WorldWideScience

Sample records for svm support vector

  1. A novel stepwise support vector machine (SVM) method based on ...

    African Journals Online (AJOL)

    ajl yemi

    2011-11-23

    Nov 23, 2011 ... began to use computational approaches, particularly machine learning methods to identify pre-miRNAs (Xue et al., 2005; Huang et al., 2007; Jiang et al., 2007). Xue et al. (2005) presented a support vector machine (SVM)- based classifier called triplet-SVM, which classifies human pre-miRNAs from pseudo ...

  2. Penerapan Support Vector Machine (SVM untuk Pengkategorian Penelitian

    Directory of Open Access Journals (Sweden)

    Fithri Selva Jumeilah

    2017-07-01

    Full Text Available Research every college will continue to grow. Research will be stored in softcopy and hardcopy. The preparation of the research should be categorized in order to facilitate the search for people who need reference. To categorize the research, we need a method for text mining, one of them is with the implementation of Support Vector Machines (SVM. The data used to recognize the characteristics of each category then it takes secondary data which is a collection of abstracts of research. The data will be pre-processed with several stages: case folding converts all the letters into lowercase, stop words removal removal of very common words, tokenizing discard punctuation, and stemming searching for root words by removing the prefix and suffix. Further data that has undergone preprocessing will be converted into a numerical form with for the term weighting stage that is the weighting contribution of each word. From the results of term weighting then obtained data that can be used for data training and test data. The training process is done by providing input in the form of text data that is known to the class or category. Then by using the Support Vector Machines algorithm, the input data is transformed into a rule, function, or knowledge model that can be used in the prediction process. From the results of this study obtained that the categorization of research produced by SVM has been very good. This is proven by the results of the test which resulted in an accuracy of 90%.

  3. Parallelization of multicategory support vector machines (PMC-SVM for classifying microarray data

    Directory of Open Access Journals (Sweden)

    Deng Youping

    2006-12-01

    Full Text Available Abstract Background Multicategory Support Vector Machines (MC-SVM are powerful classification systems with excellent performance in a variety of data classification problems. Since the process of generating models in traditional multicategory support vector machines for large datasets is very computationally intensive, there is a need to improve the performance using high performance computing techniques. Results In this paper, Parallel Multicategory Support Vector Machines (PMC-SVM have been developed based on the sequential minimum optimization-type decomposition method for support vector machines (SMO-SVM. It was implemented in parallel using MPI and C++ libraries and executed on both shared memory supercomputer and Linux cluster for multicategory classification of microarray data. PMC-SVM has been analyzed and evaluated using four microarray datasets with multiple diagnostic categories, such as different cancer types and normal tissue types. Conclusion The experiments show that the PMC-SVM can significantly improve the performance of classification of microarray data without loss of accuracy, compared with previous work.

  4. The efficacy of support vector machines (SVM) in robust ...

    Indian Academy of Sciences (India)

    (2006) by applying an SVM statistical learning machine on the time-scale wavelet decomposition methods. We used the data of 108 events in central Japan with magnitude ranging from 3 to 7.4 recorded at KiK-net network stations, for a source–receiver distance of up to 150 km during the period 1998–2011. We applied a ...

  5. sw-SVM: sensor weighting support vector machines for EEG-based brain-computer interfaces

    Science.gov (United States)

    Jrad, N.; Congedo, M.; Phlypo, R.; Rousseau, S.; Flamary, R.; Yger, F.; Rakotomamonjy, A.

    2011-10-01

    In many machine learning applications, like brain-computer interfaces (BCI), high-dimensional sensor array data are available. Sensor measurements are often highly correlated and signal-to-noise ratio is not homogeneously spread across sensors. Thus, collected data are highly variable and discrimination tasks are challenging. In this work, we focus on sensor weighting as an efficient tool to improve the classification procedure. We present an approach integrating sensor weighting in the classification framework. Sensor weights are considered as hyper-parameters to be learned by a support vector machine (SVM). The resulting sensor weighting SVM (sw-SVM) is designed to satisfy a margin criterion, that is, the generalization error. Experimental studies on two data sets are presented, a P300 data set and an error-related potential (ErrP) data set. For the P300 data set (BCI competition III), for which a large number of trials is available, the sw-SVM proves to perform equivalently with respect to the ensemble SVM strategy that won the competition. For the ErrP data set, for which a small number of trials are available, the sw-SVM shows superior performances as compared to three state-of-the art approaches. Results suggest that the sw-SVM promises to be useful in event-related potentials classification, even with a small number of training trials.

  6. Settlement Prediction of Road Soft Foundation Using a Support Vector Machine (SVM Based on Measured Data

    Directory of Open Access Journals (Sweden)

    Yu Huiling

    2016-01-01

    Full Text Available The suppor1t vector machine (SVM is a relatively new artificial intelligence technique which is increasingly being applied to geotechnical problems and is yielding encouraging results. SVM is a new machine learning method based on the statistical learning theory. A case study based on road foundation engineering project shows that the forecast results are in good agreement with the measured data. The SVM model is also compared with BP artificial neural network model and traditional hyperbola method. The prediction results indicate that the SVM model has a better prediction ability than BP neural network model and hyperbola method. Therefore, settlement prediction based on SVM model can reflect actual settlement process more correctly. The results indicate that it is effective and feasible to use this method and the nonlinear mapping relation between foundation settlement and its influence factor can be expressed well. It will provide a new method to predict foundation settlement.

  7. Data on Support Vector Machines (SVM model to forecast photovoltaic power

    Directory of Open Access Journals (Sweden)

    M. Malvoni

    2016-12-01

    Full Text Available The data concern the photovoltaic (PV power, forecasted by a hybrid model that considers weather variations and applies a technique to reduce the input data size, as presented in the paper entitled “Photovoltaic forecast based on hybrid pca-lssvm using dimensionality reducted data” (M. Malvoni, M.G. De Giorgi, P.M. Congedo, 2015 [1]. The quadratic Renyi entropy criteria together with the principal component analysis (PCA are applied to the Least Squares Support Vector Machines (LS-SVM to predict the PV power in the day-ahead time frame. The data here shared represent the proposed approach results. Hourly PV power predictions for 1,3,6,12, 24 ahead hours and for different data reduction sizes are provided in Supplementary material.

  8. KOMPARASI MODEL SUPPORT VECTOR MACHINES (SVM DAN NEURAL NETWORK UNTUK MENGETAHUI TINGKAT AKURASI PREDIKSI TERTINGGI HARGA SAHAM

    Directory of Open Access Journals (Sweden)

    R. Hadapiningradja Kusumodestoni

    2017-09-01

    Full Text Available There are many types of investments to make money, one of which is in the form of shares. Shares is a trading company dealing with securities in the global capital markets. Stock Exchange or also called stock market is actually the activities of private companies in the form of buying and selling investments. To avoid losses in investing, we need a model of predictive analysis with high accuracy and supported by data - lots of data and accurately. The correct techniques in the analysis will be able to reduce the risk for investors in investing. There are many models used in the analysis of stock price movement prediction, in this study the researchers used models of neural networks (NN and a model of support vector machine (SVM. Based on the background of the problems that have been mentioned in the previous description it can be formulated the problem as follows: need an algorithm that can predict stock prices, and need a high accuracy rate by adding a data set on the prediction, two algorithms will be investigated expected results last researchers can deduce where the algorithm accuracy rate predictions are the highest or accurate, then the purpose of this study was to mengkomparasi or compare between the two algorithms are algorithms Neural Network algorithm and Support Vector Machine which later on the end result has an accuracy rate forecast stock prices highest to see the error value RMSEnya. After doing research using the model of neural network and model of support vector machine (SVM to predict the stock using the data value of the shares on the stock index hongkong dated July 20, 2016 at 16:26 pm until the date of 15 September 2016 at 17:40 pm as many as 729 data sets within an interval of 5 minute through a process of training, learning, and then continue the process of testing so the result is that by using a neural network model of the prediction accuracy of 0.503 +/- 0.009 (micro 503 while using the model of support vector machine

  9. Segmentasi Citra menggunakan Support Vector Machine (SVM dan Ellipsoid Region Search Strategy (ERSS Arimoto Entropy berdasarkan Ciri Warna dan Tekstur

    Directory of Open Access Journals (Sweden)

    Lukman Hakim

    2016-02-01

    Full Text Available Abstrak Segmentasi citra merupakan suatu metode penting dalam pengolahan citra digital yang bertujuan membagi citra menjadi beberapa region yang homogen berdasarkan kriteria kemiripan tertentu. Salah satu syarat utama yang harus dimiliki suatu metode segmentasi citra yaitu menghasilkan citra boundary yang optimal.Untuk memenuhi syarat tersebut suatu metode segmentasi membutuhkan suatu klasifikasi piksel citra yang dapat memisahkan piksel secara linier dan non-linear. Pada penelitian ini, penulis mengusulkan metode segmentasi citra menggunakan SVM dan entropi Arimoto berbasis ERSS sehingga tahan terhadap derau dan mempunyai kompleksitas yang rendah untuk menghasilkan citra boundary yang optimal. Pertama, ekstraksi ciri warna dengan local homogeneity dan ciri tekstur dengan menggunakan Gray Level Co-occurrence Matrix (GLCM yang menghasilkan beberapa fitur. Kedua, pelabelan dengan Arimoto berbasis ERSS yang digunakan sebagai kelas dalam klasifikasi. Ketiga, hasil ekstraksi fitur dan training kemudian diklasifikasi berdasarkan label dengan SVM yang telah di-training. Dari percobaan yang dilakukan menunjukkan hasil segmentasi kurang optimal dengan akurasi 69 %. Reduksi fitur perlu dilakukan untuk menghasilkan citra yang tersegmentasi dengan baik. Kata kunci: segmentasi citra, support vector machine, ERSS Arimoto Entropy, ekstraksi ciri. Abstract Image segmentation is an important tool in image processing that divides an image into homogeneous regions based on certain similarity criteria, which ideally should be meaning-full for a certain purpose. Optimal boundary is one of the main criteria that an image segmentation method should has. A classification method that can partitions pixel linearly or non-linearly is needed by an image segmentation method. We propose a color image segmentation using Support Vector Machine (SVM classification and ERSS Arimoto entropy thresholding to get optimal boundary of segmented image that noise-free and low complexity

  10. Klasifikasi Topik Keluhan Pelanggan Berdasarkan Tweet dengan Menggunakan Penggabungan Feature Hasil Ekstraksi pada Metode Support Vector Machine (SVM

    Directory of Open Access Journals (Sweden)

    Enda Esyudha Pratama

    2015-12-01

    Full Text Available Pemanfaatan twitter sebagai layanan customer serevice perusahaan sudah mulai banyak digunakan, tak terkecuali Speedy. Mekanisme yang ada saat ini untuk proses klasifikasi bentuk dan jenis keluhan serta informasi tentang jumlah keluhan lewat twitter masih dilakukan secara manual. Belum lagi data twitter yang bersifat tidak terstruktur tentunya akan menyulitkan untuk dilakukan analisa dan penggalian informasi dari data tersebut. Berdasarkan permasalahan tersebut, penelitian ini bertujuan untuk memproses data teks dari tweet pengguna twitteryang masuk ke akun @TelkomSpeedy untuk diolah menjadi informasi. Informasi tersebut nantinya digunakan untuk klasifikasi bentuk dan jenis keluhan. Merujuk pada beberapa penelitian terkait, salah satu metode klasifikasi yang paling baik untuk digunakan adalah metode Support Vector Machine (SVM. Konsep dari SVM dapat dijelaskan secara sederhana sebagai usaha mencari hyperplane yang dapat memisahkan dataset sesuai dengan kelasnya. Kelas yang digunakan dalam penelitian kali ini berdasarkan topik keluhan pelanggan yaitu billing, pemasangan/instalasi, putus (disconnect, dan lambat. Faktor penting lainnya dalam hal klasifikasi adalah penentuan feature atau atribut kata yang akan digunakan. Metode feature selection yang digunakan pada penlitian ini adalah term frequency (TF, document frequency (DF, information gain, dan chi-square. Pada penelitian ini juga dilakukan metode penggabungan feature yang telah dihasilkan dari beberapa metode feature selection sebelumnya. Dari hasil penelitian menunjukan bahwa SVM mampu melakukan klasifikasi keluhan dengan baik, hal ini dibuktikan dengan akurasi 82,50% untuk klasifikasi bentuk keluhan dan 86,67% untuk klasifikasi jenis keluhan. Sedangkan untuk kombinasi penggunaan feature dapat meningkatkan akurasi menjadi 83,33% untuk bentuk keluhan dan 89,17% untuk jenis keluhan.   Kata Kunci—customer service, klasifikasi topik keluhan, penggabungan feature, support vector machine

  11. Implementation of algorithms based on support vector machine (SVM for electric systems: topic review

    Directory of Open Access Journals (Sweden)

    Jefferson Jara Estupiñan

    2016-06-01

    Full Text Available Objective: To perform a review of implementation of algorithms based on support vectore machine applied to electric systems. Method: A paper search is done mainly on Biblio­graphic Indexes (BI and Bibliographic Bases with Selection Committee (BBSC about support vector machine. This work shows a qualitative and/or quan­titative description about advances and applications in the electrical environment, approaching topics such as: electrical market prediction, demand predic­tion, non-technical losses (theft, alternative energy source and transformers, among others, in each work the respective citation is done in order to guarantee the copy right and allow to the reader a dynamic mo­vement between the reading and the cited works. Results: A detailed review is done, focused on the searching of implemented algorithms in electric sys­tems and innovating application areas. Conclusion: Support vector machines have a lot of applications due to their multiple benefits, however in the electric energy area; they have not been tota­lly applied, this allow to identify a promising area of researching.

  12. Using self-organizing map (SOM) and support vector machine (SVM) for classification of selectivity of ACAT inhibitors.

    Science.gov (United States)

    Wang, Ling; Wang, Maolin; Yan, Aixia; Dai, Bin

    2013-02-01

    Using a self-organizing map (SOM) and support vector machine, two classification models were built to predict whether a compound is a selective inhibitor toward the two Acyl-coenzyme A: cholesterol acyltransferase (ACAT) isozymes, ACAT-1 and ACAT-2. A dataset of 97 ACAT inhibitors was collected. For each molecule, the global descriptors, 2D and 3D property autocorrelation descriptors and autocorrelation of surface properties were calculated from the program ADRIANA.Code. The prediction accuracies of the models (based on the training/ test set splitting by SOM method) for the test sets are 88.9 % for SOM1, 92.6 % for SVM1 model. In addition, the extended connectivity fingerprints (ECFP_4) for all the molecules were calculated and the structure-activity relationship of selective ACAT inhibitors was summarized, which may help find important structural features of inhibitors relating to the selectivity of ACAT isozymes.

  13. Real Time Monitoring System of Pollution Waste on Musi River Using Support Vector Machine (SVM) Method

    Science.gov (United States)

    Fachrurrozi, Muhammad; Saparudin; Erwin

    2017-04-01

    Real-time Monitoring and early detection system which measures the quality standard of waste in Musi River, Palembang, Indonesia is a system for determining air and water pollution level. This system was designed in order to create an integrated monitoring system and provide real time information that can be read. It is designed to measure acidity and water turbidity polluted by industrial waste, as well as to show and provide conditional data integrated in one system. This system consists of inputting and processing the data, and giving output based on processed data. Turbidity, substances, and pH sensor is used as a detector that produce analog electrical direct current voltage (DC). Early detection system works by determining the value of the ammonia threshold, acidity, and turbidity level of water in Musi River. The results is then presented based on the level group pollution by the Support Vector Machine classification method.

  14. Comparison Algorithm Kernels on Support Vector Machine (SVM To Compare The Trend Curves with Curves Online Forex Trading

    Directory of Open Access Journals (Sweden)

    irfan abbas

    2017-01-01

    Full Text Available At this time, the players Forex Trading generally still use the data exchange in the form of a Forex Trading figures from different sources. Thus they only receive or know the data rate of a Forex Trading prevailing at the time just so difficult to analyze or predict exchange rate movements future. Forex players usually use the indicators to enable them to analyze and memperdiksi future value. Indicator is a decision making tool. Trading forex is trading currency of a country, the other country's currency. Trading took place globally between the financial centers of the world with the involvement of the world's major banks as the major transaction. Trading Forex offers profitable investment type with a small capital and high profit, with relatively small capital can earn profits doubled. This is due to the forex trading systems exist leverage which the invested capital will be doubled if the predicted results of buy / sell is accurate, but Trading Forex having high risk level, but by knowing the right time to trade (buy or sell, the losses can be avoided. Traders who invest in the foreign exchange market is expected to have the ability to analyze the circumstances and situations in predicting the difference in currency exchange rates. Forex price movements that form the pattern (curve up and down greatly assist traders in making decisions. The movement of the curve used as an indicator in the decision to purchase (buy or sell (sell. This study compares (Comparation type algorithm kernel on Support Vector Machine (SVM to predict the movement of the curve in live time trading forex using the data GBPUSD, 1H. Results of research on the study of the results and discussion can be concluded that the Kernel Dot, Kernel Multiquaric, Kernel Neural inappropriately used for data is non-linear in the case of data forex to follow the pattern of trend curves, because curves generated curved linear (straight and then to type of kernel is the closest curve

  15. Support vector machine regression (SVR/LS-SVM)--an alternative to neural networks (ANN) for analytical chemistry? Comparison of nonlinear methods on near infrared (NIR) spectroscopy data.

    Science.gov (United States)

    Balabin, Roman M; Lomakina, Ekaterina I

    2011-04-21

    In this study, we make a general comparison of the accuracy and robustness of five multivariate calibration models: partial least squares (PLS) regression or projection to latent structures, polynomial partial least squares (Poly-PLS) regression, artificial neural networks (ANNs), and two novel techniques based on support vector machines (SVMs) for multivariate data analysis: support vector regression (SVR) and least-squares support vector machines (LS-SVMs). The comparison is based on fourteen (14) different datasets: seven sets of gasoline data (density, benzene content, and fractional composition/boiling points), two sets of ethanol gasoline fuel data (density and ethanol content), one set of diesel fuel data (total sulfur content), three sets of petroleum (crude oil) macromolecules data (weight percentages of asphaltenes, resins, and paraffins), and one set of petroleum resins data (resins content). Vibrational (near-infrared, NIR) spectroscopic data are used to predict the properties and quality coefficients of gasoline, biofuel/biodiesel, diesel fuel, and other samples of interest. The four systems presented here range greatly in composition, properties, strength of intermolecular interactions (e.g., van der Waals forces, H-bonds), colloid structure, and phase behavior. Due to the high diversity of chemical systems studied, general conclusions about SVM regression methods can be made. We try to answer the following question: to what extent can SVM-based techniques replace ANN-based approaches in real-world (industrial/scientific) applications? The results show that both SVR and LS-SVM methods are comparable to ANNs in accuracy. Due to the much higher robustness of the former, the SVM-based approaches are recommended for practical (industrial) application. This has been shown to be especially true for complicated, highly nonlinear objects.

  16. Fault detection and diagnosis of an industrial steam turbine using fusion of SVM (support vector machine) and ANFIS (adaptive neuro-fuzzy inference system) classifiers

    Energy Technology Data Exchange (ETDEWEB)

    Salahshoor, Karim [Department of Instrumentation and Automation, Petroleum University of Technology, Tehran (Iran, Islamic Republic of); Kordestani, Mojtaba; Khoshro, Majid S. [Department of Control Engineering, Islamic Azad University South Tehran branch (Iran, Islamic Republic of)

    2010-12-15

    The subject of FDD (fault detection and diagnosis) has gained widespread industrial interest in machine condition monitoring applications. This is mainly due to the potential advantage to be achieved from reduced maintenance costs, improved productivity and increased machine availability. This paper presents a new FDD scheme for condition machinery of an industrial steam turbine using a data fusion methodology. Fusion of a SVM (support vector machine) classifier with an ANFIS (adaptive neuro-fuzzy inference system) classifier, integrated into a common framework, is utilized to enhance the fault detection and diagnostic tasks. For this purpose, a multi-attribute data is fused into aggregated values of a single attribute by OWA (ordered weighted averaging) operators. The simulation studies indicate that the resulting fusion-based scheme outperforms the individual SVM and ANFIS systems to detect and diagnose incipient steam turbine faults. (author)

  17. QSAR studies of the bioactivity of hepatitis C virus (HCV) NS3/4A protease inhibitors by multiple linear regression (MLR) and support vector machine (SVM).

    Science.gov (United States)

    Qin, Zijian; Wang, Maolin; Yan, Aixia

    2017-07-01

    In this study, quantitative structure-activity relationship (QSAR) models using various descriptor sets and training/test set selection methods were explored to predict the bioactivity of hepatitis C virus (HCV) NS3/4A protease inhibitors by using a multiple linear regression (MLR) and a support vector machine (SVM) method. 512 HCV NS3/4A protease inhibitors and their IC 50 values which were determined by the same FRET assay were collected from the reported literature to build a dataset. All the inhibitors were represented with selected nine global and 12 2D property-weighted autocorrelation descriptors calculated from the program CORINA Symphony. The dataset was divided into a training set and a test set by a random and a Kohonen's self-organizing map (SOM) method. The correlation coefficients (r 2 ) of training sets and test sets were 0.75 and 0.72 for the best MLR model, 0.87 and 0.85 for the best SVM model, respectively. In addition, a series of sub-dataset models were also developed. The performances of all the best sub-dataset models were better than those of the whole dataset models. We believe that the combination of the best sub- and whole dataset SVM models can be used as reliable lead designing tools for new NS3/4A protease inhibitors scaffolds in a drug discovery pipeline. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Analysis of Human Papillomavirus Using Datamining - Apriori, Decision Tree, and Support Vector Machine (SVM) and its Application Field

    OpenAIRE

    Cho Younghoon; Burm Seungwon; Choi Nayoung; Yoon Taeseon

    2016-01-01

    Human Papillomavirus(HPV) has various types (compared to other viruses) and plays a key role in evoking diverse diseases, especially cervical cancer. In this study, we aim to distinguish the features of HPV of different degree of fatality by analyzing their DNA sequences. We used Decision Tree Algorithm, Apriori Algorithm, and Support Vector Machine in our experiment. By analyzing their DNA sequences, we discovered some relationships between certain types of HPV, especially on the most fatal ...

  19. Analysis of Human Papillomavirus Using Datamining - Apriori, Decision Tree, and Support Vector Machine (SVM and its Application Field

    Directory of Open Access Journals (Sweden)

    Cho Younghoon

    2016-01-01

    Full Text Available Human Papillomavirus(HPV has various types (compared to other viruses and plays a key role in evoking diverse diseases, especially cervical cancer. In this study, we aim to distinguish the features of HPV of different degree of fatality by analyzing their DNA sequences. We used Decision Tree Algorithm, Apriori Algorithm, and Support Vector Machine in our experiment. By analyzing their DNA sequences, we discovered some relationships between certain types of HPV, especially on the most fatal types, 16 and 18. Moreover, we concluded that it would be possible for scientists to develop more potent HPV cures by applying these relationships and features that HPV virus exhibit.

  20. Comparison Between Wind Power Prediction Models Based on Wavelet Decomposition with Least-Squares Support Vector Machine (LS-SVM and Artificial Neural Network (ANN

    Directory of Open Access Journals (Sweden)

    Maria Grazia De Giorgi

    2014-08-01

    Full Text Available A high penetration of wind energy into the electricity market requires a parallel development of efficient wind power forecasting models. Different hybrid forecasting methods were applied to wind power prediction, using historical data and numerical weather predictions (NWP. A comparative study was carried out for the prediction of the power production of a wind farm located in complex terrain. The performances of Least-Squares Support Vector Machine (LS-SVM with Wavelet Decomposition (WD were evaluated at different time horizons and compared to hybrid Artificial Neural Network (ANN-based methods. It is acknowledged that hybrid methods based on LS-SVM with WD mostly outperform other methods. A decomposition of the commonly known root mean square error was beneficial for a better understanding of the origin of the differences between prediction and measurement and to compare the accuracy of the different models. A sensitivity analysis was also carried out in order to underline the impact that each input had in the network training process for ANN. In the case of ANN with the WD technique, the sensitivity analysis was repeated on each component obtained by the decomposition.

  1. PERBANDINGAN TINGKAT PENGENALAN CITRA DIABETIC RETINOPATHY PADA KOMBINASI PRINCIPLE COMPONENT DARI 4 CIRI BERBASIS METODE SVM (SUPPORT VECTOR MACHINE

    Directory of Open Access Journals (Sweden)

    Sari Ayu Wulandari

    2016-06-01

    Full Text Available Perbedaan pigmentasi mempengaruhi me­­­­tode pengenalan pola citra retinopati di­a­betik beserta set­ting poinnya. Di­butuhkan sebuah pe­rangkat lunak, yang mampu menjadi alat bantu pengenalan citra retinopati diabetik. Telah dilakukan penelitian tentang pe­nge­nalan po­la citra retinopati dia­be­tik, dengan meng­gunakan citra kanal ku­ning (Yello­w, dengan menggunakan filter gabor dan ciri yang diambil dari tiap citra ada­lah ciri rerata (Means, variasi Varians, skewness dan entropy, yang dilanjutkan de­ngan ekstraksi ciri  PCA (Principle Com­­ponent Analysis. Pada ekstraksi ci­ri PCA, Matriks hasil PCA meru­pakan ma­triks bujur sangkar, yang jumlah ko­lom­nya, sama dengan jumlah ciri. Pe­ne­li­tian menggunakan 4 ciri, dengan de­mi­­kian, terdapat 4 buah PC (Principle Com­ponent, PC1, PC2, PC3 dan PC4. Pada artikel ini akan dibahas mengenai tingkat akurasi tertinggi dari peng­gunaan pasangan PC. Tingkat aku­ra­si, dihitung dengan meng­gu­­nakan mo­del linear dari SVM. Model de­ngan akurasi tertinggi dan tercepat ada­lah model pasangan PC1 dan PC2, yang mempunyai akurasi citra pem­be­lajaran tertinggi yaitu 100% dan waktu terce­pat, yang secara eksplisit diperli­hat­kan pada jumlah support vektor ter­kecil, yaitu 2. Pasa­ngan yang mempu­nyai ting­kat akurasi terburuk adalah PC3 dan PC4. Pengenalan turun pada citra pengu­jian, yaitu hanya 93,75%, hal ini disebabkan oleh pelebaran daerah ca­ku­pan. Pelebaran daerah cakupan ke­mungkinan disebabkan oleh pemi­lihan nilai rerata pada PCA, sebelum matriks reduksi. Pada penelitian berikutnya, bi­sa dilakukan dengan menggunakan pencarian nilai standart deviasi atau varians, dengan begitu, akan diketahui matriks reduksi yang mewakili sebaran angka pada matriks.

  2. PENGEMBANGAN MODEL SUPPORT VECTOR MACHINES (SVM DENGAN MEMPERBANYAK DATASET UNTUK PREDIKSI BISNIS FOREX MENGGUNAKAN METODE KERNEL TRICK

    Directory of Open Access Journals (Sweden)

    adi sucipto

    2017-09-01

    Full Text Available There are many types of investments that can be used to generate income, such as in the form of land, houses, gold, precious metals etc., there are also in the form of financial assets such as stocks, mutual funds, bonds and money markets or capital markets. One of the investments that attract enough attention today is the capital market investment. The purpose of this study is to predict and improve the accuracy of foreign exchange rates on forex business by using the Support Vector Machine model as a model for predicting and using more data sets compared with previous research that is as many as 1558 dataset. This study uses currency exchange rate data obtained from PT. Best Profit Future Cab. Surabaya is already in the form of data consisting of open, high, low, close attributes by using the current data of Euro currency exchange rate to USA Dollar with period every 1 minutes from May 12, 2016 at 09.51 until 13 May 2016 at 12:30 As much as 1689 dataset, After conducting research using Support Vector Machine model with kernel trick method to predict Forex using current data of Euro exchange rate to USA Dollar with period every 1 minutes from May 12, 2016 at 09.51 until 13 May 2016 at 12:30 as much as 1689 The dataset yielded a considerable prediction accuracy of 97.86%, with this considerable accuracy indicating that the movement of the Euro currency exchange rate to the USA Dollar on May 12 to May 13, 2016 can be predicted precisely.

  3. Support Vector Components Analysis

    NARCIS (Netherlands)

    van der Ree, Michiel; Roerdink, Johannes; Phillips, Christophe; Garraux, Gaetan; Salmon, Eric; Wiering, Marco

    2017-01-01

    In this paper we propose a novel method for learning a distance metric in the process of training Support Vector Machines (SVMs) with the radial basis function kernel. A transformation matrix is adapted in such a way that the SVM dual objective of a classification problem is optimized. By using a

  4. An Ensemble of Deep Support Vector Machines for Image Categorization

    NARCIS (Netherlands)

    Abdullah, Azizi; Veltkamp, Remco C.; Wiering, Marco

    2009-01-01

    This paper presents the deep support vector machine (D-SVM) inspired by the increasing popularity of deep belief networks for image recognition. Our deep SVM trains an SVM in the standard way and then uses the kernel activations of support vectors as inputs for training another SVM at the next

  5. Clustering Categories in Support Vector Machines

    DEFF Research Database (Denmark)

    Carrizosa, Emilio; Nogales-Gómez, Amaya; Morales, Dolores Romero

    2017-01-01

    The support vector machine (SVM) is a state-of-the-art method in supervised classification. In this paper the Cluster Support Vector Machine (CLSVM) methodology is proposed with the aim to increase the sparsity of the SVM classifier in the presence of categorical features, leading to a gain in in...

  6. Efficient Multiplicative Updates for Support Vector Machines

    DEFF Research Database (Denmark)

    Potluru, Vamsi K.; Plis, Sergie N; Mørup, Morten

    2009-01-01

    The dual formulation of the support vector machine (SVM) objective function is an instance of a nonnegative quadratic programming problem. We reformulate the SVM objective function as a matrix factorization problem which establishes a connection with the regularized nonnegative matrix factorizati...

  7. Support vector machines for spam categorization.

    Science.gov (United States)

    Drucker, H; Wu, D; Vapnik, V N

    1999-01-01

    We study the use of support vector machines (SVM's) in classifying e-mail as spam or nonspam by comparing it to three other classification algorithms: Ripper, Rocchio, and boosting decision trees. These four algorithms were tested on two different data sets: one data set where the number of features were constrained to the 1000 best features and another data set where the dimensionality was over 7000. SVM's performed best when using binary features. For both data sets, boosting trees and SVM's had acceptable test performance in terms of accuracy and speed. However, SVM's had significantly less training time.

  8. Genetic algorithm optimization in drug design QSAR: Bayesian-regularized genetic neural networks (BRGNN) and genetic algorithm-optimized support vectors machines (GA-SVM).

    Science.gov (United States)

    Fernandez, Michael; Caballero, Julio; Fernandez, Leyden; Sarai, Akinori

    2011-02-01

    Many articles in "in silico" drug design implemented genetic algorithm (GA) for feature selection, model optimization, conformational search, or docking studies. Some of these articles described GA applications to quantitative structure-activity relationships (QSAR) modeling in combination with regression and/or classification techniques. We reviewed the implementation of GA in drug design QSAR and specifically its performance in the optimization of robust mathematical models such as Bayesian-regularized artificial neural networks (BRANNs) and support vector machines (SVMs) on different drug design problems. Modeled data sets encompassed ADMET and solubility properties, cancer target inhibitors, acetylcholinesterase inhibitors, HIV-1 protease inhibitors, ion-channel and calcium entry blockers, and antiprotozoan compounds as well as protein classes, functional, and conformational stability data. The GA-optimized predictors were often more accurate and robust than previous published models on the same data sets and explained more than 65% of data variances in validation experiments. In addition, feature selection over large pools of molecular descriptors provided insights into the structural and atomic properties ruling ligand-target interactions.

  9. DSP Based Direct Torque Control of Permanent Magnet Synchronous Motor (PMSM) using Space Vector Modulation (DTC-SVM)

    DEFF Research Database (Denmark)

    Swierczynski, Dariusz; Kazmierkowski, Marian P.; Blaabjerg, Frede

    2002-01-01

    DSP Based Direct Torque Control of Permanent Magnet Synchronous Motor (PMSM) using Space Vector Modulation (DTC-SVM)......DSP Based Direct Torque Control of Permanent Magnet Synchronous Motor (PMSM) using Space Vector Modulation (DTC-SVM)...

  10. Particle swarm optimization based support vector machine for damage level prediction of non-reshaped berm breakwater

    Digital Repository Service at National Institute of Oceanography (India)

    Harish, N.; Mandal, S.; Rao, S.; Patil, S.G.

    breakwater. Soft computing tools like Artificial Neural Network, Fuzzy Logic, Support Vector Machine (SVM), etc, are successfully used to solve complex problems. In the present study, SVM and hybrid of Particle Swarm Optimization (PSO) with SVM (PSO...

  11. Deep Support Vector Machines for Regression Problems

    NARCIS (Netherlands)

    Wiering, Marco; Schutten, Marten; Millea, Adrian; Meijster, Arnold; Schomaker, Lambertus

    2013-01-01

    In this paper we describe a novel extension of the support vector machine, called the deep support vector machine (DSVM). The original SVM has a single layer with kernel functions and is therefore a shallow model. The DSVM can use an arbitrary number of layers, in which lower-level layers contain

  12. An S-Transform and Support Vector Machine (SVM-Based Online Method for Diagnosing Broken Strands in Transmission Lines

    Directory of Open Access Journals (Sweden)

    Caxin Sun

    2011-08-01

    Full Text Available During their long-term outdoor field service, overhead transmission lines will be exposed to strikes by lightning, corrosion by chemical contaminants, ice-shedding, wind vibration of conductors, line galloping, external destructive forces and so on, which will generally cause a series of latent faults such as aluminum strand fracture. This may lead to broken transmission lines which will have a very strong impact on the safe operation of power grids that if the latent faults cannot be recognized and fixed as soon as possible. The detection of broken strands in transmission lines using inspection robots equipped with suitable detectors is a method with good prospects. In this paper, a method for detecting broken strands in transmission lines using an eddy current transducer (ECT carried by a robot is developed, and an approach for identifying broken strands in transmission lines based on an S-transform is proposed. The proposed approach utilizes the S-transform to extract the module and phase information at each frequency point from detection signals. Through module phase and comparison, the characteristic frequency points are ascertained, and the fault information of the detection signal is constructed. The degree of confidence of broken strand identification is defined by the Shannon fuzzy entropy (SFE-BSICD. The proposed approach combines module information while utilizing phase information, SFE-BSICD, and the energy, so the reliability is greatly improved. These characteristic qualities of broken strands in transmission lines are used as the input of a multi-classification SVM, allowing the number of broken strands to be determined. Through experimental field verification, it can be shown that the proposed approach displays high accuracy and the SFE-BSICD is defined reasonably.

  13. GAPS IN SUPPORT VECTOR OPTIMIZATION

    Energy Technology Data Exchange (ETDEWEB)

    STEINWART, INGO [Los Alamos National Laboratory; HUSH, DON [Los Alamos National Laboratory; SCOVEL, CLINT [Los Alamos National Laboratory; LIST, NICOLAS [Los Alamos National Laboratory

    2007-01-29

    We show that the stopping criteria used in many support vector machine (SVM) algorithms working on the dual can be interpreted as primal optimality bounds which in turn are known to be important for the statistical analysis of SVMs. To this end we revisit the duality theory underlying the derivation of the dual and show that in many interesting cases primal optimality bounds are the same as known dual optimality bounds.

  14. OPTIMALISASI SUPPORT VEKTOR MACHINE (SVM UNTUK KLASIFIKASI TEMA TUGAS AKHIR BERBASIS K-MEANS

    Directory of Open Access Journals (Sweden)

    Oman Somantri

    2017-01-01

    Full Text Available The difficulty in determining the classification of students final project theme often experienced by each college. The purpose of this study is to provide a decision support for policy makers in the study program so that each student can be achieved in accordance with their own competence. From the research that has been done text mining algorithms using Support Vector Machine ( SVM and K -Means as the technology used was produced a better accuracy rate with an accuracy rate of 86.21 % when compared to the SVM without K -Means is 85 , 38 %

  15. Ranking Support Vector Machine with Kernel Approximation.

    Science.gov (United States)

    Chen, Kai; Li, Rongchun; Dou, Yong; Liang, Zhengfa; Lv, Qi

    2017-01-01

    Learning to rank algorithm has become important in recent years due to its successful application in information retrieval, recommender system, and computational biology, and so forth. Ranking support vector machine (RankSVM) is one of the state-of-art ranking models and has been favorably used. Nonlinear RankSVM (RankSVM with nonlinear kernels) can give higher accuracy than linear RankSVM (RankSVM with a linear kernel) for complex nonlinear ranking problem. However, the learning methods for nonlinear RankSVM are still time-consuming because of the calculation of kernel matrix. In this paper, we propose a fast ranking algorithm based on kernel approximation to avoid computing the kernel matrix. We explore two types of kernel approximation methods, namely, the Nyström method and random Fourier features. Primal truncated Newton method is used to optimize the pairwise L2-loss (squared Hinge-loss) objective function of the ranking model after the nonlinear kernel approximation. Experimental results demonstrate that our proposed method gets a much faster training speed than kernel RankSVM and achieves comparable or better performance over state-of-the-art ranking algorithms.

  16. Arabic Text Classification Using Support Vector Machines

    NARCIS (Netherlands)

    Gharib, Tarek F.; Habib, Mena B.; Fayed, Zaki T.

    2009-01-01

    Text classification (TC) is the process of classifying documents into a predefined set of categories based on their content. Arabic language is highly inflectional and derivational language which makes text mining a complex task. In this paper we applied the Support Vector Machines (SVM) model in

  17. Support vector machine: a tool for mapping mineral prospectivity

    NARCIS (Netherlands)

    Zuo, R.; Carranza, E.J.M

    2011-01-01

    In this contribution, we describe an application of support vector machine (SVM), a supervised learning algorithm, to mineral prospectivity mapping. The free R package e1071 is used to construct a SVM with sigmoid kernel function to map prospectivity for Au deposits in western Meguma Terrain of Nova

  18. Neural cell image segmentation method based on support vector machine

    Science.gov (United States)

    Niu, Shiwei; Ren, Kan

    2015-10-01

    In the analysis of neural cell images gained by optical microscope, accurate and rapid segmentation is the foundation of nerve cell detection system. In this paper, a modified image segmentation method based on Support Vector Machine (SVM) is proposed to reduce the adverse impact caused by low contrast ratio between objects and background, adherent and clustered cells' interference etc. Firstly, Morphological Filtering and OTSU Method are applied to preprocess images for extracting the neural cells roughly. Secondly, the Stellate Vector, Circularity and Histogram of Oriented Gradient (HOG) features are computed to train SVM model. Finally, the incremental learning SVM classifier is used to classify the preprocessed images, and the initial recognition areas identified by the SVM classifier are added to the library as the positive samples for training SVM model. Experiment results show that the proposed algorithm can achieve much better segmented results than the classic segmentation algorithms.

  19. Parameter optimization using GA in SVM to predict damage level of non-reshaped berm breakwater.

    Digital Repository Service at National Institute of Oceanography (India)

    Harish, N.; Lokesha.; Mandal, S.; Rao, S.; Patil, S.G.

    In the present study, Support Vector Machines (SVM) and hybrid of Genetic Algorithm (GA) with SVM models are developed to predict the damage level of non-reshaped berm breakwaters. Optimal kernel parameters of SVM are determined by using GA...

  20. When do support vector machines work fast?

    Energy Technology Data Exchange (ETDEWEB)

    Steinwart, I. (Ingo); Scovel, James C.

    2004-01-01

    The authors establish learning rates to the Bayes risk for support vector machines (SVM's) with hinge loss. Since a theorem of Devroyte states that no learning algorithm can learn with a uniform rate to the Bayes risk for all probability distributions they have to restrict the class of considered distributions: in order to obtain fast rates they assume a noise condition recently proposed by Tsybakov and an approximation condition in terms of the distribution and the reproducing kernel Hilbert space used by the SVM. for Gaussian RBF kernels with varying widths they propose a geometric noise assumption on the distribution which ensures the approximation condition. This geometric assumption is not in terms of smoothness but describes the concentration of the marginal distribution near the decision boundary. In particular they are able to describe nontrivial classes of distributions for which SVM's using a Gaussian kernel can learn with almost linear rate.

  1. Progressive Classification Using Support Vector Machines

    Science.gov (United States)

    Wagstaff, Kiri; Kocurek, Michael

    2009-01-01

    An algorithm for progressive classification of data, analogous to progressive rendering of images, makes it possible to compromise between speed and accuracy. This algorithm uses support vector machines (SVMs) to classify data. An SVM is a machine learning algorithm that builds a mathematical model of the desired classification concept by identifying the critical data points, called support vectors. Coarse approximations to the concept require only a few support vectors, while precise, highly accurate models require far more support vectors. Once the model has been constructed, the SVM can be applied to new observations. The cost of classifying a new observation is proportional to the number of support vectors in the model. When computational resources are limited, an SVM of the appropriate complexity can be produced. However, if the constraints are not known when the model is constructed, or if they can change over time, a method for adaptively responding to the current resource constraints is required. This capability is particularly relevant for spacecraft (or any other real-time systems) that perform onboard data analysis. The new algorithm enables the fast, interactive application of an SVM classifier to a new set of data. The classification process achieved by this algorithm is characterized as progressive because a coarse approximation to the true classification is generated rapidly and thereafter iteratively refined. The algorithm uses two SVMs: (1) a fast, approximate one and (2) slow, highly accurate one. New data are initially classified by the fast SVM, producing a baseline approximate classification. For each classified data point, the algorithm calculates a confidence index that indicates the likelihood that it was classified correctly in the first pass. Next, the data points are sorted by their confidence indices and progressively reclassified by the slower, more accurate SVM, starting with the items most likely to be incorrectly classified. The user

  2. Using support vector machine models for crash injury severity analysis.

    Science.gov (United States)

    Li, Zhibin; Liu, Pan; Wang, Wei; Xu, Chengcheng

    2012-03-01

    The study presented in this paper investigated the possibility of using support vector machine (SVM) models for crash injury severity analysis. Based on crash data collected at 326 freeway diverge areas, a SVM model was developed for predicting the injury severity associated with individual crashes. An ordered probit (OP) model was also developed using the same dataset. The research team compared the performance of the SVM model and the OP model. It was found that the SVM model produced better prediction performance for crash injury severity than did the OP model. The percent of correct prediction for the SVM model was found to be 48.8%, which was higher than that produced by the OP model (44.0%). Even though the SVM model may suffer from the multi-class classification problem, it still provides better prediction results for small proportion injury severities than the OP model does. The research also investigated the potential of using the SVM model for evaluating the impacts of external factors on crash injury severities. The sensitivity analysis results show that the SVM model produced comparable results regarding the impacts of variables on crash injury severity as compared to the OP model. For several variables such as the length of the exit ramp and the shoulder width of the freeway mainline, the results of the SVM model are more reasonable than those of the OP model. Copyright © 2011 Elsevier Ltd. All rights reserved.

  3. A Novel Support Vector Machine with Globality-Locality Preserving

    Directory of Open Access Journals (Sweden)

    Cheng-Long Ma

    2014-01-01

    Full Text Available Support vector machine (SVM is regarded as a powerful method for pattern classification. However, the solution of the primal optimal model of SVM is susceptible for class distribution and may result in a nonrobust solution. In order to overcome this shortcoming, an improved model, support vector machine with globality-locality preserving (GLPSVM, is proposed. It introduces globality-locality preserving into the standard SVM, which can preserve the manifold structure of the data space. We complete rich experiments on the UCI machine learning data sets. The results validate the effectiveness of the proposed model, especially on the Wine and Iris databases; the recognition rate is above 97% and outperforms all the algorithms that were developed from SVM.

  4. THE APPLICATION OF SUPPORT VECTOR MACHINE (SVM USING CIELAB COLOR MODEL, COLOR INTENSITY AND COLOR CONSTANCY AS FEATURES FOR ORTHO IMAGE CLASSIFICATION OF BENTHIC HABITATS IN HINATUAN, SURIGAO DEL SUR, PHILIPPINES

    Directory of Open Access Journals (Sweden)

    J. E. Cubillas

    2016-06-01

    Full Text Available This study demonstrates the application of CIELAB, Color intensity, and One Dimensional Scalar Constancy as features for image recognition and classifying benthic habitats in an image with the coastal areas of Hinatuan, Surigao Del Sur, Philippines as the study area. The study area is composed of four datasets, namely: (a Blk66L005, (b Blk66L021, (c Blk66L024, and (d Blk66L0114. SVM optimization was performed in Matlab® software with the help of Parallel Computing Toolbox to hasten the SVM computing speed. The image used for collecting samples for SVM procedure was Blk66L0114 in which a total of 134,516 sample objects of mangrove, possible coral existence with rocks, sand, sea, fish pens and sea grasses were collected and processed. The collected samples were then used as training sets for the supervised learning algorithm and for the creation of class definitions. The learned hyper-planes separating one class from another in the multi-dimensional feature space can be thought of as a super feature which will then be used in developing the C (classifier rule set in eCognition® software. The classification results of the sampling site yielded an accuracy of 98.85% which confirms the reliability of remote sensing techniques and analysis employed to orthophotos like the CIELAB, Color Intensity and One dimensional scalar constancy and the use of SVM classification algorithm in classifying benthic habitats.

  5. Support Vector Machines as tools for mortality graduation

    Directory of Open Access Journals (Sweden)

    Anastasia Kostaki

    2012-07-01

    Full Text Available A topic of interest in demographic and biostatistical analysis as well as in actuarial practice,is the graduation of the age-specific mortality pattern. A classical graduation technique is to fit parametric models. Recently, particular emphasis has been given to graduation using nonparametric techniques. Support Vector Machines (SVM is an innovative methodology that could be utilized for mortality graduation purposes. This paper evaluates SVM techniques as tools for graduating mortality rates. We apply SVM to empirical death rates from a variety of populations and time periods. For comparison, we also apply standard graduation techniques to the same data.

  6. Support Vector Machines as tools for mortality graduation

    Directory of Open Access Journals (Sweden)

    Alberto Olivares

    2011-01-01

    Full Text Available A topic of interest in demographic and biostatistical analysis as well as in actuarial practice,is the graduation of the age-specific mortality pattern. A classical graduation technique is to fit parametric models. Recently, particular emphasis has been given to graduation using nonparametric techniques. Support Vector Machines (SVM is an innovative methodology that could be utilized for mortality graduation purposes. This paper evaluates SVM techniques as tools for graduating mortality rates. We apply SVM to empirical death rates from a variety of populations and time periods. For comparison, we also apply standard graduation techniques to the same data.

  7. Support vector machine with Dirichlet feature mapping.

    Science.gov (United States)

    Nedaie, Ali; Najafi, Amir Abbas

    2017-11-16

    The Support Vector Machine (SVM) is a supervised learning algorithm to analyze data and recognize patterns. The standard SVM suffers from some limitations in nonlinear classification problems. To tackle these limitations, the nonlinear form of the SVM poses a modified machine based on the kernel functions or other nonlinear feature mappings obviating the mentioned imperfection. However, choosing an efficient kernel or feature mapping function is strongly dependent on data structure. Thus, a flexible feature mapping can be confidently applied in different types of data structures without challenging a kernel selection and its tuning. This paper introduces a new flexible feature mapping approach based on the Dirichlet distribution in order to develop an efficient SVM for nonlinear data structures. To determine the parameters of the Dirichlet mapping, a tuning technique is employed based on the maximum likelihood estimation and Newton's optimization method. The numerical results illustrate the superiority of the proposed machine in terms of the accuracy and relative error rate measures in comparison to the traditional ones. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. [Rule induction algorithm for brain glioma using support vector machine].

    Science.gov (United States)

    Li, Guozheng; Yang, Jie; Wang, Jiaju; Geng, Daoying

    2006-04-01

    A new proposed data mining technique, support vector machine (SVM), is used to predict the degree of malignancy in brain glioma. Based on statistical learning theory, SVM realizes the principle of data dependent structure risk minimization, so it can depress the overfitting with better generalization performance, since the prediction in medical diagnosis often deals with a small sample. SVM based rule induction algorithm is implemented in comparison with other data mining techniques such as artificial neural networks, rule induction algorithm and fuzzy rule extraction algorithm based on fuzzy max-min neural networks (FRE-FMMNN) proposed recently. Computation results by 10 fold cross validation method show that SVM can get higher prediction accuracy than artificial neural networks and FRE-FMMNN, which implies SVM can get higher accuracy and more reliability. On the whole data sets, SVM gets one rule with the classification accuracy of 89.29%, while FRE-FMMNN gets two rules of 84. 64%, in which the rule got by SVM is of quantity relation and contains more information than the two rules by FRE-FMMNN. All the above show SVM is a potential algorithm for the medical diagnosis such as the prediction of the degree of malignancy in brain glioma.

  9. Performance and optimization of support vector machines in high-energy physics classification problems

    CERN Document Server

    Sahin, Mehmet Özgür; Melzer-Pellmann, Isabell-Alissandra

    2016-01-01

    In this paper we promote the use of Support Vector Machines (SVM) as a machine learning tool for searches in high-energy physics. As an example for a new- physics search we discuss the popular case of Supersymmetry at the Large Hadron Collider. We demonstrate that the SVM is a valuable tool and show that an automated discovery- significance based optimization of the SVM hyper-parameters is a highly efficient way to prepare an SVM for such applications. A new C++ LIBSVM interface called SVM-HINT is developed and available on Github.

  10. Support-vector-machine tree-based domain knowledge learning toward automated sports video classification

    Science.gov (United States)

    Xiao, Guoqiang; Jiang, Yang; Song, Gang; Jiang, Jianmin

    2010-12-01

    We propose a support-vector-machine (SVM) tree to hierarchically learn from domain knowledge represented by low-level features toward automatic classification of sports videos. The proposed SVM tree adopts a binary tree structure to exploit the nature of SVM's binary classification, where each internal node is a single SVM learning unit, and each external node represents the classified output type. Such a SVM tree presents a number of advantages, which include: 1. low computing cost; 2. integrated learning and classification while preserving individual SVM's learning strength; and 3. flexibility in both structure and learning modules, where different numbers of nodes and features can be added to address specific learning requirements, and various learning models can be added as individual nodes, such as neural networks, AdaBoost, hidden Markov models, dynamic Bayesian networks, etc. Experiments support that the proposed SVM tree achieves good performances in sports video classifications.

  11. Peringkasan dan Support Vector Machine pada Klasifikasi Dokumen

    Directory of Open Access Journals (Sweden)

    Nelly Indriani Widiastuti

    2017-11-01

    Full Text Available Klasifikasi adalah proses pengelompokkan objek yang memiliki karakteristik atau ciri yang sama ke dalam beberapa kelas. Klasifikasi dokumen secara otomatis dapat dilakukan dengan menggunakan ciri atau fitur kata yang muncul pada dokumen latih. Jumlah dokumen yang besar dan banyak mengakibatkan jumlah kata yang muncul sebagai fitur akan bertambah. Oleh karena itu, peringkasan dipilih untuk mereduksi jumlah kata yang digunakan dalam proses klasifikasi. Untuk proses klasifikasi digunakan metode Support Vector Machine (SVM untuk multikelas. SVM dipilih karena dianggap memiliki reputasi yang baik dalam klasifikasi. Penelitian ini menguji penggunaan ringkasan sebagai seleksi fitur dalam klasifikasi dokumen. Peringkasan menggunakan kompresi 50 %. Hasil yang diperoleh menunjukkan bahwa proses peringkasan tidak mempengaruhi nilai akurasi dari klasifikasi dokumen yang menggunakan SVM. Akan tetapi, penggunaan peringkasan berpengaruh pada peningkatan hasil akurasi dari metode klasifikasi Simple Logistic Classifier (SLC. Hasil pengujian metode klasifikasi menunjukkan bahwa penggunaan metode Naïve Bayes Multinomial (NBM menghasilkan akurasi yang lebih baik dari pada metode SVM

  12. Incremental support vector machines for fast reliable image recognition

    Energy Technology Data Exchange (ETDEWEB)

    Makili, L., E-mail: makili_le@yahoo.com [Instituto Superior Politécnico da Universidade Katyavala Bwila, Benguela (Angola); Vega, J. [Asociación EURATOM/CIEMAT para Fusión, Madrid (Spain); Dormido-Canto, S. [Dpto. Informática y Automática – UNED, Madrid (Spain)

    2013-10-15

    Highlights: ► A conformal predictor using SVM as the underlying algorithm was implemented. ► It was applied to image recognition in the TJ–II's Thomson Scattering Diagnostic. ► To improve time efficiency an approach to incremental SVM training has been used. ► Accuracy is similar to the one reached when standard SVM is used. ► Computational time saving is significant for large training sets. -- Abstract: This paper addresses the reliable classification of images in a 5-class problem. To this end, an automatic recognition system, based on conformal predictors and using Support Vector Machines (SVM) as the underlying algorithm has been developed and applied to the recognition of images in the Thomson Scattering Diagnostic of the TJ–II fusion device. Using such conformal predictor based classifier is a computationally intensive task since it implies to train several SVM models to classify a single example and to perform this training from scratch takes a significant amount of time. In order to improve the classification time efficiency, an approach to the incremental training of SVM has been used as the underlying algorithm. Experimental results show that the overall performance of the new classifier is high, comparable to the one corresponding to the use of standard SVM as the underlying algorithm and there is a significant improvement in time efficiency.

  13. Evaluating automatically parallelized versions of the support vector machine

    NARCIS (Netherlands)

    Codreanu, Valeriu; Droge, Bob; Williams, David; Yasar, Burhan; Yang, Fo; Liu, Baoquan; Dong, Feng; Surinta, Olarik; Schomaker, Lambertus; Roerdink, Jos; Wiering, Marco

    2014-01-01

    The support vector machine (SVM) is a supervised learning algorithm used for recognizing patterns in data. It is a very popular technique in machine learning and has been successfully used in applications such as image classification, protein classification, and handwriting recognition. However, the

  14. Support Vector Machines: Relevance Feedback and Information Retrieval.

    Science.gov (United States)

    Drucker, Harris; Shahrary, Behzad; Gibbon, David C.

    2002-01-01

    Compares support vector machines (SVMs) to Rocchio, Ide regular and Ide dec-hi algorithms in information retrieval (IR) of text documents using relevancy feedback. If the preliminary search is so poor that one has to search through many documents to find at least one relevant document, then SVM is preferred. Includes nine tables. (Contains 24…

  15. A support vector machine approach to detect financial statement fraud in South Africa: A first look

    CSIR Research Space (South Africa)

    Moepya, SO

    2014-04-01

    Full Text Available Auditors face the difficult task of detecting companies that issue manipulated financial statements. In recent years, machine learning methods have provided a feasible solution to this task. This study develops support vector machine (SVM) models...

  16. Support vector machine in machine condition monitoring and fault diagnosis

    Science.gov (United States)

    Widodo, Achmad; Yang, Bo-Suk

    2007-08-01

    Recently, the issue of machine condition monitoring and fault diagnosis as a part of maintenance system became global due to the potential advantages to be gained from reduced maintenance costs, improved productivity and increased machine availability. This paper presents a survey of machine condition monitoring and fault diagnosis using support vector machine (SVM). It attempts to summarize and review the recent research and developments of SVM in machine condition monitoring and diagnosis. Numerous methods have been developed based on intelligent systems such as artificial neural network, fuzzy expert system, condition-based reasoning, random forest, etc. However, the use of SVM for machine condition monitoring and fault diagnosis is still rare. SVM has excellent performance in generalization so it can produce high accuracy in classification for machine condition monitoring and diagnosis. Until 2006, the use of SVM in machine condition monitoring and fault diagnosis is tending to develop towards expertise orientation and problem-oriented domain. Finally, the ability to continually change and obtain a novel idea for machine condition monitoring and fault diagnosis using SVM will be future works.

  17. Ultrasonic fluid quantity measurement in dynamic vehicular applications a support vector machine approach

    CERN Document Server

    Terzic, Jenny; Nagarajah, Romesh; Alamgir, Muhammad

    2013-01-01

    Accurate fluid level measurement in dynamic environments can be assessed using a Support Vector Machine (SVM) approach. SVM is a supervised learning model that analyzes and recognizes patterns. It is a signal classification technique which has far greater accuracy than conventional signal averaging methods. Ultrasonic Fluid Quantity Measurement in Dynamic Vehicular Applications: A Support Vector Machine Approach describes the research and development of a fluid level measurement system for dynamic environments. The measurement system is based on a single ultrasonic sensor. A Support Vector Machines (SVM) based signal characterization and processing system has been developed to compensate for the effects of slosh and temperature variation in fluid level measurement systems used in dynamic environments including automotive applications. It has been demonstrated that a simple ν-SVM model with Radial Basis Function (RBF) Kernel with the inclusion of a Moving Median filter could be used to achieve the high levels...

  18. Noninvasive extraction of fetal electrocardiogram based on Support Vector Machine

    Science.gov (United States)

    Fu, Yumei; Xiang, Shihan; Chen, Tianyi; Zhou, Ping; Huang, Weiyan

    2015-10-01

    The fetal electrocardiogram (FECG) signal has important clinical value for diagnosing the fetal heart diseases and choosing suitable therapeutics schemes to doctors. So, the noninvasive extraction of FECG from electrocardiogram (ECG) signals becomes a hot research point. A new method, the Support Vector Machine (SVM) is utilized for the extraction of FECG with limited size of data. Firstly, the theory of the SVM and the principle of the extraction based on the SVM are studied. Secondly, the transformation of maternal electrocardiogram (MECG) component in abdominal composite signal is verified to be nonlinear and fitted with the SVM. Then, the SVM is trained, and the training results are compared with the real data to ensure the effect of the training. Meanwhile, the parameters of the SVM are optimized to achieve the best performance so that the learning machine can be utilized to fit the unknown samples. Finally, the FECG is extracted by removing the optimal estimation of MECG component from the abdominal composite signal. In order to evaluate the performance of FECG extraction based on the SVM, the Signal-to-Noise Ratio (SNR) and the visual test are used. The experimental results show that the FECG with good quality can be extracted, its SNR ratio is significantly increased as high as 9.2349 dB and the time cost is significantly decreased as short as 0.802 seconds. Compared with the traditional method, the noninvasive extraction method based on the SVM has a simple realization, the shorter treatment time and the better extraction quality under the same conditions.

  19. The efficacy of support vector machines (SVM) in robust ...

    Indian Academy of Sciences (India)

    determination of earthquake early warning magnitudes in central Japan. Ramakrushna Reddy ... This work deals with a methodology applied to seismic early warning systems which are designed to provide real-time estimation of the ... S–P differential travel time for issuing an alert prior to damaging ground motion (Allen ...

  20. A novel stepwise support vector machine (SVM) method based on ...

    African Journals Online (AJOL)

    MicroRNAs (miRNAs) are a class of non-coding RNAs that are produced from miRNA precursors (premiRNAs) with stem-loop structure. At present, development of computational approach for pre-miRNA identification continues to be a challenging task, in which feature selection is greatly important. Here, we first extracted ...

  1. Supernova Recognition using Support Vector Machines

    Energy Technology Data Exchange (ETDEWEB)

    Romano, Raquel A.; Aragon, Cecilia R.; Ding, Chris

    2006-10-01

    We introduce a novel application of Support Vector Machines(SVMs) to the problem of identifying potential supernovae usingphotometric and geometric features computed from astronomical imagery.The challenges of this supervised learning application are significant:1) noisy and corrupt imagery resulting in high levels of featureuncertainty,2) features with heavy-tailed, peaked distributions,3)extremely imbalanced and overlapping positiveand negative data sets, and4) the need to reach high positive classification rates, i.e. to find allpotential supernovae, while reducing the burdensome workload of manuallyexamining false positives. High accuracy is achieved viaasign-preserving, shifted log transform applied to features with peaked,heavy-tailed distributions. The imbalanced data problem is handled byoversampling positive examples,selectively sampling misclassifiednegative examples,and iteratively training multiple SVMs for improvedsupernovarecognition on unseen test data. We present crossvalidationresults and demonstrate the impact on a largescale supernova survey thatcurrently uses the SVM decision value to rank-order 600,000 potentialsupernovae each night.

  2. The Neural Support Vector Machine

    NARCIS (Netherlands)

    Wiering, Marco; van der Ree, Michiel; Embrechts, Mark; Stollenga, Marijn; Meijster, Arnold; Nolte, A; Schomaker, Lambertus

    2013-01-01

    This paper describes a new machine learning algorithm for regression and dimensionality reduction tasks. The Neural Support Vector Machine (NSVM) is a hybrid learning algorithm consisting of neural networks and support vector machines (SVMs). The output of the NSVM is given by SVMs that take a

  3. Support Vector Machine Classification of Drunk Driving Behaviour

    OpenAIRE

    Chen, Huiqin; Chen, Lei

    2017-01-01

    Alcohol is the root cause of numerous traffic accidents due to its pharmacological action on the human central nervous system. This study conducted a detection process to distinguish drunk driving from normal driving under simulated driving conditions. The classification was performed by a support vector machine (SVM) classifier trained to distinguish between these two classes by integrating both driving performance and physiological measurements. In addition, principal component analysis was...

  4. A method of neighbor classes based SVM classification for optical printed Chinese character recognition.

    Directory of Open Access Journals (Sweden)

    Jie Zhang

    Full Text Available In optical printed Chinese character recognition (OPCCR, many classifiers have been proposed for the recognition. Among the classifiers, support vector machine (SVM might be the best classifier. However, SVM is a classifier for two classes. When it is used for multi-classes in OPCCR, its computation is time-consuming. Thus, we propose a neighbor classes based SVM (NC-SVM to reduce the computation consumption of SVM. Experiments of NC-SVM classification for OPCCR have been done. The results of the experiments have shown that the NC-SVM we proposed can effectively reduce the computation time in OPCCR.

  5. Optimizing Support Vector Machine Parameters with Genetic Algorithm for Credit Risk Assessment

    Science.gov (United States)

    Manurung, Jonson; Mawengkang, Herman; Zamzami, Elviawaty

    2017-12-01

    Support vector machine (SVM) is a popular classification method known to have strong generalization capabilities. SVM can solve the problem of classification and linear regression or nonlinear kernel which can be a learning algorithm for the ability of classification and regression. However, SVM also has a weakness that is difficult to determine the optimal parameter value. SVM calculates the best linear separator on the input feature space according to the training data. To classify data which are non-linearly separable, SVM uses kernel tricks to transform the data into a linearly separable data on a higher dimension feature space. The kernel trick using various kinds of kernel functions, such as : linear kernel, polynomial, radial base function (RBF) and sigmoid. Each function has parameters which affect the accuracy of SVM classification. To solve the problem genetic algorithms are proposed to be applied as the optimal parameter value search algorithm thus increasing the best classification accuracy on SVM. Data taken from UCI repository of machine learning database: Australian Credit Approval. The results show that the combination of SVM and genetic algorithms is effective in improving classification accuracy. Genetic algorithms has been shown to be effective in systematically finding optimal kernel parameters for SVM, instead of randomly selected kernel parameters. The best accuracy for data has been upgraded from kernel Linear: 85.12%, polynomial: 81.76%, RBF: 77.22% Sigmoid: 78.70%. However, for bigger data sizes, this method is not practical because it takes a lot of time.

  6. Control for Ship Course-Keeping Using Optimized Support Vector Machines

    Directory of Open Access Journals (Sweden)

    Weilin Luo

    2016-08-01

    Full Text Available Support vector machines (SVM are proposed in order to obtain a robust controller for ship course-keeping. A cascaded system is constructed by combining the dynamics of the rudder actuator with the dynamics of ship motion. Modeling errors and disturbances are taken into account in the plant. A controller with a simple structure is produced by applying an SVM and L2-gain design. The SVM is used to identify the complicated nonlinear functions and the modeling errors in the plant. The Lagrangian factors in the SVM are obtained using on-line tuning algorithms. L2-gain design is applied to suppress the disturbances. To obtain the optimal parameters in the SVM, then particle swarm optimization (PSO method is incorporated. The stability and robustness of the close-loop system are confirmed by Lyapunov stability analysis. Numerical simulation is performed to demonstrate the validity of the proposed hybrid controller and its superior performance over a conventional PD controller.

  7. Fault Detection and Diagnosis in Process Data Using Support Vector Machines

    Directory of Open Access Journals (Sweden)

    Fang Wu

    2014-01-01

    Full Text Available For the complex industrial process, it has become increasingly challenging to effectively diagnose complicated faults. In this paper, a combined measure of the original Support Vector Machine (SVM and Principal Component Analysis (PCA is provided to carry out the fault classification, and compare its result with what is based on SVM-RFE (Recursive Feature Elimination method. RFE is used for feature extraction, and PCA is utilized to project the original data onto a lower dimensional space. PCA T2, SPE statistics, and original SVM are proposed to detect the faults. Some common faults of the Tennessee Eastman Process (TEP are analyzed in terms of the practical system and reflections of the dataset. PCA-SVM and SVM-RFE can effectively detect and diagnose these common faults. In RFE algorithm, all variables are decreasingly ordered according to their contributions. The classification accuracy rate is improved by choosing a reasonable number of features.

  8. Optical diagnosis of colon and cervical cancer by support vector machine

    Science.gov (United States)

    Mukhopadhyay, Sabyasachi; Kurmi, Indrajit; Dey, Rajib; Das, Nandan K.; Pradhan, Sanjay; Pradhan, Asima; Ghosh, Nirmalya; Panigrahi, Prasanta K.; Mohanty, Samarendra

    2016-05-01

    A probabilistic robust diagnostic algorithm is very much essential for successful cancer diagnosis by optical spectroscopy. We report here support vector machine (SVM) classification to better discriminate the colon and cervical cancer tissues from normal tissues based on elastic scattering spectroscopy. The efficacy of SVM based classification with different kernel has been tested on multifractal parameters like Hurst exponent, singularity spectrum width in order to classify the cancer tissues.

  9. Bidding Strategy with Forecast Technology Based on Support Vector Machine in Electrcity Market

    OpenAIRE

    Gao, C.(Central China Normal University, Wuhan, China); Bompard, E.; Napoli, R.; Wan, Q.

    2007-01-01

    The participants of the electricity market concern very much the market price evolution. Various technologies have been developed for price forecast. SVM (Support Vector Machine) has shown its good performance in market price forecast. Two approaches for forming the market bidding strategies based on SVM are proposed. One is based on the price forecast accuracy, with which the being rejected risk is defined. The other takes into account the impact of the producer's own bid. The risks associat...

  10. svmPRAT: SVM-based Protein Residue Annotation Toolkit

    Directory of Open Access Journals (Sweden)

    Kauffman Christopher

    2009-12-01

    Full Text Available Abstract Background Over the last decade several prediction methods have been developed for determining the structural and functional properties of individual protein residues using sequence and sequence-derived information. Most of these methods are based on support vector machines as they provide accurate and generalizable prediction models. Results We present a general purpose protein residue annotation toolkit (svmPRAT to allow biologists to formulate residue-wise prediction problems. svmPRAT formulates the annotation problem as a classification or regression problem using support vector machines. One of the key features of svmPRAT is its ease of use in incorporating any user-provided information in the form of feature matrices. For every residue svmPRAT captures local information around the reside to create fixed length feature vectors. svmPRAT implements accurate and fast kernel functions, and also introduces a flexible window-based encoding scheme that accurately captures signals and pattern for training effective predictive models. Conclusions In this work we evaluate svmPRAT on several classification and regression problems including disorder prediction, residue-wise contact order estimation, DNA-binding site prediction, and local structure alphabet prediction. svmPRAT has also been used for the development of state-of-the-art transmembrane helix prediction method called TOPTMH, and secondary structure prediction method called YASSPP. This toolkit developed provides practitioners an efficient and easy-to-use tool for a wide variety of annotation problems. Availability: http://www.cs.gmu.edu/~mlbio/svmprat

  11. Landslide susceptibility mapping & prediction using Support Vector Machine for Mandakini River Basin, Garhwal Himalaya, India

    Science.gov (United States)

    Kumar, Deepak; Thakur, Manoj; Dubey, Chandra S.; Shukla, Dericks P.

    2017-10-01

    In recent years, various machine learning techniques have been applied for landslide susceptibility mapping. In this study, three different variants of support vector machine viz., SVM, Proximal Support Vector Machine (PSVM) and L2-Support Vector Machine - Modified Finite Newton (L2-SVM-MFN) have been applied on the Mandakini River Basin in Uttarakhand, India to carry out the landslide susceptibility mapping. Eight thematic layers such as elevation, slope, aspect, drainages, geology/lithology, buffer of thrusts/faults, buffer of streams and soil along with the past landslide data were mapped in GIS environment and used for landslide susceptibility mapping in MATLAB. The study area covering 1625 km2 has merely 0.11% of area under landslides. There are 2009 pixels for past landslides out of which 50% (1000) landslides were considered as training set while remaining 50% as testing set. The performance of these techniques has been evaluated and the computational results show that L2-SVM-MFN obtains higher prediction values (0.829) of receiver operating characteristic curve (AUC-area under the curve) as compared to 0.807 for PSVM model and 0.79 for SVM. The results obtained from L2-SVM-MFN model are found to be superior than other SVM prediction models and suggest the usefulness of this technique to problem of landslide susceptibility mapping where training data is very less. However, these techniques can be used for satisfactory determination of susceptible zones with these inputs.

  12. Support vector machines for seizure detection in an animal model of chronic epilepsy

    Science.gov (United States)

    Nandan, Manu; Talathi, Sachin S.; Myers, Stephen; Ditto, William L.; Khargonekar, Pramod P.; Carney, Paul R.

    2010-06-01

    We compare the performance of three support vector machine (SVM) types: weighted SVM, one-class SVM and support vector data description (SVDD) for the application of seizure detection in an animal model of chronic epilepsy. Large EEG datasets (273 h and 91 h respectively, with a sampling rate of 1 kHz) from two groups of rats with chronic epilepsy were used in this study. For each of these EEG datasets, we extracted three energy-based seizure detection features: mean energy, mean curve length and wavelet energy. Using these features we performed twofold cross-validation to obtain the performance statistics: sensitivity (S), specificity (K) and detection latency (τ) as a function of control parameters for the given SVM. Optimal control parameters for each SVM type that produced the best seizure detection statistics were then identified using two independent strategies. Performance of each SVM type is ranked based on the overall seizure detection performance through an optimality index metric (O). We found that SVDD not only performed better than the other SVM types in terms of highest value of the mean optimality index metric (\\skew3\\bar{O} ) but also gave a more reliable performance across the two EEG datasets.

  13. Using support vector machines for anomalous change detonation

    Energy Technology Data Exchange (ETDEWEB)

    Theiler, James P [Los Alamos National Laboratory; Steinwart, Ingo [UNIV STUTTGART; Llamocca, Daniel [UNM

    2010-01-01

    We cast anomalous change detection as a binary classification problem, and use a support vector machine (SVM) to build a detector that does not depend on assumptions about the underlying data distribution. To speed up the computation, our SVM is implemented, in part, on a graphical processing unit. Results on real and simulated anomalous changes are used to compare performance to algorithms which effectively assume a Gaussian distribution. In this paper, we investigate the use of support vector machines (SVMs) with radial basis kernels for finding anomalous changes. Compared to typical applications of SVMs, we are operating in a regime of very low false alarm rate. This means that even for relatively large training sets, the data are quite meager in the regime of operational interest. This drives us to use larger training sets, which in turn places more of a computational burden on the SVM. We initially considered three different approaches to to address the need to work in the very low false alarm rate regime. The first is a standard SVM which is trained at one threshold (where more reliable estimates of false alarm rates are possible) and then re-thresholded for the low false alarm rate regime. The second uses the same thresholding approach, but employs a so-called least squares SVM; here a quadratic (instead of a hinge-based) loss function is employed, and for this model, there are good theoretical arguments in favor of adjusting the threshold in a straightforward manner. The third approach employs a weighted support vector machine, where the weights for the two types of errors (false alarm and missed detection) are automatically adjusted to achieve the desired false alarm rate. We have found in previous experiments (not shown here) that the first two types can in some cases work well, while in other cases they do not. This renders both approaches unreliable for automated change detection. By contrast, the third approach reliably produces good results, but at

  14. A structural SVM approach for reference parsing.

    Science.gov (United States)

    Zhang, Xiaoli; Zou, Jie; Le, Daniel X; Thoma, George R

    2011-06-09

    Automated extraction of bibliographic data, such as article titles, author names, abstracts, and references is essential to the affordable creation of large citation databases. References, typically appearing at the end of journal articles, can also provide valuable information for extracting other bibliographic data. Therefore, parsing individual reference to extract author, title, journal, year, etc. is sometimes a necessary preprocessing step in building citation-indexing systems. The regular structure in references enables us to consider reference parsing a sequence learning problem and to study structural Support Vector Machine (structural SVM), a newly developed structured learning algorithm on parsing references. In this study, we implemented structural SVM and used two types of contextual features to compare structural SVM with conventional SVM. Both methods achieve above 98% token classification accuracy and above 95% overall chunk-level accuracy for reference parsing. We also compared SVM and structural SVM to Conditional Random Field (CRF). The experimental results show that structural SVM and CRF achieve similar accuracies at token- and chunk-levels. When only basic observation features are used for each token, structural SVM achieves higher performance compared to SVM since it utilizes the contextual label features. However, when the contextual observation features from neighboring tokens are combined, SVM performance improves greatly, and is close to that of structural SVM after adding the second order contextual observation features. The comparison of these two methods with CRF using the same set of binary features show that both structural SVM and CRF perform better than SVM, indicating their stronger sequence learning ability in reference parsing.

  15. A Semisupervised Support Vector Machines Algorithm for BCI Systems

    Directory of Open Access Journals (Sweden)

    Jianzhao Qin

    2007-07-01

    Full Text Available As an emerging technology, brain-computer interfaces (BCIs bring us new communication interfaces which translate brain activities into control signals for devices like computers, robots, and so forth. In this study, we propose a semisupervised support vector machine (SVM algorithm for brain-computer interface (BCI systems, aiming at reducing the time-consuming training process. In this algorithm, we apply a semisupervised SVM for translating the features extracted from the electrical recordings of brain into control signals. This SVM classifier is built from a small labeled data set and a large unlabeled data set. Meanwhile, to reduce the time for training semisupervised SVM, we propose a batch-mode incremental learning method, which can also be easily applied to the online BCI systems. Additionally, it is suggested in many studies that common spatial pattern (CSP is very effective in discriminating two different brain states. However, CSP needs a sufficient labeled data set. In order to overcome the drawback of CSP, we suggest a two-stage feature extraction method for the semisupervised learning algorithm. We apply our algorithm to two BCI experimental data sets. The offline data analysis results demonstrate the effectiveness of our algorithm.

  16. Incremental Support Vector Machine Framework for Visual Sensor Networks

    Directory of Open Access Journals (Sweden)

    Yuichi Motai

    2007-01-01

    Full Text Available Motivated by the emerging requirements of surveillance networks, we present in this paper an incremental multiclassification support vector machine (SVM technique as a new framework for action classification based on real-time multivideo collected by homogeneous sites. The technique is based on an adaptation of least square SVM (LS-SVM formulation but extends beyond the static image-based learning of current SVM methodologies. In applying the technique, an initial supervised offline learning phase is followed by a visual behavior data acquisition and an online learning phase during which the cluster head performs an ensemble of model aggregations based on the sensor nodes inputs. The cluster head then selectively switches on designated sensor nodes for future incremental learning. Combining sensor data offers an improvement over single camera sensing especially when the latter has an occluded view of the target object. The optimization involved alleviates the burdens of power consumption and communication bandwidth requirements. The resulting misclassification error rate, the iterative error reduction rate of the proposed incremental learning, and the decision fusion technique prove its validity when applied to visual sensor networks. Furthermore, the enabled online learning allows an adaptive domain knowledge insertion and offers the advantage of reducing both the model training time and the information storage requirements of the overall system which makes it even more attractive for distributed sensor networks communication.

  17. Novel cascade FPGA accelerator for support vector machines classification.

    Science.gov (United States)

    Papadonikolakis, Markos; Bouganis, Christos-Savvas

    2012-07-01

    Support vector machines (SVMs) are a powerful machine learning tool, providing state-of-the-art accuracy to many classification problems. However, SVM classification is a computationally complex task, suffering from linear dependencies on the number of the support vectors and the problem's dimensionality. This paper presents a fully scalable field programmable gate array (FPGA) architecture for the acceleration of SVM classification, which exploits the device heterogeneity and the dynamic range diversities among the dataset attributes. An adaptive and fully-customized processing unit is proposed, which utilizes the available heterogeneous resources of a modern FPGA device in efficient way with respect to the problem's characteristics. The implementation results demonstrate the efficiency of the heterogeneous architecture, presenting a speed-up factor of 2-3 orders of magnitude, compared to the CPU implementation. The proposed architecture outperforms other proposed FPGA and graphic processor unit approaches by more than seven times. Furthermore, based on the special properties of the heterogeneous architecture, this paper introduces the first FPGA-oriented cascade SVM classifier scheme, which exploits the FPGA reconfigurability and intensifies the custom-arithmetic properties of the heterogeneous architecture. The results show that the proposed cascade scheme is able to increase the heterogeneous classifier throughput even further, without introducing any penalty on the resource utilization.

  18. Linear SVM-Based Android Malware Detection for Reliable IoT Services

    National Research Council Canada - National Science Library

    Hyo-Sik Ham; Hwan-Hee Kim; Myung-Sup Kim; Mi-Jung Choi

    2014-01-01

    .... In this paper, we apply a linear support vector machine (SVM) to detect Android malware and compare the malware detection performance of SVM with that of other machine learning classifiers. Through experimental validation, we show that the SVM outperforms other machine learning classifiers.

  19. Automated identification of biomedical article type using support Vector machines

    Science.gov (United States)

    Kim, In Cheol; Le, Daniel X.; Thoma, George R.

    2011-01-01

    Authors of short papers such as letters or editorials often express complementary opinions, and sometimes contradictory ones, on related work in previously published articles. The MEDLINE® citations for such short papers are required to list bibliographic data on these "commented on" articles in a "CON" field. The challenge is to automatically identify the CON articles referred to by the author of the short paper (called "Comment-in" or CIN paper). Our approach is to use support vector machines (SVM) to first classify a paper as either a CIN or a regular full-length article (which is exempt from this requirement), and then to extract from the CIN paper the bibliographic data of the CON articles. A solution to the first part of the problem, identifying CIN articles, is addressed here. We implement and compare the performance of two types of SVM, one with a linear kernel function and the other with a radial basis kernel function (RBF). Input feature vectors for the SVMs are created by combining four types of features based on statistics of words in the article title, words that suggest the article type (letter, correspondence, editorial), size of body text, and cue phrases. Experiments conducted on a set of online biomedical articles show that the SVM with a linear kernel function yields a significantly lower false negative error rate than the one with an RBF. Our experiments also show that the SVM with a linear kernel function achieves a significantly higher level of accuracy, and lower false positive and false negative error rates by using input feature vectors created by combining all four types of features rather than any single type.

  20. A comparative study of slope failure prediction using logistic regression, support vector machine and least square support vector machine models

    Science.gov (United States)

    Zhou, Lim Yi; Shan, Fam Pei; Shimizu, Kunio; Imoto, Tomoaki; Lateh, Habibah; Peng, Koay Swee

    2017-08-01

    A comparative study of logistic regression, support vector machine (SVM) and least square support vector machine (LSSVM) models has been done to predict the slope failure (landslide) along East-West Highway (Gerik-Jeli). The effects of two monsoon seasons (southwest and northeast) that occur in Malaysia are considered in this study. Two related factors of occurrence of slope failure are included in this study: rainfall and underground water. For each method, two predictive models are constructed, namely SOUTHWEST and NORTHEAST models. Based on the results obtained from logistic regression models, two factors (rainfall and underground water level) contribute to the occurrence of slope failure. The accuracies of the three statistical models for two monsoon seasons are verified by using Relative Operating Characteristics curves. The validation results showed that all models produced prediction of high accuracy. For the results of SVM and LSSVM, the models using RBF kernel showed better prediction compared to the models using linear kernel. The comparative results showed that, for SOUTHWEST models, three statistical models have relatively similar performance. For NORTHEAST models, logistic regression has the best predictive efficiency whereas the SVM model has the second best predictive efficiency.

  1. Learning with Support Vector Machines

    CERN Document Server

    Campbell, Colin

    2010-01-01

    Support Vectors Machines have become a well established tool within machine learning. They work well in practice and have now been used across a wide range of applications from recognizing hand-written digits, to face identification, text categorisation, bioinformatics, and database marketing. In this book we give an introductory overview of this subject. We start with a simple Support Vector Machine for performing binary classification before considering multi-class classification and learning in the presence of noise. We show that this framework can be extended to many other scenarios such a

  2. Application of Support Vector Machine to Forex Monitoring

    Science.gov (United States)

    Kamruzzaman, Joarder; Sarker, Ruhul A.

    Previous studies have demonstrated superior performance of artificial neural network (ANN) based forex forecasting models over traditional regression models. This paper applies support vector machines to build a forecasting model from the historical data using six simple technical indicators and presents a comparison with an ANN based model trained by scaled conjugate gradient (SCG) learning algorithm. The models are evaluated and compared on the basis of five commonly used performance metrics that measure closeness of prediction as well as correctness in directional change. Forecasting results of six different currencies against Australian dollar reveal superior performance of SVM model using simple linear kernel over ANN-SCG model in terms of all the evaluation metrics. The effect of SVM parameter selection on prediction performance is also investigated and analyzed.

  3. Computerized Interactive Gaming via Supporting Vector Machines

    Directory of Open Access Journals (Sweden)

    Y. Jiang

    2008-01-01

    Full Text Available Computerized interactive gaming requires automatic processing of large volume of random data produced by players on spot, such as shooting, football kicking, and boxing. This paper describes a supporting vector machine-based artificial intelligence algorithm as one of the possible solutions to the problem of random data processing and the provision of interactive indication for further actions. In comparison with existing techniques, such as rule-based and neural networks, and so forth, our SVM-based interactive gaming algorithm has the features of (i high-speed processing, providing instant response to the players, (ii winner selection and control by one parameter, which can be predesigned and adjusted according to the needs of interaction and game design or specific level of difficulties, and (iii detection of interaction points is adaptive to the input changes, and no labelled training data is required. Experiments on numerical simulation support that the proposed algorithm is robust to random noise, accurate in picking up winning data, and convenient for all interactive gaming designs.

  4. On Weighted Support Vector Regression

    DEFF Research Database (Denmark)

    Han, Xixuan; Clemmensen, Line Katrine Harder

    2014-01-01

    We propose a new type of weighted support vector regression (SVR), motivated by modeling local dependencies in time and space in prediction of house prices. The classic weights of the weighted SVR are added to the slack variables in the objective function (OF‐weights). This procedure directly...

  5. Estimating grassland biomass using SVM band shaving of hyperspectral data

    NARCIS (Netherlands)

    Clevers, J.G.P.W.; Heijden, van der G.W.A.M.; Verzakov, S.; Schaepman, M.E.

    2007-01-01

    In this paper, the potential of a band shaving algorithm based on support vector machines (SVM) applied to hyperspectral data for estimating biomass within grasslands is studied. Field spectrometer data and biomass measurements were collected from a homogeneously managed grassland field. The SVM

  6. A Support Vector Machine Hydrometeor Classification Algorithm for Dual-Polarization Radar

    Directory of Open Access Journals (Sweden)

    Nicoletta Roberto

    2017-07-01

    Full Text Available An algorithm based on a support vector machine (SVM is proposed for hydrometeor classification. The training phase is driven by the output of a fuzzy logic hydrometeor classification algorithm, i.e., the most popular approach for hydrometer classification algorithms used for ground-based weather radar. The performance of SVM is evaluated by resorting to a weather scenario, generated by a weather model; the corresponding radar measurements are obtained by simulation and by comparing results of SVM classification with those obtained by a fuzzy logic classifier. Results based on the weather model and simulations show a higher accuracy of the SVM classification. Objective comparison of the two classifiers applied to real radar data shows that SVM classification maps are spatially more homogenous (textural indices, energy, and homogeneity increases by 21% and 12% respectively and do not present non-classified data. The improvements found by SVM classifier, even though it is applied pixel-by-pixel, can be attributed to its ability to learn from the entire hyperspace of radar measurements and to the accurate training. The reliability of results and higher computing performance make SVM attractive for some challenging tasks such as its implementation in Decision Support Systems for helping pilots to make optimal decisions about changes inthe flight route caused by unexpected adverse weather.

  7. Adaptive SVM for Data Stream Classification

    Directory of Open Access Journals (Sweden)

    Isah A. Lawal

    2017-07-01

    Full Text Available In this paper, we address the problem of learning an adaptive classifier for the classification of continuous streams of data. We present a solution based on incremental extensions of the Support Vector Machine (SVM learning paradigm that updates an existing SVM whenever new training data are acquired. To ensure that the SVM effectiveness is guaranteed while exploiting the newly gathered data, we introduce an on-line model selection approach in the incremental learning process. We evaluated the proposed method on real world applications including on-line spam email filtering and human action classification from videos. Experimental results show the effectiveness and the potential of the proposed approach.

  8. A Parallel Genetic Algorithm Based Feature Selection and Parameter Optimization for Support Vector Machine

    Directory of Open Access Journals (Sweden)

    Zhi Chen

    2016-01-01

    Full Text Available The extensive applications of support vector machines (SVMs require efficient method of constructing a SVM classifier with high classification ability. The performance of SVM crucially depends on whether optimal feature subset and parameter of SVM can be efficiently obtained. In this paper, a coarse-grained parallel genetic algorithm (CGPGA is used to simultaneously optimize the feature subset and parameters for SVM. The distributed topology and migration policy of CGPGA can help find optimal feature subset and parameters for SVM in significantly shorter time, so as to increase the quality of solution found. In addition, a new fitness function, which combines the classification accuracy obtained from bootstrap method, the number of chosen features, and the number of support vectors, is proposed to lead the search of CGPGA to the direction of optimal generalization error. Experiment results on 12 benchmark datasets show that our proposed approach outperforms genetic algorithm (GA based method and grid search method in terms of classification accuracy, number of chosen features, number of support vectors, and running time.

  9. Online Order Priority Evaluation Based on Hybrid Harmony Search Algorithm of Optimized Support Vector Machines

    OpenAIRE

    Yuanyuan Zhao; Qian Chen

    2014-01-01

    To make production plan, online order priority evaluation is the current priority weakness of online order evaluation model. This thesis proposes an online order priority evaluation model based on hybrid harmony search algorithm of optimized support vector machine (HHS-SVM). Firstly, an online order priority evaluation index system is build, and then support vector machine is adopted to build an online order priority evaluation model; secondly, harmony search algorithm is used to optimize the...

  10. Slope Deformation Prediction Based on Support Vector Machine

    Directory of Open Access Journals (Sweden)

    Lei JIA

    2013-07-01

    Full Text Available This paper principally studies the prediction of slope deformation based on Support Vector Machine (SVM. In the prediction process,explore how to reconstruct the phase space. The geological body’s displacement data obtained from chaotic time series are used as SVM’s training samples. Slope displacement caused by multivariable coupling is predicted by means of single variable. Results show that this model is of high fitting accuracy and generalization, and provides reference for deformation prediction in slope engineering.

  11. A comparative study of support vector machines and artificial neural networks for predicting precipitation in Iran

    Science.gov (United States)

    Hamidi, Omid; Poorolajal, Jalal; Sadeghifar, Majid; Abbasi, Hamed; Maryanaji, Zohreh; Faridi, Hamid Reza; Tapak, Lily

    2015-02-01

    This study compared two machine learning techniques, support vector machines (SVM), and artificial neural network (ANN) in modeling monthly precipitation fluctuations. The SVM and ANN approaches were applied to the monthly precipitation data of two synoptic stations in Hamadan (Airport and Nojeh), the west of Iran. To avoid overfitting, the data were divided into two parts of training (70 %) and test sets (30 %). Then, monthly data from July 1976 to June 2001 and data from April 1961 to November 1996 were considered as training set for the Hamadan and Nojeh stations, respectively, and the remaining were used as test set. The results of the SVM model were compared with those of the ANN based on the root mean square errors, mean absolute errors, determination coefficient, and efficiency coefficient criteria. Based on the comparison, it was found that the SVM model outperformed the ANN, and the estimated precipitation values were in good agreement with the corresponding observed values.

  12. Blind multiuser detector for chaos-based CDMA using support vector machine.

    Science.gov (United States)

    Kao, Johnny Wei-Hsun; Berber, Stevan Mirko; Kecman, Vojislav

    2010-08-01

    The algorithm and the results of a blind multiuser detector using a machine learning technique called support vector machine (SVM) on a chaos-based code division multiple access system is presented in this paper. Simulation results showed that the performance achieved by using SVM is comparable to existing minimum mean square error (MMSE) detector under both additive white Gaussian noise (AWGN) and Rayleigh fading conditions. However, unlike the MMSE detector, the SVM detector does not require the knowledge of spreading codes of other users in the system or the estimate of the channel noise variance. The optimization of this algorithm is considered in this paper and its complexity is compared with the MMSE detector. This detector is much more suitable to work in the forward link than MMSE. In addition, original theoretical bit-error rate expressions for the SVM detector under both AWGN and Rayleigh fading are derived to verify the simulation results.

  13. Bearing Degradation Process Prediction Based on the Support Vector Machine and Markov Model

    Directory of Open Access Journals (Sweden)

    Shaojiang Dong

    2014-01-01

    Full Text Available Predicting the degradation process of bearings before they reach the failure threshold is extremely important in industry. This paper proposed a novel method based on the support vector machine (SVM and the Markov model to achieve this goal. Firstly, the features are extracted by time and time-frequency domain methods. However, the extracted original features are still with high dimensional and include superfluous information, and the nonlinear multifeatures fusion technique LTSA is used to merge the features and reduces the dimension. Then, based on the extracted features, the SVM model is used to predict the bearings degradation process, and the CAO method is used to determine the embedding dimension of the SVM model. After the bearing degradation process is predicted by SVM model, the Markov model is used to improve the prediction accuracy. The proposed method was validated by two bearing run-to-failure experiments, and the results proved the effectiveness of the methodology.

  14. Active set support vector regression.

    Science.gov (United States)

    Musicant, David R; Feinberg, Alexander

    2004-03-01

    This paper presents active set support vector regression (ASVR), a new active set strategy to solve a straightforward reformulation of the standard support vector regression problem. This new algorithm is based on the successful ASVM algorithm for classification problems, and consists of solving a finite number of linear equations with a typically large dimensionality equal to the number of points to be approximated. However, by making use of the Sherman-Morrison-Woodbury formula, a much smaller matrix of the order of the original input space is inverted at each step. The algorithm requires no specialized quadratic or linear programming code, but merely a linear equation solver which is publicly available. ASVR is extremely fast, produces comparable generalization error to other popular algorithms, and is available on the web for download.

  15. Support vector machine as an alternative method for lithology classification of crystalline rocks

    Science.gov (United States)

    Deng, Chengxiang; Pan, Heping; Fang, Sinan; Amara Konaté, Ahmed; Qin, Ruidong

    2017-03-01

    With the expansion of machine learning algorithms, automatic lithology classification that uses well logging data is becoming significant in formation evaluation and reservoir characterization. In fact, the complicated composition and structural variations of metamorphic rocks result in more nonlinear features in well logging data and elevate requirements to algorithms. Herein, the application of the support vector machine (SVM) in classifying crystalline rocks from Chinese Continental Scientific Drilling Main Hole (CCSD-MH) data was reported. We found that the SVM performs poorly on the lithology classification of crystalline rocks when training samples are imbalanced. The fact is that training samples are generally limited and imbalanced as cores cannot be obtained balanced and at 100 percent. In this paper, we introduced the synthetic minority over-sampling technique (SMOTE) and Borderline-SMOTE to deal with imbalanced data. After experiments generating different quantities of training samples by SMOTE and Borderline-SMOTE, the most suitable classifier was selected to overcome the disadvantage of the SVM. Then, the popular supervised classifier back-propagation neural networks (BPNN), which has been proved competent for lithology classification of crystalline rocks in previous studies, was compared to evaluate the performance of the SVM. Results show that Borderline-SMOTE can improve the SVM with substantially increased accuracy even for minority classes in a reasonable manner, while the SVM outperforms BPNN in aspects of lithology prediction and CCSD-MH data generalization. We demonstrate the potential of the SVM as an alternative to current methods for lithology identification of crystalline rocks.

  16. A Fast Classification Method of Faults in Power Electronic Circuits Based on Support Vector Machines

    Directory of Open Access Journals (Sweden)

    Cui Jiang

    2017-12-01

    Full Text Available Fault detection and location are important and front-end tasks in assuring the reliability of power electronic circuits. In essence, both tasks can be considered as the classification problem. This paper presents a fast fault classification method for power electronic circuits by using the support vector machine (SVM as a classifier and the wavelet transform as a feature extraction technique. Using one-against-rest SVM and one-against-one SVM are two general approaches to fault classification in power electronic circuits. However, these methods have a high computational complexity, therefore in this design we employ a directed acyclic graph (DAG SVM to implement the fault classification. The DAG SVM is close to the one-against-one SVM regarding its classification performance, but it is much faster. Moreover, in the presented approach, the DAG SVM is improved by introducing the method of Knearest neighbours to reduce some computations, so that the classification time can be further reduced. A rectifier and an inverter are demonstrated to prove effectiveness of the presented design.

  17. Potential of cancer screening with serum surface-enhanced Raman spectroscopy and a support vector machine

    Science.gov (United States)

    Li, S. X.; Zhang, Y. J.; Zeng, Q. Y.; Li, L. F.; Guo, Z. Y.; Liu, Z. M.; Xiong, H. L.; Liu, S. H.

    2014-06-01

    Cancer is the most common disease to threaten human health. The ability to screen individuals with malignant tumours with only a blood sample would be greatly advantageous to early diagnosis and intervention. This study explores the possibility of discriminating between cancer patients and normal subjects with serum surface-enhanced Raman spectroscopy (SERS) and a support vector machine (SVM) through a peripheral blood sample. A total of 130 blood samples were obtained from patients with liver cancer, colonic cancer, esophageal cancer, nasopharyngeal cancer, gastric cancer, as well as 113 blood samples from normal volunteers. Several diagnostic models were built with the serum SERS spectra using SVM and principal component analysis (PCA) techniques. The results show that a diagnostic accuracy of 85.5% is acquired with a PCA algorithm, while a diagnostic accuracy of 95.8% is obtained using radial basis function (RBF), PCA-SVM methods. The results prove that a RBF kernel PCA-SVM technique is superior to PCA and conventional SVM (C-SVM) algorithms in classification serum SERS spectra. The study demonstrates that serum SERS, in combination with SVM techniques, has great potential for screening cancerous patients with any solid malignant tumour through a peripheral blood sample.

  18. Individualized prediction of illness course at the first psychotic episode: a support vector machine MRI study.

    LENUS (Irish Health Repository)

    Mourao-Miranda, J

    2012-05-01

    To date, magnetic resonance imaging (MRI) has made little impact on the diagnosis and monitoring of psychoses in individual patients. In this study, we used a support vector machine (SVM) whole-brain classification approach to predict future illness course at the individual level from MRI data obtained at the first psychotic episode.

  19. Knowledge-Based Green's Kernel for Support Vector Regression

    Directory of Open Access Journals (Sweden)

    Tahir Farooq

    2010-01-01

    Full Text Available This paper presents a novel prior knowledge-based Green's kernel for support vector regression (SVR. After reviewing the correspondence between support vector kernels used in support vector machines (SVMs and regularization operators used in regularization networks and the use of Green's function of their corresponding regularization operators to construct support vector kernels, a mathematical framework is presented to obtain the domain knowledge about magnitude of the Fourier transform of the function to be predicted and design a prior knowledge-based Green's kernel that exhibits optimal regularization properties by using the concept of matched filters. The matched filter behavior of the proposed kernel function makes it suitable for signals corrupted with noise that includes many real world systems. We conduct several experiments mostly using benchmark datasets to compare the performance of our proposed technique with the results already published in literature for other existing support vector kernel over a variety of settings including different noise levels, noise models, loss functions, and SVM variations. Experimental results indicate that knowledge-based Green's kernel could be seen as a good choice among the other candidate kernel functions.

  20. Modeling a ground-coupled heat pump system by a support vector machine

    Energy Technology Data Exchange (ETDEWEB)

    Esen, Hikmet; Esen, Mehmet [Department of Mechanical Education, Faculty of Technical Education, Firat University, 23119 Elazig (Turkey); Inalli, Mustafa [Department of Mechanical Engineering, Faculty of Engineering, Firat University, 23279 Elazig (Turkey); Sengur, Abdulkadir [Department of Electronic and Computer Science, Faculty of Technical Education, Firat University, 23119 Elazig (Turkey)

    2008-08-15

    This paper reports on a modeling study of ground coupled heat pump (GCHP) system performance (COP) by using a support vector machine (SVM) method. A GCHP system is a multi-variable system that is hard to model by conventional methods. As regards the SVM, it has a superior capability for generalization, and this capability is independent of the dimensionality of the input data. In this study, a SVM based method was intended to adopt GCHP system for efficient modeling. The Lin-kernel SVM method was quite efficient in modeling purposes and did not require a pre-knowledge about the system. The performance of the proposed methodology was evaluated by using several statistical validation parameters. It is found that the root-mean squared (RMS) value is 0.002722, the coefficient of multiple determinations (R{sup 2}) value is 0.999999, coefficient of variation (cov) value is 0.077295, and mean error function (MEF) value is 0.507437 for the proposed Lin-kernel SVM method. The optimum parameters of the SVM method were determined by using a greedy search algorithm. This search algorithm was effective for obtaining the optimum parameters. The simulation results show that the SVM is a good method for prediction of the COP of the GCHP system. The computation of SVM model is faster compared with other machine learning techniques (artificial neural networks (ANN) and adaptive neuro-fuzzy inference system (ANFIS)); because there are fewer free parameters and only support vectors (only a fraction of all data) are used in the generalization process. (author)

  1. Comparison of Support Vector Machine, Neural Network, and CART Algorithms for the Land-Cover Classification Using Limited Training Data Points

    Science.gov (United States)

    Support vector machine (SVM) was applied for land-cover characterization using MODIS time-series data. Classification performance was examined with respect to training sample size, sample variability, and landscape homogeneity (purity). The results were compared to two convention...

  2. Investigating the use of support vector machine classification on structural brain images of preterm-born teenagers as a biological marker

    National Research Council Canada - National Science Library

    Chu, Carlton; Lagercrantz, Hugo; Forssberg, Hans; Nagy, Zoltan

    2015-01-01

    .... With the aid support vector machine (SVM) classification methods we aimed to investigate whether MRI data, collected in adolescence, could be used to predict whether an individual had been born preterm or at term...

  3. Design and Status of Solar Vector Magnetograph (SVM-I) at Udaipur ...

    Indian Academy of Sciences (India)

    Section 3 describes the control software used for acquiring data and controlling the instrument. In the last section, the first-light images of a sunspot and very preliminary analysis is presented. The evaluation of the data is under progress, which will eventually drive the design modifications in second phase of solar vector ...

  4. Sistem Deteksi Retinopati Diabetik Menggunakan Support Vector Machine

    Directory of Open Access Journals (Sweden)

    Wahyudi Setiawan

    2014-02-01

    Full Text Available Diabetic Retinopathy is a complication of Diabetes Melitus. It can be a blindness if untreated settled as early as possible. System created in this thesis is the detection of diabetic retinopathy level of the image obtained from fundus photographs. There are three main steps to resolve the problems, preprocessing, feature extraction and classification. Preprocessing methods that used in this system are Grayscale Green Channel, Gaussian Filter, Contrast Limited Adaptive Histogram Equalization and Masking. Two Dimensional Linear Discriminant Analysis (2DLDA is used for feature extraction. Support Vector Machine (SVM is used for classification. The test result performed by taking a dataset of MESSIDOR with number of images that vary for the training phase, otherwise is used for the testing phase. Test result show the optimal accuracy are 84% .   Keywords : Diabetic Retinopathy, Support Vector Machine, Two Dimensional Linear Discriminant Analysis, MESSIDOR

  5. Cancer Feature Selection and Classification Using a Binary Quantum-Behaved Particle Swarm Optimization and Support Vector Machine

    Directory of Open Access Journals (Sweden)

    Maolong Xi

    2016-01-01

    Full Text Available This paper focuses on the feature gene selection for cancer classification, which employs an optimization algorithm to select a subset of the genes. We propose a binary quantum-behaved particle swarm optimization (BQPSO for cancer feature gene selection, coupling support vector machine (SVM for cancer classification. First, the proposed BQPSO algorithm is described, which is a discretized version of original QPSO for binary 0-1 optimization problems. Then, we present the principle and procedure for cancer feature gene selection and cancer classification based on BQPSO and SVM with leave-one-out cross validation (LOOCV. Finally, the BQPSO coupling SVM (BQPSO/SVM, binary PSO coupling SVM (BPSO/SVM, and genetic algorithm coupling SVM (GA/SVM are tested for feature gene selection and cancer classification on five microarray data sets, namely, Leukemia, Prostate, Colon, Lung, and Lymphoma. The experimental results show that BQPSO/SVM has significant advantages in accuracy, robustness, and the number of feature genes selected compared with the other two algorithms.

  6. Support vector machine classification of strong gravitational lenses

    Science.gov (United States)

    Hartley, P.; Flamary, R.; Jackson, N.; Tagore, A. S.; Metcalf, R. B.

    2017-11-01

    The imminent advent of very large-scale optical sky surveys, such as Euclid and the Large Synoptic Survey Telescope (LSST), makes it important to find efficient ways of discovering rare objects such as strong gravitational lens systems, where a background object is multiply gravitationally imaged by a foreground mass. As well as finding the lens systems, it is important to reject false positives due to intrinsic structure in galaxies, and much work is in progress with machine learning algorithms such as neural networks in order to achieve both these aims. We present and discuss a support vector machine (SVM) algorithm which makes use of a Gabor filter bank in order to provide learning criteria for separation of lenses and non-lenses, and demonstrate using blind challenges that under certain circumstances, it is a particularly efficient algorithm for rejecting false positives. We compare the SVM engine with a large-scale human examination of 100 000 simulated lenses in a challenge data set, and also apply the SVM method to survey images from the Kilo Degree Survey.

  7. Voice Activity Detection Using Fuzzy Entropy and Support Vector Machine

    Directory of Open Access Journals (Sweden)

    R. Johny Elton

    2016-08-01

    Full Text Available This paper proposes support vector machine (SVM based voice activity detection using FuzzyEn to improve detection performance under noisy conditions. The proposed voice activity detection (VAD uses fuzzy entropy (FuzzyEn as a feature extracted from noise-reduced speech signals to train an SVM model for speech/non-speech classification. The proposed VAD method was tested by conducting various experiments by adding real background noises of different signal-to-noise ratios (SNR ranging from −10 dB to 10 dB to actual speech signals collected from the TIMIT database. The analysis proves that FuzzyEn feature shows better results in discriminating noise and corrupted noisy speech. The efficacy of the SVM classifier was validated using 10-fold cross validation. Furthermore, the results obtained by the proposed method was compared with those of previous standardized VAD algorithms as well as recently developed methods. Performance comparison suggests that the proposed method is proven to be more efficient in detecting speech under various noisy environments with an accuracy of 93.29%, and the FuzzyEn feature detects speech efficiently even at low SNR levels.

  8. Environmental noise forecasting based on support vector machine

    Science.gov (United States)

    Fu, Yumei; Zan, Xinwu; Chen, Tianyi; Xiang, Shihan

    2018-01-01

    As an important pollution source, the noise pollution is always the researcher's focus. Especially in recent years, the noise pollution is seriously harmful to the human beings' environment, so the research about the noise pollution is a very hot spot. Some noise monitoring technologies and monitoring systems are applied in the environmental noise test, measurement and evaluation. But, the research about the environmental noise forecasting is weak. In this paper, a real-time environmental noise monitoring system is introduced briefly. This monitoring system is working in Mianyang City, Sichuan Province. It is monitoring and collecting the environmental noise about more than 20 enterprises in this district. Based on the large amount of noise data, the noise forecasting by the Support Vector Machine (SVM) is studied in detail. Compared with the time series forecasting model and the artificial neural network forecasting model, the SVM forecasting model has some advantages such as the smaller data size, the higher precision and stability. The noise forecasting results based on the SVM can provide the important and accuracy reference to the prevention and control of the environmental noise.

  9. Research on Classification of Chinese Text Data Based on SVM

    Science.gov (United States)

    Lin, Yuan; Yu, Hongzhi; Wan, Fucheng; Xu, Tao

    2017-09-01

    Data Mining has important application value in today’s industry and academia. Text classification is a very important technology in data mining. At present, there are many mature algorithms for text classification. KNN, NB, AB, SVM, decision tree and other classification methods all show good classification performance. Support Vector Machine’ (SVM) classification method is a good classifier in machine learning research. This paper will study the classification effect based on the SVM method in the Chinese text data, and use the support vector machine method in the chinese text to achieve the classify chinese text, and to able to combination of academia and practical application.

  10. Controller Design for Direct Torque Controlled Space Vector Modulated (DTC-SVM) Induction Motor Drives

    DEFF Research Database (Denmark)

    Zelechowski, M.; Kazmierkowski, M.P.; Blaabjerg, Frede

    2005-01-01

    In this paper two different methods of PI controllers for direct torque controlled-space vector modulated induction motor drives have been studied. The first one is simple method based only on symmetric optimum criterion. The second approach takes into account the full model of induction motor...... including rotor voltage equation and uses root locus method. Some simulated and experimental oscillograms that illustrate properties of the presented controller design methods are shown....

  11. Support vector regression correlates single-sweep evoked brain potentials to gastrointestinal symptoms in diabetes mellitus patients

    DEFF Research Database (Denmark)

    Graversen, C; Frokjaer, J B; Brock, Christina

    2012-01-01

    patients were discriminated from the HV by a support vector machine (SVM) applied in regression mode. For the optimal DWT, the discriminative features were extracted and the SVM regression value representing the overall alteration of the EP was correlated to the clinical scores. A classification...... approach to study central mechanisms in diabetes mellitus, and may provide a future application for a clinical tool to optimize treatment in individual patients....

  12. Support vector machines for TEC seismo-ionospheric anomalies detection

    Directory of Open Access Journals (Sweden)

    M. Akhoondzadeh

    2013-02-01

    Full Text Available Using time series prediction methods, it is possible to pursue the behaviors of earthquake precursors in the future and to announce early warnings when the differences between the predicted value and the observed value exceed the predefined threshold value. Support Vector Machines (SVMs are widely used due to their many advantages for classification and regression tasks. This study is concerned with investigating the Total Electron Content (TEC time series by using a SVM to detect seismo-ionospheric anomalous variations induced by the three powerful earthquakes of Tohoku (11 March 2011, Haiti (12 January 2010 and Samoa (29 September 2009. The duration of TEC time series dataset is 49, 46 and 71 days, for Tohoku, Haiti and Samoa earthquakes, respectively, with each at time resolution of 2 h. In the case of Tohoku earthquake, the results show that the difference between the predicted value obtained from the SVM method and the observed value reaches the maximum value (i.e., 129.31 TECU at earthquake time in a period of high geomagnetic activities. The SVM method detected a considerable number of anomalous occurrences 1 and 2 days prior to the Haiti earthquake and also 1 and 5 days before the Samoa earthquake in a period of low geomagnetic activities. In order to show that the method is acting sensibly with regard to the results extracted during nonevent and event TEC data, i.e., to perform some null-hypothesis tests in which the methods would also be calibrated, the same period of data from the previous year of the Samoa earthquake date has been taken into the account. Further to this, in this study, the detected TEC anomalies using the SVM method were compared to the previous results (Akhoondzadeh and Saradjian, 2011; Akhoondzadeh, 2012 obtained from the mean, median, wavelet and Kalman filter methods. The SVM detected anomalies are similar to those detected using the previous methods. It can be concluded that SVM can be a suitable learning method

  13. Support Vector Machine Classification of Drunk Driving Behaviour

    Directory of Open Access Journals (Sweden)

    Huiqin Chen

    2017-01-01

    Full Text Available Alcohol is the root cause of numerous traffic accidents due to its pharmacological action on the human central nervous system. This study conducted a detection process to distinguish drunk driving from normal driving under simulated driving conditions. The classification was performed by a support vector machine (SVM classifier trained to distinguish between these two classes by integrating both driving performance and physiological measurements. In addition, principal component analysis was conducted to rank the weights of the features. The standard deviation of R–R intervals (SDNN, the root mean square value of the difference of the adjacent R–R interval series (RMSSD, low frequency (LF, high frequency (HF, the ratio of the low and high frequencies (LF/HF, and average blink duration were the highest weighted features in the study. The results show that SVM classification can successfully distinguish drunk driving from normal driving with an accuracy of 70%. The driving performance data and the physiological measurements reported by this paper combined with air-alcohol concentration could be integrated using the support vector regression classification method to establish a better early warning model, thereby improving vehicle safety.

  14. Support Vector Machine Classification of Drunk Driving Behaviour.

    Science.gov (United States)

    Chen, Huiqin; Chen, Lei

    2017-01-23

    Alcohol is the root cause of numerous traffic accidents due to its pharmacological action on the human central nervous system. This study conducted a detection process to distinguish drunk driving from normal driving under simulated driving conditions. The classification was performed by a support vector machine (SVM) classifier trained to distinguish between these two classes by integrating both driving performance and physiological measurements. In addition, principal component analysis was conducted to rank the weights of the features. The standard deviation of R-R intervals (SDNN), the root mean square value of the difference of the adjacent R-R interval series (RMSSD), low frequency (LF), high frequency (HF), the ratio of the low and high frequencies (LF/HF), and average blink duration were the highest weighted features in the study. The results show that SVM classification can successfully distinguish drunk driving from normal driving with an accuracy of 70%. The driving performance data and the physiological measurements reported by this paper combined with air-alcohol concentration could be integrated using the support vector regression classification method to establish a better early warning model, thereby improving vehicle safety.

  15. Support vector machine for day ahead electricity price forecasting

    Science.gov (United States)

    Razak, Intan Azmira binti Wan Abdul; Abidin, Izham bin Zainal; Siah, Yap Keem; Rahman, Titik Khawa binti Abdul; Lada, M. Y.; Ramani, Anis Niza binti; Nasir, M. N. M.; Ahmad, Arfah binti

    2015-05-01

    Electricity price forecasting has become an important part of power system operation and planning. In a pool- based electric energy market, producers submit selling bids consisting in energy blocks and their corresponding minimum selling prices to the market operator. Meanwhile, consumers submit buying bids consisting in energy blocks and their corresponding maximum buying prices to the market operator. Hence, both producers and consumers use day ahead price forecasts to derive their respective bidding strategies to the electricity market yet reduce the cost of electricity. However, forecasting electricity prices is a complex task because price series is a non-stationary and highly volatile series. Many factors cause for price spikes such as volatility in load and fuel price as well as power import to and export from outside the market through long term contract. This paper introduces an approach of machine learning algorithm for day ahead electricity price forecasting with Least Square Support Vector Machine (LS-SVM). Previous day data of Hourly Ontario Electricity Price (HOEP), generation's price and demand from Ontario power market are used as the inputs for training data. The simulation is held using LSSVMlab in Matlab with the training and testing data of 2004. SVM that widely used for classification and regression has great generalization ability with structured risk minimization principle rather than empirical risk minimization. Moreover, same parameter settings in trained SVM give same results that absolutely reduce simulation process compared to other techniques such as neural network and time series. The mean absolute percentage error (MAPE) for the proposed model shows that SVM performs well compared to neural network.

  16. Ensemble Feature Learning of Genomic Data Using Support Vector Machine.

    Directory of Open Access Journals (Sweden)

    Ali Anaissi

    Full Text Available The identification of a subset of genes having the ability to capture the necessary information to distinguish classes of patients is crucial in bioinformatics applications. Ensemble and bagging methods have been shown to work effectively in the process of gene selection and classification. Testament to that is random forest which combines random decision trees with bagging to improve overall feature selection and classification accuracy. Surprisingly, the adoption of these methods in support vector machines has only recently received attention but mostly on classification not gene selection. This paper introduces an ensemble SVM-Recursive Feature Elimination (ESVM-RFE for gene selection that follows the concepts of ensemble and bagging used in random forest but adopts the backward elimination strategy which is the rationale of RFE algorithm. The rationale behind this is, building ensemble SVM models using randomly drawn bootstrap samples from the training set, will produce different feature rankings which will be subsequently aggregated as one feature ranking. As a result, the decision for elimination of features is based upon the ranking of multiple SVM models instead of choosing one particular model. Moreover, this approach will address the problem of imbalanced datasets by constructing a nearly balanced bootstrap sample. Our experiments show that ESVM-RFE for gene selection substantially increased the classification performance on five microarray datasets compared to state-of-the-art methods. Experiments on the childhood leukaemia dataset show that an average 9% better accuracy is achieved by ESVM-RFE over SVM-RFE, and 5% over random forest based approach. The selected genes by the ESVM-RFE algorithm were further explored with Singular Value Decomposition (SVD which reveals significant clusters with the selected data.

  17. Ensemble Feature Learning of Genomic Data Using Support Vector Machine.

    Science.gov (United States)

    Anaissi, Ali; Goyal, Madhu; Catchpoole, Daniel R; Braytee, Ali; Kennedy, Paul J

    2016-01-01

    The identification of a subset of genes having the ability to capture the necessary information to distinguish classes of patients is crucial in bioinformatics applications. Ensemble and bagging methods have been shown to work effectively in the process of gene selection and classification. Testament to that is random forest which combines random decision trees with bagging to improve overall feature selection and classification accuracy. Surprisingly, the adoption of these methods in support vector machines has only recently received attention but mostly on classification not gene selection. This paper introduces an ensemble SVM-Recursive Feature Elimination (ESVM-RFE) for gene selection that follows the concepts of ensemble and bagging used in random forest but adopts the backward elimination strategy which is the rationale of RFE algorithm. The rationale behind this is, building ensemble SVM models using randomly drawn bootstrap samples from the training set, will produce different feature rankings which will be subsequently aggregated as one feature ranking. As a result, the decision for elimination of features is based upon the ranking of multiple SVM models instead of choosing one particular model. Moreover, this approach will address the problem of imbalanced datasets by constructing a nearly balanced bootstrap sample. Our experiments show that ESVM-RFE for gene selection substantially increased the classification performance on five microarray datasets compared to state-of-the-art methods. Experiments on the childhood leukaemia dataset show that an average 9% better accuracy is achieved by ESVM-RFE over SVM-RFE, and 5% over random forest based approach. The selected genes by the ESVM-RFE algorithm were further explored with Singular Value Decomposition (SVD) which reveals significant clusters with the selected data.

  18. Support vector machines for automated snoring detection: proof-of-concept.

    Science.gov (United States)

    Samuelsson, Laura B; Rangarajan, Anusha A; Shimada, Kenji; Krafty, Robert T; Buysse, Daniel J; Strollo, Patrick J; Kravitz, Howard M; Zheng, Huiyong; Hall, Martica H

    2017-03-01

    Snoring has been shown to be associated with adverse physical and mental health, independent of the effects of sleep disordered breathing. Despite increasing evidence for the risks of snoring, few studies on sleep and health include objective measures of snoring. One reason for this methodological limitation is the difficulty of quantifying snoring. Conventional methods may rely on manual scoring of snore events by trained human scorers, but this process is both time- and labor-intensive, making the measurement of objective snoring impractical for large or multi-night studies. The current study is a proof-of-concept to validate the use of support vector machines (SVM), a form of machine learning, for the automated scoring of an objective snoring signal. An SVM algorithm was trained and tested on a set of approximately 150,000 snoring and non-snoring data segments, and F-scores for SVM performance compared to visual scoring performance were calculated using the Wilcoxon signed rank test for paired data. The ability of the SVM algorithm to discriminate snore from non-snore segments of data did not differ statistically from visual scorer performance (SVM F-score = 82.46 ± 7.93 versus average visual F-score = 88.35 ± 4.61, p = 0.2786), supporting SVM snore classification ability comparable to visual scorers. In this proof-of-concept, we established that the SVM algorithm performs comparably to trained visual scorers, supporting the use of SVM for automated snoring detection in future studies.

  19. QSAR models for prediction study of HIV protease inhibitors using support vector machines, neural networks and multiple linear regression

    Directory of Open Access Journals (Sweden)

    Rachid Darnag

    2017-02-01

    Full Text Available Support vector machines (SVM represent one of the most promising Machine Learning (ML tools that can be applied to develop a predictive quantitative structure–activity relationship (QSAR models using molecular descriptors. Multiple linear regression (MLR and artificial neural networks (ANNs were also utilized to construct quantitative linear and non linear models to compare with the results obtained by SVM. The prediction results are in good agreement with the experimental value of HIV activity; also, the results reveal the superiority of the SVM over MLR and ANN model. The contribution of each descriptor to the structure–activity relationships was evaluated.

  20. Support Vector Machines Parameter Selection Based on Combined Taguchi Method and Staelin Method for E-mail Spam Filtering

    Directory of Open Access Journals (Sweden)

    Wei-Chih Hsu

    2012-04-01

    Full Text Available Support vector machines (SVM are a powerful tool for building good spam filtering models. However, the performance of the model depends on parameter selection. Parameter selection of SVM will affect classification performance seriously during training process. In this study, we use combined Taguchi method and Staelin method to optimize the SVM-based E-mail Spam Filtering model and promote spam filtering accuracy. We compare it with other parameters optimization methods, such as grid search. Six real-world mail data sets are selected to demonstrate the effectiveness and feasibility of the method. The results show that our proposed methods can find the effective model with high classification accuracy

  1. A support vector machine approach for classification of welding defects from ultrasonic signals

    Science.gov (United States)

    Chen, Yuan; Ma, Hong-Wei; Zhang, Guang-Ming

    2014-07-01

    Defect classification is an important issue in ultrasonic non-destructive evaluation. A layered multi-class support vector machine (LMSVM) classification system, which combines multiple SVM classifiers through a layered architecture, is proposed in this paper. The proposed LMSVM classification system is applied to the classification of welding defects from ultrasonic test signals. The measured ultrasonic defect echo signals are first decomposed into wavelet coefficients by the wavelet packet transform. The energy of the wavelet coefficients at different frequency channels are used to construct the feature vectors. The bees algorithm (BA) is then used for feature selection and SVM parameter optimisation for the LMSVM classification system. The BA-based feature selection optimises the energy feature vectors. The optimised feature vectors are input to the LMSVM classification system for training and testing. Experimental results of classifying welding defects demonstrate that the proposed technique is highly robust, precise and reliable for ultrasonic defect classification.

  2. Scorebox extraction from mobile sports videos using Support Vector Machines

    Science.gov (United States)

    Kim, Wonjun; Park, Jimin; Kim, Changick

    2008-08-01

    Scorebox plays an important role in understanding contents of sports videos. However, the tiny scorebox may give the small-display-viewers uncomfortable experience in grasping the game situation. In this paper, we propose a novel framework to extract the scorebox from sports video frames. We first extract candidates by using accumulated intensity and edge information after short learning period. Since there are various types of scoreboxes inserted in sports videos, multiple attributes need to be used for efficient extraction. Based on those attributes, the optimal information gain is computed and top three ranked attributes in terms of information gain are selected as a three-dimensional feature vector for Support Vector Machines (SVM) to distinguish the scorebox from other candidates, such as logos and advertisement boards. The proposed method is tested on various videos of sports games and experimental results show the efficiency and robustness of our proposed method.

  3. [Automatic classification method of star spectra data based on manifold fuzzy twin support vector machine].

    Science.gov (United States)

    Liu, Zhong-bao; Gao, Yan-yun; Wang, Jian-zhen

    2015-01-01

    Support vector machine (SVM) with good leaning ability and generalization is widely used in the star spectra data classification. But when the scale of data becomes larger, the shortages of SVM appear: the calculation amount is quite large and the classification speed is too slow. In order to solve the above problems, twin support vector machine (TWSVM) was proposed by Jayadeva. The advantage of TSVM is that the time cost is reduced to 1/4 of that of SVM. While all the methods mentioned above only focus on the global characteristics and neglect the local characteristics. In view of this, an automatic classification method of star spectra data based on manifold fuzzy twin support vector machine (MF-TSVM) is proposed in this paper. In MF-TSVM, manifold-based discriminant analysis (MDA) is used to obtain the global and local characteristics of the input data and the fuzzy membership is introduced to reduce the influences of noise and singular data on the classification results. Comparative experiments with current classification methods, such as C-SVM and KNN, on the SDSS star spectra datasets verify the effectiveness of the proposed method.

  4. Bidding strategy with forecast technology based on support vector machine in the electricity market

    Science.gov (United States)

    Gao, Ciwei; Bompard, Ettore; Napoli, Roberto; Wan, Qiulan; Zhou, Jian

    2008-06-01

    The participants in the electricity market are concerned very much with the market price evolution. Various technologies have been developed for price forecasting. The SVM (Support Vector Machine) has shown its good performance in market price forecasting. Two approaches for forming the market bidding strategies based on SVM are proposed. One is based on the price forecasting accuracy, with which the rejection risk is defined. The other takes into account the impact of the producer’s own bid. The risks associated with the bidding are controlled by the parameter settings. The proposed approaches have been tested on a numerical example.

  5. Applying the Support Vector Machine Method to Matching IRAS and SDSS Catalogues

    Directory of Open Access Journals (Sweden)

    Chen Cao

    2007-10-01

    Full Text Available This paper presents results of applying a machine learning technique, the Support Vector Machine (SVM, to the astronomical problem of matching the Infra-Red Astronomical Satellite (IRAS and Sloan Digital Sky Survey (SDSS object catalogues. In this study, the IRAS catalogue has much larger positional uncertainties than those of the SDSS. A model was constructed by applying the supervised learning algorithm (SVM to a set of training data. Validation of the model shows a good identification performance (∼ 90% correct, better than that derived from classical cross-matching algorithms, such as the likelihood-ratio method used in previous studies.

  6. PMSVM: An Optimized Support Vector Machine Classification Algorithm Based on PCA and Multilevel Grid Search Methods

    Directory of Open Access Journals (Sweden)

    Yukai Yao

    2015-01-01

    Full Text Available We propose an optimized Support Vector Machine classifier, named PMSVM, in which System Normalization, PCA, and Multilevel Grid Search methods are comprehensively considered for data preprocessing and parameters optimization, respectively. The main goals of this study are to improve the classification efficiency and accuracy of SVM. Sensitivity, Specificity, Precision, and ROC curve, and so forth, are adopted to appraise the performances of PMSVM. Experimental results show that PMSVM has relatively better accuracy and remarkable higher efficiency compared with traditional SVM algorithms.

  7. Relevance Vector Machine and Support Vector Machine Classifier Analysis of Scanning Laser Polarimetry Retinal Nerve Fiber Layer Measurements

    Science.gov (United States)

    Bowd, Christopher; Medeiros, Felipe A.; Zhang, Zuohua; Zangwill, Linda M.; Hao, Jiucang; Lee, Te-Won; Sejnowski, Terrence J.; Weinreb, Robert N.; Goldbaum, Michael H.

    2010-01-01

    Purpose To classify healthy and glaucomatous eyes using relevance vector machine (RVM) and support vector machine (SVM) learning classifiers trained on retinal nerve fiber layer (RNFL) thickness measurements obtained by scanning laser polarimetry (SLP). Methods Seventy-two eyes of 72 healthy control subjects (average age = 64.3 ± 8.8 years, visual field mean deviation =−0.71 ± 1.2 dB) and 92 eyes of 92 patients with glaucoma (average age = 66.9 ± 8.9 years, visual field mean deviation =−5.32 ± 4.0 dB) were imaged with SLP with variable corneal compensation (GDx VCC; Laser Diagnostic Technologies, San Diego, CA). RVM and SVM learning classifiers were trained and tested on SLP-determined RNFL thickness measurements from 14 standard parameters and 64 sectors (approximately 5.6° each) obtained in the circumpapillary area under the instrument-defined measurement ellipse (total 78 parameters). Tenfold cross-validation was used to train and test RVM and SVM classifiers on unique subsets of the full 164-eye data set and areas under the receiver operating characteristic (AUROC) curve for the classification of eyes in the test set were generated. AUROC curve results from RVM and SVM were compared to those for 14 SLP software-generated global and regional RNFL thickness parameters. Also reported was the AUROC curve for the GDx VCC software-generated nerve fiber indicator (NFI). Results The AUROC curves for RVM and SVM were 0.90 and 0.91, respectively, and increased to 0.93 and 0.94 when the training sets were optimized with sequential forward and backward selection (resulting in reduced dimensional data sets). AUROC curves for optimized RVM and SVM were significantly larger than those for all individual SLP parameters. The AUROC curve for the NFI was 0.87. Conclusions Results from RVM and SVM trained on SLP RNFL thickness measurements are similar and provide accurate classification of glaucomatous and healthy eyes. RVM may be preferable to SVM, because it provides a

  8. Least square support vector machine for citrus greening by use of near infrared spectroscopy

    Science.gov (United States)

    Liu, Yande; Xiao, Huaichun; Sun, Xudong; Han, Rubing; Ye, Lingyu; Liu, Deli

    2017-02-01

    Citrus greening or Huanglongbing (HLB) is one of most serious citrus diseases in the world. Once a tree is infected, there is no cure. The feasibility was investigated for discriminating citrus greening by use of near infrared (NIR) spectroscopy and least square support vector machine (LS-SVM). The spectra of sound and citrus greening samples were recorded in the wavenumber range of 4000-9000 cm-1. The preprocessing method of second derivative with a gap of seven was adapted to eliminate spectral baseline. The spectral variables were optimized by principal component analysis (PCA) and (UVE) algorithms. The unknown samples were used to access the performance of the models. Compared to the PLS-DA model, the LS-SVM was better with the input vector of the first 15 principal components and linear kernel function. The regularization factor (γ) of linear kernel function was 1.8756, and the operation time of LS-SVM model was 0.86s. The recognition error of the LS-SVM model was zero. The results showed that the combination of LS-SVM and NIR spectroscopy could detect citrus greening nondestructively and rapidly.

  9. Classification of electrocardiogram signals with support vector machines and particle swarm optimization.

    Science.gov (United States)

    Melgani, Farid; Bazi, Yakoub

    2008-09-01

    The aim of this paper is twofold. First, we present a thorough experimental study to show the superiority of the generalization capability of the support vector machine (SVM) approach in the automatic classification of electrocardiogram (ECG) beats. Second, we propose a novel classification system based on particle swarm optimization (PSO) to improve the generalization performance of the SVM classifier. For this purpose, we have optimized the SVM classifier design by searching for the best value of the parameters that tune its discriminant function, and upstream by looking for the best subset of features that feed the classifier. The experiments were conducted on the basis of ECG data from the Massachusetts Institute of Technology-Beth Israel Hospital (MIT-BIH) arrhythmia database to classify five kinds of abnormal waveforms and normal beats. In particular, they were organized so as to test the sensitivity of the SVM classifier and that of two reference classifiers used for comparison, i.e., the k-nearest neighbor (kNN) classifier and the radial basis function (RBF) neural network classifier, with respect to the curse of dimensionality and the number of available training beats. The obtained results clearly confirm the superiority of the SVM approach as compared to traditional classifiers, and suggest that further substantial improvements in terms of classification accuracy can be achieved by the proposed PSO-SVM classification system. On an average, over three experiments making use of a different total number of training beats (250, 500, and 750, respectively), the PSO-SVM yielded an overall accuracy of 89.72% on 40438 test beats selected from 20 patient records against 85.98%, 83.70%, and 82.34% for the SVM, the kNN, and the RBF classifiers, respectively.

  10. Klasifikasi Penerima Program Beras Miskin (Raskin) di Kabupaten Wonosobo dengan Metode Support Vector Machine Menggunakan Libsvm

    OpenAIRE

    Pamuji, Yogi Setiyo; Safitri, Diah; Prahutama, Alan

    2015-01-01

    Beras Miskin (Raskin) Program is a program of social protection, as supporters of other programs such as nutrition improvement, healthy increase, education and productivity improvement of Poor Households. According to Badan Pusat Statistika, there were 14 criteria to determine a household is classified as poor households. Based on these criteria it will be classified of recipient households and non-recipient households of Beras Miskin (Raskin) Program by Support Vector Machine (SVM) method us...

  11. A New Classification Method of Infrasound Events Using Hilbert-Huang Transform and Support Vector Machine

    Directory of Open Access Journals (Sweden)

    Xueyong Liu

    2014-01-01

    Full Text Available Infrasound is a type of low frequency signal that occurs in nature and results from man-made events, typically ranging in frequency from 0.01 Hz to 20 Hz. In this paper, a classification method based on Hilbert-Huang transform (HHT and support vector machine (SVM is proposed to discriminate between three different natural events. The frequency spectrum characteristics of infrasound signals produced by different events, such as volcanoes, are unique, which lays the foundation for infrasound signal classification. First, the HHT method was used to extract the feature vectors of several kinds of infrasound events from the Hilbert marginal spectrum. Then, the feature vectors were classified by the SVM method. Finally, the present of classification and identification accuracy are given. The simulation results show that the recognition rate is above 97.7%, and that approach is effective for classifying event types for small samples.

  12. Ecological footprint model using the support vector machine technique.

    Science.gov (United States)

    Ma, Haibo; Chang, Wenjuan; Cui, Guangbai

    2012-01-01

    The per capita ecological footprint (EF) is one of the most widely recognized measures of environmental sustainability. It aims to quantify the Earth's biological resources required to support human activity. In this paper, we summarize relevant previous literature, and present five factors that influence per capita EF. These factors are: National gross domestic product (GDP), urbanization (independent of economic development), distribution of income (measured by the Gini coefficient), export dependence (measured by the percentage of exports to total GDP), and service intensity (measured by the percentage of service to total GDP). A new ecological footprint model based on a support vector machine (SVM), which is a machine-learning method based on the structural risk minimization principle from statistical learning theory was conducted to calculate the per capita EF of 24 nations using data from 123 nations. The calculation accuracy was measured by average absolute error and average relative error. They were 0.004883 and 0.351078% respectively. Our results demonstrate that the EF model based on SVM has good calculation performance.

  13. Pulse waveform classification using support vector machine with Gaussian time warp edit distance kernel.

    Science.gov (United States)

    Jia, Danbing; Zhang, Dongyu; Li, Naimin

    2014-01-01

    Advances in signal processing techniques have provided effective tools for quantitative research in traditional Chinese pulse diagnosis. However, because of the inevitable intraclass variations of pulse patterns, the automatic classification of pulse waveforms has remained a difficult problem. Utilizing the new elastic metric, that is, time wrap edit distance (TWED), this paper proposes to address the problem under the support vector machines (SVM) framework by using the Gaussian TWED kernel function. The proposed method, SVM with GTWED kernel (GTWED-SVM), is evaluated on a dataset including 2470 pulse waveforms of five distinct patterns. The experimental results show that the proposed method achieves a lower average error rate than current pulse waveform classification methods.

  14. Midterm Electricity Market Clearing Price Forecasting Using Two-Stage Multiple Support Vector Machine

    Directory of Open Access Journals (Sweden)

    Xing Yan

    2015-01-01

    Full Text Available Currently, there are many techniques available for short-term forecasting of the electricity market clearing price (MCP, but very little work has been done in the area of midterm forecasting of the electricity MCP. The midterm forecasting of the electricity MCP is essential for maintenance scheduling, planning, bilateral contracting, resources reallocation, and budgeting. A two-stage multiple support vector machine (SVM based midterm forecasting model of the electricity MCP is proposed in this paper. The first stage is utilized to separate the input data into corresponding price zones by using a single SVM. Then, the second stage is applied utilizing four parallel designed SVMs to forecast the electricity price in four different price zones. Compared to the forecasting model using a single SVM, the proposed model showed improved forecasting accuracy in both peak prices and overall system. PJM interconnection data are used to test the proposed model.

  15. Casing Vibration Fault Diagnosis Based on Variational Mode Decomposition, Local Linear Embedding, and Support Vector Machine

    Directory of Open Access Journals (Sweden)

    Yizhou Yang

    2017-01-01

    Full Text Available To diagnose mechanical faults of rotor-bearing-casing system by analyzing its casing vibration signal, this paper proposes a training procedure of a fault classifier based on variational mode decomposition (VMD, local linear embedding (LLE, and support vector machine (SVM. VMD is used first to decompose the casing signal into several modes, which are subsignals usually modulated by fault frequencies. Vibrational features are extracted from both VMD subsignals and the original one. LLE is employed here to reduce the dimensionality of these extracted features and make the samples more separable. Then low-dimensional data sets are used to train the multiclass SVM whose accuracy is tested by classifying the test samples. When the parameters of LLE and SVM are well optimized, this proposed method performs well on experimental data, showing its capacity of diagnosing casing vibration faults.

  16. Analysis of EEG signals by combining eigenvector methods and multiclass support vector machines.

    Science.gov (United States)

    Derya Ubeyli, Elif

    2008-01-01

    A new approach based on the implementation of multiclass support vector machine (SVM) with the error correcting output codes (ECOC) is presented for classification of electroencephalogram (EEG) signals. In practical applications of pattern recognition, there are often diverse features extracted from raw data which needs recognizing. Decision making was performed in two stages: feature extraction by eigenvector methods and classification using the classifiers trained on the extracted features. The aim of the study is classification of the EEG signals by the combination of eigenvector methods and multiclass SVM. The purpose is to determine an optimum classification scheme for this problem and also to infer clues about the extracted features. The present research demonstrated that the eigenvector methods are the features which well represent the EEG signals and the multiclass SVM trained on these features achieved high classification accuracies.

  17. Characterization of digital medical images utilizing support vector machines

    Directory of Open Access Journals (Sweden)

    Zafiropoulos Elias P

    2004-03-01

    Full Text Available Abstract Background In this paper we discuss an efficient methodology for the image analysis and characterization of digital images containing skin lesions using Support Vector Machines and present the results of a preliminary study. Methods The methodology is based on the support vector machines algorithm for data classification and it has been applied to the problem of the recognition of malignant melanoma versus dysplastic naevus. Border and colour based features were extracted from digital images of skin lesions acquired under reproducible conditions, using basic image processing techniques. Two alternative classification methods, the statistical discriminant analysis and the application of neural networks were also applied to the same problem and the results are compared. Results The SVM (Support Vector Machines algorithm performed quite well achieving 94.1% correct classification, which is better than the performance of the other two classification methodologies. The method of discriminant analysis classified correctly 88% of cases (71% of Malignant Melanoma and 100% of Dysplastic Naevi, while the neural networks performed approximately the same. Conclusion The use of a computer-based system, like the one described in this paper, is intended to avoid human subjectivity and to perform specific tasks according to a number of criteria. However the presence of an expert dermatologist is considered necessary for the overall visual assessment of the skin lesion and the final diagnosis.

  18. Particle swarm optimization-based support vector machine for forecasting dissolved gases content in power transformer oil

    Energy Technology Data Exchange (ETDEWEB)

    Fei Shengwei [School of Mechanical Engineering, Shanghai Jiaotong University, Shanghai 200240 (China)], E-mail: feishengwei@sohu.com; Wang Mingjun; Miao Yubin; Tu Jun; Liu Chengliang [School of Mechanical Engineering, Shanghai Jiaotong University, Shanghai 200240 (China)

    2009-06-15

    Forecasting of dissolved gases content in power transformer oil is a complicated problem due to its nonlinearity and the small quantity of training data. Support vector machine (SVM) has been successfully employed to solve regression problem of nonlinearity and small sample. However, the practicability of SVM is effected due to the difficulty of selecting appropriate SVM parameters. Particle swarm optimization (PSO) is a new optimization method, which is motivated by social behaviour of organisms such as bird flocking and fish schooling. The method not only has strong global search capability, but also is very easy to implement. Thus, the proposed PSO-SVM model is applied to forecast dissolved gases content in power transformer oil in this paper, among which PSO is used to determine free parameters of support vector machine. The experimental data from several electric power companies in China is used to illustrate the performance of proposed PSO-SVM model. The experimental results indicate that the PSO-SVM method can achieve greater forecasting accuracy than grey model, artificial neural network under the circumstances of small sample.

  19. Particle swarm optimization-based support vector machine for forecasting dissolved gases content in power transformer oil

    Energy Technology Data Exchange (ETDEWEB)

    Fei, Sheng-wei; Wang, Ming-Jun; Miao, Yu-bin; Tu, Jun; Liu, Cheng-liang [School of Mechanical Engineering, Shanghai Jiaotong University, Shanghai 200240 (China)

    2009-06-15

    Forecasting of dissolved gases content in power transformer oil is a complicated problem due to its nonlinearity and the small quantity of training data. Support vector machine (SVM) has been successfully employed to solve regression problem of nonlinearity and small sample. However, the practicability of SVM is effected due to the difficulty of selecting appropriate SVM parameters. Particle swarm optimization (PSO) is a new optimization method, which is motivated by social behaviour of organisms such as bird flocking and fish schooling. The method not only has strong global search capability, but also is very easy to implement. Thus, the proposed PSO-SVM model is applied to forecast dissolved gases content in power transformer oil in this paper, among which PSO is used to determine free parameters of support vector machine. The experimental data from several electric power companies in China is used to illustrate the performance of proposed PSO-SVM model. The experimental results indicate that the PSO-SVM method can achieve greater forecasting accuracy than grey model, artificial neural network under the circumstances of small sample. (author)

  20. Generalized SMO algorithm for SVM-based multitask learning.

    Science.gov (United States)

    Cai, Feng; Cherkassky, Vladimir

    2012-06-01

    Exploiting additional information to improve traditional inductive learning is an active research area in machine learning. In many supervised-learning applications, training data can be naturally separated into several groups, and incorporating this group information into learning may improve generalization. Recently, Vapnik proposed a general approach to formalizing such problems, known as "learning with structured data" and its support vector machine (SVM) based optimization formulation called SVM+. Liang and Cherkassky showed the connection between SVM+ and multitask learning (MTL) approaches in machine learning, and proposed an SVM-based formulation for MTL called SVM+MTL for classification. Training the SVM+MTL classifier requires the solution of a large quadratic programming optimization problem which scales as O(n(3)) with sample size n. So there is a need to develop computationally efficient algorithms for implementing SVM+MTL. This brief generalizes Platt's sequential minimal optimization (SMO) algorithm to the SVM+MTL setting. Empirical results show that, for typical SVM+MTL problems, the proposed generalized SMO achieves over 100 times speed-up, in comparison with general-purpose optimization routines.

  1. Identifying translation initiation sites in prokaryotes using support vector machine.

    Science.gov (United States)

    Gao, Tingting; Yang, Zhixia; Wang, Yong; Jing, Ling

    2010-02-21

    Gene identification in genomes has been a fundamental and long-standing task in bioinformatics and computational biology. Many computational methods have been developed to predict genes in prokaryote genomes by identifying translation initiation site (TIS) in transcript data. However, the pseudo-TISs at the genome level make these methods suffer from a high number of false positive predictions. In addition, most of the existing tools use an unsupervised learning framework, whose predictive accuracy may depend on the choice of specific organism. In this paper, we present a supervised learning method, support vector machine (SVM), to identify translation initiation site at the genome level. The features are extracted from the sequence data by modeling the sequence segment around predicted TISs as a position specific weight matrix (PSWM). We train the parameters of our SVM through well constructed positive and negative TIS datasets. Then we apply the method to recognize translation initiation sites in E. coli, B. subtilis, and validate our method on two GC-rich bacteria genomes: Pseudomonas aeruginosa and Burkholderia pseudomallei K96243. We show that translation initiation sites can be recognized accurately at the genome level by our method, irrespective of their GC content. Furthermore, we compare our method with four existing methods and demonstrate that our method outperform these methods by obtaining better performance in all the four organisms. (c) 2009. Published by Elsevier Ltd.

  2. Spatio-temporal avalanche forecasting with Support Vector Machines

    Directory of Open Access Journals (Sweden)

    A. Pozdnoukhov

    2011-02-01

    Full Text Available This paper explores the use of the Support Vector Machine (SVM as a data exploration tool and a predictive engine for spatio-temporal forecasting of snow avalanches. Based on the historical observations of avalanche activity, meteorological conditions and snowpack observations in the field, an SVM is used to build a data-driven spatio-temporal forecast for the local mountain region. It incorporates the outputs of simple physics-based and statistical approaches used to interpolate meteorological and snowpack-related data over a digital elevation model of the region. The interpretation of the produced forecast is discussed, and the quality of the model is validated using observations and avalanche bulletins of the recent years. The insight into the model behaviour is presented to highlight the interpretability of the model, its abilities to produce reliable forecasts for individual avalanche paths and sensitivity to input data. Estimates of prediction uncertainty are obtained with ensemble forecasting. The case study was carried out using data from the avalanche forecasting service in the Locaber region of Scotland, where avalanches are forecast on a daily basis during the winter months.

  3. Product demand forecasts using wavelet kernel support vector machine and particle swarm optimization in manufacture system

    Science.gov (United States)

    Wu, Qi

    2010-03-01

    Demand forecasts play a crucial role in supply chain management. The future demand for a certain product is the basis for the respective replenishment systems. Aiming at demand series with small samples, seasonal character, nonlinearity, randomicity and fuzziness, the existing support vector kernel does not approach the random curve of the sales time series in the space (quadratic continuous integral space). In this paper, we present a hybrid intelligent system combining the wavelet kernel support vector machine and particle swarm optimization for demand forecasting. The results of application in car sale series forecasting show that the forecasting approach based on the hybrid PSOWv-SVM model is effective and feasible, the comparison between the method proposed in this paper and other ones is also given, which proves that this method is, for the discussed example, better than hybrid PSOv-SVM and other traditional methods.

  4. A Modified Method Combined with a Support Vector Machine and Bayesian Algorithms in Biological Information

    Directory of Open Access Journals (Sweden)

    Wen-Gang Zhou

    2015-06-01

    Full Text Available With the deep research of genomics and proteomics, the number of new protein sequences has expanded rapidly. With the obvious shortcomings of high cost and low efficiency of the traditional experimental method, the calculation method for protein localization prediction has attracted a lot of attention due to its convenience and low cost. In the machine learning techniques, neural network and support vector machine (SVM are often used as learning tools. Due to its complete theoretical framework, SVM has been widely applied. In this paper, we make an improvement on the existing machine learning algorithm of the support vector machine algorithm, and a new improved algorithm has been developed, combined with Bayesian algorithms. The proposed algorithm can improve calculation efficiency, and defects of the original algorithm are eliminated. According to the verification, the method has proved to be valid. At the same time, it can reduce calculation time and improve prediction efficiency.

  5. Cascade Support Vector Machines with Dimensionality Reduction

    Directory of Open Access Journals (Sweden)

    Oliver Kramer

    2015-01-01

    Full Text Available Cascade support vector machines have been introduced as extension of classic support vector machines that allow a fast training on large data sets. In this work, we combine cascade support vector machines with dimensionality reduction based preprocessing. The cascade principle allows fast learning based on the division of the training set into subsets and the union of cascade learning results based on support vectors in each cascade level. The combination with dimensionality reduction as preprocessing results in a significant speedup, often without loss of classifier accuracies, while considering the high-dimensional pendants of the low-dimensional support vectors in each new cascade level. We analyze and compare various instantiations of dimensionality reduction preprocessing and cascade SVMs with principal component analysis, locally linear embedding, and isometric mapping. The experimental analysis on various artificial and real-world benchmark problems includes various cascade specific parameters like intermediate training set sizes and dimensionalities.

  6. Classification of Autism Spectrum Disorder Using Random Support Vector Machine Cluster

    Directory of Open Access Journals (Sweden)

    Xia-an Bi

    2018-02-01

    Full Text Available Autism spectrum disorder (ASD is mainly reflected in the communication and language barriers, difficulties in social communication, and it is a kind of neurological developmental disorder. Most researches have used the machine learning method to classify patients and normal controls, among which support vector machines (SVM are widely employed. But the classification accuracy of SVM is usually low, due to the usage of a single SVM as classifier. Thus, we used multiple SVMs to classify ASD patients and typical controls (TC. Resting-state functional magnetic resonance imaging (fMRI data of 46 TC and 61 ASD patients were obtained from the Autism Brain Imaging Data Exchange (ABIDE database. Only 84 of 107 subjects are utilized in experiments because the translation or rotation of 7 TC and 16 ASD patients has surpassed ±2 mm or ±2°. Then the random SVM cluster was proposed to distinguish TC and ASD. The results show that this method has an excellent classification performance based on all the features. Furthermore, the accuracy based on the optimal feature set could reach to 96.15%. Abnormal brain regions could also be found, such as inferior frontal gyrus (IFG (orbital and opercula part, hippocampus, and precuneus. It is indicated that the method of random SVM cluster may apply to the auxiliary diagnosis of ASD.

  7. Identifying organic-rich Marcellus Shale lithofacies by support vector machine classifier in the Appalachian basin

    Science.gov (United States)

    Wang, Guochang; Carr, Timothy R.; Ju, Yiwen; Li, Chaofeng

    2014-03-01

    Unconventional shale reservoirs as the result of extremely low matrix permeability, higher potential gas productivity requires not only sufficient gas-in-place, but also a high concentration of brittle minerals (silica and/or carbonate) that is amenable to hydraulic fracturing. Shale lithofacies is primarily defined by mineral composition and organic matter richness, and its representation as a 3-D model has advantages in recognizing productive zones of shale-gas reservoirs, designing horizontal wells and stimulation strategy, and aiding in understanding depositional process of organic-rich shale. A challenging and key step is to effectively recognize shale lithofacies from well conventional logs, where the relationship is very complex and nonlinear. In the recognition of shale lithofacies, the application of support vector machine (SVM), which underlies statistical learning theory and structural risk minimization principle, is superior to the traditional empirical risk minimization principle employed by artificial neural network (ANN). We propose SVM classifier combined with learning algorithms, such as grid searching, genetic algorithm and particle swarm optimization, and various kernel functions the approach to identify Marcellus Shale lithofacies. Compared with ANN classifiers, the experimental results of SVM classifiers showed higher cross-validation accuracy, better stability and less computational time cost. The SVM classifier with radius basis function as kernel worked best as it is trained by particle swarm optimization. The lithofacies predicted using the SVM classifier are used to build a 3-D Marcellus Shale lithofacies model, which assists in identifying higher productive zones, especially with thermal maturity and natural fractures.

  8. Support vectors machine classification of surface electromyography for non-invasive naturally controlled hand prostheses.

    Science.gov (United States)

    Moura, Karina O A; Favieiro, Gabriela W; Balbinot, Alexandre

    2016-08-01

    The scientific researches in human rehabilitation techniques have continually evolved to offer again the mobility and freedom lost to disability. Many systems managed by myoelectric signals intended to mimic the movement of the human arm still have results considered partial, which makes it subject of many researches. The use of Natural Interfaces Signal Processing methods makes possible to design systems capable of offering prosthesis in a more natural and intuitive way. This paper presents a study investigating the use of forearm surface electromyography (sEMG) signals for classification of specific movements of hand using 12 sEMG channels and support vector machine (SVM). The system acquired the sEMG signal using a virtual model as a visual stimulus in order to demonstrate to the volunteer the hand movements which must be replicated by them. The Root Mean Square (RMS) value feature is extracted of the signal and it serves as input data for the classification with SVM. The classification stage used three types of kernel functions (linear, polynomial, radial basis) for comparison of the results. The average accuracy reached for the classification of seventeen distinct movements of 83.7% was achieved using the SVM linear classifier, 80.8% was achieved using the SVM polynomial classifier and 85.1% was achieved using the SVM radial basis classifier.

  9. Robust Least-Squares Support Vector Machine With Minimization of Mean and Variance of Modeling Error.

    Science.gov (United States)

    Lu, Xinjiang; Liu, Wenbo; Zhou, Chuang; Huang, Minghui

    2017-06-13

    The least-squares support vector machine (LS-SVM) is a popular data-driven modeling method and has been successfully applied to a wide range of applications. However, it has some disadvantages, including being ineffective at handling non-Gaussian noise as well as being sensitive to outliers. In this paper, a robust LS-SVM method is proposed and is shown to have more reliable performance when modeling a nonlinear system under conditions where Gaussian or non-Gaussian noise is present. The construction of a new objective function allows for a reduction of the mean of the modeling error as well as the minimization of its variance, and it does not constrain the mean of the modeling error to zero. This differs from the traditional LS-SVM, which uses a worst-case scenario approach in order to minimize the modeling error and constrains the mean of the modeling error to zero. In doing so, the proposed method takes the modeling error distribution information into consideration and is thus less conservative and more robust in regards to random noise. A solving method is then developed in order to determine the optimal parameters for the proposed robust LS-SVM. An additional analysis indicates that the proposed LS-SVM gives a smaller weight to a large-error training sample and a larger weight to a small-error training sample, and is thus more robust than the traditional LS-SVM. The effectiveness of the proposed robust LS-SVM is demonstrated using both artificial and real life cases.

  10. Midterm Electricity Market Clearing Price Forecasting Using Two-Stage Multiple Support Vector Machine

    OpenAIRE

    Yan, Xing; Chowdhury, Nurul A.

    2015-01-01

    Currently, there are many techniques available for short-term forecasting of the electricity market clearing price (MCP), but very little work has been done in the area of midterm forecasting of the electricity MCP. The midterm forecasting of the electricity MCP is essential for maintenance scheduling, planning, bilateral contracting, resources reallocation, and budgeting. A two-stage multiple support vector machine (SVM) based midterm forecasting model of the electricity MCP is proposed in t...

  11. On the KDD’99 Dataset: Support Vector Machine Based Intrusion Detection System (IDS) with Different Kernels

    OpenAIRE

    Md. Al MehediHasan; Mohammed Nasser; Biprodip Pal

    2013-01-01

    The success of any Intrusion Detection System (IDS) is a complicated problem due to its nonlinearity and the quantitative or qualitative network traffic data stream with many features. To get rid of this problem, several types of intrusion detection methods have been proposed and shown different levels of accuracy. This is why, the choice of the effective and robust method for IDS is very important topic in information security. Support vector machine (SVM) has been employed to provide potent...

  12. A novel method of protein secondary structure prediction with high segment overlap measure: support vector machine approach.

    Science.gov (United States)

    Hua, S; Sun, Z

    2001-04-27

    We have introduced a new method of protein secondary structure prediction which is based on the theory of support vector machine (SVM). SVM represents a new approach to supervised pattern classification which has been successfully applied to a wide range of pattern recognition problems, including object recognition, speaker identification, gene function prediction with microarray expression profile, etc. In these cases, the performance of SVM either matches or is significantly better than that of traditional machine learning approaches, including neural networks.The first use of the SVM approach to predict protein secondary structure is described here. Unlike the previous studies, we first constructed several binary classifiers, then assembled a tertiary classifier for three secondary structure states (helix, sheet and coil) based on these binary classifiers. The SVM method achieved a good performance of segment overlap accuracy SOV=76.2 % through sevenfold cross validation on a database of 513 non-homologous protein chains with multiple sequence alignments, which out-performs existing methods. Meanwhile three-state overall per-residue accuracy Q(3) achieved 73.5 %, which is at least comparable to existing single prediction methods. Furthermore a useful "reliability index" for the predictions was developed. In addition, SVM has many attractive features, including effective avoidance of overfitting, the ability to handle large feature spaces, information condensing of the given data set, etc. The SVM method is conveniently applied to many other pattern classification tasks in biology. Copyright 2001 Academic Press.

  13. Estimating grassland biomass using SVM band shaving of hyperspectral data

    OpenAIRE

    Clevers, J G P W; van Der Heijden, G.W.A.M.; Verzakov, S; Schaepman, M. E.

    2007-01-01

    In this paper, the potential of a band shaving algorithm based on support vector machines (SVM) applied to hyperspectral data for estimating biomass within grasslands is studied. Field spectrometer data and biomass measurements were collected from a homogeneously managed grassland field. The SVM band shaving technique was compared with a partial least squares (PLS) and a stepwise forward selection analysis. Using their results, a range of vegetation indices was used as predictors for grasslan...

  14. Curriculum Assessment Using Artificial Neural Network and Support Vector Machine Modeling Approaches: A Case Study. IR Applications. Volume 29

    Science.gov (United States)

    Chen, Chau-Kuang

    2010-01-01

    Artificial Neural Network (ANN) and Support Vector Machine (SVM) approaches have been on the cutting edge of science and technology for pattern recognition and data classification. In the ANN model, classification accuracy can be achieved by using the feed-forward of inputs, back-propagation of errors, and the adjustment of connection weights. In…

  15. Novel Approach for Automatic Detection of Atrial Fibrillation Based on Inter Beat Intervals and Support Vector Machine

    DEFF Research Database (Denmark)

    Andersen, Rasmus S.; Poulsen, Erik S.; Puthusserypady, Sadasivan

    2017-01-01

    for AF detection based on Inter Beat Intervals (IBI) extracted from long term electrocardiogram (ECG) recordings. Five time-domain features are extracted from the IBIs and a Support Vector Machine (SVM) is used for classification. The results are compared to a state of the art algorithm based on raw ECG...

  16. Combining MLC and SVM Classifiers for Learning Based Decision Making: Analysis and Evaluations

    Directory of Open Access Journals (Sweden)

    Yi Zhang

    2015-01-01

    Full Text Available Maximum likelihood classifier (MLC and support vector machines (SVM are two commonly used approaches in machine learning. MLC is based on Bayesian theory in estimating parameters of a probabilistic model, whilst SVM is an optimization based nonparametric method in this context. Recently, it is found that SVM in some cases is equivalent to MLC in probabilistically modeling the learning process. In this paper, MLC and SVM are combined in learning and classification, which helps to yield probabilistic output for SVM and facilitate soft decision making. In total four groups of data are used for evaluations, covering sonar, vehicle, breast cancer, and DNA sequences. The data samples are characterized in terms of Gaussian/non-Gaussian distributed and balanced/unbalanced samples which are then further used for performance assessment in comparing the SVM and the combined SVM-MLC classifier. Interesting results are reported to indicate how the combined classifier may work under various conditions.

  17. Feature selection based on SVM significance maps for classification of dementia

    NARCIS (Netherlands)

    E.E. Bron (Esther); M. Smits (Marion); J.C. van Swieten (John); W.J. Niessen (Wiro); S. Klein (Stefan)

    2014-01-01

    textabstractSupport vector machine significance maps (SVM p-maps) previously showed clusters of significantly different voxels in dementiarelated brain regions. We propose a novel feature selection method for classification of dementia based on these p-maps. In our approach, the SVM p-maps are

  18. Damage level prediction of non-reshaped berm breakwater using ANN, SVM and ANFIS models

    Digital Repository Service at National Institute of Oceanography (India)

    Mandal, S.; SubbaRao; Harish, N.; Lokesha

    Marine Structures Laboratory, Department of Applied Mechanics and Hydraulics, NITK, Surathkal, India. Soft computing techniques like Artificial Neural Network (ANN), Support Vector Machine (SVM) and Adaptive Neuro Fuzzy Inference system (ANFIS) models...

  19. Cellular automata for simulating land use changes based on support vector machines

    Science.gov (United States)

    Yang, Qingsheng; Li, Xia; Shi, Xun

    2008-06-01

    Cellular automata (CA) have been increasingly used to simulate urban sprawl and land use dynamics. A major issue in CA is defining appropriate transition rules based on training data. Linear boundaries have been widely used to define the rules. However, urban land use dynamics and many other geographical phenomena are highly complex and require nonlinear boundaries for the rules. In this study, we tested the support vector machines (SVM) as a method for constructing nonlinear transition rules for CA. SVM is good at dealing with nonlinear complex relationships. Its basic idea is to project input vectors to a higher dimensional Hilbert feature space, in which an optimal classifying hyperplane can be constructed through structural risk minimization and margin maximization. The optimal hyperplane is unique and its optimality is global. The proposed SVM-CA model was implemented using Visual Basic, ArcObjects®, and OSU-SVM. A case study simulating the urban development in the Shenzhen City, China demonstrates that the proposed model can achieve high accuracy and overcome some limitations of existing CA models in simulating complex urban systems.

  20. Hybrid Model Based on Genetic Algorithms and SVM Applied to Variable Selection within Fruit Juice Classification

    Directory of Open Access Journals (Sweden)

    C. Fernandez-Lozano

    2013-01-01

    Full Text Available Given the background of the use of Neural Networks in problems of apple juice classification, this paper aim at implementing a newly developed method in the field of machine learning: the Support Vector Machines (SVM. Therefore, a hybrid model that combines genetic algorithms and support vector machines is suggested in such a way that, when using SVM as a fitness function of the Genetic Algorithm (GA, the most representative variables for a specific classification problem can be selected.

  1. Hybrid Model Based on Genetic Algorithms and SVM Applied to Variable Selection within Fruit Juice Classification

    Science.gov (United States)

    Fernandez-Lozano, C.; Canto, C.; Gestal, M.; Andrade-Garda, J. M.; Rabuñal, J. R.; Dorado, J.; Pazos, A.

    2013-01-01

    Given the background of the use of Neural Networks in problems of apple juice classification, this paper aim at implementing a newly developed method in the field of machine learning: the Support Vector Machines (SVM). Therefore, a hybrid model that combines genetic algorithms and support vector machines is suggested in such a way that, when using SVM as a fitness function of the Genetic Algorithm (GA), the most representative variables for a specific classification problem can be selected. PMID:24453933

  2. Mechanical fault diagnosis based on redundant second generation wavelet packet transform, neighborhood rough set and support vector machine

    Science.gov (United States)

    Li, Ning; Zhou, Rui; Hu, Qinghua; Liu, Xiaohang

    2012-04-01

    This paper investigates the application of the redundant second generation wavelet package transform (RSGWPT), neighborhood rough set (NRS) and support vector machine (SVM) on faulty detection, attribute reduction and pattern classification. On this basis, a novel method for mechanical faulty diagnosis based on RSGWPT, NRS and SVM is presented, which utilizes the RSGWPT to extract faulty feature parameters from the statistical characteristics of wavelet package coefficients to constitute feature vectors, and then makes the attribute reduction by NRS method to obtain the key features, lastly these key features are input into SVM to accomplish faulty pattern classification. The experimental results of the proposed method to fault diagnosis of the gearbox and gasoline engine valve trains show that this method can extract the faulty features, which have better classification ability and at the same time reduce a lot of redundant features in case of assuring the classification accuracy, accordingly improve the classifier efficiency and achieve a better classification performance.

  3. Support Vector Machines for decision support in electricity markets׳ strategic bidding

    DEFF Research Database (Denmark)

    Pinto, Tiago; Sousa, Tiago M.; Praça, Isabel

    2015-01-01

    by being included in ALBidS and then compared with the application of an Artificial Neural Network (ANN), originating promising results: an effective electricity market price forecast in a fast execution time. The proposed approach is tested and validated using real electricity markets data from MIBEL......׳ research group has developed a multi-agent system: Multi-Agent System for Competitive Electricity Markets (MASCEM), which simulates the electricity markets environment. MASCEM is integrated with Adaptive Learning Strategic Bidding System (ALBidS) that works as a decision support system for market players....... The ALBidS system allows MASCEM market negotiating players to take the best possible advantages from the market context. This paper presents the application of a Support Vector Machines (SVM) based approach to provide decision support to electricity market players. This strategy is tested and validated...

  4. Fatigue crack monitoring of aerospace structure based on binary tree support vector machines

    Science.gov (United States)

    Lu, Shenbo; Zhou, Li

    2017-04-01

    This paper presents a novel method to monitor crack length which based on binary tree support vector machines (BTSVM). In this method, matching pursuit method with Chirplet atom is applied to extract the matching parameters as feature vectors to train and test in the BT-SVM algorithm. Then one simulation of lug joint is carried out for studying the effect of crack extension on Lamb wave signals propagation. Fatigue loading experiments on lug joints are carried out at last. The results show that this new method can monitor the length of fatigue crack effectively.

  5. Support vector machine used to diagnose the fault of rotor broken bars of induction motors

    DEFF Research Database (Denmark)

    Zhitong, Cao; Jiazhong, Fang; Hongpingn, Chen

    2003-01-01

    The data-based machine learning is an important aspect of modern intelligent technology, while statistical learning theory (SLT) is a new tool that studies the machine learning methods in the case of a small number of samples. As a common learning method, support vector machine (SVM) is derived...... from the SLT. Here we were done some analogical experiments of the rotor broken bar faults of induction motors used, analyzed the signals of the sample currents with Fourier transform, and constructed the spectrum characteristics from low frequency to high frequency used as learning sample vectors...

  6. Explaining Support Vector Machines: A Color Based Nomogram.

    Directory of Open Access Journals (Sweden)

    Vanya Van Belle

    Full Text Available Support vector machines (SVMs are very popular tools for classification, regression and other problems. Due to the large choice of kernels they can be applied with, a large variety of data can be analysed using these tools. Machine learning thanks its popularity to the good performance of the resulting models. However, interpreting the models is far from obvious, especially when non-linear kernels are used. Hence, the methods are used as black boxes. As a consequence, the use of SVMs is less supported in areas where interpretability is important and where people are held responsible for the decisions made by models.In this work, we investigate whether SVMs using linear, polynomial and RBF kernels can be explained such that interpretations for model-based decisions can be provided. We further indicate when SVMs can be explained and in which situations interpretation of SVMs is (hitherto not possible. Here, explainability is defined as the ability to produce the final decision based on a sum of contributions which depend on one single or at most two input variables.Our experiments on simulated and real-life data show that explainability of an SVM depends on the chosen parameter values (degree of polynomial kernel, width of RBF kernel and regularization constant. When several combinations of parameter values yield the same cross-validation performance, combinations with a lower polynomial degree or a larger kernel width have a higher chance of being explainable.This work summarizes SVM classifiers obtained with linear, polynomial and RBF kernels in a single plot. Linear and polynomial kernels up to the second degree are represented exactly. For other kernels an indication of the reliability of the approximation is presented. The complete methodology is available as an R package and two apps and a movie are provided to illustrate the possibilities offered by the method.

  7. Parameter Identification of Ship Maneuvering Models Using Recursive Least Square Method Based on Support Vector Machines

    Directory of Open Access Journals (Sweden)

    Man Zhu

    2017-03-01

    Full Text Available Determination of ship maneuvering models is a tough task of ship maneuverability prediction. Among several prime approaches of estimating ship maneuvering models, system identification combined with the full-scale or free- running model test is preferred. In this contribution, real-time system identification programs using recursive identification method, such as the recursive least square method (RLS, are exerted for on-line identification of ship maneuvering models. However, this method seriously depends on the objects of study and initial values of identified parameters. To overcome this, an intelligent technology, i.e., support vector machines (SVM, is firstly used to estimate initial values of the identified parameters with finite samples. As real measured motion data of the Mariner class ship always involve noise from sensors and external disturbances, the zigzag simulation test data include a substantial quantity of Gaussian white noise. Wavelet method and empirical mode decomposition (EMD are used to filter the data corrupted by noise, respectively. The choice of the sample number for SVM to decide initial values of identified parameters is extensively discussed and analyzed. With de-noised motion data as input-output training samples, parameters of ship maneuvering models are estimated using RLS and SVM-RLS, respectively. The comparison between identification results and true values of parameters demonstrates that both the identified ship maneuvering models from RLS and SVM-RLS have reasonable agreements with simulated motions of the ship, and the increment of the sample for SVM positively affects the identification results. Furthermore, SVM-RLS using data de-noised by EMD shows the highest accuracy and best convergence.

  8. Application of Artificial Neural Network and Support Vector Machines in Predicting Metabolizable Energy in Compound Feeds for Pigs.

    Science.gov (United States)

    Ahmadi, Hamed; Rodehutscord, Markus

    2017-01-01

    In the nutrition literature, there are several reports on the use of artificial neural network (ANN) and multiple linear regression (MLR) approaches for predicting feed composition and nutritive value, while the use of support vector machines (SVM) method as a new alternative approach to MLR and ANN models is still not fully investigated. The MLR, ANN, and SVM models were developed to predict metabolizable energy (ME) content of compound feeds for pigs based on the German energy evaluation system from analyzed contents of crude protein (CP), ether extract (EE), crude fiber (CF), and starch. A total of 290 datasets from standardized digestibility studies with compound feeds was provided from several institutions and published papers, and ME was calculated thereon. Accuracy and precision of developed models were evaluated, given their produced prediction values. The results revealed that the developed ANN [R2 = 0.95; root mean square error (RMSE) = 0.19 MJ/kg of dry matter] and SVM (R2 = 0.95; RMSE = 0.21 MJ/kg of dry matter) models produced better prediction values in estimating ME in compound feed than those produced by conventional MLR (R2 = 0.89; RMSE = 0.27 MJ/kg of dry matter). The developed ANN and SVM models produced better prediction values in estimating ME in compound feed than those produced by conventional MLR; however, there were not obvious differences between performance of ANN and SVM models. Thus, SVM model may also be considered as a promising tool for modeling the relationship between chemical composition and ME of compound feeds for pigs. To provide the readers and nutritionist with the easy and rapid tool, an Excel® calculator, namely, SVM_ME_pig, was created to predict the metabolizable energy values in compound feeds for pigs using developed support vector machine model.

  9. Cavitation detection of butterfly valve using support vector machines

    Science.gov (United States)

    Yang, Bo-Suk; Hwang, Won-Woo; Ko, Myung-Han; Lee, Soo-Jong

    2005-10-01

    Butterfly valves are popularly used in service in the industrial and water works pipeline systems with large diameter because of its lightweight, simple structure and the rapidity of its manipulation. Sometimes cavitation can occur, resulting in noise, vibration and rapid deterioration of the valve trim, and do not allow further operation. Thus, monitoring of cavitation is of economic interest and is very important in industry. This paper proposes a condition monitoring scheme using statistical feature evaluation and support vector machine (SVM) to detect the cavitation conditions of butterfly valve which used as a flow control valve at the pumping stations. The stationary features of vibration signals are extracted from statistical moments. The SVMs are trained, and then classify normal and cavitation conditions of control valves. The SVMs with the reorganized feature vectors can distinguish the class of the untrained and untested data. The classification validity of this method is examined by various signals acquired from butterfly valves in the pumping stations. And the classification success rate is compared with that of self-organizing feature map neural network (SOFM).

  10. Support vector machines to detect physiological patterns for EEG and EMG-based human-computer interaction: a review.

    Science.gov (United States)

    Quitadamo, L R; Cavrini, F; Sbernini, L; Riillo, F; Bianchi, L; Seri, S; Saggio, G

    2017-02-01

    Support vector machines (SVMs) are widely used classifiers for detecting physiological patterns in human-computer interaction (HCI). Their success is due to their versatility, robustness and large availability of free dedicated toolboxes. Frequently in the literature, insufficient details about the SVM implementation and/or parameters selection are reported, making it impossible to reproduce study analysis and results. In order to perform an optimized classification and report a proper description of the results, it is necessary to have a comprehensive critical overview of the applications of SVM. The aim of this paper is to provide a review of the usage of SVM in the determination of brain and muscle patterns for HCI, by focusing on electroencephalography (EEG) and electromyography (EMG) techniques. In particular, an overview of the basic principles of SVM theory is outlined, together with a description of several relevant literature implementations. Furthermore, details concerning reviewed papers are listed in tables and statistics of SVM use in the literature are presented. Suitability of SVM for HCI is discussed and critical comparisons with other classifiers are reported.

  11. Support vector machines to detect physiological patterns for EEG and EMG-based human-computer interaction: a review

    Science.gov (United States)

    Quitadamo, L. R.; Cavrini, F.; Sbernini, L.; Riillo, F.; Bianchi, L.; Seri, S.; Saggio, G.

    2017-02-01

    Support vector machines (SVMs) are widely used classifiers for detecting physiological patterns in human-computer interaction (HCI). Their success is due to their versatility, robustness and large availability of free dedicated toolboxes. Frequently in the literature, insufficient details about the SVM implementation and/or parameters selection are reported, making it impossible to reproduce study analysis and results. In order to perform an optimized classification and report a proper description of the results, it is necessary to have a comprehensive critical overview of the applications of SVM. The aim of this paper is to provide a review of the usage of SVM in the determination of brain and muscle patterns for HCI, by focusing on electroencephalography (EEG) and electromyography (EMG) techniques. In particular, an overview of the basic principles of SVM theory is outlined, together with a description of several relevant literature implementations. Furthermore, details concerning reviewed papers are listed in tables and statistics of SVM use in the literature are presented. Suitability of SVM for HCI is discussed and critical comparisons with other classifiers are reported.

  12. Simulation and prediction of ion transport in the reclamation of sodic soils with gypsum based on the support vector machine.

    Science.gov (United States)

    Wang, Jinman; Bai, Zhongke; Yang, Peiling

    2014-01-01

    The effect of gypsum on the physical and chemical characteristics of sodic soils is nonlinear and controlled by multiple factors. The support vector machine (SVM) is able to solve practical problems such as small samples, nonlinearity, high dimensions, and local minima points. This paper reports the use of the SVM regression method to predict changes in the chemical properties of sodic soils under different gypsum application rates in a soil column experiment and to evaluate the effect of gypsum reclamation on sodic soils. The research results show that (1) the SVM soil solute transport model using the Matlab toolbox represents the change in Ca(2+) and Na(+) in the soil solution and leachate well, with a high prediction accuracy. (2) Using the SVM model to predict the spatial and temporal variations in the soil solute content is feasible and does not require a specific mathematical model. The SVM model can take full advantage of the distribution characteristics of the training sample. (3) The workload of the soil solute transport prediction model based on the SVM is greatly reduced by not having to determine the hydrodynamic dispersion coefficient and retardation coefficient, and the model is thus highly practical.

  13. Simulation and Prediction of Ion Transport in the Reclamation of Sodic Soils with Gypsum Based on the Support Vector Machine

    Directory of Open Access Journals (Sweden)

    Jinman Wang

    2014-01-01

    Full Text Available The effect of gypsum on the physical and chemical characteristics of sodic soils is nonlinear and controlled by multiple factors. The support vector machine (SVM is able to solve practical problems such as small samples, nonlinearity, high dimensions, and local minima points. This paper reports the use of the SVM regression method to predict changes in the chemical properties of sodic soils under different gypsum application rates in a soil column experiment and to evaluate the effect of gypsum reclamation on sodic soils. The research results show that (1 the SVM soil solute transport model using the Matlab toolbox represents the change in Ca2+ and Na+ in the soil solution and leachate well, with a high prediction accuracy. (2 Using the SVM model to predict the spatial and temporal variations in the soil solute content is feasible and does not require a specific mathematical model. The SVM model can take full advantage of the distribution characteristics of the training sample. (3 The workload of the soil solute transport prediction model based on the SVM is greatly reduced by not having to determine the hydrodynamic dispersion coefficient and retardation coefficient, and the model is thus highly practical.

  14. Perbandingan Simple Logistic Classifier dengan Support Vector Machine dalam Memprediksi Kemenangan Atlet

    Directory of Open Access Journals (Sweden)

    Ednawati Rainarli

    2017-10-01

    Full Text Available A coach must be able to select which athlete has a good prospect of winning a game. There are a lot of aspects which influence the athlete in winning a game, so it's not easy by coach to decide it.This research would compare Simple Logistic Classifier (SLC and Support Vector Machine (SVM usage applied to predict winning game of athlete based on health and physical condition record. The data get from 28 sports. The accuracy of SLC and SVM are 80% and 88% meanwhile processing times of SLC and SVM method are 1.6 seconds dan 0.2 seconds.The result shows the SVM usage superior to the SLC both of speed process and the value of accuracy. There were also testing of 24 features used in the classifications process. Based on the test, features selection process can cause decreasing the accuracy value. This result concludes that all features used in this research influence the determination of a victory athletes prediction.

  15. Prediction of Stream Flow in Humid Tropical Rivers by Support Vector Machines

    Directory of Open Access Journals (Sweden)

    Seyam Mohammed

    2017-01-01

    Full Text Available Stream flow (SF prediction is considered as a very complex due to the hydrological systems of surface water are complex and dynamic. The reliable prediction of stream flow (SF can be performed by either conceptual or data-driven based models. In the modelling of hydrological processes, the support vector machine (SVM is a novel, data-driven approach. Hence, six SVM-based models were generated in this study to predict real time hourly SF in the Selangor River Basin from the water level and rainfall of upstream stations. These models composed of six different combinations of input variables and were trained and tested under hourly records of SF, rainfall, and water level over one year (2011. Among the SVM-based models, SVM-M6, which has nine input variables, was the most effective. Under the training and testing data sets, its correlation coefficient and mean absolute error values were 0.992, 0.953, 0.061 and 0.253 respectively.

  16. Voltammetric electronic tongue and support vector machines for identification of selected features in Mexican coffee.

    Science.gov (United States)

    Domínguez, Rocio Berenice; Moreno-Barón, Laura; Muñoz, Roberto; Gutiérrez, Juan Manuel

    2014-09-24

    This paper describes a new method based on a voltammetric electronic tongue (ET) for the recognition of distinctive features in coffee samples. An ET was directly applied to different samples from the main Mexican coffee regions without any pretreatment before the analysis. The resulting electrochemical information was modeled with two different mathematical tools, namely Linear Discriminant Analysis (LDA) and Support Vector Machines (SVM). Growing conditions (i.e., organic or non-organic practices and altitude of crops) were considered for a first classification. LDA results showed an average discrimination rate of 88% ± 6.53% while SVM successfully accomplished an overall accuracy of 96.4% ± 3.50% for the same task. A second classification based on geographical origin of samples was carried out. Results showed an overall accuracy of 87.5% ± 7.79% for LDA and a superior performance of 97.5% ± 3.22% for SVM. Given the complexity of coffee samples, the high accuracy percentages achieved by ET coupled with SVM in both classification problems suggested a potential applicability of ET in the assessment of selected coffee features with a simpler and faster methodology along with a null sample pretreatment. In addition, the proposed method can be applied to authentication assessment while improving cost, time and accuracy of the general procedure.

  17. Diagnostic Method of Diabetes Based on Support Vector Machine and Tongue Images

    Directory of Open Access Journals (Sweden)

    Jianfeng Zhang

    2017-01-01

    Full Text Available Objective. The purpose of this research is to develop a diagnostic method of diabetes based on standardized tongue image using support vector machine (SVM. Methods. Tongue images of 296 diabetic subjects and 531 nondiabetic subjects were collected by the TDA-1 digital tongue instrument. Tongue body and tongue coating were separated by the division-merging method and chrominance-threshold method. With extracted color and texture features of the tongue image as input variables, the diagnostic model of diabetes with SVM was trained. After optimizing the combination of SVM kernel parameters and input variables, the influences of the combinations on the model were analyzed. Results. After normalizing parameters of tongue images, the accuracy rate of diabetes predication was increased from 77.83% to 78.77%. The accuracy rate and area under curve (AUC were not reduced after reducing the dimensions of tongue features with principal component analysis (PCA, while substantially saving the training time. During the training for selecting SVM parameters by genetic algorithm (GA, the accuracy rate of cross-validation was grown from 72% or so to 83.06%. Finally, we compare with several state-of-the-art algorithms, and experimental results show that our algorithm has the best predictive accuracy. Conclusions. The diagnostic method of diabetes on the basis of tongue images in Traditional Chinese Medicine (TCM is of great value, indicating the feasibility of digitalized tongue diagnosis.

  18. Eddy current characterization of small cracks using least square support vector machine

    Science.gov (United States)

    Chelabi, M.; Hacib, T.; Le Bihan, Y.; Ikhlef, N.; Boughedda, H.; Mekideche, M. R.

    2016-04-01

    Eddy current (EC) sensors are used for non-destructive testing since they are able to probe conductive materials. Despite being a conventional technique for defect detection and localization, the main weakness of this technique is that defect characterization, of the exact determination of the shape and dimension, is still a question to be answered. In this work, we demonstrate the capability of small crack sizing using signals acquired from an EC sensor. We report our effort to develop a systematic approach to estimate the size of rectangular and thin defects (length and depth) in a conductive plate. The achieved approach by the novel combination of a finite element method (FEM) with a statistical learning method is called least square support vector machines (LS-SVM). First, we use the FEM to design the forward problem. Next, an algorithm is used to find an adaptive database. Finally, the LS-SVM is used to solve the inverse problems, creating polynomial functions able to approximate the correlation between the crack dimension and the signal picked up from the EC sensor. Several methods are used to find the parameters of the LS-SVM. In this study, the particle swarm optimization (PSO) and genetic algorithm (GA) are proposed for tuning the LS-SVM. The results of the design and the inversions were compared to both simulated and experimental data, with accuracy experimentally verified. These suggested results prove the applicability of the presented approach.

  19. A comparative study of support vector machine, artificial neural network and bayesian classifier for mutagenicity prediction.

    Science.gov (United States)

    Sharma, Anju; Kumar, Rajnish; Varadwaj, Pritish Kumar; Ahmad, Ausaf; Ashraf, Ghulam Md

    2011-09-01

    Mutagenicity is the capability of a chemical to carry out mutations in genetic material of an organism. In order to curtail expensive drug failures due to mutagenicity found in late development or even in clinical trials, it is crucial to determine potential mutagenicity problems as early as possible. In this work we have proposed three different classifiers, i.e. Support Vector Machine (SVM), Artificial Neural Network (ANN) and bayesian classifiers, for the prediction of mutagenicity of compounds based on seventeen descriptors. Among the three classifiers Radial Basis Function (RBF) kernel based SVM classifier appeared to be more accurate for classifying the compounds under study on mutagens and non-mutagens. The overall prediction accuracy of SVM model was found to be 71.73% which was appreciably higher than the accuracy of ANN based classifier (59.72%) and bayesian classifier (66.61%). It suggests that SVM based prediction model can be used for predicting mutagenicity more accurately compared to ANN and bayesian classifier for data under consideration.

  20. Improved Reliability-Based Optimization with Support Vector Machines and Its Application in Aircraft Wing Design

    Directory of Open Access Journals (Sweden)

    Yu Wang

    2015-01-01

    Full Text Available A new reliability-based design optimization (RBDO method based on support vector machines (SVM and the Most Probable Point (MPP is proposed in this work. SVM is used to create a surrogate model of the limit-state function at the MPP with the gradient information in the reliability analysis. This guarantees that the surrogate model not only passes through the MPP but also is tangent to the limit-state function at the MPP. Then, importance sampling (IS is used to calculate the probability of failure based on the surrogate model. This treatment significantly improves the accuracy of reliability analysis. For RBDO, the Sequential Optimization and Reliability Assessment (SORA is employed as well, which decouples deterministic optimization from the reliability analysis. The improved SVM-based reliability analysis is used to amend the error from linear approximation for limit-state function in SORA. A mathematical example and a simplified aircraft wing design demonstrate that the improved SVM-based reliability analysis is more accurate than FORM and needs less training points than the Monte Carlo simulation and that the proposed optimization strategy is efficient.

  1. Dual-Tree Complex Wavelet Transform and Twin Support Vector Machine for Pathological Brain Detection

    Directory of Open Access Journals (Sweden)

    Shuihua Wang

    2016-06-01

    Full Text Available (Aim Classification of brain images as pathological or healthy case is a key pre-clinical step for potential patients. Manual classification is irreproducible and unreliable. In this study, we aim to develop an automatic classification system of brain images in magnetic resonance imaging (MRI. (Method Three datasets were downloaded from the Internet. Those images are of T2-weighted along axial plane with size of 256 × 256. We utilized an s-level decomposition on the basis of dual-tree complex wavelet transform (DTCWT, in order to obtain 12s “variance and entropy (VE” features from each subband. Afterwards, we used support vector machine (SVM and its two variants: the generalized eigenvalue proximal SVM (GEPSVM and the twin SVM (TSVM, as the classifiers. In all, we proposed three novel approaches: DTCWT + VE + SVM, DTCWT + VE + GEPSVM, and DTCWT + VE + TSVM. (Results The results showed that our “DTCWT + VE + TSVM” obtained an average accuracy of 99.57%, which was not only better than the two other proposed methods, but also superior to 12 state-of-the-art approaches. In addition, parameter estimation showed the classification accuracy achieved the largest when the decomposition level s was assigned with a value of 1. Further, we used 100 slices from real subjects, and we found our proposed method was superior to human reports from neuroradiologists. (Conclusions This proposed system is effective and feasible.

  2. Embedded Hardware-Efficient Real-Time Classification With Cascade Support Vector Machines.

    Science.gov (United States)

    Kyrkou, Christos; Bouganis, Christos-Savvas; Theocharides, Theocharis; Polycarpou, Marios M

    2016-01-01

    Cascade support vector machines (SVMs) are optimized to efficiently handle problems, where the majority of the data belong to one of the two classes, such as image object classification, and hence can provide speedups over monolithic (single) SVM classifiers. However, SVM classification is a computationally demanding task and existing hardware architectures for SVMs only consider monolithic classifiers. This paper proposes the acceleration of cascade SVMs through a hybrid processing hardware architecture optimized for the cascade SVM classification flow, accompanied by a method to reduce the required hardware resources for its implementation, and a method to improve the classification speed utilizing cascade information to further discard data samples. The proposed SVM cascade architecture is implemented on a Spartan-6 field-programmable gate array (FPGA) platform and evaluated for object detection on 800×600 (Super Video Graphics Array) resolution images. The proposed architecture, boosted by a neural network that processes cascade information, achieves a real-time processing rate of 40 frames/s for the benchmark face detection application. Furthermore, the hardware-reduction method results in the utilization of 25% less FPGA custom-logic resources and 20% peak power reduction compared with a baseline implementation.

  3. Fault Diagnosis of a Reconfigurable Crawling–Rolling Robot Based on Support Vector Machines

    Directory of Open Access Journals (Sweden)

    Karthikeyan Elangovan

    2017-10-01

    Full Text Available As robots begin to perform jobs autonomously, with minimal or no human intervention, a new challenge arises: robots also need to autonomously detect errors and recover from faults. In this paper, we present a Support Vector Machine (SVM-based fault diagnosis system for a bio-inspired reconfigurable robot named Scorpio. The diagnosis system needs to detect and classify faults while Scorpio uses its crawling and rolling locomotion modes. Specifically, we classify between faulty and non-faulty conditions by analyzing onboard Inertial Measurement Unit (IMU sensor data. The data capture nine different locomotion gaits, which include rolling and crawling modes, at three different speeds. Statistical methods are applied to extract features and to reduce the dimensionality of original IMU sensor data features. These statistical features were given as inputs for training and testing. Additionally, the c-Support Vector Classification (c-SVC and nu-SVC models of SVM, and their fault classification accuracies, were compared. The results show that the proposed SVM approach can be used to autonomously diagnose locomotion gait faults while the reconfigurable robot is in operation.

  4. Human action recognition with group lasso regularized-support vector machine

    Science.gov (United States)

    Luo, Huiwu; Lu, Huanzhang; Wu, Yabei; Zhao, Fei

    2016-05-01

    The bag-of-visual-words (BOVW) and Fisher kernel are two popular models in human action recognition, and support vector machine (SVM) is the most commonly used classifier for the two models. We show two kinds of group structures in the feature representation constructed by BOVW and Fisher kernel, respectively, since the structural information of feature representation can be seen as a prior for the classifier and can improve the performance of the classifier, which has been verified in several areas. However, the standard SVM employs L2-norm regularization in its learning procedure, which penalizes each variable individually and cannot express the structural information of feature representation. We replace the L2-norm regularization with group lasso regularization in standard SVM, and a group lasso regularized-support vector machine (GLRSVM) is proposed. Then, we embed the group structural information of feature representation into GLRSVM. Finally, we introduce an algorithm to solve the optimization problem of GLRSVM by alternating directions method of multipliers. The experiments evaluated on KTH, YouTube, and Hollywood2 datasets show that our method achieves promising results and improves the state-of-the-art methods on KTH and YouTube datasets.

  5. An Artificial Intelligence Approach for Groutability Estimation Based on Autotuning Support Vector Machine

    Directory of Open Access Journals (Sweden)

    Hong-Hai Tran

    2014-01-01

    Full Text Available Permeation grouting is a commonly used approach for soil improvement in construction engineering. Thus, predicting the results of grouting activities is a crucial task that needs to be carried out in the planning phase of any grouting project. In this research, a novel artificial intelligence approach—autotuning support vector machine—is proposed to forecast the result of grouting activities that employ microfine cement grouts. In the new model, the support vector machine (SVM algorithm is utilized to classify grouting activities into two classes: success and  failure. Meanwhile, the differential evolution (DE optimization algorithm is employed to identify the optimal tuning parameters of the SVM algorithm, namely, the penalty parameter and the kernel function parameter. The integration of the SVM and DE algorithms allows the newly established method to operate automatically without human prior knowledge or tedious processes for parameter setting. An experiment using a set of in situ data samples demonstrates that the newly established method can produce an outstanding prediction performance.

  6. NOTE: Fluoroscopic gating without implanted fiducial markers for lung cancer radiotherapy based on support vector machines

    Science.gov (United States)

    Cui, Ying; Dy, Jennifer G.; Alexander, Brian; Jiang, Steve B.

    2008-08-01

    Various problems with the current state-of-the-art techniques for gated radiotherapy have prevented this new treatment modality from being widely implemented in clinical routine. These problems are caused mainly by applying various external respiratory surrogates. There might be large uncertainties in deriving the tumor position from external respiratory surrogates. While tracking implanted fiducial markers has sufficient accuracy, this procedure may not be widely accepted due to the risk of pneumothorax. Previously, we have developed a technique to generate gating signals from fluoroscopic images without implanted fiducial markers using template matching methods (Berbeco et al 2005 Phys. Med. Biol. 50 4481-90, Cui et al 2007b Phys. Med. Biol. 52 741-55). In this note, our main contribution is to provide a totally different new view of the gating problem by recasting it as a classification problem. Then, we solve this classification problem by a well-studied powerful classification method called a support vector machine (SVM). Note that the goal of an automated gating tool is to decide when to turn the beam ON or OFF. We treat ON and OFF as the two classes in our classification problem. We create our labeled training data during the patient setup session by utilizing the reference gating signal, manually determined by a radiation oncologist. We then pre-process these labeled training images and build our SVM prediction model. During treatment delivery, fluoroscopic images are continuously acquired, pre-processed and sent as an input to the SVM. Finally, our SVM model will output the predicted labels as gating signals. We test the proposed technique on five sequences of fluoroscopic images from five lung cancer patients against the reference gating signal as ground truth. We compare the performance of the SVM to our previous template matching method (Cui et al 2007b Phys. Med. Biol. 52 741-55). We find that the SVM is slightly more accurate on average (1-3%) than

  7. A Linear-RBF Multikernel SVM to Classify Big Text Corpora

    Directory of Open Access Journals (Sweden)

    R. Romero

    2015-01-01

    Full Text Available Support vector machine (SVM is a powerful technique for classification. However, SVM is not suitable for classification of large datasets or text corpora, because the training complexity of SVMs is highly dependent on the input size. Recent developments in the literature on the SVM and other kernel methods emphasize the need to consider multiple kernels or parameterizations of kernels because they provide greater flexibility. This paper shows a multikernel SVM to manage highly dimensional data, providing an automatic parameterization with low computational cost and improving results against SVMs parameterized under a brute-force search. The model consists in spreading the dataset into cohesive term slices (clusters to construct a defined structure (multikernel. The new approach is tested on different text corpora. Experimental results show that the new classifier has good accuracy compared with the classic SVM, while the training is significantly faster than several other SVM classifiers.

  8. Using support vector machines to identify literacy skills: Evidence from eye movements.

    Science.gov (United States)

    Lou, Ya; Liu, Yanping; Kaakinen, Johanna K; Li, Xingshan

    2017-06-01

    Is inferring readers' literacy skills possible by analyzing their eye movements during text reading? This study used Support Vector Machines (SVM) to analyze eye movement data from 61 undergraduate students who read a multiple-paragraph, multiple-topic expository text. Forward fixation time, first-pass rereading time, second-pass fixation time, and regression path reading time on different regions of the text were provided as features. The SVM classification algorithm assisted in distinguishing high-literacy-skilled readers from low-literacy-skilled readers with 80.3 % accuracy. Results demonstrate the effectiveness of combining eye tracking and machine learning techniques to detect readers with low literacy skills, and suggest that such approaches can be potentially used in predicting other cognitive abilities.

  9. Application of the Support Vector Machine to Predict Subclinical Mastitis in Dairy Cattle

    Directory of Open Access Journals (Sweden)

    Nazira Mammadova

    2013-01-01

    Full Text Available This study presented a potentially useful alternative approach to ascertain the presence of subclinical and clinical mastitis in dairy cows using support vector machine (SVM techniques. The proposed method detected mastitis in a cross-sectional representative sample of Holstein dairy cattle milked using an automatic milking system. The study used such suspected indicators of mastitis as lactation rank, milk yield, electrical conductivity, average milking duration, and control season as input data. The output variable was somatic cell counts obtained from milk samples collected monthly throughout the 15 months of the control period. Cattle were judged to be healthy or infected based on those somatic cell counts. This study undertook a detailed scrutiny of the SVM methodology, constructing and examining a model which showed 89% sensitivity, 92% specificity, and 50% error in mastitis detection.

  10. SYN Flood Attack Detection in Cloud Computing using Support Vector Machine

    Directory of Open Access Journals (Sweden)

    Zerina Mašetić

    2017-11-01

    Full Text Available Cloud computing is a trending technology, as it reduces the cost of running a business. However, many companies are skeptic moving about towards cloud due to the security concerns. Based on the Cloud Security Alliance report, Denial of Service (DoS attacks are among top 12 attacks in the cloud computing. Therefore, it is important to develop a mechanism for detection and prevention of these attacks. The aim of this paper is to evaluate Support Vector Machine (SVM algorithm in creating the model for classification of DoS attacks and normal network behaviors. The study was performed in several phases: a attack simulation, b data collection, cfeature selection, and d classification. The proposedmodel achieved 100% classification accuracy with true positive rate (TPR of 100%. SVM showed outstanding performance in DoS attack detection and proves that it serves as a valuable asset in the network security area.

  11. Short-Term Prediction of Air Pollution in Macau Using Support Vector Machines

    Directory of Open Access Journals (Sweden)

    Chi-Man Vong

    2012-01-01

    Full Text Available Forecasting of air pollution is a popular and important topic in recent years due to the health impact caused by air pollution. It is necessary to build an early warning system, which provides forecast and also alerts health alarm to local inhabitants by medical practitioners and the local government. Meteorological and pollutions data collected daily at monitoring stations of Macau can be used in this study to build a forecasting system. Support vector machines (SVMs, a novel type of machine learning technique based on statistical learning theory, can be used for regression and time series prediction. SVM is capable of good generalization while the performance of the SVM model is often hinged on the appropriate choice of the kernel.

  12. A scatter-based prototype framework and multi-class extension of support vector machines.

    Directory of Open Access Journals (Sweden)

    Robert Jenssen

    Full Text Available We provide a novel interpretation of the dual of support vector machines (SVMs in terms of scatter with respect to class prototypes and their mean. As a key contribution, we extend this framework to multiple classes, providing a new joint Scatter SVM algorithm, at the level of its binary counterpart in the number of optimization variables. This enables us to implement computationally efficient solvers based on sequential minimal and chunking optimization. As a further contribution, the primal problem formulation is developed in terms of regularized risk minimization and the hinge loss, revealing the score function to be used in the actual classification of test patterns. We investigate Scatter SVM properties related to generalization ability, computational efficiency, sparsity and sensitivity maps, and report promising results.

  13. FINGERPRINT CLASSIFICATION BASED ON RECURSIVE NEURAL NETWORK WITH SUPPORT VECTOR MACHINE

    Directory of Open Access Journals (Sweden)

    T. Chakravarthy

    2011-01-01

    Full Text Available Fingerprint classification based on statistical and structural (RNN and SVM approach. RNNs are trained on a structured representation of the fingerprint image. They are also used to extract a set of distributed features of the fingerprint which can be integrated in this support vector machine. SVMs are combined with a new error correcting codes scheme. This approach has two main advantages. (a It can tolerate the presence of ambiguous fingerprint images in the training set and (b It can effectively identify the most difficult fingerprint images in the test set. In this experiment on the fingerprint database NIST-4 (National Institute of Science and Technology, our best classification accuracy of 94.7% is obtained by training SVM on both fingerCode and RNN –extracted futures of segmentation algorithm which has used very sophisticated “region growing process”.

  14. Application of the Support Vector Machine to Predict Subclinical Mastitis in Dairy Cattle

    Science.gov (United States)

    Mammadova, Nazira

    2013-01-01

    This study presented a potentially useful alternative approach to ascertain the presence of subclinical and clinical mastitis in dairy cows using support vector machine (SVM) techniques. The proposed method detected mastitis in a cross-sectional representative sample of Holstein dairy cattle milked using an automatic milking system. The study used such suspected indicators of mastitis as lactation rank, milk yield, electrical conductivity, average milking duration, and control season as input data. The output variable was somatic cell counts obtained from milk samples collected monthly throughout the 15 months of the control period. Cattle were judged to be healthy or infected based on those somatic cell counts. This study undertook a detailed scrutiny of the SVM methodology, constructing and examining a model which showed 89% sensitivity, 92% specificity, and 50% error in mastitis detection. PMID:24574862

  15. PENERAPAN SENTIMENT ANALYSIS PADA HASIL EVALUASI DOSEN DENGAN METODE SUPPORT VECTOR MACHINE

    Directory of Open Access Journals (Sweden)

    Valonia Inge Santoso

    2017-01-01

    Full Text Available The quality of lectures can be determined by some feedbacks from students. From the feedbacks, we can give appreciations for those lectures who get good feedback from students, and evaluations for those who get bad feedback. The problem is classifying large size of feedbacks manually isn’t effective and took a lot of time. Therefore, we need a system that can classify feedbacks automatically. These feedbacks will be classified into positive, negative, and neutral, usually called as sentiment analysis. Sentiment analysis implementation can be done by several methods, one of them that has a good accuracy is Support Vector Machine (SVM. SVM performance in this research is measured with the level of accuracy. The number of accuracy indicate the success level of system. The conclusion of this research is factors that affects the accuracy. The factors are the range of each classes and number of unique words in the training document.

  16. Customer and performance rating in QFD using SVM classification

    Science.gov (United States)

    Dzulkifli, Syarizul Amri; Salleh, Mohd Najib Mohd; Leman, A. M.

    2017-09-01

    In a classification problem, where each input is associated to one output. Training data is used to create a model which predicts values to the true function. SVM is a popular method for binary classification due to their theoretical foundation and good generalization performance. However, when trained with noisy data, the decision hyperplane might deviate from optimal position because of the sum of misclassification errors in the objective function. In this paper, we introduce fuzzy in weighted learning approach for improving the accuracy of Support Vector Machine (SVM) classification. The main aim of this work is to determine appropriate weighted for SVM to adjust the parameters of learning method from a given set of noisy input to output data. The performance and customer rating in Quality Function Deployment (QFD) is used as our case study to determine implementing fuzzy SVM is highly scalable for very large data sets and generating high classification accuracy.

  17. A Support Vector Machine Classification Model for Benzo[c]phenathridine Analogues with Topoisomerase-I Inhibitory Activity

    Directory of Open Access Journals (Sweden)

    Thanh-Dao Tran

    2012-04-01

    Full Text Available Benzo[c]phenanthridine (BCP derivatives were identified as topoisomerase I (TOP-I targeting agents with pronounced antitumor activity. In this study, a support vector machine model was performed on a series of 73 analogues to classify BCP derivatives according to TOP-I inhibitory activity. The best SVM model with total accuracy of 93% for training set was achieved using a set of 7 descriptors identified from a large set via a random forest algorithm. Overall accuracy of up to 87% and a Matthews coefficient correlation (MCC of 0.71 were obtained after this SVM classifier was validated internally by a test set of 15 compounds. For two external test sets, 89% and 80% BCP compounds, respectively, were correctly predicted. The results indicated that our SVM model could be used as the filter for designing new BCP compounds with higher TOP-I inhibitory activity.

  18. Support-Vector-Machine-Based Reduced-Order Model for Limit Cycle Oscillation Prediction of Nonlinear Aeroelastic System

    Directory of Open Access Journals (Sweden)

    Gang Chen

    2012-01-01

    Full Text Available It is not easy for the system identification-based reduced-order model (ROM and even eigenmode based reduced-order model to predict the limit cycle oscillation generated by the nonlinear unsteady aerodynamics. Most of these traditional ROMs are sensitive to the flow parameter variation. In order to deal with this problem, a support vector machine- (SVM- based ROM was investigated and the general construction framework was proposed. The two-DOF aeroelastic system for the NACA 64A010 airfoil in transonic flow was then demonstrated for the new SVM-based ROM. The simulation results show that the new ROM can capture the LCO behavior of the nonlinear aeroelastic system with good accuracy and high efficiency. The robustness and computational efficiency of the SVM-based ROM would provide a promising tool for real-time flight simulation including nonlinear aeroelastic effects.

  19. An accurate density functional theory calculation for electronic excitation energies: the least-squares support vector machine.

    Science.gov (United States)

    Gao, Ting; Sun, Shi-Ling; Shi, Li-Li; Li, Hui; Li, Hong-Zhi; Su, Zhong-Min; Lu, Ying-Hua

    2009-05-14

    Support vector machines (SVMs), as a novel type of learning machine, has been very successful in pattern recognition and function estimation problems. In this paper we introduce least-squares (LS) SVMs to improve the calculation accuracy of density functional theory. As a demonstration, this combined quantum mechanical calculation with LS-SVM correction approach has been applied to evaluate the electronic excitation energies of 160 organic molecules. The newly introduced LS-SVM approach reduces the root-mean-square deviation of the calculated electronic excitation energies of 160 organic molecules from 0.32 to 0.11 eV for the B3LYP/6-31G(d) calculation. Thus, the LS-SVM correction on top of B3LYP/6-31G(d) is a better method to correct electronic excitation energies and can be used as the approximation of experimental results which are impossible to obtain experimentally.

  20. Classification of Polarimetric SAR Image Based on Support Vector Machine Using Multiple-Component Scattering Model and Texture Features

    Directory of Open Access Journals (Sweden)

    Lamei Zhang

    2010-01-01

    Full Text Available The classification of polarimetric SAR image based on Multiple-Component Scattering Model (MCSM and Support Vector Machine (SVM is presented in this paper. MCSM is a potential decomposition method for a general condition. SVM is a popular tool for machine learning tasks involving classification, recognition, or detection. The scattering powers of single-bounce, double-bounce, volume, helix, and wire scattering components are extracted from fully polarimetric SAR images. Combining with the scattering powers of MCSM and the selected texture features from Gray-level cooccurrence matrix (GCM, SVM is used for the classification of polarimetric SAR image. We generate a validity test for the proposed method using Danish EMISAR L-band fully polarimetric data of Foulum Area (DK, Denmark. The preliminary result indicates that this method can classify most of the areas correctly.

  1. Impedance spectra classification for determining the state of charge on a lithium iron phosphate cell using a support vector machine

    Science.gov (United States)

    Jansen, P.; Vergossen, D.; Renner, D.; John, W.; Götze, J.

    2015-11-01

    An alternative method for determining the state of charge (SOC) on lithium iron phosphate cells by impedance spectra classification is given. Methods based on the electric equivalent circuit diagram (ECD), such as the Kalman Filter, the extended Kalman Filter and the state space observer, for instance, have reached their limits for this cell chemistry. The new method resigns on the open circuit voltage curve and the parameters for the electric ECD. Impedance spectra classification is implemented by a Support Vector Machine (SVM). The classes for the SVM-algorithm are represented by all the impedance spectra that correspond to the SOC (the SOC classes) for defined temperature and aging states. A divide and conquer based search algorithm on a binary search tree makes it possible to grade measured impedances using the SVM method. Statistical analysis is used to verify the concept by grading every single impedance from each impedance spectrum corresponding to the SOC by class with different magnitudes of charged error.

  2. The Automation System Censor Speech for the Indonesian Rude Swear Words Based on Support Vector Machine and Pitch Analysis

    Science.gov (United States)

    Endah, S. N.; Nugraheni, D. M. K.; Adhy, S.; Sutikno

    2017-04-01

    According to Law No. 32 of 2002 and the Indonesian Broadcasting Commission Regulation No. 02/P/KPI/12/2009 & No. 03/P/KPI/12/2009, stated that broadcast programs should not scold with harsh words, not harass, insult or demean minorities and marginalized groups. However, there are no suitable tools to censor those words automatically. Therefore, researches to develop a system of intelligent software to censor the words automatically are needed. To conduct censor, the system must be able to recognize the words in question. This research proposes the classification of speech divide into two classes using Support Vector Machine (SVM), first class is set of rude words and the second class is set of properly words. The speech pitch values as an input in SVM, it used for the development of the system for the Indonesian rude swear word. The results of the experiment show that SVM is good for this system.

  3. Performance evaluation for epileptic electroencephalogram (EEG) detection by using Neyman-Pearson criteria and a support vector machine

    Science.gov (United States)

    Wang, Chun-mei; Zhang, Chong-ming; Zou, Jun-zhong; Zhang, Jian

    2012-02-01

    The diagnosis of several neurological disorders is based on the detection of typical pathological patterns in electroencephalograms (EEGs). This is a time-consuming task requiring significant training and experience. A lot of effort has been devoted to developing automatic detection techniques which might help not only in accelerating this process but also in avoiding the disagreement among readers of the same record. In this work, Neyman-Pearson criteria and a support vector machine (SVM) are applied for detecting an epileptic EEG. Decision making is performed in two stages: feature extraction by computing the wavelet coefficients and the approximate entropy (ApEn) and detection by using Neyman-Pearson criteria and an SVM. Then the detection performance of the proposed method is evaluated. Simulation results demonstrate that the wavelet coefficients and the ApEn are features that represent the EEG signals well. By comparison with Neyman-Pearson criteria, an SVM applied on these features achieved higher detection accuracies.

  4. Artificial neural networks and support vector mac

    Indian Academy of Sciences (India)

    Quantitative structure-property relationships of electroluminescent materials: Artificial neural networks and support vector machines to predict electroluminescence of organic molecules. ALANA FERNANDES GOLIN and RICARDO STEFANI. ∗. Laboratório de Estudos de Materiais (LEMAT), Instituto de Ciências Exatas e da ...

  5. Robust Pseudo-Hierarchical Support Vector Clustering

    DEFF Research Database (Denmark)

    Hansen, Michael Sass; Sjöstrand, Karl; Olafsdóttir, Hildur

    2007-01-01

    Support vector clustering (SVC) has proven an efficient algorithm for clustering of noisy and high-dimensional data sets, with applications within many fields of research. An inherent problem, however, has been setting the parameters of the SVC algorithm. Using the recent emergence of a method fo...

  6. A Support Vector Machine for Landslide Susceptibility Mapping in Gangwon Province, Korea

    Directory of Open Access Journals (Sweden)

    Saro Lee

    2017-01-01

    Full Text Available In this study, the support vector machine (SVM was applied and validated by using the geographic information system (GIS in order to map landslide susceptibility. In order to test the usefulness and effectiveness of the SVM, two study areas were carefully selected: the PyeongChang and Inje areas of Gangwon Province, Korea. This is because, not only did many landslides (2098 in PyeongChang and 2580 in Inje occur in 2006 as a result of heavy rainfall, but the 2018 Winter Olympics will be held in these areas. A variety of spatial data, including landslides, geology, topography, forest, soil, and land cover, were identified and collected in the study areas. Following this, the spatial data were compiled in a GIS-based database through the use of aerial photographs. Using this database, 18 factors relating to topography, geology, soil, forest and land use, were extracted and applied to the SVM. Next, the detected landslide data were randomly divided into two sets; one for training and the other for validation of the model. Furthermore, a SVM, specifically a type of data-mining classification model, was applied by using radial basis function kernels. Finally, the estimated landslide susceptibility maps were validated. In order to validate the maps, sensitivity analyses were carried out through area-under-the-curve analysis. The achieved accuracies from the SVM were approximately 81.36% and 77.49% in the PyeongChang and Inje areas, respectively. Moreover, a sensitivity assessment of the factors was performed. It was found that all of the factors, except for soil topography, soil drainage, soil material, soil texture, timber diameter, timber age, and timber density for the PyeongChang area, and timber diameter, timber age, and timber density for the Inje area, had relatively positive effects on the landslide susceptibility maps. These results indicate that SVMs can be useful and effective for landslide susceptibility analysis.

  7. Radial basis function network-based transform for a nonlinear support vector machine as optimized by a particle swarm optimization algorithm with application to QSAR studies.

    Science.gov (United States)

    Tang, Li-Juan; Zhou, Yan-Ping; Jiang, Jian-Hui; Zou, Hong-Yan; Wu, Hai-Long; Shen, Guo-Li; Yu, Ru-Qin

    2007-01-01

    The support vector machine (SVM) has been receiving increasing interest in an area of QSAR study for its ability in function approximation and remarkable generalization performance. However, selection of support vectors and intensive optimization of kernel width of a nonlinear SVM are inclined to get trapped into local optima, leading to an increased risk of underfitting or overfitting. To overcome these problems, a new nonlinear SVM algorithm is proposed using adaptive kernel transform based on a radial basis function network (RBFN) as optimized by particle swarm optimization (PSO). The new algorithm incorporates a nonlinear transform of the original variables to feature space via a RBFN with one input and one hidden layer. Such a transform intrinsically yields a kernel transform of the original variables. A synergetic optimization of all parameters including kernel centers and kernel widths as well as SVM model coefficients using PSO enables the determination of a flexible kernel transform according to the performance of the total model. The implementation of PSO demonstrates a relatively high efficiency in convergence to a desired optimum. Applications of the proposed algorithm to QSAR studies of binding affinity of HIV-1 reverse transcriptase inhibitors and activity of 1-phenylbenzimidazoles reveal that the new algorithm provides superior performance to the backpropagation neural network and a conventional nonlinear SVM, indicating that this algorithm holds great promise in nonlinear SVM learning.

  8. Support Vector Regression and Genetic Algorithm for HVAC Optimal Operation

    Directory of Open Access Journals (Sweden)

    Ching-Wei Chen

    2016-01-01

    Full Text Available This study covers records of various parameters affecting the power consumption of air-conditioning systems. Using the Support Vector Machine (SVM, the chiller power consumption model, secondary chilled water pump power consumption model, air handling unit fan power consumption model, and air handling unit load model were established. In addition, it was found that R2 of the models all reached 0.998, and the training time was far shorter than that of the neural network. Through genetic programming, a combination of operating parameters with the least power consumption of air conditioning operation was searched. Moreover, the air handling unit load in line with the air conditioning cooling load was predicted. The experimental results show that for the combination of operating parameters with the least power consumption in line with the cooling load obtained through genetic algorithm search, the power consumption of the air conditioning systems under said combination of operating parameters was reduced by 22% compared to the fixed operating parameters, thus indicating significant energy efficiency.

  9. Two-Dimensional Solution Surface for Weighted Support Vector Machines.

    Science.gov (United States)

    Shin, Seung Jun; Wu, Yichao; Zhang, Hao Helen

    2014-04-03

    The support vector machine (SVM) is a popular learning method for binary classification. Standard SVMs treat all the data points equally, but in some practical problems it is more natural to assign different weights to observations from different classes. This leads to a broader class of learning, the so-called weighted SVMs (WSVMs), and one of their important applications is to estimate class probabilities besides learning the classification boundary. There are two parameters associated with the WSVM optimization problem: one is the regularization parameter and the other is the weight parameter. In this paper we first establish that the WSVM solutions are jointly piecewise-linear with respect to both the regularization and weight parameter. We then develop a state-of-the-art algorithm that can compute the entire trajectory of the WSVM solutions for every pair of the regularization parameter and the weight parameter, at a feasible computational cost. The derived two-dimensional solution surface provides theoretical insight on the behavior of the WSVM solutions. Numerically, the algorithm can greatly facilitate the implementation of the WSVM and automate the selection process of the optimal regularization parameter. We illustrate the new algorithm on various examples.

  10. Least squares support vector machines for direction of arrival estimation with error control and validation.

    Energy Technology Data Exchange (ETDEWEB)

    Christodoulou, Christos George (University of New Mexico, Albuquerque, NM); Abdallah, Chaouki T. (University of New Mexico, Albuquerque, NM); Rohwer, Judd Andrew

    2003-02-01

    The paper presents a multiclass, multilabel implementation of least squares support vector machines (LS-SVM) for direction of arrival (DOA) estimation in a CDMA system. For any estimation or classification system, the algorithm's capabilities and performance must be evaluated. Specifically, for classification algorithms, a high confidence level must exist along with a technique to tag misclassifications automatically. The presented learning algorithm includes error control and validation steps for generating statistics on the multiclass evaluation path and the signal subspace dimension. The error statistics provide a confidence level for the classification accuracy.

  11. Multimodal biometric authentication based on score level fusion using support vector machine

    Science.gov (United States)

    Wang, F.; Han, J.

    2009-03-01

    Fusion of multiple biometrics for human authentication performance improvement has received considerable attention. This paper presents a novel multimodal biometric authentication method integrating face and iris based on score level fusion. For score level fusion, support vector machine (SVM) based fusion rule is applied to combine two matching scores, respectively from Laplacianface based face verifier and phase information based iris verifier, to generate a single scalar score which is used to make the final decision. Experimental results show that the performance of the proposed method can bring obvious improvement comparing to the unimodal biometric identification methods and the previous fused face-iris methods.

  12. Application of Support Vector Machine-Based Semiactive Control for Seismic Protection of Structures with Magnetorheological Dampers

    Directory of Open Access Journals (Sweden)

    Chunxiang Li

    2012-01-01

    Full Text Available Based on recent research by Li and Liu in 2011, this paper proposes the application of support vector machine- (SVM- based semiactive control methodology for seismic protection of structures with magnetorheological (MR dampers. An important and challenging task of designing the MR dampers is to develop an effective semiactive control strategy that can fully exploit the capabilities of MR dampers. However, amplification of the local acceleration response of structures exists in the widely used semiactive control strategies, namely “Switch” control strategies. Then the SVM-based semiactive control strategy has been employed to design MR dampers. Firstly, the LQR controller for the numerical model of a multistory structure formulated using the dynamic dense method is constructed by using the classic LQR control theory. Secondly, an SVM model which comprises the observers and controllers in the control system is designed and trained to emulate the performance of the LQR controller. Finally, an online autofeedback semiactive control strategy is developed by resorting to SVM and then used for designing MR dampers. Simulation results show that the MR dampers utilizing the SVM-based semiactive control algorithm, which eliminates the local acceleration amplification phenomenon, can remarkably reduce the displacement, velocity, and acceleration responses of the structure.

  13. Predictive diagnosis of major depression using NMR-based metabolomics and least-squares support vector machine.

    Science.gov (United States)

    Zheng, Hong; Zheng, Peng; Zhao, Liangcai; Jia, Jianmin; Tang, Shengli; Xu, Pengtao; Xie, Peng; Gao, Hongchang

    2017-01-01

    Major depressive (MD) disorder is a serious psychiatric disorder that can result in suicidal behavior if not treated. The MD diagnosis using a standardized instrument instead of a structured interview will be advantageous for treatment and management of the MD, but so far no such technique exists. We developed an integrated analytical method of NMR-based metabolomics and least squares-support vector machine (LS-SVM) for predictive diagnosis of the MD. The metabolite profiles in clinical plasma samples obtained from 72 depressive patients and 54 healthy subjects were analyzed by NMR spectroscopy. Then, LS-SVM models with different kernels were trained and tested using 80% and 20% of samples, respectively. We found that the best performance for the MD prediction was achieved by LS-SVM equipped with RBF kernel. Moreover, the predictive performance of the MD using multi-biomarkers was largely improved as compared with that using a single biomarker. In this study, the LS-SVM-RBF using glucose-lipid signaling can achieve the MD prediction with the AUC values of 0.94 (0.89-0.99) in the training set and 0.96 (0.92-1.00) in the test set. The LS-SVM-RBF using glucose-lipid signaling obtained from NMR spectroscopy can be used as an auxiliary diagnostic tool for the MD. Copyright © 2016 Elsevier B.V. All rights reserved.

  14. Data assimilation using support vector machines and ensemble Kalman filter for multi-layer soil moisture prediction

    Directory of Open Access Journals (Sweden)

    Di Liu

    2010-12-01

    Full Text Available Hybrid data assimilation (DA is a method seeing more use in recent hydrology and water resources research. In this study, a DA method coupled with the support vector machines (SVMs and the ensemble Kalman filter (EnKF technology was used for the prediction of soil moisture in different soil layers: 0–5 cm, 30 cm, 50 cm, 100 cm, 200 cm, and 300 cm. The SVM methodology was first used to train the ground measurements of soil moisture and meteorological parameters from the Meilin study area, in East China, to construct soil moisture statistical prediction models. Subsequent observations and their statistics were used for predictions, with two approaches: the SVM predictor and the SVM-EnKF model made by coupling the SVM model with the EnKF technique using the DA method. Validation results showed that the proposed SVM-EnKF model can improve the prediction results of soil moisture in different layers, from the surface to the root zone.

  15. Support-vector-machine based automatic performance modelling and optimisation for analogue and mixed-signal designs

    OpenAIRE

    Ren, Xianqiang

    2008-01-01

    The growing popularity of analogue and mixed-signal (AMS) ASIC and SoC designs for communication applications has led to an increasing requirement for high efficiency performance modelling and optimisation methodologies in AMS synthesis systems. Recently, the support vector machine (SVM) method has been introduced into this challenging field. This research has studied the application of SVMs to AMS performance modelling in terms of the computational cost and prediction accuracy. A novel...

  16. SVM Method used to Study Gender Differences Based on Microelement

    Science.gov (United States)

    Chun, Yang; Yuan, Liu; Jun, Du; Bin, Tang

    [objective] Intelligent Algorithm of SVM is used for studying gender differences based on microelement data, which provide reference For the application of Microelement in healthy people, such as providing technical support for the investigation of cases.[Method] Our Long-term test results on hair microelement of health people were consolidated. Support vector machine (SVM) is used to classified model of male and female based on microelement data. The radical basis function (RBF) is adopted as a kernel function of SVM, and the model adjusts C and σ to build the optimization classifier, [Result] Healthy population of men and women of manganese, cadmium and nickel are quite different, The classified model of Microelement based on SVM can classifies the male and female, the correct classification ratio set to be 81.71% and 66.47% by SVM based on 7 test date and 3 test data selection. [conclusion] The classified model of microelement data based on SVM can classifies male and female.

  17. Multicategory classification of 11 neuromuscular diseases based on microarray data using support vector machine.

    Science.gov (United States)

    Choi, Soo Beom; Park, Jee Soo; Chung, Jai Won; Yoo, Tae Keun; Kim, Deok Won

    2014-01-01

    We applied multicategory machine learning methods to classify 11 neuromuscular disease groups and one control group based on microarray data. To develop multicategory classification models with optimal parameters and features, we performed a systematic evaluation of three machine learning algorithms and four feature selection methods using three-fold cross validation and a grid search. This study included 114 subjects of 11 neuromuscular diseases and 31 subjects of a control group using microarray data with 22,283 probe sets from the National Center for Biotechnology Information (NCBI). We obtained an accuracy of 100%, relative classifier information (RCI) of 1.0, and a kappa index of 1.0 by applying the models of support vector machines one-versus-one (SVM-OVO), SVM one-versus-rest (OVR), and directed acyclic graph SVM (DAGSVM), using the ratio of genes between categories to within-category sums of squares (BW) feature selection method. Each of these three models selected only four features to categorize the 12 groups, resulting in a time-saving and cost-effective strategy for diagnosing neuromuscular diseases. In addition, a gene symbol, SPP1 was selected as the top-ranked gene by the BW method. We confirmed relationships between the gene (SPP1) and Duchenne muscular dystrophy (DMD) from a previous study. With our models as clinically helpful tools, neuromuscular diseases could be classified quickly using a computer, thereby giving a time-saving, cost-effective, and accurate diagnosis.

  18. Support vector regression methodology for estimating global solar radiation in Algeria

    Science.gov (United States)

    Guermoui, Mawloud; Rabehi, Abdelaziz; Gairaa, Kacem; Benkaciali, Said

    2018-01-01

    Accurate estimation of Daily Global Solar Radiation (DGSR) has been a major goal for solar energy applications. In this paper we show the possibility of developing a simple model based on the Support Vector Regression (SVM-R), which could be used to estimate DGSR on the horizontal surface in Algeria based only on sunshine ratio as input. The SVM model has been developed and tested using a data set recorded over three years (2005-2007). The data was collected at the Applied Research Unit for Renewable Energies (URAER) in Ghardaïa city. The data collected between 2005-2006 are used to train the model while the 2007 data are used to test the performance of the selected model. The measured and the estimated values of DGSR were compared during the testing phase statistically using the Root Mean Square Error (RMSE), Relative Square Error (rRMSE), and correlation coefficient (r2), which amount to 1.59(MJ/m2), 8.46 and 97,4%, respectively. The obtained results show that the SVM-R is highly qualified for DGSR estimation using only sunshine ratio.

  19. Unsteady aerodynamic modeling at high angles of attack using support vector machines

    Directory of Open Access Journals (Sweden)

    Wang Qing

    2015-06-01

    Full Text Available Accurate aerodynamic models are the basis of flight simulation and control law design. Mathematically modeling unsteady aerodynamics at high angles of attack bears great difficulties in model structure determination and parameter estimation due to little understanding of the flow mechanism. Support vector machines (SVMs based on statistical learning theory provide a novel tool for nonlinear system modeling. The work presented here examines the feasibility of applying SVMs to high angle-of-attack unsteady aerodynamic modeling field. Mainly, after a review of SVMs, several issues associated with unsteady aerodynamic modeling by use of SVMs are discussed in detail, such as selection of input variables, selection of output variables and determination of SVM parameters. The least squares SVM (LS-SVM models are set up from certain dynamic wind tunnel test data of a delta wing and an aircraft configuration, and then used to predict the aerodynamic responses in other tests. The predictions are in good agreement with the test data, which indicates the satisfying learning and generalization performance of LS-SVMs.

  20. Comparative evaluation of support vector machine classification for computer aided detection of breast masses in mammography

    Science.gov (United States)

    Lesniak, J. M.; Hupse, R.; Blanc, R.; Karssemeijer, N.; Székely, G.

    2012-08-01

    False positive (FP) marks represent an obstacle for effective use of computer-aided detection (CADe) of breast masses in mammography. Typically, the problem can be approached either by developing more discriminative features or by employing different classifier designs. In this paper, the usage of support vector machine (SVM) classification for FP reduction in CADe is investigated, presenting a systematic quantitative evaluation against neural networks, k-nearest neighbor classification, linear discriminant analysis and random forests. A large database of 2516 film mammography examinations and 73 input features was used to train the classifiers and evaluate for their performance on correctly diagnosed exams as well as false negatives. Further, classifier robustness was investigated using varying training data and feature sets as input. The evaluation was based on the mean exam sensitivity in 0.05-1 FPs on normals on the free-response receiver operating characteristic curve (FROC), incorporated into a tenfold cross validation framework. It was found that SVM classification using a Gaussian kernel offered significantly increased detection performance (P = 0.0002) compared to the reference methods. Varying training data and input features, SVMs showed improved exploitation of large feature sets. It is concluded that with the SVM-based CADe a significant reduction of FPs is possible outperforming other state-of-the-art approaches for breast mass CADe.

  1. A Personalized Electronic Movie Recommendation System Based on Support Vector Machine and Improved Particle Swarm Optimization.

    Science.gov (United States)

    Wang, Xibin; Luo, Fengji; Qian, Ying; Ranzi, Gianluca

    2016-01-01

    With the rapid development of ICT and Web technologies, a large an amount of information is becoming available and this is producing, in some instances, a condition of information overload. Under these conditions, it is difficult for a person to locate and access useful information for making decisions. To address this problem, there are information filtering systems, such as the personalized recommendation system (PRS) considered in this paper, that assist a person in identifying possible products or services of interest based on his/her preferences. Among available approaches, collaborative Filtering (CF) is one of the most widely used recommendation techniques. However, CF has some limitations, e.g., the relatively simple similarity calculation, cold start problem, etc. In this context, this paper presents a new regression model based on the support vector machine (SVM) classification and an improved PSO (IPSO) for the development of an electronic movie PRS. In its implementation, a SVM classification model is first established to obtain a preliminary movie recommendation list based on which a SVM regression model is applied to predict movies' ratings. The proposed PRS not only considers the movie's content information but also integrates the users' demographic and behavioral information to better capture the users' interests and preferences. The efficiency of the proposed method is verified by a series of experiments based on the MovieLens benchmark data set.

  2. CoSpa: A Co-training Approach for Spam Review Identification with Support Vector Machine

    Directory of Open Access Journals (Sweden)

    Wen Zhang

    2016-03-01

    Full Text Available Spam reviews are increasingly appearing on the Internet to promote sales or defame competitors by misleading consumers with deceptive opinions. This paper proposes a co-training approach called CoSpa (Co-training for Spam review identification to identify spam reviews by two views: one is the lexical terms derived from the textual content of the reviews and the other is the PCFG (Probabilistic Context-Free Grammars rules derived from a deep syntax analysis of the reviews. Using SVM (Support Vector Machine as the base classifier, we develop two strategies, CoSpa-C and CoSpa-U, embedded within the CoSpa approach. The CoSpa-C strategy selects unlabeled reviews classified with the largest confidence to augment the training dataset to retrain the classifier. The CoSpa-U strategy randomly selects unlabeled reviews with a uniform distribution of confidence. Experiments on the spam dataset and the deception dataset demonstrate that both the proposed CoSpa algorithms outperform the traditional SVM with lexical terms and PCFG rules in spam review identification. Moreover, the CoSpa-U strategy outperforms the CoSpa-C strategy when we use the absolute value of decision function of SVM as the confidence.

  3. Classifier transfer with data selection strategies for online support vector machine classification with class imbalance

    Science.gov (United States)

    Krell, Mario Michael; Wilshusen, Nils; Seeland, Anett; Kim, Su Kyoung

    2017-04-01

    Objective. Classifier transfers usually come with dataset shifts. To overcome dataset shifts in practical applications, we consider the limitations in computational resources in this paper for the adaptation of batch learning algorithms, like the support vector machine (SVM). Approach. We focus on data selection strategies which limit the size of the stored training data by different inclusion, exclusion, and further dataset manipulation criteria like handling class imbalance with two new approaches. We provide a comparison of the strategies with linear SVMs on several synthetic datasets with different data shifts as well as on different transfer settings with electroencephalographic (EEG) data. Main results. For the synthetic data, adding only misclassified samples performed astoundingly well. Here, balancing criteria were very important when the other criteria were not well chosen. For the transfer setups, the results show that the best strategy depends on the intensity of the drift during the transfer. Adding all and removing the oldest samples results in the best performance, whereas for smaller drifts, it can be sufficient to only add samples near the decision boundary of the SVM which reduces processing resources. Significance. For brain-computer interfaces based on EEG data, models trained on data from a calibration session, a previous recording session, or even from a recording session with another subject are used. We show, that by using the right combination of data selection criteria, it is possible to adapt the SVM classifier to overcome the performance drop from the transfer.

  4. Support vector machine based fault detection approach for RFT-30 cyclotron

    Energy Technology Data Exchange (ETDEWEB)

    Kong, Young Bae, E-mail: ybkong@kaeri.re.kr; Lee, Eun Je; Hur, Min Goo; Park, Jeong Hoon; Park, Yong Dae; Yang, Seung Dae

    2016-10-21

    An RFT-30 is a 30 MeV cyclotron used for radioisotope applications and radiopharmaceutical researches. The RFT-30 cyclotron is highly complex and includes many signals for control and monitoring of the system. It is quite difficult to detect and monitor the system failure in real time. Moreover, continuous monitoring of the system is hard and time-consuming work for human operators. In this paper, we propose a support vector machine (SVM) based fault detection approach for the RFT-30 cyclotron. The proposed approach performs SVM learning with training samples to construct the classification model. To compensate the system complexity due to the large-scale accelerator, we utilize the principal component analysis (PCA) for transformation of the original data. After training procedure, the proposed approach detects the system faults in real time. We analyzed the performance of the proposed approach utilizing the experimental data of the RFT-30 cyclotron. The performance results show that the proposed SVM approach can provide an efficient way to control the cyclotron system.

  5. CLASSIFICATION OF SKIN AUTOFLUORESCENCE SPECTRUM USING SUPPORT VECTOR MACHINE IN TYPE 2 DIABETES SCREENING

    Directory of Open Access Journals (Sweden)

    YUANZHI ZHANG

    2013-10-01

    Full Text Available Advanced glycation end products (AGEs are a complex and heterogeneous group of compounds that have been implicated in diabetes related complifications. Skin autofluorescence was recently introduced as an alternative tool for skin AGEs accumulation assessment in diabetes. Successful optical diagnosis of diabetes requires a rapid and accurate classification algorithm. In order to improve the performance of noninvasive and optical diagnosis of type 2 diabetes, support vector machines (SVM algorithm was implemented for the classification of skin autofluorescence from diabetics and control subjects. Cross-validation and grid-optimization methods were employed to calculate the optimal parameters that maximize classification accuracy. Classification model was set up according to the training set and then verified by the testing set. The results show that radical basis function is the best choice in the four common kernels in SVM. Moreover, a diagnostic accuracy of 82.61%, a sensitivity of 69.57%, and a specificity of 95.65% for discriminating diabetics from control subjects were achieved using a mixed kernel function, which is based on liner kernel function and radical basis function. In comparison with fasting plasma glucose and HbA1c test, the classification method of skin autofluorescence spectrum based on SVM shows great potential in screening of diabetes.

  6. Support Vector Machine based diagnostic system for thyroid cancer using statistical texture features.

    Science.gov (United States)

    Gopinath, B; Shanthi, N

    2013-01-01

    The aim of this study was to develop an automated computer-aided diagnostic system for diagnosis of thyroid cancer pattern in fine needle aspiration cytology (FNAC) microscopic images with high degree of sensitivity and specificity using statistical texture features and a Support Vector Machine classifier (SVM). A training set of 40 benign and 40 malignant FNAC images and a testing set of 10 benign and 20 malignant FNAC images were used to perform the diagnosis of thyroid cancer. Initially, segmentation of region of interest (ROI) was performed by region-based morphology segmentation. The developed diagnostic system utilized statistical texture features derived from the segmented images using a Gabor filter bank at various wavelengths and angles. Finally, the SVM was used as a machine learning algorithm to identify benign and malignant states of thyroid nodules. The SVMachieved a diagnostic accuracy of 96.7% with sensitivity and specificity of 95% and 100%, respectively, at a wavelength of 4 and an angle of 45. The results show that the diagnosis of thyroid cancer in FNAC images can be effectively performed using statistical texture information derived with Gabor filters in association with an SVM.

  7. Influence of stimuli colour in SSVEP-based BCI wheelchair control using support vector machines.

    Science.gov (United States)

    Singla, Rajesh; Khosla, Arun; Jha, Rameshwar

    2014-04-01

    This study aims to develop a Steady State Visual Evoked Potential (SSVEP)-based Brain Computer Interface (BCI) system to control a wheelchair, with improving accuracy as the major goal. The developed wheelchair can move in forward, backward, left, right and stop positions. Four different flickering frequencies in the low frequency region were used to elicit the SSVEPs and were displayed on a Liquid Crystal Display (LCD) monitor using LabVIEW. Four colours (green, red, blue and violet) were included in the study to investigate the colour influence in SSVEPs. The Electroencephalogram (EEG) signals recorded from the occipital region were first segmented into 1 s windows and features were extracted by using Fast Fourier Transform (FFT). Three different classifiers, two based on Artificial Neural Network (ANN) and one based on Support Vector Machine (SVM), were compared to yield better accuracy. Twenty subjects participated in the experiment and the accuracy was calculated by considering the number of correct detections produced while performing a pre-defined movement sequence. SSVEP with violet colour showed higher performance than green and red. The One-Against-All (OAA) based multi-class SVM classifier showed better accuracy than the ANN classifiers. The classification accuracy over 20 subjects varies between 75-100%, while information transfer rates (ITR) varies from 12.13-27 bpm for BCI wheelchair control with SSVEPs elicited by violet colour stimuli and classified using OAA-SVM.

  8. A Bayesian least squares support vector machines based framework for fault diagnosis and failure prognosis

    Science.gov (United States)

    Khawaja, Taimoor Saleem

    A high-belief low-overhead Prognostics and Health Management (PHM) system is desired for online real-time monitoring of complex non-linear systems operating in a complex (possibly non-Gaussian) noise environment. This thesis presents a Bayesian Least Squares Support Vector Machine (LS-SVM) based framework for fault diagnosis and failure prognosis in nonlinear non-Gaussian systems. The methodology assumes the availability of real-time process measurements, definition of a set of fault indicators and the existence of empirical knowledge (or historical data) to characterize both nominal and abnormal operating conditions. An efficient yet powerful Least Squares Support Vector Machine (LS-SVM) algorithm, set within a Bayesian Inference framework, not only allows for the development of real-time algorithms for diagnosis and prognosis but also provides a solid theoretical framework to address key concepts related to classification for diagnosis and regression modeling for prognosis. SVM machines are founded on the principle of Structural Risk Minimization (SRM) which tends to find a good trade-off between low empirical risk and small capacity. The key features in SVM are the use of non-linear kernels, the absence of local minima, the sparseness of the solution and the capacity control obtained by optimizing the margin. The Bayesian Inference framework linked with LS-SVMs allows a probabilistic interpretation of the results for diagnosis and prognosis. Additional levels of inference provide the much coveted features of adaptability and tunability of the modeling parameters. The two main modules considered in this research are fault diagnosis and failure prognosis. With the goal of designing an efficient and reliable fault diagnosis scheme, a novel Anomaly Detector is suggested based on the LS-SVM machines. The proposed scheme uses only baseline data to construct a 1-class LS-SVM machine which, when presented with online data is able to distinguish between normal behavior

  9. A feasibility study of automatic lung nodule detection in chest digital tomosynthesis with machine learning based on support vector machine

    Science.gov (United States)

    Lee, Donghoon; Kim, Ye-seul; Choi, Sunghoon; Lee, Haenghwa; Jo, Byungdu; Choi, Seungyeon; Shin, Jungwook; Kim, Hee-Joung

    2017-03-01

    The chest digital tomosynthesis(CDT) is recently developed medical device that has several advantage for diagnosing lung disease. For example, CDT provides depth information with relatively low radiation dose compared to computed tomography (CT). However, a major problem with CDT is the image artifacts associated with data incompleteness resulting from limited angle data acquisition in CDT geometry. For this reason, the sensitivity of lung disease was not clear compared to CT. In this study, to improve sensitivity of lung disease detection in CDT, we developed computer aided diagnosis (CAD) systems based on machine learning. For design CAD systems, we used 100 cases of lung nodules cropped images and 100 cases of normal lesion cropped images acquired by lung man phantoms and proto type CDT. We used machine learning techniques based on support vector machine and Gabor filter. The Gabor filter was used for extracting characteristics of lung nodules and we compared performance of feature extraction of Gabor filter with various scale and orientation parameters. We used 3, 4, 5 scales and 4, 6, 8 orientations. After extracting features, support vector machine (SVM) was used for classifying feature of lesions. The linear, polynomial and Gaussian kernels of SVM were compared to decide the best SVM conditions for CDT reconstruction images. The results of CAD system with machine learning showed the capability of automatically lung lesion detection. Furthermore detection performance was the best when Gabor filter with 5 scale and 8 orientation and SVM with Gaussian kernel were used. In conclusion, our suggested CAD system showed improving sensitivity of lung lesion detection in CDT and decide Gabor filter and SVM conditions to achieve higher detection performance of our developed CAD system for CDT.

  10. Predicting metabolic syndrome using decision tree and support vector machine methods.

    Science.gov (United States)

    Karimi-Alavijeh, Farzaneh; Jalili, Saeed; Sadeghi, Masoumeh

    2016-05-01

    Metabolic syndrome which underlies the increased prevalence of cardiovascular disease and Type 2 diabetes is considered as a group of metabolic abnormalities including central obesity, hypertriglyceridemia, glucose intolerance, hypertension, and dyslipidemia. Recently, artificial intelligence based health-care systems are highly regarded because of its success in diagnosis, prediction, and choice of treatment. This study employs machine learning technics for predict the metabolic syndrome. This study aims to employ decision tree and support vector machine (SVM) to predict the 7-year incidence of metabolic syndrome. This research is a practical one in which data from 2107 participants of Isfahan Cohort Study has been utilized. The subjects without metabolic syndrome according to the ATPIII criteria were selected. The features that have been used in this data set include: gender, age, weight, body mass index, waist circumference, waist-to-hip ratio, hip circumference, physical activity, smoking, hypertension, antihypertensive medication use, systolic blood pressure (BP), diastolic BP, fasting blood sugar, 2-hour blood glucose, triglycerides (TGs), total cholesterol, low-density lipoprotein, high density lipoprotein-cholesterol, mean corpuscular volume, and mean corpuscular hemoglobin. Metabolic syndrome was diagnosed based on ATPIII criteria and two methods of decision tree and SVM were selected to predict the metabolic syndrome. The criteria of sensitivity, specificity and accuracy were used for validation. SVM and decision tree methods were examined according to the criteria of sensitivity, specificity and accuracy. Sensitivity, specificity and accuracy were 0.774 (0.758), 0.74 (0.72) and 0.757 (0.739) in SVM (decision tree) method. The results show that SVM method sensitivity, specificity and accuracy is more efficient than decision tree. The results of decision tree method show that the TG is the most important feature in predicting metabolic syndrome. According

  11. Predicting metabolic syndrome using decision tree and support vector machine methods

    Science.gov (United States)

    Karimi-Alavijeh, Farzaneh; Jalili, Saeed; Sadeghi, Masoumeh

    2016-01-01

    BACKGROUND Metabolic syndrome which underlies the increased prevalence of cardiovascular disease and Type 2 diabetes is considered as a group of metabolic abnormalities including central obesity, hypertriglyceridemia, glucose intolerance, hypertension, and dyslipidemia. Recently, artificial intelligence based health-care systems are highly regarded because of its success in diagnosis, prediction, and choice of treatment. This study employs machine learning technics for predict the metabolic syndrome. METHODS This study aims to employ decision tree and support vector machine (SVM) to predict the 7-year incidence of metabolic syndrome. This research is a practical one in which data from 2107 participants of Isfahan Cohort Study has been utilized. The subjects without metabolic syndrome according to the ATPIII criteria were selected. The features that have been used in this data set include: gender, age, weight, body mass index, waist circumference, waist-to-hip ratio, hip circumference, physical activity, smoking, hypertension, antihypertensive medication use, systolic blood pressure (BP), diastolic BP, fasting blood sugar, 2-hour blood glucose, triglycerides (TGs), total cholesterol, low-density lipoprotein, high density lipoprotein-cholesterol, mean corpuscular volume, and mean corpuscular hemoglobin. Metabolic syndrome was diagnosed based on ATPIII criteria and two methods of decision tree and SVM were selected to predict the metabolic syndrome. The criteria of sensitivity, specificity and accuracy were used for validation. RESULTS SVM and decision tree methods were examined according to the criteria of sensitivity, specificity and accuracy. Sensitivity, specificity and accuracy were 0.774 (0.758), 0.74 (0.72) and 0.757 (0.739) in SVM (decision tree) method. CONCLUSION The results show that SVM method sensitivity, specificity and accuracy is more efficient than decision tree. The results of decision tree method show that the TG is the most important feature in

  12. Extraction of inland Nypa fruticans (Nipa Palm) using Support Vector Machine

    Science.gov (United States)

    Alberto, R. T.; Serrano, S. C.; Damian, G. B.; Camaso, E. E.; Biagtan, A. R.; Panuyas, N. Z.; Quibuyen, J. S.

    2017-09-01

    Mangroves are considered as one of the major habitats in coastal ecosystem, providing a lot of economic and ecological services in human society. Nypa fruticans (Nipa palm) is one of the important species of mangroves because of its versatility and uniqueness as halophytic palm. However, nipas are not only adaptable in saline areas, they can also managed to thrive away from the coastline depending on the favorable soil types available in the area. Because of this, mapping of this species are not limited alone in the near shore areas, but in areas where this species are present as well. The extraction process of Nypa fruticans were carried out using the available LiDAR data. Support Vector Machine (SVM) classification process was used to extract nipas in inland areas. The SVM classification process in mapping Nypa fruticans produced high accuracy of 95+%. The Support Vector Machine classification process to extract inland nipas was proven to be effective by utilizing different terrain derivatives from LiDAR data.

  13. Support-vector-machines-based multidimensional signal classification for fetal activity characterization

    Science.gov (United States)

    Ribes, S.; Voicu, I.; Girault, J. M.; Fournier, M.; Perrotin, F.; Tranquart, F.; Kouamé, D.

    2011-03-01

    Electronic fetal monitoring may be required during the whole pregnancy to closely monitor specific fetal and maternal disorders. Currently used methods suffer from many limitations and are not sufficient to evaluate fetal asphyxia. Fetal activity parameters such as movements, heart rate and associated parameters are essential indicators of the fetus well being, and no current device gives a simultaneous and sufficient estimation of all these parameters to evaluate the fetus well-being. We built for this purpose, a multi-transducer-multi-gate Doppler system and developed dedicated signal processing techniques for fetal activity parameter extraction in order to investigate fetus's asphyxia or well-being through fetal activity parameters. To reach this goal, this paper shows preliminary feasibility of separating normal and compromised fetuses using our system. To do so, data set consisting of two groups of fetal signals (normal and compromised) has been established and provided by physicians. From estimated parameters an instantaneous Manning-like score, referred to as ultrasonic score was introduced and was used together with movements, heart rate and associated parameters in a classification process using Support Vector Machines (SVM) method. The influence of the fetal activity parameters and the performance of the SVM were evaluated using the computation of sensibility, specificity, percentage of support vectors and total classification accuracy. We showed our ability to separate the data into two sets : normal fetuses and compromised fetuses and obtained an excellent matching with the clinical classification performed by physician.

  14. A tool for urban soundscape evaluation applying Support Vector Machines for developing a soundscape classification model.

    Science.gov (United States)

    Torija, Antonio J; Ruiz, Diego P; Ramos-Ridao, Angel F

    2014-06-01

    To ensure appropriate soundscape management in urban environments, the urban-planning authorities need a range of tools that enable such a task to be performed. An essential step during the management of urban areas from a sound standpoint should be the evaluation of the soundscape in such an area. In this sense, it has been widely acknowledged that a subjective and acoustical categorization of a soundscape is the first step to evaluate it, providing a basis for designing or adapting it to match people's expectations as well. In this sense, this work proposes a model for automatic classification of urban soundscapes. This model is intended for the automatic classification of urban soundscapes based on underlying acoustical and perceptual criteria. Thus, this classification model is proposed to be used as a tool for a comprehensive urban soundscape evaluation. Because of the great complexity associated with the problem, two machine learning techniques, Support Vector Machines (SVM) and Support Vector Machines trained with Sequential Minimal Optimization (SMO), are implemented in developing model classification. The results indicate that the SMO model outperforms the SVM model in the specific task of soundscape classification. With the implementation of the SMO algorithm, the classification model achieves an outstanding performance (91.3% of instances correctly classified). © 2013 Elsevier B.V. All rights reserved.

  15. Classification of EEG Signals Using a Multiple Kernel Learning Support Vector Machine

    Directory of Open Access Journals (Sweden)

    Xiaoou Li

    2014-07-01

    Full Text Available In this study, a multiple kernel learning support vector machine algorithm is proposed for the identification of EEG signals including mental and cognitive tasks, which is a key component in EEG-based brain computer interface (BCI systems. The presented BCI approach included three stages: (1 a pre-processing step was performed to improve the general signal quality of the EEG; (2 the features were chosen, including wavelet packet entropy and Granger causality, respectively; (3 a multiple kernel learning support vector machine (MKL-SVM based on a gradient descent optimization algorithm was investigated to classify EEG signals, in which the kernel was defined as a linear combination of polynomial kernels and radial basis function kernels. Experimental results showed that the proposed method provided better classification performance compared with the SVM based on a single kernel. For mental tasks, the average accuracies for 2-class, 3-class, 4-class, and 5-class classifications were 99.20%, 81.25%, 76.76%, and 75.25% respectively. Comparing stroke patients with healthy controls using the proposed algorithm, we achieved the average classification accuracies of 89.24% and 80.33% for 0-back and 1-back tasks respectively. Our results indicate that the proposed approach is promising for implementing human-computer interaction (HCI, especially for mental task classification and identifying suitable brain impairment candidates.

  16. A genetic algorithm-support vector machine method with parameter optimization for selecting the tag SNPs.

    Science.gov (United States)

    Ilhan, Ilhan; Tezel, Gülay

    2013-04-01

    SNPs (Single Nucleotide Polymorphisms) include millions of changes in human genome, and therefore, are promising tools for disease-gene association studies. However, this kind of studies is constrained by the high expense of genotyping millions of SNPs. For this reason, it is required to obtain a suitable subset of SNPs to accurately represent the rest of SNPs. For this purpose, many methods have been developed to select a convenient subset of tag SNPs, but all of them only provide low prediction accuracy. In the present study, a brand new method is developed and introduced as GA-SVM with parameter optimization. This method benefits from support vector machine (SVM) and genetic algorithm (GA) to predict SNPs and to select tag SNPs, respectively. Furthermore, it also uses particle swarm optimization (PSO) algorithm to optimize C and γ parameters of support vector machine. It is experimentally tested on a wide range of datasets, and the obtained results demonstrate that this method can provide better prediction accuracy in identifying tag SNPs compared to other methods at present. Copyright © 2012 Elsevier Inc. All rights reserved.

  17. Comprehensive modeling of monthly mean soil temperature using multivariate adaptive regression splines and support vector machine

    Science.gov (United States)

    Mehdizadeh, Saeid; Behmanesh, Javad; Khalili, Keivan

    2017-07-01

    Soil temperature (T s) and its thermal regime are the most important factors in plant growth, biological activities, and water movement in soil. Due to scarcity of the T s data, estimation of soil temperature is an important issue in different fields of sciences. The main objective of the present study is to investigate the accuracy of multivariate adaptive regression splines (MARS) and support vector machine (SVM) methods for estimating the T s. For this aim, the monthly mean data of the T s (at depths of 5, 10, 50, and 100 cm) and meteorological parameters of 30 synoptic stations in Iran were utilized. To develop the MARS and SVM models, various combinations of minimum, maximum, and mean air temperatures (T min, T max, T); actual and maximum possible sunshine duration; sunshine duration ratio (n, N, n/N); actual, net, and extraterrestrial solar radiation data (R s, R n, R a); precipitation (P); relative humidity (RH); wind speed at 2 m height (u 2); and water vapor pressure (Vp) were used as input variables. Three error statistics including root-mean-square-error (RMSE), mean absolute error (MAE), and determination coefficient (R 2) were used to check the performance of MARS and SVM models. The results indicated that the MARS was superior to the SVM at different depths. In the test and validation phases, the most accurate estimations for the MARS were obtained at the depth of 10 cm for T max, T min, T inputs (RMSE = 0.71 °C, MAE = 0.54 °C, and R 2 = 0.995) and for RH, V p, P, and u 2 inputs (RMSE = 0.80 °C, MAE = 0.61 °C, and R 2 = 0.996), respectively.

  18. A multigene support vector machine predictor for metastasis of cutaneous melanoma.

    Science.gov (United States)

    Wei, Dong

    2018-02-01

    Gene expression profiles of cutaneous melanoma were analyzed to identify critical genes associated with metastasis. Two gene expression datasets were downloaded from Gene Expression Omnibus (GEO) and another dataset was obtained from The Cancer Genome Atlas (TCGA). Differentially expression genes (DEGs) between metastatic and non‑metastatic melanoma were identified by meta‑analysis. A protein‑protein interaction (PPI) network was constructed for the DEGs using information from BioGRID, HPRD and DIP. Betweenness centrality (BC) was calculated for each node in the network and the top feature genes ranked by BC were selected to construct the support vector machine (SVM) classifier using the training set. The SVM classifier was then validated in another independent dataset. Pathway enrichment analysis was performed for the feature genes using Fisher's exact test. A total of 798 DEGs were identified and a PPI network including 337 nodes and 466 edges was then constructed. Top 110 feature genes ranked by BC were included in the SVM classifier. The prediction accuracies for the three datasets were 96.8, 100 and 94.4%, respectively. A total of 11 KEGG pathways and 13 GO biological pathways were significantly over‑represented in the 110 feature genes, including endometrial cancer, regulation of actin cytoskeleton, focal adhesion, ubiquitin mediated proteolysis, regulation of apoptosis and regulation of cell proliferation. A SVM classifier of high prediction accuracy was acquired. Several critical genes implicated in melanoms metastasis were also revealed. These results may advance understanding of the molecular mechanisms underlying metastasis, and also provide potential therapeutic targets.

  19. Support vector machine-based facial-expression recognition method combining shape and appearance

    Science.gov (United States)

    Han, Eun Jung; Kang, Byung Jun; Park, Kang Ryoung; Lee, Sangyoun

    2010-11-01

    Facial expression recognition can be widely used for various applications, such as emotion-based human-machine interaction, intelligent robot interfaces, face recognition robust to expression variation, etc. Previous studies have been classified as either shape- or appearance-based recognition. The shape-based method has the disadvantage that the individual variance of facial feature points exists irrespective of similar expressions, which can cause a reduction of the recognition accuracy. The appearance-based method has a limitation in that the textural information of the face is very sensitive to variations in illumination. To overcome these problems, a new facial-expression recognition method is proposed, which combines both shape and appearance information, based on the support vector machine (SVM). This research is novel in the following three ways as compared to previous works. First, the facial feature points are automatically detected by using an active appearance model. From these, the shape-based recognition is performed by using the ratios between the facial feature points based on the facial-action coding system. Second, the SVM, which is trained to recognize the same and different expression classes, is proposed to combine two matching scores obtained from the shape- and appearance-based recognitions. Finally, a single SVM is trained to discriminate four different expressions, such as neutral, a smile, anger, and a scream. By determining the expression of the input facial image whose SVM output is at a minimum, the accuracy of the expression recognition is much enhanced. The experimental results showed that the recognition accuracy of the proposed method was better than previous researches and other fusion methods.

  20. Classification of toxicity effects of biotransformed hepatic drugs using whale optimized support vector machines.

    Science.gov (United States)

    Tharwat, Alaa; Moemen, Yasmine S; Hassanien, Aboul Ella

    2017-04-01

    Measuring toxicity is an important step in drug development. Nevertheless, the current experimental methods used to estimate the drug toxicity are expensive and time-consuming, indicating that they are not suitable for large-scale evaluation of drug toxicity in the early stage of drug development. Hence, there is a high demand to develop computational models that can predict the drug toxicity risks. In this study, we used a dataset that consists of 553 drugs that biotransformed in liver. The toxic effects were calculated for the current data, namely, mutagenic, tumorigenic, irritant and reproductive effect. Each drug is represented by 31 chemical descriptors (features). The proposed model consists of three phases. In the first phase, the most discriminative subset of features is selected using rough set-based methods to reduce the classification time while improving the classification performance. In the second phase, different sampling methods such as Random Under-Sampling, Random Over-Sampling and Synthetic Minority Oversampling Technique (SMOTE), BorderLine SMOTE and Safe Level SMOTE are used to solve the problem of imbalanced dataset. In the third phase, the Support Vector Machines (SVM) classifier is used to classify an unknown drug into toxic or non-toxic. SVM parameters such as the penalty parameter and kernel parameter have a great impact on the classification accuracy of the model. In this paper, Whale Optimization Algorithm (WOA) has been proposed to optimize the parameters of SVM, so that the classification error can be reduced. The experimental results proved that the proposed model achieved high sensitivity to all toxic effects. Overall, the high sensitivity of the WOA+SVM model indicates that it could be used for the prediction of drug toxicity in the early stage of drug development. Copyright © 2017 Elsevier Inc. All rights reserved.

  1. A support vector machine for predicting defibrillation outcomes from waveform metrics.

    Science.gov (United States)

    Howe, Andrew; Escalona, Omar J; Di Maio, Rebecca; Massot, Bertrand; Cromie, Nick A; Darragh, Karen M; Adgey, Jennifer; McEneaney, David J

    2014-03-01

    Algorithms to predict shock success based on VF waveform metrics could significantly enhance resuscitation by optimising the timing of defibrillation. To investigate robust methods of predicting defibrillation success in VF cardiac arrest patients, by using a support vector machine (SVM) optimisation approach. Frequency-domain (AMSA, dominant frequency and median frequency) and time-domain (slope and RMS amplitude) VF waveform metrics were calculated in a 4.1Y window prior to defibrillation. Conventional prediction test validity of each waveform parameter was conducted and used AUC>0.6 as the criterion for inclusion as a corroborative attribute processed by the SVM classification model. The latter used a Gaussian radial-basis-function (RBF) kernel and the error penalty factor C was fixed to 1. A two-fold cross-validation resampling technique was employed. A total of 41 patients had 115 defibrillation instances. AMSA, slope and RMS waveform metrics performed test validation with AUC>0.6 for predicting termination of VF and return-to-organised rhythm. Predictive accuracy of the optimised SVM design for termination of VF was 81.9% (± 1.24 SD); positive and negative predictivity were respectively 84.3% (± 1.98 SD) and 77.4% (± 1.24 SD); sensitivity and specificity were 87.6% (± 2.69 SD) and 71.6% (± 9.38 SD) respectively. AMSA, slope and RMS were the best VF waveform frequency-time parameters predictors of termination of VF according to test validity assessment. This a priori can be used for a simplified SVM optimised design that combines the predictive attributes of these VF waveform metrics for improved prediction accuracy and generalisation performance without requiring the definition of any threshold value on waveform metrics. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  2. Online Fault Diagnosis for Biochemical Process Based on FCM and SVM.

    Science.gov (United States)

    Wang, Xianfang; Du, Haoze; Tan, Jinglu

    2016-12-01

    Fault diagnosis is becoming an important issue in biochemical process, and a novel online fault detection and diagnosis approach is designed by combining fuzzy c-means (FCM) and support vector machine (SVM). The samples are preprocessed via FCM algorithm to enhance the ability of classification firstly. Then, those samples are input to the SVM classifier to realize the biochemical process fault diagnosis. In this study, a glutamic acid fermentation process is chosen as an example to diagnose the fault by this method, the result shows that the diagnosis time is largely shortened, and the accuracy is extremely improved by comparing to a single SVM method.

  3. An improved conjugate gradient scheme to the solution of least squares SVM.

    Science.gov (United States)

    Chu, Wei; Ong, Chong Jin; Keerthi, S Sathiya

    2005-03-01

    The least square support vector machines (LS-SVM) formulation corresponds to the solution of a linear system of equations. Several approaches to its numerical solutions have been proposed in the literature. In this letter, we propose an improved method to the numerical solution of LS-SVM and show that the problem can be solved using one reduced system of linear equations. Compared with the existing algorithm for LS-SVM, the approach used in this letter is about twice as efficient. Numerical results using the proposed method are provided for comparisons with other existing algorithms.

  4. Vector machine techniques for modeling of seismic liquefaction data

    Directory of Open Access Journals (Sweden)

    Pijush Samui

    2014-06-01

    Full Text Available This article employs three soft computing techniques, Support Vector Machine (SVM; Least Square Support Vector Machine (LSSVM and Relevance Vector Machine (RVM, for prediction of liquefaction susceptibility of soil. SVM and LSSVM are based on the structural risk minimization (SRM principle which seeks to minimize an upper bound of the generalization error consisting of the sum of the training error and a confidence interval. RVM is a sparse Bayesian kernel machine. SVM, LSSVM and RVM have been used as classification tools. The developed SVM, LSSVM and RVM give equations for prediction of liquefaction susceptibility of soil. A comparative study has been carried out between the developed SVM, LSSVM and RVM models. The results from this article indicate that the developed SVM gives the best performance for prediction of liquefaction susceptibility of soil.

  5. Automatic classification of athletes with residual functional deficits following concussion by means of EEG signal using support vector machine.

    Science.gov (United States)

    Cao, Cheng; Tutwiler, Richard Laurence; Slobounov, Semyon

    2008-08-01

    There is a growing body of knowledge indicating long-lasting residual electroencephalography (EEG) abnormalities in concussed athletes that may persist up to 10-year postinjury. Most often, these abnormalities are initially overlooked using traditional concussion assessment tools. Accordingly, premature return to sport participation may lead to recurrent episodes of concussion, increasing the risk of recurrent concussions with more severe consequences. Sixty-one athletes at high risk for concussion (i.e., collegiate rugby and football players) were recruited and underwent EEG baseline assessment. Thirty of these athletes suffered from concussion and were retested at day 30 postinjury. A number of task-related EEG recordings were conducted. A novel classification algorithm, the support vector machine (SVM), was applied as a classifier to identify residual functional abnormalities in athletes suffering from concussion using a multichannel EEG data set. The total accuracy of the classifier using the 10 features was 77.1%. The classifier has a high sensitivity of 96.7% (linear SVM), 80.0% (nonlinear SVM), and a relatively lower but acceptable selectivity of 69.1% (linear SVM) and 75.0% (nonlinear SVM). The major findings of this report are as follows: 1) discriminative features were observed at theta, alpha, and beta frequency bands, 2) the minimal redundancy relevance method was identified as being superior to the univariate t -test method in selecting features for the model calculation, 3) the EEG features selected for the classification model are linked to temporal and occipital areas, and 4) postural parameters influence EEG data set and can be used as discriminative features for the classification model. Overall, this report provides sufficient evidence that 10 EEG features selected for final analysis and SVM may be potentially used in clinical practice for automatic classification of athletes with residual brain functional abnormalities following a concussion

  6. Improving model predictions for RNA interference activities that use support vector machine regression by combining and filtering features

    Directory of Open Access Journals (Sweden)

    Peek Andrew S

    2007-06-01

    Full Text Available Abstract Background RNA interference (RNAi is a naturally occurring phenomenon that results in the suppression of a target RNA sequence utilizing a variety of possible methods and pathways. To dissect the factors that result in effective siRNA sequences a regression kernel Support Vector Machine (SVM approach was used to quantitatively model RNA interference activities. Results Eight overall feature mapping methods were compared in their abilities to build SVM regression models that predict published siRNA activities. The primary factors in predictive SVM models are position specific nucleotide compositions. The secondary factors are position independent sequence motifs (N-grams and guide strand to passenger strand sequence thermodynamics. Finally, the factors that are least contributory but are still predictive of efficacy are measures of intramolecular guide strand secondary structure and target strand secondary structure. Of these, the site of the 5' most base of the guide strand is the most informative. Conclusion The capacity of specific feature mapping methods and their ability to build predictive models of RNAi activity suggests a relative biological importance of these features. Some feature mapping methods are more informative in building predictive models and overall t-test filtering provides a method to remove some noisy features or make comparisons among datasets. Together, these features can yield predictive SVM regression models with increased predictive accuracy between predicted and observed activities both within datasets by cross validation, and between independently collected RNAi activity datasets. Feature filtering to remove features should be approached carefully in that it is possible to reduce feature set size without substantially reducing predictive models, but the features retained in the candidate models become increasingly distinct. Software to perform feature prediction and SVM training and testing on nucleic acid

  7. Probability output modeling for support vector machines

    Science.gov (United States)

    Zhang, Xiang; Xiao, Xiaoling; Tian, Jinwen; Liu, Jian

    2007-11-01

    In this paper we propose an approach to model the posterior probability output of multi-class SVMs. The sigmoid function is used to estimate the posterior probability output in binary classification. This approach modeling the posterior probability output of multi-class SVMs is achieved by directly solving the equations that are based on the combination of the probability outputs of binary classifiers using the Bayes's rule. The differences and different weights among these two-class SVM classifiers, based on the posterior probability, are considered and given for the combination of the probability outputs among these two-class SVM classifiers in this method. The comparative experiment results show that our method achieves the better classification precision and the better probability distribution of the posterior probability than the pairwise couping method and the Hastie's optimization method.

  8. Using a Support Vector Machine and a Land Surface Model to Estimate Large-Scale Passive Microwave Temperatures over Snow-Covered Land in North America

    Science.gov (United States)

    Forman, Barton A.; Reichle, Rolf Helmut

    2014-01-01

    A support vector machine (SVM), a machine learning technique developed from statistical learning theory, is employed for the purpose of estimating passive microwave (PMW) brightness temperatures over snow-covered land in North America as observed by the Advanced Microwave Scanning Radiometer (AMSR-E) satellite sensor. The capability of the trained SVM is compared relative to the artificial neural network (ANN) estimates originally presented in [14]. The results suggest the SVM outperforms the ANN at 10.65 GHz, 18.7 GHz, and 36.5 GHz for both vertically and horizontally-polarized PMW radiation. When compared against daily AMSR-E measurements not used during the training procedure and subsequently averaged across the North American domain over the 9-year study period, the root mean squared error in the SVM output is 8 K or less while the anomaly correlation coefficient is 0.7 or greater. When compared relative to the results from the ANN at any of the six frequency and polarization combinations tested, the root mean squared error was reduced by more than 18 percent while the anomaly correlation coefficient was increased by more than 52 percent. Further, the temporal and spatial variability in the modeled brightness temperatures via the SVM more closely agrees with that found in the original AMSR-E measurements. These findings suggest the SVM is a superior alternative to the ANN for eventual use as a measurement operator within a data assimilation framework.

  9. Optimal Parameter Selection for Support Vector Machine Based on Artificial Bee Colony Algorithm: A Case Study of Grid-Connected PV System Power Prediction

    Directory of Open Access Journals (Sweden)

    Xiang-ming Gao

    2017-01-01

    Full Text Available Predicting the output power of photovoltaic system with nonstationarity and randomness, an output power prediction model for grid-connected PV systems is proposed based on empirical mode decomposition (EMD and support vector machine (SVM optimized with an artificial bee colony (ABC algorithm. First, according to the weather forecast data sets on the prediction date, the time series data of output power on a similar day with 15-minute intervals are built. Second, the time series data of the output power are decomposed into a series of components, including some intrinsic mode components IMFn and a trend component Res, at different scales using EMD. The corresponding SVM prediction model is established for each IMF component and trend component, and the SVM model parameters are optimized with the artificial bee colony algorithm. Finally, the prediction results of each model are reconstructed, and the predicted values of the output power of the grid-connected PV system can be obtained. The prediction model is tested with actual data, and the results show that the power prediction model based on the EMD and ABC-SVM has a faster calculation speed and higher prediction accuracy than do the single SVM prediction model and the EMD-SVM prediction model without optimization.

  10. Application of Artificial Neural Network and Support Vector Machines in Predicting Metabolizable Energy in Compound Feeds for Pigs

    Directory of Open Access Journals (Sweden)

    Hamed Ahmadi

    2017-06-01

    Full Text Available BackgroundIn the nutrition literature, there are several reports on the use of artificial neural network (ANN and multiple linear regression (MLR approaches for predicting feed composition and nutritive value, while the use of support vector machines (SVM method as a new alternative approach to MLR and ANN models is still not fully investigated.MethodsThe MLR, ANN, and SVM models were developed to predict metabolizable energy (ME content of compound feeds for pigs based on the German energy evaluation system from analyzed contents of crude protein (CP, ether extract (EE, crude fiber (CF, and starch. A total of 290 datasets from standardized digestibility studies with compound feeds was provided from several institutions and published papers, and ME was calculated thereon. Accuracy and precision of developed models were evaluated, given their produced prediction values.ResultsThe results revealed that the developed ANN [R2 = 0.95; root mean square error (RMSE = 0.19 MJ/kg of dry matter] and SVM (R2 = 0.95; RMSE = 0.21 MJ/kg of dry matter models produced better prediction values in estimating ME in compound feed than those produced by conventional MLR (R2 = 0.89; RMSE = 0.27 MJ/kg of dry matter.ConclusionThe developed ANN and SVM models produced better prediction values in estimating ME in compound feed than those produced by conventional MLR; however, there were not obvious differences between performance of ANN and SVM models. Thus, SVM model may also be considered as a promising tool for modeling the relationship between chemical composition and ME of compound feeds for pigs. To provide the readers and nutritionist with the easy and rapid tool, an Excel® calculator, namely, SVM_ME_pig, was created to predict the metabolizable energy values in compound feeds for pigs using developed support vector machine model.

  11. Accurate Multisteps Traffic Flow Prediction Based on SVM

    Directory of Open Access Journals (Sweden)

    Zhang Mingheng

    2013-01-01

    Full Text Available Accurate traffic flow prediction is prerequisite and important for realizing intelligent traffic control and guidance, and it is also the objective requirement for intelligent traffic management. Due to the strong nonlinear, stochastic, time-varying characteristics of urban transport system, artificial intelligence methods such as support vector machine (SVM are now receiving more and more attentions in this research field. Compared with the traditional single-step prediction method, the multisteps prediction has the ability that can predict the traffic state trends over a certain period in the future. From the perspective of dynamic decision, it is far important than the current traffic condition obtained. Thus, in this paper, an accurate multi-steps traffic flow prediction model based on SVM was proposed. In which, the input vectors were comprised of actual traffic volume and four different types of input vectors were compared to verify their prediction performance with each other. Finally, the model was verified with actual data in the empirical analysis phase and the test results showed that the proposed SVM model had a good ability for traffic flow prediction and the SVM-HPT model outperformed the other three models for prediction.

  12. Ice Cover Prediction of a Power Grid Transmission Line Based on Two-Stage Data Processing and Adaptive Support Vector Machine Optimized by Genetic Tabu Search

    Directory of Open Access Journals (Sweden)

    Xiaomin Xu

    2017-11-01

    Full Text Available With the increase in energy demand, extreme climates have gained increasing attention. Ice disasters on transmission lines can cause gap discharge and icing flashover electrical failures, which can lead to mechanical failure of the tower, conductor, and insulators, causing significant harm to people’s daily life and work. To address this challenge, an intelligent combinational model is proposed based on improved empirical mode decomposition and support vector machine for short-term forecasting of ice cover thickness. Firstly, in light of the characteristics of ice cover thickness data, fast independent component analysis (FICA is implemented to smooth the abnormal situation on the curve trend of the original data for prediction. Secondly, ensemble empirical mode decomposition (EEMD decomposes data after denoising it into different components from high frequency to low frequency, and support vector machine (SVM is introduced to predict the sequence of different components. Then, some modifications are performed on the standard SVM algorithm to accelerate the convergence speed. Combined with the advantages of genetic algorithm and tabu search, the combination algorithm is introduced to optimize the parameters of support vector machine. To improve the prediction accuracy, the kernel function of the support vector machine is adaptively adopted according to the complexity of different sequences. Finally, prediction results for each component series are added to obtain the overall ice cover thickness. A 220 kV DC transmission line in the Hunan Region is taken as the case study to verify the practicability and effectiveness of the proposed method. Meanwhile, we select SVM optimized by genetic algorithm (GA-SVM and traditional SVM algorithm for comparison, and use the error function of mean absolute percentage error (MAPE, root mean square error (RMSE and mean absolute error (MAE to compare prediction accuracy. Finally, we find that these improvements

  13. COMPARISON OF SVM AND FUZZY CLASSIFIER FOR AN INDIAN SCRIPT

    Directory of Open Access Journals (Sweden)

    M. J. Baheti

    2012-01-01

    Full Text Available With the advent of technological era, conversion of scanned document (handwritten or printed into machine editable format has attracted many researchers. This paper deals with the problem of recognition of Gujarati handwritten numerals. Gujarati numeral recognition requires performing some specific steps as a part of preprocessing. For preprocessing digitization, segmentation, normalization and thinning are done with considering that the image have almost no noise. Further affine invariant moments based model is used for feature extraction and finally Support Vector Machine (SVM and Fuzzy classifiers are used for numeral classification. . The comparison of SVM and Fuzzy classifier is made and it can be seen that SVM procured better results as compared to Fuzzy Classifier.

  14. Scope of Support Vector Machine in Steganography

    Science.gov (United States)

    Tanwar, Rohit; Malhotrab, Sona

    2017-08-01

    Steganography is a technique used for secure transmission of data. Using audio as a cover file opens path for many extra features. In order to overcome the limitations of conventional LSB technique, various variants were proposed by different authors. In order to achieve robustness, use of various optimization techniques has been tradition. In this paper the focus is put on use of Genetic Algorithm and Particle Swarm Intelligence in steganography. To list detailed scope, merits and de-merits of the two optimization techniques is the main constituent of this paper. In spite of analyzing the two techniques, the motivation and applicability of machine learning algorithm in the problem statement is also discussed. This paper will guide the path in using Support Vector Machine for optimizing the data hiding.

  15. Icing Forecasting for Power Transmission Lines Based on a Wavelet Support Vector Machine Optimized by a Quantum Fireworks Algorithm

    Directory of Open Access Journals (Sweden)

    Tiannan Ma

    2016-02-01

    Full Text Available Icing on power transmission lines is a serious threat to the security and stability of the power grid, and it is necessary to establish a forecasting model to make accurate predictions of icing thickness. In order to improve the forecasting accuracy with regard to icing thickness, this paper proposes a combination model based on a wavelet support vector machine (w-SVM and a quantum fireworks algorithm (QFA for prediction. First, this paper uses the wavelet kernel function to replace the Gaussian wavelet kernel function and improve the nonlinear mapping ability of the SVM. Second, the regular fireworks algorithm is improved by combining it with a quantum optimization algorithm to strengthen optimization performance. Lastly, the parameters of w-SVM are optimized using the QFA model, and the QFA-w-SVM icing thickness forecasting model is established. Through verification using real-world examples, the results show that the proposed method has a higher forecasting accuracy and the model is effective and feasible.

  16. [Research on detection method of adulterated olive oil by Raman spectroscopy and least squares support vector machine].

    Science.gov (United States)

    Zhang, Ying-Qiang; Dong, Wei; Zhang, Bing; Wang, Xiao-Ping

    2012-06-01

    For the purpose of the authentication of sorts as well as the prediction of contents of the oils which were adulterated into olive oil, 117 olive oil samples adulterated with sunflower seed oil, soybean oil and corn oil were detected by Raman spectroscopy, and least squares support vector machine (LS-SVM) based on multiple iterative optimization was used to identify the type of the adulterant oil, and the composite recognition rate was 97%. In addition, methods such as LS-SVM, ANNs and PLSR were used to build the Raman spectra calibration model of the adulterant oil (sunflower seed oil, soybean oil and corn oil) contents respectively, the results indicated that LS-SVM had the best predictive performance, and the root mean square error of prediction (RMSEP) ranged from 0.007 4 to 0.014 2. Research results showed the method based on Raman spectroscopy and LS-SVM was accurate, fast, simple and non-destructive for adulterated olive oil detection.

  17. Non-metallic coating thickness prediction using artificial neural network and support vector machine with time resolved thermography

    Science.gov (United States)

    Wang, Hongjin; Hsieh, Sheng-Jen; Peng, Bo; Zhou, Xunfei

    2016-07-01

    A method without requirements on knowledge about thermal properties of coatings or those of substrates will be interested in the industrial application. Supervised machine learning regressions may provide possible solution to the problem. This paper compares the performances of two regression models (artificial neural networks (ANN) and support vector machines for regression (SVM)) with respect to coating thickness estimations made based on surface temperature increments collected via time resolved thermography. We describe SVM roles in coating thickness prediction. Non-dimensional analyses are conducted to illustrate the effects of coating thicknesses and various factors on surface temperature increments. It's theoretically possible to correlate coating thickness with surface increment. Based on the analyses, the laser power is selected in such a way: during the heating, the temperature increment is high enough to determine the coating thickness variance but low enough to avoid surface melting. Sixty-one pain-coated samples with coating thicknesses varying from 63.5 μm to 571 μm are used to train models. Hyper-parameters of the models are optimized by 10-folder cross validation. Another 28 sets of data are then collected to test the performance of the three methods. The study shows that SVM can provide reliable predictions of unknown data, due to its deterministic characteristics, and it works well when used for a small input data group. The SVM model generates more accurate coating thickness estimates than the ANN model.

  18. Combination of the Manifold Dimensionality Reduction Methods with Least Squares Support vector machines for Classifying the Species of Sorghum Seeds

    Science.gov (United States)

    Chen, Y. M.; Lin, P.; He, J. Q.; He, Y.; Li, X. L.

    2016-01-01

    This study was carried out for rapid and noninvasive determination of the class of sorghum species by using the manifold dimensionality reduction (MDR) method and the nonlinear regression method of least squares support vector machines (LS-SVM) combing with the mid-infrared spectroscopy (MIRS) techniques. The methods of Durbin and Run test of augmented partial residual plot (APaRP) were performed to diagnose the nonlinearity of the raw spectral data. The nonlinear MDR methods of isometric feature mapping (ISOMAP), local linear embedding, laplacian eigenmaps and local tangent space alignment, as well as the linear MDR methods of principle component analysis and metric multidimensional scaling were employed to extract the feature variables. The extracted characteristic variables were utilized as the input of LS-SVM and established the relationship between the spectra and the target attributes. The mean average precision (MAP) scores and prediction accuracy were respectively used to evaluate the performance of models. The prediction results showed that the ISOMAP-LS-SVM model obtained the best classification performance, where the MAP scores and prediction accuracy were 0.947 and 92.86%, respectively. It can be concluded that the ISOMAP-LS-SVM model combined with the MIRS technique has the potential of classifying the species of sorghum in a reasonable accuracy.

  19. An Obstacle Recognizing Mechanism for Autonomous Underwater Vehicles Powered by Fuzzy Domain Ontology and Support Vector Machine

    Directory of Open Access Journals (Sweden)

    Zhen-Shu Mi

    2014-01-01

    Full Text Available The autonomous underwater vehicle (AUV and the problems associated with its safe navigation have been studied for the last two decades. The real-time underwater obstacle recognition procedure still has many complications associated with it and the issue becomes worse with vague sensor data. These problems can be coped with the merger of a robust classification mechanism and a domain knowledge acquisition technique. In this paper, we introduce a hybrid mechanism to recognize underwater obstacles for AUV based on fuzzy domain ontology and support vector machine (SVM. SVM is an efficient algorithm that was developed for recognizing 3D object in recent years and is a new generation learning system based on recent advances in statistical learning theory. The amalgamation of fuzzy domain ontology with SVM boosts the performance of the obstacle recognition module by providing the timely semantic domain information of the surrounding circumstances. Also the reasoning ability of the fuzzy domain ontology can expedite the obstacle avoidance process. In order to evaluate the performance of the system, we developed a prototype simulator based on OpenGL and VC++. We compared the outcomes of our proposed technique with backpropagation algorithm and classic SVM based techniques.

  20. Inline Measurement of Particle Concentrations in Multicomponent Suspensions using Ultrasonic Sensor and Least Squares Support Vector Machines.

    Science.gov (United States)

    Zhan, Xiaobin; Jiang, Shulan; Yang, Yili; Liang, Jian; Shi, Tielin; Li, Xiwen

    2015-09-18

    This paper proposes an ultrasonic measurement system based on least squares support vector machines (LS-SVM) for inline measurement of particle concentrations in multicomponent suspensions. Firstly, the ultrasonic signals are analyzed and processed, and the optimal feature subset that contributes to the best model performance is selected based on the importance of features. Secondly, the LS-SVM model is tuned, trained and tested with different feature subsets to obtain the optimal model. In addition, a comparison is made between the partial least square (PLS) model and the LS-SVM model. Finally, the optimal LS-SVM model with the optimal feature subset is applied to inline measurement of particle concentrations in the mixing process. The results show that the proposed method is reliable and accurate for inline measuring the particle concentrations in multicomponent suspensions and the measurement accuracy is sufficiently high for industrial application. Furthermore, the proposed method is applicable to the modeling of the nonlinear system dynamically and provides a feasible way to monitor industrial processes.

  1. Nonlinear Methodologies for Identifying Seismic Event and Nuclear Explosion Using Random Forest, Support Vector Machine, and Naive Bayes Classification

    Directory of Open Access Journals (Sweden)

    Longjun Dong

    2014-01-01

    Full Text Available The discrimination of seismic event and nuclear explosion is a complex and nonlinear system. The nonlinear methodologies including Random Forests (RF, Support Vector Machines (SVM, and Naïve Bayes Classifier (NBC were applied to discriminant seismic events. Twenty earthquakes and twenty-seven explosions with nine ratios of the energies contained within predetermined “velocity windows” and calculated distance are used in discriminators. Based on the one out cross-validation, ROC curve, calculated accuracy of training and test samples, and discriminating performances of RF, SVM, and NBC were discussed and compared. The result of RF method clearly shows the best predictive power with a maximum area of 0.975 under the ROC among RF, SVM, and NBC. The discriminant accuracies of RF, SVM, and NBC for test samples are 92.86%, 85.71%, and 92.86%, respectively. It has been demonstrated that the presented RF model can not only identify seismic event automatically with high accuracy, but also can sort the discriminant indicators according to calculated values of weights.

  2. Filtered selection coupled with support vector machines generate a functionally relevant prediction model for colorectal cancer

    Directory of Open Access Journals (Sweden)

    Gabere MN

    2016-06-01

    Full Text Available Musa Nur Gabere,1 Mohamed Aly Hussein,1 Mohammad Azhar Aziz2 1Department of Bioinformatics, King Abdullah International Medical Research Center/King Saud bin Abdulaziz University for Health Sciences, Riyadh, Saudi Arabia; 2Colorectal Cancer Research Program, Department of Medical Genomics, King Abdullah International Medical Research Center, Riyadh, Saudi Arabia Purpose: There has been considerable interest in using whole-genome expression profiles for the classification of colorectal cancer (CRC. The selection of important features is a crucial step before training a classifier.Methods: In this study, we built a model that uses support vector machine (SVM to classify cancer and normal samples using Affymetrix exon microarray data obtained from 90 samples of 48 patients diagnosed with CRC. From the 22,011 genes, we selected the 20, 30, 50, 100, 200, 300, and 500 genes most relevant to CRC using the minimum-redundancy–maximum-relevance (mRMR technique. With these gene sets, an SVM model was designed using four different kernel types (linear, polynomial, radial basis function [RBF], and sigmoid.Results: The best model, which used 30 genes and RBF kernel, outperformed other combinations; it had an accuracy of 84% for both ten fold and leave-one-out cross validations in discriminating the cancer samples from the normal samples. With this 30 genes set from mRMR, six classifiers were trained using random forest (RF, Bayes net (BN, multilayer perceptron (MLP, naïve Bayes (NB, reduced error pruning tree (REPT, and SVM. Two hybrids, mRMR + SVM and mRMR + BN, were the best models when tested on other datasets, and they achieved a prediction accuracy of 95.27% and 91.99%, respectively, compared to other mRMR hybrid models (mRMR + RF, mRMR + NB, mRMR + REPT, and mRMR + MLP. Ingenuity pathway analysis was used to analyze the functions of the 30 genes selected for this model and their potential association with CRC: CDH3, CEACAM7, CLDN1, IL8, IL6R, MMP1

  3. Quantitative analysis of routine chemical constituents in tobacco by near-infrared spectroscopy and support vector machine

    Science.gov (United States)

    Zhang, Yong; Cong, Qian; Xie, Yunfei; Yang, Jingxiu; Zhao, Bing

    2008-12-01

    It is important to monitor quality of tobacco during the production of cigarette. Therefore, in order to scientifically control the tobacco raw material and guarantee the cigarette quality, fast and accurate determination routine chemical of constituents of tobacco, including the total sugar, reducing sugar, Nicotine, the total nitrogen and so on, is needed. In this study, 50 samples of tobacco from different cultivation areas were surveyed by near-infrared (NIR) spectroscopy, and the spectral differences provided enough quantitative analysis information for the tobacco. Partial least squares regression (PLSR), artificial neural network (ANN), and support vector machine (SVM), were applied. The quantitative analysis models of 50 tobacco samples were studied comparatively in this experiment using PLSR, ANN, radial basis function (RBF) SVM regression, and the parameters of the models were also discussed. The spectrum variables of 50 samples had been compressed through the wavelet transformation technology before the models were established. The best experimental results were obtained using the (RBF) SVM regression with γ = 1.5, 1.3, 0.9, and 0.1, separately corresponds to total sugar, reducing sugar, Nicotine, and total nitrogen, respectively. Finally, compared with the back propagation (BP-ANN) and PLSR approach, SVM algorithm showed its excellent generalization for quantitative analysis results, while the number of samples for establishing the model is smaller. The overall results show that NIR spectroscopy combined with SVM can be efficiently utilized for rapid and accurate analysis of routine chemical compositions in tobacco. Simultaneously, the research can serve as the technical support and the foundation of quantitative analysis of other NIR applications.

  4. Supporting medical decisions with vector decision trees.

    Science.gov (United States)

    Sprogar, M; Kokol, P; Zorman, M; Podgorelec, V; Yamamoto, R; Masuda, G; Sakamoto, N

    2001-01-01

    The article presents the extension of a common decision tree concept to a multidimensional - vector - decision tree constructed with the help of evolutionary techniques. In contrary to the common decision tree the vector decision tree can make more than just one suggestion per input sample. It has the functionality of many separate decision trees acting on a same set of training data and answering different questions. Vector decision tree is therefore simple in its form, is easy to use and analyse and can express some relationships between decisions not visible before. To explore and test the possibilities of this concept we developed a software tool--DecRain--for building vector decision trees using the ideas of evolutionary computing. Generated vector decision trees showed good results in comparison to classical decision trees. The concept of vector decision trees can be safely and effectively used in any decision making process.

  5. Support vector machines for predictive modeling in heterogeneous catalysis: a comprehensive introduction and overfitting investigation based on two real applications.

    Science.gov (United States)

    Baumes, L A; Serra, J M; Serna, P; Corma, A

    2006-01-01

    This works provides an introduction to support vector machines (SVMs) for predictive modeling in heterogeneous catalysis, describing step by step the methodology with a highlighting of the points which make such technique an attractive approach. We first investigate linear SVMs, working in detail through a simple example based on experimental data derived from a study aiming at optimizing olefin epoxidation catalysts applying high-throughput experimentation. This case study has been chosen to underline SVM features in a visual manner because of the few catalytic variables investigated. It is shown how SVMs transform original data into another representation space of higher dimensionality. The concepts of Vapnik-Chervonenkis dimension and structural risk minimization are introduced. The SVM methodology is evaluated with a second catalytic application, that is, light paraffin isomerization. Finally, we discuss why SVMs is a strategic method, as compared to other machine learning techniques, such as neural networks or induction trees, and why emphasis is put on the problem of overfitting.

  6. A least square support vector machine-based approach for contingency classification and ranking in a large power system

    Directory of Open Access Journals (Sweden)

    Bhanu Pratap Soni

    2016-12-01

    Full Text Available This paper proposes an effective supervised learning approach for static security assessment of a large power system. Supervised learning approach employs least square support vector machine (LS-SVM to rank the contingencies and predict the system severity level. The severity of the contingency is measured by two scalar performance indices (PIs: line MVA performance index (PIMVA and Voltage-reactive power performance index (PIVQ. SVM works in two steps. Step I is the estimation of both standard indices (PIMVA and PIVQ that is carried out under different operating scenarios and Step II contingency ranking is carried out based on the values of PIs. The effectiveness of the proposed methodology is demonstrated on IEEE 39-bus (New England system. The approach can be beneficial tool which is less time consuming and accurate security assessment and contingency analysis at energy management center.

  7. Rule extraction from support vector machines using ensemble learning approach: an application for diagnosis of diabetes.

    Science.gov (United States)

    Han, Longfei; Luo, Senlin; Yu, Jianmin; Pan, Limin; Chen, Songjing

    2015-03-01

    Diabetes mellitus is a chronic disease and a worldwide public health challenge. It has been shown that 50-80% proportion of T2DM is undiagnosed. In this paper, support vector machines are utilized to screen diabetes, and an ensemble learning module is added, which turns the "black box" of SVM decisions into comprehensible and transparent rules, and it is also useful for solving imbalance problem. Results on China Health and Nutrition Survey data show that the proposed ensemble learning method generates rule sets with weighted average precision 94.2% and weighted average recall 93.9% for all classes. Furthermore, the hybrid system can provide a tool for diagnosis of diabetes, and it supports a second opinion for lay users.

  8. Support vector machines optimization based theory, algorithms, and extensions

    CERN Document Server

    Deng, Naiyang; Zhang, Chunhua

    2013-01-01

    Support Vector Machines: Optimization Based Theory, Algorithms, and Extensions presents an accessible treatment of the two main components of support vector machines (SVMs)-classification problems and regression problems. The book emphasizes the close connection between optimization theory and SVMs since optimization is one of the pillars on which SVMs are built.The authors share insight on many of their research achievements. They give a precise interpretation of statistical leaning theory for C-support vector classification. They also discuss regularized twi

  9. Power quality events recognition using a SVM-based method

    Energy Technology Data Exchange (ETDEWEB)

    Cerqueira, Augusto Santiago; Ferreira, Danton Diego; Ribeiro, Moises Vidal; Duque, Carlos Augusto [Department of Electrical Circuits, Federal University of Juiz de Fora, Campus Universitario, 36036 900, Juiz de Fora MG (Brazil)

    2008-09-15

    In this paper, a novel SVM-based method for power quality event classification is proposed. A simple approach for feature extraction is introduced, based on the subtraction of the fundamental component from the acquired voltage signal. The resulting signal is presented to a support vector machine for event classification. Results from simulation are presented and compared with two other methods, the OTFR and the LCEC. The proposed method shown an improved performance followed by a reasonable computational cost. (author)

  10. Segmentation of HER2 protein overexpression in immunohistochemically stained breast cancer images using Support Vector Machines

    Science.gov (United States)

    Pezoa, Raquel; Salinas, Luis; Torres, Claudio; Härtel, Steffen; Maureira-Fredes, Cristián; Arce, Paola

    2016-10-01

    Breast cancer is one of the most common cancers in women worldwide. Patient therapy is widely supported by analysis of immunohistochemically (IHC) stained tissue sections. In particular, the analysis of HER2 overexpression by immunohistochemistry helps to determine when patients are suitable to HER2-targeted treatment. Computational HER2 overexpression analysis is still an open problem and a challenging task principally because of the variability of immunohistochemistry tissue samples and the subjectivity of the specialists to assess the samples. In addition, the immunohistochemistry process can produce diverse artifacts that difficult the HER2 overexpression assessment. In this paper we study the segmentation of HER2 overexpression in IHC stained breast cancer tissue images using a support vector machine (SVM) classifier. We asses the SVM performance using diverse color and texture pixel-level features including the RGB, CMYK, HSV, CIE L*a*b* color spaces, color deconvolution filter and Haralick features. We measure classification performance for three datasets containing a total of 153 IHC images that were previously labeled by a pathologist.

  11. Cognitive Development Optimization Algorithm Based Support Vector Machines for Determining Diabetes

    Directory of Open Access Journals (Sweden)

    Utku Kose

    2016-03-01

    Full Text Available The definition, diagnosis and classification of Diabetes Mellitus and its complications are very important. First of all, the World Health Organization (WHO and other societies, as well as scientists have done lots of studies regarding this subject. One of the most important research interests of this subject is the computer supported decision systems for diagnosing diabetes. In such systems, Artificial Intelligence techniques are often used for several disease diagnostics to streamline the diagnostic process in daily routine and avoid misdiagnosis. In this study, a diabetes diagnosis system, which is formed via both Support Vector Machines (SVM and Cognitive Development Optimization Algorithm (CoDOA has been proposed. Along the training of SVM, CoDOA was used for determining the sigma parameter of the Gauss (RBF kernel function, and eventually, a classification process was made over the diabetes data set, which is related to Pima Indians. The proposed approach offers an alternative solution to the field of Artificial Intelligence-based diabetes diagnosis, and contributes to the related literature on diagnosis processes.

  12. Stable Isotope Ratio and Elemental Profile Combined with Support Vector Machine for Provenance Discrimination of Oolong Tea (Wuyi-Rock Tea).

    Science.gov (United States)

    Lou, Yun-Xiao; Fu, Xian-Shu; Yu, Xiao-Ping; Ye, Zi-Hong; Cui, Hai-Feng; Zhang, Ya-Fen

    2017-01-01

    This paper focused on an effective method to discriminate the geographical origin of Wuyi-Rock tea by the stable isotope ratio (SIR) and metallic element profiling (MEP) combined with support vector machine (SVM) analysis. Wuyi-Rock tea (n = 99) collected from nine producing areas and non-Wuyi-Rock tea (n = 33) from eleven nonproducing areas were analysed for SIR and MEP by established methods. The SVM model based on coupled data produced the best prediction accuracy (0.9773). This prediction shows that instrumental methods combined with a classification model can provide an effective and stable tool for provenance discrimination. Moreover, every feature variable in stable isotope and metallic element data was ranked by its contribution to the model. The results show that δ(2)H, δ(18)O, Cs, Cu, Ca, and Rb contents are significant indications for provenance discrimination and not all of the metallic elements improve the prediction accuracy of the SVM model.

  13. Support vector machine based training of multilayer feedforward neural networks as optimized by particle swarm algorithm: application in QSAR studies of bioactivity of organic compounds.

    Science.gov (United States)

    Lin, Wei-Qi; Jiang, Jian-Hui; Zhou, Yan-Ping; Wu, Hai-Long; Shen, Guo-Li; Yu, Ru-Qin

    2007-01-30

    Multilayer feedforward neural networks (MLFNNs) are important modeling techniques widely used in QSAR studies for their ability to represent nonlinear relationships between descriptors and activity. However, the problems of overfitting and premature convergence to local optima still pose great challenges in the practice of MLFNNs. To circumvent these problems, a support vector machine (SVM) based training algorithm for MLFNNs has been developed with the incorporation of particle swarm optimization (PSO). The introduction of the SVM based training mechanism imparts the developed algorithm with inherent capacity for combating the overfitting problem. Moreover, with the implementation of PSO for searching the optimal network weights, the SVM based learning algorithm shows relatively high efficiency in converging to the optima. The proposed algorithm has been evaluated using the Hansch data set. Application to QSAR studies of the activity of COX-2 inhibitors is also demonstrated. The results reveal that this technique provides superior performance to backpropagation (BP) and PSO training neural networks.

  14. The combination of a histogram-based clustering algorithm and support vector machine for the diagnosis of osteoporosis

    Energy Technology Data Exchange (ETDEWEB)

    Heo, Min Suk; Kavitha, Muthu Subash [Dept. of Oral and Maxillofacial Radiology and Dental Research Institute, School of Dentistry, Seoul National University, Seoul (Korea, Republic of); Asano, Akira [Graduate School of Engineering, Hiroshima University, Hiroshima (Japan); Taguchi, Akira [Dept. of Oral and Maxillofacial Radiology, Matsumoto Dental University, Nagano (Japan)

    2013-09-15

    To prevent low bone mineral density (BMD), that is, osteoporosis, in postmenopausal women, it is essential to diagnose osteoporosis more precisely. This study presented an automatic approach utilizing a histogram-based automatic clustering (HAC) algorithm with a support vector machine (SVM) to analyse dental panoramic radiographs (DPRs) and thus improve diagnostic accuracy by identifying postmenopausal women with low BMD or osteoporosis. We integrated our newly-proposed histogram-based automatic clustering (HAC) algorithm with our previously-designed computer-aided diagnosis system. The extracted moment-based features (mean, variance, skewness, and kurtosis) of the mandibular cortical width for the radial basis function (RBF) SVM classifier were employed. We also compared the diagnostic efficacy of the SVM model with the back propagation (BP) neural network model. In this study, DPRs and BMD measurements of 100 postmenopausal women patients (aged >50 years), with no previous record of osteoporosis, were randomly selected for inclusion. The accuracy, sensitivity, and specificity of the BMD measurements using our HAC-SVM model to identify women with low BMD were 93.0% (88.0%-98.0%), 95.8% (91.9%-99.7%) and 86.6% (79.9%-93.3%), respectively, at the lumbar spine; and 89.0% (82.9%-95.1%), 96.0% (92.2%-99.8%) and 84.0% (76.8%-91.2%), respectively, at the femoral neck. Our experimental results predict that the proposed HAC-SVM model combination applied on DPRs could be useful to assist dentists in early diagnosis and help to reduce the morbidity and mortality associated with low BMD and osteoporosis.

  15. A Hybrid Hierarchical Approach for Brain Tissue Segmentation by Combining Brain Atlas and Least Square Support Vector Machine

    Science.gov (United States)

    Kasiri, Keyvan; Kazemi, Kamran; Dehghani, Mohammad Javad; Helfroush, Mohammad Sadegh

    2013-01-01

    In this paper, we present a new semi-automatic brain tissue segmentation method based on a hybrid hierarchical approach that combines a brain atlas as a priori information and a least-square support vector machine (LS-SVM). The method consists of three steps. In the first two steps, the skull is removed and the cerebrospinal fluid (CSF) is extracted. These two steps are performed using the toolbox FMRIB's automated segmentation tool integrated in the FSL software (FSL-FAST) developed in Oxford Centre for functional MRI of the brain (FMRIB). Then, in the third step, the LS-SVM is used to segment grey matter (GM) and white matter (WM). The training samples for LS-SVM are selected from the registered brain atlas. The voxel intensities and spatial positions are selected as the two feature groups for training and test. SVM as a powerful discriminator is able to handle nonlinear classification problems; however, it cannot provide posterior probability. Thus, we use a sigmoid function to map the SVM output into probabilities. The proposed method is used to segment CSF, GM and WM from the simulated magnetic resonance imaging (MRI) using Brainweb MRI simulator and real data provided by Internet Brain Segmentation Repository. The semi-automatically segmented brain tissues were evaluated by comparing to the corresponding ground truth. The Dice and Jaccard similarity coefficients, sensitivity and specificity were calculated for the quantitative validation of the results. The quantitative results show that the proposed method segments brain tissues accurately with respect to corresponding ground truth. PMID:24696800

  16. GAPscreener: An automatic tool for screening human genetic association literature in PubMed using the support vector machine technique

    Directory of Open Access Journals (Sweden)

    Khoury Muin J

    2008-04-01

    Full Text Available Abstract Background Synthesis of data from published human genetic association studies is a critical step in the translation of human genome discoveries into health applications. Although genetic association studies account for a substantial proportion of the abstracts in PubMed, identifying them with standard queries is not always accurate or efficient. Further automating the literature-screening process can reduce the burden of a labor-intensive and time-consuming traditional literature search. The Support Vector Machine (SVM, a well-established machine learning technique, has been successful in classifying text, including biomedical literature. The GAPscreener, a free SVM-based software tool, can be used to assist in screening PubMed abstracts for human genetic association studies. Results The data source for this research was the HuGE Navigator, formerly known as the HuGE Pub Lit database. Weighted SVM feature selection based on a keyword list obtained by the two-way z score method demonstrated the best screening performance, achieving 97.5% recall, 98.3% specificity and 31.9% precision in performance testing. Compared with the traditional screening process based on a complex PubMed query, the SVM tool reduced by about 90% the number of abstracts requiring individual review by the database curator. The tool also ascertained 47 articles that were missed by the traditional literature screening process during the 4-week test period. We examined the literature on genetic associations with preterm birth as an example. Compared with the traditional, manual process, the GAPscreener both reduced effort and improved accuracy. Conclusion GAPscreener is the first free SVM-based application available for screening the human genetic association literature in PubMed with high recall and specificity. The user-friendly graphical user interface makes this a practical, stand-alone application. The software can be downloaded at no charge.

  17. [A new peptide retention time prediction method for mass spectrometry based proteomic analysis by a serial and parallel support vector machine model].

    Science.gov (United States)

    Zhang, Jiyang; Zhang, Daibing; Zhang, Wei; Xie, Hongwei

    2012-09-01

    The online reversed-phase liquid chromatography (RPLC) contributes a lot for the large scale mass spectrometry based protein identification in proteomics. Retention time (RT) as an important evidence can be used to distinguish the false positive/true positive peptide identifications. Because of the nonlinear concentration curve of organic phase in the whole range of run time and the interactions among peptides, the sequence based RT prediction of peptides has low accuracy and is difficult to generalize in practice, and thus is less effective in the validation of peptide identifications. A serial and parallel support vector machine (SP-SVM) method was proposed to characterize the nonlinear effect of organic phase concentration and the interactions among peptides. The SP-SVM contains a support vector regression (SVR) only for model training (named as p-SVR) and 4 SVM models (named as C-SVM, 1-SVR, s-SVR and n-SVR) for the RT prediction. After distinguishing the peptide chromatographic behavior by C-SVM, 1-SVR and s-SVR were used to predict the peptide RT specifically to improve the accuracy. Then the peptide RT was normalized by n-SVR to characterize the peptide interactions. The prediction accuracy was improved significantly by applying this method to the processing of the complex sample dataset. The coefficient of the determination between predictive and experimental RTs reaches 0. 95, the prediction error range was less than 20% of the total LC run time for more than 95% cases, and less than 10% of the total LC run time for more than 70% cases. The performance of this model reaches the best of known so far. More important, the SP-SVM method provides a framework to take into account the interactions among peptides in chromatographic separation, and its performance can be improved further by introducing new data processing and experiment strategy.

  18. Ovarian cancer detection from metabolomic liquid chromatography/mass spectrometry data by support vector machines

    Directory of Open Access Journals (Sweden)

    Walker L DeEtte

    2009-08-01

    Full Text Available Abstract Background The majority of ovarian cancer biomarker discovery efforts focus on the identification of proteins that can improve the predictive power of presently available diagnostic tests. We here show that metabolomics, the study of metabolic changes in biological systems, can also provide characteristic small molecule fingerprints related to this disease. Results In this work, new approaches to automatic classification of metabolomic data produced from sera of ovarian cancer patients and benign controls are investigated. The performance of support vector machines (SVM for the classification of liquid chromatography/time-of-flight mass spectrometry (LC/TOF MS metabolomic data focusing on recognizing combinations or "panels" of potential metabolic diagnostic biomarkers was evaluated. Utilizing LC/TOF MS, sera from 37 ovarian cancer patients and 35 benign controls were studied. Optimum panels of spectral features observed in positive or/and negative ion mode electrospray (ESI MS with the ability to distinguish between control and ovarian cancer samples were selected using state-of-the-art feature selection methods such as recursive feature elimination and L1-norm SVM. Conclusion Three evaluation processes (leave-one-out-cross-validation, 12-fold-cross-validation, 52-20-split-validation were used to examine the SVM models based on the selected panels in terms of their ability for differentiating control vs. disease serum samples. The statistical significance for these feature selection results were comprehensively investigated. Classification of the serum sample test set was over 90% accurate indicating promise that the above approach may lead to the development of an accurate and reliable metabolomic-based approach for detecting ovarian cancer.

  19. Research on Bearing Fault Diagnosis Using APSO-SVM Method

    Directory of Open Access Journals (Sweden)

    Guangchun Yang

    2014-07-01

    Full Text Available According to the statistics, over 30 % of rotating equipment faults occurred in bearings. Therefore, the fault diagnosis of bearing has a great significance. To achieve effective bearing faults diagnosis, a diagnosis model based on support vector machine (SVM and accelerated particle swarm optimization (APSO for bearing fault diagnosis is proposed. Firstly, empirical mode decomposition (EMD is adopted to decompose the fault signal into sum of several intrinsic mode function (IMF. Then, the feature vectors for bearing fault diagnosis are obtained from the IMF energy. Finally, the fault mode is identified by SVM model which is optimized by APSO. The experiment results show that the proposed diagnosis method can identify the bearing fault type effectively.

  20. Biomarkers of Eating Disorders Using Support Vector Machine Analysis of Structural Neuroimaging Data: Preliminary Results

    Directory of Open Access Journals (Sweden)

    Antonio Cerasa

    2015-01-01

    Full Text Available Presently, there are no valid biomarkers to identify individuals with eating disorders (ED. The aim of this work was to assess the feasibility of a machine learning method for extracting reliable neuroimaging features allowing individual categorization of patients with ED. Support Vector Machine (SVM technique, combined with a pattern recognition method, was employed utilizing structural magnetic resonance images. Seventeen females with ED (six with diagnosis of anorexia nervosa and 11 with bulimia nervosa were compared against 17 body mass index-matched healthy controls (HC. Machine learning allowed individual diagnosis of ED versus HC with an Accuracy ≥ 0.80. Voxel-based pattern recognition analysis demonstrated that voxels influencing the classification Accuracy involved the occipital cortex, the posterior cerebellar lobule, precuneus, sensorimotor/premotor cortices, and the medial prefrontal cortex, all critical regions known to be strongly involved in the pathophysiological mechanisms of ED. Although these findings should be considered preliminary given the small size investigated, SVM analysis highlights the role of well-known brain regions as possible biomarkers to distinguish ED from HC at an individual level, thus encouraging the translational implementation of this new multivariate approach in the clinical practice.

  1. Drought sensitivity mapping using two one-class support vector machine algorithms

    Science.gov (United States)

    Roodposhti, Majid Shadman; Safarrad, Taher; Shahabi, Himan

    2017-09-01

    This paper investigates the use of standardised precipitation index (SPI) and the enhanced vegetation index (EVI) as indicators of soil moisture. On the other hand, we attempted to produce a drought sensitivity map (DSM) for vegetation cover using two one-class support vector machine (OC-SVM) algorithms. In order to achieve promising results a combination of both 30 years statistical data (1978 to 2008) of synoptic stations and 10 years MODIS imagery archive (2001 to 2010) are used within the boundary of Kermanshah province, Iran. The synoptic data and MODIS imagery were used for extraction of SPI and EVI, respectively. The objective is, therefore, to explore meaningful changes of vegetation in response to drought anomalies, in the first step, and further extraction of reliable spatio-temporal patterns of drought sensitivity using efficient classification technique and spatial criteria, in the next step. To this end, four main criteria including elevation, slope, aspect and geomorphic classes are considered for DSM using two OC-SVM algorithms. Results of the analysis showed distinct spatio-temporal patterns of drought impacts on vegetation cover. The receiver operating characteristics (ROC) curves for the proposed DSM was used along with the simple overlay technique for accuracy assessment phase and the area under curve (AUC = 0.80) value was calculated.

  2. Modeling and Forecast Biological Oxygen Demand (BOD using Combination Support Vector Machine with Wavelet Transform

    Directory of Open Access Journals (Sweden)

    Abazar Solgi

    2017-06-01

    Full Text Available Introduction: Chemical pollution of surface water is one of the serious issues that threaten the quality of water. This would be more important when the surface waters used for human drinking supply. One of the key parameters used to measure water pollution is BOD. Because many variables affect the water quality parameters and a complex nonlinear relationship between them is established conventional methods can not solve the problem of quality management of water resources. For years, the Artificial Intelligence methods were used for prediction of nonlinear time series and a good performance of them has been reported. Recently, the wavelet transform that is a signal processing method, has shown good performance in hydrological modeling and is widely used. Extensive research has been globally provided in use of Artificial Neural Network and Adaptive Neural Fuzzy Inference System models to forecast the BOD. But support vector machine has not yet been extensively studied. For this purpose, in this study the ability of support vector machine to predict the monthly BOD parameter based on the available data, temperature, river flow, DO and BOD was evaluated. Materials and Methods: SVM was introduced in 1992 by Vapnik that was a Russian mathematician. This method has been built based on the statistical learning theory. In recent years the use of SVM, is highly taken into consideration. SVM was used in applications such as handwriting recognition, face recognition and has good results. Linear SVM is simplest type of SVM, consists of a hyperplane that dataset of positive and negative is separated with maximum distance. The suitable separator has maximum distance from every one of two dataset. So about this machine that its output groups label (here -1 to +1, the aim is to obtain the maximum distance between categories. This is interpreted to have a maximum margin. Wavelet transform is one of methods in the mathematical science that its main idea was

  3. An Enhanced MEMS Error Modeling Approach Based on Nu-Support Vector Regression

    Directory of Open Access Journals (Sweden)

    Deepak Bhatt

    2012-07-01

    Full Text Available Micro Electro Mechanical System (MEMS-based inertial sensors have made possible the development of a civilian land vehicle navigation system by offering a low-cost solution. However, the accurate modeling of the MEMS sensor errors is one of the most challenging tasks in the design of low-cost navigation systems. These sensors exhibit significant errors like biases, drift, noises; which are negligible for higher grade units. Different conventional techniques utilizing the Gauss Markov model and neural network method have been previously utilized to model the errors. However, Gauss Markov model works unsatisfactorily in the case of MEMS units due to the presence of high inherent sensor errors. On the other hand, modeling the random drift utilizing Neural Network (NN is time consuming, thereby affecting its real-time implementation. We overcome these existing drawbacks by developing an enhanced Support Vector Machine (SVM based error model. Unlike NN, SVMs do not suffer from local minimisation or over-fitting problems and delivers a reliable global solution. Experimental results proved that the proposed SVM approach reduced the noise standard deviation by 10–35% for gyroscopes and 61–76% for accelerometers. Further, positional error drifts under static conditions improved by 41% and 80% in comparison to NN and GM approaches.

  4. Application of Support Vector Machines for Estimating Wall Parameters in Through-Wall Radar Imaging

    Directory of Open Access Journals (Sweden)

    Hua-Mei Zhang

    2015-01-01

    Full Text Available In through-wall radar imaging (TWRI, ambiguities in wall characteristics including the thickness and the relative permittivity will distort the image and shift the imaged target position. To quickly and accurately estimate the wall parameters, an approach based on a support vector machine (SVM is proposed. In TWRI problem, the nonlinearity is embodied in the relationship between backscatter data and the wall parameters, which can be obtained through the SVM training process. Measurement results reveal that once the training phase is completed, the technique only needs no more than one second to estimate wall parameters with acceptable errors. Then through-wall images are reconstructed using a back-projection (BP algorithm by a finite-difference time-domain (FDTD simulation. Noiseless and noisy measurements are discussed; the simulation results demonstrate that noisy contamination has little influence on the imaging quality. Furthermore, the feasibility and the validity are tested by a more realistic situation. The results show that high-quality and focused images are obtained regardless of the errors in the wall parameter estimates.

  5. Evaluation of low degree polynomial kernel support vector machines for modelling Pore-water pressure responses

    Directory of Open Access Journals (Sweden)

    Babangida Nuraddeen Muhammad

    2016-01-01

    Full Text Available Pore-water pressure (PWP is influenced by climatic changes, especially rainfall. These changes may affect the stability of, particularly unsaturated slopes. Thus monitoring the changes in PWP resulting from climatic factors has become an important part of effective slope management. However, this monitoring requires field instrumentation program, which is resource and labour expensive. Recently, soft computing modelling has become an alternative. Low degree polynomial kernel support vector machine (SVM was evaluated in modelling the PWP changes. The developed model used pore-water pressure and rainfall data collected from an instrumented slope. Wrapper technique was used to select input features and k-fold cross validation was used to calibrate the model parameters. The developed model showed great promise in modelling the pore-water pressure changes. High correlation, with coefficient of determination of 0.9694 between the predicted and observed changes was obtained. The one degree polynomial SVM model yielded competitive result, and can be used to provide lead time records of PWP which can aid in better slope management.

  6. Biomarkers of Eating Disorders Using Support Vector Machine Analysis of Structural Neuroimaging Data: Preliminary Results.

    Science.gov (United States)

    Cerasa, Antonio; Castiglioni, Isabella; Salvatore, Christian; Funaro, Angela; Martino, Iolanda; Alfano, Stefania; Donzuso, Giulia; Perrotta, Paolo; Gioia, Maria Cecilia; Gilardi, Maria Carla; Quattrone, Aldo

    2015-01-01

    Presently, there are no valid biomarkers to identify individuals with eating disorders (ED). The aim of this work was to assess the feasibility of a machine learning method for extracting reliable neuroimaging features allowing individual categorization of patients with ED. Support Vector Machine (SVM) technique, combined with a pattern recognition method, was employed utilizing structural magnetic resonance images. Seventeen females with ED (six with diagnosis of anorexia nervosa and 11 with bulimia nervosa) were compared against 17 body mass index-matched healthy controls (HC). Machine learning allowed individual diagnosis of ED versus HC with an Accuracy ≥ 0.80. Voxel-based pattern recognition analysis demonstrated that voxels influencing the classification Accuracy involved the occipital cortex, the posterior cerebellar lobule, precuneus, sensorimotor/premotor cortices, and the medial prefrontal cortex, all critical regions known to be strongly involved in the pathophysiological mechanisms of ED. Although these findings should be considered preliminary given the small size investigated, SVM analysis highlights the role of well-known brain regions as possible biomarkers to distinguish ED from HC at an individual level, thus encouraging the translational implementation of this new multivariate approach in the clinical practice.

  7. Application of structured support vector machine backpropagation to a convolutional neural network for human pose estimation.

    Science.gov (United States)

    Witoonchart, Peerajak; Chongstitvatana, Prabhas

    2017-08-01

    In this study, for the first time, we show how to formulate a structured support vector machine (SSVM) as two layers in a convolutional neural network, where the top layer is a loss augmented inference layer and the bottom layer is the normal convolutional layer. We show that a deformable part model can be learned with the proposed structured SVM neural network by backpropagating the error of the deformable part model to the convolutional neural network. The forward propagation calculates the loss augmented inference and the backpropagation calculates the gradient from the loss augmented inference layer to the convolutional layer. Thus, we obtain a new type of convolutional neural network called an Structured SVM convolutional neural network, which we applied to the human pose estimation problem. This new neural network can be used as the final layers in deep learning. Our method jointly learns the structural model parameters and the appearance model parameters. We implemented our method as a new layer in the existing Caffe library. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Review of data mining applications for quality assessment in manufacturing industry: support vector machines

    Directory of Open Access Journals (Sweden)

    Rostami Hamidey

    2015-01-01

    Full Text Available In many modern manufacturing industries, data that characterize the manufacturing process are electronically collected and stored in databases. Due to advances in data collection systems and analysis tools, data mining (DM has widely been applied for quality assessment (QA in manufacturing industries. In DM, the choice of technique to be used in analyzing a dataset and assessing the quality depend on the understanding of the analyst. On the other hand, with the advent of improved and efficient prediction techniques, there is a need for an analyst to know which tool performs better for a particular type of dataset. Although a few review papers have recently been published to discuss DM applications in manufacturing for QA, this paper provides an extensive review to investigate the application of a special DM technique, namely support vector machine (SVM to deal with QA problems. This review provides a comprehensive analysis of the literature from various points of view as DM concepts, data preprocessing, DM applications for each quality task, SVM preliminaries, and application results. Summary tables and figures are also provided besides to the analyses. Finally, conclusions and future research directions are provided.

  9. Fractional Snow Cover Mapping by Artificial Neural Networks and Support Vector Machines

    Science.gov (United States)

    Çiftçi, B. B.; Kuter, S.; Akyürek, Z.; Weber, G.-W.

    2017-11-01

    Snow is an important land cover whose distribution over space and time plays a significant role in various environmental processes. Hence, snow cover mapping with high accuracy is necessary to have a real understanding for present and future climate, water cycle, and ecological changes. This study aims to investigate and compare the design and use of artificial neural networks (ANNs) and support vector machines (SVMs) algorithms for fractional snow cover (FSC) mapping from satellite data. ANN and SVM models with different model building settings are trained by using Moderate Resolution Imaging Spectroradiometer surface reflectance values of bands 1-7, normalized difference snow index and normalized difference vegetation index as predictor variables. Reference FSC maps are generated from higher spatial resolution Landsat ETM+ binary snow cover maps. Results on the independent test data set indicate that the developed ANN model with hyperbolic tangent transfer function in the output layer and the SVM model with radial basis function kernel produce high FSC mapping accuracies with the corresponding values of R = 0.93 and R = 0.92, respectively.

  10. Head and Neck Cancer Tumor Segmentation Using Support Vector Machine in Dynamic Contrast-Enhanced MRI

    Directory of Open Access Journals (Sweden)

    Wei Deng

    2017-01-01

    Full Text Available Objective. We aimed to propose an automatic method based on Support Vector Machine (SVM and Dynamic Contrast-Enhanced Magnetic Resonance Imaging (DCE-MRI to segment the tumor lesions of head and neck cancer (HNC. Materials and Methods. 120 DCE-MRI samples were collected. Five curve features and two principal components of the normalized time-intensity curve (TIC in 80 samples were calculated as the dataset in training three SVM classifiers. The other 40 samples were used as the testing dataset. The area overlap measure (AOM and the corresponding ratio (CR and percent match (PM were calculated to evaluate the segmentation performance. The training and testing procedure was repeated for 10 times, and the average performance was calculated and compared with similar studies. Results. Our method has achieved higher accuracy compared to the previous results in literature in HNC segmentation. The average AOM with the testing dataset was 0.76 ± 0.08, and the mean CR and PM were 79 ± 9% and 86 ± 8%, respectively. Conclusion. With improved segmentation performance, our proposed method is of potential in clinical practice for HNC.

  11. Objective Auscultation of TCM Based on Wavelet Packet Fractal Dimension and Support Vector Machine

    Science.gov (United States)

    Yan, Jian-Jun; Wang, Yi-Qin; Liu, Guo-Ping; Yan, Hai-Xia; Xia, Chun-Ming; Shen, Xiaojing

    2014-01-01

    This study was conducted to illustrate that auscultation features based on the fractal dimension combined with wavelet packet transform (WPT) were conducive to the identification the pattern of syndromes of Traditional Chinese Medicine (TCM). The WPT and the fractal dimension were employed to extract features of auscultation signals of 137 patients with lung Qi-deficient pattern, 49 patients with lung Yin-deficient pattern, and 43 healthy subjects. With these features, the classification model was constructed based on multiclass support vector machine (SVM). When all auscultation signals were trained by SVM to decide the patterns of TCM syndromes, the overall recognition rate of model was 79.49%; when male and female auscultation signals were trained, respectively, to decide the patterns, the overall recognition rate of model reached 86.05%. The results showed that the methods proposed in this paper were effective to analyze auscultation signals, and the performance of model can be greatly improved when the distinction of gender was considered. PMID:24883068

  12. An enhanced MEMS error modeling approach based on Nu-Support Vector Regression.

    Science.gov (United States)

    Bhatt, Deepak; Aggarwal, Priyanka; Bhattacharya, Prabir; Devabhaktuni, Vijay

    2012-01-01

    Micro Electro Mechanical System (MEMS)-based inertial sensors have made possible the development of a civilian land vehicle navigation system by offering a low-cost solution. However, the accurate modeling of the MEMS sensor errors is one of the most challenging tasks in the design of low-cost navigation systems. These sensors exhibit significant errors like biases, drift, noises; which are negligible for higher grade units. Different conventional techniques utilizing the Gauss Markov model and neural network method have been previously utilized to model the errors. However, Gauss Markov model works unsatisfactorily in the case of MEMS units due to the presence of high inherent sensor errors. On the other hand, modeling the random drift utilizing Neural Network (NN) is time consuming, thereby affecting its real-time implementation. We overcome these existing drawbacks by developing an enhanced Support Vector Machine (SVM) based error model. Unlike NN, SVMs do not suffer from local minimisation or over-fitting problems and delivers a reliable global solution. Experimental results proved that the proposed SVM approach reduced the noise standard deviation by 10-35% for gyroscopes and 61-76% for accelerometers. Further, positional error drifts under static conditions improved by 41% and 80% in comparison to NN and GM approaches.

  13. Predictions of hot spot residues at protein-protein interfaces using support vector machines.

    Directory of Open Access Journals (Sweden)

    Stefano Lise

    2011-02-01

    Full Text Available Protein-protein interactions are critically dependent on just a few 'hot spot' residues at the interface. Hot spots make a dominant contribution to the free energy of binding and they can disrupt the interaction if mutated to alanine. Here, we present HSPred, a support vector machine(SVM-based method to predict hot spot residues, given the structure of a complex. HSPred represents an improvement over a previously described approach (Lise et al, BMC Bioinformatics 2009, 10:365. It achieves higher accuracy by treating separately predictions involving either an arginine or a glutamic acid residue. These are the amino acid types on which the original model did not perform well. We have therefore developed two additional SVM classifiers, specifically optimised for these cases. HSPred reaches an overall precision and recall respectively of 61% and 69%, which roughly corresponds to a 10% improvement. An implementation of the described method is available as a web server at http://bioinf.cs.ucl.ac.uk/hspred. It is free to non-commercial users.

  14. Intelligent Diagnosis Method for Centrifugal Pump System Using Vibration Signal and Support Vector Machine

    Directory of Open Access Journals (Sweden)

    Hongtao Xue

    2014-01-01

    Full Text Available This paper proposed an intelligent diagnosis method for a centrifugal pump system using statistic filter, support vector machine (SVM, possibility theory, and Dempster-Shafer theory (DST on the basis of the vibration signals, to diagnose frequent faults in the centrifugal pump at an early stage, such as cavitation, impeller unbalance, and shaft misalignment. Firstly, statistic filter is used to extract the feature signals of pump faults from the measured vibration signals across an optimum frequency region, and nondimensional symptom parameters (NSPs are defined to represent the feature signals for distinguishing fault types. Secondly, the optimal classification hyperplane for distinguishing two states is obtained by SVM and NSPs, and its function is defined as synthetic symptom parameter (SSP in order to increase the diagnosis’ sensitivity. Finally, the possibility functions of the SSP are used to construct a sequential fuzzy diagnosis for fault detection and fault-type identification by possibility theory and DST. The proposed method has been applied to detect the faults of the centrifugal pump, and the efficiency of the method has been verified using practical examples.

  15. Rolling element bearings multi-fault classification based on the wavelet denoising and support vector machine

    Science.gov (United States)

    Abbasion, S.; Rafsanjani, A.; Farshidianfar, A.; Irani, N.

    2007-10-01

    Due to the importance of rolling bearings as one of the most widely used industrial machinery elements, development of proper monitoring and fault diagnosis procedure to prevent malfunctioning and failure of these elements during operation is necessary. For rolling bearing fault detection, it is expected that a desired time-frequency analysis method has good computational efficiency, and has good resolution in both, time and frequency domains. The point of interest of this investigation is the presence of an effective method for multi-fault diagnosis in such systems with optimizing signal decomposition levels by using wavelet analysis and support vector machine (SVM). The system that is under study is an electric motor which has two rolling bearings, one of them is next to the output shaft and the other one is next to the fan and for each of them there is one normal form and three false forms, which make 8 forms for study. The results that we achieved from wavelet analysis and SVM are fully in agreement with empirical result.

  16. Classification of Imbalanced Data by Oversampling in Kernel Space of Support Vector Machines.

    Science.gov (United States)

    Mathew, Josey; Pang, Chee Khiang; Luo, Ming; Leong, Weng Hoe

    2017-10-10

    Historical data sets for fault stage diagnosis in industrial machines are often imbalanced and consist of multiple categories or classes. Learning discriminative models from such data sets is challenging due to the lack of representative data and the bias of traditional classifiers toward the majority class. Sampling methods like synthetic minority oversampling technique (SMOTE) have been traditionally used for such problems to artificially balance the data set before being trained by a classifier. This paper proposes a weighted kernel-based SMOTE (WK-SMOTE) that overcomes the limitation of SMOTE for nonlinear problems by oversampling in the feature space of support vector machine (SVM) classifier. The proposed oversampling algorithm along with a cost-sensitive SVM formulation is shown to improve performance when compared to other baseline methods on multiple benchmark imbalanced data sets. In addition, a hierarchical framework is developed for multiclass imbalanced problems that have a progressive class order. The proposed WK-SMOTE and hierarchical framework are validated on a real-world industrial fault detection problem to identify deterioration in insulation of high-voltage equipments.

  17. Prediction of piRNAs using transposon interaction and a support vector machine.

    Science.gov (United States)

    Wang, Kai; Liang, Chun; Liu, Jinding; Xiao, Huamei; Huang, Shuiqing; Xu, Jianhua; Li, Fei

    2014-12-30

    Piwi-interacting RNAs (piRNAs) are a class of small non-coding RNA primarily expressed in germ cells that can silence transposons at the post-transcriptional level. Accurate prediction of piRNAs remains a significant challenge. We developed a program for piRNA annotation (Piano) using piRNA-transposon interaction information. We downloaded 13,848 Drosophila piRNAs and 261,500 Drosophila transposons. The piRNAs were aligned to transposons with a maximum of three mismatches. Then, piRNA-transposon interactions were predicted by RNAplex. Triplet elements combining structure and sequence information were extracted from piRNA-transposon matching/pairing duplexes. A support vector machine (SVM) was used on these triplet elements to classify real and pseudo piRNAs, achieving 95.3 ± 0.33% accuracy and 96.0 ± 0.5% sensitivity. The SVM classifier can be used to correctly predict human, mouse and rat piRNAs, with overall accuracy of 90.6%. We used Piano to predict piRNAs for the rice stem borer, Chilo suppressalis, an important rice insect pest that causes huge yield loss. As a result, 82,639 piRNAs were predicted in C. suppressalis. Piano demonstrates excellent piRNA prediction performance by using both structure and sequence features of transposon-piRNAs interactions. Piano is freely available to the academic community at http://ento.njau.edu.cn/Piano.html .

  18. ANALISIS SENTIMEN PENGGUNA TWITTER MENGGUNAKAN METODE SUPPORT VECTOR MACHINE BERBASIS CLOUD COMPUTING

    Directory of Open Access Journals (Sweden)

    Rizky Maulana

    2017-05-01

    Full Text Available Twitter merupakan jejaring sosial dengan pertumbuhan tercepat sejak tahun 2006 menurut MIT Technology Review (2013, Indonesia menempati Negara ketiga penyumbang tweet terbanyak dengan jumlah 1 milyar tweet. Fakta tersebut menjadikan Twitter menjadi salah satu sumber data text yang dapat digali dan dimanfaatkan untuk berbagai keperluan melalui metode-metode pengambilan data teks atau text mining, salah satunya adalah analisis sentimen pengguna terhadap tokoh-tokoh publik indonesia. Penelitian ini membuat sebuah sistem yang dapat melakukan analisis sentimen pengguna twitter terhadap tokoh publik secara real time dengan menggunakan Twitter Streming API dan metode Support Vectore Machine (SVM memanfaatkan pustaka libSVM sebagai salah satu machine learning untuk text classification. Algoritma Porter digunakan dalam proses stemming untuk ekstraksi fitur dan metode Term Frequency untuk pembobotan. Perangkat lunak dibangun dengan menggunakan bahasa pemrograman PHP untuk sisi server yang berjalan pada platform cloud Windows Azure dan Java untuk sisi client yang berjalan pada platform Android. Dari hasil penelitian dengan 1.400 tweet pada dataset dan 200 data uji didapatkan akurasi sebesar 79,5%.

  19. Using support vector machine ensembles for target audience classification on Twitter.

    Science.gov (United States)

    Lo, Siaw Ling; Chiong, Raymond; Cornforth, David

    2015-01-01

    The vast amount and diversity of the content shared on social media can pose a challenge for any business wanting to use it to identify potential customers. In this paper, our aim is to investigate the use of both unsupervised and supervised learning methods for target audience classification on Twitter with minimal annotation efforts. Topic domains were automatically discovered from contents shared by followers of an account owner using Twitter Latent Dirichlet Allocation (LDA). A Support Vector Machine (SVM) ensemble was then trained using contents from different account owners of the various topic domains identified by Twitter LDA. Experimental results show that the methods presented are able to successfully identify a target audience with high accuracy. In addition, we show that using a statistical inference approach such as bootstrapping in over-sampling, instead of using random sampling, to construct training datasets can achieve a better classifier in an SVM ensemble. We conclude that such an ensemble system can take advantage of data diversity, which enables real-world applications for differentiating prospective customers from the general audience, leading to business advantage in the crowded social media space.

  20. Support vector machine for classification of walking conditions of persons after stroke with dropped foot.

    Science.gov (United States)

    Lau, Hong-yin; Tong, Kai-yu; Zhu, Hailong

    2009-08-01

    Walking with dropped foot represents a major gait disorder, which is observed in hemiparetic persons after stroke. This study explores the use of support vector machine (SVMs) to classify different walking conditions for hemiparetic subjects. Seven participants with dropped foot (category 4 of functional ambulatory category) walked in five different conditions: level ground, stair ascent, stair descent, upslope, and downslope. The kinematic data were measured by two portable sensor units, each comprising an accelerometer and gyroscope attached to the lower limb on the shank and foot segments. The overall classification accuracy of stair ascent, stair descent, and other walking conditions was 92.9% using input features from the sensor attached to the shank. It was further improved to 97.5% by adding two more inputs from the sensor attached to the foot. Stair ascent was also classified by the inputs from the foot sensor unit with 96% accuracy. The performance of an SVM was shown to be superior to that of other machine learning methods using artificial neural networks (ANN) and radial basis function neural networks (RBF). The results suggested that the SVM classification method could be applied as a tool for pathological gait analysis, pattern recognition, control signals in functional electrical stimulation (FES) and rehabilitation robot, as well as activity monitoring during rehabilitation of daily activities.

  1. Cloud Monitoring for Solar Plants with Support Vector Machine Based Fault Detection System

    Directory of Open Access Journals (Sweden)

    Hong-Chan Chang

    2014-01-01

    Full Text Available This study endeavors to develop a cloud monitoring system for solar plants. This system incorporates numerous subsystems, such as a geographic information system, an instantaneous power-consumption information system, a reporting system, and a failure diagnosis system. Visual C# was integrated with ASP.NET and SQL technologies for the proposed monitoring system. A user interface for database management system was developed to enable users to access solar power information and management systems. In addition, by using peer-to-peer (P2P streaming technology and audio/video encoding/decoding technology, real-time video data can be transmitted to the client end, providing instantaneous and direct information. Regarding smart failure diagnosis, the proposed system employs the support vector machine (SVM theory to train failure mathematical models. The solar power data are provided to the SVM for analysis in order to determine the failure types and subsequently eliminate failures at an early stage. The cloud energy-management platform developed in this study not only enhances the management and maintenance efficiency of solar power plants but also increases the market competitiveness of solar power generation and renewable energy.

  2. Rotating Machinery Fault Diagnosis for Imbalanced Data Based on Fast Clustering Algorithm and Support Vector Machine

    Directory of Open Access Journals (Sweden)

    Xiaochen Zhang

    2017-01-01

    Full Text Available To diagnose rotating machinery fault for imbalanced data, a method based on fast clustering algorithm (FCA and support vector machine (SVM was proposed. Combined with variational mode decomposition (VMD and principal component analysis (PCA, sensitive features of the rotating machinery fault were obtained and constituted the imbalanced fault sample set. Next, a fast clustering algorithm was adopted to reduce the number of the majority data from the imbalanced fault sample set. Consequently, the balanced fault sample set consisted of the clustered data and the minority data from the imbalanced fault sample set. After that, SVM was trained with the balanced fault sample set and tested with the imbalanced fault sample set so the fault diagnosis model of the rotating machinery could be obtained. Finally, the gearbox fault data set and the rolling bearing fault data set were adopted to test the fault diagnosis model. The experimental results showed that the fault diagnosis model could effectively diagnose the rotating machinery fault for imbalanced data.

  3. Using support vector machine ensembles for target audience classification on Twitter.

    Directory of Open Access Journals (Sweden)

    Siaw Ling Lo

    Full Text Available The vast amount and diversity of the content shared on social media can pose a challenge for any business wanting to use it to identify potential customers. In this paper, our aim is to investigate the use of both unsupervised and supervised learning methods for target audience classification on Twitter with minimal annotation efforts. Topic domains were automatically discovered from contents shared by followers of an account owner using Twitter Latent Dirichlet Allocation (LDA. A Support Vector Machine (SVM ensemble was then trained using contents from different account owners of the various topic domains identified by Twitter LDA. Experimental results show that the methods presented are able to successfully identify a target audience with high accuracy. In addition, we show that using a statistical inference approach such as bootstrapping in over-sampling, instead of using random sampling, to construct training datasets can achieve a better classifier in an SVM ensemble. We conclude that such an ensemble system can take advantage of data diversity, which enables real-world applications for differentiating prospective customers from the general audience, leading to business advantage in the crowded social media space.

  4. Application of neural networks and support vector machine for significant wave height prediction

    Directory of Open Access Journals (Sweden)

    Jadran Berbić

    2017-07-01

    Full Text Available For the purposes of planning and operation of maritime activities, information about wave height dynamics is of great importance. In the paper, real-time prediction of significant wave heights for the following 0.5–5.5 h is provided, using information from 3 or more time points. In the first stage, predictions are made by varying the quantity of significant wave heights from previous time points and various ways of using data are discussed. Afterwards, in the best model, according to the criteria of practicality and accuracy, the influence of wind is taken into account. Predictions are made using two machine learning methods – artificial neural networks (ANN and support vector machine (SVM. The models were built using the built-in functions of software Weka, developed by Waikato University, New Zealand.

  5. Prediction of mitochondrial proteins based on genetic algorithm - partial least squares and support vector machine.

    Science.gov (United States)

    Tan, F; Feng, X; Fang, Z; Li, M; Guo, Y; Jiang, L

    2007-11-01

    Mitochondria are essential cell organelles of eukaryotes. Hence, it is vitally important to develop an automated and reliable method for timely identification of novel mitochondrial proteins. In this study, mitochondrial proteins were encoded by dipeptide composition technology; then, the genetic algorithm-partial least square (GA-PLS) method was used to evaluate the dipeptide composition elements which are more important in recognizing mitochondrial proteins; further, these selected dipeptide composition elements were applied to support vector machine (SVM)-based classifiers to predict the mitochondrial proteins. All the models were trained and validated by the jackknife cross-validation test. The prediction accuracy is 85%, suggesting that it performs reasonably well in predicting the mitochondrial proteins. Our results strongly imply that not all the dipeptide compositions are informative and indispensable for predicting proteins. The source code of MATLAB and the dataset are available on request under liml@scu.edu.cn.

  6. Towards artificial intelligence based diesel engine performance control under varying operating conditions using support vector regression

    Directory of Open Access Journals (Sweden)

    Naradasu Kumar Ravi

    2013-01-01

    Full Text Available Diesel engine designers are constantly on the look-out for performance enhancement through efficient control of operating parameters. In this paper, the concept of an intelligent engine control system is proposed that seeks to ensure optimized performance under varying operating conditions. The concept is based on arriving at the optimum engine operating parameters to ensure the desired output in terms of efficiency. In addition, a Support Vector Machines based prediction model has been developed to predict the engine performance under varying operating conditions. Experiments were carried out at varying loads, compression ratios and amounts of exhaust gas recirculation using a variable compression ratio diesel engine for data acquisition. It was observed that the SVM model was able to predict the engine performance accurately.

  7. Acoustic Biometric System Based on Preprocessing Techniques and Linear Support Vector Machines

    Directory of Open Access Journals (Sweden)

    Lara del Val

    2015-06-01

    Full Text Available Drawing on the results of an acoustic biometric system based on a MSE classifier, a new biometric system has been implemented. This new system preprocesses acoustic images, extracts several parameters and finally classifies them, based on Support Vector Machine (SVM. The preprocessing techniques used are spatial filtering, segmentation—based on a Gaussian Mixture Model (GMM to separate the person from the background, masking—to reduce the dimensions of images—and binarization—to reduce the size of each image. An analysis of classification error and a study of the sensitivity of the error versus the computational burden of each implemented algorithm are presented. This allows the selection of the most relevant algorithms, according to the benefits required by the system. A significant improvement of the biometric system has been achieved by reducing the classification error, the computational burden and the storage requirements.

  8. Ambient Air Quality Classification by Grey Wolf Optimizer Based Support Vector Machine

    Science.gov (United States)

    Shekhawat, Shalini

    2017-01-01

    With the development of society along with an escalating population, the concerns regarding public health have cropped up. The quality of air becomes primary concern regarding constant increase in the number of vehicles and industrial development. With this concern, several indices have been proposed to indicate the pollutant concentrations. In this paper, we present a mathematical framework to formulate a Cumulative Index (CI) on the basis of an individual concentration of four major pollutants (SO2, NO2, PM2.5, and PM10). Further, a supervised learning algorithm based classifier is proposed. This classifier employs support vector machine (SVM) to classify air quality into two types, that is, good or harmful. The potential inputs for this classifier are the calculated values of CIs. The efficacy of the classifier is tested on the real data of three locations: Kolkata, Delhi, and Bhopal. It is observed that the classifier performs well to classify the quality of air. PMID:28890728

  9. Bio-signal analysis system design with support vector machines based on cloud computing service architecture.

    Science.gov (United States)

    Shen, Chia-Ping; Chen, Wei-Hsin; Chen, Jia-Ming; Hsu, Kai-Ping; Lin, Jeng-Wei; Chiu, Ming-Jang; Chen, Chi-Huang; Lai, Feipei

    2010-01-01

    Today, many bio-signals such as Electroencephalography (EEG) are recorded in digital format. It is an emerging research area of analyzing these digital bio-signals to extract useful health information in biomedical engineering. In this paper, a bio-signal analyzing cloud computing architecture, called BACCA, is proposed. The system has been designed with the purpose of seamless integration into the National Taiwan University Health Information System. Based on the concept of. NET Service Oriented Architecture, the system integrates heterogeneous platforms, protocols, as well as applications. In this system, we add modern analytic functions such as approximated entropy and adaptive support vector machine (SVM). It is shown that the overall accuracy of EEG bio-signal analysis has increased to nearly 98% for different data sets, including open-source and clinical data sets.

  10. Signal Detection for QPSK Based Cognitive Radio Systems using Support Vector Machines

    Directory of Open Access Journals (Sweden)

    M. T. Mushtaq

    2015-04-01

    Full Text Available Cognitive radio based network enables opportunistic dynamic spectrum access by sensing, adopting and utilizing the unused portion of licensed spectrum bands. Cognitive radio is intelligent enough to adapt the communication parameters of the unused licensed spectrum. Spectrum sensing is one of the most important tasks of the cognitive radio cycle. In this paper, the auto-correlation function kernel based Support Vector Machine (SVM classifier along with Welch's Periodogram detector is successfully implemented for the detection of four QPSK (Quadrature Phase Shift Keying based signals propagating through an AWGN (Additive White Gaussian Noise channel. It is shown that the combination of statistical signal processing and machine learning concepts improve the spectrum sensing process and spectrum sensing is possible even at low Signal to Noise Ratio (SNR values up to -50 dB.

  11. Content-Based Discovery for Web Map Service using Support Vector Machine and User Relevance Feedback.

    Science.gov (United States)

    Hu, Kai; Gui, Zhipeng; Cheng, Xiaoqiang; Qi, Kunlun; Zheng, Jie; You, Lan; Wu, Huayi

    2016-01-01

    Many discovery methods for geographic information services have been proposed. There are approaches for finding and matching geographic information services, methods for constructing geographic information service classification schemes, and automatic geographic information discovery. Overall, the efficiency of the geographic information discovery keeps improving., There are however, still two problems in Web Map Service (WMS) discovery that must be solved. Mismatches between the graphic contents of a WMS and the semantic descriptions in the metadata make discovery difficult for human users. End-users and computers comprehend WMSs differently creating semantic gaps in human-computer interactions. To address these problems, we propose an improved query process for WMSs based on the graphic contents of WMS layers, combining Support Vector Machine (SVM) and user relevance feedback. Our experiments demonstrate that the proposed method can improve the accuracy and efficiency of WMS discovery.

  12. SAMSVM: A tool for misalignment filtration of SAM-format sequences with support vector machine.

    Science.gov (United States)

    Yang, Jianfeng; Ding, Xiaofan; Sun, Xing; Tsang, Shui-Ying; Xue, Hong

    2015-12-01

    Sequence alignment/map (SAM) formatted sequences [Li H, Handsaker B, Wysoker A et al., Bioinformatics 25(16):2078-2079, 2009.] have taken on a main role in bioinformatics since the development of massive parallel sequencing. However, because misalignment of sequences poses a significant problem in analysis of sequencing data that could lead to false positives in variant calling, the exclusion of misaligned reads is a necessity in analysis. In this regard, the multiple features of SAM-formatted sequences can be treated as vectors in a multi-dimension space to allow the application of a support vector machine (SVM). Applying the LIBSVM tools developed by Chang and Lin [Chang C-C, Lin C-J, ACM Trans Intell Syst Technol 2:1-27, 2011.] as a simple interface for support vector classification, the SAMSVM package has been developed in this study to enable misalignment filtration of SAM-formatted sequences. Cross-validation between two simulated datasets processed with SAMSVM yielded accuracies that ranged from 0.89 to 0.97 with F-scores ranging from 0.77 to 0.94 in 14 groups characterized by different mutation rates from 0.001 to 0.1, indicating that the model built using SAMSVM was accurate in misalignment detection. Application of SAMSVM to actual sequencing data resulted in filtration of misaligned reads and correction of variant calling.

  13. Gear fault diagnosis under variable conditions with intrinsic time-scale decomposition-singular value decomposition and support vector machine

    Energy Technology Data Exchange (ETDEWEB)

    Xing, Zhanqiang; Qu, Jianfeng; Chai, Yi; Tang, Qiu; Zhou, Yuming [Chongqing University, Chongqing (China)

    2017-02-15

    The gear vibration signal is nonlinear and non-stationary, gear fault diagnosis under variable conditions has always been unsatisfactory. To solve this problem, an intelligent fault diagnosis method based on Intrinsic time-scale decomposition (ITD)-Singular value decomposition (SVD) and Support vector machine (SVM) is proposed in this paper. The ITD method is adopted to decompose the vibration signal of gearbox into several Proper rotation components (PRCs). Subsequently, the singular value decomposition is proposed to obtain the singular value vectors of the proper rotation components and improve the robustness of feature extraction under variable conditions. Finally, the Support vector machine is applied to classify the fault type of gear. According to the experimental results, the performance of ITD-SVD exceeds those of the time-frequency analysis methods with EMD and WPT combined with SVD for feature extraction, and the classifier of SVM outperforms those for K-nearest neighbors (K-NN) and Back propagation (BP). Moreover, the proposed approach can accurately diagnose and identify different fault types of gear under variable conditions.

  14. Modeling of Soil Aggregate Stability using Support Vector Machines and Multiple Linear Regression

    Directory of Open Access Journals (Sweden)

    Ali Asghar Besalatpour

    2016-02-01

    stability. Conclusion: The pixel-scale soil aggregate stability predicted that using the developed SVM and MLR models demonstrates the usefulness of incorporating topographic and vegetation information along with the soil properties as predictors. However, the SVM model achieved more accuracy in predicting soil aggregate stability compared to the MLR model. Therefore, it appears that support vector machines can be used for prediction of some soil physical properties such as geometric mean diameter of soil aggregates in the study area. Furthermore, despite the high predictive accuracy of the SVM method compared to the MLR technique which was confirmed by the obtained results in the current study, the advantages of the SVM method such as its intrinsic effectiveness with respect to traditional prediction methods, less effort in setting up the control parameters for architecture design, the possibility of solving the learning problem according to constrained quadratic programming methods, etc., should motivate soil scientists to work on it further in the future.

  15. Detecting microcalcifications in mammograms by using SVM method for the diagnostics of breast cancer

    Science.gov (United States)

    Wan, Baikun; Wang, Ruiping; Qi, Hongzhi; Cao, Xuchen

    2005-01-01

    Support vector machine (SVM) is a new statistical learning method. Compared with the classical machine learning methods, SVM learning discipline is to minimize the structural risk instead of the empirical risk of the classical methods, and it gives better generative performance. Because SVM algorithm is a convex quadratic optimization problem, the local optimal solution is certainly the global optimal one. In this paper a SVM algorithm is applied to detect the micro-calcifications (MCCs) in mammograms for the diagnostics of breast cancer that has not been reported yet. It had been tested with 10 mammograms and the results show that the algorithm can achieve a higher true positive in comparison with artificial neural network (ANN) based on the empirical risk minimization, and is valuable for further study and application in the clinical engineering.

  16. Human Walking Pattern Recognition Based on KPCA and SVM with Ground Reflex Pressure Signal

    Directory of Open Access Journals (Sweden)

    Zhaoqin Peng

    2013-01-01

    Full Text Available Algorithms based on the ground reflex pressure (GRF signal obtained from a pair of sensing shoes for human walking pattern recognition were investigated. The dimensionality reduction algorithms based on principal component analysis (PCA and kernel principal component analysis (KPCA for walking pattern data compression were studied in order to obtain higher recognition speed. Classifiers based on support vector machine (SVM, SVM-PCA, and SVM-KPCA were designed, and the classification performances of these three kinds of algorithms were compared using data collected from a person who was wearing the sensing shoes. Experimental results showed that the algorithm fusing SVM and KPCA had better recognition performance than the other two methods. Experimental outcomes also confirmed that the sensing shoes developed in this paper can be employed for automatically recognizing human walking pattern in unlimited environments which demonstrated the potential application in the control of exoskeleton robots.

  17. Numerical Control Machine Tool Fault Diagnosis Using Hybrid Stationary Subspace Analysis and Least Squares Support Vector Machine with a Single Sensor

    Directory of Open Access Journals (Sweden)

    Chen Gao

    2017-03-01

    Full Text Available Tool fault diagnosis in numerical control (NC machines plays a significant role in ensuring manufacturing quality. However, current methods of tool fault diagnosis lack accuracy. Therefore, in the present paper, a fault diagnosis method was proposed based on stationary subspace analysis (SSA and least squares support vector machine (LS-SVM using only a single sensor. First, SSA was used to extract stationary and non-stationary sources from multi-dimensional signals without the need for independency and without prior information of the source signals, after the dimensionality of the vibration signal observed by a single sensor was expanded by phase space reconstruction technique. Subsequently, 10 dimensionless parameters in the time-frequency domain for non-stationary sources were calculated to generate samples to train the LS-SVM. Finally, the measured vibration signals from tools of an unknown state and their non-stationary sources were separated by SSA to serve as test samples for the trained SVM. The experimental validation demonstrated that the proposed method has better diagnosis accuracy than three previous methods based on LS-SVM alone, Principal component analysis and LS-SVM or on SSA and Linear discriminant analysis.

  18. Prognostic and Predictive Value of p21-activated Kinase 6 Associated Support Vector Machine Classifier in Gastric Cancer Treated by 5-fluorouracil/Oxaliplatin Chemotherapy

    Directory of Open Access Journals (Sweden)

    Yuming Jiang

    2017-08-01

    Full Text Available To determine whether p21-activated Kinase (PAK 6 is a prognostic and predictive marker in gastric cancer (GC and to construct a classifier that can identify a subset of patients who are highly sensitive to 5-fluorouracil/oxaliplatin chemotherapy. We retrospectively analyzed the expression levels of PAK6, cyclooxygenase 2, p21WAF1, Ki-67, excision repair cross-complementing gene 1, and thymidylate synthase in 242 paraffin-embedded GC specimens of the training cohort by immunohistochemistry. Then, we used support vector machine (SVM–based methods to develop a predictive classifier for chemotherapy (chemotherapy score – CS-SVM classifier. Further validation was performed in an independent cohort of 279 patients. High PAK6 expression was associated with poor prognosis and increased chemoresistance to 5-FU/oxaliplatin chemotherapy. The CS-SVM classifier distinguished patients with stage II and III GC into low- and high-CS-SVM groups, with significant differences in the 5-year disease-free survival (DFS and overall survival (OS in chemotherapy patients. Moreover, chemotherapy significantly prolonged the DFS and OS of the high CS-SVM patients in the training and validation cohorts. In conclusion, PAK6 was an independent prognostic factor and increased chemoresistance. The CS-SVM classifier distinguished a subgroup of stage II and III patients who would highly benefit from chemotherapy, thus facilitating patient counseling and individualizing the management.

  19. The Bi-Directional Prediction of Carbon Fiber Production Using a Combination of Improved Particle Swarm Optimization and Support Vector Machine.

    Science.gov (United States)

    Xiao, Chuncai; Hao, Kuangrong; Ding, Yongsheng

    2014-12-30

    This paper creates a bi-directional prediction model to predict the performance of carbon fiber and the productive parameters based on a support vector machine (SVM) and improved particle swarm optimization (IPSO) algorithm (SVM-IPSO). In the SVM, it is crucial to select the parameters that have an important impact on the performance of prediction. The IPSO is proposed to optimize them, and then the SVM-IPSO model is applied to the bi-directional prediction of carbon fiber production. The predictive accuracy of SVM is mainly dependent on its parameters, and IPSO is thus exploited to seek the optimal parameters for SVM in order to improve its prediction capability. Inspired by a cell communication mechanism, we propose IPSO by incorporating information of the global best solution into the search strategy to improve exploitation, and we employ IPSO to establish the bi-directional prediction model: in the direction of the forward prediction, we consider productive parameters as input and property indexes as output; in the direction of the backward prediction, we consider property indexes as input and productive parameters as output, and in this case, the model becomes a scheme design for novel style carbon fibers. The results from a set of the experimental data show that the proposed model can outperform the radial basis function neural network (RNN), the basic particle swarm optimization (PSO) method and the hybrid approach of genetic algorithm and improved particle swarm optimization (GA-IPSO) method in most of the experiments. In other words, simulation results demonstrate the effectiveness and advantages of the SVM-IPSO model in dealing with the problem of forecasting.

  20. The Bi-Directional Prediction of Carbon Fiber Production Using a Combination of Improved Particle Swarm Optimization and Support Vector Machine

    Directory of Open Access Journals (Sweden)

    Chuncai Xiao

    2014-12-01

    Full Text Available This paper creates a bi-directional prediction model to predict the performance of carbon fiber and the productive parameters based on a support vector machine (SVM and improved particle swarm optimization (IPSO algorithm (SVM-IPSO. In the SVM, it is crucial to select the parameters that have an important impact on the performance of prediction. The IPSO is proposed to optimize them, and then the SVM-IPSO model is applied to the bi-directional prediction of carbon fiber production. The predictive accuracy of SVM is mainly dependent on its parameters, and IPSO is thus exploited to seek the optimal parameters for SVM in order to improve its prediction capability. Inspired by a cell communication mechanism, we propose IPSO by incorporating information of the global best solution into the search strategy to improve exploitation, and we employ IPSO to establish the bi-directional prediction model: in the direction of the forward prediction, we consider productive parameters as input and property indexes as output; in the direction of the backward prediction, we consider property indexes as input and productive parameters as output, and in this case, the model becomes a scheme design for novel style carbon fibers. The results from a set of the experimental data show that the proposed model can outperform the radial basis function neural network (RNN, the basic particle swarm optimization (PSO method and the hybrid approach of genetic algorithm and improved particle swarm optimization (GA-IPSO method in most of the experiments. In other words, simulation results demonstrate the effectiveness and advantages of the SVM-IPSO model in dealing with the problem of forecasting.

  1. Identification of Type 2 Diabetes-associated combination of SNPs using Support Vector Machine

    Directory of Open Access Journals (Sweden)

    Park Keun-Joon

    2010-04-01

    Full Text Available Abstract Background Type 2 diabetes mellitus (T2D, a metabolic disorder characterized by insulin resistance and relative insulin deficiency, is a complex disease of major public health importance. Its incidence is rapidly increasing in the developed countries. Complex diseases are caused by interactions between multiple genes and environmental factors. Most association studies aim to identify individual susceptibility single markers using a simple disease model. Recent studies are trying to estimate the effects of multiple genes and multi-locus in genome-wide association. However, estimating the effects of association is very difficult. We aim to assess the rules for classifying diseased and normal subjects by evaluating potential gene-gene interactions in the same or distinct biological pathways. Results We analyzed the importance of gene-gene interactions in T2D susceptibility by investigating 408 single nucleotide polymorphisms (SNPs in 87 genes involved in major T2D-related pathways in 462 T2D patients and 456 healthy controls from the Korean cohort studies. We evaluated the support vector machine (SVM method to differentiate between cases and controls using SNP information in a 10-fold cross-validation test. We achieved a 65.3% prediction rate with a combination of 14 SNPs in 12 genes by using the radial basis function (RBF-kernel SVM. Similarly, we investigated subpopulation data sets of men and women and identified different SNP combinations with the prediction rates of 70.9% and 70.6%, respectively. As the high-throughput technology for genome-wide SNPs improves, it is likely that a much higher prediction rate with biologically more interesting combination of SNPs can be acquired by using this method. Conclusions Support Vector Machine based feature selection method in this research found novel association between combinations of SNPs and T2D in a Korean population.

  2. Antepartum fetal heart rate feature extraction and classification using empirical mode decomposition and support vector machine

    Directory of Open Access Journals (Sweden)

    Ahmed Shuhaila

    2011-01-01

    Full Text Available Abstract Background Cardiotocography (CTG is the most widely used tool for fetal surveillance. The visual analysis of fetal heart rate (FHR traces largely depends on the expertise and experience of the clinician involved. Several approaches have been proposed for the effective interpretation of FHR. In this paper, a new approach for FHR feature extraction based on empirical mode decomposition (EMD is proposed, which was used along with support vector machine (SVM for the classification of FHR recordings as 'normal' or 'at risk'. Methods The FHR were recorded from 15 subjects at a sampling rate of 4 Hz and a dataset consisting of 90 randomly selected records of 20 minutes duration was formed from these. All records were labelled as 'normal' or 'at risk' by two experienced obstetricians. A training set was formed by 60 records, the remaining 30 left as the testing set. The standard deviations of the EMD components are input as features to a support vector machine (SVM to classify FHR samples. Results For the training set, a five-fold cross validation test resulted in an accuracy of 86% whereas the overall geometric mean of sensitivity and specificity was 94.8%. The Kappa value for the training set was .923. Application of the proposed method to the testing set (30 records resulted in a geometric mean of 81.5%. The Kappa value for the testing set was .684. Conclusions Based on the overall performance of the system it can be stated that the proposed methodology is a promising new approach for the feature extraction and classification of FHR signals.

  3. LS-SVM: uma nova ferramenta quimiométrica para regressão multivariada. Comparação de modelos de regressão LS-SVM e PLS na quantificação de adulterantes em leite em pó empregando NIR LS-SVM: a new chemometric tool for multivariate regression. Comparison of LS-SVM and pls regression for determination of common adulterants in powdered milk by nir spectroscopy

    Directory of Open Access Journals (Sweden)

    Marco F. Ferrão

    2007-08-01

    Full Text Available Least-squares support vector machines (LS-SVM were used as an alternative multivariate calibration method for the simultaneous quantification of some common adulterants found in powdered milk samples, using near-infrared spectroscopy. Excellent models were built using LS-SVM for determining R², RMSECV and RMSEP values. LS-SVMs show superior performance for quantifying starch, whey and sucrose in powdered milk samples in relation to PLSR. This study shows that it is possible to determine precisely the amount of one and two common adulterants simultaneously in powdered milk samples using LS-SVM and NIR spectra.

  4. Classification of different kinds of pesticide residues on lettuce based on fluorescence spectra and WT-BCC-SVM algorithm

    Science.gov (United States)

    Zhou, Xin; Jun, Sun; Zhang, Bing; Jun, Wu

    2017-07-01

    In order to improve the reliability of the spectrum feature extracted by wavelet transform, a method combining wavelet transform (WT) with bacterial colony chemotaxis algorithm and support vector machine (BCC-SVM) algorithm (WT-BCC-SVM) was proposed in this paper. Besides, we aimed to identify different kinds of pesticide residues on lettuce leaves in a novel and rapid non-destructive way by using fluorescence spectra technology. The fluorescence spectral data of 150 lettuce leaf samples of five different kinds of pesticide residues on the surface of lettuce were obtained using Cary Eclipse fluorescence spectrometer. Standard normalized variable detrending (SNV detrending), Savitzky-Golay coupled with Standard normalized variable detrending (SG-SNV detrending) were used to preprocess the raw spectra, respectively. Bacterial colony chemotaxis combined with support vector machine (BCC-SVM) and support vector machine (SVM) classification models were established based on full spectra (FS) and wavelet transform characteristics (WTC), respectively. Moreover, WTC were selected by WT. The results showed that the accuracy of training set, calibration set and the prediction set of the best optimal classification model (SG-SNV detrending-WT-BCC-SVM) were 100%, 98% and 93.33%, respectively. In addition, the results indicated that it was feasible to use WT-BCC-SVM to establish diagnostic model of different kinds of pesticide residues on lettuce leaves.

  5. Using support vector machines with tract-based spatial statistics for automated classification of Tourette syndrome children

    Science.gov (United States)

    Wen, Hongwei; Liu, Yue; Wang, Jieqiong; Zhang, Jishui; Peng, Yun; He, Huiguang

    2016-03-01

    Tourette syndrome (TS) is a developmental neuropsychiatric disorder with the cardinal symptoms of motor and vocal tics which emerges in early childhood and fluctuates in severity in later years. To date, the neural basis of TS is not fully understood yet and TS has a long-term prognosis that is difficult to accurately estimate. Few studies have looked at the potential of using diffusion tensor imaging (DTI) in conjunction with machine learning algorithms in order to automate the classification of healthy children and TS children. Here we apply Tract-Based Spatial Statistics (TBSS) method to 44 TS children and 48 age and gender matched healthy children in order to extract the diffusion values from each voxel in the white matter (WM) skeleton, and a feature selection algorithm (ReliefF) was used to select the most salient voxels for subsequent classification with support vector machine (SVM). We use a nested cross validation to yield an unbiased assessment of the classification method and prevent overestimation. The accuracy (88.04%), sensitivity (88.64%) and specificity (87.50%) were achieved in our method as peak performance of the SVM classifier was achieved using the axial diffusion (AD) metric, demonstrating the potential of a joint TBSS and SVM pipeline for fast, objective classification of healthy and TS children. These results support that our methods may be useful for the early identification of subjects with TS, and hold promise for predicting prognosis and treatment outcome for individuals with TS.

  6. Combination model of empirical mode decomposition and SVM for river flow forecasting

    Science.gov (United States)

    Ismail, Shuhaida; Shabri, Ani

    2017-04-01

    A reliable prediction of river flow is always important for sound planning and smooth operation of the water resource system. In this study, a combination models based on Empirical Mode Decomposition (EMD) and Support Vector Machine (SVM) model referred as EMD-SVM is proposed for estimating future value of monthly river flow data. The proposed EMD-SVM has three important stages. The first stage, the data were decomposed into several numbers of Intrinsic Mode Functions (IMF) and a residual using EMD technique. In the second stage, the meaningful signals are identified using a statistical measure and the new dataset are obtained in this stage. The final stage applied SVM as forecasting tool to perform the river flow forecasting. To assess the effectiveness of EMD-SVM model, Selangor and Bernam Rivers were used as case studies. The experiment results stated that the proposed EMD-SVM have outperformed other model based on Mean Absolute Error (MAE), Root Mean Square Error (RMSE), and Correlation Coefficient (r). This indicating that EMD-SVM is a useful tool to predict complex time series with non-stationary and nonlinearity issues as well as a promising new method for river flow forecasting.

  7. An Improved Grey Wolf Optimization Strategy Enhanced SVM and Its Application in Predicting the Second Major

    Directory of Open Access Journals (Sweden)

    Yan Wei

    2017-01-01

    Full Text Available In order to develop a new and effective prediction system, the full potential of support vector machine (SVM was explored by using an improved grey wolf optimization (GWO strategy in this study. An improved GWO, IGWO, was first proposed to identify the most discriminative features for major prediction. In the proposed approach, particle swarm optimization (PSO was firstly adopted to generate the diversified initial positions, and then GWO was used to update the current positions of population in the discrete searching space, thus getting the optimal feature subset for the better classification purpose based on SVM. The resultant methodology, IGWO-SVM, is rigorously examined based on the real-life data which includes a series of factors that influence the students’ final decision to choose the specific major. To validate the proposed method, other metaheuristic based SVM methods including GWO based SVM, genetic algorithm based SVM, and particle swarm optimization-based SVM were used for comparison in terms of classification accuracy, AUC (the area under the receiver operating characteristic (ROC curve, sensitivity, and specificity. The experimental results demonstrate that the proposed approach can be regarded as a promising success with the excellent classification accuracy, AUC, sensitivity, and specificity of 87.36%, 0.8735, 85.37%, and 89.33%, respectively. Promisingly, the proposed methodology might serve as a new candidate of powerful tools for second major selection.

  8. Pre-operative prediction of advanced prostatic cancer using clinical decision support systems: accuracy comparison between support vector machine and artificial neural network.

    Science.gov (United States)

    Kim, Sang Youn; Moon, Sung Kyoung; Jung, Dae Chul; Hwang, Sung Il; Sung, Chang Kyu; Cho, Jeong Yeon; Kim, Seung Hyup; Lee, Jiwon; Lee, Hak Jong

    2011-01-01

    The purpose of the current study was to develop support vector machine (SVM) and artificial neural network (ANN) models for the pre-operative prediction of advanced prostate cancer by using the parameters acquired from transrectal ultrasound (TRUS)-guided prostate biopsies, and to compare the accuracies between the two models. Five hundred thirty-two consecutive patients who underwent prostate biopsies and prostatectomies for prostate cancer were divided into the training and test groups (n = 300 versus n = 232). From the data in the training group, two clinical decision support systems (CDSSs-[SVM and ANN]) were constructed with input (age, prostate specific antigen level, digital rectal examination, and five biopsy parameters) and output data (the probability for advanced prostate cancer [> pT3a]). From the data of the test group, the accuracy of output data was evaluated. The areas under the receiver operating characteristic (ROC) curve (AUC) were calculated to summarize the overall performances, and a comparison of the ROC curves was performed (p cancer. The performance of SVM is superior to ANN in the pre-operative prediction of advanced prostate cancer.

  9. Support vector regression and least squares support vector regression for hormetic dose-response curves fitting.

    Science.gov (United States)

    Qin, Li-Tang; Liu, Shu-Shen; Liu, Hai-Ling; Zhang, Yong-Hong

    2010-01-01

    Accurate description of hormetic dose-response curves (DRC) is a key step for the determination of the efficacy and hazards of the pollutants with the hormetic phenomenon. This study tries to use support vector regression (SVR) and least squares support vector regression (LS-SVR) to address the problem of curve fitting existing in hormesis. The SVR and LS-SVR, which are entirely different from the non-linear fitting methods used to describe hormetic effects based on large sample, are at present only optimum methods based on small sample often encountered in the experimental toxicology. The tuning parameters (C and p1 for SVR, gam and sig2 for LS-SVR) determining SVR and LS-SVR models were obtained by both the internal and external validation of the models. The internal validation was performed by using leave-one-out (LOO) cross-validation and the external validation was performed by splitting the whole data set (12 data points) into the same size (six data points) of training set and test set. The results show that SVR and LS-SVR can accurately describe not only for the hermetic J-shaped DRC of seven water-soluble organic solvents consisting of acetonitrile, methanol, ethanol, acetone, ether, tetrahydrofuran, and isopropanol, but also for the classical sigmoid DRC of six pesticides including simetryn, prometon, bromacil, velpar, diquat-dibromide monohydrate, and dichlorvos. Copyright 2009 Elsevier Ltd. All rights reserved.

  10. Support Vector Machine Model for Automatic Detection and Classification of Seismic Events

    Science.gov (United States)

    Barros, Vesna; Barros, Lucas

    2016-04-01

    The automated processing of multiple seismic signals to detect, localize and classify seismic events is a central tool in both natural hazards monitoring and nuclear treaty verification. However, false detections and missed detections caused by station noise and incorrect classification of arrivals are still an issue and the events are often unclassified or poorly classified. Thus, machine learning techniques can be used in automatic processing for classifying the huge database of seismic recordings and provide more confidence in the final output. Applied in the context of the International Monitoring System (IMS) - a global sensor network developed for the Comprehensive Nuclear-Test-Ban Treaty (CTBT) - we propose a fully automatic method for seismic event detection and classification based on a supervised pattern recognition technique called the Support Vector Machine (SVM). According to Kortström et al., 2015, the advantages of using SVM are handleability of large number of features and effectiveness in high dimensional spaces. Our objective is to detect seismic events from one IMS seismic station located in an area of high seismicity and mining activity and classify them as earthquakes or quarry blasts. It is expected to create a flexible and easily adjustable SVM method that can be applied in different regions and datasets. Taken a step further, accurate results for seismic stations could lead to a modification of the model and its parameters to make it applicable to other waveform technologies used to monitor nuclear explosions such as infrasound and hydroacoustic waveforms. As an authorized user, we have direct access to all IMS data and bulletins through a secure signatory account. A set of significant seismic waveforms containing different types of events (e.g. earthquake, quarry blasts) and noise is being analysed to train the model and learn the typical pattern of the signal from these events. Moreover, comparing the performance of the support-vector

  11. Modular space-vector pulse-width modulation for nine-switch converters

    DEFF Research Database (Denmark)

    Dehghan, Seyed Mohammad; Amiri, Arash; Mohamadian, Mustafa

    2013-01-01

    Recently, nine-switch inverter (NSI) has been presented as a dual-output inverter with constant frequency (CF) or different frequency (DF) operation modes. However, the CF mode is more interesting because of its lower switching device rating. This study proposes a new space-vector modulation (SVM......) method for the NSI that supports both the CF and DF modes, whereas conventional SVM of NSI can be used only in the DF mode. The proposed SVM can be easily implemented based on the conventional six-switch inverter SVM modules. The performance of the proposed SVM is verified by the simulation...

  12. Automatic Language Identification with Discriminative Language Characterization Based on SVM

    Science.gov (United States)

    Suo, Hongbin; Li, Ming; Lu, Ping; Yan, Yonghong

    Robust automatic language identification (LID) is the task of identifying the language from a short utterance spoken by an unknown speaker. The mainstream approaches include parallel phone recognition language modeling (PPRLM), support vector machine (SVM) and the general Gaussian mixture models (GMMs). These systems map the cepstral features of spoken utterances into high level scores by classifiers. In this paper, in order to increase the dimension of the score vector and alleviate the inter-speaker variability within the same language, multiple data groups based on supervised speaker clustering are employed to generate the discriminative language characterization score vectors (DLCSV). The back-end SVM classifiers are used to model the probability distribution of each target language in the DLCSV space. Finally, the output scores of back-end classifiers are calibrated by a pair-wise posterior probability estimation (PPPE) algorithm. The proposed language identification frameworks are evaluated on 2003 NIST Language Recognition Evaluation (LRE) databases and the experiments show that the system described in this paper produces comparable results to the existing systems. Especially, the SVM framework achieves an equal error rate (EER) of 4.0% in the 30-second task and outperforms the state-of-art systems by more than 30% relative error reduction. Besides, the performances of proposed PPRLM and GMMs algorithms achieve an EER of 5.1% and 5.0% respectively.

  13. Object Recognition System-on-Chip Using the Support Vector Machines

    Directory of Open Access Journals (Sweden)

    Houzet Dominique

    2005-01-01

    Full Text Available The first aim of this work is to propose the design of a system-on-chip (SoC platform dedicated to digital image and signal processing, which is tuned to implement efficiently multiply-and-accumulate (MAC vector/matrix operations. The second aim of this work is to implement a recent promising neural network method, namely, the support vector machine (SVM used for real-time object recognition, in order to build a vision machine. With such a reconfigurable and programmable SoC platform, it is possible to implement any SVM function dedicated to any object recognition problem. The final aim is to obtain an automatic reconfiguration of the SoC platform, based on the results of the learning phase on an objects' database, which makes it possible to recognize practically any object without manual programming. Recognition can be of any kind that is from image to signal data. Such a system is a general-purpose automatic classifier. Many applications can be considered as a classification problem, but are usually treated specifically in order to optimize the cost of the implemented solution. The cost of our approach is more important than a dedicated one, but in a near future, hundreds of millions of gates will be common and affordable compared to the design cost. What we are proposing here is a general-purpose classification neural network implemented on a reconfigurable SoC platform. The first version presented here is limited in size and thus in object recognition performances, but can be easily upgraded according to technology improvements.

  14. Identification of Glucose-Binding Pockets in Human Serum Albumin Using Support Vector Machine and Molecular Dynamics Simulations.

    Science.gov (United States)

    Ranganarayanan, Preethi; Thanigesan, Narmadha; Ananth, Vivek; Jayaraman, Valadi K; Ramakrishnan, Vigneshwar

    2016-01-01

    Human Serum Albumin (HSA) has been suggested to be an alternate biomarker to the existing Hemoglobin-A1c (HbA1c) marker for glycemic monitoring. Development and usage of HSA as an alternate biomarker requires the identification of glycation sites, or equivalently, glucose-binding pockets. In this work, we combine molecular dynamics simulations of HSA and the state-of-art machine learning method Support Vector Machine (SVM) to predict glucose-binding pockets in HSA. SVM uses the three dimensional arrangement of atoms and their chemical properties to predict glucose-binding ability of a pocket. Feature selection reveals that the arrangement of atoms and their chemical properties within the first 4Å from the centroid of the pocket play an important role in the binding of glucose. With a 10-fold cross validation accuracy of 84 percent, our SVM model reveals seven new potential glucose-binding sites in HSA of which two are exposed only during the dynamics of HSA. The predictions are further corroborated using docking studies. These findings can complement studies directed towards the development of HSA as an alternate biomarker for glycemic monitoring.

  15. The entire regularization path for the support vector domain description

    DEFF Research Database (Denmark)

    Sjöstrand, Karl; Larsen, Rasmus

    2006-01-01

    -class support vector machine classifier. Recently, it was shown that the regularization path of the support vector machine is piecewise linear, and that the entire path can be computed efficiently. This pa- per shows that this property carries over to the support vector domain description. Using our results...... the solution to the one-class classification can be solved for any amount of regularization with roughly the same computational complexity required to solve for a particularly value of the regularization parameter. The possibility of evaluating the results for any amount of regularization not only offers more...

  16. SVM-based spectrum mobility prediction scheme in mobile cognitive radio networks.

    Science.gov (United States)

    Wang, Yao; Zhang, Zhongzhao; Ma, Lin; Chen, Jiamei

    2014-01-01

    Spectrum mobility as an essential issue has not been fully investigated in mobile cognitive radio networks (CRNs). In this paper, a novel support vector machine based spectrum mobility prediction (SVM-SMP) scheme is presented considering time-varying and space-varying characteristics simultaneously in mobile CRNs. The mobility of cognitive users (CUs) and the working activities of primary users (PUs) are analyzed in theory. And a joint feature vector extraction (JFVE) method is proposed based on the theoretical analysis. Then spectrum mobility prediction is executed through the classification of SVM with a fast convergence speed. Numerical results validate that SVM-SMP gains better short-time prediction accuracy rate and miss prediction rate performance than the two algorithms just depending on the location and speed information. Additionally, a rational parameter design can remedy the prediction performance degradation caused by high speed SUs with strong randomness movements.

  17. Comparison of Random Forest and Support Vector Machine classifiers using UAV remote sensing imagery

    Science.gov (United States)

    Piragnolo, Marco; Masiero, Andrea; Pirotti, Francesco

    2017-04-01

    Since recent years surveying with unmanned aerial vehicles (UAV) is getting a great amount of attention due to decreasing costs, higher precision and flexibility of usage. UAVs have been applied for geomorphological investigations, forestry, precision agriculture, cultural heritage assessment and for archaeological purposes. It can be used for land use and land cover classification (LULC). In literature, there are two main types of approaches for classification of remote sensing imagery: pixel-based and object-based. On one hand, pixel-based approach mostly uses training areas to define classes and respective spectral signatures. On the other hand, object-based classification considers pixels, scale, spatial information and texture information for creating homogeneous objects. Machine learning methods have been applied successfully for classification, and their use is increasing due to the availability of faster computing capabilities. The methods learn and train the model from previous computation. Two machine learning methods which have given good results in previous investigations are Random Forest (RF) and Support Vector Machine (SVM). The goal of this work is to compare RF and SVM methods for classifying LULC using images collected with a fixed wing UAV. The processing chain regarding classification uses packages in R, an open source scripting language for data analysis, which provides all necessary algorithms. The imagery was acquired and processed in November 2015 with cameras providing information over the red, blue, green and near infrared wavelength reflectivity over a testing area in the campus of Agripolis, in Italy. Images were elaborated and ortho-rectified through Agisoft Photoscan. The ortho-rectified image is the full data set, and the test set is derived from partial sub-setting of the full data set. Different tests have been carried out, using a percentage from 2 % to 20 % of the total. Ten training sets and ten validation sets are obtained from

  18. Deep Learning for Person Reidentification Using Support Vector Machines

    National Research Council Canada - National Science Library

    Mengyu Xu; Zhenmin Tang; Yazhou Yao; Lingxiang Yao; Huafeng Liu; Jingsong Xu

    2017-01-01

    .... Different from previous works, we represent the pairs of pedestrian images as new resized input and use linear Support Vector Machine to replace softmax activation function for similarity learning...

  19. Sales Growth Rate Forecasting Using Improved PSO and SVM

    Directory of Open Access Journals (Sweden)

    Xibin Wang

    2014-01-01

    Full Text Available Accurate forecast of the sales growth rate plays a decisive role in determining the amount of advertising investment. In this study, we present a preclassification and later regression based method optimized by improved particle swarm optimization (IPSO for sales growth rate forecasting. We use support vector machine (SVM as a classification model. The nonlinear relationship in sales growth rate forecasting is efficiently represented by SVM, while IPSO is optimizing the training parameters of SVM. IPSO addresses issues of traditional PSO, such as relapsing into local optimum, slow convergence speed, and low convergence precision in the later evolution. We performed two experiments; firstly, three classic benchmark functions are used to verify the validity of the IPSO algorithm against PSO. Having shown IPSO outperform PSO in convergence speed, precision, and escaping local optima, in our second experiment, we apply IPSO to the proposed model. The sales growth rate forecasting cases are used to testify the forecasting performance of proposed model. According to the requirements and industry knowledge, the sample data was first classified to obtain types of the test samples. Next, the values of the test samples were forecast using the SVM regression algorithm. The experimental results demonstrate that the proposed model has good forecasting performance.

  20. Performance evaluation of random forest and support vector regressions in natural hazard change detection

    Science.gov (United States)

    Eisavi, Vahid; Homayouni, Saeid

    2016-10-01

    Information on land use and land cover changes is considered as a foremost requirement for monitoring environmental change. Developing change detection methodology in the remote sensing community is an active research topic. However, to the best of our knowledge, no research has been conducted so far on the application of random forest regression (RFR) and support vector regression (SVR) for natural hazard change detection from high-resolution optical remote sensing observations. Hence, the objective of this study is to examine the use of RFR and SVR to discriminate between changed and unchanged areas after a tsunami. For this study, RFR and SVR were applied to two different pilot coastlines in Indonesia and Japan. Two different remotely sensed data sets acquired by Quickbird and Ikonos sensors were used for efficient evaluation of the proposed methodology. The results demonstrated better performance of SVM compared to random forest (RF) with an overall accuracy higher by 3% to 4% and kappa coefficient by 0.05 to 0.07. Using McNemar's test, statistically significant differences (Z≥1.96), at the 5% significance level, between the confusion matrices of the RF classifier and the support vector classifier were observed in both study areas. The high accuracy of change detection obtained in this study confirms that these methods have the potential to be used for detecting changes due to natural hazards.

  1. Adaptive Morphological Feature Extraction and Support Vector Regressive Classification for Bearing Fault Diagnosis

    Directory of Open Access Journals (Sweden)

    Jun Shuai

    2017-01-01

    Full Text Available Numerous studies on fault diagnosis have been conducted in recent years because the timely and correct detection of machine fault effectively minimizes the damage resulting in the unexpected breakdown of machineries. The mathematical morphological analysis has been performed to denoise raw signal. However, the improper choice of the length of the structure element (SE will substantially influence the effectiveness of fault feature extraction. Moreover, the classification of fault type is a significant step in intelligent fault diagnosis, and many techniques have already been developed, such as support vector machine (SVM. This study proposes an intelligent fault diagnosis strategy that combines the extraction of morphological feature and support vector regression (SVR classifier. The vibration signal is first processed using various scales of morphological analysis, where the length of SE is determined adaptively. Thereafter, nine statistical features are extracted from the processed signal. Lastly, an SVR classifier is used to identify the health condition of the machinery. The effectiveness of the proposed scheme is validated using the data set from a bearing test rig. Results show the high accuracy of the proposed method despite the influence of noise.

  2. Prediction of B-cell Linear Epitopes with a Combination of Support Vector Machine Classification and Amino Acid Propensity Identification

    Directory of Open Access Journals (Sweden)

    Hsin-Wei Wang

    2011-01-01

    Full Text Available Epitopes are antigenic determinants that are useful because they induce B-cell antibody production and stimulate T-cell activation. Bioinformatics can enable rapid, efficient prediction of potential epitopes. Here, we designed a novel B-cell linear epitope prediction system called LEPS, Linear Epitope Prediction by Propensities and Support Vector Machine, that combined physico-chemical propensity identification and support vector machine (SVM classification. We tested the LEPS on four datasets: AntiJen, HIV, a newly generated PC, and AHP, a combination of these three datasets. Peptides with globally or locally high physicochemical propensities were first identified as primitive linear epitope (LE candidates. Then, candidates were classified with the SVM based on the unique features of amino acid segments. This reduced the number of predicted epitopes and enhanced the positive prediction value (PPV. Compared to four other well-known LE prediction systems, the LEPS achieved the highest accuracy (72.52%, specificity (84.22%, PPV (32.07%, and Matthews' correlation coefficient (10.36%.

  3. A Real-Time Interference Monitoring Technique for GNSS Based on a Twin Support Vector Machine Method.

    Science.gov (United States)

    Li, Wutao; Huang, Zhigang; Lang, Rongling; Qin, Honglei; Zhou, Kai; Cao, Yongbin

    2016-03-04

    Interferences can severely degrade the performance of Global Navigation Satellite System (GNSS) receivers. As the first step of GNSS any anti-interference measures, interference monitoring for GNSS is extremely essential and necessary. Since interference monitoring can be considered as a classification problem, a real-time interference monitoring technique based on Twin Support Vector Machine (TWSVM) is proposed in this paper. A TWSVM model is established, and TWSVM is solved by the Least Squares Twin Support Vector Machine (LSTWSVM) algorithm. The interference monitoring indicators are analyzed to extract features from the interfered GNSS signals. The experimental results show that the chosen observations can be used as the interference monitoring indicators. The interference monitoring performance of the proposed method is verified by using GPS L1 C/A code signal and being compared with that of standard SVM. The experimental results indicate that the TWSVM-based interference monitoring is much faster than the conventional SVM. Furthermore, the training time of TWSVM is on millisecond (ms) level and the monitoring time is on microsecond (μs) level, which make the proposed approach usable in practical interference monitoring applications.

  4. Data mining PubChem using a support vector machine with the Signature molecular descriptor: classification of factor XIa inhibitors.

    Science.gov (United States)

    Weis, Derick C; Visco, Donald P; Faulon, Jean-Loup

    2008-11-01

    The amount of high-throughput screening (HTS) data readily available has significantly increased because of the PubChem project (http://pubchem.ncbi.nlm.nih.gov/). There is considerable opportunity for data mining of small molecules for a variety of biological systems using cheminformatic tools and the resources available through PubChem. In this work, we trained a support vector machine (SVM) classifier using the Signature molecular descriptor on factor XIa inhibitor HTS data. The optimal number of Signatures was selected by implementing a feature selection algorithm of highly correlated clusters. Our method included an improvement that allowed clusters to work together for accuracy improvement, where previous methods have scored clusters on an individual basis. The resulting model had a 10-fold cross-validation accuracy of 89%, and additional validation was provided by two independent test sets. We applied the SVM to rapidly predict activity for approximately 12 million compounds also deposited in PubChem. Confidence in these predictions was assessed by considering the number of Signatures within the training set range for a given compound, defined as the overlap metric. To further evaluate compounds identified as active by the SVM, docking studies were performed using AutoDock. A focused database of compounds predicted to be active was obtained with several of the compounds appreciably dissimilar to those used in training the SVM. This focused database is suitable for further study. The data mining technique presented here is not specific to factor XIa inhibitors, and could be applied to other bioassays in PubChem where one is looking to expand the search for small molecules as chemical probes.

  5. COMSAT: Residue contact prediction of transmembrane proteins based on support vector machines and mixed integer linear programming.

    Science.gov (United States)

    Zhang, Huiling; Huang, Qingsheng; Bei, Zhendong; Wei, Yanjie; Floudas, Christodoulos A

    2016-03-01

    In this article, we present COMSAT, a hybrid framework for residue contact prediction of transmembrane (TM) proteins, integrating a support vector machine (SVM) method and a mixed integer linear programming (MILP) method. COMSAT consists of two modules: COMSAT_SVM which is trained mainly on position-specific scoring matrix features, and COMSAT_MILP which is an ab initio method based on optimization models. Contacts predicted by the SVM model are ranked by SVM confidence scores, and a threshold is trained to improve the reliability of the predicted contacts. For TM proteins with no contacts above the threshold, COMSAT_MILP is used. The proposed hybrid contact prediction scheme was tested on two independent TM protein sets based on the contact definition of 14 Å between Cα-Cα atoms. First, using a rigorous leave-one-protein-out cross validation on the training set of 90 TM proteins, an accuracy of 66.8%, a coverage of 12.3%, a specificity of 99.3% and a Matthews' correlation coefficient (MCC) of 0.184 were obtained for residue pairs that are at least six amino acids apart. Second, when tested on a test set of 87 TM proteins, the proposed method showed a prediction accuracy of 64.5%, a coverage of 5.3%, a specificity of 99.4% and a MCC of 0.106. COMSAT shows satisfactory results when compared with 12 other state-of-the-art predictors, and is more robust in terms of prediction accuracy as the length and complexity of TM protein increase. COMSAT is freely accessible at http://hpcc.siat.ac.cn/COMSAT/. © 2016 Wiley Periodicals, Inc.

  6. Hyperspectral Imaging and Support Vector Machine: A Powerful Combination to Differentiate Black Cohosh (Actaea racemosa) from Other Cohosh Species.

    Science.gov (United States)

    Tankeu, Sidonie; Vermaak, Ilze; Chen, Weiyang; Sandasi, Maxleene; Kamatou, Guy; Viljoen, Alvaro

    2017-10-06

    Actaea racemosa (black cohosh) has a history of traditional use in the treatment of general gynecological problems. However, the plant is known to be vulnerable to adulteration with other cohosh species. This study evaluated the use of shortwave infrared hyperspectral imaging (SWIR-HSI) in tandem with chemometric data analysis as a fast alternative method for the discrimination of four cohosh species (Actaea racemosa, Actaea podocarpa, Actaea pachypoda, Actaea cimicifuga) and 36 commercial products labelled as black cohosh. The raw material and commercial products were analyzed using SWIR-HSI and ultra-high-performance liquid chromatography coupled to mass spectrometry (UHPLC-MS) followed by chemometric modeling. From SWIR-HSI data (920 - 2514 nm), the range containing the discriminating information of the four species was identified as 1204 - 1480 nm using Matlab software. After reduction of the data set range, partial least squares discriminant analysis (PLS-DA) and support vector machine discriminant analysis (SVM-DA) models with coefficients of determination (R2 ) of ≥ 0.8 were created. The novel SVM-DA model showed better predictions and was used to predict the commercial product content. Seven out of 36 commercial products were recognized by the SVM-DA model as being true black cohosh while 29 products indicated adulteration. Analysis of the UHPLC-MS data demonstrated that six commercial products could be authentic black cohosh. This was confirmed using the fragmentation patterns of three black cohosh markers (cimiracemoside C; 12-β,21-dihydroxycimigenol-3-O-L-arabinoside; and 24-O-acetylhydroshengmanol-3-O-β-D-xylopyranoside). SWIR-HSI in conjunction with chemometric tools (SVM-DA) could identify 80% adulteration of commercial products labelled as black cohosh. Georg Thieme Verlag KG Stuttgart · New York.

  7. Recursive cluster elimination based support vector machine for disease state prediction using resting state functional and effective brain connectivity.

    Directory of Open Access Journals (Sweden)

    Gopikrishna Deshpande

    2010-12-01

    Full Text Available Brain state classification has been accomplished using features such as voxel intensities, derived from functional magnetic resonance imaging (fMRI data, as inputs to efficient classifiers such as support vector machines (SVM and is based on the spatial localization model of brain function. With the advent of the connectionist model of brain function, features from brain networks may provide increased discriminatory power for brain state classification.In this study, we introduce a novel framework where in both functional connectivity (FC based on instantaneous temporal correlation and effective connectivity (EC based on causal influence in brain networks are used as features in an SVM classifier. In order to derive those features, we adopt a novel approach recently introduced by us called correlation-purged Granger causality (CPGC in order to obtain both FC and EC from fMRI data simultaneously without the instantaneous correlation contaminating Granger causality. In addition, statistical learning is accelerated and performance accuracy is enhanced by combining recursive cluster elimination (RCE algorithm with the SVM classifier. We demonstrate the efficacy of the CPGC-based RCE-SVM approach using a specific instance of brain state classification exemplified by disease state prediction. Accordingly, we show that this approach is capable of predicting with 90.3% accuracy whether any given human subject was prenatally exposed to cocaine or not, even when no significant behavioral differences were found between exposed and healthy subjects.The framework adopted in this work is quite general in nature with prenatal cocaine exposure being only an illustrative example of the power of this approach. In any brain state classification approach using neuroimaging data, including the directional connectivity information may prove to be a performance enhancer. When brain state classification is used for disease state prediction, our approach may aid the

  8. Mechanical Fault Diagnosis for HV Circuit Breakers Based on Ensemble Empirical Mode Decomposition Energy Entropy and Support Vector Machine

    Directory of Open Access Journals (Sweden)

    Jianfeng Zhang

    2015-01-01

    Full Text Available During the operation process of the high voltage circuit breaker, the changes of vibration signals can reflect the machinery states of the circuit breaker. The extraction of the vibration signal feature will directly influence the accuracy and practicability of fault diagnosis. This paper presents an extraction method based on ensemble empirical mode decomposition (EEMD. Firstly, the original vibration signals are decomposed into a finite number of stationary intrinsic mode functions (IMFs. Secondly, calculating the envelope of each IMF and separating the envelope by equal-time segment and then forming equal-time segment energy entropy to reflect the change of vibration signal are performed. At last, the energy entropies could serve as input vectors of support vector machine (SVM to identify the working state and fault pattern of the circuit breaker. Practical examples show that this diagnosis approach can identify effectively fault patterns of HV circuit breaker.

  9. Prediction of dissolved oxygen concentration in hypoxic river systems using support vector machine: a case study of Wen-Rui Tang River, China.

    Science.gov (United States)

    Ji, Xiaoliang; Shang, Xu; Dahlgren, Randy A; Zhang, Minghua

    2017-07-01

    Accurate quantification of dissolved oxygen (DO) is critically important for managing water resources and controlling pollution. Artificial intelligence (AI) models have been successfully applied for modeling DO content in aquatic ecosystems with limited data. However, the efficacy of these AI models in predicting DO levels in the hypoxic river systems having multiple pollution sources and complicated pollutants behaviors is unclear. Given this dilemma, we developed a promising AI model, known as support vector machine (SVM), to predict the DO concentration in a hypoxic river in southeastern China. Four different calibration models, specifically, multiple linear regression, back propagation neural network, general regression neural network, and SVM, were established, and their prediction accuracy was systemically investigated and compared. A total of 11 hydro-chemical variables were used as model inputs. These variables were measured bimonthly at eight sampling sites along the rural-suburban-urban portion of Wen-Rui Tang River from 2004 to 2008. The performances of the established models were assessed through the mean square error (MSE), determination coefficient (R 2 ), and Nash-Sutcliffe (NS) model efficiency. The results indicated that the SVM model was superior to other models in predicting DO concentration in Wen-Rui Tang River. For SVM, the MSE, R 2 , and NS values for the testing subset were 0.9416 mg/L, 0.8646, and 0.8763, respectively. Sensitivity analysis showed that ammonium-nitrogen was the most significant input variable of the proposal SVM model. Overall, these results demonstrated that the proposed SVM model can efficiently predict water quality, especially for highly impaired and hypoxic river systems.

  10. Quality-Oriented Classification of Aircraft Material Based on SVM

    Directory of Open Access Journals (Sweden)

    Hongxia Cai

    2014-01-01

    Full Text Available The existing material classification is proposed to improve the inventory management. However, different materials have the different quality-related attributes, especially in the aircraft industry. In order to reduce the cost without sacrificing the quality, we propose a quality-oriented material classification system considering the material quality character, Quality cost, and Quality influence. Analytic Hierarchy Process helps to make feature selection and classification decision. We use the improved Kraljic Portfolio Matrix to establish the three-dimensional classification model. The aircraft materials can be divided into eight types, including general type, key type, risk type, and leveraged type. Aiming to improve the classification accuracy of various materials, the algorithm of Support Vector Machine is introduced. Finally, we compare the SVM and BP neural network in the application. The results prove that the SVM algorithm is more efficient and accurate and the quality-oriented material classification is valuable.

  11. Fault diagnosis of monoblock centrifugal pump using SVM

    Directory of Open Access Journals (Sweden)

    V. Muralidharan

    2014-09-01

    Full Text Available Monoblock centrifugal pumps are employed in variety of critical engineering applications. Continuous monitoring of such machine component becomes essential in order to reduce the unnecessary break downs. At the outset, vibration based approaches are widely used to carry out the condition monitoring tasks. Particularly fuzzy logic, support vector machine (SVM and artificial neural networks were employed for continuous monitoring and fault diagnosis. In the present study, the application of SVM algorithm in the field of fault diagnosis and condition monitoring is discussed. The continuous wavelet transforms were calculated for different families and at different levels. The computed transformation coefficients form the feature set for the classification of good and faulty conditions of the components of centrifugal pump. The classification accuracies of different continuous wavelet families at different levels were calculated and compared to find the best wavelet for the fault diagnosis of the monoblock centrifugal pump.

  12. A novel transmission line protection using DOST and SVM

    Directory of Open Access Journals (Sweden)

    M. Jaya Bharata Reddy

    2016-06-01

    Full Text Available This paper proposes a smart fault detection, classification and location (SFDCL methodology for transmission systems with multi-generators using discrete orthogonal Stockwell transform (DOST. The methodology is based on synchronized current measurements from remote telemetry units (RTUs installed at both ends of the transmission line. The energy coefficients extracted from the transient current signals due to occurrence of different types of faults using DOST are being utilized for real-time fault detection and classification. Support vector machine (SVM has been deployed for locating the fault distance using the extracted coefficients. A comparative study is performed for establishing the superiority of SVM over other popular computational intelligence methods, such as adaptive neuro-fuzzy inference system (ANFIS and artificial neural network (ANN, for more precise and reliable estimation of fault distance. The results corroborate the effectiveness of the suggested SFDCL algorithm for real-time transmission line fault detection, classification and localization.

  13. Condition classification of small reciprocating compressor for refrigerators using artificial neural networks and support vector machines

    Science.gov (United States)

    Yang, Bo-Suk; Hwang, Won-Woo; Kim, Dong-Jo; Chit Tan, Andy

    2005-03-01

    The need to increase machine reliability and decrease production loss due to faulty products in highly automated line requires accurate and reliable fault classification technique. Wavelet transform and statistical method are used to extract salient features from raw noise and vibration signals. The wavelet transform decomposes the raw time-waveform signals into two respective parts in the time space and frequency domain. With wavelet transform prominent features can be obtained easily than from time-waveform analysis. This paper focuses on the development of an advanced signal classifier for small reciprocating refrigerator compressors using noise and vibration signals. Three classifiers, self-organising feature map, learning vector quantisation and support vector machine (SVM) are applied in training and testing for feature extraction and the classification accuracies of the techniques are compared to determine the optimum fault classifier. The classification technique selected for detecting faulty reciprocating refrigerator compressors involves artificial neural networks and SVMs. The results confirm that the classification technique can differentiate faulty compressors from healthy ones and with high flexibility and reliability.

  14. Accurate Fluid Level Measurement in Dynamic Environment Using Ultrasonic Sensor and ν-SVM

    Directory of Open Access Journals (Sweden)

    Jenny TERZIC

    2009-10-01

    Full Text Available A fluid level measurement system based on a single Ultrasonic Sensor and Support Vector Machines (SVM based signal processing and classification system has been developed to determine the fluid level in automotive fuel tanks. The novel approach based on the ν-SVM classification method uses the Radial Basis Function (RBF to compensate for the measurement error induced by the sloshing effects in the tank caused by vehicle motion. A broad investigation on selected pre-processing filters, namely, Moving Mean, Moving Median, and Wavelet filter, has also been presented. Field drive trials were performed under normal driving conditions at various fuel volumes ranging from 5 L to 50 L to acquire sample data from the ultrasonic sensor for the training of SVM model. Further drive trials were conducted to obtain data to verify the SVM results. A comparison of the accuracy of the predicted fluid level obtained using SVM and the pre-processing filters is provided. It is demonstrated that the ν-SVM model using the RBF kernel function and the Moving Median filter has produced the most accurate outcome compared with the other signal filtration methods in terms of fluid level measurement.

  15. Selecting Feature Subsets Based on SVM-RFE and the Overlapping Ratio with Applications in Bioinformatics

    Directory of Open Access Journals (Sweden)

    Xiaohui Lin

    2017-12-01

    Full Text Available Feature selection is an important topic in bioinformatics. Defining informative features from complex high dimensional biological data is critical in disease study, drug development, etc. Support vector machine-recursive feature elimination (SVM-RFE is an efficient feature selection technique that has shown its power in many applications. It ranks the features according to the recursive feature deletion sequence based on SVM. In this study, we propose a method, SVM-RFE-OA, which combines the classification accuracy rate and the average overlapping ratio of the samples to determine the number of features to be selected from the feature rank of SVM-RFE. Meanwhile, to measure the feature weights more accurately, we propose a modified SVM-RFE-OA (M-SVM-RFE-OA algorithm that temporally screens out the samples lying in a heavy overlapping area in each iteration. The experiments on the eight public biological datasets show that the discriminative ability of the feature subset could be measured more accurately by combining the classification accuracy rate with the average overlapping degree of the samples compared with using the classification accuracy rate alone, and shielding the samples in the overlapping area made the calculation of the feature weights more stable and accurate. The methods proposed in this study can also be used with other RFE techniques to define potential biomarkers from big biological data.

  16. Independent Component Analysis-Support Vector Machine-Based Computer-Aided Diagnosis System for Alzheimer's with Visual Support.

    Science.gov (United States)

    Khedher, Laila; Illán, Ignacio A; Górriz, Juan M; Ramírez, Javier; Brahim, Abdelbasset; Meyer-Baese, Anke

    2017-05-01

    Computer-aided diagnosis (CAD) systems constitute a powerful tool for early diagnosis of Alzheimer's disease (AD), but limitations on interpretability and performance exist. In this work, a fully automatic CAD system based on supervised learning methods is proposed to be applied on segmented brain magnetic resonance imaging (MRI) from Alzheimer's disease neuroimaging initiative (ADNI) participants for automatic classification. The proposed CAD system possesses two relevant characteristics: optimal performance and visual support for decision making. The CAD is built in two stages: a first feature extraction based on independent component analysis (ICA) on class mean images and, secondly, a support vector machine (SVM) training and classification. The obtained features for classification offer a full graphical representation of the images, giving an understandable logic in the CAD output, that can increase confidence in the CAD support. The proposed method yields classification results up to 89% of accuracy (with 92% of sensitivity and 86% of specificity) for normal controls (NC) and AD patients, 79% of accuracy (with 82% of sensitivity and 76% of specificity) for NC and mild cognitive impairment (MCI), and 85% of accuracy (with 85% of sensitivity and 86% of specificity) for MCI and AD patients.

  17. Emotion recognition from single-trial EEG based on kernel Fisher's emotion pattern and imbalanced quasiconformal kernel support vector machine.

    Science.gov (United States)

    Liu, Yi-Hung; Wu, Chien-Te; Cheng, Wei-Teng; Hsiao, Yu-Tsung; Chen, Po-Ming; Teng, Jyh-Tong

    2014-07-24

    Electroencephalogram-based emotion recognition (EEG-ER) has received increasing attention in the fields of health care, affective computing, and brain-computer interface (BCI). However, satisfactory ER performance within a bi-dimensional and non-discrete emotional space using single-trial EEG data remains a challenging task. To address this issue, we propose a three-layer scheme for single-trial EEG-ER. In the first layer, a set of spectral powers of different EEG frequency bands are extracted from multi-channel single-trial EEG signals. In the second layer, the kernel Fisher's discriminant analysis method is applied to further extract features with better discrimination ability from the EEG spectral powers. The feature vector produced by layer 2 is called a kernel Fisher's emotion pattern (KFEP), and is sent into layer 3 for further classification where the proposed imbalanced quasiconformal kernel support vector machine (IQK-SVM) serves as the emotion classifier. The outputs of the three layer EEG-ER system include labels of emotional valence and arousal. Furthermore, to collect effective training and testing datasets for the current EEG-ER system, we also use an emotion-induction paradigm in which a set of pictures selected from the International Affective Picture System (IAPS) are employed as emotion induction stimuli. The performance of the proposed three-layer solution is compared with that of other EEG spectral power-based features and emotion classifiers. Results on 10 healthy participants indicate that the proposed KFEP feature performs better than other spectral power features, and IQK-SVM outperforms traditional SVM in terms of the EEG-ER accuracy. Our findings also show that the proposed EEG-ER scheme achieves the highest classification accuracies of valence (82.68%) and arousal (84.79%) among all testing methods.

  18. A comparative QSAR study on the estrogenic activities of persistent organic pollutants by PLS and SVM

    Directory of Open Access Journals (Sweden)

    Fei Li

    2015-11-01

    Full Text Available Quantitative structure-activity relationships (QSARs were determined using partial least square (PLS and support vector machine (SVM. The predicted values by the final QSAR models were in good agreement with the corresponding experimental values. Chemical estrogenic activities are related to atomic properties (atomic Sanderson electronegativities, van der Waals volumes and polarizabilities. Comparison of the results obtained from two models, the SVM method exhibited better overall performances. Besides, three PLS models were constructed for some specific families based on their chemical structures. These predictive models should be useful to rapidly identify potential estrogenic endocrine disrupting chemicals.

  19. Power line identification of millimeter wave radar based on PCA-GS-SVM

    Science.gov (United States)

    Fang, Fang; Zhang, Guifeng; Cheng, Yansheng

    2017-12-01

    Aiming at the problem that the existing detection method can not effectively solve the security of UAV's ultra low altitude flight caused by power line, a power line recognition method based on grid search (GS) and the principal component analysis and support vector machine (PCA-SVM) is proposed. Firstly, the candidate line of Hough transform is reduced by PCA, and the main feature of candidate line is extracted. Then, upport vector machine (SVM is) optimized by grid search method (GS). Finally, using support vector machine classifier optimized parameters to classify the candidate line. MATLAB simulation results show that this method can effectively identify the power line and noise, and has high recognition accuracy and algorithm efficiency.

  20. Approche de sélection d’attributs pour la classification basée sur l’algorithme RFE-SVM

    OpenAIRE

    Slimani, yahya; Essegir, Mohamed Amir; Samb, Mouhamadou Lamine; Camara, Fodé; Ndiaye, Samba

    2014-01-01

    International audience; The feature selection for classification is a very active research field in data mining and optimization. Its combinatorial nature requires the development of specific techniques (such as filters, wrappers, genetic algorithms, and so on) or hybrid approaches combining several optimization methods. In this context, the support vector machine recursive feature elimination (SVM-RFE), is distinguished as one of the most effective methods. However, the RFE-SVM algorithm is ...

  1. Intelligent gearbox diagnosis methods based on SVM, wavelet lifting and RBR.

    Science.gov (United States)

    Gao, Lixin; Ren, Zhiqiang; Tang, Wenliang; Wang, Huaqing; Chen, Peng

    2010-01-01

    Given the problems in intelligent gearbox diagnosis methods, it is difficult to obtain the desired information and a large enough sample size to study; therefore, we propose the application of various methods for gearbox fault diagnosis, including wavelet lifting, a support vector machine (SVM) and rule-based reasoning (RBR). In a complex field environment, it is less likely for machines to have the same fault; moreover, the fault features can also vary. Therefore, a SVM could be used for the initial diagnosis. First, gearbox vibration signals were processed with wavelet packet decomposition, and the signal energy coefficients of each frequency band were extracted and used as input feature vectors in SVM for normal and faulty pattern recognition. Second, precision analysis using wavelet lifting could successfully filter out the noisy signals while maintaining the impulse characteristics of the fault; thus effectively extracting the fault frequency of the machine. Lastly, the knowledge base was built based on the field rules summarized by experts to identify the detailed fault type. Results have shown that SVM is a powerful tool to accomplish gearbox fault pattern recognition when the sample size is small, whereas the wavelet lifting scheme can effectively extract fault features, and rule-based reasoning can be used to identify the detailed fault type. Therefore, a method that combines SVM, wavelet lifting and rule-based reasoning ensures effective gearbox fault diagnosis.

  2. Using Support Vector Machines to Detect Therapeutically Incorrect Measurements by the MiniMed CGMS®

    Science.gov (United States)

    Bondia, Jorge; Tarín, Cristina; García-Gabin, Winston; Esteve, Eduardo; Fernández-Real, José Manuel; Ricart, Wifredo; Vehí, Josep

    2008-01-01

    Background Current continuous glucose monitors have limited accuracy mainly in the low range of glucose measurements. This lack of accuracy is a limiting factor in their clinical use and in the development of the so-called artificial pancreas. The ability to detect incorrect readings provided by continuous glucose monitors from raw data and other information supplied by the monitor itself is of utmost clinical importance. In this study, support vector machines (SVMs), a powerful statistical learning technique, were used to detect therapeutically incorrect measurements made by the Medtronic MiniMed CGMS®. Methods Twenty patients were monitored for three days (first day at the hospital and two days at home) using the MiniMed CGMS. After the third day, the monitor data were downloaded to the physician's computer. During the first 12 hours, the patients stayed in the hospital, and blood samples were taken every 15 minutes for two hours after meals and every 30 minutes otherwise. Plasma glucose measurements were interpolated using a cubic method for time synchronization with simultaneous MiniMed CGMS measurements every five minutes, obtaining a total of 2281 samples. A Gaussian SVM classifier trained on the monitor's electrical signal and glucose estimation was tuned and validated using multiple runs of k-fold cross-validation. The classes considered were Clarke error grid zones A+B and C+D+E. Results After ten runs of ten-fold cross-validation, an average specificity and sensitivity of 92.74% and 75.49%, respectively, were obtained (see Figure 4). The average correct rate was 91.67%. Conclusions Overall, the SVM performed well, in spite of the somewhat low sensitivity. The classifier was able to detect the time intervals when the monitor's glucose profile could not be trusted due to incorrect measurements. As a result, hypoglycemic episodes missed by the monitor were detected. PMID:19885238

  3. Identification of functionally diverse lipocalin proteins from sequence information using support vector machine.

    Science.gov (United States)

    Pugalenthi, Ganesan; Kandaswamy, Krishna Kumar; Suganthan, P N; Archunan, G; Sowdhamini, R

    2010-08-01

    Lipocalins are functionally diverse proteins that are composed of 120-180 amino acid residues. Members of this family have several important biological functions including ligand transport, cryptic coloration, sensory transduction, endonuclease activity, stress response activity in plants, odorant binding, prostaglandin biosynthesis, cellular homeostasis regulation, immunity, immunotherapy and so on. Identification of lipocalins from protein sequence is more challenging due to the poor sequence identity which often falls below the twilight zone. So far, no specific method has been reported to identify lipocalins from primary sequence. In this paper, we report a support vector machine (SVM) approach to predict lipocalins from protein sequence using sequence-derived properties. LipoPred was trained using a dataset consisting of 325 lipocalin proteins and 325 non-lipocalin proteins, and evaluated by an independent set of 140 lipocalin proteins and 21,447 non-lipocalin proteins. LipoPred achieved 88.61% accuracy with 89.26% sensitivity, 85.27% specificity and 0.74 Matthew's correlation coefficient (MCC). When applied on the test dataset, LipoPred achieved 84.25% accuracy with 88.57% sensitivity, 84.22% specificity and MCC of 0.16. LipoPred achieved better performance rate when compared with PSI-BLAST, HMM and SVM-Prot methods. Out of 218 lipocalins, LipoPred correctly predicted 194 proteins including 39 lipocalins that are non-homologous to any protein in the SWISSPROT database. This result shows that LipoPred is potentially useful for predicting the lipocalin proteins that have no sequence homologs in the sequence databases. Further, successful prediction of nine hypothetical lipocalin proteins and five new members of lipocalin family prove that LipoPred can be efficiently used to identify and annotate the new lipocalin proteins from sequence databases. The LipoPred software and dataset are available at http://www3.ntu.edu.sg/home/EPNSugan/index_files/lipopred.htm.

  4. Feature extraction and wall motion classification of 2D stress echocardiography with support vector machines

    Science.gov (United States)

    Chykeyuk, Kiryl; Clifton, David A.; Noble, J. Alison

    2011-03-01

    Stress echocardiography is a common clinical procedure for diagnosing heart disease. Clinically, diagnosis of the heart wall motion depends mostly on visual assessment, which is highly subjective and operator-dependent. Introduction of automated methods for heart function assessment have the potential to minimise the variance in operator assessment. Automated wall motion analysis consists of two main steps: (i) segmentation of heart wall borders, and (ii) classification of heart function as either "normal" or "abnormal" based on the segmentation. This paper considers automated classification of rest and stress echocardiography. Most previous approaches to the classification of heart function have considered rest or stress data separately, and have only considered using features extracted from the two main frames (corresponding to the end-of-diastole and end-of-systole). One previous attempt [1] has been made to combine information from rest and stress sequences utilising a Hidden Markov Model (HMM), which has proven to be the best performing approach to date. Here, we propose a novel alternative feature selection approach using combined information from rest and stress sequences for motion classification of stress echocardiography, utilising a Support Vector Machines (SVM) classifier. We describe how the proposed SVM-based method overcomes difficulties that occur with HMM classification. Overall accuracy with the new method for global wall motion classification using datasets from 173 patients is 92.47%, and the accuracy of local wall motion classification is 87.20%, showing that the proposed method outperforms the current state-of-the-art HMM-based approach (for which global and local classification accuracy is 82.15% and 78.33%, respectively).

  5. A Combination of Geographically Weighted Regression, Particle Swarm Optimization and Support Vector Machine for Landslide Susceptibility Mapping: A Case Study at Wanzhou in the Three Gorges Area, China.

    Science.gov (United States)

    Yu, Xianyu; Wang, Yi; Niu, Ruiqing; Hu, Youjian

    2016-05-11

    In this study, a novel coupling model for landslide susceptibility mapping is presented. In practice, environmental factors may have different impacts at a local scale in study areas. To provide better predictions, a geographically weighted regression (GWR) technique is firstly used in our method to segment study areas into a series of prediction regions with appropriate sizes. Meanwhile, a support vector machine (SVM) classifier is exploited in each prediction region for landslide susceptibility mapping. To further improve the prediction performance, the particle swarm optimization (PSO) algorithm is used in the prediction regions to obtain optimal parameters for the SVM classifier. To evaluate the prediction performance of our model, several SVM-based prediction models are utilized for comparison on a study area of the Wanzhou district in the Three Gorges Reservoir. Experimental results, based on three objective quantitative measures and visual qualitative evaluation, indicate that our model can achieve better prediction accuracies and is more effective for landslide susceptibility mapping. For instance, our model can achieve an overall prediction accuracy of 91.10%, which is 7.8%-19.1% higher than the traditional SVM-based models. In addition, the obtained landslide susceptibility map by our model can demonstrate an intensive correlation between the classified very high-susceptibility zone and the previously investigated landslides.

  6. Study on spectral parameters and the support vector machine in surface enhanced Raman spectroscopy of serum for the detection of colon cancer

    Science.gov (United States)

    Li, Xiaozhou; Yang, Tianyue; Li, Siqi; Yao, Jun; Song, Youtao; Wang, Deli; Ding, Jianhua

    2015-11-01

    Surface enhanced Raman spectroscopy (SERS) has been recognized as an effective tool for the analysis of tissue samples and biofluids. In this work, a total of 27 spectral parameters were chosen and compared using SERS. Four parameters with the highest prediction ability were selected for further support vector machine (SVM) analysis. As a comparison, principal component analysis (PCA) was used on the same dataset for feature extraction. SVM was used with the above two data reduction methods separately to differentiate colon cancer and the control groups. Serum taken from 52 colon cancer patients and 60 healthy volunteers were collected and tested by SERS. The accuracy for Parameter-SVM was 95.0%, the sensitivity was 96.2%, and the specificity was 95.5%, which was much higher than the results using only one parameter, while for PCA-SVM, the results are 93.3%, 92.3%, and 92.9%, respectively. These results demonstrate that the SERS analysis method can be used to identify serum differences between colon cancer patients and normal people.

  7. Exploring an Interactive Value-Adding Data-Driven Model of Consumer Electronics Supply Chain Based on Least Squares Support Vector Machine

    Directory of Open Access Journals (Sweden)

    Xiao-le Wan

    2016-01-01

    Full Text Available The differences in supply chains and their competitiveness depend on the differences in supply chain value creation systems. On the basis of the theory of value cocreation, this study investigates the interactive value creation of consumer electronics supply chains from the perspective of the interaction and added value created by the main value creation bodies in supply chains. Least squares support vector machine (LS-SVM is innovatively introduced into the study on consumer electronics supply chains. A data-driven model is also established, the parameters of the method and kernel functions are optimized and selected, and an LS-SVM algorithm of consumer electronics supply chains is proposed to deal with the limited number of samples. Then, an empirical analysis of the top 10 smartphone supply chains in the Chinese market is conducted, and the LS-SVM model and other forecasting methods are compared. Results suggest that the LS-SVM model achieves a good predictive accuracy. This study also analyzes the value-adding structure of supply chains from the perspective of interaction and enriches the theory of value creation among supply chains. This study is conducive to helping consumer electronics enterprises to conduct market analyses and determine value growth points accurately.

  8. Laos Organization Name Using Cascaded Model Based on SVM and CRF

    Directory of Open Access Journals (Sweden)

    Duan Shaopeng

    2017-01-01

    Full Text Available According to the characteristics of Laos organization name, this paper proposes a two layer model based on conditional random field (CRF and support vector machine (SVM for Laos organization name recognition. A layer of model uses CRF to recognition simple organization name, and the result is used to support the decision of the second level. Based on the driving method, the second layer uses SVM and CRF to recognition the complicated organization name. Finally, the results of the two levels are combined, And by a subsequent treatment to correct results of low confidence recognition. The results show that this approach based on SVM and CRF is efficient in recognizing organization name through open test for real linguistics, and the recalling rate achieve 80. 83%and the precision rate achieves 82. 75%.

  9. Pharmaceutical Raw Material Identification Using Miniature Near-Infrared (MicroNIR) Spectroscopy and Supervised Pattern Recognition Using Support Vector Machine.

    Science.gov (United States)

    Sun, Lan; Hsiung, Chang; Pederson, Christopher G; Zou, Peng; Smith, Valton; von Gunten, Marc; O'Brien, Nada A

    2016-05-01

    Near-infrared spectroscopy as a rapid and non-destructive analytical technique offers great advantages for pharmaceutical raw material identification (RMID) to fulfill the quality and safety requirements in pharmaceutical industry. In this study, we demonstrated the use of portable miniature near-infrared (MicroNIR) spectrometers for NIR-based pharmaceutical RMID and solved two challenges in this area, model transferability and large-scale classification, with the aid of support vector machine (SVM) modeling. We used a set of 19 pharmaceutical compounds including various active pharmaceutical ingredients (APIs) and excipients and six MicroNIR spectrometers to test model transferability. For the test of large-scale classification, we used another set of 253 pharmaceutical compounds comprised of both chemically and physically different APIs and excipients. We compared SVM with conventional chemometric modeling techniques, including soft independent modeling of class analogy, partial least squares discriminant analysis, linear discriminant analysis, and quadratic discriminant analysis. Support vector machine modeling using a linear kernel, especially when combined with a hierarchical scheme, exhibited excellent performance in both model transferability and large-scale classification. Hence, ultra-compact, portable and robust MicroNIR spectrometers coupled with SVM modeling can make on-site and in situ pharmaceutical RMID for large-volume applications highly achievable. © The Author(s) 2016.

  10. Support Vector Machine Based on Adaptive Acceleration Particle Swarm Optimization

    Directory of Open Access Journals (Sweden)

    Mohammed Hasan Abdulameer

    2014-01-01

    Full Text Available Existing face recognition methods utilize particle swarm optimizer (PSO and opposition based particle swarm optimizer (OPSO to optimize the parameters of SVM. However, the utilization of random values in the velocity calculation decreases the performance of these techniques; that is, during the velocity computation, we normally use random values for the acceleration coefficients and this creates randomness in the solution. To address this problem, an adaptive acceleration particle swarm optimization (AAPSO technique is proposed. To evaluate our proposed method, we employ both face and iris recognition based on AAPSO with SVM (AAPSO-SVM. In the face and iris recognition systems, performance is evaluated using two human face databases, YALE and CASIA, and the UBiris dataset. In this method, we initially perform feature extraction and then recognition on the extracted features. In the recognition process, the extracted features are used for SVM training and testing. During the training and testing, the SVM parameters are optimized with the AAPSO technique, and in AAPSO, the acceleration coefficients are computed using the particle fitness values. The parameters in SVM, which are optimized by AAPSO, perform efficiently for both face and iris recognition. A comparative analysis between our proposed AAPSO-SVM and the PSO-SVM technique is presented.

  11. Support vector machine based on adaptive acceleration particle swarm optimization.

    Science.gov (United States)

    Abdulameer, Mohammed Hasan; Sheikh Abdullah, Siti Norul Huda; Othman, Zulaiha Ali

    2014-01-01

    Existing face recognition methods utilize particle swarm optimizer (PSO) and opposition based particle swarm optimizer (OPSO) to optimize the parameters of SVM. However, the utilization of random values in the velocity calculation decreases the performance of these techniques; that is, during the velocity computation, we normally use random values for the acceleration coefficients and this creates randomness in the solution. To address this problem, an adaptive acceleration particle swarm optimization (AAPSO) technique is proposed. To evaluate our proposed method, we employ both face and iris recognition based on AAPSO with SVM (AAPSO-SVM). In the face and iris recognition systems, performance is evaluated using two human face databases, YALE and CASIA, and the UBiris dataset. In this method, we initially perform feature extraction and then recognition on the extracted features. In the recognition process, the extracted features are used for SVM training and testing. During the training and testing, the SVM parameters are optimized with the AAPSO technique, and in AAPSO, the acceleration coefficients are computed using the particle fitness values. The parameters in SVM, which are optimized by AAPSO, perform efficiently for both face and iris recognition. A comparative analysis between our proposed AAPSO-SVM and the PSO-SVM technique is presented.

  12. Hyperspectral recognition of processing tomato early blight based on GA and SVM

    Science.gov (United States)

    Yin, Xiaojun; Zhao, SiFeng

    2013-03-01

    Processing tomato early blight seriously affect the yield and quality of its.Determine the leaves spectrum of different disease severity level of processing tomato early blight.We take the sensitive bands of processing tomato early blight as support vector machine input vector.Through the genetic algorithm(GA) to optimize the parameters of SVM, We could recognize different disease severity level of processing tomato early blight.The result show:the sensitive bands of different disease severity levels of processing tomato early blight is 628-643nm and 689-692nm.The sensitive bands are as the GA and SVM input vector.We get the best penalty parameters is 0.129 and kernel function parameters is 3.479.We make classification training and testing by polynomial nuclear,radial basis function nuclear,Sigmoid nuclear.The best classification model is the radial basis function nuclear of SVM. Training accuracy is 84.615%,Testing accuracy is 80.681%.It is combined GA and SVM to achieve multi-classification of processing tomato early blight.It is provided the technical support of prediction processing tomato early blight occurrence, development and diffusion rule in large areas.

  13. Automatic ultrasonic breast lesions detection using support vector machine based algorithm

    Science.gov (United States)

    Yeh, Chih-Kuang; Miao, Shan-Jung; Fan, Wei-Che; Chen, Yung-Sheng

    2007-03-01

    It is difficult to automatically detect tumors and extract lesion boundaries in ultrasound images due to the variance in shape, the interference from speckle noise, and the low contrast between objects and background. The enhancement of ultrasonic image becomes a significant task before performing lesion classification, which was usually done with manual delineation of the tumor boundaries in the previous works. In this study, a linear support vector machine (SVM) based algorithm is proposed for ultrasound breast image training and classification. Then a disk expansion algorithm is applied for automatically detecting lesions boundary. A set of sub-images including smooth and irregular boundaries in tumor objects and those in speckle-noised background are trained by the SVM algorithm to produce an optimal classification function. Based on this classification model, each pixel within an ultrasound image is classified into either object or background oriented pixel. This enhanced binary image can highlight the object and suppress the speckle noise; and it can be regarded as degraded paint character (DPC) image containing closure noise, which is well known in perceptual organization of psychology. An effective scheme of removing closure noise using iterative disk expansion method has been successfully demonstrated in our previous works. The boundary detection of ultrasonic breast lesions can be further equivalent to the removal of speckle noise. By applying the disk expansion method to the binary image, we can obtain a significant radius-based image where the radius for each pixel represents the corresponding disk covering the specific object information. Finally, a signal transmission process is used for searching the complete breast lesion region and thus the desired lesion boundary can be effectively and automatically determined. Our algorithm can be performed iteratively until all desired objects are detected. Simulations and clinical images were introduced to

  14. Fault Diagnosis for Constant Deceleration Braking System of Mine Hoist based on Principal Component Analysis and SVM

    Directory of Open Access Journals (Sweden)

    Li Juan-Juan

    2017-01-01

    Full Text Available Based on AMESim simulation platform, the pressure-time curve of constant deceleration braking system is obtained in this paper firstly, by simulating three typical faults of brake, the spring stiffness decrease, the brake shoe friction coefficient decrease and brake leaking. Then pressure data on the curve for each time are seen as a variable and the curve is chosen as the fault sample, analysed by the method of Principal Component Analysis (PCA. Last, principal components or sum of variance contribution rates more than 95% are selected as sample eigenvalues and Support Vector Machine (SVM is used for fault diagnosis. Diagnosis results show that all testing faults can be identified accurately, which indicates SVM model has an extremely excellent ability to identify faults. To further verify the performance of SVM for fault identification, BP neural network is established to compare. The result shows that SVM model is more accurate than BP neural network in fault recognition.

  15. Feature Selection and Parameters Optimization of SVM Using Particle Swarm Optimization for Fault Classification in Power Distribution Systems

    Directory of Open Access Journals (Sweden)

    Ming-Yuan Cho

    2017-01-01

    Full Text Available Fast and accurate fault classification is essential to power system operations. In this paper, in order to classify electrical faults in radial distribution systems, a particle swarm optimization (PSO based support vector machine (SVM classifier has been proposed. The proposed PSO based SVM classifier is able to select appropriate input features and optimize SVM parameters to increase classification accuracy. Further, a time-domain reflectometry (TDR method with a pseudorandom binary sequence (PRBS stimulus has been used to generate a dataset for purposes of classification. The proposed technique has been tested on a typical radial distribution network to identify ten different types of faults considering 12 given input features generated by using Simulink software and MATLAB Toolbox. The success rate of the SVM classifier is over 97%, which demonstrates the effectiveness and high efficiency of the developed method.

  16. A DWT and SVM based method for rolling element bearing fault diagnosis and its comparison with Artificial Neural Networks

    Directory of Open Access Journals (Sweden)

    Sunil Tyagi

    2017-04-01

    Full Text Available A classification technique using Support Vector Machine (SVM classifier for detection of rolling element bearing fault is presented here.  The SVM was fed from features that were extracted from of vibration signals obtained from experimental setup consisting of rotating driveline that was mounted on rolling element bearings which were run in normal and with artificially faults induced conditions. The time-domain vibration signals were divided into 40 segments and simple features such as peaks in time domain and spectrum along with statistical features such as standard deviation, skewness, kurtosis etc. were extracted. Effectiveness of SVM classifier was compared with the performance of Artificial Neural Network (ANN classifier and it was found that the performance of SVM classifier is superior to that of ANN. The effect of pre-processing of the vibration signal by Discreet Wavelet Transform (DWT prior to feature extraction is also studied and it is shown that pre-processing of vibration signal with DWT enhances the effectiveness of both ANN and SVM classifiers. It has been demonstrated from experiment results that performance of SVM classifier is better than ANN in detection of bearing condition and pre-processing the vibration signal with DWT improves the performance of SVM classifier.

  17. Melancholia EEG classification based on CSSD and SVM

    Science.gov (United States)

    Shi, Jian-Jun; Yuan, Qing-Wu; Zhou, La-Wu

    2011-10-01

    It takes an important role to get the disease information from melancholia electroencephalograph (EEG). Firstly, A common spatial subspace decomposition (CSSD) method was used to extract features from 16-channel EEG of melancholia and normal healthy persons. Then based on support vector machines (SVM), a classifier was designed to train and test its classification capability between Melancholia and healthy persons. The results indicated that the proposed method can reach a higher accuracy as 95% in EEG classification, while the accuracy of the method based on wavelet is only 88%.That is, the proposed method is feasible for the melancholia diagnosis and research.

  18. A RLS-SVM Aided Fusion Methodology for INS during GPS Outages

    Science.gov (United States)

    Yao, Yiqing; Xu, Xiaosu

    2017-01-01

    In order to maintain a relatively high accuracy of navigation performance during global positioning system (GPS) outages, a novel robust least squares support vector machine (LS-SVM)-aided fusion methodology is explored to provide the pseudo-GPS position information for the inertial navigation system (INS). The relationship between the yaw, specific force, velocity, and the position increment is modeled. Rather than share the same weight in the traditional LS-SVM, the proposed algorithm allocates various weights for different data, which makes the system immune to the outliers. Field test data was collected to evaluate the proposed algorithm. The comparison results indicate that the proposed algorithm can effectively provide position corrections for standalone INS during the 300 s GPS outage, which outperforms the traditional LS-SVM method. Historical information is also involved to better represent the vehicle dynamics. PMID:28245549

  19. Linear SVM-Based Android Malware Detection for Reliable IoT Services

    Directory of Open Access Journals (Sweden)

    Hyo-Sik Ham

    2014-01-01

    Full Text Available Current many Internet of Things (IoT services are monitored and controlled through smartphone applications. By combining IoT with smartphones, many convenient IoT services have been provided to users. However, there are adverse underlying effects in such services including invasion of privacy and information leakage. In most cases, mobile devices have become cluttered with important personal user information as various services and contents are provided through them. Accordingly, attackers are expanding the scope of their attacks beyond the existing PC and Internet environment into mobile devices. In this paper, we apply a linear support vector machine (SVM to detect Android malware and compare the malware detection performance of SVM with that of other machine learning classifiers. Through experimental validation, we show that the SVM outperforms other machine learning classifiers.

  20. A RLS-SVM Aided Fusion Methodology for INS during GPS Outages

    Directory of Open Access Journals (Sweden)

    Yiqing Yao

    2017-02-01

    Full Text Available In order to maintain a relatively high accuracy of navigation performance during global positioning system (GPS outages, a novel robust least squares support vector machine (LS-SVM-aided fusion methodology is explored to provide the pseudo-GPS position information for the inertial navigation system (INS. The relationship between the yaw, specific force, velocity, and the position increment is modeled. Rather than share the same weight in the traditional LS-SVM, the proposed algorithm allocates various weights for different data, which makes the system immune to the outliers. Field test data was collected to evaluate the proposed algorithm. The comparison results indicate that the proposed algorithm can effectively provide position corrections for standalone INS during the 300 s GPS outage, which outperforms the traditional LS-SVM method. Historical information is also involved to better represent the vehicle dynamics.

  1. Damage level prediction of non-reshaped berm breakwater using ANN, SVM and ANFIS models

    Directory of Open Access Journals (Sweden)

    Sukomal Mandal

    2012-06-01

    Full Text Available The damage analysis of coastal structure is very important as it involves many design parameters to be considered for the better and safe design of structure. In the present study experimental data for non-reshaped berm breakwater are collected from Marine Structures Laboratory, Department of Applied Mechanics and Hydraulics, NITK, Surathkal, India. Soft computing techniques like Artificial Neural Network (ANN, Support Vector Machine (SVM and Adaptive Neuro Fuzzy Inference system (ANFIS models are constructed using experimental data sets to predict the damage level of non-reshaped berm breakwater. The experimental data are used to train ANN, SVM and ANFIS models and results are determined in terms of statistical measures like mean square error, root mean square error, correlation coefficient and scatter index. The result shows that soft computing techniques i.e., ANN, SVM and ANFIS can be efficient tools in predicting damage levels of non reshaped berm breakwater.

  2. Energy-efficient SVM learning control system for biped walking robots.

    Science.gov (United States)

    Wang, Liyang; Liu, Zhi; Chen, Chun Lung Philip; Zhang, Yun; Lee, Sukhan; Chen, Xin

    2013-05-01

    An energy-efficient support vector machine (EE-SVM) learning control system considering the energy cost of each training sample of biped dynamic is proposed to realize energy-efficient biped walking. Energy costs of the biped walking samples are calculated. Then the samples are weighed with the inverses of the energy costs. An EE-SVM objective function with energy-related slack variables is proposed, which follows the principle that the sample with the lowest energy consumption is treated as the most important one in the training. That means the samples with lower energy consumption contribute more to the EE-SVM regression function learning, which highly increases the energy efficiency of the biped walking. Simulation results demonstrate the effectiveness of the proposed method.

  3. Landslide susceptibility mapping using support vector machine and ...

    Indian Academy of Sciences (India)

    learning algorithm; Eng. Geol. 123 225–234. Micheletti N 2011 Landslide susceptibility mapping using adaptive support vector machines and feature selection,. A Master Thesis submitted to University of Lausanne. Faculty of Geosciences and Environment for the Degree of Master of Science in Environmental Geosciences,.

  4. Using of support vector machines for link spam detection

    Science.gov (United States)

    Sharapov, Ruslan V.; Sharapova, Ekaterina V.

    2011-10-01

    In this article we described methods of link spam detection with using of machine learning. We analyzed main factors of link spam, which helps to find them. There is algorithm of link spam detection, based on support vector machines. The methods of link spam detection shows good results

  5. Protein-protein interaction site prediction in Homo sapiens and E. coli using an interaction-affinity based membership function in fuzzy SVM.

    Science.gov (United States)

    Sriwastava, Brijesh Kumar; Basu, Subhadip; Maulik, Ujjwal

    2015-10-01

    Protein-protein interaction (PPI) site prediction aids to ascertain the interface residues that participate in interaction processes. Fuzzy support vector machine (F-SVM) is proposed as an effective method to solve this problem, and we have shown that the performance of the classical SVM can be enhanced with the help of an interaction-affinity based fuzzy membership function. The performances of both SVM and F-SVM on the PPI databases of the Homo sapiens and E. coli organisms are evaluated and estimated the statistical significance of the developed method over classical SVM and other fuzzy membership-based SVM methods available in the literature. Our membership function uses the residue-level interaction affinity scores for each pair of positive and negative sequence fragments. The average AUC scores in the 10-fold cross-validation experiments are measured as 79.94% and 80.48% for the Homo sapiens and E. coli organisms respectively. On the independent test datasets, AUC scores are obtained as 76.59% and 80.17% respectively for the two organisms. In almost all cases, the developed F-SVM method improves the performances obtained by the corresponding classical SVM and the other classifiers, available in the literature.

  6. Novel Hybrid of LS-SVM and Kalman Filter for GPS/INS Integration

    Science.gov (United States)

    Xu, Zhenkai; Li, Yong; Rizos, Chris; Xu, Xiaosu

    Integration of Global Positioning System (GPS) and Inertial Navigation System (INS) technologies can overcome the drawbacks of the individual systems. One of the advantages is that the integrated solution can provide continuous navigation capability even during GPS outages. However, bridging the GPS outages is still a challenge when Micro-Electro-Mechanical System (MEMS) inertial sensors are used. Methods being currently explored by the research community include applying vehicle motion constraints, optimal smoother, and artificial intelligence (AI) techniques. In the research area of AI, the neural network (NN) approach has been extensively utilised up to the present. In an NN-based integrated system, a Kalman filter (KF) estimates position, velocity and attitude errors, as well as the inertial sensor errors, to output navigation solutions while GPS signals are available. At the same time, an NN is trained to map the vehicle dynamics with corresponding KF states, and to correct INS measurements when GPS measurements are unavailable. To achieve good performance it is critical to select suitable quality and an optimal number of samples for the NN. This is sometimes too rigorous a requirement which limits real world application of NN-based methods.The support vector machine (SVM) approach is based on the structural risk minimisation principle, instead of the minimised empirical error principle that is commonly implemented in an NN. The SVM can avoid local minimisation and over-fitting problems in an NN, and therefore potentially can achieve a higher level of global performance. This paper focuses on the least squares support vector machine (LS-SVM), which can solve highly nonlinear and noisy black-box modelling problems. This paper explores the application of the LS-SVM to aid the GPS/INS integrated system, especially during GPS outages. The paper describes the principles of the LS-SVM and of the KF hybrid method, and introduces the LS-SVM regression algorithm. Field

  7. Monthly evaporation forecasting using artificial neural networks and support vector machines

    Science.gov (United States)

    Tezel, Gulay; Buyukyildiz, Meral

    2016-04-01

    Evaporation is one of the most important components of the hydrological cycle, but is relatively difficult to estimate, due to its complexity, as it can be influenced by numerous factors. Estimation of evaporation is important for the design of reservoirs, especially in arid and semi-arid areas. Artificial neural network methods and support vector machines (SVM) are frequently utilized to estimate evaporation and other hydrological variables. In this study, usability of artificial neural networks (ANNs) (multilayer perceptron (MLP) and radial basis function network (RBFN)) and ɛ-support vector regression (SVR) artificial intelligence methods was investigated to estimate monthly pan evaporation. For this aim, temperature, relative humidity, wind speed, and precipitation data for the period 1972 to 2005 from Beysehir meteorology station were used as input variables while pan evaporation values were used as output. The Romanenko and Meyer method was also considered for the comparison. The results were compared with observed class A pan evaporation data. In MLP method, four different training algorithms, gradient descent with momentum and adaptive learning rule backpropagation (GDX), Levenberg-Marquardt (LVM), scaled conjugate gradient (SCG), and resilient backpropagation (RBP), were used. Also, ɛ-SVR model was used as SVR model. The models were designed via 10-fold cross-validation (CV); algorithm performance was assessed via mean absolute error (MAE), root mean square error (RMSE), and coefficient of determination (R 2). According to the performance criteria, the ANN algorithms and ɛ-SVR had similar results. The ANNs and ɛ-SVR methods were found to perform better than the Romanenko and Meyer methods. Consequently, the best performance using the test data was obtained using SCG(4,2,2,1) with R 2 = 0.905.

  8. SVM2Motif--Reconstructing Overlapping DNA Sequence Motifs by Mimicking an SVM Predictor.

    Directory of Open Access Journals (Sweden)

    Marina M-C Vidovic

    Full Text Available Identifying discriminative motifs underlying the functionality and evolution of organisms is a major challenge in computational biology. Machine learning approaches such as support vector machines (SVMs achieve state-of-the-art performances in genomic discrimination tasks, but--due to its black-box character--motifs underlying its decision function are largely unknown. As a remedy, positional oligomer importance matrices (POIMs allow us to visualize the significance of position-specific subsequences. Although being a major step towards the explanation of trained SVM models, they suffer from the fact that their size grows exponentially in the length of the motif, which renders their manual inspection feasible only for comparably small motif sizes, typically k ≤ 5. In this work, we extend the work on positional oligomer importance matrices, by presenting a new machine-learning methodology, entitled motifPOIM, to extract the truly relevant motifs--regardless of their length and complexity--underlying the predictions of a trained SVM model. Our framework thereby considers the motifs as free parameters in a probabilistic model, a task which can be phrased as a non-convex optimization problem. The exponential dependence of the POIM size on the oligomer length poses a major numerical challenge, which we address by an efficient optimization framework that allows us to find possibly overlapping motifs consisting of up to hundreds of nucleotides. We demonstrate the efficacy of our approach on a synthetic data set as well as a real-world human splice site data set.

  9. SVM2Motif--Reconstructing Overlapping DNA Sequence Motifs by Mimicking an SVM Predictor.

    Science.gov (United States)

    Vidovic, Marina M-C; Görnitz, Nico; Müller, Klaus-Robert; Rätsch, Gunnar; Kloft, Marius

    2015-01-01

    Identifying discriminative motifs underlying the functionality and evolution of organisms is a major challenge in computational biology. Machine learning approaches such as support vector machines (SVMs) achieve state-of-the-art performances in genomic discrimination tasks, but--due to its black-box character--motifs underlying its decision function are largely unknown. As a remedy, positional oligomer importance matrices (POIMs) allow us to visualize the significance of position-specific subsequences. Although being a major step towards the explanation of trained SVM models, they suffer from the fact that their size grows exponentially in the length of the motif, which renders their manual inspection feasible only for comparably small motif sizes, typically k ≤ 5. In this work, we extend the work on positional oligomer importance matrices, by presenting a new machine-learning methodology, entitled motifPOIM, to extract the truly relevant motifs--regardless of their length and complexity--underlying the predictions of a trained SVM model. Our framework thereby considers the motifs as free parameters in a probabilistic model, a task which can be phrased as a non-convex optimization problem. The exponential dependence of the POIM size on the oligomer length poses a major numerical challenge, which we address by an efficient optimization framework that allows us to find possibly overlapping motifs consisting of up to hundreds of nucleotides. We demonstrate the efficacy of our approach on a synthetic data set as well as a real-world human splice site data set.

  10. The identification of high potential archers based on fitness and motor ability variables: A Support Vector Machine approach.

    Science.gov (United States)

    Taha, Zahari; Musa, Rabiu Muazu; P P Abdul Majeed, Anwar; Alim, Muhammad Muaz; Abdullah, Mohamad Razali

    2018-02-01

    Support Vector Machine (SVM) has been shown to be an effective learning algorithm for classification and prediction. However, the application of SVM for prediction and classification in specific sport has rarely been used to quantify/discriminate low and high-performance athletes. The present study classified and predicted high and low-potential archers from a set of fitness and motor ability variables trained on different SVMs kernel algorithms. 50 youth archers with the mean age and standard deviation of 17.0 ± 0.6 years drawn from various archery programmes completed a six arrows shooting score test. Standard fitness and ability measurements namely hand grip, vertical jump, standing broad jump, static balance, upper muscle strength and the core muscle strength were also recorded. Hierarchical agglomerative cluster analysis (HACA) was used to cluster the archers based on the performance variables tested. SVM models with linear, quadratic, cubic, fine RBF, medium RBF, as well as the coarse RBF kernel functions, were trained based on the measured performance variables. The HACA clustered the archers into high-potential archers (HPA) and low-potential archers (LPA), respectively. The linear, quadratic, cubic, as well as the medium RBF kernel functions models, demonstrated reasonably excellent classification accuracy of 97.5% and 2.5% error rate for the prediction of the HPA and the LPA. The findings of this investigation can be valuable to coaches and sports managers to recognise high potential athletes from a combination of the selected few measured fitness and motor ability performance variables examined which would consequently save cost, time and effort during talent identification programme. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. Relationship between rice yield and climate variables in southwest Nigeria using multiple linear regression and support vector machine analysis.

    Science.gov (United States)

    Oguntunde, Philip G; Lischeid, Gunnar; Dietrich, Ottfried

    2017-10-14

    This study examines the variations of climate variables and rice yield and quantifies the relationships among them using multiple linear regression, principal component analysis, and support vector machine (SVM) analysis in southwest Nigeria. The climate and yield data used was for a period of 36 years between 1980 and 2015. Similar to the observed decrease (P yield, pan evaporation, solar radiation, and wind speed declined significantly. Eight principal components exhibited an eigenvalue > 1 and explained 83.1% of the total variance of predictor variables. The SVM regression function using the scores of the first principal component explained about 75% of the variance in rice yield data and linear regression about 64%. SVM regression between annual solar radiation values and yield explained 67% of the variance. Only the first component of the principal component analysis (PCA) exhibited a clear long-term trend and sometimes short-term variance similar to that of rice yield. Short-term fluctuations of the scores of the PC1 are closely coupled to those of rice yield during the 1986-1993 and the 2006-2013 periods thereby revealing the inter-annual sensitivity of rice production to climate variability. Solar radiation stands out as the climate variable of highest influence on rice yield, and the influence was especially strong during monsoon and post-monsoon periods, which correspond to the vegetative, booting, flowering, and grain filling stages in the study area. The outcome is expected to provide more in-depth regional-specific climate-rice linkage for screening of better cultivars that can positively respond to future climate fluctuations as well as providing information that may help optimized planting dates for improved radiation use efficiency in the study area.

  12. Estimation of the aging grade of T91 steel by laser-induced breakdown spectroscopy coupled with support vector machines

    Science.gov (United States)

    Lu, Shengzi; Dong, Meirong; Huang, Jianwei; Li, Wenbing; Lu, Jidong; Li, Jun

    2018-02-01

    T91 steel is a representative martensitic heat-resistant steel widely used in high temperature compression components of industrial equipment. During the service period, the operation safety and the service life of the equipment will be affected by the change of structure and mechanical properties of the steel components, which is called material aging. In order to develop a rapid in-situ aging estimation technology of high temperature compression components surface, laser-induced breakdown spectroscopy (LIBS) coupled with support vector machine (SVM) was employed in this paper. The spectral characteristics of 10 T91 steel specimens with different aging grades were analyzed. Line intensities and the line intensity ratios (ionic/atomic and alloying element/matrix element) that indicate the change of metallographic structure were used to establish SVM models, and the results using different variable sets were compared. The model was optimized by comparing different pulse number for practical effectiveness, and the robustness of the model was investigated in dealing with the inhomogeneity of steel composition. The study results show that the estimation model obtained the best performance using line intensities and line intensity ratios averaged from 31st-60th laser pulses as input variables. The estimation accuracy of validation set was greatly improved from 75.8% to 95.3%. In addition, the model showed the outstanding capacity for handling the fluctuations of spectral signals between measuring-points (spots), which indicated that the aging estimation based on a few measuring-points is feasible. The studies presented here demonstrate that the LIBS coupled with SVM is a new useful technique for the aging estimation of steel, and would be well-suited for fast safety assessment in industrial field.

  13. Relationship between rice yield and climate variables in southwest Nigeria using multiple linear regression and support vector machine analysis

    Science.gov (United States)

    Oguntunde, Philip G.; Lischeid, Gunnar; Dietrich, Ottfried

    2017-10-01

    This study examines the variations of climate variables and rice yield and quantifies the relationships among them using multiple linear regression, principal component analysis, and support vector machine (SVM) analysis in southwest Nigeria. The climate and yield data used was for a period of 36 years between 1980 and 2015. Similar to the observed decrease (P 1 and explained 83.1% of the total variance of predictor variables. The SVM regression function using the scores of the first principal component explained about 75% of the variance in rice yield data and linear regression about 64%. SVM regression between annual solar radiation values and yield explained 67% of the variance. Only the first component of the principal component analysis (PCA) exhibited a clear long-term trend and sometimes short-term variance similar to that of rice yield. Short-term fluctuations of the scores of the PC1 are closely coupled to those of rice yield during the 1986-1993 and the 2006-2013 periods thereby revealing the inter-annual sensitivity of rice production to climate variability. Solar radiation stands out as the climate variable of highest influence on rice yield, and the influence was especially strong during monsoon and post-monsoon periods, which correspond to the vegetative, booting, flowering, and grain filling stages in the study area. The outcome is expected to provide more in-depth regional-specific climate-rice linkage for screening of better cultivars that can positively respond to future climate fluctuations as well as providing information that may help optimized planting dates for improved radiation use efficiency in the study area.

  14. Efficient brain lesion segmentation using multi-modality tissue-based feature selection and support vector machines.

    Science.gov (United States)

    Fiot, Jean-Baptiste; Cohen, Laurent D; Raniga, Parnesh; Fripp, Jurgen

    2013-09-01

    Support vector machines (SVM) are machine learning techniques that have been used for segmentation and classification of medical images, including segmentation of white matter hyper-intensities (WMH). Current approaches using SVM for WMH segmentation extract features from the brain and classify these followed by complex post-processing steps to remove false positives. The method presented in this paper combines advanced pre-processing, tissue-based feature selection and SVM classification to obtain efficient and accurate WMH segmentation. Features from 125 patients, generated from up to four MR modalities [T1-w, T2-w, proton-density and fluid attenuated inversion recovery(FLAIR)], differing neighbourhood sizes and the use of multi-scale features were compared. We found that although using all four modalities gave the best overall classification (average Dice scores of 0.54  ±  0.12, 0.72  ±  0.06 and 0.82  ±  0.06 respectively for small, moderate and severe lesion loads); this was not significantly different (p = 0.50) from using just T1-w and FLAIR sequences (Dice scores of 0.52  ±  0.13, 0.71  ±  0.08 and 0.81  ±  0.07). Furthermore, there was a negligible difference between using 5 × 5 × 5 and 3 × 3 × 3 features (p = 0.93). Finally, we show that careful consideration of features and pre-processing techniques not only saves storage space and computation time but also leads to more efficient classification, which outperforms the one based on all features with post-processing. Copyright © 2013 John Wiley & Sons, Ltd.

  15. Learning machines and sleeping brains: Automatic sleep stage classification using decision-tree multi-class support vector machines.

    Science.gov (United States)

    Lajnef, Tarek; Chaibi, Sahbi; Ruby, Perrine; Aguera, Pierre-Emmanuel; Eichenlaub, Jean-Baptiste; Samet, Mounir; Kachouri, Abdennaceur; Jerbi, Karim

    2015-07-30

    Sleep staging is a critical step in a range of electrophysiological signal processing pipelines used in clinical routine as well as in sleep research. Although the results currently achievable with automatic sleep staging methods are promising, there is need for improvement, especially given the time-consuming and tedious nature of visual sleep scoring. Here we propose a sleep staging framework that consists of a multi-class support vector machine (SVM) classification based on a decision tree approach. The performance of the method was evaluated using polysomnographic data from 15 subjects (electroencephalogram (EEG), electrooculogram (EOG) and electromyogram (EMG) recordings). The decision tree, or dendrogram, was obtained using a hierarchical clustering technique and a wide range of time and frequency-domain features were extracted. Feature selection was carried out using forward sequential selection and classification was evaluated using k-fold cross-validation. The dendrogram-based SVM (DSVM) achieved mean specificity, sensitivity and overall accuracy of 0.92, 0.74 and 0.88 respectively, compared to expert visual scoring. Restricting DSVM classification to data where both experts' scoring was consistent (76.73% of the data) led to a mean specificity, sensitivity and overall accuracy of 0.94, 0.82 and 0.92 respectively. The DSVM framework outperforms classification with more standard multi-class "one-against-all" SVM and linear-discriminant analysis. The promising results of the proposed methodology suggest that it may be a valuable alternative to existing automatic methods and that it could accelerate visual scoring by providing a robust starting hypnogram that can be further fine-tuned by expert inspection. Copyright © 2015 Elsevier B.V. All rights reserved.

  16. Investigation of Pear Drying Performance by Different Methods and Regression of Convective Heat Transfer Coefficient with Support Vector Machine

    Directory of Open Access Journals (Sweden)

    Mehmet Das

    2018-01-01

    Full Text Available In this study, an air heated solar collector (AHSC dryer was designed to determine the drying characteristics of the pear. Flat pear slices of 10 mm thickness were used in the experiments. The pears were dried both in the AHSC dryer and under the sun. Panel glass temperature, panel floor temperature, panel inlet temperature, panel outlet temperature, drying cabinet inlet temperature, drying cabinet outlet temperature, drying cabinet temperature, drying cabinet moisture, solar radiation, pear internal temperature, air velocity and mass loss of pear were measured at 30 min intervals. Experiments were carried out during the periods of June 2017 in Elazig, Turkey. The experiments started at 8:00 a.m. and continued till 18:00. The experiments were continued until the weight changes in the pear slices stopped. Wet basis moisture content (MCw, dry basis moisture content (MCd, adjustable moisture ratio (MR, drying rate (DR, and convective heat transfer coefficient (hc were calculated with both in the AHSC dryer and the open sun drying experiment data. It was found that the values of hc in both drying systems with a range 12.4 and 20.8 W/m2 °C. Three different kernel models were used in the support vector machine (SVM regression to construct the predictive model of the calculated hc values for both systems. The mean absolute error (MAE, root mean squared error (RMSE, relative absolute error (RAE and root relative absolute error (RRAE analysis were performed to indicate the predictive model’s accuracy. As a result, the rate of drying of the pear was examined for both systems and it was observed that the pear had dried earlier in the AHSC drying system. A predictive model was obtained using the SVM regression for the calculated hc values for the pear in the AHSC drying system. The normalized polynomial kernel was determined as the best kernel model in SVM for estimating the hc values.

  17. Support vector machine for classification of meiotic recombination hotspots and coldspots in Saccharomyces cerevisiae based on codon composition

    Directory of Open Access Journals (Sweden)

    Sun Xiao

    2006-04-01

    Full Text Available Abstract Background Meiotic double-strand breaks occur at relatively high frequencies in some genomic regions (hotspots and relatively low frequencies in others (coldspots. Hotspots and coldspots are receiving increasing attention in research into the mechanism of meiotic recombination. However, predicting hotspots and coldspots from DNA sequence information is still a challenging task. Results We present a novel method for classification of hot and cold ORFs located in hotspots and coldspots respectively in Saccharomyces cerevisiae, using support vector machine (SVM, which relies on codon composition differences. This method has achieved a high classification accuracy of 85.0%. Since codon composition is a fusion of codon usage bias and amino acid composition signals, the ability of these two kinds of sequence attributes to discriminate hot ORFs from cold ORFs was also investigated separately. Our results indicate that neither codon usage bias nor amino acid composition taken separately performed as well as codon composition. Moreover, our SVM based method was applied to the full genome: We predicted the hot/cold ORFs from the yeast genome by using cutoffs of recombination rate. We found that the performance of our method for predicting cold ORFs is not as good as that for predicting hot ORFs. Besides, we also observed a considerable correlation between meiotic recombination rate and amino acid composition of certain residues, which probably reflects the structural and functional dissimilarity between the hot and cold groups. Conclusion We have introduced a SVM-based novel method to discriminate hot ORFs from cold ones. Applying codon composition as sequence attributes, we have achieved a high classification accuracy, which suggests that codon composition has strong potential to be used as sequence attributes in the prediction of hot and cold ORFs.

  18. Application of machine learning using support vector machines for crater detection from Martian digital topography data

    Science.gov (United States)

    Salamunićcar, Goran; Lončarić, Sven

    In our previous work, in order to extend the GT-57633 catalogue [PSS, 56 (15), 1992-2008] with still uncatalogued impact-craters, the following has been done [GRS, 48 (5), in press, doi:10.1109/TGRS.2009.2037750]: (1) the crater detection algorithm (CDA) based on digital elevation model (DEM) was developed; (2) using 1/128° MOLA data, this CDA proposed 414631 crater-candidates; (3) each crater-candidate was analyzed manually; and (4) 57592 were confirmed as correct detections. The resulting GT-115225 catalog is the significant result of this effort. However, to check such a large number of crater-candidates manually was a demanding task. This was the main motivation for work on improvement of the CDA in order to provide better classification of craters as true and false detections. To achieve this, we extended the CDA with the machine learning capability, using support vector machines (SVM). In the first step, the CDA (re)calculates numerous terrain morphometric attributes from DEM. For this purpose, already existing modules of the CDA from our previous work were reused in order to be capable to prepare these attributes. In addition, new attributes were introduced such as ellipse eccentricity and tilt. For machine learning purpose, the CDA is additionally extended to provide 2-D topography-profile and 3-D shape for each crater-candidate. The latter two are a performance problem because of the large number of crater-candidates in combination with the large number of attributes. As a solution, we developed a CDA architecture wherein it is possible to combine the SVM with a radial basis function (RBF) or any other kernel (for initial set of attributes), with the SVM with linear kernel (for the cases when 2-D and 3-D data are included as well). Another challenge is that, in addition to diversity of possible crater types, there are numerous morphological differences between the smallest (mostly very circular bowl-shaped craters) and the largest (multi-ring) impact

  19. Twin support vector machines models, extensions and applications

    CERN Document Server

    Jayadeva; Chandra, Suresh

    2017-01-01

    This book provides a systematic and focused study of the various aspects of twin support vector machines (TWSVM) and related developments for classification and regression. In addition to presenting most of the basic models of TWSVM and twin support vector regression (TWSVR) available in the literature, it also discusses the important and challenging applications of this new machine learning methodology. A chapter on “Additional Topics” has been included to discuss kernel optimization and support tensor machine topics, which are comparatively new but have great potential in applications. It is primarily written for graduate students and researchers in the area of machine learning and related topics in computer science, mathematics, electrical engineering, management science and finance.

  20. Ensembled support vector machines for human papillomavirus risk type prediction from protein secondary structures.

    Science.gov (United States)

    Kim, Sun; Kim, Jeongmi; Zhang, Byoung-Tak

    2009-02-01

    Infection by the human papillomavirus (HPV) is regarded as the major risk factor in the development of cervical cancer. Detection of high-risk HPV is important for understanding its oncogenic mechanisms and for developing novel clinical tools for its diagnosis, treatment, and prevention. Several methods are available to predict the risk types for HPV protein sequences. Nevertheless, no tools can achieve a universally good performance for all domains, including HPV and nor do they provide confidence levels for their decisions. Here, we describe ensembled support vector machines (SVMs) to classify HPV risk types, which assign given proteins into high-, possibly high-, or low-risk type based on their confidence level. Our approach uses protein secondary structures to obtain the differential contribution of subsequences for the risk type, and SVM classifiers are combined with a simple but efficient string kernel to handle HPV protein sequences. In the experiments, we compare our approach with previous methods in accuracy and F1-score, and present the predictions for unknown HPV types, which provides promising results.

  1. LOCUSTRA: accurate prediction of local protein structure using a two-layer support vector machine approach.

    Science.gov (United States)

    Zimmermann, Olav; Hansmann, Ulrich H E

    2008-09-01

    Constraint generation for 3d structure prediction and structure-based database searches benefit from fine-grained prediction of local structure. In this work, we present LOCUSTRA, a novel scheme for the multiclass prediction of local structure that uses two layers of support vector machines (SVM). Using a 16-letter structural alphabet from de Brevern et al. (Proteins: Struct., Funct., Bioinf. 2000, 41, 271-287), we assess its prediction ability for an independent test set of 222 proteins and compare our method to three-class secondary structure prediction and direct prediction of dihedral angles. The prediction accuracy is Q16=61.0% for the 16 classes of the structural alphabet and Q3=79.2% for a simple mapping to the three secondary classes helix, sheet, and coil. We achieve a mean phi(psi) error of 24.74 degrees (38.35 degrees) and a median RMSDA (root-mean-square deviation of the (dihedral) angles) per protein chain of 52.1 degrees. These results compare favorably with related approaches. The LOCUSTRA web server is freely available to researchers at http://www.fz-juelich.de/nic/cbb/service/service.php.

  2. Improving Non-Destructive Concrete Strength Tests Using Support Vector Machines

    Directory of Open Access Journals (Sweden)

    Yi-Fan Shih

    2015-10-01

    Full Text Available Non-destructive testing (NDT methods are important alternatives when destructive tests are not feasible to examine the in situ concrete properties without damaging the structure. The rebound hammer test and the ultrasonic pulse velocity test are two popular NDT methods to examine the properties of concrete. The rebound of the hammer depends on the hardness of the test specimen and ultrasonic pulse travelling speed is related to density, uniformity, and homogeneity of the specimen. Both of these two methods have been adopted to estimate the concrete compressive strength. Statistical analysis has been implemented to establish the relationship between hammer rebound values/ultrasonic pulse velocities and concrete compressive strength. However, the estimated results can be unreliable. As a result, this research proposes an Artificial Intelligence model using support vector machines (SVMs for the estimation. Data from 95 cylinder concrete samples are collected to develop and validate the model. The results show that combined NDT methods (also known as SonReb method yield better estimations than single NDT methods. The results also show that the SVM model is more accurate than the statistical regression model.

  3. Hadoop-Based Distributed System for Online Prediction of Air Pollution Based on Support Vector Machine

    Science.gov (United States)

    Ghaemi, Z.; Farnaghi, M.; Alimohammadi, A.

    2015-12-01

    The critical impact of air pollution on human health and environment in one hand and the complexity of pollutant concentration behavior in the other hand lead the scientists to look for advance techniques for monitoring and predicting the urban air quality. Additionally, recent developments in data measurement techniques have led to collection of various types of data about air quality. Such data is extremely voluminous and to be useful it must be processed at high velocity. Due to the complexity of big data analysis especially for dynamic applications, online forecasting of pollutant concentration trends within a reasonable processing time is still an open problem. The purpose of this paper is to present an online forecasting approach based on Support Vector Machine (SVM) to predict the air quality one day in advance. In order to overcome the computational requirements for large-scale data analysis, distributed computing based on the Hadoop platform has been employed to leverage the processing power of multiple processing units. The MapReduce programming model is adopted for massive parallel processing in this study. Based on the online algorithm and Hadoop framework, an online forecasting system is designed to predict the air pollution of Tehran for the next 24 hours. The results have been assessed on the basis of Processing Time and Efficiency. Quite accurate predictions of air pollutant indicator levels within an acceptable processing time prove that the presented approach is very suitable to tackle large scale air pollution prediction problems.

  4. Efficient Prediction of Progesterone Receptor Interactome Using a Support Vector Machine Model

    Directory of Open Access Journals (Sweden)

    Ji-Long Liu

    2015-03-01

    Full Text Available Protein-protein interaction (PPI is essential for almost all cellular processes and identification of PPI is a crucial task for biomedical researchers. So far, most computational studies of PPI are intended for pair-wise prediction. Theoretically, predicting protein partners for a single protein is likely a simpler problem. Given enough data for a particular protein, the results can be more accurate than general PPI predictors. In the present study, we assessed the potential of using the support vector machine (SVM model with selected features centered on a particular protein for PPI prediction. As a proof-of-concept study, we applied this method to identify the interactome of progesterone receptor (PR, a protein which is essential for coordinating female reproduction in mammals by mediating the actions of ovarian progesterone. We achieved an accuracy of 91.9%, sensitivity of 92.8% and specificity of 91.2%. Our method is generally applicable to any other proteins and therefore may be of help in guiding biomedical experiments.

  5. Classification of HCV NS5B Polymerase Inhibitors Using Support Vector Machine

    Directory of Open Access Journals (Sweden)

    Changyuan Yu

    2012-03-01

    Full Text Available Using a support vector machine (SVM, three classification models were built to predict whether a compound is an active or weakly active inhibitor based on a dataset of 386 hepatitis C virus (HCV NS5B polymerase NNIs (non-nucleoside analogue inhibitors fitting into the pocket of the NNI III binding site. For each molecule, global descriptors, 2D and 3D property autocorrelation descriptors were calculated from the program ADRIANA.Code. Three models were developed with the combination of different types of descriptors. Model 2 based on 16 global and 2D autocorrelation descriptors gave the highest prediction accuracy of 88.24% and MCC (Matthews correlation coefficient of 0.789 on test set. Model 1 based on 13 global descriptors showed the highest prediction accuracy of 86.25% and MCC of 0.732 on external test set (including 80 compounds. Some molecular properties such as molecular shape descriptors (InertiaZ, InertiaX and Span, number of rotatable bonds (NRotBond, water solubility (LogS, and hydrogen bonding related descriptors performed important roles in the interactions between the ligand and NS5B polymerase.

  6. Classification of HCV NS5B Polymerase Inhibitors Using Support Vector Machine

    Science.gov (United States)

    Wang, Maolin; Wang, Kai; Yan, Aixia; Yu, Changyuan

    2012-01-01

    Using a support vector machine (SVM), three classification models were built to predict whether a compound is an active or weakly active inhibitor based on a dataset of 386 hepatitis C virus (HCV) NS5B polymerase NNIs (non-nucleoside analogue inhibitors) fitting into the pocket of the NNI III binding site. For each molecule, global descriptors, 2D and 3D property autocorrelation descriptors were calculated from the program ADRIANA.Code. Three models were developed with the combination of different types of descriptors. Model 2 based on 16 global and 2D autocorrelation descriptors gave the highest prediction accuracy of 88.24% and MCC (Matthews correlation coefficient) of 0.789 on test set. Model 1 based on 13 global descriptors showed the highest prediction accuracy of 86.25% and MCC of 0.732 on external test set (including 80 compounds). Some molecular properties such as molecular shape descriptors (InertiaZ, InertiaX and Span), number of rotatable bonds (NRotBond), water solubility (LogS), and hydrogen bonding related descriptors performed important roles in the interactions between the ligand and NS5B polymerase. PMID:22605964

  7. Detection of segments with fetal QRS complex from abdominal maternal ECG recordings using support vector machine

    Science.gov (United States)

    Delgado, Juan A.; Altuve, Miguel; Nabhan Homsi, Masun

    2015-12-01

    This paper introduces a robust method based on the Support Vector Machine (SVM) algorithm to detect the presence of Fetal QRS (fQRS) complexes in electrocardiogram (ECG) recordings provided by the PhysioNet/CinC challenge 2013. ECG signals are first segmented into contiguous frames of 250 ms duration and then labeled in six classes. Fetal segments are tagged according to the position of fQRS complex within each one. Next, segment features extraction and dimensionality reduction are obtained by applying principal component analysis on Haar-wavelet transform. After that, two sub-datasets are generated to separate representative segments from atypical ones. Imbalanced class problem is dealt by applying sampling without replacement on each sub-dataset. Finally, two SVMs are trained and cross-validated using the two balanced sub-datasets separately. Experimental results show that the proposed approach achieves high performance rates in fetal heartbeats detection that reach up to 90.95% of accuracy, 92.16% of sensitivity, 88.51% of specificity, 94.13% of positive predictive value and 84.96% of negative predictive value. A comparative study is also carried out to show the performance of other two machine learning algorithms for fQRS complex estimation, which are K-nearest neighborhood and Bayesian network.

  8. Application of genetic algorithm and support vector machine for probing nanoflare parameters

    Directory of Open Access Journals (Sweden)

    H Safari

    2012-12-01

    Full Text Available   Nanoflares are the small impulsive sudden energy releases, due to the explosion of solar background. Thus, determination of their energies and distributions is important . Recent observations and simulation models have shown that the frequency of their energies follows power-law. According to Parker hypothesis, if these exponents are greater than critical value 2, the contributions of nanoflares to the heating of solar corona is more significan. Here, the extreme ultra-violet (EUV emission radiances of corona observed by STEREO/EUVI taken on 11 and 12 Jun 2007 are analyzed. To simulate the EUV irradiance, a simple nanoflare model with three key parameters (the flare rate, the flare duration time, and the exponent of the power- law is applied. Based on genetic algorithm, the lengths of data points are reduced. The resultant light curves are fed to the Support Vector Machine (SVM classifier. The produced light curves of quiet and active regions of the solar corona are classified and the set of power- law exponent, the flare duration time and the flare rate parameters are obtained. The flare duration time is estimated about 80 minutes. The power-low exponents range about 2.5-2.7.

  9. Text and Language-Independent Speaker Recognition Using Suprasegmental Features and Support Vector Machines

    Science.gov (United States)

    Bajpai, Anvita; Pathangay, Vinod

    In this paper, presence of the speaker-specific suprasegmental information in the Linear Prediction (LP) residual signal is demonstrated. The LP residual signal is obtained after removing the predictable part of the speech signal. This information, if added to existing speaker recognition systems based on segmental and subsegmental features, can result in better performing combined system. The speaker-specific suprasegmental information can not only be perceived by listening to the residual, but can also be seen in the form of excitation peaks in the residual waveform. However, the challenge lies in capturing this information from the residual signal. Higher order correlations among samples of the residual are not known to be captured using standard signal processing and statistical techniques. The Hilbert envelope of residual is shown to further enhance the excitation peaks present in the residual signal. A speaker-specific pattern is also observed in the autocorrelation sequence of the Hilbert envelope, and further in the statistics of this autocorrelation sequence. This indicates the presence of the speaker-specific suprasegmental information in the residual signal. In this work, no distinction between voiced and unvoiced sounds is done for extracting these features. Support Vector Machine (SVM) is used to classify the patterns in the variance of the autocorrelation sequence for the speaker recognition task.

  10. (Machine-)Learning to analyze in vivo microscopy: Support vector machines.

    Science.gov (United States)

    Wang, Michael F Z; Fernandez-Gonzalez, Rodrigo

    2017-11-01

    The development of new microscopy techniques for super-resolved, long-term monitoring of cellular and subcellular dynamics in living organisms is revealing new fundamental aspects of tissue development and repair. However, new microscopy approaches present several challenges. In addition to unprecedented requirements for data storage, the analysis of high resolution, time-lapse images is too complex to be done manually. Machine learning techniques are ideally suited for the (semi-)automated analysis of multidimensional image data. In particular, support vector machines (SVMs), have emerged as an efficient method to analyze microscopy images obtained from animals. Here, we discuss the use of SVMs to analyze in vivo microscopy data. We introduce the mathematical framework behind SVMs, and we describe the metrics used by SVMs and other machine learning approaches to classify image data. We discuss the influence of different SVM parameters in the context of an algorithm for cell segmentation and tracking. Finally, we describe how the application of SVMs has been critical to study protein localization in yeast screens, for lineage tracing in C. elegans, or to determine the developmental stage of Drosophila embryos to investigate gene expression dynamics. We propose that SVMs will become central tools in the analysis of the complex image data that novel microscopy modalities have made possible. This article is part of a Special Issue entitled: Biophysics in Canada, edited by Lewis Kay, John Baenziger, Albert Berghuis and Peter Tieleman. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. BLProt: Prediction of bioluminescent proteins based on support vector machine and relieff feature selection

    KAUST Repository

    Kandaswamy, Krishna Kumar

    2011-08-17

    Background: Bioluminescence is a process in which light is emitted by a living organism. Most creatures that emit light are sea creatures, but some insects, plants, fungi etc, also emit light. The biotechnological application of bioluminescence has become routine and is considered essential for many medical and general technological advances. Identification of bioluminescent proteins is more challenging due to their poor similarity in sequence. So far, no specific method has been reported to identify bioluminescent proteins from primary sequence.Results: In this paper, we propose a novel predictive method that uses a Support Vector Machine (SVM) and physicochemical properties to predict bioluminescent proteins. BLProt was trained using a dataset consisting of 300 bioluminescent proteins and 300 non-bioluminescent proteins, and evaluated by an independent set of 141 bioluminescent proteins and 18202 non-bioluminescent proteins. To identify the most prominent features, we carried out feature selection with three different filter approaches, ReliefF, infogain, and mRMR. We selected five different feature subsets by decreasing the number of features, and the performance of each feature subset was evaluated.Conclusion: BLProt achieves 80% accuracy from training (5 fold cross-validations) and 80.06% accuracy from testing. The performance of BLProt was compared with BLAST and HMM. High prediction accuracy and successful prediction of hypothetical proteins suggests that BLProt can be a useful approach to identify bioluminescent proteins from sequence information, irrespective of their sequence similarity. 2011 Kandaswamy et al; licensee BioMed Central Ltd.

  12. Nondestructive detection of pork comprehensive quality based on spectroscopy and support vector machine

    Science.gov (United States)

    Liu, Yuanyuan; Peng, Yankun; Zhang, Leilei; Dhakal, Sagar; Wang, Caiping

    2014-05-01

    Pork is one of the highly consumed meat item in the world. With growing improvement of living standard, concerned stakeholders including consumers and regulatory body pay more attention to comprehensive quality of fresh pork. Different analytical-laboratory based technologies exist to determine quality attributes of pork. However, none of the technologies are able to meet industrial desire of rapid and non-destructive technological development. Current study used optical instrument as a rapid and non-destructive tool to classify 24 h-aged pork longissimus dorsi samples into three kinds of meat (PSE, Normal and DFD), on the basis of color L* and pH24. Total of 66 samples were used in the experiment. Optical system based on Vis/NIR spectral acquisition system (300-1100 nm) was self- developed in laboratory to acquire spectral signal of pork samples. Median smoothing filter (M-filter) and multiplication scatter correction (MSC) was used to remove spectral noise and signal drift. Support vector machine (SVM) prediction model was developed to classify the samples based on their comprehensive qualities. The results showed that the classification model is highly correlated with the actual quality parameters with classification accuracy more than 85%. The system developed in this study being simple and easy to use, results being promising, the system can be used in meat processing industry for real time, non-destructive and rapid detection of pork qualities in future.

  13. Static Voltage Stability Analysis by Using SVM and Neural Network

    Directory of Open Access Journals (Sweden)

    Mehdi Hajian

    2013-01-01

    Full Text Available Voltage stability is an important problem in power system networks. In this paper, in terms of static voltage stability, and application of Neural Networks (NN and Supported Vector Machine (SVM for estimating of voltage stability margin (VSM and predicting of voltage collapse has been investigated. This paper considers voltage stability in power system in two parts. The first part calculates static voltage stability margin by Radial Basis Function Neural Network (RBFNN. The advantage of the used method is high accuracy in online detecting the VSM. Whereas the second one, voltage collapse analysis of power system is performed by Probabilistic Neural Network (PNN and SVM. The obtained results in this paper indicate, that time and number of training samples of SVM, are less than NN. In this paper, a new model of training samples for detection system, using the normal distribution load curve at each load feeder, has been used. Voltage stability analysis is estimated by well-know L and VSM indexes. To demonstrate the validity of the proposed methods, IEEE 14 bus grid and the actual network of Yazd Province are used.

  14. 2D Quantitative Structure-Property Relationship Study of Mycotoxins by Multiple Linear Regression and Support Vector Machine

    Directory of Open Access Journals (Sweden)

    Fereshteh Shiri

    2010-08-01

    Full Text Available In the present work, support vector machines (SVMs and multiple linear regression (MLR techniques were used for quantitative structure–property relationship (QSPR studies of retention time (tR in standardized liquid chromatography–UV–mass spectrometry of 67 mycotoxins (aflatoxins, trichothecenes, roquefortines and ochratoxins based on molecular descriptors calculated from the optimized 3D structures. By applying missing value, zero and multicollinearity tests with a cutoff value of 0.95, and genetic algorithm method of variable selection, the most relevant descriptors were selected to build QSPR models. MLRand SVMs methods were employed to build QSPR models. The robustness of the QSPR models was characterized by the statistical validation and applicability domain (AD. The prediction results from the MLR and SVM models are in good agreement with the experimental values. The correlation and predictability measure by r2 and q2 are 0.931 and 0.932, repectively, for SVM and 0.923 and 0.915, respectively, for MLR. The applicability domain of the model was investigated using William’s plot. The effects of different descriptors on the retention times are described.

  15. Design of Online Monitoring and Fault Diagnosis System for Belt Conveyors Based on Wavelet Packet Decomposition and Support Vector Machine

    Directory of Open Access Journals (Sweden)

    Wei Li

    2013-01-01

    Full Text Available Belt conveyors are the equipment widely used in coal mines and other manufacturing factories, whose main components are a number of idlers. The faults of belt conveyors can directly influence the daily production. In this paper, a fault diagnosis method combining wavelet packet decomposition (WPD and support vector machine (SVM is proposed for monitoring belt conveyors with the focus on the detection of idler faults. Since the number of the idlers could be large, one acceleration sensor is applied to gather the vibration signals of several idlers in order to reduce the number of sensors. The vibration signals are decomposed with WPD, and the energy of each frequency band is extracted as the feature. Then, the features are employed to train an SVM to realize the detection of idler faults. The proposed fault diagnosis method is firstly tested on a testbed, and then an online monitoring and fault diagnosis system is designed for belt conveyors. An experiment is also carried out on a belt conveyor in service, and it is verified that the proposed system can locate the position of the faulty idlers with a limited number of sensors, which is important for operating belt conveyors in practices.

  16. Quantitative Assessment of Pap Smear Cells by PC-Based Cytopathologic Image Analysis System and Support Vector Machine

    Science.gov (United States)

    Huang, Po-Chi; Chan, Yung-Kuan; Chan, Po-Chou; Chen, Yung-Fu; Chen, Rung-Ching; Huang, Yu-Ruei

    Cytologic screening has been widely used for controlling the prevalence of cervical cancer. Errors from sampling, screening and interpretation, still concealed some unpleasant results. This study aims at designing a cellular image analysis system based on feasible and available software and hardware for a routine cytologic laboratory. Totally 1814 cellular images from the liquid-based cervical smears with Papanicolaou stain in 100x, 200x, and 400x magnification were captured by a digital camera. Cell images were reviewed by pathologic experts with peer agreement and only 503 images were selected for further study. The images were divided into 4 diagnostic categories. A PC-based cellular image analysis system (PCCIA) was developed for computing morphometric parameters. Then support vector machine (SVM) was used to classify signature patterns. The results show that the selected 13 morphometric parameters can be used to correctly differentiate the dysplastic cells from the normal cells (p<0.001). Additionally, SVM classifier has been demonstrated to be able to achieve a high accuracy for cellular classification. In conclusion, the proposed system provides a feasible and effective tool for the evaluation of gynecologic cytologic specimens.

  17. Performance improvement of 64-QAM coherent optical communication system by optimizing symbol decision boundary based on support vector machine

    Science.gov (United States)

    Chen, Wei; Zhang, Junfeng; Gao, Mingyi; Shen, Gangxiang

    2018-03-01

    High-order modulation signals are suited for high-capacity communication systems because of their high spectral efficiency, but they are more vulnerable to various impairments. For the signals that experience degradation, when symbol points overlap on the constellation diagram, the original linear decision boundary cannot be used to distinguish the classification of symbol. Therefore, it is advantageous to create an optimum symbol decision boundary for the degraded signals. In this work, we experimentally demonstrated the 64-quadrature-amplitude modulation (64-QAM) coherent optical communication system using support-vector machine (SVM) decision boundary algorithm to create the optimum symbol decision boundary for improving the system performance. We investigated the influence of various impairments on the 64-QAM coherent optical communication systems, such as the impairments caused by modulator nonlinearity, phase skew between in-phase (I) arm and quadrature-phase (Q) arm of the modulator, fiber Kerr nonlinearity and amplified spontaneous emission (ASE) noise. We measured the bit-error-ratio (BER) performance of 75-Gb/s 64-QAM signals in the back-to-back and 50-km transmission. By using SVM to optimize symbol decision boundary, the impairments caused by I/Q phase skew of the modulator, fiber Kerr nonlinearity and ASE noise are greatly mitigated.

  18. A Structurally Simplified Hybrid Model of Genetic Algorithm and Support Vector Machine for Prediction of Chlorophyll a in Reservoirs

    Directory of Open Access Journals (Sweden)

    Jieqiong Su

    2015-04-01

    Full Text Available With decreasing water availability as a result of climate change and human activities, analysis of the influential factors and variation trends of chlorophyll a has become important to prevent reservoir eutrophication and ensure water supply safety. In this paper, a structurally simplified hybrid model of the genetic algorithm (GA and the support vector machine (SVM was developed for the prediction of monthly concentration of chlorophyll a in the Miyun Reservoir of northern China over the period from 2000 to 2010. Based on the influence factor analysis, the four most relevant influence factors of chlorophyll a (i.e., total phosphorus, total nitrogen, permanganate index, and reservoir storage were extracted using the method of feature selection with the GA, which simplified the model structure, making it more practical and efficient for environmental management. The results showed that the developed simplified GA-SVM model could solve nonlinear problems of complex system, and was suitable for the simulation and prediction of chlorophyll a with better performance in accuracy and efficiency in the Miyun Reservoir.

  19. An Object-Based Classification of Mangroves Using a Hybrid Decision Tree—Support Vector Machine Approach

    Directory of Open Access Journals (Sweden)

    Benjamin W. Heumann

    2011-11-01

    Full Text Available Mangroves provide valuable ecosystem goods and services such as carbon sequestration, habitat for terrestrial and marine fauna, and coastal hazard mitigation. The use of satellite remote sensing to map mangroves has become widespread as it can provide accurate, efficient, and repeatable assessments. Traditional remote sensing approaches have failed to accurately map fringe mangroves and true mangrove species due to relatively coarse spatial resolution and/or spectral confusion with landward vegetation. This study demonstrates the use of the new Worldview-2 sensor, Object-based image analysis (OBIA, and support vector machine (SVM classification to overcome both of these limitations. An exploratory spectral separability showed that individual mangrove species could not be spectrally separated, but a distinction between true and associate mangrove species could be made. An OBIA classification was used that combined a decision-tree classification with the machine-learning SVM classification. Results showed an overall accuracy greater than 94% (kappa = 0.863 for classifying true mangroves species and other dense coastal vegetation at the object level. There remain serious challenges to accurately mapping fringe mangroves using remote sensing data due to spectral similarity of mangrove and associate species, lack of clear zonation between species, and mixed pixel effects, especially when vegetation is sparse or degraded.

  20. Computer-aided classification of Alzheimer's disease based on support vector machine with combination of cerebral image features in MRI

    Science.gov (United States)

    Jongkreangkrai, C.; Vichianin, Y.; Tocharoenchai, C.; Arimura, H.; Alzheimer's Disease Neuroimaging Initiative

    2016-03-01

    Several studies have differentiated Alzheimer's disease (AD) using cerebral image features derived from MR brain images. In this study, we were interested in combining hippocampus and amygdala volumes and entorhinal cortex thickness to improve the performance of AD differentiation. Thus, our objective was to investigate the useful features obtained from MRI for classification of AD patients using support vector machine (SVM). T1-weighted MR brain images of 100 AD patients and 100 normal subjects were processed using FreeSurfer software to measure hippocampus and amygdala volumes and entorhinal cortex thicknesses in both brain hemispheres. Relative volumes of hippocampus and amygdala were calculated to correct variation in individual head size. SVM was employed with five combinations of features (H: hippocampus relative volumes, A: amygdala relative volumes, E: entorhinal cortex thicknesses, HA: hippocampus and amygdala relative volumes and ALL: all features). Receiver operating characteristic (ROC) analysis was used to evaluate the method. AUC values of five combinations were 0.8575 (H), 0.8374 (A), 0.8422 (E), 0.8631 (HA) and 0.8906 (ALL). Although “ALL” provided the highest AUC, there were no statistically significant differences among them except for “A” feature. Our results showed that all suggested features may be feasible for computer-aided classification of AD patients.

  1. Regolith-geology mapping with support vector machine: A case study over weathered Ni-bearing peridotites, New Caledonia

    Science.gov (United States)

    De Boissieu, Florian; Sevin, Brice; Cudahy, Thomas; Mangeas, Morgan; Chevrel, Stéphane; Ong, Cindy; Rodger, Andrew; Maurizot, Pierre; Laukamp, Carsten; Lau, Ian; Touraivane, Touraivane; Cluzel, Dominique; Despinoy, Marc

    2018-02-01

    Accurate maps of Earth's geology, especially its regolith, are required for managing the sustainable exploration and development of mineral resources. This paper shows how airborne imaging hyperspectral data collected over weathered peridotite rocks in vegetated, mountainous terrane in New Caledonia were processed using a combination of methods to generate a regolith-geology map that could be used for more efficiently targeting Ni exploration. The image processing combined two usual methods, which are spectral feature extraction and support vector machine (SVM). This rationale being the spectral features extraction can rapidly reduce data complexity by both targeting only the diagnostic mineral absorptions and masking those pixels complicated by vegetation, cloud and deep shade. SVM is a supervised classification method able to generate an optimal non-linear classifier with these features that generalises well even with limited training data. Key minerals targeted are serpentine, which is considered as an indicator for hydrolysed peridotitic rock, and iron oxy-hydroxides (hematite and goethite), which are considered as diagnostic of laterite development. The final classified regolith map was assessed against interpreted regolith field sites, which yielded approximately 70% similarity for all unit types, as well as against a regolith-geology map interpreted using traditional datasets (not hyperspectral imagery). Importantly, the hyperspectral derived mineral map provided much greater detail enabling a more precise understanding of the regolith-geological architecture where there are exposed soils and rocks.

  2. Additive survival least square support vector machines: A simulation study and its application to cervical cancer prediction

    Science.gov (United States)

    Khotimah, Chusnul; Purnami, Santi Wulan; Prastyo, Dedy Dwi; Chosuvivatwong, Virasakdi; Sriplung, Hutcha

    2017-11-01

    Support Vector Machines (SVMs) has been widely applied for prediction in many fields. Recently, SVM is also developed for survival analysis. In this study, Additive Survival Least Square SVM (A-SURLSSVM) approach is used to analyze cervical cancer dataset and its performance is compared with the Cox model as a benchmark. The comparison is evaluated based on the prognostic index produced: concordance index (c-index), log rank, and hazard ratio. The higher prognostic index represents the better performance of the corresponding methods. This work also applied feature selection to choose important features using backward elimination technique based on the c-index criterion. The cervical cancer dataset consists of 172 patients. The empirical results show that nine out of the twelve features: age at marriage, age of first getting menstruation, age, parity, type of treatment, history of family planning, stadium, long-time of menstruation, and anemia status are selected as relevant features that affect the survival time of cervical cancer patients. In addition, the performance of the proposed method is evaluated through a simulation study with the different number of features and censoring percentages. Two out of three performance measures (c-index and hazard ratio) obtained from A-SURLSSVM consistently yield better results than the ones obtained from Cox model when it is applied on both simulated and cervical cancer data. Moreover, the simulation study showed that A-SURLSSVM performs better when the percentage of censoring data is small.

  3. Activity Recognition in Egocentric video using SVM, kNN and Combined SVMkNN Classifiers

    Science.gov (United States)

    Sanal Kumar, K. P.; Bhavani, R., Dr.

    2017-08-01

    Egocentric vision is a unique perspective in computer vision which is human centric. The recognition of egocentric actions is a challenging task which helps in assisting elderly people, disabled patients and so on. In this work, life logging activity videos are taken as input. There are 2 categories, first one is the top level and second one is second level. Here, the recognition is done using the features like Histogram of Oriented Gradients (HOG), Motion Boundary Histogram (MBH) and Trajectory. The features are fused together and it acts as a single feature. The extracted features are reduced using Principal Component Analysis (PCA). The features that are reduced are provided as input to the classifiers like Support Vector Machine (SVM), k nearest neighbor (kNN) and combined Support Vector Machine (SVM) and k Nearest Neighbor (kNN) (combined SVMkNN). These classifiers are evaluated and the combined SVMkNN provided better results than other classifiers in the literature.

  4. An IPSO-SVM algorithm for security state prediction of mine production logistics system

    Science.gov (United States)

    Zhang, Yanliang; Lei, Junhui; Ma, Qiuli; Chen, Xin; Bi, Runfang

    2017-06-01

    A theoretical basis for the regulation of corporate security warning and resources was provided in order to reveal the laws behind the security state in mine production logistics. Considering complex mine production logistics system and the variable is difficult to acquire, a superior security status predicting model of mine production logistics system based on the improved particle swarm optimization and support vector machine (IPSO-SVM) is proposed in this paper. Firstly, through the linear adjustments of inertia weight and learning weights, the convergence speed and search accuracy are enhanced with the aim to deal with situations associated with the changeable complexity and the data acquisition difficulty. The improved particle swarm optimization (IPSO) is then introduced to resolve the problem of parameter settings in traditional support vector machines (SVM). At the same time, security status index system is built to determine the classification standards of safety status. The feasibility and effectiveness of this method is finally verified using the experimental results.

  5. Classification of Echolocation Calls from 14 Species of Bat by Support Vector Machines and Ensembles of Neural Networks

    Directory of Open Access Journals (Sweden)

    Stuart Parsons

    2009-07-01

    Full Text Available Calls from 14 species of bat were classified to genus and species using discriminant function analysis (DFA, support vector machines (SVM and ensembles of neural networks (ENN. Both SVMs and ENNs outperformed DFA for every species while ENNs (mean identification rate – 97% consistently outperformed SVMs (mean identification rate – 87%. Correct classification rates produced by the ENNs varied from 91% to 100%; calls from six species were correctly identified with 100% accuracy. Calls from the five species of Myotis, a genus whose species are considered difficult to distinguish acoustically, had correct identification rates that varied from 91 – 100%. Five parameters were most important for classifying calls correctly while seven others contributed little to classification performance.

  6. Applying Multi-Class Support Vector Machines for performance assessment of shipping operations: The case of tanker vessels

    DEFF Research Database (Denmark)

    Pagoropoulos, Aris; Møller, Anders H.; McAloone, Tim C.

    2017-01-01

    Energy efficient operations are a key competitive advantage for modern shipping companies. During the operation of the vessel, improvements in energy use can be achieved by not only by technical upgrades, but also through behavioural changes in the way the crew on board is operating the vessels...... of feature selection algorithms. Afterwards, a model based on Multi- Class Support Vector Machines (SVM) was constructed and the efficacy of the approach is shown through the application of a test set. The results demonstrate the importance and benefits of machine learning algorithms in driving energy...... efficiency on board, as well as the impact of power management on energy costs throughout the life cycle of the ships....

  7. Feature Selection Method Based on Artificial Bee Colony Algorithm and Support Vector Machines for Medical Datasets Classification

    Directory of Open Access Journals (Sweden)

    Mustafa Serter Uzer

    2013-01-01

    Full Text Available This paper offers a hybrid approach that uses the artificial bee colony (ABC algorithm for feature selection and support vector machines for classification. The purpose of this paper is to test the effect of elimination of the unimportant and obsolete features of the datasets on the success of the classification, using the SVM classifier. The developed approach conventionally used in liver diseases and diabetes diagnostics, which are commonly observed and reduce the quality of life, is developed. For the diagnosis of these diseases, hepatitis, liver disorders and diabetes datasets from the UCI database were used, and the proposed system reached a classification accuracies of 94.92%, 74.81%, and 79.29%, respectively. For these datasets, the classification accuracies were obtained by the help of the 10-fold cross-validation method. The results show that the performance of the method is highly successful compared to other results attained and seems very promising for pattern recognition applications.

  8. Forecasting Air Passenger Traffic by Support Vector Machines with Ensemble Empirical Mode Decomposition and Slope-Based Method

    Directory of Open Access Journals (Sweden)

    Yukun Bao

    2012-01-01

    Full Text Available With regard to the nonlinearity and irregularity along with implicit seasonality and trend in the context of air passenger traffic forecasting, this study proposes an ensemble empirical mode decomposition (EEMD based support vector machines (SVMs modeling framework incorporating a slope-based method to restrain the end effect issue occurring during the shifting process of EEMD, which is abbreviated as EEMD-Slope-SVMs. Real monthly air passenger traffic series including six selected airlines in USA and UK were collected to test the effectiveness of the proposed approach. Empirical results demonstrate that the proposed decomposition and ensemble modeling framework outperform the selected counterparts such as single SVMs (straightforward application of SVMs, Holt-Winters, and ARIMA in terms of RMSE, MAPE, GMRAE, and DS. Additional evidence is also shown to highlight the improved performance while compared with EEMD-SVM model not restraining the end effect.

  9. Measurement of food colour in L*a*b* units from RGB digital image using least squares support vector machine regression

    Directory of Open Access Journals (Sweden)

    Roberto Romaniello

    2015-12-01

    Full Text Available The aim of this work is to evaluate the potential of least squares support vector machine (LS-SVM regression to develop an efficient method to measure the colour of food materials in L*a*b* units by means of a computer vision systems (CVS. A laboratory CVS, based on colour digital camera (CDC, was implemented and three LS-SVM models were trained and validated, one for each output variables (L*, a*, and b* required by this problem, using the RGB signals generated by the CDC as input variables to these models. The colour target-based approach was used to camera characterization and a standard reference target of 242 colour samples was acquired using the CVS and a colorimeter. This data set was split in two sets of equal sizes, for training and validating the LS-SVM models. An effective two-stage grid search process on the parameters space was performed in MATLAB to tune the regularization parameters γ and the kernel parameters σ2 of the three LS-SVM models. A 3-8-3 multilayer feed-forward neural network (MFNN, according to the research conducted by León et al. (2006, was also trained in order to compare its performance with those of LS-SVM models. The LS-SVM models developed in this research have been shown better generalization capability then the MFNN, allowed to obtain high correlations between L*a*b* data acquired using the colorimeter and the corresponding data obtained by transformation of the RGB data acquired by the CVS. In particular, for the validation set, R2 values equal to 0.9989, 0.9987, and 0.9994 for L*, a* and b* parameters were obtained. The root mean square error values were 0.6443, 0.3226, and 0.2702 for L*, a*, and b* respectively, and the average of colour differences ΔEab was 0.8232±0.5033 units. Thus, LS-SVM regression seems to be a useful tool to measurement of food colour using a low cost CVS.

  10. Effect of training data size and noise level on support vector machines virtual screening of genotoxic compounds from large compound libraries

    Science.gov (United States)

    Kumar, Pankaj; Ma, Xiaohua; Liu, Xianghui; Jia, Jia; Bucong, Han; Xue, Ying; Li, Ze Rong; Yang, Sheng Yong; Wei, Yu Quan; Chen, Yu Zong

    2011-05-01

    Various in vitro and in-silico methods have been used for drug genotoxicity tests, which show limited genotoxicity (GT+) and non-genotoxicity (GT-) identification rates. New methods and combinatorial approaches have been explored for enhanced collective identification capability. The rates of in-silco methods may be further improved by significantly diversified training data enriched by the large number of recently reported GT+ and GT- compounds, but a major concern is the increased noise levels arising from high false-positive rates of in vitro data. In this work, we evaluated the effect of training data size and noise level on the performance of support vector machines (SVM) method known to tolerate high noise levels in training data. Two SVMs of different diversity/noise levels were developed and tested. H-SVM trained by higher diversity higher noise data (GT+ in any in vivo or in vitro test) outperforms L-SVM trained by lower noise lower diversity data (GT+ in in vivo or Ames test only). H-SVM trained by 4,763 GT+ compounds reported before 2008 and 8,232 GT- compounds excluding clinical trial drugs correctly identified 81.6% of the 38 GT+ compounds reported since 2008, predicted 83.1% of the 2,008 clinical trial drugs as GT-, and 23.96% of 168 K MDDR and 27.23% of 17.86M PubChem compounds as GT+. These are comparable to the 43.1-51.9% GT+ and 75-93% GT- rates of existing in-silico methods, 58.8% GT+ and 79% GT- rates of Ames method, and the estimated percentages of 23% in vivo and 31-33% in vitro GT+ compounds in the "universe of chemicals". There is a substantial level of agreement between H-SVM and L-SVM predicted GT+ and GT- MDDR compounds and the prediction from TOPKAT. SVM showed good potential in identifying GT+ compounds from large compound libraries based on higher diversity and higher noise training data.

  11. Comparison Algorithm Kernels on Support Vector Machine (SVM) to Compare the Trend Curves with Curves Online Forex Trading

    OpenAIRE

    Abbas, Irfan

    2016-01-01

    At this time, the players Forex Trading generally still use the data exchange in the form of a Forex Trading figures from different sources. Thus they only receive or know the data rate of a Forex Trading prevailing at the time just so difficult to analyze or predict exchange rate movements future. Forex players usually use the indicators to enable them to analyze and memperdiksi future value. Indicator is a decision making tool. Trading forex is trading currency of a country, the other count...

  12. Linear regression-based efficient SVM learning for large-scale classification.

    Science.gov (United States)

    Wu, Jianxin; Yang, Hao

    2015-10-01

    For large-scale classification tasks, especially in the classification of images, additive kernels have shown a state-of-the-art accuracy. However, even with the recent development of fast algorithms, learning speed and the ability to handle large-scale tasks are still open problems. This paper proposes algorithms for large-scale support vector machines (SVM) classification and other tasks using additive kernels. First, a linear regression SVM framework for general nonlinear kernel is proposed using linear regression to approximate gradient computations in the learning process. Second, we propose a power mean SVM (PmSVM) algorithm for all additive kernels using nonsymmetric explanatory variable functions. This nonsymmetric kernel approximation has advantages over the existing methods: 1) it does not require closed-form Fourier transforms and 2) it does not require extra training for the approximation either. Compared on benchmark large-scale classification data sets with millions of examples or millions of dense feature dimensions, PmSVM has achieved the highest learning speed and highest accuracy among recent algorithms in most cases.

  13. A Method for Aileron Actuator Fault Diagnosis Based on PCA and PGC-SVM

    Directory of Open Access Journals (Sweden)

    Wei-Li Qin

    2016-01-01

    Full Text Available Aileron actuators are pivotal components for aircraft flight control system. Thus, the fault diagnosis of aileron actuators is vital in the enhancement of the reliability and fault tolerant capability. This paper presents an aileron actuator fault diagnosis approach combining principal component analysis (PCA, grid search (GS, 10-fold cross validation (CV, and one-versus-one support vector machine (SVM. This method is referred to as PGC-SVM and utilizes the direct drive valve input, force motor current, and displacement feedback signal to realize fault detection and location. First, several common faults of aileron actuators, which include force motor coil break, sensor coil break, cylinder leakage, and amplifier gain reduction, are extracted from the fault quadrantal diagram; the corresponding fault mechanisms are analyzed. Second, the data feature extraction is performed with dimension reduction using PCA. Finally, the GS and CV algorithms are employed to train a one-versus-one SVM for fault classification, thus obtaining the optimal model parameters and assuring the generalization of the trained SVM, respectively. To verify the effectiveness of the proposed approach, four types of faults are introduced into the simulation model established by AMESim and Simulink. The results demonstrate its desirable diagnostic performance which outperforms that of the traditional SVM by comparison.

  14. Comparative Analysis of ANN and SVM Models Combined with Wavelet Preprocess for Groundwater Depth Prediction

    Directory of Open Access Journals (Sweden)

    Ting Zhou

    2017-10-01

    Full Text Available Reliable prediction of groundwater depth fluctuations has been an important component in sustainable water resources management. In this study, a data-driven prediction model combining discrete wavelet transform (DWT preprocess and support vector machine (SVM was proposed for groundwater depth forecasting. Regular artificial neural networks (ANN, regular SVM, and wavelet preprocessed artificial neural networks (WANN models were also developed for comparison. These methods were applied to the monthly groundwater depth records over a period of 37 years from ten wells in the Mengcheng County, China. Relative absolute error (RAE, Pearson correlation coefficient (r, root mean square error (RMSE, and Nash-Sutcliffe efficiency (NSE were adopted for model evaluation. The results indicate that wavelet preprocess extremely improved the training and test performance of ANN and SVM models. The WSVM model provided the most precise and reliable groundwater depth prediction compared with ANN, SVM, and WSVM models. The criterion of RAE, r, RMSE, and NSE values for proposed WSVM model are 0.20, 0.97, 0.18 and 0.94, respectively. Comprehensive comparisons and discussion revealed that wavelet preprocess extremely improves the prediction precision and reliability for both SVM and ANN models. The prediction result of SVM model is superior to ANN model in generalization ability and precision. Nevertheless, the performance of WANN is superior to SVM model, which further validates the power of data preprocess in data-driven prediction models. Finally, the optimal model, WSVM, is discussed by comparing its subseries performances as well as model performance stability, revealing the efficiency and universality of WSVM model in data driven prediction field.

  15. Effects of Process Parameters on the Extraction of Quercetin and Rutin from the Stalks of Euonymus Alatus (Thumb. Sieb and Predictive Model Based on Least Squares Support Vector Machine Optimized by an Improved Fruit Fly Optimization Algorithm

    Directory of Open Access Journals (Sweden)

    Jiangqing Liao

    2016-11-01

    Full Text Available Ultrasonic-assisted extraction (UAE of quercetin and rutin from the stalks of Euonymus alatus (Thunb. Sieb in our laboratory, which aimed at evaluating and optimizing the process parameters, was investigated in this work. In addition, process parameters such as ethanol solution concentration, solvent volume/sample ratio, ultrasound power and extraction time, ultrasound frequency and extraction temperature were also first applied for evaluating the influence of extraction of quercetin and rutin. Optimum process parameters obtained were: ethanol solution 60%, extraction time 30 min, solvent volume/sample ratio 40 mL/g, ultrasound power 200 W, extraction temperature 30 °C and ultrasound frequency 80 kHz. Further a hybrid predictive model, which is based on least squares support vector machine (LS-SVM in combination with improved fruit fly optimization algorithm (IFOA, was first used to predict the UAE process. The established IFOA-LS-SVM model, in which six process parameters and extraction yields of quercetin and rutin were used as input variables and output variables, respectively, successfully predicted the extraction yields of quercetin and rutin with a low error. Moreover, by comparison with SVM, LS-SVM and multiple regression models, IFOA-LS-SVM model has higher accuracy and faster convergence. Results proved that the proposed model is capable of predicting extraction yields of quercetin and rutin in UAE process.

  16. Vector-model-supported approach in prostate plan optimization.

    Science.gov (United States)

    Liu, Eva Sau Fan; Wu, Vincent Wing Cheung; Harris, Benjamin; Lehman, Margot; Pryor, David; Chan, Lawrence Wing Chi

    2017-01-01

    Lengthy time consumed in traditional manual plan optimization can limit the use of step-and-shoot intensity-modulated radiotherapy/volumetric-modulated radiotherapy (S&S IMRT/VMAT). A vector model base, retrieving similar radiotherapy cases, was developed with respect to the structural and physiologic features extracted from the Digital Imaging and Communications in Medicine (DICOM) files. Planning parameters were retrieved from the selected similar reference case and applied to the test case to bypass the gradual adjustment of planning parameters. Therefore, the planning time spent on the traditional trial-and-error manual optimization approach in the beginning of optimization could be reduced. Each S&S IMRT/VMAT prostate reference database comprised 100 previously treated cases. Prostate cases were replanned with both traditional optimization and vector-model-supported optimization based on the oncologists' clinical dose prescriptions. A total of 360 plans, which consisted of 30 cases of S&S IMRT, 30 cases of 1-arc VMAT, and 30 cases of 2-arc VMAT plans including first optimization and final optimization with/without vector-model-supported optimization, were compared using the 2-sided t-test and paired Wilcoxon signed rank test, with a significance level of 0.05 and a false discovery rate of less than 0.05. For S&S IMRT, 1-arc VMAT, and 2-arc VMAT prostate plans, there was a significant reduction in the planning time and iteration with vector-model-supported optimization by almost 50%. When the first optimization plans were compared, 2-arc VMAT prostate plans had better plan quality than 1-arc VMAT plans. The volume receiving 35 Gy in the femoral head for 2-arc VMAT plans was reduced with the vector-model-supported optimization compared with the traditional manual optimization approach. Otherwise, the quality of plans from both approaches was comparable. Vector-model-supported optimization was shown to offer much shortened planning time and iteration number

  17. Penilaian Esai Jawaban Bahasa Indonesia Menggunakan Metode Svm - Lsa Dengan Fitur Generik

    OpenAIRE

    Adhitia, Rama; Purwarianti, Ayu

    2009-01-01

    Paper ini mengkaji sebuah solusi untuk permasalahan penilaian jawaban esai secara otomatis dengan menggabungkan support vector machine (SVM) sebagai teknik klasifikasi teks otomatis dengan LSA sebagai USAha untuk menangani sinonim dan polisemi antar index term. Berbeda dengan sistem penilaian esai yang biasa yakni fitur yang digunakan berupa index term, fitur yang digunakan proses penilaian jawaban esai adalah berupa fitur generic yang memungkinkan pengujian model penilaian esai untuk berbaga...

  18. SVM-Based Classification of Segmented Airborne LiDAR Point Clouds in Urban Areas

    OpenAIRE

    Xiaogang Ning; Xiangguo Lin; Jixian Zhang

    2013-01-01

    Object-based point cloud analysis (OBPA) is useful for information extraction from airborne LiDAR point clouds. An object-based classification method is proposed for classifying the airborne LiDAR point clouds in urban areas herein. In the process of classification, the surface growing algorithm is employed to make clustering of the point clouds without outliers, thirteen features of the geometry, radiometry, topology and echo characteristics are calculated, a support vector machine (SVM) is ...

  19. Combining ASTER multispectral imagery analysis and support vector machines for rapid and cost-effective post-fire assessment: a case study from the Greek wildland fires of 2007

    OpenAIRE

    Petropoulos, G. P.; Knorr, W.; Scholze, M.; Boschetti, L.; Karantounias, G.

    2010-01-01

    Remote sensing is increasingly being used as a cost-effective and practical solution for the rapid evaluation of impacts from wildland fires. The present study investigates the use of the support vector machine (SVM) classification method with multispectral data from the Advanced Spectral Emission and Reflection Radiometer (ASTER) for obtaining a rapid and cost effective post-fire assessment in a Mediterranean setting. A further objective is to perform a detailed intercomparison of available ...

  20. Fault Isolation for Nonlinear Systems Using Flexible Support Vector Regression

    Directory of Open Access Journals (Sweden)

    Yufang Liu

    2014-01-01

    Full Text Available While support vector regression is widely used as both a function approximating tool and a residual generator for nonlinear system fault isolation, a drawback for this method is the freedom in selecting model parameters. Moreover, for samples with discordant distributing complexities, the selection of reasonable parameters is even impossible. To alleviate this problem we introduce the method of flexible support vector regression (F-SVR, which is especially suited for modelling complicated sample distributions, as it is free from parameters selection. Reasonable parameters for F-SVR are automatically generated given a sample distribution. Lastly, we apply this method in the analysis of the fault isolation of high frequency power supplies, where satisfactory results have been obtained.

  1. An Efficient Audio Classification Approach Based on Support Vector Machines

    OpenAIRE

    Lhoucine Bahatti; Omar Bouattane; My Elhoussine Echhibat; Mohamed Hicham Zaggaf

    2016-01-01

    In order to achieve an audio classification aimed to identify the composer, the use of adequate and relevant features is important to improve performance especially when the classification algorithm is based on support vector machines. As opposed to conventional approaches that often use timbral features based on a time-frequency representation of the musical signal using constant window, this paper deals with a new audio classification method which improves the features extraction according ...

  2. PARAMETER SELECTION IN LEAST SQUARES-SUPPORT VECTOR MACHINES REGRESSION ORIENTED, USING GENERALIZED CROSS-VALIDATION

    Directory of Open Access Journals (Sweden)

    ANDRÉS M. ÁLVAREZ MEZA

    2012-01-01

    Full Text Available RESUMEN: En este trabajo, se propone una metodología para la selección automática de los parámetros libres de la técnica de regresión basada en mínimos cuadrados máquinas de vectores de soporte (LS-SVM, a partir de un análisis de validación cruzada generalizada multidimensional sobre el conjunto de ecuaciones lineales de LS-SVM. La técnica desarrollada no requiere de un conocimiento a priori por parte del usuario acerca de la influencia de los parámetros libres en los resultados. Se realizan experimentos sobre dos bases de datos artificiales y dos bases de datos reales. De acuerdo a los resultados obtenidos, se concluye que el algoritmo desarrollado calcula regresiones apropiadas con errores relativos competentes.

  3. SUPPORT VECTOR MACHINE CLASSIFICATION OF OBJECT-BASED DATA FOR CROP MAPPING, USING MULTI-TEMPORAL LANDSAT IMAGERY

    Directory of Open Access Journals (Sweden)

    R. Devadas

    2012-07-01

    Full Text Available Crop mapping and time series analysis of agronomic cycles are critical for monitoring land use and land management practices, and analysing the issues of agro-environmental impacts and climate change. Multi-temporal Landsat data can be used to analyse decadal changes in cropping patterns at field level, owing to its medium spatial resolution and historical availability. This study attempts to develop robust remote sensing techniques, applicable across a large geographic extent, for state-wide mapping of cropping history in Queensland, Australia. In this context, traditional pixel-based classification was analysed in comparison with image object-based classification using advanced supervised machine-learning algorithms such as Support Vector Machine (SVM. For the Darling Downs region of southern Queensland we gathered a set of Landsat TM images from the 2010–2011 cropping season. Landsat data, along with the vegetation index images, were subjected to multiresolution segmentation to obtain polygon objects. Object-based methods enabled the analysis of aggregated sets of pixels, and exploited shape-related and textural variation, as well as spectral characteristics. SVM models were chosen after examining three shape-based parameters, twenty-three textural parameters and ten spectral parameters of the objects. We found that the object-based methods were superior to the pixel-based methods for classifying 4 major landuse/land cover classes, considering the complexities of within field spectral heterogeneity and spectral mixing. Comparative analysis clearly revealed that higher overall classification accuracy (95% was observed in the object-based SVM compared with that of traditional pixel-based classification (89% using maximum likelihood classifier (MLC. Object-based classification also resulted speckle-free images. Further, object-based SVM models were used to classify different broadacre crop types for summer and winter seasons. The influence of

  4. Optimal design of an in-situ bioremediation system using support vector machine and particle swarm optimization.

    Science.gov (United States)

    ch, Sudheer; Kumar, Deepak; Prasad, Ram Kailash; Mathur, Shashi

    2013-08-01

    A methodology based on support vector machine and particle swarm optimization techniques (SVM-PSO) was used in this study to determine an optimal pumping rate and well location to achieve an optimal cost of an in-situ bioremediation system. In the first stage of the two stage methodology suggested for optimal in-situ bioremediation design, the optimal number of wells and their locations was determined from preselected candidate well locations. The pumping rate and well location in the first stage were subsequently optimized in the second stage of the methodology. The highly nonlinear system of equations governing in-situ bioremediation comprises the equations of flow and solute transport coupled with relevant biodegradation kinetics. A finite difference model was developed to simulate the process of in-situ bioremediation using an Alternate-Direction Implicit technique. This developed model (BIOFDM) yields the spatial and temporal distribution of contaminant concentration for predefined initial and boundary conditions. BIOFDM was later validated by comparing the simulated results with those obtained using BIOPLUME III for the case study of Shieh and Peralta (2005). The results were found to be in close agreement. Moreover, since the solution of the highly nonlinear equation otherwise requires significant computational effort, the computational burden in this study was managed within a practical time frame by replacing the BIOFDM model with a trained SVM model. Support Vector Machine which generates fast solutions in real time was considered to be a universal function approximator in the study. Apart from reducing the computational burden, this technique generates a set of near optimal solutions (instead of a single optimal solution) and creates a re-usable data base that could be used to address many other management problems. Besides this, the search for an optimal pumping pattern was directed by a simple PSO technique and a penalty parameter approach was adopted

  5. A support vector machine tool for adaptive tomotherapy treatments: Prediction of head and neck patients criticalities.

    Science.gov (United States)

    Guidi, Gabriele; Maffei, Nicola; Vecchi, Claudio; Ciarmatori, Alberto; Mistretta, Grazia Maria; Gottardi, Giovanni; Meduri, Bruno; Baldazzi, Giuseppe; Bertoni, Filippo; Costi, Tiziana

    2015-07-01

    Adaptive radiation therapy (ART) is an advanced field of radiation oncology. Image-guided radiation therapy (IGRT) methods can support daily setup and assess anatomical variations during therapy, which could prevent incorrect dose distribution and unexpected toxicities. A re-planning to correct these anatomical variations should be done daily/weekly, but to be applicable to a large number of patients, still require time consumption and resources. Using unsupervised machine learning on retrospective data, we have developed a predictive network, to identify patients that would benefit of a re-planning. 1200 MVCT of 40 head and neck (H&N) cases were re-contoured, automatically, using deformable hybrid registration and structures mapping. Deformable algorithm and MATLAB(®) homemade machine learning process, developed, allow prediction of criticalities for Tomotherapy treatments. Using retrospective analysis of H&N treatments, we have investigated and predicted tumor shrinkage and organ at risk (OAR) deformations. Support vector machine (SVM) and cluster analysis have identified cases or treatment sessions with potential criticalities, based on dose and volume discrepancies between fractions. During 1st weeks of treatment, 84% of patients shown an output comparable to average standard radiation treatment behavior. Starting from the 4th week, significant morpho-dosimetric changes affect 77% of patients, suggesting need for re-planning. The comparison of treatment delivered and ART simulation was carried out with receiver operating characteristic (ROC) curves, showing monotonous increase of ROC area. Warping methods, supported by daily image analysis and predictive tools, can improve personalization and monitoring of each treatment, thereby minimizing anatomic and dosimetric divergences from initial constraints. Copyright © 2015 Associazione Italiana di Fisica Medica. Published by Elsevier Ltd. All rights reserved.

  6. Chord Recognition Based on Temporal Correlation Support Vector Machine

    Directory of Open Access Journals (Sweden)

    Zhongyang Rao

    2016-05-01

    Full Text Available In this paper, we propose a method called temporal correlation support vector machine (TCSVM for automatic major-minor chord recognition in audio music. We first use robust principal component analysis to separate the singing voice from the music to reduce the influence of the singing voice and consider the temporal correlations of the chord features. Using robust principal component analysis, we expect the low-rank component of the spectrogram matrix to contain the musical accompaniment and the sparse component to contain the vocal signals. Then, we extract a new logarithmic pitch class profile (LPCP feature called enhanced LPCP from the low-rank part. To exploit the temporal correlation among the LPCP features of chords, we propose an improved support vector machine algorithm called TCSVM. We perform this study using the MIREX’09 (Music Information Retrieval Evaluation eXchange Audio Chord Estimation dataset. Furthermore, we conduct comprehensive experiments using different pitch class profile feature vectors to examine the performance of TCSVM. The results of our method are comparable to the state-of-the-art methods that entered the MIREX in 2013 and 2014 for the MIREX’09 Audio Chord Estimation task dataset.

  7. Fault Diagnosis of Complex Industrial Process Using KICA and Sparse SVM

    Directory of Open Access Journals (Sweden)

    Jie Xu

    2013-01-01

    Full Text Available New approaches are proposed for complex industrial process monitoring and fault diagnosis based on kernel independent component analysis (KICA and sparse support vector machine (SVM. The KICA method is a two-phase algorithm: whitened kernel principal component analysis (KPCA. The data are firstly mapped into high-dimensional feature subspace. Then, the ICA algorithm seeks the projection directions in the KPCA whitened space. Performance monitoring is implemented through constructing the statistical index and control limit in the feature space. If the statistical indexes exceed the predefined control limit, a fault may have occurred. Then, the nonlinear score vectors are calculated and fed into the sparse SVM to identify the faults. The proposed method is applied to the simulation of Tennessee Eastman (TE chemical process. The simulation results show that the proposed method can identify various types of faults accurately and rapidly.

  8. A Fault Diagnosis Approach for Gas Turbine Exhaust Gas Temperature Based on Fuzzy C-Means Clustering and Support Vector Machine

    Directory of Open Access Journals (Sweden)

    Zhi-tao Wang

    2015-01-01

    Full Text Available As an important gas path performance parameter of gas turbine, exhaust gas temperature (EGT can represent the thermal health condition of gas turbine. In order to monitor and diagnose the EGT effectively, a fusion approach based on fuzzy C-means (FCM clustering algorithm and support vector machine (SVM classification model is proposed in this paper. Considering the distribution characteristics of gas turbine EGT, FCM clustering algorithm is used to realize clustering analysis and obtain the state pattern, on the basis of which the preclassification of EGT is completed. Then, SVM multiclassification model is designed to carry out the state pattern recognition and fault diagnosis. As an example, the historical monitoring data of EGT from an industrial gas turbine is analyzed and used to verify the performance of the fusion fault diagnosis approach presented in this paper. The results show that this approach can make full use of the unsupervised feature extraction ability of FCM clustering algorithm and the sample classification generalization properties of SVM multiclassification model, which offers an effective way to realize the online condition recognition and fault diagnosis of gas turbine EGT.

  9. Spatial prediction of landslide susceptibility using an adaptive neuro-fuzzy inference system combined with frequency ratio, generalized additive model, and support vector machine techniques

    Science.gov (United States)

    Chen, Wei; Pourghasemi, Hamid Reza; Panahi, Mahdi; Kornejady, Aiding; Wang, Jiale; Xie, Xiaoshen; Cao, Shubo

    2017-11-01

    The spatial prediction of landslide susceptibility is an important prerequisite for the analysis of landslide hazards and risks in any area. This research uses three data mining techniques, such as an adaptive neuro-fuzzy inference system combined with frequency ratio (ANFIS-FR), a generalized additive model (GAM), and a support vector machine (SVM), for landslide susceptibility mapping in Hanyuan County, China. In the first step, in accordance with a review of the previous literature, twelve conditioning factors, including slope aspect, altitude, slope angle, topographic wetness index (TWI), plan curvature, profile curvature, distance to rivers, distance to faults, distance to roads, land use, normalized difference vegetation index (NDVI), and lithology, were selected. In the second step, a collinearity test and correlation analysis between the conditioning factors and landslides were applied. In the third step, we used three advanced methods, namely, ANFIS-FR, GAM, and SVM, for landslide susceptibility modeling. Subsequently, the results of their accuracy were validated using a receiver operating characteristic curve. The results showed that all three models have good prediction capabilities, while the SVM model has the highest prediction rate of 0.875, followed by the ANFIS-FR and GAM models with prediction rates of 0.851 and 0.846, respectively. Thus, the landslide susceptibility maps produced in the study area can be applied for management of hazards and risks in landslide-prone Hanyuan County.

  10. A Non-Parametric Approach for the Activation Detection of Block Design fMRI Simulated Data Using Self-Organizing Maps and Support Vector Machine.

    Science.gov (United States)

    Bahrami, Sheyda; Shamsi, Mousa

    2017-01-01

    Functional magnetic resonance imaging (fMRI) is a popular method to probe the functional organization of the brain using hemodynamic responses. In this method, volume images of the entire brain are obtained with a very good spatial resolution and low temporal resolution. However, they always suffer from high dimensionality in the face of classification algorithms. In this work, we combine a support vector machine (SVM) with a self-organizing map (SOM) for having a feature-based classification by using SVM. Then, a linear kernel SVM is used for detecting the active areas. Here, we use SOM for feature extracting and labeling the datasets. SOM has two major advances: (i) it reduces dimension of data sets for having less computational complexity and (ii) it is useful for identifying brain regions with small onset differences in hemodynamic responses. Our non-parametric model is compared with parametric and non-parametric methods. We use simulated fMRI data sets and block design inputs in this paper and consider the contrast to noise ratio (CNR) value equal to 0.6 for simulated datasets. fMRI simulated dataset has contrast 1-4% in active areas. The accuracy of our proposed method is 93.63% and the error rate is 6.37%.

  11. Low-Resolution Tactile Image Recognition for Automated Robotic Assembly Using Kernel PCA-Based Feature Fusion and Multiple Kernel Learning-Based Support Vector Machine

    Directory of Open Access Journals (Sweden)

    Yi-Hung Liu

    2014-01-01

    Full Text Available In this paper, we propose a robust tactile sensing image recognition scheme for automatic robotic assembly. First, an image reprocessing procedure is designed to enhance the contrast of the tactile image. In the second layer, geometric features and Fourier descriptors are extracted from the image. Then, kernel principal component analysis (kernel PCA is applied to transform the features into ones with better discriminating ability, which is the kernel PCA-based feature fusion. The transformed features are fed into the third layer for classification. In this paper, we design a classifier by combining the multiple kernel learning (MKL algorithm and support vector machine (SVM. We also design and implement a tactile sensing array consisting of 10-by-10 sensing elements. Experimental results, carried out on real tactile images acquired by the designed tactile sensing array, show that the kernel PCA-based feature fusion can significantly improve the discriminating performance of the geometric features and Fourier descriptors. Also, the designed MKL-SVM outperforms the regular SVM in terms of recognition accuracy. The proposed recognition scheme is able to achieve a high recognition rate of over 85% for the classification of 12 commonly used metal parts in industrial applications.

  12. Support vector machine and fuzzy C-mean clustering-based comparative evaluation of changes in motor cortex electroencephalogram under chronic alcoholism.

    Science.gov (United States)

    Kumar, Surendra; Ghosh, Subhojit; Tetarway, Suhash; Sinha, Rakesh Kumar

    2015-07-01

    In this study, the magnitude and spatial distribution of frequency spectrum in the resting electroencephalogram (EEG) were examined to address the problem of detecting alcoholism in the cerebral motor cortex. The EEG signals were recorded from chronic alcoholic conditions (n = 20) and the control group (n = 20). Data were taken from motor cortex region and divided into five sub-bands (delta, theta, alpha, beta-1 and beta-2). Three methodologies were adopted for feature extraction: (1) absolute power, (2) relative power and (3) peak power frequency. The dimension of the extracted features is reduced by linear discrimination analysis and classified by support vector machine (SVM) and fuzzy C-mean clustering. The maximum classification accuracy (88 %) with SVM clustering was achieved with the EEG spectral features with absolute power frequency on F4 channel. Among the bands, relatively higher classification accuracy was found over theta band and beta-2 band in most of the channels when computed with the EEG features of relative power. Electrodes wise CZ, C3 and P4 were having more alteration. Considering the good classification accuracy obtained by SVM with relative band power features in most of the EEG channels of motor cortex, it can be suggested that the noninvasive automated online diagnostic system for the chronic alcoholic condition can be developed with the help of EEG signals.

  13. Identification of Different Bile Species and Fermentation Time of Bile Arisaema Based on An Intelligent Electronic Nose and Least Squares Support Vector Machine.

    Science.gov (United States)

    Tan, Chaoqun; Xie, Dashuai; Liu, Yujie; Wu, Chun-Jie; Wen, Chuanbiao; Huang, Xiwei; Guo, Jinhong

    2018-02-03

    Fermentation is one of the most traditionally utilized methods to process the raw materials of traditional Chinese medicine (TCM). Bile Arisaema (BA) is produced by the fermentation of the roots of Arisaema heterophyllu with bile. Fermentation time and bile species are the key factors in producing BA. The study was aimed to develop a new and rapid method for the identification of different fermentation time and bile species of BA. The polysaccharide content (PC), protease activity (PA) and amylase activity (AC) of BA were determined. The changes of PC, PA and AC were significant indicators for the evaluation of different fermentation time. Based on the odor data of BA obtained by electronic nose technology (E-nose), the Principal Component Analysis (PCA) was used to identify bile species. The results were further verified by the Least Squares Support Vector Machine (LS-SVM). The trained LS-SVM was also used to predict the PC, PA and AC of the samples to identify fermentation time. The present study indicated that E-nose combined with LS-SVM could effectively predict the PC, PA and AC of the samples, identify the bile species and fermentation time of BA, and it was proved to be a useful strategy for quality control of fermented products of TCMs.

  14. Rare events modeling with support vector machine: Application to forecasting large-amplitude geomagnetic substorms and extreme events in financial markets.

    Science.gov (United States)

    Gavrishchaka, V. V.; Ganguli, S. B.

    2001-12-01

    Reliable forecasting of rare events in a complex dynamical system is a challenging problem that is important for many practical applications. Due to the nature of rare events, data set available for construction of the statistical and/or machine learning model is often very limited and incomplete. Therefore many widely used approaches including such robust algorithms as neural networks can easily become inadequate for rare events prediction. Moreover in many practical cases models with high-dimensional inputs are required. This limits applications of the existing rare event modeling techniques (e.g., extreme value theory) that focus on univariate cases. These approaches are not easily extended to multivariate cases. Support vector machine (SVM) is a machine learning system that can provide an optimal generalization using very limited and incomplete training data sets and can efficiently handle high-dimensional data. These features may allow to use SVM to model rare events in some applications. We have applied SVM-based system to the problem of large-amplitude substorm prediction and extreme event forecasting in stock and currency exchange markets. Encouraging preliminary results will be presented and other possible applications of the system will be discussed.

  15. SVM-based glioma grading. Optimization by feature reduction analysis

    Energy Technology Data Exchange (ETDEWEB)

    Zoellner, Frank G.; Schad, Lothar R. [University Medical Center Mannheim, Heidelberg Univ., Mannheim (Germany). Computer Assisted Clinical Medicine; Emblem, Kyrre E. [Massachusetts General Hospital, Charlestown, A.A. Martinos Center for Biomedical Imaging, Boston MA (United States). Dept. of Radiology; Harvard Medical School, Boston, MA (United States); Oslo Univ. Hospital (Norway). The Intervention Center

    2012-11-01

    We investigated the predictive power of feature reduction analysis approaches in support vector machine (SVM)-based classification of glioma grade. In 101 untreated glioma patients, three analytic approaches were evaluated to derive an optimal reduction in features; (i) Pearson's correlation coefficients (PCC), (ii) principal component analysis (PCA) and (iii) independent component analysis (ICA). Tumor grading was performed using a previously reported SVM approach including whole-tumor cerebral blood volume (CBV) histograms and patient age. Best classification accuracy was found using PCA at 85% (sensitivity = 89%, specificity = 84%) when reducing the feature vector from 101 (100-bins rCBV histogram + age) to 3 principal components. In comparison, classification accuracy by PCC was 82% (89%, 77%, 2 dimensions) and 79% by ICA (87%, 75%, 9 dimensions). For improved speed (up to 30%) and simplicity, feature reduction by all three methods provided similar classification accuracy to literature values ({proportional_to}87%) while reducing the number of features by up to 98%. (orig.)

  16. Matrix Multiplication Algorithm Selection with Support Vector Machines

    Science.gov (United States)

    2015-05-01

    libraries that could intelligently choose the optimal algorithm for a particular set of inputs. Users would be oblivious to the underlying algorithmic...SAT.” J. Artif . Intell. Res.(JAIR), vol. 32, pp. 565–606, 2008. [9] M. G. Lagoudakis and M. L. Littman, “Algorithm selection using reinforcement...Artificial Intelligence , vol. 21, no. 05, pp. 961–976, 2007. [15] C.-C. Chang and C.-J. Lin, “LIBSVM: A library for support vector machines,” ACM

  17. Cardiovascular Response Identification Based on Nonlinear Support Vector Regression

    Science.gov (United States)

    Wang, Lu; Su, Steven W.; Chan, Gregory S. H.; Celler, Branko G.; Cheng, Teddy M.; Savkin, Andrey V.

    This study experimentally investigates the relationships between central cardiovascular variables and oxygen uptake based on nonlinear analysis and modeling. Ten healthy subjects were studied using cycle-ergometry exercise tests with constant workloads ranging from 25 Watt to 125 Watt. Breath by breath gas exchange, heart rate, cardiac output, stroke volume and blood pressure were measured at each stage. The modeling results proved that the nonlinear modeling method (Support Vector Regression) outperforms traditional regression method (reducing Estimation Error between 59% and 80%, reducing Testing Error between 53% and 72%) and is the ideal approach in the modeling of physiological data, especially with small training data set.

  18. Predicting post-translational lysine acetylation using support vector machines

    DEFF Research Database (Denmark)

    Gnad, Florian; Ren, Shubin; Choudhary, Chunaram

    2010-01-01

    Lysine acetylation is a post-translational protein modification and a primary regulatory mechanism that controls many cell signaling processes. Lysine acetylation sites are recognized by acetyltransferases and deacetylases through sequence patterns (motifs). Recently, we used high-resolution mass...... spectrometry to identify 3600 lysine acetylation sites on 1750 human proteins covering most of the previously annotated sites and providing the most comprehensive acetylome so far. This dataset should provide an excellent source to train support vector machines (SVMs) allowing the high accuracy in silico...

  19. Engineering support vector machine kernels that recognize translation initiation sites.

    Science.gov (United States)

    Zien, A; Rätsch, G; Mika, S; Schölkopf, B; Lengauer, T; Müller, K R

    2000-09-01

    In order to extract protein sequences from nucleotide sequences, it is an important step to recognize points at which regions start that code for proteins. These points are called translation initiation sites (TIS). The task of finding TIS can be modeled as a classification problem. We demonstrate the applicability of support vector machines for this task, and show how to incorporate prior biological knowledge by engineering an appropriate kernel function. With the described techniques the recognition performance can be improved by 26% over leading existing approaches. We provide evidence that existing related methods (e.g. ESTScan) could profit from advanced TIS recognition.

  20. Single Directional SMO Algorithm for Least Squares Support Vector Machines

    Directory of Open Access Journals (Sweden)

    Xigao Shao

    2013-01-01

    Full Text Available Working set selection is a major step in decomposition methods for training least squares support vector machines (LS-SVMs. In this paper, a new technique for the selection of working set in sequential minimal optimization- (SMO- type decomposition methods is proposed. By the new method, we can select a single direction to achieve the convergence of the optimality condition. A simple asymptotic convergence proof for the new algorithm is given. Experimental comparisons demonstrate that the classification accuracy of the new method is not largely different from the existing methods, but the training speed is faster than existing ones.

  1. A New Conic Approach to Semisupervised Support Vector Machines

    Directory of Open Access Journals (Sweden)

    Ye Tian

    2016-01-01

    Full Text Available We propose a completely positive programming reformulation of the 2-norm soft margin S3VM model. Then, we construct a sequence of computable cones of nonnegative quadratic forms over a union of second-order cones to approximate the underlying completely positive cone. An ϵ-optimal solution can be found in finite iterations using semidefinite programming techniques by our method. Moreover, in order to obtain a good lower bound efficiently, an adaptive scheme is adopted in our approximation algorithm. The numerical results show that the proposed algorithm can achieve more accurate classifications than other well-known conic relaxations of semisupervised support vector machine models in the literature.

  2. Support vector machine classifiers for large data sets.

    Energy Technology Data Exchange (ETDEWEB)

    Gertz, E. M.; Griffin, J. D.

    2006-01-31

    This report concerns the generation of support vector machine classifiers for solving the pattern recognition problem in machine learning. Several methods are proposed based on interior point methods for convex quadratic programming. Software implementations are developed by adapting the object-oriented packaging OOQP to the problem structure and by using the software package PETSc to perform time-intensive computations in a distributed setting. Linear systems arising from classification problems with moderately large numbers of features are solved by using two techniques--one a parallel direct solver, the other a Krylov-subspace method incorporating novel preconditioning strategies. Numerical results are provided, and computational experience is discussed.

  3. Cross-Validation, Bootstrap, and Support Vector Machines

    Directory of Open Access Journals (Sweden)

    Masaaki Tsujitani

    2011-01-01

    Full Text Available This paper considers the applications of resampling methods to support vector machines (SVMs. We take into account the leaving-one-out cross-validation (CV when determining the optimum tuning parameters and bootstrapping the deviance in order to summarize the measure of goodness-of-fit in SVMs. The leaving-one-out CV is also adapted in order to provide estimates of the bias of the excess error in a prediction rule constructed with training samples. We analyze the data from a mackerel-egg survey and a liver-disease study.

  4. A Simpler Approach to Coefficient Regularized Support Vector Machines Regression

    Directory of Open Access Journals (Sweden)

    Hongzhi Tong

    2014-01-01

    Full Text Available We consider a kind of support vector machines regression (SVMR algorithms associated with lq  (1≤q<∞ coefficient-based regularization and data-dependent hypothesis space. Compared with former literature, we provide here a simpler convergence analysis for those algorithms. The novelty of our analysis lies in the estimation of the hypothesis error, which is implemented by setting a stepping stone between the coefficient regularized SVMR and the classical SVMR. An explicit learning rate is then derived under very mild conditions.

  5. Applying Support Vector Machine in classifying satellite images for the assessment of urban sprawl

    Science.gov (United States)

    murgante, Beniamino; Nolè, Gabriele; Lasaponara, Rosa; Lanorte, Antonio; Calamita, Giuseppe

    2013-04-01

    In last decades the spreading of new buildings, road infrastructures and a scattered proliferation of houses in zones outside urban areas, produced a countryside urbanization with no rules, consuming soils and impoverishing the landscape. Such a phenomenon generated a huge environmental impact, diseconomies and a decrease in life quality. This study analyzes processes concerning land use change, paying particular attention to urban sprawl phenomenon. The application is based on the integration of Geographic Information Systems and Remote Sensing adopting open source technologies. The objective is to understand size distribution and dynamic expansion of urban areas in order to define a methodology useful to both identify and monitor the phenomenon. In order to classify "urban" pixels, over time monitoring of settlements spread, understanding trends of artificial territories, classifications of satellite images at different dates have been realized. In order to obtain these classifications, supervised classification algorithms have been adopted. More particularly, Support Vector Machine (SVM) learning algorithm has been applied to multispectral remote data. One of the more interesting features in SVM is the possibility to obtain good results also adopting few classification pixels of training areas. SVM has several interesting features, such as the capacity to obtain good results also adopting few classification pixels of training areas, a high possibility of configuration parameters and the ability to discriminate pixels with similar spectral responses. Multi-temporal ASTER satellite data at medium resolution have been adopted because are very suitable in evaluating such phenomena. The application is based on the integration of Geographic Information Systems and Remote Sensing technologies by means of open source software. Tools adopted in managing and processing data are GRASS GIS, Quantum GIS and R statistical project. The area of interest is located south of Bari

  6. Unsupervised pedestrian detection using support vector data description

    Science.gov (United States)

    Gurram, Prudhvi; Hu, Shuowen; Reale, Chris; Chan, Alex

    2013-05-01

    In this paper, an unsupervised pedestrian detection algorithm is proposed. An input image is first divided into overlapping detection windows in a sliding fashion and Histogram of Oriented Gradients (HOG) features are collected over each window using non-overlapping cells. A distance metric is used to determine the distance between histograms of corresponding cells in each detection window and the average pedestrian HOG template (determined a priori). These distances over a group of cells are concatenated to obtain the feature vector pertaining to a block of cells. The feature vectors over overlapping blocks of cells are concatenated to form the distance feature vector of a detection window. Each window provides a data sample and the data samples extracted from the whole image are then modeled as a normalcy class using Support Vector Data Description (SVDD). The benefit of using the state-of-the-art SVDD technique to model the normalcy class is that it can be controlled by setting an upper limit on the permissible outliers during the modeling process. Assuming that most of the image is covered by background, the outliers that are detected during the modeling of the normalcy class can be hypothesized as detection windows that contain pedestrians in them. The detections are obtained at different scales in order to account for the different sizes of pedestrians. The final pedestrian detections are generated by applying non-maximal suppression on all the detections at all scales. The system is tested on the INRIA pedestrian dataset and its performance analyzed with respect to accuracy and detection rate.

  7. Improving accuracy in astrocytomas grading by integrating a robust least squares mapping driven support vector machine classifier into a two level grade classification scheme.

    Science.gov (United States)

    Glotsos, Dimitris; Kalatzis, Ioannis; Spyridonos, Panagiota; Kostopoulos, Spiros; Daskalakis, Antonis; Athanasiadis, Emmanouil; Ravazoula, Panagiota; Nikiforidis, George; Cavouras, Dionisis

    2008-06-01

    Grading of astrocytomas is an important task for treatment planning; however, it suffers from significantly great inter-observer variability. Computer-assisted diagnosis systems have been propose to assist towards minimizing subjectivity, however, these systems present either moderate accuracy or utilize specialized staining protocols and grading systems that are difficult to apply in daily clinical practice. The present study proposes a robust mathematical formulation by integrating state-of-art technologies (support vector machines and least squares mapping) in a cascade classification scheme for separating low from high and grade III from grade IV astrocytic tumours. Results have indicated that low from high-grade tumours can be correctly separated with a certainty as high as 97.3%, whereas grade III from grade IV tumours with 97.8%. The overall performance was 95.2%. These high rates have been a result of applying the least squares mapping technique to features prior to classification. A significant byproduct of least squares mapping is that the number of support vectors of the SVM classifiers dropped dramatically from about 80% when no mapping was used to less than 5% when mapping was used. The latter is a clear indication that the SVM classifier has a greater potential to generalize well to new data. In this way, digital image analysis systems for automated grading of astrocytomas are brought closer to clinical practice.

  8. The application of continuous wavelet transform and least squares support vector machine for the simultaneous quantitative spectrophotometric determination of Myricetin, Kaempferol and Quercetin as flavonoids in pharmaceutical plants

    Science.gov (United States)

    Sohrabi, Mahmoud Reza; Darabi, Golnaz

    2016-01-01

    Flavonoids are γ-benzopyrone derivatives, which are highly regarded in these researchers for their antioxidant property. In this study, two new signals processing methods been coupled with UV spectroscopy for spectral resolution and simultaneous quantitative determination of Myricetin, Kaempferol and Quercetin as flavonoids in Laurel, St. John's Wort and Green Tea without the need for any previous separation procedure. The developed methods are continuous wavelet transform (CWT) and least squares support vector machine (LS-SVM) methods integrated with UV spectroscopy individually. Different wavelet families were tested by CWT method and finally the Daubechies wavelet family (Db4) for Myricetin and the Gaussian wavelet families for Kaempferol (Gaus3) and Quercetin (Gaus7) were selected and applied for simultaneous analysis under the optimal conditions. The LS-SVM was applied to build the flavonoids prediction model based on absorption spectra. The root mean square errors for prediction (RMSEP) of Myricetin, Kaempferol and Quercetin were 0.0552, 0.0275 and 0.0374, respectively. The developed methods were validated by the analysis of the various synthetic mixtures associated with a well- known flavonoid contents. Mean recovery values of Myricetin, Kaempferol and Quercetin, in CWT method were 100.123, 100.253, 100.439 and in LS-SVM method were 99.94, 99.81 and 99.682, respectively. The results achieved by analyzing the real samples from the CWT and LS-SVM methods were compared to the HPLC reference method and the results were very close to the reference method. Meanwhile, the obtained results of the one-way ANOVA (analysis of variance) test revealed that there was no significant difference between the suggested methods.

  9. [Application of support vector machine-recursive feature elimination algorithm in Raman spectroscopy for differential diagnosis of benign and malignant breast diseases].

    Science.gov (United States)

    Zhang, Haipeng; Fu, Tong; Zhang, Zhiru; Fan, Zhimin; Zheng, Chao; Han, Bing

    2014-08-01

    To explore the value of application of support vector machine-recursive feature elimination (SVM-RFE) method in Raman spectroscopy for differential diagnosis of benign and malignant breast diseases. Fresh breast tissue samples of 168 patients (all female; ages 22-75) were obtained by routine surgical resection from May 2011 to May 2012 at the Department of Breast Surgery, the First Hospital of Jilin University. Among them, there were 51 normal tissues, 66 benign and 51 malignant breast lesions. All the specimens were assessed by Raman spectroscopy, and the SVM-RFE algorithm was used to process the data and build the mathematical model. Mahalanobis distance and spectral residuals were used as discriminating criteria to evaluate this data-processing method. 1 800 Raman spectra were acquired from the fresh samples of human breast tissues. Based on spectral profiles, the presence of 1 078, 1 267, 1 301, 1 437, 1 653, and 1 743 cm(-1) peaks were identified in the normal tissues; and 1 281, 1 341, 1 381, 1 417, 1 465, 1 530, and 1 637 cm(-1) peaks were found in the benign and malignant tissues. The main characteristic peaks differentiating benign and malignant lesions were 1 340 and 1 480 cm(-1). The accuracy of SVM-RFE in discriminating normal and malignant lesions was 100.0%, while that in the assessment of benign lesions was 93.0%. There are distinct differences among the Raman spectra of normal, benign and malignant breast tissues, and SVM-RFE method can be used to build differentiation model of breast lesions.

  10. N-gram support vector machines for scalable procedure and diagnosis classification, with applications to clinical free text data from the intensive care unit.

    Science.gov (United States)

    Marafino, Ben J; Davies, Jason M; Bardach, Naomi S; Dean, Mitzi L; Dudley, R Adams

    2014-01-01

    Existing risk adjustment models for intensive care unit (ICU) outcomes rely on manual abstraction of patient-level predictors from medical charts. Developing an automated method for abstracting these data from free text might reduce cost and data collection times. To develop a support vector machine (SVM) classifier capable of identifying a range of procedures and diagnoses in ICU clinical notes for use in risk adjustment. We selected notes from 2001-2008 for 4191 neonatal ICU (NICU) and 2198 adult ICU patients from the MIMIC-II database from the Beth Israel Deaconess Medical Center. Using these notes, we developed an implementation of the SVM classifier to identify procedures (mechanical ventilation and phototherapy in NICU notes) and diagnoses (jaundice in NICU and intracranial hemorrhage (ICH) in adult ICU). On the jaundice classification task, we also compared classifier performance using n-gram features to unigrams with application of a negation algorithm (NegEx). Our classifier accurately identified mechanical ventilation (accuracy=0.982, F1=0.954) and phototherapy use (accuracy=0.940, F1=0.912), as well as jaundice (accuracy=0.898, F1=0.884) and ICH diagnoses (accuracy=0.938, F1=0.943). Including bigram features improved performance on the jaundice (accuracy=0.898 vs 0.865) and ICH (0.938 vs 0.927) tasks, and outperformed NegEx-derived unigram features (accuracy=0.898 vs 0.863) on the jaundice task. Overall, a classifier using n-gram support vectors displayed excellent performance characteristics. The classifier generalizes to diverse patient populations, diagnoses, and procedures. SVM-based classifiers can accurately identify procedure status and diagnoses among ICU patients, and including n-gram features improves performance, compared to existing methods. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.

  11. Clifford support vector machines for classification, regression, and recurrence.

    Science.gov (United States)

    Bayro-Corrochano, Eduardo Jose; Arana-Daniel, Nancy

    2010-11-01

    This paper introduces the Clifford support vector machines (CSVM) as a generalization of the real and complex-valued support vector machines using the Clifford geometric algebra. In this framework, we handle the design of kernels involving the Clifford or geometric product. In this approach, one redefines the optimization variables as multivectors. This allows us to have a multivector as output. Therefore, we can represent multiple classes according to the dimension of the geometric algebra in which we work. We show that one can apply CSVM for classification and regression and also to build a recurrent CSVM. The CSVM is an attractive approach for the multiple input multiple output processing of high-dimensional geometric entities. We carried out comparisons between CSVM and the current approaches to solve multiclass classification and regression. We also study the performance of the recurrent CSVM with experiments involving time series. The authors believe that this paper can be of great use for researchers and practitioners interested in multiclass hypercomplex computing, particularly for applications in complex and quaternion signal and image processing, satellite control, neurocomputation, pattern recognition, computer vision, augmented virtual reality, robotics, and humanoids.

  12. Robust Unsupervised Lagrangian Support Vector Machines for Supply Chain Management

    Science.gov (United States)

    Zhao, Kun; Liu, Yong-Sheng; Deng, Nai-Yang

    Support Vector Machines (SVMs) have been dominant learning techniques for more than ten years, and mostly applied to supervised learning problems. These years two-class unsupervised and semi-supervised classification algorithms based on Bounded C-SVMs, Bounded ν-SVMs, Lagrangian SVMs (LSVMs) and robust version to Bounded C - SVMs respectively, and which are relaxed to Semi-definite Programming (SDP), get good classification results. The time consumed of method based on robust version to BC-SVMs is too long. So it seems necessary to find a faster method, which has almost accurate results as above at least. Therefore we proposed robust version to unsupervised and semi-supervised classification algorithms based on Lagrangian Support Vector Machines and its application on evaluation of supply chain management performance. Numerical results confirm the robustness of the proposed method and show that our new unsupervised and semi-supervised classification algorithms based on LSVMs often obtain almost the same accurate results as other algorithms,while considerably faster than them.

  13. A SVM framework for fault detection of the braking system in a high speed train

    Science.gov (United States)

    Liu, Jie; Li, Yan-Fu; Zio, Enrico

    2017-03-01

    In April 2015, the number of operating High Speed Trains (HSTs) in the world has reached 3603. An efficient, effective and very reliable braking system is evidently very critical for trains running at a speed around 300 km/h. Failure of a highly reliable braking system is a rare event and, consequently, informative recorded data on fault conditions are scarce. This renders the fault detection problem a classification problem with highly unbalanced data. In this paper, a Support Vector Machine (SVM) framework, including feature selection, feature vector selection, model construction and decision boundary optimization, is proposed for tackling this problem. Feature vector selection can largely reduce the data size and, thus, the computational burden. The constructed model is a modified version of the least square SVM, in which a higher cost is assigned to the error of classification of faulty conditions than the error of classification of normal conditions. The proposed framework is successfully validated on a number of public unbalanced datasets. Then, it is applied for the fault detection of braking systems in HST: in comparison with several SVM approaches for unbalanced datasets, the proposed framework gives better results.

  14. Combined SVM-CRFs for biological named entity recognition with maximal bidirectional squeezing.

    Science.gov (United States)

    Zhu, Fei; Shen, Bairong

    2012-01-01

    Biological named entity recognition, the identification of biological terms in text, is essential for biomedical information extraction. Machine learning-based approaches have been widely applied in this area. However, the recognition performance of current approaches could still be improved. Our novel approach is to combine support vector machines (SVMs) and conditional random fields (CRFs), which can complement and facilitate each other. During the hybrid process, we use SVM to separate biological terms from non-biological terms, before we use CRFs to determine the types of biological terms, which makes full use of the power of SVM as a binary-class classifier and the data-labeling capacity of CRFs. We then merge the results of SVM and CRFs. To remove any inconsistencies that might result from the merging, we develop a useful algorithm and apply two rules. To ensure biological terms with a maximum length are identified, we propose a maximal bidirectional squeezing approach that finds the longest term. We also add a positive gain to rare events to reinforce their probability and avoid bias. Our approach will also gradually extend the context so more contextual information can be included. We examined the performance of four approaches with GENIA corpus and JNLPBA04 data. The combination of SVM and CRFs improved performance. The macro-precision, macro-recall, and macro-F(1) of the SVM-CRFs hybrid approach surpassed conventional SVM and CRFs. After applying the new algorithms, the macro-F1 reached 91.67% with the GENIA corpus and 84.04% with the JNLPBA04 data.

  15. PSO-SVM-Based Online Locomotion Mode Identification for Rehabilitation Robotic Exoskeletons

    Directory of Open Access Journals (Sweden)

    Yi Long

    2016-09-01

    Full Text Available Locomotion mode identification is essential for the control of a robotic rehabilitation exoskeletons. This paper proposes an online support vector machine (SVM optimized by particle swarm optimization (PSO to identify different locomotion modes to realize a smooth and automatic locomotion transition. A PSO algorithm is used to obtain the optimal parameters of SVM for a better overall performance. Signals measured by the foot pressure sensors integrated in the insoles of wearable shoes and the MEMS-based attitude and heading reference systems (AHRS attached on the shoes and shanks of leg segments are fused together as the input information of SVM. Based on the chosen window whose size is 200 ms (with sampling frequency of 40 Hz, a three-layer wavelet packet analysis (WPA is used for feature extraction, after which, the kernel principal component analysis (kPCA is utilized to reduce the dimension of the feature set to reduce computation cost of the SVM. Since the signals are from two types of different sensors, the normalization is conducted to scale the input into the interval of [0, 1]. Five-fold cross validation is adapted to train the classifier, which prevents the classifier over-fitting. Based on the SVM model obtained offline in MATLAB, an online SVM algorithm is constructed for locomotion mode identification. Experiments are performed for different locomotion modes and experimental results show the effectiveness of the proposed algorithm with an accuracy of 96.00% ± 2.45%. To improve its accuracy, majority vote algorithm (MVA is used for post-processing, with which the identification accuracy is better than 98.35% ± 1.65%. The proposed algorithm can be extended and employed in the field of robotic rehabilitation and assistance.

  16. Combined SVM-CRFs for biological named entity recognition with maximal bidirectional squeezing.

    Directory of Open Access Journals (Sweden)

    Fei Zhu

    Full Text Available Biological named entity recognition, the identification of biological terms in text, is essential for biomedical information extraction. Machine learning-based approaches have been widely applied in this area. However, the recognition performance of current approaches could still be improved. Our novel approach is to combine support vector machines (SVMs and conditional random fields (CRFs, which can complement and facilitate each other. During the hybrid process, we use SVM to separate biological terms from non-biological terms, before we use CRFs to determine the types of biological terms, which makes full use of the power of SVM as a binary-class classifier and the data-labeling capacity of CRFs. We then merge the results of SVM and CRFs. To remove any inconsistencies that might result from the merging, we develop a useful algorithm and apply two rules. To ensure biological terms with a maximum length are identified, we propose a maximal bidirectional squeezing approach that finds the longest term. We also add a positive gain to rare events to reinforce their probability and avoid bias. Our approach will also gradually extend the context so more contextual information can be included. We examined the performance of four approaches with GENIA corpus and JNLPBA04 data. The combination of SVM and CRFs improved performance. The macro-precision, macro-recall, and macro-F(1 of the SVM-CRFs hybrid approach surpassed conventional SVM and CRFs. After applying the new algorithms, the macro-F1 reached 91.67% with the GENIA corpus and 84.04% with the JNLPBA04 data.

  17. SVM and ANFIS Models for precipitaton Modeling (Case Study: GonbadKavouse

    Directory of Open Access Journals (Sweden)

    N. Zabet Pishkhani

    2016-10-01

    Full Text Available Introduction: In recent years, according to the intelligent models increased as new techniques and tools in hydrological processes such as precipitation forecasting. ANFIS model has good ability in train, construction and classification, and also has the advantage that allows the extraction of fuzzy rules from numerical information or knowledge. Another intelligent technique in recent years has been used in various areas is support vector machine (SVM. In this paper the ability of artificial intelligence methods including support vector machine (SVM and adaptive neuro fuzzy inference system (ANFIS were analyzed in monthly precipitation prediction. Materials and Methods: The study area was the city of Gonbad in Golestan Province. The city has a temperate climate in the southern highlands and southern plains, mountains and temperate humid, semi-arid and semi-arid in the north of Gorganroud river. In total, the city's climate is temperate and humid. In the present study, monthly precipitation was modeled in Gonbad using ANFIS and SVM and two different database structures were designed. The first structure: input layer consisted of mean temperature, relative humidity, pressure and wind speed at Gonbad station. The second structure: According to Pearson coefficient, the monthly precipitation data were used from four stations: Arazkoose, Bahalke, Tamar and Aqqala which had a higher correlation with Gonbad station precipitation. In this study precipitation data was used from 1995 to 2012. 80% data were used for model training and the remaining 20% of data for validation. SVM was developed from support vector machines in the 1990s by Vapnik. SVM has been widely recognized as a powerful tool to deal with function fitting problems. An Adaptive Neuro-Fuzzy Inference System (ANFIS refers, in general, to an adaptive network which performs the function of a fuzzy inference system. The most commonly used fuzzy system in ANFIS architectures is the Sugeno model

  18. AUTOMATIC LUNG NODULE DETECTION BASED ON STATISTICAL REGION MERGING AND SUPPORT VECTOR MACHINES

    Directory of Open Access Journals (Sweden)

    Elaheh Aghabalaei Khordehchi

    2017-06-01

    Full Text Available Lung cancer is one of the most common diseases in the world that can be treated if the lung nodules are detected in their early stages of growth. This study develops a new framework for computer-aided detection of pulmonary nodules thorough a fully-automatic analysis of Computed Tomography (CT images. In the present work, the multi-layer CT data is fed into a pre-processing step that exploits an adaptive diffusion-based smoothing algorithm in which the parameters are automatically tuned using an adaptation technique. After multiple levels of morphological filtering, the Regions of Interest (ROIs are extracted from the smoothed images. The Statistical Region Merging (SRM algorithm is applied to the ROIs in order to segment each layer of the CT data. Extracted segments in consecutive layers are then analyzed in such a way that if they intersect at more than a predefined number of pixels, they are labeled with a similar index. The boundaries of the segments in adjacent layers which have the same indices are then connected together to form three-dimensional objects as the nodule candidates. After extracting four spectral, one morphological, and one textural feature from all candidates, they are finally classified into nodules and non-nodules using the Support Vector Machine (SVM classifier. The proposed framework has been applied to two sets of lung CT images and its performance has been compared to that of nine other competing state-of-the-art methods. The considerable efficiency of the proposed approach has been proved quantitatively and validated by clinical experts as well.

  19. Statistical sex determination from craniometrics: Comparison of linear discriminant analysis, logistic regression, and support vector machines.

    Science.gov (United States)

    Santos, Frédéric; Guyomarc'h, Pierre; Bruzek, Jaroslav

    2014-12-01

    Accuracy of identification tools in forensic anthropology primarily rely upon the variations inherent in the data upon which they are built. Sex determination methods based on craniometrics are widely used and known to be specific to several factors (e.g. sample distribution, population, age, secular trends, measurement technique, etc.). The goal of this study is to discuss the potential variations linked to the statistical treatment of the data. Traditional craniometrics of four samples extracted from documented osteological collections (from Portugal, France, the U.S.A., and Thailand) were used to test three different classification methods: linear discriminant analysis (LDA), logistic regression (LR), and support vector machines (SVM). The Portuguese sample was set as a training model on which the other samples were applied in order to assess the validity and reliability of the different models. The tests were performed using different parameters: some included the selection of the best predictors; some included a strict decision threshold (sex assessed only if the related posterior probability was high, including the notion of indeterminate result); and some used an unbalanced sex-ratio. Results indicated that LR tends to perform slightly better than the other techniques and offers a better selection of predictors. Also, the use of a decision threshold (i.e. p>0.95) is essential to ensure an acceptable reliability of sex determination methods based on craniometrics. Although the Portuguese, French, and American samples share a similar sexual dimorphism, application of Western models on the Thai sample (that displayed a lower degree of dimorphism) was unsuccessful. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  20. Applying Support Vector Machines for Gene ontology based gene function prediction

    Directory of Open Access Journals (Sweden)

    Eils Roland

    2004-08-01

    Full Text Available Abstract Background The current progress in sequencing projects calls for rapid, reliable and accurate function assignments of gene products. A variety of methods has been designed to annotate sequences on a large scale. However, these methods can either only be applied for specific subsets, or their results are not formalised, or they do not provide precise confidence estimates for their predictions. Results We have developed a large-scale annotation system that tackles all of these shortcomings. In our approach, annotation was provided through Gene Ontology terms by applying multiple Support Vector Machines (SVM for the classification of correct and false predictions. The general performance of the system was benchmarked with a large dataset. An organism-wise cross-validation was performed to define confidence estimates, resulting in an average precision of 80% for 74% of all test sequences. The validation results show that the prediction performance was organism-independent and could reproduce the annotation of other automated systems as well as high-quality manual annotations. We applied our trained classification system to Xenopus laevis sequences, yielding functional annotation for more than half of the known expressed genome. Compared to the currently available annotation, we provided more than twice the number of contigs with good quality annotation, and additionally we assigned a confidence value to each predicted GO term. Conclusions We present a complete automated annotation system that overcomes many of the usual problems by applying a controlled vocabulary of Gene Ontology and an established classification method on large and well-described sequence data sets. In a case study, the function for Xenopus laevis contig sequences was predicted and the results are publicly available at ftp://genome.dkfz-heidelberg.de/pub/agd/gene_association.agd_Xenopus.

  1. Classifying smoke in laparoscopic videos using SVM

    Directory of Open Access Journals (Sweden)

    Alshirbaji Tamer Abdulbaki

    2017-09-01

    Full Text Available Smoke in laparoscopic videos usually appears due to the use of electrocautery when cutting or coagulating tissues. Therefore, detecting smoke can be used for event-based annotation in laparoscopic surgeries by retrieving the events associated with the electrocauterization. Furthermore, smoke detection can also be used for automatic smoke removal. However, detecting smoke in laparoscopic video is a challenge because of the changeability of smoke patterns, the moving camera and the different lighting conditions. In this paper, we present a video-based smoke detection algorithm to detect smoke of different densities such as fog, low and high density in laparoscopic videos. The proposed method depends on extracting various visual features from the laparoscopic images and providing them to support vector machine (SVM classifier. Features are based on motion, colour and texture patterns of the smoke. We validated our algorithm using experimental evaluation on four laparoscopic cholecystectomy videos. These four videos were manually annotated by defining every frame as smoke or non-smoke frame. The algorithm was applied to the videos by using different feature combinations for classification. Experimental results show that the combination of all proposed features gives the best classification performance. The overall accuracy (i.e. correctly classified frames is around 84%, with the sensitivity (i.e. correctly detected smoke frames and the specificity (i.e. correctly detected non-smoke frames are 89% and 80%, respectively.

  2. The Impact of Different Support Vectors on GOSAT-2 CAI-2 L2 Cloud Discrimination

    Directory of Open Access Journals (Sweden)

    Yu Oishi

    2017-11-01

    Full Text Available Greenhouse gases Observing SATellite-2 (GOSAT-2 will be launched in fiscal year 2018. GOSAT-2 will be equipped with two sensors: the Thermal and Near-infrared Sensor for Carbon Observation (TANSO-Fourier Transform Spectrometer 2 (FTS-2 and the TANSO-Cloud and Aerosol Imager 2 (CAI-2. CAI-2 is a push-broom imaging sensor that has forward- and backward-looking bands to observe the optical properties of aerosols and clouds and to monitor the status of urban air pollution and transboundary air pollution over oceans, such as PM2.5 (particles less than 2.5 micrometers in diameter. CAI-2 has important applications for cloud discrimination in each direction. The Cloud and Aerosol Unbiased Decision Intellectual Algorithm (CLAUDIA1, which applies sequential threshold tests to features is used for GOSAT CAI L2 cloud flag processing. If CLAUDIA1 is used with CAI-2, it is necessary to optimize the thresholds in accordance with CAI-2. However, CLAUDIA3 with support vector machines (SVM, a supervised pattern recognition method, was developed, and then we applied CLAUDIA3 for GOSAT-2 CAI-2 L2 cloud discrimination processing. Thus, CLAUDIA3 can automatically find the optimized boundary between clear and cloudy areas. Improvements in CLAUDIA3 using CAI (CLAUDIA3-CAI continue to be made. In this study, we examined the impact of various support vectors (SV on GOSAT-2 CAI-2 L2 cloud discrimination by analyzing (1 the impact of the choice of different time periods for the training data and (2 the impact of different generation procedures for SV on the cloud discrimination efficiency. To generate SV for CLAUDIA3-CAI from MODIS data, there are two times at which features are extracted, corresponding to CAI bands. One procedure is equivalent to generating SV using CAI data. Another procedure generates SV for MODIS cloud discrimination at the beginning, and then extracts decision function, thresholds, and SV corresponding to CAI bands. Our results indicated the following

  3. Carbon dioxide emission prediction using support vector machine

    Science.gov (United States)

    Saleh, Chairul; Rachman Dzakiyullah, Nur; Bayu Nugroho, Jonathan

    2016-02-01

    In this paper, the SVM model was proposed for predict expenditure of carbon (CO2) emission. The energy consumption such as electrical energy and burning coal is input variable that affect directly increasing of CO2 emissions were conducted to built the model. Our objective is to monitor the CO2 emission based on the electrical energy and burning coal used from the production process. The data electrical energy and burning coal used were obtained from Alcohol Industry in order to training and testing the models. It divided by cross-validation technique into 90% of training data and 10% of testing data. To find the optimal parameters of SVM model was used the trial and error approach on the experiment by adjusting C parameters and Epsilon. The result shows that the SVM model has an optimal parameter on C parameters 0.1 and 0 Epsilon. To measure the error of the model by using Root Mean Square Error (RMSE) with error value as 0.004. The smallest error of the model represents more accurately prediction. As a practice, this paper was contributing for an executive manager in making the effective decision for the business operation were monitoring expenditure of CO2 emission.

  4. Emotion Recognition from Single-Trial EEG Based on Kernel Fisher’s Emotion Pattern and Imbalanced Quasiconformal Kernel Support Vector Machine

    Directory of Open Access Journals (Sweden)

    Yi-Hung Liu

    2014-07-01

    Full Text Available Electroencephalogram-based emotion recognition (EEG-ER has received increasing attention in the fields of health care, affective computing, and brain-computer interface (BCI. However, satisfactory ER performance within a bi-dimensional and non-discrete emotional space using single-trial EEG data remains a challenging task. To address this issue, we propose a three-layer scheme for single-trial EEG-ER. In the first layer, a set of spectral powers of different EEG frequency bands are extracted from multi-channel single-trial EEG signals. In the second layer, the kernel Fisher’s discriminant analysis method is applied to further extract features with better discrimination ability from the EEG spectral powers. The feature vector produced by layer 2 is called a kernel Fisher’s emotion pattern (KFEP, and is sent into layer 3 for further classification where the proposed imbalanced quasiconformal kernel support vector machine (IQK-SVM serves as the emotion classifier. The outputs of the three layer EEG-ER system include labels of emotional valence and arousal. Furthermore, to collect effective training and testing datasets for the current EEG-ER system, we also use an emotion-induction paradigm in which a set of pictures selected from the International Affective Picture System (IAPS are employed as emotion induction stimuli. The performance of the proposed three-layer solution is compared with that of other EEG spectral power-based features and emotion classifiers. Results on 10 healthy participants indicate that the proposed KFEP feature performs better than other spectral power features, and IQK-SVM outperforms traditional SVM in terms of the EEG-ER accuracy. Our findings also show that the proposed EEG-ER scheme achieves the highest classification accuracies of valence (82.68% and arousal (84.79% among all testing methods.

  5. Support vector regression for real-time flood stage forecasting

    Science.gov (United States)

    Yu, Pao-Shan; Chen, Shien-Tsung; Chang, I.-Fan

    2006-09-01

    SummaryFlood forecasting is an important non-structural approach for flood mitigation. The flood stage is chosen as the variable to be forecasted because it is practically useful in flood forecasting. The support vector machine, a novel artificial intelligence-based method developed from statistical learning theory, is adopted herein to establish a real-time stage forecasting model. The lags associated with the input variables are determined by applying the hydrological concept of the time of response, and a two-step grid search method is applied to find the optimal parameters, and thus overcome the difficulties in constructing the learning machine. Two structures of models used to perform multiple-hour-ahead stage forecasts are developed. Validation results from flood events in Lan-Yang River, Taiwan, revealed that the proposed models can effectively predict the flood stage forecasts one-to-six-hours ahead. Moreover, a sensitivity analysis was conducted on the lags associated with the input variables.

  6. Deep Learning for Person Reidentification Using Support Vector Machines

    Directory of Open Access Journals (Sweden)

    Mengyu Xu

    2017-01-01

    Full Text Available Due to the variations of viewpoint, pose, and illumination, a given individual may appear considerably different across different camera views. Tracking individuals across camera networks with no overlapping fields is still a challenging problem. Previous works mainly focus on feature representation and metric learning individually which tend to have a suboptimal solution. To address this issue, in this work, we propose a novel framework to do the feature representation learning and metric learning jointly. Different from previous works, we represent the pairs of pedestrian images as new resized input and use linear Support Vector Machine to replace softmax activation function for similarity learning. Particularly, dropout and data augmentation techniques are also employed in this model to prevent the network from overfitting. Extensive experiments on two publically available datasets VIPeR and CUHK01 demonstrate the effectiveness of our proposed approach.

  7. Electricity Load Forecasting Using Support Vector Regression with Memetic Algorithms

    Science.gov (United States)

    Hu, Zhongyi; Xiong, Tao

    2013-01-01

    Electricity load forecasting is an important issue that is widely explored and examined in power systems operation literature and commercial transactions in electricity markets literature as well. Among the existing forecasting models, support vector regression (SVR) has gained much attention. Considering the performance of SVR highly depends on its parameters; this study proposed a firefly algorithm (FA) based memetic algorithm (FA-MA) to appropriately determine the parameters of SVR forecasting model. In the proposed FA-MA algorithm, the FA algorithm is applied to explore the solution space, and the pattern search is used to conduct individual learning and thus enhance the exploitation of FA. Experimental results confirm that the proposed FA-MA based SVR model can not only yield more accurate forecasting results than the other four evolutionary algorithms based SVR models and three well-known forecasting models but also outperform the hybrid algorithms in the related existing literature. PMID:24459425

  8. Electricity Load Forecasting Using Support Vector Regression with Memetic Algorithms

    Directory of Open Access Journals (Sweden)

    Zhongyi Hu

    2013-01-01

    Full Text Available Electricity load forecasting is an important issue that is widely explored and examined in power systems operation literature and commercial transactions in electricity markets literature as well. Among the existing forecasting models, support vector regression (SVR has gained much attention. Considering the performance of SVR highly depends on its parameters; this study proposed a firefly algorithm (FA based memetic algorithm (FA-MA to appropriately determine the parameters of SVR forecasting model. In the proposed FA-MA algorithm, the FA algorithm is applied to explore the solution space, and the pattern search is used to conduct individual learning and thus enhance the exploitation of FA. Experimental results confirm that the proposed FA-MA based SVR model can not only yield more accurate forecasting results than the other four evolutionary algorithms based SVR models and three well-known forecasting models but also outperform the hybrid algorithms in the related existing literature.

  9. Prediction of Pork Quality by Fuzzy Support Vector Machine Classifier

    Science.gov (United States)

    Zhang, Jianxi; Yu, Huaizhi; Wang, Jiamin

    Existing objective methods to evaluate pork quality in general do not yield satisfactory results and their applications in meat industry are limited. In this study, fuzzy support vector machine (FSVM) method was developed to evaluate and predict pork quality rapidly and nondestructively. Firstly, the discrete wavelet transform (DWT) was used to eliminate the noise component in original spectrum and the new spectrum was reconstructed. Then, considering the characteristic variables still exist correlation and contain some redundant information, principal component analysis (PCA) was carried out. Lastly, FSVM was developed to differentiate and classify pork samples into different quality grades using the features from PCA. Jackknife tests on the working datasets indicated that the prediction accuracies were higher than other methods.

  10. BEHAVIOR BASED CREDIT CARD FRAUD DETECTION USING SUPPORT VECTOR MACHINES

    Directory of Open Access Journals (Sweden)

    V. Dheepa

    2012-07-01

    Full Text Available Along with the great increase of internet and e-commerce, the use of credit card is an unavoidable one. Due to the increase of credit card usage, the frauds associated with this have also increased. There are a lot of approaches used to detect the frauds. In this paper, behavior based classification approach using Support Vector Machines are employed and efficient feature extraction method also adopted. If any discrepancies occur in the behaviors transaction pattern then it is predicted as suspicious and taken for further consideration to find the frauds. Generally credit card fraud detection problem suffers from a large amount of data, which is rectified by the proposed method. Achieving finest accuracy, high fraud catching rate and low false alarms are the main tasks of this approach.

  11. Support Vector Regression Model for Direct Methanol Fuel Cell

    Science.gov (United States)

    Tang, J. L.; Cai, C. Z.; Xiao, T. T.; Huang, S. J.

    2012-07-01

    The purpose of this paper is to establish a direct methanol fuel cell (DMFC) prediction model by using the support vector regression (SVR) approach combined with particle swarm optimization (PSO) algorithm for its parameter selection. Two variables, cell temperature and cell current density were employed as input variables, cell voltage value of DMFC acted as output variable. Using leave-one-out cross-validation (LOOCV) test on 21 samples, the maximum absolute percentage error (APE) yields 5.66%, the mean absolute percentage error (MAPE) is only 0.93% and the correlation coefficient (R2) as high as 0.995. Compared with the result of artificial neural network (ANN) approach, it is shown that the modeling ability of SVR surpasses that of ANN. These suggest that SVR prediction model can be a good predictor to estimate the cell voltage for DMFC system.

  12. Classification of real and pseudo microRNA precursors using local structure-sequence features and support vector machine

    Directory of Open Access Journals (Sweden)

    Liu Guo-Ping

    2005-12-01

    Full Text Available Abstract Background MicroRNAs (miRNAs are a group of short (~22 nt non-coding RNAs that play important regulatory roles. MiRNA precursors (pre-miRNAs are characterized by their hairpin structures. However, a large amount of similar hairpins can be folded in many genomes. Almost all current methods for computational prediction of miRNAs use comparative genomic approaches to identify putative pre-miRNAs from candidate hairpins. Ab initio method for distinguishing pre-miRNAs from sequence segments with pre-miRNA-like hairpin structures is lacking. Being able to classify real vs. pseudo pre-miRNAs is important both for understanding of the nature of miRNAs and for developing ab initio prediction methods that can discovery new miRNAs without known homology. Results A set of novel features of local contiguous structure-sequence information is proposed for distinguishing the hairpins of real pre-miRNAs and pseudo pre-miRNAs. Support vector machine (SVM is applied on these features to classify real vs. pseudo pre-miRNAs, achieving about 90% accuracy on human data. Remarkably, the SVM classifier built on human data can correctly identify up to 90% of the pre-miRNAs from other species, including plants and virus, without utilizing any comparative genomics information. Conclusion The local structure-sequence features reflect discriminative and conserved characteristics of miRNAs, and the successful ab initio classification of real and pseudo pre-miRNAs opens a new approach for discovering new miRNAs.

  13. Detection of Driver Drowsiness Using Wavelet Analysis of Heart Rate Variability and a Support Vector Machine Classifier

    Directory of Open Access Journals (Sweden)

    Gang Li

    2013-12-01

    Full Text Available Driving while fatigued is just as dangerous as drunk driving and may result in car accidents. Heart rate variability (HRV analysis has been studied recently for the detection of driver drowsiness. However, the detection reliability has been lower than anticipated, because the HRV signals of drivers were always regarded as stationary signals. The wavelet transform method is a method for analyzing non-stationary signals. The aim of this study is to classify alert and drowsy driving events using the wavelet transform of HRV signals over short time periods and to compare the classification performance of this method with the conventional method that uses fast Fourier transform (FFT-based features. Based on the standard shortest duration for FFT-based short-term HRV evaluation, the wavelet decomposition is performed on 2-min HRV samples, as well as 1-min and 3-min samples for reference purposes. A receiver operation curve (ROC analysis and a support vector machine (SVM classifier are used for feature selection and classification, respectively. The ROC analysis results show that the wavelet-based method performs better than the FFT-based method regardless of the duration of the HRV sample that is used. Finally, based on the real-time requirements for driver drowsiness detection, the SVM classifier is trained using eighty FFT and wavelet-based features that are extracted from 1-min HRV signals from four subjects. The averaged leave-one-out (LOO classification performance using wavelet-based feature is 95% accuracy, 95% sensitivity, and 95% specificity. This is better than the FFT-based results that have 68.8% accuracy, 62.5% sensitivity, and 75% specificity. In addition, the proposed hardware platform is inexpensive and easy-to-use.

  14. Wavelet Correlation Feature Scale Entropy and Fuzzy Support Vector Machine Approach for Aeroengine Whole-Body Vibration Fault Diagnosis

    Directory of Open Access Journals (Sweden)

    Cheng-Wei Fei

    2013-01-01

    Full Text Available In order to correctly analyze aeroengine whole-body vibration signals, Wavelet Correlation Feature Scale Entropy (WCFSE and Fuzzy Support Vector Machine (FSVM (WCFSE-FSVM method was proposed by fusing the advantages of the WCFSE method and the FSVM method. The wavelet coefficients were known to be located in high Signal-to-Noise Ratio (S/N or SNR scales and were obtained by the Wavelet Transform Correlation Filter Method (WTCFM. This method was applied to address the whole-body vibration signals. The WCFSE method was derived from the integration of the information entropy theory and WTCFM, and was applied to extract the WCFSE values of the vibration signals. Among the WCFSE values, the WFSE1 and WCFSE2 values on the scale 1 and 2 from the high band of vibration signal were believed to acceptably reflect the vibration feature and were selected to construct the eigenvectors of vibration signals as fault samples to establish the WCFSE-FSVM model. This model was applied to aeroengine whole-body vibration fault diagnosis. Through the diagnoses of four vibration fault modes and the comparison of the analysis results by four methods (SVM, FSVM, WESE-SVM, WCFSE-FSVM, it is shown that the WCFSE-FSVM method is characterized by higher learning ability, higher generalization ability and higher anti-noise ability than other methods in aeroengine whole-vibration fault analysis. Meanwhile, this present study provides a useful insight for the vibration fault diagnosis of complex machinery besides an aeroengine.

  15. Estimation of hydraulic jump characteristics of channels with sudden diverging side walls via SVM.

    Science.gov (United States)

    Roushangar, Kiyoumars; Valizadeh, Reyhaneh; Ghasempour, Roghayeh

    2017-10-01

    Sudden diverging channels are one of the energy dissipaters which can dissipate most of the kinetic energy of the flow through a hydraulic jump. An accurate prediction of hydraulic jump characteristics is an important step in designing hydraulic structures. This paper focuses on the capability of the support vector machine (SVM) as a meta-model approach for predicting hydraulic jump characteristics in different sudden diverging stilling basins (i.e. basins with and without appurtenances). In this regard, different models were developed and tested using 1,018 experimental data. The obtained results proved the capability of the SVM technique in predicting hydraulic jump characteristics and it was found that the developed models for a channel with a central block performed more successfully than models for channels without appurtenances or with a negative step. The superior performance for the length of hydraulic jump was obtained for the model with parameters F 1 (Froude number) and (h 2- h 1 )/h 1 (h 1 and h 2 are sequent depth of upstream and downstream respectively). Concerning the relative energy dissipation and sequent depth ratio, the model with parameters F 1 and h 1 /B (B is expansion ratio) led to the best results. According to the outcome of sensitivity analysis, Froude number had the most significant effect on the modeling. Also comparison between SVM and empirical equations indicated the great performance of the SVM.

  16. Positioning Errors Predicting Method of Strapdown Inertial Navigation Systems Based on PSO-SVM

    Directory of Open Access Journals (Sweden)

    Xunyuan Yin

    2013-01-01

    Full Text Available The strapdown inertial navigation systems (SINS have been widely used for many vehicles, such as commercial airplanes, Unmanned Aerial Vehicles (UAVs, and other types of aircrafts. In order to evaluate the navigation errors precisely and efficiently, a prediction method based on support vector machine (SVM is proposed for positioning error assessment. Firstly, SINS error models that are used for error calculation are established considering several error resources with respect to inertial units. Secondly, flight paths for simulation are designed. Thirdly, the -SVR based prediction method is proposed to predict the positioning errors of navigation systems, and particle swarm optimization (PSO is used for the SVM parameters optimization. Finally, 600 sets of error parameters of SINS are utilized to train the SVM model, which is used for the performance prediction of new navigation systems. By comparing the predicting results with the real errors, the latitudinal predicting accuracy is 92.73%, while the longitudinal predicting accuracy is 91.64%, and PSO is effective to increase the prediction accuracy compared with traditional SVM with fixed parameters. This method is also demonstrated to be effective for error prediction for an entire flight process. Moreover, the prediction method can save 75% of calculation time compared with analyses based on error models.

  17. Pressure Model of Control Valve Based on LS-SVM with the Fruit Fly Algorithm

    Directory of Open Access Journals (Sweden)

    Huang Aiqin

    2014-07-01

    Full Text Available Control valve is a kind of essential terminal control component which is hard to model by traditional methodologies because of its complexity and nonlinearity. This paper proposes a new modeling method for the upstream pressure of control valve using the least squares support vector machine (LS-SVM, which has been successfully used to identify nonlinear system. In order to improve the modeling performance, the fruit fly optimization algorithm (FOA is used to optimize two critical parameters of LS-SVM. As an example, a set of actual production data from a controlling system of chlorine in a salt chemistry industry is applied. The validity of LS-SVM modeling method using FOA is verified by comparing the predicted results with the actual data with a value of MSE 2.474 × 10−3. Moreover, it is demonstrated that the initial position of FOA does not affect its optimal ability. By comparison, simulation experiments based on PSO algorithm and the grid search method are also carried out. The results show that LS-SVM based on FOA has equal performance in prediction accuracy. However, from the respect of calculation time, FOA has a significant advantage and is more suitable for the online prediction.

  18. Using evolutionary computation to optimize an SVM used in detecting buried