WorldWideScience

Sample records for swapping quantum entanglement

  1. Quantum Entanglement Swapping between Two Multipartite Entangled States.

    Science.gov (United States)

    Su, Xiaolong; Tian, Caixing; Deng, Xiaowei; Li, Qiang; Xie, Changde; Peng, Kunchi

    2016-12-09

    Quantum entanglement swapping is one of the most promising ways to realize the quantum connection among local quantum nodes. In this Letter, we present an experimental demonstration of the entanglement swapping between two independent multipartite entangled states, each of which involves a tripartite Greenberger-Horne-Zeilinger (GHZ) entangled state of an optical field. The entanglement swapping is implemented deterministically by means of a joint measurement on two optical modes coming from the two multipartite entangled states respectively and the classical feedforward of the measurement results. After entanglement swapping the two independent multipartite entangled states are merged into a large entangled state in which all unmeasured quantum modes are entangled. The entanglement swapping between a tripartite GHZ state and an Einstein-Podolsky-Rosen entangled state is also demonstrated and the dependence of the resultant entanglement on transmission loss is investigated. The presented experiment provides a feasible technical reference for constructing more complicated quantum networks.

  2. Quantum coordinated multi-point communication based on entanglement swapping

    Science.gov (United States)

    Du, Gang; Shang, Tao; Liu, Jian-wei

    2017-05-01

    In a quantum network, adjacent nodes can communicate with each other point to point by using pre-shared Einsten-Podolsky-Rosen (EPR) pairs, and furthermore remote nodes can establish entanglement channels by using quantum routing among intermediate nodes. However, with the rapid development of quantum networks, the demand of various message transmission among nodes inevitably emerges. In order to realize this goal and extend quantum networks, we propose a quantum coordinated multi-point communication scheme based on entanglement swapping. The scheme takes full advantage of EPR pairs between adjacent nodes and performs multi-party entanglement swapping to transmit messages. Considering various demands of communication, all nodes work cooperatively to realize different message transmission modes, including one to many, many to one and one to some. Scheme analysis shows that the proposed scheme can flexibly organize a coordinated group and efficiently use EPR resources, while it meets basic security requirement under the condition of coordinated communication.

  3. Quantum secure direct communication by EPR pairs and entanglement swapping

    CERN Document Server

    Gao, T; Yan, F L; 10.1393/ncb/i2004-10090-1

    2004-01-01

    We present, a quantum secure direct communication scheme achieved by swapping quantum entanglement. In this scheme a set of ordered Einstein-Podolsky-Rosen (HPIl) pairs is used as a quantum information channel for sending secret messages directly. After insuring the safety of the quantum channel, the sender Alice encodes the secret messages directly by applying a series local operations on her particle sequences according to their stipulation. Using three EPR pairs, three bits of secret classical information can be faithfully transmitted from Alice to remote Bob without revealing any information to a potential eavesdropper. By both Alice and Bob's GHZ state measurement results, Bob is able to read out the encoded secret messages directly. The protocol is completely secure if perfect quantum channel is used, because there is not a transmission of the qubits carrying the secret message between Alice and Bob in the public channel.

  4. Continuous-Variable Entanglement Swapping

    Directory of Open Access Journals (Sweden)

    Kevin Marshall

    2015-05-01

    Full Text Available We present a very brief overview of entanglement swapping as it relates to continuous-variable quantum information. The technical background required is discussed and the natural link to quantum teleportation is established before discussing the nature of Gaussian entanglement swapping. The limitations of Gaussian swapping are introduced, along with the general applications of swapping in the context of to quantum communication and entanglement distribution. In light of this, we briefly summarize a collection of entanglement swapping schemes which incorporate a non-Gaussian ingredient and the benefits of such schemes are noted. Finally, we motivate the need to further study and develop such schemes by highlighting requirements of a continuous-variable repeater.

  5. Two-Hierarchy Entanglement Swapping for a Linear Optical Quantum Repeater.

    Science.gov (United States)

    Xu, Ping; Yong, Hai-Lin; Chen, Luo-Kan; Liu, Chang; Xiang, Tong; Yao, Xing-Can; Lu, He; Li, Zheng-Da; Liu, Nai-Le; Li, Li; Yang, Tao; Peng, Cheng-Zhi; Zhao, Bo; Chen, Yu-Ao; Pan, Jian-Wei

    2017-10-27

    Quantum repeaters play a significant role in achieving long-distance quantum communication. In the past decades, tremendous effort has been devoted towards constructing a quantum repeater. As one of the crucial elements, entanglement has been created in different memory systems via entanglement swapping. The realization of j-hierarchy entanglement swapping, i.e., connecting quantum memory and further extending the communication distance, is important for implementing a practical quantum repeater. Here, we report the first demonstration of a fault-tolerant two-hierarchy entanglement swapping with linear optics using parametric down-conversion sources. In the experiment, the dominant or most probable noise terms in the one-hierarchy entanglement swapping, which is on the same order of magnitude as the desired state and prevents further entanglement connections, are automatically washed out by a proper design of the detection setting, and the communication distance can be extended. Given suitable quantum memory, our techniques can be directly applied to implementing an atomic ensemble based quantum repeater, and are of significant importance in the scalable quantum information processing.

  6. Two-Hierarchy Entanglement Swapping for a Linear Optical Quantum Repeater

    Science.gov (United States)

    Xu, Ping; Yong, Hai-Lin; Chen, Luo-Kan; Liu, Chang; Xiang, Tong; Yao, Xing-Can; Lu, He; Li, Zheng-Da; Liu, Nai-Le; Li, Li; Yang, Tao; Peng, Cheng-Zhi; Zhao, Bo; Chen, Yu-Ao; Pan, Jian-Wei

    2017-10-01

    Quantum repeaters play a significant role in achieving long-distance quantum communication. In the past decades, tremendous effort has been devoted towards constructing a quantum repeater. As one of the crucial elements, entanglement has been created in different memory systems via entanglement swapping. The realization of j -hierarchy entanglement swapping, i.e., connecting quantum memory and further extending the communication distance, is important for implementing a practical quantum repeater. Here, we report the first demonstration of a fault-tolerant two-hierarchy entanglement swapping with linear optics using parametric down-conversion sources. In the experiment, the dominant or most probable noise terms in the one-hierarchy entanglement swapping, which is on the same order of magnitude as the desired state and prevents further entanglement connections, are automatically washed out by a proper design of the detection setting, and the communication distance can be extended. Given suitable quantum memory, our techniques can be directly applied to implementing an atomic ensemble based quantum repeater, and are of significant importance in the scalable quantum information processing.

  7. Entanglement swapping via three-step quantum walk-like protocol

    Science.gov (United States)

    Li, Xiao-Man; Yang, Ming; Paunković, Nikola; Li, Da-Chuang; Cao, Zhuo-Liang

    2017-12-01

    We present an entanglement swapping process for unknown nonmaximally entangled photonic states, where the standard Bell-state measurement is replaced by a three-step quantum walk-like state discrimination process, i.e., the practically nontrivial coupling element of two photons is replaced by manipulating their trajectories, which will greatly enrich the dynamics of the coupling between photons in realizing quantum computation, and reduce the integration complexity of optical quantum processing. In addition, the output state can be maximally entangled, which allows for entanglement concentration as well.

  8. Quantum dual signature scheme based on coherent states with entanglement swapping

    Science.gov (United States)

    Liu, Jia-Li; Shi, Rong-Hua; Shi, Jin-Jing; Lv, Ge-Li; Guo, Ying

    2016-08-01

    A novel quantum dual signature scheme, which combines two signed messages expected to be sent to two diverse receivers Bob and Charlie, is designed by applying entanglement swapping with coherent states. The signatory Alice signs two different messages with unitary operations (corresponding to the secret keys) and applies entanglement swapping to generate a quantum dual signature. The dual signature is firstly sent to the verifier Bob who extracts and verifies the signature of one message and transmits the rest of the dual signature to the verifier Charlie who verifies the signature of the other message. The transmission of the dual signature is realized with quantum teleportation of coherent states. The analysis shows that the security of secret keys and the security criteria of the signature protocol can be greatly guaranteed. An extensional multi-party quantum dual signature scheme which considers the case with more than three participants is also proposed in this paper and this scheme can remain secure. The proposed schemes are completely suited for the quantum communication network including multiple participants and can be applied to the e-commerce system which requires a secure payment among the customer, business and bank. Project supported by the National Natural Science Foundation of China (Grant Nos. 61272495, 61379153, and 61401519) and the Research Fund for the Doctoral Program of Higher Education of China (Grant No. 20130162110012).

  9. Quantum Byzantine agreement via Hardy correlations and entanglement swapping

    Science.gov (United States)

    Rahaman, Ramij; Wieśniak, Marcin; Żukowski, Marek

    2015-10-01

    We present a device-independent quantum scheme for the Byzantine generals problem. The protocol is for three parties. Party C is to send two identical one-bit messages to parties A and B . The receivers A and B may exchange two one-bit messages informing the other party on the message received from C . A bit-flipping error in one of the transmissions does not allow the receiving parties to establish what was the message of C . Our quantum protocol is based on Hardy's argument, which uses a set of conditions impossible for classical systems, but satisfied by predictions for a unique two-qubit state. The scheme has the feature that if the messages of the Byzantine protocol are readable (that is give an unambiguous bit value for any of the receivers), then any error by C (cheating by one of the commanding generals) is impossible. A and B do not have to exchange protocol messages to be sure of this.

  10. A Quantum Multi-Proxy Weak Blind Signature Scheme Based on Entanglement Swapping

    Science.gov (United States)

    Yan, LiLi; Chang, Yan; Zhang, ShiBin; Han, GuiHua; Sheng, ZhiWei

    2017-02-01

    In this paper, we present a multi-proxy weak blind signature scheme based on quantum entanglement swapping of Bell states. In the scheme, proxy signers can finish the signature instead of original singer with his/her authority. It can be applied to the electronic voting system, electronic paying system, etc. The scheme uses the physical characteristics of quantum mechanics to implement delegation, signature and verification. It could guarantee not only the unconditionally security but also the anonymity of the message owner. The security analysis shows the scheme satisfies the security features of multi-proxy weak signature, singers cannot disavowal his/her signature while the signature cannot be forged by others, and the message owner can be traced.

  11. Highly efficient entanglement swapping and teleportation at telecom wavelength.

    Science.gov (United States)

    Jin, Rui-Bo; Takeoka, Masahiro; Takagi, Utako; Shimizu, Ryosuke; Sasaki, Masahide

    2015-03-20

    Entanglement swapping at telecom wavelengths is at the heart of quantum networking in optical fiber infrastructures. Although entanglement swapping has been demonstrated experimentally so far using various types of entangled photon sources both in near-infrared and telecom wavelength regions, the rate of swapping operation has been too low to be applied to practical quantum protocols, due to limited efficiency of entangled photon sources and photon detectors. Here we demonstrate drastic improvement of the efficiency at telecom wavelength by using two ultra-bright entangled photon sources and four highly efficient superconducting nanowire single photon detectors. We have attained a four-fold coincidence count rate of 108 counts per second, which is three orders higher than the previous experiments at telecom wavelengths. A raw (net) visibility in a Hong-Ou-Mandel interference between the two independent entangled sources was 73.3 ± 1.0% (85.1 ± 0.8%). We performed the teleportation and entanglement swapping, and obtained a fidelity of 76.3% in the swapping test. Our results on the coincidence count rates are comparable with the ones ever recorded in teleportation/swapping and multi-photon entanglement generation experiments at around 800 nm wavelengths. Our setup opens the way to practical implementation of device-independent quantum key distribution and its distance extension by the entanglement swapping as well as multi-photon entangled state generation in telecom band infrastructures with both space and fiber links.

  12. Entanglement Swapping between Photons that have Never Coexisted

    Science.gov (United States)

    Megidish, E.; Halevy, A.; Shacham, T.; Dvir, T.; Dovrat, L.; Eisenberg, H. S.

    2013-05-01

    The role of the timing and order of quantum measurements is not just a fundamental question of quantum mechanics, but also a puzzling one. Any part of a quantum system that has finished evolving can be measured immediately or saved for later, without affecting the final results, regardless of the continued evolution of the rest of the system. In addition, the nonlocality of quantum mechanics, as manifested by entanglement, does not apply only to particles with spacelike separation, but also to particles with timelike separation. In order to demonstrate these principles, we generated and fully characterized an entangled pair of photons that have never coexisted. Using entanglement swapping between two temporally separated photon pairs, we entangle one photon from the first pair with another photon from the second pair. The first photon was detected even before the other was created. The observed two-photon state demonstrates that entanglement can be shared between timelike separated quantum systems.

  13. Quantum private comparison protocol based on the entanglement swapping between χ ^+ state and W-Class state

    Science.gov (United States)

    Xu, Ling; Zhao, Zhiwen

    2017-12-01

    Quantum private comparison (QPC) protocol, including Alice, Bob and the third party Charlie, aims at comparing Alice and Bob's secret inputs correctly without leaking them. Firstly, χ ^+ state and W-Class state are used to conduct the entanglement swapping in this protocol. Either the basis {|φ ^± > ,|ψ ^± >} or the basis {|χ ^± > ,|ω ^± > } is chosen by Alice and Bob based on the predetermined value to measure the particle pairs. And three bits of secret inputs can be compared in this protocol in every comparison time, while most of previous QPC protocols can only compare one or two bits. The qubit efficiency of this protocol is 60% more than others, which are 50% at most. Secondly, if the eavesdropper intends to obtain the secret inputs, it is important and primary to get the measurement results of particle pairs. In this protocol, even if the eavesdropper gets the accurate particle pairs, he cannot get the right measurement results without the right basis. Finally, this protocol is analyzed to be able to defend the secret inputs against various kinds of attack.

  14. Simultaneous entanglement swapping of multiple orbital angular momentum states of light.

    Science.gov (United States)

    Zhang, Yingwen; Agnew, Megan; Roger, Thomas; Roux, Filippus S; Konrad, Thomas; Faccio, Daniele; Leach, Jonathan; Forbes, Andrew

    2017-09-21

    High-bit-rate long-distance quantum communication is a proposed technology for future communication networks and relies on high-dimensional quantum entanglement as a core resource. While it is known that spatial modes of light provide an avenue for high-dimensional entanglement, the ability to transport such quantum states robustly over long distances remains challenging. To overcome this, entanglement swapping may be used to generate remote quantum correlations between particles that have not interacted; this is the core ingredient of a quantum repeater, akin to repeaters in optical fibre networks. Here we demonstrate entanglement swapping of multiple orbital angular momentum states of light. Our approach does not distinguish between different anti-symmetric states, and thus entanglement swapping occurs for several thousand pairs of spatial light modes simultaneously. This work represents the first step towards a quantum network for high-dimensional entangled states and provides a test bed for fundamental tests of quantum science.Entanglement swapping in high dimensions requires large numbers of entangled photons and consequently suffers from low photon flux. Here the authors demonstrate entanglement swapping of multiple spatial modes of light simultaneously, without the need for increasing the photon numbers with dimension.

  15. Secure Quantum Private Comparison Protocol Based on the Entanglement Swapping Between Three-Particle W-Class State and Bell State

    Science.gov (United States)

    Li, Jian; Jia, Lu; Zhou, Hong-Fu; Zhang, Ting-Ting

    2016-03-01

    We propose a new quantum private comparison protocol with the help of a semi-honest third party (TP), enabling two participants to compare the equality of their private inputs without exposing any information about their respective private inputs. Different from previous protocols, our protocol utilizes the properties of entanglement swapping between three-particle W-Class state and Bell state. The presented protocol can ensure correctness, fairness and security. Meanwhile, all the quantum particles undergo a one-way transmission, and all the participants including TP are just required having the ability to perform Bell-state measurement and exclusive-or operation which make our protocol more feasible and efficient. At last, the security of this protocol with respect to various kinds of attacks is analyzed in detail.

  16. Multi-party quantum private comparison based on the entanglement swapping of d-level cat states and d-level Bell states

    Science.gov (United States)

    Zhao-Xu, Ji; Tian-Yu, Ye

    2017-07-01

    In this paper, a novel multi-party quantum private comparison protocol with a semi-honest third party (TP) is proposed based on the entanglement swapping of d-level cat states and d-level Bell states. Here, TP is allowed to misbehave on his own, but will not conspire with any party. In our protocol, n parties employ unitary operations to encode their private secrets and can compare the equality of their private secrets within one time execution of the protocol. Our protocol can withstand both the outside attacks and the participant attacks on the condition that none of the QKD methods is adopted to generate keys for security. One party cannot obtain other parties' secrets except for the case that their secrets are identical. The semi-honest TP cannot learn any information about these parties' secrets except the end comparison result on whether all private secrets from n parties are equal.

  17. Entanglement swapping with independent sources over an optical-fiber network

    Science.gov (United States)

    Sun, Qi-Chao; Mao, Ya-Li; Jiang, Yang-Fan; Zhao, Qi; Chen, Si-Jing; Zhang, Wei; Zhang, Wei-Jun; Jiang, Xiao; Chen, Teng-Yun; You, Li-Xing; Li, Li; Huang, Yi-Dong; Chen, Xian-Feng; Wang, Zhen; Ma, Xiongfeng; Zhang, Qiang; Pan, Jian-Wei

    2017-03-01

    Establishing entanglement between two remote systems by the method of entanglement swapping is an essential step for a long-distance quantum network. Here we report a field-test entanglement swapping experiment with two independent telecommunication band entangled photon-pair sources over an optical fiber network in Hefei. The two sources are located at two nodes that are 12.5 km apart and the Bell-state measurement is performed at a third location which is connected to the two source nodes with 14.7-km and 10.6-km optical fibers, respectively. The observed average visibility is 79.9 ±4.8 % , which is sufficient for the violation of Bell inequalities. Furthermore, with the swapped entanglement, we demonstrate a source-independent quantum key distribution, which is also immune to any detection attacks at the measurement site.

  18. Detecting Quantum Entanglement

    OpenAIRE

    Terhal, Barbara M

    2001-01-01

    We review the criteria for separability and quantum entanglement, both in a bipartite as well as a multipartite setting. We discuss Bell inequalities, entanglement witnesses, entropic inequalities, bound entanglement and several features of multipartite entanglement. We indicate how these criteria bear on the experimental detection of quantum entanglement.

  19. Emergence of Quantum Correlations from Non-Locality Swapping

    OpenAIRE

    Skrzypczyk, Paul; Brunner, Nicolas; Popescu, Sandu

    2008-01-01

    By studying generalized non-signalling theories, the hope is to find out what makes quantum mechanics so special. In the present paper, we revisit the paradigmatic model of non-signalling boxes and introduce the concept of a genuine box. This will allow us to present the first generalized non-signalling model featuring quantum-like dynamics. In particular, we present the coupler, a device enabling non-locality swapping, the analogue of quantum entanglement swapping, as well as teleportation. ...

  20. A Robust and Efficient Quantum Private Comparison of Equality Based on the Entangled Swapping of GHZ-like State and χ + State

    Science.gov (United States)

    Xu, Ling; Zhao, Zhiwen

    2017-08-01

    A new quantum protocol with the assistance of a semi-honest third party (TP) is proposed, which allows the participants comparing the equality of their private information without disclosing them. Different from previous protocols, this protocol utilizes quantum key distribution against the collective-dephasing noise and the collective-rotation noise, which is more robust and abandons few samples, to transmit the classical information. In addition, this protocol utilizes the GHZ-like state and the χ + state to produce the entanglement swapping. And the Bell basis and the dual basis are used to measure the particle pair so that 3 bits of each participant's private information can be compared in each comparison time, which is more efficient and consumes fewer comparison times. Meanwhile, there is no need of unitary operation and hash function in this protocol. At the end, various kinds of outside attack and participant attack are discussed and analyzed to be invalid, so it can complete the comparison in security.

  1. Comparing Quantum Entanglement and Topological Entanglement

    OpenAIRE

    Kauffman, Louis H.; Lomonaco, Samuel J.

    2002-01-01

    This paper discusses relationships between topological entanglement and quantum entanglement. Specifically, we propose that for this comparison it is fundamental to view topological entanglements such as braids as "entanglement operators" and to associate to them unitary operators that are capable of creating quantum entanglement.

  2. Quantum Entanglement and Teleportation

    OpenAIRE

    Yates, Brent R.

    2011-01-01

    Even Einstein has to be wrong sometimes. However, when Einstein was wrong he created a 70 year debate about the strange behavior of quantum mechanics. His debate helped prove topics such as the indeterminacy of particle states, quantum entanglement, and a rather clever use of quantum entanglement known as quantum teleportation.

  3. Entanglement distribution and quantum discord

    OpenAIRE

    Streltsov, Alexander; Kampermann, Hermann; Bruß, Dagmar

    2016-01-01

    Establishing entanglement between distant parties is one of the most important problems of quantum technology, since long-distance entanglement is an essential part of such fundamental tasks as quantum cryptography or quantum teleportation. In this lecture we review basic properties of entanglement and quantum discord, and discuss recent results on entanglement distribution and the role of quantum discord therein. We also review entanglement distribution with separable states, and discuss imp...

  4. Entanglement versus disentanglement: Quantum Cryptography

    OpenAIRE

    Mitra, Arindam

    2000-01-01

    In quantum information, the role of entanglement and disentanglement is itself a subject of research and debate. Earlier works on quantum cryptography have almost established that entanglement has no special advantage in quantum cryptography. In this paper we reveal that entanglement is better ingredient than disentanglement for our alternative quantum cryptography.

  5. The influence of excitation number of photon-added coherent state field on the entanglement swapping process

    Science.gov (United States)

    Soltani, M.; Tavassoly, M. K.; Pakniat, R.

    2017-10-01

    In this paper, we outline a scheme for the entanglement swapping procedure based on cavity quantum electrodynamics using the Jaynes-Cummings model consisting of the coherent and photon-added coherent states. In particular, utilizing the photon-added coherent states (|α,m〉≃â†m|α〉, where |α〉 is the Glauber coherent state) in the scheme, enables us to investigate the effect of m, i.e., the number of excitations corresponding to the photon-added coherent field on the entanglement swapping process. In the scheme, two two-level atoms A1 and A2 are initially entangled together, and distinctly two exploited cavity fields F1 and F2 are prepared in an entangled state (a combination of coherent and photon-added coherent states). Interacting the atom A2 with field F1 (via the Jaynes-Cummings model) and then making detection on them, transfers the entanglement from the two atoms A1, A2 and the two fields F1, F2 to the atom-field “A1-F2”, i.e., entanglement swapping occurs. In the continuation, we pay our attention to the evaluation of the fidelity of the swapped entangled state relative to a suitable maximally entangled state, success probability of the performed detections and linear entropy as the degree of entanglement of the swapped entangled state. It is demonstrated that, an increase in the number of excitations, m, leads to the increment of fidelity as well as the amount of entanglement. According to our numerical results, the maximum values of fidelity (linear entropy) 0.98 (0.46) is obtained for m = 9, however, the maximum value of success probability does not significantly change by increasing m.

  6. Private States, Quantum Data Hiding, and the Swapping of Perfect Secrecy

    DEFF Research Database (Denmark)

    Christandl, Matthias; Ferrara, Roberto

    2017-01-01

    on an intuition that the quantum mechanical phenomena of data hiding and privacy might be related. In this Letter we firmly connect these two phenomena and highlight three aspects of this result. First, we simplify the definition of the secret key rate. Second, we give a formula for the one-way distillable......An important contribution to the understanding of quantum key distribution has been the discovery of entangled states from which secret bits, but no maximally entangled states, can be extracted [Horodecki et al., Phys. Rev. Lett. 94, 200501 (2005)]. The construction of those states was based...... quantum repeater protocol based on entanglement distillation and entanglement swapping....

  7. Quantum entanglement and quantum computational algorithms

    Indian Academy of Sciences (India)

    Abstract. The existence of entangled quantum states gives extra power to quantum computers over their classical counterparts. Quantum entanglement shows up qualitatively at the level of two qubits. We demonstrate that the one- and the two-bit Deutsch-Jozsa algorithm does not require entanglement and can be mapped ...

  8. Quantum entanglement and quantum computational algorithms

    Indian Academy of Sciences (India)

    Home; Journals; Pramana – Journal of Physics; Volume 56; Issue 2-3. Quantum entanglement ... Arvind. Quantum information processing Volume 56 Issue 2-3 February-March 2001 pp 357-365 ... The existence of entangled quantum states gives extra power to quantum computers over their classical counterparts. Quantum ...

  9. Lithography using quantum entangled particles

    Science.gov (United States)

    Williams, Colin (Inventor); Dowling, Jonathan (Inventor)

    2001-01-01

    A system of etching using quantum entangled particles to get shorter interference fringes. An interferometer is used to obtain an interference fringe. N entangled photons are input to the interferometer. This reduces the distance between interference fringes by n, where again n is the number of entangled photons.

  10. Higher-order quantum entanglement

    Science.gov (United States)

    Zeilinger, Anton; Horne, Michael A.; Greenberger, Daniel M.

    1992-01-01

    In quantum mechanics, the general state describing two or more particles is a linear superposition of product states. Such a superposition is called entangled if it cannot be factored into just one product. When only two particles are entangled, the stage is set for Einstein-Podolsky-Rosen (EPR) discussions and Bell's proof that the EPR viewpoint contradicts quantum mechanics. If more than two particles are involved, new possibilities and phenomena arise. For example, the Greenberger, Horne, and Zeilinger (GHZ) disproof of EPR applies. Furthermore, as we point out, with three or more particles even entanglement itself can be an entangled property.

  11. Entangled states in quantum mechanics

    Science.gov (United States)

    Ruža, Jānis

    2010-01-01

    In some circles of quantum physicists, a view is maintained that the nonseparability of quantum systems-i.e., the entanglement-is a characteristic feature of quantum mechanics. According to this view, the entanglement plays a crucial role in the solution of quantum measurement problem, the origin of the “classicality” from the quantum physics, the explanation of the EPR paradox by a nonlocal character of the quantum world. Besides, the entanglement is regarded as a cornerstone of such modern disciplines as quantum computation, quantum cryptography, quantum information, etc. At the same time, entangled states are well known and widely used in various physics areas. In particular, this notion is widely used in nuclear, atomic, molecular, solid state physics, in scattering and decay theories as well as in other disciplines, where one has to deal with many-body quantum systems. One of the methods, how to construct the basis states of a composite many-body quantum system, is the so-called genealogical decomposition method. Genealogical decomposition allows one to construct recurrently by particle number the basis states of a composite quantum system from the basis states of its forming subsystems. These coupled states have a structure typical for entangled states. If a composite system is stable, the internal structure of its forming basis states does not manifest itself in measurements. However, if a composite system is unstable and decays onto its forming subsystems, then the measurables are the quantum numbers, associated with these subsystems. In such a case, the entangled state has a dynamical origin, determined by the Hamiltonian of the corresponding decay process. Possible correlations between the quantum numbers of resulting subsystems are determined by the symmetries-conservation laws of corresponding dynamical variables, and not by the quantum entanglement feature.

  12. Quantum cobwebs: Universal entangling of quantum states

    Indian Academy of Sciences (India)

    Center for Philosophy and Foundation of Science, New Delhi, India ... Introduction. Quantum entanglement is generally regarded as a very useful resource for quantum infor- mation processing [1]. It can be used for teleportation [2], ... To achieve this, we introduce a class of entangled states calledzero sum amplitude(ZSA).

  13. Evolution and Survival of Quantum Entanglement

    Science.gov (United States)

    2015-05-06

    independently for tasks of  quantum  information. These include  quantum  computing,  quantum   cryptography ,  quantum  teleportation and other forms of entanglement...Evolution and Survival of Quantum Entanglement Theoretical foundations for methods to preserve quantum entanglement are explored and explained...Research Triangle Park, NC 27709-2211 quantum entanglement, decoherence, qubit, revival, survival, Jaynes-Cummings, Rabi, rotating wave approximation

  14. Entanglement for All Quantum States

    Science.gov (United States)

    de la Torre, A. C.; Goyeneche, D.; Leitao, L.

    2010-01-01

    It is shown that a state that is factorizable in the Hilbert space corresponding to some choice of degrees of freedom becomes entangled for a different choice of degrees of freedom. Therefore, entanglement is not a special case but is ubiquitous in quantum systems. Simple examples are calculated and a general proof is provided. The physical…

  15. Generic entangling through quantum indistinguishability

    Indian Academy of Sciences (India)

    it exploits quantum indistinguishability as an important entangling mechanism, rather than using explicit interactions. The basic idea is as follows: Two identical particles in orthogonal states of the degree of freedom to be entangled (for example, opposite orientations in the case of spin) are mixed at a beamsplitter. Then the ...

  16. Quantum Private Comparison Based on χ-Type Entangled States

    Science.gov (United States)

    Hong-Ming, Pan

    2017-10-01

    A two-party quantum private comparison (QPC) protocol is constructed with χ-type entangled states in this paper. The proposed protocol employs a semi-honest third party (TP) that is allowed to misbehave on his own but cannot conspire with the adversary. The proposed protocol need perform Bell basis measurements and single-particle measurements but neither unitary operations nor quantum entanglement swapping technology. The proposed protocol possesses good security toward both the outside attack and the participant attack. TP only knows the comparison result of the private information from two parties in the proposed protocol.

  17. Quantum Entanglement and Chemical Reactivity.

    Science.gov (United States)

    Molina-Espíritu, M; Esquivel, R O; López-Rosa, S; Dehesa, J S

    2015-11-10

    The water molecule and a hydrogenic abstraction reaction are used to explore in detail some quantum entanglement features of chemical interest. We illustrate that the energetic and quantum-information approaches are necessary for a full understanding of both the geometry of the quantum probability density of molecular systems and the evolution of a chemical reaction. The energy and entanglement hypersurfaces and contour maps of these two models show different phenomena. The energy ones reveal the well-known stable geometry of the models, whereas the entanglement ones grasp the chemical capability to transform from one state system to a new one. In the water molecule the chemical reactivity is witnessed through quantum entanglement as a local minimum indicating the bond cleavage in the dissociation process of the molecule. Finally, quantum entanglement is also useful as a chemical reactivity descriptor by detecting the transition state along the intrinsic reaction path in the hypersurface of the hydrogenic abstraction reaction corresponding to a maximally entangled state.

  18. Entanglement distribution in quantum networks

    Energy Technology Data Exchange (ETDEWEB)

    Perseguers, Sebastien

    2010-04-15

    This Thesis contributes to the theory of entanglement distribution in quantum networks, analyzing the generation of long-distance entanglement in particular. We consider that neighboring stations share one partially entangled pair of qubits, which emphasizes the difficulty of creating remote entanglement in realistic settings. The task is then to design local quantum operations at the stations, such that the entanglement present in the links of the whole network gets concentrated between few parties only, regardless of their spatial arrangement. First, we study quantum networks with a two-dimensional lattice structure, where quantum connections between the stations (nodes) are described by non-maximally entangled pure states (links). We show that the generation of a perfectly entangled pair of qubits over an arbitrarily long distance is possible if the initial entanglement of the links is larger than a threshold. This critical value highly depends on the geometry of the lattice, in particular on the connectivity of the nodes, and is related to a classical percolation problem. We then develop a genuine quantum strategy based on multipartite entanglement, improving both the threshold and the success probability of the generation of long-distance entanglement. Second, we consider a mixed-state definition of the connections of the quantum networks. This formalism is well-adapted for a more realistic description of systems in which noise (random errors) inevitably occurs. New techniques are required to create remote entanglement in this setting, and we show how to locally extract and globally process some error syndromes in order to create useful long-distance quantum correlations. Finally, we turn to networks that have a complex topology, which is the case for most real-world communication networks such as the Internet for instance. Besides many other characteristics, these systems have in common the small-world feature, stating that any two nodes are separated by a

  19. Universal quantum computation with little entanglement.

    Science.gov (United States)

    Van den Nest, Maarten

    2013-02-08

    We show that universal quantum computation can be achieved in the standard pure-state circuit model while the entanglement entropy of every bipartition is small in each step of the computation. The entanglement entropy required for large-scale quantum computation even tends to zero. Moreover we show that the same conclusion applies to many entanglement measures commonly used in the literature. This includes e.g., the geometric measure, localizable entanglement, multipartite concurrence, squashed entanglement, witness-based measures, and more generally any entanglement measure which is continuous in a certain natural sense. These results demonstrate that many entanglement measures are unsuitable tools to assess the power of quantum computers.

  20. Maximal entanglement entanglement-assisted quantum codes of distance three

    Science.gov (United States)

    Guo, Luobin; Fu, Qiang; Li, Ruihu; Lu, Liangdong

    2015-02-01

    Entanglement-assisted quantum error correcting code (EAQECC) is a generalization of standard stabilizer quantum code. Maximal entanglement EAQECCs can achieve the EA-hashing bound asymptotically. In this work, we give elementary recursive constructions of quaternary zero radical codes with dual distance three for all n ≥ 4. Consequently, good maximal entanglement EAQECCs of minimum distance three for such length n are obtained. Almost all of these EAQECCs are optimal or near optimal according to the EA-quantum Hamming bound.

  1. Quantum Entanglement in Fermionic Lattices

    OpenAIRE

    Zanardi, P.

    2001-01-01

    The Fock space of a system of indistinguishable particles is isomorphic (in a non-unique way) to the state-space of a composite i.e., many-modes, quantum system. One can then discuss quantum entanglement for fermionic as well as bosonic systems. We exemplify the use of this notion -central in quantum information - by studying some e.g., Hubbard,lattice fermionic models relevant to condensed matter physics.

  2. Generation of entanglement in quantum parametric oscillators using phase control.

    Science.gov (United States)

    Gonzalez-Henao, J C; Pugliese, E; Euzzor, S; Abdalah, S F; Meucci, R; Roversi, J A

    2015-08-19

    The control of quantum entanglement in systems in contact with environment plays an important role in information processing, cryptography and quantum computing. However, interactions with the environment, even when very weak, entail decoherence in the system with consequent loss of entanglement. Here we consider a system of two coupled oscillators in contact with a common heat bath and with a time dependent oscillation frequency. The possibility to control the entanglement of the oscillators by means of an external sinusoidal perturbation applied to the oscillation frequency has been theoretically explored. We demonstrate that the oscillators become entangled exactly in the region where the classical counterpart is unstable, otherwise when the classical system is stable, entanglement is not possible. Therefore, we can control the entanglement swapping from stable to unstable regions by adjusting amplitude and phase of our external controller. We also show that the entanglement rate is approximately proportional to the real part of the Floquet coefficient of the classical counterpart of the oscillators. Our results have the intriguing peculiarity of manipulating quantum information operating on a classical system.

  3. Polygamy of Entanglement in Multipartite Quantum Systems

    OpenAIRE

    Kim, Jeong San

    2009-01-01

    We show that bipartite entanglement distribution (or entanglement of assistance) in multipartite quantum systems is by nature polygamous. We first provide an analytic upper bound for the concurrence of assistance in bipartite quantum systems, and derive a polygamy inequality of multipartite entanglement in arbitrary dimensional quantum systems.

  4. Experimental quantum computing without entanglement.

    Science.gov (United States)

    Lanyon, B P; Barbieri, M; Almeida, M P; White, A G

    2008-11-14

    Deterministic quantum computation with one pure qubit (DQC1) is an efficient model of computation that uses highly mixed states. Unlike pure-state models, its power is not derived from the generation of a large amount of entanglement. Instead it has been proposed that other nonclassical correlations are responsible for the computational speedup, and that these can be captured by the quantum discord. In this Letter we implement DQC1 in an all-optical architecture, and experimentally observe the generated correlations. We find no entanglement, but large amounts of quantum discord-except in three cases where an efficient classical simulation is always possible. Our results show that even fully separable, highly mixed, states can contain intrinsically quantum mechanical correlations and that these could offer a valuable resource for quantum information technologies.

  5. Quantum steganography using prior entanglement

    Energy Technology Data Exchange (ETDEWEB)

    Mihara, Takashi, E-mail: mihara@toyo.jp

    2015-06-05

    Steganography is the hiding of secret information within innocent-looking information (e.g., text, audio, image, video, etc.). A quantum version of steganography is a method based on quantum physics. In this paper, we propose quantum steganography by combining quantum error-correcting codes with prior entanglement. In many steganographic techniques, embedding secret messages in error-correcting codes may cause damage to them if the embedded part is corrupted. However, our proposed steganography can separately create secret messages and the content of cover messages. The intrinsic form of the cover message does not have to be modified for embedding secret messages. - Highlights: • Our steganography combines quantum error-correcting codes with prior entanglement. • Our steganography can separately create secret messages and the content of cover messages. • Errors in cover messages do not have affect the recovery of secret messages. • We embed a secret message in the Steane code as an example of our steganography.

  6. Noiseless Linear Amplifiers in Entanglement-Based Continuous-Variable Quantum Key Distribution

    Directory of Open Access Journals (Sweden)

    Yichen Zhang

    2015-06-01

    Full Text Available We propose a method to improve the performance of two entanglement-based continuous-variable quantum key distribution protocols using noiseless linear amplifiers. The two entanglement-based schemes consist of an entanglement distribution protocol with an untrusted source and an entanglement swapping protocol with an untrusted relay. Simulation results show that the noiseless linear amplifiers can improve the performance of these two protocols, in terms of maximal transmission distances, when we consider small amounts of entanglement, as typical in realistic setups.

  7. Measuring Quantum Coherence with Entanglement.

    Science.gov (United States)

    Streltsov, Alexander; Singh, Uttam; Dhar, Himadri Shekhar; Bera, Manabendra Nath; Adesso, Gerardo

    2015-07-10

    Quantum coherence is an essential ingredient in quantum information processing and plays a central role in emergent fields such as nanoscale thermodynamics and quantum biology. However, our understanding and quantitative characterization of coherence as an operational resource are still very limited. Here we show that any degree of coherence with respect to some reference basis can be converted to entanglement via incoherent operations. This finding allows us to define a novel general class of measures of coherence for a quantum system of arbitrary dimension, in terms of the maximum bipartite entanglement that can be generated via incoherent operations applied to the system and an incoherent ancilla. The resulting measures are proven to be valid coherence monotones satisfying all the requirements dictated by the resource theory of quantum coherence. We demonstrate the usefulness of our approach by proving that the fidelity-based geometric measure of coherence is a full convex coherence monotone, and deriving a closed formula for it on arbitrary single-qubit states. Our work provides a clear quantitative and operational connection between coherence and entanglement, two landmark manifestations of quantum theory and both key enablers for quantum technologies.

  8. Constructions of secure entanglement channels assisted by quantum dots inside single-sided optical cavities

    Science.gov (United States)

    Heo, Jino; Kang, Min-Sung; Hong, Chang-Ho; Choi, Seong-Gon; Hong, Jong-Phil

    2017-08-01

    We propose quantum information processing schemes to generate and swap entangled states based on the interactions between flying photons and quantum dots (QDs) confined within optical cavities for quantum communication. To produce and distribute entangled states (Bell and Greenberger-Horne-Zeilinger [GHZ] states) between the photonic qubits of flying photons of consumers (Alice and Bob) and electron-spin qubits of a provider (trust center, or TC), the TC employs the interactions of the QD-cavity system, which is composed of a charged QD (negatively charged exciton) inside a single-sided cavity. Subsequently, the TC constructs an entanglement channel (Bell state and 4-qubit GHZ state) to link one consumer with another through entanglement swapping, which can be realized to exploit a probe photon with interactions of the QD-cavity systems and single-qubit measurements without Bell state measurement, for quantum communication between consumers. Consequently, the TC, which has quantum nodes (QD-cavity systems), can accomplish constructing the entanglement channel (authenticated channel) between two separated consumers from the distributions of entangled states and entanglement swapping. Furthermore, our schemes using QD-cavity systems, which are feasible with a certain probability of success and high fidelity, can be experimentally implemented with technology currently in use.

  9. Entanglement enhanced multiplayer quantum games

    Science.gov (United States)

    Du, Jiangfeng; Li, Hui; Xu, Xiaodong; Zhou, Xianyi; Han, Rongdian

    2002-09-01

    We investigate the 3-player quantum Prisoner's Dilemma with a certain strategic space, a particular Nash equilibrium that can remove the original dilemma is found. Based on this equilibrium, we show that the game is enhanced by the entanglement of its initial state.

  10. Quantum entanglement: theory and applications

    Energy Technology Data Exchange (ETDEWEB)

    Schuch, N.

    2007-10-10

    This thesis deals with various questions concerning the quantification, the creation, and the application of quantum entanglement. Entanglement arises due to the restriction to local operations and classical communication. We investigate how the notion of entanglement changes if additional restrictions in form of a superselection rule are imposed and show that they give rise to a new resource. We characterize this resource and demonstrate that it can be used to overcome the restrictions, very much as entanglement can overcome the restriction to local operations by teleportation. We next turn towards the optimal generation of resources. We show how squeezing can be generated as efficiently as possible from noisy squeezing operations supplemented by noiseless passive operations, and discuss the implications of this result to the optimal generation of entanglement. The difficulty in describing the behaviour of correlated quantum many-body systems is ultimately due to the complicated entanglement structure of multipartite states. Using quantum information techniques, we investigate the ground state properties of lattices of harmonic oscillators. We derive an exponential decay of correlations for gapped systems, compute the dependence of correlation length and gap, and investigate the notion of criticality by relating a vanishing energy gap to an algebraic decay of correlations. Recently, ideas from entanglement theory have been applied to the description of many-body systems. Matrix Product States (MPS), which have a particularly simple interpretation from the point of quantum information, perform extremely well in approximating the ground states of local Hamiltonians. It is generally believed that this is due to the fact that both ground states and MPS obey an entropic area law. We clarify the relation between entropy scaling laws and approximability by MPS, and in particular find that an area law does not necessarily imply approximability. Using the quantum

  11. Entanglement irreversibility from quantum discord and quantum deficit.

    Science.gov (United States)

    Cornelio, Marcio F; de Oliveira, Marcos C; Fanchini, Felipe F

    2011-07-08

    We relate the problem of irreversibility of entanglement with the recently defined measures of quantum correlation--quantum discord and one-way quantum deficit. We show that the entanglement of formation is always strictly larger than the coherent information and the entanglement cost is also larger in most cases. We prove irreversibility of entanglement under local operations and classical communication for a family of entangled states. This family is a generalization of the maximally correlated states for which we also give an analytic expression for the distillable entanglement, the relative entropy of entanglement, the distillable secret key, and the quantum discord.

  12. Quantum cryptography with entangled photons

    Science.gov (United States)

    Jennewein; Simon; Weihs; Weinfurter; Zeilinger

    2000-05-15

    By realizing a quantum cryptography system based on polarization entangled photon pairs we establish highly secure keys, because a single photon source is approximated and the inherent randomness of quantum measurements is exploited. We implement a novel key distribution scheme using Wigner's inequality to test the security of the quantum channel, and, alternatively, realize a variant of the BB84 protocol. Our system has two completely independent users separated by 360 m, and generates raw keys at rates of 400-800 bits/s with bit error rates around 3%.

  13. Quantum entanglement and Kaniadakis entropy

    Science.gov (United States)

    Ourabah, Kamel; Hiba Hamici-Bendimerad, Amel; Tribeche, Mouloud

    2015-04-01

    A first use of Kaniadakis entropy in the context of quantum information is presented. First we show that (as all smooth and concave trace-form entropies) it exhibits some properties allowing it to be a possible candidate for a generalized quantum information theory. We then use it to determine the degree of entanglement. The influence of the parameter κ, that underpins Kaniadakis entropy, on the mutual information measure is then highlighted. It is shown that Kaniadakis entropy reduces the mutual information, which is always smaller than its usual von Neumann counterpart. Our results may contribute to the ongoing investigation involving generalized entropies in the context of quantum information.

  14. Quantum entanglement and temperature fluctuations.

    Science.gov (United States)

    Ourabah, Kamel; Tribeche, Mouloud

    2017-04-01

    In this paper, we consider entanglement in a system out of equilibrium, adopting the viewpoint given by the formalism of superstatistics. Such an approach yields a good effective description for a system in a slowly fluctuating environment within a weak interaction between the system and the environment. For this purpose, we introduce an alternative version of the formalism within a quantum mechanical picture and use it to study entanglement in the Heisenberg XY model, subject to temperature fluctuations. We consider both isotropic and anisotropic cases and explore the effect of different temperature fluctuations (χ^{2}, log-normal, and F distributions). Our results suggest that particular fluctuations may enhance entanglement and prevent it from vanishing at higher temperatures than those predicted for the same system at thermal equilibrium.

  15. Private States, Quantum Data Hiding, and the Swapping of Perfect Secrecy

    Science.gov (United States)

    Christandl, Matthias; Ferrara, Roberto

    2017-12-01

    An important contribution to the understanding of quantum key distribution has been the discovery of entangled states from which secret bits, but no maximally entangled states, can be extracted [Horodecki et al., Phys. Rev. Lett. 94, 200501 (2005), 10.1103/PhysRevLett.94.200501]. The construction of those states was based on an intuition that the quantum mechanical phenomena of data hiding and privacy might be related. In this Letter we firmly connect these two phenomena and highlight three aspects of this result. First, we simplify the definition of the secret key rate. Second, we give a formula for the one-way distillable entanglement of certain private states. Third, we consider the problem of extending the distance of quantum key distribution with help of intermediate stations, a setting called the quantum key repeater. We show that for protocols that first distill private states, it is essentially optimal to use the standard quantum repeater protocol based on entanglement distillation and entanglement swapping.

  16. General polygamy inequality of multi-party quantum entanglement

    OpenAIRE

    Kim, Jeong San

    2012-01-01

    Using entanglement of assistance, we establish a general polygamy inequality of multi-party entanglement in arbitrary dimensional quantum systems. For multi-party closed quantum systems, we relate our result with the monogamy of entanglement to show that the entropy of entanglement is an universal entanglement measure that bounds both monogamy and polygamy of multi-party quantum entanglement.

  17. Entanglement enhances cooling in microscopic quantum refrigerators.

    Science.gov (United States)

    Brunner, Nicolas; Huber, Marcus; Linden, Noah; Popescu, Sandu; Silva, Ralph; Skrzypczyk, Paul

    2014-03-01

    Small self-contained quantum thermal machines function without external source of work or control but using only incoherent interactions with thermal baths. Here we investigate the role of entanglement in a small self-contained quantum refrigerator. We first show that entanglement is detrimental as far as efficiency is concerned-fridges operating at efficiencies close to the Carnot limit do not feature any entanglement. Moving away from the Carnot regime, we show that entanglement can enhance cooling and energy transport. Hence, a truly quantum refrigerator can outperform a classical one. Furthermore, the amount of entanglement alone quantifies the enhancement in cooling.

  18. Sequential Path Entanglement for Quantum Metrology

    Science.gov (United States)

    Jin, Xian-Min; Peng, Cheng-Zhi; Deng, Youjin; Barbieri, Marco; Nunn, Joshua; Walmsley, Ian A.

    2013-01-01

    Path entanglement is a key resource for quantum metrology. Using path-entangled states, the standard quantum limit can be beaten, and the Heisenberg limit can be achieved. However, the preparation and detection of such states scales unfavourably with the number of photons. Here we introduce sequential path entanglement, in which photons are distributed across distinct time bins with arbitrary separation, as a resource for quantum metrology. We demonstrate a scheme for converting polarization Greenberger-Horne-Zeilinger entanglement into sequential path entanglement. We observe the same enhanced phase resolution expected for conventional path entanglement, independent of the delay between consecutive photons. Sequential path entanglement can be prepared comparably easily from polarization entanglement, can be detected without using photon-number-resolving detectors, and enables novel applications.

  19. Efficient entanglement distillation without quantum memory

    Science.gov (United States)

    Abdelkhalek, Daniela; Syllwasschy, Mareike; Cerf, Nicolas J.; Fiurášek, Jaromír; Schnabel, Roman

    2016-01-01

    Entanglement distribution between distant parties is an essential component to most quantum communication protocols. Unfortunately, decoherence effects such as phase noise in optical fibres are known to demolish entanglement. Iterative (multistep) entanglement distillation protocols have long been proposed to overcome decoherence, but their probabilistic nature makes them inefficient since the success probability decays exponentially with the number of steps. Quantum memories have been contemplated to make entanglement distillation practical, but suitable quantum memories are not realised to date. Here, we present the theory for an efficient iterative entanglement distillation protocol without quantum memories and provide a proof-of-principle experimental demonstration. The scheme is applied to phase-diffused two-mode-squeezed states and proven to distil entanglement for up to three iteration steps. The data are indistinguishable from those that an efficient scheme using quantum memories would produce. Since our protocol includes the final measurement it is particularly promising for enhancing continuous-variable quantum key distribution. PMID:27241946

  20. Efficient entanglement distillation without quantum memory.

    Science.gov (United States)

    Abdelkhalek, Daniela; Syllwasschy, Mareike; Cerf, Nicolas J; Fiurášek, Jaromír; Schnabel, Roman

    2016-05-31

    Entanglement distribution between distant parties is an essential component to most quantum communication protocols. Unfortunately, decoherence effects such as phase noise in optical fibres are known to demolish entanglement. Iterative (multistep) entanglement distillation protocols have long been proposed to overcome decoherence, but their probabilistic nature makes them inefficient since the success probability decays exponentially with the number of steps. Quantum memories have been contemplated to make entanglement distillation practical, but suitable quantum memories are not realised to date. Here, we present the theory for an efficient iterative entanglement distillation protocol without quantum memories and provide a proof-of-principle experimental demonstration. The scheme is applied to phase-diffused two-mode-squeezed states and proven to distil entanglement for up to three iteration steps. The data are indistinguishable from those that an efficient scheme using quantum memories would produce. Since our protocol includes the final measurement it is particularly promising for enhancing continuous-variable quantum key distribution.

  1. Quantum entanglement and teleportation using statistical correlations

    Indian Academy of Sciences (India)

    Keywords. Entanglement; quantum correlation; teleportation; density matrix; quantum information. ... A criterion based on standard quantum statistical correlations employed in the many-body virial expansion is used to determine the extent of entanglement for a 2-particle system. A relation between the probability and ...

  2. Entanglement-Gradient Routing for Quantum Networks.

    Science.gov (United States)

    Gyongyosi, Laszlo; Imre, Sandor

    2017-10-27

    We define the entanglement-gradient routing scheme for quantum repeater networks. The routing framework fuses the fundamentals of swarm intelligence and quantum Shannon theory. Swarm intelligence provides nature-inspired solutions for problem solving. Motivated by models of social insect behavior, the routing is performed using parallel threads to determine the shortest path via the entanglement gradient coefficient, which describes the feasibility of the entangled links and paths of the network. The routing metrics are derived from the characteristics of entanglement transmission and relevant measures of entanglement distribution in quantum networks. The method allows a moderate complexity decentralized routing in quantum repeater networks. The results can be applied in experimental quantum networking, future quantum Internet, and long-distance quantum communications.

  3. Entanglement in non-Hermitian quantum theory

    Indian Academy of Sciences (India)

    quantum theory. Furthermore, we will show how to create entanglement between two. PT qubits using non-Hermitian Hamiltonians and discuss the entangling capability of such interaction Hamiltonians that are non-Hermitian in nature. Keywords. Entanglement; non-Hermitian Hamiltonians; PT symmetry. PACS Nos 03.65.

  4. Lithography system using quantum entangled photons

    Science.gov (United States)

    Williams, Colin (Inventor); Dowling, Jonathan (Inventor); della Rossa, Giovanni (Inventor)

    2002-01-01

    A system of etching using quantum entangled particles to get shorter interference fringes. An interferometer is used to obtain an interference fringe. N entangled photons are input to the interferometer. This reduces the distance between interference fringes by n, where again n is the number of entangled photons.

  5. PhD thesis: Multipartite entanglement and quantum algorithms

    OpenAIRE

    Alsina, Daniel

    2017-01-01

    PhD thesis dealing with various aspects of multipartite entanglement, such as entanglement measures, absolutely maximally entangled states, bell inequalities, entanglement spectrum and quantum frustration. Also some quantum algorithms run with the IBM quantum computer are covered, together with others applied to adiabatic quantum computation and quantum thermodynamics.

  6. Quantum Discord for Investigating Quantum Correlations without Entanglement in Solids

    OpenAIRE

    Rong, Xing; Wang, Zixiang; Jin, Fangzhou; Geng, Jianpei; Feng, Pengbo; Xu, Nanyang; Wang, Ya; Ju, Chenyong; Shi, Mingjun; Du, Jiangfeng

    2012-01-01

    Quantum systems unfold diversified correlations which have no classical counterparts. These quantum correlations have various different facets. Quantum entanglement, as the most well known measure of quantum correlations, plays essential roles in quantum information processing. However, it has recently been pointed out that quantum entanglement cannot describe all the nonclassicality in the correlations. Thus the study of quantum correlations in separable states attracts widely attentions. He...

  7. Entanglement in non-Hermitian quantum theory

    Indian Academy of Sciences (India)

    Home; Journals; Pramana – Journal of Physics; Volume 73; Issue 3. Entanglement in non-Hermitian quantum theory. Arun K Pati. Volume 73 Issue 3 ... Entanglement is one of the key features of quantum world that has no classical counterpart. This arises due to the linear superposition principle and the tensor product ...

  8. Quantum entanglement in polarization and space

    NARCIS (Netherlands)

    Lee, Peter Sing Kin

    2006-01-01

    One of the most intriguing concepts of quantum mechanics is quantum entanglement. Two physical systems are said to be entangled with respect to a certain variable, if their individual outcomes of the variable are undetermined before measurement, but strictly correlated. Measurement of the variable

  9. Real-time imaging of quantum entanglement.

    Science.gov (United States)

    Fickler, Robert; Krenn, Mario; Lapkiewicz, Radek; Ramelow, Sven; Zeilinger, Anton

    2013-01-01

    Quantum Entanglement is widely regarded as one of the most prominent features of quantum mechanics and quantum information science. Although, photonic entanglement is routinely studied in many experiments nowadays, its signature has been out of the grasp for real-time imaging. Here we show that modern technology, namely triggered intensified charge coupled device (ICCD) cameras are fast and sensitive enough to image in real-time the effect of the measurement of one photon on its entangled partner. To quantitatively verify the non-classicality of the measurements we determine the detected photon number and error margin from the registered intensity image within a certain region. Additionally, the use of the ICCD camera allows us to demonstrate the high flexibility of the setup in creating any desired spatial-mode entanglement, which suggests as well that visual imaging in quantum optics not only provides a better intuitive understanding of entanglement but will improve applications of quantum science.

  10. Quantum communication for satellite-to-ground networks with partially entangled states

    Science.gov (United States)

    Chen, Na; Quan, Dong-Xiao; Pei, Chang-Xing; Yang-Hong

    2015-02-01

    To realize practical wide-area quantum communication, a satellite-to-ground network with partially entangled states is developed in this paper. For efficiency and security reasons, the existing method of quantum communication in distributed wireless quantum networks with partially entangled states cannot be applied directly to the proposed quantum network. Based on this point, an efficient and secure quantum communication scheme with partially entangled states is presented. In our scheme, the source node performs teleportation only after an end-to-end entangled state has been established by entanglement swapping with partially entangled states. Thus, the security of quantum communication is guaranteed. The destination node recovers the transmitted quantum bit with the help of an auxiliary quantum bit and specially defined unitary matrices. Detailed calculations and simulation analyses show that the probability of successfully transferring a quantum bit in the presented scheme is high. In addition, the auxiliary quantum bit provides a heralded mechanism for successful communication. Based on the critical components that are presented in this article an efficient, secure, and practical wide-area quantum communication can be achieved. Project supported by the National Natural Science Foundation of China (Grant Nos. 61072067 and 61372076), the 111 Project (Grant No. B08038), the Fund from the State Key Laboratory of Integrated Services Networks (Grant No. ISN 1001004), and the Fundamental Research Funds for the Central Universities (Grant Nos. K5051301059 and K5051201021).

  11. Philosophy of quantum information and entanglement

    CERN Document Server

    Jaeger, Gregg

    2010-01-01

    Recent work in quantum information science has produced a revolution in our understanding of quantum entanglement. Scientists now view entanglement as a physical resource with many important applications. These range from quantum computers, which would be able to compute exponentially faster than classical computers, to quantum cryptographic techniques, which could provide unbreakable codes for the transfer of secret information over public channels. These important advances in the study of quantum entanglement and information touch on deep foundational issues in both physics and philosophy. This interdisciplinary volume brings together fourteen of the world's leading physicists and philosophers of physics to address the most important developments and debates in this exciting area of research. It offers a broad spectrum of approaches to resolving deep foundational challenges - philosophical, mathematical, and physical - raised by quantum information, quantum processing, and entanglement. This book is ideal f...

  12. Quantum entanglement in helium-like ions

    Science.gov (United States)

    Lin, Y.-C.; Ho, Y. K.

    2012-06-01

    Recently, there have been considerable interests to investigate quantum entanglement in two-electron atoms [1-3]. Here we investigate quantum entanglement for the ground and excited states of helium-like ions using correlated wave functions, concentrating on the particle-particle entanglement coming from the continuous spatial degrees of freedom. We use the two-electron wave functions constructed by employing B-spline basis to calculate the linear entropy of the reduced density matrix L=1-TrA(ρA^2 ) as a measure of the spatial entanglement. HereρA=TrB(| >AB ABDehesa et. al., J. Phys. B 45, 015504 (2012)

  13. Quantum entanglement of high angular momenta.

    Science.gov (United States)

    Fickler, Robert; Lapkiewicz, Radek; Plick, William N; Krenn, Mario; Schaeff, Christoph; Ramelow, Sven; Zeilinger, Anton

    2012-11-02

    Single photons with helical phase structures may carry a quantized amount of orbital angular momentum (OAM), and their entanglement is important for quantum information science and fundamental tests of quantum theory. Because there is no theoretical upper limit on how many quanta of OAM a single photon can carry, it is possible to create entanglement between two particles with an arbitrarily high difference in quantum number. By transferring polarization entanglement to OAM with an interferometric scheme, we generate and verify entanglement between two photons differing by 600 in quantum number. The only restrictive factors toward higher numbers are current technical limitations. We also experimentally demonstrate that the entanglement of very high OAM can improve the sensitivity of angular resolution in remote sensing.

  14. Two-Party Quantum Private Comparison with Five-Qubit Entangled States

    Science.gov (United States)

    Ye, Tian-Yu; Ji, Zhao-Xu

    2017-05-01

    In this paper, a two-party quantum private comparison (QPC) protocol is proposed by using five-qubit entangled states as the quantum resource. The proposed protocol needs the help from a semi-honest third party (TP), who is allowed to misbehave on his own but not allowed to conspire with the adversary including the dishonest user. The proposed protocol has the following distinct features: (1) One five-qubit entangled state can be used to achieve the equality comparison of two bits in each round of comparison; (2) Neither unitary operations nor quantum entanglement swapping technology is needed, both of which may consume expensive quantum devices; (3) Only Bell measurements and single-particle measurements are employed, both of which can be realized with current quantum technologies; (4) The security toward both the outside attack and the participant attack can be guaranteed; (5) The private information of two parties is not leaked out to TP.

  15. Entanglement-assisted quantum feedback control

    Science.gov (United States)

    Yamamoto, Naoki; Mikami, Tomoaki

    2017-07-01

    The main advantage of quantum metrology relies on the effective use of entanglement, which indeed allows us to achieve strictly better estimation performance over the standard quantum limit. In this paper, we propose an analogous method utilizing entanglement for the purpose of feedback control. The system considered is a general linear dynamical quantum system, where the control goal can be systematically formulated as a linear quadratic Gaussian control problem based on the quantum Kalman filtering method; in this setting, an entangled input probe field is effectively used to reduce the estimation error and accordingly the control cost function. In particular, we show that, in the problem of cooling an opto-mechanical oscillator, the entanglement-assisted feedback control can lower the stationary occupation number of the oscillator below the limit attainable by the controller with a coherent probe field and furthermore beats the controller with an optimized squeezed probe field.

  16. Spin Entanglement Witness for Quantum Gravity

    Science.gov (United States)

    Bose, Sougato; Mazumdar, Anupam; Morley, Gavin W.; Ulbricht, Hendrik; Toroš, Marko; Paternostro, Mauro; Geraci, Andrew A.; Barker, Peter F.; Kim, M. S.; Milburn, Gerard

    2017-12-01

    Understanding gravity in the framework of quantum mechanics is one of the great challenges in modern physics. However, the lack of empirical evidence has lead to a debate on whether gravity is a quantum entity. Despite varied proposed probes for quantum gravity, it is fair to say that there are no feasible ideas yet to test its quantum coherent behavior directly in a laboratory experiment. Here, we introduce an idea for such a test based on the principle that two objects cannot be entangled without a quantum mediator. We show that despite the weakness of gravity, the phase evolution induced by the gravitational interaction of two micron size test masses in adjacent matter-wave interferometers can detectably entangle them even when they are placed far apart enough to keep Casimir-Polder forces at bay. We provide a prescription for witnessing this entanglement, which certifies gravity as a quantum coherent mediator, through simple spin correlation measurements.

  17. Entanglement and Coherence in Quantum State Merging.

    Science.gov (United States)

    Streltsov, A; Chitambar, E; Rana, S; Bera, M N; Winter, A; Lewenstein, M

    2016-06-17

    Understanding the resource consumption in distributed scenarios is one of the main goals of quantum information theory. A prominent example for such a scenario is the task of quantum state merging, where two parties aim to merge their tripartite quantum state parts. In standard quantum state merging, entanglement is considered to be an expensive resource, while local quantum operations can be performed at no additional cost. However, recent developments show that some local operations could be more expensive than others: it is reasonable to distinguish between local incoherent operations and local operations which can create coherence. This idea leads us to the task of incoherent quantum state merging, where one of the parties has free access to local incoherent operations only. In this case the resources of the process are quantified by pairs of entanglement and coherence. Here, we develop tools for studying this process and apply them to several relevant scenarios. While quantum state merging can lead to a gain of entanglement, our results imply that no merging procedure can gain entanglement and coherence at the same time. We also provide a general lower bound on the entanglement-coherence sum and show that the bound is tight for all pure states. Our results also lead to an incoherent version of Schumacher compression: in this case the compression rate is equal to the von Neumann entropy of the diagonal elements of the corresponding quantum state.

  18. Multicolor quantum metrology with entangled photons.

    Science.gov (United States)

    Bell, Bryn; Kannan, Srikanth; McMillan, Alex; Clark, Alex S; Wadsworth, William J; Rarity, John G

    2013-08-30

    Entangled photons can be used to make measurements with an accuracy beyond that possible with classical light. While most implementations of quantum metrology have used states made up of a single color of photons, we show that entangled states of two colors can show supersensitivity to optical phase and path length by using a photonic crystal fiber source of photon pairs inside an interferometer. This setup is relatively simple and robust to experimental imperfections. We demonstrate sensitivity beyond the standard quantum limit and show superresolved interference fringes using entangled states of two, four, and six photons.

  19. Quantum cryptography with perfect multiphoton entanglement.

    Science.gov (United States)

    Luo, Yuhui; Chan, Kam Tai

    2005-05-01

    Multiphoton entanglement in the same polarization has been shown theoretically to be obtainable by type-I spontaneous parametric downconversion (SPDC), which can generate bright pulses more easily than type-II SPDC. A new quantum cryptographic protocol utilizing polarization pairs with the detected type-I entangled multiphotons is proposed as quantum key distribution. We calculate the information capacity versus photon number corresponding to polarization after considering the transmission loss inside the optical fiber, the detector efficiency, and intercept-resend attacks at the level of channel error. The result compares favorably with all other schemes employing entanglement.

  20. Using entanglement against noise in quantum metrology.

    Science.gov (United States)

    Demkowicz-Dobrzański, Rafal; Maccone, Lorenzo

    2014-12-19

    We analyze the role of entanglement among probes and with external ancillas in quantum metrology. In the absence of noise, it is known that unentangled sequential strategies can achieve the same Heisenberg scaling of entangled strategies and that external ancillas are useless. This changes in the presence of noise; here we prove that entangled strategies can have higher precision than unentangled ones and that the addition of passive external ancillas can also increase the precision. We analyze some specific noise models and use the results to conjecture a general hierarchy for quantum metrology strategies in the presence of noise.

  1. Entanglement in a Quantum Annealing Processor

    Science.gov (United States)

    Lanting, T.; Przybysz, A. J.; Smirnov, A. Yu.; Spedalieri, F. M.; Amin, M. H.; Berkley, A. J.; Harris, R.; Altomare, F.; Boixo, S.; Bunyk, P.; Dickson, N.; Enderud, C.; Hilton, J. P.; Hoskinson, E.; Johnson, M. W.; Ladizinsky, E.; Ladizinsky, N.; Neufeld, R.; Oh, T.; Perminov, I.; Rich, C.; Thom, M. C.; Tolkacheva, E.; Uchaikin, S.; Wilson, A. B.; Rose, G.

    2014-04-01

    Entanglement lies at the core of quantum algorithms designed to solve problems that are intractable by classical approaches. One such algorithm, quantum annealing (QA), provides a promising path to a practical quantum processor. We have built a series of architecturally scalable QA processors consisting of networks of manufactured interacting spins (qubits). Here, we use qubit tunneling spectroscopy to measure the energy eigenspectrum of two- and eight-qubit systems within one such processor, demonstrating quantum coherence in these systems. We present experimental evidence that, during a critical portion of QA, the qubits become entangled and entanglement persists even as these systems reach equilibrium with a thermal environment. Our results provide an encouraging sign that QA is a viable technology for large-scale quantum computing.

  2. Quantum Entanglement Growth under Random Unitary Dynamics

    Directory of Open Access Journals (Sweden)

    Adam Nahum

    2017-07-01

    Full Text Available Characterizing how entanglement grows with time in a many-body system, for example, after a quantum quench, is a key problem in nonequilibrium quantum physics. We study this problem for the case of random unitary dynamics, representing either Hamiltonian evolution with time-dependent noise or evolution by a random quantum circuit. Our results reveal a universal structure behind noisy entanglement growth, and also provide simple new heuristics for the “entanglement tsunami” in Hamiltonian systems without noise. In 1D, we show that noise causes the entanglement entropy across a cut to grow according to the celebrated Kardar-Parisi-Zhang (KPZ equation. The mean entanglement grows linearly in time, while fluctuations grow like (time^{1/3} and are spatially correlated over a distance ∝(time^{2/3}. We derive KPZ universal behavior in three complementary ways, by mapping random entanglement growth to (i a stochastic model of a growing surface, (ii a “minimal cut” picture, reminiscent of the Ryu-Takayanagi formula in holography, and (iii a hydrodynamic problem involving the dynamical spreading of operators. We demonstrate KPZ universality in 1D numerically using simulations of random unitary circuits. Importantly, the leading-order time dependence of the entropy is deterministic even in the presence of noise, allowing us to propose a simple coarse grained minimal cut picture for the entanglement growth of generic Hamiltonians, even without noise, in arbitrary dimensionality. We clarify the meaning of the “velocity” of entanglement growth in the 1D entanglement tsunami. We show that in higher dimensions, noisy entanglement evolution maps to the well-studied problem of pinning of a membrane or domain wall by disorder.

  3. [Discussion on quantum entanglement theory and acupuncture].

    Science.gov (United States)

    Wang, Jun; Wu, Bin; Chen, Sheng

    2017-11-12

    The quantum entanglement is a new discovery of modern physics and has drawn a widely attention in the world. After learning the quantum entanglement, the authors have found that many characteristics of quantum are reflected in TCM, acupuncture theory and clinical practice. For example, the quantum entanglement phenomenon is mutually verified with the holism, yinyang doctrine, the theory of primary, secondary, root and knot in TCM, etc. It can be applied to interpret the clinical situations which is difficult to be explained in clinical practice, such as the instant effect of acupuncture, multi-point stimulation in one disorder and the points with specific effects. On the basis of the discovery above, the quantum entanglement theory achieved the mutual treatment among the relatives in acupuncture clinical practice and the therapeutic effects were significant. The results suggest that the coupling relationship in quantum entanglement presents between the diseases and the acupoints in the direct relative. The authors believe that the discovery in this study contributes to the exploration on the approaches to the acupuncture treatment in clinical practice and enrich the ideas on the disease prevention.

  4. Quantum entanglement and teleportation using statistical correlations

    Indian Academy of Sciences (India)

    Administrator

    Abstract. A study of quantum teleportation using two and three-particle correlated density matrix is presented. A criterion based on standard quantum statistical correlations employed in the many-body virial expansion is used to determine the extent of entanglement for a 2N-particle system. A relation between the probability ...

  5. Entanglement-assisted quantum MDS codes constructed from negacyclic codes

    Science.gov (United States)

    Chen, Jianzhang; Huang, Yuanyuan; Feng, Chunhui; Chen, Riqing

    2017-12-01

    Recently, entanglement-assisted quantum codes have been constructed from cyclic codes by some scholars. However, how to determine the number of shared pairs required to construct entanglement-assisted quantum codes is not an easy work. In this paper, we propose a decomposition of the defining set of negacyclic codes. Based on this method, four families of entanglement-assisted quantum codes constructed in this paper satisfy the entanglement-assisted quantum Singleton bound, where the minimum distance satisfies q+1 ≤ d≤ n+2/2. Furthermore, we construct two families of entanglement-assisted quantum codes with maximal entanglement.

  6. Quantum entanglement in photoactive prebiotic systems.

    Science.gov (United States)

    Tamulis, Arvydas; Grigalavicius, Mantas

    2014-06-01

    This paper contains the review of quantum entanglement investigations in living systems, and in the quantum mechanically modelled photoactive prebiotic kernel systems. We define our modelled self-assembled supramolecular photoactive centres, composed of one or more sensitizer molecules, precursors of fatty acids and a number of water molecules, as a photoactive prebiotic kernel systems. We propose that life first emerged in the form of such minimal photoactive prebiotic kernel systems and later in the process of evolution these photoactive prebiotic kernel systems would have produced fatty acids and covered themselves with fatty acid envelopes to become the minimal cells of the Fatty Acid World. Specifically, we model self-assembling of photoactive prebiotic systems with observed quantum entanglement phenomena. We address the idea that quantum entanglement was important in the first stages of origins of life and evolution of the biospheres because simultaneously excite two prebiotic kernels in the system by appearance of two additional quantum entangled excited states, leading to faster growth and self-replication of minimal living cells. The quantum mechanically modelled possibility of synthesizing artificial self-reproducing quantum entangled prebiotic kernel systems and minimal cells also impacts the possibility of the most probable path of emergence of protocells on the Earth or elsewhere. We also examine the quantum entangled logic gates discovered in the modelled systems composed of two prebiotic kernels. Such logic gates may have application in the destruction of cancer cells or becoming building blocks of new forms of artificial cells including magnetically active ones.

  7. Multiphoton entanglement concentration and quantum cryptography.

    Science.gov (United States)

    Durkin, Gabriel A; Simon, Christoph; Bouwmeester, Dik

    2002-05-06

    Multiphoton states from parametric down-conversion can be entangled both in polarization and photon number. Maximal high-dimensional entanglement can be concentrated postselectively from these states via photon counting. This makes them natural candidates for quantum key distribution, where the presence of more than one photon per detection interval has up to now been considered undesirable. We propose a simple multiphoton cryptography protocol for the case of low losses.

  8. Quantum Entanglement in Neural Network States

    Science.gov (United States)

    Deng, Dong-Ling; Li, Xiaopeng; Das Sarma, S.

    2017-04-01

    Machine learning, one of today's most rapidly growing interdisciplinary fields, promises an unprecedented perspective for solving intricate quantum many-body problems. Understanding the physical aspects of the representative artificial neural-network states has recently become highly desirable in the applications of machine-learning techniques to quantum many-body physics. In this paper, we explore the data structures that encode the physical features in the network states by studying the quantum entanglement properties, with a focus on the restricted-Boltzmann-machine (RBM) architecture. We prove that the entanglement entropy of all short-range RBM states satisfies an area law for arbitrary dimensions and bipartition geometry. For long-range RBM states, we show by using an exact construction that such states could exhibit volume-law entanglement, implying a notable capability of RBM in representing quantum states with massive entanglement. Strikingly, the neural-network representation for these states is remarkably efficient, in the sense that the number of nonzero parameters scales only linearly with the system size. We further examine the entanglement properties of generic RBM states by randomly sampling the weight parameters of the RBM. We find that their averaged entanglement entropy obeys volume-law scaling, and the meantime strongly deviates from the Page entropy of the completely random pure states. We show that their entanglement spectrum has no universal part associated with random matrix theory and bears a Poisson-type level statistics. Using reinforcement learning, we demonstrate that RBM is capable of finding the ground state (with power-law entanglement) of a model Hamiltonian with a long-range interaction. In addition, we show, through a concrete example of the one-dimensional symmetry-protected topological cluster states, that the RBM representation may also be used as a tool to analytically compute the entanglement spectrum. Our results uncover the

  9. Quantum Entanglement in Neural Network States

    Directory of Open Access Journals (Sweden)

    Dong-Ling Deng

    2017-05-01

    Full Text Available Machine learning, one of today’s most rapidly growing interdisciplinary fields, promises an unprecedented perspective for solving intricate quantum many-body problems. Understanding the physical aspects of the representative artificial neural-network states has recently become highly desirable in the applications of machine-learning techniques to quantum many-body physics. In this paper, we explore the data structures that encode the physical features in the network states by studying the quantum entanglement properties, with a focus on the restricted-Boltzmann-machine (RBM architecture. We prove that the entanglement entropy of all short-range RBM states satisfies an area law for arbitrary dimensions and bipartition geometry. For long-range RBM states, we show by using an exact construction that such states could exhibit volume-law entanglement, implying a notable capability of RBM in representing quantum states with massive entanglement. Strikingly, the neural-network representation for these states is remarkably efficient, in the sense that the number of nonzero parameters scales only linearly with the system size. We further examine the entanglement properties of generic RBM states by randomly sampling the weight parameters of the RBM. We find that their averaged entanglement entropy obeys volume-law scaling, and the meantime strongly deviates from the Page entropy of the completely random pure states. We show that their entanglement spectrum has no universal part associated with random matrix theory and bears a Poisson-type level statistics. Using reinforcement learning, we demonstrate that RBM is capable of finding the ground state (with power-law entanglement of a model Hamiltonian with a long-range interaction. In addition, we show, through a concrete example of the one-dimensional symmetry-protected topological cluster states, that the RBM representation may also be used as a tool to analytically compute the entanglement spectrum. Our

  10. Entanglement in a Quantum Annealing Processor

    Science.gov (United States)

    2016-09-07

    Entanglement in a Quantum Annealing Processor T. Lanting,1,* A. J. Przybysz,1 A. Yu. Smirnov,1 F. M. Spedalieri,2,3 M. H. Amin,1,4 A. J. Berkley,1 R...promising path to a practical quantum processor . We have built a series of architecturally scalable QA processors consisting of networks of manufactured...such processor , demonstrating quantum coherence in these systems. We present experimental evidence that, during a critical portion of QA, the qubits

  11. Light for the quantum. Entangled photons and their applications: a very personal perspective

    Science.gov (United States)

    Zeilinger, Anton

    2017-07-01

    The quantum physics of light is a most fascinating field. Here I present a very personal viewpoint, focusing on my own path to quantum entanglement and then on to applications. I have been fascinated by quantum physics ever since I heard about it for the first time in school. The theory struck me immediately for two reasons: (1) its immense mathematical beauty, and (2) the unparalleled precision to which its predictions have been verified again and again. Particularly fascinating for me were the predictions of quantum mechanics for individual particles, individual quantum systems. Surprisingly, the experimental realization of many of these fundamental phenomena has led to novel ideas for applications. Starting from my early experiments with neutrons, I later became interested in quantum entanglement, initially focusing on multi-particle entanglement like GHZ states. This work opened the experimental possibility to do quantum teleportation and quantum hyper-dense coding. The latter became the first entanglement-based quantum experiment breaking a classical limitation. One of the most fascinating phenomena is entanglement swapping, the teleportation of an entangled state. This phenomenon is fundamentally interesting because it can entangle two pairs of particles which do not share any common past. Surprisingly, it also became an important ingredient in a number of applications, including quantum repeaters which will connect future quantum computers with each other. Another application is entanglement-based quantum cryptography where I present some recent long-distance experiments. Entanglement swapping has also been applied in very recent so-called loophole-free tests of Bell’s theorem. Within the physics community such loophole-free experiments are perceived as providing nearly definitive proof that local realism is untenable. While, out of principle, local realism can never be excluded entirely, the 2015 achievements narrow down the remaining possibilities for

  12. Entanglement in Quantum-Classical Hybrid

    Science.gov (United States)

    Zak, Michail

    2011-01-01

    It is noted that the phenomenon of entanglement is not a prerogative of quantum systems, but also occurs in other, non-classical systems such as quantum-classical hybrids, and covers the concept of entanglement as a special type of global constraint imposed upon a broad class of dynamical systems. Application of hybrid systems for physics of life, as well as for quantum-inspired computing, has been outlined. In representing the Schroedinger equation in the Madelung form, there is feedback from the Liouville equation to the Hamilton-Jacobi equation in the form of the quantum potential. Preserving the same topology, the innovators replaced the quantum potential with other types of feedback, and investigated the property of these hybrid systems. A function of probability density has been introduced. Non-locality associated with a global geometrical constraint that leads to an entanglement effect was demonstrated. Despite such a quantum like characteristic, the hybrid can be of classical scale and all the measurements can be performed classically. This new emergence of entanglement sheds light on the concept of non-locality in physics.

  13. Multi-photon entanglement and applications in quantum information

    Energy Technology Data Exchange (ETDEWEB)

    Schmid, Christian I.T.

    2008-05-30

    In this thesis, two new linear optics networks are introduced and their application for several quantum information tasks is presented. Spontaneous parametric down conversion, is used in different configurations to provide the input states for the networks. The first network is a new design of a controlled phase gate which is particularly interesting for applications in multi-photon experiments as it constitutes an improvement of former realizations with respect to stability and reliability. This is explicitly demonstrated by employing the gate in four-photon experiments. In this context, a teleportation and entanglement swapping protocol is performed in which all four Bell states are distinguished by means of the phase gate. A similar type of measurement applied to the subsystem parts of two copies of a quantum state, allows further the direct estimation of the state's entanglement in terms of its concurrence. Finally, starting from two Bell states, the controlled phase gate is applied for the observation of a four photon cluster state. The analysis of the results focuses on measurement based quantum computation, the main usage of cluster states. The second network, fed with the second order emission of non-collinear type ii spontaneous parametric down conversion, constitutes a tunable source of a whole family of states. Up to now the observation of one particular state required one individually tailored setup. With the network introduced here many different states can be obtained within the same arrangement by tuning a single, easily accessible experimental parameter. These states exhibit many useful properties and play a central role in several applications of quantum information. Here, they are used for the solution of a four-player quantum Minority game. It is shown that, by employing four-qubit entanglement, the quantum version of the game clearly outperforms its classical counterpart. Experimental data obtained with both networks are utilized to

  14. An Arbitrated Quantum Signature Scheme without Entanglement*

    Science.gov (United States)

    Li, Hui-Ran; Luo, Ming-Xing; Peng, Dai-Yuan; Wang, Xiao-Jun

    2017-09-01

    Several quantum signature schemes are recently proposed to realize secure signatures of quantum or classical messages. Arbitrated quantum signature as one nontrivial scheme has attracted great interests because of its usefulness and efficiency. Unfortunately, previous schemes cannot against Trojan horse attack and DoS attack and lack of the unforgeability and the non-repudiation. In this paper, we propose an improved arbitrated quantum signature to address these secure issues with the honesty arbitrator. Our scheme takes use of qubit states not entanglements. More importantly, the qubit scheme can achieve the unforgeability and the non-repudiation. Our scheme is also secure for other known quantum attacks.

  15. Entanglement spectroscopy on a quantum computer

    Science.gov (United States)

    Johri, Sonika; Steiger, Damian S.; Troyer, Matthias

    2017-11-01

    We present a quantum algorithm to compute the entanglement spectrum of arbitrary quantum states. The interesting universal part of the entanglement spectrum is typically contained in the largest eigenvalues of the density matrix which can be obtained from the lower Renyi entropies through the Newton-Girard method. Obtaining the p largest eigenvalues (λ1>λ2⋯>λp ) requires a parallel circuit depth of O [p (λ1/λp) p] and O [p log(N )] qubits where up to p copies of the quantum state defined on a Hilbert space of size N are needed as the input. We validate this procedure for the entanglement spectrum of the topologically ordered Laughlin wave function corresponding to the quantum Hall state at filling factor ν =1 /3 . Our scaling analysis exposes the tradeoffs between time and number of qubits for obtaining the entanglement spectrum in the thermodynamic limit using finite-size digital quantum computers. We also illustrate the utility of the second Renyi entropy in predicting a topological phase transition and in extracting the localization length in a many-body localized system.

  16. Quantum Entanglement Molecular Absorption Spectrum Simulator

    Science.gov (United States)

    Nguyen, Quang-Viet; Kojima, Jun

    2006-01-01

    Quantum Entanglement Molecular Absorption Spectrum Simulator (QE-MASS) is a computer program for simulating two photon molecular-absorption spectroscopy using quantum-entangled photons. More specifically, QE-MASS simulates the molecular absorption of two quantum-entangled photons generated by the spontaneous parametric down-conversion (SPDC) of a fixed-frequency photon from a laser. The two-photon absorption process is modeled via a combination of rovibrational and electronic single-photon transitions, using a wave-function formalism. A two-photon absorption cross section as a function of the entanglement delay time between the two photons is computed, then subjected to a fast Fourier transform to produce an energy spectrum. The program then detects peaks in the Fourier spectrum and displays the energy levels of very short-lived intermediate quantum states (or virtual states) of the molecule. Such virtual states were only previously accessible using ultra-fast (femtosecond) laser systems. However, with the use of a single-frequency continuous wave laser to produce SPDC photons, and QEMASS program, these short-lived molecular states can now be studied using much simpler laser systems. QE-MASS can also show the dependence of the Fourier spectrum on the tuning range of the entanglement time of any externally introduced optical-path delay time. QE-MASS can be extended to any molecule for which an appropriate spectroscopic database is available. It is a means of performing an a priori parametric analysis of entangled photon spectroscopy for development and implementation of emerging quantum-spectroscopic sensing techniques. QE-MASS is currently implemented using the Mathcad software package.

  17. Heralded amplification of path entangled quantum states

    Science.gov (United States)

    Monteiro, F.; Verbanis, E.; Caprara Vivoli, V.; Martin, A.; Gisin, N.; Zbinden, H.; Thew, R. T.

    2017-06-01

    Device-independent quantum key distribution (DI-QKD) represents one of the most fascinating challenges in quantum communication, exploiting concepts of fundamental physics, namely Bell tests of nonlocality, to ensure the security of a communication link. This requires the loophole-free violation of a Bell inequality, which is intrinsically difficult due to losses in fibre optic transmission channels. Heralded photon amplification (HPA) is a teleportation-based protocol that has been proposed as a means to overcome transmission loss for DI-QKD. Here we demonstrate HPA for path entangled states and characterise the entanglement before and after loss by exploiting a recently developed displacement-based detection scheme. We demonstrate that by exploiting HPA we are able to reliably maintain high fidelity entangled states over loss-equivalent distances of more than 50 km.

  18. Entanglement of spin waves among four quantum memories.

    Science.gov (United States)

    Choi, K S; Goban, A; Papp, S B; van Enk, S J; Kimble, H J

    2010-11-18

    Quantum networks are composed of quantum nodes that interact coherently through quantum channels, and open a broad frontier of scientific opportunities. For example, a quantum network can serve as a 'web' for connecting quantum processors for computation and communication, or as a 'simulator' allowing investigations of quantum critical phenomena arising from interactions among the nodes mediated by the channels. The physical realization of quantum networks generically requires dynamical systems capable of generating and storing entangled states among multiple quantum memories, and efficiently transferring stored entanglement into quantum channels for distribution across the network. Although such capabilities have been demonstrated for diverse bipartite systems, entangled states have not been achieved for interconnects capable of 'mapping' multipartite entanglement stored in quantum memories to quantum channels. Here we demonstrate measurement-induced entanglement stored in four atomic memories; user-controlled, coherent transfer of the atomic entanglement to four photonic channels; and characterization of the full quadripartite entanglement using quantum uncertainty relations. Our work therefore constitutes an advance in the distribution of multipartite entanglement across quantum networks. We also show that our entanglement verification method is suitable for studying the entanglement order of condensed-matter systems in thermal equilibrium.

  19. Measuring entanglement entropy in a quantum many-body system.

    Science.gov (United States)

    Islam, Rajibul; Ma, Ruichao; Preiss, Philipp M; Tai, M Eric; Lukin, Alexander; Rispoli, Matthew; Greiner, Markus

    2015-12-03

    Entanglement is one of the most intriguing features of quantum mechanics. It describes non-local correlations between quantum objects, and is at the heart of quantum information sciences. Entanglement is now being studied in diverse fields ranging from condensed matter to quantum gravity. However, measuring entanglement remains a challenge. This is especially so in systems of interacting delocalized particles, for which a direct experimental measurement of spatial entanglement has been elusive. Here, we measure entanglement in such a system of itinerant particles using quantum interference of many-body twins. Making use of our single-site-resolved control of ultracold bosonic atoms in optical lattices, we prepare two identical copies of a many-body state and interfere them. This enables us to directly measure quantum purity, Rényi entanglement entropy, and mutual information. These experiments pave the way for using entanglement to characterize quantum phases and dynamics of strongly correlated many-body systems.

  20. Black Hole Entanglement and Quantum Error Correction

    NARCIS (Netherlands)

    Verlinde, E.; Verlinde, H.

    2013-01-01

    It was recently argued in [1] that black hole complementarity strains the basic rules of quantum information theory, such as monogamy of entanglement. Motivated by this argument, we develop a practical framework for describing black hole evaporation via unitary time evolution, based on a holographic

  1. Entanglement and Quantum Computation: An Overview

    Energy Technology Data Exchange (ETDEWEB)

    Perez, R.B.

    2000-06-27

    This report presents a selective compilation of basic facts from the fields of particle entanglement and quantum information processing prepared for those non-experts in these fields that may have interest in an area of physics showing counterintuitive, ''spooky'' (Einstein's words) behavior. In fact, quantum information processing could, in the near future, provide a new technology to sustain the benefits to the U.S. economy due to advanced computer technology.

  2. Couplers for Non-Locality Swapping

    OpenAIRE

    Skrzypczyk, Paul; Brunner, Nicolas

    2008-01-01

    Studying generalized non-local theories brings insight to the foundations of quantum mechanics. Here we focus on non-locality swapping, the analogue of quantum entanglement swapping. In order to implement such a protocol, one needs a coupler that performs the equivalent of quantum joint measurements on generalized `box-like' states. Establishing a connection to Bell inequalities, we define consistent couplers for theories containing an arbitrary amount of non-locality, which leads us to intro...

  3. Entanglement distillation between solid-state quantum network nodes.

    Science.gov (United States)

    Kalb, N; Reiserer, A A; Humphreys, P C; Bakermans, J J W; Kamerling, S J; Nickerson, N H; Benjamin, S C; Twitchen, D J; Markham, M; Hanson, R

    2017-06-02

    The impact of future quantum networks hinges on high-quality quantum entanglement shared between network nodes. Unavoidable imperfections necessitate a means to improve remote entanglement by local quantum operations. We realize entanglement distillation on a quantum network primitive of distant electron-nuclear two-qubit nodes. The heralded generation of two copies of a remote entangled state is demonstrated through single-photon-mediated entangling of the electrons and robust storage in the nuclear spins. After applying local two-qubit gates, single-shot measurements herald the distillation of an entangled state with increased fidelity that is available for further use. The key combination of generating, storing, and processing entangled states should enable the exploration of multiparticle entanglement on an extended quantum network. Copyright © 2017, American Association for the Advancement of Science.

  4. Entanglement distillation between solid-state quantum network nodes

    Science.gov (United States)

    Kalb, N.; Reiserer, A. A.; Humphreys, P. C.; Bakermans, J. J. W.; Kamerling, S. J.; Nickerson, N. H.; Benjamin, S. C.; Twitchen, D. J.; Markham, M.; Hanson, R.

    2017-06-01

    The impact of future quantum networks hinges on high-quality quantum entanglement shared between network nodes. Unavoidable imperfections necessitate a means to improve remote entanglement by local quantum operations. We realize entanglement distillation on a quantum network primitive of distant electron-nuclear two-qubit nodes. The heralded generation of two copies of a remote entangled state is demonstrated through single-photon-mediated entangling of the electrons and robust storage in the nuclear spins. After applying local two-qubit gates, single-shot measurements herald the distillation of an entangled state with increased fidelity that is available for further use. The key combination of generating, storing, and processing entangled states should enable the exploration of multiparticle entanglement on an extended quantum network.

  5. Quantum cobwebs: Universal entangling of quantum states

    Indian Academy of Sciences (India)

    ZSA) multipartite, pure entangled states for qubits and study their salient features. ... Institute of Physics, Bhubaneswar 751 005, India; Center for Philosophy and Foundation of Science, New Delhi, India; School of Informatics, University of Wales, ...

  6. Efficient Measurement of Multiparticle Entanglement with Embedding Quantum Simulator.

    Science.gov (United States)

    Chen, Ming-Cheng; Wu, Dian; Su, Zu-En; Cai, Xin-Dong; Wang, Xi-Lin; Yang, Tao; Li, Li; Liu, Nai-Le; Lu, Chao-Yang; Pan, Jian-Wei

    2016-02-19

    The quantum measurement of entanglement is a demanding task in the field of quantum information. Here, we report the direct and scalable measurement of multiparticle entanglement with embedding photonic quantum simulators. In this embedding framework [R. Di Candia et al. Phys. Rev. Lett. 111, 240502 (2013)], the N-qubit entanglement, which does not associate with a physical observable directly, can be efficiently measured with only two (for even N) and six (for odd N) local measurement settings. Our experiment uses multiphoton quantum simulators to mimic dynamical concurrence and three-tangle entangled systems and to track their entanglement evolutions.

  7. Quantum entanglement in strong-field ionization

    Science.gov (United States)

    Majorosi, Szilárd; Benedict, Mihály G.; Czirják, Attila

    2017-10-01

    We investigate the time evolution of quantum entanglement between an electron, liberated by a strong few-cycle laser pulse, and its parent ion core. Since the standard procedure is numerically prohibitive in this case, we propose a method to quantify the quantum correlation in such a system: we use the reduced density matrices of the directional subspaces along the polarization of the laser pulse and along the transverse directions as building blocks for an approximate entanglement entropy. We present our results, based on accurate numerical simulations, in terms of several of these entropies, for selected values of the peak electric-field strength and the carrier-envelope phase difference of the laser pulse. The time evolution of the mutual entropy of the electron and the ion-core motion along the direction of the laser polarization is similar to our earlier results based on a simple one-dimensional model. However, taking into account also the dynamics perpendicular to the laser polarization reveals a surprisingly different entanglement dynamics above the laser intensity range corresponding to pure tunneling: the quantum entanglement decreases with time in the over-the-barrier ionization regime.

  8. Decentralized Routing and Diameter Bounds in Entangled Quantum Networks

    Science.gov (United States)

    Gyongyosi, Laszlo; Imre, Sandor

    2017-04-01

    Entangled quantum networks are a necessity for any future quantum internet, long-distance quantum key distribution, and quantum repeater networks. The entangled quantum nodes can communicate through several different levels of entanglement, leading to a heterogeneous, multi-level entangled network structure. The level of entanglement between the quantum nodes determines the hop distance, the number of spanned nodes, and the probability of the existence of an entangled link in the network. In this work we define a decentralized routing for entangled quantum networks. We show that the probability distribution of the entangled links can be modeled by a specific distribution in a base-graph. The results allow us to perform efficient routing to find the shortest paths in entangled quantum networks by using only local knowledge of the quantum nodes. We give bounds on the maximum value of the total number of entangled links of a path. The proposed scheme can be directly applied in practical quantum communications and quantum networking scenarios. This work was partially supported by the Hungarian Scientific Research Fund - OTKA K-112125.

  9. Atomic focusing by quantum fields: Entanglement properties

    Energy Technology Data Exchange (ETDEWEB)

    Paz, I.G. da [Departamento de Física, Universidade Federal do Piauí, Campus Ministro Petrônio Portela, CEP 64049-550, Teresina, PI (Brazil); Frazão, H.M. [Universidade Federal do Piauí, Campus Profa. Cinobelina Elvas, CEP 64900-000, Bom Jesus, PI (Brazil); Departamento de Física, Instituto de Ciências Exatas, Universidade Federal de Minas Gerais, Caixa Postal 702, Belo Horizonte, MG 30123-970 (Brazil); Nemes, M.C. [Departamento de Física, Instituto de Ciências Exatas, Universidade Federal de Minas Gerais, Caixa Postal 702, Belo Horizonte, MG 30123-970 (Brazil); Peixoto de Faria, J.G. [Departamento de Física e Matemática, Centro Federal de Educação Tecnológica de Minas Gerais, Av. Amazonas 7675, Belo Horizonte, MG 30510-000 (Brazil)

    2014-04-01

    The coherent manipulation of the atomic matter waves is of great interest both in science and technology. In order to study how an atom optic device alters the coherence of an atomic beam, we consider the quantum lens proposed by Averbukh et al. [1] to show the discrete nature of the electromagnetic field. We extend the analysis of this quantum lens to the study of another essentially quantum property present in the focusing process, i.e., the atom–field entanglement, and show how the initial atomic coherence and purity are affected by the entanglement. The dynamics of this process is obtained in closed form. We calculate the beam quality factor and the trace of the square of the reduced density matrix as a function of the average photon number in order to analyze the coherence and purity of the atomic beam during the focusing process.

  10. Creating, maintaining, and breaking of quantum entanglement in quantum operations

    Science.gov (United States)

    Bogdanov, Yu. I.; Chernyavskiy, A. Yu.; Holevo, A. S.; Lukichev, V. F.; Orlikovsky, Alexander A.; Bantysh, B. I.

    2013-01-01

    We study the evolution of entanglement in quantum gates in terms of Choi-Jamiolkowski relative states negativity. SQiSW (generated by XY-interaction), CNOT and CZ gates are considered in ideal case and under amplitude and phase relaxation. In addition, we consider an important task of analyzing entanglement of "pure" noise, which is obtained by deducting an ideal gate from a noisy one.

  11. Quantum Trajectories and Their Statistics for Remotely Entangled Quantum Bits

    Directory of Open Access Journals (Sweden)

    Areeya Chantasri

    2016-12-01

    Full Text Available We experimentally and theoretically investigate the quantum trajectories of jointly monitored transmon qubits embedded in spatially separated microwave cavities. Using nearly quantum-noise-limited superconducting amplifiers and an optimized setup to reduce signal loss between cavities, we can efficiently track measurement-induced entanglement generation as a continuous process for single realizations of the experiment. The quantum trajectories of transmon qubits naturally split into low and high entanglement classes. The distribution of concurrence is found at any given time, and we explore the dynamics of entanglement creation in the state space. The distribution exhibits a sharp cutoff in the high concurrence limit, defining a maximal concurrence boundary. The most-likely paths of the qubits’ trajectories are also investigated, resulting in three probable paths, gradually projecting the system to two even subspaces and an odd subspace, conforming to a “half-parity” measurement. We also investigate the most-likely time for the individual trajectories to reach their most entangled state, and we find that there are two solutions for the local maximum, corresponding to the low and high entanglement routes. The theoretical predictions show excellent agreement with the experimental entangled-qubit trajectory data.

  12. Quantum discord bounds the amount of distributed entanglement.

    Science.gov (United States)

    Chuan, T K; Maillard, J; Modi, K; Paterek, T; Paternostro, M; Piani, M

    2012-08-17

    The ability to distribute quantum entanglement is a prerequisite for many fundamental tests of quantum theory and numerous quantum information protocols. Two distant parties can increase the amount of entanglement between them by means of quantum communication encoded in a carrier that is sent from one party to the other. Intriguingly, entanglement can be increased even when the exchanged carrier is not entangled with the parties. However, in light of the defining property of entanglement stating that it cannot increase under classical communication, the carrier must be quantum. Here we show that, in general, the increase of relative entropy of entanglement between two remote parties is bounded by the amount of nonclassical correlations of the carrier with the parties as quantified by the relative entropy of discord. We study implications of this bound, provide new examples of entanglement distribution via unentangled states, and put further limits on this phenomenon.

  13. Quantum entanglement and coherence in molecular magnets

    Science.gov (United States)

    Shiddiq, Muhandis

    Quantum computers are predicted to outperform classical computers in certain tasks, such as factoring large numbers and searching databases. The construction of a computer whose operation is based on the principles of quantum mechanics appears extremely challenging. Solid state approaches offer the potential to answer this challenge by tailor-making novel nanomaterials for quantum information processing (QIP). Molecular magnets, which are materials whose energy levels and magnetic quantum states are well defined at the molecular level, have been identified as a class of material with properties that make them attractive for quantum computing purpose. In this dissertation, I explore the possibilities and challenges for molecular magnets to be used in quantum computing architecture. The properties of molecular magnets that are critical for applications in quantum computing, i.e., quantum entanglement and coherence, are comprehensively investigated to probe the feasibility of molecular magnets to be used as quantum bits (qubits). Interactions of qubits with photons are at the core of QIP. Photons can be used to detect and manipulate qubits, after which information can then be transferred over long distances. As a potential candidate for qubits, the interactions between Fe8 single-molecule magnets (SMMs) and cavity photons were studied. An earlier report described that a cavity mode splitting was observed in a spectrum of a cavity filled with a single-crystal of Fe8 SMMs. This splitting was interpreted as a vacuum Rabi splitting (VRS), which is a signature of an entanglement between a large number of SMMs and a cavity photon. However, find that large absorption and dispersion of the magnetic susceptibility are the reasons for this splitting. This finding highlights the fact that an observation of a peak splitting in a cavity transmission spectrum neither represents an unambiguous indication of quantum coherence in a large number of spins, nor a signature of

  14. Manipulation of multi-photon-entanglement. Applications in quantum information processing

    Energy Technology Data Exchange (ETDEWEB)

    Goebel, Alexander Matthias

    2008-07-16

    Over the last twenty years the field of quantum information processing (QIP) has attracted the attention of many scientists, due to the promise of impressive improvements in the areas of computational speed, communication security and the ability to simulate nature on the micro scale. This thesis describes an experimental work on the physics of multi-photon entanglement and its application in the field of QIP. We have thoroughly developed the necessary techniques to generate multipartite entanglement between up to six photons. By exploiting the developed six-photon interferometer, in this thesis we report for the first time the experimental quantum teleportation of a two-qubit composite system, the realization of multi-stage entanglement swapping, the implementation of a teleportation-based controlled-NOT gate for fault-tolerant quantum computation, the first generation of entanglement in sixpartite photonic graph states and the realization of 'one-way' quantum computation with two-photon four-qubit cluster states. The methods developed in these experiments are of great significance both for exploring the field of QIP and for future experiments on the fundamental tests of quantum mechanics. (orig.)

  15. Quantum Phase Imaging using Spatial Entanglement

    CERN Document Server

    Lu, Chien-Hung; Sun, Xiaohang; Fleischer, Jason W

    2015-01-01

    Entangled photons have the remarkable ability to be more sensitive to signal and less sensitive to noise than classical light. Joint photons can sample an object collectively, resulting in faster phase accumulation and higher spatial resolution, while common components of noise can be subtracted. Even more, they can accomplish this while physically separate, due to the nonlocal properties of quantum mechanics. Indeed, nearly all quantum optics experiments rely on this separation, using individual point detectors that are scanned to measure coincidence counts and correlations. Scanning, however, is tedious, time consuming, and ill-suited for imaging. Moreover, the separation of beam paths adds complexity to the system while reducing the number of photons available for sampling, and the multiplicity of detectors does not scale well for greater numbers of photons and higher orders of entanglement. We bypass all of these problems here by directly imaging collinear photon pairs with an electron-multiplying CCD cam...

  16. Quantum Nonadiabatic Cloning of Entangled Coherent States.

    Science.gov (United States)

    Izmaylov, Artur F; Joubert-Doriol, Loïc

    2017-04-20

    We propose a systematic approach to the basis set extension for nonadiabatic dynamics of entangled combination of nuclear coherent states (CSs) evolving according to the time-dependent variational principle (TDVP). The TDVP provides a rigorous framework for fully quantum nonadiabatic dynamics of closed systems; however, the quality of results strongly depends on available basis functions. Starting with a single nuclear CS replicated vertically on all electronic states, our approach clones this function when replicas of the CS on different electronic states experience increasingly different forces. Created clones move away from each other (decohere), extending the basis set. To determine a moment for cloning, we introduce generalized forces based on derivatives that maximally contribute to a variation of the total quantum action and thus account for entanglement of all basis functions.

  17. Quantum key distribution with an entangled light emitting diode

    Energy Technology Data Exchange (ETDEWEB)

    Dzurnak, B.; Stevenson, R. M.; Nilsson, J.; Dynes, J. F.; Yuan, Z. L.; Skiba-Szymanska, J.; Shields, A. J. [Toshiba Research Europe Limited, 208 Science Park, Milton Road, Cambridge CB4 0GZ (United Kingdom); Farrer, I.; Ritchie, D. A. [Cavendish Laboratory, University of Cambridge, JJ Thomson Avenue, Cambridge CB3 0HE (United Kingdom)

    2015-12-28

    Measurements performed on entangled photon pairs shared between two parties can allow unique quantum cryptographic keys to be formed, creating secure links between users. An advantage of using such entangled photon links is that they can be adapted to propagate entanglement to end users of quantum networks with only untrusted nodes. However, demonstrations of quantum key distribution with entangled photons have so far relied on sources optically excited with lasers. Here, we realize a quantum cryptography system based on an electrically driven entangled-light-emitting diode. Measurement bases are passively chosen and we show formation of an error-free quantum key. Our measurements also simultaneously reveal Bell's parameter for the detected light, which exceeds the threshold for quantum entanglement.

  18. Silicon photonic processor of two-qubit entangling quantum logic

    Science.gov (United States)

    Santagati, R.; Silverstone, J. W.; Strain, M. J.; Sorel, M.; Miki, S.; Yamashita, T.; Fujiwara, M.; Sasaki, M.; Terai, H.; Tanner, M. G.; Natarajan, C. M.; Hadfield, R. H.; O'Brien, J. L.; Thompson, M. G.

    2017-11-01

    Entanglement is a fundamental property of quantum mechanics, and is a primary resource in quantum information systems. Its manipulation remains a central challenge in the development of quantum technology. In this work, we demonstrate a device which can generate, manipulate, and analyse two-qubit entangled states, using miniature and mass-manufacturable silicon photonics. By combining four photon-pair sources with a reconfigurable six-mode interferometer, embedding a switchable entangling gate, we generate two-qubit entangled states, manipulate their entanglement, and analyse them, all in the same silicon chip. Using quantum state tomography, we show how our source can produce a range of entangled and separable states, and how our switchable controlled-Z gate operates on them, entangling them or making them separable depending on its configuration.

  19. The quantum handshake entanglement, nonlocality and transactions

    CERN Document Server

    Cramer, John G

    2016-01-01

    This book shines bright light into the dim recesses of quantum theory, where the mysteries of entanglement, nonlocality, and wave collapse have motivated some to conjure up multiple universes, and others to adopt a "shut up and calculate" mentality. After an extensive and accessible introduction to quantum mechanics and its history, the author turns attention to his transactional model. Using a quantum handshake between normal and time-reversed waves, this model provides a clear visual picture explaining the baffling experimental results that flow daily from the quantum physics laboratories of the world. To demonstrate its powerful simplicity, the transactional model is applied to a collection of counter-intuitive experiments and conceptual problems.

  20. Deterministic generation of multiparticle entanglement by quantum Zeno dynamics.

    Science.gov (United States)

    Barontini, Giovanni; Hohmann, Leander; Haas, Florian; Estève, Jérôme; Reichel, Jakob

    2015-09-18

    Multiparticle entangled quantum states, a key resource in quantum-enhanced metrology and computing, are usually generated by coherent operations exclusively. However, unusual forms of quantum dynamics can be obtained when environment coupling is used as part of the state generation. In this work, we used quantum Zeno dynamics (QZD), based on nondestructive measurement with an optical microcavity, to deterministically generate different multiparticle entangled states in an ensemble of 36 qubit atoms in less than 5 microseconds. We characterized the resulting states by performing quantum tomography, yielding a time-resolved account of the entanglement generation. In addition, we studied the dependence of quantum states on measurement strength and quantified the depth of entanglement. Our results show that QZD is a versatile tool for fast and deterministic entanglement generation in quantum engineering applications. Copyright © 2015, American Association for the Advancement of Science.

  1. Quantum discord and entanglement in grover search algorithm

    Directory of Open Access Journals (Sweden)

    Ye Bin

    2016-01-01

    Full Text Available Imperfections and noise in realistic quantum computers may seriously affect the accuracy of quantum algorithms. In this article we explore the impact of static imperfections on quantum entanglement as well as non-entangled quantum correlations in Grover’s search algorithm. Using the metrics of concurrence and geometric quantum discord, we show that both the evolution of entanglement and quantum discord in Grover algorithm can be restrained with the increasing strength of static imperfections. For very weak imperfections, the quantum entanglement and discord exhibit periodic behavior, while the periodicity will most certainly be destroyed with stronger imperfections. Moreover, entanglement sudden death may occur when the strength of static imperfections is greater than a certain threshold.

  2. Generic entangling through quantum indistinguishability

    Indian Academy of Sciences (India)

    Author Affiliations. Sougato Bose1 Dipankar Home1 2. Centre for Quantum Computation, Clarendon Laboratory, University of Oxford, Parks Road, Oxford OX1 3PU, England; Physics Department, Bose Institute, 93/1, A.P.C. Road, Kolkata 700 009, India ...

  3. Monogamy Inequality for Any Local Quantum Resource and Entanglement.

    Science.gov (United States)

    Camalet, S

    2017-09-15

    We derive a monogamy inequality for any local quantum resource and entanglement. It results from the fact that there is always a convex measure for a quantum resource, as shown here, and from the relation between entanglement and local entropy. One of its consequences is an entanglement monogamy different from that usually discussed. If the local resource is nonuniformity or coherence, it is satisfied by familiar resource and entanglement measures. The ensuing upper bound for the local coherence, determined by the entanglement, is independent of the basis used to define the coherence.

  4. Quantum entanglement and a metaphysics of relations

    Science.gov (United States)

    Esfeld, Michael

    This paper argues for a metaphysics of relations based on a characterization of quantum entanglement in terms of non-separability, thereby regarding entanglement as a sort of holism. By contrast to a radical metaphysics of relations, the position set out in this paper recognizes things that stand in the relations, but claims that, as far as the relations are concerned, there is no need for these things to have qualitative intrinsic properties underlying the relations. This position thus opposes a metaphysics of individual things that are characterized by intrinsic properties. A principal problem of the latter position is that it seems that we cannot gain any knowledge of these properties insofar as they are intrinsic. Against this background, the rationale behind a metaphysics of relations is to avoid a gap between epistemology and metaphysics.

  5. Extracting Entanglement Geometry from Quantum States

    Science.gov (United States)

    Hyatt, Katharine; Garrison, James R.; Bauer, Bela

    2017-10-01

    Tensor networks impose a notion of geometry on the entanglement of a quantum system. In some cases, this geometry is found to reproduce key properties of holographic dualities, and subsequently much work has focused on using tensor networks as tractable models for holographic dualities. Conventionally, the structure of the network—and hence the geometry—is largely fixed a priori by the choice of the tensor network ansatz. Here, we evade this restriction and describe an unbiased approach that allows us to extract the appropriate geometry from a given quantum state. We develop an algorithm that iteratively finds a unitary circuit that transforms a given quantum state into an unentangled product state. We then analyze the structure of the resulting unitary circuits. In the case of noninteracting, critical systems in one dimension, we recover signatures of scale invariance in the unitary network, and we show that appropriately defined geodesic paths between physical degrees of freedom exhibit known properties of a hyperbolic geometry.

  6. Beating the Standard Quantum Limit with Four Entangled Photons

    OpenAIRE

    Nagata, Tomohisa; Okamoto, Ryo; O'Brien, Jeremy L.; Sasaki, Keiji; Takeuchi, Shigeki

    2007-01-01

    Precision measurements are important across all fields of science. In particular, optical phase measurements can be used to measure distance, position, displacement, acceleration and optical path length. Quantum entanglement enables higher precision than would otherwise be possible. We demonstrate an optical phase measurement with an entangled four photon interference visibility greater than the threshold to beat the standard quantum limit--the limit attainable without entanglement. These res...

  7. Beating the standard quantum limit with four-entangled photons.

    Science.gov (United States)

    Nagata, Tomohisa; Okamoto, Ryo; O'brien, Jeremy L; Sasaki, Keiji; Takeuchi, Shigeki

    2007-05-04

    Precision measurements are important across all fields of science. In particular, optical phase measurements can be used to measure distance, position, displacement, acceleration, and optical path length. Quantum entanglement enables higher precision than would otherwise be possible. We demonstrated an optical phase measurement with an entangled four-photon interference visibility greater than the threshold to beat the standard quantum limit-the limit attainable without entanglement. These results open the way for new high-precision measurement applications.

  8. Self-healing of quantum entanglement after an obstruction

    CSIR Research Space (South Africa)

    McLaren, M

    2014-02-01

    Full Text Available Quantum entanglement between photon pairs is fragile and can easily be masked by losses in transmission path and noise in the detection system. When observing the quantum entanglement between the spatial states of photon pairs produced by parametric...

  9. Quantum probabilities from quantum entanglement: experimentally unpacking the Born rule

    Science.gov (United States)

    Harris, Jérémie; Bouchard, Frédéric; Santamato, Enrico; Zurek, Wojciech H.; Boyd, Robert W.; Karimi, Ebrahim

    2016-05-01

    The Born rule, a foundational axiom used to deduce probabilities of events from wavefunctions, is indispensable in the everyday practice of quantum physics. It is also key in the quest to reconcile the ostensibly inconsistent laws of the quantum and classical realms, as it confers physical significance to reduced density matrices, the essential tools of decoherence theory. Following Bohr’s Copenhagen interpretation, textbooks postulate the Born rule outright. However, recent attempts to derive it from other quantum principles have been successful, holding promise for simplifying and clarifying the quantum foundational bedrock. A major family of derivations is based on envariance, a recently discovered symmetry of entangled quantum states. Here, we identify and experimentally test three premises central to these envariance-based derivations, thus demonstrating, in the microworld, the symmetries from which the Born rule is derived. Further, we demonstrate envariance in a purely local quantum system, showing its independence from relativistic causality.

  10. Quantum Entanglement in Random Physical States

    Science.gov (United States)

    Hamma, Alioscia; Santra, Siddhartha; Zanardi, Paolo

    2012-07-01

    Most states in the Hilbert space are maximally entangled. This fact has proven useful to investigate—among other things—the foundations of statistical mechanics. Unfortunately, most states in the Hilbert space of a quantum many-body system are not physically accessible. We define physical ensembles of states acting on random factorized states by a circuit of length k of random and independent unitaries with local support. We study the typicality of entanglement by means of the purity of the reduced state. We find that for a time k=O(1), the typical purity obeys the area law. Thus, the upper bounds for area law are actually saturated, on average, with a variance that goes to zero for large systems. Similarly, we prove that by means of local evolution a subsystem of linear dimensions L is typically entangled with a volume law when the time scales with the size of the subsystem. Moreover, we show that for large values of k the reduced state becomes very close to the completely mixed state.

  11. Deterministic entanglement generation from driving through quantum phase transitions

    Science.gov (United States)

    Luo, Xin-Yu; Zou, Yi-Quan; Wu, Ling-Na; Liu, Qi; Han, Ming-Fei; Tey, Meng Khoon; You, Li

    2017-02-01

    Many-body entanglement is often created through the system evolution, aided by nonlinear interactions between the constituting particles. These very dynamics, however, can also lead to fluctuations and degradation of the entanglement if the interactions cannot be controlled. Here, we demonstrate near-deterministic generation of an entangled twin-Fock condensate of ~11,000 atoms by driving a rubidium-87 Bose-Einstein condensate undergoing spin mixing through two consecutive quantum phase transitions (QPTs). We directly observe number squeezing of 10.7 ± 0.6 decibels and normalized collective spin length of 0.99 ± 0.01. Together, these observations allow us to infer an entanglement-enhanced phase sensitivity of ~6 decibels beyond the standard quantum limit and an entanglement breadth of ~910 atoms. Our work highlights the power of generating large-scale useful entanglement by taking advantage of the different entanglement landscapes separated by QPTs.

  12. Demonstration of entanglement assisted invariance on IBM's Quantum Experience

    Science.gov (United States)

    Deffner, Sebastian

    Quantum entanglement is among the most fundamental, yet from classical intuition also most surprising properties of the fully quantum nature of physical reality. We report several experiments performed on IBM's Quantum Experience demonstrating envariance - entanglement assisted invariance. Envariance is a recently discovered symmetry of composite quantum systems, which is at the foundational origin of physics and a purely quantum phenomenon. These very easily reproducible and freely accessible experiments on Quantum Experience provide simple tools to study the properties of envariance, and we illustrate this for several cases with ``quantum universes'' consisting of up to five qubits.

  13. Quantum Phase Transition and Entanglement in Topological Quantum Wires.

    Science.gov (United States)

    Cho, Jaeyoon; Kim, Kun Woo

    2017-06-05

    We investigate the quantum phase transition of the Su-Schrieffer-Heeger (SSH) model by inspecting the two-site entanglements in the ground state. It is shown that the topological phase transition of the SSH model is signified by a nonanalyticity of local entanglement, which becomes discontinuous for finite even system sizes, and that this nonanalyticity has a topological origin. Such a peculiar singularity has a universal nature in one-dimensional topological phase transitions of noninteracting fermions. We make this clearer by pointing out that an analogous quantity in the Kitaev chain exhibiting the identical nonanalyticity is the local electron density. As a byproduct, we show that there exists a different type of phase transition, whereby the pattern of the two-site entanglements undergoes a sudden change. This transition is characterised solely by quantum information theory and does not accompany the closure of the spectral gap. We analyse the scaling behaviours of the entanglement in the vicinities of the transition points.

  14. Cosmological implications of quantum entanglement in the multiverse

    Directory of Open Access Journals (Sweden)

    Sugumi Kanno

    2015-12-01

    Full Text Available We explore the cosmological implications of quantum entanglement between two causally disconnected universes in the multiverse. We first consider two causally separated de Sitter spaces with a state which is initially entangled. We derive the reduced density matrix of our universe and compute the spectrum of vacuum fluctuations. We then consider the same system with an initially non-entangled state. We find that due to quantum interference scale dependent modulations may enter the spectrum for the case of initially non-entangled state. This gives rise to the possibility that the existence of causally disconnected universes may be experimentally tested by analyzing correlators in detail.

  15. Cosmological implications of quantum entanglement in the multiverse

    Energy Technology Data Exchange (ETDEWEB)

    Kanno, Sugumi, E-mail: sugumi.kanno@ehu.es [Department of Theoretical Physics and History of Science, University of the Basque Country UPV/EHU, 48080 Bilbao (Spain); IKERBASQUE, Basque Foundation for Science, Maria Diaz de Haro 3, 48013 Bilbao (Spain)

    2015-12-17

    We explore the cosmological implications of quantum entanglement between two causally disconnected universes in the multiverse. We first consider two causally separated de Sitter spaces with a state which is initially entangled. We derive the reduced density matrix of our universe and compute the spectrum of vacuum fluctuations. We then consider the same system with an initially non-entangled state. We find that due to quantum interference scale dependent modulations may enter the spectrum for the case of initially non-entangled state. This gives rise to the possibility that the existence of causally disconnected universes may be experimentally tested by analyzing correlators in detail.

  16. Self-healing of quantum entanglement after an obstruction.

    Science.gov (United States)

    McLaren, Melanie; Mhlanga, Thandeka; Padgett, Miles J; Roux, Filippus S; Forbes, Andrew

    2014-01-01

    Quantum entanglement between photon pairs is fragile and can easily be masked by losses in transmission path and noise in the detection system. When observing the quantum entanglement between the spatial states of photon pairs produced by parametric down-conversion, the presence of an obstruction introduces losses that can mask the correlations associated with the entanglement. Here we show that we can overcome these losses by measuring in the Bessel basis, thus once again revealing the entanglement after propagation beyond the obstruction. We confirm that, for the entanglement of orbital angular momentum, measurement in the Bessel basis is more robust to these losses than measuring in the usually employed Laguerre-Gaussian basis. Our results show that appropriate choice of measurement basis can overcome some limitations of the transmission path, perhaps offering advantages in free-space quantum communication or quantum processing systems.

  17. Time-bin entangled photons from a quantum dot

    OpenAIRE

    Jayakumar, Harishankar; Predojević, Ana; Kauten, Thomas; Huber, Tobias; Solomon, Glenn S.; Weihs, Gregor

    2014-01-01

    Long distance quantum communication is one of the prime goals in the field of quantum information science. With information encoded in the quantum state of photons, existing telecommunication fiber networks can be effectively used as a transport medium. To achieve this goal, a source of robust entangled single photon pairs is required. While time-bin entanglement offers the required robustness, currently used parametric down-conversion sources have limited performance due to multi-pair contri...

  18. Quantum Interference and Entanglement Induced by Multiple Scattering of Light

    DEFF Research Database (Denmark)

    Ott, Johan Raunkjær; Mortensen, Asger; Lodahl, Peter

    2010-01-01

    We report on the effects of quantum interference induced by the transmission of an arbitrary number of optical quantum states through a multiple-scattering medium. We identify the role of quantum interference on the photon correlations and the degree of continuous variable entanglement between two...... output modes. It is shown that quantum interference survives averaging over all ensembles of disorder and manifests itself as increased photon correlations due to photon antibunching. Furthermore, the existence of continuous variable entanglement correlations in a volume speckle pattern is predicted. Our...... results suggest that multiple scattering provides a promising way of coherently interfering many independent quantum states of light of potential use in quantum information processing....

  19. Entanglement in Nonunitary Quantum Critical Spin Chains

    Science.gov (United States)

    Couvreur, Romain; Jacobsen, Jesper Lykke; Saleur, Hubert

    2017-07-01

    Entanglement entropy has proven invaluable to our understanding of quantum criticality. It is natural to try to extend the concept to "nonunitary quantum mechanics," which has seen growing interest from areas as diverse as open quantum systems, noninteracting electronic disordered systems, or nonunitary conformal field theory (CFT). We propose and investigate such an extension here, by focusing on the case of one-dimensional quantum group symmetric or supergroup symmetric spin chains. We show that the consideration of left and right eigenstates combined with appropriate definitions of the trace leads to a natural definition of Rényi entropies in a large variety of models. We interpret this definition geometrically in terms of related loop models and calculate the corresponding scaling in the conformal case. This allows us to distinguish the role of the central charge and effective central charge in rational minimal models of CFT, and to define an effective central charge in other, less well-understood cases. The example of the s l (2 |1 ) alternating spin chain for percolation is discussed in detail.

  20. Entanglement and thermodynamics after a quantum quench in integrable systems.

    Science.gov (United States)

    Alba, Vincenzo; Calabrese, Pasquale

    2017-07-25

    Entanglement and entropy are key concepts standing at the foundations of quantum and statistical mechanics. Recently, the study of quantum quenches revealed that these concepts are intricately intertwined. Although the unitary time evolution ensuing from a pure state maintains the system at zero entropy, local properties at long times are captured by a statistical ensemble with nonzero thermodynamic entropy, which is the entanglement accumulated during the dynamics. Therefore, understanding the entanglement evolution unveils how thermodynamics emerges in isolated systems. Alas, an exact computation of the entanglement dynamics was available so far only for noninteracting systems, whereas it was deemed unfeasible for interacting ones. Here, we show that the standard quasiparticle picture of the entanglement evolution, complemented with integrability-based knowledge of the steady state and its excitations, leads to a complete understanding of the entanglement dynamics in the space-time scaling limit. We thoroughly check our result for the paradigmatic Heisenberg chain.

  1. Relating the Resource Theories of Entanglement and Quantum Coherence.

    Science.gov (United States)

    Chitambar, Eric; Hsieh, Min-Hsiu

    2016-07-08

    Quantum coherence and quantum entanglement represent two fundamental features of nonclassical systems that can each be characterized within an operational resource theory. In this Letter, we unify the resource theories of entanglement and coherence by studying their combined behavior in the operational setting of local incoherent operations and classical communication (LIOCC). Specifically, we analyze the coherence and entanglement trade-offs in the tasks of state formation and resource distillation. For pure states we identify the minimum coherence-entanglement resources needed to generate a given state, and we introduce a new LIOCC monotone that completely characterizes a state's optimal rate of bipartite coherence distillation. This result allows us to precisely quantify the difference in operational powers between global incoherent operations, LIOCC, and local incoherent operations without classical communication. Finally, a bipartite mixed state is shown to have distillable entanglement if and only if entanglement can be distilled by LIOCC, and we strengthen the well-known Horodecki criterion for distillability.

  2. Experimental entanglement distillation of mesoscopic quantum states

    DEFF Research Database (Denmark)

    Dong, Ruifang; Lassen, Mikael Østergaard; Heersink, Joel

    2008-01-01

    channel, the distribution of loss-intolerant entangled states is inevitably afflicted by decoherence, which causes a degradation of the transmitted entanglement. To combat the decoherence, entanglement distillation, a process of extracting a small set of highly entangled states from a large set of less...... entangled states, can be used(4-14). Here we report on the distillation of deterministically prepared light pulses entangled in continuous variables that have undergone non-Gaussian noise. The entangled light pulses(15-17) are sent through a lossy channel, where the transmission is varying in time similarly...

  3. Quantum coherence and entanglement in the avian compass.

    Science.gov (United States)

    Pauls, James A; Zhang, Yiteng; Berman, Gennady P; Kais, Sabre

    2013-06-01

    The radical-pair mechanism is one of two distinct mechanisms used to explain the navigation of birds in geomagnetic fields, however little research has been done to explore the role of quantum entanglement in this mechanism. In this paper we study the lifetime of radical-pair entanglement corresponding to the magnitude and direction of magnetic fields to show that the entanglement lasts long enough in birds to be used for navigation. We also find that the birds appear to not be able to orient themselves directly based on radical-pair entanglement due to a lack of orientation sensitivity of the entanglement in the geomagnetic field. To explore the entanglement mechanism further, we propose a model in which the hyperfine interactions are replaced by local magnetic fields of similar strength. The entanglement of the radical pair in this model lasts longer and displays an angular sensitivity in weak magnetic fields, both of which are not present in previous models.

  4. Quantum entanglement in two-electron atomic models

    Energy Technology Data Exchange (ETDEWEB)

    Manzano, D; Plastino, A R; Dehesa, J S [Instituto Carlos I de Fisica Teorica y Computacional, Universidad de Granada, Granada E-18071 (Spain); Koga, T, E-mail: arplastino@ugr.e [Applied Chemistry Research Unit, Graduate School of Engineering, Muroran Institute of Technology, Muroran, Hokkaido 050-8585 (Japan)

    2010-07-09

    We explore the main entanglement properties exhibited by the eigenfunctions of two exactly soluble two-electron models, the Crandall atom and the Hooke atom, and compare them with the entanglement features of helium-like systems. We compute the amount of entanglement associated with the wavefunctions corresponding to the fundamental and first few excited states of these models. We investigate the dependence of the entanglement on the parameters of the models and on the quantum numbers of the eigenstates. It is found that the amount of entanglement of the system tends to increase with energy in both models. In addition, we study the entanglement of a few states of helium-like systems, which we compute using high-quality Kinoshita-like eigenfunctions. The dependence of the entanglement of helium-like atoms on the nuclear charge and on energy is found to be consistent with the trends observed in the previous two model systems.

  5. Non-equilibrium quantum phase transition via entanglement decoherence dynamics

    Science.gov (United States)

    Lin, Yu-Chen; Yang, Pei-Yun; Zhang, Wei-Min

    2016-10-01

    We investigate the decoherence dynamics of continuous variable entanglement as the system-environment coupling strength varies from the weak-coupling to the strong-coupling regimes. Due to the existence of localized modes in the strong-coupling regime, the system cannot approach equilibrium with its environment, which induces a nonequilibrium quantum phase transition. We analytically solve the entanglement decoherence dynamics for an arbitrary spectral density. The nonequilibrium quantum phase transition is demonstrated as the system-environment coupling strength varies for all the Ohmic-type spectral densities. The 3-D entanglement quantum phase diagram is obtained.

  6. Remote Entanglement by Coherent Multiplication of Concurrent Quantum Signals.

    Science.gov (United States)

    Roy, Ananda; Jiang, Liang; Stone, A Douglas; Devoret, Michel

    2015-10-09

    Concurrent remote entanglement of distant, noninteracting quantum entities is a crucial function for quantum information processing. In contrast with the existing protocols which employ the addition of signals to generate entanglement between two remote qubits, the continuous variable protocol we present is based on the multiplication of signals. This protocol can be straightforwardly implemented by a novel Josephson junction mixing circuit. Our scheme would be able to generate provable entanglement even in the presence of practical imperfections: finite quantum efficiency of detectors and undesired photon loss in current state-of-the-art devices.

  7. Non-equilibrium quantum phase transition via entanglement decoherence dynamics.

    Science.gov (United States)

    Lin, Yu-Chen; Yang, Pei-Yun; Zhang, Wei-Min

    2016-10-07

    We investigate the decoherence dynamics of continuous variable entanglement as the system-environment coupling strength varies from the weak-coupling to the strong-coupling regimes. Due to the existence of localized modes in the strong-coupling regime, the system cannot approach equilibrium with its environment, which induces a nonequilibrium quantum phase transition. We analytically solve the entanglement decoherence dynamics for an arbitrary spectral density. The nonequilibrium quantum phase transition is demonstrated as the system-environment coupling strength varies for all the Ohmic-type spectral densities. The 3-D entanglement quantum phase diagram is obtained.

  8. Delayed-Choice Experiments and the Metaphysics of Entanglement

    Science.gov (United States)

    Egg, Matthias

    2013-09-01

    Delayed-choice experiments in quantum mechanics are often taken to undermine a realistic interpretation of the quantum state. More specifically, Healey has recently argued that the phenomenon of delayed-choice entanglement swapping is incompatible with the view that entanglement is a physical relation between quantum systems. This paper argues against these claims. It first reviews two paradigmatic delayed-choice experiments and analyzes their metaphysical implications. It then applies the results of this analysis to the case of entanglement swapping, showing that such experiments pose no threat to realism about entanglement.

  9. Couplers for non-locality swapping

    Energy Technology Data Exchange (ETDEWEB)

    Skrzypczyk, Paul; Brunner, Nicolas [H H Wills Physics Laboratory, University of Bristol, Tyndall Avenue, Bristol BS8 1TL (United Kingdom)], E-mail: paul.skrzypczyk@bristol.ac.uk, E-mail: n.brunner@bristol.ac.uk

    2009-07-15

    Studying generalized non-signaling theories brings insight into the foundations of quantum mechanics. Here we focus on a dynamical process in such general theories, namely non-locality swapping, the analogue of quantum entanglement swapping. In order to implement such a protocol, one needs to define a coupler, which performs the equivalent of quantum joint measurements on generalized 'box-like' states. Establishing a connection to Bell inequalities, we define consistent couplers for theories containing an arbitrary amount of non-locality, which leads us to introduce the concepts of perfect and minimal couplers. Remarkably, Tsirelson's bound for quantum non-locality naturally appears in our study.

  10. Novel quantum phase transition from bounded to extensive entanglement.

    Science.gov (United States)

    Zhang, Zhao; Ahmadain, Amr; Klich, Israel

    2017-05-16

    The nature of entanglement in many-body systems is a focus of intense research with the observation that entanglement holds interesting information about quantum correlations in large systems and their relation to phase transitions. In particular, it is well known that although generic, many-body states have large, extensive entropy, ground states of reasonable local Hamiltonians carry much smaller entropy, often associated with the boundary length through the so-called area law. Here we introduce a continuous family of frustration-free Hamiltonians with exactly solvable ground states and uncover a remarkable quantum phase transition whereby the entanglement scaling changes from area law into extensively large entropy. This transition shows that entanglement in many-body systems may be enhanced under special circumstances with a potential for generating "useful" entanglement for the purpose of quantum computing and that the full implications of locality and its restrictions on possible ground states may hold further surprises.

  11. Novel quantum phase transition from bounded to extensive entanglement

    Science.gov (United States)

    Zhang, Zhao; Ahmadain, Amr; Klich, Israel

    2017-05-01

    The nature of entanglement in many-body systems is a focus of intense research with the observation that entanglement holds interesting information about quantum correlations in large systems and their relation to phase transitions. In particular, it is well known that although generic, many-body states have large, extensive entropy, ground states of reasonable local Hamiltonians carry much smaller entropy, often associated with the boundary length through the so-called area law. Here we introduce a continuous family of frustration-free Hamiltonians with exactly solvable ground states and uncover a remarkable quantum phase transition whereby the entanglement scaling changes from area law into extensively large entropy. This transition shows that entanglement in many-body systems may be enhanced under special circumstances with a potential for generating “useful” entanglement for the purpose of quantum computing and that the full implications of locality and its restrictions on possible ground states may hold further surprises.

  12. Extracting Entanglement Geometry from Quantum States.

    Science.gov (United States)

    Hyatt, Katharine; Garrison, James R; Bauer, Bela

    2017-10-06

    Tensor networks impose a notion of geometry on the entanglement of a quantum system. In some cases, this geometry is found to reproduce key properties of holographic dualities, and subsequently much work has focused on using tensor networks as tractable models for holographic dualities. Conventionally, the structure of the network-and hence the geometry-is largely fixed a priori by the choice of the tensor network ansatz. Here, we evade this restriction and describe an unbiased approach that allows us to extract the appropriate geometry from a given quantum state. We develop an algorithm that iteratively finds a unitary circuit that transforms a given quantum state into an unentangled product state. We then analyze the structure of the resulting unitary circuits. In the case of noninteracting, critical systems in one dimension, we recover signatures of scale invariance in the unitary network, and we show that appropriately defined geodesic paths between physical degrees of freedom exhibit known properties of a hyperbolic geometry.

  13. Entanglement dynamics in critical random quantum Ising chain with perturbations

    Science.gov (United States)

    Huang, Yichen

    2017-05-01

    We simulate the entanglement dynamics in a critical random quantum Ising chain with generic perturbations using the time-evolving block decimation algorithm. Starting from a product state, we observe super-logarithmic growth of entanglement entropy with time. The numerical result is consistent with the analytical prediction of Vosk and Altman using a real-space renormalization group technique.

  14. Classical synchronization indicates persistent entanglement in isolated quantum systems.

    Science.gov (United States)

    Witthaut, Dirk; Wimberger, Sandro; Burioni, Raffaella; Timme, Marc

    2017-04-12

    Synchronization and entanglement constitute fundamental collective phenomena in multi-unit classical and quantum systems, respectively, both equally implying coordinated system states. Here, we present a direct link for a class of isolated quantum many-body systems, demonstrating that synchronization emerges as an intrinsic system feature. Intriguingly, quantum coherence and entanglement arise persistently through the same transition as synchronization. This direct link between classical and quantum cooperative phenomena may further our understanding of strongly correlated quantum systems and can be readily observed in state-of-the-art experiments, for example, with ultracold atoms.

  15. Classical synchronization indicates persistent entanglement in isolated quantum systems

    Science.gov (United States)

    Witthaut, Dirk; Wimberger, Sandro; Burioni, Raffaella; Timme, Marc

    2017-04-01

    Synchronization and entanglement constitute fundamental collective phenomena in multi-unit classical and quantum systems, respectively, both equally implying coordinated system states. Here, we present a direct link for a class of isolated quantum many-body systems, demonstrating that synchronization emerges as an intrinsic system feature. Intriguingly, quantum coherence and entanglement arise persistently through the same transition as synchronization. This direct link between classical and quantum cooperative phenomena may further our understanding of strongly correlated quantum systems and can be readily observed in state-of-the-art experiments, for example, with ultracold atoms.

  16. Quenched dynamics of entangled states in correlated quantum dots

    Science.gov (United States)

    Maslova, N. S.; Arseyev, P. I.; Mantsevich, V. N.

    2017-10-01

    The time evolution of an initially prepared entangled state in the system of coupled quantum dots has been analyzed by means of two different theoretical approaches: equations of motion for all orders localized electron correlation functions, considering interference effects, and kinetic equations for the pseudoparticle occupation numbers with constraint on the possible physical states. Results obtained by means of different approaches were carefully analyzed and compared to each other. Revealing a direct link between concurrence (degree of entanglement) and quantum dots pair correlation functions allowed us to follow the changes of entanglement during the time evolution of the coupled quantum dots system. It was demonstrated that the degree of entanglement can be controllably tuned during the time evolution of quantum dots system.

  17. Quantum Atomic Clock Synchronization: An Entangled Concept of Nonlocal Simultaneity

    Science.gov (United States)

    Abrams, D.; Dowling, J.; Williams, C.; Jozsa, R.

    2000-01-01

    We demonstrate that two spatially separated parties (Alice and Bob) can utilize shared prior quantum entanglement, as well as a classical information channel, to establish a synchronized pair of atomic clocks.

  18. Nonlinear dynamics and quantum entanglement in optomechanical systems.

    Science.gov (United States)

    Wang, Guanglei; Huang, Liang; Lai, Ying-Cheng; Grebogi, Celso

    2014-03-21

    To search for and exploit quantum manifestations of classical nonlinear dynamics is one of the most fundamental problems in physics. Using optomechanical systems as a paradigm, we address this problem from the perspective of quantum entanglement. We uncover strong fingerprints in the quantum entanglement of two common types of classical nonlinear dynamical behaviors: periodic oscillations and quasiperiodic motion. There is a transition from the former to the latter as an experimentally adjustable parameter is changed through a critical value. Accompanying this process, except for a small region about the critical value, the degree of quantum entanglement shows a trend of continuous increase. The time evolution of the entanglement measure, e.g., logarithmic negativity, exhibits a strong dependence on the nature of classical nonlinear dynamics, constituting its signature.

  19. Efficient multiuser quantum cryptography network based on entanglement.

    Science.gov (United States)

    Xue, Peng; Wang, Kunkun; Wang, Xiaoping

    2017-04-04

    We present an efficient quantum key distribution protocol with a certain entangled state to solve a special cryptographic task. Also, we provide a proof of security of this protocol by generalizing the proof of modified of Lo-Chau scheme. Based on this two-user scheme, a quantum cryptography network protocol is proposed without any quantum memory.

  20. Efficient multiuser quantum cryptography network based on entanglement

    Science.gov (United States)

    Xue, Peng; Wang, Kunkun; Wang, Xiaoping

    2017-04-01

    We present an efficient quantum key distribution protocol with a certain entangled state to solve a special cryptographic task. Also, we provide a proof of security of this protocol by generalizing the proof of modified of Lo-Chau scheme. Based on this two-user scheme, a quantum cryptography network protocol is proposed without any quantum memory.

  1. Equivalence principle and quantum mechanics: quantum simulation with entangled photons.

    Science.gov (United States)

    Longhi, S

    2018-01-15

    Einstein's equivalence principle (EP) states the complete physical equivalence of a gravitational field and corresponding inertial field in an accelerated reference frame. However, to what extent the EP remains valid in non-relativistic quantum mechanics is a controversial issue. To avoid violation of the EP, Bargmann's superselection rule forbids a coherent superposition of states with different masses. Here we suggest a quantum simulation of non-relativistic Schrödinger particle dynamics in non-inertial reference frames, which is based on the propagation of polarization-entangled photon pairs in curved and birefringent optical waveguides and Hong-Ou-Mandel quantum interference measurement. The photonic simulator can emulate superposition of mass states, which would lead to violation of the EP.

  2. Equivalence principle and quantum mechanics: quantum simulation with entangled photons

    Science.gov (United States)

    Longhi, S.

    2018-01-01

    Einstein`s equivalence principle states the complete physical equivalence of a gravitational field and corresponding inertial field in an accelerated reference frame. However, to what extent the equivalence principle remains valid in non-relativistic quantum mechanics is a controversial issue. To avoid violation of the equivalence principle, Bargmann`s superselection rule forbids a coherent superposition of states with different masses. Here we suggest a quantum simulation of non-relativistic Schr\\"odinger particle dynamics in non-inertial reference frames, which is based on propagation of polarization-entangled photon pairs in curved and birefringent optical waveguides and Hong-Ou-Mandel quantum interference measurement. The photonic simulator can emulate superposition of mass states, which would lead to violation of the EP.

  3. Entanglement and quantum teleportation in a nonlinear spin channel

    Science.gov (United States)

    Cheng, W. W.; Zeng, X. H.; Chen, X. B.

    2011-10-01

    The ground state and thermal entanglement of a two-qubit spin system in the presence of the nonlinear coupling interaction is investigated. It is found that the nonlinear coupling interaction can excite and enhance the entanglement both for ferromagnetic chain and anti-ferromagnetic ones even at the higher temperature. The entanglement teleportation via the quantum channel constructed by this system is also discussed, and the influence of the nonlinear coupling interaction on the fidelity of the teleportation is studied. The results show that both the entanglement of the output state and the fidelity can be increased by inducing a proper nonlinear coupling interaction.

  4. Bright continuous-variable entanglement from the quantum optical dimer

    Energy Technology Data Exchange (ETDEWEB)

    Mallon, M J; Reid, M D; Olsen, M K [ARC Centre of Excellence for Quantum-Atom Optics, School of Physical Sciences, University of Queensland, Brisbane, QLD 4072 (Australia)

    2008-01-14

    By calculating correlation spectra of the output fields, we show theoretically that two evanescently coupled {chi}{sup (2)} second harmonic generators inside a Fabry-Perot cavity provide a tunable source of quadrature squeezed light, Einstein-Podolsky-Rosen correlations and quantum entanglement. Unlike systems using coupled downconverters, second harmonic generation has no oscillation threshhold, so that the entangled fields become macroscopically occupied as soon as the pumping fields are turned on. This system also gives two frequencies at which the entangled fields can have macroscopic intensity. We show how the entanglement properties can be controlled by adjusting the pumping, the coupling strengths and the cavity detunings.

  5. Continuous variables triple-photon states quantum entanglement

    OpenAIRE

    Gonzalez, E. A. Rojas; Borne, A.; Boulanger, B.; Levenson, J.A.; Bencheikh, K

    2017-01-01

    We investigate the quantum entanglement of the three modes associated with the three-photon states obtained by triple-photon generation in a phase-matched third-order nonlinear optical interaction. Although the second order processes have been extensively dealt with, there is no direct analogy between the second and third-order mechanisms. We show for example the absence of quantum entanglement between the quadratures of the three modes in the case of spontaneous parametric triple-photon gene...

  6. Optimal estimation of parameters of an entangled quantum state

    Science.gov (United States)

    Virzì, S.; Avella, A.; Piacentini, F.; Gramegna, M.; Brida, G.; Degiovanni, I. P.; Genovese, M.

    2017-05-01

    Two-photon entangled quantum states are a fundamental tool for quantum information and quantum cryptography. A complete description of a generic quantum state is provided by its density matrix: the technique allowing experimental reconstruction of the density matrix is called quantum state tomography. Entangled states density matrix reconstruction requires a large number of measurements on many identical copies of the quantum state. An alternative way of certifying the amount of entanglement in two-photon states is represented by the estimation of specific parameters, e.g., negativity and concurrence. If we have a priori partial knowledge of our state, it’s possible to develop several estimators for these parameters that require lower amount of measurements with respect to full density matrix reconstruction. The aim of this work is to introduce and test different estimators for negativity and concurrence for a specific class of two-photon states.

  7. Scaling of Tripartite Entanglement at Impurity Quantum Phase Transitions.

    Science.gov (United States)

    Bayat, Abolfazl

    2017-01-20

    The emergence of a diverging length scale in many-body systems at a quantum phase transition implies that total entanglement has to reach its maximum there. In order to fully characterize this, one has to consider multipartite entanglement as, for instance, bipartite entanglement between individual particles fails to signal this effect. However, quantification of multipartite entanglement is very hard, and detecting it may not be possible due to the lack of accessibility to all individual particles. For these reasons it will be more sensible to partition the system into relevant subsystems, each containing a few to many spins, and study entanglement between those constituents as a coarse-grain picture of multipartite entanglement between individual particles. In impurity systems, famously exemplified by two-impurity and two-channel Kondo models, it is natural to divide the system into three parts, namely, impurities and the left and right bulks. By exploiting two tripartite entanglement measures, based on negativity, we show that at impurity quantum phase transitions the tripartite entanglement diverges and shows scaling behavior. While the critical exponents are different for each tripartite entanglement measure, they both provide very similar critical exponents for the two-impurity and the two-channel Kondo models, suggesting that they belong to the same universality class.

  8. Probing Entanglement in Adiabatic Quantum Optimization with Trapped Ions

    Directory of Open Access Journals (Sweden)

    Philipp eHauke

    2015-04-01

    Full Text Available Adiabatic quantum optimization has been proposed as a route to solve NP-complete problems, with a possible quantum speedup compared to classical algorithms. However, the precise role of quantum effects, such as entanglement, in these optimization protocols is still unclear. We propose a setup of cold trapped ions that allows one to quantitatively characterize, in a controlled experiment, the interplay of entanglement, decoherence, and non-adiabaticity in adiabatic quantum optimization. We show that, in this way, a broad class of NP-complete problems becomes accessible for quantum simulations, including the knapsack problem, number partitioning, and instances of the max-cut problem. Moreover, a general theoretical study reveals correlations of the success probability with entanglement at the end of the protocol. From exact numerical simulations for small systems and linear ramps, however, we find no substantial correlations with the entanglement during the optimization. For the final state, we derive analytically a universal upper bound for the success probability as a function of entanglement, which can be measured in experiment. The proposed trapped-ion setups and the presented study of entanglement address pertinent questions of adiabatic quantum optimization, which may be of general interest across experimental platforms.

  9. Collapse–revival of quantum discord and entanglement

    Energy Technology Data Exchange (ETDEWEB)

    Yan, Xue-Qun, E-mail: xqyan867@tom.com; Zhang, Bo-Ying

    2014-10-15

    In this paper the correlations dynamics of two atoms in the case of a micromaser-type system is investigated. Our results predict certain quasi-periodic collapse and revival phenomena for quantum discord and entanglement when the field is in Fock state and the two atoms are initially in maximally mixed state, which is a special separable state. Our calculations also show that the oscillations of the time evolution of both quantum discord and entanglement are almost in phase and they both have similar evolution behavior in some time range. The fact reveals the consistency of quantum discord and entanglement in some dynamical aspects. - Highlights: • The correlations dynamics of two atoms in the case of a micromaser-type system is investigated. • A quasi-periodic collapse and revival phenomenon for quantum discord and entanglement is reported. • A phenomenon of correlations revivals different from that of non-Markovian dynamics is revealed. • The oscillations of time evolution of both quantum discord and entanglement are almost in phase in our system. • Quantum discord and entanglement have similar evolution behavior in some time range.

  10. Use of entanglement in quantum optics

    Science.gov (United States)

    Horne, Michael A.; Bernstein, Herbert J.; Greenberger, Daniel M.; Zeilinger, Anton

    1992-01-01

    Several recent demonstrations of two-particle interferometry are reviewed and shown to be examples of either color entanglement or beam entanglement. A device, called a number filter, is described and shown to be of value in preparing beam entanglements. Finally, we note that all three concepts (color and beam entaglement, and number filtering) may be extended to three or more particles.

  11. Entanglement of quantum clocks through gravity.

    Science.gov (United States)

    Castro Ruiz, Esteban; Giacomini, Flaminia; Brukner, Časlav

    2017-03-21

    In general relativity, the picture of space-time assigns an ideal clock to each world line. Being ideal, gravitational effects due to these clocks are ignored and the flow of time according to one clock is not affected by the presence of clocks along nearby world lines. However, if time is defined operationally, as a pointer position of a physical clock that obeys the principles of general relativity and quantum mechanics, such a picture is, at most, a convenient fiction. Specifically, we show that the general relativistic mass-energy equivalence implies gravitational interaction between the clocks, whereas the quantum mechanical superposition of energy eigenstates leads to a nonfixed metric background. Based only on the assumption that both principles hold in this situation, we show that the clocks necessarily get entangled through time dilation effect, which eventually leads to a loss of coherence of a single clock. Hence, the time as measured by a single clock is not well defined. However, the general relativistic notion of time is recovered in the classical limit of clocks.

  12. Quantum Entanglement and Projective Ring Geometry

    Directory of Open Access Journals (Sweden)

    Michel Planat

    2006-08-01

    Full Text Available The paper explores the basic geometrical properties of the observables characterizing two-qubit systems by employing a novel projective ring geometric approach. After introducing the basic facts about quantum complementarity and maximal quantum entanglement in such systems, we demonstrate that the 15 × 15 multiplication table of the associated four-dimensional matrices exhibits a so-far-unnoticed geometrical structure that can be regarded as three pencils of lines in the projective plane of order two. In one of the pencils, which we call the kernel, the observables on two lines share a base of Bell states. In the complement of the kernel, the eight vertices/observables are joined by twelve lines which form the edges of a cube. A substantial part of the paper is devoted to showing that the nature of this geometry has much to do with the structure of the projective lines defined over the rings that are the direct product of n copies of the Galois field GF(2, with n = 2, 3 and 4.

  13. Entanglement entropy in excited states of the quantum Lifshitz model

    Science.gov (United States)

    Parker, Daniel E.; Vasseur, Romain; Moore, Joel E.

    2017-06-01

    We investigate the entanglement properties of an infinite class of excited states in the quantum Lifshitz model (QLM). The presence of a conformal quantum critical point in the QLM makes it unusually tractable for a model above one spatial dimension, enabling the ground state entanglement entropy for an arbitrary domain to be expressed in terms of geometrical and topological quantities. Here we extend this result to excited states and find that the entanglement can be naturally written in terms of quantities which we dub ‘entanglement propagator amplitudes’ (EPAs). EPAs are geometrical probabilities that we explicitly calculate and interpret. A comparison of lattice and continuum results demonstrates that EPAs are universal. This work shows that the QLM is an example of a 2  +  1d field theory where the universal behavior of excited-state entanglement may be computed analytically.

  14. Information geometric modeling of scattering induced quantum entanglement

    Energy Technology Data Exchange (ETDEWEB)

    Kim, D.-H. [Institute for the Early Universe, Ewha Womans University, Seoul 120-750 (Korea, Republic of); International Institute for Theoretical Physics and Mathematics Einstein-Galilei, via Santa Gonda 14, 59100 Prato (Italy); Ali, S.A. [International Institute for Theoretical Physics and Mathematics Einstein-Galilei, via Santa Gonda 14, 59100 Prato (Italy); Department of Physics, State University of New York at Albany, 1400 Washington Avenue, Albany, NY 12222 (United States); Department of Arts and Sciences, Albany College of Pharmacy and Health Sciences, 106 New Scotland Avenue, Albany, NY 12208 (United States); Cafaro, C., E-mail: carlo.cafaro@unicam.it [School of Science and Technology, Physics Division, University of Camerino, I-62032 Camerino (Italy); Mancini, S. [School of Science and Technology, Physics Division, University of Camerino, I-62032 Camerino (Italy)

    2011-07-18

    We present an information geometric analysis of entanglement generated by an s-wave scattering between two Gaussian wave packets. We conjecture that the pre- and post-collisional quantum dynamical scenarios related to an elastic head-on collision are macroscopic manifestations emerging from microscopic statistical structures. We then describe them by uncorrelated and correlated Gaussian statistical models, respectively. This allows us to express the entanglement strength in terms of scattering potential and incident particle energies. Furthermore, we show how the entanglement duration can be related to the scattering potential and incident particle energies. Finally, we discuss the connection between entanglement and complexity of motion. -- Highlights: → Information geometric characterization of scattering induced entanglement. → Connection between purity, scattering potential and incident particle energies. → Connection between complexity of motion and entanglement.

  15. Entanglement dynamics in critical random quantum Ising chain with perturbations

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Yichen, E-mail: ychuang@caltech.edu

    2017-05-15

    We simulate the entanglement dynamics in a critical random quantum Ising chain with generic perturbations using the time-evolving block decimation algorithm. Starting from a product state, we observe super-logarithmic growth of entanglement entropy with time. The numerical result is consistent with the analytical prediction of Vosk and Altman using a real-space renormalization group technique. - Highlights: • We study the dynamical quantum phase transition between many-body localized phases. • We simulate the dynamics of a very long random spin chain with matrix product states. • We observe numerically super-logarithmic growth of entanglement entropy with time.

  16. Quantum entanglement for systems of identical bosons: I. General features

    Science.gov (United States)

    Dalton, B. J.; Goold, J.; Garraway, B. M.; Reid, M. D.

    2017-02-01

    These two accompanying papers are concerned with two mode entanglement for systems of identical massive bosons and the relationship to spin squeezing and other quantum correlation effects. Entanglement is a key quantum feature of composite systems in which the probabilities for joint measurements on the composite sub-systems are no longer determined from measurement probabilities on the separate sub-systems. There are many aspects of entanglement that can be studied. This two-part review focuses on the meaning of entanglement, the quantum paradoxes associated with entangled states, and the important tests that allow an experimentalist to determine whether a quantum state—in particular, one for massive bosons is entangled. An overall outcome of the review is to distinguish criteria (and hence experiments) for entanglement that fully utilize the symmetrization principle and the super-selection rules that can be applied to bosonic massive particles. In the first paper (I), the background is given for the meaning of entanglement in the context of systems of identical particles. For such systems, the requirement is that the relevant quantum density operators must satisfy the symmetrization principle and that global and local super-selection rules prohibit states in which there are coherences between differing particle numbers. The justification for these requirements is fully discussed. In the second quantization approach that is used, both the system and the sub-systems are modes (or sets of modes) rather than particles, particles being associated with different occupancies of the modes. The definition of entangled states is based on first defining the non-entangled states—after specifying which modes constitute the sub-systems. This work mainly focuses on the two mode entanglement for massive bosons, but is put in the context of tests of local hidden variable theories, where one may not be able to make the above restrictions. The review provides the detailed

  17. Quantum renormalization group approach to quantum coherence and multipartite entanglement in an XXZ spin chain

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Wei [Zhejiang Institute of Modern Physics and Department of Physics, Zhejiang University, Hangzhou 310027 (China); Beijing Computational Science Research Center, Beijing 100193 (China); Xu, Jing-Bo, E-mail: xujb@zju.edu.cn [Zhejiang Institute of Modern Physics and Department of Physics, Zhejiang University, Hangzhou 310027 (China)

    2017-01-30

    We investigate the performances of quantum coherence and multipartite entanglement close to the quantum critical point of a one-dimensional anisotropic spin-1/2 XXZ spin chain by employing the real-space quantum renormalization group approach. It is shown that the quantum criticality of XXZ spin chain can be revealed by the singular behaviors of the first derivatives of renormalized quantum coherence and multipartite entanglement in the thermodynamics limit. Moreover, we find the renormalized quantum coherence and multipartite entanglement obey certain universal exponential-type scaling laws in the vicinity of the quantum critical point of XXZ spin chain. - Highlights: • The QPT of XXZ chain is studied by renormalization group. • The renormalized coherence and multiparticle entanglement is investigated. • Scaling laws of renormalized coherence and multiparticle entanglement are revealed.

  18. Multipartite quantum entanglement evolution in photosynthetic complexes.

    Science.gov (United States)

    Zhu, Jing; Kais, Sabre; Aspuru-Guzik, Alán; Rodriques, Sam; Brock, Ben; Love, Peter J

    2012-08-21

    We investigate the evolution of entanglement in the Fenna-Matthew-Olson (FMO) complex based on simulations using the scaled hierarchical equations of motion approach. We examine the role of entanglement in the FMO complex by direct computation of the convex roof. We use monogamy to give a lower bound for entanglement and obtain an upper bound from the evaluation of the convex roof. Examination of bipartite measures for all possible bipartitions provides a complete picture of the multipartite entanglement. Our results support the hypothesis that entanglement is maximum primary along the two distinct electronic energy transfer pathways. In addition, we note that the structure of multipartite entanglement is quite simple, suggesting that there are constraints on the mixed state entanglement beyond those due to monogamy.

  19. Experimental verification of multipartite entanglement in quantum networks

    Science.gov (United States)

    McCutcheon, W.; Pappa, A.; Bell, B. A.; McMillan, A.; Chailloux, A.; Lawson, T.; Mafu, M.; Markham, D.; Diamanti, E.; Kerenidis, I.; Rarity, J. G.; Tame, M. S.

    2016-11-01

    Multipartite entangled states are a fundamental resource for a wide range of quantum information processing tasks. In particular, in quantum networks, it is essential for the parties involved to be able to verify if entanglement is present before they carry out a given distributed task. Here we design and experimentally demonstrate a protocol that allows any party in a network to check if a source is distributing a genuinely multipartite entangled state, even in the presence of untrusted parties. The protocol remains secure against dishonest behaviour of the source and other parties, including the use of system imperfections to their advantage. We demonstrate the verification protocol in a three- and four-party setting using polarization-entangled photons, highlighting its potential for realistic photonic quantum communication and networking applications.

  20. Practical Entanglement Estimation for Spin-System Quantum Simulators.

    Science.gov (United States)

    Marty, O; Cramer, M; Plenio, M B

    2016-03-11

    We present practical methods to measure entanglement for quantum simulators that can be realized with trapped ions, cold atoms, and superconducting qubits. Focusing on long- and short-range Ising-type Hamiltonians, we introduce schemes that are applicable under realistic experimental conditions including mixedness due to, e.g., noise or temperature. In particular, we identify a single observable whose expectation value serves as a lower bound to entanglement and that may be obtained by a simple quantum circuit. As such circuits are not (yet) available for every platform, we investigate the performance of routinely measured observables as quantitative entanglement witnesses. Possible applications include experimental studies of entanglement scaling in critical systems and the reliable benchmarking of quantum simulators.

  1. Universal Entanglement Entropy in 2D Conformal Quantum Critical Points

    Energy Technology Data Exchange (ETDEWEB)

    Hsu, Benjamin; Mulligan, Michael; Fradkin, Eduardo; Kim, Eun-Ah

    2008-12-05

    We study the scaling behavior of the entanglement entropy of two dimensional conformal quantum critical systems, i.e. systems with scale invariant wave functions. They include two-dimensional generalized quantum dimer models on bipartite lattices and quantum loop models, as well as the quantum Lifshitz model and related gauge theories. We show that, under quite general conditions, the entanglement entropy of a large and simply connected sub-system of an infinite system with a smooth boundary has a universal finite contribution, as well as scale-invariant terms for special geometries. The universal finite contribution to the entanglement entropy is computable in terms of the properties of the conformal structure of the wave function of these quantum critical systems. The calculation of the universal term reduces to a problem in boundary conformal field theory.

  2. Thermal entanglement in two-atom cavity QED and the entangled quantum Otto engine

    Science.gov (United States)

    Wang, Hao; Liu, Sanqiu; He, Jizhou

    2009-04-01

    The simple system of two two-level identical atoms couple to single-mode optical cavity in the resonance case is studied for investigating the thermal entanglement. It is interesting to see that the critical temperature is only dependent on the coefficient of atom-atom dipole-dipole interaction. Based on the mode, we construct and investigate a entangled quantum Otto engine (QOE). Expressions for several important performance parameters such as the heat transferred, the work done in a cycle, and the efficiency of the entangled QOE in zero G are derived in terms of thermal concurrence. Some intriguing features and their qualitative explanations are given. Furthermore, the validity of the second law of thermodynamics is confirmed in the entangled QOE. The results obtained here have general significance and will be helpful to understand deeply the performance of an entangled QOE.

  3. Entanglement, Information, and the Interpretation of Quantum Mechanics

    CERN Document Server

    Jaeger, Gregg

    2009-01-01

    This book explores the nature of quantum entanglement and quantum information and their role in the quantum world. Their relations to a number of key experiments and thought experiments in the history of quantum physics are considered, as is a range of interpretations of quantum mechanics that have been put forward as a means of understanding the fundamental nature of microphysics - the traditionally accepted domain of quantum mechanics - and in some cases, the universe as a whole. In this way, the book reveals the deep significance of entanglement and quantum information for our understanding of the physical world. This book is a major accomplishment and invaluable contribution -- Arkady Plotnitsky An encyclopedic treatment of conceptual quantum mechanics as seen from a very up-to-date point of view --Tom Toffoli A mine of ideas for physicists, philosophers, and all intellectuals interested in this scientific revolution -- Giacomo Mauro D'Ariano

  4. Scaling of entanglement close to a quantum phase transition.

    Science.gov (United States)

    Osterloh, A; Amico, Luigi; Falci, G; Fazio, Rosario

    2002-04-11

    Classical phase transitions occur when a physical system reaches a state below a critical temperature characterized by macroscopic order. Quantum phase transitions occur at absolute zero; they are induced by the change of an external parameter or coupling constant, and are driven by quantum fluctuations. Examples include transitions in quantum Hall systems, localization in Si-MOSFETs (metal oxide silicon field-effect transistors; ref. 4) and the superconductor-insulator transition in two-dimensional systems. Both classical and quantum critical points are governed by a diverging correlation length, although quantum systems possess additional correlations that do not have a classical counterpart. This phenomenon, known as entanglement, is the resource that enables quantum computation and communication. The role of entanglement at a phase transition is not captured by statistical mechanics-a complete classification of the critical many-body state requires the introduction of concepts from quantum information theory. Here we connect the theory of critical phenomena with quantum information by exploring the entangling resources of a system close to its quantum critical point. We demonstrate, for a class of one-dimensional magnetic systems, that entanglement shows scaling behaviour in the vicinity of the transition point.

  5. Minimal-Entanglement Entanglement-Assisted Quantum Error Correction Codes from Modified Circulant Matrices

    Directory of Open Access Journals (Sweden)

    Duc Manh Nguyen

    2017-07-01

    Full Text Available In this paper, new construction methods of entanglement-assisted quantum error correction code (EAQECC from circulant matrices are proposed. We first construct the matrices from two vectors of constraint size, and determine the isotropic subgroup. Then, we also propose a method for calculation of the entanglement subgroup based on standard forms of binary matrices to satisfy the constraint conditions of EAQECC. With isotropic and entanglement subgroups, we determine all the parameters and the minimum distance of the EAQECC. The proposed EAQECC with small lengths are presented to explain the practicality of this construction of EAQECC. Comparison with some earlier constructions of EAQECC shows that the proposed EAQECC is better.

  6. Entanglement dynamics in quantum information theory

    Energy Technology Data Exchange (ETDEWEB)

    Cubitt, T.S.

    2007-03-29

    This thesis contributes to the theory of entanglement dynamics, that is, the behaviour of entanglement in systems that are evolving with time. Progressively more complex multipartite systems are considered, starting with low-dimensional tripartite systems, whose entanglement dynamics can nonetheless display surprising properties, progressing through larger networks of interacting particles, and finishing with infinitely large lattice models. Firstly, what is perhaps the most basic question in entanglement dynamics is considered: what resources are necessary in order to create entanglement between distant particles? The answer is surprising: sending separable states between the parties is sufficient; entanglement can be created without it being carried by a ''messenger'' particle. The analogous result also holds in the continuous-time case: two particles interacting indirectly via a common ancilla particle can be entangled without the ancilla ever itself becoming entangled. The latter result appears to discount any notion of entanglement flow. However, for pure states, this intuitive idea can be recovered, and even made quantitative. A ''bottleneck'' inequality is derived that relates the entanglement rate of the end particles in a tripartite chain to the entanglement of the middle one. In particular, no entanglement can be created if the middle particle is not entangled. However, although this result can be applied to general interaction networks, it does not capture the full entanglement dynamics of these more complex systems. This is remedied by the derivation of entanglement rate equations, loosely analogous to the rate equations describing a chemical reaction. A complete set of rate equations for a system reflects the full structure of its interaction network, and can be used to prove a lower bound on the scaling with chain length of the time required to entangle the ends of a chain. Finally, in contrast with these more

  7. Robust quantum network architectures and topologies for entanglement distribution

    Science.gov (United States)

    Das, Siddhartha; Khatri, Sumeet; Dowling, Jonathan P.

    2018-01-01

    Entanglement distribution is a prerequisite for several important quantum information processing and computing tasks, such as quantum teleportation, quantum key distribution, and distributed quantum computing. In this work, we focus on two-dimensional quantum networks based on optical quantum technologies using dual-rail photonic qubits for the building of a fail-safe quantum internet. We lay out a quantum network architecture for entanglement distribution between distant parties using a Bravais lattice topology, with the technological constraint that quantum repeaters equipped with quantum memories are not easily accessible. We provide a robust protocol for simultaneous entanglement distribution between two distant groups of parties on this network. We also discuss a memory-based quantum network architecture that can be implemented on networks with an arbitrary topology. We examine networks with bow-tie lattice and Archimedean lattice topologies and use percolation theory to quantify the robustness of the networks. In particular, we provide figures of merit on the loss parameter of the optical medium that depend only on the topology of the network and quantify the robustness of the network against intermittent photon loss and intermittent failure of nodes. These figures of merit can be used to compare the robustness of different network topologies in order to determine the best topology in a given real-world scenario, which is critical in the realization of the quantum internet.

  8. Efficient entanglement distillation without quantum memory

    National Research Council Canada - National Science Library

    Abdelkhalek, Daniela; Syllwasschy, Mareike; Cerf, Nicolas J; Fiurášek, Jaromír; Schnabel, Roman

    2016-01-01

    ...) entanglement distillation protocols have long been proposed to overcome decoherence, but their probabilistic nature makes them inefficient since the success probability decays exponentially with the number of steps...

  9. Quantum communication using a multiqubit entangled channel

    Energy Technology Data Exchange (ETDEWEB)

    Ghose, Shohini, E-mail: sghose@wlu.ca [Department of Physics and Computer Science, Wilfrid Laurier University, Waterloo, Ontario (Canada); Institute for Quantum Computing, University of Waterloo, Ontario (Canada); Hamel, Angele [Department of Physics and Computer Science, Wilfrid Laurier University, Waterloo, Ontario (Canada)

    2015-12-31

    We describe a protocol in which two senders each teleport a qubit to a receiver using a multiqubit entangled state. The multiqubit channel used for teleportation is genuinely 4-qubit entangled and is not equivalent to a product of maximally entangled Bell pairs under local unitary operations. We discuss a scenario in which both senders must participate for the qubits to be successfully teleported. Such an all-or-nothing scheme cannot be implemented with standard two-qubit entangled Bell pairs and can be useful for different communication and computing tasks.

  10. Quantum State Generation and Entanglement Manipulation Using Linear Optics

    OpenAIRE

    ÖZDEMİR, Şahin Kaya; Yamamoto, Takashi; Koashi, Masato

    2014-01-01

    Quantum information processing (QIP) requires unitary operations, measurements and synthesis, manipulation and characterization of arbitrary quantum states. Linear optics provides efficient tools for these purposes. In this review paper, we introduce the elements of linear optics toolbox, and briefly discuss some experimental and theoretical investigations using this toolbox. Our main focus will be the qubit state generation and entanglement extraction using linear optics toolbox.

  11. Quantum entanglement: Insights via graph parameters and conic optimization

    NARCIS (Netherlands)

    Piovesan, T.

    2016-01-01

    In this PhD thesis we study the effects of quantum entanglement, one of quantum mechanics most peculiar features, in nonlocal games and communication problems in zero-error information theory. A nonlocal game is a thought experiment in which two cooperating players, who are forbidden to communicate,

  12. Quantum entanglement: insights via graph parameters and conic optimization

    NARCIS (Netherlands)

    T. Piovesan (Teresa)

    2016-01-01

    htmlabstractIn this PhD thesis we study the effects of quantum entanglement, one of quantum mechanics most peculiar features, in nonlocal games and communication problems in zero-error information theory. A nonlocal game is a thought experiment in which two cooperating players, who are forbidden to

  13. Entanglement entropy and correlations in loop quantum gravity

    Science.gov (United States)

    Feller, Alexandre; Livine, Etera R.

    2018-02-01

    Black hole entropy is one of the few windows into the quantum aspects of gravitation, and its study over the years has highlighted the holographic nature of gravity. At the non-perturbative level in quantum gravity, promising explanations are being explored in terms of the entanglement entropy between regions of space. In the context of loop quantum gravity, this translates into an analysis of the correlations between the regions of the spin network states defining the quantum state of the geometry of space. In this paper, we explore a class of states, motivated by results in condensed matter physics, satisfying an area law for entanglement entropy and having non-trivial correlations. We highlight that entanglement comes from holonomy operators acting on loops crossing the boundary of the region.

  14. Simulating electron spin entanglement in a double quantum dot

    Science.gov (United States)

    Rodriguez-Moreno, M. A.; Hernandez de La Luz, A. D.; Meza-Montes, Lilia

    2011-03-01

    One of the biggest advantages of having a working quantum-computing device when compared with a classical one, is the exponential speedup of calculations. This exponential increase is based on the ability of a quantum system to create and operate on entangled states. In order to study theoretically the entanglement between two electron spins, we simulate the dynamics of two electron spins in an electrostatically-defined double quantum dot with a finite barrier height between the dots. Electrons are initially confined to separated quantum dots. Barrier height is varied and the spin entanglement as a function of this variation is investigated. The evolution of the system is simulated by using a numerical approach for solving the time-dependent Schrödinger equation for two particles. Partially supported by VIEP-BUAP.

  15. Entanglement Dynamics in a Model Tripartite Quantum System

    Science.gov (United States)

    Laha, Pradip; Sudarsan, B.; Lakshmibala, S.; Balakrishnan, V.

    2016-09-01

    A Λ-type atom interacting with two radiation fields exhibits electromagnetically induced transparency and other nonclassical effects that appear in the entanglement dynamics of the atomic subsystem and in appropriate field observables. Both EIT and field-atom entanglement are important for quantum information processing. We investigate the roles played by specific initial field states, detuning parameters, field nonlinearities and intensity-dependent field-atom couplings on EIT and the entanglement between subsystems. Departure from coherence of the initial field states produces significant effects. We investigate these aspects in a model that exhibits the salient features of entangled tripartite systems. For initial photon-added coherent states, collapses and revivals of the atomic subsystem von Neumann entropy appear as the intensity parameter varies over a narrow range of values. These features could be useful in enabling entanglement.

  16. Entanglement in Lifshitz-type quantum field theories

    Science.gov (United States)

    Mohammadi Mozaffar, M. Reza; Mollabashi, Ali

    2017-07-01

    We study different aspects of quantum entanglement and its measures, including entanglement entropy in the vacuum state of a certain Lifshitz free scalar theory. We present simple intuitive arguments based on "non-local" effects of this theory that the scaling of entanglement entropy depends on the dynamical exponent as a characteristic parameter of the theory. The scaling is such that in the massless theory for small entangling regions it leads to area law in the Lorentzian limit and volume law in the z → ∞ limit. We present strong numerical evidences in (1+1) and (2+1)-dimensions in support of this behavior. In (2 + 1)-dimensions we also study some shape dependent aspects of entanglement. We argue that in the massless limit corner contributions are no more additive for large enough dynamical exponent due to non-local effects of Lifshitz theories. We also comment on possible holographic duals of such theories based on the sign of tripartite information.

  17. Generation of heralded entanglement between distant quantum dot hole spins

    Science.gov (United States)

    Delteil, Aymeric

    Entanglement plays a central role in fundamental tests of quantum mechanics as well as in the burgeoning field of quantum information processing. Particularly in the context of quantum networks and communication, some of the major challenges are the efficient generation of entanglement between stationary (spin) and propagating (photon) qubits, the transfer of information from flying to stationary qubits, and the efficient generation of entanglement between distant stationary (spin) qubits. In this talk, I will present such experimental implementations achieved in our team with semiconductor self-assembled quantum dots.Not only are self-assembled quantum dots good single-photon emitters, but they can host an electron or a hole whose spin serves as a quantum memory, and then present spin-dependent optical selection rules leading to an efficient spin-photon quantum interface. Moreover InGaAs quantum dots grown on GaAs substrate can profit from the maturity of III-V semiconductor technology and can be embedded in semiconductor structures like photonic cavities and Schottky diodes.I will report on the realization of heralded quantum entanglement between two semiconductor quantum dot hole spins separated by more than five meters. The entanglement generation scheme relies on single photon interference of Raman scattered light from both dots. A single photon detection projects the system into a maximally entangled state. We developed a delayed two-photon interference scheme that allows for efficient verification of quantum correlations. Moreover the efficient spin-photon interface provided by self-assembled quantum dots allows us to reach an unprecedented rate of 2300 entangled spin pairs per second, which represents an improvement of four orders of magnitude as compared to prior experiments carried out in other systems.Our results extend previous demonstrations in single trapped ions or neutral atoms, in atom ensembles and nitrogen vacancy centers to the domain of

  18. Control of entanglement transitions in quantum spin clusters

    Science.gov (United States)

    Irons, Hannah R.; Quintanilla, Jorge; Perring, Toby G.; Amico, Luigi; Aeppli, Gabriel

    2017-12-01

    Quantum spin clusters provide a platform for the experimental study of many-body entanglement. Here we address a simple model of a single-molecule nanomagnet featuring N interacting spins in a transverse field. The field can control an entanglement transition (ET). We calculate the magnetization, low-energy gap, and neutron-scattering cross section and find that the ET has distinct signatures, detectable at temperatures as high as 5% of the interaction strength. The signatures are stronger for smaller clusters.

  19. Deterministic entanglement generation from driving through quantum phase transitions.

    Science.gov (United States)

    Luo, Xin-Yu; Zou, Yi-Quan; Wu, Ling-Na; Liu, Qi; Han, Ming-Fei; Tey, Meng Khoon; You, Li

    2017-02-10

    Many-body entanglement is often created through the system evolution, aided by nonlinear interactions between the constituting particles. These very dynamics, however, can also lead to fluctuations and degradation of the entanglement if the interactions cannot be controlled. Here, we demonstrate near-deterministic generation of an entangled twin-Fock condensate of ~11,000 atoms by driving a arubidium-87 Bose-Einstein condensate undergoing spin mixing through two consecutive quantum phase transitions (QPTs). We directly observe number squeezing of 10.7 ± 0.6 decibels and normalized collective spin length of 0.99 ± 0.01. Together, these observations allow us to infer an entanglement-enhanced phase sensitivity of ~6 decibels beyond the standard quantum limit and an entanglement breadth of ~910 atoms. Our work highlights the power of generating large-scale useful entanglement by taking advantage of the different entanglement landscapes separated by QPTs. Copyright © 2017, American Association for the Advancement of Science.

  20. Coherent feedback control of multipartite quantum entanglement for optical fields

    Energy Technology Data Exchange (ETDEWEB)

    Yan, Zhihui; Jia, Xiaojun; Xie, Changde; Peng, Kunchi [State Key Laboratory of Quantum Optics and Quantum Optics Devices, Institute of Opto-Electronics, Shanxi University, Taiyuan, 030006 (China)

    2011-12-15

    Coherent feedback control (CFC) of multipartite optical entangled states produced by a nondegenerate optical parametric amplifier is theoretically studied. The features of the quantum correlations of amplitude and phase quadratures among more than two entangled optical modes can be controlled by tuning the transmissivity of the optical beam splitter in the CFC loop. The physical conditions to enhance continuous variable multipartite entanglement of optical fields utilizing the CFC loop are obtained. The numeric calculations based on feasible physical parameters of realistic systems provide direct references for the design of experimental devices.

  1. Quantum entanglement for systems of identical bosons: II. Spin squeezing and other entanglement tests

    Science.gov (United States)

    Dalton, B. J.; Goold, J.; Garraway, B. M.; Reid, M. D.

    2017-02-01

    These two accompanying papers are concerned with entanglement for systems of identical massive bosons and the relationship to spin squeezing and other quantum correlation effects. The main focus is on two mode entanglement, but multi-mode entanglement is also considered. The bosons may be atoms or molecules as in cold quantum gases. The previous paper I dealt with the general features of quantum entanglement and its specific definition in the case of systems of identical bosons. Entanglement is a property shared between two (or more) quantum sub-systems. In defining entanglement for systems of identical massive particles, it was concluded that the single particle states or modes are the most appropriate choice for sub-systems that are distinguishable, that the general quantum states must comply both with the symmetrization principle and the super-selection rules (SSR) that forbid quantum superpositions of states with differing total particle number (global SSR compliance). Further, it was concluded that (in the separable states) quantum superpositions of sub-system states with differing sub-system particle number (local SSR compliance) also do not occur. The present paper II determines possible tests for entanglement based on the treatment of entanglement set out in paper I. Several inequalities involving variances and mean values of operators have been previously proposed as tests for entanglement between two sub-systems. These inequalities generally involve mode annihilation and creation operators and include the inequalities that define spin squeezing. In this paper, spin squeezing criteria for two mode systems are examined, and spin squeezing is also considered for principle spin operator components where the covariance matrix is diagonal. The proof, which is based on our SSR compliant approach shows that the presence of spin squeezing in any one of the spin components requires entanglement of the relevant pair of modes. A simple Bloch vector test for

  2. Entanglement Entropy of Eigenstates of Quantum Chaotic Hamiltonians.

    Science.gov (United States)

    Vidmar, Lev; Rigol, Marcos

    2017-12-01

    In quantum statistical mechanics, it is of fundamental interest to understand how close the bipartite entanglement entropy of eigenstates of quantum chaotic Hamiltonians is to maximal. For random pure states in the Hilbert space, the average entanglement entropy is known to be nearly maximal, with a deviation that is, at most, a constant. Here we prove that, in a system that is away from half filling and divided in two equal halves, an upper bound for the average entanglement entropy of random pure states with a fixed particle number and normally distributed real coefficients exhibits a deviation from the maximal value that grows with the square root of the volume of the system. Exact numerical results for highly excited eigenstates of a particle number conserving quantum chaotic model indicate that the bound is saturated with increasing system size.

  3. Quantum Entanglement of Matter and Geometry in Large Systems

    Energy Technology Data Exchange (ETDEWEB)

    Hogan, Craig J.

    2014-12-04

    Standard quantum mechanics and gravity are used to estimate the mass and size of idealized gravitating systems where position states of matter and geometry become indeterminate. It is proposed that well-known inconsistencies of standard quantum field theory with general relativity on macroscopic scales can be reconciled by nonstandard, nonlocal entanglement of field states with quantum states of geometry. Wave functions of particle world lines are used to estimate scales of geometrical entanglement and emergent locality. Simple models of entanglement predict coherent fluctuations in position of massive bodies, of Planck scale origin, measurable on a laboratory scale, and may account for the fact that the information density of long lived position states in Standard Model fields, which is determined by the strong interactions, is the same as that determined holographically by the cosmological constant.

  4. Quantum entangle photon and applications in communication and measurement

    Directory of Open Access Journals (Sweden)

    Surasak Chiangga

    2004-01-01

    Full Text Available This paper presents the use of a single photon entangled state to secure the transmission data via a wireless communication link and a biological tissue study where the encrypted data/qubit is prepared and formed by using a simple optical system. The encrypted data can transmit securely i.e. without cloning to theintended recipient via a public wireless link. We have shown that the result of the entangled states has good visibility for the use of data quantum encryption. The generated entangled photon for up-link via wireless communication is proposed and the problem of quantum cloning described. The biological tissue characterizations using such a short pulse can be realize by using a simple optical arrangement and components. Such an implemented system has the advantage of that the ultra-short pulse of a single photon with its quantum state identification can be used to provide the required measured data.

  5. Entanglement-enhanced quantum error-correcting codes

    Science.gov (United States)

    Dong, Ying; Deng, Xiuhao; Jiang, Mingming; Chen, Qing; Yu, Sixia

    2009-04-01

    Via explicit examples we show that the pre-existing entanglement can really enhance (not only behave as an assistance for) the efficiency of the quantum error-correcting codes (QECCs) in a single block of encoding or decoding as well as help in beating the quantum Hamming bound. A systematic approach to constructing entanglement-assisted (or enhanced) quantum error-correcting codes (EAQECCs) via graph states is also presented, and an infinite family of entanglement-enhanced codes has been constructed. Furthermore we generalize the EAQECCs to the case of not-so-perfectly protected qubit and introduce the quantity infidelity as a figure of merit and show that the EAQECCs also outperform the ordinary QECCs.

  6. Superdense coding facilitated by hyper-entanglement and quantum networks

    Science.gov (United States)

    Smith, James F.

    2017-05-01

    A method of generating superdense coding based on quantum hyper-entanglement and facilitated by quantum networks is discussed. Superdense coding refers to the coding of more than one classical bit into each qubit. Quantum hyperentanglement refers to quantum entanglement in more than one degree of freedom, e.g. polarization, energy-time, and orbital angular momentum (OAM). The new superdense coding scheme permits 2L bits to be encoded into each qubit where L is the number of degrees of freedom used for quantum hyper-entanglement. The superdense coding procedure is based on a generalization of the Bell state for L degrees of freedom. Theory describing the structure, generation/transmission, and detection of the generalized Bell state is developed. Circuit models are provided describing the generation/transmission process and detection process. Detection processes are represented mathematically as projection operators. A mathematical proof that that the detection scheme permits the generalized Bell states to be distinguished with 100% probability is provided. Measures of effectiveness (MOEs) are derived for the superdense coding scheme based on open systems theory represented in terms of density operators. Noise and loss related to generation/transmission, detection and propagation are included. The MOEs include various probabilities, quantum Chernoff bound, a measure of the number of message photons that must be transmitted to successfully send and receive a message, SNR and the quantum Cramer Rao' lower bound. Quantum networks with quantum memory are used to increase the efficiency of the superdense coding scheme.

  7. Quantum entanglement in non-local games, graph parameters and zero-error information theory

    NARCIS (Netherlands)

    Scarpa, G.

    2013-01-01

    We study quantum entanglement and some of its applications in graph theory and zero-error information theory. In Chapter 1 we introduce entanglement and other fundamental concepts of quantum theory. In Chapter 2 we address the question of how much quantum correlations generated by entanglement can

  8. Quantum Entanglement as a Diagnostic of Phase Transitions in Disordered Fractional Quantum Hall Liquids.

    Science.gov (United States)

    Liu, Zhao; Bhatt, R N

    2016-11-11

    We investigate the disorder-driven phase transition from a fractional quantum Hall state to an Anderson insulator using quantum entanglement methods. We find that the transition is signaled by a sharp increase in the sensitivity of a suitably averaged entanglement entropy with respect to disorder-the magnitude of its disorder derivative appears to diverge in the thermodynamic limit. We also study the level statistics of the entanglement spectrum as a function of disorder. However, unlike the dramatic phase-transition signal in the entanglement entropy derivative, we find a gradual reduction of level repulsion only deep in the Anderson insulating phase.

  9. Fano Effect and Quantum Entanglement in Hybrid Semiconductor Quantum Dot-Metal Nanoparticle System

    Directory of Open Access Journals (Sweden)

    Yong He

    2017-06-01

    Full Text Available In this paper, we review the investigation for the light-matter interaction between surface plasmon field in metal nanoparticle (MNP and the excitons in semiconductor quantum dots (SQDs in hybrid SQD-MNP system under the full quantum description. The exciton-plasmon interaction gives rise to the modified decay rate and the exciton energy shift which are related to the exciton energy by using a quantum transformation method. We illustrate the responses of the hybrid SQD-MNP system to external field, and reveal Fano effect shown in the absorption spectrum. We demonstrate quantum entanglement between two SQD mediated by surface plasmon field. In the absence of a laser field, concurrence of quantum entanglement will disappear after a few ns. If the laser field is present, the steady states appear, so that quantum entanglement produced will reach a steady-state entanglement. Because one of all optical pathways to induce Fano effect refers to the generation of quantum entangled states, It is shown that the concurrence of quantum entanglement can be obtained by observation for Fano effect. In a hybrid system including two MNP and a SQD, because the two Fano quantum interference processes share a segment of all optical pathways, there is correlation between the Fano effects of the two MNP. The investigations for the light-matter interaction in hybrid SQD-MNP system can pave the way for the development of the optical processing devices and quantum information based on the exciton-plasmon interaction.

  10. Fano Effect and Quantum Entanglement in Hybrid Semiconductor Quantum Dot-Metal Nanoparticle System.

    Science.gov (United States)

    He, Yong; Zhu, Ka-Di

    2017-06-20

    In this paper, we review the investigation for the light-matter interaction between surface plasmon field in metal nanoparticle (MNP) and the excitons in semiconductor quantum dots (SQDs) in hybrid SQD-MNP system under the full quantum description. The exciton-plasmon interaction gives rise to the modified decay rate and the exciton energy shift which are related to the exciton energy by using a quantum transformation method. We illustrate the responses of the hybrid SQD-MNP system to external field, and reveal Fano effect shown in the absorption spectrum. We demonstrate quantum entanglement between two SQD mediated by surface plasmon field. In the absence of a laser field, concurrence of quantum entanglement will disappear after a few ns. If the laser field is present, the steady states appear, so that quantum entanglement produced will reach a steady-state entanglement. Because one of all optical pathways to induce Fano effect refers to the generation of quantum entangled states, It is shown that the concurrence of quantum entanglement can be obtained by observation for Fano effect. In a hybrid system including two MNP and a SQD, because the two Fano quantum interference processes share a segment of all optical pathways, there is correlation between the Fano effects of the two MNP. The investigations for the light-matter interaction in hybrid SQD-MNP system can pave the way for the development of the optical processing devices and quantum information based on the exciton-plasmon interaction.

  11. Fano Effect and Quantum Entanglement in Hybrid Semiconductor Quantum Dot-Metal Nanoparticle System

    Science.gov (United States)

    He, Yong; Zhu, Ka-Di

    2017-01-01

    In this paper, we review the investigation for the light-matter interaction between surface plasmon field in metal nanoparticle (MNP) and the excitons in semiconductor quantum dots (SQDs) in hybrid SQD-MNP system under the full quantum description. The exciton-plasmon interaction gives rise to the modified decay rate and the exciton energy shift which are related to the exciton energy by using a quantum transformation method. We illustrate the responses of the hybrid SQD-MNP system to external field, and reveal Fano effect shown in the absorption spectrum. We demonstrate quantum entanglement between two SQD mediated by surface plasmon field. In the absence of a laser field, concurrence of quantum entanglement will disappear after a few ns. If the laser field is present, the steady states appear, so that quantum entanglement produced will reach a steady-state entanglement. Because one of all optical pathways to induce Fano effect refers to the generation of quantum entangled states, It is shown that the concurrence of quantum entanglement can be obtained by observation for Fano effect. In a hybrid system including two MNP and a SQD, because the two Fano quantum interference processes share a segment of all optical pathways, there is correlation between the Fano effects of the two MNP. The investigations for the light-matter interaction in hybrid SQD-MNP system can pave the way for the development of the optical processing devices and quantum information based on the exciton-plasmon interaction. PMID:28632165

  12. Local random quantum circuits: Ensemble completely positive maps and swap algebras

    Energy Technology Data Exchange (ETDEWEB)

    Zanardi, Paolo [Department of Physics and Astronomy, and Center for Quantum Information Science and Technology, University of Southern California, Los Angeles, California 90089-0484, USA and Centre for Quantum Technologies, National University of Singapore, 2 Science Drive 3, Singapore 117542 (Singapore)

    2014-08-15

    We define different classes of local random quantum circuits (L-RQC) and show that (a) statistical properties of L-RQC are encoded into an associated family of completely positive maps and (b) average purity dynamics can be described by the action of these maps on operator algebras of permutations (swap algebras). An exactly solvable one-dimensional case is analyzed to illustrate the power of the swap algebra formalism. More in general, we prove short time area-law bounds on average purity for uncorrelated L-RQC and infinite time results for both the uncorrelated and correlated cases.

  13. Local random quantum circuits: Ensemble completely positive maps and swap algebras

    Science.gov (United States)

    Zanardi, Paolo

    2014-08-01

    We define different classes of local random quantum circuits (L-RQC) and show that (a) statistical properties of L-RQC are encoded into an associated family of completely positive maps and (b) average purity dynamics can be described by the action of these maps on operator algebras of permutations (swap algebras). An exactly solvable one-dimensional case is analyzed to illustrate the power of the swap algebra formalism. More in general, we prove short time area-law bounds on average purity for uncorrelated L-RQC and infinite time results for both the uncorrelated and correlated cases.

  14. Entanglement concentration of continuous variable quantum states

    OpenAIRE

    Fiurasek, Jaromir; Mista, Jr., Ladislav; Filip, Radim

    2002-01-01

    We propose two probabilistic entanglement concentration schemes for a single copy of two-mode squeezed vacuum state. The first scheme is based on the off-resonant interaction of a Rydberg atom with the cavity field while the second setup involves the cross Kerr interaction, auxiliary mode prepared in a strong coherent state and a homodyne detection. We show that the continuous-variable entanglement concentration allows us to improve the fidelity of teleportation of coherent states.

  15. Information geometry of entanglement renormalization for free quantum fields

    Energy Technology Data Exchange (ETDEWEB)

    Molina-Vilaplana, J. [Universidad Politécnica de Cartagena,C/Dr Fleming S/N 30202, Cartagena (Spain)

    2015-09-01

    We provide an explicit connection between the differential generation of entanglement entropy in a tensor network representation of the ground states of two field theories, and a geometric description of these states based on the Fisher information metric. We show how the geometrical description remains invariant despite there is an irreducible gauge freedom in the definition of the tensor network. The results might help to understand how spacetimes may emerge from distributions of quantum states, or more concretely, from the structure of the quantum entanglement concomitant to those distributions.

  16. Probing dynamical symmetry breaking using quantum-entangled photons

    Science.gov (United States)

    Li, Hao; Piryatinski, Andrei; Jerke, Jonathan; Ram Srimath Kandada, Ajay; Silva, Carlos; Bittner, Eric R.

    2018-01-01

    We present an input/output analysis of photon-correlation experiments whereby a quantum mechanically entangled bi-photon state interacts with a material sample placed in one arm of a Hong–Ou–Mandel apparatus. We show that the output signal contains detailed information about subsequent entanglement with the microscopic quantum states in the sample. In particular, we apply the method to an ensemble of emitters interacting with a common photon mode within the open-system Dicke model. Our results indicate considerable dynamical information concerning spontaneous symmetry breaking can be revealed with such an experimental system.

  17. Entanglement and Quantum Error Correction with Superconducting Qubits

    Science.gov (United States)

    Reed, Matthew

    2015-03-01

    Quantum information science seeks to take advantage of the properties of quantum mechanics to manipulate information in ways that are not otherwise possible. Quantum computation, for example, promises to solve certain problems in days that would take a conventional supercomputer the age of the universe to decipher. This power does not come without a cost however, as quantum bits are inherently more susceptible to errors than their classical counterparts. Fortunately, it is possible to redundantly encode information in several entangled qubits, making it robust to decoherence and control imprecision with quantum error correction. I studied one possible physical implementation for quantum computing, employing the ground and first excited quantum states of a superconducting electrical circuit as a quantum bit. These ``transmon'' qubits are dispersively coupled to a superconducting resonator used for readout, control, and qubit-qubit coupling in the cavity quantum electrodynamics (cQED) architecture. In this talk I will give an general introduction to quantum computation and the superconducting technology that seeks to achieve it before explaining some of the specific results reported in my thesis. One major component is that of the first realization of three-qubit quantum error correction in a solid state device, where we encode one logical quantum bit in three entangled physical qubits and detect and correct phase- or bit-flip errors using a three-qubit Toffoli gate. My thesis is available at arXiv:1311.6759.

  18. Avalanche of entanglement and correlations at quantum phase transitions.

    Science.gov (United States)

    Krutitsky, Konstantin V; Osterloh, Andreas; Schützhold, Ralf

    2017-06-16

    We study the ground-state entanglement in the quantum Ising model with nearest neighbor ferromagnetic coupling J and find a sequential increase of entanglement depth d with growing J. This entanglement avalanche starts with two-point entanglement, as measured by the concurrence, and continues via the three-tangle and four-tangle, until finally, deep in the ferromagnetic phase for J = ∞, arriving at a pure L-partite (GHZ type) entanglement of all L spins. Comparison with the two, three, and four-point correlations reveals a similar sequence and shows strong ties to the above entanglement measures for small J. However, we also find a partial inversion of the hierarchy, where the four-point correlation exceeds the three- and two-point correlations, well before the critical point is reached. Qualitatively similar behavior is also found for the Bose-Hubbard model, suggesting that this is a general feature of a quantum phase transition. This should be taken into account in the approximations starting from a mean-field limit.

  19. Quantum frequency doubling based on tripartite entanglement with cavities

    Science.gov (United States)

    Juan, Guo; Zhi-Feng, Wei; Su-Ying, Zhang

    2016-02-01

    We analyze the entanglement characteristics of three harmonic modes, which are the output fields from three cavities with an input tripartite entangled state at fundamental frequency. The entanglement properties of the input beams can be maintained after their frequencies have been up-converted by the process of second harmonic generation. We have calculated the parametric dependences of the correlation spectrum on the initial squeezing factor, the pump power, the transmission coefficient, and the normalized analysis frequency of cavity. The numerical results provide references to choose proper experimental parameters for designing the experiment. The frequency conversion of the multipartite entangled state can also be applied to a quantum communication network. Project supported by the National Natural Science Foundation of China (Grant No. 91430109), the Specialized Research Fund for the Doctoral Program of Higher Education of China (Grant No. 20111401110004), and the Natural Science Foundation of Shanxi Province, China (Grant No. 2014011005-3).

  20. Finite entanglement entropy and spectral dimension in quantum gravity

    Science.gov (United States)

    Arzano, Michele; Calcagni, Gianluca

    2017-12-01

    What are the conditions on a field theoretic model leading to a finite entanglement entropy density? We prove two very general results: (1) Ultraviolet finiteness of a theory does not guarantee finiteness of the entropy density; (2) If the spectral dimension of the spatial boundary across which the entropy is calculated is non-negative at all scales, then the entanglement entropy cannot be finite. These conclusions, which we verify in several examples, negatively affect all quantum-gravity models, since their spectral dimension is always positive. Possible ways out are considered, including abandoning the definition of the entanglement entropy in terms of the boundary return probability or admitting an analytic continuation (not a regularization) of the usual definition. In the second case, one can get a finite entanglement entropy density in multi-fractional theories and causal dynamical triangulations.

  1. Average subentropy, coherence and entanglement of random mixed quantum states

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Lin, E-mail: godyalin@163.com [Institute of Mathematics, Hangzhou Dianzi University, Hangzhou 310018 (China); Singh, Uttam, E-mail: uttamsingh@hri.res.in [Harish-Chandra Research Institute, Allahabad, 211019 (India); Pati, Arun K., E-mail: akpati@hri.res.in [Harish-Chandra Research Institute, Allahabad, 211019 (India)

    2017-02-15

    Compact expressions for the average subentropy and coherence are obtained for random mixed states that are generated via various probability measures. Surprisingly, our results show that the average subentropy of random mixed states approaches the maximum value of the subentropy which is attained for the maximally mixed state as we increase the dimension. In the special case of the random mixed states sampled from the induced measure via partial tracing of random bipartite pure states, we establish the typicality of the relative entropy of coherence for random mixed states invoking the concentration of measure phenomenon. Our results also indicate that mixed quantum states are less useful compared to pure quantum states in higher dimension when we extract quantum coherence as a resource. This is because of the fact that average coherence of random mixed states is bounded uniformly, however, the average coherence of random pure states increases with the increasing dimension. As an important application, we establish the typicality of relative entropy of entanglement and distillable entanglement for a specific class of random bipartite mixed states. In particular, most of the random states in this specific class have relative entropy of entanglement and distillable entanglement equal to some fixed number (to within an arbitrary small error), thereby hugely reducing the complexity of computation of these entanglement measures for this specific class of mixed states.

  2. Quantum entanglement between an optical photon and a solid-state spin qubit.

    Science.gov (United States)

    Togan, E; Chu, Y; Trifonov, A S; Jiang, L; Maze, J; Childress, L; Dutt, M V G; Sørensen, A S; Hemmer, P R; Zibrov, A S; Lukin, M D

    2010-08-05

    Quantum entanglement is among the most fascinating aspects of quantum theory. Entangled optical photons are now widely used for fundamental tests of quantum mechanics and applications such as quantum cryptography. Several recent experiments demonstrated entanglement of optical photons with trapped ions, atoms and atomic ensembles, which are then used to connect remote long-term memory nodes in distributed quantum networks. Here we realize quantum entanglement between the polarization of a single optical photon and a solid-state qubit associated with the single electronic spin of a nitrogen vacancy centre in diamond. Our experimental entanglement verification uses the quantum eraser technique, and demonstrates that a high degree of control over interactions between a solid-state qubit and the quantum light field can be achieved. The reported entanglement source can be used in studies of fundamental quantum phenomena and provides a key building block for the solid-state realization of quantum optical networks.

  3. Detection of entanglement in asymmetric quantum networks and multipartite quantum steering.

    Science.gov (United States)

    Cavalcanti, D; Skrzypczyk, P; Aguilar, G H; Nery, R V; Ribeiro, P H Souto; Walborn, S P

    2015-08-03

    The future of quantum communication relies on quantum networks composed by observers sharing multipartite quantum states. The certification of multipartite entanglement will be crucial to the usefulness of these networks. In many real situations it is natural to assume that some observers are more trusted than others in the sense that they have more knowledge of their measurement apparatuses. Here we propose a general method to certify all kinds of multipartite entanglement in this asymmetric scenario and experimentally demonstrate it in an optical experiment. Our results, which can be seen as a definition of genuine multipartite quantum steering, give a method to detect entanglement in a scenario in between the standard entanglement and fully device-independent scenarios, and provide a basis for semi-device-independent cryptographic applications in quantum networks.

  4. Exploring the tripartite entanglement and quantum phase transition in the XXZ+h model

    Science.gov (United States)

    Joyia, Wajid; Khan, Khalid

    2017-10-01

    The behavior of bipartite and tripartite entanglement in Heisenberg XXZ+h spins chain is investigated with the size of system using the approach of quantum renormalization group method. In thermodynamics limit, both types of entanglement exhibit quantum phase transition (QPT). The boundary of QPT links the phases of saturated entanglement and zero entanglement. The first derivative of both entanglements becomes discontinuous at the critical point, which corresponds to the second-order phase transition. Furthermore, the amount of saturated bipartite entanglement strongly depends on relative positions of spins, while tripartite entanglement is robust than bipartite entanglement. It turns out that the tripartite entanglement can be a better candidate than bipartite entanglement for analyzing QPT and implementing quantum information tasks.

  5. Entanglement entropy of U (1) quantum spin liquids

    Science.gov (United States)

    Pretko, Michael; Senthil, T.

    2016-09-01

    We here investigate the entanglement structure of the ground state of a (3 +1 )-dimensional U (1 ) quantum spin liquid, which is described by the deconfined phase of a compact U (1 ) gauge theory. A gapless photon is the only low-energy excitation, with matter existing as deconfined but gapped excitations of the system. It is found that, for a given bipartition of the system, the elements of the entanglement spectrum can be grouped according to the electric flux between the two regions, leading to a useful interpretation of the entanglement spectrum in terms of electric charges living on the boundary. The entanglement spectrum is also given additional structure due to the presence of the gapless photon. Making use of the Bisognano-Wichmann theorem and a local thermal approximation, these two contributions to the entanglement (particle and photon) are recast in terms of boundary and bulk contributions, respectively. Both pieces of the entanglement structure give rise to universal subleading terms (relative to the area law) in the entanglement entropy, which are logarithmic in the system size (logL ), as opposed to the subleading constant term in gapped topologically ordered systems. The photon subleading logarithm arises from the low-energy conformal field theory and is essentially local in character. The particle subleading logarithm arises due to the constraint of closed electric loops in the wave function and is shown to be the natural generalization of topological entanglement entropy to the U (1 ) spin liquid. This contribution to the entanglement entropy can be isolated by means of the Grover-Turner-Vishwanath construction (which generalizes the Kitaev-Preskill scheme to three dimensions).

  6. Long-Distance Quantum Communication with Entangled Photons using Satellites

    OpenAIRE

    Aspelmeyer, Markus; Jennewein, Thomas; Pfennigbauer, Martin; Leeb, Walter; Zeilinger, Anton

    2003-01-01

    The use of satellites to distribute entangled photon pairs (and single photons) provides a unique solution for long-distance quantum communication networks. This overcomes the principle limitations of Earth-bound technology, i.e. the narrow range of some 100 km provided by optical fiber and terrestrial free-space links.

  7. Entangled state quantum cryptography: eavesdropping on the ekert protocol

    Science.gov (United States)

    Naik; Peterson; White; Berglund; Kwiat

    2000-05-15

    Using polarization-entangled photons from spontaneous parametric down-conversion, we have implemented Ekert's quantum cryptography protocol. The near-perfect correlations of the photons allow the sharing of a secret key between two parties. The presence of an eavesdropper is continually checked by measuring Bell's inequalities. We investigated several possible eavesdropper strategies, including pseudo-quantum-nondemolition measurements. In all cases, the eavesdropper's presence was readily apparent. We discuss a procedure to increase her detectability.

  8. Cavity-based architecture to preserve quantum coherence and entanglement.

    Science.gov (United States)

    Man, Zhong-Xiao; Xia, Yun-Jie; Lo Franco, Rosario

    2015-09-09

    Quantum technology relies on the utilization of resources, like quantum coherence and entanglement, which allow quantum information and computation processing. This achievement is however jeopardized by the detrimental effects of the environment surrounding any quantum system, so that finding strategies to protect quantum resources is essential. Non-Markovian and structured environments are useful tools to this aim. Here we show how a simple environmental architecture made of two coupled lossy cavities enables a switch between Markovian and non-Markovian regimes for the dynamics of a qubit embedded in one of the cavity. Furthermore, qubit coherence can be indefinitely preserved if the cavity without qubit is perfect. We then focus on entanglement control of two independent qubits locally subject to such an engineered environment and discuss its feasibility in the framework of circuit quantum electrodynamics. With up-to-date experimental parameters, we show that our architecture allows entanglement lifetimes orders of magnitude longer than the spontaneous lifetime without local cavity couplings. This cavity-based architecture is straightforwardly extendable to many qubits for scalability.

  9. Entanglement and Quantum non-locality: an experimental perspective

    Directory of Open Access Journals (Sweden)

    Avella Alessio

    2013-09-01

    Full Text Available The theory of Quantum Mechanics is one of the mainstay of modern physics, a well-established mathematical clockwork whose strength and accuracy in predictions are currently experienced in worldwide research laboratories. As a matter of fact, Quantum Mechanics laid the groundwork of a rich variety of studies ranging from solid state physics to cosmology, from bio-physics to particle physics. The up-to-date ability of manipulating single quantum states is paving the way for emergent quantum technologies as quantum information and computation, quantum communication, quantum metrology and quantum imaging. In spite of the impressive matemathical capacity, a long-standing debate is even revolving around the foundational axioms of this theory, the main bones of content being the non-local effects of entangled states, the wave function collapse and the concept of measurement in Quantum Mechanics, the macro-objectivation problem (the transition from a microscopic probabilistic world to a macroscopic deterministic world described by classical mechanics. Problems that, beyond their fundamental interest in basic science, now also concern the impact of these developing technologies. Without claiming to be complete, this article provides in outline the living matter concerning some of these problems, the implications of which extend deeply on the connection between entanglement and space-time structure.

  10. Entanglement entropy of the Q≥4 quantum Potts chain.

    Science.gov (United States)

    Lajkó, Péter; Iglói, Ferenc

    2017-01-01

    The entanglement entropy S is an indicator of quantum correlations in the ground state of a many-body quantum system. At a second-order quantum phase-transition point in one dimension S generally has a logarithmic singularity. Here we consider quantum spin chains with a first-order quantum phase transition, the prototype being the Q-state quantum Potts chain for Q>4 and calculate S across the transition point. According to numerical, density matrix renormalization group results at the first-order quantum phase transition point S shows a jump, which is expected to vanish for Q→4^{+}. This jump is calculated in leading order as ΔS=lnQ[1-4/Q-2/(QlnQ)+O(1/Q^{2})].

  11. Quantum Computation: Entangling with the Future

    Science.gov (United States)

    Jiang, Zhang

    2017-01-01

    Commercial applications of quantum computation have become viable due to the rapid progress of the field in the recent years. Efficient quantum algorithms are discovered to cope with the most challenging real-world problems that are too hard for classical computers. Manufactured quantum hardware has reached unprecedented precision and controllability, enabling fault-tolerant quantum computation. Here, I give a brief introduction on what principles in quantum mechanics promise its unparalleled computational power. I will discuss several important quantum algorithms that achieve exponential or polynomial speedup over any classical algorithm. Building a quantum computer is a daunting task, and I will talk about the criteria and various implementations of quantum computers. I conclude the talk with near-future commercial applications of a quantum computer.

  12. Quantum Entanglement in Double Quantum Systems and Jaynes-Cummings Model.

    Science.gov (United States)

    Jakubczyk, Paweł; Majchrowski, Klaudiusz; Tralle, Igor

    2017-12-01

    In the paper, we proposed a new approach to producing the qubits in electron transport in low-dimensional structures such as double quantum wells or double quantum wires (DQW). The qubit could arise as a result of quantum entanglement of two specific states of electrons in DQW structure. These two specific states are the symmetric and antisymmetric (with respect to inversion symmetry) states arising due to tunneling across the structure, while entanglement could be produced and controlled by means of the source of nonclassical light. We examined the possibility to produce quantum entanglement in the framework of Jaynes-Cummings model and have shown that at least in principle, the entanglement can be achieved due to series of "revivals" and "collapses" in the population inversion due to the interaction of a quantized single-mode EM field with a two-level system.

  13. Quantum phase transition of light as a control of the entanglement between interacting quantum dots

    NARCIS (Netherlands)

    Barragan, Angela; Vera-Ciro, Carlos; Mondragon-Shem, Ian

    We study coupled quantum dots arranged in a photonic crystal, interacting with light which undergoes a quantum phase transition. At the mean-field level for the infinite lattice, we compute the concurrence of the quantum dots as a measure of their entanglement. We find that this quantity smoothly

  14. Optimal quantum error correcting codes from absolutely maximally entangled states

    Science.gov (United States)

    Raissi, Zahra; Gogolin, Christian; Riera, Arnau; Acín, Antonio

    2018-02-01

    Absolutely maximally entangled (AME) states are pure multi-partite generalizations of the bipartite maximally entangled states with the property that all reduced states of at most half the system size are in the maximally mixed state. AME states are of interest for multipartite teleportation and quantum secret sharing and have recently found new applications in the context of high-energy physics in toy models realizing the AdS/CFT-correspondence. We work out in detail the connection between AME states of minimal support and classical maximum distance separable (MDS) error correcting codes and, in particular, provide explicit closed form expressions for AME states of n parties with local dimension \

  15. Band structure in bulk entanglement spectrum of quantum Hall state

    Science.gov (United States)

    Lu, Chi-Ken; Chiou, D.-W.; Lin, F.-L.

    We study the bulk entanglement spectrum of integer quantum Hall state with a symmetric checkerboard partition of space. By reformulating the correlation matrix in a guiding center representation, we show that the problem is mapped to a two-dimensional lattice with unit vector determined by the field and partition grid. The bulk entanglement spectrum shows the particle-hole symmetry and the band touching, whic are related to the dual symmetry of partition and the Chern number, respectively. The work was supported by Ministry of Science and Technology Taiwan.

  16. The God effect quantum entanglement, science’s strangest phenomenon

    CERN Document Server

    Clegg, Brian

    2006-01-01

    The phenomenon that Einstein thought too spooky and strange to be true What is entanglement? It's a connection between quantum particles, the building blocks of the universe. Once two particles are entangled, a change to one of them is reflected---instantly---in the other, be they in the same lab or light-years apart. So counterintuitive is this phenomenon and its implications that Einstein himself called it "spooky" and thought that it would lead to the downfall of quantum theory. Yet scientists have since discovered that quantum entanglement, the "God Effect," was one of Einstein's few---and perhaps one of his greatest---mistakes. What does it mean? The possibilities offered by a fuller understanding of the nature of entanglement read like something out of science fiction: communications devices that could span the stars, codes that cannot be broken, computers that dwarf today's machines in speed and power, teleportation, and more. In The God Effect, veteran science writer Brian Clegg has written an ex...

  17. Entangled Absorption of a Single Photon with a Single Spin in Diamond

    Science.gov (United States)

    Kosaka, Hideo; Niikura, Naeko

    2015-02-01

    Quantum entanglement, a key resource for quantum information science, is inherent in a solid. It has been recently shown that entanglement between a single optical photon and a single spin qubit in a solid is generated via spontaneous emission. However, entanglement generation by measurement is rather essential for quantum operations. We here show that the physics behind the entangled emission can be time reversed to demonstrate entangled absorption mediated by an inherent spin-orbit entanglement in a single nitrogen vacancy center in diamond. Optical arbitrary spin state preparation and complete spin state tomography reveal the fidelity of the entangled absorption to be 95%. With the entangled emission and absorption of a photon, materials can be spontaneously entangled or swap their quantum state based on the quantum teleportation scheme.

  18. Quantum entropy of non-Hermitian entangled systems

    Science.gov (United States)

    Zhang, Shi-Yang; Fang, Mao-Fa; Xu, Lan

    2017-10-01

    Non-Hermitian Hamiltonians are an effective tool for describing the dynamics of open quantum systems. Previous research shows that the restrictions of conventional quantum mechanics may be violated in the non-Hermitian cases. We studied the entropy of a system of entangled qubits governed by a local non-Hermitian Hamiltonian operator. We find that local non-Hermitian operation influences the entropies of the two subsystems equally and simultaneously. This indicates that non-Hermitian operators possess the property of non-locality, which makes information exchange possible between subsystems. These information exchanges reduce the uncertainty of outcomes associated with two incompatible quantum measurements.

  19. Quantum and concept combination, entangled measurements, and prototype theory.

    Science.gov (United States)

    Aerts, Diederik

    2014-01-01

    We analyze the meaning of the violation of the marginal probability law for situations of correlation measurements where entanglement is identified. We show that for quantum theory applied to the cognitive realm such a violation does not lead to the type of problems commonly believed to occur in situations of quantum theory applied to the physical realm. We briefly situate our quantum approach for modeling concepts and their combinations with respect to the notions of "extension" and "intension" in theories of meaning, and in existing concept theories. Copyright © 2014 Cognitive Science Society, Inc.

  20. Holographic entanglement entropy close to quantum phase transitions

    Energy Technology Data Exchange (ETDEWEB)

    Ling, Yi [Institute of High Energy Physics, Chinese Academy of Sciences,Beijing 100049 (China); State Key Laboratory of Theoretical Physics, Institute of Theoretical Physics,Chinese Academy of Sciences, Beijing 100190 (China); Liu, Peng; Niu, Chao [Institute of High Energy Physics, Chinese Academy of Sciences,Beijing 100049 (China); Wu, Jian-Pin [Institute of Gravitation and Cosmology, Department of Physics,School of Mathematics and Physics, Bohai University, Jinzhou 121013 (China); State Key Laboratory of Theoretical Physics, Institute of Theoretical Physics,Chinese Academy of Sciences, Beijing 100190 (China); Xian, Zhuo-Yu [Institute of High Energy Physics, Chinese Academy of Sciences,Beijing 100049 (China)

    2016-04-19

    We investigate the holographic entanglement entropy (HEE) of a strip geometry in four dimensional Q-lattice backgrounds, which exhibit metal-insulator transitions in the dual field theory. Remarkably, we find that the HEE always displays a peak in the vicinity of the quantum critical points. Our model provides the first direct evidence that the HEE can be used to characterize the quantum phase transition (QPT). We also conjecture that the maximization behavior of HEE at quantum critical points would be universal in general holographic models.

  1. Thermal Entanglement in a Three-Qubit Quantum System with DM Interaction

    Science.gov (United States)

    Li, Jianping

    2017-03-01

    Entanglement properties of Heisenberg spin chain has received much attention in the context of quantum information. The generation and the manipulation of entangled states especially thermal entanglement have been extensively studied in the Heisenberg models. In this article, we studied the thermal entanglement in a three-qubit spin system. It is found that the DM interaction along the Z axis can give rise to a thermal entanglement.

  2. Quantum superposition counterintuitive consequences of coherence, entanglement, and interference

    CERN Document Server

    Silverman, M P

    2007-01-01

    Coherence, entanglement, and interference arise from quantum superposition, the most distinctive and puzzling feature of quantum physics. Silverman, whose extensive experimental and theoretical work has helped elucidate these processes, presents a clear and engaging discussion of the role of quantum superposition in diverse quantum phenomena such as the wavelike nature of particle propagation, indistinguishability of identical particles, nonlocal interactions of correlated particles, topological effects of magnetic fields, and chiral asymmetry in nature. He also examines how macroscopic quantum coherence may be able to extricate physics from its most challenging quandary, the collapse of a massive degenerate star to a singularity in space in which the laws of physics break down. Explained by a physicist with a concern for clarity and experimental achievability, the extraordinary nature of quantum superposition will fascinate the reader not only for its apparent strangeness, but also for its comprehensibility.

  3. Harvesting Multiqubit Entanglement from Ultrastrong Interactions in Circuit Quantum Electrodynamics

    Science.gov (United States)

    Armata, F.; Calajo, G.; Jaako, T.; Kim, M. S.; Rabl, P.

    2017-11-01

    We analyze a multiqubit circuit QED system in the regime where the qubit-photon coupling dominates over the system's bare energy scales. Under such conditions a manifold of low-energy states with a high degree of entanglement emerges. Here we describe a time-dependent protocol for extracting these quantum correlations and converting them into well-defined multipartite entangled states of noninteracting qubits. Based on a combination of various ultrastrong-coupling effects, the protocol can be operated in a fast and robust manner, while still being consistent with experimental constraints on switching times and typical energy scales encountered in superconducting circuits. Therefore, our scheme can serve as a probe for otherwise inaccessible correlations in strongly coupled circuit QED systems. It also shows how such correlations can potentially be exploited as a resource for entanglement-based applications.

  4. Linear Plotkin bound for entanglement-assisted quantum codes

    Science.gov (United States)

    Guo, Luobin; Li, Ruihu

    2013-03-01

    The entanglement-assisted (EA) formalism is a generalization of the standard stabilizer formalism, and it can transform arbitrary quaternary classical linear codes into entanglement-assisted quantum error correcting codes (EAQECCs) by using of shared entanglement between the sender and the receiver. Using the special structure of linear EAQECCs, we derive an EA-Plotkin bound for linear EAQECCs, which strengthens the previous known EA-Plotkin bound. This linear EA-Plotkin bound is tighter then the EA-Singleton bound, and matches the EA-Hamming bound and the EA-linear programming bound in some cases. We also construct three families of EAQECCs with good parameters. Some of these EAQECCs saturate this linear EA-Plotkin bound and the others are near optimal according to this bound; almost all of these linear EAQECCs are degenerate codes.

  5. Secure entanglement distillation for double-server blind quantum computation.

    Science.gov (United States)

    Morimae, Tomoyuki; Fujii, Keisuke

    2013-07-12

    Blind quantum computation is a new secure quantum computing protocol where a client, who does not have enough quantum technologies at her disposal, can delegate her quantum computation to a server, who has a fully fledged quantum computer, in such a way that the server cannot learn anything about the client's input, output, and program. If the client interacts with only a single server, the client has to have some minimum quantum power, such as the ability of emitting randomly rotated single-qubit states or the ability of measuring states. If the client interacts with two servers who share Bell pairs but cannot communicate with each other, the client can be completely classical. For such a double-server scheme, two servers have to share clean Bell pairs, and therefore the entanglement distillation is necessary in a realistic noisy environment. In this Letter, we show that it is possible to perform entanglement distillation in the double-server scheme without degrading the security of blind quantum computing.

  6. Implementation of a quantum controlled-SWAP gate with photonic circuits.

    Science.gov (United States)

    Ono, Takafumi; Okamoto, Ryo; Tanida, Masato; Hofmann, Holger F; Takeuchi, Shigeki

    2017-03-31

    Quantum information science addresses how the processing and transmission of information are affected by uniquely quantum mechanical phenomena. Combination of two-qubit gates has been used to realize quantum circuits, however, scalability is becoming a critical problem. The use of three-qubit gates may simplify the structure of quantum circuits dramatically. Among them, the controlled-SWAP (Fredkin) gates are essential since they can be directly applied to important protocols, e.g., error correction, fingerprinting, and optimal cloning. Here we report a realization of the Fredkin gate for photonic qubits. We achieve a fidelity of 0.85 in the computational basis and an output state fidelity of 0.81 for a 3-photon Greenberger-Horne-Zeilinger state. The estimated process fidelity of 0.77 indicates that our Fredkin gate can be applied to various quantum tasks.

  7. Entangled Systems New Directions in Quantum Physics

    CERN Document Server

    Audretsch, Jürgen

    2007-01-01

    An introductory textbook for advanced students of physics, chemistry and computer science, covering an area of physics that has lately witnessed rapid expansion. The topics treated here include quantum information, quantum communication, quantum computing, teleportation and hidden parameters, thus imparting not only a well-founded understanding of quantum theory as such, but also a solid basis of knowledge from which readers can follow the rapid development of the topic or delve deeper into a more specialized branch of research. Commented recommendations for further reading as well as end-of-chapter problems help the reader to quickly access the theoretical basics of future key technologies

  8. Quantum manipulation and enhancement of deterministic entanglement between atomic ensemble and light via coherent feedback control

    Science.gov (United States)

    Yan, Zhihui; Jia, Xiaojun

    2017-06-01

    A quantum mechanical model of the non-measurement based coherent feedback control (CFC) is applied to deterministic atom-light entanglement with imperfect retrieval efficiency, which is generated based on Raman process. We investigate the influence of different experimental parameters on entanglement property of CFC Raman system. By tailoring the transmissivity of coherent feedback controller, it is possible to manipulate the atom-light entanglement. Particularly, we show that CFC allows atom-light entanglement enhancement under appropriate operating conditions. Our work can provide entanglement source between atomic ensemble and light of high quality for high-fidelity quantum networks and quantum computation based on atomic ensemble.

  9. Dynamics of quantum observables in entangled states

    Science.gov (United States)

    Sudheesh, C.; Lakshmibala, S.; Balakrishnan, V.

    2009-08-01

    We examine the dynamics of a radiation field propagating through a nonlinear medium. A time series analysis of the mean photon number illustrates how an open quantum system interacting with a quantum environment can exhibit remarkably diverse ergodicity properties, both nonlinearity and departure from coherence playing a crucial role.

  10. A Comparative Study between Migration and Pair-Swap on Quantum-Inspired Evolutionary Algorithm

    Science.gov (United States)

    Imabeppu, Takahiro; Ono, Satoshi; Morishige, Ryota; Kurose, Motoyoshi; Nakayama, Shigeru

    Quantum-inspired Evolutionary Algorithm (QEA) has been proposed as one of stochastic algorithms of evolutionary computation instead of a quantum algorithm. The authors have proposed Quantum-inspired Evolutionary Algorithm based on Pair Swap (QEAPS), which uses pair swap operator and does not group individuals in order to simplify QEA and reduce parameters in QEA. QEA and QEAPS imitationally use quantum bits as genes and superposition states in quantum computation. QEAPS has shown better search performance than QEA on knapsack problem, while eliminating parameters about immigration intervals and number of groups. However, QEAPS still has a parameter in common with QEA, a rotation angle unit, which is uncommon among other evolutionary computation algorithms. The rotation angle unit deeply affects exploitation and exploration control in QEA, but it has been unclear how the parameter influences QEAPS to behave. This paper aims to show that QEAPS involves few parameters and even those parameters can be adjusted easily. Experimental results, in knapsack problem and number partitioning problem which have different characteristics, have shown that QEAPS is competitive with other metaheuristics in search performance, and that QEAPS is robust against the parameter configuration and problem characteristics.

  11. Efficient purification and concentration for Λ-type three-level entangled quantum dots using non-reciprocal microresonators

    Science.gov (United States)

    Gao, Wei-Chao; Cao, Cong; Wang, Tie-Jun; Wang, Chuan

    2017-08-01

    Distribution of maximal entanglement is a key technique in long-distance quantum communication. In particular, the entanglement distribution with high fidelity relies on the efficient entanglement purification and concentration. Here in this study, we present a feasible approach to complete the entanglement purification and entanglement concentration for Λ-type three-level entangled quantum dots by using the whispering-gallery-mode microcavity and the quantum dot coupled system. Exploiting the input-output process of the probe light, we design a parity check gate which allows the quantum non-demolition measurement on the remote entangled quantum dots. Moreover, one can distill a high-fidelity entangled solid-state ensemble from a mixed entangled state or less entangled state ensemble non-locally. The proposed protocol exhibits the advantages of high fidelity which could be further applied to quantum repeaters and quantum information processing with the current experimental technologies.

  12. Simulation of continuous variable quantum games without entanglement

    Science.gov (United States)

    Li, Shang-Bin

    2011-07-01

    A simulation scheme of quantum version of Cournot's duopoly is proposed, in which there is a new Nash equilibrium that may also be Pareto optimal without any entanglement involved. The unique property of this simulation scheme is decoherence-free against the symmetric photon loss. Furthermore, we analyze the effects of the asymmetric information on this simulation scheme and investigate the case of asymmetric game caused by asymmetric photon loss. A second-order phase transition-like behavior of the average profits of firms 1 and 2 in a Nash equilibrium can be observed with the change of the degree of asymmetry of the information or the degree of 'virtual cooperation'. It is also found that asymmetric photon loss in this simulation scheme plays a similar role as that with the asymmetric entangled states in the quantum game.

  13. Simulation of continuous variable quantum games without entanglement

    Energy Technology Data Exchange (ETDEWEB)

    Li Shangbin, E-mail: stephenli74@yahoo.com.cn [Research and Development Department of Amertron Optoelectronic (Kunshan) Ltd, Jingde Road 28, Kunshan, Suzhou (China)

    2011-07-22

    A simulation scheme of quantum version of Cournot's duopoly is proposed, in which there is a new Nash equilibrium that may also be Pareto optimal without any entanglement involved. The unique property of this simulation scheme is decoherence-free against the symmetric photon loss. Furthermore, we analyze the effects of the asymmetric information on this simulation scheme and investigate the case of asymmetric game caused by asymmetric photon loss. A second-order phase transition-like behavior of the average profits of firms 1 and 2 in a Nash equilibrium can be observed with the change of the degree of asymmetry of the information or the degree of 'virtual cooperation'. It is also found that asymmetric photon loss in this simulation scheme plays a similar role as that with the asymmetric entangled states in the quantum game.

  14. Cornering Gapless Quantum States via Their Torus Entanglement.

    Science.gov (United States)

    Witczak-Krempa, William; Hayward Sierens, Lauren E; Melko, Roger G

    2017-02-17

    The entanglement entropy (EE) has emerged as an important window into the structure of complex quantum states of matter. We analyze the universal part of the EE for gapless systems on tori in 2D and 3D, denoted by χ. Focusing on scale-invariant systems, we derive general nonperturbative properties for the shape dependence of χ and reveal surprising relations to the EE associated with corners in the entangling surface. We obtain closed-form expressions for χ in 2D and 3D within a model that arises in the study of conformal field theories (CFTs), and we use them to obtain Ansätze without fitting parameters for the 2D and 3D free boson CFTs. Our numerical lattice calculations show that the Ansätze are highly accurate. Finally, we discuss how the torus EE can act as a fingerprint of exotic states such as gapless quantum spin liquids, e.g., Kitaev's honeycomb model.

  15. Cornering Gapless Quantum States via Their Torus Entanglement

    Science.gov (United States)

    Witczak-Krempa, William; Hayward Sierens, Lauren E.; Melko, Roger G.

    2017-02-01

    The entanglement entropy (EE) has emerged as an important window into the structure of complex quantum states of matter. We analyze the universal part of the EE for gapless systems on tori in 2D and 3D, denoted by χ . Focusing on scale-invariant systems, we derive general nonperturbative properties for the shape dependence of χ and reveal surprising relations to the EE associated with corners in the entangling surface. We obtain closed-form expressions for χ in 2D and 3D within a model that arises in the study of conformal field theories (CFTs), and we use them to obtain Ansätze without fitting parameters for the 2D and 3D free boson CFTs. Our numerical lattice calculations show that the Ansätze are highly accurate. Finally, we discuss how the torus EE can act as a fingerprint of exotic states such as gapless quantum spin liquids, e.g., Kitaev's honeycomb model.

  16. Additive Classical Capacity of Quantum Channels Assisted by Noisy Entanglement

    Science.gov (United States)

    Zhuang, Quntao; Zhu, Elton Yechao; Shor, Peter W.

    2017-05-01

    We give a capacity formula for the classical information transmission over a noisy quantum channel, with separable encoding by the sender and limited resources provided by the receiver's preshared ancilla. Instead of a pure state, we consider the signal-ancilla pair in a mixed state, purified by a "witness." Thus, the signal-witness correlation limits the resource available from the signal-ancilla correlation. Our formula characterizes the utility of different forms of resources, including noisy or limited entanglement assistance, for classical communication. With separable encoding, the sender's signals across multiple channel uses are still allowed to be entangled, yet our capacity formula is additive. In particular, for generalized covariant channels, our capacity formula has a simple closed form. Moreover, our additive capacity formula upper bounds the general coherent attack's information gain in various two-way quantum key distribution protocols. For Gaussian protocols, the additivity of the formula indicates that the collective Gaussian attack is the most powerful.

  17. Novel Quantum Proxy Signature without Entanglement

    Science.gov (United States)

    Xu, Guang-bao

    2015-08-01

    Proxy signature is an important research topic in classic cryptography since it has many application occasions in our real life. But only a few quantum proxy signature schemes have been proposed up to now. In this paper, we propose a quantum proxy signature scheme, which is designed based on quantum one-time pad. Our scheme can be realized easily since it only uses single-particle states. Security analysis shows that it is secure and meets all the properties of a proxy signature, such as verifiability, distinguishability, unforgeability and undeniability.

  18. Establishing and storing of deterministic quantum entanglement among three distant atomic ensembles.

    Science.gov (United States)

    Yan, Zhihui; Wu, Liang; Jia, Xiaojun; Liu, Yanhong; Deng, Ruijie; Li, Shujing; Wang, Hai; Xie, Changde; Peng, Kunchi

    2017-09-28

    It is crucial for the physical realization of quantum information networks to first establish entanglement among multiple space-separated quantum memories and then, at a user-controlled moment, to transfer the stored entanglement to quantum channels for distribution and conveyance of information. Here we present an experimental demonstration on generation, storage, and transfer of deterministic quantum entanglement among three spatially separated atomic ensembles. The off-line prepared multipartite entanglement of optical modes is mapped into three distant atomic ensembles to establish entanglement of atomic spin waves via electromagnetically induced transparency light-matter interaction. Then the stored atomic entanglement is transferred into a tripartite quadrature entangled state of light, which is space-separated and can be dynamically allocated to three quantum channels for conveying quantum information. The existence of entanglement among three released optical modes verifies that the system has the capacity to preserve multipartite entanglement. The presented protocol can be directly extended to larger quantum networks with more nodes.Continuous-variable encoding is a promising approach for quantum information and communication networks. Here, the authors show how to map entanglement from three spatial optical modes to three separated atomic samples via electromagnetically induced transparency, releasing it later on demand.

  19. Speedup of quantum evolution of multiqubit entanglement states.

    Science.gov (United States)

    Zhang, Ying-Jie; Han, Wei; Xia, Yun-Jie; Tian, Jian-Xiang; Fan, Heng

    2016-06-10

    As is well known, quantum speed limit time (QSLT) can be used to characterize the maximal speed of evolution of quantum systems. We mainly investigate the QSLT of generalized N-qubit GHZ-type states and W-type states in the amplitude-damping channels. It is shown that, in the case N qubits coupled with independent noise channels, the QSLT of the entangled GHZ-type state is closely related to the number of qubits in the small-scale system. And the larger entanglement of GHZ-type states can lead to the shorter QSLT of the evolution process. However, the QSLT of the W-type states are independent of the number of qubits and the initial entanglement. Furthermore, by considering only M qubits among the N-qubit system respectively interacting with their own noise channels, QSLTs for these two types states are shorter than in the case N qubits coupled with independent noise channels. We therefore reach the interesting result that the potential speedup of quantum evolution of a given N-qubit GHZ-type state or W-type state can be realized in the case the number of the applied noise channels satisfying M < N.

  20. Perspectives on Entangled Nuclear Particle Pairs Generation and Manipulation in Quantum Communication and Cryptography Systems

    OpenAIRE

    Octavian Dănilă; Paul E. Sterian; Andreea Rodica Sterian

    2012-01-01

    Entanglement between two quantum elements is a phenomenon which presents a broad application spectrum, being used largely in quantum cryptography schemes and in physical characterisation of the universe. Commonly known entangled states have been obtained with photons and electrons, but other quantum elements such as quarks, leptons, and neutrinos have shown their informational potential. In this paper, we present the perspective of exploiting the phenomenon of entanglement that appears in nuc...

  1. Collisional entanglement fidelities in quantum plasmas including strong quantum recoil and oscillation effects

    Science.gov (United States)

    Lee, Myoung-Jae; Jung, Young-Dae

    2017-10-01

    The quantum recoil and oscillation effects on the entanglement fidelity and the electron-exchange function for the electron-ion collision are investigated in a semiconductor plasma by using the partial wave analysis and effective interaction potential in strong quantum recoil regime. The magnitude of the electron-exchange function is found to increase as the collision energy increases, but it decreases with an increase in the exchange parameter. It is also found that the collisional entanglement fidelity in strong quantum recoil plasmas is enhanced by the quantum-mechanical and shielding effects. The collisional entanglement fidelity in a semiconductor plasma is also enhanced by the collective plasmon oscillation and electron-exchange effect. However, the electron-exchange effect on the fidelity ratio function is reduced as the plasmon energy increases. Moreover, the electron-exchange influence on the fidelity ratio function is found to increase as the Fermi energy in the semiconductor plasma increases.

  2. Entanglement renormalization, quantum error correction, and bulk causality

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Isaac H. [IBM T.J. Watson Research Center,1101 Kitchawan Rd., Yorktown Heights, NY (United States); Kastoryano, Michael J. [NBIA, Niels Bohr Institute, University of Copenhagen, Blegdamsvej 17, 2100 Copenhagen (Denmark)

    2017-04-07

    Entanglement renormalization can be viewed as an encoding circuit for a family of approximate quantum error correcting codes. The logical information becomes progressively more well-protected against erasure errors at larger length scales. In particular, an approximate variant of holographic quantum error correcting code emerges at low energy for critical systems. This implies that two operators that are largely separated in scales behave as if they are spatially separated operators, in the sense that they obey a Lieb-Robinson type locality bound under a time evolution generated by a local Hamiltonian.

  3. Multi-party Quantum Key Agreement without Entanglement

    Science.gov (United States)

    Cai, Bin-Bin; Guo, Gong-De; Lin, Song

    2017-04-01

    A new efficient quantum key agreement protocol without entanglement is proposed. In this protocol, each user encodes his secret key into the traveling particles by performing one of four rotation operations that one cannot perfectly distinguish. In the end, all users can simultaneously obtain the final shared key. The security of the presented protocol against some common attacks is discussed. It is shown that this protocol can effectively protect the privacy of each user and satisfy the requirement of fairness in theory. Moreover, the quantum carriers and the encoding operations used in the protocol can be achieved in realistic physical devices. Therefore, the presented protocol is feasible with current technology.

  4. Continuous variable quantum key distribution with modulated entangled states

    DEFF Research Database (Denmark)

    Madsen, Lars S; Usenko, Vladyslav C.; Lassen, Mikael

    2012-01-01

    based on coherent states and continuous variable measurements are resilient to high loss in the channel, but are strongly affected by small amounts of channel excess noise. Here we propose and experimentally address a continuous variable quantum key distribution protocol that uses modulated fragile...... entangled states of light to greatly enhance the robustness to channel noise. We experimentally demonstrate that the resulting quantum key distribution protocol can tolerate more noise than the benchmark set by the ideal continuous variable coherent state protocol. Our scheme represents a very promising...

  5. Gaussian classical-quantum channels: gain of entanglement-assistance

    OpenAIRE

    Holevo, A. S.

    2012-01-01

    In the present paper we introduce and study Bosonic Gaussian classical-quantum (c-q) channels; the embedding of the classical input into quantum is always possible and therefore the classical entanglement-assisted capacity C_{ea} under appropriate input constraint is well defined. We prove a general property of entropy increase for weak complementary channel, that implies the equality C_{ea}=C (where C is the unassisted capacity) for certain class of c-q Gaussian channel under appropriate ene...

  6. Proposed Robust Entanglement-Based Magnetic Field Sensor Beyond the Standard Quantum Limit.

    Science.gov (United States)

    Tanaka, Tohru; Knott, Paul; Matsuzaki, Yuichiro; Dooley, Shane; Yamaguchi, Hiroshi; Munro, William J; Saito, Shiro

    2015-10-23

    Recently, there have been significant developments in entanglement-based quantum metrology. However, entanglement is fragile against experimental imperfections, and quantum sensing to beat the standard quantum limit in scaling has not yet been achieved in realistic systems. Here, we show that it is possible to overcome such restrictions so that one can sense a magnetic field with an accuracy beyond the standard quantum limit even under the effect of decoherence, by using a realistic entangled state that can be easily created even with current technology. Our scheme could pave the way for the realizations of practical entanglement-based magnetic field sensors.

  7. Quantum correlations of helicity entangled states in non-inertial frames beyond single mode approximation

    Energy Technology Data Exchange (ETDEWEB)

    Harsij, Zeynab, E-mail: z.harsij@ph.iut.ac.ir; Mirza, Behrouz, E-mail: b.mirza@cc.iut.ac.ir

    2014-12-15

    A helicity entangled tripartite state is considered in which the degree of entanglement is preserved in non-inertial frames. It is shown that Quantum Entanglement remains observer independent. As another measure of quantum correlation, Quantum Discord has been investigated. It is explicitly shown that acceleration has no effect on the degree of quantum correlation for the bipartite and tripartite helicity entangled states. Geometric Quantum Discord as a Hilbert–Schmidt distance is computed for helicity entangled states. It is shown that living in non-inertial frames does not make any influence on this distance, either. In addition, the analysis has been extended beyond single mode approximation to show that acceleration does not have any impact on the quantum features in the limit beyond the single mode. As an interesting result, while the density matrix depends on the right and left Unruh modes, the Negativity as a measure of Quantum Entanglement remains constant. Also, Quantum Discord does not change beyond single mode approximation. - Highlights: • The helicity entangled states here are observer independent in non-inertial frames. • It is explicitly shown that Quantum Discord for these states is observer independent. • Geometric Quantum Discord is also not affected by acceleration increase. • Extending to beyond single mode does not change the degree of entanglement. • Beyond single mode approximation the degree of Quantum Discord is also preserved.

  8. Quantum correlations beyond entanglement and their role in quantum information theory

    CERN Document Server

    Streltsov, Alexander

    2015-01-01

    Quantum correlations are not restricted to the well known entanglement investigated in Bell-type experiments. Other forms of correlations, for example quantum discord, have recently been shown to play an important role in several aspects of quantum information theory. First experiments also support these findings. This book is an introduction into this up-and-coming research field and its likely impact on quantum technology. After giving a general introduction to the concept of quantum correlations and their role in quantum information theory, the author describes a number of pertinent results and their implications.

  9. Relating Out-of-Time-Order Correlations to Entanglement via Multiple-Quantum Coherences

    Science.gov (United States)

    Gärttner, Martin; Hauke, Philipp; Rey, Ana Maria

    2018-01-01

    Out-of-time-order correlations (OTOCs) characterize the scrambling, or delocalization, of quantum information over all the degrees of freedom of a system and thus have been proposed as a proxy for chaos in quantum systems. Recent experimental progress in measuring OTOCs calls for a more thorough understanding of how these quantities characterize complex quantum systems, most importantly in terms of the buildup of entanglement. Although a connection between OTOCs and entanglement entropy has been derived, the latter only quantifies entanglement in pure systems and is hard to access experimentally. In this work, we formally demonstrate that the multiple-quantum coherence spectra, a specific family of OTOCs well known in NMR, can be used as an entanglement witness and as a direct probe of multiparticle entanglement. Our results open a path to experimentally testing the fascinating idea that entanglement is the underlying glue that links thermodynamics, statistical mechanics, and quantum gravity.

  10. Quantum entanglement and quantum phase transition under dissipation in the anisoropic Heisenberg xxz model with the Dzyaloshinskii-Moriya interaction

    Directory of Open Access Journals (Sweden)

    R Afzali

    2013-03-01

    Full Text Available   Because the key issue in quantum information and quantum computing is entanglement, the investigation of the effects of environment, as a source of quantum dissipation, and interaction between environment and system on entanglement and quantum phase transition is important. In this paper, we consider two-qubit system in the anisotropic Heisenberg XXZ model with the Dzyaloshinskii-moriya interaction, and accompanied quantum dissipation. Using Lindblad dynamics, the coupling effect and also temperature effect on concurrence, as a measure of entanglement of system, is obtained. The role of DM interaction parameters in the evolution of entanglement is investigated. Furthermore, using derivative of concurrence, the effects of dissipation and DM interaction parameter on quantum phase transition are obtained. It should be noted that spin-orbit interaction or DM parameter intensively influence the process of impressments of dissipation on entanglement measure and quantum phase transition. The current research is very important in the topics of nanometric systems.

  11. Experimental realization of entanglement in multiple degrees of freedom between two quantum memories.

    Science.gov (United States)

    Zhang, Wei; Ding, Dong-Sheng; Dong, Ming-Xin; Shi, Shuai; Wang, Kai; Liu, Shi-Long; Li, Yan; Zhou, Zhi-Yuan; Shi, Bao-Sen; Guo, Guang-Can

    2016-11-14

    Entanglement in multiple degrees of freedom has many benefits over entanglement in a single one. The former enables quantum communication with higher channel capacity and more efficient quantum information processing and is compatible with diverse quantum networks. Establishing multi-degree-of-freedom entangled memories is not only vital for high-capacity quantum communication and computing, but also promising for enhanced violations of nonlocality in quantum systems. However, there have been yet no reports of the experimental realization of multi-degree-of-freedom entangled memories. Here we experimentally established hyper- and hybrid entanglement in multiple degrees of freedom, including path (K-vector) and orbital angular momentum, between two separated atomic ensembles by using quantum storage. The results are promising for achieving quantum communication and computing with many degrees of freedom.

  12. Quantum entanglement and the dissociation process of diatomic molecules

    Energy Technology Data Exchange (ETDEWEB)

    Esquivel, Rodolfo O; Molina-Espiritu, Moyocoyani [Departamento de Quimica, Universidad Autonoma Metropolitana, 09340-Mexico DF (Mexico); Flores-Gallegos, Nelson [Unidad Profesional Interdisciplinaria de IngenierIa, Campus Guanajuato del Instituto Politecnico Nacional, 36275-Guanajuato (Mexico); Plastino, A R; Angulo, Juan Carlos; Dehesa, Jesus S [Instituto Carlos I de Fisica Teorica y Computacional, and Departamento de Fisica Atomica, Molecular y Nuclear, Universidad de Granada, 18071-Granada (Spain); Antolin, Juan, E-mail: esquivel@xanum.uam.mx, E-mail: arplastino@ugr.es [Departamento de Fisica Aplicada, EUITIZ, Universidad de Zaragoza, 50018-Zaragoza (Spain)

    2011-09-14

    In this work, we investigate quantum entanglement-related aspects of the dissociation process of some selected, representative homo- and heteronuclear diatomic molecules. This study is based upon high-quality ab initio calculations of the (correlated) molecular wavefunctions involved in the dissociation processes. The values of the electronic entanglement characterizing the system in the limit cases corresponding to (i) the united-atom representation and (ii) the asymptotic region when atoms dissociate are discussed in detail. It is also shown that the behaviour of the electronic entanglement as a function of the reaction coordinate R exhibits remarkable correspondences with the phenomenological description of the physically meaningful regimes comprising the processes under study. In particular, the extrema of the total energies and the electronic entanglement are shown to be associated with the main physical changes experienced by the molecular spatial electronic density, such as charge depletion and accumulation or bond cleavage regions. These structural changes are characterized by several selected descriptors of the density, such as the Laplacian of the electronic molecular distributions (LAP), the molecular electrostatic potential (MEP) and the atomic electric potentials fitted to the MEP.

  13. Quantum Communication Using Macroscopic Phase Entangled States

    Science.gov (United States)

    2015-12-10

    realistic requirement. vi. List of patents • Patent application # 14/508,741, “Quantum key distribution over large distances using amplifiers...and unitary transformations”, James Franson, Todd Pittman, Brian Kirby, and Garrett Hickman 8 vii. List of publications • G. Jaeger, D. S

  14. CW-pumped telecom band polarization entangled photon pair generation in a Sagnac interferometer

    OpenAIRE

    Li, Yan; Zhou, Zhi-Yuan; Ding, Dong-Sheng; Shi, Bao-Sen

    2015-01-01

    A polarization entangled photon pair source is widely used in many quantum information processing applications such as teleportation, quantum swapping, quantum computation and high precision quantum metrology. Here, we report on the generation of a continuous-wave pumped degenerated 1550 nm polarization entangled photon pair source at telecom wavelength using a type-II phase-matched periodically poled KTiOPO4 crystal in a Sagnac interferometer. Hong-Ou-Mandel-type interference measurement sho...

  15. Entanglement Properties of a Higher-Integer-Spin AKLT Model with Quantum Group Symmetry

    Directory of Open Access Journals (Sweden)

    Chikashi Arita

    2012-10-01

    Full Text Available We study the entanglement properties of a higher-integer-spin Affleck-Kennedy-Lieb-Tasaki model with quantum group symmetry in the periodic boundary condition. We exactly calculate the finite size correction terms of the entanglement entropies from the double scaling limit. We also evaluate the geometric entanglement, which serves as another measure for entanglement. We find the geometric entanglement reaches its maximum at the isotropic point, and decreases with the increase of the anisotropy. This behavior is similar to that of the entanglement entropies.

  16. Quantum measurement and entanglement of spin quantum bits in diamond

    NARCIS (Netherlands)

    Pfaff, W.

    2013-01-01

    This thesis presents a set of experiments that explore the possible realisation of a macroscopic quantum network based on solid-state quantum bits. Such a quantum network would allow for studying quantum mechanics on large scales (meters, or even kilometers), and can open new possibilities for

  17. Entanglement in valence-bond-solid states and quantum search

    Science.gov (United States)

    Xu, Ying

    The present dissertation covers two independent subjects: (i) The quantum entanglement in Valence-Bond-Solid states, and (ii) quantum database search algorithms. Both subjects are presented in a self-contained and pedagogical way. (i) The first chapter is a through introduction to the subject of quantum entanglement in Valence-Bond-Solid (VBS) states defined on a lattice or graph. The VBS state was first introduced as the ground state of the celebrated Affleck-Kennedy-Lieb-Tasaki (AKLT) spin chain model in statistical mechanics. Then it became essential in condensed matter physics, quantum information and measurement-based quantum computation. Recent studies elucidated important entanglement properties of the VBS state. We start with the definition of a general AKLT model and the construction of VBS ground states. A subsystem is introduced and described by the density matrix. Exact spectrum properties of the density matrix are proved and discussed. Density matrices of 1-dimensional models are diagonalized and the entanglement entropies (the von Neumann entropy and Renyi entropy) are calculated. The entropies take saturated value and the density matrix is proportional to a projector in the large subsystem limit. (ii) The second chapter is a detailed introduction to the subject of quantum database search algorithms. The problem of searching a large database (a Hilbert space) for a target item is performed by the famous Grover algorithm which locates the target item with probability 1 and a quadratic speed up compared with the corresponding classical algorithm. If the database is partitioned into blocks and one is searching for the block containing the target item instead of the target item itself, then the problem is referred to as partial search. Partial search trades accuracy for speed and the most efficient version is the Grover-Radhakrishnan-Korepin (GRK) algorithm. The target block can be further partitioned into subblocks so that GRK can be performed in a

  18. Projection of Two Biphoton Qutrits onto a Maximally Entangled State

    Science.gov (United States)

    Halevy, A.; Megidish, E.; Shacham, T.; Dovrat, L.; Eisenberg, H. S.

    2011-04-01

    Bell state measurements, in which two quantum bits are projected onto a maximally entangled state, are an essential component of quantum information science. We propose and experimentally demonstrate the projection of two quantum systems with three states (qutrits) onto a generalized maximally entangled state. Each qutrit is represented by the polarization of a pair of indistinguishable photons—a biphoton. The projection is a joint measurement on both biphotons using standard linear optics elements. This demonstration enables the realization of quantum information protocols with qutrits, such as teleportation and entanglement swapping.

  19. Entanglement distillation for quantum communication network with atomic-ensemble memories.

    Science.gov (United States)

    Li, Tao; Yang, Guo-Jian; Deng, Fu-Guo

    2014-10-06

    Atomic ensembles are effective memory nodes for quantum communication network due to the long coherence time and the collective enhancement effect for the nonlinear interaction between an ensemble and a photon. Here we investigate the possibility of achieving the entanglement distillation for nonlocal atomic ensembles by the input-output process of a single photon as a result of cavity quantum electrodynamics. We give an optimal entanglement concentration protocol (ECP) for two-atomic-ensemble systems in a partially entangled pure state with known parameters and an efficient ECP for the systems in an unknown partially entangled pure state with a nondestructive parity-check detector (PCD). For the systems in a mixed entangled state, we introduce an entanglement purification protocol with PCDs. These entanglement distillation protocols have high fidelity and efficiency with current experimental techniques, and they are useful for quantum communication network with atomic-ensemble memories.

  20. Entanglement Entropy of Quantum Hall Systems with Short Range Disorder

    Science.gov (United States)

    Friedman, Barry; Levine, Greg

    2015-03-01

    The critical value of the mobility for which the filling 5/2 quantum Hall effect is destroyed by short range disorder is determined from an earlier calculation of the entanglement entropy. The value agrees well with experiment; this agreement is particularly significant in that there are no adjustable parameters. Entanglement entropy vs. disorder strength for filling 1/2, filling 9/2 and filling 7/3 is calculated. For filling 1/2 there is no evidence for a transition for the disorder strengths considered; for filling 9/2 there appears to be a stripe-liquid transition. For filling 7/3 there again appears to be a transition at similar value of the disorder strength as the 5/2 transition but there are stronger finite size effects.

  1. Experimental considerations for quantum-entanglement studies with relativistic fermions

    Energy Technology Data Exchange (ETDEWEB)

    Schlemme, Steffen; Peck, Marius; Enders, Joachim [TU Darmstadt (Germany); Bodek, Kazimierz; Rozpedzik, Dagmara; Zejma, Jacek [Jagiellonian University, Cracow (Poland); Caban, Pawel; Rembielinski, Jakub [University of Lodz, Lodz (Poland); Ciborowski, Jacek; Dragowski, Michal; Wlodarczyk, Marta [Warsaw University, Warsaw (Poland); Kozela, Adam [Institute of Nuclear Physics, PAS, Cracow (Poland)

    2015-07-01

    The QUEST (Quantum entanglement of Ultra-relativistic Electrons in Singlet and Triplet states) project is aimed at the determination of the electron spin correlation function at relativistic energies. Electron pairs are created through Moeller scattering, and polarization observables are planned to be measured in Mott scattering. The predicted spin correlation function is energy dependent with values of several per cent at energies of 10-20 MeV. The results of a first test experiment at the S-DALINAC were not sensitive enough to detect entangled and Mott-scattered electron pairs at the expected energies. Further steps are either to improve the former setup or design a new polarimeter for lower energies to improve statistics due to the higher scattering cross sections. This contribution presents general considerations, test results, and an outlook.

  2. Forbidden regimes in the distribution of bipartite quantum correlations due to multiparty entanglement

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, Asutosh [Harish-Chandra Research Institute, Chhatnag Road, Jhunsi, Allahabad 211019 (India); Homi Bhabha National Institute, Anushaktinagar, Mumbai 400094 (India); Dhar, Himadri Shekhar [Harish-Chandra Research Institute, Chhatnag Road, Jhunsi, Allahabad 211019 (India); Institute for Theoretical Physics, Vienna University of Technology, Wiedner Hauptstraße 8-10/136, A-1040 Vienna (Austria); Prabhu, R. [Harish-Chandra Research Institute, Chhatnag Road, Jhunsi, Allahabad 211019 (India); Department of Physics, Indian Institute of Technology Patna, Patna 800013 (India); Sen, Aditi [Harish-Chandra Research Institute, Chhatnag Road, Jhunsi, Allahabad 211019 (India); Homi Bhabha National Institute, Anushaktinagar, Mumbai 400094 (India); Sen, Ujjwal, E-mail: ujjwal@hri.res.in [Harish-Chandra Research Institute, Chhatnag Road, Jhunsi, Allahabad 211019 (India); Homi Bhabha National Institute, Anushaktinagar, Mumbai 400094 (India)

    2017-05-25

    Monogamy is a nonclassical property that limits the distribution of quantum correlation among subparts of a multiparty system. We show that monogamy scores for different quantum correlation measures are bounded above by functions of genuine multipartite entanglement for a large majority of pure multiqubit states. The bound is universal for all three-qubit pure states. We derive necessary conditions to characterize the states that violate the bound, which can also be observed by numerical simulation for a small set of states, generated Haar uniformly. The results indicate that genuine multipartite entanglement restricts the distribution of bipartite quantum correlations in a multiparty system. - Highlights: • Monogamy is an intrinsic property of several quantum characteristics including entanglement. • It is possible to quantify monogamy by using the so-called monogamy scores. • Genuine multisite entanglement can be used to bound monogamy scores. • Distribution of bipartite entanglement in a system is, therefore, restricted by its multisite entanglement content.

  3. Entanglement-based machine learning on a quantum computer.

    Science.gov (United States)

    Cai, X-D; Wu, D; Su, Z-E; Chen, M-C; Wang, X-L; Li, Li; Liu, N-L; Lu, C-Y; Pan, J-W

    2015-03-20

    Machine learning, a branch of artificial intelligence, learns from previous experience to optimize performance, which is ubiquitous in various fields such as computer sciences, financial analysis, robotics, and bioinformatics. A challenge is that machine learning with the rapidly growing "big data" could become intractable for classical computers. Recently, quantum machine learning algorithms [Lloyd, Mohseni, and Rebentrost, arXiv.1307.0411] were proposed which could offer an exponential speedup over classical algorithms. Here, we report the first experimental entanglement-based classification of two-, four-, and eight-dimensional vectors to different clusters using a small-scale photonic quantum computer, which are then used to implement supervised and unsupervised machine learning. The results demonstrate the working principle of using quantum computers to manipulate and classify high-dimensional vectors, the core mathematical routine in machine learning. The method can, in principle, be scaled to larger numbers of qubits, and may provide a new route to accelerate machine learning.

  4. Entanglement-Based Machine Learning on a Quantum Computer

    Science.gov (United States)

    Cai, X.-D.; Wu, D.; Su, Z.-E.; Chen, M.-C.; Wang, X.-L.; Li, Li; Liu, N.-L.; Lu, C.-Y.; Pan, J.-W.

    2015-03-01

    Machine learning, a branch of artificial intelligence, learns from previous experience to optimize performance, which is ubiquitous in various fields such as computer sciences, financial analysis, robotics, and bioinformatics. A challenge is that machine learning with the rapidly growing "big data" could become intractable for classical computers. Recently, quantum machine learning algorithms [Lloyd, Mohseni, and Rebentrost, arXiv.1307.0411] were proposed which could offer an exponential speedup over classical algorithms. Here, we report the first experimental entanglement-based classification of two-, four-, and eight-dimensional vectors to different clusters using a small-scale photonic quantum computer, which are then used to implement supervised and unsupervised machine learning. The results demonstrate the working principle of using quantum computers to manipulate and classify high-dimensional vectors, the core mathematical routine in machine learning. The method can, in principle, be scaled to larger numbers of qubits, and may provide a new route to accelerate machine learning.

  5. A Weak Quantum Blind Signature with Entanglement Permutation

    Science.gov (United States)

    Lou, Xiaoping; Chen, Zhigang; Guo, Ying

    2015-09-01

    Motivated by the permutation encryption algorithm, a weak quantum blind signature (QBS) scheme is proposed. It involves three participants, including the sender Alice, the signatory Bob and the trusted entity Charlie, in four phases, i.e., initializing phase, blinding phase, signing phase and verifying phase. In a small-scale quantum computation network, Alice blinds the message based on a quantum entanglement permutation encryption algorithm that embraces the chaotic position string. Bob signs the blinded message with private parameters shared beforehand while Charlie verifies the signature's validity and recovers the original message. Analysis shows that the proposed scheme achieves the secure blindness for the signer and traceability for the message owner with the aid of the authentic arbitrator who plays a crucial role when a dispute arises. In addition, the signature can neither be forged nor disavowed by the malicious attackers. It has a wide application to E-voting and E-payment system, etc.

  6. Entanglement in the quantum one-dimensional integer spin S Heisenberg antiferromagnet

    Science.gov (United States)

    Lima, L. S.

    2017-10-01

    We use the modified spin wave theory of Takahashi to study the entanglement entropy in the quantum one-dimensional integer spin Heisenberg antiferromagnet. We calculate the entanglement entropy of this spin system that is well known to be a quantum wire, in the classical limit (N → ∞). We obtain a decreasing the entanglement entropy with the temperature and we obtain none change in the entanglement in the point Δ = 1 at T = 0 where the system presents a quantum phase transition from a gapless phase in the spectrum Δ < 1 to a gapped phase Δ ≥ 1.

  7. A quantum proxy group signature scheme based on an entangled five-qubit state

    Science.gov (United States)

    Wang, Meiling; Ma, Wenping; Wang, Lili; Yin, Xunru

    2015-09-01

    A quantum proxy group signature (QPGS) scheme based on controlled teleportation is presented, by using the entangled five-qubit quantum state functions as quantum channel. The scheme uses the physical characteristics of quantum mechanics to implement delegation, signature and verification. The security of the scheme is guaranteed by the entanglement correlations of the entangled five-qubit state, the secret keys based on the quantum key distribution (QKD) and the one-time pad algorithm, all of which have been proven to be unconditionally secure and the signature anonymity.

  8. Tomography of the quantum state of photons entangled in high dimensions

    CSIR Research Space (South Africa)

    Agnew, M

    2011-12-01

    Full Text Available Systems entangled in high dimensions have recently been proposed as important tools for various quantum information protocols, such as multibit quantum key distribution and loophole-free tests of nonlocality. It is therefore important to have...

  9. Entanglement transfer from electrons to photons in quantum dots: an open quantum system approach.

    Science.gov (United States)

    Budich, Jan C; Trauzettel, Björn

    2010-07-09

    We investigate entanglement transfer from a system of two spin-entangled electron-hole pairs, each placed in a separate single mode cavity, to the photons emitted due to cavity leakage. Dipole selection rules and a splitting between the light hole and the heavy hole subbands are the crucial ingredients establishing a one-to-one correspondence between electron spins and circular photon polarizations. To account for the measurement of the photons as well as dephasing effects, we choose a stochastic Schrödinger equation and a conditional master equation approach, respectively. The influence of interactions with the environment as well as asymmetries in the coherent couplings on the photon entanglement is analysed for two concrete measurement schemes. The first one is designed to violate the Clauser-Horne-Shimony-Holt (CHSH) inequality, while the second one employs the visibility of interference fringes to prove the entanglement of the photons. Because of the spatial separation of the entangled electronic system over two quantum dots, a successful verification of entangled photons emitted by this system would imply the detection of nonlocal spin entanglement of massive particles in a solid state structure.

  10. Supercritical entanglement in local systems: Counterexample to the area law for quantum matter.

    Science.gov (United States)

    Movassagh, Ramis; Shor, Peter W

    2016-11-22

    Quantum entanglement is the most surprising feature of quantum mechanics. Entanglement is simultaneously responsible for the difficulty of simulating quantum matter on a classical computer and the exponential speedups afforded by quantum computers. Ground states of quantum many-body systems typically satisfy an "area law": The amount of entanglement between a subsystem and the rest of the system is proportional to the area of the boundary. A system that obeys an area law has less entanglement and can be simulated more efficiently than a generic quantum state whose entanglement could be proportional to the total system's size. Moreover, an area law provides useful information about the low-energy physics of the system. It is widely believed that for physically reasonable quantum systems, the area law cannot be violated by more than a logarithmic factor in the system's size. We introduce a class of exactly solvable one-dimensional physical models which we can prove have exponentially more entanglement than suggested by the area law, and violate the area law by a square-root factor. This work suggests that simple quantum matter is richer and can provide much more quantum resources (i.e., entanglement) than expected. In addition to using recent advances in quantum information and condensed matter theory, we have drawn upon various branches of mathematics such as combinatorics of random walks, Brownian excursions, and fractional matching theory. We hope that the techniques developed herein may be useful for other problems in physics as well.

  11. On the Character of Quantum Law: Complementarity, Entanglement, and Information

    Science.gov (United States)

    Plotnitsky, Arkady

    2017-08-01

    This article considers the relationships between the character of physical law in quantum theory and Bohr's concept of complementarity, under the assumption of the unrepresentable and possibly inconceivable nature of quantum objects and processes, an assumption that may be seen as the most radical departure from realism currently available. Complementarity, the article argues, is a reflection of the fact that, as against classical physics or relativity, the behavior of quantum objects of the same type, say, all electrons, is not governed by the same physical law in all contexts, specifically in complementary contexts. On the other hand, the mathematical formalism of quantum mechanics offers correct probabilistic or statistical predictions (no other predictions are possible on experimental grounds) in all contexts, here, again, under the assumption that quantum objects themselves and their behavior are beyond representation or even conception. Bohr, in this connection, spoke of "an entirely new situation as regards the description of physical phenomena that, the notion of complementarity aims at characterizing." The article also considers the relationships among complementarity, entanglement, and quantum information, by basing these relationships on this understanding of complementarity.

  12. Characterizing quantum correlations. Entanglement, uncertainty relations and exponential families

    Energy Technology Data Exchange (ETDEWEB)

    Niekamp, Soenke

    2012-04-20

    This thesis is concerned with different characterizations of multi-particle quantum correlations and with entropic uncertainty relations. The effect of statistical errors on the detection of entanglement is investigated. First, general results on the statistical significance of entanglement witnesses are obtained. Then, using an error model for experiments with polarization-entangled photons, it is demonstrated that Bell inequalities with lower violation can have higher significance. The question for the best observables to discriminate between a state and the equivalence class of another state is addressed. Two measures for the discrimination strength of an observable are defined, and optimal families of observables are constructed for several examples. A property of stabilizer bases is shown which is a natural generalization of mutual unbiasedness. For sets of several dichotomic, pairwise anticommuting observables, uncertainty relations using different entropies are constructed in a systematic way. Exponential families provide a classification of states according to their correlations. In this classification scheme, a state is considered as k-correlated if it can be written as thermal state of a k-body Hamiltonian. Witness operators for the detection of higher-order interactions are constructed, and an algorithm for the computation of the nearest k-correlated state is developed.

  13. Quantum entanglement and spin control in silicon nanocrystal.

    Directory of Open Access Journals (Sweden)

    Vesna Berec

    Full Text Available Selective coherence control and electrically mediated exchange coupling of single electron spin between triplet and singlet states using numerically derived optimal control of proton pulses is demonstrated. We obtained spatial confinement below size of the Bohr radius for proton spin chain FWHM. Precise manipulation of individual spins and polarization of electron spin states are analyzed via proton induced emission and controlled population of energy shells in pure (29Si nanocrystal. Entangled quantum states of channeled proton trajectories are mapped in transverse and angular phase space of (29Si axial channel alignment in order to avoid transversal excitations. Proton density and proton energy as impact parameter functions are characterized in single particle density matrix via discretization of diagonal and nearest off-diagonal elements. We combined high field and low densities (1 MeV/92 nm to create inseparable quantum state by superimposing the hyperpolarizationed proton spin chain with electron spin of (29Si. Quantum discretization of density of states (DOS was performed by the Monte Carlo simulation method using numerical solutions of proton equations of motion. Distribution of gaussian coherent states is obtained by continuous modulation of individual spin phase and amplitude. Obtained results allow precise engineering and faithful mapping of spin states. This would provide the effective quantum key distribution (QKD and transmission of quantum information over remote distances between quantum memory centers for scalable quantum communication network. Furthermore, obtained results give insights in application of channeled protons subatomic microscopy as a complete versatile scanning-probe system capable of both quantum engineering of charged particle states and characterization of quantum states below diffraction limit linear and in-depth resolution.PACS NUMBERS: 03.65.Ud, 03.67.Bg, 61.85.+p, 67.30.hj.

  14. Hierarchy of graph-diagonal states based on quantum discord and entanglement classification

    Science.gov (United States)

    Jafarizadeh, Mohammad Ali; Karimi, Naser; Sahlan, Davood Amidi; Heshmati, Ahmad; Yahyavi, Marziyeh

    2017-10-01

    For the relative entropy-based measure of quantum discord the key idea is to find the closest classical state (CCS) for a given state ρ, which is in general a more complicated problem. In this work, we study three and four qubit graph-diagonal states and give the explicit expressions of CCS for these states. Using the CCS, we compute the quantum discord of graph-diagonal states of three and four qubit systems and show that there is a hierarchy for the quantum discord of graph-diagonal states of any three and four qubit systems. Then we classify the entanglement of graph-diagonal states of three and four qubit systems and draw the hierarchy of entanglement of these graph-diagonal states. Finally, we compare the hierarchy of quantum discord and quantum entanglement of the these graph-diagonal states and show that the hierarchy of quantum entanglement is at least in equivalence of quantum discord.

  15. Perspectives on Entangled Nuclear Particle Pairs Generation and Manipulation in Quantum Communication and Cryptography Systems

    Directory of Open Access Journals (Sweden)

    Octavian Dănilă

    2012-01-01

    Full Text Available Entanglement between two quantum elements is a phenomenon which presents a broad application spectrum, being used largely in quantum cryptography schemes and in physical characterisation of the universe. Commonly known entangled states have been obtained with photons and electrons, but other quantum elements such as quarks, leptons, and neutrinos have shown their informational potential. In this paper, we present the perspective of exploiting the phenomenon of entanglement that appears in nuclear particle interactions as a resource for quantum key distribution protocols.

  16. Benchmarking a quantum teleportation protocol in superconducting circuits using tomography and an entanglement witness.

    Science.gov (United States)

    Baur, M; Fedorov, A; Steffen, L; Filipp, S; da Silva, M P; Wallraff, A

    2012-01-27

    Teleportation of a quantum state may be used for distributing entanglement between distant qubits in quantum communication and for quantum computation. Here we demonstrate the implementation of a teleportation protocol, up to the single-shot measurement step, with superconducting qubits coupled to a microwave resonator. Using full quantum state tomography and evaluating an entanglement witness, we show that the protocol generates a genuine tripartite entangled state of all three qubits. Calculating the projection of the measured density matrix onto the basis states of two qubits allows us to reconstruct the teleported state. Repeating this procedure for a complete set of input states we find an average output state fidelity of 86%.

  17. Quantum-Secret-Sharing Scheme Based on Local Distinguishability of Orthogonal Seven-Qudit Entangled States

    Science.gov (United States)

    Liu, Cheng-Ji; Li, Zhi-Hui; Bai, Chen-Ming; Si, Meng-Meng

    2017-10-01

    The concept of judgment space was proposed by Wang et al. (Phys. Rev. A 95, 022320, 2017), which was used to study some important properties of quantum entangled states based on local distinguishability. In this study, we construct 15 kinds of seven-qudit quantum entangled states in the sense of permutation, calculate their judgment space and propose a distinguishability rule to make the judgment space more clearly. Based on this rule, we study the local distinguishability of the 15 kinds of seven-qudit quantum entangled states and then propose a (k, n) threshold quantum secret sharing scheme. Finally, we analyze the security of the scheme.

  18. Efficient generation of photonic entanglement and multiparty quantum communication

    Energy Technology Data Exchange (ETDEWEB)

    Trojek, Pavel

    2007-09-15

    This thesis deals largely with the problem of efficient generation of photonic entanglement with the principal aim of developing a bright source of polarization-entangled photon pairs, which meets the requirements for reliable and economic operation of quantum communication prototypes and demonstrators. Our approach uses a cor-related photon-pair emission in nonlinear process of spontaneous parametric downconversion pumped by light coming from a compact and cheap blue laser diode. Two alternative source configurations are examined within the thesis. The first makes use of a well established concept of degenerate non-collinear emission from a single type-II nonlinear crystal and the second relies on a novel method where the emissions from two adjacent type-I phase-matched nonlinear crystals operated in collinear non-degenerate regime are coherently overlapped. The latter approach showed to be more effective, yielding a total detected rate of almost 10{sup 6} pairs/s at >98% quantum interference visibility of polarization correlations. The second issue addressed within the thesis is the simplification and practical implementation of quantum-assisted solutions to multiparty communication tasks. We show that entanglement is not the only non-classical resource endowing the quantum multiparty information processing its power. Instead, only the sequential communication and transformation of a single qubit can be sufficient to accomplish certain tasks. This we prove for two distinct communication tasks, secret sharing and communication complexity. Whereas the goal of the first is to split a cryptographic key among several parties in a way that its reconstruction requires their collaboration, the latter aims at reducing the amount of communication during distributed computational tasks. Importantly, our qubitassisted solutions to the problems are feasible with state-of-the-art technology. This we clearly demonstrate in the laboratory implementation for 6 and 5 parties

  19. Quantum secret sharing using orthogonal multiqudit entangled states

    Science.gov (United States)

    Bai, Chen-Ming; Li, Zhi-Hui; Liu, Cheng-Ji; Li, Yong-Ming

    2017-12-01

    In this work, we investigate the distinguishability of orthogonal multiqudit entangled states under restricted local operations and classical communication. According to these properties, we propose a quantum secret sharing scheme to realize three types of access structures, i.e., the ( n, n)-threshold, the restricted (3, n)-threshold and restricted (4, n)-threshold schemes (called LOCC-QSS scheme). All cooperating players in the restricted threshold schemes are from two disjoint groups. In the proposed protocol, the participants use the computational basis measurement and classical communication to distinguish between those orthogonal states and reconstruct the original secret. Furthermore, we also analyze the security of our scheme in four primary quantum attacks and give a simple encoding method in order to better prevent the participant conspiracy attack.

  20. Decoherence and Entanglement Simulation in a Model of Quantum Neural Network Based on Quantum Dots

    Directory of Open Access Journals (Sweden)

    Altaisky Mikhail V.

    2016-01-01

    Full Text Available We present the results of the simulation of a quantum neural network based on quantum dots using numerical method of path integral calculation. In the proposed implementation of the quantum neural network using an array of single-electron quantum dots with dipole-dipole interaction, the coherence is shown to survive up to 0.1 nanosecond in time and up to the liquid nitrogen temperature of 77K.We study the quantum correlations between the quantum dots by means of calculation of the entanglement of formation in a pair of quantum dots on the GaAs based substrate with dot size of 100 ÷ 101 nanometer and interdot distance of 101 ÷ 102 nanometers order.

  1. The relation between majorization theory and quantum information from entanglement monotones perspective

    Energy Technology Data Exchange (ETDEWEB)

    Erol, V. [Department of Computer Engineering, Institute of Science, Okan University, Istanbul (Turkey); Netas Telecommunication Inc., Istanbul (Turkey)

    2016-04-21

    Entanglement has been studied extensively for understanding the mysteries of non-classical correlations between quantum systems. In the bipartite case, there are well known monotones for quantifying entanglement such as concurrence, relative entropy of entanglement (REE) and negativity, which cannot be increased via local operations. The study on these monotones has been a hot topic in quantum information [1-7] in order to understand the role of entanglement in this discipline. It can be observed that from any arbitrary quantum pure state a mixed state can obtained. A natural generalization of this observation would be to consider local operations classical communication (LOCC) transformations between general pure states of two parties. Although this question is a little more difficult, a complete solution has been developed using the mathematical framework of the majorization theory [8]. In this work, we analyze the relation between entanglement monotones concurrence and negativity with respect to majorization for general two-level quantum systems of two particles.

  2. Quantum metrology. Fisher information and entanglement of non-Gaussian spin states.

    Science.gov (United States)

    Strobel, Helmut; Muessel, Wolfgang; Linnemann, Daniel; Zibold, Tilman; Hume, David B; Pezzè, Luca; Smerzi, Augusto; Oberthaler, Markus K

    2014-07-25

    Entanglement is the key quantum resource for improving measurement sensitivity beyond classical limits. However, the production of entanglement in mesoscopic atomic systems has been limited to squeezed states, described by Gaussian statistics. Here, we report on the creation and characterization of non-Gaussian many-body entangled states. We develop a general method to extract the Fisher information, which reveals that the quantum dynamics of a classically unstable system creates quantum states that are not spin squeezed but nevertheless entangled. The extracted Fisher information quantifies metrologically useful entanglement, which we confirm by Bayesian phase estimation with sub-shot-noise sensitivity. These methods are scalable to large particle numbers and applicable directly to other quantum systems. Copyright © 2014, American Association for the Advancement of Science.

  3. Generation and confirmation of a (100 × 100)-dimensional entangled quantum system

    Science.gov (United States)

    Krenn, Mario; Huber, Marcus; Fickler, Robert; Lapkiewicz, Radek; Ramelow, Sven; Zeilinger, Anton

    2014-01-01

    Entangled quantum systems have properties that have fundamentally overthrown the classical worldview. Increasing the complexity of entangled states by expanding their dimensionality allows the implementation of novel fundamental tests of nature, and moreover also enables genuinely new protocols for quantum information processing. Here we present the creation of a (100 × 100)-dimensional entangled quantum system, using spatial modes of photons. For its verification we develop a novel nonlinear criterion which infers entanglement dimensionality of a global state by using only information about its subspace correlations. This allows very practical experimental implementation as well as highly efficient extraction of entanglement dimensionality information. Applications in quantum cryptography and other protocols are very promising. PMID:24706902

  4. Interface between path and orbital angular momentum entanglement for high-dimensional photonic quantum information.

    Science.gov (United States)

    Fickler, Robert; Lapkiewicz, Radek; Huber, Marcus; Lavery, Martin P J; Padgett, Miles J; Zeilinger, Anton

    2014-07-30

    Photonics has become a mature field of quantum information science, where integrated optical circuits offer a way to scale the complexity of the set-up as well as the dimensionality of the quantum state. On photonic chips, paths are the natural way to encode information. To distribute those high-dimensional quantum states over large distances, transverse spatial modes, like orbital angular momentum possessing Laguerre Gauss modes, are favourable as flying information carriers. Here we demonstrate a quantum interface between these two vibrant photonic fields. We create three-dimensional path entanglement between two photons in a nonlinear crystal and use a mode sorter as the quantum interface to transfer the entanglement to the orbital angular momentum degree of freedom. Thus our results show a flexible way to create high-dimensional spatial mode entanglement. Moreover, they pave the way to implement broad complex quantum networks where high-dimensionally entangled states could be distributed over distant photonic chips.

  5. Quantum order, entanglement and localization in many-body systems

    Science.gov (United States)

    Khemani, Vedika

    The interplay of disorder and interactions can have remarkable effects on the physics of quantum systems. A striking example is provided by the long conjectured--and recently confirmed--phenomenon of many-body localization. Many-body localized (MBL) phases violate foundational assumptions about ergodicity and thermalization in interacting systems, and represent a new frontier for non-equilibrium quantum statistical mechanics. We start with a study of the dynamical response of MBL phases to time-dependent perturbations. We find that that an asymptotically slow, local perturbation induces a highly non-local response, a surprising result for a localized insulator. A complementary calculation in the linear-response regime elucidates the structure of many-body resonances contributing to the dynamics of this phase. We then turn to a study of quantum order in MBL systems. It was shown that localization can allow novel high-temperature phases and phase transitions that are disallowed in equilibrium. We extend this idea of "localization protected order'' to the case of symmetry-protected topological phases and to the elucidation of phase structure in periodically driven Floquet systems. We show that Floquet systems can display nontrivial phases, some of which show a novel form of correlated spatiotemporal order and are absolutely stable to all generic perturbations. The next part of the thesis addresses the role of quantum entanglement, broadly speaking. Remarkably, it was shown that even highly-excited MBL eigenstates have low area-law entanglement. We exploit this feature to develop tensor-network based algorithms for efficiently computing and representing highly-excited MBL eigenstates. We then switch gears from disordered, localized systems and examine the entanglement Hamiltonian and its low energy spectrum from a statistical mechanical lens, particularly focusing on issues of universality and thermalization. We close with two miscellaneous results on topologically

  6. Quantum Entanglement and Correlation of Two Qubit Atoms Interacting with the Coherent State Optical Field

    Science.gov (United States)

    Liu, Tang-Kun; Tao, Yu; Shan, Chuan-Jia; Liu, Ji-bing

    2017-10-01

    Using the three criterions of the concurrence, the negative eigenvalue and the geometric quantum discord, we investigate the quantum entanglement and quantum correlation dynamics of two two-level atoms interacting with the coherent state optical field. We discuss the influence of different photon number of the mean square fluctuations on the temporal evolution of the concurrence, the negative eigenvalue and the geometric quantum discord between two atoms when the two atoms are initially in specific three states. The results show that different photon number of the mean square fluctuations can lead to different effects of quantum entanglement and quantum correlation dynamics.

  7. Exploration quantum steering, nonlocality and entanglement of two-qubit X-state in structured reservoirs.

    Science.gov (United States)

    Sun, Wen-Yang; Wang, Dong; Shi, Jia-Dong; Ye, Liu

    2017-02-01

    In this work, there are two parties, Alice on Earth and Bob on the satellite, which initially share an entangled state, and some open problems, which emerge during quantum steering that Alice remotely steers Bob, are investigated. Our analytical results indicate that all entangled pure states and maximally entangled evolution states (EESs) are steerable, and not every entangled evolution state is steerable and some steerable states are only locally correlated. Besides, quantum steering from Alice to Bob experiences a "sudden death" with increasing decoherence strength. However, shortly after that, quantum steering experiences a recovery with the increase of decoherence strength in bit flip (BF) and phase flip (PF) channels. Interestingly, while they initially share an entangled pure state, all EESs are steerable and obey Bell nonlocality in PF and phase damping channels. In BF channels, all steerable states can violate Bell-CHSH inequality, but some EESs are unable to be employed to realize steering. However, when they initially share an entangled mixed state, the outcome is different from that of the pure state. Furthermore, the steerability of entangled mixed states is weaker than that of entangled pure states. Thereby, decoherence can induce the degradation of quantum steering, and the steerability of state is associated with the interaction between quantum systems and reservoirs.

  8. Experimental demonstration of a fully inseparable quantum state with nonlocalizable entanglement.

    Science.gov (United States)

    Mičuda, M; Koutný, D; Miková, M; Straka, I; Ježek, M; Mišta, L

    2017-03-27

    Localizability of entanglement in fully inseparable states is a key ingredient of assisted quantum information protocols as well as measurement-based models of quantum computing. We investigate the existence of fully inseparable states with nonlocalizable entanglement, that is, with entanglement which cannot be localized between any pair of subsystems by any measurement on the remaining part of the system. It is shown, that the nonlocalizable entanglement occurs already in suitable mixtures of a three-qubit GHZ state and white noise. Further, we generalize this set of states to a two-parametric family of fully inseparable three-qubit states with nonlocalizable entanglement. Finally, we demonstrate experimentally the existence of nonlocalizable entanglement by preparing and characterizing one state from the family using correlated single photons and linear optical circuit.

  9. 3D entangled fractional squeezing transformation and its quantum mechanical correspondence

    Science.gov (United States)

    Jia, Fang; Xu, Shuang; Deng, Cheng-Zhi; Liu, Cun-Jin; Hu, Li-Yun

    2016-06-01

    A new type of entangled fractional squeezing transformation (EFrST) has been theoretically proposed for 2D entanglement [ Front. Phys. 10, 100302 (2015)]. In this paper, we shall extend this case to that of 3D entanglement by introducing a type of three-mode entangled state representation, which is not the product of three 1D cases. Using the technique of integration within an ordered product of operators, we derive a compact unitary operator corresponding to the 3D fractional entangling transformation, which is an entangling operator that presents a clear transformation relation. We also verified that the additivity property of the novel 3D EFrST is of a Fourier character by using its quantum mechanical description. As an application of this representation, the EFrST of the three-mode number state is calculated using the quantum description of the EFrST.

  10. Entanglement of mixed quantum states for qubits and qudit in double photoionization of atoms

    Energy Technology Data Exchange (ETDEWEB)

    Chakraborty, M., E-mail: bminakshi@yahoo.com [Department of Physics, Asansol Girls’ College, Asansol 713304 (India); Sen, S. [Department of Physics, Triveni Devi Bhalotia College, Raniganj 713347 (India)

    2015-08-15

    Highlights: • We study tripartite entanglement between two electronic qubits and an ionic qudit. • We study bipartite entanglement between any two subsystems of a tripartite system. • We have presented a quantitative application of entangled properties in Neon atom. - Abstract: Quantum entanglement and its paradoxical properties are genuine physical resources for various quantum information tasks like quantum teleportation, quantum cryptography, and quantum computer technology. The physical characteristic of the entanglement of quantum-mechanical states, both for pure and mixed, has been recognized as a central resource in various aspects of quantum information processing. In this article, we study the bipartite entanglement of one electronic qubit along with the ionic qudit and also entanglement between two electronic qubits. The tripartite entanglement properties also have been investigated between two electronic qubits and an ionic qudit. All these studies have been done for the single-step double photoionization from an atom following the absorption of a single photon without observing spin orbit interaction. The dimension of the Hilbert space of the qudit depends upon the electronic state of the residual photoion A{sup 2+}. In absence of SOI, when Russell–Saunders coupling (L–S coupling) is applicable, dimension of the qudit is equal to the spin multiplicity of A{sup 2+}. For estimations of entanglement and mixedness, we consider the Peres–Horodecki condition, concurrence, entanglement of formation, negativity, linear and von Neumann entropies. In case of L–S coupling, all the properties of a qubit–qudit system can be predicted merely with the knowledge of the spins of the target atom and the residual photoion.

  11. Quantum entanglement and composite keys in quantum cryptography

    Science.gov (United States)

    Molotkov, S. N.

    2017-06-01

    The security of quantum cryptography protocols after a quantum key distribution (QKD) session is formulated in terms of proximity between two situations: quantum states corresponding to real and ideal situations after QKD. The measure of proximity is the trace distance. It is more reasonable to formulate security directly in terms of the smallness of probability of successive guessing of keys by an eavesdropper after an arbitrary number of QKD sessions. There is a fundamental question the answer to which is a priori very unobvious: Is the security criterion in terms of the proximity of the real and ideal situations for a single QKD session sufficient to guarantee the security of keys in terms of the smallness of probability of guessing of keys by the eavesdropper after an arbitrary number of QKD sessions? It has been shown that the answer to this question is positive.

  12. Momentum-Space Entanglement and Loschmidt Echo in Luttinger Liquids after a Quantum Quench.

    Science.gov (United States)

    Dóra, Balázs; Lundgren, Rex; Selover, Mark; Pollmann, Frank

    2016-07-01

    Luttinger liquids (LLs) arise by coupling left- and right-moving particles through interactions in one dimension. This most natural partitioning of LLs is investigated by the momentum-space entanglement after a quantum quench using analytical and numerical methods. We show that the momentum-space entanglement spectrum of a LL possesses many universal features both in equilibrium and after a quantum quench. The largest entanglement eigenvalue is identical to the Loschmidt echo, i.e., the overlap of the disentangled and final wave functions of the system. The second largest eigenvalue is the overlap of the first excited state of the disentangled system with zero total momentum and the final wave function. The entanglement gap is universal both in equilibrium and after a quantum quench. The momentum-space entanglement entropy is always extensive and saturates fast to a time independent value after the quench, in sharp contrast to a spatial bipartitioning.

  13. Observation of entanglement between a quantum dot spin and a single photon.

    Science.gov (United States)

    Gao, W B; Fallahi, P; Togan, E; Miguel-Sanchez, J; Imamoglu, A

    2012-11-15

    Entanglement has a central role in fundamental tests of quantum mechanics as well as in the burgeoning field of quantum information processing. Particularly in the context of quantum networks and communication, a main challenge is the efficient generation of entanglement between stationary (spin) and propagating (photon) quantum bits. Here we report the observation of quantum entanglement between a semiconductor quantum dot spin and the colour of a propagating optical photon. The demonstration of entanglement relies on the use of fast, single-photon detection, which allows us to project the photon into a superposition of red and blue frequency components. Our results extend the previous demonstrations of single-spin/single-photon entanglement in trapped ions, neutral atoms and nitrogen-vacancy centres to the domain of artificial atoms in semiconductor nanostructures that allow for on-chip integration of electronic and photonic elements. As a result of its fast optical transitions and favourable selection rules, the scheme we implement could in principle generate nearly deterministic entangled spin-photon pairs at a rate determined ultimately by the high spontaneous emission rate. Our observation constitutes a first step towards implementation of a quantum network with nodes consisting of semiconductor spin quantum bits.

  14. Analysis of entanglement measures and LOCC maximized quantum Fisher information of general two qubit systems.

    Science.gov (United States)

    Erol, Volkan; Ozaydin, Fatih; Altintas, Azmi Ali

    2014-06-24

    Entanglement has been studied extensively for unveiling the mysteries of non-classical correlations between quantum systems. In the bipartite case, there are well known measures for quantifying entanglement such as concurrence, relative entropy of entanglement (REE) and negativity, which cannot be increased via local operations. It was found that for sets of non-maximally entangled states of two qubits, comparing these entanglement measures may lead to different entanglement orderings of the states. On the other hand, although it is not an entanglement measure and not monotonic under local operations, due to its ability of detecting multipartite entanglement, quantum Fisher information (QFI) has recently received an intense attraction generally with entanglement in the focus. In this work, we revisit the state ordering problem of general two qubit states. Generating a thousand random quantum states and performing an optimization based on local general rotations of each qubit, we calculate the maximal QFI for each state. We analyze the maximized QFI in comparison with concurrence, REE and negativity and obtain new state orderings. We show that there are pairs of states having equal maximized QFI but different values for concurrence, REE and negativity and vice versa.

  15. Irreversibility of Asymptotic Entanglement Manipulation Under Quantum Operations Completely Preserving Positivity of Partial Transpose

    Science.gov (United States)

    Wang, Xin; Duan, Runyao

    2017-11-01

    We demonstrate the irreversibility of asymptotic entanglement manipulation under quantum operations that completely preserve the positivity of partial transpose (PPT), resolving a major open problem in quantum information theory. Our key tool is a new efficiently computable additive lower bound for the asymptotic relative entropy of entanglement with respect to PPT states, which can be used to evaluate the entanglement cost under local operations and classical communication (LOCC). We find that for any rank-two mixed state supporting on the 3 ⊗3 antisymmetric subspace, the amount of distillable entanglement by PPT operations is strictly smaller than one entanglement bit (ebit) while its entanglement cost under PPT operations is exactly one ebit. As a by-product, we find that for this class of states, both the Rains's bound and its regularization are strictly less than the asymptotic relative entropy of entanglement. So, in general, there is no unique entanglement measure for the manipulation of entanglement by PPT operations. We further show a computable sufficient condition for the irreversibility of entanglement distillation by LOCC (or PPT) operations.

  16. SCB Quantum Computers Using iSWAP and 1-Qubit Rotations

    Science.gov (United States)

    Williams, Colin; Echtemach, Pierre

    2005-01-01

    Units of superconducting circuitry that exploit the concept of the single- Cooper-pair box (SCB) have been built and are undergoing testing as prototypes of logic gates that could, in principle, constitute building blocks of clocked quantum computers. These units utilize quantized charge states as the quantum information-bearing degrees of freedom. An SCB is an artificial two-level quantum system that comprises a nanoscale superconducting electrode connected to a reservoir of Cooper-pair charges via a Josephson junction. The logical quantum states of the device, .0. and .1., are implemented physically as a pair of charge-number states that differ by 2e (where e is the charge of an electron). Typically, some 109 Cooper pairs are involved. Transitions between the logical states are accomplished by tunneling of Cooper pairs through the Josephson junction. Although the two-level system contains a macroscopic number of charges, in the superconducting regime, they behave collectively, as a Bose-Einstein condensate, making possible a coherent superposition of the two logical states. This possibility makes the SCB a candidate for the physical implementation of a qubit. A set of quantum logic operations and the gates that implement them is characterized as universal if, in principle, one can form combinations of the operations in the set to implement any desired quantum computation. To be able to design a practical quantum computer, one must first specify how to decompose any valid quantum computation into a sequence of elementary 1- and 2-qubit quantum gates that are universal and that can be realized in hardware that is feasible to fabricate. Traditionally, the set of universal gates has been taken to be the set of all 1-qubit quantum gates in conjunction with the controlled-NOT (CNOT) gate, which is a 2-qubit gate. Also, it has been known for some time that the SWAP gate, which implements square root of the simple 2-qubit exchange interaction, is as computationally

  17. Anomalous Effects from Dipole-Environment Quantum Entanglement

    CERN Document Server

    Porcelli, Elio B

    2016-01-01

    In this work, we analyze anomalous effects observed in the operation of two different technological devices: a magnetic core and a parallel plate (symmetrical or asymmetrical) capacitor. From experimental measurements on both devices, we detected small raised anomalous forces that cannot be explained by known interactions in the traditional theories. As the variations of device inertia have not been completely understood by means of current theories, we here propose a theoretical framework in which the anomalous effects can consistently be explained by a preexisting state of quantum entanglement between the external environment and either magnetic dipoles of magnetic cores or electric dipoles of capacitors, so that the effects would be manifested by the application of a strong magnetic field on the former or an intense electric field on the latter. The values of the macroscopic observables calculated in such a theoretical framework revealed good agreement with the experimental measurements performed in both c...

  18. Entanglement-assisted quantum parameter estimation from a noisy qubit pair: A Fisher information analysis

    Energy Technology Data Exchange (ETDEWEB)

    Chapeau-Blondeau, François, E-mail: chapeau@univ-angers.fr

    2017-04-25

    Benefit from entanglement in quantum parameter estimation in the presence of noise or decoherence is investigated, with the quantum Fisher information to asses the performance. When an input probe experiences any (noisy) transformation introducing the parameter dependence, the performance is always maximized by a pure probe. As a generic estimation task, for estimating the phase of a unitary transformation on a qubit affected by depolarizing noise, the optimal separable probe and its performance are characterized as a function of the level of noise. By entangling qubits in pairs, enhancements of performance over that of the optimal separable probe are quantified, in various settings of the entangled pair. In particular, in the presence of the noise, enhancement over the performance of the one-qubit optimal probe can always be obtained with a second entangled qubit although never interacting with the process to be estimated. Also, enhancement over the performance of the two-qubit optimal separable probe can always be achieved by a two-qubit entangled probe, either partially or maximally entangled depending on the level of the depolarizing noise. - Highlights: • Quantum parameter estimation from a noisy qubit pair is investigated. • The quantum Fisher information is used to assess the ultimate best performance. • Theoretical expressions are established and analyzed for the Fisher information. • Enhanced performances are quantified with various entanglements of the pair. • Enhancement is shown even with one entangled qubit noninteracting with the process.

  19. Quantum.Ligand.Dock: protein-ligand docking with quantum entanglement refinement on a GPU system.

    Science.gov (United States)

    Kantardjiev, Alexander A

    2012-07-01

    Quantum.Ligand.Dock (protein-ligand docking with graphic processing unit (GPU) quantum entanglement refinement on a GPU system) is an original modern method for in silico prediction of protein-ligand interactions via high-performance docking code. The main flavour of our approach is a combination of fast search with a special account for overlooked physical interactions. On the one hand, we take care of self-consistency and proton equilibria mutual effects of docking partners. On the other hand, Quantum.Ligand.Dock is the the only docking server offering such a subtle supplement to protein docking algorithms as quantum entanglement contributions. The motivation for development and proposition of the method to the community hinges upon two arguments-the fundamental importance of quantum entanglement contribution in molecular interaction and the realistic possibility to implement it by the availability of supercomputing power. The implementation of sophisticated quantum methods is made possible by parallelization at several bottlenecks on a GPU supercomputer. The high-performance implementation will be of use for large-scale virtual screening projects, structural bioinformatics, systems biology and fundamental research in understanding protein-ligand recognition. The design of the interface is focused on feasibility and ease of use. Protein and ligand molecule structures are supposed to be submitted as atomic coordinate files in PDB format. A customization section is offered for addition of user-specified charges, extra ionogenic groups with intrinsic pK(a) values or fixed ions. Final predicted complexes are ranked according to obtained scores and provided in PDB format as well as interactive visualization in a molecular viewer. Quantum.Ligand.Dock server can be accessed at http://87.116.85.141/LigandDock.html.

  20. Entanglement percolation on a quantum internet with scale-free and clustering characters

    Science.gov (United States)

    Wu, Liang; Zhu, Shiqun

    2011-11-01

    The applicability of entanglement percolation protocol to real Internet structure is investigated. If the current Internet can be used directly in the quantum regime, the protocol can provide a way to establish long-distance entanglement when the links are pure nonmaximally entangled states. This applicability is primarily due to the combination of scale-free degree distribution and a high level of clustering, both of which are widely observed in many natural and artificial networks including the current Internet. It suggests that the topology of real Internet may play an important role in entanglement establishment.

  1. A New Quantum Proxy Multi-signature Scheme Using Maximally Entangled Seven-Qubit States

    Science.gov (United States)

    Cao, Hai-Jing; Zhang, Jia-Fu; Liu, Jian; Li, Zeng-You

    2016-02-01

    In this paper, we propose a new secure quantum proxy multi-signature scheme using seven-qubit entangled quantum state as quantum channels, which may have applications in e-payment system, e-government, e-business, etc. This scheme is based on controlled quantum teleportation. The scheme uses the physical characteristics of quantum mechanics to guarantee its anonymity, verifiability, traceability, unforgetability and undeniability.

  2. Quantum entanglement and criticality of the antiferromagnetic Heisenberg model in an external field

    Science.gov (United States)

    Liu, Guang-Hua; Li, Ruo-Yan; Tian, Guang-Shan

    2012-06-01

    By Lanczos exact diagonalization and the infinite time-evolving block decimation (iTEBD) technique, the two-site entanglement as well as the bipartite entanglement, the ground state energy, the nearest-neighbor correlations, and the magnetization in the antiferromagnetic Heisenberg (AFH) model under an external field are investigated. With increasing external field, the small size system shows some distinct upward magnetization stairsteps, accompanied synchronously with some downward two-site entanglement stairsteps. In the thermodynamic limit, the two-site entanglement, as well as the bipartite entanglement, the ground state energy, the nearest-neighbor correlations, and the magnetization are calculated, and the critical magnetic field hc = 2.0 is determined exactly. Our numerical results show that the quantum entanglement is sensitive to the subtle changing of the ground state, and can be used to describe the magnetization and quantum phase transition. Based on the discontinuous behavior of the first-order derivative of the entanglement entropy and fidelity per site, we think that the quantum phase transition in this model should belong to the second-order category. Furthermore, in the magnon existence region (h behavior of block entanglement which can be described by a free bosonic field theory is observed, and the central charge c is determined to be 1.

  3. Quantum entanglement and criticality of the antiferromagnetic Heisenberg model in an external field.

    Science.gov (United States)

    Liu, Guang-Hua; Li, Ruo-Yan; Tian, Guang-Shan

    2012-06-27

    By Lanczos exact diagonalization and the infinite time-evolving block decimation (iTEBD) technique, the two-site entanglement as well as the bipartite entanglement, the ground state energy, the nearest-neighbor correlations, and the magnetization in the antiferromagnetic Heisenberg (AFH) model under an external field are investigated. With increasing external field, the small size system shows some distinct upward magnetization stairsteps, accompanied synchronously with some downward two-site entanglement stairsteps. In the thermodynamic limit, the two-site entanglement, as well as the bipartite entanglement, the ground state energy, the nearest-neighbor correlations, and the magnetization are calculated, and the critical magnetic field h(c) = 2.0 is determined exactly. Our numerical results show that the quantum entanglement is sensitive to the subtle changing of the ground state, and can be used to describe the magnetization and quantum phase transition. Based on the discontinuous behavior of the first-order derivative of the entanglement entropy and fidelity per site, we think that the quantum phase transition in this model should belong to the second-order category. Furthermore, in the magnon existence region (h entanglement which can be described by a free bosonic field theory is observed, and the central charge c is determined to be 1.

  4. Quantum entanglement at ambient conditions in a macroscopic solid-state spin ensemble.

    Science.gov (United States)

    Klimov, Paul V; Falk, Abram L; Christle, David J; Dobrovitski, Viatcheslav V; Awschalom, David D

    2015-11-01

    Entanglement is a key resource for quantum computers, quantum-communication networks, and high-precision sensors. Macroscopic spin ensembles have been historically important in the development of quantum algorithms for these prospective technologies and remain strong candidates for implementing them today. This strength derives from their long-lived quantum coherence, strong signal, and ability to couple collectively to external degrees of freedom. Nonetheless, preparing ensembles of genuinely entangled spin states has required high magnetic fields and cryogenic temperatures or photochemical reactions. We demonstrate that entanglement can be realized in solid-state spin ensembles at ambient conditions. We use hybrid registers comprising of electron-nuclear spin pairs that are localized at color-center defects in a commercial SiC wafer. We optically initialize 10(3) identical registers in a 40-μm(3) volume (with [Formula: see text] fidelity) and deterministically prepare them into the maximally entangled Bell states (with 0.88 ± 0.07 fidelity). To verify entanglement, we develop a register-specific quantum-state tomography protocol. The entanglement of a macroscopic solid-state spin ensemble at ambient conditions represents an important step toward practical quantum technology.

  5. Protocol for generating multiphoton entangled states from quantum dots in the presence of nuclear spin fluctuations

    Science.gov (United States)

    Denning, Emil V.; Iles-Smith, Jake; McCutcheon, Dara P. S.; Mork, Jesper

    2017-12-01

    Multiphoton entangled states are a crucial resource for many applications in quantum information science. Semiconductor quantum dots offer a promising route to generate such states by mediating photon-photon correlations via a confined electron spin, but dephasing caused by the host nuclear spin environment typically limits coherence (and hence entanglement) between photons to the spin T2* time of a few nanoseconds. We propose a protocol for the deterministic generation of multiphoton entangled states that is inherently robust against the dominating slow nuclear spin environment fluctuations, meaning that coherence and entanglement is instead limited only by the much longer spin T2 time of microseconds. Unlike previous protocols, the present scheme allows for the generation of very low error probability polarization encoded three-photon GHZ states and larger entangled states, without the need for spin echo or nuclear spin calming techniques.

  6. Geometric measure of quantum discord for entanglement of Dirac fields in noninertial frames

    Energy Technology Data Exchange (ETDEWEB)

    Qiang, Wen-Chao, E-mail: qwcqj@163.com [Faculty of Science, Xi' an University of Architecture and Technology, Xi' an, 710055 (China); Zhang, Lei [Huaqing College, Xi' an University of Architecture and Technology, Xi' an, 710055 (China)

    2015-03-06

    We investigate the geometric measure of quantum discord of all possible bipartite divisions of a tripartite system of Dirac fields in noninertial frames. As a comparison, we calculate the geometric measure of entanglement. We discuss the properties of geometric measure of quantum discord and geometric measure of entanglement for three qubit–qubit subsystems with acceleration parameter and the parameter describing the degree of entanglement the system in detail. We have found a conservative relationship involving two of three geometric discords in some condition and another conservative relationship involving three geometric discords for initially maximally entangled states. By the way, we also report some conservative relationships of concurrence, mutual information and geometric measure of entanglement for two bipartite subsystems.

  7. Dynamical entanglement formation and dissipation effects in two double quantum dots

    Energy Technology Data Exchange (ETDEWEB)

    Contreras-Pulido, L D [Centro de Investigacion CientIfica y de Educacion Superior de Ensenada, Apartado Postal 2732, Ensenada, BC 22860 (Mexico); Rojas, F [Departamento de Fisica Teorica, Centro de Ciencias de la Materia Condensada, Universidad Nacional Autonoma de Mexico, Ensenada, Baja California 22800 (Mexico)

    2006-11-01

    We study the static and dynamic formation of entanglement in charge states of a two double quantum dot array with two mobile electrons under the effect of an external driving field. We include dissipation via contact with a phonon bath. By using the density matrix formalism and an open quantum system approach, we describe the dynamical behaviour of the charge distribution (polarization), concurrence (measure of the degree of entanglement) and Bell state probabilities (two qubit states with maximum entanglement) of such a system, including the role of dot asymmetry and temperature effects. Our results show that it is possible to obtain entangled states as well as a most probable Bell state, which can be controlled by the driving field. We also evaluate how the entanglement formation based on charge states deteriorates as the temperature or asymmetry increases.

  8. Quantum entanglement of angular momentum states with quantum numbers up to 10,010.

    Science.gov (United States)

    Fickler, Robert; Campbell, Geoff; Buchler, Ben; Lam, Ping Koy; Zeilinger, Anton

    2016-11-29

    Photons with a twisted phase front carry a quantized amount of orbital angular momentum (OAM) and have become important in various fields of optics, such as quantum and classical information science or optical tweezers. Because no upper limit on the OAM content per photon is known, they are also interesting systems to experimentally challenge quantum mechanical prediction for high quantum numbers. Here, we take advantage of a recently developed technique to imprint unprecedented high values of OAM, namely spiral phase mirrors, to generate photons with more than 10,000 quanta of OAM. Moreover, we demonstrate quantum entanglement between these large OAM quanta of one photon and the polarization of its partner photon. To our knowledge, this corresponds to entanglement with the largest quantum number that has been demonstrated in an experiment. The results may also open novel ways to couple single photons to massive objects, enhance angular resolution, and highlight OAM as a promising way to increase the information capacity of a single photon.

  9. Ion-photon entanglement and quantum frequency conversion with trapped Ba+ ions.

    Science.gov (United States)

    Siverns, J D; Li, X; Quraishi, Q

    2017-01-20

    Trapped ions are excellent candidates for quantum nodes, as they possess many desirable features of a network node including long lifetimes, on-site processing capability, and production of photonic flying qubits. However, unlike classical networks in which data may be transmitted in optical fibers and where the range of communication is readily extended with amplifiers, quantum systems often emit photons that have a limited propagation range in optical fibers and, by virtue of the nature of a quantum state, cannot be noiselessly amplified. Here, we first describe a method to extract flying qubits from a Ba+ trapped ion via shelving to a long-lived, low-lying D-state with higher entanglement probabilities compared with current strong and weak excitation methods. We show a projected fidelity of ≈89% of the ion-photon entanglement. We compare several methods of ion-photon entanglement generation, and we show how the fidelity and entanglement probability varies as a function of the photon collection optic's numerical aperture. We then outline an approach for quantum frequency conversion of the photons emitted by the Ba+ ion to the telecommunication range for long-distance networking and to 780 nm for potential entanglement with rubidium-based quantum memories. Our approach is significant for extending the range of quantum networks and for the development of hybrid quantum networks compromised of different types of quantum memories.

  10. Quantum steering and entanglement in three-mode triangle Bose-Hubbard system

    Science.gov (United States)

    Kalaga, J. K.; Leoński, W.; Szczȩśniak, R.

    2017-11-01

    We consider the possibility of generation steerable states in Bose-Hubbard system composed of three interacting wells in the form of a triangle. We show that although our system still fulfills the monogamy relations, the presence of additional coupling which transforms a chain of wells onto triangle gives a variety of new possibilities for the generation of steerable quantum states. Deriving analytical formulas for the parameters describing steering and bipartite entanglement, we show that interplay between two couplings influences quantum correlations of various types. We compare the time evolution of steering parameters to those describing bipartite entanglement and find the relations between the appearance of maximal entanglement and disappearance of steering effect.

  11. Multi-partite entanglement can speed up quantum key distribution in networks

    Science.gov (United States)

    Epping, Michael; Kampermann, Hermann; macchiavello, Chiara; Bruß, Dagmar

    2017-09-01

    The laws of quantum mechanics allow for the distribution of a secret random key between two parties. Here we analyse the security of a protocol for establishing a common secret key between N parties (i.e. a conference key), using resource states with genuine N-partite entanglement. We compare this protocol to conference key distribution via bipartite entanglement, regarding the required resources, achievable secret key rates and threshold qubit error rates. Furthermore we discuss quantum networks with bottlenecks for which our multipartite entanglement-based protocol can benefit from network coding, while the bipartite protocol cannot. It is shown how this advantage leads to a higher secret key rate.

  12. Quantum teleportation via entangled states generated by the Jaynes-Cummings model

    Energy Technology Data Exchange (ETDEWEB)

    Metwally, N.; Abdelaty, M.; Obada, A.-S.F. E-mail: asobada@yahoo.com

    2004-11-01

    In this contribution, quantum channels induced from an atom-field interaction (JCM), are used to teleport one and two qubit states. The initial state of the filed is taken to be in a coherent state while the atom starts from its excited state. The field parameters could be used as control parameters. It is shown that the fidelity of the teleported state depends on the fidelity of the input state, the degree of entanglement and the mixedness of the quantum channels. Finally, we find that a higher entangled channel is needed for a higher entangled state to be teleported.

  13. High yield and ultrafast sources of electrically triggered entangled-photon pairs based on strain-tunable quantum dots.

    Science.gov (United States)

    Zhang, Jiaxiang; Wildmann, Johannes S; Ding, Fei; Trotta, Rinaldo; Huo, Yongheng; Zallo, Eugenio; Huber, Daniel; Rastelli, Armando; Schmidt, Oliver G

    2015-12-01

    Triggered sources of entangled photon pairs are key components in most quantum communication protocols. For practical quantum applications, electrical triggering would allow the realization of compact and deterministic sources of entangled photons. Entangled-light-emitting-diodes based on semiconductor quantum dots are among the most promising sources that can potentially address this task. However, entangled-light-emitting-diodes are plagued by a source of randomness, which results in a very low probability of finding quantum dots with sufficiently small fine structure splitting for entangled-photon generation (∼10(-2)). Here we introduce strain-tunable entangled-light-emitting-diodes that exploit piezoelectric-induced strains to tune quantum dots for entangled-photon generation. We demonstrate that up to 30% of the quantum dots in strain-tunable entangled-light-emitting-diodes emit polarization-entangled photons. An entanglement fidelity as high as 0.83 is achieved with fast temporal post selection. Driven at high speed, that is 400 MHz, strain-tunable entangled-light-emitting-diodes emerge as promising devices for high data-rate quantum applications.

  14. Generation of broadband ultraviolet frequency-entangled photons using cavity quantum plasmonics.

    Science.gov (United States)

    Oka, Hisaki

    2017-08-14

    Application of quantum entangled photons is now extending to various fields in physics, chemistry and biology. In particular, in terms of application to molecular science, broadband ultraviolet frequency-entangled photons are desired because molecules inducing photochemical reactions of interest often have electronic transition energies in the ultraviolet region. Recent standard method for generating such entangled photons is a chirped quasi-phase-matching method, however this method is not suitable for the generation of ultraviolet frequency-entangled photons because it requires down-conversion of a photon with a wavelength shorter than ultraviolet into an entangled photon pair. Here we propose a simple method for generating broadband ultraviolet frequency-entangled photons using cavity quantum plasmonics, in which conventional cavity quantum electrodynamics theory is applied to quantum plasmonics. We introduce a cavity-plasmon system in which localised surface plasmon (LSP) is coupled to the cavity fields of a state-of-the-art microcavity. Using this system, we theoretically show that broadband ultraviolet frequency-entangled photons can be generated simply by utilising the absorption saturation effect of LSP.

  15. Quantum discord length is enhanced while entanglement length is not by introducing disorder in a spin chain.

    Science.gov (United States)

    Sadhukhan, Debasis; Roy, Sudipto Singha; Rakshit, Debraj; Prabhu, R; Sen De, Aditi; Sen, Ujjwal

    2016-01-01

    Classical correlation functions of ground states typically decay exponentially and polynomially, respectively, for gapped and gapless short-range quantum spin systems. In such systems, entanglement decays exponentially even at the quantum critical points. However, quantum discord, an information-theoretic quantum correlation measure, survives long lattice distances. We investigate the effects of quenched disorder on quantum correlation lengths of quenched averaged entanglement and quantum discord, in the anisotropic XY and XYZ spin glass and random field chains. We find that there is virtually neither reduction nor enhancement in entanglement length while quantum discord length increases significantly with the introduction of the quenched disorder.

  16. Long-range entanglement is necessary for a topological storage of quantum information.

    Science.gov (United States)

    Kim, Isaac H

    2013-08-23

    A general inequality between entanglement entropy and a number of topologically ordered states is derived, even without using the properties of the parent Hamiltonian or the formalism of topological quantum field theory. Given a quantum state |ψ], we obtain an upper bound on the number of distinct states that are locally indistinguishable from |ψ]. The upper bound is determined only by the entanglement entropy of some local subsystems. As an example, we show that log N≤2γ for a large class of topologically ordered systems on a torus, where N is the number of topologically protected states and γ is the constant subcorrection term of the entanglement entropy. We discuss applications to quantum many-body systems that do not have any low-energy topological quantum field theory description, as well as tradeoff bounds for general quantum error correcting codes.

  17. Quantum thermalization through entanglement in an isolated many-body system.

    Science.gov (United States)

    Kaufman, Adam M; Tai, M Eric; Lukin, Alexander; Rispoli, Matthew; Schittko, Robert; Preiss, Philipp M; Greiner, Markus

    2016-08-19

    Statistical mechanics relies on the maximization of entropy in a system at thermal equilibrium. However, an isolated quantum many-body system initialized in a pure state remains pure during Schrödinger evolution, and in this sense it has static, zero entropy. We experimentally studied the emergence of statistical mechanics in a quantum state and observed the fundamental role of quantum entanglement in facilitating this emergence. Microscopy of an evolving quantum system indicates that the full quantum state remains pure, whereas thermalization occurs on a local scale. We directly measured entanglement entropy, which assumes the role of the thermal entropy in thermalization. The entanglement creates local entropy that validates the use of statistical physics for local observables. Our measurements are consistent with the eigenstate thermalization hypothesis. Copyright © 2016, American Association for the Advancement of Science.

  18. Control of entanglement dynamics in a system of three coupled quantum oscillators.

    Science.gov (United States)

    Gonzalez-Henao, J C; Pugliese, E; Euzzor, S; Meucci, R; Roversi, J A; Arecchi, F T

    2017-08-30

    Dynamical control of entanglement and its connection with the classical concept of instability is an intriguing matter which deserves accurate investigation for its important role in information processing, cryptography and quantum computing. Here we consider a tripartite quantum system made of three coupled quantum parametric oscillators in equilibrium with a common heat bath. The introduced parametrization consists of a pulse train with adjustable amplitude and duty cycle representing a more general case for the perturbation. From the experimental observation of the instability in the classical system we are able to predict the parameter values for which the entangled states exist. A different amount of entanglement and different onset times emerge when comparing two and three quantum oscillators. The system and the parametrization considered here open new perspectives for manipulating quantum features at high temperatures.

  19. X-ray-generated heralded macroscopical quantum entanglement of two nuclear ensembles.

    Science.gov (United States)

    Liao, Wen-Te; Keitel, Christoph H; Pálffy, Adriana

    2016-09-19

    Heralded entanglement between macroscopical samples is an important resource for present quantum technology protocols, allowing quantum communication over large distances. In such protocols, optical photons are typically used as information and entanglement carriers between macroscopic quantum memories placed in remote locations. Here we investigate theoretically a new implementation which employs more robust x-ray quanta to generate heralded entanglement between two crystal-hosted macroscopical nuclear ensembles. Mössbauer nuclei in the two crystals interact collectively with an x-ray spontaneous parametric down conversion photon that generates heralded macroscopical entanglement with coherence times of approximately 100 ns at room temperature. The quantum phase between the entangled crystals can be conveniently manipulated by magnetic field rotations at the samples. The inherent long nuclear coherence times allow also for mechanical manipulations of the samples, for instance to check the stability of entanglement in the x-ray setup. Our results pave the way for first quantum communication protocols that use x-ray qubits.

  20. Highly indistinguishable and strongly entangled photons from symmetric GaAs quantum dots.

    Science.gov (United States)

    Huber, Daniel; Reindl, Marcus; Huo, Yongheng; Huang, Huiying; Wildmann, Johannes S; Schmidt, Oliver G; Rastelli, Armando; Trotta, Rinaldo

    2017-05-26

    The development of scalable sources of non-classical light is fundamental to unlocking the technological potential of quantum photonics. Semiconductor quantum dots are emerging as near-optimal sources of indistinguishable single photons. However, their performance as sources of entangled-photon pairs are still modest compared to parametric down converters. Photons emitted from conventional Stranski-Krastanov InGaAs quantum dots have shown non-optimal levels of entanglement and indistinguishability. For quantum networks, both criteria must be met simultaneously. Here, we show that this is possible with a system that has received limited attention so far: GaAs quantum dots. They can emit triggered polarization-entangled photons with high purity (g(2)(0) = 0.002±0.002), high indistinguishability (0.93±0.07 for 2 ns pulse separation) and high entanglement fidelity (0.94±0.01). Our results show that GaAs might be the material of choice for quantum-dot entanglement sources in future quantum technologies.

  1. Highly indistinguishable and strongly entangled photons from symmetric GaAs quantum dots

    Science.gov (United States)

    Huber, Daniel; Reindl, Marcus; Huo, Yongheng; Huang, Huiying; Wildmann, Johannes S.; Schmidt, Oliver G.; Rastelli, Armando; Trotta, Rinaldo

    2017-01-01

    The development of scalable sources of non-classical light is fundamental to unlocking the technological potential of quantum photonics. Semiconductor quantum dots are emerging as near-optimal sources of indistinguishable single photons. However, their performance as sources of entangled-photon pairs are still modest compared to parametric down converters. Photons emitted from conventional Stranski–Krastanov InGaAs quantum dots have shown non-optimal levels of entanglement and indistinguishability. For quantum networks, both criteria must be met simultaneously. Here, we show that this is possible with a system that has received limited attention so far: GaAs quantum dots. They can emit triggered polarization-entangled photons with high purity (g(2)(0) = 0.002±0.002), high indistinguishability (0.93±0.07 for 2 ns pulse separation) and high entanglement fidelity (0.94±0.01). Our results show that GaAs might be the material of choice for quantum-dot entanglement sources in future quantum technologies. PMID:28548081

  2. A Quantum Proxy Blind Signature Scheme Based on Genuine Five-Qubit Entangled State

    Science.gov (United States)

    Zeng, Chuan; Zhang, Jian-Zhong; Xie, Shu-Cui

    2017-06-01

    In this paper, a quantum proxy blind signature scheme based on controlled quantum teleportation is proposed. This scheme uses a genuine five-qubit entangled state as quantum channel and adopts the classical Vernam algorithm to blind message. We use the physical characteristics of quantum mechanics to implement delegation, signature and verification. Security analysis shows that our scheme is valid and satisfy the properties of a proxy blind signature, such as blindness, verifiability, unforgeability, undeniability.

  3. Optical state engineering, quantum communication, and robustness of entanglement promiscuity in three-mode Gaussian states

    Science.gov (United States)

    Adesso, Gerardo; Serafini, Alessio; Illuminati, Fabrizio

    2007-03-01

    We present a novel, detailed study on the usefulness of three-mode Gaussian states for realistic processing of continuous variable (CV) quantum information, with a particular emphasis on the possibilities opened up by their genuine tripartite entanglement. We describe practical schemes to engineer several classes of pure and mixed three-mode states that stand out for their informational and/or entanglement properties. In particular, we introduce a simple procedure—based on passive optical elements—to produce pure three-mode Gaussian states with arbitrary entanglement structure (upon availability of an initial two-mode squeezed state). We analyse in depth the properties of distributed entanglement and the origin of its sharing structure, showing that the promiscuity of entanglement sharing is a feature peculiar to symmetric Gaussian states that survives even in the presence of significant degrees of mixedness and decoherence. Next, we discuss the suitability of the considered tripartite entangled states to the implementation of quantum information and communication protocols with CVs. This will lead to a feasible experimental proposal to test the promiscuous sharing of CV tripartite entanglement, in terms of the optimal fidelity of teleportation networks with Gaussian resources. We finally focus on the application of three-mode states to symmetric and asymmetric telecloning, and single out the structural properties of the optimal Gaussian resources for the latter protocol in different settings. Our analysis aims to lay the basis for a practical quantum communication with CVs beyond the bipartite scenario.

  4. Quantum teleportation and entanglement distribution over 100-kilometre free-space channels.

    Science.gov (United States)

    Yin, Juan; Ren, Ji-Gang; Lu, He; Cao, Yuan; Yong, Hai-Lin; Wu, Yu-Ping; Liu, Chang; Liao, Sheng-Kai; Zhou, Fei; Jiang, Yan; Cai, Xin-Dong; Xu, Ping; Pan, Ge-Sheng; Jia, Jian-Jun; Huang, Yong-Mei; Yin, Hao; Wang, Jian-Yu; Chen, Yu-Ao; Peng, Cheng-Zhi; Pan, Jian-Wei

    2012-08-09

    Transferring an unknown quantum state over arbitrary distances is essential for large-scale quantum communication and distributed quantum networks. It can be achieved with the help of long-distance quantum teleportation and entanglement distribution. The latter is also important for fundamental tests of the laws of quantum mechanics. Although quantum teleportation and entanglement distribution over moderate distances have been realized using optical fibre links, the huge photon loss and decoherence in fibres necessitate the use of quantum repeaters for larger distances. However, the practical realization of quantum repeaters remains experimentally challenging. Free-space channels, first used for quantum key distribution, offer a more promising approach because photon loss and decoherence are almost negligible in the atmosphere. Furthermore, by using satellites, ultra-long-distance quantum communication and tests of quantum foundations could be achieved on a global scale. Previous experiments have achieved free-space distribution of entangled photon pairs over distances of 600 metres (ref. 14) and 13 kilometres (ref. 15), and transfer of triggered single photons over a 144-kilometre one-link free-space channel. Most recently, following a modified scheme, free-space quantum teleportation over 16 kilometres was demonstrated with a single pair of entangled photons. Here we report quantum teleportation of independent qubits over a 97-kilometre one-link free-space channel with multi-photon entanglement. An average fidelity of 80.4 ± 0.9 per cent is achieved for six distinct states. Furthermore, we demonstrate entanglement distribution over a two-link channel, in which the entangled photons are separated by 101.8 kilometres. Violation of the Clauser-Horne-Shimony-Holt inequality is observed without the locality loophole. Besides being of fundamental interest, our results represent an important step towards a global quantum network. Moreover, the high

  5. On-chip generation of high-dimensional entangled quantum states and their coherent control.

    Science.gov (United States)

    Kues, Michael; Reimer, Christian; Roztocki, Piotr; Cortés, Luis Romero; Sciara, Stefania; Wetzel, Benjamin; Zhang, Yanbing; Cino, Alfonso; Chu, Sai T; Little, Brent E; Moss, David J; Caspani, Lucia; Azaña, José; Morandotti, Roberto

    2017-06-28

    Optical quantum states based on entangled photons are essential for solving questions in fundamental physics and are at the heart of quantum information science. Specifically, the realization of high-dimensional states (D-level quantum systems, that is, qudits, with D > 2) and their control are necessary for fundamental investigations of quantum mechanics, for increasing the sensitivity of quantum imaging schemes, for improving the robustness and key rate of quantum communication protocols, for enabling a richer variety of quantum simulations, and for achieving more efficient and error-tolerant quantum computation. Integrated photonics has recently become a leading platform for the compact, cost-efficient, and stable generation and processing of non-classical optical states. However, so far, integrated entangled quantum sources have been limited to qubits (D = 2). Here we demonstrate on-chip generation of entangled qudit states, where the photons are created in a coherent superposition of multiple high-purity frequency modes. In particular, we confirm the realization of a quantum system with at least one hundred dimensions, formed by two entangled qudits with D = 10. Furthermore, using state-of-the-art, yet off-the-shelf telecommunications components, we introduce a coherent manipulation platform with which to control frequency-entangled states, capable of performing deterministic high-dimensional gate operations. We validate this platform by measuring Bell inequality violations and performing quantum state tomography. Our work enables the generation and processing of high-dimensional quantum states in a single spatial mode.

  6. On-chip generation of high-dimensional entangled quantum states and their coherent control

    Science.gov (United States)

    Kues, Michael; Reimer, Christian; Roztocki, Piotr; Cortés, Luis Romero; Sciara, Stefania; Wetzel, Benjamin; Zhang, Yanbing; Cino, Alfonso; Chu, Sai T.; Little, Brent E.; Moss, David J.; Caspani, Lucia; Azaña, José; Morandotti, Roberto

    2017-06-01

    Optical quantum states based on entangled photons are essential for solving questions in fundamental physics and are at the heart of quantum information science. Specifically, the realization of high-dimensional states (D-level quantum systems, that is, qudits, with D > 2) and their control are necessary for fundamental investigations of quantum mechanics, for increasing the sensitivity of quantum imaging schemes, for improving the robustness and key rate of quantum communication protocols, for enabling a richer variety of quantum simulations, and for achieving more efficient and error-tolerant quantum computation. Integrated photonics has recently become a leading platform for the compact, cost-efficient, and stable generation and processing of non-classical optical states. However, so far, integrated entangled quantum sources have been limited to qubits (D = 2). Here we demonstrate on-chip generation of entangled qudit states, where the photons are created in a coherent superposition of multiple high-purity frequency modes. In particular, we confirm the realization of a quantum system with at least one hundred dimensions, formed by two entangled qudits with D = 10. Furthermore, using state-of-the-art, yet off-the-shelf telecommunications components, we introduce a coherent manipulation platform with which to control frequency-entangled states, capable of performing deterministic high-dimensional gate operations. We validate this platform by measuring Bell inequality violations and performing quantum state tomography. Our work enables the generation and processing of high-dimensional quantum states in a single spatial mode.

  7. Quantum-dot spin-photon entanglement via frequency downconversion to telecom wavelength.

    Science.gov (United States)

    De Greve, Kristiaan; Yu, Leo; McMahon, Peter L; Pelc, Jason S; Natarajan, Chandra M; Kim, Na Young; Abe, Eisuke; Maier, Sebastian; Schneider, Christian; Kamp, Martin; Höfling, Sven; Hadfield, Robert H; Forchel, Alfred; Fejer, M M; Yamamoto, Yoshihisa

    2012-11-15

    Long-distance quantum teleportation and quantum repeater technologies require entanglement between a single matter quantum bit (qubit) and a telecommunications (telecom)-wavelength photonic qubit. Electron spins in III-V semiconductor quantum dots are among the matter qubits that allow for the fastest spin manipulation and photon emission, but entanglement between a single quantum-dot spin qubit and a flying (propagating) photonic qubit has yet to be demonstrated. Moreover, many quantum dots emit single photons at visible to near-infrared wavelengths, where silica fibre losses are so high that long-distance quantum communication protocols become difficult to implement. Here we demonstrate entanglement between an InAs quantum-dot electron spin qubit and a photonic qubit, by frequency downconversion of a spontaneously emitted photon from a singly charged quantum dot to a wavelength of 1,560 nanometres. The use of sub-10-picosecond pulses at a wavelength of 2.2 micrometres in the frequency downconversion process provides the necessary quantum erasure to eliminate which-path information in the photon energy. Together with previously demonstrated indistinguishable single-photon emission at high repetition rates, the present technique advances the III-V semiconductor quantum-dot spin system as a promising platform for long-distance quantum communication.

  8. Generalised squeezing and information theory approach to quantum entanglement

    Science.gov (United States)

    Vourdas, A.

    1993-01-01

    It is shown that the usual one- and two-mode squeezing are based on reducible representations of the SU(1,1) group. Generalized squeezing is introduced with the use of different SU(1,1) rotations on each irreducible sector. Two-mode squeezing entangles the modes and information theory methods are used to study this entanglement. The entanglement of three modes is also studied with the use of the strong subadditivity property of the entropy.

  9. Quantum critical phase with infinite projected entangled paired states

    Science.gov (United States)

    Poilblanc, Didier; Mambrini, Matthieu

    2017-07-01

    A classification of SU(2)-invariant projected entangled paired states (PEPS) on the square lattice, based on a unique site tensor, has been recently introduced by Mambrini et al. [M. Mambrini, R. Orús, and D. Poilblanc, Phys. Rev. B 94, 205124 (2016), 10.1103/PhysRevB.94.205124]. It is not clear whether such SU(2)-invariant PEPS can either (i) exhibit long-range magnetic order (such as in the Néel phase) or (ii) describe a genuine quantum critical point (QCP) or quantum critical phase (QCPh) separating two ordered phases. Here, we identify a specific family of SU(2)-invariant PEPS of the classification which provides excellent variational energies for the J1-J2 frustrated Heisenberg model, especially at J2=0.5 , corresponding to the approximate location of the QCP or QCPh separating the Néel phase from a dimerized phase. The PEPS are built from virtual states belonging to the 1/2⊗N⊕0 SU(2) representation, i.e., with N "colors" of virtual spin-1/2 . Using a full-update infinite-PEPS approach directly in the thermodynamic limit, based on the corner transfer matrix renormalization algorithm supplemented by a conjugate gradient optimization scheme, we provide evidence of (i) the absence of magnetic order and of (ii) diverging correlation lengths (i.e., showing no sign of saturation with increasing environment dimension) in both the singlet and triplet channels, when the number of colors N ≥3 . We argue that such a PEPS gives a qualitative description of the QCP or QCPh of the J1-J2 model.

  10. Robust quantum entanglement generation and generation-plus-storage protocols with spin chains

    Science.gov (United States)

    Estarellas, Marta P.; D'Amico, Irene; Spiller, Timothy P.

    2017-04-01

    Reliable quantum communication and/or processing links between modules are a necessary building block for various quantum processing architectures. Here we consider a spin-chain system with alternating strength couplings and containing three defects, which impose three domain walls between topologically distinct regions of the chain. We show that—in addition to its useful, high-fidelity, quantum state transfer properties—an entangling protocol can be implemented in this system, with optional localization and storage of the entangled states. We demonstrate both numerically and analytically that, given a suitable initial product-state injection, the natural dynamics of the system produces a maximally entangled state at a given time. We present detailed investigations of the effects of fabrication errors, analyzing random static disorder both in the diagonal and off-diagonal terms of the system Hamiltonian. Our results show that the entangled state formation is very robust against perturbations of up to ˜10 % the weaker chain coupling, and also robust against timing injection errors. We propose a further protocol, which manipulates the chain in order to localize and store each of the entangled qubits. The engineering of a system with such characteristics would thus provide a useful device for quantum information processing tasks involving the creation and storage of entangled resources.

  11. Photonic entanglement-assisted quantum low-density parity-check encoders and decoders.

    Science.gov (United States)

    Djordjevic, Ivan B

    2010-05-01

    I propose encoder and decoder architectures for entanglement-assisted (EA) quantum low-density parity-check (LDPC) codes suitable for all-optical implementation. I show that two basic gates needed for EA quantum error correction, namely, controlled-NOT (CNOT) and Hadamard gates can be implemented based on Mach-Zehnder interferometer. In addition, I show that EA quantum LDPC codes from balanced incomplete block designs of unitary index require only one entanglement qubit to be shared between source and destination.

  12. Towards quantum optics and entanglement with electron spin ensembles in semiconductors

    NARCIS (Netherlands)

    van der Wal, Caspar H.; Sladkov, Maksym

    We discuss a technique and a material system that enable the controlled realization of quantum entanglement between spin-wave modes of electron ensembles in two spatially separated pieces of semiconductor material. The approach uses electron ensembles in GaAs quantum wells that are located inside

  13. Dynamical Relation between Quantum Squeezing and Entanglement in Coupled Harmonic Oscillator System

    Directory of Open Access Journals (Sweden)

    Lock Yue Chew

    2014-04-01

    Full Text Available In this paper, we investigate into the numerical and analytical relationship between the dynamically generated quadrature squeezing and entanglement within a coupled harmonic oscillator system. The dynamical relation between these two quantum features is observed to vary monotically, such that an enhancement in entanglement is attained at a fixed squeezing for a larger coupling constant. Surprisingly, the maximum attainable values of these two quantum entities are found to consistently equal to the squeezing and entanglement of the system ground state. In addition, we demonstrate that the inclusion of a small anharmonic perturbation has the effect of modifying the squeezing versus entanglement relation into a nonunique form and also extending the maximum squeezing to a value beyond the system ground state.

  14. Efficient scheme for hybrid teleportation via entangled coherent states in circuit quantum electrodynamics.

    Science.gov (United States)

    Joo, Jaewoo; Ginossar, Eran

    2016-06-01

    We propose a deterministic scheme for teleporting an unknown qubit state through continuous-variable entangled states in superconducting circuits. The qubit is a superconducting two-level system and the bipartite quantum channel is a microwave photonic entangled coherent state between two cavities. A Bell-type measurement performed on the hybrid state of solid and photonic states transfers a discrete-variable unknown electronic state to a continuous-variable photonic cat state in a cavity mode. In order to facilitate the implementation of such complex protocols we propose a design for reducing the self-Kerr nonlinearity in the cavity. The teleporation scheme enables quantum information processing operations with circuit-QED based on entangled coherent states. These include state verification and single-qubit operations with entangled coherent states. These are shown to be experimentally feasible with the state of the art superconducting circuits.

  15. Quantum entanglement in plasmonic waveguides with near-zero mode indices

    CERN Document Server

    Jin, Xing Ri; Yang, Xiaodong; Gao, Jie

    2013-01-01

    We investigate the quantum entanglement between two quantum dots in a plasmonic waveguide with near-zero mode index, considering the dependence of concurrence on interdot distance, quantum dot-waveguide frequency detuning and coupling strength ratio. High concurrence is achieved for a wide range of interdot distance due to the near-zero mode index, which largely relaxes the strict requirement of interdot distance in conventional dielectric waveguides or metal nanowires. The proposed quantum dot-waveguide system with near-zero phase variation along the waveguide near the mode cutoff frequency shows very promising potential in quantum optics and quantum information processing.

  16. Quantum entanglement with a hermite-gaussian pump; poster

    CSIR Research Space (South Africa)

    McLaren, M

    2013-07-01

    Full Text Available Typically, a Gaussian mode is used to pump a non-linear crystal to produce pairs of entangled photons. We demonstrate orbital angular momentum (OAM) entanglement when a non-fundamental mode is used to pump a non-linear crystal. An approximation...

  17. Measuring entanglement entropy of a generic many-body system with a quantum switch.

    Science.gov (United States)

    Abanin, Dmitry A; Demler, Eugene

    2012-07-13

    Entanglement entropy has become an important theoretical concept in condensed matter physics because it provides a unique tool for characterizing quantum mechanical many-body phases and new kinds of quantum order. However, the experimental measurement of entanglement entropy in a many-body system is widely believed to be unfeasible, owing to the nonlocal character of this quantity. Here, we propose a general method to measure the entanglement entropy. The method is based on a quantum switch (a two-level system) coupled to a composite system consisting of several copies of the original many-body system. The state of the switch controls how different parts of the composite system connect to each other. We show that, by studying the dynamics of the quantum switch only, the Rényi entanglement entropy of the many-body system can be extracted. We propose a possible design of the quantum switch, which can be realized in cold atomic systems. Our work provides a route towards testing the scaling of entanglement in critical systems as well as a method for a direct experimental detection of topological order.

  18. Entanglement of the quantum system with spin-spin coupling created by optical excitation

    Science.gov (United States)

    Fu, Chenghua

    2017-12-01

    In this paper, we investigate the quantum entanglement characteristics of the system consisting an intermediary molecule with an optically excited triplet and two bilateral spin-1/2 nucleons. The two nuclear spins both couple to the excitation state which is caused by a pulsed laser. We study the linear entropy and entangling power of the evolution operator acting on the product state of the system. We deduce the entangling power when the energy state has a uniform distribution, and we find that the entanglement of the system shows a certain stability. In this paper, several standard expressions are analyzed and calculated in detail, including the detailed solution for the quantum entropy as well as the calculation of the linear entropy and entangling power, which are based on this solution. In comparing the linear entropy and entangling power, we find that the latter is the average of the former. Subsequently, we present an alternative derivation of the evolution operator and find that the result is consistent with that of the traditional method. When the evolution operator acts on the average of the product states, the entangling power of the evolution operator presents a distinct changing trend.

  19. Entanglement of Macroscopic Test Masses and the Standard Quantum Limit in Laser Interferometry

    Science.gov (United States)

    Müller-Ebhardt, Helge; Rehbein, Henning; Schnabel, Roman; Danzmann, Karsten; Chen, Yanbei

    2008-01-01

    We show that the generation of entanglement of two heavily macroscopic mirrors is feasible with state of the art techniques of high-precision laser interferometry. The basis of such a demonstration would be a Michelson interferometer with suspended mirrors and simultaneous homodyne detections at both interferometer output ports. We present the connection between the generation of entanglement and the standard quantum limit (SQL) for a free mass. The SQL is a well-known reference limit in operating interferometers for gravitational-wave detection and provides a measure of when macroscopic entanglement can be observed in the presence of realistic decoherence processes.

  20. Protocol for generating multiphoton entangled states from quantum dots in the presence of nuclear spin fluctuations

    DEFF Research Database (Denmark)

    Denning, Emil Vosmar; Iles-Smith, Jake; McCutcheon, Dara P. S.

    2017-01-01

    Multiphoton entangled states are a crucial resource for many applications inquantum information science. Semiconductor quantum dots offer a promising route to generate such states by mediating photon-photon correlations via a confinedelectron spin, but dephasing caused by the host nuclear spin...... environment typically limits coherence (and hence entanglement) between photons to the spin T2* time of a few nanoseconds. We propose a protocol for the deterministic generation of multiphoton entangled states that is inherently robust against the dominating slow nuclear spin environment fluctuations, meaning...... or nuclear spin calming techniques....

  1. Greenberger-Horne-Zeilinger states-based blind quantum computation with entanglement concentration.

    Science.gov (United States)

    Zhang, Xiaoqian; Weng, Jian; Lu, Wei; Li, Xiaochun; Luo, Weiqi; Tan, Xiaoqing

    2017-09-11

    In blind quantum computation (BQC) protocol, the quantum computability of servers are complicated and powerful, while the clients are not. It is still a challenge for clients to delegate quantum computation to servers and keep the clients' inputs, outputs and algorithms private. Unfortunately, quantum channel noise is unavoidable in the practical transmission. In this paper, a novel BQC protocol based on maximally entangled Greenberger-Horne-Zeilinger (GHZ) states is proposed which doesn't need a trusted center. The protocol includes a client and two servers, where the client only needs to own quantum channels with two servers who have full-advantage quantum computers. Two servers perform entanglement concentration used to remove the noise, where the success probability can almost reach 100% in theory. But they learn nothing in the process of concentration because of the no-signaling principle, so this BQC protocol is secure and feasible.

  2. Black hole horizon as an entanglement shield: implication from the life and death of quantum entanglement in three accelerating qubits coupled with scalar fields

    CERN Document Server

    Dai, Yue; Shi, Yu

    2015-01-01

    We consider quantum entanglement of three accelerating qubits, each of which is locally coupled with a real scalar field, without causal influence among the qubits or among the fields. The initial state is assumed to be the GHZ or the W state, the two representative three-partite entangled states. For each initial state, we study how various kinds of entanglement depend on the accelerations of the three qubits. All kinds of entanglement eventually suddenly die if at least two of three qubits have large enough accelerations. This result implies eventual sudden death of all kinds of entanglement among field-coupled particles sufficiently close to the horizon of a black hole, which is thus an entanglement shield.

  3. NATO Advanced Research Workshop on Decoherence, Entanglement and Information Protection in Complex Quantum Systems

    CERN Document Server

    Akulin, V.M; Kurizki, G; Pellegrin, S

    2005-01-01

    This book is a collection of articles on the contemporary status of quantum mechanics, dedicated to the fundamental issues of entanglement, decoherence, irreversibility, information processing, and control of quantum evolution, with a view of possible applications. It has multidisciplinary character and is addressed at a broad readership in physics, computer science, chemistry, and electrical engineering. It is written by the world-leading experts in pertinent fields such as quantum computing, atomic, molecular and optical physics, condensed matter physics, and statistical physics.

  4. An Improved Quantum Proxy Blind Signature Scheme Based on Genuine Seven-Qubit Entangled State

    Science.gov (United States)

    Yang, Yuan-Yuan; Xie, Shu-Cui; Zhang, Jian-Zhong

    2017-07-01

    An improved quantum proxy blind signature scheme based on controlled teleportation is proposed in this paper. Genuine seven-qubit entangled state functions as quantum channel. We use the physical characteristics of quantum mechanics to implement delegation, signature and verification. Security analysis shows that our scheme is unforgeability, undeniability, blind and unconditionally secure. Meanwhile, we propose a trust party to provide higher security, the trust party is costless.

  5. Experimental quantum Zeno effect in NMR with entanglement-based measurement

    OpenAIRE

    Zheng, Wenqiang; Xu, D. Z.; Peng, Xinhua; Zhou, Xianyi; Du, Jiangfeng; Sun, C. P.

    2013-01-01

    We experimentally demonstrate a new dynamic fashion of quantum Zeno effect in nuclear magnetic resonance systems. The frequent measurements are implemented through quantum entanglement between the target qubit(s) and the measuring qubit, which dynamically results from the unitary evolution of duration $\\tau_{m}$ due to dispersive-coupling. Experimental results testify the presence of "the critical measurement time effect", that is, the quantum Zeno effect does not occur when $\\tau_{m}$ takes ...

  6. Deterministic entanglement distillation for secure double-server blind quantum computation

    Science.gov (United States)

    Sheng, Yu-Bo; Zhou, Lan

    2015-01-01

    Blind quantum computation (BQC) provides an efficient method for the client who does not have enough sophisticated technology and knowledge to perform universal quantum computation. The single-server BQC protocol requires the client to have some minimum quantum ability, while the double-server BQC protocol makes the client's device completely classical, resorting to the pure and clean Bell state shared by two servers. Here, we provide a deterministic entanglement distillation protocol in a practical noisy environment for the double-server BQC protocol. This protocol can get the pure maximally entangled Bell state. The success probability can reach 100% in principle. The distilled maximally entangled states can be remaind to perform the BQC protocol subsequently. The parties who perform the distillation protocol do not need to exchange the classical information and they learn nothing from the client. It makes this protocol unconditionally secure and suitable for the future BQC protocol. PMID:25588565

  7. Controllable high-fidelity quantum state transfer and entanglement generation in circuit QED.

    Science.gov (United States)

    Xu, Peng; Yang, Xu-Chen; Mei, Feng; Xue, Zheng-Yuan

    2016-01-25

    We propose a scheme to realize controllable quantum state transfer and entanglement generation among transmon qubits in the typical circuit QED setup based on adiabatic passage. Through designing the time-dependent driven pulses applied on the transmon qubits, we find that fast quantum sate transfer can be achieved between arbitrary two qubits and quantum entanglement among the qubits also can also be engineered. Furthermore, we numerically analyzed the influence of the decoherence on our scheme with the current experimental accessible systematical parameters. The result shows that our scheme is very robust against both the cavity decay and qubit relaxation, the fidelities of the state transfer and entanglement preparation process could be very high. In addition, our scheme is also shown to be insensitive to the inhomogeneous of qubit-resonator coupling strengths.

  8. Controllable high-fidelity quantum state transfer and entanglement generation in circuit QED

    Science.gov (United States)

    Xu, Peng; Yang, Xu-Chen; Mei, Feng; Xue, Zheng-Yuan

    2016-01-01

    We propose a scheme to realize controllable quantum state transfer and entanglement generation among transmon qubits in the typical circuit QED setup based on adiabatic passage. Through designing the time-dependent driven pulses applied on the transmon qubits, we find that fast quantum sate transfer can be achieved between arbitrary two qubits and quantum entanglement among the qubits also can also be engineered. Furthermore, we numerically analyzed the influence of the decoherence on our scheme with the current experimental accessible systematical parameters. The result shows that our scheme is very robust against both the cavity decay and qubit relaxation, the fidelities of the state transfer and entanglement preparation process could be very high. In addition, our scheme is also shown to be insensitive to the inhomogeneous of qubit-resonator coupling strengths. PMID:26804326

  9. Gravitationally Induced Entanglement between Two Massive Particles is Sufficient Evidence of Quantum Effects in Gravity.

    Science.gov (United States)

    Marletto, C; Vedral, V

    2017-12-15

    All existing quantum-gravity proposals are extremely hard to test in practice. Quantum effects in the gravitational field are exceptionally small, unlike those in the electromagnetic field. The fundamental reason is that the gravitational coupling constant is about 43 orders of magnitude smaller than the fine structure constant, which governs light-matter interactions. For example, detecting gravitons-the hypothetical quanta of the gravitational field predicted by certain quantum-gravity proposals-is deemed to be practically impossible. Here we adopt a radically different, quantum-information-theoretic approach to testing quantum gravity. We propose witnessing quantumlike features in the gravitational field, by probing it with two masses each in a superposition of two locations. First, we prove that any system (e.g., a field) mediating entanglement between two quantum systems must be quantum. This argument is general and does not rely on any specific dynamics. Then, we propose an experiment to detect the entanglement generated between two masses via gravitational interaction. By our argument, the degree of entanglement between the masses is a witness of the field quantization. This experiment does not require any quantum control over gravity. It is also closer to realization than detecting gravitons or detecting quantum gravitational vacuum fluctuations.

  10. Gravitationally Induced Entanglement between Two Massive Particles is Sufficient Evidence of Quantum Effects in Gravity

    Science.gov (United States)

    Marletto, C.; Vedral, V.

    2017-12-01

    All existing quantum-gravity proposals are extremely hard to test in practice. Quantum effects in the gravitational field are exceptionally small, unlike those in the electromagnetic field. The fundamental reason is that the gravitational coupling constant is about 43 orders of magnitude smaller than the fine structure constant, which governs light-matter interactions. For example, detecting gravitons—the hypothetical quanta of the gravitational field predicted by certain quantum-gravity proposals—is deemed to be practically impossible. Here we adopt a radically different, quantum-information-theoretic approach to testing quantum gravity. We propose witnessing quantumlike features in the gravitational field, by probing it with two masses each in a superposition of two locations. First, we prove that any system (e.g., a field) mediating entanglement between two quantum systems must be quantum. This argument is general and does not rely on any specific dynamics. Then, we propose an experiment to detect the entanglement generated between two masses via gravitational interaction. By our argument, the degree of entanglement between the masses is a witness of the field quantization. This experiment does not require any quantum control over gravity. It is also closer to realization than detecting gravitons or detecting quantum gravitational vacuum fluctuations.

  11. Entanglement guarantees emergence of cooperation in quantum prisoner's dilemma games on networks.

    Science.gov (United States)

    Li, Angsheng; Yong, Xi

    2014-09-05

    It was known that cooperation of evolutionary prisoner's dilemma games fails to emerge in homogenous networks such as random graphs. Here we proposed a quantum prisoner's dilemma game. The game consists of two players, in which each player has three choices of strategy: cooperator (C), defector (D) and super cooperator (denoted by Q). We found that quantum entanglement guarantees emergence of a new cooperation, the super cooperation of the quantum prisoner's dilemma games, and that entanglement is the mechanism of guaranteed emergence of cooperation of evolutionary prisoner's dilemma games on networks. We showed that for a game with temptation b, there exists a threshold arccos √b/b for a measurement of entanglement, beyond which, (super) cooperation of evolutionary quantum prisoner's dilemma games is guaranteed to quickly emerge, giving rise to stochastic convergence of the cooperations, that if the entanglement degree γ is less than the threshold arccos √b/b, then the equilibrium frequency of cooperations of the games is positively correlated to the entanglement degree γ, and that if γ is less than arccos √b/b and b is beyond some boundary, then the equilibrium frequency of cooperations of the games on random graphs decreases as the average degree of the graphs increases.

  12. Error Free Quantum Reading by Quasi Bell State of Entangled Coherent States

    Science.gov (United States)

    Hirota, Osamu

    2017-12-01

    Nonclassical states of light field have been exploited to provide marvellous results in quantum information science. Usefulness of nonclassical states in quantum information science depends on whether a physical parameter as a signal is continuous or discrete. Here we present an investigation of the potential of quasi Bell states of entangled coherent states in quantum reading of the classical digital memory which was pioneered by Pirandola (Phys.Rev.Lett.,106,090504,2011). This is a typical example of discrimination for discrete quantum parameters. We show that the quasi Bell state gives the error free performance in the quantum reading that cannot be obtained by any classical state.

  13. Experimental demonstration of a compiled version of Shor's algorithm with quantum entanglement.

    Science.gov (United States)

    Lanyon, B P; Weinhold, T J; Langford, N K; Barbieri, M; James, D F V; Gilchrist, A; White, A G

    2007-12-21

    Shor's powerful quantum algorithm for factoring represents a major challenge in quantum computation. Here, we implement a compiled version in a photonic system. For the first time, we demonstrate the core processes, coherent control, and resultant entangled states required in a full-scale implementation. These are necessary steps on the path towards scalable quantum computing. Our results highlight that the algorithm performance is not the same as that of the underlying quantum circuit and stress the importance of developing techniques for characterizing quantum algorithms.

  14. Photon exchange and entanglement formation during transmission through a rectangular quantum barrier.

    Science.gov (United States)

    Sulyok, Georg; Durstberger-Rennhofer, Katharina; Summhammer, Johann

    2015-09-04

    When a quantum particle traverses a rectangular potential created by a quantum field both photon exchange and entanglement between particle and field take place. We present the full analytic solution of the Schrödinger equation of the composite particle-field system allowing investigation of these phenomena in detail and comparison to the results of a classical field treatment. Besides entanglement formation, remarkable differences also appear with respect to the symmetry between energy emission and absorption, resonance effects and if the field initially occupies the vacuum state.

  15. Entanglement-Seeded-Dual Optical Parametric Amplification: Applications to Quantum Communication, Imaging, and Metrology

    OpenAIRE

    Glasser, Ryan T.; Cable, Hugo; Dowling, Jonathan P.; De Martini, Francesco; Sciarrino, Fabio; Vitelli, Chiara

    2008-01-01

    The study of optical parametric amplifiers (OPAs) has been successful in describing and creating nonclassical light for use in fields such as quantum metrology and quantum lithography [Agarwal, et al., J. Opt. Soc. Am. B, 24, 2 (2007)]. In this paper we present the theory of an OPA scheme utilizing an entangled state input. The scheme involves two identical OPAs seeded with the maximally path-entangled N00N state (|2,0>+|0,2>)/sqrt{2}. The stimulated amplification results in output state prob...

  16. A quantum-information theoretic analysis of three-flavor neutrino oscillations: Quantum entanglement, nonlocal and nonclassical features of neutrinos.

    Science.gov (United States)

    Banerjee, Subhashish; Alok, Ashutosh Kumar; Srikanth, R; Hiesmayr, Beatrix C

    Correlations exhibited by neutrino oscillations are studied via quantum-information theoretic quantities. We show that the strongest type of entanglement, genuine multipartite entanglement, is persistent in the flavor changing states. We prove the existence of Bell-type nonlocal features, in both its absolute and genuine avatars. Finally, we show that a measure of nonclassicality, dissension, which is a generalization of quantum discord to the tripartite case, is nonzero for almost the entire range of time in the evolution of an initial electron-neutrino. Via these quantum-information theoretic quantities, capturing different aspects of quantum correlations, we elucidate the differences between the flavor types, shedding light on the quantum-information theoretic aspects of the weak force.

  17. A quantum-information theoretic analysis of three-flavor neutrino oscillations. Quantum entanglement, nonlocal and nonclassical features of neutrinos

    Energy Technology Data Exchange (ETDEWEB)

    Banerjee, Subhashish; Alok, Ashutosh Kumar [Indian Institute of Technology Jodhpur, Jodhpur (India); Srikanth, R. [Poornaprajna Institute of Scientific Research, Banglore (India); Hiesmayr, Beatrix C. [University of Vienna, Vienna (Austria)

    2015-10-15

    Correlations exhibited by neutrino oscillations are studied via quantum-information theoretic quantities. We show that the strongest type of entanglement, genuine multipartite entanglement, is persistent in the flavor changing states. We prove the existence of Bell-type nonlocal features, in both its absolute and genuine avatars. Finally, we show that a measure of nonclassicality, dissension, which is a generalization of quantum discord to the tripartite case, is nonzero for almost the entire range of time in the evolution of an initial electron-neutrino. Via these quantum-information theoretic quantities, capturing different aspects of quantum correlations, we elucidate the differences between the flavor types, shedding light on the quantum-information theoretic aspects of the weak force. (orig.)

  18. Distribution of continuous variable quantum entanglement at a telecommunication wavelength over 20  km of optical fiber.

    Science.gov (United States)

    Feng, Jinxia; Wan, Zhenju; Li, Yuanji; Zhang, Kuanshou

    2017-09-01

    The distribution of continuous variable (CV) Einstein-Podolsky-Rosen (EPR)-entangled beams at a telecommunication wavelength of 1550 nm over single-mode fibers is investigated. EPR-entangled beams with quantum entanglement of 8.3 dB are generated using a single nondegenerate optical parametric amplifier based on a type-II periodically poled KTiOPO4 crystal. When one beam of the generated EPR-entangled beams is distributed over 20 km of single-mode fiber, 1.02 dB quantum entanglement can still be measured. The degradation of CV quantum entanglement in a noisy fiber channel is theoretically analyzed considering the effect of depolarized guided acoustic wave Brillouin scattering in optical fibers. The theoretical prediction is in good agreement with the experimental results.

  19. Efficient shortcuts to adiabatic passage for three-dimensional entanglement generation via transitionless quantum driving.

    Science.gov (United States)

    He, Shuang; Su, Shi-Lei; Wang, Dong-Yang; Sun, Wen-Mei; Bai, Cheng-Hua; Zhu, Ai-Dong; Wang, Hong-Fu; Zhang, Shou

    2016-08-08

    We propose an effective scheme of shortcuts to adiabaticity for generating a three-dimensional entanglement of two atoms trapped in a cavity using the transitionless quantum driving (TQD) approach. The key point of this approach is to construct an effective Hamiltonian that drives the dynamics of a system along instantaneous eigenstates of a reference Hamiltonian to reproduce the same final state as that of an adiabatic process within a much shorter time. In this paper, the shortcuts to adiabatic passage are constructed by introducing two auxiliary excited levels in each atom and applying extra cavity modes and classical fields to drive the relevant transitions. Thereby, the three-dimensional entanglement is obtained with a faster rate than that in the adiabatic passage. Moreover, the influences of atomic spontaneous emission and photon loss on the fidelity are discussed by numerical simulation. The results show that the speed of entanglement implementation is greatly improved by the use of adiabatic shortcuts and that this entanglement implementation is robust against decoherence. This will be beneficial to the preparation of high-dimensional entanglement in experiment and provides the necessary conditions for the application of high-dimensional entangled states in quantum information processing.

  20. Quantum entanglement between electronic and vibrational degrees of freedom in molecules.

    Science.gov (United States)

    McKemmish, Laura K; McKenzie, Ross H; Hush, Noel S; Reimers, Jeffrey R

    2011-12-28

    We consider the quantum entanglement of the electronic and vibrational degrees of freedom in molecules with tendencies towards double welled potentials. In these bipartite systems, the von Neumann entropy of the reduced density matrix is used to quantify the electron-vibration entanglement for the lowest two vibronic wavefunctions obtained from a model Hamiltonian based on coupled harmonic diabatic potential-energy surfaces. Significant entanglement is found only in the region in which the ground vibronic state contains a density profile that is bimodal (i.e., contains two separate local maxima). However, in this region two distinct types of density and entanglement profiles are found: one type arises purely from the degeneracy of energy levels in the two potential wells and is destroyed by slight asymmetry, while the other arises through strong interactions between the diabatic levels of each well and is relatively insensitive to asymmetry. These two distinct types are termed fragile degeneracy-induced entanglement and persistent entanglement, respectively. Six classic molecular systems describable by two diabatic states are considered: ammonia, benzene, BNB, pyridine excited triplet states, the Creutz-Taube ion, and the radical cation of the "special pair" of chlorophylls involved in photosynthesis. These chemically diverse systems are all treated using the same general formalism and the nature of the entanglement that they embody is elucidated.

  1. Entanglement of a two-atom system driven by the quantum vacuum in arbitrary cavity size

    Energy Technology Data Exchange (ETDEWEB)

    Flores-Hidalgo, G., E-mail: gfloreshidalgo@unifei.edu.br [Instituto de Física e Química, Universidade Federal de Itajubá, 37500-903, Itajubá, MG (Brazil); Rojas, M., E-mail: moises.leyva@dfi.ufla.br [Departamento de Física, Universidade Federal de Lavras, CP 3037, 37200-000, Lavras, MG (Brazil); Rojas, Onofre, E-mail: ors@dfi.ufla.br [Departamento de Física, Universidade Federal de Lavras, CP 3037, 37200-000, Lavras, MG (Brazil)

    2017-05-10

    We study the entanglement dynamics of two distinguishable atoms confined into a cavity and interacting with a quantum vacuum field. As a simplified model for this system, we consider two harmonic oscillators linearly coupled to a massless scalar field which are inside a spherical cavity of radius R. Through the concurrence, the entanglement dynamics for the two-atom system is discussed for a range of initial states composed of a superposition of atomic states. Our results reveal how the entanglement of the two atoms behaves through the time evolution, in a precise way, for arbitrary cavity size and for arbitrary coupling constant. All our computations are analytical and only the final step is numerical. - Highlights: • Entanglement time evolution in arbitrary cavity size is considered. • In free space concurrence approaches a fixed value at large time. • For finite cavity, concurrence behaves almost as a periodic function of time.

  2. Entangled States and Quantum Causality Threshold in General Theory of Relativity

    Science.gov (United States)

    Rabounski, Dmitri; Smarandache, Florentin

    2009-10-01

    This article shows, Synge-Weber's classical problem statement about two particles interacting by a signal can be reduced to the case where the same particle is located in two different points A and B of the basic space-time in the same moment of time, so the states A and B are entangled. This particle, being actual two particles in the entangled states A and B, can interact with itself radiating a photon (signal) in the point A and absorbing it in the point B. That is our goal, to introduce entangled states into General Relativity. Under specific physical conditions the entangled particles in General Relativity can reach a state where neither particle A nor particle B can be the cause of future events. We call this specific state Quantum Causality Threshold.

  3. Spin correlation tensor for measurement of quantum entanglement in electron-electron scattering

    Science.gov (United States)

    Tsurikov, D. E.; Samarin, S. N.; Williams, J. F.; Artamonov, O. M.

    2017-04-01

    We consider the problem of correct measurement of a quantum entanglement in the two-body electron-electron scattering. An expression is derived for a spin correlation tensor of a pure two-electron state. A geometric measure of a quantum entanglement as the distance between two forms of this tensor in entangled and separable cases is presented. Due to such definition, one does not need to look for the closest separable state to the analyzed state. We prove that introduced measure satisfies properties of a valid entanglement measure: nonnegativity, discriminance, normalization, non-growth under local operations and classical communication. This measure is calculated for a problem of electron-electron scattering. We prove that it does not depend on the azimuthal rotation angle of the second electron spin relative to the first electron spin before scattering. We specify how to find a spin correlation tensor and the related measure of a quantum entanglement in an experiment with electron-electron scattering. Finally, the introduced measure is extended to the mixed states.

  4. Quantum correlation of path-entangled two-photon states in waveguide arrays with defects

    Directory of Open Access Journals (Sweden)

    Yiling Dou

    2014-04-01

    Full Text Available We study the quantum correlation of path-entangled states of two photons in coupled one-dimensional waveguide arrays with lattice defects. Both off-diagonal and diagonal defects are considered, which show different effects on the quantum correlation of path-entangled two-photon states. Two-photon bunching or anti-bunching effects can be observed and controlled. The two photons are found to have a tendency to bunch at the side lobes with a repulsive off-diagonal defect, and the path-entanglement of the input two-photon state can be preserved during the propagation. We also found that defect modes may play an important role on the two-photon correlation of path-entangled states in the waveguide arrays. Due to the quantum interference effect, intriguing evolution dynamics of the two-photon correlation matrix elements with oscillation frequencies being either twice of or the same as that of a classical light wave, depending on the position of the correlation matrix element, is observed. Our results show that it is possible to manipulate the two-photon correlation properties of path-entangled states in waveguide arrays with lattice defects.

  5. Room-temperature storage of quantum entanglement using decoherence-free subspace in a solid-state spin system

    Science.gov (United States)

    Wang, F.; Huang, Y.-Y.; Zhang, Z.-Y.; Zu, C.; Hou, P.-Y.; Yuan, X.-X.; Wang, W.-B.; Zhang, W.-G.; He, L.; Chang, X.-Y.; Duan, L.-M.

    2017-10-01

    We experimentally demonstrate room-temperature storage of quantum entanglement using two nuclear spins weakly coupled to the electronic spin carried by a single nitrogen-vacancy center in diamond. We realize universal quantum gate control over the three-qubit spin system and produce entangled states in the decoherence-free subspace of the two nuclear spins. By injecting arbitrary collective noise, we demonstrate that the decoherence-free entangled state has coherence time longer than that of other entangled states by an order of magnitude in our experiment.

  6. Data fusion in entangled networks of quantum sensors

    Science.gov (United States)

    Lanzagorta, Marco; Jitrik, Oliverio; Uhlmann, Jeffrey; Venegas-Andraca, Salvador E.

    2017-05-01

    In this paper we discuss two potential areas of intersection between Quantum Information Technologies and Information Fusion. The first area we call Quantum (Data Fusion) and refers to the use of quantum computers to perform data fusion algorithms with classical data generated by quantum and classical sensors. As we discuss, we expect that these quantum fusion algorithms will have a better computational complexity than traditional fusion algorithms. This means that quantum computers could allow the efficient fusion of large data sets for complex multi-target tracking. On the other hand, (Quantum Data) Fusion refers to the fusion of quantum data that is being generated by quantum sensors. The output of the quantum sensors is considered in the form of qubits, and a quantum computer performs data fusion algorithms. Our theoretical models suggest that we expect that these algorithms can increase the sensitivity of the quantum sensor network.

  7. Quantum coherence and entanglement preservation in Markovian and non-Markovian dynamics via additional qubits

    Science.gov (United States)

    Behzadi, Naghi; Ahansaz, Bahram; Faizi, Esfandyar

    2017-11-01

    In this paper, we investigate preservation of quantum coherence of a single-qubit interacting with a zero-temperature reservoir through the addition of non-interacting qubits in the reservoir. Moreover, we extend this scheme to preserve quantum entanglement between two and three distant qubits, each of which interacts with a dissipative reservoir independently. At the limit t → ∞, we obtained analytical expressions for the coherence measure and the concurrence of two and three qubits in terms of the number of additional qubits. It is observed that, by increasing the number of additional qubits in each reservoir, the initial coherence and the respective entanglements are completely protected in both Markovian and non-Markovian regimes. Interestingly, the protection of entanglements occurs even under the individually different behaviors of the reservoirs.

  8. Multiplexing scheme for simplified entanglement-based large-alphabet quantum key distribution

    Science.gov (United States)

    Dada, Adetunmise C.

    2015-05-01

    We propose a practical quantum cryptographic scheme which combines high information capacity, such as provided by high-dimensional quantum entanglement, with the simplicity of a two-dimensional Clauser-Horne-Shimony-Holt (CHSH) Bell test for security verification. By applying a state combining entanglement in a two-dimensional degree of freedom, such as photon polarization, with high-dimensional correlations in another degree of freedom, such as photon orbital angular momentum (OAM) or path, the scheme provides a considerably simplified route towards security verification in quantum key distribution (QKD) aimed at exploiting high-dimensional quantum systems for increased secure key rates. It also benefits from security against collective attacks and is feasible using currently available technologies.

  9. Quantum entanglement at high temperatures? Bosonic systems in nonequilibrium steady state

    Energy Technology Data Exchange (ETDEWEB)

    Hsiang, Jen-Tsung [Center for Field Theory and Particle Physics, Department of Physics, Fudan University,Shanghai 200433 (China); Hu, B.L. [Center for Field Theory and Particle Physics, Department of Physics, Fudan University,Shanghai 200433 (China); Joint Quantum Institute and Maryland Center for Fundamental Physics, University of Maryland,College Park, Maryland 20742 (United States)

    2015-11-13

    This is the second of a series of three papers examining how viable it is for entanglement to be sustained at high temperatures for quantum systems in thermal equilibrium (Case A), in nonequilibrium (Case B) and in nonequilibrium steady state (NESS) conditions (Case C). The system we analyze here consists of two coupled quantum harmonic oscillators each interacting with its own bath described by a scalar field, set at temperatures T{sub 1}>T{sub 2}. For constant bilinear inter-oscillator coupling studied here (Case C1) owing to the Gaussian nature, the problem can be solved exactly at arbitrary temperatures even for strong coupling. We find that the valid entanglement criterion in general is not a function of the bath temperature difference, in contrast to thermal transport in the same NESS setting http://arxiv.org/abs/1405.7642. Thus lowering the temperature of one of the thermal baths does not necessarily help to safeguard the entanglement between the oscillators. Indeed, quantum entanglement will disappear if any one of the thermal baths has a temperature higher than the critical temperature T{sub c}, defined as the temperature above which quantum entanglement vanishes. With the Langevin equations derived we give a full display of how entanglement dynamics in this system depends on T{sub 1}, T{sub 2}, the inter-oscillator coupling and the system-bath coupling strengths. For weak oscillator-bath coupling the critical temperature T{sub c} is about the order of the inverse oscillator frequency, but for strong oscillator-bath coupling it will depend on the bath cutoff frequency. We conclude that in most realistic circumstances, for bosonic systems in NESS with constant bilinear coupling, ‘hot entanglement’ is largely a fiction.

  10. An Information Geometric Analysis of Entangled Continuous Variable Quantum Systems

    Energy Technology Data Exchange (ETDEWEB)

    Kim, D-H [Institute for the Early Universe, Ewha Womans University, Seoul 120-750 (Korea, Republic of); Ali, S A [Department of Physics, State University of New York at Albany, 1400 Washington Avenue, Albany, NY 12222 (United States); Cafaro, C; Mancini, S [School of Science and Technology, Physics Division, University of Camerino, I-62032 Camerino (Italy)

    2011-07-08

    In this work, using information geometric (IG) techniques, we investigate the effects of micro-correlations on the evolution of maximal probability paths on statistical manifolds induced by systems whose microscopic degrees of freedom are Gaussian distributed. Analytical estimates of the information geometric entropy (IGE) as well as the IG analogue of the Lyapunov exponents are presented. It is shown that the entanglement duration is related to the scattering potential and incident particle energies. Finally, the degree of entanglement generated by an s-wave scattering event between minimum uncertainty wave-packets is computed in terms of the purity of the system.

  11. Role of an elliptical structure in photosynthetic energy transfer: Collaboration between quantum entanglement and thermal fluctuation.

    Science.gov (United States)

    Oka, Hisaki

    2016-05-13

    Recent experiments have revealed that the light-harvesting complex 1 (LH1) in purple photosynthetic bacteria has an elliptical structure. Generally, symmetry lowering in a structure leads to a decrease in quantum effects (quantum coherence and entanglement), which have recently been considered to play a role in photosynthetic energy transfer, and hence, elliptical structure seems to work against efficient photosynthetic energy transfer. Here we analyse the effect of an elliptical structure on energy transfer in a purple photosynthetic bacterium and reveal that the elliptical distortion rather enhances energy transfer from peripheral LH2 to LH1 at room temperature. Numerical results show that quantum entanglement between LH1 and LH2 is formed over a wider range of high energy levels than would have been the case with circular LH1. Light energy absorbed by LH2 is thermally pumped via thermal fluctuation and is effectively transferred to LH1 through the entangled states at room temperature rather than at low temperature. This result indicates the possibility that photosynthetic systems adopt an elliptical structure to effectively utilise both quantum entanglement and thermal fluctuation at physiological temperature.

  12. Entanglement in quantum computers described by the XXZ model with defects

    OpenAIRE

    Santos, L. F.

    2003-01-01

    We investigate how to generate maximally entangled states in systems characterized by the Hamiltonian of the XXZ model with defects. Some proposed quantum computers are described by such model. We show how the defects can be used to obtain EPR states and W states when one or two excitations are considered.

  13. Entanglement perturbation theory for the quantum ground states in two dimensions

    OpenAIRE

    Chung, S. G.; Ueda, K.

    2010-01-01

    A simple, general and practically exact method, Entanglement Perturbation Theory (EPT), is formulated to calculate the ground states of 2D macroscopic quantum systems with translational symmetry. An emphasis will be placed on the applicability of EPT to fermions. We will discuss some preliminary evidences which indicate a potential of EPT.

  14. Generating Entanglement and Squeezed States of Nuclear Spins in Quantum Dots

    NARCIS (Netherlands)

    Rudner, M.S.; Vandersypen, L.M.K.; Vuletic, V.; Levitov, L.S.

    2011-01-01

    We present a scheme for achieving coherent spin squeezing of nuclear spin states in semiconductor quantum dots. The nuclear polarization dependence of the electron spin resonance generates a unitary evolution that drives nuclear spins into a collective entangled state. The polarization dependence of

  15. Routing protocol for wireless quantum multi-hop mesh backbone network based on partially entangled GHZ state

    Science.gov (United States)

    Xiong, Pei-Ying; Yu, Xu-Tao; Zhang, Zai-Chen; Zhan, Hai-Tao; Hua, Jing-Yu

    2017-08-01

    Quantum multi-hop teleportation is important in the field of quantum communication. In this study, we propose a quantum multi-hop communication model and a quantum routing protocol with multihop teleportation for wireless mesh backbone networks. Based on an analysis of quantum multi-hop protocols, a partially entangled Greenberger-Horne-Zeilinger (GHZ) state is selected as the quantum channel for the proposed protocol. Both quantum and classical wireless channels exist between two neighboring nodes along the route. With the proposed routing protocol, quantum information can be transmitted hop by hop from the source node to the destination node. Based on multi-hop teleportation based on the partially entangled GHZ state, a quantum route established with the minimum number of hops. The difference between our routing protocol and the classical one is that in the former, the processes used to find a quantum route and establish quantum channel entanglement occur simultaneously. The Bell state measurement results of each hop are piggybacked to quantum route finding information. This method reduces the total number of packets and the magnitude of air interface delay. The deduction of the establishment of a quantum channel between source and destination is also presented here. The final success probability of quantum multi-hop teleportation in wireless mesh backbone networks was simulated and analyzed. Our research shows that quantum multi-hop teleportation in wireless mesh backbone networks through a partially entangled GHZ state is feasible.

  16. Modular entanglement.

    Science.gov (United States)

    Gualdi, Giulia; Giampaolo, Salvatore M; Illuminati, Fabrizio

    2011-02-04

    We introduce and discuss the concept of modular entanglement. This is the entanglement that is established between the end points of modular systems composed by sets of interacting moduli of arbitrarily fixed size. We show that end-to-end modular entanglement scales in the thermodynamic limit and rapidly saturates with the number of constituent moduli. We clarify the mechanisms underlying the onset of entanglement between distant and noninteracting quantum systems and its optimization for applications to quantum repeaters and entanglement distribution and sharing.

  17. Transmission of photonic quantum polarization entanglement in a nanoscale hybrid plasmonic waveguide.

    Science.gov (United States)

    Li, Ming; Zou, Chang-Ling; Ren, Xi-Feng; Xiong, Xiao; Cai, Yong-Jing; Guo, Guo-Ping; Tong, Li-Min; Guo, Guang-Can

    2015-04-08

    Photonic quantum technologies have been extensively studied in quantum information science, owing to the high-speed transmission and outstanding low-noise properties of photons. However, applications based on photonic entanglement are restricted due to the diffraction limit. In this work, we demonstrate for the first time the maintaining of quantum polarization entanglement in a nanoscale hybrid plasmonic waveguide composed of a fiber taper and a silver nanowire. The transmitted state throughout the waveguide has a fidelity of 0.932 with the maximally polarization entangled state Φ(+). Furthermore, the Clauser, Horne, Shimony, and Holt (CHSH) inequality test performed, resulting in value of 2.495 ± 0.147 > 2, demonstrates the violation of the hidden variable model. Because the plasmonic waveguide confines the effective mode area to subwavelength scale, it can bridge nanophotonics and quantum optics and may be used as near-field quantum probe in a quantum near-field micro/nanoscope, which can realize high spatial resolution, ultrasensitive, fiber-integrated, and plasmon-enhanced detection.

  18. An Approach for trapped Ba + ion-photon entanglement and quantum frequency conversion

    Science.gov (United States)

    Siverns, James; Li, Xiao; Quraishi, Qudsia; ARL/JQI Collaboration

    2017-04-01

    Networking remotely situated trapped ion quantum memories involves the extraction, propagation and detection of photons which are entangled with internal qubit states of an ion. Given the cumulative losses of these processes it is important to have a high-probability method to extract the photon. Even with high probability photon extraction, extending the networking range is challenging as the flying qubit's wavelength is severely attenuated when propagated in optical fiber. In this case, quantum frequency conversion has been proposed as an approach to extend the networking range. Here, we compare several methods of ion-photon entanglement generation, including strong and weak excitation methods, showing the fidelity and entanglement probability vary as a function of the photon collection optic's numerical aperture. We project that the highest photon generation probability (approximately 95%) in 138Ba + is achieved via shelving to a long-lived, low-lying D-state with a projected fidelity of approximately 89%. We then outline an approach for quantum frequency conversion of the extracted photon, with a view to hybrid or long-distance networking, useful for extending the range of ion-based quantum networks and hybrid quantum networks compromised of different types of quantum memories.

  19. The world, entanglement, and God: Quantum theory and the Christian doctrine of creation

    Science.gov (United States)

    Wegter-McNelly, Kirk Matthew

    The adequacy of classical physics' mechanistic worldview is called into question by an "entanglement" interpretation of quantum nonlocal correlations, which suggests a relational holistic account of physical processes. Albert Einstein rejected the possibility of such behavior, but recent experiments confirm its existence in the world. The concept of entanglement provides an especially fruitful locus for appropriating quantum insights into theological reflection because it bridges two otherwise antithetical interpretations of the theory, the indeterministic "Copenhagen" version developed by Niels Bohr and the deterministic version later discovered by David Bohm. Entanglement also offers an opportunity to explore what Robert Russell has called the method of "mutual interaction," by which theology can play a legitimate heuristic role in scientific research programs even as it responds to scientific discoveries. The concept of entanglement offers rich possibilities for developing a theological program within which to situate an ecological, trinitarian understanding of creation. In particular, a theological appropriation of entanglement can strengthen an ecological approach such as that of Sallie McFague, who argues powerfully for the importance of naturalistic metaphors in crafting a cosmic vision of wholeness but whose use of "organic" metaphors does not entirely eliminate the specter of mechanism. Entanglement can also strengthen a trinitarian approach such as one finds in Wolfhart Pannenberg, whose relational understanding of creation remains mechanistic insofar as it depends primarily on classical rather than quantum field theory. According to the theological approach developed in this dissertation, a trinitarian relational God creates a universe that is entangled with itself and, as a result of the incarnation, also with God. Additionally, this theological perspective leads to the scientific prediction that no complete solution to the quantum measurement problem

  20. The application of asymmetric entangled states in quantum games

    Energy Technology Data Exchange (ETDEWEB)

    Li Ye [Department of Modern Physics, University of Science and Technology of China, Hefei 230026 (China); Qin Gan [Department of Modern Physics, University of Science and Technology of China, Hefei 230026 (China); Zhou Xianyi [Department of Modern Physics, University of Science and Technology of China, Hefei 230026 (China); Du Jiangfeng [Department of Modern Physics, University of Science and Technology of China, Hefei 230026 (China) and Hefei National Laboratory for Physical Sciences at Microscale, Hefei 230026 (China) and Fachbereich Physik, Universitaet Dortmund, 44221 Dortmund (Germany)]. E-mail: djf@ustc.edu.cn

    2006-07-17

    We propose a more general entangling operator in the quantization of Cournot model. It is discovered that the total profit at the Nash equilibrium always achieves maximum once the von Neumann entropy tends to infinity. Moreover, the asymmetry introduced here would cause some 'encouraging' and 'suppressing' effect on players' profit.

  1. Effect of quantum entanglement on Aharonov–Bohm oscillations ...

    Indian Academy of Sciences (India)

    In one of its arm an electron interacts with a single magnetic impurity via an exchange coupling. We show that entanglement between electron and spin impurity states leads to reduction of Aharonov–Bohm oscillations in the transmission coefficient. The spin-conductance is asymmetric in the flux reversal as opposed to the ...

  2. Generation of quantum entangled states in nonlinear plasmonic structures and metamaterials (Presentation Recording)

    Science.gov (United States)

    Poddubny, Alexander N.; Sukhorukov, Andrey A.

    2015-09-01

    The practical development of quantum plasmonic circuits incorporating non-classical interference [1] and sources of entangled states calls for a versatile quantum theoretical framework which can fully describe the generation and detection of entangled photons and plasmons. However, majority of the presently used theoretical approaches are typically limited to the toy models assuming loss-less and nondispersive elements or including just a few resonant modes. Here, we present a rigorous Green function approach describing entangled photon-plasmon state generation through spontaneous wave mixing in realistic metal-dielectric nanostructures. Our approach is based on the local Huttner-Barnett quantization scheme [2], which enables problem formulation in terms of a Hermitian Hamiltonian where the losses and dispersion are fully encoded in the electromagnetic Green functions. Hence, the problem can be addressed by the standard quantum mechanical perturbation theory, overcoming mathematical difficulties associated with other quantization schemes. We derive explicit expressions with clear physical meaning for the spatially dependent two-photon detection probability, single-photon detection probability and single-photon density matrix. In the limiting case of low-loss nondispersive waveguides our approach reproduces the previous results [3,4]. Importantly, our technique is far more general and can quantitatively describe generation and detection of spatially-entangled photons in arbitrary metal-dielectric structures taking into account actual losses and dispersion. This is essential to perform the design and optimization of plasmonic structures for generation and control of quantum entangled states. [1] J.S. Fakonas, H. Lee, Y.A. Kelaita and H.A. Atwater, Nature Photonics 8, 317(2014) [2] W. Vogel and D.-G. Welsch, Quantum Optics, Wiley (2006). [3] D.A. Antonosyan, A.S. Solntsev and A.A. Sukhorukov, Phys. Rev. A 90 043845 (2014) [4] L.-G. Helt, J.E. Sipe and M.J. Steel, ar

  3. Dynamics of quantum entanglement in de Sitter spacetime and thermal Minkowski spacetime

    Directory of Open Access Journals (Sweden)

    Zhiming Huang

    2017-10-01

    Full Text Available We investigate the dynamics of entanglement between two atoms in de Sitter spacetime and in thermal Minkowski spacetime. We treat the two-atom system as an open quantum system which is coupled to a conformally coupled massless scalar field in the de Sitter invariant vacuum or to a thermal bath in the Minkowski spacetime, and derive the master equation that governs its evolution. We compare the phenomena of entanglement creation, degradation, revival and enhancement for the de Sitter spacetime case with that for the thermal Minkowski spacetime case. We find that the entanglement dynamics of two atoms for these two spacetime cases behave quite differently. In particular, the two atoms interacting with the field in the thermal Minkowski spacetime (with the field in the de Sitter-invariant vacuum, under certain conditions, could be entangled, while they would not become entangled in the corresponding de Sitter case (in the corresponding thermal Minkowski case. Thus, although a single static atom in the de Sitter-invariant vacuum responds as if it were bathed in thermal radiation in a Minkowski universe, with the help of the different dynamic evolution behaviors of entanglement for two atoms one can in principle distinguish these two universes.

  4. Five-wave-packet quantum error correction based on continuous-variable cluster entanglement.

    Science.gov (United States)

    Hao, Shuhong; Su, Xiaolong; Tian, Caixing; Xie, Changde; Peng, Kunchi

    2015-10-26

    Quantum error correction protects the quantum state against noise and decoherence in quantum communication and quantum computation, which enables one to perform fault-torrent quantum information processing. We experimentally demonstrate a quantum error correction scheme with a five-wave-packet code against a single stochastic error, the original theoretical model of which was firstly proposed by S. L. Braunstein and T. A. Walker. Five submodes of a continuous variable cluster entangled state of light are used for five encoding channels. Especially, in our encoding scheme the information of the input state is only distributed on three of the five channels and thus any error appearing in the remained two channels never affects the output state, i.e. the output quantum state is immune from the error in the two channels. The stochastic error on a single channel is corrected for both vacuum and squeezed input states and the achieved fidelities of the output states are beyond the corresponding classical limit.

  5. Efficient quantum repeater with respect to both entanglement-concentration rate and complexity of local operations and classical communication

    Science.gov (United States)

    Su, Zhaofeng; Guan, Ji; Li, Lvzhou

    2018-01-01

    Quantum entanglement is an indispensable resource for many significant quantum information processing tasks. However, in practice, it is difficult to distribute quantum entanglement over a long distance, due to the absorption and noise in quantum channels. A solution to this challenge is a quantum repeater, which can extend the distance of entanglement distribution. In this scheme, the time consumption of classical communication and local operations takes an important place with respect to time efficiency. Motivated by this observation, we consider a basic quantum repeater scheme that focuses on not only the optimal rate of entanglement concentration but also the complexity of local operations and classical communication. First, we consider the case where two different two-qubit pure states are initially distributed in the scenario. We construct a protocol with the optimal entanglement-concentration rate and less consumption of local operations and classical communication. We also find a criterion for the projective measurements to achieve the optimal probability of creating a maximally entangled state between the two ends. Second, we consider the case in which two general pure states are prepared and general measurements are allowed. We get an upper bound on the probability for a successful measurement operation to produce a maximally entangled state without any further local operations.

  6. Quantum entanglement: facts and fiction - how wrong was Einstein after all?

    Science.gov (United States)

    Nordén, Bengt

    2016-01-01

    Einstein was wrong with his 1927 Solvay Conference claim that quantum mechanics is incomplete and incapable of describing diffraction of single particles. However, the Einstein-Podolsky-Rosen paradox of entangled pairs of particles remains lurking with its 'spooky action at a distance'. In molecules quantum entanglement can be viewed as basis of both chemical bonding and excitonic states. The latter are important in many biophysical contexts and involve coupling between subsystems in which virtual excitations lead to eigenstates of the total Hamiltonian, but not for the separate subsystems. The author questions whether atomic or photonic systems may be probed to prove that particles or photons may stay entangled over large distances and display the immediate communication with each other that so concerned Einstein. A dissociating hydrogen molecule is taken as a model of a zero-spin entangled system whose angular momenta are in principle possible to probe for this purpose. In practice, however, spins randomize as a result of interactions with surrounding fields and matter. Similarly, no experiment seems yet to provide unambiguous evidence of remaining entanglement between single photons at large separations in absence of mutual interaction, or about immediate (superluminal) communication. This forces us to reflect again on what Einstein really had in mind with the paradox, viz. a probabilistic interpretation of a wave function for an ensemble of identically prepared states, rather than as a statement about single particles. Such a prepared state of many particles would lack properties of quantum entanglement that make it so special, including the uncertainty upon which safe quantum communication is assumed to rest. An example is Zewail's experiment showing visible resonance in the dissociation of a coherently vibrating ensemble of NaI molecules apparently violating the uncertainty principle. Einstein was wrong about diffracting single photons where space-like anti

  7. Quantum Entanglement and Shannon Information Entropy for the Doubly Excited Resonance State in Positronium Negative Ion

    Directory of Open Access Journals (Sweden)

    Chien-Hao Lin

    2015-09-01

    Full Text Available In the present work, we report an investigation on quantum entanglement in the doubly excited 2s2 1Se resonance state of the positronium negative ion by using highly correlated Hylleraas type wave functions, determined by calculation of the density of resonance states with the stabilization method. Once the resonance wave function is obtained, the spatial (electron-electron orbital entanglement entropies (von Neumann and linear can be quantified using the Schmidt decomposition method. Furthermore, Shannon entropy in position space, a measure for localization (or delocalization for such a doubly excited state, is also calculated.

  8. Experimental multipartite entanglement and randomness certification of the W state in the quantum steering scenario

    Science.gov (United States)

    Máttar, A.; Skrzypczyk, P.; Aguilar, G. H.; Nery, R. V.; Souto Ribeiro, P. H.; Walborn, S. P.; Cavalcanti, D.

    2017-03-01

    Recently, Cavalcanti et al (2015) proposed a method to certify the presence of entanglement in asymmetric networks, where some users do not have control over the measurements they are performing. Such asymmetry naturally emerges in realistic situations, such as in cryptographic protocols over quantum networks. Here we implement such ‘semi-device-independent’ techniques to experimentally witness all types of entanglement on a three-qubit photonic W state. Furthermore, we analyse the amount of genuine randomness that can be certified in this scenario from any bipartition of the three-qubit W state.

  9. Quantum entanglement of identical particles by standard information-theoretic notions.

    Science.gov (United States)

    Lo Franco, Rosario; Compagno, Giuseppe

    2016-02-09

    Quantum entanglement of identical particles is essential in quantum information theory. Yet, its correct determination remains an open issue hindering the general understanding and exploitation of many-particle systems. Operator-based methods have been developed that attempt to overcome the issue. Here we introduce a state-based method which, as second quantization, does not label identical particles and presents conceptual and technical advances compared to the previous ones. It establishes the quantitative role played by arbitrary wave function overlaps, local measurements and particle nature (bosons or fermions) in assessing entanglement by notions commonly used in quantum information theory for distinguishable particles, like partial trace. Our approach furthermore shows that bringing identical particles into the same spatial location functions as an entangling gate, providing fundamental theoretical support to recent experimental observations with ultracold atoms. These results pave the way to set and interpret experiments for utilizing quantum correlations in realistic scenarios where overlap of particles can count, as in Bose-Einstein condensates, quantum dots and biological molecular aggregates.

  10. Entanglement-assisted codeword-stabilized quantum codes with imperfect ebits

    Directory of Open Access Journals (Sweden)

    Byungkyu Ahn

    2016-06-01

    Full Text Available In quantum communication systems, quantum error-correcting codes (QECCs are known to exhibit improved performance with the use of error-free entanglement bits (ebits. In practical situations, ebits inevitably suffer from errors, and as a result, the error-correcting capability of the code is diminished. Previous studies have proposed two different schemes as a solution. One study uses only one QECC to correct errors on the receiver side (i.e., Bob and sender side (i.e., Alice. The other uses different QECCs on each side. In this paper, we present a method to correct errors on both sides by using single nonadditive entanglement-assisted codeword stabilized quantum error-correcting code (EACWS QECC. We use the property that the number of effective error patterns decreases as much as the number of ebits. This property results in a greater number of logical codewords using the same number of physical qubits.

  11. Entanglement verification and its applications in quantum communication; Verschraenkungsnachweise mit Anwendungen in der Quantenkommunikation

    Energy Technology Data Exchange (ETDEWEB)

    Haeseler, Hauke

    2010-02-16

    In this thesis, we investigate the uses of entanglement and its verification in quantum communication. The main object here is to develop a verification procedure which is adaptable to a wide range of applications, and whose implementation has low requirements on experimental resources. We present such a procedure in the form of the Expectation Value Matrix. The structure of this thesis is as follows: Chapters 1 and 2 give a short introduction and background information on quantum theory and the quantum states of light. In particular, we discuss the basic postulates of quantum mechanics, quantum state discrimination, the description of quantum light and the homodyne detector. Chapter 3 gives a brief introduction to quantum information and in particular to entanglement, and we discuss the basics of quantum key distribution and teleportation. The general framework of the Expectation Value Matrix is introduced. The main matter of this thesis is contained in the subsequent three chapters, which describe different quantum communication protocols and the corresponding adaptation of the entanglement verification method. The subject of Chapter 4 is quantum key distribution, where the detection of entanglement is a means of excluding intercept-resend attacks, and the presence of quantum correlations in the raw data is a necessary precondition for the generation of secret key. We investigate a continuous-variable version of the two-state protocol and develop the Expectation Value Matrix method for such qubit-mode systems. Furthermore, we analyse the role of the phase reference with respect to the security of the protocol and raise awareness of a corresponding security threat. For this, we adapt the verification method to different settings of Stokes operator measurements. In Chapter 5, we investigate quantum memory channels and propose a fundamental benchmark for these based on the verification of entanglement. After describing some physical effects which can be used for the

  12. Multiparty Quantum Communication Using Multiqubit Entanglement and Teleportation

    Directory of Open Access Journals (Sweden)

    S. Ghose

    2014-01-01

    Full Text Available We propose a 2N qubit entangled channel that can be used to teleport N qubits in a network to a single receiver. We describe the structure of this channel and explicitly demonstrate how the protocol works. The channel can be used to implement a scheme in which all parties have to participate in order for the teleportation to be successful. This can be advantageous in various scenarios and we discuss the potential application of this protocol to voting.

  13. Strong Coupling and Entanglement of Quantum Emitters Embedded in a Nanoantenna-Enhanced Plasmonic Cavity

    Energy Technology Data Exchange (ETDEWEB)

    Gray, Stephen K.; Heilpern, Tal; Hensen, Matthias; Pfeiffer, Walter

    2018-01-01

    Establishing strong coupling between spatially separated and thus selectively addressable quantum emitters is a key ingredient to complex quantum optical schemes in future technologies. Insofar as many plasmonic nanostructures are concerned, however, the energy transfer and mutual interaction strength between distant quantum emitters can fail to provide strong coupling. Here, based on mode hybridization, the longevity and waveguide character of an elliptical plasmon cavity are combined with intense and highly localized field modes of suitably designed nanoantennas. Based on FDTD simulations a quantum emitter-plasmon coupling strength hg = 16.7 meV is reached while simultaneously keeping a small plasmon resonance line width h gamma(s) = 33 meV. This facilitates strong coupling, and quantum dynamical simulations reveal an oscillatory exchange of excited state population arid a notable degree of entanglement between the quantum emitters spatially separated by 1.8 mu m, i.e., about twice the operating wavelength.

  14. Engineering steady-state entanglement via dissipation and quantum Zeno dynamics in an optical cavity.

    Science.gov (United States)

    Li, Dong-Xiao; Shao, Xiao-Qiang; Wu, Jin-Hui; Yi, X X

    2017-10-01

    A new mechanism is proposed for dissipatively preparing maximal Bell entangled state of two atoms in an optical cavity. This scheme integrates the spontaneous emission, the light shift of atoms in the presence of dispersive microwave field, and the quantum Zeno dynamics induced by continuous coupling, to obtain a unique steady state irrespective of initial state. Even for a large cavity decay, a high-fidelity entangled state is achievable at a short convergence time, since the occupation of the cavity mode is inhibited by the Zeno requirement. Therefore, a low single-atom cooperativity C=g2/(κγ) is good enough for realizing a high fidelity of entanglement in a wide range of decoherence parameters. As a straightforward extension, the feasibility for preparation of two-atom Knill-Laflamme-Milburn state with the same mechanism is also discussed.

  15. Entanglement of a two-atom system driven by the quantum vacuum in arbitrary cavity size

    Science.gov (United States)

    Flores-Hidalgo, G.; Rojas, M.; Rojas, Onofre

    2017-05-01

    We study the entanglement dynamics of two distinguishable atoms confined into a cavity and interacting with a quantum vacuum field. As a simplified model for this system, we consider two harmonic oscillators linearly coupled to a massless scalar field which are inside a spherical cavity of radius R. Through the concurrence, the entanglement dynamics for the two-atom system is discussed for a range of initial states composed of a superposition of atomic states. Our results reveal how the entanglement of the two atoms behaves through the time evolution, in a precise way, for arbitrary cavity size and for arbitrary coupling constant. All our computations are analytical and only the final step is numerical.

  16. Tensor Renormalization of Quantum Many-Body Systems Using Projected Entangled Simplex States

    Directory of Open Access Journals (Sweden)

    Z. Y. Xie

    2014-02-01

    Full Text Available We propose a new class of tensor-network states, which we name projected entangled simplex states (PESS, for studying the ground-state properties of quantum lattice models. These states extend the pair-correlation basis of projected entangled pair states to a simplex. PESS are exact representations of the simplex solid states, and they provide an efficient trial wave function that satisfies the area law of entanglement entropy. We introduce a simple update method for evaluating the PESS wave function based on imaginary-time evolution and the higher-order singular-value decomposition of tensors. By applying this method to the spin-1/2 antiferromagnetic Heisenberg model on the kagome lattice, we obtain accurate and systematic results for the ground-state energy, which approach the lowest upper bounds yet estimated for this quantity.

  17. Quantum dynamics and entanglement of spins on a square lattice

    DEFF Research Database (Denmark)

    Christensen, Niels Bech; Rønnow, Henrik Moodysson; McMorrow, Desmond Francis

    2007-01-01

    this intuition generally holds for ferromagnets, even as the size of the magnetic moment is reduced to that of a single electron spin (the quantum limit), it breaks down spectacularly for antiferromagnets, particularly in low dimensions. Considerable theoretical and experimental progress has been made......Bulk magnetism in solids is fundamentally quantum mechanical in nature. Yet in many situations, including our everyday encounters with magnetic materials, quantum effects are masked, and it often suffices to think of magnetism in terms of the interaction between classical dipole moments. Whereas...... in understanding quantum effects in one-dimensional quantum antiferromagnets, but a complete experimental description of even simple two-dimensional antiferromagnets is lacking. Here we describe a comprehensive set of neutron scattering measurements that reveal a non-spin-wave continuum and strong quantum effects...

  18. Quantum-Relay-Assisted Key Distribution over High Photon Loss Channels

    OpenAIRE

    Zhang, An-Ning; Chen, Yu-Ao; Lu, Chao-Yang; Zhou, Xiao-Qi; Zhao, Zhi; ZHANG, QIANG; Yang, Tao; Pan, Jian-Wei

    2005-01-01

    The maximum distance of quantum communication is limited due to the photon loss and detector noise. Exploiting entanglement swapping, quantum relay could offer ways to extend the achievable distance by increasing the signal to noise ratio. In this letter we present an experimental simulation of long distance quantum communication, in which the superiority of quantum relay is demonstrated. Assisted by quantum relay, we greatly extend the distance limit of unconditional secure quantum communica...

  19. Wigner representation for experiments on quantum cryptography using two-photon polarization entanglement produced in parametric down-conversion

    Energy Technology Data Exchange (ETDEWEB)

    Casado, A [Departamento de Fisica Aplicada III, Escuela Superior de Ingenieros, Universidad de Sevilla, 41092 Sevilla (Spain); Guerra, S [Centro Asociado de la Universidad Nacional de Educacion a Distancia de Las Palmas de Gran Canaria (Spain); Placido, J [Departamento de Fisica, Universidad de Las Palmas de Gran Canaria (Spain)], E-mail: acasado@us.es

    2008-02-28

    In this paper, the theory of parametric down-conversion in the Wigner representation is applied to Ekert's quantum cryptography protocol. We analyse the relation between two-photon entanglement and (non-secure) quantum key distribution within the Wigner framework in the Heisenberg picture. Experiments using two-qubit polarization entanglement generated in nonlinear crystals are analysed in this formalism, along with the effects of eavesdropping attacks in the case of projective measurements.

  20. On entanglement entropy in non-Abelian lattice gauge theory and 3D quantum gravity

    Energy Technology Data Exchange (ETDEWEB)

    Delcamp, Clement [Perimeter Institute for Theoretical Physics,31 Caroline Street North, Waterloo, Ontario N2L 2Y5 (Canada); Department of Physics & Astronomy and Guelph-Waterloo Physics Institute, University of Waterloo,200 University Avenue West, Waterloo, Ontario N2L 3G1 (Canada); Dittrich, Bianca; Riello, Aldo [Perimeter Institute for Theoretical Physics,31 Caroline Street North, Waterloo, Ontario N2L 2Y5 (Canada)

    2016-11-18

    Entanglement entropy is a valuable tool for characterizing the correlation structure of quantum field theories. When applied to gauge theories, subtleties arise which prevent the factorization of the Hilbert space underlying the notion of entanglement entropy. Borrowing techniques from extended topological field theories, we introduce a new definition of entanglement entropy for both Abelian and non-Abelian gauge theories. Being based on the notion of excitations, it provides a completely relational way of defining regions. Therefore, it naturally applies to background independent theories, e.g. gravity, by circumventing the difficulty of specifying the position of the entangling surface. We relate our construction to earlier proposals and argue that it brings these closer to each other. In particular, it yields the non-Abelian analogue of the ‘magnetic centre choice’, as obtained through an extended-Hilbert-space method, but applied to the recently introduced fusion basis for 3D lattice gauge theories. We point out that the different definitions of entanglement entropy can be related to a choice of (squeezed) vacuum state.

  1. Entangled state teleportation through a couple of quantum channels composed of XXZ dimers in an Ising- XXZ diamond chain

    Science.gov (United States)

    Rojas, M.; de Souza, S. M.; Rojas, Onofre

    2017-02-01

    The quantum teleportation plays an important role in quantum information process, in this sense, the quantum entanglement properties involving an infinite chain structure is quite remarkable because real materials could be well represented by an infinite chain. We study the teleportation of an entangled state through a couple of quantum channels, composed by Heisenberg dimers in an infinite Ising-Heisenberg diamond chain, the couple of chains are considered sufficiently far away from each other to be ignored the any interaction between them. To teleporting a couple of qubits through the quantum channel, we need to find the average density operator for Heisenberg spin dimers, which will be used as quantum channels. Assuming the input state as a pure state, we can apply the concept of fidelity as a useful measurement of teleportation performance of a quantum channel. Using the standard teleportation protocol, we have derived an analytical expression for the output concurrence, fidelity, and average fidelity. We study in detail the effects of coupling parameters, external magnetic field and temperature dependence of quantum teleportation. Finally, we explore the relations between entanglement of the quantum channel, the output entanglement and the average fidelity of the system. Through a kind of phase diagram as a function of Ising-Heisenberg diamond chain model parameters, we illustrate where the quantum teleportation will succeed and a region where the quantum teleportation could fail.

  2. Monogamy relations of quantum entanglement for partially coherently superposed states

    Science.gov (United States)

    Shi, Xian

    2017-12-01

    Not Available Project partially supported by the National Key Research and Development Program of China (Grant No. 2016YFB1000902), the National Natural Science Foundation of China (Grant Nos. 61232015, 61472412, and 61621003), the Beijing Science and Technology Project (2016), Tsinghua-Tencent-AMSS-Joint Project (2016), and the Key Laboratory of Mathematics Mechanization Project: Quantum Computing and Quantum Information Processing.

  3. Quantum interaction of SU(1,1) Lie group with entangled a two 2-level atoms

    Science.gov (United States)

    Alqannas, Haifa S.; Khalil, E. M.

    2018-01-01

    In present contribution, we consider a two two-level atoms in non-resonance case interacting with a quantum system. The wave function is obtained via solving the Schrödinger equation. The initial density operator is assumed, with respect to the quantum system starts in a Barut-Girardello state. We use the numerical results to describe the entanglement between the subsystem. Some statistical aspects, the atomic inversion, the squeezing phenomena and negatively are discussed in details. We study the effective of the detuning parameter on the population inversion and the squeezing phenomenon. Finally the negativity for different values of the detuning parameter are examined. It is shown that the effects of the detuning parameter changes the region of the entanglement sudden death and sudden birth phenomena.

  4. Entanglement and quantum phase diagrams of symmetric multi-qubit systems

    Science.gov (United States)

    Calixto, Manuel; Castaños, Octavio; Romera, Elvira

    2017-10-01

    For general symmetric multi-qubit systems, the behavior of one- and two-qubit entanglement for Dicke, spin coherent and parity-adapted (even and odd) spin coherent states is determined. These quantum correlations are quantified by linear and von Neumann entropies of the corresponding one- and two-qubit reduced density matrices of the multi-qubit system. These states play a fundamental role in the study of Hamiltonian systems written in terms of collective generators of the angular momentum algebra like, for example, the Lipkin-Meshkov-Glick (LMG) model. Here we shall use these entanglement measures as a signature to characterize the different quantum phases that appear in these models.

  5. Unconstrained Capacities of Quantum Key Distribution and Entanglement Distillation for Pure-Loss Bosonic Broadcast Channels

    Science.gov (United States)

    Takeoka, Masahiro; Seshadreesan, Kaushik P.; Wilde, Mark M.

    2017-10-01

    We consider quantum key distribution (QKD) and entanglement distribution using a single-sender multiple-receiver pure-loss bosonic broadcast channel. We determine the unconstrained capacity region for the distillation of bipartite entanglement and secret key between the sender and each receiver, whenever they are allowed arbitrary public classical communication. A practical implication of our result is that the capacity region demonstrated drastically improves upon rates achievable using a naive time-sharing strategy, which has been employed in previously demonstrated network QKD systems. We show a simple example of a broadcast QKD protocol overcoming the limit of the point-to-point strategy. Our result is thus an important step toward opening a new framework of network channel-based quantum communication technology.

  6. Unconstrained Capacities of Quantum Key Distribution and Entanglement Distillation for Pure-Loss Bosonic Broadcast Channels.

    Science.gov (United States)

    Takeoka, Masahiro; Seshadreesan, Kaushik P; Wilde, Mark M

    2017-10-13

    We consider quantum key distribution (QKD) and entanglement distribution using a single-sender multiple-receiver pure-loss bosonic broadcast channel. We determine the unconstrained capacity region for the distillation of bipartite entanglement and secret key between the sender and each receiver, whenever they are allowed arbitrary public classical communication. A practical implication of our result is that the capacity region demonstrated drastically improves upon rates achievable using a naive time-sharing strategy, which has been employed in previously demonstrated network QKD systems. We show a simple example of a broadcast QKD protocol overcoming the limit of the point-to-point strategy. Our result is thus an important step toward opening a new framework of network channel-based quantum communication technology.

  7. Universal Three-Qubit Entanglement Generation Based on Linear Optical Elements and Quantum Non-Demolition Detectors

    Science.gov (United States)

    Liu, Xin-Chang

    2017-02-01

    Recently, entanglement plays an important role in quantum information science. Here we propose an efficient and applicable method which transforms arbitrary three-qubit unknown state to a maximally entangled Greenberger-Horne-Zeilinger state, and the proposed method could be further generalized to multi-qubit case. The proposed setup exploits only linear optical elements and quantum non-demolition detectors using cross-Kerr media. As the quantum non-demolition detection could reveal us the output state of the photons without destroying them. This property may make our proposed setup flexible and can be widely used in current quantum information science and technology.

  8. Quantum storage of orbital angular momentum entanglement in cold atomic ensembles

    Science.gov (United States)

    Shi, Bao-Sen; Ding, Dong-Sheng; Zhang, Wei

    2018-02-01

    Electromagnetic waves have both spin momentum and orbital angular momentum (OAM). Light carrying OAM has broad applications in micro-particle manipulation, high-precision optical metrology, and potential high-capacity optical communications. In the concept of quantum information, a photon encoded with information in its OAM degree of freedom enables quantum networks to carry much more information and increase their channel capacity greatly compared with those of current technology because of the inherent infinite dimensions for OAM. Quantum memories are indispensable to construct quantum networks. Storing OAM states has attracted considerable attention recently, and many important advances in this direction have been achieved during the past few years. Here we review recent experimental realizations of quantum memories using OAM states, including OAM qubits and qutrits at true single photon level, OAM states entangled in a two-dimensional or a high-dimensional space, hyperentanglement and hybrid entanglement consisting of OAM and other degree of freedom in a physical system. We believe that all achievements described here are very helpful to study quantum information encoded in a high-dimensional space.

  9. Quasiparticle engineering and entanglement propagation in a quantum many-body system.

    Science.gov (United States)

    Jurcevic, P; Lanyon, B P; Hauke, P; Hempel, C; Zoller, P; Blatt, R; Roos, C F

    2014-07-10

    The key to explaining and controlling a range of quantum phenomena is to study how information propagates around many-body systems. Quantum dynamics can be described by particle-like carriers of information that emerge in the collective behaviour of the underlying system, the so-called quasiparticles. These elementary excitations are predicted to distribute quantum information in a fashion determined by the system's interactions. Here we report quasiparticle dynamics observed in a quantum many-body system of trapped atomic ions. First, we observe the entanglement distributed by quasiparticles as they trace out light-cone-like wavefronts. Second, using the ability to tune the interaction range in our system, we observe information propagation in an experimental regime where the effective-light-cone picture does not apply. Our results will enable experimental studies of a range of quantum phenomena, including transport, thermalization, localization and entanglement growth, and represent a first step towards a new quantum-optic regime of engineered quasiparticles with tunable nonlinear interactions.

  10. Classical evolution of quantum fluctuations in spin-like systems: squeezing and entanglement

    Energy Technology Data Exchange (ETDEWEB)

    Klimov, A B [Departamento de Fisica, Universidad de Guadalajara, Revolucion 1500, 44410, Guadalajara, Jalisco (Mexico); Espinoza, P [Departamento de Ciencias Basicas, Universidad de Guadalajara, Enrique Diaz de Leon 1, 47460, Lagos de Moreno, Jalisco (Mexico)

    2005-06-01

    It is shown that the quantum dynamics of spin coherent states governed by quadratic spin-like Hamiltonians, in the large spin limit, is well described in terms of evolution along classical trajectories on the two-dimensional sphere. Two non-linear effects: (a) spin squeezing and (b) spin entanglement are analysed using the Wigner function approach in the quasiclassical limit and numerically compared with the exact solution.

  11. Asymmetric Bidirectional Controlled Quantum Information Transmission via Seven-Particle Entangled State

    Science.gov (United States)

    Sang, Ming-huang; Nie, Li-ping

    2017-11-01

    We demonstrate that a seven-particle entangled state can be used to realize the deterministic asymmetric bidirectional controlled quantum information transmission by performing only Bell-state measurement and two-particle projective measurement and single-particle measurement. In our protocol, Alice can teleport an arbitrary unknown single-particle state to Bob and at the same time Bob can remotely prepare an arbitrary known two-particle state for Alice via the control of the supervisor Charlie.

  12. Quantum Entanglement of a Tunneling Spin with Mechanical Modes of a Torsional Resonator

    Directory of Open Access Journals (Sweden)

    D. A. Garanin

    2011-08-01

    Full Text Available We solve the Schrödinger equation for various quantum regimes describing a tunneling macrospin coupled to a torsional oscillator. The energy spectrum and freezing of spin tunneling are studied. Magnetic susceptibility, noise spectrum, and decoherence due to entanglement of spin and mechanical modes are computed. We show that the presence of a tunneling spin can be detected via splitting of the mechanical mode at the resonance. Our results apply to experiments with magnetic molecules coupled to nanoresonators.

  13. Quantum Physics A First Encounter Interference, Entanglement, and Reality

    CERN Document Server

    Scarani, Valerio

    2006-01-01

    The essential features of quantum physics, largely debated since its discovery, are presented in this book, through the description (without mathematics) of recent experiments. Putting the accent on physical phenomena, this book clarifies the historical issues (delocalisation, interferences) and reaches out to modern topics (quantum cryptography, non-locality and teleportation); the debate on interpretations is serenely reviewed. - ;Quantum physics is often perceived as a weird and abstract theory, which physicists must use in order to make correct predictions. But many recent experiments have shown that the weirdness of the theory simply mirrors the weirdness of phenomena: it is Nature itself, and not only our description of it, that behaves in an astonishing way. This book selects those, among these typical quantum phenomena, whose rigorous description requires neither the formalism, nor an important. background in physics. The first part of the book deals with the phenomenon of single-particle interference...

  14. Quantum entanglement in the one-dimensional spin-orbital SU (2 )⊗XXZ model

    Science.gov (United States)

    You, Wen-Long; Horsch, Peter; Oleś, Andrzej M.

    2015-08-01

    We investigate the phase diagram and the spin-orbital entanglement of a one-dimensional SU (2 )⊗XXZ model with SU(2) spin exchange and anisotropic XXZ orbital exchange interactions and negative exchange coupling constant. As a unique feature, the spin-orbital entanglement entropy in the entangled ground states increases here linearly with system size. In the case of Ising orbital interactions, we identify an emergent phase with long-range spin-singlet dimer correlations triggered by a quadrupling of correlations in the orbital sector. The peculiar translational-invariant spin-singlet dimer phase has finite von Neumann entanglement entropy and survives when orbital quantum fluctuations are included. It even persists in the isotropic SU (2 )⊗SU (2) limit. Surprisingly, for finite transverse orbital coupling, the long-range spin-singlet correlations also coexist in the antiferromagnetic spin and alternating orbital phase making this phase also unconventional. Moreover, we also find a complementary orbital singlet phase that exists in the isotropic case but does not extend to the Ising limit. The nature of entanglement appears essentially different from that found in the frequently discussed model with positive coupling. Furthermore, we investigate the collective spin and orbital wave excitations of the disentangled ferromagnetic-spin/ferro-orbital ground state and explore the continuum of spin-orbital excitations. Interestingly, one finds among the latter excitations two modes of exciton bound states. Their spin-orbital correlations differ from the remaining continuum states and exhibit logarithmic scaling of the von Neumann entropy with increasing system size. We demonstrate that spin-orbital excitons can be experimentally explored using resonant inelastic x-ray scattering, where the strongly entangled exciton states can be easily distinguished from the spin-orbital continuum.

  15. Fast adiabatic quantum state transfer and entanglement generation between two atoms via dressed states.

    Science.gov (United States)

    Wu, Jin-Lei; Ji, Xin; Zhang, Shou

    2017-04-11

    We propose a dressed-state scheme to achieve shortcuts to adiabaticity in atom-cavity quantum electrodynamics for speeding up adiabatic two-atom quantum state transfer and maximum entanglement generation. Compared with stimulated Raman adiabatic passage, the dressed-state scheme greatly shortens the operation time in a non-adiabatic way. By means of some numerical simulations, we determine the parameters which can guarantee the feasibility and efficiency both in theory and experiment. Besides, numerical simulations also show the scheme is robust against the variations in the parameters, atomic spontaneous emissions and the photon leakages from the cavity.

  16. Fast adiabatic quantum state transfer and entanglement generation between two atoms via dressed states

    Science.gov (United States)

    Wu, Jin-Lei; Ji, Xin; Zhang, Shou

    2017-04-01

    We propose a dressed-state scheme to achieve shortcuts to adiabaticity in atom-cavity quantum electrodynamics for speeding up adiabatic two-atom quantum state transfer and maximum entanglement generation. Compared with stimulated Raman adiabatic passage, the dressed-state scheme greatly shortens the operation time in a non-adiabatic way. By means of some numerical simulations, we determine the parameters which can guarantee the feasibility and efficiency both in theory and experiment. Besides, numerical simulations also show the scheme is robust against the variations in the parameters, atomic spontaneous emissions and the photon leakages from the cavity.

  17. Quantum interference and manipulation of entanglement in silicon wire waveguide quantum circuits

    NARCIS (Netherlands)

    Bonneau, D.; Engin, E.; Dorenbos, S.N.; Zwiller, V.

    2012-01-01

    Integrated quantum photonic waveguide circuits are a promising approach to realizing future photonic quantum technologies. Here, we present an integrated photonic quantum technology platform utilizing the silicon-oninsulator material system, where quantum interference and the manipulation of quantum

  18. Entanglement distribution schemes employing coherent photon-to-spin conversion in semiconductor quantum dot circuits

    Science.gov (United States)

    Gaudreau, Louis; Bogan, Alex; Korkusinski, Marek; Studenikin, Sergei; Austing, D. Guy; Sachrajda, Andrew S.

    2017-09-01

    Long distance entanglement distribution is an important problem for quantum information technologies to solve. Current optical schemes are known to have fundamental limitations. A coherent photon-to-spin interface built with quantum dots (QDs) in a direct bandgap semiconductor can provide a solution for efficient entanglement distribution. QD circuits offer integrated spin processing for full Bell state measurement (BSM) analysis and spin quantum memory. Crucially the photo-generated spins can be heralded by non-destructive charge detection techniques. We review current schemes to transfer a polarization-encoded state or a time-bin-encoded state of a photon to the state of a spin in a QD. The spin may be that of an electron or that of a hole. We describe adaptations of the original schemes to employ heavy holes which have a number of attractive properties including a g-factor that is tunable to zero for QDs in an appropriately oriented external magnetic field. We also introduce simple throughput scaling models to demonstrate the potential performance advantage of full BSM capability in a QD scheme, even when the quantum memory is imperfect, over optical schemes relying on linear optical elements and ensemble quantum memories.

  19. Entanglement-distillation attack on continuous-variable quantum key distribution in a turbulent atmospheric channel

    Science.gov (United States)

    Guo, Ying; Xie, Cailang; Liao, Qin; Zhao, Wei; Zeng, Guihua; Huang, Duan

    2017-08-01

    The survival of Gaussian quantum states in a turbulent atmospheric channel is of crucial importance in free-space continuous-variable (CV) quantum key distribution (QKD), in which the transmission coefficient will fluctuate in time, thus resulting in non-Gaussian quantum states. Different from quantum hacking of the imperfections of practical devices, here we propose a different type of attack by exploiting the security loopholes that occur in a real lossy channel. Under a turbulent atmospheric environment, the Gaussian states are inevitably afflicted by decoherence, which would cause a degradation of the transmitted entanglement. Therefore, an eavesdropper can perform an intercept-resend attack by applying an entanglement-distillation operation on the transmitted non-Gaussian mixed states, which allows the eavesdropper to bias the estimation of the parameters and renders the final keys shared between the legitimate parties insecure. Our proposal highlights the practical CV QKD vulnerabilities with free-space quantum channels, including the satellite-to-earth links, ground-to-ground links, and a link from moving objects to ground stations.

  20. Enhanced up-conversion of entangled photons and quantum interference under a localized field in nanostructures.

    Science.gov (United States)

    Osaka, Yoshiki; Yokoshi, Nobuhiko; Nakatani, Masatoshi; Ishihara, Hajime

    2014-04-04

    We theoretically investigate the up-conversion process of two entangled photons on a molecule, which is coupled by a cavity or nanoscale metallic structure. Within one-dimensional input-output theory, the propagators of the photons are derived analytically and the up-conversion probability is calculated numerically. It is shown that the coupling with the nanostructure clearly enhances the process. We also find that the enhancement becomes further pronounced for some balanced system parameters, such as the quantum correlation between photons, radiation decay, and coupling between the nanostructure and molecule. The nonmonotonic dependencies are reasonably explained in view of quantum interference between the coupled modes of the whole system. This result indicates that controlling quantum interference and correlation is crucial for few-photon nonlinearity, and provides a new guidance to wide variety of fields, e.g., quantum electronics and photochemistry.

  1. Entanglement and non-markovianity of quantum evolutions.

    Science.gov (United States)

    Rivas, Angel; Huelga, Susana F; Plenio, Martin B

    2010-07-30

    We address the problem of quantifying the non-markovian character of quantum time evolutions of general systems in contact with an environment. We introduce two different measures of non-markovianity that exploit the specific traits of quantum correlations and are suitable for opposite experimental contexts. When complete tomographic knowledge about the evolution is available, our measure provides a necessary and sufficient condition to quantify strictly the non-markovianity. In the opposite case, when no information whatsoever is available, we propose a sufficient condition for non-markovianity. Remarkably, no optimization procedure underlies our derivation, which greatly enhances the practical relevance of the proposed criteria.

  2. Fast Quantum State Transfer and Entanglement Renormalization Using Long-Range Interactions

    Science.gov (United States)

    Eldredge, Zachary; Gong, Zhe-Xuan; Young, Jeremy T.; Moosavian, Ali Hamed; Foss-Feig, Michael; Gorshkov, Alexey V.

    2017-10-01

    In short-range interacting systems, the speed at which entanglement can be established between two separated points is limited by a constant Lieb-Robinson velocity. Long-range interacting systems are capable of faster entanglement generation, but the degree of the speedup possible is an open question. In this Letter, we present a protocol capable of transferring a quantum state across a distance L in d dimensions using long-range interactions with a strength bounded by 1 /rα. If α entanglement renormalization ansatz (MERA) tensor network and show that if the linear size of the MERA state is L , then it can be created in a time that scales with L identically to the state transfer up to logarithmic corrections. This protocol realizes an exponential speedup in cases of α =d , which could be useful in creating large entangled states for dipole-dipole (1 /r3) interactions in three dimensions.

  3. Entanglement convertibility by sweeping through the quantum phases of the alternating bonds XXZ chain.

    Science.gov (United States)

    Tzeng, Yu-Chin; Dai, Li; Chung, Ming-Chiang; Amico, Luigi; Kwek, Leong-Chuan

    2016-05-24

    We study the entanglement structure and the topological edge states of the ground state of the spin-1/2 XXZ model with bond alternation. We employ parity-density matrix renormalization group with periodic boundary conditions. The finite-size scaling of Rényi entropies S2 and S∞ are used to construct the phase diagram of the system. The phase diagram displays three possible phases: Haldane type (an example of symmetry protected topological ordered phases), Classical Dimer and Néel phases, the latter bounded by two continuous quantum phase transitions. The entanglement and non-locality in the ground state are studied and quantified by the entanglement convertibility. We found that, at small spatial scales, the ground state is not convertible within the topological Haldane dimer phase. The phenomenology we observe can be described in terms of correlations between edge states. We found that the entanglement spectrum also exhibits a distinctive response in the topological phase: the effective rank of the reduced density matrix displays a specifically large "susceptibility" in the topological phase. These findings support the idea that although the topological order in the ground state cannot be detected by local inspection, the ground state response at local scale can tell the topological phases apart from the non-topological phases.

  4. Correlated Knowledge : an Epistemic-Logic View on Quantum Entanglement

    NARCIS (Netherlands)

    Baltag, Alexandru; Smets, Sonja

    2010-01-01

    In this paper we give a logical analysis of both classical and quantum correlations We propose a new logical system to reason about the information carried by a complex system composed of several parts Our formalism is based on an extension of epistemic logic with operators for "group knowledge"

  5. Generation of 8.3 dB continuous variable quantum entanglement at a telecommunication wavelength of 1550 nm

    Science.gov (United States)

    Jinxia, Feng; Zhenju, Wan; Yuanji, Li; Kuanshou, Zhang

    2018-01-01

    Continuous variable quantum entanglement at a telecommunication wavelength of 1550 nm is experimentally generated using a single nondegenerate optical parametric amplifier based on a type-II periodically poled KTiOPO4 crystal. The triply resonant of the nondegenerate optical parametric amplifier is adjusted by tuning the crystal temperature and tilting the orientation of the crystal in the optical cavity. Einstein–Podolsky–Rosen-entangled beams with quantum correlations of 8.3 dB for both the amplitude and phase quadratures are experimentally generated. This system can be used for continuous variable fibre-based quantum communication.

  6. Quantum Secure Direct Communication Based on Dense Coding and Detecting Eavesdropping with Four-Particle Genuine Entangled State

    Directory of Open Access Journals (Sweden)

    Jian Li

    2015-09-01

    Full Text Available A novel quantum secure direct communication protocol based on four-particle genuine entangled state and quantum dense coding is proposed. In this protocol, the four-particle genuine entangled state is used to detect eavesdroppers, and quantum dense coding is used to encode the message. Finally, the security of the proposed protocol is discussed. During the security analysis, the method of entropy theory is introduced, and two detection strategies are compared quantitatively by comparing the relationship between the maximal information that the eavesdroppers (Eve can obtain, and the probability of being detected. Through the analysis we can state that our scheme is feasible and secure.

  7. Quantum secure direct communication against the collective noise with polarization-entangled Bell states

    Science.gov (United States)

    Dong, Li; Wang, Jun-Xi; Li, Qing-Yang; Shen, Hong-Zhi; Dong, Hai-Kuan; Xiu, Xiao-Ming; Ren, Yuan-Peng; Gao, Ya-Jun

    2015-12-01

    We propose a quantum secure direct communication protocol via a collective noise channel, exploiting polarization-entangled Bell states and the nondemolition parity analysis based on weak cross-Kerr nonlinearities. The participant Bob, who will receive the secret information, sends one of two photons in a polarization-entangled Bell state exploiting the transmission circuit against the collective noise to the participant Alice, who will send the secret information, by the means of photon block transmission. If the first security check employing the nondemolition parity analysis is passed, the task of securely distributing the quantum channel is fulfilled. Encoding secret information on the photons sent from Bob by performing single-photon unitary transformation operations, Alice resends these photons to Bob through the transmission circuit against the collective noise. Exploiting the nondemolition parity analysis to distinguish Bell states, Bob can obtain the secret information from Alice after the second security check is passed, and the resulting Bell states can be applied to other tasks of quantum information processing. Under the condition of the secure quantum channel being confirmed, the photons that are utilized in the role of the security check can be applied to the function of secure direct communication, thus enhancing the efficiency of transmitting secret information and saving a lot of resources.

  8. Measurement noise 100 times lower than the quantum-projection limit using entangled atoms

    Science.gov (United States)

    Hosten, Onur; Engelsen, Nils J.; Krishnakumar, Rajiv; Kasevich, Mark A.

    2016-01-01

    Quantum metrology uses quantum entanglement—correlations in the properties of microscopic systems—to improve the statistical precision of physical measurements. When measuring a signal, such as the phase shift of a light beam or an atomic state, a prominent limitation to achievable precision arises from the noise associated with the counting of uncorrelated probe particles. This noise, commonly referred to as shot noise or projection noise, gives rise to the standard quantum limit (SQL) to phase resolution. However, it can be mitigated down to the fundamental Heisenberg limit by entangling the probe particles. Despite considerable experimental progress in a variety of physical systems, a question that persists is whether these methods can achieve performance levels that compare favourably with optimized conventional (non-entangled) systems. Here we demonstrate an approach that achieves unprecedented levels of metrological improvement using half a million 87Rb atoms in their ‘clock’ states. The ensemble is 20.1 ± 0.3 decibels (100-fold) spin-squeezed via an optical-cavity-based measurement. We directly resolve small microwave-induced rotations 18.5 ± 0.3 decibels (70-fold) beyond the SQL. The single-shot phase resolution of 147 microradians achieved by the apparatus is better than that achieved by the best engineered cold atom sensors despite lower atom numbers. We infer entanglement of more than 680 ± 35 particles in the atomic ensemble. Applications include atomic clocks, inertial sensors, and fundamental physics experiments such as tests of general relativity or searches for electron electric dipole moment. To this end, we demonstrate an atomic clock measurement with a quantum enhancement of 10.5 ± 0.3 decibels (11-fold), limited by the phase noise of our microwave source.

  9. Entanglement entropy of fractional quantum Hall systems with short range disorder

    Science.gov (United States)

    Friedman, B. A.; Levine, G. C.

    2015-02-01

    The critical value of the mobility for which the ν = 5/2 quantum Hall effect is destroyed by short range disorder is determined from an earlier calculation of the entanglement entropy. The value μ = 2.0 ×106cm2/Vs agrees well with experiment. This agreement is particularly significant in that there are no adjustable parameters. Entanglement entropy versus disorder strength for ν = 1/2, ν = 9/2 and ν = 7/3 is calculated. For ν = 1/2 there is no evidence for a transition for the disorder strengths considered; for ν = 9/2 there appears to be a stripe-liquid transition. For ν = 7/3 there again appears to be a transition at similar value of the disorder strength as the ν = 5/2 transition but there are stronger finite size effects.

  10. Operational tools for moment characterization, entanglement verification and quantum key distribution

    Energy Technology Data Exchange (ETDEWEB)

    Moroder, Tobias

    2009-07-31

    In this thesis we address several different topics within the field of quantum information theory. These results can be classified to either enhance the applicability of certain conceptual ideas to be more suited for an actual experimental situation or to ease the analysis for further investigation of central problems. In detail, the present thesis contains the following achievements: We start our discussion with the question under which conditions a given set of expectation values is compatible with the first and second moments of the spin operators of a generic spin j state. We link this characterization of physical moments to the Bosesymmetric extension problem for a particular two qubit state that is completely determined by the given moments. Via this reformulation we can provide operational sub- and superset approximations in order to identify moments which are assured to be physical and others which are clearly incompatible with quantum mechanics. We show that this operational approximate solution becomes more accurate for increasing total spin numbers j and converges to the exact solution in the limiting case. Another part deals with the theoretical concept of entanglement witnesses. In particular, we concentrate how to improve the detection strength of a linear entanglement witness by nonlinear terms. We analyze two distinguished cases: Either we optimize the iteration method for a given target state or we try to improve the entanglement witness with respect to all entangled states equally. In the remaining parts we discuss different options in order to make already existing ideas more applicable for actual experiments, since most of the famous applications in quantum information theory have only been introduced on a very idealized level and hence are not directly valid for the real experiment. We investigate the theoretical concept of a squash model, that represents an elegant ''evaluation trick'' to directly apply for instance the

  11. Relativistic entanglement from relativistic quantum mechanics in the rest-frame instant form of dynamics

    Energy Technology Data Exchange (ETDEWEB)

    Lusanna, Luca, E-mail: lusanna@fi.infn.it [Sezione INFN di Firenze, Polo Scientifico, Via Sansone 1, 50019 Sesto Fiorentino (Italy)

    2011-07-08

    After a review of the problems induced by the Lorentz signature of Minkowski space-time, like the need of a clock synchronization convention for the definition of 3-space and the complexity of the notion of relativistic center of mass, there is the introduction of a new formulation of relativistic quantum mechanics compatible with the theory of relativistic bound states. In it the zeroth postulate of non-relativistic quantum mechanics is not valid and the physics is described in the rest frame by a Hilbert space containing only relative variables. The non-locality of the Poincare' generators imply a kinematical non-locality and non-separability influencing the theory of relativistic entanglement and not connected with the standard quantum non-locality.

  12. Quantum bounds on multiplayer linear games and device-independent witness of genuine tripartite entanglement

    Science.gov (United States)

    Murta, Gláucia; Ramanathan, Ravishankar; Móller, Natália; Terra Cunha, Marcelo

    2016-02-01

    Here we study multiplayer linear games, a natural generalization of xor games to multiple outcomes. We generalize a recently proposed efficiently computable bound, in terms of the norm of a game matrix, on the quantum value of two-player games to linear games with n players. As an example, we bound the quantum value of a generalization of the well-known CHSH game to n players and d outcomes. We also apply the bound to show in a simple manner that any nontrivial functional box, that could lead to trivialization of communication complexity in a multiparty scenario, cannot be realized in quantum mechanics. We then present a systematic method to derive device-independent witnesses of genuine tripartite entanglement.

  13. Quantum-Dot Single-Photon Sources for Entanglement Enhanced Interferometry.

    Science.gov (United States)

    Müller, M; Vural, H; Schneider, C; Rastelli, A; Schmidt, O G; Höfling, S; Michler, P

    2017-06-23

    Multiphoton entangled states such as "N00N states" have attracted a lot of attention because of their possible application in high-precision, quantum enhanced phase determination. So far, N00N states have been generated in spontaneous parametric down-conversion processes and by mixing quantum and classical light on a beam splitter. Here, in contrast, we demonstrate superresolving phase measurements based on two-photon N00N states generated by quantum dot single-photon sources making use of the Hong-Ou-Mandel effect on a beam splitter. By means of pulsed resonance fluorescence of a charged exciton state, we achieve, in postselection, a quantum enhanced improvement of the precision in phase uncertainty, higher than prescribed by the standard quantum limit. An analytical description of the measurement scheme is provided, reflecting requirements, capability, and restraints of single-photon emitters in optical quantum metrology. Our results point toward the realization of a real-world quantum sensor in the near future.

  14. Entanglement entropy in quantum many-particle systems and their simulation via ansatz states

    Energy Technology Data Exchange (ETDEWEB)

    Barthel, Thomas

    2009-12-10

    A main topic of this thesis is the development of efficient numerical methods for the simulation of strongly correlated quantum lattice models. For one-dimensional systems, the density-matrix renormalization-group (DMRG) is such a very successful method. The physical states of interest are approximated within a certain class of ansatz states. These ansatz states are designed in a way that the number of degrees of freedom are prevented from growing exponentially. They are the so-called matrix product states. The first part of the thesis, therefore, provides analytical and numerical analysis of the scaling of quantum nonlocality with the system size or time in different, physically relevant scenarios. For example, the scaling of Renyi entropies and their dependence on boundary conditions is derived within the 1+1-dimensional conformal field theory. Conjectures and analytical indications concerning the properties of entanglement entropy in critical fermionic and bosonic systems are confirmed numerically with high precision. For integrable models in the thermodynamic limit, general preconditions are derived under which subsystems converge to steady states. These steady states are non-thermal and retain information about the initial state. It is shown that the entanglement entropy in such steady states is extensive. For short times, the entanglement entropy grows typically linearly with time, causing an exponential increase in computation costs for the DMRG method. The second part of the thesis focuses on the development and improvement of the abovementioned numerical techniques. The time-dependent DMRG is complemented with an extrapolation technique for the evaluated observables. In this way, the problem of the entropy increase can be circumvented, allowing for a precise determination of spectral functions. The method is demonstrated using the example of the Heisenberg antiferromagnet and results are compared to Bethe-Ansatz data for T=0 and quantum Monte Carlo data

  15. Experimental nested purification for a linear optical quantum repeater

    Science.gov (United States)

    Chen, Luo-Kan; Yong, Hai-Lin; Xu, Ping; Yao, Xing-Can; Xiang, Tong; Li, Zheng-Da; Liu, Chang; Lu, He; Liu, Nai-Le; Li, Li; Yang, Tao; Peng, Cheng-Zhi; Zhao, Bo; Chen, Yu-Ao; Pan, Jian-Wei

    2017-11-01

    Quantum repeaters1-4 are essential elements for demonstrating global-scale quantum communication. Over the past few decades, tremendous efforts have been dedicated to implementing a practical quantum repeater5-10. However, nested purification1, the backbone of a quantum repeater, remains a challenge because the capacity for successive entanglement manipulation is still absent. Here, we propose and demonstrate an architecture of nested purification using spontaneous parametric downconversion sources11. A heralded entangled photon pair with higher fidelity is successfully purified from two copies of low-fidelity pairs that experience entanglement swapping and noisy channels. By delicately designing the optical circuits, double-pair emission noise is eliminated automatically and the purified state can be used for scalable entanglement connections to extend the communication distance. Combined with a quantum memory, our approach can be applied immediately in the implemention of a practical quantum repeater.

  16. The Radical Pair Mechanism and the Avian Chemical Compass: Quantum Coherence and Entanglement

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Yiteng [Purdue Univ., West Lafayette, IN (United States); Kais, Sabre [Purdue Univ., West Lafayette, IN (United States); Berman, Gennady Petrovich [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2015-02-02

    We review the spin radical pair mechanism which is a promising explanation of avian navigation. This mechanism is based on the dependence of product yields on 1) the hyperfine interaction involving electron spins and neighboring nuclear spins and 2) the intensity and orientation of the geomagnetic field. One surprising result is that even at ambient conditions quantum entanglement of electron spins can play an important role in avian magnetoreception. This review describes the general scheme of chemical reactions involving radical pairs generated from singlet and triplet precursors; the spin dynamics of the radical pairs; and the magnetic field dependence of product yields caused by the radical pair mechanism. The main part of the review includes a description of the chemical compass in birds. We review: the general properties of the avian compass; the basic scheme of the radical pair mechanism; the reaction kinetics in cryptochrome; quantum coherence and entanglement in the avian compass; and the effects of noise. We believe that the quantum avian compass can play an important role in avian navigation and can also provide the foundation for a new generation of sensitive and selective magnetic-sensing nano-devices.

  17. Nonequilibrium-induced enhancement of dynamical quantum coherence and entanglement of spin arrays

    Science.gov (United States)

    Zhang, Zhedong; Fu, Hongchen; Wang, Jin

    2017-04-01

    The random magnetic field produced by nuclear spins has long been viewed as the dominating source of decoherence in the quantum-dot based spins. Here we obtain in both exact and analytical manner the dynamics of spin qubits coupled to nuclear spin environments via the hyperfine interaction, going beyond the weak system-bath interaction and Markovian approximation. We predict that the detailed-balance breaking produced by chemical potential gradient in nuclear baths leads to the rapid oscillations of populations, quantum coherence and entanglement, which are absent in the conventional case (i.e., Overhauser noise). This is attributed to the nonequilibrium feature of the system as shown in the relation between the oscillation period and the chemical potential imbalance. Our results reveal the essentiality of nonequilibriumness with detailed-balance breaking for enhancing the dynamical coherence and entanglement of spin qubits. Moreover, our exact solution explicitly demonstrates that the non-Markovian bath comprised by nuclear spins can preserve the collective quantum state, due to the recovery of coherence. Finally, we propose an experiment using ultracold trapped ions to observe these nonequilibrium and memory effects.

  18. A novel quantum group signature scheme without using entangled states

    Science.gov (United States)

    Xu, Guang-Bao; Zhang, Ke-Jia

    2015-07-01

    In this paper, we propose a novel quantum group signature scheme. It can make the signer sign a message on behalf of the group without the help of group manager (the arbitrator), which is different from the previous schemes. In addition, a signature can be verified again when its signer disavows she has ever generated it. We analyze the validity and the security of the proposed signature scheme. Moreover, we discuss the advantages and the disadvantages of the new scheme and the existing ones. The results show that our scheme satisfies all the characteristics of a group signature and has more advantages than the previous ones. Like its classic counterpart, our scheme can be used in many application scenarios, such as e-government and e-business.

  19. Phase control of entanglement and quantum steering in a three-mode optomechanical system

    Science.gov (United States)

    Sun, F. X.; Mao, D.; Dai, Y. T.; Ficek, Z.; He, Q. Y.; Gong, Q. H.

    2017-12-01

    The theory of phase control of coherence, entanglement and quantum steering is developed for an optomechanical system composed of a single mode cavity containing a partially transmitting dielectric membrane and driven by short laser pulses. The membrane divides the cavity into two mutually coupled optomechanical cavities resulting in an effective three-mode closed loop system, two field modes of the two cavities and a mechanical mode representing the oscillating membrane. The closed loop in the coupling creates interfering channels which depend on the relative phase of the coupling strengths of the field modes to the mechanical mode. Populations and correlations of the output modes are calculated analytically and show several interesting phase dependent effects such as reversible population transfer from one field mode to the other, creation of collective modes, and induced coherence without induced emission. We find that these effects result from perfect mutual coherence between the field modes which is preserved even if one of the modes is not populated. The inseparability criterion for the output modes is also investigated and we find that entanglement may occur only between the field modes and the mechanical mode. We show that depending on the phase, the field modes can act on the mechanical mode collectively or individually resulting, respectively, in tripartite or bipartite entanglement. In addition, we examine the phase sensitivity of quantum steering of the mechanical mode by the field modes. Deterministic phase transfer of the steering from bipartite to collective is predicted and optimum steering corresponding to perfect EPR state can be achieved. These different types of quantum steering can be distinguished experimentally by measuring the coincidence rate between two detectors adjusted to collect photons of the output cavity modes. In particular, we find that the minima of the interference pattern of the coincidence rate signal the bipartite steering

  20. Generating continuous variable entangled states for quantum teleportation using a superposition of number-conserving operations

    Science.gov (United States)

    Shekhar Dhar, Himadri; Chatterjee, Arpita; Ghosh, Rupamanjari

    2015-09-01

    We investigate the states generated in continuous variable (CV) optical fields by operating them with a number-conserving operator of the type s\\hat{a}{\\hat{a}}\\dagger +t{\\hat{a}}\\dagger \\hat{a}, formed by the generalized superposition of products of field annihilation (\\hat{a}) and creation ({\\hat{a}}\\dagger ) operators, with {s}2+{t}2=1. Such an operator is experimentally realizable and can be suitably manipulated to generate nonclassical optical states when applied on single- and two-mode coherent, thermal and squeezed input states. At low intensities, these nonclassical states can interact with a secondary mode via a linear optical device to generate two-mode discrete entangled states, which can serve as a resource in quantum information protocols. The advantage of these operations are tested by applying the generated entangled states as quantum channels in CV quantum teleportation, under the Braunstein and Kimble protocol. We observe that, under these operations, while the average fidelity of CV teleportation is enhanced for the nonclassical channel formed using input squeezed states, it remains at the classical threshold for input coherent and thermal states. This is due to the fact that though these operations can introduce discrete entanglement in all input states, it enhances the Einstein-Podolosky-Rosen correlations only in the nonclassical squeezed state inputs, leading to an advantage in CV teleportation. This shows that nonclassical optical states generated using the above operations on classical coherent and thermal state inputs are not useful for CV teleportation. This investigation could prove useful for the efficient implementation of noisy non-Gaussian channels, formed by linear operations, in future teleportation protocols.

  1. Quantum transitions, magnetization and thermal entanglement of the spin-1 Ising-Heisenberg diamond chain

    Science.gov (United States)

    Abgaryan, V. S.; Ananikian, N. S.; Ananikyan, L. N.; Hovhannisyan, V. V.

    2015-12-01

    We consider the quasi-one dimensional spin-1 Ising-Heisenberg model with single-ion anisotropy on a diamond chain. Due to the exact solution of the model, we constructed the ground state phases which, alongside to others, have shown capability to exhibit most interesting frustrated state. The investigation of the magnetization processes showed enrichment of possibilities to form plateaus at zero, one- and two-thirds of the saturation magnetization. Negativity as a measure of the quantum entanglement is considered at low temperatures.

  2. Quantum Cloning of an Unknown 2-Atom State via Entangled Cluster States

    Science.gov (United States)

    Yu, L.-z.; Zhong, F.

    2016-06-01

    This paper presented a scheme for cloning a 2-atom state in the QED cavity with the help of Victor who is the state's preparer. The cloning scheme has two steps. In the first step, the scheme requires probabilistic teleportation of a 2-atom state that is unknown in advance, and uses a 4-atom cluster state as quantum channel. In the second step, perfect copies of the 2-atom entangled state may be realized with the assistance of Victor. The finding is that our scheme has two outstanding advantages: it is not sensitive to the cavity decay, and Bell state is easy to identify.

  3. Entanglement growth and simulation efficiency in one-dimensional quantum lattice systems

    Science.gov (United States)

    Perales, Álvaro; Vidal, Guifré

    2008-10-01

    We study the evolution of one-dimensional quantum lattice systems when the ground state is perturbed by altering one site in the middle of the chain. For a large class of models, we observe a similar pattern of entanglement growth during the evolution, characterized by a moderate increase of significant Schmidt coefficients in all relevant bipartite decompositions of the state. As a result, the evolution can be accurately described by a matrix product state and efficiently simulated using the time-evolving block decimation algorithm.

  4. Quantum cryptography using entangled photons in energy-time bell states

    Science.gov (United States)

    Tittel; Brendel; Zbinden; Gisin

    2000-05-15

    We present a setup for quantum cryptography based on photon pairs in energy-time Bell states and show its feasibility in a laboratory experiment. Our scheme combines the advantages of using photon pairs instead of faint laser pulses and the possibility to preserve energy-time entanglement over long distances. Moreover, using four-dimensional energy-time states, no fast random change of bases is required in our setup: Nature itself decides whether to measure in the energy or in the time base, thus rendering eavesdropper attacks based on "photon number splitting" less efficient.

  5. Entanglement entropy and topological order in resonating valence-bond quantum spin liquids

    Science.gov (United States)

    Wildeboer, Julia; Seidel, Alexander; Melko, Roger G.

    2017-03-01

    On the triangular and kagome lattices, short-ranged resonating valence-bond wave functions can be sampled without the sign problem using a recently developed Pfaffian Monte Carlo scheme. In this Rapid Communication, we study the Renyi entanglement entropy in these wave functions using a replica-trick method. Using various spatial bipartitions, including the Levin-Wen construction, our finite-size scaled Renyi entropy gives a topological contribution consistent with γ =ln(2 ) , as expected for a gapped Z2 quantum spin liquid. We prove that the mutual statistics is consistent with the toric code anyon model and rule out any other quasiparticle statistics such as the double semion model.

  6. High-Yield Fabrication of Entangled Photon Emitters for Hybrid Quantum Networking Using High-Temperature Droplet Epitaxy.

    Science.gov (United States)

    Basso Basset, Francesco; Bietti, Sergio; Reindl, Marcus; Esposito, Luca; Fedorov, Alexey; Huber, Daniel; Rastelli, Armando; Bonera, Emiliano; Trotta, Rinaldo; Sanguinetti, Stefano

    2018-01-10

    Several semiconductor quantum dot techniques have been investigated for the generation of entangled photon pairs. Among the other techniques, droplet epitaxy enables the control of the shape, size, density, and emission wavelength of the quantum emitters. However, the fraction of the entanglement-ready quantum dots that can be fabricated with this method is still limited to around 5%, and matching the energy of the entangled photons to atomic transitions (a promising route toward quantum networking) remains an outstanding challenge. Here, we overcome these obstacles by introducing a modified approach to droplet epitaxy on a high symmetry (111)A substrate, where the fundamental crystallization step is performed at a significantly higher temperature as compared with previous reports. Our method drastically improves the yield of entanglement-ready photon sources near the emission wavelength of interest, which can be as high as 95% due to the low values of fine structure splitting and radiative lifetime, together with the reduced exciton dephasing offered by the choice of GaAs/AlGaAs materials. The quantum dots are designed to emit in the operating spectral region of Rb-based slow-light media, providing a viable technology for quantum repeater stations.

  7. An entangled-LED-driven quantum relay over 1 km

    Science.gov (United States)

    Varnava, Christiana; Stevenson, R. Mark; Nilsson, Jonas; Skiba-Szymanska, Joanna; Dzurňák, Branislav; Lucamarini, Marco; Penty, Richard V.; Farrer, Ian; Ritchie, David A.; Shields, Andrew J.

    2016-03-01

    Quantum cryptography allows confidential information to be communicated between two parties, with secrecy guaranteed by the laws of nature alone. However, upholding guaranteed secrecy over networks poses a further challenge, as classical receive-and-resend routing nodes can only be used conditional of trust by the communicating parties, which arguably diminishes the value of the underlying quantum cryptography. Quantum relays offer a potential solution by teleporting qubits from a sender to a receiver, without demanding additional trust from end users. Here we demonstrate the operation of a quantum relay over 1 km of optical fibre, which teleports a sequence of photonic quantum bits to a receiver by utilising entangled photons emitted by a semiconductor light-emitting diode. The average relay fidelity of the link is 0.90±0.03, exceeding the classical bound of 0.75 for the set of states used, and sufficiently high to allow error correction. The fundamentally low multiphoton emission statistics and the integration potential of the source present an appealing platform for future quantum networks.

  8. Quantum-state preparation and macroscopic entanglement in gravitational-wave detectors

    Science.gov (United States)

    Müller-Ebhardt, Helge; Rehbein, Henning; Li, Chao; Mino, Yasushi; Somiya, Kentaro; Schnabel, Roman; Danzmann, Karsten; Chen, Yanbei

    2009-10-01

    Long-baseline laser-interferometer gravitational-wave (GW) detectors are operating at a factor of ˜10 (in amplitude) above the standard quantum limit (SQL) within a broad frequency band (in the sense that Δf˜f ). Such a low-noise budget has already allowed the creation of a controlled 2.7 kg macroscopic oscillator with an effective eigenfrequency of 150 Hz and an occupation number of ˜200 . This result, along with the prospect for further improvements, heralds the possibility of experimentally probing macroscopic quantum mechanics (MQM)—quantum mechanical behavior of objects in the realm of everyday experience—using GW detectors. In this paper, we provide the mathematical foundation for the first step of a MQM experiment: the preparation of a macroscopic test mass into a nearly minimum-Heisenberg-limited Gaussian quantum state, which is possible if the interferometer’s classical noise beats the SQL in a broad frequency band. Our formalism, based on Wiener filtering, allows a straightforward conversion from the noise budget of a laser interferometer, in terms of noise spectra, into the strategy for quantum-state preparation and the quality of the prepared state. Using this formalism, we consider how Gaussian entanglement can be built among two macroscopic test masses and the performance of the planned Advanced LIGO interferometers in quantum-state preparation.

  9. Identifying a correlated spin fluctuation in an entangled spin chain subject to a quantum phase transition.

    Science.gov (United States)

    Shimizu, Kaoru; Tokura, Yasuhiro

    2015-12-01

    This paper presents a theoretical framework for analyzing the quantum fluctuation properties of a quantum spin chain subject to a quantum phase transition. We can quantify the fluctuation properties by examining the correlation between the fluctuations of two neighboring spins subject to the quantum uncertainty. To do this, we first compute the reduced density matrix ρ of the spin pair from the ground state |Ψ⟩ of a spin chain, and then identify the quantum correlation part ρ(q) embedded in ρ. If the spin chain is translationally symmetric and characterized by a nearest-neighbor two-body spin interaction, we can determine uniquely the form of ρ(q) as W|Φ〉〈Φ| with the weight W ≤1, and quantify the fluctuation properties using the two-spin entangled state |Φ〉. We demonstrate the framework for a transverse-field quantum Ising spin chain and indicate its validity for more general spin chain models.

  10. Nonequilibrium thermal entanglement

    OpenAIRE

    Quiroga, Luis; Rodriguez, Ferney J.; Ramirez, Maria E.; Paris, Roberto

    2006-01-01

    Results on heat current, entropy production rate and entanglement are reported for a quantum system coupled to two different temperature heat reservoirs. By applying a temperature gradient, different quantum states can be found with exactly the same amount of entanglement but different purity degrees and heat currents. Furthermore, a nonequilibrium enhancement-suppression transition behavior of the entanglement is identified.

  11. Linear optical quantum metrology with single photons: exploiting spontaneously generated entanglement to beat the shot-noise limit.

    Science.gov (United States)

    Motes, Keith R; Olson, Jonathan P; Rabeaux, Evan J; Dowling, Jonathan P; Olson, S Jay; Rohde, Peter P

    2015-05-01

    Quantum number-path entanglement is a resource for supersensitive quantum metrology and in particular provides for sub-shot-noise or even Heisenberg-limited sensitivity. However, such number-path entanglement has been thought to be resource intensive to create in the first place--typically requiring either very strong nonlinearities, or nondeterministic preparation schemes with feedforward, which are difficult to implement. Very recently, arising from the study of quantum random walks with multiphoton walkers, as well as the study of the computational complexity of passive linear optical interferometers fed with single-photon inputs, it has been shown that such passive linear optical devices generate a superexponentially large amount of number-path entanglement. A logical question to ask is whether this entanglement may be exploited for quantum metrology. We answer that question here in the affirmative by showing that a simple, passive, linear-optical interferometer--fed with only uncorrelated, single-photon inputs, coupled with simple, single-mode, disjoint photodetection--is capable of significantly beating the shot-noise limit. Our result implies a pathway forward to practical quantum metrology with readily available technology.

  12. Controlled quantum secure direct communication by entanglement distillation or generalized measurement

    Science.gov (United States)

    Tan, Xiaoqing; Zhang, Xiaoqian

    2016-05-01

    We propose two controlled quantum secure communication schemes by entanglement distillation or generalized measurement. The sender Alice, the receiver Bob and the controllers David and Cliff take part in the whole schemes. The supervisors David and Cliff can control the information transmitted from Alice to Bob by adjusting the local measurement angles θ _4 and θ _3. Bob can verify his secret information by classical one-way function after communication. The average amount of information is analyzed and compared for these two methods by MATLAB. The generalized measurement is a better scheme. Our schemes are secure against some well-known attacks because classical encryption and decoy states are used to ensure the security of the classical channel and the quantum channel.

  13. Multiplexed entanglement generation over quantum networks using multi-qubit nodes

    Science.gov (United States)

    van Dam, Suzanne B.; Humphreys, Peter C.; Rozpędek, Filip; Wehner, Stephanie; Hanson, Ronald

    2017-09-01

    Quantum networks distributed over distances greater than a few kilometres will be limited by the time required for information to propagate between nodes. We analyse protocols that are able to circumvent this bottleneck by employing multi-qubit nodes and multiplexing. For each protocol, we investigate the key network parameters that determine its performance. We model achievable entangling rates based on the anticipated near-term performance of nitrogen-vacancy centres and other promising network platforms. This analysis allows us to compare the potential of the proposed multiplexed protocols in different regimes. Moreover, by identifying the gains that may be achieved by improving particular network parameters, our analysis suggests the most promising avenues for research and development of prototype quantum networks.

  14. Effect of two-qutrit entanglement on quantum speed limit time of a bipartite V-type open system

    Energy Technology Data Exchange (ETDEWEB)

    Behzadi, N., E-mail: n.behzadi@tabrizu.ac.ir [Research Institute for Fundamental Sciences, University of Tabriz (Iran, Islamic Republic of); Ahansaz, B.; Ektesabi, A.; Faizi, E. [Physics Department, Azarbaijan Shahid Madani University, Tabriz (Iran, Islamic Republic of)

    2017-03-15

    In the present paper, quantum speed limit (QSL) time of a bipartite V-type three-level atomic system under the effect of two-qutrit entanglement is investigated. Each party interacts with own independent reservoir. By considering two local unitarily equivalent Werner states and the Horodecki PPT state, as initial states, the QSL time is evaluated for each of them in the respective entangled regions. It is counterintuitively observed that the effect of entanglement on the QSL time driven from each of the initial Werner states are completely different when the degree of non-Markovianity is considerable. In addition, it is interesting that the effect of entanglement of the non-equivalent Horodecki state on the calculated QSL time displays an intermediate behavior relative to the cases obtained for the Werner states.

  15. Performance improvement of continuous-variable quantum key distribution with an entangled source in the middle via photon subtraction

    Science.gov (United States)

    Guo, Ying; Liao, Qin; Wang, Yijun; Huang, Duan; Huang, Peng; Zeng, Guihua

    2017-03-01

    A suitable photon-subtraction operation can be exploited to improve the maximal transmission of continuous-variable quantum key distribution (CVQKD) in point-to-point quantum communication. Unfortunately, the photon-subtraction operation faces solving the improvement transmission problem of practical quantum networks, where the entangled source is located in the third part, which may be controlled by a malicious eavesdropper, instead of in one of the trusted parts, controlled by Alice or Bob. In this paper, we show that a solution can come from using a non-Gaussian operation, in particular, the photon-subtraction operation, which provides a method to enhance the performance of entanglement-based (EB) CVQKD. Photon subtraction not only can lengthen the maximal transmission distance by increasing the signal-to-noise rate but also can be easily implemented with existing technologies. Security analysis shows that CVQKD with an entangled source in the middle (ESIM) from applying photon subtraction can well increase the secure transmission distance in both direct and reverse reconciliations of the EB-CVQKD scheme, even if the entangled source originates from an untrusted part. Moreover, it can defend against the inner-source attack, which is a specific attack by an untrusted entangled source in the framework of ESIM.

  16. Quantum entanglement analysis of an optically excited coupling of two nuclear spins via a mediator: Combining the quantum concurrence and negativity

    Science.gov (United States)

    Fu, Chenghua; Hu, Zhanning

    2018-03-01

    In this paper, we investigate the characteristics of the nuclear spin entanglement generated by an intermedium with an optically excited triplet. Significantly, the interaction between the two nuclear spins presents to be a direct XY coupling in each of the effective subspace Hamiltonians which are obtained by applying a transformation on the natural Hamiltonian. The quantum concurrence and negativity are discussed to quantitatively describe the quantum entanglement, and a comparison between them can reveal the nature of their relationship. An innovative general equation describing the relationship between the concurrence and negativity is explicitly obtained.

  17. The Grammatical Universe and the Laws of Thermodynamics and Quantum Entanglement

    Science.gov (United States)

    Marcer, Peter J.; Rowlands, Peter

    2010-11-01

    The universal nilpotent computational rewrite system (UNCRS) is shown to formalize an irreversible process of evolution in conformity with the First, Second and Third Laws of Thermodynamics, in terms of a single algebraic creation operator (ikE+ip+jm) which delivers the whole quantum mechanical language apparatus, where k, i, j are quaternions units and E, p, m are energy, momentum and rest mass. This nilpotent evolution describes `a dynamic zero totality universe' in terms of its fermion states (each of which, by Pauli exclusion, is unique and nonzero), where, together with their boson interactions, these define physics at the fundamental level. (The UNCRS implies that the inseparability of objects and fields in the quantum universe is based on the fact that the only valid mathematical representations are all automorphisms of the universe itself, and that this is the mathematical meaning of quantum entanglement. It thus appears that the nilpotent fermion states are in fact what is called the splitting field in Quantum Mechanics of the Galois group which leads to the roots of the corresponding algebraic equation, and concerns in this case the alternating group of even permutations which are themselves automorphisms). In the nilpotent evolutionary process: (i) the Quantum Carnot Engine (QCE) extended model of thermodynamic irreversibility, consisting of a single heat bath of an ensemble of Standard Model elementary particles, retains a small amount of quantum coherence / entanglement, so as to constitute new emergent fermion states of matter, and (ii) the metric (E2-p2m2) = 0 ensures the First Law of the conservation of energy operates at each nilpotent stage, so that (iii) prior to each creation (and implied corresponding annihilation / conserve operation), E and m can be postulated to constitute dark energy and matter respectively. It says that the natural language form of the rewrite grammar of the evolution consists of the well known precepts of the Laws of

  18. Effect of quantum noise on deterministic remote state preparation of an arbitrary two-particle state via various quantum entangled channels

    Science.gov (United States)

    Qu, Zhiguo; Wu, Shengyao; Wang, Mingming; Sun, Le; Wang, Xiaojun

    2017-12-01

    As one of important research branches of quantum communication, deterministic remote state preparation (DRSP) plays a significant role in quantum network. Quantum noises are prevalent in quantum communication, and it can seriously affect the safety and reliability of quantum communication system. In this paper, we study the effect of quantum noise on deterministic remote state preparation of an arbitrary two-particle state via different quantum channels including the χ state, Brown state and GHZ state. Firstly, the output states and fidelities of three DRSP algorithms via different quantum entangled channels in four noisy environments, including amplitude-damping, phase-damping, bit-flip and depolarizing noise, are presented, respectively. And then, the effects of noises on three kinds of preparation algorithms in the same noisy environment are discussed. In final, the theoretical analysis proves that the effect of noise in the process of quantum state preparation is only related to the noise type and the size of noise factor and independent of the different entangled quantum channels. Furthermore, another important conclusion is given that the effect of noise is also independent of how to distribute intermediate particles for implementing DRSP through quantum measurement during the concrete preparation process. These conclusions will be very helpful for improving the efficiency and safety of quantum communication in a noisy environment.

  19. Generation of maximally entangled states in hybrid two quantum dots mediated by a spherical metal nanoparticle driven by external laser field

    OpenAIRE

    Blekos, Kostas; Stasinou, Maria-Eftaxia; Terzis, Andreas F.; Paspalakis, Emmanuel

    2015-01-01

    We theoretically study the generation of quantum correlations in a hybrid system composed by two interacting semiconductor quantum dots mediated by a metal nanoparticle and coupled to an external laser field. Interactions present in the hybrid system are treated using a semiclassical approximation except for the direct dipole-dipole interaction. We report the entanglement of formation, which gives information about entanglement quantum correlations, for continuous wave and pulsed driving appl...

  20. Joint remote control of an arbitrary single-qubit state by using a multiparticle entangled state as the quantum channel

    Science.gov (United States)

    Lv, Shu-Xin; Zhao, Zheng-Wei; Zhou, Ping

    2018-01-01

    We present a scheme for joint remote implementation of an arbitrary single-qubit operation following some ideas in one-way quantum computation. All the senders share the information of implemented quantum operation and perform corresponding single-qubit measurements according to their information of implemented operation. An arbitrary single-qubit operation can be implemented upon the remote receiver's quantum system if the receiver cooperates with all the senders. Moreover, we study the protocol of multiparty joint remote implementation of an arbitrary single-qubit operation with many senders by using a multiparticle entangled state as the quantum channel.

  1. Verifying bound entanglement of dephased Werner states

    Science.gov (United States)

    Thomas, P.; Bohmann, M.; Vogel, W.

    2017-10-01

    The verification of quantum entanglement under the influence of realistic noise and decoherence is crucial for the development of quantum technologies. Unfortunately, a full entanglement characterization is generally not possible with most entanglement criteria such as entanglement witnesses or the partial transposition criterion. In particular, so-called bound entanglement cannot be certified via the partial transposition criterion. Here we present the full entanglement verification of dephased qubit and qutrit Werner states via entanglement quasiprobabilities. Remarkably, we are able to reveal bound entanglement for noisy mixed states in the qutrit case. This example demonstrates the strength of the entanglement quasiprobabilities for verifying the full entanglement of quantum states suffering from noise.

  2. Quantum entanglement based on surface phonon polaritons in condensed matter systems

    Directory of Open Access Journals (Sweden)

    Yang Ming

    2013-04-01

    Full Text Available Surface phonon polariton (SPhP is a special propagation mode in condensed matter systems. We present an investigation on the entanglement of SPhP modes. The entangled SPhP pairs are generated through launching entangled photons onto the grating coupling systems. The interaction Hamiltonian for the coupling process between entangled photons and entangled LRSPhPs is derived. State vector of the entangled LRSPhPs is obtained through the perturbation theory. The origin of LRSPhP entanglement is revealed. Wave mechanics approach is taken to describe the coupling process as an alteration. To present the nonlocality, the second-order correlation function is studied.

  3. Exact stabilization of entangled states in finite time by dissipative quantum circuits

    Science.gov (United States)

    Johnson, Peter D.; Ticozzi, Francesco; Viola, Lorenza

    2017-07-01

    Open quantum systems evolving according to discrete-time dynamics are capable, unlike continuous-time counterparts, to converge to a stable equilibrium in finite time with zero error. We consider dissipative quantum circuits consisting of sequences of quantum channels subject to specified quasi-locality constraints, and determine conditions under which stabilization of a pure multipartite entangled state of interest may be exactly achieved in finite time. Special emphasis is devoted to characterizing scenarios where finite-time stabilization may be achieved robustly with respect to the order of the applied quantum maps, as suitable for unsupervised control architectures. We show that if a decomposition of the physical Hilbert space into virtual subsystems is found, which is compatible with the locality constraint and relative to which the target state factorizes, then robust stabilization may be achieved by independently cooling each component. We further show that if the same condition holds for a scalable class of pure states, a continuous-time quasi-local Markov semigroup ensuring rapid mixing can be obtained. Somewhat surprisingly, we find that the commutativity of the canonical parent Hamiltonian one may associate to the target state does not directly relate to its finite-time stabilizability properties, although in all cases where we can guarantee robust stabilization, a (possibly noncanonical) commuting parent Hamiltonian may be found. Aside from graph states, quantum states amenable to finite-time robust stabilization include a class of universal resource states displaying two-dimensional symmetry-protected topological order, along with tensor network states obtained by generalizing a construction due to Bravyi and Vyalyi [Quantum Inf. Comput. 5, 187 (2005)]. Extensions to representative classes of mixed graph-product and thermal states are also discussed.

  4. State preparation and detector effects in quantum measurements of rotation with circular polarization-entangled photons and photon counting

    Science.gov (United States)

    Cen, Longzhu; Zhang, Zijing; Zhang, Jiandong; Li, Shuo; Sun, Yifei; Yan, Linyu; Zhao, Yuan; Wang, Feng

    2017-11-01

    Circular polarization-entangled photons can be used to obtain an enhancement of the precision in a rotation measurement. In this paper, the method of entanglement transformation is used to produce NOON states in circular polarization from a readily generated linear polarization-entangled photon source. Detection of N -fold coincidences serves as the postselection and N -fold superoscillating fringes are obtained simultaneously. A parity strategy and conditional probabilistic statistics contribute to a better fringe, saturating the angle sensitivity to the Heisenberg limit. The impact of imperfect state preparation and detection is discussed both separately and jointly. For the separated case, the influence of each system imperfection is pronounced. For the joint case, the feasibility region for surpassing the standard quantum limit is given. Our work pushes the state preparation of circular polarization-entangled photons to the same level as that in the case of linear polarization. It is also confirmed that entanglement can be transformed into different frames for specific applications, serving as a useful scheme for using entangled sources.

  5. Parametrically driven hybrid qubit-photon systems: Dissipation-induced quantum entanglement and photon production from vacuum

    Science.gov (United States)

    Remizov, S. V.; Zhukov, A. A.; Shapiro, D. S.; Pogosov, W. V.; Lozovik, Yu. E.

    2017-10-01

    We consider a dissipative evolution of a parametrically driven qubit-cavity system under the periodic modulation of coupling energy between two subsystems, which leads to the amplification of counter-rotating processes. We reveal a very rich dynamical behavior of this hybrid system. In particular, we find that the energy dissipation in one of the subsystems can enhance quantum effects in another subsystem. For instance, optimal cavity decay assists the stabilization of entanglement and quantum correlations between qubits even in the steady state and the compensation of finite qubit relaxation. On the contrary, energy dissipation in qubit subsystems results in enhanced photon production from vacuum for strong modulation but destroys both quantum concurrence and quantum mutual information between qubits. Our results provide deeper insights to nonstationary cavity quantum electrodynamics in the context of quantum information processing and might be of importance for dissipative quantum state engineering.

  6. Long-distance entanglement and quantum teleportation in XX spin chains

    Science.gov (United States)

    Campos Venuti, L.; Giampaolo, S. M.; Illuminati, F.; Zanardi, P.

    2007-11-01

    Isotropic XX models of one-dimensional spin-1/2 chains are investigated with the aim to elucidate the formal structure and the physical properties that allow these systems to act as channels for long-distance, high-fidelity quantum teleportation. We introduce two types of models: (i) open, dimerized XX chains, and (ii) open XX chains with small end bonds. For both models we obtain the exact expressions for the end-to-end correlations and the scaling of the energy gap with the length of the chain. We determine the end-to-end concurrence and show that model (i) supports true long-distance entanglement at zero temperature, while model (ii) supports “quasi-long-distance” entanglement that slowly falls off with the size of the chain. Due to the different scalings of the gaps, respectively exponential for model (i) and algebraic in model (ii), we demonstrate that the latter allows for efficient qubit teleportation with high fidelity in sufficiently long chains even at moderately low temperatures.

  7. Polarization-entangled photons from an InGaAs-based quantum dot emitting in the telecom C-band

    Science.gov (United States)

    Olbrich, Fabian; Höschele, Jonatan; Müller, Markus; Kettler, Jan; Luca Portalupi, Simone; Paul, Matthias; Jetter, Michael; Michler, Peter

    2017-09-01

    We demonstrate the emission of polarization-entangled photons from a single semiconductor quantum dot in the telecom C-band (1530 nm-1565 nm). To reach this telecommunication window, the well-established material system of InAs quantum dots embedded in InGaAs barriers is utilized with an additional insertion of an InGaAs metamorphic buffer to spectrally shift the system to the desired wavelengths. For the observation of polarization-entangled photon pairs, the biexciton-exciton cascade of a quantum dot displaying an intrinsically low fine-structure splitting is investigated by means of polarization-dependent cross-correlation measurements. A complete set of tomography measurements enables us to reconstruct the two-photon density matrix and therefore to calculate a corresponding fidelity f+ to the maximally entangled Bell state Ψ+ of 0.61 ± 0.07, a concurrence of 0.74 ± 0.11, a tangle of 0.55 ± 0.14, and a negativity of 0.63 ± 0.12, clearly proving the entanglement of the states. Finally, the development of the concurrence is studied in dependency of the post-selected time-gate of the emission events and the progression of the time-delay dependent fidelity to distinct Bell states is displayed.

  8. What can we learn from the dynamics of entanglement and quantum discord in the Tavis-Cummings model?

    Science.gov (United States)

    Restrepo, Juliana; Rodriguez, Boris A.

    We revisit the problem of the dynamics of quantum correlations in the exact Tavis-Cummings model. We show that many of the dynamical features of quantum discord attributed to dissipation are already present in the exact framework and are due to the well known non-linearities in the model and to the choice of initial conditions. Through a comprehensive analysis, supported by explicit analytical calculations, we find that the dynamics of entanglement and quantum discord are far from being trivial or intuitive. In this context, we find states that are indistinguishable from the point of view of entanglement and distinguishable from the point of view of quantum discord, states where the two quantifiers give opposite information and states where they give roughly the same information about correlations at a certain time. Depending on the initial conditions, this model exhibits a fascinating range of phenomena that can be used for experimental purposes such as: Robust states against change of manifold or dissipation, tunable entanglement states and states with a counterintuitive sudden birth as the number of photons increase. We furthermore propose an experiment called quantum discord gates where discord is zero or non-zero depending on the number of photons. This work was supported by the Vicerrectoria de Investigacion of the Universidad Antonio Narino, Colombia under Project Number 20141031 and by the Departamento Administrativo de Ciencia, Tecnologia e Innovacion (COLCIENCIAS) of Colombia under Grant Number.

  9. Experimental Demonstration of a Hybrid-Quantum-Emitter Producing Individual Entangled Photon Pairs in the Telecom Band.

    Science.gov (United States)

    Chen, Geng; Zou, Yang; Zhang, Wen-Hao; Zhang, Zi-Huai; Zhou, Zong-Quan; He, De-Yong; Tang, Jian-Shun; Liu, Bi-Heng; Yu, Ying; Zha, Guo-Wei; Ni, Hai-Qiao; Niu, Zhi-Chuan; Han, Yong-Jian; Li, Chuan-Feng; Guo, Guang-Can

    2016-05-26

    Quantum emitters generating individual entangled photon pairs (IEPP) have significant fundamental advantages over schemes that suffer from multiple photon emission, or schemes that require post-selection techniques or the use of photon-number discriminating detectors. Quantum dots embedded within nanowires (QD-NWs) represent one of the most promising candidate for quantum emitters that provide a high collection efficiency of photons. However, a quantum emitter that generates IEPP in the telecom band is still an issue demanding a prompt solution. Here, we demonstrate in principle that IEPPs in the telecom band can be created by combining a single QD-NW and a nonlinear crystal waveguide. The QD-NW system serves as the single photon source, and the emitted visible single photons are split into IEPPs at approximately 1.55 μm through the process of spontaneous parametric down conversion (SPDC) in a periodically poled lithium niobate (PPLN) waveguide. The compatibility of the QD-PPLN interface is the determinant factor in constructing this novel hybrid-quantum-emitter (HQE). Benefiting from the desirable optical properties of QD-NWs and the extremely high nonlinear conversion efficiency of PPLN waveguides, we successfully generate IEPPs in the telecom band with the polarization degree of freedom. The entanglement of the generated photon pairs is confirmed by the entanglement witness. Our experiment paves the way to producing HQEs inheriting the advantages of multiple systems.

  10. Entanglement Potential Versus Negativity of Wigner Function for SUP-Operated Quantum States

    Science.gov (United States)

    Chatterjee, Arpita

    2017-10-01

    We construct a distinct category of nonclassical quantum states by applying a superposition of products (SUP) of field annihilation ( \\hat {a}) and creation ( \\hat {a}^{\\dagger }) operators of the type ( s\\hat {a}\\hat {a}^{\\dagger }+t\\hat {a}^{\\dagger }\\hat {a}), with s2+t2=1, upon thermal and even coherent states. We allow these SUP operated states to undergo a decoherence process and then describe the nonclassical features of the resulted field by using the entanglement potential (EP) and the negativity of the Wigner distribution function. Our analysis reveals that both the measures are reduced in the linear loss process. The partial negativity of the Wigner function disappears when losses exceed 50% but EP exists always.

  11. Calculation of electrical transport properties and electron entanglement in inhomogeneous quantum wires

    Directory of Open Access Journals (Sweden)

    A A Shokri

    2013-10-01

    Full Text Available In this paper, we have investigated the spin-dependent transport properties and electron entanglement in a mesoscopic system, which consists of two semi-infinite leads (as source and drain separated by a typical quantum wire with a given potential. The properties studied include current-voltage characteristic, electrical conductivity, Fano factor and shot noise, and concurrence. The calculations are based on the transfer matrix method within the effective mass approximation. Using the Landauer formalism and transmission coefficient, the dependence of the considered quantities on type of potential well, length and width of potential well, energy of transmitted electron, temperature and the voltage have been theoretically studied. Also, the effect of the above-mentioned factors has been investigated in the nanostructure. The application of the present results may be useful in designing spintronice devices.

  12. Entanglement and quantum phase transition in a mixed-spin Heisenberg chain with single-ion anisotropy

    Science.gov (United States)

    Solano-Carrillo, E.; Franco, R.; Silva-Valencia, J.

    2011-06-01

    We study the ground-state and thermal entanglement in the mixed-spin (S,s)=(1,1/2) Heisenberg chain with single-ion anisotropy D using exact diagonalization of small clusters. In this system, a quantum phase transition is revealed to occur at the value D=0, which is the bifurcation point for the global ground state; that is, when the single-ion anisotropy energy is positive, the ground state is unique, whereas when it is negative, the ground state becomes doubly degenerate and the system has the ferrimagnetic long-range order. Using the negativity as a measure of entanglement, we find that a pronounced dip in this quantity, taking place just at the bifurcation point, serves to signal the quantum phase transition. Moreover, we show that the single-ion anisotropy helps to improve the characteristic temperatures above which the quantum behavior disappears.

  13. Controllable quantum private queries using an entangled Fibonacci-sequence spiral source

    Energy Technology Data Exchange (ETDEWEB)

    Lai, Hong, E-mail: honglaimm@163.com [School of Computer and Information Science, Southwest University, Chongqing 400715 (China); Department of Computing, Macquarie University, Sydney, NSW 2109 (Australia); School of Science, Beijing University of Posts and Telecommunications, Beijing 100876 (China); Orgun, Mehmet A. [Department of Computing, Macquarie University, Sydney, NSW 2109 (Australia); Pieprzyk, Josef [School of Electrical Engineering and Computer Science, Queensland University of Technology, Brisbane, QLD 4000 (Australia); Xiao, Jinghua [School of Science, Beijing University of Posts and Telecommunications, Beijing 100876 (China); Xue, Liyin [Corporate Analytics, The Australian Taxation Office, Sydney NSW 2000 (Australia); Jia, Zhongtian, E-mail: ise_jiazt@ujn.edu.cn [Provincial Key Laboratory for Network Based Intelligent Computing, University of Jinan, Jinan 250022 (China)

    2015-10-23

    Highlights: • Alice can easily control the size of a block by adjusting the parameter m rather than a high-dimension oracle. • The case of Alice knowing an exact multi-bit message can be realized deterministically. • Our protocol provides broad measures of protection against errors caused by the effect of noise. • Our protocol can greatly save both quantum and classical communication and exhibit some advantages in security. • Our protocol is scalable and flexible, and secure against quantum memory attacks by Alice. - Abstract: By changing the initial values in entangled Fibonacci-sequence spiral sources in Simon et al.'s (2013) experimental setup [13], we propose a controllable quantum private query protocol. Moreover, our protocol achieves flexible key expansion and even exhibits secure advantages during communications because of the following observations. We observe the close relationships between Lucas numbers and the first kind of Chebyshev maps, and the Chebyshev maps and k-Chebyshev maps; by adjusting the parameter m in k-Chebyshev maps, Alice and Bob can obtain their expected values of the key blocks and database respectively.

  14. How quantum entanglement in DNA synchronizes double-strand breakage by type II restriction endonucleases.

    Science.gov (United States)

    Kurian, P; Dunston, G; Lindesay, J

    2016-02-21

    Macroscopic quantum effects in living systems have been studied widely in pursuit of fundamental explanations for biological energy transport and sensing. While it is known that type II endonucleases, the largest class of restriction enzymes, induce DNA double-strand breaks by attacking phosphodiester bonds, the mechanism by which simultaneous cutting is coordinated between the catalytic centers remains unclear. We propose a quantum mechanical model for collective electronic behavior in the DNA helix, where dipole-dipole oscillations are quantized through boundary conditions imposed by the enzyme. Zero-point modes of coherent oscillations would provide the energy required for double-strand breakage. Such quanta may be preserved in the presence of thermal noise by the enzyme's displacement of water surrounding the DNA recognition sequence. The enzyme thus serves as a decoherence shield. Palindromic mirror symmetry of the enzyme-DNA complex should conserve parity, because symmetric bond-breaking ceases when the symmetry of the complex is violated or when physiological parameters are perturbed from optima. Persistent correlations in DNA across longer spatial separations-a possible signature of quantum entanglement-may be explained by such a mechanism. Copyright © 2015 Elsevier Ltd. All rights reserved.

  15. Entangled and non-line-of-sight (NLOS) free-space photon quantum communication [Invited

    Science.gov (United States)

    Meyers, Ronald E.; Deacon, Keith S.

    2005-09-01

    Feature Issue on Optical Wireless Communications (OWC) We present new quantum communication (QC) schemes suitable for free-space (wireless) QC implementation. In particular, we present several entangled QC schemes and propose non-line-of-sight (NLOS) free-space photon QC. It is shown that in the presence of atmospheric scattering media, UV photons can be used for NLOS QC. Non-Poisson quantum fluctuations in an invariance regime can propagate farther than coherent laser speckle. In such situations the non-Poissonian statistics survive over long distances and should be taggable with a polarization signature. Quantum noise observables scale markedly differently with scattering parameters compared to classical noise observables. Variation of the polarization should allow Yuen-Kumar QC using non-Poissonian statistics of the beam as an authentication of the signal. The NLOS communication in the UV would be expected to be possible to at least a range of 1 km and falls under the category of deliberately short-range QC. Applications of importance for this method include military stealth and optical communication in the presence of obstacles such as a forest or urban environment.

  16. Complementarity between entanglement-assisted and quantum distributed random access code

    Science.gov (United States)

    Hameedi, Alley; Saha, Debashis; Mironowicz, Piotr; Pawłowski, Marcin; Bourennane, Mohamed

    2017-05-01

    Collaborative communication tasks such as random access codes (RACs) employing quantum resources have manifested great potential in enhancing information processing capabilities beyond the classical limitations. The two quantum variants of RACs, namely, quantum random access code (QRAC) and the entanglement-assisted random access code (EARAC), have demonstrated equal prowess for a number of tasks. However, there do exist specific cases where one outperforms the other. In this article, we study a family of 3 →1 distributed RACs [J. Bowles, N. Brunner, and M. Pawłowski, Phys. Rev. A 92, 022351 (2015), 10.1103/PhysRevA.92.022351] and present its general construction of both the QRAC and the EARAC. We demonstrate that, depending on the function of inputs that is sought, if QRAC achieves the maximal success probability then EARAC fails to do so and vice versa. Moreover, a tripartite Bell-type inequality associated with the EARAC variants reveals the genuine multipartite nonlocality exhibited by our protocol. We conclude with an experimental realization of the 3 →1 distributed QRAC that achieves higher success probabilities than the maximum possible with EARACs for a number of tasks.

  17. Spin-Momentum Correlations, Aharonov-Bohm, and Color Entanglement in Quantum Chromodynamics

    Science.gov (United States)

    Aidala, Christine

    2017-09-01

    After the development of QCD in the last quarter of the 20th century, we are now in the early years of an exciting new era in which much more quantitative QCD calculations can be tested against increasingly sophisticated experimental measurements. Advances include a greater focus on the dynamics of quarks and gluons within bound states and in the process of bound-state formation. Over the last decade and a half, studies initially focused on spin-momentum correlations in the proton have brought to the fore several deep, fundamental issues within QCD. We are now exploring the physical consequences of gauge invariance in QCD as a quantum field theory, analogous to the Aharonov-Bohm effects familiar to many from QED but predicted for any gauge-invariant quantum field theory. Given the unique non-Abelian nature of the QCD gauge group, these quantum mechanical phase effects lead to an exciting novel prediction of entanglement of quarks and gluons across QCD bound states. Recent results from the PHENIX experiment at the Relativistic Heavy Ion Collider will be highlighted. Support for this work is provided by DOE Grant DE-SC0013393.

  18. Pairwise thermal entanglement and quantum discord in a three-ligand spin-star structure

    Science.gov (United States)

    Motamedifar, Mostafa

    2017-06-01

    In this work, we perform a comparative study between the pairwise thermal entanglement (PWTE) and thermal quantum discord (TQD) to detect quantum phase transitions (QPT)s in a three-ligand spin-star structure whose magnetic interactions are described by different model Hamiltonians such as pure Dzyaloshinskii-Moriya (DM) interaction, anisotropic Heisenberg model (XXZ), and XXZ model with the different components of the DM interaction. Representing the system's energy spectrum, we also focus on the critical points of QPTs where the ground-state level crossing happens in such models. Taking advantage of the concurrence as a measure of the PWTE, we found that while the ligand-ligand concurrence in all models is sensitive to the ground-state level crossing, the concurrence between the central qubit and a ligand cannot exhibit a QPT. In contrast, the TQD between any two arbitrary qubits can be a signature of a QPT in a large range of temperature. However, depending on the model studied, the behavior of the TQD at the critical point will be different. In addition, the TQD behaves quite differently than the concurrence. Moreover, in order to confirm the numerical results, we analytically study the entanglement behavior at the low-temperature limit as well as the high-temperature regime. We realized that, at the low-temperature limit, the maximum value of the concurrence is approximately equal to 0.33, independent of the model studied. On the other hand, at high-temperature regime, the concurrence is suppressed down to zero rapidly beyond a critical value of temperature. The dependence of the critical temperature on the DM interaction and the anisotropy parameter is obtained explicitly. Finally we show that there is a perfect agreement between the analytical results and the numerical predictions.

  19. Linear-Optics-Based Entanglement Concentration of Four-Photon χ-type States for Quantum Communication Network

    Science.gov (United States)

    Li, Tao; Deng, Fu-Guo

    2014-09-01

    We present an efficient entanglement concentration protocol (ECP) for partially entangled four-photon χ-type states in the first time with only linear optical elements and single-photon detectors. Without any ancillary particles, the parties in quantum communication network can obtain a subset of four-photon systems in the standard | χ 00> state from a set of four-photon systems in a partially entangled χ-type state with the parameter-splitting method developed by Ren et al. (Phys. Rev. A 88:012302, 2013). The present ECP has the optimal success probability which is determined by the component with the minimal probability amplitude in the initial state. Moreover, it is easy to implement this ECP in experiment.

  20. Entanglement distance between quantum states and its implications for a density-matrix renormalization group study of degenerate ground states

    Science.gov (United States)

    Vaezi, Mohammad-Sadegh; Vaezi, Abolhassan

    2017-10-01

    We study the concept of entanglement distance between two quantum states, which quantifies the amount of information shared between their reduced density matrices (RDMs). Using analytical arguments combined with density-matrix renormalization group (DMRG) and exact diagonalization (ED) calculations, we show that for gapless systems the entanglement distance has power law dependence on the energy separation and subsystem size, with αE and αℓ exponents, respectively. Using conformal field theory (CFT) we find αE=2 and αℓ=4 for Abelian theories with c =1 , as in the case of free fermions. For non-Abelian CFTs αE=0 , and αℓ is twice the conformal dimension of the thermal primary fields. For instance, for Z3 parafermion CFT αE=1 and αℓ=4 /5 . For gapped 1+1 dimensional (1+1D) fermion systems, we show that the entanglement distance divides the low energy excitations into two branches with different values of αE and αℓ. These two branches are related to momentum transfers near zero and π . We also demonstrate that the entanglement distance reaches its maximum for degenerate states related through nonlocal operators such as Wilson loops. For example, degenerate ground states (GSs) of 2+1D topological states have maximum entanglement distance. In contrast, degenerate GSs related through confined anyon excitations such as genons have minimum entanglement distance. Various implications of this concept for quantum simulations are discussed. Finally, based on the ideas developed we discuss the computational complexity of DMRG algorithms that are capable of finding all degenerate GSs.