 nm, which is much smaller than traditional Si-based all-optical logic gates. By setting different input signals and selecting suitable threshold value, OR, AND, XOR and NOT gates are achieved simultaneously or individually in a single device. This may provide a way for ultrahigh speed signal processing and future nanophotonic integrated circuits.

  8. Large-scale multi-zone optimal power dispatch using hybrid hierarchical evolution technique

    Directory of Open Access Journals (Sweden)

    Manjaree Pandit

    2014-03-01

    Full Text Available A new hybrid technique based on hierarchical evolution is proposed for large, non-convex, multi-zone economic dispatch (MZED problems considering all practical constraints. Evolutionary/swarm intelligence-based optimisation techniques are reported to be effective only for small/medium-sized power systems. The proposed hybrid hierarchical evolution (HHE algorithm is specifically developed for solving large systems. The HHE integrates the exploration and exploitation capabilities of particle swarm optimisation and differential evolution in a novel manner such that the search efficiency is improved substantially. Most hybrid techniques export or exchange features or operations from one algorithm to the other, but in HHE their entire individual features are retained. The effectiveness of the proposed algorithm has been verified on six-test systems having different sizes and complexity levels. Non-convex MZED solution for such large and complex systems has not yet been reported.

  9. A discrete particle swarm optimization algorithm with local search for a production-based two-echelon single-vendor multiple-buyer supply chain

    Science.gov (United States)

    Seifbarghy, Mehdi; Kalani, Masoud Mirzaei; Hemmati, Mojtaba

    2016-03-01

    This paper formulates a two-echelon single-producer multi-buyer supply chain model, while a single product is produced and transported to the buyers by the producer. The producer and the buyers apply vendor-managed inventory mode of operation. It is assumed that the producer applies economic production quantity policy, which implies a constant production rate at the producer. The operational parameters of each buyer are sales quantity, sales price and production rate. Channel profit of the supply chain and contract price between the producer and each buyer is determined based on the values of the operational parameters. Since the model belongs to nonlinear integer programs, we use a discrete particle swarm optimization algorithm (DPSO) to solve the addressed problem; however, the performance of the DPSO is compared utilizing two well-known heuristics, namely genetic algorithm and simulated annealing. A number of examples are provided to verify the model and assess the performance of the proposed heuristics. Experimental results indicate that DPSO outperforms the rival heuristics, with respect to some comparison metrics.

  10. Improved Fuzzy C-Means based Particle Swarm Optimization (PSO) initialization and outlier rejection with level set methods for MR brain image segmentation.

    Science.gov (United States)

    Mekhmoukh, Abdenour; Mokrani, Karim

    2015-11-01

    In this paper, a new image segmentation method based on Particle Swarm Optimization (PSO) and outlier rejection combined with level set is proposed. A traditional approach to the segmentation of Magnetic Resonance (MR) images is the Fuzzy C-Means (FCM) clustering algorithm. The membership function of this conventional algorithm is sensitive to the outlier and does not integrate the spatial information in the image. The algorithm is very sensitive to noise and in-homogeneities in the image, moreover, it depends on cluster centers initialization. To improve the outlier rejection and to reduce the noise sensitivity of conventional FCM clustering algorithm, a novel extended FCM algorithm for image segmentation is presented. In general, in the FCM algorithm the initial cluster centers are chosen randomly, with the help of PSO algorithm the clusters centers are chosen optimally. Our algorithm takes also into consideration the spatial neighborhood information. These a priori are used in the cost function to be optimized. For MR images, the resulting fuzzy clustering is used to set the initial level set contour. The results confirm the effectiveness of the proposed algorithm. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  11. An efficient swarm intelligence approach to feature selection based on invasive weed optimization: Application to multivariate calibration and classification using spectroscopic data.

    Science.gov (United States)

    Sheykhizadeh, Saheleh; Naseri, Abdolhossein

    2018-04-05

    Variable selection plays a key role in classification and multivariate calibration. Variable selection methods are aimed at choosing a set of variables, from a large pool of available predictors, relevant to the analyte concentrations estimation, or to achieve better classification results. Many variable selection techniques have now been introduced among which, those which are based on the methodologies of swarm intelligence optimization have been more respected during a few last decades since they are mainly inspired by nature. In this work, a simple and new variable selection algorithm is proposed according to the invasive weed optimization (IWO) concept. IWO is considered a bio-inspired metaheuristic mimicking the weeds ecological behavior in colonizing as well as finding an appropriate place for growth and reproduction; it has been shown to be very adaptive and powerful to environmental changes. In this paper, the first application of IWO, as a very simple and powerful method, to variable selection is reported using different experimental datasets including FTIR and NIR data, so as to undertake classification and multivariate calibration tasks. Accordingly, invasive weed optimization - linear discrimination analysis (IWO-LDA) and invasive weed optimization- partial least squares (IWO-PLS) are introduced for multivariate classification and calibration, respectively. Copyright © 2018 Elsevier B.V. All rights reserved.

  12. Seepage safety monitoring model for an earth rock dam under influence of high-impact typhoons based on particle swarm optimization algorithm

    Directory of Open Access Journals (Sweden)

    Yan Xiang

    2017-01-01

    Full Text Available Extreme hydrological events induced by typhoons in reservoir areas have presented severe challenges to the safe operation of hydraulic structures. Based on analysis of the seepage characteristics of an earth rock dam, a novel seepage safety monitoring model was constructed in this study. The nonlinear influence processes of the antecedent reservoir water level and rainfall were assumed to follow normal distributions. The particle swarm optimization (PSO algorithm was used to optimize the model parameters so as to raise the fitting accuracy. In addition, a mutation factor was introduced to simulate the sudden increase in the piezometric level induced by short-duration heavy rainfall and the possible historical extreme reservoir water level during a typhoon. In order to verify the efficacy of this model, the earth rock dam of the Siminghu Reservoir was used as an example. The piezometric level at the SW1-2 measuring point during Typhoon Fitow in 2013 was fitted with the present model, and a corresponding theoretical expression was established. Comparison of fitting results of the piezometric level obtained from the present statistical model and traditional statistical model with monitored values during the typhoon shows that the present model has a higher fitting accuracy and can simulate the uprush feature of the seepage pressure during the typhoon perfectly.

  13. An efficient swarm intelligence approach to feature selection based on invasive weed optimization: Application to multivariate calibration and classification using spectroscopic data

    Science.gov (United States)

    Sheykhizadeh, Saheleh; Naseri, Abdolhossein

    2018-04-01

    Variable selection plays a key role in classification and multivariate calibration. Variable selection methods are aimed at choosing a set of variables, from a large pool of available predictors, relevant to the analyte concentrations estimation, or to achieve better classification results. Many variable selection techniques have now been introduced among which, those which are based on the methodologies of swarm intelligence optimization have been more respected during a few last decades since they are mainly inspired by nature. In this work, a simple and new variable selection algorithm is proposed according to the invasive weed optimization (IWO) concept. IWO is considered a bio-inspired metaheuristic mimicking the weeds ecological behavior in colonizing as well as finding an appropriate place for growth and reproduction; it has been shown to be very adaptive and powerful to environmental changes. In this paper, the first application of IWO, as a very simple and powerful method, to variable selection is reported using different experimental datasets including FTIR and NIR data, so as to undertake classification and multivariate calibration tasks. Accordingly, invasive weed optimization - linear discrimination analysis (IWO-LDA) and invasive weed optimization- partial least squares (IWO-PLS) are introduced for multivariate classification and calibration, respectively.

  14. LinkMind: link optimization in swarming mobile sensor networks.

    Science.gov (United States)

    Ngo, Trung Dung

    2011-01-01

    A swarming mobile sensor network is comprised of a swarm of wirelessly connected mobile robots equipped with various sensors. Such a network can be applied in an uncertain environment for services such as cooperative navigation and exploration, object identification and information gathering. One of the most advantageous properties of the swarming wireless sensor network is that mobile nodes can work cooperatively to organize an ad-hoc network and optimize the network link capacity to maximize the transmission of gathered data from a source to a target. This paper describes a new method of link optimization of swarming mobile sensor networks. The new method is based on combination of the artificial potential force guaranteeing connectivities of the mobile sensor nodes and the max-flow min-cut theorem of graph theory ensuring optimization of the network link capacity. The developed algorithm is demonstrated and evaluated in simulation.

  15. Algorithmic requirements for swarm intelligence in differently coupled collective systems

    Science.gov (United States)

    Stradner, Jürgen; Thenius, Ronald; Zahadat, Payam; Hamann, Heiko; Crailsheim, Karl; Schmickl, Thomas

    2013-01-01

    Swarm systems are based on intermediate connectivity between individuals and dynamic neighborhoods. In natural swarms self-organizing principles bring their agents to that favorable level of connectivity. They serve as interesting sources of inspiration for control algorithms in swarm robotics on the one hand, and in modular robotics on the other hand. In this paper we demonstrate and compare a set of bio-inspired algorithms that are used to control the collective behavior of swarms and modular systems: BEECLUST, AHHS (hormone controllers), FGRN (fractal genetic regulatory networks), and VE (virtual embryogenesis). We demonstrate how such bio-inspired control paradigms bring their host systems to a level of intermediate connectivity, what delivers sufficient robustness to these systems for collective decentralized control. In parallel, these algorithms allow sufficient volatility of shared information within these systems to help preventing local optima and deadlock situations, this way keeping those systems flexible and adaptive in dynamic non-deterministic environments. PMID:23805030

  16. Algorithmic requirements for swarm intelligence in differently coupled collective systems.

    Science.gov (United States)

    Stradner, Jürgen; Thenius, Ronald; Zahadat, Payam; Hamann, Heiko; Crailsheim, Karl; Schmickl, Thomas

    2013-05-01

    Swarm systems are based on intermediate connectivity between individuals and dynamic neighborhoods. In natural swarms self-organizing principles bring their agents to that favorable level of connectivity. They serve as interesting sources of inspiration for control algorithms in swarm robotics on the one hand, and in modular robotics on the other hand. In this paper we demonstrate and compare a set of bio-inspired algorithms that are used to control the collective behavior of swarms and modular systems: BEECLUST, AHHS (hormone controllers), FGRN (fractal genetic regulatory networks), and VE (virtual embryogenesis). We demonstrate how such bio-inspired control paradigms bring their host systems to a level of intermediate connectivity, what delivers sufficient robustness to these systems for collective decentralized control. In parallel, these algorithms allow sufficient volatility of shared information within these systems to help preventing local optima and deadlock situations, this way keeping those systems flexible and adaptive in dynamic non-deterministic environments.

  17. A Markov Chain Approach to Probabilistic Swarm Guidance

    Science.gov (United States)

    Acikmese, Behcet; Bayard, David S.

    2012-01-01

    This paper introduces a probabilistic guidance approach for the coordination of swarms of autonomous agents. The main idea is to drive the swarm to a prescribed density distribution in a prescribed region of the configuration space. In its simplest form, the probabilistic approach is completely decentralized and does not require communication or collabo- ration between agents. Agents make statistically independent probabilistic decisions based solely on their own state, that ultimately guides the swarm to the desired density distribution in the configuration space. In addition to being completely decentralized, the probabilistic guidance approach has a novel autonomous self-repair property: Once the desired swarm density distribution is attained, the agents automatically repair any damage to the distribution without collaborating and without any knowledge about the damage.

  18. LinkMind: Link Optimization in Swarming Mobile Sensor Networks

    Directory of Open Access Journals (Sweden)

    Trung Dung Ngo

    2011-08-01

    Full Text Available A swarming mobile sensor network is comprised of a swarm of wirelessly connected mobile robots equipped with various sensors. Such a network can be applied in an uncertain environment for services such as cooperative navigation and exploration, object identification and information gathering. One of the most advantageous properties of the swarming wireless sensor network is that mobile nodes can work cooperatively to organize an ad-hoc network and optimize the network link capacity to maximize the transmission of gathered data from a source to a target. This paper describes a new method of link optimization of swarming mobile sensor networks. The new method is based on combination of the artificial potential force guaranteeing connectivities of the mobile sensor nodes and the max-flow min-cut theorem of graph theory ensuring optimization of the network link capacity. The developed algorithm is demonstrated and evaluated in simulation.

  19. Algorithmic requirements for swarm intelligence in differently coupled collective systems

    International Nuclear Information System (INIS)

    Stradner, Jürgen; Thenius, Ronald; Zahadat, Payam; Hamann, Heiko; Crailsheim, Karl; Schmickl, Thomas

    2013-01-01

    Swarm systems are based on intermediate connectivity between individuals and dynamic neighborhoods. In natural swarms self-organizing principles bring their agents to that favorable level of connectivity. They serve as interesting sources of inspiration for control algorithms in swarm robotics on the one hand, and in modular robotics on the other hand. In this paper we demonstrate and compare a set of bio-inspired algorithms that are used to control the collective behavior of swarms and modular systems: BEECLUST, AHHS (hormone controllers), FGRN (fractal genetic regulatory networks), and VE (virtual embryogenesis). We demonstrate how such bio-inspired control paradigms bring their host systems to a level of intermediate connectivity, what delivers sufficient robustness to these systems for collective decentralized control. In parallel, these algorithms allow sufficient volatility of shared information within these systems to help preventing local optima and deadlock situations, this way keeping those systems flexible and adaptive in dynamic non-deterministic environments

  20. Development of hybrid artificial intelligent based handover decision algorithm

    Directory of Open Access Journals (Sweden)

    A.M. Aibinu

    2017-04-01

    Full Text Available The possibility of seamless handover remains a mirage despite the plethora of existing handover algorithms. The underlying factor responsible for this has been traced to the Handover decision module in the Handover process. Hence, in this paper, the development of novel hybrid artificial intelligent handover decision algorithm has been developed. The developed model is made up of hybrid of Artificial Neural Network (ANN based prediction model and Fuzzy Logic. On accessing the network, the Received Signal Strength (RSS was acquired over a period of time to form a time series data. The data was then fed to the newly proposed k-step ahead ANN-based RSS prediction system for estimation of prediction model coefficients. The synaptic weights and adaptive coefficients of the trained ANN was then used to compute the k-step ahead ANN based RSS prediction model coefficients. The predicted RSS value was later codified as Fuzzy sets and in conjunction with other measured network parameters were fed into the Fuzzy logic controller in order to finalize handover decision process. The performance of the newly developed k-step ahead ANN based RSS prediction algorithm was evaluated using simulated and real data acquired from available mobile communication networks. Results obtained in both cases shows that the proposed algorithm is capable of predicting ahead the RSS value to about ±0.0002 dB. Also, the cascaded effect of the complete handover decision module was also evaluated. Results obtained show that the newly proposed hybrid approach was able to reduce ping-pong effect associated with other handover techniques.