WorldWideScience

Sample records for sv40 early genomic

  1. Columnar structure of SV40 minichromosome

    Directory of Open Access Journals (Sweden)

    Edward N Trifonov

    2015-07-01

    Full Text Available Like the sequence of the strongest 601 clone nucleosome of Lowary and Widom, the SV40 genome sequence contains tracks of YR dinucleotides separated by small integers of the 10.4n base series (10, 11, 21 and 30 bases. The tracks, however, substantially exceed the nucleosome DNA size and, thus, correspond to more extended structure - columnar chromatin. The micrococcal nuclease digests of the SV40 chromatin do not show uniquely positioned individual nucleosomes. This confirms the columnar structure of the minichromosome, as well as earlier electron microscopy studies.

  2. Virus-specific nucleic acids in SV40-exposed hamster embryo cell lines: correlation with S and T antigens.

    Science.gov (United States)

    Levin, M J; Oxman, M N; Diamandopoulos, G T; Levine, A S; Henry, P H; Enders, J F

    1969-02-01

    A number of homologous SV40-exposed hamster embryonic cell lines were examined for the presence of RNA complementary to SV40 DNA. Only those lines containing the SV40 T antigen were found to have such virus-specific RNA. In lines containing the SV40 S antigen, but not the SV40 T antigen, virus-specific RNA was not detected. These findings suggest that the S antigen is not coded for directly by the SV40 genome.

  3. VIRUS-SPECIFIC NUCLEIC ACIDS IN SV40-EXPOSED HAMSTER EMBRYO CELL LINES: CORRELATION WITH S AND T ANTIGENS*

    Science.gov (United States)

    Levin, Myron J.; Oxman, Michael N.; Diamandopoulos, George Th.; Levine, Arthur S.; Henry, Patrick H.; Enders, John F.

    1969-01-01

    A number of homologous SV40-exposed hamster embryonic cell lines were examined for the presence of RNA complementary to SV40 DNA. Only those lines containing the SV40 T antigen were found to have such virus-specific RNA. In lines containing the SV40 S antigen, but not the SV40 T antigen, virus-specific RNA was not detected. These findings suggest that the S antigen is not coded for directly by the SV40 genome. PMID:4307716

  4. SV40 DNA amplification and reintegration in surviving hamster cells after 60Co gamma-irradiation.

    Science.gov (United States)

    Lücke-Huhle, C; Pech, M; Herrlich, P

    1990-10-01

    SV40-transformed Chinese hamster embryo cells were exposed to 60Co gamma-irradiation and the fate of the integrated SV40 sequences was pursued over a period of 20 days following radiation exposure. As shown by colony hybridization, integrated SV40 sequences were amplified in surviving and non-surviving cells. At later times, however, clonal sublines of surviving cells grown for 20-30 cell generations after irradiation had lost most of their amplified SV40 copies but showed altered restriction fragment patterns indicating reintegration of SV40 sequences at new sites of the hamster genome. This suggests that 60Co gamma-irradiation can generate mutations by inducing over-replication of chromosome segments that are then substrates of enzymatic rearrangements.

  5. Fanconi anemia patients are more susceptible to infection with tumor virus SV40.

    Directory of Open Access Journals (Sweden)

    Manola Comar

    Full Text Available Fanconi anemia (FA is a recessive DNA repair disease characterized by a high predisposition to developing neoplasms. DNA tumor polyomavirus simian virus 40 (SV40 transforms FA fibroblasts at high efficiency suggesting that FA patients could be highly susceptible to SV40 infection. To test this hypothesis, the large tumor (LT antigen of SV40, BKV, JCV and Merkel Cell (MC polyomaviruses were tested in blood samples from 89 FA patients and from 82 of their parents. Two control groups consisting of 47 no-FA patients affected by other genetic bone marrow failure diseases and 91 healthy subjects were also evaluated. Although JCV, BKV and MC were not found in any of the FA samples, the prevalence and viral load of SV40 were higher in FA patients (25%; mean viral load: 1.1×10(2 copies/10(5cells as compared with healthy individuals (4.3%; mean viral load: 0.8×10(1 copies/10(5cells and genetic controls (0% (p<0.005. A marked age-dependent frequency of SV40 was found in FA with respect to healthy subjects suggesting that, although acquired early in life, the virus can widespread more easily in specific groups of population. From the analysis of family pedigrees, 60% of the parents of SV40-positive probands were positive for the virus compared to 2% of the parents of the SV40-negative probands (p<0.005. It is worthy of note that the relative frequency of SV40-positive relatives detected in this study was the highest ever reported, showing that asymptomatic FA carriers are also more susceptible to SV40. In conclusion, we favor the hypothesis that SV40 spread could be facilitated by individuals who are genetically more susceptible to infection, such as FA patients. The increased susceptibility to SV40 infection seems to be associated with a specific defect of the immune system which supports a potential interplay of SV40 with an underlying genetic alteration that increases the risk of malignancies.

  6. Generation of a Vero-Based Packaging Cell Line to Produce SV40 Gene Delivery Vectors for Use in Clinical Gene Therapy Studies

    Directory of Open Access Journals (Sweden)

    Miguel G. Toscano

    2017-09-01

    Full Text Available Replication-defective (RD recombinant simian virus 40 (SV40-based gene delivery vectors hold a great potential for clinical applications because of their presumed non-immunogenicity and capacity to induce immune tolerance to the transgene products in humans. However, the clinical use of SV40 vectors has been hampered by the lack of a packaging cell line that produces replication-competent (RC free SV40 particles in the vector production process. To solve this problem, we have adapted the current SV40 vector genome used for the production of vector particles and generated a novel Vero-based packaging cell line named SuperVero that exclusively expresses the SV40 large T antigen. SuperVero cells produce similar numbers of SV40 vector particles compared to the currently used packaging cell lines, albeit in the absence of contaminating RC SV40 particles. Our unique SV40 vector platform named SVac paves the way to clinically test a whole new generation of SV40-based therapeutics for a broad range of important diseases.

  7. A very late viral protein triggers the lytic release of SV40.

    Directory of Open Access Journals (Sweden)

    Robert Daniels

    2007-07-01

    Full Text Available How nonenveloped viruses such as simian virus 40 (SV40 trigger the lytic release of their progeny is poorly understood. Here, we demonstrate that SV40 expresses a novel later protein termed VP4 that triggers the timely lytic release of its progeny. Like VP3, VP4 synthesis initiates from a downstream AUG start codon within the VP2 transcript and localizes to the nucleus. However, VP4 expression occurs approximately 24 h later at a time that coincides with cell lysis, and it is not incorporated into mature virions. Mutation of the VP4 initiation codon from the SV40 genome delayed lysis by 2 d and reduced infectious particle release. Furthermore, the co-expression of VP4 and VP3, but not their individual expression, recapitulated cell lysis in bacteria. Thus, SV40 regulates its life cycle by the later temporal expression of VP4, which results in cell lysis and enables the 50-nm virus to exit the cell. This study also demonstrates how viruses can generate multiple proteins with diverse functions and localizations from a single reading frame.

  8. Transgenic Mouse Models of SV40-Induced Cancer.

    Science.gov (United States)

    Hudson, Amanda L; Colvin, Emily K

    2016-01-01

    The SV40 viral oncogene has been used since the 1970s as a reliable and reproducible method to generate transgenic mouse models. This seminal discovery has taught us an immense amount about how tumorigenesis occurs, and its success has led to the evolution of many mouse models of cancer. Despite the development of more modern and targeted approaches for developing genetically engineered mouse models of cancer, SV40-induced mouse models still remain frequently used today. This review discusses a number of cancer types in which SV40 mouse models of cancer have been developed and highlights their relevance and importance to preclinical research. © The Author 2016. Published by Oxford University Press on behalf of the Institute for Laboratory Animal Research. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  9. In situ study of SV40 virus DNA in lytic infection by mild loosening of nucleoproteins.

    Science.gov (United States)

    Puvion-Dutilleul, F; Pedron, J; Lange, M

    1980-11-01

    We have studied SV40 (simian virus40) nucleoprotein in permissively infected monkey kidney cell cultures (CV1) by a procedure which does not require the isolation of the SV40 chromosomes. Treatment of the cells by a low ionic strenght medium containing Photo flo produces a mild loosening of nucleoproteins, and permits the in situ study in ultrathin sections of virus components and their relationships with host cell chromatin. RNP and DNP could be distinguished by uranyl-EDTA-lead staining (for RNP) and by DNase digestion. SV40 DNA was observed as circular molecules, either free or connected with either RNP fibrils or virus capsids. These three aspects were interpreted, respectively, as viral minichromosomes, transcription of virus genome and partially encapsidated virus DNA. During encapsidation a few virus particles appear to be bound to host chromatin. Many, if not all, seemingly mature viruses, singly or in small linear clusters, are also aligned on host chromatin. Some of these observations were corroborated by the Miller spreading technique. They are consistent with a role for the host cell chromatin in the production of nuclear viruses.

  10. SV40 utilizes ATM kinase activity to prevent non-homologous end joining of broken viral DNA replication products.

    Science.gov (United States)

    Sowd, Gregory A; Mody, Dviti; Eggold, Joshua; Cortez, David; Friedman, Katherine L; Fanning, Ellen

    2014-12-01

    Simian virus 40 (SV40) and cellular DNA replication rely on host ATM and ATR DNA damage signaling kinases to facilitate DNA repair and elicit cell cycle arrest following DNA damage. During SV40 DNA replication, ATM kinase activity prevents concatemerization of the viral genome whereas ATR activity prevents accumulation of aberrant genomes resulting from breakage of a moving replication fork as it converges with a stalled fork. However, the repair pathways that ATM and ATR orchestrate to prevent these aberrant SV40 DNA replication products are unclear. Using two-dimensional gel electrophoresis and Southern blotting, we show that ATR kinase activity, but not DNA-PK(cs) kinase activity, facilitates some aspects of double strand break (DSB) repair when ATM is inhibited during SV40 infection. To clarify which repair factors associate with viral DNA replication centers, we examined the localization of DSB repair proteins in response to SV40 infection. Under normal conditions, viral replication centers exclusively associate with homology-directed repair (HDR) and do not colocalize with non-homologous end joining (NHEJ) factors. Following ATM inhibition, but not ATR inhibition, activated DNA-PK(cs) and KU70/80 accumulate at the viral replication centers while CtIP and BLM, proteins that initiate 5' to 3' end resection during HDR, become undetectable. Similar to what has been observed during cellular DSB repair in S phase, these data suggest that ATM kinase influences DSB repair pathway choice by preventing the recruitment of NHEJ factors to replicating viral DNA. These data may explain how ATM prevents concatemerization of the viral genome and promotes viral propagation. We suggest that inhibitors of DNA damage signaling and DNA repair could be used during infection to disrupt productive viral DNA replication.

  11. SV40 Utilizes ATM Kinase Activity to Prevent Non-homologous End Joining of Broken Viral DNA Replication Products

    Science.gov (United States)

    Sowd, Gregory A.; Mody, Dviti; Eggold, Joshua; Cortez, David; Friedman, Katherine L.; Fanning, Ellen

    2014-01-01

    Simian virus 40 (SV40) and cellular DNA replication rely on host ATM and ATR DNA damage signaling kinases to facilitate DNA repair and elicit cell cycle arrest following DNA damage. During SV40 DNA replication, ATM kinase activity prevents concatemerization of the viral genome whereas ATR activity prevents accumulation of aberrant genomes resulting from breakage of a moving replication fork as it converges with a stalled fork. However, the repair pathways that ATM and ATR orchestrate to prevent these aberrant SV40 DNA replication products are unclear. Using two-dimensional gel electrophoresis and Southern blotting, we show that ATR kinase activity, but not DNA-PKcs kinase activity, facilitates some aspects of double strand break (DSB) repair when ATM is inhibited during SV40 infection. To clarify which repair factors associate with viral DNA replication centers, we examined the localization of DSB repair proteins in response to SV40 infection. Under normal conditions, viral replication centers exclusively associate with homology-directed repair (HDR) and do not colocalize with non-homologous end joining (NHEJ) factors. Following ATM inhibition, but not ATR inhibition, activated DNA-PKcs and KU70/80 accumulate at the viral replication centers while CtIP and BLM, proteins that initiate 5′ to 3′ end resection during HDR, become undetectable. Similar to what has been observed during cellular DSB repair in S phase, these data suggest that ATM kinase influences DSB repair pathway choice by preventing the recruitment of NHEJ factors to replicating viral DNA. These data may explain how ATM prevents concatemerization of the viral genome and promotes viral propagation. We suggest that inhibitors of DNA damage signaling and DNA repair could be used during infection to disrupt productive viral DNA replication. PMID:25474690

  12. SV40 utilizes ATM kinase activity to prevent non-homologous end joining of broken viral DNA replication products.

    Directory of Open Access Journals (Sweden)

    Gregory A Sowd

    2014-12-01

    Full Text Available Simian virus 40 (SV40 and cellular DNA replication rely on host ATM and ATR DNA damage signaling kinases to facilitate DNA repair and elicit cell cycle arrest following DNA damage. During SV40 DNA replication, ATM kinase activity prevents concatemerization of the viral genome whereas ATR activity prevents accumulation of aberrant genomes resulting from breakage of a moving replication fork as it converges with a stalled fork. However, the repair pathways that ATM and ATR orchestrate to prevent these aberrant SV40 DNA replication products are unclear. Using two-dimensional gel electrophoresis and Southern blotting, we show that ATR kinase activity, but not DNA-PK(cs kinase activity, facilitates some aspects of double strand break (DSB repair when ATM is inhibited during SV40 infection. To clarify which repair factors associate with viral DNA replication centers, we examined the localization of DSB repair proteins in response to SV40 infection. Under normal conditions, viral replication centers exclusively associate with homology-directed repair (HDR and do not colocalize with non-homologous end joining (NHEJ factors. Following ATM inhibition, but not ATR inhibition, activated DNA-PK(cs and KU70/80 accumulate at the viral replication centers while CtIP and BLM, proteins that initiate 5' to 3' end resection during HDR, become undetectable. Similar to what has been observed during cellular DSB repair in S phase, these data suggest that ATM kinase influences DSB repair pathway choice by preventing the recruitment of NHEJ factors to replicating viral DNA. These data may explain how ATM prevents concatemerization of the viral genome and promotes viral propagation. We suggest that inhibitors of DNA damage signaling and DNA repair could be used during infection to disrupt productive viral DNA replication.

  13. SV40 Assembly In Vivo and In Vitro

    Directory of Open Access Journals (Sweden)

    Ariella Oppenheim

    2008-01-01

    Full Text Available The Simian virus 40 (SV40 capsid is a T = 7d icosahedral lattice ∼45 nm in diameter surrounding the ∼5 kb circular minichromosome. The outer shell is composed of 360 monomers of the major capsid protein VP1, tightly bound in 72 pentamers. VP1 is a jellyroll β-barrel, with extending N- and C-terminal arms. The N-terminal arms bind DNA and face the interior of the capsid. The flexible C-arms tie together the 72 pentamers in three distinct kinds of interactions, thus facilitating the formation of a T = 7 icosahedron from identical pentameric building blocks. Assembly in vivo was shown to occur by addition of capsomers around the DNA. We apply a combination of biochemical and genetic approaches to study SV40 assembly. Our in vivo and in vitro studies suggest the following model: one or two capsomers bind at a high affinity to ses, the viral DNA encapsidation signal, forming the nucleation centre for assembly. Next, multiple capsomers attach concomitantly, at lower affinity, around the minichromosome. This increases their local concentration facilitating rapid, cooperative assembly reaction. Formation of the icosahedron proceeds either by gradual addition of single pentamers to the growing shell or by concerted assembly of pentamer clusters.

  14. Biologic properties of viable deletion mutants of simian virus 40 (SV40) rescued from the cells of an SV40-induced hamster lymphocytic leukemia.

    Science.gov (United States)

    Diamandopoulos, G T; Carmichael, G

    1983-12-01

    A lymphocytic leukemia induced by the oncogenic DNA simian virus 40 (SV40) in an inbred LSH/SsLak Syrian golden hamster was evoked to produce infectious SV40 by fusion of the leukemia cells with grivet monkey kidney (GMK) cells and by exposure of the leukemia cells to the chemical inducers mitomycin C and cycloheximide. Plaque-purified viable substrains of the rescued SV40 when studied by restriction endonuclease digestion of viral DNA were found to contain small deletions within the Hind III restriction fragment C. These deletions lay near the viral origin of DNA replication. Ten plaque-purified substrains of the rescued virus identified by immunofluorescence as being SV40 were found, when compared to the wild-type SV40, to replicate slowly and to form small plaques. Although these substrains transformed NIH/3T3 cells as efficiently as the wild-type SV40 in tissue culture, they were generally less oncogenic in vivo--7 of the 10 failed to induce tumors. The 3 oncogenic SV40-rescued substrains were not found to exhibit "lymphocytotropism," i.e., the capacity to infect and neoplastically transform preferentially hamster lymphocytes. Thus the hamster lymphocytic leukemia originally induced by the wild-type SV40 was most likely a chance-stochastic event rather than the result of tropism-determinism mediated by the virus, as is usually the case with leukemogenic RNA viruses.

  15. Polio vaccines, SV40 and human tumours, an update on false positive and false negative results.

    Science.gov (United States)

    Elmishad, A G; Bocchetta, M; Pass, H I; Carbone, M

    2006-01-01

    Simian virus 40 (SV40) has been detected in different human tumours in numerous laboratories. The detection of SV40 in human tumours has been linked to the administration of SV40-contaminated polio vaccines from 1954 until 1963. Many of these reports linked SV40 to human mesothelioma. Some studies have failed to detect SV40 in human tumours and this has caused a controversy. Here we review the current literature. Moreover, we present evidence showing how differences in the sensitivities of methodologies can lead to a very different interpretation of the same study. The same 20 mesothelioma specimens all tested negative, 2/20 tested positive or 7/20 tested positive for SV40 Tag by simply changing the detection method on the same immuno-precipitation/western blot membranes. These results provide a simple explanation for some of the apparent discordant results reported in the literature.

  16. An investigation of the occurrence of sv40 antibodies in South Africa ...

    African Journals Online (AJOL)

    Four of the samples were from the healthy population group and the remaining 1 (1/64) was from the patient group. An SV40 antibody-blocking assay and a Western blot were used as additional confirmation for the SV40 antibodies, whereas the Western blot assay developed a single common band on all 5 samples.

  17. DJ-1, an oncogene and causative gene for familial Parkinson's disease, is essential for SV40 transformation in mouse fibroblasts through up-regulation of c-Myc.

    Science.gov (United States)

    Kim, Yun Chul; Kitaura, Hirotake; Iguchi-Ariga, Sanae M M; Ariga, Hiroyoshi

    2010-09-24

    Simian virus 40 (SV40) is a tumor virus and its early gene product large T-antigen (LT) is responsible for the transforming activity of SV40. Parkinson's disease causative gene DJ-1 is also a ras-dependent oncogene, but the mechanism of its oncogene function is still not known. In this study, we found that there were no transformed foci when fibroblasts from DJ-1-knockout mice were transfected with LT. We also found that DJ-1 directly bound to LT and that the expression level of c-Myc in transformed cells was parallel to that of DJ-1. These findings indicate that DJ-1 is essential for SV40 transformation. Copyright © 2010 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.

  18. In vitro and in vivo Functional Characterization of Gutless Recombinant SV40-derived CFTR Vectors

    Science.gov (United States)

    Mueller, Christian; Strayer, Marlene S; Sirninger, Jeffery; Braag, Sofia; Branco, Francisco; Louboutin, Jean-Pierre; Flotte, Terence R.; Strayer, David S.

    2009-01-01

    In cystic fibrosis (CF) respiratory failure caused by progressive airway obstruction and tissue damage is primarily a result of the aberrant inflammatory responses to lung infections with Pseudomonas aeruginosa. Despite considerable improvement in patient survival, conventional therapies are mainly supportive. Recent progress towards gene therapy for CF has been encouraging; however, several factors such as immune response and transduced cell turnover remain as potential limitations to CF gene therapy. As alternative gene therapy vectors for CF we examined the feasibility of using SV40-derived vectors (rSV40s) which may circumvent some of these obstacles. To accommodate the large CFTR cDNA, we removed not only SV40 Tag genes, but also all capsid genes. We therefore tested whether “gutless” rSV40s could be packaged and were able to express a functional human CFTR cDNA. Results from our in vitro analysis determined that rSV40-CFTR was able to successfully result in the expression of CFTR protein which localized to the plasma membrane and restored channel function to CFTR deficient cells. Similarly in vivo experiments delivering rSV40-CFTR to the lungs of Cftr−/− mice resulted in a reduction of the pathology associated with intra-tracheal pseudomona aeruginosa challenge. rSV40-CFTR treated mice had had less weight loss when compared to control treated mice as well as demonstrably reduced lung inflammation as evidence by histology and reduced inflammatory cytokines in the BAL. The reduction in inflammatory cytokine levels led to an evident decrease in neutrophil influx to the airways. These results indicate that further study of the application of rSV40-CFTR to CF gene therapy is warranted. PMID:19890354

  19. Fatal SV40-associated pneumonia and nephropathy following renal allotransplantation in rhesus macaque.

    Science.gov (United States)

    Song, M; Mulvihill, M S; Williams, K D; Collins, B H; Kirk, A D

    2018-02-01

    Recrudescence of latent and dormant viruses may lead to overwhelming viremia in immunosuppressed hosts. In immunocompromised hosts, Simian virus 40 (SV40) reactivation is known to cause nephritis and demyelinating central nervous system disease. Here, we report SV40 viremia leading to fatal interstitial pneumonia in an immunosuppressed host following renal allotransplantation. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  20. Attempts on producing lymphoid cell line from Penaeus monodon by induction with SV40-T and 12S EIA oncogenes.

    Science.gov (United States)

    Puthumana, Jayesh; Prabhakaran, Priyaja; Philip, Rosamma; Singh, I S Bright

    2015-12-01

    In an attempt of in vitro transformation, transfection mediated expression of Simian virus-40 (T) antigen (SV40-T) and transduction mediated expression of Adenovirus type 12 early region 1A (12S E1A) oncogene were performed in Penaeus monodon lymphoid cells. pSV3-neo vector encoding SV40-T oncogene and a recombinant baculovirus BacP2-12S E1A-GFP encoding 12S E1A oncogene under the control of hybrid promoters were used. Electroporation and lipofection mediated transformation of SV40-T in lymphoid cells confirmed the transgene expression by phenotypic variation and the expression of GFP in co-transfection experiment. The cells transfected by lipofection (≥ 5%) survived for 14 days with lower toxicity (30%), whilst on electroporation, most of the cells succumbed to death (60%) and survived cells lived up to 7 days. Transduction efficiency in primary lymphoid cells was more than 80% within 14 days of post-transduction, however, an incubation period of 7 days post-transduction was observed without detectable expression of 12S E1A. High level of oncogenic 12S E1A expression were observed after 14 day post-transduction and the proliferating cells survived for more than 90 days with GFP expression, however, without in vitro transformation and immortalization. The study put forth the requirement of transduction mediated 'specific' oncogene expression along with telomerase activation and epigenetic induction for the immortalization and establishment of shrimp cell line. Copyright © 2015. Published by Elsevier Ltd.

  1. Temperature-sensitive SV40-immortalized rat middle ear epithelial cells.

    Science.gov (United States)

    Toyama, Katsuhiro; Kim, Youngki; Paparella, Michael M; Lin, Jizhen

    2004-12-01

    The proliferation and differentiation of middle ear epithelial cells are essential in both normal and diseased middle ears. The normal situation involves physiologic growth and renewal of the epithelium, and the diseased situation involves pathological changes of the epithelium such as mucous cell metaplasia and ciliated cell proliferation in otitis media. In this study, we used a temperature-sensitive large T antigen (the SV40 mutant) to transduce and immortalize the primary culture of middle ear epithelial cells. SV40-immortalized middle ear epithelial cells have been cultured for more than 50 passages and are stable morphologically. Their nonimmortalized parent cells died at the second passage. Immortalized middle ear epithelial cells carrying the SV40 mutant show a monolayer, cobblestonelike morphology. The cell line expresses characteristic middle ear mucosal molecules such as mucins, keratins, and collagens. It also responds to temperature changes; namely, cells proliferate at 33 degrees C, when the SV40 antigen is active, and differentiate at 39 degrees C, when the SV40 antigen is inactive. Therefore, we conclude that a temperature-sensitive middle ear epithelial cell line has successfully been established.

  2. STX140, but not paclitaxel, inhibits mammary tumour initiation and progression in C3(1/SV40 T/t-antigen transgenic mice.

    Directory of Open Access Journals (Sweden)

    Florence Meyer-Losic

    Full Text Available Despite paclitxael's clinical success, treating hormone-refractory breast cancer remains challenging. Paclitaxel has a poor pharmacological profile, characterized by a low therapeutic index (TIX caused by severe dose limiting toxicities, such as neutropenia and peripheral neuropathy. Consequently, new drugs are urgently required. STX140, a compound previously shown to have excellent efficacy against many tumors, is here compared to paclitaxel in three translational in vivo breast cancer models, a rat model of peripheral neuropathy, and through pharmacological testing. Three different in vivo mouse models of breast cancer were used; the metastatic 4T1 orthotopic model, the C3(1/SV40 T-Ag model, and the MDA-MB-231 xenograft model. To determine TIX and pharmacological profile of STX140, a comprehensive dosing regime was performed in mice bearing MDA-MD-231 xenografts. Finally, peripheral neuropathy was examined using a rat plantar thermal hyperalgesia model. In the 4T1 metastatic model, STX140 and paclitaxel significantly inhibited primary tumor growth and lung metastases. All C3(1/SV40 T-Ag mice in the control and paclitaxel treated groups developed palpable mammary cancer. STX140 blocked 47% of tumors developing and significantly inhibited growth of tumors that did develop. STX140 treatment caused a significant (P<0.001 survival advantage for animals in early and late intervention groups. Conversely, in C3(1/SV40 T-Ag mice, paclitaxel failed to inhibit tumor growth and did not increase survival time. Furthermore, paclitaxel, but not STX140, induced significant peripheral neuropathy and neutropenia. These results show that STX140 has a greater anti-cancer efficacy, TIX, and reduced neurotoxicity compared to paclitaxel in C3(1/SV40 T-Ag mice and therefore may be of significant benefit to patients with breast cancer.

  3. Vectors bicistronically linking a gene of interest to the SV40 large T antigen in combination with the SV40 origin of replication enhance transient protein expression and luciferase reporter activity

    OpenAIRE

    Mahon, Matthew J.

    2011-01-01

    The Simian Virus large T antigen (SVLT) induces replication of plasmids bearing the SV40 origin of replication (SV40 ori) within mammalian cells. The internal ribosomal entry site (IRES) is an element that allows for the co-translation of proteins from one polycistronic mRNA. Through the combination of these elements, IRES-dependent co-expression of a protein of interest and the SVLT, either constitutive or regulated, on plasmids bearing the SV40 ori generates a positive feedback loop, result...

  4. Vectors bicistronically linking a gene of interest to the SV40 large T antigen in combination with the SV40 origin of replication enhance transient protein expression and luciferase reporter activity.

    Science.gov (United States)

    Mahon, Matthew J

    2011-08-01

    The simian virus 40 large T antigen (SVLT) induces replication of plasmids bearing the SV40 origin of replication (SV40 ori) within mammalian cells. The internal ribosomal entry site (IRES) is an element that allows for the cotranslation of proteins from one polycistronic mRNA. Through the combination of these elements, IRES-dependent coexpression of a protein of interest and the SVLT, either constitutive or regulated, on plasmids bearing the SV40 ori generates a positive feedback loop, resulting in enhanced expression. A vector linking red fluorescent protein (RFP) to the IRES-SVLT element enhances fluorescence ~10-fold over that demonstrated from a vector lacking this element. In transfection-resistant CV-1 cells, the RFP-IRES-SVLT vector substantially increases the number of cells expressing detectable levels of RFP. Furthermore, inclusion of the IRES-SVLT/SV40 ori elements in standard luciferase-based reporter gene constructs and associated effectors results in marked increases in luminescent output and sensitivity, using the β-catenin/TCF pathway and the mammalian two-hybrid assay as models. Ultimately, vector systems combining these well-established elements (IRES-SVLT/SV40 ori) will increase the utility of transient transfection for the production of recombinant proteins, the use of transfection-resistant cell lines, and the effectiveness of luciferase-based high-throughput screening assays.

  5. Transformation of SV40-immortalized human uroepithelial cells by 3-methylcholanthrene increases IFN- and Large T Antigen-induced transcripts

    Directory of Open Access Journals (Sweden)

    Easton Marilyn J

    2010-02-01

    Full Text Available Abstract Background Simian Virus 40 (SV40 immortalization followed by treatment of cells with 3-methylcholanthrene (3-MC has been used to elicit tumors in athymic mice. 3-MC carcinogenesis has been thoroughly studied, however gene-level interactions between 3-MC and SV40 that could have produced the observed tumors have not been explored. The commercially-available human uroepithelial cell lines were either SV40-immortalized (HUC or SV40-immortalized and then 3-MC-transformed (HUC-TC. Results To characterize the SV40 - 3MC interaction, we compared human gene expression in these cell lines using a human cancer array and confirmed selected changes by RT-PCR. Many viral Large T Antigen (Tag expression-related changes occurred in HUC-TC, and it is concluded that SV40 and 3-MC may act synergistically to transform cells. Changes noted in IFP 9-27, 2'-5' OAS, IF 56, MxA and MxAB were typical of those that occur in response to viral exposure and are part of the innate immune response. Because interferon is crucial to innate immune host defenses and many gene changes were interferon-related, we explored cellular growth responses to exogenous IFN-γ and found that treatment impeded growth in tumor, but not immortalized HUC on days 4 - 7. Cellular metabolism however, was inhibited in both cell types. We conclude that IFN-γ metabolic responses were functional in both cell lines, but IFN-γ anti-proliferative responses functioned only in tumor cells. Conclusions Synergism of SV40 with 3-MC or other environmental carcinogens may be of concern as SV40 is now endemic in 2-5.9% of the U.S. population. In addition, SV40-immortalization is a generally-accepted method used in many research materials, but the possibility of off-target effects in studies carried out using these cells has not been considered. We hope that our work will stimulate further study of this important phenomenon.

  6. Chimeric SV40 virus-like particles induce specific cytotoxicity and protective immunity against influenza A virus without the need of adjuvants

    Energy Technology Data Exchange (ETDEWEB)

    Kawano, Masaaki [Department of Allergy and Immunology, Faculty of Medicine, Saitama Medical University, Moroyama-cho, Iruma-gun, Saitama 350-0495 (Japan); Morikawa, Katsuma [Department of Biological Information, Graduate School of Bioscience and Biotechnology, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama 226-8501 (Japan); Suda, Tatsuya [Department of Microbiology, Faculty of Medicine, Saitama Medical University, Moroyama-cho, Iruma-gun, Saitama 350-0495 (Japan); Laboratory for Immunopharmacology of Microbial Products, Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji, Tokyo 192-0392 (Japan); Ohno, Naohito [Laboratory for Immunopharmacology of Microbial Products, Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji, Tokyo 192-0392 (Japan); Matsushita, Sho [Department of Allergy and Immunology, Faculty of Medicine, Saitama Medical University, Moroyama-cho, Iruma-gun, Saitama 350-0495 (Japan); Allergy Center, Saitama Medical University, Moroyama-cho, Iruma-gun, Saitama 350-0495 (Japan); Akatsuka, Toshitaka [Department of Microbiology, Faculty of Medicine, Saitama Medical University, Moroyama-cho, Iruma-gun, Saitama 350-0495 (Japan); Handa, Hiroshi, E-mail: handa.h.aa@m.titech.ac.jp [Solutions Research Laboratory, Tokyo Institute of Technology, Midori-ku, Yokohama 226-8503 (Japan); Matsui, Masanori, E-mail: mmatsui@saitama-med.ac.jp [Department of Microbiology, Faculty of Medicine, Saitama Medical University, Moroyama-cho, Iruma-gun, Saitama 350-0495 (Japan)

    2014-01-05

    Virus-like particles (VLPs) are a promising vaccine platform due to the safety and efficiency. However, it is still unclear whether polyomavirus-based VLPs are useful for this purpose. Here, we attempted to evaluate the potential of polyomavirus VLPs for the antiviral vaccine using simian virus 40 (SV40). We constructed chimeric SV40-VLPs carrying an HLA-A{sup ⁎}02:01-restricted, cytotoxic T lymphocyte (CTL) epitope derived from influenza A virus. HLA-A{sup ⁎}02:01-transgenic mice were then immunized with the chimeric SV40-VLPs. The chimeric SV40-VLPs effectively induced influenza-specific CTLs and heterosubtypic protection against influenza A viruses without the need of adjuvants. Because DNase I treatment of the chimeric SV40-VLPs did not disrupt CTL induction, the intrinsic adjuvant property may not result from DNA contaminants in the VLP preparation. In addition, immunization with the chimeric SV40-VLPs generated long-lasting memory CTLs. We here propose that the chimeric SV40-VLPs harboring an epitope may be a promising CTL-based vaccine platform with self-adjuvant properties. - Highlights: • We constructed chimeric SV40-VLPs carrying an influenza virus-derived CTL epitope. • Chimeric SV40-VLPs induce influenza-specific CTLs in mice without adjuvants. • Chimeric SV40-VLPs induce heterosubtypic protection against influenza A viruses. • Chimeric SV40-VLPs induce long-lasting memory CTLs. • Chimeric SV40-VLPs is a promising vaccine platform with self-adjuvant properties.

  7. SV40 Infection of Mesenchymal Stromal Cells From Wharton's Jelly Drives the Production of Inflammatory and Tumoral Mediators.

    Science.gov (United States)

    Cason, Carolina; Campisciano, Giuseppina; Zanotta, Nunzia; Valencic, Erica; Delbue, Serena; Bella, Ramona; Comar, Manola

    2017-11-01

    The Mesenchymal Stromal Cells from umbilical cord Wharton's jelly (WJSCs) are a source of cells with high potentiality for the treatment of human immunological disorders. Footprints of the oncogenic viruses Simian Virus 40 (SV40) and JC Virus (JCPyV) have been recently detected in human WJSCs specimens. The aim of this study is to evaluate if WJSCs can be efficiently infected by these Polyomaviruses and if they can potentially exert tumoral activity. Cell culture experiments indicated that WJSCs could sustain both SV40 and JCPyV infections. A transient and lytic replication was observed for JCPyV, while SV40 persistently infected WJSCs over a long period of time, releasing a viral progeny at low titer without evident cytopathic effect (CPE). Considering the association between SV40 and human tumors and the reported ability of the oncogenic viruses to drive the host innate immune response to cell transformation, the expression profile of a large panel of immune mediators was evaluated in supernatants by the Bioplex platform. RANTES, IL-3, MIG, and IL-12p40, involved in chronic inflammation, cells differentiation, and transformation, were constantly measured at high concentration comparing to control. These findings represent a new aspect of SV40 biological activity in the humans, highlighting its interaction with specific host cellular pathways. In view of these results, it seems to be increasingly urgent to consider Polyomaviruses in the management of WJSCs for their safely use as promising therapeutic source. J. Cell. Physiol. 232: 3060-3066, 2017. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  8. A human corneal equivalent constructed from SV40-immortalised corneal cell lines.

    Science.gov (United States)

    Zorn-Kruppa, Michaela; Tykhonova, Svitlana; Belge, Gazanfer; Bednarz, Jürgen; Diehl, Horst A; Engelke, Maria

    2005-02-01

    Within the last decade, extensive research in the field of tissue and organ engineering has focused on the development of in vitro models of the cornea. The use of organotypic, three-dimensional corneal equivalents has several advantages over simple monolayer cultures. The aim of this study was to develop a corneal equivalent model composed of the same cell types as in the natural human tissue, but by using immortalised cell lines to ensure reproducibility and to minimise product variation. We report our success in the establishment of an SV40-immortalised human corneal keratocyte cell line (designated HCK). A collagen matrix, built up with these cells, displayed the morphological characteristics of the human stromal tissue and served as a biomatrix for the immortalised human corneal epithelial and endothelial cells. Histological cross-sections of the whole-cornea equivalents resemble human corneas in tissue structure. This organotypic in vitro model may serve as a research tool for the ophthalmic science community, as well as a model system for testing for eye irritancy and drug efficacy.

  9. SV40-transformed human corneal keratocytes: optimisation of serum-free culture conditions.

    Science.gov (United States)

    Manzer, Anna Katharina; Lombardi-Borgia, Simone; Schäfer-Korting, Monika; Seeber, Judith; Zorn-Kruppa, Michaela; Engelke, Maria

    2009-01-01

    Aiming at the replacement of animal experiments in eye irritation testing, we have established a multilay ered cornea model comprising the co-culture of all three corneal cell types. It was the objective of this study to optimise serum-free culture conditions to preserve both growth and phenotype of an SV40-immortalised human corneal keratocyte cell line (HCK). Our results revealed that HCK continue to proliferate in both monolayer cultures as well as after seeding in a collagen matrix and resemble primary corneal keratocytes in morphology and functional characteristics under defined serum-free conditions. Furthermore, HCK were shown to transform into activated corneal fibroblast phenotypes in response to serum and TGF(beta)1. In summary, HCK cells mimic their in vivo (primary) precursors, both in sustaining the quiescent keratocyte phenotype (serum-starved conditions) and in responding to growth factor stimulation. Hence, this cell line may provide a useful tool to study the toxicity and wound healing response of corneal keratocytes in vitro.

  10. Abrogation of p53-mediated transactivation by SV40 large T antigen.

    Science.gov (United States)

    Segawa, K; Minowa, A; Sugasawa, K; Takano, T; Hanaoka, F

    1993-03-01

    p53 is known to bind specifically to the 44-bp human DNA sequence in an immunoprecipitation assay. We show here that the transcription of the reporter CAT gene linked with the herpesvirus thymidine kinase (tk) promoter containing the 44-base sequence is enhanced by mouse wild-type but not mutant-type p53 in F9 and p53-null Saos-2 cells. The p53-mediated transactivation was dramatically abrogated by introduction of SV40 large T antigen (SVLT) in Saos-2 cells in which p53 was clearly associated with SVLT. Furthermore, the p53-SVLT complex did not bind to the 44-base sequence at all. Thus, SVLT sequesters the transactivation function of the wild-type p53 by inhibiting the binding of p53 to the 44-base sequence. This is good evidence to show 'loss of functions' in the product of a tumor-suppressor oncogene by a dominant oncogene product at a molecular level.

  11. Comparative Transcriptome Profiling of an SV40-Transformed Human Fibroblast (MRC5CVI) and Its Untransformed Counterpart (MRC-5) in Response to UVB Irradiation

    OpenAIRE

    Cheng-Wei Chang; Chaang-Ray Chen; Chao-Ying Huang; Wun-Yi Shu; Chi-Shiun Chiang; Ji-Hong Hong; Hsu, Ian C.

    2013-01-01

    Simian virus 40 (SV40) transforms cells through the suppression of tumor-suppressive responses by large T and small t antigens; studies on the effects of these two oncoproteins have greatly improved our knowledge of tumorigenesis. Large T antigen promotes cellular transformation by binding and inactivating p53 and pRb tumor suppressor proteins. Previous studies have shown that not all of the tumor-suppressive responses were inactivated in SV40-transformed cells; however, the underlying cause ...

  12. Dissociation of DNA damage and mitochondrial injury caused by hydrogen peroxide in SV-40 transformed lung epithelial cells

    Directory of Open Access Journals (Sweden)

    Adcock Ian M

    2002-11-01

    Full Text Available Abstract Background Since lung epithelial cells are constantly being exposed to reactive oxygen intermediates (ROIs, the alveolar surface is a major site of oxidative stress, and each cell type may respond differently to oxidative stress. We compared the extent of oxidative DNA damage with that of mitochondrial injury in lung epithelial cells at the single cell level. Result DNA damage and mitochondrial injury were measured after oxidative stress in the SV-40 transformed lung epithelial cell line challenged with hydrogen peroxide (H2O2. Single cell analysis of DNA damage was determined by assessing the number of 8-oxo-2-deoxyguanosine (8-oxo-dG positive cells, a marker of DNA modification, and the length of a comet tail. Mitochondrial membrane potential, ΔΨm, was determined using JC-1. A 1 h pulse of H2O2 induced small amounts of apoptosis (3%. 8-oxo-dG-positive cells and the length of the comet tail increased within 1 h of exposure to H2O2. The number of cells with reduced ΔΨm increased after the addition of H2O2 in a concentration-dependent manner. In spite of a continual loss of ΔΨm, DNA fragmentation was reduced 2 h after exposure to H2O2. Conclusion The data suggest that SV-40 transformed lung epithelial cells are resistant to oxidative stress, showing that DNA damage can be dissociated from mitochondrial injury.

  13. The structure of SV40 large T hexameric helicase in complex with AT-rich origin DNA.

    Science.gov (United States)

    Gai, Dahai; Wang, Damian; Li, Shu-Xing; Chen, Xiaojiang S

    2016-12-06

    DNA replication is a fundamental biological process. The initial step in eukaryotic DNA replication is the assembly of the pre-initiation complex, including the formation of two head-to-head hexameric helicases around the replication origin. How these hexameric helicases interact with their origin dsDNA remains unknown. Here, we report the co-crystal structure of the SV40 Large-T Antigen (LT) hexameric helicase bound to its origin dsDNA. The structure shows that the six subunits form a near-planar ring that interacts with the origin, so that each subunit makes unique contacts with the DNA. The origin dsDNA inside the narrower AAA+ domain channel shows partial melting due to the compression of the two phosphate backbones, forcing Watson-Crick base-pairs within the duplex to flip outward. This structure provides the first snapshot of a hexameric helicase binding to origin dsDNA, and suggests a possible mechanism of origin melting by LT during SV40 replication in eukaryotic cells.

  14. Comparative transcriptome profiling of an SV40-transformed human fibroblast (MRC5CVI and its untransformed counterpart (MRC-5 in response to UVB irradiation.

    Directory of Open Access Journals (Sweden)

    Cheng-Wei Chang

    Full Text Available Simian virus 40 (SV40 transforms cells through the suppression of tumor-suppressive responses by large T and small t antigens; studies on the effects of these two oncoproteins have greatly improved our knowledge of tumorigenesis. Large T antigen promotes cellular transformation by binding and inactivating p53 and pRb tumor suppressor proteins. Previous studies have shown that not all of the tumor-suppressive responses were inactivated in SV40-transformed cells; however, the underlying cause is not fully studied. In this study, we investigated the UVB-responsive transcriptome of an SV40-transformed fibroblast (MRC5CVI and that of its untransformed counterpart (MRC-5. We found that, in response to UVB irradiation, MRC-5 and MRC5CVI commonly up-regulated the expression of oxidative phosphorylation genes. MRC-5 up-regulated the expressions of chromosome condensation, DNA repair, cell cycle arrest, and apoptotic genes, but MRC5CVI did not. Further cell death assays indicated that MRC5CVI was more sensitive than MRC-5 to UVB-induced cell death with increased caspase-3 activation; combining with the transcriptomic results suggested that MRC5CVI may undergo UVB-induced cell death through mechanisms other than transcriptional regulation. Our study provides a further understanding of the effects of SV40 transformation on cellular stress responses, and emphasizes the value of SV40-transformed cells in the researches of sensitizing neoplastic cells to radiations.

  15. Inhibition of multidrug resistance by SV40 pseudovirion delivery of an antigene peptide nucleic acid (PNA in cultured cells.

    Directory of Open Access Journals (Sweden)

    Benjamin Macadangdang

    Full Text Available Peptide nucleic acid (PNA is known to bind with extraordinarily high affinity and sequence-specificity to complementary nucleic acid sequences and can be used to suppress gene expression. However, effective delivery into cells is a major obstacle to the development of PNA for gene therapy applications. Here, we present a novel method for the in vitro delivery of antigene PNA to cells. By using a nucleocapsid protein derived from Simian virus 40, we have been able to package PNA into pseudovirions, facilitating the delivery of the packaged PNA into cells. We demonstrate that this system can be used effectively to suppress gene expression associated with multidrug resistance in cancer cells, as shown by RT-PCR, flow cytometry, Western blotting, and cell viability under chemotherapy. The combination of PNA with the SV40-based delivery system is a method for suppressing a gene of interest that could be broadly applied to numerous targets.

  16. Cellular ras gene activity is required for full neoplastic transformation by the large tumor antigen of SV40.

    Science.gov (United States)

    Raptis, L; Brownell, H L; Corbley, M J; Wood, K W; Wang, D; Haliotis, T

    1997-08-01

    To investigate the role of the cellular ras gene product in neoplastic transformation by the SV40 large tumor antigen (SVLT), murine C3H10T1/2 cells were rendered deficient in Ras activity by transfection with inducible or constitutive antisense ras gene constructs or through the introduction of the dominant-negative mutant, ras(asn17). Consistent with previous results, SVLT-induced morphological transformation was unaffected by the down-regulation of c-ras gene product activity. On the other hand, colony formation in soft agar and tumorigenicity in nude mice were drastically reduced in c-Ras-deficient cells. In addition, SVLT expression in C3H10T1/2 cells led to increased c-Ras activity, as determined by an increase in the Ras-bound GTP/GTP + GDP ratio. These results suggest that c-Ras is required for full neoplastic transformation by SVLT.

  17. Specific Antibodies Reacting with SV40 Large T Antigen Mimotopes in Serum Samples of Healthy Subjects.

    Directory of Open Access Journals (Sweden)

    Mauro Tognon

    Full Text Available Simian Virus 40, experimentally assayed in vitro in different animal and human cells and in vivo in rodents, was classified as a small DNA tumor virus. In previous studies, many groups identified Simian Virus 40 sequences in healthy individuals and cancer patients using PCR techniques, whereas others failed to detect the viral sequences in human specimens. These conflicting results prompted us to develop a novel indirect ELISA with synthetic peptides, mimicking Simian Virus 40 capsid viral protein antigens, named mimotopes. This immunologic assay allowed us to investigate the presence of serum antibodies against Simian Virus 40 and to verify whether Simian Virus 40 is circulating in humans. In this investigation two mimotopes from Simian Virus 40 large T antigen, the viral replication protein and oncoprotein, were employed to analyze for specific reactions to human sera antibodies. This indirect ELISA with synthetic peptides from Simian Virus 40 large T antigen was used to assay a new collection of serum samples from healthy subjects. This novel assay revealed that serum antibodies against Simian Virus 40 large T antigen mimotopes are detectable, at low titer, in healthy subjects aged from 18-65 years old. The overall prevalence of reactivity with the two Simian Virus 40 large T antigen peptides was 20%. This new ELISA with two mimotopes of the early viral regions is able to detect in a specific manner Simian Virus 40 large T antigen-antibody responses.

  18. The Prognostic Role and Relationship between E2F1 and SV40 in Diffuse Large B-Cell Lymphoma of Egyptian Patients

    Directory of Open Access Journals (Sweden)

    Rehab M. Samaka

    2015-01-01

    Full Text Available Diffuse large B-cell lymphoma (DLBCL is the most common type of lymphomas worldwide. The pathogenesis of lymphomas is not yet well understood. SV40 induces malignant transformation by the large T-antigen (L-TAG and promotes transformation by binding and inactivating p53 and pRb. L-TAG can bind pRb promoting the activation of the E2F1 transcription factor, thus inducing the expression of genes required for the entry to the S phase and leading to cell transformation. This immunohistochemical study was conducted to assess the prognostic role and relationship of SV40 L-TAG and E2F1 in diffuse large B-cell lymphoma (DLBCL of Egyptian patients. This retrospective study was conducted on 105 tissue specimens including 20 follicular hyperplasia and 85 DLBCL cases. SV40 L-TAG was identified in 3/85 (4% of DLBCL. High Ki-67 labeling index (Ki-67 LI and apoptotic count were associated with high E2F1 expression (p<0.001 for all. No significant association was reached between E2F1 and SV40. E2F1 expression proved to be the most and first independent prognostic factor on overall survival of DLBCL patients (HR = 5.79, 95% CI = 2.3–14.6, and p<0.001. Upregulation of E2F1 has been implicated in oncogenesis, prognosis, and prediction of therapeutic response but is not seemingly to have a relationship with the accused SV40.

  19. Immortalization of Porcine 11β-Hydroxysteroid Dehydrogenase Type 1-Transgenic Liver Cells Using SV40 Large T Antigen

    Directory of Open Access Journals (Sweden)

    Hee Young Kang

    2017-12-01

    Full Text Available Cortisol is a steroid hormone essential to the maintenance of homeostasis that is released in response to stress and low blood glucose concentration. Cortisol is converted from cortisone by 11β-hydroxysteroid dehydrogenase type 1 (HSD11B1. It has been reported that too much cortisol or overexpression of HSD11B1 induces obesity and the insulin resistance that accompanies metabolic syndrome in rodent adipose tissue. In our previous study, HSD11B1-transgenic (TG fibroblasts were established, and a porcine model was generated by SCNT using those fibroblasts. Hepatocytes overexpressing HSD11B1 were obtained from livers of this porcine model and cultured in vitro. However, the primary hepatocytes were found to have a short life span or low proliferation rate. To overcome these problems, the SV40 large T antigen was transduced into primary HSD11B1-TG hepatocytes, and those cells were immortalized. Immortalized HSD11B1-TG hepatocytes showed restored morphology, more rapid proliferation rate, and more expression of HSD11B1 than primary hepatocytes. As well, these cells kept the hepatic characteristics such as gluconeogenic response to cortisone and increased expression of hepatic makers. The immortalized HSD11B1-TG hepatocytes may be useful for studying traits and potential therapeutic drugs for treatment of metabolic disorders induced by overexpression of HSD11B1.

  20. Immortalization of Porcine 11β-Hydroxysteroid Dehydrogenase Type 1-Transgenic Liver Cells Using SV40 Large T Antigen.

    Science.gov (United States)

    Kang, Hee Young; Choi, Young-Kwon; Jeong, Yeon Ik; Choi, Kyung-Chul; Hyun, Sang-Hwan; Hwang, Woo-Suk; Jeung, Eui-Bae

    2017-12-05

    Cortisol is a steroid hormone essential to the maintenance of homeostasis that is released in response to stress and low blood glucose concentration. Cortisol is converted from cortisone by 11βhydroxysteroid dehydrogenase type 1 (HSD11B1). It has been reported that too much cortisol or overexpression of HSD11B1 induces obesity and the insulin resistance that accompanies metabolic syndrome in rodent adipose tissue. In our previous study, HSD11B1-transgenic (TG) fibroblasts were established, and a porcine model was generated by SCNT using those fibroblasts. Hepatocytes overexpressing HSD11B1 were obtained from livers of this porcine model and cultured in vitro. However, the primary hepatocytes were found to have a short life span or low proliferation rate. To overcome these problems, the SV40 large T antigen was transduced into primary HSD11B1-TG hepatocytes, and those cells were immortalized. Immortalized HSD11B1-TG hepatocytes showed restored morphology, more rapid proliferation rate, and more expression of HSD11B1 than primary hepatocytes. As well, these cells kept the hepatic characteristics such as gluconeogenic response to cortisone and increased expression of hepatic makers. The immortalized HSD11B1-TG hepatocytes may be useful for studying traits and potential therapeutic drugs for treatment of metabolic disorders induced by overexpression of HSD11B1.

  1. Arginine-rich cross-linking peptides with different SV40 nuclear localization signal content as vectors for intranuclear DNA delivery.

    Science.gov (United States)

    Bogacheva, Mariia; Egorova, Anna; Slita, Anna; Maretina, Marianna; Baranov, Vladislav; Kiselev, Anton

    2017-11-01

    The major barriers for intracellular DNA transportation by cationic polymers are their toxicity, poor endosomal escape and inefficient nuclear uptake. Therefore, we designed novel modular peptide-based carriers modified with SV40 nuclear localization signal (NLS). Core peptide consists of arginine, histidine and cysteine residues for DNA condensation, endosomal escape promotion and interpeptide cross-linking, respectively. We investigated three polyplexes with different NLS content (10 mol%, 50 mol% and 90 mol% of SV40 NLS) as vectors for intranuclear DNA delivery. All carriers tested were able to condense DNA, to protect it from DNAase I and were not toxic to the cells. We observed that cell cycle arrest by hydroxyurea did not affect transfection efficacy of NLS-modified carriers which we confirmed using quantitative confocal microscopy analysis. Overall, peptide carrier modified with 90 mol% of SV40 NLS provided efficient transfection and nuclear uptake in non-dividing cells. Thus, incorporation of NLS into arginine-rich cross-linking peptides is an adequate approach to the development of efficient intranuclear gene delivery vehicles. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. Genomes of early onset prostate cancer

    DEFF Research Database (Denmark)

    Weischenfeldt, Joachim; Korbel, Jan O.

    2017-01-01

    Purpose of review Prostate cancer is a disease of the elderly but a clinically relevant subset occurs early in life. In the current review, we discuss recent findings and the current understanding of the molecular underpinnings associated with early-onset prostate cancer (PCa) and the evidence...... supporting age-specific differences in the cancer genomes. Recent findings Recent surveys of PCa patient cohorts have provided novel age-dependent links between germline and somatic aberrations which points to differences in the molecular cause and treatment options. Summary Identifying the earliest...

  3. The application of normal, SV40 T-antigen-immortalised and tumour-derived oral keratinocytes, under serum-free conditions, to the study of the probability of cancer progression as a result of environmental exposure to chemicals.

    Science.gov (United States)

    Ceder, Rebecca; Merne, Marina; Staab, Claudia A; Nilsson, Jan Anders; Höög, Jan-Olov; Dressler, Dirk; Engelhart, Karin; Grafström, Roland C

    2007-12-01

    In vitro models are currently not considered to be suitable replacements for animals in experiments to assess the multiple factors that underlie the development of cancer as a result of environmental exposure to chemicals. An evaluation was conducted on the potential use of normal keratinocytes, the SV40 T-antigen-immortalised keratinocyte cell line, SVpgC2a, and the carcinoma cell line, SqCC/Y1, alone and in combination, and under standardised serum-free culture conditions, to study oral cancer progression. In addition, features considered to be central to cancer development as a result of environmental exposure to chemicals, were analysed. Genomic expression, and enzymatic and functional data from the cell lines reflected many aspects of the transition of normal tissue epithelium, via dysplasia, to full malignancy. The composite cell line model develops aberrances in proliferation, terminal differentiation and apoptosis, in a similar manner to oral cancer progression in vivo. Transcript and protein profiling links aberrations in multiple gene ontologies, molecular networks and tumour biomarker genes (some proposed previously, and some new) in oral carcinoma development. Typical specific changes include the loss of tumour-suppressor p53 function and of sensitivity to retinoids. Environmental agents associated with the aetiology of oral cancer differ in their requirements for metabolic activation, and cause toxic effects to cells in both the normal and the transformed states. The results suggest that the model might be useful for studies on the sensitivity of cells to chemicals at different stages of cancer progression, including many aspects of the integrated roles of cytotoxicity and genotoxicity. Overall, the properties of the SVpgC2a and SqCC/Y1 cell lines, relative to normal epithelial cells in monolayer or organotypic culture, support their potential applicability to mechanistic studies on cancer risk factors, including, in particular, the definition of

  4. Genome sequencing highlights the dynamic early history of dogs

    National Research Council Canada - National Science Library

    Freedman, Adam H; Gronau, Ilan; Schweizer, Rena M; Ortega-Del Vecchyo, Diego; Han, Eunjung; Silva, Pedro M; Galaverni, Marco; Fan, Zhenxin; Marx, Peter; Lorente-Galdos, Belen; Beale, Holly; Ramirez, Oscar; Hormozdiari, Farhad; Alkan, Can; Vilà, Carles; Squire, Kevin; Geffen, Eli; Kusak, Josip; Boyko, Adam R; Parker, Heidi G; Lee, Clarence; Tadigotla, Vasisht; Wilton, Alan; Siepel, Adam; Bustamante, Carlos D; Harkins, Timothy T; Nelson, Stanley F; Ostrander, Elaine A; Marques-Bonet, Tomas; Wayne, Robert K; Novembre, John

    2014-01-01

    To identify genetic changes underlying dog domestication and reconstruct their early evolutionary history, we generated high-quality genome sequences from three gray wolves, one from each of the three...

  5. Application of SV40 T-transformed human corneal epithelial cells to evaluate potential irritant chemicals for in vitro alternative eye toxicity.

    Science.gov (United States)

    Kim, Cho-Won; Park, Geon-Tae; Bae, Ok-Nam; Noh, Minsoo; Choi, Kyung-Chul

    2016-01-01

    Assessment of eye irritation potential is important to human safety, and it is necessary for various cosmetics and chemicals that may contact the human eye. Until recently, the Draize test was considered the standard method for estimating eye irritation, despite its disadvantages such as the need to sacrifice many rabbits for subjective scoring. Thus, we investigated the cytotoxicity and inflammatory response to standard eye irritants using SV40 T-transformed human corneal epithelial (SHCE) cells as a step toward development of an animal-free alternative eye irritation test. MTT and NRU assays of cell viability were performed to investigate the optimal experimental conditions for SHCE cell viability when cells were exposed to sodium dodecyl sulfate (SDS) as a standard eye irritant at 6.25×10(-3) to 1×10(-1)%. Additionally, cell viability of SHCE cells was examined in response to six potential eye irritants, benzalkonium chloride, dimethyl sulfoxide, isopropanol, SDS, Triton X-100 and Tween 20 at 5×10(-3) to 1×10(-1)%. Finally, we estimated the secretion level of cytokines in response to stimulation by eye irritants in SHCE cells. SHCE cells showed a good response to potential eye irritants when the cells were exposed to potential irritants for 10min at room temperature (RT), and cytokine production increased in a concentration-dependent manner, indicating that cytotoxicity and cytokine secretion from SHCE cells may be well correlated with the concentrations of irritants. Taken together, these results suggest that SHCE cells could be an excellent alternative in vitro model to replace in vivo animal models for eye irritation tests. Copyright © 2016 Elsevier Inc. All rights reserved.

  6. Simvastatin and intracellular pH regulation by the Na+/H+ antiport of SV40-virus-transformed human MRC5 fibroblasts.

    Science.gov (United States)

    Davies, J E; Ng, L L

    1993-06-01

    1. Inhibition of 3-hydroxy-3-methylglutaryl-CoA reductase by simvastatin leads to inhibition of both cell growth and Na+/H+ antiport activity. The effect of simvastatin on intracellular pH and Na+/H+ antiport activity was therefore studied on an adherent cell line, the SV40-virus-transformed MRC5 human fibroblast. 2. Simvastatin led to a dose-dependent decrease in intracellular pH, attributed to a reduction in Na+/H+ exchange, together with a rounding of cell shape. Mevalonate (1 mmol/l) prevented these effects of simvastatin, and when added after inhibition of the antiport by simvastatin, reversed these changes within 1-2h. 3. The phenomenon of mevalonate reversal of antiport inhibition by simvastatin was not sensitive to cycloheximide, indicating its post-translational nature. This was also consistent with the short period of incubation with mevalonate leading to reversal of antiport inhibition (1-2 h). These changes in intracellular pH regulation were not due to alterations in cell cholesterol content. 4. A variety of inhibitors of post-translational processes, such as N-linked glycosylation (tunicamycin), phosphorylation (staurosporine), isoprenylation (farnesol, limonene), and of pertussis-toxin-sensitive G-proteins or calmodulin (W7), had no effect on the reversal by mevalonate of simvastatin-induced changes in Na+/H+ antiport activity. 5. N-Ethylmaleimide (50 mumol/l for 5 min) prevented mevalonate reversing the effects of simvastatin, suggesting the importance of thiol groups in the phenomenon of reversal of the inhibition of Na+/H+ antiport activity by simvastatin. Furthermore, concurrent incubation of simvastatin-treated cells with dithiothreitol (1 mmol/l) and N-ethylmaleimide restored the ability of mevalonate to reverse the inhibitory effects of simvastatin on Na+H+ antiport activity.

  7. The MRC-5 human embryonal lung fibroblast two-dimensional gel cellular protein database: quantitative identification of polypeptides whose relative abundance differs between quiescent, proliferating and SV40 transformed cells

    DEFF Research Database (Denmark)

    Celis, J E; Dejgaard, K; Madsen, Peder

    1990-01-01

    (1323 with isoelectric focusing and 572 with nonequilibrium pH gradient electrophoresis) are recorded in this database, containing quantitative and qualitative data on the relative abundance of cellular proteins synthesized by quiescent, proliferating and SV40 transformed MRC-5 fibroblasts. Of the 592......A new version of the MRC-5 two-dimensional gel cellular protein database (Celis et al., Electrophoresis 1989, 10, 76-115) is presented. Gels were scanned with a Molecular Dynamics laser scanner and processed by the PDQUEST II software. A total of 1895 [35S]methionine-labeled cellular polypeptides...

  8. Ancient European dog genomes reveal continuity since the Early Neolithic

    Science.gov (United States)

    Botigué, Laura R.; Song, Shiya; Scheu, Amelie; Gopalan, Shyamalika; Pendleton, Amanda L.; Oetjens, Matthew; Taravella, Angela M.; Seregély, Timo; Zeeb-Lanz, Andrea; Arbogast, Rose-Marie; Bobo, Dean; Daly, Kevin; Unterländer, Martina; Burger, Joachim; Kidd, Jeffrey M.; Veeramah, Krishna R.

    2017-01-01

    Europe has played a major role in dog evolution, harbouring the oldest uncontested Palaeolithic remains and having been the centre of modern dog breed creation. Here we sequence the genomes of an Early and End Neolithic dog from Germany, including a sample associated with an early European farming community. Both dogs demonstrate continuity with each other and predominantly share ancestry with modern European dogs, contradicting a previously suggested Late Neolithic population replacement. We find no genetic evidence to support the recent hypothesis proposing dual origins of dog domestication. By calibrating the mutation rate using our oldest dog, we narrow the timing of dog domestication to 20,000–40,000 years ago. Interestingly, we do not observe the extreme copy number expansion of the AMY2B gene characteristic of modern dogs that has previously been proposed as an adaptation to a starch-rich diet driven by the widespread adoption of agriculture in the Neolithic. PMID:28719574

  9. Ancient European dog genomes reveal continuity since the Early Neolithic.

    Science.gov (United States)

    Botigué, Laura R; Song, Shiya; Scheu, Amelie; Gopalan, Shyamalika; Pendleton, Amanda L; Oetjens, Matthew; Taravella, Angela M; Seregély, Timo; Zeeb-Lanz, Andrea; Arbogast, Rose-Marie; Bobo, Dean; Daly, Kevin; Unterländer, Martina; Burger, Joachim; Kidd, Jeffrey M; Veeramah, Krishna R

    2017-07-18

    Europe has played a major role in dog evolution, harbouring the oldest uncontested Palaeolithic remains and having been the centre of modern dog breed creation. Here we sequence the genomes of an Early and End Neolithic dog from Germany, including a sample associated with an early European farming community. Both dogs demonstrate continuity with each other and predominantly share ancestry with modern European dogs, contradicting a previously suggested Late Neolithic population replacement. We find no genetic evidence to support the recent hypothesis proposing dual origins of dog domestication. By calibrating the mutation rate using our oldest dog, we narrow the timing of dog domestication to 20,000-40,000 years ago. Interestingly, we do not observe the extreme copy number expansion of the AMY2B gene characteristic of modern dogs that has previously been proposed as an adaptation to a starch-rich diet driven by the widespread adoption of agriculture in the Neolithic.

  10. Bypass of a site-specific cis-Syn thymine dimer in an SV40 vector during in vitro replication by HeLa and XPV cell-free extracts.

    Science.gov (United States)

    Ensch-Simon, I; Burgers, P M; Taylor, J S

    1998-06-02

    The key step in skin cancer induction by UV light is thought to be the mutagenic DNA synthesis past a DNA photoproduct in a proto-oncogene or tumor suppressor gene. To investigate this critical step, we have constructed an SV40 vector containing a cis-syn thymine dimer, the major DNA photoproduct induced by UVB light, within an AseI site at a location that would initially be replicated by leading strand synthesis. When the dimer-containing SV40 vector was incubated with cell-free HeLa extracts in the presence of TAg, and then digested with AseI, a 2325 bp fragment corresponding to inhibition of cleavage at the dimer site was observed, suggesting that the dimer had terminated synthesis and/or had been bypassed. When the reaction was limited to one round of replication and the products of restriction enzyme digestion were examined by denaturing gel electrophoresis, bands corresponding to both termination and bypass were observed in roughly a one-to-one ratio. Whereas increasing the dNTP concentration from 10 microM to 1 mM increased the ratio of bypass to termination from 0.6 to 2.6, it had no effect on the site of termination, which occurred exclusively one nucleotide before the dimer. Experiments in which dGTP was held constant at 25 microM and various combinations of the remaining nucleotides were raised from 25 microM to 1 mM showed substantial increases in the bypass-to-termination ratio, with the greatest effect seen for raising all three nucleotides to 1 mM. Replication by primary fibroblast XPV extracts was also investigated and found to be greatly stimulated by rhRPA, whereas the stimulatory effect for HeLa cell extracts was variable. In the presence of rhRPA, the XPV extracts were also found to bypass the cis-syn dimer, which contrasts with a recent report that could not detect dimer bypass in SV40 transformed XPV extracts in the absence of added replication factors [Cordeiro-Stone, M., et al. (1997) J. Biol. Chem. 272, 13945-13954].

  11. Early penguin fossils, plus mitochondrial genomes, calibrate avian evolution.

    Science.gov (United States)

    Slack, Kerryn E; Jones, Craig M; Ando, Tatsuro; Harrison, G L Abby; Fordyce, R Ewan; Arnason, Ulfur; Penny, David

    2006-06-01

    Testing models of macroevolution, and especially the sufficiency of microevolutionary processes, requires good collaboration between molecular biologists and paleontologists. We report such a test for events around the Late Cretaceous by describing the earliest penguin fossils, analyzing complete mitochondrial genomes from an albatross, a petrel, and a loon, and describe the gradual decline of pterosaurs at the same time modern birds radiate. The penguin fossils comprise four naturally associated skeletons from the New Zealand Waipara Greensand, a Paleocene (early Tertiary) formation just above a well-known Cretaceous/Tertiary boundary site. The fossils, in a new genus (Waimanu), provide a lower estimate of 61-62 Ma for the divergence between penguins and other birds and thus establish a reliable calibration point for avian evolution. Combining fossil calibration points, DNA sequences, maximum likelihood, and Bayesian analysis, the penguin calibrations imply a radiation of modern (crown group) birds in the Late Cretaceous. This includes a conservative estimate that modern sea and shorebird lineages diverged at least by the Late Cretaceous about 74 +/- 3 Ma (Campanian). It is clear that modern birds from at least the latest Cretaceous lived at the same time as archaic birds including Hesperornis, Ichthyornis, and the diverse Enantiornithiformes. Pterosaurs, which also coexisted with early crown birds, show notable changes through the Late Cretaceous. There was a decrease in taxonomic diversity, and small- to medium-sized species disappeared well before the end of the Cretaceous. A simple reading of the fossil record might suggest competitive interactions with birds, but much more needs to be understood about pterosaur life histories. Additional fossils and molecular data are still required to help understand the role of biotic interactions in the evolution of Late Cretaceous birds and thus to test that the mechanisms of microevolution are sufficient to explain

  12. High-density rhesus macaque oligonucleotide microarray design using early-stage rhesus genome sequence information and human genome annotations

    Directory of Open Access Journals (Sweden)

    Magness Charles L

    2007-01-01

    Full Text Available Abstract Background Until recently, few genomic reagents specific for non-human primate research have been available. To address this need, we have constructed a macaque-specific high-density oligonucleotide microarray by using highly fragmented low-pass sequence contigs from the rhesus genome project together with the detailed sequence and exon structure of the human genome. Using this method, we designed oligonucleotide probes to over 17,000 distinct rhesus/human gene orthologs and increased by four-fold the number of available genes relative to our first-generation expressed sequence tag (EST-derived array. Results We constructed a database containing 248,000 exon sequences from 23,000 human RefSeq genes and compared each human exon with its best matching sequence in the January 2005 version of the rhesus genome project list of 486,000 DNA contigs. Best matching rhesus exon sequences for each of the 23,000 human genes were then concatenated in the proper order and orientation to produce a rhesus "virtual transcriptome." Microarray probes were designed, one per gene, to the region closest to the 3' untranslated region (UTR of each rhesus virtual transcript. Each probe was compared to a composite rhesus/human transcript database to test for cross-hybridization potential yielding a final probe set representing 18,296 rhesus/human gene orthologs, including transcript variants, and over 17,000 distinct genes. We hybridized mRNA from rhesus brain and spleen to both the EST- and genome-derived microarrays. Besides four-fold greater gene coverage, the genome-derived array also showed greater mean signal intensities for genes present on both arrays. Genome-derived probes showed 99.4% identity when compared to 4,767 rhesus GenBank sequence tag site (STS sequences indicating that early stage low-pass versions of complex genomes are of sufficient quality to yield valuable functional genomic information when combined with finished genome information from

  13. Genome sequencing highlights the dynamic early history of dogs.

    Science.gov (United States)

    Freedman, Adam H; Gronau, Ilan; Schweizer, Rena M; Ortega-Del Vecchyo, Diego; Han, Eunjung; Silva, Pedro M; Galaverni, Marco; Fan, Zhenxin; Marx, Peter; Lorente-Galdos, Belen; Beale, Holly; Ramirez, Oscar; Hormozdiari, Farhad; Alkan, Can; Vilà, Carles; Squire, Kevin; Geffen, Eli; Kusak, Josip; Boyko, Adam R; Parker, Heidi G; Lee, Clarence; Tadigotla, Vasisht; Wilton, Alan; Siepel, Adam; Bustamante, Carlos D; Harkins, Timothy T; Nelson, Stanley F; Ostrander, Elaine A; Marques-Bonet, Tomas; Wayne, Robert K; Novembre, John

    2014-01-01

    To identify genetic changes underlying dog domestication and reconstruct their early evolutionary history, we generated high-quality genome sequences from three gray wolves, one from each of the three putative centers of dog domestication, two basal dog lineages (Basenji and Dingo) and a golden jackal as an outgroup. Analysis of these sequences supports a demographic model in which dogs and wolves diverged through a dynamic process involving population bottlenecks in both lineages and post-divergence gene flow. In dogs, the domestication bottleneck involved at least a 16-fold reduction in population size, a much more severe bottleneck than estimated previously. A sharp bottleneck in wolves occurred soon after their divergence from dogs, implying that the pool of diversity from which dogs arose was substantially larger than represented by modern wolf populations. We narrow the plausible range for the date of initial dog domestication to an interval spanning 11-16 thousand years ago, predating the rise of agriculture. In light of this finding, we expand upon previous work regarding the increase in copy number of the amylase gene (AMY2B) in dogs, which is believed to have aided digestion of starch in agricultural refuse. We find standing variation for amylase copy number variation in wolves and little or no copy number increase in the Dingo and Husky lineages. In conjunction with the estimated timing of dog origins, these results provide additional support to archaeological finds, suggesting the earliest dogs arose alongside hunter-gathers rather than agriculturists. Regarding the geographic origin of dogs, we find that, surprisingly, none of the extant wolf lineages from putative domestication centers is more closely related to dogs, and, instead, the sampled wolves form a sister monophyletic clade. This result, in combination with dog-wolf admixture during the process of domestication, suggests that a re-evaluation of past hypotheses regarding dog origins is

  14. Genome sequencing highlights the dynamic early history of dogs.

    Directory of Open Access Journals (Sweden)

    Adam H Freedman

    2014-01-01

    Full Text Available To identify genetic changes underlying dog domestication and reconstruct their early evolutionary history, we generated high-quality genome sequences from three gray wolves, one from each of the three putative centers of dog domestication, two basal dog lineages (Basenji and Dingo and a golden jackal as an outgroup. Analysis of these sequences supports a demographic model in which dogs and wolves diverged through a dynamic process involving population bottlenecks in both lineages and post-divergence gene flow. In dogs, the domestication bottleneck involved at least a 16-fold reduction in population size, a much more severe bottleneck than estimated previously. A sharp bottleneck in wolves occurred soon after their divergence from dogs, implying that the pool of diversity from which dogs arose was substantially larger than represented by modern wolf populations. We narrow the plausible range for the date of initial dog domestication to an interval spanning 11-16 thousand years ago, predating the rise of agriculture. In light of this finding, we expand upon previous work regarding the increase in copy number of the amylase gene (AMY2B in dogs, which is believed to have aided digestion of starch in agricultural refuse. We find standing variation for amylase copy number variation in wolves and little or no copy number increase in the Dingo and Husky lineages. In conjunction with the estimated timing of dog origins, these results provide additional support to archaeological finds, suggesting the earliest dogs arose alongside hunter-gathers rather than agriculturists. Regarding the geographic origin of dogs, we find that, surprisingly, none of the extant wolf lineages from putative domestication centers is more closely related to dogs, and, instead, the sampled wolves form a sister monophyletic clade. This result, in combination with dog-wolf admixture during the process of domestication, suggests that a re-evaluation of past hypotheses regarding dog

  15. Genome Sequencing Highlights the Dynamic Early History of Dogs

    Science.gov (United States)

    Freedman, Adam H.; Gronau, Ilan; Schweizer, Rena M.; Ortega-Del Vecchyo, Diego; Han, Eunjung; Silva, Pedro M.; Galaverni, Marco; Fan, Zhenxin; Marx, Peter; Lorente-Galdos, Belen; Beale, Holly; Ramirez, Oscar; Hormozdiari, Farhad; Alkan, Can; Vilà, Carles; Squire, Kevin; Geffen, Eli; Kusak, Josip; Boyko, Adam R.; Parker, Heidi G.; Lee, Clarence; Tadigotla, Vasisht; Siepel, Adam; Bustamante, Carlos D.; Harkins, Timothy T.; Nelson, Stanley F.; Ostrander, Elaine A.; Marques-Bonet, Tomas; Wayne, Robert K.; Novembre, John

    2014-01-01

    To identify genetic changes underlying dog domestication and reconstruct their early evolutionary history, we generated high-quality genome sequences from three gray wolves, one from each of the three putative centers of dog domestication, two basal dog lineages (Basenji and Dingo) and a golden jackal as an outgroup. Analysis of these sequences supports a demographic model in which dogs and wolves diverged through a dynamic process involving population bottlenecks in both lineages and post-divergence gene flow. In dogs, the domestication bottleneck involved at least a 16-fold reduction in population size, a much more severe bottleneck than estimated previously. A sharp bottleneck in wolves occurred soon after their divergence from dogs, implying that the pool of diversity from which dogs arose was substantially larger than represented by modern wolf populations. We narrow the plausible range for the date of initial dog domestication to an interval spanning 11–16 thousand years ago, predating the rise of agriculture. In light of this finding, we expand upon previous work regarding the increase in copy number of the amylase gene (AMY2B) in dogs, which is believed to have aided digestion of starch in agricultural refuse. We find standing variation for amylase copy number variation in wolves and little or no copy number increase in the Dingo and Husky lineages. In conjunction with the estimated timing of dog origins, these results provide additional support to archaeological finds, suggesting the earliest dogs arose alongside hunter-gathers rather than agriculturists. Regarding the geographic origin of dogs, we find that, surprisingly, none of the extant wolf lineages from putative domestication centers is more closely related to dogs, and, instead, the sampled wolves form a sister monophyletic clade. This result, in combination with dog-wolf admixture during the process of domestication, suggests that a re-evaluation of past hypotheses regarding dog origins is

  16. Genomic minimalism in the early diverging intestinal parasite Giardia lamblia.

    Science.gov (United States)

    Morrison, Hilary G; McArthur, Andrew G; Gillin, Frances D; Aley, Stephen B; Adam, Rodney D; Olsen, Gary J; Best, Aaron A; Cande, W Zacheus; Chen, Feng; Cipriano, Michael J; Davids, Barbara J; Dawson, Scott C; Elmendorf, Heidi G; Hehl, Adrian B; Holder, Michael E; Huse, Susan M; Kim, Ulandt U; Lasek-Nesselquist, Erica; Manning, Gerard; Nigam, Anuranjini; Nixon, Julie E J; Palm, Daniel; Passamaneck, Nora E; Prabhu, Anjali; Reich, Claudia I; Reiner, David S; Samuelson, John; Svard, Staffan G; Sogin, Mitchell L

    2007-09-28

    The genome of the eukaryotic protist Giardia lamblia, an important human intestinal parasite, is compact in structure and content, contains few introns or mitochondrial relics, and has simplified machinery for DNA replication, transcription, RNA processing, and most metabolic pathways. Protein kinases comprise the single largest protein class and reflect Giardia's requirement for a complex signal transduction network for coordinating differentiation. Lateral gene transfer from bacterial and archaeal donors has shaped Giardia's genome, and previously unknown gene families, for example, cysteine-rich structural proteins, have been discovered. Unexpectedly, the genome shows little evidence of heterozygosity, supporting recent speculations that this organism is sexual. This genome sequence will not only be valuable for investigating the evolution of eukaryotes, but will also be applied to the search for new therapeutics for this parasite.

  17. The early ANTP gene repertoire: insights from the placozoan genome.

    Directory of Open Access Journals (Sweden)

    Bernd Schierwater

    2008-08-01

    Full Text Available The evolution of ANTP genes in the Metazoa has been the subject of conflicting hypotheses derived from full or partial gene sequences and genomic organization in higher animals. Whole genome sequences have recently filled in some crucial gaps for the basal metazoan phyla Cnidaria and Porifera. Here we analyze the complete genome of Trichoplax adhaerens, representing the basal metazoan phylum Placozoa, for its set of ANTP class genes. The Trichoplax genome encodes representatives of Hox/ParaHox-like, NKL, and extended Hox genes. This repertoire possibly mirrors the condition of a hypothetical cnidarian-bilaterian ancestor. The evolution of the cnidarian and bilaterian ANTP gene repertoires can be deduced by a limited number of cis-duplications of NKL and "extended Hox" genes and the presence of a single ancestral "ProtoHox" gene.

  18. The Genome of Naegleria gruberi Illuminates Early Eukaryotic Versatility

    Energy Technology Data Exchange (ETDEWEB)

    Fritz-Laylin, Lillian K.; Prochnik, Simon E.; Ginger, Michael L.; Dacks, Joel; Carpenter, Meredith L.; Field, Mark C.; Kuo, Alan; Paredez, Alex; Chapman, Jarrod; Pham, Jonathan; Shu, Shengqiang; Neupane, Rochak; Cipriano, Michael; Mancuso, Joel; Tu, Hank; Salamov, Asaf; Lindquist, Erika; Shapiro, Harris; Lucas, Susan; Grigoriev, Igor V.; Cande, W. Zacheus; Fulton, Chandler; Rokhsar, Daniel S.; Dawson, Scott C.

    2010-03-01

    Genome sequences of diverse free-living protists are essential for understanding eukaryotic evolution and molecular and cell biology. The free-living amoeboflagellate Naegleria gruberi belongs to a varied and ubiquitous protist clade (Heterolobosea) that diverged from other eukaryotic lineages over a billion years ago. Analysis of the 15,727 protein-coding genes encoded by Naegleria's 41 Mb nuclear genome indicates a capacity for both aerobic respiration and anaerobic metabolism with concomitant hydrogen production, with fundamental implications for the evolution of organelle metabolism. The Naegleria genome facilitates substantially broader phylogenomic comparisons of free-living eukaryotes than previously possible, allowing us to identify thousands of genes likely present in the pan-eukaryotic ancestor, with 40% likely eukaryotic inventions. Moreover, we construct a comprehensive catalog of amoeboid-motility genes. The Naegleria genome, analyzed in the context of other protists, reveals a remarkably complex ancestral eukaryote with a rich repertoire of cytoskeletal, sexual, signaling, and metabolic modules.

  19. Identification of Ohnolog Genes Originating from Whole Genome Duplication in Early Vertebrates, Based on Synteny Comparison across Multiple Genomes.

    Science.gov (United States)

    Singh, Param Priya; Arora, Jatin; Isambert, Hervé

    2015-07-01

    Whole genome duplications (WGD) have now been firmly established in all major eukaryotic kingdoms. In particular, all vertebrates descend from two rounds of WGDs, that occurred in their jawless ancestor some 500 MY ago. Paralogs retained from WGD, also coined 'ohnologs' after Susumu Ohno, have been shown to be typically associated with development, signaling and gene regulation. Ohnologs, which amount to about 20 to 35% of genes in the human genome, have also been shown to be prone to dominant deleterious mutations and frequently implicated in cancer and genetic diseases. Hence, identifying ohnologs is central to better understand the evolution of vertebrates and their susceptibility to genetic diseases. Early computational analyses to identify vertebrate ohnologs relied on content-based synteny comparisons between the human genome and a single invertebrate outgroup genome or within the human genome itself. These approaches are thus limited by lineage specific rearrangements in individual genomes. We report, in this study, the identification of vertebrate ohnologs based on the quantitative assessment and integration of synteny conservation between six amniote vertebrates and six invertebrate outgroups. Such a synteny comparison across multiple genomes is shown to enhance the statistical power of ohnolog identification in vertebrates compared to earlier approaches, by overcoming lineage specific genome rearrangements. Ohnolog gene families can be browsed and downloaded for three statistical confidence levels or recompiled for specific, user-defined, significance criteria at http://ohnologs.curie.fr/. In the light of the importance of WGD on the genetic makeup of vertebrates, our analysis provides a useful resource for researchers interested in gaining further insights on vertebrate evolution and genetic diseases.

  20. Identification of Ohnolog Genes Originating from Whole Genome Duplication in Early Vertebrates, Based on Synteny Comparison across Multiple Genomes.

    Directory of Open Access Journals (Sweden)

    Param Priya Singh

    2015-07-01

    Full Text Available Whole genome duplications (WGD have now been firmly established in all major eukaryotic kingdoms. In particular, all vertebrates descend from two rounds of WGDs, that occurred in their jawless ancestor some 500 MY ago. Paralogs retained from WGD, also coined 'ohnologs' after Susumu Ohno, have been shown to be typically associated with development, signaling and gene regulation. Ohnologs, which amount to about 20 to 35% of genes in the human genome, have also been shown to be prone to dominant deleterious mutations and frequently implicated in cancer and genetic diseases. Hence, identifying ohnologs is central to better understand the evolution of vertebrates and their susceptibility to genetic diseases. Early computational analyses to identify vertebrate ohnologs relied on content-based synteny comparisons between the human genome and a single invertebrate outgroup genome or within the human genome itself. These approaches are thus limited by lineage specific rearrangements in individual genomes. We report, in this study, the identification of vertebrate ohnologs based on the quantitative assessment and integration of synteny conservation between six amniote vertebrates and six invertebrate outgroups. Such a synteny comparison across multiple genomes is shown to enhance the statistical power of ohnolog identification in vertebrates compared to earlier approaches, by overcoming lineage specific genome rearrangements. Ohnolog gene families can be browsed and downloaded for three statistical confidence levels or recompiled for specific, user-defined, significance criteria at http://ohnologs.curie.fr/. In the light of the importance of WGD on the genetic makeup of vertebrates, our analysis provides a useful resource for researchers interested in gaining further insights on vertebrate evolution and genetic diseases.

  1. Genome-wide analysis of DNA methylation dynamics during early human development.

    Science.gov (United States)

    Okae, Hiroaki; Chiba, Hatsune; Hiura, Hitoshi; Hamada, Hirotaka; Sato, Akiko; Utsunomiya, Takafumi; Kikuchi, Hiroyuki; Yoshida, Hiroaki; Tanaka, Atsushi; Suyama, Mikita; Arima, Takahiro

    2014-12-01

    DNA methylation is globally reprogrammed during mammalian preimplantation development, which is critical for normal development. Recent reduced representation bisulfite sequencing (RRBS) studies suggest that the methylome dynamics are essentially conserved between human and mouse early embryos. RRBS is known to cover 5-10% of all genomic CpGs, favoring those contained within CpG-rich regions. To obtain an unbiased and more complete representation of the methylome during early human development, we performed whole genome bisulfite sequencing of human gametes and blastocysts that covered>70% of all genomic CpGs. We found that the maternal genome was demethylated to a much lesser extent in human blastocysts than in mouse blastocysts, which could contribute to an increased number of imprinted differentially methylated regions in the human genome. Global demethylation of the paternal genome was confirmed, but SINE-VNTR-Alu elements and some other tandem repeat-containing regions were found to be specifically protected from this global demethylation. Furthermore, centromeric satellite repeats were hypermethylated in human oocytes but not in mouse oocytes, which might be explained by differential expression of de novo DNA methyltransferases. These data highlight both conserved and species-specific regulation of DNA methylation during early mammalian development. Our work provides further information critical for understanding the epigenetic processes underlying differentiation and pluripotency during early human development.

  2. Genomic aberrations relate early and advanced stage ovarian cancer

    NARCIS (Netherlands)

    Zaal, A.; Peyrot, W.J.; Berns, P.M.J.J.; van der Burg, M.E.L.; Veerbeek, J.H.W.; Trimbos, J.B.; Cadron, I.; van Diest, P.J.; van Wieringen, W.N.; Krijgsman, O.; Meijer, G.A.; Piek, J.M.J.; Timmers, P.J.; Vergote, I.; Verheijen, R.H.; Ylstra, B.; Zweemer, R.P.

    2012-01-01

    Background Because of the distinct clinical presentation of early and advanced stage ovarian cancer, we aim to clarify whether these disease entities are solely separated by time of diagnosis or whether they arise from distinct molecular events. Methods Sixteen early and sixteen advanced stage

  3. Genomic aberrations relate early and advanced stage ovarian cancer

    NARCIS (Netherlands)

    A. Zaal; W.J. Peyrot (Wouter ); P.M.J.J. Berns (Els); M.E.L. van der Burg (Maria); J.H.W. Veerbeek (Jan ); J.B. Trimbos; I. Cadron (Isabelle); P.J. van Diest (Paul); W.N. Wieringen (Wessel); O. Krijgsman (Oscar); G.A. Meijer (Gerrit); J.M.J. Piek (Jurgen ); P.J. Timmers (Petra); I. Vergote (Ignace); R.H.M. Verheijen (René); B. Ylstra (Bauke); R.P. Zweemer (Ronald )

    2012-01-01

    textabstractBackground Because of the distinct clinical presentation of early and advanced stage ovarian cancer, we aim to clarify whether these disease entities are solely separated by time of diagnosis or whether they arise from distinct molecular events. Methods Sixteen early and sixteen advanced

  4. Early insights into the genome sequence of Uromyces fabae

    Directory of Open Access Journals (Sweden)

    Tobias eLink

    2014-10-01

    Full Text Available Uromyces fabae is a major pathogen of broad bean, Vicia faba. U. fabae has served as a model among rust fungi to elucidate the development of infection structures, expression and secretion of cell wall degrading enzymes and gene expression. Using U. fabae, enormous progress was made regarding nutrient uptake and metabolism and in the search for secreted proteins and effectors. Here, we present results from a genome survey of U. fabae. Paired end Illumina sequencing provided 53 Gb of data. An assembly gave 59,735 scaffolds with a total length of 216 Mb. K-mer analysis estimated the genome size to be 329 Mb. Of a representative set of 23,153 predicted proteins we could annotate 10,209, and predict 599 secreted proteins. Clustering of the protein set indicates families of highly likely effectors. We also found new homologs of RTP1p, a prototype rust effector. The U. fabae genome will be an important resource for comparative analyses with U. appendiculatus and P. pachyrhizi and provide information regarding the phylogenetic relationship of the genus Uromyces with respect to other rust fungi already sequenced, namely Puccinia graminis f. sp. tritici, P. striiformis f. sp. tritici, Melampsora lini, and Melampsora larici-populina.

  5. The early stage of bacterial genome-reductive evolution in the host.

    Directory of Open Access Journals (Sweden)

    Han Song

    2010-05-01

    Full Text Available The equine-associated obligate pathogen Burkholderia mallei was developed by reductive evolution involving a substantial portion of the genome from Burkholderia pseudomallei, a free-living opportunistic pathogen. With its short history of divergence (approximately 3.5 myr, B. mallei provides an excellent resource to study the early steps in bacterial genome reductive evolution in the host. By examining 20 genomes of B. mallei and B. pseudomallei, we found that stepwise massive expansion of IS (insertion sequence elements ISBma1, ISBma2, and IS407A occurred during the evolution of B. mallei. Each element proliferated through the sites where its target selection preference was met. Then, ISBma1 and ISBma2 contributed to the further spread of IS407A by providing secondary insertion sites. This spread increased genomic deletions and rearrangements, which were predominantly mediated by IS407A. There were also nucleotide-level disruptions in a large number of genes. However, no significant signs of erosion were yet noted in these genes. Intriguingly, all these genomic modifications did not seriously alter the gene expression patterns inherited from B. pseudomallei. This efficient and elaborate genomic transition was enabled largely through the formation of the highly flexible IS-blended genome and the guidance by selective forces in the host. The detailed IS intervention, unveiled for the first time in this study, may represent the key component of a general mechanism for early bacterial evolution in the host.

  6. Genetic and environmental factors affecting early rooting of six Populus genomic groups: implications for tree improvement

    Science.gov (United States)

    Ronald S., Jr. Zalesny

    2006-01-01

    Genetic and environmental factors affect the early rooting of Populus planted as unrooted hardwood cuttings. Populus genotypes of six genomic groups were tested in numerous studies for the quantitative genetics of rooting, along with effects of preplanting treatments and soil temperature. Genetics data (e.g. heritabilities,...

  7. Draft Genome Sequence of Cercospora arachidicola, Causal Agent of Early Leaf Spot in Peanuts.

    Science.gov (United States)

    Orner, Valerie A; Cantonwine, Emily G; Wang, Xinye Monica; Abouelleil, Amr; Bochicchio, James; Nusbaum, Chad; Culbreath, Albert K; Abdo, Zaid; Arias, Renee S

    2015-11-05

    Cercospora arachidicola, causal agent of early leaf spot, is an economically important peanut pathogen. Lack of genetic information about this fungus prevents understanding the role that potentially diverse genotypes may have in peanut breeding programs. Here, we report for the first time a draft genome sequence of C. arachidicola. Copyright © 2015 Orner et al.

  8. Genomic insights into Wnt signaling in an early diverging metazoan, the ctenophore Mnemiopsis leidyi

    Science.gov (United States)

    2010-01-01

    Background Intercellular signaling pathways are a fundamental component of the integrating cellular behavior required for the evolution of multicellularity. The genomes of three of the four early branching animal phyla (Cnidaria, Placozoa and Porifera) have been surveyed for key components, but not the fourth (Ctenophora). Genomic data from ctenophores could be particularly relevant, as ctenophores have been proposed to be one of the earliest branching metazoan phyla. Results A preliminary assembly of the lobate ctenophore Mnemiopsis leidyi genome generated using next-generation sequencing technologies were searched for components of a developmentally important signaling pathway, the Wnt/β-catenin pathway. Molecular phylogenetic analysis shows four distinct Wnt ligands (MlWnt6, MlWnt9, MlWntA and MlWntX), and most, but not all components of the receptor and intracellular signaling pathway were detected. In situ hybridization of the four Wnt ligands showed that they are expressed in discrete regions associated with the aboral pole, tentacle apparati and apical organ. Conclusions Ctenophores show a minimal (but not obviously simple) complement of Wnt signaling components. Furthermore, it is difficult to compare the Mnemiopsis Wnt expression patterns with those of other metazoans. mRNA expression of Wnt pathway components appears later in development than expected, and zygotic gene expression does not appear to play a role in early axis specification. Notably absent in the Mnemiopsis genome are most major secreted antagonists, which suggests that complex regulation of this secreted signaling pathway probably evolved later in animal evolution. PMID:20920349

  9. Genome-wide meta-analysis of longitudinal alcohol consumption across youth and early adulthood

    Science.gov (United States)

    Adkins, Daniel E.; Clark, Shaunna L.; Copeland, William E.; Kennedy, Martin; Conway, Kevin; Angold, Adrian; Maes, Hermine; Liu, Youfang; Kumar, Gaurav; Erkanli, Alaattin; Patkar, Ashwin A.; Silberg, Judy; Brown, Tyson H.; Fergusson, David M.; Horwood, L. John; Eaves, Lindon; van den Oord, Edwin J.C.G.; Sullivan, Patrick F.; Costello, E. J.

    2016-01-01

    The public health burden of alcohol is unevenly distributed across the life course, with levels of use, abuse and dependence increasing across adolescence and peaking in early adulthood. Here we leverage this temporal patterning to search for common genetic variants predicting developmental trajectories of alcohol consumption. Comparable psychiatric evaluations measuring alcohol consumption were collected in three, longitudinal community samples (N=2,126, obs=12,166). Consumption repeated measurements spanning adolescence and early adulthood were analyzed using linear mixed models, estimating individual consumption trajectories, which were then tested for association with Illumina 660W-Quad genotype data (866,099 SNPs after imputation and QC). Association results were combined across samples using standard meta-analysis methods. Four meta-analysis associations satisfied our pre-determined genome-wide significance criterion (FDR<0.1) and 6 others met our “suggestive” criterion (FDR<0.2). Genome-wide significant associations were highly biological plausible, including associations within GABA transporter 1, SLC6A1 (solute carrier family 6, member 1), and exonic hits in LOC100129340 (mitofusin-1-like). Pathway analyses elaborated single marker results, indicating significant enriched associations to intuitive biological mechanisms including neurotransmission, xenobiotic pharmacodynamics and nuclear hormone receptors. These findings underscore the value of combining longitudinal behavioral data and genome-wide genotype information in order to study developmental patterns and improve statistical power in genomic studies. PMID:26081443

  10. Discovery and validation of a prostate cancer genomic classifier that predicts early metastasis following radical prostatectomy.

    Directory of Open Access Journals (Sweden)

    Nicholas Erho

    Full Text Available Clinicopathologic features and biochemical recurrence are sensitive, but not specific, predictors of metastatic disease and lethal prostate cancer. We hypothesize that a genomic expression signature detected in the primary tumor represents true biological potential of aggressive disease and provides improved prediction of early prostate cancer metastasis.A nested case-control design was used to select 639 patients from the Mayo Clinic tumor registry who underwent radical prostatectomy between 1987 and 2001. A genomic classifier (GC was developed by modeling differential RNA expression using 1.4 million feature high-density expression arrays of men enriched for rising PSA after prostatectomy, including 213 who experienced early clinical metastasis after biochemical recurrence. A training set was used to develop a random forest classifier of 22 markers to predict for cases--men with early clinical metastasis after rising PSA. Performance of GC was compared to prognostic factors such as Gleason score and previous gene expression signatures in a withheld validation set.Expression profiles were generated from 545 unique patient samples, with median follow-up of 16.9 years. GC achieved an area under the receiver operating characteristic curve of 0.75 (0.67-0.83 in validation, outperforming clinical variables and gene signatures. GC was the only significant prognostic factor in multivariable analyses. Within Gleason score groups, cases with high GC scores experienced earlier death from prostate cancer and reduced overall survival. The markers in the classifier were found to be associated with a number of key biological processes in prostate cancer metastatic disease progression.A genomic classifier was developed and validated in a large patient cohort enriched with prostate cancer metastasis patients and a rising PSA that went on to experience metastatic disease. This early metastasis prediction model based on genomic expression in the primary tumor

  11. Homozygous partial genomic triplication of the parkin gene in early-onset parkinsonism.

    Science.gov (United States)

    Mata, Ignacio F; Alvarez, Victoria; Coto, Eliecer; Blazquez, Marta; Guisasola, Luis M; Salvador, Carlos; Kachergus, Jennifer M; Lincoln, Sarah J; Farrer, Matthew

    2005-06-03

    Autosomal recessive mutations in the parkin gene are the predominant cause of familial, early-onset parkinsonism; missense mutations involving one or a few nucleotides, exonic deletions and duplications have been described. Here we report a family with two affected brothers. Direct sequencing of parkin did not detect mutations, but semi-quantitative analysis identified a novel exonic rearrangement of exons 2-4. Both patients were homozygous for unique genomic triplications of the parkin gene.

  12. Genomic insights into Wnt signaling in an early diverging metazoan, the ctenophore Mnemiopsis leidyi

    Directory of Open Access Journals (Sweden)

    Pang Kevin

    2010-10-01

    Full Text Available Abstract Background Intercellular signaling pathways are a fundamental component of the integrating cellular behavior required for the evolution of multicellularity. The genomes of three of the four early branching animal phyla (Cnidaria, Placozoa and Porifera have been surveyed for key components, but not the fourth (Ctenophora. Genomic data from ctenophores could be particularly relevant, as ctenophores have been proposed to be one of the earliest branching metazoan phyla. Results A preliminary assembly of the lobate ctenophore Mnemiopsis leidyi genome generated using next-generation sequencing technologies were searched for components of a developmentally important signaling pathway, the Wnt/β-catenin pathway. Molecular phylogenetic analysis shows four distinct Wnt ligands (MlWnt6, MlWnt9, MlWntA and MlWntX, and most, but not all components of the receptor and intracellular signaling pathway were detected. In situ hybridization of the four Wnt ligands showed that they are expressed in discrete regions associated with the aboral pole, tentacle apparati and apical organ. Conclusions Ctenophores show a minimal (but not obviously simple complement of Wnt signaling components. Furthermore, it is difficult to compare the Mnemiopsis Wnt expression patterns with those of other metazoans. mRNA expression of Wnt pathway components appears later in development than expected, and zygotic gene expression does not appear to play a role in early axis specification. Notably absent in the Mnemiopsis genome are most major secreted antagonists, which suggests that complex regulation of this secreted signaling pathway probably evolved later in animal evolution.

  13. Comparative genomics of oral isolates of Streptococcus mutans by in silico genome subtraction does not reveal accessory DNA associated with severe early childhood caries.

    Science.gov (United States)

    Argimón, Silvia; Konganti, Kranti; Chen, Hao; Alekseyenko, Alexander V; Brown, Stuart; Caufield, Page W

    2014-01-01

    Comparative genomics is a popular method for the identification of microbial virulence determinants, especially since the sequencing of a large number of whole bacterial genomes from pathogenic and non-pathogenic strains has become relatively inexpensive. The bioinformatics pipelines for comparative genomics usually include gene prediction and annotation and can require significant computer power. To circumvent this, we developed a rapid method for genome-scale in silico subtractive hybridization, based on blastn and independent of feature identification and annotation. Whole genome comparisons by in silico genome subtraction were performed to identify genetic loci specific to Streptococcus mutans strains associated with severe early childhood caries (S-ECC), compared to strains isolated from caries-free (CF) children. The genome similarity of the 20 S. mutans strains included in this study, calculated by Simrank k-mer sharing, ranged from 79.5% to 90.9%, confirming this is a genetically heterogeneous group of strains. We identified strain-specific genetic elements in 19 strains, with sizes ranging from 200 to 39 kb. These elements contained protein-coding regions with functions mostly associated with mobile DNA. We did not, however, identify any genetic loci consistently associated with dental caries, i.e., shared by all the S-ECC strains and absent in the CF strains. Conversely, we did not identify any genetic loci specific with the healthy group. Comparison of previously published genomes from pathogenic and carriage strains of Neisseria meningitidis with our in silico genome subtraction yielded the same set of genes specific to the pathogenic strains, thus validating our method. Our results suggest that S. mutans strains derived from caries active or caries free dentitions cannot be differentiated based on the presence or absence of specific genetic elements. Our in silico genome subtraction method is available as the Microbial Genome Comparison (MGC) tool

  14. Ancient genomes link early farmers from Atapuerca in Spain to modern-day Basques

    Science.gov (United States)

    Günther, Torsten; Valdiosera, Cristina; Malmström, Helena; Ureña, Irene; Rodriguez-Varela, Ricardo; Sverrisdóttir, Óddny Osk; Daskalaki, Evangelia A.; Skoglund, Pontus; Naidoo, Thijessen; Svensson, Emma M.; Bermúdez de Castro, José María; Carbonell, Eudald; Dunn, Michael; Storå, Jan; Iriarte, Eneko; Arsuaga, Juan Luis; Carretero, José-Miguel; Götherström, Anders; Jakobsson, Mattias

    2015-01-01

    The consequences of the Neolithic transition in Europe—one of the most important cultural changes in human prehistory—is a subject of great interest. However, its effect on prehistoric and modern-day people in Iberia, the westernmost frontier of the European continent, remains unresolved. We present, to our knowledge, the first genome-wide sequence data from eight human remains, dated to between 5,500 and 3,500 years before present, excavated in the El Portalón cave at Sierra de Atapuerca, Spain. We show that these individuals emerged from the same ancestral gene pool as early farmers in other parts of Europe, suggesting that migration was the dominant mode of transferring farming practices throughout western Eurasia. In contrast to central and northern early European farmers, the Chalcolithic El Portalón individuals additionally mixed with local southwestern hunter–gatherers. The proportion of hunter–gatherer-related admixture into early farmers also increased over the course of two millennia. The Chalcolithic El Portalón individuals showed greatest genetic affinity to modern-day Basques, who have long been considered linguistic and genetic isolates linked to the Mesolithic whereas all other European early farmers show greater genetic similarity to modern-day Sardinians. These genetic links suggest that Basques and their language may be linked with the spread of agriculture during the Neolithic. Furthermore, all modern-day Iberian groups except the Basques display distinct admixture with Caucasus/Central Asian and North African groups, possibly related to historical migration events. The El Portalón genomes uncover important pieces of the demographic history of Iberia and Europe and reveal how prehistoric groups relate to modern-day people. PMID:26351665

  15. Ancient genomes link early farmers from Atapuerca in Spain to modern-day Basques.

    Science.gov (United States)

    Günther, Torsten; Valdiosera, Cristina; Malmström, Helena; Ureña, Irene; Rodriguez-Varela, Ricardo; Sverrisdóttir, Óddny Osk; Daskalaki, Evangelia A; Skoglund, Pontus; Naidoo, Thijessen; Svensson, Emma M; Bermúdez de Castro, José María; Carbonell, Eudald; Dunn, Michael; Storå, Jan; Iriarte, Eneko; Arsuaga, Juan Luis; Carretero, José-Miguel; Götherström, Anders; Jakobsson, Mattias

    2015-09-22

    The consequences of the Neolithic transition in Europe--one of the most important cultural changes in human prehistory--is a subject of great interest. However, its effect on prehistoric and modern-day people in Iberia, the westernmost frontier of the European continent, remains unresolved. We present, to our knowledge, the first genome-wide sequence data from eight human remains, dated to between 5,500 and 3,500 years before present, excavated in the El Portalón cave at Sierra de Atapuerca, Spain. We show that these individuals emerged from the same ancestral gene pool as early farmers in other parts of Europe, suggesting that migration was the dominant mode of transferring farming practices throughout western Eurasia. In contrast to central and northern early European farmers, the Chalcolithic El Portalón individuals additionally mixed with local southwestern hunter-gatherers. The proportion of hunter-gatherer-related admixture into early farmers also increased over the course of two millennia. The Chalcolithic El Portalón individuals showed greatest genetic affinity to modern-day Basques, who have long been considered linguistic and genetic isolates linked to the Mesolithic whereas all other European early farmers show greater genetic similarity to modern-day Sardinians. These genetic links suggest that Basques and their language may be linked with the spread of agriculture during the Neolithic. Furthermore, all modern-day Iberian groups except the Basques display distinct admixture with Caucasus/Central Asian and North African groups, possibly related to historical migration events. The El Portalón genomes uncover important pieces of the demographic history of Iberia and Europe and reveal how prehistoric groups relate to modern-day people.

  16. Genome-scale transcriptomic insights into early-stage fruit development in woodland strawberry Fragaria vesca.

    Science.gov (United States)

    Kang, Chunying; Darwish, Omar; Geretz, Aviva; Shahan, Rachel; Alkharouf, Nadim; Liu, Zhongchi

    2013-06-01

    Fragaria vesca, a diploid woodland strawberry with a small and sequenced genome, is an excellent model for studying fruit development. The strawberry fruit is unique in that the edible flesh is actually enlarged receptacle tissue. The true fruit are the numerous dry achenes dotting the receptacle's surface. Auxin produced from the achene is essential for the receptacle fruit set, a paradigm for studying crosstalk between hormone signaling and development. To investigate the molecular mechanism underlying strawberry fruit set, next-generation sequencing was employed to profile early-stage fruit development with five fruit tissue types and five developmental stages from floral anthesis to enlarged fruits. This two-dimensional data set provides a systems-level view of molecular events with precise spatial and temporal resolution. The data suggest that the endosperm and seed coat may play a more prominent role than the embryo in auxin and gibberellin biosynthesis for fruit set. A model is proposed to illustrate how hormonal signals produced in the endosperm and seed coat coordinate seed, ovary wall, and receptacle fruit development. The comprehensive fruit transcriptome data set provides a wealth of genomic resources for the strawberry and Rosaceae communities as well as unprecedented molecular insight into fruit set and early stage fruit development.

  17. Drosophila MOF controls Checkpoint protein2 and regulates genomic stability during early embryogenesis.

    Science.gov (United States)

    Pushpavalli, Sreerangam N C V L; Sarkar, Arpita; Ramaiah, M Janaki; Chowdhury, Debabani Roy; Bhadra, Utpal; Pal-Bhadra, Manika

    2013-01-24

    In Drosophila embryos, checkpoints maintain genome stability by delaying cell cycle progression that allows time for damage repair or to complete DNA synthesis. Drosophila MOF, a member of MYST histone acetyl transferase is an essential component of male X hyperactivation process. Until recently its involvement in G2/M cell cycle arrest and defects in ionizing radiation induced DNA damage pathways was not well established. Drosophila MOF is highly expressed during early embryogenesis. In the present study we show that haplo-insufficiency of maternal MOF leads to spontaneous mitotic defects like mitotic asynchrony, mitotic catastrophe and chromatid bridges in the syncytial embryos. Such abnormal nuclei are eliminated and digested in the yolk tissues by nuclear fall out mechanism. MOF negatively regulates Drosophila checkpoint kinase 2 tumor suppressor homologue. In response to DNA damage the checkpoint gene Chk2 (Drosophila mnk) is activated in the mof mutants, there by causing centrosomal inactivation suggesting its role in response to genotoxic stress. A drastic decrease in the fall out nuclei in the syncytial embryos derived from mof¹/+; mnkp⁶/+ females further confirms the role of DNA damage response gene Chk2 to ensure the removal of abnormal nuclei from the embryonic precursor pool and maintain genome stability. The fact that mof mutants undergo DNA damage has been further elucidated by the increased number of single and double stranded DNA breaks. mof mutants exhibited genomic instability as evidenced by the occurance of frequent mitotic bridges in anaphase, asynchronous nuclear divisions, disruption of cytoskeleton, inactivation of centrosomes finally leading to DNA damage. Our findings are consistent to what has been reported earlier in mammals that; reduced levels of MOF resulted in increased genomic instability while total loss resulted in lethality. The study can be further extended using Drosophila as model system and carry out the interaction of MOF

  18. Deletion and acquisition of genomic content during early stage adaptation of Pseudomonas aeruginosa to a human host environment

    DEFF Research Database (Denmark)

    Rau, Martin H.; Marvig, Rasmus Lykke; Ehrlich, Garth D.

    2012-01-01

    Adaptation of bacterial pathogens to a permanently host‐associated lifestyle by means of deletion or acquisition of genetic material is usually examined through comparison of present‐day isolates to a distant theoretical ancestor. This limits the resolution of the adaptation process. We conducted...... of the change in genetic content during the early stage of host adaptation by this P. aeruginosa strain as it adapts to the cystic fibrosis (CF) lung of several patients. Considerable genome reduction is detected predominantly through the deletion of large genomic regions, and up to 8% of the genome is deleted...

  19. Transcriptional and epigenetic signatures of zygotic genome activation during early Drosophila embryogenesis.

    Science.gov (United States)

    Darbo, Elodie; Herrmann, Carl; Lecuit, Thomas; Thieffry, Denis; van Helden, Jacques

    2013-04-05

    In all Metazoa, transcription is inactive during the first mitotic cycles after fertilisation. In Drosophila melanogaster, Zygotic Genome Activation (ZGA) occurs in two waves, starting respectively at mitotic cycles 8 (approximately 60 genes) and 14 (over a thousand genes). The regulatory mechanisms underlying these drastic transcriptional changes remain largely unknown. We developed an original gene clustering method based on discretized transition profiles, and applied it to datasets from three landmark early embryonic transcriptome studies. We identified 417 genes significantly up-regulated during ZGA. De novo motif discovery returned nine motifs over-represented in their non-coding sequences (upstream, introns, UTR), three of which correspond to previously known transcription factors: Zelda, Tramtrack and Trithorax-like (Trl). The nine discovered motifs were combined to scan ZGA-associated regions and predict about 1300 putative cis-regulatory modules. The fact that Trl is known to act as chromatin remodelling factor suggests that epigenetic regulation might play an important role in zygotic genome activation. We thus systematically compared the locations of predicted CRMs with ChIP-seq profiles for various transcription factors, 38 epigenetic marks from ModENCODE, and DNAse1 accessibility profiles. This analysis highlighted a strong and specific enrichment of predicted ZGA-associated CRMs for Zelda, CBP, Trl binding sites, as well as for histone marks associated with active enhancers (H3K4me1) and for open chromatin regions. Based on the results of our computational analyses, we suggest a temporal model explaining the onset of zygotic genome activation by the combined action of transcription factors and epigenetic signals. Although this study is mainly based on the analysis of publicly available transcriptome and ChiP-seq datasets, the resulting model suggests novel mechanisms that underly the coordinated activation of several hundreds genes at a precise

  20. Genomic alterations in lobular neoplasia: a microarray comparative genomic hybridization signature for early neoplastic proliferationin the breast.

    Science.gov (United States)

    Mastracci, Teresa L; Shadeo, Ashleen; Colby, Sarah M; Tuck, Alan B; O'Malley, Frances P; Bull, Shelley B; Lam, Wan L; Andrulis, Irene L

    2006-11-01

    The identification of genomic alterations occurring in neoplastic lesions provides insight into both lesion occurrence and disease progression. In this study, we used microarray comparative genomic hybridization (CGH) to investigate genetic changes in atypical lobular hyperplasia (ALH) and lobular carcinoma in situ (LCIS), as the presence of these lobular neoplastic lesions is an indicator of risk in the development of invasive breast cancer. DNA was extracted from microdissected archival breast tissue containing ALH or LCIS, lacking adjacent invasive carcinoma, and subjected to whole-genome tiling path microarray-CGH using the submegabase resolution tiling set (SMRT)-array platform. Twelve ALH and 13 LCIS lesions were examined. Copy number alterations were identified using statistical criteria and validated with Real-Time PCR and fluorescence in situ hybridization. From statistical analysis, a greater number of alterations were observed in ALH compared to LCIS. Alterations common to ALH include gain at 2p11.2 and loss at 7p11-p11.1 and 22q11.1. Alterations common to LCIS include gain at 20q13.13 and loss at 19q13.2-q13.31. In both ALH and LCIS, we observed loss of 16q21-q23.1, an altered region previously identified in lobular neoplasia and invasive carcinoma. The validation of select alterations reinforces the genomic signature. This study represents the first whole-genome investigation of lobular neoplastic breast lesions using clinical archival specimens. The identified genomic signature includes copy number alterations not previously identified for lobular neoplasia. This genomic signature, common to ALH and LCIS, suggests a role for the acquisition of novel genomic alterations in the aberrant cellular proliferation that defines lobular neoplasia. (c) 2006 Wiley-Liss, Inc.

  1. Discovery of cellular proteins required for the early steps of HCV infection using integrative genomics.

    Directory of Open Access Journals (Sweden)

    Ji Hoon Park

    Full Text Available Successful viral infection requires intimate communication between virus and host cell, a process that absolutely requires various host proteins. However, current efforts to discover novel host proteins as therapeutic targets for viral infection are difficult. Here, we developed an integrative-genomics approach to predict human genes involved in the early steps of hepatitis C virus (HCV infection. By integrating HCV and human protein associations, co-expression data, and tight junction-tetraspanin web specific networks, we identified host proteins required for the early steps in HCV infection. Moreover, we validated the roles of newly identified proteins in HCV infection by knocking down their expression using small interfering RNAs. Specifically, a novel host factor CD63 was shown to directly interact with HCV E2 protein. We further demonstrated that an antibody against CD63 blocked HCV infection, indicating that CD63 may serve as a new therapeutic target for HCV-related diseases. The candidate gene list provides a source for identification of new therapeutic targets.

  2. Genome-wide analysis of gene expression during early Arabidopsis flower development.

    Directory of Open Access Journals (Sweden)

    Frank Wellmer

    2006-07-01

    Full Text Available Detailed information about stage-specific changes in gene expression is crucial for the understanding of the gene regulatory networks underlying development. Here, we describe the global gene expression dynamics during early flower development, a key process in the life cycle of a plant, during which floral patterning and the specification of floral organs is established. We used a novel floral induction system in Arabidopsis, which allows the isolation of a large number of synchronized floral buds, in conjunction with whole-genome microarray analysis to identify genes with differential expression at distinct stages of flower development. We found that the onset of flower formation is characterized by a massive downregulation of genes in incipient floral primordia, which is followed by a predominance of gene activation during the differentiation of floral organs. Among the genes we identified as differentially expressed in the experiment, we detected a significant enrichment of closely related members of gene families. The expression profiles of these related genes were often highly correlated, indicating similar temporal expression patterns. Moreover, we found that the majority of these genes is specifically up-regulated during certain developmental stages. Because co-expressed members of gene families in Arabidopsis frequently act in a redundant manner, these results suggest a high degree of functional redundancy during early flower development, but also that its extent may vary in a stage-specific manner.

  3. Genome-wide analysis of gene expression during early Arabidopsis flower development.

    Science.gov (United States)

    Wellmer, Frank; Alves-Ferreira, Márcio; Dubois, Annick; Riechmann, José Luis; Meyerowitz, Elliot M

    2006-07-01

    Detailed information about stage-specific changes in gene expression is crucial for the understanding of the gene regulatory networks underlying development. Here, we describe the global gene expression dynamics during early flower development, a key process in the life cycle of a plant, during which floral patterning and the specification of floral organs is established. We used a novel floral induction system in Arabidopsis, which allows the isolation of a large number of synchronized floral buds, in conjunction with whole-genome microarray analysis to identify genes with differential expression at distinct stages of flower development. We found that the onset of flower formation is characterized by a massive downregulation of genes in incipient floral primordia, which is followed by a predominance of gene activation during the differentiation of floral organs. Among the genes we identified as differentially expressed in the experiment, we detected a significant enrichment of closely related members of gene families. The expression profiles of these related genes were often highly correlated, indicating similar temporal expression patterns. Moreover, we found that the majority of these genes is specifically up-regulated during certain developmental stages. Because co-expressed members of gene families in Arabidopsis frequently act in a redundant manner, these results suggest a high degree of functional redundancy during early flower development, but also that its extent may vary in a stage-specific manner.

  4. Discovery of Cellular Proteins Required for the Early Steps of HCV Infection Using Integrative Genomics

    Science.gov (United States)

    Yang, Jae-Seong; Kwon, Oh Sung; Kim, Sanguk; Jang, Sung Key

    2013-01-01

    Successful viral infection requires intimate communication between virus and host cell, a process that absolutely requires various host proteins. However, current efforts to discover novel host proteins as therapeutic targets for viral infection are difficult. Here, we developed an integrative-genomics approach to predict human genes involved in the early steps of hepatitis C virus (HCV) infection. By integrating HCV and human protein associations, co-expression data, and tight junction-tetraspanin web specific networks, we identified host proteins required for the early steps in HCV infection. Moreover, we validated the roles of newly identified proteins in HCV infection by knocking down their expression using small interfering RNAs. Specifically, a novel host factor CD63 was shown to directly interact with HCV E2 protein. We further demonstrated that an antibody against CD63 blocked HCV infection, indicating that CD63 may serve as a new therapeutic target for HCV-related diseases. The candidate gene list provides a source for identification of new therapeutic targets. PMID:23593195

  5. DNA repair efficiency in germ cells and early mouse embryos and consequences for radiation-induced transgenerational genomic damage

    Energy Technology Data Exchange (ETDEWEB)

    Marchetti, Francesco; Wyrobek, Andrew J.

    2009-01-18

    Exposure to ionizing radiation and other environmental agents can affect the genomic integrity of germ cells and induce adverse health effects in the progeny. Efficient DNA repair during gametogenesis and the early embryonic cycles after fertilization is critical for preventing transmission of DNA damage to the progeny and relies on maternal factors stored in the egg before fertilization. The ability of the maternal repair machinery to repair DNA damage in both parental genomes in the fertilizing egg is especially crucial for the fertilizing male genome that has not experienced a DNA repair-competent cellular environment for several weeks prior to fertilization. During the DNA repair-deficient period of spermatogenesis, DNA lesions may accumulate in sperm and be carried into the egg where, if not properly repaired, could result in the formation of heritable chromosomal aberrations or mutations and associated birth defects. Studies with female mice deficient in specific DNA repair genes have shown that: (i) cell cycle checkpoints are activated in the fertilized egg by DNA damage carried by the sperm; and (ii) the maternal genotype plays a major role in determining the efficiency of repairing genomic lesions in the fertilizing sperm and directly affect the risk for abnormal reproductive outcomes. There is also growing evidence that implicates DNA damage carried by the fertilizing gamete as a mediator of postfertilization processes that contribute to genomic instability in subsequent generations. Transgenerational genomic instability most likely involves epigenetic mechanisms or error-prone DNA repair processes in the early embryo. Maternal and embryonic DNA repair processes during the early phases of mammalian embryonic development can have far reaching consequences for the genomic integrity and health of subsequent generations.

  6. Coalescent-based genome analyses resolve the early branches of the euarchontoglires.

    Directory of Open Access Journals (Sweden)

    Vikas Kumar

    Full Text Available Despite numerous large-scale phylogenomic studies, certain parts of the mammalian tree are extraordinarily difficult to resolve. We used the coding regions from 19 completely sequenced genomes to study the relationships within the super-clade Euarchontoglires (Primates, Rodentia, Lagomorpha, Dermoptera and Scandentia because the placement of Scandentia within this clade is controversial. The difficulty in resolving this issue is due to the short time spans between the early divergences of Euarchontoglires, which may cause incongruent gene trees. The conflict in the data can be depicted by network analyses and the contentious relationships are best reconstructed by coalescent-based analyses. This method is expected to be superior to analyses of concatenated data in reconstructing a species tree from numerous gene trees. The total concatenated dataset used to study the relationships in this group comprises 5,875 protein-coding genes (9,799,170 nucleotides from all orders except Dermoptera (flying lemurs. Reconstruction of the species tree from 1,006 gene trees using coalescent models placed Scandentia as sister group to the primates, which is in agreement with maximum likelihood analyses of concatenated nucleotide sequence data. Additionally, both analytical approaches favoured the Tarsier to be sister taxon to Anthropoidea, thus belonging to the Haplorrhine clade. When divergence times are short such as in radiations over periods of a few million years, even genome scale analyses struggle to resolve phylogenetic relationships. On these short branches processes such as incomplete lineage sorting and possibly hybridization occur and make it preferable to base phylogenomic analyses on coalescent methods.

  7. Pea early-browning virus -mediated genome editing via the CRISPR/Cas9 system in Nicotiana benthamiana and Arabidopsis

    KAUST Repository

    Ali, Zahir

    2017-10-17

    The clustered regularly interspaced palindromic repeats (CRISPR)/CRISPR-associated (Cas9) system has enabled efficient genome engineering in diverse plant species. However, delivery of genome engineering reagents, such as the single guide RNA (sgRNA), into plant cells remains challenging. Here, we report the engineering of Tobacco rattle virus (TRV) and Pea early browning virus (PEBV) to deliver one or multiple sgRNAs into Nicotiana benthamiana and Arabidopsis thaliana (Col-0) plants that overexpress a nuclear localization signal containing Cas9. Our data showed that TRV and PEBV can deliver sgRNAs into inoculated and systemic leaves, and this resulted in mutagenesis of the targeted genomic loci. Moreover, in N. benthamiana, PEBV-based sgRNA delivery resulted in more targeted mutations than TRV-based delivery. Our data indicate that TRV and PEBV can facilitate plant genome engineering and can be used to produce targeted mutations for functional analysis and other biotechnological applications across diverse plant species.Key message: Delivery of genome engineering reagents into plant cells is challenging and inefficient and this limit the applications of this technology in many plant species. RNA viruses such as TRV and PEBV provide an efficient tool to systemically deliver sgRNAs for targeted genome modification.

  8. Defining the genomic signature of totipotency and pluripotency during early human development.

    Directory of Open Access Journals (Sweden)

    Amparo Galan

    Full Text Available The genetic mechanisms governing human pre-implantation embryo development and the in vitro counterparts, human embryonic stem cells (hESCs, still remain incomplete. Previous global genome studies demonstrated that totipotent blastomeres from day-3 human embryos and pluripotent inner cell masses (ICMs from blastocysts, display unique and differing transcriptomes. Nevertheless, comparative gene expression analysis has revealed that no significant differences exist between hESCs derived from blastomeres versus those obtained from ICMs, suggesting that pluripotent hESCs involve a new developmental progression. To understand early human stages evolution, we developed an undifferentiation network signature (UNS and applied it to a differential gene expression profile between single blastomeres from day-3 embryos, ICMs and hESCs. This allowed us to establish a unique signature composed of highly interconnected genes characteristic of totipotency (61 genes, in vivo pluripotency (20 genes, and in vitro pluripotency (107 genes, and which are also proprietary according to functional analysis. This systems biology approach has led to an improved understanding of the molecular and signaling processes governing human pre-implantation embryo development, as well as enabling us to comprehend how hESCs might adapt to in vitro culture conditions.

  9. Early-flowering sweet orange mutant 'x11' as a model for functional genomic studies of Citrus.

    Science.gov (United States)

    Pinheiro, Thaísa Tessutti; Figueira, Antonio; Latado, Rodrigo Rocha

    2014-08-10

    There had been many reports on genetic transformation of Citrus for functional genomic studies but few included genes associated with flower or fruit traits. A major reason for this might derive from the extensive juvenile stage of Citrus plants when regenerated from juvenile explants (epicotyls, cotyledon or calli), which delays the observation of the resulting phenotype. Alternatives include the use of explants from adult tissues, which sometimes may be recalcitrant to regeneration or transformation, or of early-flowering genotypes. However, there is no report about the use of early-flowering sweet orange mutants for functional genomic studies. Here, we propose a sweet orange spontaneous early-flowering mutant, named 'x11', as a platform for Citrus functional genomic studies, particularly for genes associated with flower or fruit traits. We report a procedure for efficient regeneration and transformation using epicotyl segment explants of 'x11' and Agrobacterium tumefaciens as a proof-of-concept. The average transformation efficiency was 18.6%, but reached 29.6% in the best protocol tested. Among 270 positive shoots, five were in vitro micrografted and acclimatized, followed by evaluation of transgene expression by quantitative amplification of reversed transcripts (RT-qPCR) and determination of the number of copies inserted. Four of these plants, containing from one to four copies of the transgene, exhibited the first flowers within three months after ex vitro establishment, and the other, two months later, regardless of the period of the year. Flowers of transgenic plants displayed fertile pollen and gynoecium, with self-pollination inducing fruit development with seeds. Histochemical staining for β-glucuronidase activity using stem segments, flowers and fruits from 5 to 7 month-old acclimatized transgenic plants confirmed the constitutive transgene expression in these organs. The 'x11' sweet orange is suitable for functional genomics studies with a

  10. Spontaneous transformation of murine epithelial cells requires the early acquisition of specific chromosomal aneuploidies and genomic imbalances.

    Science.gov (United States)

    Padilla-Nash, Hesed M; Hathcock, Karen; McNeil, Nicole E; Mack, David; Hoeppner, Daniel; Ravin, Rea; Knutsen, Turid; Yonescu, Raluca; Wangsa, Danny; Dorritie, Kathleen; Barenboim, Linda; Hu, Yue; Ried, Thomas

    2012-04-01

    Human carcinomas are defined by recurrent chromosomal aneuploidies, which result in a tissue-specific distribution of genomic imbalances. In order to develop models for these genome mutations and to determine their role in tumorigenesis, we generated 45 spontaneously transformed murine cell lines from normal epithelial cells derived from bladder, cervix, colon, kidney, lung, and mammary gland. Phenotypic changes, chromosomal aberrations, centrosome number, and telomerase activity were assayed in control uncultured cells and in three subsequent stages of transformation. Supernumerary centrosomes, binucleate cells, and tetraploidy were observed as early as 48 hr after explantation. In addition, telomerase activity increased throughout progression. Live-cell imaging revealed that failure of cytokinesis, not cell fusion, promoted genome duplication. Spectral karyotyping demonstrated that aneuploidy preceded immortalization, consisting predominantly of whole chromosome losses (4, 9, 12, 13, 16, and Y) and gains (1, 10, 15, and 19). After transformation, focal amplifications of the oncogenes Myc and Mdm2 were frequently detected. Fifty percent of the transformed lines resulted in tumors on injection into immunocompromised mice. The phenotypic and genomic alterations observed in spontaneously transformed murine epithelial cells recapitulated the aberration pattern observed during human carcinogenesis. The dominant aberration of these cell lines was the presence of specific chromosomal aneuploidies. We propose that our newly derived cancer models will be useful tools to dissect the sequential steps of genome mutations during malignant transformation, and also to identify cancer-specific genes, signaling pathways, and the role of chromosomal instability in this process. Copyright © 2011 Wiley Periodicals, Inc.

  11. Who ate whom? Adaptive Helicobacter genomic changes that accompanied a host jump from early humans to large felines.

    Directory of Open Access Journals (Sweden)

    Mark Eppinger

    2006-07-01

    Full Text Available Helicobacter pylori infection of humans is so old that its population genetic structure reflects that of ancient human migrations. A closely related species, Helicobacter acinonychis, is specific for large felines, including cheetahs, lions, and tigers, whereas hosts more closely related to humans harbor more distantly related Helicobacter species. This observation suggests a jump between host species. But who ate whom and when did it happen? In order to resolve this question, we determined the genomic sequence of H. acinonychis strain Sheeba and compared it to genomes from H. pylori. The conserved core genes between the genomes are so similar that the host jump probably occurred within the last 200,000 (range 50,000-400,000 years. However, the Sheeba genome also possesses unique features that indicate the direction of the host jump, namely from early humans to cats. Sheeba possesses an unusually large number of highly fragmented genes, many encoding outer membrane proteins, which may have been destroyed in order to bypass deleterious responses from the feline host immune system. In addition, the few Sheeba-specific genes that were found include a cluster of genes encoding sialylation of the bacterial cell surface carbohydrates, which were imported by horizontal genetic exchange and might also help to evade host immune defenses. These results provide a genomic basis for elucidating molecular events that allow bacteria to adapt to novel animal hosts.

  12. Who Ate Whom? Adaptive Helicobacter Genomic Changes That Accompanied a Host Jump from Early Humans to Large Felines

    Science.gov (United States)

    Linz, Bodo; Raddatz, Günter; Lanz, Christa; Keller, Heike; Morelli, Giovanna; Gressmann, Helga; Achtman, Mark; Schuster, Stephan C

    2006-01-01

    Helicobacter pylori infection of humans is so old that its population genetic structure reflects that of ancient human migrations. A closely related species, Helicobacter acinonychis, is specific for large felines, including cheetahs, lions, and tigers, whereas hosts more closely related to humans harbor more distantly related Helicobacter species. This observation suggests a jump between host species. But who ate whom and when did it happen? In order to resolve this question, we determined the genomic sequence of H. acinonychis strain Sheeba and compared it to genomes from H. pylori. The conserved core genes between the genomes are so similar that the host jump probably occurred within the last 200,000 (range 50,000–400,000) years. However, the Sheeba genome also possesses unique features that indicate the direction of the host jump, namely from early humans to cats. Sheeba possesses an unusually large number of highly fragmented genes, many encoding outer membrane proteins, which may have been destroyed in order to bypass deleterious responses from the feline host immune system. In addition, the few Sheeba-specific genes that were found include a cluster of genes encoding sialylation of the bacterial cell surface carbohydrates, which were imported by horizontal genetic exchange and might also help to evade host immune defenses. These results provide a genomic basis for elucidating molecular events that allow bacteria to adapt to novel animal hosts. PMID:16789826

  13. Genome-Wide Detection of SNP and SV Variations to Reveal Early Ripening-Related Genes in Grape.

    Directory of Open Access Journals (Sweden)

    Yanshuai Xu

    Full Text Available Early ripening in grape (Vitis vinifera L. is a crucial agronomic trait. The fruits of the grape line 'Summer Black' (SBBM, which contains a bud mutation, can be harvested approximately one week earlier than the 'Summer Black' (SBCcontrol. To investigate the molecular mechanism of the bud mutation related to early ripening, we detected genome-wide genetic variations based on re-sequencing. In total, 3,692,777 single nucleotide polymorphisms (SNPs and 81,223 structure variations (SVs in the SBC genome and 3,823,464 SNPs and 85,801 SVs in the SBBM genome were detected compared with the reference grape sequence. Of these, 635 SBC-specific genes and 665 SBBM-specific genes were screened. Ripening and colour-associated unigenes with non-synonymous mutations (NS, SVs or frame-shift mutations (F were analysed. The results showed that 90 unigenes in SBC, 76 unigenes in SBBM and 13 genes that mapped to large fragment indels were filtered. The expression patterns of eight genes were confirmed using quantitative reverse transcription-polymerase chain reaction (qRT-PCR.The re-sequencing data showed that 635 SBC-specific genes and 665 SBBM-specific genes associated with early ripening were screened. Among these, NCED6 expression appears to be related to NCED1 and is involved in ABA biosynthesis in grape, which might play a role in the onset of anthocyanin accumulation. The SEP and ERF genes probably play roles in ethylene response.

  14. Comparative Genomics of Early-Diverging Brucella Strains Reveals a Novel Lipopolysaccharide Biosynthesis Pathway

    Science.gov (United States)

    Wattam, Alice R.; Inzana, Thomas J.; Williams, Kelly P.; Mane, Shrinivasrao P.; Shukla, Maulik; Almeida, Nalvo F.; Dickerman, Allan W.; Mason, Steven; Moriyón, Ignacio; O’Callaghan, David; Whatmore, Adrian M.; Sobral, Bruno W.; Tiller, Rebekah V.; Hoffmaster, Alex R.; Frace, Michael A.; De Castro, Cristina; Molinaro, Antonio; Boyle, Stephen M.; De, Barun K.; Setubal, João C.

    2012-01-01

    ABSTRACT Brucella species are Gram-negative bacteria that infect mammals. Recently, two unusual strains (Brucella inopinata BO1T and B. inopinata-like BO2) have been isolated from human patients, and their similarity to some atypical brucellae isolated from Australian native rodent species was noted. Here we present a phylogenomic analysis of the draft genome sequences of BO1T and BO2 and of the Australian rodent strains 83-13 and NF2653 that shows that they form two groups well separated from the other sequenced Brucella spp. Several important differences were noted. Both BO1T and BO2 did not agglutinate significantly when live or inactivated cells were exposed to monospecific A and M antisera against O-side chain sugars composed of N-formyl-perosamine. While BO1T maintained the genes required to synthesize a typical Brucella O-antigen, BO2 lacked many of these genes but still produced a smooth LPS (lipopolysaccharide). Most missing genes were found in the wbk region involved in O-antigen synthesis in classic smooth Brucella spp. In their place, BO2 carries four genes that other bacteria use for making a rhamnose-based O-antigen. Electrophoretic, immunoblot, and chemical analyses showed that BO2 carries an antigenically different O-antigen made of repeating hexose-rich oligosaccharide units that made the LPS water-soluble, which contrasts with the homopolymeric O-antigen of other smooth brucellae that have a phenol-soluble LPS. The results demonstrate the existence of a group of early-diverging brucellae with traits that depart significantly from those of the Brucella species described thus far. PMID:22930339

  15. Application of Whole Genome Sequencing Technology in the Investigation of Genetic Causes of Fetal, Perinatal, and Early Infant Death.

    Science.gov (United States)

    Armes, Jane E; Williams, Mark; Price, Gareth; Wallis, Tristan; Gallagher, Renee; Matsika, Admire; Joy, Christopher; Galea, Melanie; Gardener, Glenn; Leach, Rick; Swagemakers, Sigrid Ma; Tearle, Rick; Stubbs, Andrew; Harraway, James; van der Spek, Peter J; Venter, Deon J

    2017-01-01

    Death in the fetal, perinatal, and early infant age-group has a multitude of causes, a proportion of which is presumed to be genetic. Defining a specific genetic aberration leading to the death is problematic at this young age, due to limited phenotype-genotype correlation inherent in the underdeveloped phenotype, the inability to assess certain phenotypic traits after death, and the problems of dealing with rare disorders. In this study, our aim was to increase the yield of identification of a defined genetic cause of an early death. Therefore, we employed whole genome sequencing and bioinformatic filtering techniques as a comprehensive, unbiased genetic investigation into 16 fetal, perinatal, and early infant deaths, which had undergone a full autopsy. A likely genetic cause was identified in two cases (in genes; COL2A1 and RYR1) and a speculative genetic cause in a further six cases (in genes: ARHGAP35, BBS7, CASZ1, CRIM1, DHCR7, HADHB, HAPLN3, HSPG2, MYO18B, and SRGAP2). This investigation indicates that whole genome sequencing is a significantly enabling technology when determining genetic causes of early death.

  16. In the Early Postpartum Period, Parents are Interested in Newborn Genomic Testing

    Science.gov (United States)

    Waisbren, Susan E.; Bäck, Danielle K.; Liu, Christina; Kalia, Sarah S.; Ringer, Steven A.; Holm, Ingrid A.; Green, Robert C.

    2014-01-01

    Purpose We surveyed parents to ascertain interest in newborn genomic testing and determine whether these queries would provoke refusal of conventional newborn screening (NBS). Methods After brief genetics orientation, parents rated their interest in receiving genomic testing for their healthy newborn on a 5-point Likert scale and answered questions about demographics and health history. We used logistic regression to explore factors associated with interest in genomic testing and tracked any subsequent rejection of NBS. Results We queried 514 parents within 48 hours after birth while still in the hospital (mean age (sd) 32.7 (6.4) years, 65.2% female, 61.2% white, 79.3% married). Parents reported being not at all (6.4%), a little (10.9%), somewhat (36.6%), very (28.0%) or extremely (18.1%) interested in genomic testing for their newborns. None refused conventional NBS. Married participants and those with health concerns about their infant were less interested in newborn genomic testing (p=0.012 and p=0.030, respectively). Mothers’ and fathers’ degree of interest was discordant (≥ 2 categories different) in 24.4% of couples. Conclusions Interest in newborn genomic testing was high among parents of healthy newborns and the majority of couples had similar levels of interest. Surveying parents about genomic sequencing did not prompt rejection of NBS. PMID:25474344

  17. Genome-wide search for Zelda-like chromatin signatures identifies GAF as a pioneer factor in early fly development.

    Science.gov (United States)

    Moshe, Arbel; Kaplan, Tommy

    2017-07-04

    The protein Zelda was shown to play a key role in early Drosophila development, binding thousands of promoters and enhancers prior to maternal-to-zygotic transition (MZT), and marking them for transcriptional activation. Recently, we showed that Zelda acts through specific chromatin patterns of histone modifications to mark developmental enhancers and active promoters. Intriguingly, some Zelda sites still maintain these chromatin patterns in Drosophila embryos lacking maternal Zelda protein. This suggests that additional Zelda-like pioneer factors may act in early fly embryos. We developed a computational method to analyze and refine the chromatin landscape surrounding early Zelda peaks, using a multichannel spectral clustering. This allowed us to characterize their chromatin patterns through MZT (mitotic cycles 8-14). Specifically, we focused on H3K4me1, H3K4me3, H3K18ac, H3K27ac, and H3K27me3 and identified three different classes of chromatin signatures, matching "promoters," "enhancers" and "transiently bound" Zelda peaks. We then further scanned the genome using these chromatin patterns and identified additional loci-with no Zelda binding-that show similar chromatin patterns, resulting with hundreds of Zelda-independent putative enhancers. These regions were found to be enriched with GAGA factor (GAF, Trl) and are typically located near early developmental zygotic genes. Overall our analysis suggests that GAF, together with Zelda, plays an important role in activating the zygotic genome. As we show, our computational approach offers an efficient algorithm for characterizing chromatin signatures around some loci of interest and allows a genome-wide identification of additional loci with similar chromatin patterns.

  18. Integrative and comparative genomics analysis of early hepatocellular carcinoma differentiated from liver regeneration in young and old

    Directory of Open Access Journals (Sweden)

    Ozand Pinar T

    2010-06-01

    Full Text Available Abstract Background Hepatocellular carcinoma (HCC is the third-leading cause of cancer-related deaths worldwide. It is often diagnosed at an advanced stage, and hence typically has a poor prognosis. To identify distinct molecular mechanisms for early HCC we developed a rat model of liver regeneration post-hepatectomy, as well as liver cells undergoing malignant transformation and compared them to normal liver using a microarray approach. Subsequently, we performed cross-species comparative analysis coupled with copy number alterations (CNA of independent early human HCC microarray studies to facilitate the identification of critical regulatory modules conserved across species. Results We identified 35 signature genes conserved across species, and shared among different types of early human HCCs. Over 70% of signature genes were cancer-related, and more than 50% of the conserved genes were mapped to human genomic CNA regions. Functional annotation revealed genes already implicated in HCC, as well as novel genes which were not previously reported in liver tumors. A subset of differentially expressed genes was validated using quantitative RT-PCR. Concordance was also confirmed for a significant number of genes and pathways in five independent validation microarray datasets. Our results indicated alterations in a number of cancer related pathways, including p53, p38 MAPK, ERK/MAPK, PI3K/AKT, and TGF-β signaling pathways, and potential critical regulatory role of MYC, ERBB2, HNF4A, and SMAD3 for early HCC transformation. Conclusions The integrative analysis of transcriptional deregulation, genomic CNA and comparative cross species analysis brings new insights into the molecular profile of early hepatoma formation. This approach may lead to robust biomarkers for the detection of early human HCC.

  19. Genome Wide assessment of Early Osseointegration in Implant-Adherent Cells

    Science.gov (United States)

    Thalji, Ghadeer N.

    Objectives: To determine the molecular processes involved in osseointegration. Materials and methods: A structured literature review concerning in vitro and in vivo molecular assessment of osseointegration was performed. A rat and a human model were then used to identify the early molecular processes involved in osseointegration associated with a micro roughened and nanosurface superimposed featured implants. In the rat model, 32 titanium implants with surface topographies exhibiting a micro roughened (AT-II) and nanosurface superimposed featured implants (AT-I) were placed in the tibiae of 8 rats and subsequently harvested at 2 and 4 days after placement. Whereas in the human model, four titanium mini-implants with either a moderately roughened surface (TiOblast) or super-imposed nanoscale topography (Osseospeed) were placed in edentulous sites of eleven systemically healthy subjects and subsequently removed after 3 and 7 days. Total RNA was isolated from cells adherent to retrieved implants. A whole genome microarray using the Affymetrix 1.1 ST Array platform was used to describe the gene expression profiles that were differentially regulated by the implant surfaces. Results: The literature review provided evidence that particular topographic cues can be specifically integrated among the many extracellular signals received by the cell in its signal transduction network. In the rat model, functionally relevant categories related to ossification, skeletal system development, osteoblast differentiation, bone development and biomineral tissue development were upregulated and more prominent at AT-I compared to AT-II. In the human model, there were no significant differences when comparing the two-implant surfaces at each time point. However, the microarray identified several genes that were differentially regulated at day 7 vs. day 3 for both implant surfaces. Functionally relevant categories related to the extracellular matrix, collagen fibril organization and

  20. Cell and molecular biology of simian virus 40: implications for human infections and disease

    Science.gov (United States)

    Butel, J. S.; Lednicky, J. A.

    1999-01-01

    Simian virus 40 (SV40), a polyomavirus of rhesus macaque origin, was discovered in 1960 as a contaminant of polio vaccines that were distributed to millions of people from 1955 through early 1963. SV40 is a potent DNA tumor virus that induces tumors in rodents and transforms many types of cells in culture, including those of human origin. This virus has been a favored laboratory model for mechanistic studies of molecular processes in eukaryotic cells and of cellular transformation. The viral replication protein, named large T antigen (T-ag), is also the viral oncoprotein. There is a single serotype of SV40, but multiple strains of virus exist that are distinguishable by nucleotide differences in the regulatory region of the viral genome and in the part of the T-ag gene that encodes the protein's carboxyl terminus. Natural infections in monkeys by SV40 are usually benign but may become pathogenic in immunocompromised animals, and multiple tissues can be infected. SV40 can replicate in certain types of simian and human cells. SV40-neutralizing antibodies have been detected in individuals not exposed to contaminated polio vaccines. SV40 DNA has been identified in some normal human tissues, and there are accumulating reports of detection of SV40 DNA and/or T-ag in a variety of human tumors. This review presents aspects of replication and cell transformation by SV40 and considers their implications for human infections and disease pathogenesis by the virus. Critical assessment of virologic and epidemiologic data suggests a probable causative role for SV40 in certain human cancers, but additional studies are necessary to prove etiology.

  1. Radiation and chemotherapy bystander effects induce early genomic instability events: telomere shortening and bridge formation coupled with mitochondrial dysfunction.

    LENUS (Irish Health Repository)

    Gorman, Sheeona

    2012-02-01

    The bridge breakage fusion cycle is a chromosomal instability mechanism responsible for genomic changes. Radiation bystander effects induce genomic instability; however, the mechanism driving this instability is unknown. We examined if radiation and chemotherapy bystander effects induce early genomic instability events such as telomere shortening and bridge formation using a human colon cancer explant model. We assessed telomere lengths, bridge formations, mitochondrial membrane potential and levels of reactive oxygen species in bystander cells exposed to medium from irradiated and chemotherapy-treated explant tissues. Bystander cells exposed to media from 2Gy, 5Gy, FOLFOX treated tumor and matching normal tissue showed a significant reduction in telomere lengths (all p values <0.018) and an increase in bridge formations (all p values <0.017) compared to bystander cells treated with media from unirradiated tissue (0Gy) at 24h. There was no significant difference between 2Gy and 5Gy treatments, or between effects elicited by tumor versus matched normal tissue. Bystander cells exposed to media from 2Gy irradiated tumor tissue showed significant depolarisation of the mitochondrial membrane potential (p=0.012) and an increase in reactive oxygen species levels. We also used bystander cells overexpressing a mitochondrial antioxidant manganese superoxide dismutase (MnSOD) to examine if this antioxidant could rescue the mitochondrial changes and subsequently influence nuclear instability events. In MnSOD cells, ROS levels were reduced (p=0.02) and mitochondrial membrane potential increased (p=0.04). These events were coupled with a decrease in percentage of cells with anaphase bridges and a decrease in the number of cells undergoing telomere length shortening (p values 0.01 and 0.028 respectively). We demonstrate that radiation and chemotherapy bystander responses induce early genomic instability coupled with defects in mitochondrial function. Restoring mitochondrial

  2. Characterizing Participants in the ClinSeq Genome Sequencing Cohort as Early Adopters of a New Health Technology.

    Science.gov (United States)

    Lewis, Katie L; Han, Paul K J; Hooker, Gillian W; Klein, William M P; Biesecker, Leslie G; Biesecker, Barbara B

    2015-01-01

    Genome sequencing is a novel clinical tool that has the potential to identify genetic origins of disease. However, the complexities of this new technology are significant and little is known about its integration into clinical care, and its potential adoption by patients. Expectations of its promise for personalized medicine are high and it is important to properly match expectations to the realities of the test. The NIH ClinSeq cohort study pilots the integration of genome sequencing into clinical research and care to assess the technical, medical and socio-behavioral aspects of implementing this technology. Over 950 adults ages 45-65 have been enrolled and clinically phenotyped. As an initial study, we describe the personality traits of ClinSeq participants, and explore how these traits compare to those that characterize early adopters of other new technologies. Our analysis was conducted on responses from 630 members of the cohort who completed a baseline survey on health cognitions, affect, health-related behaviors and personality traits, prior to receipt of any genome sequencing results. The majority of participants were white (90.5%), had at least a college degree (86.5%), and had at least one biological child (74.6%). Members of this ClinSeq sample were found to be high in dispositional optimism and resilience. Their high SES paralleled that of other early adopters of new technology. These attributes may contribute to participants' expectations for favorable outcomes and willingness to take higher risks when compared to the general population. These characteristics may distinguish those who are most likely to pursue genome sequencing and be indicative of their psychological resources to manage returned results.

  3. Radiation and chemotherapy bystander effects induce early genomic instability events: Telomere shortening and bridge formation coupled with mitochondrial dysfunction

    Energy Technology Data Exchange (ETDEWEB)

    Gorman, Sheeona; Tosetto, Miriam [Centre for Colorectal Disease, St. Vincent' s University Hospital, Elm Park, Dublin 4 (Ireland); Lyng, Fiona; Howe, Orla [Radiation and Environmental Science Centre, Dublin Institute of Technology and St. Luke' s Hospital, Dublin (Ireland); Sheahan, Kieran; O' Donoghue, Diarmuid; Hyland, John; Mulcahy, Hugh [Centre for Colorectal Disease, St. Vincent' s University Hospital, Elm Park, Dublin 4 (Ireland); O' Sullivan, Jacintha, E-mail: jacintha.osullivan@ucd.ie [Centre for Colorectal Disease, St. Vincent' s University Hospital, Elm Park, Dublin 4 (Ireland)

    2009-10-02

    The bridge breakage fusion cycle is a chromosomal instability mechanism responsible for genomic changes. Radiation bystander effects induce genomic instability; however, the mechanism driving this instability is unknown. We examined if radiation and chemotherapy bystander effects induce early genomic instability events such as telomere shortening and bridge formation using a human colon cancer explant model. We assessed telomere lengths, bridge formations, mitochondrial membrane potential and levels of reactive oxygen species in bystander cells exposed to medium from irradiated and chemotherapy-treated explant tissues. Bystander cells exposed to media from 2 Gy, 5 Gy, FOLFOX treated tumor and matching normal tissue showed a significant reduction in telomere lengths (all p values <0.018) and an increase in bridge formations (all p values <0.017) compared to bystander cells treated with media from unirradiated tissue (0 Gy) at 24 h. There was no significant difference between 2 Gy and 5 Gy treatments, or between effects elicited by tumor versus matched normal tissue. Bystander cells exposed to media from 2 Gy irradiated tumor tissue showed significant depolarisation of the mitochondrial membrane potential (p = 0.012) and an increase in reactive oxygen species levels. We also used bystander cells overexpressing a mitochondrial antioxidant manganese superoxide dismutase (MnSOD) to examine if this antioxidant could rescue the mitochondrial changes and subsequently influence nuclear instability events. In MnSOD cells, ROS levels were reduced (p = 0.02) and mitochondrial membrane potential increased (p = 0.04). These events were coupled with a decrease in percentage of cells with anaphase bridges and a decrease in the number of cells undergoing telomere length shortening (p values 0.01 and 0.028 respectively). We demonstrate that radiation and chemotherapy bystander responses induce early genomic instability coupled with defects in mitochondrial function. Restoring

  4. The complete mitochondrial genome of Pauropus longiramus (Myriapoda: Pauropoda): implications on early diversification of the myriapods revealed from comparative analysis.

    Science.gov (United States)

    Dong, Yan; Sun, Hongying; Guo, Hua; Pan, Da; Qian, Changyuan; Hao, Sijing; Zhou, Kaiya

    2012-08-15

    Myriapods are among the earliest arthropods and may have evolved to become part of the terrestrial biota more than 400 million years ago. A noticeable lack of mitochondrial genome data from Pauropoda hampers phylogenetic and evolutionary studies within the subphylum Myriapoda. We sequenced the first complete mitochondrial genome of a microscopic pauropod, Pauropus longiramus (Arthropoda: Myriapoda), and conducted comprehensive mitogenomic analyses across the Myriapoda. The pauropod mitochondrial genome is a circular molecule of 14,487 bp long and contains the entire set of thirty-seven genes. Frequent intergenic overlaps occurred between adjacent tRNAs, and between tRNA and protein-coding genes. This is the first example of a mitochondrial genome with multiple intergenic overlaps and reveals a strategy for arthropods to effectively compact the mitochondrial genome by overlapping and truncating tRNA genes with neighbor genes, instead of only truncating tRNAs. Phylogenetic analyses based on protein-coding genes provide strong evidence that the sister group of Pauropoda is Symphyla. Additionally, approximately unbiased (AU) tests strongly support the Progoneata and confirm the basal position of Chilopoda in Myriapoda. This study provides an estimation of myriapod origins around 555 Ma (95% CI: 444-704 Ma) and this date is comparable with that of the Cambrian explosion and candidate myriapod-like fossils. A new time-scale suggests that deep radiations during early myriapod diversification occurred at least three times, not once as previously proposed. A Carboniferous origin of pauropods is congruent with the idea that these taxa are derived, rather than basal, progoneatans. Copyright © 2012 Elsevier B.V. All rights reserved.

  5. Genome-Wide Analyses Suggest Mechanisms Involving Early B-Cell Development in Canine IgA Deficiency.

    Directory of Open Access Journals (Sweden)

    Mia Olsson

    Full Text Available Immunoglobulin A deficiency (IgAD is the most common primary immune deficiency disorder in both humans and dogs, characterized by recurrent mucosal tract infections and a predisposition for allergic and other immune mediated diseases. In several dog breeds, low IgA levels have been observed at a high frequency and with a clinical resemblance to human IgAD. In this study, we used genome-wide association studies (GWAS to identify genomic regions associated with low IgA levels in dogs as a comparative model for human IgAD. We used a novel percentile groups-approach to establish breed-specific cut-offs and to perform analyses in a close to continuous manner. GWAS performed in four breeds prone to low IgA levels (German shepherd, Golden retriever, Labrador retriever and Shar-Pei identified 35 genomic loci suggestively associated (p <0.0005 to IgA levels. In German shepherd, three genomic regions (candidate genes include KIRREL3 and SERPINA9 were genome-wide significantly associated (p <0.0002 with IgA levels. A ~20kb long haplotype on CFA28, significantly associated (p = 0.0005 to IgA levels in Shar-Pei, was positioned within the first intron of the gene SLIT1. Both KIRREL3 and SLIT1 are highly expressed in the central nervous system and in bone marrow and are potentially important during B-cell development. SERPINA9 expression is restricted to B-cells and peaks at the time-point when B-cells proliferate into antibody-producing plasma cells. The suggestively associated regions were enriched for genes in Gene Ontology gene sets involving inflammation and early immune cell development.

  6. Elucidation of hepatitis C virus transmission and early diversification by single genome sequencing.

    Directory of Open Access Journals (Sweden)

    Hui Li

    Full Text Available A precise molecular identification of transmitted hepatitis C virus (HCV genomes could illuminate key aspects of transmission biology, immunopathogenesis and natural history. We used single genome sequencing of 2,922 half or quarter genomes from plasma viral RNA to identify transmitted/founder (T/F viruses in 17 subjects with acute community-acquired HCV infection. Sequences from 13 of 17 acute subjects, but none of 14 chronic controls, exhibited one or more discrete low diversity viral lineages. Sequences within each lineage generally revealed a star-like phylogeny of mutations that coalesced to unambiguous T/F viral genomes. Numbers of transmitted viruses leading to productive clinical infection were estimated to range from 1 to 37 or more (median = 4. Four acutely infected subjects showed a distinctly different pattern of virus diversity that deviated from a star-like phylogeny. In these cases, empirical analysis and mathematical modeling suggested high multiplicity virus transmission from individuals who themselves were acutely infected or had experienced a virus population bottleneck due to antiviral drug therapy. These results provide new quantitative and qualitative insights into HCV transmission, revealing for the first time virus-host interactions that successful vaccines or treatment interventions will need to overcome. Our findings further suggest a novel experimental strategy for identifying full-length T/F genomes for proteome-wide analyses of HCV biology and adaptation to antiviral drug or immune pressures.

  7. Elucidation of hepatitis C virus transmission and early diversification by single genome sequencing.

    Science.gov (United States)

    Li, Hui; Stoddard, Mark B; Wang, Shuyi; Blair, Lily M; Giorgi, Elena E; Parrish, Erica H; Learn, Gerald H; Hraber, Peter; Goepfert, Paul A; Saag, Michael S; Denny, Thomas N; Haynes, Barton F; Hahn, Beatrice H; Ribeiro, Ruy M; Perelson, Alan S; Korber, Bette T; Bhattacharya, Tanmoy; Shaw, George M

    2012-01-01

    A precise molecular identification of transmitted hepatitis C virus (HCV) genomes could illuminate key aspects of transmission biology, immunopathogenesis and natural history. We used single genome sequencing of 2,922 half or quarter genomes from plasma viral RNA to identify transmitted/founder (T/F) viruses in 17 subjects with acute community-acquired HCV infection. Sequences from 13 of 17 acute subjects, but none of 14 chronic controls, exhibited one or more discrete low diversity viral lineages. Sequences within each lineage generally revealed a star-like phylogeny of mutations that coalesced to unambiguous T/F viral genomes. Numbers of transmitted viruses leading to productive clinical infection were estimated to range from 1 to 37 or more (median = 4). Four acutely infected subjects showed a distinctly different pattern of virus diversity that deviated from a star-like phylogeny. In these cases, empirical analysis and mathematical modeling suggested high multiplicity virus transmission from individuals who themselves were acutely infected or had experienced a virus population bottleneck due to antiviral drug therapy. These results provide new quantitative and qualitative insights into HCV transmission, revealing for the first time virus-host interactions that successful vaccines or treatment interventions will need to overcome. Our findings further suggest a novel experimental strategy for identifying full-length T/F genomes for proteome-wide analyses of HCV biology and adaptation to antiviral drug or immune pressures.

  8. Whole-genome analyses resolve early branches in the tree of life of modern birds

    DEFF Research Database (Denmark)

    Sicheritz-Pontén, Thomas; Li, Cai; Li, Bo

    2014-01-01

    or close relationships. We identified the first divergence in Neoaves, two groups we named Passerea and Columbea, representing independent lineages of diverse and convergently evolved land and water bird species. Among Passerea, we infer the common ancestor of core landbirds to have been an apex predator......To better determine the history of modern birds, we performed a genome-scale phylogenetic analysis of 48 species representing all orders of Neoaves using phylogenomic methods created to handle genome-scale data. We recovered a highly resolved tree that confirms previously controversial sister...

  9. Local adaptation at the transcriptome level in brown trout: Evidence from early life history temperature genomic reaction norms

    DEFF Research Database (Denmark)

    Meier, Kristian; Hansen, Michael Møller; Normandeau, Eric

    2014-01-01

    reaction norms and significantly higher QST than FST among populations for two early life-history traits. In the present study we investigated if genomic reaction norm patterns were also present at the transcriptome level. Eggs from the three populations were incubated at two temperatures (5 and 8 degrees......, the latter indicating locally adapted reaction norms. Moreover, the reaction norms paralleled those observed previously at early life-history traits. We identified 90 cDNA clones among the genes with an interaction effect that were differently expressed between the ecologically divergent populations....... These included genes involved in immune- and stress response. We observed less plasticity in the resident as compared to the anadromous populations, possibly reflecting that the degree of environmental heterogeneity encountered by individuals throughout their life cycle will select for variable level...

  10. Identification of a Genomic Signature Predicting for Recurrence in Early Stage Ovarian Cancer

    Science.gov (United States)

    2013-10-01

    to our industrial collaborations, we expect the genomic signature to rapidly tranisition into a commercially available tool. In addition, all...in archival samples using multiplexed, color-coded probes. BMC Biotechnol. 2011;11:46. 12. Group SCotPHSR. Final report on the aspirin component of

  11. Genome-Scale Transcriptomic Insights into Early-Stage Fruit Development in Woodland Strawberry Fragaria vesca[C][W

    Science.gov (United States)

    Kang, Chunying; Darwish, Omar; Geretz, Aviva; Shahan, Rachel; Alkharouf, Nadim; Liu, Zhongchi

    2013-01-01

    Fragaria vesca, a diploid woodland strawberry with a small and sequenced genome, is an excellent model for studying fruit development. The strawberry fruit is unique in that the edible flesh is actually enlarged receptacle tissue. The true fruit are the numerous dry achenes dotting the receptacle’s surface. Auxin produced from the achene is essential for the receptacle fruit set, a paradigm for studying crosstalk between hormone signaling and development. To investigate the molecular mechanism underlying strawberry fruit set, next-generation sequencing was employed to profile early-stage fruit development with five fruit tissue types and five developmental stages from floral anthesis to enlarged fruits. This two-dimensional data set provides a systems-level view of molecular events with precise spatial and temporal resolution. The data suggest that the endosperm and seed coat may play a more prominent role than the embryo in auxin and gibberellin biosynthesis for fruit set. A model is proposed to illustrate how hormonal signals produced in the endosperm and seed coat coordinate seed, ovary wall, and receptacle fruit development. The comprehensive fruit transcriptome data set provides a wealth of genomic resources for the strawberry and Rosaceae communities as well as unprecedented molecular insight into fruit set and early stage fruit development. PMID:23898027

  12. Population genomics of early events in the ecological differentiation of bacteria

    Energy Technology Data Exchange (ETDEWEB)

    Shapiro, Jesse B. [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States); Broad Inst., Cambridge, MA (United States); Friedman, Jonatan [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States); Cordero, Otto X. [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States); Preheim, Sarah P.. [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States); Timberlake, Sonia C. [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States); Szabo, Gitta [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States); Polz, Martin F. [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States); Alm, Eric J. [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States); Broad Inst., Cambridge, MA (United States)

    2012-04-06

    Genetic exchange is common among bacteria, but its effect on population diversity during ecological differentiation remains controversial. A fundamental question is whether advantageous mutations lead to selection of clonal genomes or, as in sexual eukaryotes, sweep through populations on their own. Here, we show that in two recently diverged populations of ocean bacteria, ecological differentiation has occurred akin to a sexual mechanism: A few genome regions have swept through subpopulations in a habitat-specific manner, accompanied by gradual separation of gene pools as evidenced by increased habitat specificity of the most recent recombinations. These findings reconcile previous, seemingly contradictory empirical observations of the genetic structure of bacterial populations and point to a more unified process of differentiation in bacteria and sexual eukaryotes than previously thought.

  13. A genome-wide association study of body mass index across early life and childhood

    OpenAIRE

    Warrington, N.; Howe, L.; Paternoster, L; Kaakinen, M; Herrala, S; Huikari, V.; Wu, Y.; Kemp, J.; Timpson, N; St Pourcain, B; Smith, G.; Tilling, K; Jarvelin, M.; Pennell, C; Evans, D.

    2015-01-01

    Background: Several studies have investigated the effect of known adult body mass index (BMI) associated single nucleotide polymorphisms (SNPs) on BMI in childhood. There has been no genome-wide association study (GWAS) of BMI trajectories over childhood. Methods: We conducted a GWAS meta-analysis of BMI trajectories from 1 to 17 years of age in 9377 children (77 967 measurements) from the Avon Longitudinal Study of Parents and Children (ALSPAC) and the Western Australian Pregnancy Cohort (Ra...

  14. A genome-wide association study of body mass index across early life and childhood.

    Science.gov (United States)

    Warrington, Nicole M; Howe, Laura D; Paternoster, Lavinia; Kaakinen, Marika; Herrala, Sauli; Huikari, Ville; Wu, Yan Yan; Kemp, John P; Timpson, Nicholas J; St Pourcain, Beate; Davey Smith, George; Tilling, Kate; Jarvelin, Marjo-Riitta; Pennell, Craig E; Evans, David M; Lawlor, Debbie A; Briollais, Laurent; Palmer, Lyle J

    2015-04-01

    Several studies have investigated the effect of known adult body mass index (BMI) associated single nucleotide polymorphisms (SNPs) on BMI in childhood. There has been no genome-wide association study (GWAS) of BMI trajectories over childhood. We conducted a GWAS meta-analysis of BMI trajectories from 1 to 17 years of age in 9377 children (77,967 measurements) from the Avon Longitudinal Study of Parents and Children (ALSPAC) and the Western Australian Pregnancy Cohort (Raine) Study. Genome-wide significant loci were examined in a further 3918 individuals (48,530 measurements) from Northern Finland. Linear mixed effects models with smoothing splines were used in each cohort for longitudinal modelling of BMI. A novel SNP, downstream from the FAM120AOS gene on chromosome 9, was detected in the meta-analysis of ALSPAC and Raine. This association was driven by a difference in BMI at 8 years (T allele of rs944990 increased BMI; PSNP = 1.52 × 10(-8)), with a modest association with change in BMI over time (PWald(Change) = 0.006). Three known adult BMI-associated loci (FTO, MC4R and ADCY3) and one childhood obesity locus (OLFM4) reached genome-wide significance (PWald < 1.13 × 10(-8)) with BMI at 8 years and/or change over time. This GWAS of BMI trajectories over childhood identified a novel locus that warrants further investigation. We also observed genome-wide significance with previously established obesity loci, making the novel observation that these loci affected both the level and the rate of change in BMI. We have demonstrated that the use of repeated measures data can increase power to allow detection of genetic loci with smaller sample sizes. © The Author 2015; all rights reserved. Published by Oxford University Press on behalf of the International Epidemiological Association.

  15. Identification of a Genomic Signature Predicting for Recurrence in Early Stage Ovarian Cancer

    Science.gov (United States)

    2015-12-01

    Yet it is clear that many of these women are cured by surgery alone. The overtreatment results from our inability to accurately identify patients...dye was washed sequentially by 70% and 90% EtOH. Sections were then dehydrated in 100% EtOH and air-dried before macro- dissection using a sterile ...correlative clinical and genomic studies on these tumors that are so poorly characterized and yet significantly affect the life of so many women

  16. Whole-genome analyses resolve early branches in the tree of life of modern birds

    Science.gov (United States)

    Jarvis, Erich D.; Mirarab, Siavash; Aberer, Andre J.; Li, Bo; Houde, Peter; Li, Cai; Ho, Simon Y. W.; Faircloth, Brant C.; Nabholz, Benoit; Howard, Jason T.; Suh, Alexander; Weber, Claudia C.; da Fonseca, Rute R.; Li, Jianwen; Zhang, Fang; Li, Hui; Zhou, Long; Narula, Nitish; Liu, Liang; Ganapathy, Ganesh; Boussau, Bastien; Bayzid, Md. Shamsuzzoha; Zavidovych, Volodymyr; Subramanian, Sankar; Gabaldón, Toni; Capella-Gutiérrez, Salvador; Huerta-Cepas, Jaime; Rekepalli, Bhanu; Munch, Kasper; Schierup, Mikkel; Lindow, Bent; Warren, Wesley C.; Ray, David; Green, Richard E.; Bruford, Michael W.; Zhan, Xiangjiang; Dixon, Andrew; Li, Shengbin; Li, Ning; Huang, Yinhua; Derryberry, Elizabeth P.; Bertelsen, Mads Frost; Sheldon, Frederick H.; Brumfield, Robb T.; Mello, Claudio V.; Lovell, Peter V.; Wirthlin, Morgan; Schneider, Maria Paula Cruz; Prosdocimi, Francisco; Samaniego, José Alfredo; Velazquez, Amhed Missael Vargas; Alfaro-Núñez, Alonzo; Campos, Paula F.; Petersen, Bent; Sicheritz-Ponten, Thomas; Pas, An; Bailey, Tom; Scofield, Paul; Bunce, Michael; Lambert, David M.; Zhou, Qi; Perelman, Polina; Driskell, Amy C.; Shapiro, Beth; Xiong, Zijun; Zeng, Yongli; Liu, Shiping; Li, Zhenyu; Liu, Binghang; Wu, Kui; Xiao, Jin; Yinqi, Xiong; Zheng, Qiuemei; Zhang, Yong; Yang, Huanming; Wang, Jian; Smeds, Linnea; Rheindt, Frank E.; Braun, Michael; Fjeldsa, Jon; Orlando, Ludovic; Barker, F. Keith; Jønsson, Knud Andreas; Johnson, Warren; Koepfli, Klaus-Peter; O’Brien, Stephen; Haussler, David; Ryder, Oliver A.; Rahbek, Carsten; Willerslev, Eske; Graves, Gary R.; Glenn, Travis C.; McCormack, John; Burt, Dave; Ellegren, Hans; Alström, Per; Edwards, Scott V.; Stamatakis, Alexandros; Mindell, David P.; Cracraft, Joel; Braun, Edward L.; Warnow, Tandy; Jun, Wang; Gilbert, M. Thomas P.; Zhang, Guojie

    2015-01-01

    To better determine the history of modern birds, we performed a genome-scale phylogenetic analysis of 48 species representing all orders of Neoaves using phylogenomic methods created to handle genome-scale data. We recovered a highly resolved tree that confirms previously controversial sister or close relationships. We identified the first divergence in Neoaves, two groups we named Passerea and Columbea, representing independent lineages of diverse and convergently evolved land and water bird species. Among Passerea, we infer the common ancestor of core landbirds to have been an apex predator and confirm independent gains of vocal learning. Among Columbea, we identify pigeons and flamingoes as belonging to sister clades. Even with whole genomes, some of the earliest branches in Neoaves proved challenging to resolve, which was best explained by massive protein-coding sequence convergence and high levels of incomplete lineage sorting that occurred during a rapid radiation after the Cretaceous-Paleogene mass extinction event about 66 million years ago. PMID:25504713

  17. Transformation by Oncogenic Ras Expands the Early Genomic Response to Transforming Growth Factor β in Intestinal Epithelial Cells

    Directory of Open Access Journals (Sweden)

    Carl E. Allen

    2008-10-01

    Full Text Available A substantial body of evidence implicates TGFβ as a tumor promoter in epithelial cells that have become resistant to its tumor suppressor activity. To better understand early, genome-wide TGFβ responses in cells resistant to growth inhibition by TGFβ, we used microarray analysis in a well-defined cell culture system of sensitive and resistant intestinal epithelial cells. TGFβ-regulated gene expression in TGFβ-growth-sensitive, nontransformed rat intestinal epithelial cells (RIE-1 was compared to expression in TGFβ-growth-resistant RIE cells stably transformed by oncogenic Ras(12V. Treatment of RIE-1 cells with 2 ng/ml TGFβ1 for 1 hour increased the expression of eight gene sequences by 2.6-fold or more, whereas eight were down regulated 2.6-fold. In RIE-Ras(12V cells, 42 gene sequences were upregulated and only 3 were down-regulated. Comparison of RIE and RIE-Ras(12V identified 37 gene sequences as unique, Ras-dependent genomic targets of TGFβ1. TGFβ-regulation of connective tissue growth factor and vascular endothelial growth factor, two genes up-regulated in RIE-Ras cells and previously implicated in tumor promotion, was independently confirmed and further characterized by Northern analysis. Our data indicate that overexpression of oncogenic Ras in intestinal epithelial cells confers a significantly expanded repertoire of robust, early transcriptional responses to TGFβ via signaling pathways yet to be fully elucidated but including the canonical Raf-1/MAPK/Erk pathway. Loss of sensitivity to growth inhibition by TGFβ does not abrogate TGFβ signaling and actually expands the early transcriptional response to TGFβ1. Expression of some of these genes may confer to Ras-transformed cells characteristics favorable for tumor promotion.

  18. Local adaptation at the transcriptome level in brown trout: Evidence from early life history temperature genomic reaction norms

    DEFF Research Database (Denmark)

    Meier, Kristian; Hansen, Michael Møller; Normandeau, Eric

    2014-01-01

    Local adaptation and its underlying molecular basis has long been a key focus in evolutionary biology. There has recently been increased interest in the evolutionary role of plasticity and the molecular mechanisms underlying local adaptation. Using transcriptome analysis, we assessed differences...... reaction norms and significantly higher QST than FST among populations for two early life-history traits. In the present study we investigated if genomic reaction norm patterns were also present at the transcriptome level. Eggs from the three populations were incubated at two temperatures (5 and 8 degrees....... These included genes involved in immune- and stress response. We observed less plasticity in the resident as compared to the anadromous populations, possibly reflecting that the degree of environmental heterogeneity encountered by individuals throughout their life cycle will select for variable level...

  19. Genetics of early-onset Parkinson's disease in Finland: exome sequencing and genome-wide association study.

    Science.gov (United States)

    Siitonen, Ari; Nalls, Michael A; Hernández, Dena; Gibbs, J Raphael; Ding, Jinhui; Ylikotila, Pauli; Edsall, Connor; Singleton, Andrew; Majamaa, Kari

    2017-05-01

    Several genes and risk factors are associated with Parkinson's disease (PD). Although many of the genetic markers belong to a common pathway, a unifying pathogenetic mechanism is yet to be found. Also, missing heritability analyses have estimated that only part of the genetic influence contributing to PD has been found. Here, we carried out whole-exome sequencing (WES) on 438 Finnish patients with early-onset PD. We also reanalyzed previous data from genome-wide association studies (GWAS) on the same cohort. Variants in the CEL gene/locus were associated with PD in both GWAS and WES analysis. Exome-wide gene-based association tests also identified the MPHOSPH10, TAS2R19, and SERPINA1 genes in the discovery data set (p SERPINA1 had OR of 1.27. We identified several candidate genes, but further investigation is required to determine the role of these genes in PD. Copyright © 2017 Elsevier Inc. All rights reserved.

  20. DNA Methylation: A Mechanism for Embedding Early Life Experiences in the Genome

    Science.gov (United States)

    Szyf, Moshe; Bick, Johanna

    2013-01-01

    Although epidemiological data provide evidence that early life experience plays a critical role in human development, the mechanism of how this works remains in question. Recent data from human and animal literature suggest that epigenetic changes, such as DNA methylation, are involved not only in cellular differentiation but also in the…

  1. Computational Identification Raises a Riddle for Distribution of Putative NACHT NTPases in the Genome of Early Green Plants.

    Directory of Open Access Journals (Sweden)

    Preeti Arya

    Full Text Available NACHT NTPases and AP-ATPases belongs to STAND (signal transduction ATPases with numerous domain P-loop NTPase class, which are known to be involved in defense signaling pathways and apoptosis regulation. The AP-ATPases (also known as NB-ARC and NACHT NTPases are widely spread throughout all kingdoms of life except in plants, where only AP-ATPases have been extensively studied in the scenario of plant defense response against pathogen invasion and in hypersensitive response (HR. In the present study, we have employed a genome-wide survey (using stringent computational analysis of 67 diverse organisms viz., archaebacteria, cyanobacteria, fungi, animalia and plantae to revisit the evolutionary history of these two STAND P-loop NTPases. This analysis divulged the presence of NACHT NTPases in the early green plants (green algae and the lycophyte which had not been previously reported. These NACHT NTPases were known to be involved in diverse functional activities such as transcription regulation in addition to the defense signaling cascades depending on the domain association. In Chalmydomonas reinhardtii, a green algae, WD40 repeats found to be at the carboxyl-terminus of NACHT NTPases suggest probable role in apoptosis regulation. Moreover, the genome of Selaginella moellendorffii, an extant lycophyte, intriguingly shows the considerable number of both AP-ATPases and NACHT NTPases in contrast to a large repertoire of AP-ATPases in plants and emerge as an important node in the evolutionary tree of life. The large complement of AP-ATPases overtakes the function of NACHT NTPases and plausible reason behind the absence of the later in the plant lineages. The presence of NACHT NTPases in the early green plants and phyletic patterns results from this study raises a quandary for the distribution of this STAND P-loop NTPase with the apparent horizontal gene transfer from cyanobacteria.

  2. Computational Identification Raises a Riddle for Distribution of Putative NACHT NTPases in the Genome of Early Green Plants

    Science.gov (United States)

    Arya, Preeti; Acharya, Vishal

    2016-01-01

    NACHT NTPases and AP-ATPases belongs to STAND (signal transduction ATPases with numerous domain) P-loop NTPase class, which are known to be involved in defense signaling pathways and apoptosis regulation. The AP-ATPases (also known as NB-ARC) and NACHT NTPases are widely spread throughout all kingdoms of life except in plants, where only AP-ATPases have been extensively studied in the scenario of plant defense response against pathogen invasion and in hypersensitive response (HR). In the present study, we have employed a genome-wide survey (using stringent computational analysis) of 67 diverse organisms viz., archaebacteria, cyanobacteria, fungi, animalia and plantae to revisit the evolutionary history of these two STAND P-loop NTPases. This analysis divulged the presence of NACHT NTPases in the early green plants (green algae and the lycophyte) which had not been previously reported. These NACHT NTPases were known to be involved in diverse functional activities such as transcription regulation in addition to the defense signaling cascades depending on the domain association. In Chalmydomonas reinhardtii, a green algae, WD40 repeats found to be at the carboxyl-terminus of NACHT NTPases suggest probable role in apoptosis regulation. Moreover, the genome of Selaginella moellendorffii, an extant lycophyte, intriguingly shows the considerable number of both AP-ATPases and NACHT NTPases in contrast to a large repertoire of AP-ATPases in plants and emerge as an important node in the evolutionary tree of life. The large complement of AP-ATPases overtakes the function of NACHT NTPases and plausible reason behind the absence of the later in the plant lineages. The presence of NACHT NTPases in the early green plants and phyletic patterns results from this study raises a quandary for the distribution of this STAND P-loop NTPase with the apparent horizontal gene transfer from cyanobacteria. PMID:26930396

  3. Ancient genomes show social and reproductive behavior of early Upper Paleolithic foragers

    DEFF Research Database (Denmark)

    Sikora, Martin; Seguin-Orlando, Andaine; Sousa, Vitor C.

    2017-01-01

    Present-day hunter-gatherers (HGs) live in multilevel social groups essential to sustain a population structure characterized by limited levels of within-band relatedness and inbreeding. When these wider social networks evolved among HGs is unknown. Here, we investigate whether the contemporary HG......, with limited kinship and levels of inbreeding similar to HG populations. Our findings suggest that UP social organization was similar to that of living HGs, with limited relatedness within residential groups embedded in a larger mating network....... strategy was already present in the Upper Paleolithic (UP), using complete genome sequences from Sunghir, a site dated to ~34 thousand years BP (kya) containing multiple anatomically modern human (AMH) individuals. We demonstrate that individuals at Sunghir derive from a population of small effective size...

  4. Insights from early experience of a Rare Disease Genomic Medicine Multidisciplinary Team: a qualitative study.

    Science.gov (United States)

    Ormondroyd, Elizabeth; Mackley, Michael P; Blair, Edward; Craft, Jude; Knight, Julian C; Taylor, John; Taylor, Jenny C; Wilkie, Andrew Om; Watkins, Hugh

    2017-06-01

    Whole-exome/whole-genome sequencing (WES/WGS) has the potential to enhance genetic diagnosis of rare disease, and is increasingly becoming part of routine clinical care in mainstream medicine. Effective translation will require ongoing efforts in a number of areas including: selection of appropriate patients, provision of effective consent, pre- and post-test genetic counselling, improving variant interpretation algorithms and practices, and management of secondary findings including those found incidentally and those actively sought. Allied to this is the need for an effective education programme for all members of clinical teams involved in care of patients with rare disease, as well as to maintain public confidence in the use of these technologies. We established a Genomic Medicine Multidisciplinary Team (GM-MDT) in 2014 to build on the experiences of earlier successful research-based WES/WGS studies, to address these needs and to review results including pertinent and secondary findings. Here we report on a qualitative study of decision-making in the GM-MDT combined with analysis of semi-structured interviews with GM-MDT members. Study findings show that members appreciate the clinical and scientific diversity of the GM-MDT and value it for education and oversight. To date, discussions have focussed on case selection including the extent and interpretation of clinical and family history information required to establish likely monogenic aetiology and inheritance model. Achieving a balance between effective use of WES/WGS - prioritising cases in a diverse and highly complex patient population where WES/WGS will be tractable - and meeting the recruitment targets of a large project is considered challenging.

  5. Avian papillomaviruses: the parrot Psittacus erithacus papillomavirus (PePV genome has a unique organization of the early protein region and is phylogenetically related to the chaffinch papillomavirus

    Directory of Open Access Journals (Sweden)

    Jenson A Bennett

    2002-07-01

    Full Text Available Abstract Background An avian papillomavirus genome has been cloned from a cutaneous exophytic papilloma from an African grey parrot (Psittacus erithacus. The nucleotide sequence, genome organization, and phylogenetic position of the Psittacus erithacus papillomavirus (PePV were determined. This PePV sequence represents the first complete avian papillomavirus genome defined. Results The PePV genome (7304 basepairs differs from other papillomaviruses, in that it has a unique organization of the early protein region lacking classical E6 and E7 open reading frames. Phylogenetic comparison of the PePV sequence with partial E1 and L1 sequences of the chaffinch (Fringilla coelebs papillomavirus (FPV reveals that these two avian papillomaviruses form a monophyletic cluster with a common branch that originates near the unresolved center of the papillomavirus evolutionary tree. Conclusions The PePV genome has a unique layout of the early protein region which represents a novel prototypic genomic organization for avian papillomaviruses. The close relationship between PePV and FPV, and between their Psittaciformes and Passeriformes hosts, supports the hypothesis that papillomaviruses have co-evolved and speciated together with their host species throughout evolution.

  6. Optimization of CRISPR/Cas9 genome editing for loss-of-function in the early chick embryo.

    Science.gov (United States)

    Gandhi, Shashank; Piacentino, Michael L; Vieceli, Felipe M; Bronner, Marianne E

    2017-12-01

    The advent of CRISPR/Cas9 has made genome editing possible in virtually any organism, including those not previously amenable to genetic manipulations. Here, we present an optimization of CRISPR/Cas9 for application to early avian embryos with improved efficiency via a three-fold strategy. First, we employed Cas9 protein flanked with two nuclear localization signal sequences for improved nuclear localization. Second, we used a modified guide RNA (gRNA) scaffold that obviates premature termination of transcription and unstable Cas9-gRNA interactions. Third, we used a chick-specific U6 promoter that yields 4-fold higher gRNA expression than the previously utilized human U6. For rapid screening of gRNAs for in vivo applications, we also generated a chicken fibroblast cell line that constitutively expresses Cas9. As proof of principle, we performed electroporation-based loss-of-function studies in the early chick embryo to knock out Pax7 and Sox10, key transcription factors with known functions in neural crest development. The results show that CRISPR/Cas9-mediated deletion causes loss of their respective proteins and transcripts, as well as predicted downstream targets. Taken together, the results reveal the utility of this optimized CRISPR/Cas9 method for targeted gene knockout in chicken embryos in a manner that is reproducible, robust and specific. Copyright © 2017 Elsevier Inc. All rights reserved.

  7. Replication in mammalian cells recapitulates the locus-specific differences in somatic instability of genomic GAA triplet-repeats.

    Science.gov (United States)

    M Rindler, Paul; Clark, Rhonda M; Pollard, Laura M; De Biase, Irene; Bidichandani, Sanjay I

    2006-01-01

    Friedreich ataxia is caused by an expanded (GAA.TTC)n sequence in intron 1 of the FXN gene. Small pool PCR analysis showed that pure (GAA.TTC)44+ sequences at the FXN locus are unstable in somatic cells in vivo, displaying both expansions and contractions. On searching the entire human and mouse genomes we identified three other genomic loci with pure (GAA.TTC)44+ sequences. Alleles at these loci showed mutation loads of GAA.TTC)n sequences. Repeat instability was evaluated following replication of a (GAA.TTC)115 sequence in transfected COS1 cells under the control of the SV40 origin of replication located at one of five different distances from the repeat. Indeed, depending on the location of the SV40 origin relative to the (GAA.TTC)n sequence, we noted either no instability, predominant expansion or both expansion and contraction. These data suggest that mammalian DNA replication is a possible mechanism underlying locus-specific differences in instability of GAA triplet-repeat sequences.

  8. Comparative Genomics Including the Early-Diverging Smut Fungus Ceraceosorus bombacis Reveals Signatures of Parallel Evolution within Plant and Animal Pathogens of Fungi and Oomycetes.

    Science.gov (United States)

    Sharma, Rahul; Xia, Xiaojuan; Riess, Kai; Bauer, Robert; Thines, Marco

    2015-08-27

    Ceraceosorus bombacis is an early-diverging lineage of smut fungi and a pathogen of cotton trees (Bombax ceiba). To study the evolutionary genomics of smut fungi in comparison with other fungal and oomycete pathogens, the genome of C. bombacis was sequenced and comparative genomic analyses were performed. The genome of 26.09 Mb encodes for 8,024 proteins, of which 576 are putative-secreted effector proteins (PSEPs). Orthology analysis revealed 30 ortholog PSEPs among six Ustilaginomycotina genomes, the largest groups of which are lytic enzymes, such as aspartic peptidase and glycoside hydrolase. Positive selection analyses revealed the highest percentage of positively selected PSEPs in C. bombacis compared with other Ustilaginomycotina genomes. Metabolic pathway analyses revealed the absence of genes encoding for nitrite and nitrate reductase in the genome of the human skin pathogen Malassezia globosa, but these enzymes are present in the sequenced plant pathogens in smut fungi. Interestingly, these genes are also absent in cultivable oomycete animal pathogens, while nitrate reductase has been lost in cultivable oomycete plant pathogens. Similar patterns were also observed for obligate biotrophic and hemi-biotrophic fungal and oomycete pathogens. Furthermore, it was found that both fungal and oomycete animal pathogen genomes are lacking cutinases and pectinesterases. Overall, these findings highlight the parallel evolution of certain genomic traits, revealing potential common evolutionary trajectories among fungal and oomycete pathogens, shaping the pathogen genomes according to their lifestyle. © The Author(s) 2015. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.

  9. Early bacterial genome detection in body fluids from patients with severe sepsis: a pilot study.

    Science.gov (United States)

    Dugard, Anthony; Chainier, Delphine; Barraud, Olivier; Garnier, Fabien; Ploy, Marie-Cécile; Vignon, Philippe; François, Bruno

    2012-08-01

    The purpose of this study is to evaluate the feasibility and interest of real-time polymerase chain reaction (RT-PCR) testing for bacterial genomes in body fluids other than blood in patients with acute severe sepsis. Twenty-six consecutive patients admitted for severe sepsis or septic shock were prospectively studied. Body fluids were sampled as clinically indicated and tested using standard microbiological methods and modified RT-PCR methods (universal PCR and specific PCRs). Results of standard microbiological tests were compared with those of PCR tests. Direct RT-PCR testing was successfully performed on all nonblood body fluids. Of 29 body fluids collected, 23 were positive for at least 1 microorganism with conventional tests. Of 18 microbiological tests positive for a single microorganism, 15 fully agreed with RT-PCR assays, and the remaining 3 samples were infected with bacteria not screened by PCR testing. Among the 5 polymicrobial results obtained with conventional tests, RT-PCR agreed in 4 patients. The RT-PCR tests allowed additional clinically relevant bacterial identification in 3 of 6 samples with negative microbiological culture. Our results indicate that direct PCR testing may improve the detection of bacteria in body fluids other than blood in patients with acute severe sepsis. Copyright © 2012 Elsevier Inc. All rights reserved.

  10. Clinical whole-genome sequencing in severe early-onset epilepsy reveals new genes and improves molecular diagnosis.

    Science.gov (United States)

    Martin, Hilary C; Kim, Grace E; Pagnamenta, Alistair T; Murakami, Yoshiko; Carvill, Gemma L; Meyer, Esther; Copley, Richard R; Rimmer, Andrew; Barcia, Giulia; Fleming, Matthew R; Kronengold, Jack; Brown, Maile R; Hudspith, Karl A; Broxholme, John; Kanapin, Alexander; Cazier, Jean-Baptiste; Kinoshita, Taroh; Nabbout, Rima; Bentley, David; McVean, Gil; Heavin, Sinéad; Zaiwalla, Zenobia; McShane, Tony; Mefford, Heather C; Shears, Deborah; Stewart, Helen; Kurian, Manju A; Scheffer, Ingrid E; Blair, Edward; Donnelly, Peter; Kaczmarek, Leonard K; Taylor, Jenny C

    2014-06-15

    In severe early-onset epilepsy, precise clinical and molecular genetic diagnosis is complex, as many metabolic and electro-physiological processes have been implicated in disease causation. The clinical phenotypes share many features such as complex seizure types and developmental delay. Molecular diagnosis has historically been confined to sequential testing of candidate genes known to be associated with specific sub-phenotypes, but the diagnostic yield of this approach can be low. We conducted whole-genome sequencing (WGS) on six patients with severe early-onset epilepsy who had previously been refractory to molecular diagnosis, and their parents. Four of these patients had a clinical diagnosis of Ohtahara Syndrome (OS) and two patients had severe non-syndromic early-onset epilepsy (NSEOE). In two OS cases, we found de novo non-synonymous mutations in the genes KCNQ2 and SCN2A. In a third OS case, WGS revealed paternal isodisomy for chromosome 9, leading to identification of the causal homozygous missense variant in KCNT1, which produced a substantial increase in potassium channel current. The fourth OS patient had a recessive mutation in PIGQ that led to exon skipping and defective glycophosphatidyl inositol biosynthesis. The two patients with NSEOE had likely pathogenic de novo mutations in CBL and CSNK1G1, respectively. Mutations in these genes were not found among 500 additional individuals with epilepsy. This work reveals two novel genes for OS, KCNT1 and PIGQ. It also uncovers unexpected genetic mechanisms and emphasizes the power of WGS as a clinical tool for making molecular diagnoses, particularly for highly heterogeneous disorders. © The Author 2014. Published by Oxford University Press.

  11. Economic evaluation of genomic test-directed chemotherapy for early-stage lymph node-positive breast cancer.

    Science.gov (United States)

    Hall, Peter S; McCabe, Christopher; Stein, Robert C; Cameron, David

    2012-01-04

    Multi-parameter genomic tests identify patients with early-stage breast cancer who are likely to derive little benefit from adjuvant chemotherapy. These tests can potentially spare patients the morbidity from unnecessary chemotherapy and reduce costs. However, the costs of the test must be balanced against the health benefits and cost savings produced. This economic evaluation compared genomic test-directed chemotherapy using the Oncotype DX 21-gene assay with chemotherapy for all eligible patients with lymph node-positive, estrogen receptor-positive early-stage breast cancer. We performed a cost-utility analysis using a state transition model to calculate expected costs and benefits over the lifetime of a cohort of women with estrogen receptor-positive lymph node-positive breast cancer from a UK perspective. Recurrence rates for Oncotype DX-selected risk groups were derived from parametric survival models fitted to data from the Southwest Oncology Group 8814 trial. The primary outcome was the incremental cost-effectiveness ratio, expressed as the cost (in 2011 GBP) per quality-adjusted life-year (QALY). Confidence in the incremental cost-effectiveness ratio was expressed as a probability of cost-effectiveness and was calculated using Monte Carlo simulation. Model parameters were varied deterministically and probabilistically in sensitivity analysis. Value of information analysis was used to rank priorities for further research. The incremental cost-effectiveness ratio for Oncotype DX-directed chemotherapy using a recurrence score cutoff of 18 was £5529 (US $8852) per QALY. The probability that test-directed chemotherapy is cost-effective was 0.61 at a willingness-to-pay threshold of £30 000 per QALY. Results were sensitive to the recurrence rate, long-term anthracycline-related cardiac toxicity, quality of life, test cost, and the time horizon. The highest priority for further research identified by value of information analysis is the recurrence rate in test

  12. Deciphering human immunodeficiency virus type 1 transmission and early envelope diversification by single-genome amplification and sequencing.

    Science.gov (United States)

    Salazar-Gonzalez, Jesus F; Bailes, Elizabeth; Pham, Kimmy T; Salazar, Maria G; Guffey, M Brad; Keele, Brandon F; Derdeyn, Cynthia A; Farmer, Paul; Hunter, Eric; Allen, Susan; Manigart, Olivier; Mulenga, Joseph; Anderson, Jeffrey A; Swanstrom, Ronald; Haynes, Barton F; Athreya, Gayathri S; Korber, Bette T M; Sharp, Paul M; Shaw, George M; Hahn, Beatrice H

    2008-04-01

    Accurate identification of the transmitted virus and sequences evolving from it could be instrumental in elucidating the transmission of human immunodeficiency virus type 1 (HIV-1) and in developing vaccines, drugs, or microbicides to prevent infection. Here we describe an experimental approach to analyze HIV-1 env genes as intact genetic units amplified from plasma virion RNA by single-genome amplification (SGA), followed by direct sequencing of uncloned DNA amplicons. We show that this strategy precludes in vitro artifacts caused by Taq-induced nucleotide substitutions and template switching, provides an accurate representation of the env quasispecies in vivo, and has an overall error rate (including nucleotide misincorporation, insertion, and deletion) of less than 8 x 10(-5). Applying this method to the analysis of virus in plasma from 12 Zambian subjects from whom samples were obtained within 3 months of seroconversion, we show that transmitted or early founder viruses can be identified and that molecular pathways and rates of early env diversification can be defined. Specifically, we show that 8 of the 12 subjects were each infected by a single virus, while 4 others acquired more than one virus; that the rate of virus evolution in one subject during an 80-day period spanning seroconversion was 1.7 x 10(-5) substitutions per site per day; and that evidence of strong immunologic selection can be seen in Env and overlapping Rev sequences based on nonrandom accumulation of nonsynonymous mutations. We also compared the results of the SGA approach with those of more-conventional bulk PCR amplification methods performed on the same patient samples and found that the latter is associated with excessive rates of Taq-induced recombination, nucleotide misincorporation, template resampling, and cloning bias. These findings indicate that HIV-1 env genes, other viral genes, and even full-length viral genomes responsible for productive clinical infection can be identified

  13. Deciphering Human Immunodeficiency Virus Type 1 Transmission and Early Envelope Diversification by Single-Genome Amplification and Sequencing▿

    Science.gov (United States)

    Salazar-Gonzalez, Jesus F.; Bailes, Elizabeth; Pham, Kimmy T.; Salazar, Maria G.; Guffey, M. Brad; Keele, Brandon F.; Derdeyn, Cynthia A.; Farmer, Paul; Hunter, Eric; Allen, Susan; Manigart, Olivier; Mulenga, Joseph; Anderson, Jeffrey A.; Swanstrom, Ronald; Haynes, Barton F.; Athreya, Gayathri S.; Korber, Bette T. M.; Sharp, Paul M.; Shaw, George M.; Hahn, Beatrice H.

    2008-01-01

    Accurate identification of the transmitted virus and sequences evolving from it could be instrumental in elucidating the transmission of human immunodeficiency virus type 1 (HIV-1) and in developing vaccines, drugs, or microbicides to prevent infection. Here we describe an experimental approach to analyze HIV-1 env genes as intact genetic units amplified from plasma virion RNA by single-genome amplification (SGA), followed by direct sequencing of uncloned DNA amplicons. We show that this strategy precludes in vitro artifacts caused by Taq-induced nucleotide substitutions and template switching, provides an accurate representation of the env quasispecies in vivo, and has an overall error rate (including nucleotide misincorporation, insertion, and deletion) of less than 8 × 10−5. Applying this method to the analysis of virus in plasma from 12 Zambian subjects from whom samples were obtained within 3 months of seroconversion, we show that transmitted or early founder viruses can be identified and that molecular pathways and rates of early env diversification can be defined. Specifically, we show that 8 of the 12 subjects were each infected by a single virus, while 4 others acquired more than one virus; that the rate of virus evolution in one subject during an 80-day period spanning seroconversion was 1.7 × 10−5 substitutions per site per day; and that evidence of strong immunologic selection can be seen in Env and overlapping Rev sequences based on nonrandom accumulation of nonsynonymous mutations. We also compared the results of the SGA approach with those of more-conventional bulk PCR amplification methods performed on the same patient samples and found that the latter is associated with excessive rates of Taq-induced recombination, nucleotide misincorporation, template resampling, and cloning bias. These findings indicate that HIV-1 env genes, other viral genes, and even full-length viral genomes responsible for productive clinical infection can be identified

  14. Single-Genome Sequencing of Hepatitis C Virus in Donor-Recipient Pairs Distinguishes Modes and Models of Virus Transmission and Early Diversification.

    Science.gov (United States)

    Li, Hui; Stoddard, Mark B; Wang, Shuyi; Giorgi, Elena E; Blair, Lily M; Learn, Gerald H; Hahn, Beatrice H; Alter, Harvey J; Busch, Michael P; Fierer, Daniel S; Ribeiro, Ruy M; Perelson, Alan S; Bhattacharya, Tanmoy; Shaw, George M

    2015-10-14

    Despite the recent development of highly effective anti-hepatitis C virus (HCV) drugs, the global burden of this pathogen remains immense. Control or eradication of HCV will likely require the broad application of antiviral drugs and development of an effective vaccine. A precise molecular identification of transmitted/founder (T/F) HCV genomes that lead to productive clinical infection could play a critical role in vaccine research, as it has for HIV-1. However, the replication schema of these two RNA viruses differ substantially, as do viral responses to innate and adaptive host defenses. These differences raise questions as to the certainty of T/F HCV genome inferences, particularly in cases where multiple closely related sequence lineages have been observed. To clarify these issues and distinguish between competing models of early HCV diversification, we examined seven cases of acute HCV infection in humans and chimpanzees, including three examples of virus transmission between linked donors and recipients. Using single-genome sequencing (SGS) of plasma vRNA, we found that inferred T/F sequences in recipients were identical to viral sequences in their respective donors. Early in infection, HCV genomes generally evolved according to a simple model of random evolution where the coalescent corresponded to the T/F sequence. Closely related sequence lineages could be explained by high multiplicity infection from a donor whose viral sequences had undergone a pretransmission bottleneck due to treatment, immune selection, or recent infection. These findings validate SGS, together with mathematical modeling and phylogenetic analysis, as a novel strategy to infer T/F HCV genome sequences. Despite the recent development of highly effective, interferon-sparing anti-hepatitis C virus (HCV) drugs, the global burden of this pathogen remains immense. Control or eradication of HCV will likely require the broad application of antiviral drugs and the development of an effective

  15. Genome-wide study of the adaptation of Saccharomyces cerevisiae to the early stages of wine fermentation.

    Directory of Open Access Journals (Sweden)

    Maite Novo

    Full Text Available This work was designed to identify yeast cellular functions specifically affected by the stress factors predominating during the early stages of wine fermentation, and genes required for optimal growth under these conditions. The main experimental method was quantitative fitness analysis by means of competition experiments in continuous culture of whole genome barcoded yeast knockout collections. This methodology allowed the identification of haploinsufficient genes, and homozygous deletions resulting in growth impairment in synthetic must. However, genes identified as haploproficient, or homozygous deletions resulting in fitness advantage, were of little predictive power concerning optimal growth in this medium. The relevance of these functions for enological performance of yeast was assessed in batch cultures with single strains. Previous studies addressing yeast adaptation to winemaking conditions by quantitative fitness analysis were not specifically focused on the proliferative stages. In some instances our results highlight the importance of genes not previously linked to winemaking. In other cases they are complementary to those reported in previous studies concerning, for example, the relevance of some genes involved in vacuolar, peroxisomal, or ribosomal functions. Our results indicate that adaptation to the quickly changing growth conditions during grape must fermentation require the function of different gene sets in different moments of the process. Transport processes and glucose signaling seem to be negatively affected by the stress factors encountered by yeast in synthetic must. Vacuolar activity is important for continued growth during the transition to stationary phase. Finally, reduced biogenesis of peroxisomes also seems to be advantageous. However, in contrast to what was described for later stages, reduced protein synthesis is not advantageous for the early (proliferative stages of the fermentation process. Finally, we found

  16. The genome-wide early temporal response of Saccharomyces cerevisiae to oxidative stress induced by cumene hydroperoxide.

    Directory of Open Access Journals (Sweden)

    Wei Sha

    Full Text Available Oxidative stress is a well-known biological process that occurs in all respiring cells and is involved in pathophysiological processes such as aging and apoptosis. Oxidative stress agents include peroxides such as hydrogen peroxide, cumene hydroperoxide, and linoleic acid hydroperoxide, the thiol oxidant diamide, and menadione, a generator of superoxide, amongst others. The present study analyzed the early temporal genome-wide transcriptional response of Saccharomyces cerevisiae to oxidative stress induced by the aromatic peroxide cumene hydroperoxide. The accurate dataset obtained, supported by the use of temporal controls, biological replicates and well controlled growth conditions, provided a detailed picture of the early dynamics of the process. We identified a set of genes previously not implicated in the oxidative stress response, including several transcriptional regulators showing a fast transient response, suggesting a coordinated process in the transcriptional reprogramming. We discuss the role of the glutathione, thioredoxin and reactive oxygen species-removing systems, the proteasome and the pentose phosphate pathway. A data-driven clustering of the expression patterns identified one specific cluster that mostly consisted of genes known to be regulated by the Yap1p and Skn7p transcription factors, emphasizing their mediator role in the transcriptional response to oxidants. Comparison of our results with data reported for hydrogen peroxide identified 664 genes that specifically respond to cumene hydroperoxide, suggesting distinct transcriptional responses to these two peroxides. Genes up-regulated only by cumene hydroperoxide are mainly related to the cell membrane and cell wall, and proteolysis process, while those down-regulated only by this aromatic peroxide are involved in mitochondrial function.

  17. Induced Genome-Wide Binding of Three Arabidopsis WRKY Transcription Factors during Early MAMP-Triggered Immunity.

    Science.gov (United States)

    Birkenbihl, Rainer P; Kracher, Barbara; Somssich, Imre E

    2017-01-01

    During microbial-associated molecular pattern-triggered immunity (MTI), molecules derived from microbes are perceived by cell surface receptors and upon signaling to the nucleus initiate a massive transcriptional reprogramming critical to mount an appropriate host defense response. WRKY transcription factors play an important role in regulating these transcriptional processes. Here, we determined on a genome-wide scale the flg22-induced in vivo DNA binding dynamics of three of the most prominent WRKY factors, WRKY18, WRKY40, and WRKY33. The three WRKY factors each bound to more than 1000 gene loci predominantly at W-box elements, the known WRKY binding motif. Binding occurred mainly in the 500-bp promoter regions of these genes. Many of the targeted genes are involved in signal perception and transduction not only during MTI but also upon damage-associated molecular pattern-triggered immunity, providing a mechanistic link between these functionally interconnected basal defense pathways. Among the additional targets were genes involved in the production of indolic secondary metabolites and in modulating distinct plant hormone pathways. Importantly, among the targeted genes were numerous transcription factors, encoding predominantly ethylene response factors, active during early MTI, and WRKY factors, supporting the previously hypothesized existence of a WRKY subregulatory network. Transcriptional analysis revealed that WRKY18 and WRKY40 function redundantly as negative regulators of flg22-induced genes often to prevent exaggerated defense responses. © 2016 American Society of Plant Biologists. All rights reserved.

  18. Induced Genome-Wide Binding of Three Arabidopsis WRKY Transcription Factors during Early MAMP-Triggered Immunity

    Science.gov (United States)

    Birkenbihl, Rainer P.; Kracher, Barbara; Roccaro, Mario

    2017-01-01

    During microbial-associated molecular pattern-triggered immunity (MTI), molecules derived from microbes are perceived by cell surface receptors and upon signaling to the nucleus initiate a massive transcriptional reprogramming critical to mount an appropriate host defense response. WRKY transcription factors play an important role in regulating these transcriptional processes. Here, we determined on a genome-wide scale the flg22-induced in vivo DNA binding dynamics of three of the most prominent WRKY factors, WRKY18, WRKY40, and WRKY33. The three WRKY factors each bound to more than 1000 gene loci predominantly at W-box elements, the known WRKY binding motif. Binding occurred mainly in the 500-bp promoter regions of these genes. Many of the targeted genes are involved in signal perception and transduction not only during MTI but also upon damage-associated molecular pattern-triggered immunity, providing a mechanistic link between these functionally interconnected basal defense pathways. Among the additional targets were genes involved in the production of indolic secondary metabolites and in modulating distinct plant hormone pathways. Importantly, among the targeted genes were numerous transcription factors, encoding predominantly ethylene response factors, active during early MTI, and WRKY factors, supporting the previously hypothesized existence of a WRKY subregulatory network. Transcriptional analysis revealed that WRKY18 and WRKY40 function redundantly as negative regulators of flg22-induced genes often to prevent exaggerated defense responses. PMID:28011690

  19. Selective genomic copy number imbalances and probability of recurrence in early-stage breast cancer.

    Directory of Open Access Journals (Sweden)

    Patricia A Thompson

    Full Text Available A number of studies of copy number imbalances (CNIs in breast tumors support associations between individual CNIs and patient outcomes. However, no pattern or signature of CNIs has emerged for clinical use. We determined copy number (CN gains and losses using high-density molecular inversion probe (MIP arrays for 971 stage I/II breast tumors and applied a boosting strategy to fit hazards models for CN and recurrence, treating chromosomal segments in a dose-specific fashion (-1 [loss], 0 [no change] and +1 [gain]. The concordance index (C-Index was used to compare prognostic accuracy between a training (n = 728 and test (n = 243 set and across models. Twelve novel prognostic CNIs were identified: losses at 1p12, 12q13.13, 13q12.3, 22q11, and Xp21, and gains at 2p11.1, 3q13.12, 10p11.21, 10q23.1, 11p15, 14q13.2-q13.3, and 17q21.33. In addition, seven CNIs previously implicated as prognostic markers were selected: losses at 8p22 and 16p11.2 and gains at 10p13, 11q13.5, 12p13, 20q13, and Xq28. For all breast cancers combined, the final full model including 19 CNIs, clinical covariates, and tumor marker-approximated subtypes (estrogen receptor [ER], progesterone receptor, ERBB2 amplification, and Ki67 significantly outperformed a model containing only clinical covariates and tumor subtypes (C-Index(full model, train[test]  =  0.72[0.71] ± 0.02 vs. C-Index(clinical + subtype model, train[test]  =  0.62[0.62] ± 0.02; p<10(-6. In addition, the full model containing 19 CNIs significantly improved prognostication separately for ER-, HER2+, luminal B, and triple negative tumors over clinical variables alone. In summary, we show that a set of 19 CNIs discriminates risk of recurrence among early-stage breast tumors, independent of ER status. Further, our data suggest the presence of specific CNIs that promote and, in some cases, limit tumor spread.

  20. Genomic Copy Number Imbalances Associated with Bone and Non-bone Metastasis of Early-Stage Breast Cancer

    Science.gov (United States)

    Liu, Yanhong; Zhou, Renke; Baumbusch, Lars O.; Tsavachidis, Spyros; Brewster, Abenaa M.; Do, Kim-Anh; Sahin, Aysegul; Hortobagyi, Gabriel N.; Taube, Joseph H.; Mani, Sendurai A.; Aarøe, Jørgen; Wärnberg, Fredrik; Børresen-Dale, Anne-Lise; Mills, Gordon B.; Thompson, Patricia A.; Bondy, Melissa L.

    2014-01-01

    Purpose To identify and validate copy number aberrations in early-stage primary breast tumors associated with bone or non-bone metastasis. Patients and Methods Whole-genome molecular inversion probe arrays were used to evaluate copy number imbalances (CNIs) in breast tumors from 960 early-stage patients with information about site of metastasis. The CoxBoost algorithm was used to select metastasis site-related CNIs and to fit a Cox proportional hazards model. Results Gains at 1q41 and 1q42.12 and losses at 1p13.3, 8p22, and Xp11.3 were significantly associated with bone metastasis. Gains at 2p11.2, 3q21.3–22.2, 3q27.1, 10q23.1, and 14q13.2–3 and loss at 7q21.11 were associated with non-bone metastasis. To examine the joint effect of CNIs and clinical predictors, patients were stratified into three risk groups (low, intermediate, and high) based on the sum of predicted linear hazard ratios (HRs). For bone metastasis, the hazard (95% confidence interval) for the low-risk group was 0.32 (0.11–0.92) compared to the intermediate-risk group and 2.99 (1.74–5.11) for the high-risk group. For non-bone metastasis, the hazard for the low-risk group was 0.34 (0.17–0.66) and 2.33 (1.59–3.43) for the high-risk group. The prognostic value of loss at 8p22 for bone metastasis and gains at 10q23.1 for non-bone metastasis, and gain at 11q13.5 for both bone and non-bone metastases were externally validated in 335 breast tumors pooled from four independent cohorts. Conclusions Distinct CNIs are independently associated with bone and non-bone metastasis for early-stage breast cancer patients across cohorts. These data warrant consideration for tailoring surveillance and management of metastasis risk. PMID:24305980

  1. Assembly of pseudorabies virus genome-based transfer vehicle carrying major antigen sites of S gene of transmissible gastroenteritis virus: potential perspective for developing live vector vaccines.

    Science.gov (United States)

    Yin, Jiechao; Ren, Xiaofeng; Tian, Zhijun; Li, Yijing

    2007-03-01

    Two severe porcine infectious diseases, pseudorabies (PR) and transmissible gastroenteritis (TGE) caused by pseudorabies virus (PRV) and transmissible gastroenteritis virus (TGEV) respectively often result in serious economic loss in animal husbandry worldwide. Vaccination is the important prevention means against both infections. To achieve a PRV genome-based virus live vector, aiming at further TGEV/PRV bivalent vaccine development, a recombinant plasmid pUG was constructed via inserting partial PK and full-length gG genes of PRV strain Bartha K-61 amplified into pUC119 vector. In parallel, another recombinant pHS was generated by introducing a fragment designated S1 encoding the major antigen sites of S gene from TGEV strain TH-98 into a prokaryotic expression vector pP(RO)EX HTc. The SV40 polyA sequence was then inserted into the downstream of S1 fragment of pHS. The continuous region containing S1fragment, SV40 polyA and four single restriction enzyme sites digested from pHS was subcloned into the downstream of gG promoter of pUG. In addition, a LacZ reporter gene was introduced into the universal transfer vector named pUGS-LacZ. Subsequently, a PRV genome-based virus live vector was generated via homologous recombination. The functionally effective vector was purified and partially characterized. Moreover, the potential advantages of this system are discussed.

  2. Validation of obesity susceptibility loci identified by genome-wide association studies in early childhood in South Brazilian children.

    Science.gov (United States)

    Zandoná, M R; Sangalli, C N; Campagnolo, P D B; Vitolo, M R; Almeida, S; Mattevi, V S

    2017-02-01

    The prevalence of childhood obesity has been dramatically increasing in developing countries as it has been reported for developed nations. Identifying susceptibility genes in early life could provide the foundations for interventions in lifestyle to prevent obese children to become obese adults. The objective of this study was to evaluate the influence of genetic variants related to obesity identified by genome-wide association studies (MC4R, TMEM18, KCTD15, SH2B1, SEC16B, BDNF, NEGR1, OLFM4 and HOXB5 genes) on anthropometric and dietary phenotypes in two Brazilian cohorts followed-up since birth. There were 745 children examined at birth, after 1 year and after 3.5 years of follow-up. Ten single nucleotide polymorphisms were genotyped. Anthropometric and dietary parameters were compared among genotypes. Children were classified as overweight when body mass index Z-score was >+1. Overweight prevalence was 30.7% at 3.5 years old. Significant associations were identified at 3.5 years old for TMEM18 rs6548238, NEGR1 rs2815752, BDNF rs10767664 and rs6265 (1 year old and 3.5 years old) with anthropometric phenotypes and at 3.5 years old for SEC16B rs10913469 with dietary parameters. Our results indicate that genetic variants in/near these genes contribute to obesity susceptibility in childhood and highlight the age at which they begin to affect obesity-related phenotypes. © 2016 World Obesity Federation.

  3. Unique genome organization of non-mammalian papillomaviruses provides insights into the evolution of viral early proteins

    Science.gov (United States)

    Dugger, Catherine; Van Doorslaer, Koenraad; Ruoppolo, Valeria; Schmidt, Annie; Lescroël, Amelie; Jongsomjit, Dennis; Elrod, Megan; Kraberger, Simona; Stainton, Daisy; Dugger, Katie M.; Ballard, Grant; Ainley, David G.; Varsani, Arvind

    2017-01-01

    The family Papillomaviridae contains more than 320 papillomavirus types, with most having been identified as infecting skin and mucosal epithelium in mammalian hosts. To date, only nine non-mammalian papillomaviruses have been described from birds (n = 5), a fish (n = 1), a snake (n = 1), and turtles (n = 2). The identification of papillomaviruses in sauropsids and a sparid fish suggests that early ancestors of papillomaviruses were already infecting the earliest Euteleostomi. The Euteleostomi clade includes more than 90 per cent of the living vertebrate species, and progeny virus could have been passed on to all members of this clade, inhabiting virtually every habitat on the planet. As part of this study, we isolated a novel papillomavirus from a 16-year-old female Adélie penguin (Pygoscelis adeliae) from Cape Crozier, Ross Island (Antarctica). The new papillomavirus shares ∼64 per cent genome-wide identity to a previously described Adélie penguin papillomavirus. Phylogenetic analyses show that the non-mammalian viruses (expect the python, Morelia spilota, associated papillomavirus) cluster near the base of the papillomavirus evolutionary tree. A papillomavirus isolated from an avian host (Northern fulmar; Fulmarus glacialis), like the two turtle papillomaviruses, lacks a putative E9 protein that is found in all other avian papillomaviruses. Furthermore, the Northern fulmar papillomavirus has an E7 more similar to the mammalian viruses than the other avian papillomaviruses. Typical E6 proteins of mammalian papillomaviruses have two Zinc finger motifs, whereas the sauropsid papillomaviruses only have one such motif. Furthermore, this motif is absent in the fish papillomavirus. Thus, it is highly likely that the most recent common ancestor of the mammalian and sauropsid papillomaviruses had a single motif E6. It appears that a motif duplication resulted in mammalian papillomaviruses having a double Zinc finger motif in E6. We estimated the

  4. Unique genome organization of non-mammalian papillomaviruses provides insights into the evolution of viral early proteins

    Science.gov (United States)

    Ruoppolo, Valeria; Schmidt, Annie; Lescroël, Amelie; Jongsomjit, Dennis; Elrod, Megan; Kraberger, Simona; Stainton, Daisy; Dugger, Katie M; Ballard, Grant; Ainley, David G

    2017-01-01

    Abstract The family Papillomaviridae contains more than 320 papillomavirus types, with most having been identified as infecting skin and mucosal epithelium in mammalian hosts. To date, only nine non-mammalian papillomaviruses have been described from birds (n = 5), a fish (n = 1), a snake (n = 1), and turtles (n = 2). The identification of papillomaviruses in sauropsids and a sparid fish suggests that early ancestors of papillomaviruses were already infecting the earliest Euteleostomi. The Euteleostomi clade includes more than 90 per cent of the living vertebrate species, and progeny virus could have been passed on to all members of this clade, inhabiting virtually every habitat on the planet. As part of this study, we isolated a novel papillomavirus from a 16-year-old female Adélie penguin (Pygoscelis adeliae) from Cape Crozier, Ross Island (Antarctica). The new papillomavirus shares ∼64 per cent genome-wide identity to a previously described Adélie penguin papillomavirus. Phylogenetic analyses show that the non-mammalian viruses (expect the python, Morelia spilota, associated papillomavirus) cluster near the base of the papillomavirus evolutionary tree. A papillomavirus isolated from an avian host (Northern fulmar; Fulmarus glacialis), like the two turtle papillomaviruses, lacks a putative E9 protein that is found in all other avian papillomaviruses. Furthermore, the Northern fulmar papillomavirus has an E7 more similar to the mammalian viruses than the other avian papillomaviruses. Typical E6 proteins of mammalian papillomaviruses have two Zinc finger motifs, whereas the sauropsid papillomaviruses only have one such motif. Furthermore, this motif is absent in the fish papillomavirus. Thus, it is highly likely that the most recent common ancestor of the mammalian and sauropsid papillomaviruses had a single motif E6. It appears that a motif duplication resulted in mammalian papillomaviruses having a double Zinc finger motif in E6. We estimated

  5. Unique genome organization of non-mammalian papillomaviruses provides insights into the evolution of viral early proteins.

    Science.gov (United States)

    Van Doorslaer, Koenraad; Ruoppolo, Valeria; Schmidt, Annie; Lescroël, Amelie; Jongsomjit, Dennis; Elrod, Megan; Kraberger, Simona; Stainton, Daisy; Dugger, Katie M; Ballard, Grant; Ainley, David G; Varsani, Arvind

    2017-07-01

    The family Papillomaviridae contains more than 320 papillomavirus types, with most having been identified as infecting skin and mucosal epithelium in mammalian hosts. To date, only nine non-mammalian papillomaviruses have been described from birds (n = 5), a fish (n = 1), a snake (n = 1), and turtles (n = 2). The identification of papillomaviruses in sauropsids and a sparid fish suggests that early ancestors of papillomaviruses were already infecting the earliest Euteleostomi. The Euteleostomi clade includes more than 90 per cent of the living vertebrate species, and progeny virus could have been passed on to all members of this clade, inhabiting virtually every habitat on the planet. As part of this study, we isolated a novel papillomavirus from a 16-year-old female Adélie penguin (Pygoscelis adeliae) from Cape Crozier, Ross Island (Antarctica). The new papillomavirus shares ∼64 per cent genome-wide identity to a previously described Adélie penguin papillomavirus. Phylogenetic analyses show that the non-mammalian viruses (expect the python, Morelia spilota, associated papillomavirus) cluster near the base of the papillomavirus evolutionary tree. A papillomavirus isolated from an avian host (Northern fulmar; Fulmarus glacialis), like the two turtle papillomaviruses, lacks a putative E9 protein that is found in all other avian papillomaviruses. Furthermore, the Northern fulmar papillomavirus has an E7 more similar to the mammalian viruses than the other avian papillomaviruses. Typical E6 proteins of mammalian papillomaviruses have two Zinc finger motifs, whereas the sauropsid papillomaviruses only have one such motif. Furthermore, this motif is absent in the fish papillomavirus. Thus, it is highly likely that the most recent common ancestor of the mammalian and sauropsid papillomaviruses had a single motif E6. It appears that a motif duplication resulted in mammalian papillomaviruses having a double Zinc finger motif in E6. We estimated the

  6. The genomic profile of human malignant glioma is altered early in primary cell culture and preserved in spheroids

    NARCIS (Netherlands)

    de Witt Hamer, P. C.; van Tilborg, A. A. G.; Eijk, P. P.; Sminia, P.; Troost, D.; van Noorden, C. J. F.; Ylstra, B.; Leenstra, S.

    2008-01-01

    Screening of therapeutics relies on representative cancer models. The representation of human glioblastoma by in vitro cell culture models is questionable. We obtained genomic profiles by array comparative genomic hybridization of both short-and long-term primary cell and spheroid cultures, derived

  7. Distinct high resolution genome profiles of early onset and late onset colorectal cancer integrated with gene expression data identify candidate susceptibility loci

    Directory of Open Access Journals (Sweden)

    Merok Marianne A

    2010-05-01

    Full Text Available Abstract Background Estimates suggest that up to 30% of colorectal cancers (CRC may develop due to an increased genetic risk. The mean age at diagnosis for CRC is about 70 years. Time of disease onset 20 years younger than the mean age is assumed to be indicative of genetic susceptibility. We have compared high resolution tumor genome copy number variation (CNV (Roche NimbleGen, 385 000 oligo CGH array in microsatellite stable (MSS tumors from two age groups, including 23 young at onset patients without known hereditary syndromes and with a median age of 44 years (range: 28-53 and 17 elderly patients with median age 79 years (range: 69-87. Our aim was to identify differences in the tumor genomes between these groups and pinpoint potential susceptibility loci. Integration analysis of CNV and genome wide mRNA expression data, available for the same tumors, was performed to identify a restricted candidate gene list. Results The total fraction of the genome with aberrant copy number, the overall genomic profile and the TP53 mutation spectrum were similar between the two age groups. However, both the number of chromosomal aberrations and the number of breakpoints differed significantly between the groups. Gains of 2q35, 10q21.3-22.1, 10q22.3 and 19q13.2-13.31 and losses from 1p31.3, 1q21.1, 2q21.2, 4p16.1-q28.3, 10p11.1 and 19p12, positions that in total contain more than 500 genes, were found significantly more often in the early onset group as compared to the late onset group. Integration analysis revealed a covariation of DNA copy number at these sites and mRNA expression for 107 of the genes. Seven of these genes, CLC, EIF4E, LTBP4, PLA2G12A, PPAT, RG9MTD2, and ZNF574, had significantly different mRNA expression comparing median expression levels across the transcriptome between the two groups. Conclusions Ten genomic loci, containing more than 500 protein coding genes, are identified as more often altered in tumors from early onset versus late

  8. Global analysis of human duplicated genes reveals the relative importance of whole-genome duplicates originated in the early vertebrate evolution.

    Science.gov (United States)

    Acharya, Debarun; Ghosh, Tapash C

    2016-01-22

    Gene duplication is a genetic mutation that creates functionally redundant gene copies that are initially relieved from selective pressures and may adapt themselves to new functions with time. The levels of gene duplication may vary from small-scale duplication (SSD) to whole genome duplication (WGD). Studies with yeast revealed ample differences between these duplicates: Yeast WGD pairs were functionally more similar, less divergent in subcellular localization and contained a lesser proportion of essential genes. In this study, we explored the differences in evolutionary genomic properties of human SSD and WGD genes, with the identifiable human duplicates coming from the two rounds of whole genome duplication occurred early in vertebrate evolution. We observed that these two groups of duplicates were also dissimilar in terms of their evolutionary and genomic properties. But interestingly, this is not like the same observed in yeast. The human WGDs were found to be functionally less similar, diverge more in subcellular level and contain a higher proportion of essential genes than the SSDs, all of which are opposite from yeast. Additionally, we explored that human WGDs were more divergent in their gene expression profile, have higher multifunctionality and are more often associated with disease, and are evolutionarily more conserved than human SSDs. Our study suggests that human WGD duplicates are more divergent and entails the adaptation of WGDs to novel and important functions that consequently lead to their evolutionary conservation in the course of evolution.

  9. Genome at juncture of early human migration: a systematic analysis of two whole genomes and thirteen exomes from Kuwaiti population subgroup of inferred Saudi Arabian tribe ancestry.

    Directory of Open Access Journals (Sweden)

    Osama Alsmadi

    Full Text Available Population of the State of Kuwait is composed of three genetic subgroups of inferred Persian, Saudi Arabian tribe and Bedouin ancestry. The Saudi Arabian tribe subgroup traces its origin to the Najd region of Saudi Arabia. By sequencing two whole genomes and thirteen exomes from this subgroup at high coverage (>40X, we identify 4,950,724 Single Nucleotide Polymorphisms (SNPs, 515,802 indels and 39,762 structural variations. Of the identified variants, 10,098 (8.3% exomic SNPs, 139,923 (2.9% non-exomic SNPs, 5,256 (54.3% exomic indels, and 374,959 (74.08% non-exomic indels are 'novel'. Up to 8,070 (79.9% of the reported novel biallelic exomic SNPs are seen in low frequency (minor allele frequency T] from CYP4F2 gene [MIM:*604426] associated with warfarin dosage levels [MIM:#122700] required to elicit normal anticoagulant response; and a 3' UTR SNP (rs6151429 [22:g.51063477T>C] from ARSA gene [MIM:*607574] associated with Metachromatic Leukodystrophy [MIM:#250100]. Hemoglobin Riyadh variant (identified for the first time in a Saudi Arabian woman is observed in the exome data. The mitochondrial haplogroup profiles of the 15 individuals are consistent with the haplogroup diversity seen in Saudi Arabian natives, who are believed to have received substantial gene flow from Africa and eastern provenance. We present the first genome resource imperative for designing future genetic studies in Saudi Arabian tribe subgroup. The full-length genome sequences and the identified variants are available at ftp://dgr.dasmaninstitute.org and http://dgr.dasmaninstitute.org/DGR/gb.html.

  10. Genome at juncture of early human migration: a systematic analysis of two whole genomes and thirteen exomes from Kuwaiti population subgroup of inferred Saudi Arabian tribe ancestry.

    Science.gov (United States)

    Alsmadi, Osama; John, Sumi E; Thareja, Gaurav; Hebbar, Prashantha; Antony, Dinu; Behbehani, Kazem; Thanaraj, Thangavel Alphonse

    2014-01-01

    Population of the State of Kuwait is composed of three genetic subgroups of inferred Persian, Saudi Arabian tribe and Bedouin ancestry. The Saudi Arabian tribe subgroup traces its origin to the Najd region of Saudi Arabia. By sequencing two whole genomes and thirteen exomes from this subgroup at high coverage (>40X), we identify 4,950,724 Single Nucleotide Polymorphisms (SNPs), 515,802 indels and 39,762 structural variations. Of the identified variants, 10,098 (8.3%) exomic SNPs, 139,923 (2.9%) non-exomic SNPs, 5,256 (54.3%) exomic indels, and 374,959 (74.08%) non-exomic indels are 'novel'. Up to 8,070 (79.9%) of the reported novel biallelic exomic SNPs are seen in low frequency (minor allele frequency high frequencies in this subgroup are: a nonsynonymous deleterious SNP (rs2108622 [19:g.15990431C>T] from CYP4F2 gene [MIM:*604426]) associated with warfarin dosage levels [MIM:#122700] required to elicit normal anticoagulant response; and a 3' UTR SNP (rs6151429 [22:g.51063477T>C]) from ARSA gene [MIM:*607574]) associated with Metachromatic Leukodystrophy [MIM:#250100]. Hemoglobin Riyadh variant (identified for the first time in a Saudi Arabian woman) is observed in the exome data. The mitochondrial haplogroup profiles of the 15 individuals are consistent with the haplogroup diversity seen in Saudi Arabian natives, who are believed to have received substantial gene flow from Africa and eastern provenance. We present the first genome resource imperative for designing future genetic studies in Saudi Arabian tribe subgroup. The full-length genome sequences and the identified variants are available at ftp://dgr.dasmaninstitute.org and http://dgr.dasmaninstitute.org/DGR/gb.html.

  11. Transmission of clonal hepatitis C virus genomes reveals the dominant but transitory role of CD8¿ T cells in early viral evolution

    DEFF Research Database (Denmark)

    Callendret, Benoît; Bukh, Jens; Eccleston, Heather B

    2011-01-01

    occurred slowly over several years of chronic infection. Together these observations indicate that during acute hepatitis C, virus evolution was driven primarily by positive selection pressure exerted by CD8(+) T cells. This influence of immune pressure on viral evolution appears to subside as chronic......The RNA genome of the hepatitis C virus (HCV) diversifies rapidly during the acute phase of infection, but the selective forces that drive this process remain poorly defined. Here we examined whether Darwinian selection pressure imposed by CD8(+) T cells is a dominant force driving early amino acid...... virus at frequent intervals revealed that most acute-phase nonsynonymous mutations were clustered in class I epitopes and appeared much earlier than those in the remainder of the HCV genome. Moreover, the ratio of nonsynonymous to synonymous mutations, a measure of positive selection pressure...

  12. Accumulation of genome-specific transcripts, transcription factors and phytohormonal regulators during early stages of fiber cell development in allotetraploid cotton.

    Science.gov (United States)

    Samuel Yang, S; Cheung, Foo; Lee, Jinsuk J; Ha, Misook; Wei, Ning E; Sze, Sing-Hoi; Stelly, David M; Thaxton, Peggy; Triplett, Barbara; Town, Christopher D; Jeffrey Chen, Z

    2006-09-01

    Gene expression during the early stages of fiber cell development and in allopolyploid crops is poorly understood. Here we report computational and expression analyses of 32 789 high-quality ESTs derived from Gossypium hirsutum L. Texas Marker-1 (TM-1) immature ovules (GH_TMO). The ESTs were assembled into 8540 unique sequences including 4036 tentative consensus sequences (TCs) and 4504 singletons, representing approximately 15% of the unique sequences in the cotton EST collection. Compared with approximately 178 000 existing ESTs derived from elongating fibers and non-fiber tissues, GH_TMO ESTs showed a significant increase in the percentage of genes encoding putative transcription factors such as MYB and WRKY and genes encoding predicted proteins involved in auxin, brassinosteroid (BR), gibberellic acid (GA), abscisic acid (ABA) and ethylene signaling pathways. Cotton homologs related to MIXTA, MYB5, GL2 and eight genes in the auxin, BR, GA and ethylene pathways were induced during fiber cell initiation but repressed in the naked seed mutant (N1N1) that is impaired in fiber formation. The data agree with the known roles of MYB and WRKY transcription factors in Arabidopsis leaf trichome development and the well-documented phytohormonal effects on fiber cell development in immature cotton ovules cultured in vitro. Moreover, the phytohormonal pathway-related genes were induced prior to the activation of MYB-like genes, suggesting an important role of phytohormones in cell fate determination. Significantly, AA sub-genome ESTs of all functional classifications including cell-cycle control and transcription factor activity were selectively enriched in G. hirsutum L., an allotetraploid derived from polyploidization between AA and DD genome species, a result consistent with the production of long lint fibers in AA genome species. These results suggest general roles for genome-specific, phytohormonal and transcriptional gene regulation during the early stages of fiber

  13. High-quality de novo assembly of the apple genome and methylome dynamics of early fruit development.

    Science.gov (United States)

    Daccord, Nicolas; Celton, Jean-Marc; Linsmith, Gareth; Becker, Claude; Choisne, Nathalie; Schijlen, Elio; van de Geest, Henri; Bianco, Luca; Micheletti, Diego; Velasco, Riccardo; Di Pierro, Erica Adele; Gouzy, Jérôme; Rees, D Jasper G; Guérif, Philippe; Muranty, Hélène; Durel, Charles-Eric; Laurens, François; Lespinasse, Yves; Gaillard, Sylvain; Aubourg, Sébastien; Quesneville, Hadi; Weigel, Detlef; van de Weg, Eric; Troggio, Michela; Bucher, Etienne

    2017-07-01

    Using the latest sequencing and optical mapping technologies, we have produced a high-quality de novo assembly of the apple (Malus domestica Borkh.) genome. Repeat sequences, which represented over half of the assembly, provided an unprecedented opportunity to investigate the uncharacterized regions of a tree genome; we identified a new hyper-repetitive retrotransposon sequence that was over-represented in heterochromatic regions and estimated that a major burst of different transposable elements (TEs) occurred 21 million years ago. Notably, the timing of this TE burst coincided with the uplift of the Tian Shan mountains, which is thought to be the center of the location where the apple originated, suggesting that TEs and associated processes may have contributed to the diversification of the apple ancestor and possibly to its divergence from pear. Finally, genome-wide DNA methylation data suggest that epigenetic marks may contribute to agronomically relevant aspects, such as apple fruit development.

  14. Nuclear routing networks span between nuclear pore complexes and genomic DNA to guide nucleoplasmic trafficking of biomolecules

    Science.gov (United States)

    Malecki, Marek; Malecki, Bianca

    2012-01-01

    In health and disease, biomolecules, which are involved in gene expression, recombination, or reprogramming have to traffic through the nucleoplasm, between nuclear pore complexes (NPCs) and genomic DNA (gDNA). This trafficking is guided by the recently revealed nuclear routing networks (NRNs). In this study, we aimed to investigate, if the NRNs have established associations with the genomic DNA in situ and if the NRNs have capabilities to bind the DNA de novo. Moreover, we aimed to study further, if nucleoplasmic trafficking of the histones, rRNA, and transgenes’ vectors, between the NPCs and gDNA, is guided by the NRNs. We used Xenopus laevis oocytes as the model system. We engineered the transgenes’ DNA vectors equipped with the SV40 LTA nuclear localization signals (NLS) and/or HIV Rev nuclear export signals (NES). We purified histones, 5S rRNA, and gDNA. We rendered all these molecules superparamagnetic and fluorescent for detection with nuclear magnetic resonance (NMR), total reflection x-ray fluorescence (TXRF), energy dispersive x-ray spectroscopy (EDXS), and electron energy loss spectroscopy (EELS). The NRNs span between the NPCs and genomic DNA. They form firm bonds with the gDNA in situ. After complete digestion of the nucleic acids with the RNases and DNases, the newly added DNA - modified with the dNTP analogs, bonds firmly to the NRNs. Moreover, the NRNs guide the trafficking of the DNA transgenes’ vectors - modified with the SV40 LTA NLS, following their import into the nuclei through the NPCs. The pathway is identical to that of histones. The NRNs also guide the trafficking of the DNA transgenes’ vectors, modified with the HIV Rev NES, to the NPCs, followed by their export out of the nuclei. Ribosomal RNAs follow the same pathway. To summarize, the NRNs are the structures connecting the NPCs and the gDNA. They guide the trafficking of the biomolecules between the NPCs and the gDNA. PMID:23275893

  15. The sea lamprey Petromyzon marinus genome reveals the early origin of several chemosensory receptor families in the vertebrate lineage

    Directory of Open Access Journals (Sweden)

    Zhang Ziping

    2009-07-01

    Full Text Available Abstract Background In gnathostomes, chemosensory receptors (CR expressed in olfactory epithelia are encoded by evolutionarily dynamic gene families encoding odorant receptors (OR, trace amine-associated receptors (TAAR, V1Rs and V2Rs. A limited number of OR-like sequences have been found in invertebrate chordate genomes. Whether these gene families arose in basal or advanced vertebrates has not been resolved because these families have not been examined systematically in agnathan genomes. Results Petromyzon is the only extant jawless vertebrate whose genome has been sequenced. Known to be exquisitely sensitive to several classes of odorants, lampreys detect fewer amino acids and steroids than teleosts. This reduced number of detectable odorants is indicative of reduced numbers of CR gene families or a reduced number of genes within CR families, or both, in the sea lamprey. In the lamprey genome we identified a repertoire of 59 intact single-exon CR genes, including 27 OR, 28 TAAR, and four V1R-like genes. These three CR families were expressed in the olfactory organ of both parasitic and adult life stages. Conclusion An extensive search in the lamprey genome failed to identify potential orthologs or pseudogenes of the multi-exon V2R family that is greatly expanded in teleost genomes, but did find intact calcium-sensing receptors (CASR and intact metabotropic glutamate receptors (MGR. We conclude that OR and V1R arose in chordates after the cephalochordate-urochordate split, but before the diversification of jawed and jawless vertebrates. The advent and diversification of V2R genes from glutamate receptor-family G protein-coupled receptors, most likely the CASR, occurred after the agnathan-gnathostome divergence.

  16. Genomic study and Medical Subject Headings enrichment analysis of early pregnancy rate and antral follicle numbers in Nelore heifers

    Science.gov (United States)

    Zebu animals (Bos indicus) are known to take longer to reach puberty when compared to taurine animals (Bos taurus), limiting the supply of animals for harvest or breeding and impacting profitability. Genomic information can be a helpful tool to better understand complex traits, and improve genetic g...

  17. A genome-wide association study identifies CDHR3 as a susceptibility locus for early childhood asthma with severe exacerbations

    DEFF Research Database (Denmark)

    Bønnelykke, Klaus; Sleiman, Patrick; Nielsen, Kasper

    2014-01-01

    Asthma exacerbations are among the most frequent causes of hospitalization during childhood, but the underlying mechanisms are poorly understood. We performed a genome-wide association study of a specific asthma phenotype characterized by recurrent, severe exacerbations occurring between 2 and 6 ...

  18. A genome-wide association study identifies CDHR3 as a susceptibility locus for early childhood asthma with severe exacerbations

    NARCIS (Netherlands)

    Bonnelykke, Klaus; Sleiman, Patrick; Nielsen, Kasper; Kreiner-Moller, Eskil; Mercader, Josep M.; Belgrave, Danielle; den Dekker, Herman T.; Husby, Anders; Sevelsted, Astrid; Faura Tellez, Grissel; Mortensen, Li Juel; Paternoster, Lavinia; Flaaten, Richard; Molgaard, Anne; Smart, David E.; Thomsen, Philip F.; Rasmussen, Morten A.; Bonas-Guarch, Silvia; Holst, Claus; Nohr, Ellen A.; Yadav, Rachita; March, Michael E.; Blicher, Thomas; Lackie, Peter M.; Jaddoe, Vincent W. V.; Simpson, Angela; Holloway, John W.; Duijts, Liesbeth; Custovic, Adnan; Davies, Donna E.; Torrents, David; Gupta, Ramneek; Hollegaard, Mads V.; Hougaard, David M.; Hakonarson, Hakon; Bisgaard, Hans

    Asthma exacerbations are among the most frequent causes of hospitalization during childhood, but the underlying mechanisms are poorly understood. We performed a genome-wide association study of a specific asthma phenotype characterized by recurrent, severe exacerbations occurring between 2 and 6

  19. Polycomb group proteins Ezh2 and Rnf2 direct genomic contraction and imprinted repression in early mouse embryos

    NARCIS (Netherlands)

    Terranova, R.; Yokobayashi, S.; Stadler, M.B.; Otte, A.P.; van Lohuizen, M.; Orkin, S.H.; Peters, A.H.F.M.

    2008-01-01

    Genomic imprinting regulates parental-specific expression of particular genes and is required for normal mammalian development. How imprinting is established during development is, however, largely unknown. To address this question, we studied the mouse Kcnq1 imprinted cluster at which

  20. β-Globin Matrix Attachment Region Improves Stable Genomic Expression of the Sleeping Beauty Transposon

    Science.gov (United States)

    Daly, Meghan C.; Steer, Clifford J.; Kren, Betsy T.

    2014-01-01

    The liver is an attractive target for gene therapy due to its extensive capability for protein production and the numerous diseases resulting from a loss of gene function it normally provides. The Sleeping Beauty Transposon (SB-Tn)1 system is a non-viral vector capable of delivering and mediating therapeutic transgene(s) insertion into the host genome for long-term expression. A current challenge for this system is the low efficiency of integration of the transgene. In this study we use a human hepatoma cell line (HuH-7) and primary human blood outgrowth endothelial cells (BOECs) to test vectors containing DNA elements to enhance transposition without integrating themselves. We employed the human β-globin matrix attachment region (MAR) and the Simian virus 40 (SV40) nuclear translocation signal to increase the percent of HuH-7 cells persistently expressing a GFP::Zeo reporter construct by ~50% for each element; while combining both did not show an additive effect. Interestingly, both elements together displayed an additive effect on the number of insertion sites, and in BOECs the SV40 alone appeared to have an inhibitory effect on transposition. In long-term cultures the loss of plasmid DNA, transposase expression and mapping of insertion sites demonstrated bona fide transposition without episomal expression. These results show that addition of the β-globin MAR and potentially other elements to the backbone of SB-Tn system can enhance transposition and expression of therapeutic transgenes. These findings may have a significant influence on the use of SB transgene delivery to liver for the treatment of a wide variety of disorders. PMID:21520245

  1. Bubble-seq analysis of the human genome reveals distinct chromatin-mediated mechanisms for regulating early- and late-firing origins

    Science.gov (United States)

    Mesner, Larry D.; Valsakumar, Veena; Cieślik, Marcin; Pickin, Rebecca; Hamlin, Joyce L.; Bekiranov, Stefan

    2013-01-01

    We have devised a method for isolating virtually pure and comprehensive libraries of restriction fragments that contained replication initiation sites (bubbles) in vivo. We have now sequenced and mapped the bubble-containing fragments from GM06990, a near-normal EBV-transformed lymphoblastoid cell line, and have compared origin distributions with a comprehensive replication timing study recently published for this cell line. We find that early-firing origins, which represent ∼32% of all origins, overwhelmingly represent zones, associate only marginally with active transcription units, are localized within large domains of open chromatin, and are significantly associated with DNase I hypersensitivity. Origin “density” falls from early- to mid-S-phase, but rises again in late S-phase to levels only 17% lower than in early S-phase. Unexpectedly, late origin density calculated on the 1-Mb scale increases as a function of increasing chromatin compaction. Furthermore, the median efficiency of origins in late-replicating, heterochromatic domains is only 25% lower than in early-replicating euchromatic loci. Thus, the activation of early- and late-firing origins must be regulated by quintessentially different mechanisms. The aggregate data can be unified into a model in which initiation site selection is driven almost entirely by epigenetic factors that fashion both the long-range and local chromatin environments, with underlying DNA sequence and local transcriptional activity playing only minor roles. Importantly, the comprehensive origin map we have prepared for GM06990 overlaps moderately well with origin maps recently reported for the genomes of four different human cell lines based on the distributions of small nascent strands. PMID:23861383

  2. The complete chloroplast DNA sequence of the green alga Oltmannsiellopsis viridis reveals a distinctive quadripartite architecture in the chloroplast genome of early diverging ulvophytes

    Directory of Open Access Journals (Sweden)

    Lemieux Claude

    2006-02-01

    Full Text Available Abstract Background The phylum Chlorophyta contains the majority of the green algae and is divided into four classes. The basal position of the Prasinophyceae has been well documented, but the divergence order of the Ulvophyceae, Trebouxiophyceae and Chlorophyceae is currently debated. The four complete chloroplast DNA (cpDNA sequences presently available for representatives of these classes have revealed extensive variability in overall structure, gene content, intron composition and gene order. The chloroplast genome of Pseudendoclonium (Ulvophyceae, in particular, is characterized by an atypical quadripartite architecture that deviates from the ancestral type by a large inverted repeat (IR featuring an inverted rRNA operon and a small single-copy (SSC region containing 14 genes normally found in the large single-copy (LSC region. To gain insights into the nature of the events that led to the reorganization of the chloroplast genome in the Ulvophyceae, we have determined the complete cpDNA sequence of Oltmannsiellopsis viridis, a representative of a distinct, early diverging lineage. Results The 151,933 bp IR-containing genome of Oltmannsiellopsis differs considerably from Pseudendoclonium and other chlorophyte cpDNAs in intron content and gene order, but shares close similarities with its ulvophyte homologue at the levels of quadripartite architecture, gene content and gene density. Oltmannsiellopsis cpDNA encodes 105 genes, contains five group I introns, and features many short dispersed repeats. As in Pseudendoclonium cpDNA, the rRNA genes in the IR are transcribed toward the single copy region featuring the genes typically found in the ancestral LSC region, and the opposite single copy region harbours genes characteristic of both the ancestral SSC and LSC regions. The 52 genes that were transferred from the ancestral LSC to SSC region include 12 of those observed in Pseudendoclonium cpDNA. Surprisingly, the overall gene organization of

  3. The early evolution of land plants, from fossils to genomics: a commentary on Lang (1937) 'On the plant-remains from the Downtonian of England and Wales'.

    Science.gov (United States)

    Edwards, Dianne; Kenrick, Paul

    2015-04-19

    During the 1920s, the botanist W. H. Lang set out to collect and investigate some very unpromising fossils of uncertain affinity, which predated the known geological record of life on land. His discoveries led to a landmark publication in 1937, 'On the plant-remains from the Downtonian of England and Wales', in which he revealed a diversity of small fossil organisms of great simplicity that shed light on the nature of the earliest known land plants. These and subsequent discoveries have taken on new relevance as botanists seek to understand the plant genome and the early evolution of fundamental organ systems. Also, our developing knowledge of the composition of early land-based ecosystems and the interactions among their various components is contributing to our understanding of how life on land affects key Earth Systems (e.g. carbon cycle). The emerging paradigm is one of early life on land dominated by microbes, small bryophyte-like organisms and lichens. Collectively called cryptogamic covers, these are comparable with those that dominate certain ecosystems today. This commentary was written to celebrate the 350th anniversary of the journal Philosophical Transactions of the Royal Society.

  4. Ancient wolf genome reveals an early divergence of domestic dog ancestors and admixture into high-latitude breeds.

    Science.gov (United States)

    Skoglund, Pontus; Ersmark, Erik; Palkopoulou, Eleftheria; Dalén, Love

    2015-06-01

    The origin of domestic dogs is poorly understood [1-15], with suggested evidence of dog-like features in fossils that predate the Last Glacial Maximum [6, 9, 10, 14, 16] conflicting with genetic estimates of a more recent divergence between dogs and worldwide wolf populations [13, 15, 17-19]. Here, we present a draft genome sequence from a 35,000-year-old wolf from the Taimyr Peninsula in northern Siberia. We find that this individual belonged to a population that diverged from the common ancestor of present-day wolves and dogs very close in time to the appearance of the domestic dog lineage. We use the directly dated ancient wolf genome to recalibrate the molecular timescale of wolves and dogs and find that the mutation rate is substantially slower than assumed by most previous studies, suggesting that the ancestors of dogs were separated from present-day wolves before the Last Glacial Maximum. We also find evidence of introgression from the archaic Taimyr wolf lineage into present-day dog breeds from northeast Siberia and Greenland, contributing between 1.4% and 27.3% of their ancestry. This demonstrates that the ancestry of present-day dogs is derived from multiple regional wolf populations. Copyright © 2015 Elsevier Ltd. All rights reserved.

  5. Genomic Reconstruction of the History of Native Sheep Reveals the Peopling Patterns of Nomads and the Expansion of Early Pastoralism in East Asia.

    Science.gov (United States)

    Zhao, Yong-Xin; Yang, Ji; Lv, Feng-Hua; Hu, Xiao-Ju; Xie, Xing-Long; Zhang, Min; Li, Wen-Rong; Liu, Ming-Jun; Wang, Yu-Tao; Li, Jin-Quan; Liu, Yong-Gang; Ren, Yan-Ling; Wang, Feng; Hehua, EEr; Kantanen, Juha; Arjen Lenstra, Johannes; Han, Jian-Lin; Li, Meng-Hua

    2017-09-01

    China has a rich resource of native sheep (Ovis aries) breeds associated with historical movements of several nomadic societies. However, the history of sheep and the associated nomadic societies in ancient China remains poorly understood. Here, we studied the genomic diversity of Chinese sheep using genome-wide SNPs, mitochondrial and Y-chromosomal variations in > 1,000 modern samples. Population genomic analyses combined with archeological records and historical ethnic demographics data revealed genetic signatures of the origins, secondary expansions and admixtures, of Chinese sheep thereby revealing the peopling patterns of nomads and the expansion of early pastoralism in East Asia. Originating from the Mongolian Plateau ∼5,000‒5,700 years ago, Chinese sheep were inferred to spread in the upper and middle reaches of the Yellow River ∼3,000‒5,000 years ago following the expansions of the Di-Qiang people. Afterwards, sheep were then inferred to reach the Qinghai-Tibetan and Yunnan-Kweichow plateaus ∼2,000‒2,600 years ago by following the north-to-southwest routes of the Di-Qiang migration. We also unveiled two subsequent waves of migrations of fat-tailed sheep into northern China, which were largely commensurate with the migrations of ancestors of Hui Muslims eastward and Mongols southward during the 12th‒13th centuries. Furthermore, we revealed signs of argali introgression into domestic sheep, extensive historical mixtures among domestic populations and strong artificial selection for tail type and other traits, reflecting various breeding strategies by nomadic societies in ancient China. © The Author 2017. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.

  6. Genome-wide identification and expression profiling analysis of the Aux/IAA gene family in Medicago truncatula during the early phase of Sinorhizobium meliloti infection.

    Science.gov (United States)

    Shen, Chenjia; Yue, Runqing; Yang, Yanjun; Zhang, Lei; Sun, Tao; Xu, Luqin; Tie, Shuanggui; Wang, Huizhong

    2014-01-01

    Auxin/indoleacetic acid (Aux/IAA) genes, coding a family of short-lived nuclear proteins, play key roles in wide variety of plant developmental processes, including root system regulation and responses to environmental stimulus. However, how they function in auxin signaling pathway and symbiosis with rhizobial in Medicago truncatula are largely unknown. The present study aims at gaining deeper insight on distinctive expression and function features of Aux/IAA family genes in Medicago truncatula during nodule formation. Using the latest updated draft of the full Medicago truncatula genome, a comprehensive identification and analysis of IAA genes were performed. The data indicated that MtIAA family genes are distributed in all the M. truncatula chromosomes except chromosome 6. Most of MtIAA genes are responsive to exogenous auxin and express in tissues-specific manner. To understand the biological functions of MtIAA genes involved in nodule formation, quantitative real-time polymerase chain reaction (qRT-PCR) was used to test the expression profiling of MtIAA genes during the early phase of Sinorhizobium meliloti (S. meliloti) infection. The expression patterns of most MtIAA genes were down-regulated in roots and up-regulated in shoots by S. meliloti infection. The differences in expression responses between roots and shoots caused by S. meliloti infection were alleviated by 1-NOA application. The genome-wide identification, evolution and expression pattern analysis of MtIAA genes were performed in this study. The data helps us to understand the roles of MtIAA-mediated auxin signaling in nodule formation during the early phase of S. meliloti infection.

  7. Genomic study and Medical Subject Headings enrichment analysis of early pregnancy rate and antral follicle numbers in Nelore heifers

    DEFF Research Database (Denmark)

    Oliveira Junior, G. A.; Perez, B. C.; Cole, J. B.

    2017-01-01

    Zebu animals (Bos indicus) are known to take longer to reach puberty compared with taurine animals (Bos taurus), limiting the supply of animals for harvest or breeding and impacting profitability. Genomic information can be a helpful tool to better understand complex traits and improve genetic...... gains. In this study, we performed a genomewide association study (GWAS) to identify genetic variants associated with reproductive traits in Nelore beef cattle. Heifer pregnancy (HP) was recorded for 1,267 genotyped animals distributed in 12 contemporary groups (CG) with an average pregnancy rate of 0.......35 (+/- 0.01). Disregarding one of these CG, the number of antral follicles (NF) was also collected for 937 of these animals, with an average of 11.53 (+/- 4.43). The animals were organized in CG: 12 and 11 for HP and NF, respectively. Genes in linkage disequilibrium (LD) with the associated variants can...

  8. Respective prognostic value of genomic grade and histological proliferation markers in early stage (pN0 breast carcinoma.

    Directory of Open Access Journals (Sweden)

    Fabien Reyal

    Full Text Available BACKGROUND: Genomic grade (GG is a 97-gene signature which improves the accuracy and prognostic value of histological grade (HG in invasive breast carcinoma. Since most of the genes included in the GG are involved in cell proliferation, we performed a retrospective study to compare the prognostic value of GG, Mitotic Index and Ki67 score. METHODS: A series of 163 consecutive breast cancers was retained (pT1-2, pN0, pM0, 10-yr follow-up. GG was computed using MapQuant Dx(R. RESULTS: GG was low (GG-1 in 48%, high (GG-3 in 31% and equivocal in 21% of cases. For HG-2 tumors, 50% were classified as GG-1, 18% as GG-3 whereas 31% remained equivocal. In a subgroup of 132 ER+/HER2- tumors GG was the most significant prognostic factor in multivariate Cox regression analysis adjusted for age and tumor size (HR = 5.23, p = 0.02. CONCLUSIONS: In a reference comprehensive cancer center setting, compared to histological grade, GG added significant information on cell proliferation in breast cancers. In patients with HG-2 carcinoma, applying the GG to guide the treatment scheme could lead to a reduction in adjuvant therapy prescription. However, based on the results observed and considering (i the relatively close prognostic values of GG and Ki67, (ii the reclassification of about 30% of HG-2 tumors as Equivocal GG and (iii the economical and technical requirements of the MapQuant micro-array GG test, the availability in the near future of a PCR-based Genomic Grade test with improved performances may lead to an introduction in clinical routine of this test for histological grade 2, ER positive, HER2 negative breast carcinoma.

  9. Respective prognostic value of genomic grade and histological proliferation markers in early stage (pN0) breast carcinoma.

    Science.gov (United States)

    Reyal, Fabien; Bollet, Marc A; Caly, Martial; Gentien, David; Carpentier, Sabrina; Peyro-Saint-Paul, Hélène; Pierga, Jean-Yves; Cottu, Paul; Dieras, Véronique; Sigal-Zafrani, Brigitte; Vincent-Salomon, Anne; Sastre-Garau, Xavier

    2012-01-01

    Genomic grade (GG) is a 97-gene signature which improves the accuracy and prognostic value of histological grade (HG) in invasive breast carcinoma. Since most of the genes included in the GG are involved in cell proliferation, we performed a retrospective study to compare the prognostic value of GG, Mitotic Index and Ki67 score. A series of 163 consecutive breast cancers was retained (pT1-2, pN0, pM0, 10-yr follow-up). GG was computed using MapQuant Dx(R). GG was low (GG-1) in 48%, high (GG-3) in 31% and equivocal in 21% of cases. For HG-2 tumors, 50% were classified as GG-1, 18% as GG-3 whereas 31% remained equivocal. In a subgroup of 132 ER+/HER2- tumors GG was the most significant prognostic factor in multivariate Cox regression analysis adjusted for age and tumor size (HR = 5.23, p = 0.02). In a reference comprehensive cancer center setting, compared to histological grade, GG added significant information on cell proliferation in breast cancers. In patients with HG-2 carcinoma, applying the GG to guide the treatment scheme could lead to a reduction in adjuvant therapy prescription. However, based on the results observed and considering (i) the relatively close prognostic values of GG and Ki67, (ii) the reclassification of about 30% of HG-2 tumors as Equivocal GG and (iii) the economical and technical requirements of the MapQuant micro-array GG test, the availability in the near future of a PCR-based Genomic Grade test with improved performances may lead to an introduction in clinical routine of this test for histological grade 2, ER positive, HER2 negative breast carcinoma.

  10. A joint modeling approach for uncovering associations between gene expression, bioactivity and chemical structure in early drug discovery to guide lead selection and genomic biomarker development.

    Science.gov (United States)

    Perualila-Tan, Nolen; Kasim, Adetayo; Talloen, Willem; Verbist, Bie; Göhlmann, Hinrich W H; Shkedy, Ziv

    2016-08-01

    The modern drug discovery process involves multiple sources of high-dimensional data. This imposes the challenge of data integration. A typical example is the integration of chemical structure (fingerprint features), phenotypic bioactivity (bioassay read-outs) data for targets of interest, and transcriptomic (gene expression) data in early drug discovery to better understand the chemical and biological mechanisms of candidate drugs, and to facilitate early detection of safety issues prior to later and expensive phases of drug development cycles. In this paper, we discuss a joint model for the transcriptomic and the phenotypic variables conditioned on the chemical structure. This modeling approach can be used to uncover, for a given set of compounds, the association between gene expression and biological activity taking into account the influence of the chemical structure of the compound on both variables. The model allows to detect genes that are associated with the bioactivity data facilitating the identification of potential genomic biomarkers for compounds efficacy. In addition, the effect of every structural feature on both genes and pIC50 and their associations can be simultaneously investigated. Two oncology projects are used to illustrate the applicability and usefulness of the joint model to integrate multi-source high-dimensional information to aid drug discovery.

  11. A polymorphic bipartite motif signals nuclear targeting of early auxin-inducible proteins related to PS-IAA4 from pea (Pisum sativum).

    Science.gov (United States)

    Abel, S; Theologis, A

    1995-07-01

    The plant hormone, indoleacetic acid (IAA), transcriptionally activates two early genes in pea, PS-IAA4/5 and PS-IAA6 that encode short-lived nuclear proteins. The identification of the nuclear localization signals (NLS) in PS-IAA4 and PS-IAA6 using progressive deletion analysis and site-directed mutagenesis is reported. A C-terminal SV40-type NLS is sufficient to direct the beta-glucuronidase reporter to the nucleus of transiently transformed tobacco protoplasts, but is dispensible for nuclear localization of both proteins. The dominant and essential NLS in PS-IAA4 and PS-IAA6 overlap with a bipartite basic motif which is polymorphic and conserved in related proteins from other plant species, having the consensus sequence (KKNEK)KR-X(24-71)-(RSXRK)/(RK/RK). Both basic elements of this motif in PS-IAA4, (KR-X41-RSYRK), function interdependently as a bipartite NLS. However, in PS-IAA6 (KKNEKKR-X36-RKK) the upstream element of the corresponding motif contains additional basic residues which allow its autonomous function as an SV40-type monopartite NLS. The spacer-length polymorphism, X(24-70), in respective bipartite NLS peptides of several PS-IAA4-like proteins from Arabidopsis thaliana does not affect nuclear targeting function. The structural and functional variation of the bipartite basic motif in PS-IAA4-like proteins supports the proposed integrated consensus of NLS.

  12. Genome wide expression profiling of the mesodiencephalic region identifies novel factors involved in early and late dopaminergic development

    Directory of Open Access Journals (Sweden)

    Koushik Chakrabarty

    2012-05-01

    Meso-diencephalic dopaminergic (mdDA neurons are critical for motor control and cognitive functioning and their loss or dysfunction is associated with disorders such as Parkinson's disease (PD, schizophrenia and addiction. However, relatively little is known about the molecular mechanisms underlying mdDA neuron development and maintenance. Here, we determined the spatiotemporal map of genes involved in the development of mdDA neurons to gain further insight into their molecular programming. Genome-wide gene expression profiles of the developing ventral mesencephalon (VM were compared at different developmental stages leading to the identification of novel regulatory roles of neuronal signaling through nicotinic acthylcholine receptors (Chrna6 and Chrnb3 subunits and the identification of novel transcription factors (Oc2 and 3 involved in the generation of the mdDA neuronal field. We show here that Pitx3, in cooperation with Nurr1, is the critical component in the activation of the Chrna6 and Chrnb3 subunits in mdDA neurons. Furthermore, we provide evidence of two divergent regulatory pathways resulting in the expression of Chrna6 and Chrnb3 respectively.

  13. Early detection of fatigue cracks by means of nondestructive testing, NDT; Tidig detektering av utmattningssprickor genom ofoerstoerande provning, OFP

    Energy Technology Data Exchange (ETDEWEB)

    Broddegaard, Mattias [Siemens Industrial Turbines, Finspaang (Sweden)

    2004-12-01

    Components in gas turbines, steam turbines and boilers are subjected to both high and low cycle fatigue. The lifetime of components is established by calculations based on conservative assumptions and safety factors, which means that most components will have a real life far exceeding the calculated. Conventional nondestructive testing is aimed at detecting macroscopic defects, such as cracks, inclusions and other discontinuities in the material. By having the possibility of detecting damage at a microscopic level, the risk of fractures in components subjected to fatigue can be reduced and the interval between testing occasions can be extended. The project goal has been to establish knowledge about possibilities and limitations for early detection of low and high cycle fatigue damage, by a literature survey and by practical experiments on low cycle fatigue specimens in 12% Cr-steel, for the following nondestructive testing methods: MWM (Meandering Winding Magnetometer) eddy current testing; and Nonlinear ultrasonics, both classical (second harmonic) and non-classical (crack closure). The project started with a literature survey. This resulted in a proposal for specimen design and selection of testing techniques and project partners. Manufacturing of specimens in 12% Cr-steel, designation X22CrMoV12-1, and low cycle fatigue testing at 300 deg C testing temperature was carried out at Siemens Industrial Turbines in Finspaang. Specimens with 0, 25, 50, 75 and 100% consumed life, based on the number of cycles to presence of macroscopic cracks, were produced. MWM eddy current testing was carried out by Jentek Sensors Inc. in the USA. Measurements with nonlinear ultrasonics were carried out by Siemens Corporate Technology in Munich and at Blekinge Univ. The specimens were finally examined in SEM and light optical microscope in Finspaang. In the literature, results showing that early detection of fatigue damage by nondestructive testing is possible, can be found. By

  14. A mutation in the cytosolic O-acetylserine (thiol lyase induces a genome-dependent early leaf death phenotype in Arabidopsis

    Directory of Open Access Journals (Sweden)

    Schippers Jos HM

    2010-04-01

    Full Text Available Abstract Background Cysteine is a component in organic compounds including glutathione that have been implicated in the adaptation of plants to stresses. O-acetylserine (thiol lyase (OAS-TL catalyses the final step of cysteine biosynthesis. OAS-TL enzyme isoforms are localised in the cytoplasm, the plastids and mitochondria but the contribution of individual OAS-TL isoforms to plant sulphur metabolism has not yet been fully clarified. Results The seedling lethal phenotype of the Arabidopsis onset of leaf death3-1 (old3-1 mutant is due to a point mutation in the OAS-A1 gene, encoding the cytosolic OAS-TL. The mutation causes a single amino acid substitution from Gly162 to Glu162, abolishing old3-1 OAS-TL activity in vitro. The old3-1 mutation segregates as a monogenic semi-dominant trait when backcrossed to its wild type accession Landsberg erecta (Ler-0 and the Di-2 accession. Consistent with its semi-dominant behaviour, wild type Ler-0 plants transformed with the mutated old3-1 gene, displayed the early leaf death phenotype. However, the old3-1 mutation segregates in an 11:4:1 (wild type: semi-dominant: mutant ratio when backcrossed to the Colombia-0 and Wassilewskija accessions. Thus, the early leaf death phenotype depends on two semi-dominant loci. The second locus that determines the old3-1 early leaf death phenotype is referred to as odd-ler (for old3 determinant in the Ler accession and is located on chromosome 3. The early leaf death phenotype is temperature dependent and is associated with increased expression of defence-response and oxidative-stress marker genes. Independent of the presence of the odd-ler gene, OAS-A1 is involved in maintaining sulphur and thiol levels and is required for resistance against cadmium stress. Conclusions The cytosolic OAS-TL is involved in maintaining organic sulphur levels. The old3-1 mutation causes genome-dependent and independent phenotypes and uncovers a novel function for the mutated OAS-TL in cell

  15. Developmentally dynamic genome: Evidence of genetic influences on increases and decreases in conduct problems from early childhood to adolescence.

    Science.gov (United States)

    Pingault, Jean-Baptiste; Rijsdijk, Frühling; Zheng, Yao; Plomin, Robert; Viding, Essi

    2015-05-06

    The development of conduct problems in childhood and adolescence is associated with adverse long-term outcomes, including psychiatric morbidity. Although genes constitute a proven factor of stability in conduct problems, less is known regarding their role in conduct problems' developmental course (i.e. systematic age changes, for instance linear increases or decreases).Mothers rated conduct problems from age 4 to 16 years in 10,038 twin pairs from the Twins Early Development Study. Individual differences in the baseline level (.78; 95% CI: .68-.88) and the developmental course of conduct problems (.73; 95% CI: .60-.86) were under high and largely independent additive genetic influences. Shared environment made a small contribution to the baseline level but not to the developmental course of conduct problems. These results show that genetic influences not only contribute to behavioural stability but also explain systematic change in conduct problems. Different sets of genes may be associated with the developmental course versus the baseline level of conduct problems. The structure of genetic and environmental influences on the development of conduct problems suggests that repeated preventive interventions at different developmental stages might be necessary to achieve a long-term impact.

  16. A functional genome-wide in vivo screen identifies new regulators of signalling pathways during early Xenopus embryogenesis.

    Directory of Open Access Journals (Sweden)

    Siwei Zhang

    Full Text Available Embryonic development requires exquisite regulation of several essential processes, such as patterning of tissues and organs, cell fate decisions, and morphogenesis. Intriguingly, these diverse processes are controlled by only a handful of signalling pathways, and mis-regulation in one or more of these pathways may result in a variety of congenital defects and diseases. Consequently, investigating how these signalling pathways are regulated at the molecular level is essential to understanding the mechanisms underlying vertebrate embryogenesis, as well as developing treatments for human diseases. Here, we designed and performed a large-scale gain-of-function screen in Xenopus embryos aimed at identifying new regulators of MAPK/Erk, PI3K/Akt, BMP, and TGF-β/Nodal signalling pathways. Our gain-of-function screen is based on the identification of gene products that alter the phosphorylation state of key signalling molecules, which report the activation state of the pathways. In total, we have identified 20 new molecules that regulate the activity of one or more signalling pathways during early Xenopus development. This is the first time that such a functional screen has been performed, and the findings pave the way toward a more comprehensive understanding of the molecular mechanisms regulating the activity of important signalling pathways under normal and pathological conditions.

  17. Developmentally dynamic genome: Evidence of genetic influences on increases and decreases in conduct problems from early childhood to adolescence

    Science.gov (United States)

    Pingault, Jean-Baptiste; Rijsdijk, Frühling; Zheng, Yao; Plomin, Robert; Viding, Essi

    2015-01-01

    The development of conduct problems in childhood and adolescence is associated with adverse long-term outcomes, including psychiatric morbidity. Although genes constitute a proven factor of stability in conduct problems, less is known regarding their role in conduct problems’ developmental course (i.e. systematic age changes, for instance linear increases or decreases).Mothers rated conduct problems from age 4 to 16 years in 10,038 twin pairs from the Twins Early Development Study. Individual differences in the baseline level (.78; 95% CI: .68-.88) and the developmental course of conduct problems (.73; 95% CI: .60-.86) were under high and largely independent additive genetic influences. Shared environment made a small contribution to the baseline level but not to the developmental course of conduct problems. These results show that genetic influences not only contribute to behavioural stability but also explain systematic change in conduct problems. Different sets of genes may be associated with the developmental course versus the baseline level of conduct problems. The structure of genetic and environmental influences on the development of conduct problems suggests that repeated preventive interventions at different developmental stages might be necessary to achieve a long-term impact. PMID:25944445

  18. No evidence of Neandertal admixture in the mitochondrial genomes of early European modern humans and contemporary Europeans.

    Science.gov (United States)

    Ghirotto, Silvia; Tassi, Francesca; Benazzo, Andrea; Barbujani, Guido

    2011-10-01

    Neandertals, the archaic human form documented in Eurasia until 29,000 years ago, share no mitochondrial haplotype with modern Europeans. Whether this means that the two groups were reproductively isolated is controversial, and indeed nuclear data have been interpreted as suggesting that they admixed. We explored the range of demographic parameters that may have generated the observed mitochondrial diversity, simulating 3.0 million genealogies under six models differing as for the relationships among contemporary Europeans, Neandertals, and Upper Palaeolithic European early modern humans (EEMH), who coexisted with Neandertals for millennia. We compared by Approximate Bayesian Computations the simulation results with mitochondrial diversity in 7 Neandertals, 3 EEMH, and 150 opportunely chosen modern Europeans. A model of genealogical continuity between EEMH and contemporary Europeans, with no Neandertal contribution, received overwhelming support from the analyses. The maximum degree of Neandertal admixture, under the model of gene flow supported by nuclear data, was estimated at 1.5%, but this model proved 20-32 times less likely than a model without any gene flow. Nuclear and mitochondrial evidence might be reconciled if smaller population sizes led to faster lineage sorting for mitochondrial DNA, and Neandertals shared a longer period of common ancestry with the non-African's than with the African's ancestors. Copyright © 2011 Wiley-Liss, Inc.

  19. Association of pKi-67 with satellite DNA of the human genome in early G1 cells.

    Science.gov (United States)

    Bridger, J M; Kill, I R; Lichter, P

    1998-01-01

    pKi-67 is a nucleolar antigen that provides a specific marker for proliferating cells. It has been shown previously that pKi-67's distribution varies in a cell cycle-dependent manner: it coats all chromosomes during mitosis, accumulates in nuclear foci during G1 phase (type I distribution) and localizes within nucleoli in late G1 S and G2 phase (type II distribution). Although no function has as yet been ascribed to pKi-67, it has been found associated with centromeres in G1. In the present study the distribution pattern of pKi-67 during G1 in human dermal fibroblasts (HDFs) was analysed in more detail. Synchronization experiments show that in very early G1 cells pKi-67 coincides with virtually all satellite regions analysed, i.e. with centromeric (alpha-satellite), telomeric (minisatellite) and heterochromatic blocks (satellite III) on chromosomes 1 and Y (type Ia distribution). In contrast, later in the G1 phase, a smaller fraction of satellite DNA regions are found collocalized with pKi-67 foci (type Ib distribution). When all pKi-67 becomes localized within nucleoli, even fewer satellite regions remain associated with the pKi-67 staining. However, all centromeric and short arm regions of the acrocentric chromosomes, which are in very close proximity to or even contain the rRNA genes, are collocalized with anti-pKi-67 staining throughout the remaining interphase of the cell cycle. Thus, our data demonstrate that during post-mitotic reformation and nucleogenesis there is a progressive decline in the fraction of specific satellite regions of DNA that remain associated with pKi-67. This may be relevant to nucleolar reformation following mitosis.

  20. Genome wide microarray based expression profiles during early embryogenesis in diapause induced and non-diapause eggs of polyvoltine silkworm Bombyx mori.

    Science.gov (United States)

    Sasibhushan, Sirigineedi; C G P, Rao; Ponnuvel, Kangayam M

    2013-10-01

    Diapause was induced in polyvoltine silkworm B. mori eggs and the molecular mechanism involved in diapause was investigated using a genome wide microarray. In diapause eggs, 638 and 675 genes were upregulated, while, in non-diapause eggs 1136 and 595 genes were upregulated at 18 h and 30 h, respectively after oviposition. Real-time qPCR analysis confirmed the expression of 20 genes, and the relative expression levels of the Aquaporin gene was highest among the 20 genes, followed by Sorbitol dehydrogenase-2 and Cytochrome b5 in diapause eggs, while, Kruppel homolog, Period and Relish were higher in non-diapause eggs. The upregulation of SDH-2 and cytochrome b5 indicates increased metabolic rate in diapause-destined embryos prior to the onset of diapause within 36 h as a preparatory phase. This study provides an insight into the early molecular events for the induction and maintenance of diapause in B. mori. © 2013 Elsevier Inc. All rights reserved.

  1. Genome-resolved metaproteomic characterization of preterm infant gut microbiota development reveals species-specific metabolic shifts and variabilities during early life.

    Science.gov (United States)

    Xiong, Weili; Brown, Christopher T; Morowitz, Michael J; Banfield, Jillian F; Hettich, Robert L

    2017-07-10

    Establishment of the human gut microbiota begins at birth. This early-life microbiota development can impact host physiology during infancy and even across an entire life span. However, the functional stability and population structure of the gut microbiota during initial colonization remain poorly understood. Metaproteomics is an emerging technology for the large-scale characterization of metabolic functions in complex microbial communities (gut microbiota). We applied a metagenome-informed metaproteomic approach to study the temporal and inter-individual differences of metabolic functions during microbial colonization of preterm human infants' gut. By analyzing 30 individual fecal samples, we identified up to 12,568 protein groups for each of four infants, including both human and microbial proteins. With genome-resolved matched metagenomics, proteins were confidently identified at the species/strain level. The maximum percentage of the proteome detected for the abundant organisms was ~45%. A time-dependent increase in the relative abundance of microbial versus human proteins suggested increasing microbial colonization during the first few weeks of early life. We observed remarkable variations and temporal shifts in the relative protein abundances of each organism in these preterm gut communities. Given the dissimilarity of the communities, only 81 microbial EggNOG orthologous groups and 57 human proteins were observed across all samples. These conserved microbial proteins were involved in carbohydrate, energy, amino acid and nucleotide metabolism while conserved human proteins were related to immune response and mucosal maturation. We identified seven proteome clusters for the communities and showed infant gut proteome profiles were unstable across time and not individual-specific. Applying a gut-specific metabolic module (GMM) analysis, we found that gut communities varied primarily in the contribution of nutrient (carbohydrates, lipids, and amino acids

  2. [Genomic structure of the autotetraploid oat species Avena macrostachya inferred from comparative analysis of the ITS1 and ITS2 sequences: on the oat karyotype evolution during the early stages of the Avena species divergence].

    Science.gov (United States)

    Rodionov, A V; Tiupa, N B; Kim, E S; Machs, E M; Loskutov, I G

    2005-05-01

    To examine the genomic structure of Avena macrostachya, internal transcribed spacers, ITS1 and ITS2, as well as nuclear 5.8S tRNA genes from three oat species with AsAs karyotype (A. wiestii, A. hirtula, and A. atlantica), and those from A. longiglumis (AlAl), A. canariensis (AcAc), A. ventricosa (CvCv), A. pilosa, and A. clauda (CpCp) were sequenced. All species of the genus Avena examined represented a monophyletic group (bootstrap index = 98), within which two branches, i.e., species with A- and C-genomes, were distinguished (bootstrap indices = 100). The subject of our study, A. macrostachya, albeit belonging to the phylogenetic branch of C-genome oat species (karyotype with submetacentic and subacrocentric chromosomes), has preserved an isobrachyal karyotype, (i.e., that containing metacentric chromosomes), probably typical of the common Avena ancestor. It was suggested to classify the A. macrostachya genome as a specific form of C-genome, Cm-genome. Among the species from other genera studied, Arrhenatherum elatius was found to be the closest to Avena in ITS1 and ITS structure. Phylogenetic relationships between Avena and Helictotrichon remain intriguingly uncertain. The HPR389153 sequence from H. pratense genome was closest to the ITS1 sequences specific to the Avena A-genomes (p-distance = 0.0237), while the differences of this sequence from the ITS1 of A. macrostachya reached 0.1221. On the other hand, HAD389117 from H. adsurgens was close to the ITS1 specific to Avena C-genomes (p-distance = 0.0189), while its differences from the A-genome specific ITS1 sequences reached 0.1221. It seems likely that the appearance of highly polyploid (2n = 12-21x) species of H. pratense and H. adsurgens could be associated with interspecific hybridization involving Mediterranean oat species carrying A- and C-genomes. A hypothesis on the pathways of Avena chromosomes evolution during the early stages the oat species divergence is proposed.

  3. Bioinformatics decoding the genome

    CERN Multimedia

    CERN. Geneva; Deutsch, Sam; Michielin, Olivier; Thomas, Arthur; Descombes, Patrick

    2006-01-01

    Extracting the fundamental genomic sequence from the DNA From Genome to Sequence : Biology in the early 21st century has been radically transformed by the availability of the full genome sequences of an ever increasing number of life forms, from bacteria to major crop plants and to humans. The lecture will concentrate on the computational challenges associated with the production, storage and analysis of genome sequence data, with an emphasis on mammalian genomes. The quality and usability of genome sequences is increasingly conditioned by the careful integration of strategies for data collection and computational analysis, from the construction of maps and libraries to the assembly of raw data into sequence contigs and chromosome-sized scaffolds. Once the sequence is assembled, a major challenge is the mapping of biologically relevant information onto this sequence: promoters, introns and exons of protein-encoding genes, regulatory elements, functional RNAs, pseudogenes, transposons, etc. The methodological ...

  4. Restriction landmark genomic scanning of mouse liver tumors for gene amplification: overexpression of cyclin A2.

    Science.gov (United States)

    Haddad, R; Morrow, A D; Plass, C; Held, W A

    2000-07-21

    SV40 T/t antigen-induced liver tumors from transgenic mice were analyzed by Restriction Landmark Genomic Scanning (RLGS). Using NotI as the restriction landmark, RLGS targets CpG islands found in gene-rich regions of the genome. Since many RLGS landmarks are mapped, the candidate gene approach can be used to help determine which genes are altered in tumors. RLGS analysis revealed one tumor-specific amplification mapping close to CcnA2 (cyclin A2) and Fgf2 (fibroblast growth factor 2). Southern analysis confirmed that both oncogenes are amplified in this tumor and in a second, independent liver tumor. Whereas Fgf2 RNA is undetectable in tumors, CcnA2 RNA and cyclin A2 protein was overexpressed in 25 and 50% of tumors, respectively. Combining RLGS with the candidate gene approach indicates that cyclin A2 amplification and overexpression is a likely selected event in transgenic mouse liver tumors. Our results also indicate that our mouse model for liver tumorigenesis in mice accurately recapitulates events observed in human hepatocellular carcinoma. Copyright 2000 Academic Press.

  5. Directed genome engineering for genome optimization.

    Science.gov (United States)

    D'Halluin, Kathleen; Ruiter, Rene

    2013-01-01

    The ability to develop nucleases with tailor-made activities for targeted DNA double-strand break induction at will at any desired position in the genome has been a major breakthrough to make targeted genome optimization feasible in plants. The development of site specific nucleases for precise genome modification has expanded the repertoire of tools for the development and optimization of traits, already including mutation breeding, molecular breeding and transgenesis.Through directed genome engineering technology, the huge amount of information provided by genomics and systems biology can now more effectively be used for the creation of plants with improved or new traits, and for the dissection of gene functions. Although still in an early phase of deployment, its utility has been demonstrated for engineering disease resistance, herbicide tolerance, altered metabolite profiles, and for molecular trait stacking to allow linked transmission of transgenes. In this article, we will briefly review the different approaches for directed genome engineering with the emphasis on double strand break (DSB)-mediated engineering to-wards genome optimization for crop improvement and towards the acceleration of functional genomics.

  6. Non-invasive detection of genomic imbalances in Hodgkin/Reed-Sternberg cells in early and advanced stage Hodgkin's lymphoma by sequencing of circulating cell-free DNA: a technical proof-of-principle study.

    Science.gov (United States)

    Vandenberghe, Peter; Wlodarska, Iwona; Tousseyn, Thomas; Dehaspe, Luc; Dierickx, Daan; Verheecke, Magali; Uyttebroeck, Anne; Bechter, Oliver; Delforge, Michel; Vandecaveye, Vincent; Brison, Nathalie; Verhoef, Gregor E G; Legius, Eric; Amant, Frederic; Vermeesch, Joris R

    2015-02-01

    Hodgkin's lymphoma is one of the most common lymphoid neoplasms in young adults, but the low abundance of neoplastic Hodgkin/Reed-Sternberg cells in the tumour hampers the elucidation of its pathogenesis, biology, and diversity. After an incidental observation that genomic aberrations known to occur in Hodgkin's lymphoma were detectable in circulating cell-free DNA, this study was undertaken to investigate whether circulating cell-free DNA can be informative about genomic imbalances in Hodgkin's lymphoma. We applied massive parallel sequencing to circulating cell-free DNA in a prospective study of patients with biopsy proven nodular sclerosis Hodgkin's lymphoma. Genomic imbalances in Hodgkin/Reed-Sternberg cells were investigated by fluorescence in-situ hybridisation (FISH) on tumour specimens. By non-invasive prenatal testing, we observed several genomic imbalances in circulating cell-free DNA of a pregnant woman, who was subsequently diagnosed with early-stage nodular sclerosis Hodgkin's lymphoma stage IIA during gestation. FISH on tumour tissue confirmed corresponding genomic imbalances in Hodgkin/Reed-Sternberg cells. We prospectively studied circulating cell-free DNA of nine nodular sclerosis Hodgkin's lymphoma cases: eight at first diagnosis and one at first relapse. Seven patients had stage IIA disease and two had stage IVB disease. In eight, genomic imbalances were detected, including, among others, gain of chromosomes 2p and 9p, known to occur in Hodgkin's lymphoma. These gains and losses in circulating cell-free DNA were extensively validated by FISH on Hodgkin/Reed-Sternberg cells in biopsy samples. Initiation of chemotherapy induced normalisation of circulating cell-free DNA profiles within 2-6 weeks. The cell cycle indicator Ki67 and cleaved caspase-3 were detected in Hodgkin/Reed-Sternberg cells by immunohistochemistry, suggesting high turnover of Hodgkin/Reed-Sternberg cells. In early and advanced stage nodular sclerosis Hodgkin's lymphoma, genomic

  7. Genomic Testing

    Science.gov (United States)

    ... Counseling Genomic Testing Pathogen Genomics Epidemiology Resources Genomic Testing Recommend on Facebook Tweet Share Compartir Fact Sheet: ... Page The Need for Reliable Information on Genetic Testing In 2008, the former Secretary’s Advisory Committee on ...

  8. Nucleoprotein structure of immediate-early promoters Zp and Rp and of oriLyt of latent Epstein-Barr virus genomes.

    Science.gov (United States)

    Niller, Hans Helmut; Salamon, Daniel; Uhlig, Jörg; Ranf, Stefanie; Granz, Marcus; Schwarzmann, Fritz; Wolf, Hans; Minarovits, Janos

    2002-04-01

    Genomic footprints across Rp, Zp, and oriLyt of Epstein-Barr virus (EBV) have been conducted in a panel of latently infected B-cell lines. Close protein-base contacts were found about 360 nucleotides upstream of the Zp initiation site. Gel shifts and transient transfection assays indicated that an Sp1-NF1 locus may serve as a repressive transcriptional element against Zp induction from latent EBV genomes.

  9. Genome sequence of a 5,310-year-old maize cob provides insights into the early stages of maize domestication

    DEFF Research Database (Denmark)

    Ramos Madrigal, Jazmin; Smith, Bruce D.; Moreno Mayar, José Victor

    2016-01-01

    The complex evolutionary history of maize (Zea mays L. ssp. mays) has been clarified with genomic-level data from modern landraces and wild teosinte grasses [1, 2], augmenting archaeological findings that suggest domestication occurred between 10,000 and 6,250 years ago in southern Mexico [3, 4...... to abandonment of unproductive lineages, genetic drift, on-going natural selection, and recent breeding activity. To more fully understand the history and spread of maize, we characterized the draft genome of a 5,310-year-old archaeological cob excavated in the Tehuacan Valley of Mexico. We compare this ancient...... sample against a reference panel of modern landraces and teosinte grasses using D statistics, model-based clustering algorithms, and multidimensional scaling analyses, demonstrating the specimen derives from the same source population that gave rise to modern maize. We find that 5,310 years ago, maize...

  10. The Asian arowana (Scleropages formosus) genome provides new insights into the evolution of an early lineage of teleosts

    DEFF Research Database (Denmark)

    Bian, Chao; Hu, Yinchang; Ravi, Vydianathan

    2016-01-01

    five Hox clusters. Differential gene expression among three varieties provides insights into the genetic basis of colour variation. A potential heterogametic sex chromosome is identified in the female arowana karyotype, suggesting that the sex is determined by a ZW/ZZ sex chromosomal system. The high......The Asian arowana (Scleropages formosus), one of the world's most expensive cultivated ornamental fishes, is an endangered species. It represents an ancient lineage of teleosts: the Osteoglossomorpha. Here, we provide a high-quality chromosome-level reference genome of a female golden...... (eels and relatives), with the two clades together forming a sister group of Clupeocephala which includes all the remaining teleosts. The arowana genome retains the full complement of eight Hox clusters unlike the African butterfly fish (Pantodon buchholzi), another bonytongue fish, which possess only...

  11. Early gene expression analyzed by a genome microarray and real-time PCR in osteoblasts cultured with a 4-META/MMA-TBB adhesive resin sealer.

    OpenAIRE

    Syudo, Minoru; Yamada, Shizuka; Yanagiguchi, Kajiro; Matsunaga, Tsunenori; HAYASHI, Yoshihiko

    2009-01-01

    OBJECTIVES: Adhesive resin sealer systems have been applied in endodontics to seal the root canal system. This study was designed to confirm the mechanism of intracellular molecular events in an in vitro cell culture system with a 4-methacryloxyethyl trimellitate anhydride/methylmethacrylate-tri-n-butyl borane (4-META/MMA-TBB) adhesive resin sealer. STUDY DESIGN: The gene expression patterns relating to cell growth and differentiation were examined using a human genome expression microarray a...

  12. Comparative Genomics

    Indian Academy of Sciences (India)

    tory motifs and other non-coding DNA motifs, and genome flux and dynamics. Finally the article describes how the information one can extract from a comparative analysis of genomes depends to a large extent, on the specific aspect of the genomes that is being compared and the phylogenetic distances of the organisms ...

  13. Cancer genomics

    DEFF Research Database (Denmark)

    Norrild, Bodil; Guldberg, Per; Ralfkiær, Elisabeth Methner

    2007-01-01

    Almost all cells in the human body contain a complete copy of the genome with an estimated number of 25,000 genes. The sequences of these genes make up about three percent of the genome and comprise the inherited set of genetic information. The genome also contains information that determines whe...

  14. Genome Assembly of the Fungus Cochliobolus miyabeanus, and Transcriptome Analysis during Early Stages of Infection on American Wildrice (Zizania palustris L..

    Directory of Open Access Journals (Sweden)

    Claudia V Castell-Miller

    Full Text Available The fungus Cochliobolus miyabeanus causes severe leaf spot disease on rice (Oryza sativa and two North American specialty crops, American wildrice (Zizania palustris and switchgrass (Panicum virgatum. Despite the importance of C. miyabeanus as a disease-causing agent in wildrice, little is known about either the mechanisms of pathogenicity or host defense responses. To start bridging these gaps, the genome of C. miyabeanus strain TG12bL2 was shotgun sequenced using Illumina technology. The genome assembly consists of 31.79 Mbp in 2,378 scaffolds with an N50 = 74,921. It contains 11,000 predicted genes of which 94.5% were annotated. Approximately 10% of total gene number is expected to be secreted. The C. miyabeanus genome is rich in carbohydrate active enzymes, and harbors 187 small secreted peptides (SSPs and some fungal effector homologs. Detoxification systems were represented by a variety of enzymes that could offer protection against plant defense compounds. The non-ribosomal peptide synthetases and polyketide synthases (PKS present were common to other Cochliobolus species. Additionally, the fungal transcriptome was analyzed at 48 hours after inoculation in planta. A total of 10,674 genes were found to be expressed, some of which are known to be involved in pathogenicity or response to host defenses including hydrophobins, cutinase, cell wall degrading enzymes, enzymes related to reactive oxygen species scavenging, PKS, detoxification systems, SSPs, and a known fungal effector. This work will facilitate future research on C. miyabeanus pathogen-associated molecular patterns and effectors, and in the identification of their corresponding wildrice defense mechanisms.

  15. Functional Genomic and Proteomic Analysis Reveals Disruption of Myelin-Related Genes and Translation in a Mouse Model of Early Life Neglect

    Science.gov (United States)

    Bordner, Kelly A.; George, Elizabeth D.; Carlyle, Becky C.; Duque, Alvaro; Kitchen, Robert R.; Lam, TuKiet T.; Colangelo, Christopher M.; Stone, Kathryn L.; Abbott, Thomas B.; Mane, Shrikant M.; Nairn, Angus C.; Simen, Arthur A.

    2011-01-01

    Early life neglect is an important public health problem which can lead to lasting psychological dysfunction. Good animal models are necessary to understand the mechanisms responsible for the behavioral and anatomical pathology that results. We recently described a novel model of early life neglect, maternal separation with early weaning (MSEW), that produces behavioral changes in the mouse that persist into adulthood. To begin to understand the mechanism by which MSEW leads to these changes we applied cDNA microarray, next-generation RNA-sequencing (RNA-seq), label-free proteomics, multiple reaction monitoring (MRM) proteomics, and methylation analysis to tissue samples obtained from medial prefrontal cortex to determine the molecular changes induced by MSEW that persist into adulthood. The results show that MSEW leads to dysregulation of markers of mature oligodendrocytes and genes involved in protein translation and other categories, an apparent downward biasing of translation, and methylation changes in the promoter regions of selected dysregulated genes. These findings are likely to prove useful in understanding the mechanism by which early life neglect affects brain structure, cognition, and behavior. PMID:21629843

  16. Molluscan Evolutionary Genomics

    Energy Technology Data Exchange (ETDEWEB)

    Simison, W. Brian; Boore, Jeffrey L.

    2005-12-01

    In the last 20 years there have been dramatic advances in techniques of high-throughput DNA sequencing, most recently accelerated by the Human Genome Project, a program that has determined the three billion base pair code on which we are based. Now this tremendous capability is being directed at other genome targets that are being sampled across the broad range of life. This opens up opportunities as never before for evolutionary and organismal biologists to address questions of both processes and patterns of organismal change. We stand at the dawn of a new 'modern synthesis' period, paralleling that of the early 20th century when the fledgling field of genetics first identified the underlying basis for Darwin's theory. We must now unite the efforts of systematists, paleontologists, mathematicians, computer programmers, molecular biologists, developmental biologists, and others in the pursuit of discovering what genomics can teach us about the diversity of life. Genome-level sampling for mollusks to date has mostly been limited to mitochondrial genomes and it is likely that these will continue to provide the best targets for broad phylogenetic sampling in the near future. However, we are just beginning to see an inroad into complete nuclear genome sequencing, with several mollusks and other eutrochozoans having been selected for work about to begin. Here, we provide an overview of the state of molluscan mitochondrial genomics, highlight a few of the discoveries from this research, outline the promise of broadening this dataset, describe upcoming projects to sequence whole mollusk nuclear genomes, and challenge the community to prepare for making the best use of these data.

  17. Genome Sequence of a 5,310-Year-Old Maize Cob Provides Insights into the Early Stages of Maize Domestication.

    Science.gov (United States)

    Ramos-Madrigal, Jazmín; Smith, Bruce D; Moreno-Mayar, J Víctor; Gopalakrishnan, Shyam; Ross-Ibarra, Jeffrey; Gilbert, M Thomas P; Wales, Nathan

    2016-12-05

    The complex evolutionary history of maize (Zea mays L. ssp. mays) has been clarified with genomic-level data from modern landraces and wild teosinte grasses [1, 2], augmenting archaeological findings that suggest domestication occurred between 10,000 and 6,250 years ago in southern Mexico [3, 4]. Maize rapidly evolved under human selection, leading to conspicuous phenotypic transformations, as well as adaptations to varied environments [5]. Still, many questions about the domestication process remain unanswered because modern specimens do not represent the full range of past diversity due to abandonment of unproductive lineages, genetic drift, on-going natural selection, and recent breeding activity. To more fully understand the history and spread of maize, we characterized the draft genome of a 5,310-year-old archaeological cob excavated in the Tehuacan Valley of Mexico. We compare this ancient sample against a reference panel of modern landraces and teosinte grasses using D statistics, model-based clustering algorithms, and multidimensional scaling analyses, demonstrating the specimen derives from the same source population that gave rise to modern maize. We find that 5,310 years ago, maize in the Tehuacan Valley was on the whole genetically closer to modern maize than to its wild counterpart. However, many genes associated with key domestication traits existed in the ancestral state, sharply contrasting with the ubiquity of derived alleles in living landraces. These findings suggest much of the evolution during domestication may have been gradual and encourage further paleogenomic research to address provocative questions about the world's most produced cereal. Copyright © 2016 Elsevier Ltd. All rights reserved.

  18. Two new Loci for body-weight regulation identified in a joint analysis of genome-wide association studies for early-onset extreme obesity in French and german study groups.

    Directory of Open Access Journals (Sweden)

    André Scherag

    2010-04-01

    Full Text Available Meta-analyses of population-based genome-wide association studies (GWAS in adults have recently led to the detection of new genetic loci for obesity. Here we aimed to discover additional obesity loci in extremely obese children and adolescents. We also investigated if these results generalize by estimating the effects of these obesity loci in adults and in population-based samples including both children and adults. We jointly analysed two GWAS of 2,258 individuals and followed-up the best, according to lowest p-values, 44 single nucleotide polymorphisms (SNP from 21 genomic regions in 3,141 individuals. After this DISCOVERY step, we explored if the findings derived from the extremely obese children and adolescents (10 SNPs from 5 genomic regions generalized to (i the population level and (ii to adults by genotyping another 31,182 individuals (GENERALIZATION step. Apart from previously identified FTO, MC4R, and TMEM18, we detected two new loci for obesity: one in SDCCAG8 (serologically defined colon cancer antigen 8 gene; p = 1.85x10(-8 in the DISCOVERY step and one between TNKS (tankyrase, TRF1-interacting ankyrin-related ADP-ribose polymerase gene and MSRA (methionine sulfoxide reductase A gene; p = 4.84x10(-7, the latter finding being limited to children and adolescents as demonstrated in the GENERALIZATION step. The odds ratios for early-onset obesity were estimated at approximately 1.10 per risk allele for both loci. Interestingly, the TNKS/MSRA locus has recently been found to be associated with adult waist circumference. In summary, we have completed a meta-analysis of two GWAS which both focus on extremely obese children and adolescents and replicated our findings in a large followed-up data set. We observed that genetic variants in or near FTO, MC4R, TMEM18, SDCCAG8, and TNKS/MSRA were robustly associated with early-onset obesity. We conclude that the currently known major common variants related to obesity overlap to a substantial

  19. A mouse model for chronic lymphocytic leukemia based on expression of the SV40 large T antigen

    DEFF Research Database (Denmark)

    ter Brugge, Petra J; Ta, Van B T; de Bruijn, Marjolein J W

    2009-01-01

    leukemia (CLL). Although B-cell development was unperturbed in young mice, aging mice showed accumulation of a monoclonal B-cell population in which the targeted IgH allele was in germline configuration and the wild-type IgH allele had a productive V(D)J recombination. These leukemic B cells were Ig...

  20. Genome Imprinting

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 5; Issue 9. Genome Imprinting - The Silencing of Genes and Genomes. H A Ranganath M T Tanuja. General Article Volume 5 Issue 9 September 2000 pp 49-57. Fulltext. Click here to view fulltext PDF. Permanent link:

  1. Baculovirus Genomics

    NARCIS (Netherlands)

    Oers, van M.M.; Vlak, J.M.

    2007-01-01

    Baculovirus genomes are covalently closed circles of double stranded-DNA varying in size between 80 and 180 kilobase-pair. The genomes of more than fourty-one baculoviruses have been sequenced to date. The majority of these (37) are pathogenic to lepidopteran hosts; three infect sawflies

  2. Genomic footprinting.

    Science.gov (United States)

    Vierstra, Jeff; Stamatoyannopoulos, John A

    2016-03-01

    The advent of DNA footprinting with DNase I more than 35 years ago enabled the systematic analysis of protein-DNA interactions, and the technique has been instrumental in the decoding of cis-regulatory elements and the identification and characterization of transcription factors and other DNA-binding proteins. The ability to analyze millions of individual genomic cleavage events via massively parallel sequencing has enabled in vivo DNase I footprinting on a genomic scale, offering the potential for global analysis of transcription factor occupancy in a single experiment. Genomic footprinting has opened unique vistas on the organization, function and evolution of regulatory DNA; however, the technology is still nascent. Here we discuss both prospects and challenges of genomic footprinting, as well as considerations for its application to complex genomes.

  3. Early gene expression analyzed by a genome microarray and real-time PCR in osteoblasts cultured with a 4-META/MMA-TBB adhesive resin sealer.

    Science.gov (United States)

    Syudo, Minoru; Yamada, Shizuka; Yanagiguchi, Kajiro; Matsunaga, Tsunenori; Hayashi, Yoshihiko

    2009-03-01

    Adhesive resin sealer systems have been applied in endodontics to seal the root canal system. This study was designed to confirm the mechanism of intracellular molecular events in an in vitro cell culture system with a 4-methacryloxyethyl trimellitate anhydride/methylmethacrylate-tri-n-butyl borane (4-META/MMA-TBB) adhesive resin sealer. The gene expression patterns relating to cell growth and differentiation were examined using a human genome expression microarray and real-time polymerase chain reaction analyses in hard tissue-forming osteoblasts cultured with and without a 4-META/MMA-TBB resin sealer. There was no significant difference in the cell number between the control and adhesive sealer groups. An increased expression of integrin beta, transforming growth factor beta-related protein, craniofacial development protein 1, and PI3K genes was demonstrated. The integrin beta and PI3K genes showed extremely high ratios. The signal transduction pathway, at least through the PI3K/Akt cascade for cell proliferation and differentiation, can be controlled by some components of this type of adhesive resin sealer.

  4. Early detection of gastric cancer using global, genome-wide and IRF4, ELMO1, CLIP4 and MSC DNA methylation in endoscopic biopsies

    Science.gov (United States)

    Rodriguez-Torres, Sebastian; Friess, Leah; Michailidi, Christina; Cok, Jaime; Combe, Juan; Vargas, Gloria; Prado, William; Soudry, Ethan; Pérez, Jimena; Yudin, Tikki; Mancinelli, Andrea; Unger, Helen; Ili-Gangas, Carmen; Brebi-Mieville, Priscilla; Berg, Douglas E.; Hayashi, Masamichi; Sidransky, David; Gilman, Robert H.; Guerrero-Preston, Rafael

    2017-01-01

    Clinically useful molecular tools to triage gastric cancer patients are not currently available. We aimed to develop a molecular tool to predict gastric cancer risk in endoscopy-driven biopsies obtained from high-risk gastric cancer clinics in low resource settings. We discovered and validated a DNA methylation biomarker panel in endoscopic samples obtained from 362 patients seen between 2004 and 2009 in three high-risk gastric cancer clinics in Lima, Perú, and validated it in 306 samples from the Cancer Genome Atlas project (“TCGA”). Global, epigenome wide and gene-specific DNA methylation analyses were used in a Phase I Biomarker Development Trial to identify a continuous biomarker panel that combines a Global DNA Methylation Index (GDMI) and promoter DNA methylation levels of IRF4, ELMO1, CLIP4 and MSC. We observed an inverse association between the GDMI and histological progression to gastric cancer, when comparing gastritis patients without metaplasia (mean = 5.74, 95% CI, 4.97−6.50), gastritis patients with metaplasia (mean = 4.81, 95% CI, 3.77−5.84), and gastric cancer cases (mean = 3.38, 95% CI, 2.82−3.94), respectively (p 4 are useful molecular tools for gastric cancer risk stratification in endoscopic biopsies. PMID:28418867

  5. The origin of snakes: revealing the ecology, behavior, and evolutionary history of early snakes using genomics, phenomics, and the fossil record.

    Science.gov (United States)

    Hsiang, Allison Y; Field, Daniel J; Webster, Timothy H; Behlke, Adam D B; Davis, Matthew B; Racicot, Rachel A; Gauthier, Jacques A

    2015-05-20

    The highly derived morphology and astounding diversity of snakes has long inspired debate regarding the ecological and evolutionary origin of both the snake total-group (Pan-Serpentes) and crown snakes (Serpentes). Although speculation abounds on the ecology, behavior, and provenance of the earliest snakes, a rigorous, clade-wide analysis of snake origins has yet to be attempted, in part due to a dearth of adequate paleontological data on early stem snakes. Here, we present the first comprehensive analytical reconstruction of the ancestor of crown snakes and the ancestor of the snake total-group, as inferred using multiple methods of ancestral state reconstruction. We use a combined-data approach that includes new information from the fossil record on extinct crown snakes, new data on the anatomy of the stem snakes Najash rionegrina, Dinilysia patagonica, and Coniophis precedens, and a deeper understanding of the distribution of phenotypic apomorphies among the major clades of fossil and Recent snakes. Additionally, we infer time-calibrated phylogenies using both new 'tip-dating' and traditional node-based approaches, providing new insights on temporal patterns in the early evolutionary history of snakes. Comprehensive ancestral state reconstructions reveal that both the ancestor of crown snakes and the ancestor of total-group snakes were nocturnal, widely foraging, non-constricting stealth hunters. They likely consumed soft-bodied vertebrate and invertebrate prey that was subequal to head size, and occupied terrestrial settings in warm, well-watered, and well-vegetated environments. The snake total-group - approximated by the Coniophis node - is inferred to have originated on land during the middle Early Cretaceous (~128.5 Ma), with the crown-group following about 20 million years later, during the Albian stage. Our inferred divergence dates provide strong evidence for a major radiation of henophidian snake diversity in the wake of the Cretaceous-Paleogene (K

  6. Genome-wide association and genomic selection in animal breeding.

    Science.gov (United States)

    Hayes, Ben; Goddard, Mike

    2010-11-01

    Results from genome-wide association studies in livestock, and humans, has lead to the conclusion that the effect of individual quantitative trait loci (QTL) on complex traits, such as yield, are likely to be small; therefore, a large number of QTL are necessary to explain genetic variation in these traits. Given this genetic architecture, gains from marker-assisted selection (MAS) programs using only a small number of DNA markers to trace a limited number of QTL is likely to be small. This has lead to the development of alternative technology for using the available dense single nucleotide polymorphism (SNP) information, called genomic selection. Genomic selection uses a genome-wide panel of dense markers so that all QTL are likely to be in linkage disequilibrium with at least one SNP. The genomic breeding values are predicted to be the sum of the effect of these SNPs across the entire genome. In dairy cattle breeding, the accuracy of genomic estimated breeding values (GEBV) that can be achieved and the fact that these are available early in life have lead to rapid adoption of the technology. Here, we discuss the design of experiments necessary to achieve accurate prediction of GEBV in future generations in terms of the number of markers necessary and the size of the reference population where marker effects are estimated. We also present a simple method for implementing genomic selection using a genomic relationship matrix. Future challenges discussed include using whole genome sequence data to improve the accuracy of genomic selection and management of inbreeding through genomic relationships.

  7. Genome-Wide Transcriptional Changes and Lipid Profile Modifications Induced by Medicago truncatula N5 Overexpression at an Early Stage of the Symbiotic Interaction with Sinorhizobium meliloti

    Directory of Open Access Journals (Sweden)

    Chiara Santi

    2017-12-01

    Full Text Available Plant lipid-transfer proteins (LTPs are small basic secreted proteins, which are characterized by lipid-binding capacity and are putatively involved in lipid trafficking. LTPs play a role in several biological processes, including the root nodule symbiosis. In this regard, the Medicago truncatula nodulin 5 (MtN5 LTP has been proved to positively regulate the nodulation capacity, controlling rhizobial infection and nodule primordia invasion. To better define the lipid transfer protein MtN5 function during the symbiosis, we produced MtN5-downregulated and -overexpressing plants, and we analysed the transcriptomic changes occurring in the roots at an early stage of Sinorhizobium meliloti infection. We also carried out the lipid profile analysis of wild type (WT and MtN5-overexpressing roots after rhizobia infection. The downregulation of MtN5 increased the root hair curling, an early event of rhizobia infection, and concomitantly induced changes in the expression of defence-related genes. On the other hand, MtN5 overexpression favoured the invasion of the nodules by rhizobia and determined in the roots the modulation of genes that are involved in lipid transport and metabolism as well as an increased content of lipids, especially galactolipids that characterize the symbiosome membranes. Our findings suggest the potential participation of LTPs in the synthesis and rearrangement of membranes occurring during the formation of the infection threads and the symbiosome membrane.

  8. The block of adipocyte differentiation by a C-terminally truncated, but not by full-length, simian virus 40 large tumor antigen is dependent on an intact retinoblastoma susceptibility protein family binding domain.

    OpenAIRE

    Higgins, C; Chatterjee, S.; Cherington, V

    1996-01-01

    Simian virus 40 (SV40) can promote cell transformation and suppress differentiation. It does this partly by targeting tumor suppressors such as p53 and members of the retinoblastoma susceptibility protein (Rb) family. This work concentrates on mechanisms by which SV40 large tumor antigen (SVLT) suppresses adipocyte differentiation. We created cell lines derived from murine 3T3-L1 preadipocytes expressing different versions of SV40 early-region sequences. SVLT-expressing cells failed to exhibi...

  9. Heterogeneous nuclear ribonucleoprotein (HnRNP) K genome-wide binding survey reveals its role in regulating 3'-end RNA processing and transcription termination at the early growth response 1 (EGR1) gene through XRN2 exonuclease.

    Science.gov (United States)

    Mikula, Michal; Bomsztyk, Karol; Goryca, Krzysztof; Chojnowski, Krzysztof; Ostrowski, Jerzy

    2013-08-23

    The heterogeneous nuclear ribonucleoprotein K (hnRNPK) is a nucleic acid-binding protein that acts as a docking platform integrating signal transduction pathways to nucleic acid-related processes. Given that hnRNPK could be involved in other steps that compose gene expression the definition of its genome-wide occupancy is important to better understand its role in transcription and co-transcriptional processes. Here, we used chromatin immunoprecipitation followed by deep sequencing (ChIP-Seq) to analyze the genome-wide hnRNPK-DNA interaction in colon cancer cell line HCT116. 9.1/3.6 and 7.0/3.4 million tags were sequenced/mapped, then 1809 and 642 hnRNPK binding sites were detected in quiescent and 30-min serum-stimulated cells, respectively. The inspection of sequencing tracks revealed inducible hnRNPK recruitment along a number of immediate early gene loci, including EGR1 and ZFP36, with the highest densities present at the transcription termination sites. Strikingly, hnRNPK knockdown with siRNA resulted in increased pre-RNA levels transcribed downstream of the EGR1 polyadenylation (A) site suggesting altered 3'-end pre-RNA degradation. Further ChIP survey of hnRNPK knockdown uncovered decreased recruitment of the 5'-3' exonuclease XRN2 along EGR1 and downstream of the poly(A) signal without altering RNA polymerase II density at these sites. Immunoprecipitation of hnRNPK and XRN2 from intact and RNase A-treated nuclear extracts followed by shotgun mass spectrometry revealed the presence of hnRNPK and XRN2 in the same complexes along with other spliceosome-related proteins. Our data suggest that hnRNPK may play a role in recruitment of XRN2 to gene loci thus regulating coupling 3'-end pre-mRNA processing to transcription termination.

  10. Antarctic Genomics

    Directory of Open Access Journals (Sweden)

    Alex D. Rogers

    2006-03-01

    Full Text Available With the development of genomic science and its battery of technologies, polar biology stands on the threshold of a revolution, one that will enable the investigation of important questions of unprecedented scope and with extraordinary depth and precision. The exotic organisms of polar ecosystems are ideal candidates for genomic analysis. Through such analyses, it will be possible to learn not only the novel features that enable polar organisms to survive, and indeed thrive, in their extreme environments, but also fundamental biological principles that are common to most, if not all, organisms. This article aims to review recent developments in Antarctic genomics and to demonstrate the global context of such studies.

  11. Genomic Imprinting

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 5; Issue 9. Genomic Imprinting - Some Interesting Implications for the Evolution of Social Behaviour. Raghavendra Gadagkar. General Article Volume 5 Issue 9 September 2000 pp 58-68 ...

  12. Herbarium genomics

    DEFF Research Database (Denmark)

    Bakker, Freek T.; Lei, Di; Yu, Jiaying

    2016-01-01

    Herbarium genomics is proving promising as next-generation sequencing approaches are well suited to deal with the usually fragmented nature of archival DNA. We show that routine assembly of partial plastome sequences from herbarium specimens is feasible, from total DNA extracts and with specimens...... up to 146 years old. We use genome skimming and an automated assembly pipeline, Iterative Organelle Genome Assembly, that assembles paired-end reads into a series of candidate assemblies, the best one of which is selected based on likelihood estimation. We used 93 specimens from 12 different...... correlation between plastome coverage and nuclear genome size (C value) in our samples, but the range of C values included is limited. Finally, we conclude that routine plastome sequencing from herbarium specimens is feasible and cost-effective (compared with Sanger sequencing or plastome...

  13. Fungal genome sequencing: basic biology to biotechnology.

    Science.gov (United States)

    Sharma, Krishna Kant

    2016-08-01

    The genome sequences provide a first glimpse into the genomic basis of the biological diversity of filamentous fungi and yeast. The genome sequence of the budding yeast, Saccharomyces cerevisiae, with a small genome size, unicellular growth, and rich history of genetic and molecular analyses was a milestone of early genomics in the 1990s. The subsequent completion of fission yeast, Schizosaccharomyces pombe and genetic model, Neurospora crassa initiated a revolution in the genomics of the fungal kingdom. In due course of time, a substantial number of fungal genomes have been sequenced and publicly released, representing the widest sampling of genomes from any eukaryotic kingdom. An ambitious genome-sequencing program provides a wealth of data on metabolic diversity within the fungal kingdom, thereby enhancing research into medical science, agriculture science, ecology, bioremediation, bioenergy, and the biotechnology industry. Fungal genomics have higher potential to positively affect human health, environmental health, and the planet's stored energy. With a significant increase in sequenced fungal genomes, the known diversity of genes encoding organic acids, antibiotics, enzymes, and their pathways has increased exponentially. Currently, over a hundred fungal genome sequences are publicly available; however, no inclusive review has been published. This review is an initiative to address the significance of the fungal genome-sequencing program and provides the road map for basic and applied research.

  14. Genomic characterization of high-count MBL cases indicates that early detection of driver mutations and subclonal expansion are predictors of adverse clinical outcome.

    Science.gov (United States)

    Barrio, S; Shanafelt, T D; Ojha, J; Chaffee, K G; Secreto, C; Kortüm, K M; Pathangey, S; Van-Dyke, D L; Slager, S L; Fonseca, R; Kay, N E; Braggio, E

    2017-01-01

    High-count monoclonal B-cell lymphocytosis (MBL) is an asymptomatic expansion of clonal B cells in the peripheral blood without other manifestations of chronic lymphocytic leukemia (CLL). Yearly, 1% of MBLs evolve to CLL requiring therapy; thus being critical to understand the biological events that determine which MBLs progress to intermediate/advanced CLL. In this study, we performed targeted deep sequencing on 48 high-count MBLs, 47 of them with 2-4 sequential samples analyzed, exploring the mutation status of 21 driver genes and evaluating clonal evolution. We found somatic non-synonymous mutations in 25 MBLs (52%) at the initial time point analyzed, including 12 (25%) with >1 mutated gene. In cases that subsequently progressed to CLL, mutations were detected 41 months (median) prior to progression. Excepting NOTCH1, TP53 and XPO1, which showed a lower incidence in MBL, genes were mutated with a similar prevalence to CLL, indicating the early origin of most driver mutations in the MBL/CLL continuum. MBLs with mutations at the initial time point analyzed were associated with shorter time-to-treatment (TTT). Furthermore, MBLs showing subclonal expansion of driver mutations on sequential evaluation had shorter progression time to CLL and shorter TTT. These findings support that clonal evolution has prognostic implications already at the pre-malignant MBL stage, anticipating which individuals will progress earlier to CLL.

  15. Genomics and proteomics in cancer.

    Science.gov (United States)

    Baak, J P A; Path, F R C; Hermsen, M A J A; Meijer, G; Schmidt, J; Janssen, E A M

    2003-06-01

    Cancer development is driven by the accumulation of DNA changes in the approximately 40000 chromosomal genes. In solid tumours, chromosomal numerical/structural aberrations are common. DNA repair defects may lead to genome-wide genetic instability, which can drive further cancer progression. The genes code the actual players in the cellular processes, the 100000-10 million proteins, which in (pre)malignant cells can also be altered in a variety of ways. Over the past decade, our knowledge of the human genome and Genomics (the study of the human genome) in (pre)malignancies has increased enormously and Proteomics (the analysis of the protein complement of the genome) has taken off as well. Both will play an increasingly important role. In this article, a short description of the essential molecular biological cell processes is given. Important genomic and proteomic research methods are described and illustrated. Applications are still limited, but the evidence so far is exciting. Will genomics replace classical diagnostic or prognostic procedures? In breast cancers, the gene expression array is stronger than classical criteria, but in endometrial hyperplasia, quantitative morphological features are more cost-effective than genetic testing. It is still too early to make strong statements, the more so because it is expected that genomics and proteomics will expand rapidly. However, it is likely that they will take a central place in the understanding, diagnosis, monitoring and treatment of (pre)cancers of many different sites.

  16. Genomics protocols [Methods in molecular biology, v. 175

    National Research Council Canada - National Science Library

    Starkey, Michael P; Elaswarapu, Ramnath

    2001-01-01

    .... Drawing on emerging technologies in the fields of bioinformatics and proteomics, these protocols cover not only those traditionally recognized as genomics, but also early therapeutich approaches...

  17. Identification and comparative profiling of miRNAs in an early flowering mutant of trifoliate orange and its wild type by genome-wide deep sequencing.

    Directory of Open Access Journals (Sweden)

    Lei-Ming Sun

    Full Text Available MicroRNAs (miRNAs are a new class of small, endogenous RNAs that play a regulatory role in various biological and metabolic processes by negatively affecting gene expression at the post-transcriptional level. While the number of known Arabidopsis and rice miRNAs is continuously increasing, information regarding miRNAs from woody plants such as citrus remains limited. Solexa sequencing was performed at different developmental stages on both an early flowering mutant of trifoliate orange (precocious trifoliate orange, Poncirus trifoliata L. Raf. and its wild-type in this study, resulting in the obtainment of 141 known miRNAs belonging to 99 families and 75 novel miRNAs in four libraries. A total of 317 potential target genes were predicted based on the 51 novel miRNAs families, GO and KEGG annotation revealed that high ranked miRNA-target genes are those implicated in diverse cellular processes in plants, including development, transcription, protein degradation and cross adaptation. To characterize those miRNAs expressed at the juvenile and adult development stages of the mutant and its wild-type, further analysis on the expression profiles of several miRNAs through real-time PCR was performed. The results revealed that most miRNAs were down-regulated at adult stage compared with juvenile stage for both the mutant and its wild-type. These results indicate that both conserved and novel miRNAs may play important roles in citrus growth and development, stress responses and other physiological processes.

  18. Complete plastome sequences of Equisetum arvense and Isoetes flaccida: implications for phylogeny and plastid genome evolution of early land plant lineages

    Directory of Open Access Journals (Sweden)

    Mandoli Dina F

    2010-10-01

    Full Text Available Abstract Background Despite considerable progress in our understanding of land plant phylogeny, several nodes in the green tree of life remain poorly resolved. Furthermore, the bulk of currently available data come from only a subset of major land plant clades. Here we examine early land plant evolution using complete plastome sequences including two previously unexamined and phylogenetically critical lineages. To better understand the evolution of land plants and their plastomes, we examined aligned nucleotide sequences, indels, gene and nucleotide composition, inversions, and gene order at the boundaries of the inverted repeats. Results We present the plastome sequences of Equisetum arvense, a horsetail, and of Isoetes flaccida, a heterosporous lycophyte. Phylogenetic analysis of aligned nucleotides from 49 plastome genes from 43 taxa supported monophyly for the following clades: embryophytes (land plants, lycophytes, monilophytes (leptosporangiate ferns + Angiopteris evecta + Psilotum nudum + Equisetum arvense, and seed plants. Resolution among the four monilophyte lineages remained moderate, although nucleotide analyses suggested that P. nudum and E. arvense form a clade sister to A. evecta + leptosporangiate ferns. Results from phylogenetic analyses of nucleotides were consistent with the distribution of plastome gene rearrangements and with analysis of sequence gaps resulting from insertions and deletions (indels. We found one new indel and an inversion of a block of genes that unites the monilophytes. Conclusions Monophyly of monilophytes has been disputed on the basis of morphological and fossil evidence. In the context of a broad sampling of land plant data we find several new pieces of evidence for monilophyte monophyly. Results from this study demonstrate resolution among the four monilophytes lineages, albeit with moderate support; we posit a clade consisting of Equisetaceae and Psilotaceae that is sister to the "true ferns

  19. Imaging genomics.

    Science.gov (United States)

    Thompson, Paul M; Martin, Nicholas G; Wright, Margaret J

    2010-08-01

    Imaging genomics is an emerging field that is rapidly identifying genes that influence the brain, cognition, and risk for disease. Worldwide, thousands of individuals are being scanned with high-throughput genotyping (genome-wide scans), and new imaging techniques [high angular resolution diffusion imaging and resting state functional magnetic resonance imaging (MRI)] that provide fine-grained measures of the brain's structural and functional connectivity. Along with clinical diagnosis and cognitive testing, brain imaging offers highly reproducible measures that can be subjected to genetic analysis. Recent studies of twin, pedigree, and population-based datasets have discovered several candidate genes that consistently show small to moderate effects on brain measures. Many studies measure single phenotypes from the images, such as hippocampal volume, but voxel-wise genomic methods can plot the profile of genetic association at each 3D point in the brain. This exploits the full arsenal of imaging statistics to discover and replicate gene effects. Imaging genomics efforts worldwide are now working together to discover and replicate many promising leads. By studying brain phenotypes closer to causative gene action, larger gene effects are detectable with realistic sample sizes obtainable from meta-analysis of smaller studies. Imaging genomics has broad applications to dementia, mental illness, and public health.

  20. Marine genomics

    DEFF Research Database (Denmark)

    Oliveira Ribeiro, Ângela Maria; Foote, Andrew David; Kupczok, Anne

    2017-01-01

    evolutionary biology of non-model organisms to species of commercial relevance for fishing, aquaculture and biomedicine. Instead of providing an exhaustive list of available genomic data, we rather set to present contextualized examples that best represent the current status of the field of marine genomics.......Marine ecosystems occupy 71% of the surface of our planet, yet we know little about their diversity. Although the inventory of species is continually increasing, as registered by the Census of Marine Life program, only about 10% of the estimated two million marine species are known. This lag......-throughput sequencing approaches have been helping to improve our knowledge of marine biodiversity, from the rich microbial biota that forms the base of the tree of life to a wealth of plant and animal species. In this review, we present an overview of the applications of genomics to the study of marine life, from...

  1. Listeria Genomics

    Science.gov (United States)

    Cabanes, Didier; Sousa, Sandra; Cossart, Pascale

    The opportunistic intracellular foodborne pathogen Listeria monocytogenes has become a paradigm for the study of host-pathogen interactions and bacterial adaptation to mammalian hosts. Analysis of L. monocytogenes infection has provided considerable insight into how bacteria invade cells, move intracellularly, and disseminate in tissues, as well as tools to address fundamental processes in cell biology. Moreover, the vast amount of knowledge that has been gathered through in-depth comparative genomic analyses and in vivo studies makes L. monocytogenes one of the most well-studied bacterial pathogens. This chapter provides an overview of progress in the exploration of genomic, transcriptomic, and proteomic data in Listeria spp. to understand genome evolution and diversity, as well as physiological aspects of metabolism used by bacteria when growing in diverse environments, in particular in infected hosts.

  2. Ancient genomics

    DEFF Research Database (Denmark)

    Der Sarkissian, Clio; Allentoft, Morten Erik; Avila Arcos, Maria del Carmen

    2015-01-01

    The past decade has witnessed a revolution in ancient DNA (aDNA) research. Although the field's focus was previously limited to mitochondrial DNA and a few nuclear markers, whole genome sequences from the deep past can now be retrieved. This breakthrough is tightly connected to the massive sequence...... by increasing the number of sequence reads to billions effectively means that contamination issues that have haunted aDNA research for decades, particularly in human studies, can now be efficiently and confidently quantified. At present, whole genomes have been sequenced from ancient anatomically modern humans......, archaic hominins, ancient pathogens and megafaunal species. Those have revealed important functional and phenotypic information, as well as unexpected adaptation, migration and admixture patterns. As such, the field of aDNA has entered the new era of genomics and has provided valuable information when...

  3. Cephalopod genomics

    DEFF Research Database (Denmark)

    Albertin, Caroline B.; Bonnaud, Laure; Brown, C. Titus

    2012-01-01

    The Cephalopod Sequencing Consortium (CephSeq Consortium) was established at a NESCent Catalysis Group Meeting, ``Paths to Cephalopod Genomics-Strategies, Choices, Organization,'' held in Durham, North Carolina, USA on May 24-27, 2012. Twenty-eight participants representing nine countries (Austria......, Australia, China, Denmark, France, Italy, Japan, Spain and the USA) met to address the pressing need for genome sequencing of cephalopod mollusks. This group, drawn from cephalopod biologists, neuroscientists, developmental and evolutionary biologists, materials scientists, bioinformaticians and researchers...... active in sequencing, assembling and annotating genomes, agreed on a set of cephalopod species of particular importance for initial sequencing and developed strategies and an organization (CephSeq Consortium) to promote this sequencing. The conclusions and recommendations of this meeting are described...

  4. The genome of Eucalyptus grandis

    Energy Technology Data Exchange (ETDEWEB)

    Myburg, Alexander A.; Grattapaglia, Dario; Tuskan, Gerald A.; Hellsten, Uffe; Hayes, Richard D.; Grimwood, Jane; Jenkins, Jerry; Lindquist, Erika; Tice, Hope; Bauer, Diane; Goodstein, David M.; Dubchak, Inna; Poliakov, Alexandre; Mizrachi, Eshchar; Kullan, Anand R. K.; Hussey, Steven G.; Pinard, Desre; van der Merwe, Karen; Singh, Pooja; van Jaarsveld, Ida; Silva-Junior, Orzenil B.; Togawa, Roberto C.; Pappas, Marilia R.; Faria, Danielle A.; Sansaloni, Carolina P.; Petroli, Cesar D.; Yang, Xiaohan; Ranjan, Priya; Tschaplinski, Timothy J.; Ye, Chu-Yu; Li, Ting; Sterck, Lieven; Vanneste, Kevin; Murat, Florent; Soler, Marçal; Clemente, Hélène San; Saidi, Naijib; Cassan-Wang, Hua; Dunand, Christophe; Hefer, Charles A.; Bornberg-Bauer, Erich; Kersting, Anna R.; Vining, Kelly; Amarasinghe, Vindhya; Ranik, Martin; Naithani, Sushma; Elser, Justin; Boyd, Alexander E.; Liston, Aaron; Spatafora, Joseph W.; Dharmwardhana, Palitha; Raja, Rajani; Sullivan, Christopher; Romanel, Elisson; Alves-Ferreira, Marcio; Külheim, Carsten; Foley, William; Carocha, Victor; Paiva, Jorge; Kudrna, David; Brommonschenkel, Sergio H.; Pasquali, Giancarlo; Byrne, Margaret; Rigault, Philippe; Tibbits, Josquin; Spokevicius, Antanas; Jones, Rebecca C.; Steane, Dorothy A.; Vaillancourt, René E.; Potts, Brad M.; Joubert, Fourie; Barry, Kerrie; Pappas, Georgios J.; Strauss, Steven H.; Jaiswal, Pankaj; Grima-Pettenati, Jacqueline; Salse, Jérôme; Van de Peer, Yves; Rokhsar, Daniel S.; Schmutz, Jeremy

    2014-06-11

    Eucalypts are the world s most widely planted hardwood trees. Their broad adaptability, rich species diversity, fast growth and superior multipurpose wood, have made them a global renewable resource of fiber and energy that mitigates human pressures on natural forests. We sequenced and assembled >94% of the 640 Mbp genome of Eucalyptus grandis into its 11 chromosomes. A set of 36,376 protein coding genes were predicted revealing that 34% occur in tandem duplications, the largest proportion found thus far in any plant genome. Eucalypts also show the highest diversity of genes for plant specialized metabolism that act as chemical defence against biotic agents and provide unique pharmaceutical oils. Resequencing of a set of inbred tree genomes revealed regions of strongly conserved heterozygosity, likely hotspots of inbreeding depression. The resequenced genome of the sister species E. globulus underscored the high inter-specific genome colinearity despite substantial genome size variation in the genus. The genome of E. grandis is the first reference for the early diverging Rosid order Myrtales and is placed here basal to the Eurosids. This resource expands knowledge on the unique biology of large woody perennials and provides a powerful tool to accelerate comparative biology, breeding and biotechnology.

  5. Genome Imprinting

    Indian Academy of Sciences (India)

    because of their maternal 'or paternal origin. Human homologies for the type of situation described above are naturally occurring placental malformation, the hydatidiform ..... drome, familial glomus tumors, psoriasis, neural tube defects, congenital heart disease and narcolepsy. Since genome imprint- ing is implicated in the ...

  6. Three tiers of genome evolution in reptiles.

    Science.gov (United States)

    Organ, Chris L; Moreno, Ricardo Godínez; Edwards, Scott V

    2008-10-01

    Characterization of reptilian genomes is essential for understanding the overall diversity and evolution of amniote genomes, because reptiles, which include birds, constitute a major fraction of the amniote evolutionary tree. To better understand the evolution and diversity of genomic characteristics in Reptilia, we conducted comparative analyses of online sequence data from Alligator mississippiensis (alligator) and Sphenodon punctatus (tuatara) as well as genome size and karyological data from a wide range of reptilian species. At the whole-genome and chromosomal tiers of organization, we find that reptilian genome size distribution is consistent with a model of continuous gradual evolution while genomic compartmentalization, as manifested in the number of microchromosomes and macrochromosomes, appears to have undergone early rapid change. At the sequence level, the third genomic tier, we find that exon size in Alligator is distributed in a pattern matching that of exons in Gallus (chicken), especially in the 101-200 bp size class. A small spike in the fraction of exons in the 301 bp-1 kb size class is also observed for Alligator, but more so for Sphenodon. For introns, we find that members of Reptilia have a larger fraction of introns within the 101 bp-2 kb size class and a lower fraction of introns within the 5-30 kb size class than do mammals. These findings suggest that the mode of reptilian genome evolution varies across three hierarchical levels of the genome, a pattern consistent with a mosaic model of genomic evolution.

  7. Extracellular genomic biomarkers of osteoarthritis.

    Science.gov (United States)

    Budd, Emma; Nalesso, Giovanna; Mobasheri, Ali

    2018-01-01

    Osteoarthritis (OA), a chronic, debilitating and degenerative disease of the joints, is the most common form of arthritis. The seriousness of this prevalent and chronic disease is often overlooked. Disease modifying OA drug development is hindered by the lack of soluble biomarkers to detect OA early. The objective of OA biomarker research is to identify early OA prior to the appearance of radiographic signs and the development of pain. Areas covered: This review has focused on extracellular genomic material that could serve as biomarkers of OA. Recent studies have examined the expression of extracellular genomic material such as miRNA, lncRNA, snoRNA, mRNA and cell-free DNA, which are aberrantly expressed in the body fluids of OA patients. Changes in genomic content of peripheral blood mononuclear cells in OA could also function as biomarkers of OA. Expert commentary: There is an unmet need for soluble biomarkers for detecting and then monitoring OA disease progression. Extracellular genomic material research may also reveal more about the underlying pathophysiology of OA. Minimally-invasive liquid biopsies such as synovial fluid and blood sampling of genomic material may be more sensitive over radiography in the detection, diagnosis and monitoring of OA in the future.

  8. Personal genomics services: whose genomes?

    Science.gov (United States)

    Gurwitz, David; Bregman-Eschet, Yael

    2009-07-01

    New companies offering personal whole-genome information services over the internet are dynamic and highly visible players in the personal genomics field. For fees currently ranging from US$399 to US$2500 and a vial of saliva, individuals can now purchase online access to their individual genetic information regarding susceptibility to a range of chronic diseases and phenotypic traits based on a genome-wide SNP scan. Most of the companies offering such services are based in the United States, but their clients may come from nearly anywhere in the world. Although the scientific validity, clinical utility and potential future implications of such services are being hotly debated, several ethical and regulatory questions related to direct-to-consumer (DTC) marketing strategies of genetic tests have not yet received sufficient attention. For example, how can we minimize the risk of unauthorized third parties from submitting other people's DNA for testing? Another pressing question concerns the ownership of (genotypic and phenotypic) information, as well as the unclear legal status of customers regarding their own personal information. Current legislation in the US and Europe falls short of providing clear answers to these questions. Until the regulation of personal genomics services catches up with the technology, we call upon commercial providers to self-regulate and coordinate their activities to minimize potential risks to individual privacy. We also point out some specific steps, along the trustee model, that providers of DTC personal genomics services as well as regulators and policy makers could consider for addressing some of the concerns raised below.

  9. Citrus Genomics

    Science.gov (United States)

    Talon, Manuel; Gmitter Jr., Fred G.

    2008-01-01

    Citrus is one of the most widespread fruit crops globally, with great economic and health value. It is among the most difficult plants to improve through traditional breeding approaches. Currently, there is risk of devastation by diseases threatening to limit production and future availability to the human population. As technologies rapidly advance in genomic science, they are quickly adapted to address the biological challenges of the citrus plant system and the world's industries. The historical developments of linkage mapping, markers and breeding, EST projects, physical mapping, an international citrus genome sequencing project, and critical functional analysis are described. Despite the challenges of working with citrus, there has been substantial progress. Citrus researchers engaged in international collaborations provide optimism about future productivity and contributions to the benefit of citrus industries worldwide and to the human population who can rely on future widespread availability of this health-promoting and aesthetically pleasing fruit crop. PMID:18509486

  10. Visualization for genomics: the Microbial Genome Viewer.

    NARCIS (Netherlands)

    Kerkhoven, R.; Enckevort, F.H.J. van; Boekhorst, J.; Molenaar, D.; Siezen, R.J.

    2004-01-01

    SUMMARY: A Web-based visualization tool, the Microbial Genome Viewer, is presented that allows the user to combine complex genomic data in a highly interactive way. This Web tool enables the interactive generation of chromosome wheels and linear genome maps from genome annotation data stored in a

  11. Genome Sequencing

    DEFF Research Database (Denmark)

    Sato, Shusei; Andersen, Stig Uggerhøj

    2014-01-01

    The current Lotus japonicus reference genome sequence is based on a hybrid assembly of Sanger TAC/BAC, Sanger shotgun and Illumina shotgun sequencing data generated from the Miyakojima-MG20 accession. It covers nearly all expressed L. japonicus genes and has been annotated mainly based...... on transcriptional evidence. Analysis of repetitive sequences suggests that they are underrepresented in the reference assembly, reflecting an enrichment of gene-rich regions in the current assembly. Characterization of Lotus natural variation by resequencing of L. japonicus accessions and diploid Lotus species...... is currently ongoing, facilitated by the MG20 reference sequence...

  12. Early host cell reactivation of an oxidatively damaged adenovirus-encoded reporter gene requires the Cockayne syndrome proteins CSA and CSB.

    Science.gov (United States)

    Leach, Derrik M; Rainbow, Andrew J

    2011-03-01

    Reduced host cell reactivation (HCR) of a reporter gene containing 8-oxoguanine (8-oxoG) lesions in Cockayne syndrome (CS) fibroblasts has previously been attributed to increased 8-oxoG-mediated inhibition of transcription resulting from a deficiency in repair. This interpretation has been challenged by a report suggesting reduced expression from an 8-oxoG containing reporter gene occurs in all cells by a mechanism involving gene inactivation by 8-oxoG DNA glycosylase and this inactivation is strongly enhanced in the absence of the CS group B (CSB) protein. The observation of reduced gene expression in the absence of CSB protein led to speculation that decreased HCR in CS cells results from enhanced gene inactivation rather than reduced gene reactivation. Using an adenovirus-based β-galactosidase (β-gal) reporter gene assay, we have examined the effect of methylene blue plus visible light (MB + VL)-induced 8-oxoG lesions on the time course of gene expression in normal and CSA and CSB mutant human SV40-transformed fibroblasts, repair proficient and CSB mutant Chinese hamster ovary (CHO) cells and normal mouse embryo fibroblasts. We demonstrate that MB + VL treatment of the reporter leads to reduced expression of the damaged β-gal reporter relative to control at early time points following infection in all cells, consistent with in vivo inhibition of RNA polII-mediated transcription. In addition, we have demonstrated HCR of reporter gene expression occurs in all cell types examined. A significant reduction in the rate of gene reactivation in human SV40-transformed cells lacking functional CSA or CSB compared to normal cells was found. Similarly, a significant reduction in the rate of reactivation in CHO cells lacking functional CSB (CHO-UV61) was observed compared to the wild-type parental counterpart (CHO-AA8). The data presented demonstrate that expression of an oxidatively damaged reporter gene is reactivated over time and that CSA and CSB are required for

  13. Dynamics of genomic innovation in the unicellular ancestry of animals.

    Science.gov (United States)

    Grau-Bové, Xavier; Torruella, Guifré; Donachie, Stuart; Suga, Hiroshi; Leonard, Guy; Richards, Thomas A; Ruiz-Trillo, Iñaki

    2017-07-20

    Which genomic innovations underpinned the origin of multicellular animals is still an open debate. Here, we investigate this question by reconstructing the genome architecture and gene family diversity of ancestral premetazoans, aiming to date the emergence of animal-like traits. Our comparative analysis involves genomes from animals and their closest unicellular relatives (the Holozoa), including four new genomes: three Ichthyosporea and Corallochytrium limacisporum. Here, we show that the earliest animals were shaped by dynamic changes in genome architecture before the emergence of multicellularity: an early burst of gene diversity in the ancestor of Holozoa, enriched in transcription factors and cell adhesion machinery, was followed by multiple and differently-timed episodes of synteny disruption, intron gain and genome expansions. Thus, the foundations of animal genome architecture were laid before the origin of complex multicellularity - highlighting the necessity of a unicellular perspective to understand early animal evolution.

  14. genome editing

    Indian Academy of Sciences (India)

    2016-02-11

    Feb 11, 2016 ... The background of this 'linguistic turn' is the discovery of the CRISPR Cas9 system and its possible applications, which are described in two previous publications (Morange. 2015a, b). 2. The early uses of 'editing'. All molecular biologists are familiar with the phenomenon of. RNA editing discovered in the ...

  15. mtDB: Human Mitochondrial Genome Database, a resource for population genetics and medical sciences

    National Research Council Canada - National Science Library

    Ingman, Max; Gyllensten, Ulf

    2006-01-01

    ..., as well as for population genetics studies. Human Mitochondrial Genome Database (mtDB) (http://www.genpat.uu.se/mtDB) has provided a comprehensive database of complete human mitochondrial genomes since early 2000...

  16. The compact Selaginella genome identifies changes in gene content associated with the evolution of vascular plants

    Energy Technology Data Exchange (ETDEWEB)

    Grigoriev, Igor V.; Banks, Jo Ann; Nishiyama, Tomoaki; Hasebe, Mitsuyasu; Bowman, John L.; Gribskov, Michael; dePamphilis, Claude; Albert, Victor A.; Aono, Naoki; Aoyama, Tsuyoshi; Ambrose, Barbara A.; Ashton, Neil W.; Axtell, Michael J.; Barker, Elizabeth; Barker, Michael S.; Bennetzen, Jeffrey L.; Bonawitz, Nicholas D.; Chapple, Clint; Cheng, Chaoyang; Correa, Luiz Gustavo Guedes; Dacre, Michael; DeBarry, Jeremy; Dreyer, Ingo; Elias, Marek; Engstrom, Eric M.; Estelle, Mark; Feng, Liang; Finet, Cedric; Floyd, Sandra K.; Frommer, Wolf B.; Fujita, Tomomichi; Gramzow, Lydia; Gutensohn, Michael; Harholt, Jesper; Hattori, Mitsuru; Heyl, Alexander; Hirai, Tadayoshi; Hiwatashi, Yuji; Ishikawa, Masaki; Iwata, Mineko; Karol, Kenneth G.; Koehler, Barbara; Kolukisaoglu, Uener; Kubo, Minoru; Kurata, Tetsuya; Lalonde, Sylvie; Li, Kejie; Li, Ying; Litt, Amy; Lyons, Eric; Manning, Gerard; Maruyama, Takeshi; Michael, Todd P.; Mikami, Koji; Miyazaki, Saori; Morinaga, Shin-ichi; Murata, Takashi; Mueller-Roeber, Bernd; Nelson, David R.; Obara, Mari; Oguri, Yasuko; Olmstead, Richard G.; Onodera, Naoko; Petersen, Bent Larsen; Pils, Birgit; Prigge, Michael; Rensing, Stefan A.; Riano-Pachon, Diego Mauricio; Roberts, Alison W.; Sato, Yoshikatsu; Scheller, Henrik Vibe; Schulz, Burkhard; Schulz, Christian; Shakirov, Eugene V.; Shibagaki, Nakako; Shinohara, Naoki; Shippen, Dorothy E.; Sorensen, Iben; Sotooka, Ryo; Sugimoto, Nagisa; Sugita, Mamoru; Sumikawa, Naomi; Tanurdzic, Milos; Theilsen, Gunter; Ulvskov, Peter; Wakazuki, Sachiko; Weng, Jing-Ke; Willats, William W.G.T.; Wipf, Daniel; Wolf, Paul G.; Yang, Lixing; Zimmer, Andreas D.; Zhu, Qihui; Mitros, Therese; Hellsten, Uffe; Loque, Dominique; Otillar, Robert; Salamov, Asaf; Schmutz, Jeremy; Shapiro, Harris; Lindquist, Erika; Lucas, Susan; Rokhsar, Daniel

    2011-04-28

    We report the genome sequence of the nonseed vascular plant, Selaginella moellendorffii, and by comparative genomics identify genes that likely played important roles in the early evolution of vascular plants and their subsequent evolution

  17. VIRUS GENOME IMAGING VIA a2GRAMS: BUILDING A MATLAB TOOLBOX FOR PROKARYOTIC DNA ANALYSIS

    Directory of Open Access Journals (Sweden)

    C. Dantas Silva

    2005-07-01

    Full Text Available Much of genomic signal analysis approaches  for feature extraction and functional cataloguing  have been focused on oligonucleotide  patterns in the  linear  primary  sequences of genomes.  New DNA-imaging tools  for genomic signal  processing  namely  codongrams  and  a2grams  had  recently  been  offered for extracting meaningful  genomic features  embedded  in DNA. A MatlabT M   toolbox  was implemented for allowing the image analysis of viruses and bacteriophages. Twenty different a2grams are defined for a genome, one for each amino acid (valgram  is an a2 gram for valine; alagram  is an a2 gram for alanine, etc.  They  furnish information about  the distribution and occurrence  of the investigated amino acid. The codongram  describes the distribution of a specific codon through  the genome.  The a2gram  for a particular amino acid provides  information about the sections of the  DNA strand, which potentially leads to the synthesis  of such an amino acid.  DNA ×grams are among powerful visual tools for GSA like spectrograms,  which can  be applied  when searching  for particular nucleotide  patterns.   Among such  patterns, the  software  includes  built-in  options  the  following:  metgram  to  find out  potential start position of genes, Shine-Dalgarno sequence localizer (translation mRNA → protein, TATA  Box (replication DNA → mRNA, Enter  a sequence (DNA particular sequence finder.  A few genomes of viruses and  bacteriophage were made available  in the  DEMO  version:  Bacteriophage ΦX 174, phage MS2, Tomato Bushy  Stunt Virus  (TBSV,  Tobacco  Mosaic Virus  (TMV,  Phage  M13, and  Simian virus  SV40 (genome  lengths ranging  from 3,569 to  6,400 bp.   This  tool  is particularly helpful  for comparing  viruses, and it is also particularly valuable  for educational purposes.

  18. Whole Genome Sequencing

    Science.gov (United States)

    ... you want to learn. Search form Search Whole Genome Sequencing You are here Home Testing & Services Testing ... the full story, click here . What is whole genome sequencing? Whole genome sequencing is the mapping out ...

  19. Genome cartography: charting the apicomplexan genome.

    Science.gov (United States)

    Kissinger, Jessica C; DeBarry, Jeremy

    2011-08-01

    Genes reside in particular genomic contexts that can be mapped at many levels. Historically, 'genetic maps' were used primarily to locate genes. Recent technological advances in the determination of genome sequences have made the analysis and comparison of whole genomes possible and increasingly tractable. What do we see if we shift our focus from gene content (the 'inventory' of genes contained within a genome) to the composition and organization of a genome? This review examines what has been learned about the evolution of the apicomplexan genome as well as the significance and impact of genomic location on our understanding of the eukaryotic genome and parasite biology. Copyright © 2011 Elsevier Ltd. All rights reserved.

  20. Personal genomes, participatory genomics and the anonymity ...

    Indian Academy of Sciences (India)

    2014-12-02

    Dec 2, 2014 ... GN Ramachandran Knowledge Center for Genome Informatics, CSIR Institute of Genomics and Integrative Biology. (CSIR-IGIB), Mall Road, New Delhi ... also towards understanding the genomic biology. Neverthe- ..... Erwin C. 2008 Legal update: living with the genetic information nondiscrimination act.

  1. Rodent malaria parasites : genome organization & comparative genomics

    NARCIS (Netherlands)

    Kooij, Taco W.A.

    2006-01-01

    The aim of the studies described in this thesis was to investigate the genome organization of rodent malaria parasites (RMPs) and compare the organization and gene content of the genomes of RMPs and the human malaria parasite P. falciparum. The release of the complete genome sequence of P.

  2. Genome evolution during progression to breast cancer

    KAUST Repository

    Newburger, D. E.

    2013-04-08

    Cancer evolution involves cycles of genomic damage, epigenetic deregulation, and increased cellular proliferation that eventually culminate in the carcinoma phenotype. Early neoplasias, which are often found concurrently with carcinomas and are histologically distinguishable from normal breast tissue, are less advanced in phenotype than carcinomas and are thought to represent precursor stages. To elucidate their role in cancer evolution we performed comparative whole-genome sequencing of early neoplasias, matched normal tissue, and carcinomas from six patients, for a total of 31 samples. By using somatic mutations as lineage markers we built trees that relate the tissue samples within each patient. On the basis of these lineage trees we inferred the order, timing, and rates of genomic events. In four out of six cases, an early neoplasia and the carcinoma share a mutated common ancestor with recurring aneuploidies, and in all six cases evolution accelerated in the carcinoma lineage. Transition spectra of somatic mutations are stable and consistent across cases, suggesting that accumulation of somatic mutations is a result of increased ancestral cell division rather than specific mutational mechanisms. In contrast to highly advanced tumors that are the focus of much of the current cancer genome sequencing, neither the early neoplasia genomes nor the carcinomas are enriched with potentially functional somatic point mutations. Aneuploidies that occur in common ancestors of neoplastic and tumor cells are the earliest events that affect a large number of genes and may predispose breast tissue to eventual development of invasive carcinoma.

  3. Enabling functional genomics with genome engineering.

    Science.gov (United States)

    Hilton, Isaac B; Gersbach, Charles A

    2015-10-01

    Advances in genome engineering technologies have made the precise control over genome sequence and regulation possible across a variety of disciplines. These tools can expand our understanding of fundamental biological processes and create new opportunities for therapeutic designs. The rapid evolution of these methods has also catalyzed a new era of genomics that includes multiple approaches to functionally characterize and manipulate the regulation of genomic information. Here, we review the recent advances of the most widely adopted genome engineering platforms and their application to functional genomics. This includes engineered zinc finger proteins, TALEs/TALENs, and the CRISPR/Cas9 system as nucleases for genome editing, transcription factors for epigenome editing, and other emerging applications. We also present current and potential future applications of these tools, as well as their current limitations and areas for future advances. © 2015 Hilton and Gersbach; Published by Cold Spring Harbor Laboratory Press.

  4. Genome Mapping in Plant Comparative Genomics.

    Science.gov (United States)

    Chaney, Lindsay; Sharp, Aaron R; Evans, Carrie R; Udall, Joshua A

    2016-09-01

    Genome mapping produces fingerprints of DNA sequences to construct a physical map of the whole genome. It provides contiguous, long-range information that complements and, in some cases, replaces sequencing data. Recent advances in genome-mapping technology will better allow researchers to detect large (>1kbp) structural variations between plant genomes. Some molecular and informatics complications need to be overcome for this novel technology to achieve its full utility. This technology will be useful for understanding phenotype responses due to DNA rearrangements and will yield insights into genome evolution, particularly in polyploids. In this review, we outline recent advances in genome-mapping technology, including the processes required for data collection and analysis, and applications in plant comparative genomics. Copyright © 2016 Elsevier Ltd. All rights reserved.

  5. Exploring Other Genomes: Bacteria.

    Science.gov (United States)

    Flannery, Maura C.

    2001-01-01

    Points out the importance of genomes other than the human genome project and provides information on the identified bacterial genomes Pseudomonas aeuroginosa, Leprosy, Cholera, Meningitis, Tuberculosis, Bubonic Plague, and plant pathogens. Considers the computer's use in genome studies. (Contains 14 references.) (YDS)

  6. Characterization of an In Vitro Human Breast Epithelial Organoid System

    Science.gov (United States)

    1999-08-01

    BRL, Gaithersburg, MD) (M13SV1 derived from the primary HBEC, HME13) or with a plasmid carrying an origin-defective SV40 genome expressing a wild...modified 5/28/99) Both Type I and Type II HBECs were transfected with an origin- defective SV40 genome expressing the wild type large T-antigen (PRNS-1...isothiocyanates (in cruciferous vegetables), organosulfur compounds (diallyl disulfide in Allium sp), monoterpenes (D-limonene in citrus fruit oils) and

  7. The kangaroo genome

    Science.gov (United States)

    Wakefield, Matthew J.; Graves, Jennifer A. Marshall

    2003-01-01

    The kangaroo genome is a rich and unique resource for comparative genomics. Marsupial genetics and cytology have made significant contributions to the understanding of gene function and evolution, and increasing the availability of kangaroo DNA sequence information would provide these benefits on a genomic scale. Here we summarize the contributions from cytogenetic and genetic studies of marsupials, describe the genomic resources currently available and those being developed, and explore the benefits of a kangaroo genome project. PMID:12612602

  8. Engineering the Caenorhabditis elegans genome with CRISPR/Cas9

    NARCIS (Netherlands)

    Waaijers, Selma; Boxem, Mike

    2014-01-01

    The development in early 2013 of CRISPR/Cas9-based genome engineering promises to dramatically advance our ability to alter the genomes of model systems at will. A single, easily produced targeting RNA guides the Cas9 endonuclease to a specific DNA sequence where it creates a double strand break.

  9. A genomic island linked to ecotype divergence in Atlantic cod

    DEFF Research Database (Denmark)

    Hansen, Jakob Hemmer; Eg Nielsen, Einar; Therkildsen, Nina O.

    2013-01-01

    The genomic architecture underlying ecological divergence and ecological speciation with gene flow is still largely unknown for most organisms. One central question is whether divergence is genome‐wide or localized in ‘genomic mosaics’ during early stages when gene flow is still pronounced. Empir...

  10. JGI Fungal Genomics Program

    Energy Technology Data Exchange (ETDEWEB)

    Grigoriev, Igor V.

    2011-03-14

    Genomes of energy and environment fungi are in focus of the Fungal Genomic Program at the US Department of Energy Joint Genome Institute (JGI). Its key project, the Genomics Encyclopedia of Fungi, targets fungi related to plant health (symbionts, pathogens, and biocontrol agents) and biorefinery processes (cellulose degradation, sugar fermentation, industrial hosts), and explores fungal diversity by means of genome sequencing and analysis. Over 50 fungal genomes have been sequenced by JGI to date and released through MycoCosm (www.jgi.doe.gov/fungi), a fungal web-portal, which integrates sequence and functional data with genome analysis tools for user community. Sequence analysis supported by functional genomics leads to developing parts list for complex systems ranging from ecosystems of biofuel crops to biorefineries. Recent examples of such 'parts' suggested by comparative genomics and functional analysis in these areas are presented here

  11. Genomic Encyclopedia of Fungi

    Energy Technology Data Exchange (ETDEWEB)

    Grigoriev, Igor

    2012-08-10

    Genomes of fungi relevant to energy and environment are in focus of the Fungal Genomic Program at the US Department of Energy Joint Genome Institute (JGI). Its key project, the Genomics Encyclopedia of Fungi, targets fungi related to plant health (symbionts, pathogens, and biocontrol agents) and biorefinery processes (cellulose degradation, sugar fermentation, industrial hosts), and explores fungal diversity by means of genome sequencing and analysis. Over 150 fungal genomes have been sequenced by JGI to date and released through MycoCosm (www.jgi.doe.gov/fungi), a fungal web-portal, which integrates sequence and functional data with genome analysis tools for user community. Sequence analysis supported by functional genomics leads to developing parts list for complex systems ranging from ecosystems of biofuel crops to biorefineries. Recent examples of such parts suggested by comparative genomics and functional analysis in these areas are presented here.

  12. Application of Genomic In Situ Hybridization in Horticultural Science

    Directory of Open Access Journals (Sweden)

    Fahad Ramzan

    2017-01-01

    Full Text Available Molecular cytogenetic techniques, such as in situ hybridization methods, are admirable tools to analyze the genomic structure and function, chromosome constituents, recombination patterns, alien gene introgression, genome evolution, aneuploidy, and polyploidy and also genome constitution visualization and chromosome discrimination from different genomes in allopolyploids of various horticultural crops. Using GISH advancement as multicolor detection is a significant approach to analyze the small and numerous chromosomes in fruit species, for example, Diospyros hybrids. This analytical technique has proved to be the most exact and effective way for hybrid status confirmation and helps remarkably to distinguish donor parental genomes in hybrids such as Clivia, Rhododendron, and Lycoris ornamental hybrids. The genome characterization facilitates in hybrid selection having potential desirable characteristics during the early hybridization breeding, as this technique expedites to detect introgressed sequence chromosomes. This review study epitomizes applications and advancements of genomic in situ hybridization (GISH techniques in horticultural plants.

  13. Competition between influenza A virus genome segments.

    Directory of Open Access Journals (Sweden)

    Ivy Widjaja

    Full Text Available Influenza A virus (IAV contains a segmented negative-strand RNA genome. How IAV balances the replication and transcription of its multiple genome segments is not understood. We developed a dual competition assay based on the co-transfection of firefly or Gaussia luciferase-encoding genome segments together with plasmids encoding IAV polymerase subunits and nucleoprotein. At limiting amounts of polymerase subunits, expression of the firefly luciferase segment was negatively affected by the presence of its Gaussia luciferase counterpart, indicative of competition between reporter genome segments. This competition could be relieved by increasing or decreasing the relative amounts of firefly or Gaussia reporter segment, respectively. The balance between the luciferase expression levels was also affected by the identity of the untranslated regions (UTRs as well as segment length. In general it appeared that genome segments displaying inherent higher expression levels were more efficient competitors of another segment. When natural genome segments were tested for their ability to suppress reporter gene expression, shorter genome segments generally reduced firefly luciferase expression to a larger extent, with the M and NS segments having the largest effect. The balance between different reporter segments was most dramatically affected by the introduction of UTR panhandle-stabilizing mutations. Furthermore, only reporter genome segments carrying these mutations were able to efficiently compete with the natural genome segments in infected cells. Our data indicate that IAV genome segments compete for available polymerases. Competition is affected by segment length, coding region, and UTRs. This competition is probably most apparent early during infection, when limiting amounts of polymerases are present, and may contribute to the regulation of segment-specific replication and transcription.

  14. Justice and the Human Genome Project

    Energy Technology Data Exchange (ETDEWEB)

    Murphy, T.F.; Lappe, M. [eds.

    1992-12-31

    Most of the essays gathered in this volume were first presented at a conference, Justice and the Human Genome, in Chicago in early November, 1991. The goal of the, conference was to consider questions of justice as they are and will be raised by the Human Genome Project. To achieve its goal of identifying and elucidating the challenges of justice inherent in genomic research and its social applications the conference drew together in one forum members from academia, medicine, and industry with interests divergent as rate-setting for insurance, the care of newborns, and the history of ethics. The essays in this volume address a number of theoretical and practical concerns relative to the meaning of genomic research.

  15. Justice and the Human Genome Project

    Energy Technology Data Exchange (ETDEWEB)

    Murphy, T.F.; Lappe, M. (eds.)

    1992-01-01

    Most of the essays gathered in this volume were first presented at a conference, Justice and the Human Genome, in Chicago in early November, 1991. The goal of the, conference was to consider questions of justice as they are and will be raised by the Human Genome Project. To achieve its goal of identifying and elucidating the challenges of justice inherent in genomic research and its social applications the conference drew together in one forum members from academia, medicine, and industry with interests divergent as rate-setting for insurance, the care of newborns, and the history of ethics. The essays in this volume address a number of theoretical and practical concerns relative to the meaning of genomic research.

  16. Comparative Genome Analysis and Genome Evolution

    NARCIS (Netherlands)

    Snel, Berend

    2002-01-01

    This thesis described a collection of bioinformatic analyses on complete genome sequence data. We have studied the evolution of gene content and find that vertical inheritance dominates over horizontal gene trasnfer, even to the extent that we can use the gene content to make genome phylogenies.

  17. Plant Functional Genomics

    National Research Council Canada - National Science Library

    Chris Somerville; Shauna Somerville

    1999-01-01

    Nucleotide sequencing of the Arabidopsis genome is nearing completion, sequencing of the rice genome has begun, and large amounts of expressed sequence tag information are being obtained for many other plants...

  18. Rat Genome Database (RGD)

    Data.gov (United States)

    U.S. Department of Health & Human Services — The Rat Genome Database (RGD) is a collaborative effort between leading research institutions involved in rat genetic and genomic research to collect, consolidate,...

  19. Exploiting the genome

    Energy Technology Data Exchange (ETDEWEB)

    Block, S. [The MITRE Corporation, McLean, VA (US). JASON Program Office; Cornwall, J. [The MITRE Corporation, McLean, VA (US). JASON Program Office; Dyson, F. [The MITRE Corporation, McLean, VA (US). JASON Program Office; Koonin, S. [The MITRE Corporation, McLean, VA (US). JASON Program Office; Lewis, N. [The MITRE Corporation, McLean, VA (US). JASON Program Office; Schwitters, R. [The MITRE Corporation, McLean, VA (US). JASON Program Office

    1998-09-11

    In 1997, JASON conducted a DOE-sponsored study of the human genome project with special emphasis on the areas of technology, quality assurance and quality control, and informatics. The present study has two aims: first, to update the 1997 Report in light of recent developments in genome sequencing technology, and second, to consider possible roles for the DOE in the ''post-genomic" era, following acquisition of the complete human genome sequence.

  20. Causes of genome instability

    DEFF Research Database (Denmark)

    Langie, Sabine A S; Koppen, Gudrun; Desaulniers, Daniel

    2015-01-01

    Genome instability is a prerequisite for the development of cancer. It occurs when genome maintenance systems fail to safeguard the genome's integrity, whether as a consequence of inherited defects or induced via exposure to environmental agents (chemicals, biological agents and radiation). Thus,...

  1. Whole Genome Selection

    Science.gov (United States)

    Whole genome selection (WGS) is an approach to using DNA markers that are distributed throughout the entire genome. Genes affecting most economically-important traits are distributed throughout the genome and there are relatively few that have large effects with many more genes with progressively sm...

  2. The genome editing revolution

    DEFF Research Database (Denmark)

    Stella, Stefano; Montoya, Guillermo

    2016-01-01

    -Cas system has become the main tool for genome editing in many laboratories. Currently the targeted genome editing technology has been used in many fields and may be a possible approach for human gene therapy. Furthermore, it can also be used to modifying the genomes of model organisms for studying human...

  3. Interaction between Simian Virus 40 Major Capsid Protein VP1 and Cell Surface Ganglioside GM1 Triggers Vacuole Formation.

    Science.gov (United States)

    Luo, Yong; Motamedi, Nasim; Magaldi, Thomas G; Gee, Gretchen V; Atwood, Walter J; DiMaio, Daniel

    2016-03-22

    cloning, and whole-genome sequencing, the basis of this vacuolization phenotype was unknown. Here, we show that SV40-induced vacuolization is triggered by the binding of the major viral capsid protein, VP1, to a cell surface ganglioside receptor, GM1. No other viral proteins or virus replication is required for vacuole formation. Other polyomaviruses utilize different ganglioside receptors, but they do not induce vacuolization. This work identifies the molecular trigger for the phenotype that led to the discovery of this important virus and provides the first molecular insight into an unusual and enigmatic cytopathic effect due to virus infection. Copyright © 2016 Luo et al.

  4. Comparative genomics of Lactobacillus

    Science.gov (United States)

    Kant, Ravi; Blom, Jochen; Palva, Airi; Siezen, Roland J.; de Vos, Willem M.

    2011-01-01

    Summary The genus Lactobacillus includes a diverse group of bacteria consisting of many species that are associated with fermentations of plants, meat or milk. In addition, various lactobacilli are natural inhabitants of the intestinal tract of humans and other animals. Finally, several Lactobacillus strains are marketed as probiotics as their consumption can confer a health benefit to host. Presently, 154 Lactobacillus species are known and a growing fraction of these are subject to draft genome sequencing. However, complete genome sequences are needed to provide a platform for detailed genomic comparisons. Therefore, we selected a total of 20 genomes of various Lactobacillus strains for which complete genomic sequences have been reported. These genomes had sizes varying from 1.8 to 3.3 Mb and other characteristic features, such as G+C content that ranged from 33% to 51%. The Lactobacillus pan genome was found to consist of approximately 14 000 protein‐encoding genes while all 20 genomes shared a total of 383 sets of orthologous genes that defined the Lactobacillus core genome (LCG). Based on advanced phylogeny of the proteins encoded by this LCG, we grouped the 20 strains into three main groups and defined core group genes present in all genomes of a single group, signature group genes shared in all genomes of one group but absent in all other Lactobacillus genomes, and Group‐specific ORFans present in core group genes of one group and absent in all other complete genomes. The latter are of specific value in defining the different groups of genomes. The study provides a platform for present individual comparisons as well as future analysis of new Lactobacillus genomes. PMID:21375712

  5. Chromium and Genomic Stability

    Science.gov (United States)

    Wise, Sandra S.; Wise, John Pierce

    2014-01-01

    Many metals serve as micronutrients which protect against genomic instability. Chromium is most abundant in its trivalent and hexavalent forms. Trivalent chromium has historically been considered an essential element, though recent data indicate that while it can have pharmacological effects and value, it is not essential. There are no data indicating that trivalent chromium promotes genomic stability and, instead may promote genomic instability. Hexavalent chromium is widely accepted as highly toxic and carcinogenic with no nutritional value. Recent data indicate that it causes genomic instability and also has no role in promoting genomic stability. PMID:22192535

  6. A genome-wide association study of early-onset breast cancer identifies PFKM as a novel breast cancer gene and supports a common genetic spectrum for breast cancer at any age

    NARCIS (Netherlands)

    Ahsan, Habibul; Halpern, Jerry; Kibriya, Muhammad G.; Pierce, Brandon L.; Tong, Lin; Gamazon, Eric; McGuire, Valerie; Felberg, Anna; Shi, Jianxin; Jasmine, Farzana; Roy, Shantanu; Brutus, Rachelle; Argos, Maria; Melkonian, Stephanie; Chang-Claude, Jenny; Andrulis, Irene; Hopper, John L.; John, Esther M.; Malone, Kathi; Ursin, Giske; Gammon, Marilie D.; Thomas, Duncan C.; Seminara, Daniela; Casey, Graham; Knight, Julia A.; Southey, Melissa C.; Giles, Graham G.; Santella, Regina M.; Lee, Eunjung; Conti, David; Duggan, David; Gallinger, Steve; Haile, Robert; Jenkins, Mark; Lindor, Noralane M.; Newcomb, Polly; Michailidou, Kyriaki; Apicella, Carmel; Park, Daniel J.; Peto, Julian; Fletcher, Olivia; dos Santos Silva, Isabel; Lathrop, Mark; Hunter, David J.; Chanock, Stephen J.; Meindl, Alfons; Schmutzler, Rita K.; Müller-Myhsok, Bertram; Lochmann, Magdalena; Beckmann, Lars; Hein, Rebecca; Makalic, Enes; Schmidt, Daniel F.; Bui, Quang Minh; Stone, Jennifer; Flesch-Janys, Dieter; Dahmen, Norbert; Nevanlinna, Heli; Aittomäki, Kristiina; Blomqvist, Carl; Hall, Per; Czene, Kamila; Irwanto, Astrid; Liu, Jianjun; Rahman, Nazneen; Turnbull, Clare; Dunning, Alison M.; Pharoah, Paul; Waisfisz, Quinten; Meijers-Heijboer, Hanne; Uitterlinden, Andre G.; Rivadeneira, Fernando; Nicolae, Dan; Easton, Douglas F.; Cox, Nancy J.; Whittemore, Alice S.

    2014-01-01

    Early-onset breast cancer (EOBC) causes substantial loss of life and productivity, creating a major burden among women worldwide. We analyzed 1,265,548 Hapmap3 single-nucleotide polymorphisms (SNP) among a discovery set of 3,523 EOBC incident cases and 2,702 population control women ages ≤ 51 years.

  7. HIV-1 gp120 neurotoxicity proximally and at a distance from the point of exposure: protection by rSV40 delivery of antioxidant enzymes.

    Science.gov (United States)

    Louboutin, Jean-Pierre; Agrawal, Lokesh; Reyes, Beverly A S; Van Bockstaele, Elisabeth J; Strayer, David S

    2009-06-01

    Toxicity of HIV-1 envelope glycoprotein (gp120) for substantia nigra (SN) neurons may contribute to the Parkinsonian manifestations often seen in HIV-1-associated dementia (HAD). We studied the neurotoxicity of gp120 for dopaminergic neurons and potential neuroprotection by antioxidant gene delivery. Rats were injected stereotaxically into their caudate-putamen (CP); CP and (substantia nigra) SN neuron loss was quantified. The area of neuron loss extended several millimeters from the injection site, approximately 35% of the CP area. SN neurons, outside of this area of direct neurotoxicity, were also severely affected. Dopaminergic SN neurons (expressing tyrosine hydroxylase, TH, in the SN and dopamine transporter, DAT, in the CP) were mostly affected: intra-CP gp120 caused approximately 50% DAT+ SN neuron loss. Prior intra-CP gene delivery of Cu/Zn superoxide dismutase (SOD1) or glutathione peroxidase (GPx1) protected SN neurons from intra-CP gp120. Thus, SN dopaminergic neurons are highly sensitive to HIV-1 gp120-induced neurotoxicity, and antioxidant gene delivery, even at a distance, is protective.

  8. Efficient eradication of subcutaneous but not of autochthonous gastric tumors by adoptive T cell transfer in an SV40 T antigen mouse model

    National Research Council Canada - National Science Library

    Bourquin, Carole; von der Borch, Philip; Zoglmeier, Christine; Anz, David; Sandholzer, Nadja; Suhartha, Nina; Wurzenberger, Cornelia; Denzel, Angela; Kammerer, Robert; Zimmermann, Wolfgang; Endres, Stefan

    2010-01-01

    .... In wild-type mice, a dendritic cell vaccine loaded with irradiated tumor cells combined with CpG oligonucleotides induced efficient cytotoxic T cell and memory responses against mGC3 s.c. tumors...

  9. The AT-rich tract of the SV40 ori core: negative synergism and specific recognition by single stranded and duplex DNA binding proteins.

    OpenAIRE

    Galli, Ivo; Iguchi-Ariga, Sanae M. M.; Ariga, Hiroyoshi

    1992-01-01

    The cellular oncogene c-myc encodes a nuclear protein that is considered to play a role in cell proliferation. In this report, the region upstream from the transcriptional promoter of the c-myc gene was examined for regulatory activity on its expression during cell cycle. Plasmids which contain the upstream region of human c-myc gene linked to the bacterial chloramphenicol acetyltransferase (CAT) gene were transfected to rat 3Y1 cells together with pSV2Hg (containing the hygromycin resistance...

  10. Bacterial Genome Instability

    Science.gov (United States)

    Darmon, Elise

    2014-01-01

    SUMMARY Bacterial genomes are remarkably stable from one generation to the next but are plastic on an evolutionary time scale, substantially shaped by horizontal gene transfer, genome rearrangement, and the activities of mobile DNA elements. This implies the existence of a delicate balance between the maintenance of genome stability and the tolerance of genome instability. In this review, we describe the specialized genetic elements and the endogenous processes that contribute to genome instability. We then discuss the consequences of genome instability at the physiological level, where cells have harnessed instability to mediate phase and antigenic variation, and at the evolutionary level, where horizontal gene transfer has played an important role. Indeed, this ability to share DNA sequences has played a major part in the evolution of life on Earth. The evolutionary plasticity of bacterial genomes, coupled with the vast numbers of bacteria on the planet, substantially limits our ability to control disease. PMID:24600039

  11. Cytoplasmic ATR Activation Promotes Vaccinia Virus Genome Replication

    Directory of Open Access Journals (Sweden)

    Antonio Postigo

    2017-05-01

    Full Text Available In contrast to most DNA viruses, poxviruses replicate their genomes in the cytoplasm without host involvement. We find that vaccinia virus induces cytoplasmic activation of ATR early during infection, before genome uncoating, which is unexpected because ATR plays a fundamental nuclear role in maintaining host genome integrity. ATR, RPA, INTS7, and Chk1 are recruited to cytoplasmic DNA viral factories, suggesting canonical ATR pathway activation. Consistent with this, pharmacological and RNAi-mediated inhibition of canonical ATR signaling suppresses genome replication. RPA and the sliding clamp PCNA interact with the viral polymerase E9 and are required for DNA replication. Moreover, the ATR activator TOPBP1 promotes genome replication and associates with the viral replisome component H5. Our study suggests that, in contrast to long-held beliefs, vaccinia recruits conserved components of the eukaryote DNA replication and repair machinery to amplify its genome in the host cytoplasm.

  12. The mastodon mitochondrial genome: a mammoth accomplishment.

    Science.gov (United States)

    Roca, Alfred L

    2008-02-01

    The mitochondrial genome of an American mastodon was recently sequenced and used to root a phylogenetic analysis that included full mitochondrial genome sequences from woolly mammoths and the two living elephant genera. The study definitively established that mammoth and Asian elephant mitochondrial DNA lineages are more closely related than either is to African elephants. However, it also suggests that a complex evolutionary picture could ultimately emerge and points to similarities between the early evolution of the Elephantidae and that of the gorilla-human-chimpanzee clade.

  13. Decoding the genomic tree of life.

    Science.gov (United States)

    Simonson, Anne B; Servin, Jacqueline A; Skophammer, Ryan G; Herbold, Craig W; Rivera, Maria C; Lake, James A

    2005-05-03

    Genomes hold within them the record of the evolution of life on Earth. But genome fusions and horizontal gene transfer (HGT) seem to have obscured sufficiently the gene sequence record such that it is difficult to reconstruct the phylogenetic tree of life. HGT among prokaryotes is not random, however. Some genes (informational genes) are more difficult to transfer than others (operational genes). Furthermore, environmental, metabolic, and genetic differences among organisms restrict HGT, so that prokaryotes preferentially share genes with other prokaryotes having properties in common, including genome size, genome G+C composition, carbon utilization, oxygen utilization/sensitivity, and temperature optima, further complicating attempts to reconstruct the tree of life. A new method of phylogenetic reconstruction based on gene presence and absence, called conditioned reconstruction, has improved our prospects for reconstructing prokaryotic evolution. It is also able to detect past genome fusions, such as the fusion that appears to have created the first eukaryote. This genome fusion between a deep branching eubacterium, possibly an ancestor of the cyanobacterium and a proteobacterium, with an archaeal eocyte (crenarchaea), appears to be the result of an early symbiosis. Given new tools and new genes from relevant organisms, it should soon be possible to test current and future fusion theories for the origin of eukaryotes and to discover the general outlines of the prokaryotic tree of life.

  14. The future of clinical cancer genomics.

    Science.gov (United States)

    Offit, Kenneth

    2016-10-01

    The current and future applications of genomics to the practice of preventive oncology are being impacted by a number of challenges. These include rapid advances in genomic science and technology that allow massively parallel sequencing of both tumors and the germline, a diminishing of intellectual property restrictions on diagnostic genetic applications, rapid expansion of access to the internet which includes mobile access to both genomic data and tools to communicate and interpret genetic data in a medical context, the expansion of for-profit diagnostic companies seeking to monetize genetic information, and a simultaneous effort to depict medical professionals as barriers to rather than facilitators of understanding one's genome. Addressing each of these issues will be required to bring "personalized" germline genomics to cancer prevention and care. A profound future challenge will be whether clinical cancer genomics will be "de-medicalized" by commercial interests and their advocates, or whether the future course of this field can be modulated in a responsible way that protects the public health while implementing powerful new medical tools for cancer prevention and early detection. Copyright © 2016. Published by Elsevier Inc.

  15. Comparative Genome Annotation.

    Science.gov (United States)

    König, Stefanie; Romoth, Lars; Stanke, Mario

    2018-01-01

    Newly sequenced genomes are being added to the tree of life at an unprecedented fast pace. Increasingly, such new genomes are phylogenetically close to previously sequenced and annotated genomes. In other cases, whole clades of closely related species or strains ought to be annotated simultaneously. Often, in subsequent studies differences between the closely related species or strains are in the focus of research when the shared gene structures prevail. We here review methods for comparative structural genome annotation. The reviewed methods include classical approaches such as the alignment of protein sequences or protein profiles against the genome and comparative gene prediction methods that exploit a genome alignment to annotate a target genome. Newer approaches such as the simultaneous annotation of multiple genomes are also reviewed. We discuss how the methods depend on the phylogenetic placement of genomes, give advice on the choice of methods, and examine the consistency between gene structure annotations in an example. Further, we provide practical advice on genome annotation in general.

  16. Genomic insights into mediator lipidomics.

    Science.gov (United States)

    Hla, Timothy

    2005-09-01

    G protein-coupled receptors (GPCR) are used ubiquitously and widely for signal transduction across the plasma membrane. The ligands for GPCRs are structurally diverse and include peptides, odorants, photon, ions and lipids. It is thought that GPCRs evolved by gene duplication and mutational events that diversified the ligand binding and signaling properties, thereby resulting in paralogues in various organisms. Genomic sequencing efforts of various organisms indicate that GPCRs evolved very early in evolution; for example, unicellular eukaryotes use GPCRs for mating, differentiation and sporulation responses and prokarotes utilize these receptors for phototransduction, as exemplified by the bacteriorhodopsin, a photon sensor. Many GPCRs fall into subfamilies, usually determined by structural similarity to their ligands. Bioactive lipids such as lysophospholipids, eicosanoids, ether lipids and endocannabinoids, which are produced widely in evolution, also signal through GPCRs. Thus, distinct subfamilies of bioactive lipid GPCRs, such as prostanoid receptors, lysophosphatidic, sphingosine 1-phosphate, leukotrienes, hydroxy fatty acids, endocannabinoids and ether lipids exist in the mammalian genome. With the increasing availability of genomic information throughout the phylogenetic tree, orthologues of bioactive lipid receptors are found in the genomes of vertebrates and chordates but not in worms, flies or other lower organisms. This is in contrast to GPCRs for biogenic amines and polypeptide growth factors, which are conserved in invertebrates as well. Thus, it appears that with the evolution of chordates, lipids may have acquired novel roles in cell-cell communication events via GPCRs. This hypothesis will be discussed using the prostanoid and lysophospholipid signaling systems. Since such bioactive lipids play critical roles in immune, vascular and nervous systems, this suggests that lipid metabolite signaling via the GPCRs co-evolved with the development of

  17. The sea lamprey germline genome provides insights into programmed genome rearrangement and vertebrate evolution.

    Science.gov (United States)

    Smith, Jeramiah J; Timoshevskaya, Nataliya; Ye, Chengxi; Holt, Carson; Keinath, Melissa C; Parker, Hugo J; Cook, Malcolm E; Hess, Jon E; Narum, Shawn R; Lamanna, Francesco; Kaessmann, Henrik; Timoshevskiy, Vladimir A; Waterbury, Courtney K M; Saraceno, Cody; Wiedemann, Leanne M; Robb, Sofia M C; Baker, Carl; Eichler, Evan E; Hockman, Dorit; Sauka-Spengler, Tatjana; Yandell, Mark; Krumlauf, Robb; Elgar, Greg; Amemiya, Chris T

    2018-02-01

    The sea lamprey (Petromyzon marinus) serves as a comparative model for reconstructing vertebrate evolution. To enable more informed analyses, we developed a new assembly of the lamprey germline genome that integrates several complementary data sets. Analysis of this highly contiguous (chromosome-scale) assembly shows that both chromosomal and whole-genome duplications have played significant roles in the evolution of ancestral vertebrate and lamprey genomes, including chromosomes that carry the six lamprey HOX clusters. The assembly also contains several hundred genes that are reproducibly eliminated from somatic cells during early development in lamprey. Comparative analyses show that gnathostome (mouse) homologs of these genes are frequently marked by polycomb repressive complexes (PRCs) in embryonic stem cells, suggesting overlaps in the regulatory logic of somatic DNA elimination and bivalent states that are regulated by early embryonic PRCs. This new assembly will enhance diverse studies that are informed by lampreys' unique biology and evolutionary/comparative perspective.

  18. The rainbow trout genome provides novel insights into evolution after whole-genome duplication in vertebrates.

    Science.gov (United States)

    Berthelot, Camille; Brunet, Frédéric; Chalopin, Domitille; Juanchich, Amélie; Bernard, Maria; Noël, Benjamin; Bento, Pascal; Da Silva, Corinne; Labadie, Karine; Alberti, Adriana; Aury, Jean-Marc; Louis, Alexandra; Dehais, Patrice; Bardou, Philippe; Montfort, Jérôme; Klopp, Christophe; Cabau, Cédric; Gaspin, Christine; Thorgaard, Gary H; Boussaha, Mekki; Quillet, Edwige; Guyomard, René; Galiana, Delphine; Bobe, Julien; Volff, Jean-Nicolas; Genêt, Carine; Wincker, Patrick; Jaillon, Olivier; Roest Crollius, Hugues; Guiguen, Yann

    2014-04-22

    Vertebrate evolution has been shaped by several rounds of whole-genome duplications (WGDs) that are often suggested to be associated with adaptive radiations and evolutionary innovations. Due to an additional round of WGD, the rainbow trout genome offers a unique opportunity to investigate the early evolutionary fate of a duplicated vertebrate genome. Here we show that after 100 million years of evolution the two ancestral subgenomes have remained extremely collinear, despite the loss of half of the duplicated protein-coding genes, mostly through pseudogenization. In striking contrast is the fate of miRNA genes that have almost all been retained as duplicated copies. The slow and stepwise rediploidization process characterized here challenges the current hypothesis that WGD is followed by massive and rapid genomic reorganizations and gene deletions.

  19. Genomics education for medical professionals - the current UK landscape.

    Science.gov (United States)

    Slade, Ingrid; Subramanian, Deepak N; Burton, Hilary

    2016-08-01

    Genomics education in the UK is at an early stage of development, and its pace of evolution has lagged behind that of the genomics research upon which it is based. As a result, knowledge of genomics and its applications remains limited among non-specialist clinicians. In this review article, we describe the complex landscape for genomics education within the UK, and highlight the large number and variety of organisations that can influence, direct and provide genomics training to medical professionals. Postgraduate genomics education is being shaped by the work of the Health Education England (HEE) Genomics Education Programme, working in conjunction with the Joint Committee on Genomics in Medicine. The success of their work will be greatly enhanced by the full cooperation and engagement of the many groups, societies and organisations involved with medical education and training (such as the royal colleges). Without this cooperation, there is a risk of poor coordination and unnecessary duplication of work. Leadership from an organisation such as the HEE Genomics Education Programme will have a key role in guiding the formulation and delivery of genomics education policy by various stakeholders among the different disciplines in medicine. © 2016 Royal College of Physicians.

  20. Novel Insights into Tree Biology and Genome Evolution as Revealed Through Genomics.

    Science.gov (United States)

    Neale, David B; Martínez-García, Pedro J; De La Torre, Amanda R; Montanari, Sara; Wei, Xiao-Xin

    2017-04-28

    Reference genome sequences are the key to the discovery of genes and gene families that determine traits of interest. Recent progress in sequencing technologies has enabled a rapid increase in genome sequencing of tree species, allowing the dissection of complex characters of economic importance, such as fruit and wood quality and resistance to biotic and abiotic stresses. Although the number of reference genome sequences for trees lags behind those for other plant species, it is not too early to gain insight into the unique features that distinguish trees from nontree plants. Our review of the published data suggests that, although many gene families are conserved among herbaceous and tree species, some gene families, such as those involved in resistance to biotic and abiotic stresses and in the synthesis and transport of sugars, are often expanded in tree genomes. As the genomes of more tree species are sequenced, comparative genomics will further elucidate the complexity of tree genomes and how this relates to traits unique to trees.

  1. Examination of genome homogeneity in prokaryotes using genomic signatures.

    Science.gov (United States)

    Bohlin, Jon; Skjerve, Eystein

    2009-12-02

    DNA word frequencies, normalized for genomic AT content, are remarkably stable within prokaryotic genomes and are therefore said to reflect a "genomic signature." The genomic signatures can be used to phylogenetically classify organisms from arbitrary sampled DNA. Genomic signatures can also be used to search for horizontally transferred DNA or DNA regions subjected to special selection forces. Thus, the stability of the genomic signature can be used as a measure of genomic homogeneity. The factors associated with the stability of the genomic signatures are not known, and this motivated us to investigate further. We analyzed the intra-genomic variance of genomic signatures based on AT content normalization (0(th) order Markov model) as well as genomic signatures normalized by smaller DNA words (1(st) and 2(nd) order Markov models) for 636 sequenced prokaryotic genomes. Regression models were fitted, with intra-genomic signature variance as the response variable, to a set of factors representing genomic properties such as genomic AT content, genome size, habitat, phylum, oxygen requirement, optimal growth temperature and oligonucleotide usage variance (OUV, a measure of oligonucleotide usage bias), measured as the variance between genomic tetranucleotide frequencies and Markov chain approximated tetranucleotide frequencies, as predictors. Regression analysis revealed that OUV was the most important factor (pcontent, phylum and oxygen requirement. Genomic homogeneity in prokaryotes is intimately linked to genomic GC content, oligonucleotide usage bias (OUV) and aerobiosis, while oligonucleotide usage bias (OUV) is associated with genomic GC content, aerobiosis and habitat.

  2. Genomic research in Eucalyptus.

    Science.gov (United States)

    Poke, Fiona S; Vaillancourt, René E; Potts, Brad M; Reid, James B

    2005-09-01

    Eucalyptus L'Hérit. is a genus comprised of more than 700 species that is of vital importance ecologically to Australia and to the forestry industry world-wide, being grown in plantations for the production of solid wood products as well as pulp for paper. With the sequencing of the genomes of Arabidopsis thaliana and Oryza sativa and the recent completion of the first tree genome sequence, Populus trichocarpa, attention has turned to the current status of genomic research in Eucalyptus. For several eucalypt species, large segregating families have been established, high-resolution genetic maps constructed and large EST databases generated. Collaborative efforts have been initiated for the integration of diverse genomic projects and will provide the framework for future research including exploiting the sequence of the entire eucalypt genome which is currently being sequenced. This review summarises the current position of genomic research in Eucalyptus and discusses the direction of future research.

  3. Reference Based Genome Compression

    CERN Document Server

    Chern, Bobbie; Manolakos, Alexandros; No, Albert; Venkat, Kartik; Weissman, Tsachy

    2012-01-01

    DNA sequencing technology has advanced to a point where storage is becoming the central bottleneck in the acquisition and mining of more data. Large amounts of data are vital for genomics research, and generic compression tools, while viable, cannot offer the same savings as approaches tuned to inherent biological properties. We propose an algorithm to compress a target genome given a known reference genome. The proposed algorithm first generates a mapping from the reference to the target genome, and then compresses this mapping with an entropy coder. As an illustration of the performance: applying our algorithm to James Watson's genome with hg18 as a reference, we are able to reduce the 2991 megabyte (MB) genome down to 6.99 MB, while Gzip compresses it to 834.8 MB.

  4. Ebolavirus comparative genomics

    DEFF Research Database (Denmark)

    Jun, Se-Ran; Leuze, Michael R.; Nookaew, Intawat

    2015-01-01

    The 2014 Ebola outbreak in West Africa is the largest documented for this virus. To examine the dynamics of this genome, we compare more than 100 currently available ebolavirus genomes to each other and to other viral genomes. Based on oligomer frequency analysis, the family Filoviridae forms...... a distinct group from all other sequenced viral genomes. All filovirus genomes sequenced to date encode proteins with similar functions and gene order, although there is considerable divergence in sequences between the three genera Ebolavirus, Cuevavirus and Marburgvirus within the family Filoviridae....... Whereas all ebolavirus genomes are quite similar (multiple sequences of the same strain are often identical), variation is most common in the intergenic regions and within specific areas of the genes encoding the glycoprotein (GP), nucleoprotein (NP) and polymerase (L). We predict regions that could...

  5. Simian virus 40, poliovirus vaccines, and human cancer: research progress versus media and public interests

    Science.gov (United States)

    Butel, J. S.

    2000-01-01

    From 1955 through early 1963, millions of people were inadvertently exposed to simian virus 40 (SV40) as a contaminant of poliovirus vaccines; the virus had been present in the monkey kidney cultures used to prepare the vaccines and had escaped detection. SV40 was discovered in 1960 and subsequently eliminated from poliovirus vaccines. This article reviews current knowledge about SV40 and considers public responses to reports in the media. SV40 is a potent tumour virus with broad tissue tropism that induces tumours in rodents and transforms cultured cells from many species. It is also an important laboratory model for basic studies of molecular processes in eukaryotic cells and mechanisms of neoplastic transformation. SV40 neutralizing antibodies have been detected in individuals not exposed to contaminated poliovirus vaccines. There have been many reports of detection of SV40 DNA in human tumours, especially mesotheliomas, brain tumours and osteosarcomas; and DNA sequence analyses have ruled out the possibility that the viral DNA in tumours was due to laboratory contamination or that the virus had been misidentified. However, additional studies are necessary to prove that SV40 is the cause of certain human cancers. A recently published review article evaluated the status of the field and received much media attention. The public response emphasized that there is great interest in the possibility of health risks today from vaccinations received in the past.

  6. Examination of genome homogeneity in prokaryotes using genomic signatures.

    Directory of Open Access Journals (Sweden)

    Jon Bohlin

    Full Text Available BACKGROUND: DNA word frequencies, normalized for genomic AT content, are remarkably stable within prokaryotic genomes and are therefore said to reflect a "genomic signature." The genomic signatures can be used to phylogenetically classify organisms from arbitrary sampled DNA. Genomic signatures can also be used to search for horizontally transferred DNA or DNA regions subjected to special selection forces. Thus, the stability of the genomic signature can be used as a measure of genomic homogeneity. The factors associated with the stability of the genomic signatures are not known, and this motivated us to investigate further. We analyzed the intra-genomic variance of genomic signatures based on AT content normalization (0(th order Markov model as well as genomic signatures normalized by smaller DNA words (1(st and 2(nd order Markov models for 636 sequenced prokaryotic genomes. Regression models were fitted, with intra-genomic signature variance as the response variable, to a set of factors representing genomic properties such as genomic AT content, genome size, habitat, phylum, oxygen requirement, optimal growth temperature and oligonucleotide usage variance (OUV, a measure of oligonucleotide usage bias, measured as the variance between genomic tetranucleotide frequencies and Markov chain approximated tetranucleotide frequencies, as predictors. PRINCIPAL FINDINGS: Regression analysis revealed that OUV was the most important factor (p<0.001 determining intra-genomic homogeneity as measured using genomic signatures. This means that the less random the oligonucleotide usage is in the sense of higher OUV, the more homogeneous the genome is in terms of the genomic signature. The other factors influencing variance in the genomic signature (p<0.001 were genomic AT content, phylum and oxygen requirement. CONCLUSIONS: Genomic homogeneity in prokaryotes is intimately linked to genomic GC content, oligonucleotide usage bias (OUV and aerobiosis, while

  7. Physician Assistant Genomic Competencies.

    Science.gov (United States)

    Goldgar, Constance; Michaud, Ed; Park, Nguyen; Jenkins, Jean

    2016-09-01

    Genomic discoveries are increasingly being applied to the clinical care of patients. All physician assistants (PAs) need to acquire competency in genomics to provide the best possible care for patients within the scope of their practice. In this article, we present an updated version of PA genomic competencies and learning outcomes in a framework that is consistent with the current medical education guidelines and the collaborative nature of PAs in interprofessional health care teams.

  8. Genomics for Weed Science

    OpenAIRE

    Horvath, David

    2010-01-01

    Numerous genomic-based studies have provided insight to the physiological and evolutionary processes involved in developmental and environmental processes of model plants such as arabidopsis and rice. However, far fewer efforts have been attempted to use genomic resources to study physiological and evolutionary processes of weedy plants. Genomics-based tools such as extensive EST databases and microarrays have been developed for a limited number of weedy species, although application of infor...

  9. Highly asymmetric rice genomes

    Directory of Open Access Journals (Sweden)

    Chen Jian-Qun

    2007-06-01

    Full Text Available Abstract Background Individuals in the same species are assumed to share the same genomic set. However, it is not unusual to find an orthologous gene only in small subset of the species, and recent genomic studies suggest that structural rearrangements are very frequent between genomes in the same species. Two recently sequenced rice genomes Oryza sativa L. var. Nipponbare and O. sativa L. var. 93-11 provide an opportunity to systematically investigate the extent of the gene repertoire polymorphism, even though the genomic data of 93-11 derived from whole-short-gun sequencing is not yet as complete as that of Nipponbare. Results We compared gene contents and the genomic locations between two rice genomes. Our conservative estimates suggest that at least 10% of the genes in the genomes were either under presence/absence polymorphism (5.2% or asymmetrically located between genomes (4.7%. The proportion of these "asymmetric genes" varied largely among gene groups, in which disease resistance (R genes and the RLK kinase gene group had 11.6 and 7.8 times higher proportion of asymmetric genes than housekeeping genes (Myb and MADS. The significant difference in the proportion of asymmetric genes among gene groups suggests that natural selection is responsible for maintaining genomic asymmetry. On the other hand, the nucleotide diversity in 17 R genes under presence/absence polymorphism was generally low (average nucleotide diversity = 0.0051. Conclusion The genomic symmetry was disrupted by 10% of asymmetric genes, which could cause genetic variation through more unequal crossing over, because these genes had no allelic counterparts to pair and then they were free to pair with homologues at non-allelic loci, during meiosis in heterozygotes. It might be a consequence of diversifying selection that increased the structural divergence among genomes, and of purifying selection that decreased nucleotide divergence in each R gene locus.

  10. Chromium and Genomic Stability

    OpenAIRE

    Wise, Sandra S.; Wise, John Pierce

    2011-01-01

    Many metals serve as micronutrients which protect against genomic instability. Chromium is most abundant in its trivalent and hexavalent forms. Trivalent chromium has historically been considered an essential element, though recent data indicate that while it can have pharmacological effects and value, it is not essential. There are no data indicating that trivalent chromium promotes genomic stability and, instead may promote genomic instability. Hexavalent chromium is widely accepted as high...

  11. Evolutionary genomics of Entamoeba

    Science.gov (United States)

    Weedall, Gareth D.; Hall, Neil

    2011-01-01

    Entamoeba histolytica is a human pathogen that causes amoebic dysentery and leads to significant morbidity and mortality worldwide. Understanding the genome and evolution of the parasite will help explain how, when and why it causes disease. Here we review current knowledge about the evolutionary genomics of Entamoeba: how differences between the genomes of different species may help explain different phenotypes, and how variation among E. histolytica parasites reveals patterns of population structure. The imminent expansion of the amount genome data will greatly improve our knowledge of the genus and of pathogenic species within it. PMID:21288488

  12. Fungal Genomics Program

    Energy Technology Data Exchange (ETDEWEB)

    Grigoriev, Igor

    2012-03-12

    The JGI Fungal Genomics Program aims to scale up sequencing and analysis of fungal genomes to explore the diversity of fungi important for energy and the environment, and to promote functional studies on a system level. Combining new sequencing technologies and comparative genomics tools, JGI is now leading the world in fungal genome sequencing and analysis. Over 120 sequenced fungal genomes with analytical tools are available via MycoCosm (www.jgi.doe.gov/fungi), a web-portal for fungal biologists. Our model of interacting with user communities, unique among other sequencing centers, helps organize these communities, improves genome annotation and analysis work, and facilitates new larger-scale genomic projects. This resulted in 20 high-profile papers published in 2011 alone and contributing to the Genomics Encyclopedia of Fungi, which targets fungi related to plant health (symbionts, pathogens, and biocontrol agents) and biorefinery processes (cellulose degradation, sugar fermentation, industrial hosts). Our next grand challenges include larger scale exploration of fungal diversity (1000 fungal genomes), developing molecular tools for DOE-relevant model organisms, and analysis of complex systems and metagenomes.

  13. Between two fern genomes.

    Science.gov (United States)

    Sessa, Emily B; Banks, Jo Ann; Barker, Michael S; Der, Joshua P; Duffy, Aaron M; Graham, Sean W; Hasebe, Mitsuyasu; Langdale, Jane; Li, Fay-Wei; Marchant, D Blaine; Pryer, Kathleen M; Rothfels, Carl J; Roux, Stanley J; Salmi, Mari L; Sigel, Erin M; Soltis, Douglas E; Soltis, Pamela S; Stevenson, Dennis W; Wolf, Paul G

    2014-01-01

    Ferns are the only major lineage of vascular plants not represented by a sequenced nuclear genome. This lack of genome sequence information significantly impedes our ability to understand and reconstruct genome evolution not only in ferns, but across all land plants. Azolla and Ceratopteris are ideal and complementary candidates to be the first ferns to have their nuclear genomes sequenced. They differ dramatically in genome size, life history, and habit, and thus represent the immense diversity of extant ferns. Together, this pair of genomes will facilitate myriad large-scale comparative analyses across ferns and all land plants. Here we review the unique biological characteristics of ferns and describe a number of outstanding questions in plant biology that will benefit from the addition of ferns to the set of taxa with sequenced nuclear genomes. We explain why the fern clade is pivotal for understanding genome evolution across land plants, and we provide a rationale for how knowledge of fern genomes will enable progress in research beyond the ferns themselves.

  14. Requirements and standards for organelle genome databases

    Energy Technology Data Exchange (ETDEWEB)

    Boore, Jeffrey L.

    2006-01-09

    Mitochondria and plastids (collectively called organelles)descended from prokaryotes that adopted an intracellular, endosymbioticlifestyle within early eukaryotes. Comparisons of their remnant genomesaddress a wide variety of biological questions, especially when includingthe genomes of their prokaryotic relatives and the many genes transferredto the eukaryotic nucleus during the transitions from endosymbiont toorganelle. The pace of producing complete organellar genome sequences nowmakes it unfeasible to do broad comparisons using the primary literatureand, even if it were feasible, it is now becoming uncommon for journalsto accept detailed descriptions of genome-level features. Unfortunatelyno database is currently useful for this task, since they have littlestandardization and are riddled with error. Here I outline what iscurrently wrong and what must be done to make this data useful to thescientific community.

  15. Genomic Evolution of the Ascomycete Yeasts

    Energy Technology Data Exchange (ETDEWEB)

    Riley, Robert; Haridas, Sajeet; Salamov, Asaf; Boundy-Mills, Kyria; Goker, Markus; Hittinger, Chris; Klenk, Hans-Peter; Lopes, Mariana; Meir-Kolthoff, Jan P.; Rokas, Antonis; Rosa, Carlos; Scheuner, Carmen; Soares, Marco; Stielow, Benjamin; Wisecaver, Jennifer H.; Wolfe, Ken; Blackwell, Meredith; Kurtzman, Cletus; Grigoriev, Igor; Jeffries, Thomas

    2015-03-16

    Yeasts are important for industrial and biotechnological processes and show remarkable metabolic and phylogenetic diversity despite morphological similarities. We have sequenced the genomes of 16 ascomycete yeasts of taxonomic and industrial importance including members of Saccharomycotina and Taphrinomycotina. Phylogenetic analysis of these and previously published yeast genomes helped resolve the placement of species including Saitoella complicata, Babjeviella inositovora, Hyphopichia burtonii, and Metschnikowia bicuspidata. Moreover, we find that alternative nuclear codon usage, where CUG encodes serine instead of leucine, are monophyletic within the Saccharomycotina. Most of the yeasts have compact genomes with a large fraction of single exon genes, and a tendency towards more introns in early-diverging species. Analysis of enzyme phylogeny gives insights into the evolution of metabolic capabilities such as methanol utilization and assimilation of alternative carbon sources.

  16. Genome position specific priors for genomic prediction

    DEFF Research Database (Denmark)

    Brøndum, Rasmus Froberg; Su, Guosheng; Lund, Mogens Sandø

    2012-01-01

    Background The accuracy of genomic prediction is highly dependent on the size of the reference population. For small populations, including information from other populations could improve this accuracy. The usual strategy is to pool data from different populations; however, this has not proven...... as successful as hoped for with distantly related breeds. BayesRS is a novel approach to share information across populations for genomic predictions. The approach allows information to be captured even where the phase of SNP alleles and casual mutation alleles are reversed across populations, or the actual...... casual mutation is different between the populations but affects the same gene. Proportions of a four-distribution mixture for SNP effects in segments of fixed size along the genome are derived from one population and set as location specific prior proportions of distributions of SNP effects...

  17. Genomic Analysis of Uterine Lavage Fluid Detects Early Endometrial Cancers and Reveals a Prevalent Landscape of Driver Mutations in Women without Histopathologic Evidence of Cancer: A Prospective Cross-Sectional Study.

    Directory of Open Access Journals (Sweden)

    Navya Nair

    2016-12-01

    Full Text Available Endometrial cancer is the most common gynecologic malignancy, and its incidence and associated mortality are increasing. Despite the immediate need to detect these cancers at an earlier stage, there is no effective screening methodology or protocol for endometrial cancer. The comprehensive, genomics-based analysis of endometrial cancer by The Cancer Genome Atlas (TCGA revealed many of the molecular defects that define this cancer. Based on these cancer genome results, and in a prospective study, we hypothesized that the use of ultra-deep, targeted gene sequencing could detect somatic mutations in uterine lavage fluid obtained from women undergoing hysteroscopy as a means of molecular screening and diagnosis.Uterine lavage and paired blood samples were collected and analyzed from 107 consecutive patients who were undergoing hysteroscopy and curettage for diagnostic evaluation from this single-institution study. The lavage fluid was separated into cellular and acellular fractions by centrifugation. Cellular and cell-free DNA (cfDNA were isolated from each lavage. Two targeted next-generation sequencing (NGS gene panels, one composed of 56 genes and the other of 12 genes, were used for ultra-deep sequencing. To rule out potential NGS-based errors, orthogonal mutation validation was performed using digital PCR and Sanger sequencing. Seven patients were diagnosed with endometrial cancer based on classic histopathologic analysis. Six of these patients had stage IA cancer, and one of these cancers was only detectable as a microscopic focus within a polyp. All seven patients were found to have significant cancer-associated gene mutations in both cell pellet and cfDNA fractions. In the four patients in whom adequate tumor sample was available, all tumor mutations above a specific allele fraction were present in the uterine lavage DNA samples. Mutations originally only detected in lavage fluid fractions were later confirmed to be present in tumor but at

  18. Phanerochaete chrysosporium genomics

    Science.gov (United States)

    Luis F. Larrondo; Rafael Vicuna; Dan Cullen

    2005-01-01

    A high quality draft genome sequence has been generated for the lignocellulose-degrading basidiomycete Phanerochaete chrysosporium (Martinez et al. 2004). Analysis of the genome in the context of previously established genetics and physiology is presented. Transposable elements and their potential relationship to genes involved in lignin degradation are systematically...

  19. Genome-Scale Models

    DEFF Research Database (Denmark)

    Bergdahl, Basti; Sonnenschein, Nikolaus; Machado, Daniel

    2016-01-01

    An introduction to genome-scale models, how to build and use them, will be given in this chapter. Genome-scale models have become an important part of systems biology and metabolic engineering, and are increasingly used in research, both in academica and in industry, both for modeling chemical...

  20. Breeding-assisted genomics.

    Science.gov (United States)

    Poland, Jesse

    2015-04-01

    The revolution of inexpensive sequencing has ushered in an unprecedented age of genomics. The promise of using this technology to accelerate plant breeding is being realized with a vision of genomics-assisted breeding that will lead to rapid genetic gain for expensive and difficult traits. The reality is now that robust phenotypic data is an increasing limiting resource to complement the current wealth of genomic information. While genomics has been hailed as the discipline to fundamentally change the scope of plant breeding, a more symbiotic relationship is likely to emerge. In the context of developing and evaluating large populations needed for functional genomics, none excel in this area more than plant breeders. While genetic studies have long relied on dedicated, well-structured populations, the resources dedicated to these populations in the context of readily available, inexpensive genotyping is making this philosophy less tractable relative to directly focusing functional genomics on material in breeding programs. Through shifting effort for basic genomic studies from dedicated structured populations, to capturing the entire scope of genetic determinants in breeding lines, we can move towards not only furthering our understanding of functional genomics in plants, but also rapidly improving crops for increased food security, availability and nutrition. Copyright © 2015 Elsevier Ltd. All rights reserved.

  1. Draft Genome Sequence of Two Sphingopyxis sp. Strains, Dominant Members of the Bacterial Community Associated with a Drinking Water Distribution System Simulator

    Science.gov (United States)

    We report the draft genome of two Sphingopyxis spp. strains isolated from a chloraminated drinking water distribution system simulator. Both strains are ubiquitous residents and early colonizers of water distribution systems. Genomic annotation identified a class 1 integron (in...

  2. Musa sebagai Model Genom

    Directory of Open Access Journals (Sweden)

    RITA MEGIA

    2005-12-01

    Full Text Available During the meeting in Arlington, USA in 2001, the scientists grouped in PROMUSA agreed with the launching of the Global Musa Genomics Consortium. The Consortium aims to apply genomics technologies to the improvement of this important crop. These genome projects put banana as the third model species after Arabidopsis and rice that will be analyzed and sequenced. Comparing to Arabidopsis and rice, banana genome provides a unique and powerful insight into structural and in functional genomics that could not be found in those two species. This paper discussed these subjects-including the importance of banana as the fourth main food in the world, the evolution and biodiversity of this genetic resource and its parasite.

  3. African swine fever virus replication and genomics.

    Science.gov (United States)

    Dixon, Linda K; Chapman, David A G; Netherton, Christopher L; Upton, Chris

    2013-04-01

    African swine fever virus (ASFV) is a large icosahedral DNA virus which replicates predominantly in the cytoplasm of infected cells. The ASFV double-stranded DNA genome varies in length from about 170 to 193 kbp depending on the isolate and contains between 150 and 167 open reading frames. These are closely spaced and read from both DNA strands. The virus genome termini are covalently closed by imperfectly base-paired hairpin loops that are present in two forms that are complimentary and inverted with respect to each other. Adjacent to the termini are inverted arrays of different tandem repeats. Head to head concatemeric genome replication intermediates have been described. A similar mechanism of replication to Poxviruses has been proposed for ASFV. Virus genome transcription occurs independently of the host RNA polymerase II and virus particles contain all of the enzymes and factors required for early gene transcription. DNA replication begins in perinuclear factory areas about 6h post-infection although an earlier stage of nuclear DNA synthesis has been reported. The virus genome encodes enzymes required for transcription and replication of the virus genome and virion structural proteins. Enzymes that are involved in a base excision repair pathway may be an adaptation to enable virus replication in the oxidative environment of the macrophage cytoplasm. Other ASFV genes encode factors involved in evading host defence systems and modulating host cell function. Variation between the genomes of different ASFV isolates is most commonly due to gain or loss of members of multigene families, MGFs 100, 110, 300, 360, 505/530 and family p22. These are located within the left terminal 40kbp and right terminal 20kbp. ASFV is the only member of the Asfarviridae, which is one of the families within the nucleocytoplasmic large DNA virus superfamily. Copyright © 2012 Elsevier B.V. All rights reserved.

  4. The draft genome of the parasitic nematode Trichinella spiralis

    OpenAIRE

    Mitreva, Makedonka; Douglas P Jasmer; Zarlenga, Dante S.; Grupa avtori,

    2011-01-01

    Genome evolution studies for the phylum Nematoda have been limited by focusing on comparisons involving Caenorhabditis elegans. We report a draft genome sequence of Trichinella spiralis, a food-borne zoonotic parasite, which is the most common cause of human trichinellosis. This parasitic nematode is an extant member of a clade that diverged early in the evolution of the phylum, enabling identification of archetypical genes and molecular signatures exclusive to nematodes. We sequenced the 64-...

  5. Structural genomics of microbial pathogens – An Indian programme

    OpenAIRE

    Vijayan, M

    2003-01-01

    Structural genomics, simply stated, seeks to determine the structures of all proteins coded by genomes of known sequence, using X-ray crystallography, NMR and bioinformatics. The known principles of protein architecture and the available information on the structural and functional classification of proteins, make this an approachable objective. The early excessive preoccupation with folds has now been substantially overcome. The emphasis is now on the determination of a collection of related...

  6. Phytozome Comparative Plant Genomics Portal

    Energy Technology Data Exchange (ETDEWEB)

    Goodstein, David; Batra, Sajeev; Carlson, Joseph; Hayes, Richard; Phillips, Jeremy; Shu, Shengqiang; Schmutz, Jeremy; Rokhsar, Daniel

    2014-09-09

    The Dept. of Energy Joint Genome Institute is a genomics user facility supporting DOE mission science in the areas of Bioenergy, Carbon Cycling, and Biogeochemistry. The Plant Program at the JGI applies genomic, analytical, computational and informatics platforms and methods to: 1. Understand and accelerate the improvement (domestication) of bioenergy crops 2. Characterize and moderate plant response to climate change 3. Use comparative genomics to identify constrained elements and infer gene function 4. Build high quality genomic resource platforms of JGI Plant Flagship genomes for functional and experimental work 5. Expand functional genomic resources for Plant Flagship genomes

  7. Genome size evolution: sizing mammalian genomes.

    Science.gov (United States)

    Redi, C A; Capanna, E

    2012-01-01

    The study of genome size (GS) and its variation is so fascinating to the scientific community because it constitutes the link between the present-day analytical and molecular studies of the genome and the old trunk of the holistic and synthetic view of the genome. The GS of several taxa vary over a broad range and do not correlate with the complexity of the organisms (the C-value paradox). However, the biology of transposable elements has let us reach a satisfactory view of the molecular mechanisms that give rise to GS variation and novelties, providing a less perplexing view of the significance of the GS (C-enigma). The knowledge of the composition and structure of a genome is a pre-requisite for trying to understand the evolution of the main genome signature: its size. The radiation of mammals provides an approximately 180-million-year test case for theories of how GS evolves. It has been found from data-mining GS databases that GS is a useful cyto-taxonomical instrument at the level of orders/superorders, providing genomic signatures characterizing Monotremata, Marsupialia, Afrotheria, Xenarthra, Laurasiatheria, and Euarchontoglires. A hypothetical ancestral mammalian-like GS of 2.9-3.7 pg has been suggested. This value appears compatible with the average values calculated for the high systematic levels of the extant Monotremata (∼2.97 pg) and Marsupialia (∼4.07 pg), suggesting invasion of mobile DNA elements concurrently with the separation of the older clades of Afrotheria (∼5.5 pg) and Xenarthra (∼4.5 pg) with larger GS, leaving the Euarchontoglires (∼3.4 pg) and Laurasiatheria (∼2.8 pg) genomes with fewer transposable elements. However, the paucity of GS data (546 mammalian species sized from 5,488 living species) for species, genera, and families calls for caution. Considering that mammalian species may be vanished even before they are known, GS data are sorely needed to phenotype the effects brought about by their variation and to validate any

  8. The Trichoplax Genome and the Nature of Placozoans

    Energy Technology Data Exchange (ETDEWEB)

    Srivastava, Mansi; Begovic, Emina; Chapman, Jarrod; Putnam, Nicholas H.; Hellsten, Uffe; Kawashima, Takeshi; Kuo, Alan; Mitros, Therese; Salamov, Asaf; Carpenter, Meredith L.; Signorovitch, Ana Y.; Moreno, Maria A.; Kamm, Kai; Grimwood, Jane; Schmutz, Jeremy; Shapiro, Harris; Grigoriev, Igor V.; Buss, Leo W.; Schierwater, Bernd; Dellaporta, Stephen L.; Rokhsar, Daniel S.

    2008-08-01

    Placozoans are arguably the simplest free-living animals, possibly evoking an early stage in metazoan evolution, yet their biology is poorly understood. Here we report the sequencing and analysis of the {approx}98 million base pair nuclear genome of the placozoan Trichoplax adhaerens. Whole genome phylogenetic analysis suggests that placozoans belong to a 'eumetazoan' clade that includes cnidarians and bilaterians, with sponges as the earliest diverging animals. The compact genome exhibits conserved gene content, gene structure, and synteny relative to the human and other complex eumetazoan genomes. Despite the apparent cellular and organismal simplicity of Trichoplax, its genome encodes a rich array of transcription factor and signaling pathway genes that are typically associated with diverse cell types and developmental processes in eumetazoans, motivating further searches for cryptic cellular complexity and/or as yet unobserved life history stages.

  9. Recent advances in genome-based polyketide discovery.

    Science.gov (United States)

    Helfrich, Eric J N; Reiter, Silke; Piel, Jörn

    2014-10-01

    Polyketides are extraordinarily diverse secondary metabolites of great pharmacological value and with interesting ecological functions. The post-genomics era has led to fundamental changes in natural product research by inverting the workflow of secondary metabolite discovery. As opposed to traditional bioactivity-guided screenings, genome mining is an in silico method to screen and analyze sequenced genomes for natural product biosynthetic gene clusters. Since genes for known compounds can be recognized at the early computational stage, genome mining presents an opportunity for dereplication. This review highlights recent progress in bioinformatics, pathway engineering and chemical analytics to extract the biosynthetic secrets hidden in the genome of both well-known natural product sources as well as previously neglected bacteria. Copyright © 2014 Elsevier Ltd. All rights reserved.

  10. Engineering the Caenorhabditis elegans genome with CRISPR/Cas9.

    Science.gov (United States)

    Waaijers, Selma; Boxem, Mike

    2014-08-01

    The development in early 2013 of CRISPR/Cas9-based genome engineering promises to dramatically advance our ability to alter the genomes of model systems at will. A single, easily produced targeting RNA guides the Cas9 endonuclease to a specific DNA sequence where it creates a double strand break. Imprecise repair of the break can yield mutations, while homologous recombination with a repair template can be used to effect specific changes to the genome. The tremendous potential of this system led several groups to independently adapt it for use in Caenorhabditiselegans, where it was successfully used to generate mutations and to create tailored genome changes through homologous recombination. Here, we review the different approaches taken to adapt CRISPR/Cas9 for C. elegans, and provide practical guidelines for CRISPR/Cas9-based genome engineering. Copyright © 2014 Elsevier Inc. All rights reserved.

  11. Discovery and genomic characterization of a novel bat sapovirus with unusual genomic features and phylogenetic position.

    Directory of Open Access Journals (Sweden)

    Herman Tse

    Full Text Available Sapovirus is a genus of caliciviruses that are known to cause enteric disease in humans and animals. There is considerable genetic diversity among the sapoviruses, which are classified into different genogroups based on phylogenetic analysis of the full-length capsid protein sequence. While several mammalian species, including humans, pigs, minks, and dogs, have been identified as animal hosts for sapoviruses, there were no reports of sapoviruses in bats in spite of their biological diversity. In this report, we present the results of a targeted surveillance study in different bat species in Hong Kong. Five of the 321 specimens from the bat species, Hipposideros pomona, were found to be positive for sapoviruses by RT-PCR. Complete or nearly full-length genome sequences of approximately 7.7 kb in length were obtained for three strains, which showed similar organization of the genome compared to other sapoviruses. Interestingly, they possess many genomic features atypical of most sapoviruses, like high G+C content and minimal CpG suppression. Phylogenetic analysis of the viral proteins suggested that the bat sapovirus descended from an ancestral sapovirus lineage and is most closely related to the porcine sapoviruses. Codon usage analysis showed that the bat sapovirus genome has greater codon usage bias relative to other sapovirus genomes. In summary, we report the discovery and genomic characterization of the first bat calicivirus, which appears to have evolved under different conditions after early divergence from other sapovirus lineages.

  12. The Banana Genome Hub

    Science.gov (United States)

    Droc, Gaëtan; Larivière, Delphine; Guignon, Valentin; Yahiaoui, Nabila; This, Dominique; Garsmeur, Olivier; Dereeper, Alexis; Hamelin, Chantal; Argout, Xavier; Dufayard, Jean-François; Lengelle, Juliette; Baurens, Franc-Christophe; Cenci, Alberto; Pitollat, Bertrand; D’Hont, Angélique; Ruiz, Manuel; Rouard, Mathieu; Bocs, Stéphanie

    2013-01-01

    Banana is one of the world’s favorite fruits and one of the most important crops for developing countries. The banana reference genome sequence (Musa acuminata) was recently released. Given the taxonomic position of Musa, the completed genomic sequence has particular comparative value to provide fresh insights about the evolution of the monocotyledons. The study of the banana genome has been enhanced by a number of tools and resources that allows harnessing its sequence. First, we set up essential tools such as a Community Annotation System, phylogenomics resources and metabolic pathways. Then, to support post-genomic efforts, we improved banana existing systems (e.g. web front end, query builder), we integrated available Musa data into generic systems (e.g. markers and genetic maps, synteny blocks), we have made interoperable with the banana hub, other existing systems containing Musa data (e.g. transcriptomics, rice reference genome, workflow manager) and finally, we generated new results from sequence analyses (e.g. SNP and polymorphism analysis). Several uses cases illustrate how the Banana Genome Hub can be used to study gene families. Overall, with this collaborative effort, we discuss the importance of the interoperability toward data integration between existing information systems. Database URL: http://banana-genome.cirad.fr/ PMID:23707967

  13. Early literacy

    DEFF Research Database (Denmark)

    Jensen, Anders Skriver

    2012-01-01

    This paper discusses findings from the Danish contribution to the EASE project, a European research project running from 2008 to 2010 on early literacy in relation to the transition from childcare to school. It explores a holistic, inclusive approach to early literacy that resists a narrow...... and schools. The paper also draws on Gee’s (2001, 2003, 2004, 2008) sociocultural approach to literacy, and Honneth’s (2003, 2006) concept of recognition. Emphasizing participation and recognition as key elements, it claims that stakeholders in early liter- acy must pay attention to how diverse early literacy...... opportunities empower children, especially when these opportunities are employed in a project-based learning environ- ment in which each child is able to contribute to the shared literacy events....

  14. Genomics of Rapid Incipient Speciation in Sympatric Threespine Stickleback.

    Directory of Open Access Journals (Sweden)

    David A Marques

    2016-02-01

    Full Text Available Ecological speciation is the process by which reproductively isolated populations emerge as a consequence of divergent natural or ecologically-mediated sexual selection. Most genomic studies of ecological speciation have investigated allopatric populations, making it difficult to infer reproductive isolation. The few studies on sympatric ecotypes have focused on advanced stages of the speciation process after thousands of generations of divergence. As a consequence, we still do not know what genomic signatures of the early onset of ecological speciation look like. Here, we examined genomic differentiation among migratory lake and resident stream ecotypes of threespine stickleback reproducing in sympatry in one stream, and in parapatry in another stream. Importantly, these ecotypes started diverging less than 150 years ago. We obtained 34,756 SNPs with restriction-site associated DNA sequencing and identified genomic islands of differentiation using a Hidden Markov Model approach. Consistent with incipient ecological speciation, we found significant genomic differentiation between ecotypes both in sympatry and parapatry. Of 19 islands of differentiation resisting gene flow in sympatry, all were also differentiated in parapatry and were thus likely driven by divergent selection among habitats. These islands clustered in quantitative trait loci controlling divergent traits among the ecotypes, many of them concentrated in one region with low to intermediate recombination. Our findings suggest that adaptive genomic differentiation at many genetic loci can arise and persist in sympatry at the very early stage of ecotype divergence, and that the genomic architecture of adaptation may facilitate this.

  15. Dynamics of genomic innovation in the unicellular ancestry of animals

    Science.gov (United States)

    Grau-Bové, Xavier; Torruella, Guifré; Donachie, Stuart; Suga, Hiroshi; Leonard, Guy; Richards, Thomas A; Ruiz-Trillo, Iñaki

    2017-01-01

    Which genomic innovations underpinned the origin of multicellular animals is still an open debate. Here, we investigate this question by reconstructing the genome architecture and gene family diversity of ancestral premetazoans, aiming to date the emergence of animal-like traits. Our comparative analysis involves genomes from animals and their closest unicellular relatives (the Holozoa), including four new genomes: three Ichthyosporea and Corallochytrium limacisporum. Here, we show that the earliest animals were shaped by dynamic changes in genome architecture before the emergence of multicellularity: an early burst of gene diversity in the ancestor of Holozoa, enriched in transcription factors and cell adhesion machinery, was followed by multiple and differently-timed episodes of synteny disruption, intron gain and genome expansions. Thus, the foundations of animal genome architecture were laid before the origin of complex multicellularity – highlighting the necessity of a unicellular perspective to understand early animal evolution. DOI: http://dx.doi.org/10.7554/eLife.26036.001 PMID:28726632

  16. Genome Sequence Analyses of Pseudomonas savastanoi pv. glycinea and Subtractive Hybridization-Based Comparative Genomics with Nine Pseudomonads

    Science.gov (United States)

    Qi, Mingsheng; Wang, Dongping; Bradley, Carl A.; Zhao, Youfu

    2011-01-01

    Bacterial blight, caused by Pseudomonas savastanoi pv. glycinea (Psg), is a common disease of soybean. In an effort to compare a current field isolate with one isolated in the early 1960s, the genomes of two Psg strains, race 4 and B076, were sequenced using 454 pyrosequencing. The genomes of both Psg strains share more than 4,900 highly conserved genes, indicating very low genetic diversity between Psg genomes. Though conserved, genome rearrangements and recombination events occur commonly within the two Psg genomes. When compared to each other, 437 and 163 specific genes were identified in B076 and race 4, respectively. Most specific genes are plasmid-borne, indicating that acquisition and maintenance of plasmids may represent a major mechanism to change the genetic composition of the genome and even acquire new virulence factors. Type three secretion gene clusters of Psg strains are near identical with that of P. savastanoi pv. phaseolicola (Pph) strain 1448A and they shared 20 common effector genes. Furthermore, the coronatine biosynthetic cluster is present on a large plasmid in strain B076, but not in race 4. In silico subtractive hybridization-based comparative genomic analyses with nine sequenced phytopathogenic pseudomonads identified dozens of specific islands (SIs), and revealed that the genomes of Psg strains are more similar to those belonging to the same genomospecies such as Pph 1448A than to other phytopathogenic pseudomonads. The number of highly conserved genes (core genome) among them decreased dramatically when more genomes were included in the subtraction, suggesting the diversification of pseudomonads, and further indicating the genome heterogeneity among pseudomonads. However, the number of specific genes did not change significantly, suggesting these genes are indeed specific in Psg genomes. These results reinforce the idea of a species complex of P. syringae and support the reclassification of P. syringae into different species. PMID

  17. Human Genome Program

    Energy Technology Data Exchange (ETDEWEB)

    1993-01-01

    The DOE Human Genome program has grown tremendously, as shown by the marked increase in the number of genome-funded projects since the last workshop held in 1991. The abstracts in this book describe the genome research of DOE-funded grantees and contractors and invited guests, and all projects are represented at the workshop by posters. The 3-day meeting includes plenary sessions on ethical, legal, and social issues pertaining to the availability of genetic data; sequencing techniques, informatics support; and chromosome and cDNA mapping and sequencing.

  18. Genomic signal processing

    CERN Document Server

    Shmulevich, Ilya

    2007-01-01

    Genomic signal processing (GSP) can be defined as the analysis, processing, and use of genomic signals to gain biological knowledge, and the translation of that knowledge into systems-based applications that can be used to diagnose and treat genetic diseases. Situated at the crossroads of engineering, biology, mathematics, statistics, and computer science, GSP requires the development of both nonlinear dynamical models that adequately represent genomic regulation, and diagnostic and therapeutic tools based on these models. This book facilitates these developments by providing rigorous mathema

  19. Human Genome Project

    Energy Technology Data Exchange (ETDEWEB)

    Block, S. [The MITRE Corporation, McLean, VA (US). JASON Program Office; Cornwall, J. [The MITRE Corporation, McLean, VA (US). JASON Program Office; Dally, W. [The MITRE Corporation, McLean, VA (US). JASON Program Office; Dyson, F. [The MITRE Corporation, McLean, VA (US). JASON Program Office; Fortson, N. [The MITRE Corporation, McLean, VA (US). JASON Program Office; Joyce, G. [The MITRE Corporation, McLean, VA (US). JASON Program Office; Kimble, H. J. [The MITRE Corporation, McLean, VA (US). JASON Program Office; Lewis, N. [The MITRE Corporation, McLean, VA (US). JASON Program Office; Max, C. [The MITRE Corporation, McLean, VA (US). JASON Program Office; Prince, T. [The MITRE Corporation, McLean, VA (US). JASON Program Office; Schwitters, R. [The MITRE Corporation, McLean, VA (US). JASON Program Office; Weinberger, P. [The MITRE Corporation, McLean, VA (US). JASON Program Office; Woodin, W. H. [The MITRE Corporation, McLean, VA (US). JASON Program Office

    1998-01-04

    The study reviews Department of Energy supported aspects of the United States Human Genome Project, the joint National Institutes of Health/Department of Energy program to characterize all human genetic material, to discover the set of human genes, and to render them accessible for further biological study. The study concentrates on issues of technology, quality assurance/control, and informatics relevant to current effort on the genome project and needs beyond it. Recommendations are presented on areas of the genome program that are of particular interest to and supported by the Department of Energy.

  20. Genomic taxonomy of vibrios

    DEFF Research Database (Denmark)

    Thompson, Cristiane C.; Vicente, Ana Carolina P.; Souza, Rangel C.

    2009-01-01

    BACKGROUND: Vibrio taxonomy has been based on a polyphasic approach. In this study, we retrieve useful taxonomic information (i.e. data that can be used to distinguish different taxonomic levels, such as species and genera) from 32 genome sequences of different vibrio species. We use a variety...... analytical and bioinformatics tools will enable the most accurate species identification through genomic computational analysis. This endeavour will culminate in the birth of the online genomic taxonomy whereby researchers and end-users of taxonomy will be able to identify their isolates through a web...

  1. Genomic taxonomy of vibrios

    Directory of Open Access Journals (Sweden)

    Iida Tetsuya

    2009-10-01

    Full Text Available Abstract Background Vibrio taxonomy has been based on a polyphasic approach. In this study, we retrieve useful taxonomic information (i.e. data that can be used to distinguish different taxonomic levels, such as species and genera from 32 genome sequences of different vibrio species. We use a variety of tools to explore the taxonomic relationship between the sequenced genomes, including Multilocus Sequence Analysis (MLSA, supertrees, Average Amino Acid Identity (AAI, genomic signatures, and Genome BLAST atlases. Our aim is to analyse the usefulness of these tools for species identification in vibrios. Results We have generated four new genome sequences of three Vibrio species, i.e., V. alginolyticus 40B, V. harveyi-like 1DA3, and V. mimicus strains VM573 and VM603, and present a broad analyses of these genomes along with other sequenced Vibrio species. The genome atlas and pangenome plots provide a tantalizing image of the genomic differences that occur between closely related sister species, e.g. V. cholerae and V. mimicus. The vibrio pangenome contains around 26504 genes. The V. cholerae core genome and pangenome consist of 1520 and 6923 genes, respectively. Pangenomes might allow different strains of V. cholerae to occupy different niches. MLSA and supertree analyses resulted in a similar phylogenetic picture, with a clear distinction of four groups (Vibrio core group, V. cholerae-V. mimicus, Aliivibrio spp., and Photobacterium spp.. A Vibrio species is defined as a group of strains that share > 95% DNA identity in MLSA and supertree analysis, > 96% AAI, ≤ 10 genome signature dissimilarity, and > 61% proteome identity. Strains of the same species and species of the same genus will form monophyletic groups on the basis of MLSA and supertree. Conclusion The combination of different analytical and bioinformatics tools will enable the most accurate species identification through genomic computational analysis. This endeavour will culminate in

  2. Genome-tools: a flexible package for genome sequence analysis.

    Science.gov (United States)

    Lee, William; Chen, Swaine L

    2002-12-01

    Genome-tools is a Perl module, a set of programs, and a user interface that facilitates access to genome sequence information. The package is flexible, extensible, and designed to be accessible and useful to both nonprogrammers and programmers. Any relatively well-annotated genome available with standard GenBank genome files may be used with genome-tools. A simple Web-based front end permits searching any available genome with an intuitive interface. Flexible design choices also make it simple to handle revised versions of genome annotation files as they change. In addition, programmers can develop cross-genomic tools and analyses with minimal additional overhead by combining genome-tools modules with newly written modules. Genome-tools runs on any computer platform for which Perl is available, including Unix, Microsoft Windows, and Mac OS. By simplifying the access to large amounts of genomic data, genome-tools may be especially useful for molecular biologists looking at newly sequenced genomes, for which few informatics tools are available. The genome-tools Web interface is accessible at http://genome-tools.sourceforge.net, and the source code is available at http://sourceforge.net/projects/genome-tools.

  3. Comparative primate genomics: emerging patterns of genome content and dynamics

    Science.gov (United States)

    Rogers, Jeffrey; Gibbs, Richard A.

    2014-01-01

    Preface Advances in genome sequencing technologies have created new opportunities for comparative primate genomics. Genome assemblies have been published for several primates, with analyses of several others underway. Whole genome assemblies for the great apes provide remarkable new information about the evolutionary origins of the human genome and the processes involved. Genomic data for macaques and other nonhuman primates provide valuable insight into genetic similarities and differences among species used as models for disease-related research. This review summarizes current knowledge regarding primate genome content and dynamics and offers a series of goals for the near future. PMID:24709753

  4. An Aboriginal Australian Genome Reveals Separate Human Dispersals into Asia

    DEFF Research Database (Denmark)

    Rasmussen, Morten; Guo, Xiaosen; Wang, Yong

    2011-01-01

    We present an Aboriginal Australian genomic sequence obtained from a 100-year-old lock of hair donated by an Aboriginal man from southern Western Australia in the early 20th century. We detect no evidence of European admixture and estimate contamination levels to be below 0.5%. We show that Abori......We present an Aboriginal Australian genomic sequence obtained from a 100-year-old lock of hair donated by an Aboriginal man from southern Western Australia in the early 20th century. We detect no evidence of European admixture and estimate contamination levels to be below 0.5%. We show...

  5. The rise of genomics.

    Science.gov (United States)

    Weissenbach, Jean

    2016-01-01

    A brief history of the development of genomics is provided. Complete sequencing of genomes of uni- and multicellular organisms is based on important progress in sequencing and bioinformatics. Evolution of these methods is ongoing and has triggered an explosion in data production and analysis. Initial analyses focused on the inventory of genes encoding proteins. Completeness and quality of gene prediction remains crucial. Genome analyses profoundly modified our views on evolution, biodiversity and contributed to the detection of new functions, yet to be fully elucidated, such as those fulfilled by non-coding RNAs. Genomics has become the basis for the study of biology and provides the molecular support for a bunch of large-scale studies, the omics. Copyright © 2016 Académie des sciences. Published by Elsevier SAS. All rights reserved.

  6. The Lotus japonicus genome

    DEFF Research Database (Denmark)

    This book provides insights into some of the key achievements made in the study of Lotus japonicus (birdsfoot trefoil), as well as a timely overview of topics that are pertinent for future developments in legume genomics. Key topics covered include endosymbiosis, development, hormone regulation......, carbon/nitrogen and secondary metabolism, as well as advances made in high-throughput genomic and genetic approaches. Research focusing on model plants has underpinned the recent growth in plant genomics and genetics and provided a basis for investigations of major crop species. In the legume family...... Fabaceae, groundbreaking genetic and genomic research has established a significant body of knowledge on Lotus japonicus, which was adopted as a model species more than 20 years ago. The diverse nature of legumes means that such research has a wide potential and agricultural impact, for example...

  7. The genomics of Colletotrichum

    Science.gov (United States)

    Colletotrichum are devastating fungal pathogens of major crop plants worldwide. This book chapter provides an overview of the genomics and transcriptomics of Colletotrichum. Included is an overview of the agricultural relevance of the genus Colletotrichum, the taxonomic position, information about ...

  8. Genomic definition of species

    Energy Technology Data Exchange (ETDEWEB)

    Crkvenjakov, R.; Drmanac, R.

    1991-07-01

    The subject of this paper is the definition of species based on the assumption that genome is the fundamental level for the origin and maintenance of biological diversity. For this view to be logically consistent it is necessary to assume the existence and operation of the new law which we call genome law. For this reason the genome law is included in the explanation of species phenomenon presented here even if its precise formulation and elaboration are left for the future. The intellectual underpinnings of this definition can be traced to Goldschmidt. We wish to explore some philosophical aspects of the definition of species in terms of the genome. The point of proposing the definition on these grounds is that any real advance in evolutionary theory has to be correct in both its philosophy and its science.

  9. Platyzoan mitochondrial genomes.

    Science.gov (United States)

    Wey-Fabrizius, Alexandra R; Podsiadlowski, Lars; Herlyn, Holger; Hankeln, Thomas

    2013-11-01

    Platyzoa is a putative lophotrochozoan (spiralian) subtaxon within the protostome clade of Metazoa, comprising a range of biologically diverse, mostly small worm-shaped animals. The monophyly of Platyzoa, the relationships between the putative subgroups Platyhelminthes, Gastrotricha and Gnathifera (the latter comprising at least Gnathostomulida, "Rotifera" and Acanthocephala) as well as some aspects of the internal phylogenies of these subgroups are highly debated. Here we review how complete mitochondrial (mt) genome data contribute to these debates. We highlight special features of the mt genomes and discuss problems in mtDNA phylogenies of the clade. Mitochondrial genome data seem to be insufficient to resolve the position of the platyzoan clade within the Spiralia but can help to address internal phylogenetic questions. The present review includes a tabular survey of all published platyzoan mt genomes. Copyright © 2013 Elsevier Inc. All rights reserved.

  10. Epidemiology & Genomics Research Program

    Science.gov (United States)

    The Epidemiology and Genomics Research Program, in the National Cancer Institute's Division of Cancer Control and Population Sciences, funds research in human populations to understand the determinants of cancer occurrence and outcomes.

  11. Genomic Feature Models

    DEFF Research Database (Denmark)

    Sørensen, Peter; Edwards, Stefan McKinnon; Rohde, Palle Duun

    Whole-genome sequences and multiple trait phenotypes from large numbers of individuals will soon be available in many populations. Well established statistical modeling approaches enable the genetic analyses of complex trait phenotypes while accounting for a variety of additive and non......-additive genetic mechanisms. These modeling approaches have proven to be highly useful to determine population genetic parameters as well as prediction of genetic risk or value. We present a series of statistical modelling approaches that use prior biological information for evaluating the collective action...... of sets of genetic variants. We have applied these approaches to whole genome sequences and a complex trait phenotype resistance to starvation collected on inbred lines from the Drosophila Genome Reference Panel population. We identified a number of genomic features classification schemes (e.g. prior QTL...

  12. Genome Engineering Workshop Slides

    OpenAIRE

    Macrae, Rhiannon

    2017-01-01

    These slides were presented at Genome Engineering 5.0, an annual workshop hosted by the Zhang Lab at the Broad Institute. They are designed to help new users get CRISPR-based tools working in their own hands.

  13. Structural genomics in endocrinology

    NARCIS (Netherlands)

    Smit, J. W.; Romijn, J. A.

    2001-01-01

    Traditionally, endocrine research evolved from the phenotypical characterisation of endocrine disorders to the identification of underlying molecular pathophysiology. This approach has been, and still is, extremely successful. The introduction of genomics and proteomics has resulted in a reversal of

  14. Lophotrochozoan mitochondrial genomes

    Energy Technology Data Exchange (ETDEWEB)

    Valles, Yvonne; Boore, Jeffrey L.

    2005-10-01

    Progress in both molecular techniques and phylogeneticmethods has challenged many of the interpretations of traditionaltaxonomy. One example is in the recognition of the animal superphylumLophotrochozoa (annelids, mollusks, echiurans, platyhelminthes,brachiopods, and other phyla), although the relationships within thisgroup and the inclusion of some phyla remain uncertain. While much ofthis progress in phylogenetic reconstruction has been based on comparingsingle gene sequences, we are beginning to see the potential of comparinglarge-scale features of genomes, such as the relative order of genes.Even though tremendous progress is being made on the sequencedetermination of whole nuclear genomes, the dataset of choice forgenome-level characters for many animals across a broad taxonomic rangeremains mitochondrial genomes. We review here what is known aboutmitochondrial genomes of the lophotrochozoans and discuss the promisethat this dataset will enable insight into theirrelationships.

  15. Mouse Genome Informatics (MGI)

    Data.gov (United States)

    U.S. Department of Health & Human Services — MGI is the international database resource for the laboratory mouse, providing integrated genetic, genomic, and biological data to facilitate the study of human...

  16. Mosaic structure of Mycobacterium bovis BCG genomes as a representation of phage sequences' mobility.

    Science.gov (United States)

    Voronina, Olga L; Kunda, Marina S; Aksenova, Ekaterina I; Semenov, Andrey N; Ryzhova, Natalia N; Lunin, Vladimir G; Gintsburg, Alexandr L

    2016-12-28

    The control of genome stability is relevant for the worldwide BCG vaccine preventing the acute forms of childhood tuberculosis. BCG sub-strains whole genome comparative analysis and revealing the triggers of sub-strains transition were the purpose of our investigation. Whole genome sequencing of three BCG Russia seed lots (1963, 1982, 2006 years) confirmed the stability of vaccine sub-strain genome. Comparative analysis of three Mycobacteruim bovis and nine M. bovis BCG genomes shown that differences between "early" and "late" sub-strains BCG genomes were associated with specific prophage profiles. Several prophages common to all BCG genomes included ORFs which were homologues to Caudovirales. Surprisingly very different prophage profiles characterized BCG Tice and BCG Montreal genomes. These prophages contained ORFs which were homologues to Herpesviruses. Phylogeny of strains cohort based on genome maps restriction analysis and whole genomes sequence data were in agreement with prophage profiles. Pair-wise alignment of unique BCG Tice and BCG Montreal prophage sequences and BCG Russia 368 genome demonstrated only similarity of fragmetary sequences that suggested the contribution of prophages in genome mosaic structure formation. Control of the extended sequences is important for genome with mosaic structure. Prophage search tools are effective instruments in this analysis.

  17. Exploiting the Genome

    Science.gov (United States)

    1998-09-11

    closing gaps left by Celera’s sequencing efforts and may be applicable to the sequencing of other eucaryotic genomes. 3. Transition to capillary gel...how those functions differ in different cell states, cell types, individuals, and organisms. Functional genomics is most mean- ingful when viewed...individuals who have expertise in both eucaryotic taxonomy and molecular aspects of gene expression (such individuals are rare). The goal would be to

  18. Decoding the human genome

    CERN Multimedia

    CERN. Geneva. Audiovisual Unit; Antonerakis, S E

    2002-01-01

    Decoding the Human genome is a very up-to-date topic, raising several questions besides purely scientific, in view of the two competing teams (public and private), the ethics of using the results, and the fact that the project went apparently faster and easier than expected. The lecture series will address the following chapters: Scientific basis and challenges. Ethical and social aspects of genomics.

  19. Genomic Prediction in Barley

    DEFF Research Database (Denmark)

    Edriss, Vahid; Cericola, Fabio; Jensen, Jens D

    2015-01-01

    to next generation. The main goal of this study was to see the potential of using genomic prediction in a commercial Barley breeding program. The data used in this study was from Nordic Seed company which is located in Denmark. Around 350 advanced lines were genotyped with 9K Barely chip from Illumina......) and 0.64 (height). The results showed the high potential of using the genomic prediction in barley breeding programs....

  20. Utilizing Existing Clinical and Population Biospecimen Resources for Discovery or Validation of Markers for Early Cancer Detection

    Science.gov (United States)

    Utilizing Existing Clinical and Population Biospecimen Resources for Discovery or Validation of Markers for Early Cancer Detection, a 2013 workshop sponsored by the Epidemiology and Genomics Research Program.

  1. Genomics and identity: the bioinformatisation of human life.

    Science.gov (United States)

    Zwart, Hub

    2009-06-01

    The genomics "revolution" is spreading. Originating in the molecular life sciences, it initially affected a number of biomedical research fields such as cancer genomics and clinical genetics. Now, however, a new "wave" of genomic bioinformation is transforming a widening array of disciplines, including those that address the social, historical and cultural dimensions of human life. Increasingly, bioinformation is affecting "human sciences" such as psychiatry, psychology, brain research, behavioural research ("behavioural genomics"), but also anthropology and archaeology ("bioarchaeology"). Thus, bioinformatics is having an impact on how we define and understand ourselves, how identities are formed and constituted, and, finally, on how we (on the basis of these redefined identities) assess and address some of the more concrete societal issues involved in genomics governance in various settings. This article explores how genomics and bioinformation, by influencing research agendas in the human sciences and the humanities, are affecting our self-image, our identity, the way we see ourselves. The impact of bioinformation on self-understanding will be assessed on three levels: (1) the collective level (the impact of comparative genomics on our understanding of human beings as a species), (2) the individual level (the impact of behavioural genomics on our understanding of ourselves as individuals), and (3) the genealogical level (the impact of population genomics on our understanding of human history, notably early human history). This threefold impact will be assessed from two seemingly incompatible philosophical perspectives, namely a "humanistic" perspective (represented in this article by Francis Fukuyama) and a "post-humanistic" one (represented by Peter Sloterdijk). On the basis of this analysis it will be concluded that, rather than focussing on human "enhancement" by adding or deleting genes, genome-oriented practices of the Self will focus on using genomics

  2. Human social genomics.

    Science.gov (United States)

    Cole, Steven W

    2014-08-01

    A growing literature in human social genomics has begun to analyze how everyday life circumstances influence human gene expression. Social-environmental conditions such as urbanity, low socioeconomic status, social isolation, social threat, and low or unstable social status have been found to associate with differential expression of hundreds of gene transcripts in leukocytes and diseased tissues such as metastatic cancers. In leukocytes, diverse types of social adversity evoke a common conserved transcriptional response to adversity (CTRA) characterized by increased expression of proinflammatory genes and decreased expression of genes involved in innate antiviral responses and antibody synthesis. Mechanistic analyses have mapped the neural "social signal transduction" pathways that stimulate CTRA gene expression in response to social threat and may contribute to social gradients in health. Research has also begun to analyze the functional genomics of optimal health and thriving. Two emerging opportunities now stand to revolutionize our understanding of the everyday life of the human genome: network genomics analyses examining how systems-level capabilities emerge from groups of individual socially sensitive genomes and near-real-time transcriptional biofeedback to empirically optimize individual well-being in the context of the unique genetic, geographic, historical, developmental, and social contexts that jointly shape the transcriptional realization of our innate human genomic potential for thriving.

  3. Human social genomics.

    Directory of Open Access Journals (Sweden)

    Steven W Cole

    2014-08-01

    Full Text Available A growing literature in human social genomics has begun to analyze how everyday life circumstances influence human gene expression. Social-environmental conditions such as urbanity, low socioeconomic status, social isolation, social threat, and low or unstable social status have been found to associate with differential expression of hundreds of gene transcripts in leukocytes and diseased tissues such as metastatic cancers. In leukocytes, diverse types of social adversity evoke a common conserved transcriptional response to adversity (CTRA characterized by increased expression of proinflammatory genes and decreased expression of genes involved in innate antiviral responses and antibody synthesis. Mechanistic analyses have mapped the neural "social signal transduction" pathways that stimulate CTRA gene expression in response to social threat and may contribute to social gradients in health. Research has also begun to analyze the functional genomics of optimal health and thriving. Two emerging opportunities now stand to revolutionize our understanding of the everyday life of the human genome: network genomics analyses examining how systems-level capabilities emerge from groups of individual socially sensitive genomes and near-real-time transcriptional biofeedback to empirically optimize individual well-being in the context of the unique genetic, geographic, historical, developmental, and social contexts that jointly shape the transcriptional realization of our innate human genomic potential for thriving.

  4. How repetitive are genomes?

    Directory of Open Access Journals (Sweden)

    Wiehe Thomas

    2006-12-01

    Full Text Available Abstract Background Genome sequences vary strongly in their repetitiveness and the causes for this are still debated. Here we propose a novel measure of genome repetitiveness, the index of repetitiveness, Ir, which can be computed in time proportional to the length of the sequences analyzed. We apply it to 336 genomes from all three domains of life. Results The expected value of Ir is zero for random sequences of any G/C content and greater than zero for sequences with excess repeats. We find that the Ir of archaea is significantly smaller than that of eubacteria, which in turn is smaller than that of eukaryotes. Mouse chromosomes have a significantly higher Ir than human chromosomes and within each genome the Y chromosome is most repetitive. A sliding window analysis reveals that the human HOXA cluster and two surrounding genes are characterized by local minima in Ir. A program for calculating the Ir is freely available at http://adenine.biz.fh-weihenstephan.de/ir/. Conclusion The general measure of DNA repetitiveness proposed in this paper can be efficiently computed on a genomic scale. This reveals a broad spectrum of repetitiveness among diverse genomes which agrees qualitatively with previous studies of repeat content. A sliding window analysis helps to analyze the intragenomic distribution of repeats.

  5. AliquotG: an improved heuristic algorithm for genome aliquoting.

    Directory of Open Access Journals (Sweden)

    Zelin Chen

    Full Text Available An extant genome can be the descendant of an ancient polyploid genome. The genome aliquoting problem is to reconstruct the latter from the former such that the rearrangement distance (i.e., the number of genome rearrangements necessary to transform the former into the latter is minimal. Though several heuristic algorithms have been published, here, we sought improved algorithms for the problem with respect to the double cut and join (DCJ distance. The new algorithm makes use of partial and contracted partial graphs, and locally minimizes the distance. Our test results with simulation data indicate that it reliably recovers gene order of the ancestral polyploid genome even when the ancestor is ancient. We also compared the performance of our method with an earlier method using simulation data sets and found that our algorithm has higher accuracy. It is known that vertebrates had undergone two rounds of whole-genome duplication (2R-WGD during early vertebrate evolution. We used the new algorithm to calculate the DCJ distance between three modern vertebrate genomes and their 2R-WGD ancestor and found that the rearrangement rate might have slowed down significantly since the 2R-WGD. The software AliquotG implementing the algorithm is available as an open-source package from our website (http://mosas.sysu.edu.cn/genome/download_softwares.php.

  6. The mitochondrial genome of an aquatic plant, Spirodela polyrhiza.

    Directory of Open Access Journals (Sweden)

    Wenqin Wang

    Full Text Available BACKGROUND: Spirodela polyrhiza is a species of the order Alismatales, which represent the basal lineage of monocots with more ancestral features than the Poales. Its complete sequence of the mitochondrial (mt genome could provide clues for the understanding of the evolution of mt genomes in plant. METHODS: Spirodela polyrhiza mt genome was sequenced from total genomic DNA without physical separation of chloroplast and nuclear DNA using the SOLiD platform. Using a genome copy number sensitive assembly algorithm, the mt genome was successfully assembled. Gap closure and accuracy was determined with PCR products sequenced with the dideoxy method. CONCLUSIONS: This is the most compact monocot mitochondrial genome with 228,493 bp. A total of 57 genes encode 35 known proteins, 3 ribosomal RNAs, and 19 tRNAs that recognize 15 amino acids. There are about 600 RNA editing sites predicted and three lineage specific protein-coding-gene losses. The mitochondrial genes, pseudogenes, and other hypothetical genes (ORFs cover 71,783 bp (31.0% of the genome. Imported plastid DNA accounts for an additional 9,295 bp (4.1% of the mitochondrial DNA. Absence of transposable element sequences suggests that very few nuclear sequences have migrated into Spirodela mtDNA. Phylogenetic analysis of conserved protein-coding genes suggests that Spirodela shares the common ancestor with other monocots, but there is no obvious synteny between Spirodela and rice mtDNAs. After eliminating genes, introns, ORFs, and plastid-derived DNA, nearly four-fifths of the Spirodela mitochondrial genome is of unknown origin and function. Although it contains a similar chloroplast DNA content and range of RNA editing as other monocots, it is void of nuclear insertions, active gene loss, and comprises large regions of sequences of unknown origin in non-coding regions. Moreover, the lack of synteny with known mitochondrial genomic sequences shed new light on the early evolution of monocot

  7. The mitochondrial genome of an aquatic plant, Spirodela polyrhiza.

    Science.gov (United States)

    Wang, Wenqin; Wu, Yongrui; Messing, Joachim

    2012-01-01

    Spirodela polyrhiza is a species of the order Alismatales, which represent the basal lineage of monocots with more ancestral features than the Poales. Its complete sequence of the mitochondrial (mt) genome could provide clues for the understanding of the evolution of mt genomes in plant. Spirodela polyrhiza mt genome was sequenced from total genomic DNA without physical separation of chloroplast and nuclear DNA using the SOLiD platform. Using a genome copy number sensitive assembly algorithm, the mt genome was successfully assembled. Gap closure and accuracy was determined with PCR products sequenced with the dideoxy method. This is the most compact monocot mitochondrial genome with 228,493 bp. A total of 57 genes encode 35 known proteins, 3 ribosomal RNAs, and 19 tRNAs that recognize 15 amino acids. There are about 600 RNA editing sites predicted and three lineage specific protein-coding-gene losses. The mitochondrial genes, pseudogenes, and other hypothetical genes (ORFs) cover 71,783 bp (31.0%) of the genome. Imported plastid DNA accounts for an additional 9,295 bp (4.1%) of the mitochondrial DNA. Absence of transposable element sequences suggests that very few nuclear sequences have migrated into Spirodela mtDNA. Phylogenetic analysis of conserved protein-coding genes suggests that Spirodela shares the common ancestor with other monocots, but there is no obvious synteny between Spirodela and rice mtDNAs. After eliminating genes, introns, ORFs, and plastid-derived DNA, nearly four-fifths of the Spirodela mitochondrial genome is of unknown origin and function. Although it contains a similar chloroplast DNA content and range of RNA editing as other monocots, it is void of nuclear insertions, active gene loss, and comprises large regions of sequences of unknown origin in non-coding regions. Moreover, the lack of synteny with known mitochondrial genomic sequences shed new light on the early evolution of monocot mitochondrial genomes.

  8. A Review on Genomics APIs

    OpenAIRE

    Swaminathan, Rajeswari; Huang, Yungui; Moosavinasab, Soheil; Buckley, Ronald; Bartlett, Christopher W.; Lin, Simon M.

    2015-01-01

    The constant improvement and falling prices of whole human genome Next Generation Sequencing (NGS) has resulted in rapid adoption of genomic information at both clinics and research institutions. Considered together, the complexity of genomics data, due to its large volume and diversity along with the need for genomic data sharing, has resulted in the creation of Application Programming Interface (API) for secure, modular, interoperable access to genomic data from different applications, plat...

  9. Genomic Prediction from Whole Genome Sequence in Livestock: The 1000 Bull Genomes Project

    DEFF Research Database (Denmark)

    Hayes, Benjamin J; MacLeod, Iona M; Daetwyler, Hans D

    Advantages of using whole genome sequence data to predict genomic estimated breeding values (GEBV) include better persistence of accuracy of GEBV across generations and more accurate GEBV across breeds. The 1000 Bull Genomes Project provides a database of whole genome sequenced key ancestor bulls...

  10. Paleogenomic data suggest mammal-like genome size in the ancestral amniote and derived large genome size in amphibians.

    Science.gov (United States)

    Organ, C L; Canoville, A; Reisz, R R; Laurin, M

    2011-02-01

    An unsolved question in evolutionary genomics is whether amniote genomes have been expanding or contracting since the common ancestor of this diverse group. Here, we report on the polarity of amniote genome size evolution using genome size estimates for 14 extinct tetrapod genera from the Paleozoic and early Mesozoic Eras using osteocyte lacunae size as a correlate. We find substantial support for a phylogenetically controlled regression model relating genome size to osteocyte lacunae size (P of slopes <0.01, r²=0.65, phylogenetic signal λ=0.83). Genome size appears to have been homogeneous across Paleozoic crown-tetrapod lineages (average haploid genome size 2.9-3.7 pg) with values similar to those of extant mammals. The differentiation in genome size and underlying architecture among extant tetrapod lineages likely evolved in the Mesozoic and Cenozoic Eras, with expansion in amphibians, contractions along the diapsid lineage, and no directional change within the synapsid lineage leading to mammals. © 2010 The Authors. Journal of Evolutionary Biology © 2010 European Society For Evolutionary Biology.

  11. A Review on Genomics APIs.

    Science.gov (United States)

    Swaminathan, Rajeswari; Huang, Yungui; Moosavinasab, Soheil; Buckley, Ronald; Bartlett, Christopher W; Lin, Simon M

    2016-01-01

    The constant improvement and falling prices of whole human genome Next Generation Sequencing (NGS) has resulted in rapid adoption of genomic information at both clinics and research institutions. Considered together, the complexity of genomics data, due to its large volume and diversity along with the need for genomic data sharing, has resulted in the creation of Application Programming Interface (API) for secure, modular, interoperable access to genomic data from different applications, platforms, and even organizations. The Genomics APIs are a set of special protocols that assist software developers in dealing with multiple genomic data sources for building seamless, interoperable applications leading to the advancement of both genomic and clinical research. These APIs help define a standard for retrieval of genomic data from multiple sources as well as to better package genomic information for integration with Electronic Health Records. This review covers three currently available Genomics APIs: a) Google Genomics, b) SMART Genomics, and c) 23andMe. The functionalities, reference implementations (if available) and authentication protocols of each API are reviewed. A comparative analysis of the different features across the three APIs is provided in the Discussion section. Though Genomics APIs are still under active development and have yet to reach widespread adoption, they hold the promise to make building of complicated genomics applications easier with downstream constructive effects on healthcare.

  12. A Review on Genomics APIs

    Directory of Open Access Journals (Sweden)

    Rajeswari Swaminathan

    2016-01-01

    Full Text Available The constant improvement and falling prices of whole human genome Next Generation Sequencing (NGS has resulted in rapid adoption of genomic information at both clinics and research institutions. Considered together, the complexity of genomics data, due to its large volume and diversity along with the need for genomic data sharing, has resulted in the creation of Application Programming Interface (API for secure, modular, interoperable access to genomic data from different applications, platforms, and even organizations. The Genomics APIs are a set of special protocols that assist software developers in dealing with multiple genomic data sources for building seamless, interoperable applications leading to the advancement of both genomic and clinical research. These APIs help define a standard for retrieval of genomic data from multiple sources as well as to better package genomic information for integration with Electronic Health Records. This review covers three currently available Genomics APIs: a Google Genomics, b SMART Genomics, and c 23andMe. The functionalities, reference implementations (if available and authentication protocols of each API are reviewed. A comparative analysis of the different features across the three APIs is provided in the Discussion section. Though Genomics APIs are still under active development and have yet to reach widespread adoption, they hold the promise to make building of complicated genomics applications easier with downstream constructive effects on healthcare.

  13. WheatGenome.info: A Resource for Wheat Genomics Resource.

    Science.gov (United States)

    Lai, Kaitao

    2016-01-01

    An integrated database with a variety of Web-based systems named WheatGenome.info hosting wheat genome and genomic data has been developed to support wheat research and crop improvement. The resource includes multiple Web-based applications, which are implemented as a variety of Web-based systems. These include a GBrowse2-based wheat genome viewer with BLAST search portal, TAGdb for searching wheat second generation genome sequence data, wheat autoSNPdb, links to wheat genetic maps using CMap and CMap3D, and a wheat genome Wiki to allow interaction between diverse wheat genome sequencing activities. This portal provides links to a variety of wheat genome resources hosted at other research organizations. This integrated database aims to accelerate wheat genome research and is freely accessible via the web interface at http://www.wheatgenome.info/ .

  14. Cloning and mutagenesis of a herpesvirus genome as an infectious bacterial artificial chromosome

    OpenAIRE

    Messerle, Martin; Crnkovic, Irena; Hammerschmidt, Wolfgang; Ziegler, Heike; Koszinowski, Ulrich H

    1997-01-01

    A strategy for cloning and mutagenesis of an infectious herpesvirus genome is described. The mouse cytomegalovirus genome was cloned and maintained as a 230 kb bacterial artificial chromosome (BAC) in E. coli. Transfection of the BAC plasmid into eukaryotic cells led to a productive virus infection. The feasibility to introduce targeted mutations into the BAC cloned virus genome was shown by mutation of the immediate-early 1 gene and generation of a mutant virus. Thus, the complete constructi...

  15. Ultrafast Comparison of Personal Genomes via Precomputed Genome Fingerprints

    Directory of Open Access Journals (Sweden)

    Gustavo Glusman

    2017-09-01

    Full Text Available We present an ultrafast method for comparing personal genomes. We transform the standard genome representation (lists of variants relative to a reference into “genome fingerprints” via locality sensitive hashing. The resulting genome fingerprints can be meaningfully compared even when the input data were obtained using different sequencing technologies, processed using different pipelines, represented in different data formats and relative to different reference versions. Furthermore, genome fingerprints are robust to up to 30% missing data. Because of their reduced size, computation on the genome fingerprints is fast and requires little memory. For example, we could compute all-against-all pairwise comparisons among the 2504 genomes in the 1000 Genomes data set in 67 s at high quality (21 μs per comparison, on a single processor, and achieved a lower quality approximation in just 11 s. Efficient computation enables scaling up a variety of important genome analyses, including quantifying relatedness, recognizing duplicative sequenced genomes in a set, population reconstruction, and many others. The original genome representation cannot be reconstructed from its fingerprint, effectively decoupling genome comparison from genome interpretation; the method thus has significant implications for privacy-preserving genome analytics.

  16. Ultrafast Comparison of Personal Genomes via Precomputed Genome Fingerprints.

    Science.gov (United States)

    Glusman, Gustavo; Mauldin, Denise E; Hood, Leroy E; Robinson, Max

    2017-01-01

    We present an ultrafast method for comparing personal genomes. We transform the standard genome representation (lists of variants relative to a reference) into "genome fingerprints" via locality sensitive hashing. The resulting genome fingerprints can be meaningfully compared even when the input data were obtained using different sequencing technologies, processed using different pipelines, represented in different data formats and relative to different reference versions. Furthermore, genome fingerprints are robust to up to 30% missing data. Because of their reduced size, computation on the genome fingerprints is fast and requires little memory. For example, we could compute all-against-all pairwise comparisons among the 2504 genomes in the 1000 Genomes data set in 67 s at high quality (21 μs per comparison, on a single processor), and achieved a lower quality approximation in just 11 s. Efficient computation enables scaling up a variety of important genome analyses, including quantifying relatedness, recognizing duplicative sequenced genomes in a set, population reconstruction, and many others. The original genome representation cannot be reconstructed from its fingerprint, effectively decoupling genome comparison from genome interpretation; the method thus has significant implications for privacy-preserving genome analytics.

  17. Ultrafast Comparison of Personal Genomes via Precomputed Genome Fingerprints

    Science.gov (United States)

    Glusman, Gustavo; Mauldin, Denise E.; Hood, Leroy E.; Robinson, Max

    2017-01-01

    We present an ultrafast method for comparing personal genomes. We transform the standard genome representation (lists of variants relative to a reference) into “genome fingerprints” via locality sensitive hashing. The resulting genome fingerprints can be meaningfully compared even when the input data were obtained using different sequencing technologies, processed using different pipelines, represented in different data formats and relative to different reference versions. Furthermore, genome fingerprints are robust to up to 30% missing data. Because of their reduced size, computation on the genome fingerprints is fast and requires little memory. For example, we could compute all-against-all pairwise comparisons among the 2504 genomes in the 1000 Genomes data set in 67 s at high quality (21 μs per comparison, on a single processor), and achieved a lower quality approximation in just 11 s. Efficient computation enables scaling up a variety of important genome analyses, including quantifying relatedness, recognizing duplicative sequenced genomes in a set, population reconstruction, and many others. The original genome representation cannot be reconstructed from its fingerprint, effectively decoupling genome comparison from genome interpretation; the method thus has significant implications for privacy-preserving genome analytics. PMID:29018478

  18. Bos taurus genome assembly.

    Science.gov (United States)

    Liu, Yue; Qin, Xiang; Song, Xing-Zhi Henry; Jiang, Huaiyang; Shen, Yufeng; Durbin, K James; Lien, Sigbjørn; Kent, Matthew Peter; Sodeland, Marte; Ren, Yanru; Zhang, Lan; Sodergren, Erica; Havlak, Paul; Worley, Kim C; Weinstock, George M; Gibbs, Richard A

    2009-04-24

    We present here the assembly of the bovine genome. The assembly method combines the BAC plus WGS local assembly used for the rat and sea urchin with the whole genome shotgun (WGS) only assembly used for many other animal genomes including the rhesus macaque. The assembly process consisted of multiple phases: First, BACs were assembled with BAC generated sequence, then subsequently in combination with the individual overlapping WGS reads. Different assembly parameters were tested to separately optimize the performance for each BAC assembly of the BAC and WGS reads. In parallel, a second assembly was produced using only the WGS sequences and a global whole genome assembly method. The two assemblies were combined to create a more complete genome representation that retained the high quality BAC-based local assembly information, but with gaps between BACs filled in with the WGS-only assembly. Finally, the entire assembly was placed on chromosomes using the available map information.Over 90% of the assembly is now placed on chromosomes. The estimated genome size is 2.87 Gb which represents a high degree of completeness, with 95% of the available EST sequences found in assembled contigs. The quality of the assembly was evaluated by comparison to 73 finished BACs, where the draft assembly covers between 92.5 and 100% (average 98.5%) of the finished BACs. The assembly contigs and scaffolds align linearly to the finished BACs, suggesting that misassemblies are rare. Genotyping and genetic mapping of 17,482 SNPs revealed that more than 99.2% were correctly positioned within the Btau_4.0 assembly, confirming the accuracy of the assembly. The biological analysis of this bovine genome assembly is being published, and the sequence data is available to support future bovine research.

  19. Bos taurus genome assembly

    Directory of Open Access Journals (Sweden)

    Sodergren Erica

    2009-04-01

    Full Text Available Abstract Background We present here the assembly of the bovine genome. The assembly method combines the BAC plus WGS local assembly used for the rat and sea urchin with the whole genome shotgun (WGS only assembly used for many other animal genomes including the rhesus macaque. Results The assembly process consisted of multiple phases: First, BACs were assembled with BAC generated sequence, then subsequently in combination with the individual overlapping WGS reads. Different assembly parameters were tested to separately optimize the performance for each BAC assembly of the BAC and WGS reads. In parallel, a second assembly was produced using only the WGS sequences and a global whole genome assembly method. The two assemblies were combined to create a more complete genome representation that retained the high quality BAC-based local assembly information, but with gaps between BACs filled in with the WGS-only assembly. Finally, the entire assembly was placed on chromosomes using the available map information. Over 90% of the assembly is now placed on chromosomes. The estimated genome size is 2.87 Gb which represents a high degree of completeness, with 95% of the available EST sequences found in assembled contigs. The quality of the assembly was evaluated by comparison to 73 finished BACs, where the draft assembly covers between 92.5 and 100% (average 98.5% of the finished BACs. The assembly contigs and scaffolds align linearly to the finished BACs, suggesting that misassemblies are rare. Genotyping and genetic mapping of 17,482 SNPs revealed that more than 99.2% were correctly positioned within the Btau_4.0 assembly, confirming the accuracy of the assembly. Conclusion The biological analysis of this bovine genome assembly is being published, and the sequence data is available to support future bovine research.

  20. A genome-wide approach to children's aggressive behavior: The EAGLE consortium

    NARCIS (Netherlands)

    Pappa, I.; St Pourcain, B.; Benke, K.S.; Cavadino, A.; Hakulinen, C.; Nivard, M.G.; Nolte, I.M.; Tiesler, C.M.T.; Bakermans-Kranenburg, M.J.; Davies, G.E.; Evans, D.M.; Geoffroy, M.C.; Grallert, H.; Blokhuis, M.M.; Hudziak, J.J.; Kemp, J.P.; Keltikangas-Järvinen, L.; McMahon, G.; Mileva-Seitz, V.R.; Motazedi, E.; Power, C.; Raitakari, O.T.; Ring, S.M.; Rivadeneira, F.; Rodriguez, A.; Scheet, P.; Seppälä, I.; Snieder, H.; Standl, M.; Thiering, E.; Timpson, N.J.; Veenstra, R.; Velders, F.P.; Whitehouse, A.J.O.; Davey Smith, G.; Heinrich, J.; Hypponen, E.; Lehtimäki, T.; Middeldorp, C.M.; Oldehinkel, A.J.; Pennell, C.E.; Boomsma, D.I.; Tiemeier, H.

    2016-01-01

    Individual differences in aggressive behavior emerge in early childhood and predict persisting behavioral problems and disorders. Studies of antisocial and severe aggression in adulthood indicate substantial underlying biology. However, little attention has been given to genome-wide approaches of

  1. Genomes to Proteomes

    Energy Technology Data Exchange (ETDEWEB)

    Panisko, Ellen A. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Grigoriev, Igor [USDOE Joint Genome Inst., Walnut Creek, CA (United States); Daly, Don S. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Webb-Robertson, Bobbie-Jo [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Baker, Scott E. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2009-03-01

    Biologists are awash with genomic sequence data. In large part, this is due to the rapid acceleration in the generation of DNA sequence that occurred as public and private research institutes raced to sequence the human genome. In parallel with the large human genome effort, mostly smaller genomes of other important model organisms were sequenced. Projects following on these initial efforts have made use of technological advances and the DNA sequencing infrastructure that was built for the human and other organism genome projects. As a result, the genome sequences of many organisms are available in high quality draft form. While in many ways this is good news, there are limitations to the biological insights that can be gleaned from DNA sequences alone; genome sequences offer only a bird's eye view of the biological processes endemic to an organism or community. Fortunately, the genome sequences now being produced at such a high rate can serve as the foundation for other global experimental platforms such as proteomics. Proteomic methods offer a snapshot of the proteins present at a point in time for a given biological sample. Current global proteomics methods combine enzymatic digestion, separations, mass spectrometry and database searching for peptide identification. One key aspect of proteomics is the prediction of peptide sequences from mass spectrometry data. Global proteomic analysis uses computational matching of experimental mass spectra with predicted spectra based on databases of gene models that are often generated computationally. Thus, the quality of gene models predicted from a genome sequence is crucial in the generation of high quality peptide identifications. Once peptides are identified they can be assigned to their parent protein. Proteins identified as expressed in a given experiment are most useful when compared to other expressed proteins in a larger biological context or biochemical pathway. In this chapter we will discuss the automatic

  2. Genomic comparison of closely related Giant Viruses supports an accordion-like model of evolution.

    Directory of Open Access Journals (Sweden)

    Jonathan eFilée

    2015-06-01

    Full Text Available Genome gigantism occurs so far in Phycodnaviridae and Mimiviridae (order Megavirales. Origin and evolution of these Giant Viruses (GVs remain open questions. Interestingly, availability of a collection of closely related GV genomes enabling genomic comparisons offer the opportunity to better understand the different evolutionary forces acting on these genomes. Whole genome alignment for 5 groups of viruses belonging to the Mimiviridae and Phycodnaviridae families show that there is no trend of genome expansion or general tendency of genome contraction. Instead, GV genomes accumulated genomic mutations over the time with gene gains compensating the different losses. In addition, each lineage displays specific patterns of genome evolution. Mimiviridae (megaviruses and mimiviruses and Chlorella Phycodnaviruses evolved mainly by duplications and losses of genes belonging to large paralogous families (including movements of diverse mobiles genetic elements, whereas Micromonas and Ostreococcus Phycodnaviruses derive most of their genetic novelties thought lateral gene transfers. Taken together, these data support an accordion-like model of evolution in which GV genomes have undergone successive steps of gene gain and gene loss, accrediting the hypothesis that genome gigantism appears early, before the diversification of the different GV lineages.

  3. Will Early Retirement Retire Early?

    Science.gov (United States)

    Walker, James W.

    1976-01-01

    Management should recognize and consider both the advantages of early retirement programs and the countervailing forces of financial conditions, individual attitudes, and age discrimination laws. (Available from American Management Associations, Subscription Services, Box 319, Saranac Lake, NY 12983; $15.00 annually) (Author/MLF)

  4. Genomics of Preterm Birth

    Science.gov (United States)

    Swaggart, Kayleigh A.; Pavlicev, Mihaela; Muglia, Louis J.

    2015-01-01

    The molecular mechanisms controlling human birth timing at term, or resulting in preterm birth, have been the focus of considerable investigation, but limited insights have been gained over the past 50 years. In part, these processes have remained elusive because of divergence in reproductive strategies and physiology shown by model organisms, making extrapolation to humans uncertain. Here, we summarize the evolution of progesterone signaling and variation in pregnancy maintenance and termination. We use this comparative physiology to support the hypothesis that selective pressure on genomic loci involved in the timing of parturition have shaped human birth timing, and that these loci can be identified with comparative genomic strategies. Previous limitations imposed by divergence of mechanisms provide an important new opportunity to elucidate fundamental pathways of parturition control through increasing availability of sequenced genomes and associated reproductive physiology characteristics across diverse organisms. PMID:25646385

  5. Genomics of Salmonella Species

    Science.gov (United States)

    Canals, Rocio; McClelland, Michael; Santiviago, Carlos A.; Andrews-Polymenis, Helene

    Progress in the study of Salmonella survival, colonization, and virulence has increased rapidly with the advent of complete genome sequencing and higher capacity assays for transcriptomic and proteomic analysis. Although many of these techniques have yet to be used to directly assay Salmonella growth on foods, these assays are currently in use to determine Salmonella factors necessary for growth in animal models including livestock animals and in in vitro conditions that mimic many different environments. As sequencing of the Salmonella genome and microarray analysis have revolutionized genomics and transcriptomics of salmonellae over the last decade, so are new high-throughput sequencing technologies currently accelerating the pace of our studies and allowing us to approach complex problems that were not previously experimentally tractable.

  6. Yeast genome sequencing:

    DEFF Research Database (Denmark)

    Piskur, Jure; Langkjær, Rikke Breinhold

    2004-01-01

    they are short and degenerate and occupy different positions. Comparative genomics helps to understand the origin of yeasts and points out crucial molecular events in yeast evolutionary history, such as whole-genome duplication and horizontal gene transfer(s). In addition, the accumulating sequence data provide...... that the minimum number of genes from each species that need to be compared to produce a reliable phylogeny is about 20. Yeast has also become an attractive model to study speciation in eukaryotes, especially to understand molecular mechanisms behind the establishment of reproductive isolation. Comparison...... of closely related species helps in gene annotation and to answer how many genes there really are within the genomes. Analysis of non-coding regions among closely related species has provided an example of how to determine novel gene regulatory sequences, which were previously difficult to analyse because...

  7. Genomic dairy cattle breeding

    DEFF Research Database (Denmark)

    Mark, Thomas; Sandøe, Peter

    2010-01-01

    The aim of this paper is to discuss the potential consequences of modern dairy cattle breeding for the welfare of dairy cows. The paper focuses on so-called genomic selection, which deploys thousands of genetic markers to estimate breeding values. The discussion should help to structure...... the thoughts of breeders and other stakeholders on how to best make use of genomic breeding in the future. Intensive breeding has played a major role in securing dramatic increases in milk yield since the Second World War. Until recently, the main focus in dairy cattle breeding was on production traits......, unfavourable genetic trends for metabolic, reproductive, claw and leg diseases indicate that these attempts have been insufficient. Today, novel genome-wide sequencing techniques are revolutionising dairy cattle breeding; these enable genetic changes to occur at least twice as rapidly as previously. While...

  8. Big genomes facilitate the comparative identification of regulatory elements.

    Directory of Open Access Journals (Sweden)

    Brant K Peterson

    Full Text Available The identification of regulatory sequences in animal genomes remains a significant challenge. Comparative genomic methods that use patterns of evolutionary conservation to identify non-coding sequences with regulatory function have yielded many new vertebrate enhancers. However, these methods have not contributed significantly to the identification of regulatory sequences in sequenced invertebrate taxa. We demonstrate here that this differential success, which is often attributed to fundamental differences in the nature of vertebrate and invertebrate regulatory sequences, is instead primarily a product of the relatively small size of sequenced invertebrate genomes. We sequenced and compared loci involved in early embryonic patterning from four species of true fruit flies (family Tephritidae that have genomes four to six times larger than those of Drosophila melanogaster. Unlike in Drosophila, where virtually all non-coding DNA is highly conserved, blocks of conserved non-coding sequence in tephritids are flanked by large stretches of poorly conserved sequence, similar to what is observed in vertebrate genomes. We tested the activities of nine conserved non-coding sequences flanking the even-skipped gene of the teprhitid Ceratis capitata in transgenic D. melanogaster embryos, six of which drove patterns that recapitulate those of known D. melanogaster enhancers. In contrast, none of the three non-conserved tephritid non-coding sequences that we tested drove expression in D. melanogaster embryos. Based on the landscape of non-coding conservation in tephritids, and our initial success in using conservation in tephritids to identify D. melanogaster regulatory sequences, we suggest that comparison of tephritid genomes may provide a systematic means to annotate the non-coding portion of the D. melanogaster genome. We also propose that large genomes be given more consideration in the selection of species for comparative genomics projects, to provide

  9. Early discontinuation

    DEFF Research Database (Denmark)

    Hansen, Dorte Gilså; Felde, Lina; Gichangi, Anthony

    2007-01-01

    Introduction Discontinuation of medical drug treatment is a serious problem in primary care. The need for a better understanding of the processes, including physician-specific mechanisms, is apparent. The aim of this study was to analyse the association between general practitioners' prescribing....... There was a positive association between the prevalence of prescribing for the specific drugs studied (antidepressants, antidiabetics, drugs against osteoporosis and lipid-lowering drugs) and early discontinuation (r = 0.29 -0.44), but not for anti-hypertensive drugs. The analysis of the association between prevalence...... of all drugs and drug-specific early discontinuation showed some degree of positive association - strongest for anti-hypertensive drugs (r = 0.62) and antidepressants (r = 0.43). Conclusion This study confirmed our hypothesis that general practitioners with high levels of prescribing attain higher rates...

  10. Comparative Genomics Reveals High Genomic Diversity in the Genus Photobacterium

    DEFF Research Database (Denmark)

    Machado, Henrique; Gram, Lone

    2017-01-01

    Vibrionaceae is a large marine bacterial family, which can constitute up to 50% of the prokaryotic population in marine waters. Photobacterium is the second largest genus in the family and we used comparative genomics on 35 strains representing 16 of the 28 species described so far, to understand...... the genomic diversity present in the Photobacterium genus. Such understanding is important for ecophysiology studies of the genus. We used whole genome sequences to evaluate phylogenetic relationships using several analyses (16S rRNA, MLSA, fur, amino-acid usage, ANI), which allowed us to identify two...... misidentified strains. Genome analyses also revealed occurrence of higher and lower GC content clades, correlating with phylogenetic clusters. Pan-and core-genome analysis revealed the conservation of 25% of the genome throughout the genus, with a large and open pan-genome. The major source of genomic diversity...

  11. Safeguarding genome integrity

    DEFF Research Database (Denmark)

    Sørensen, Claus Storgaard; Syljuåsen, Randi G

    2012-01-01

    Mechanisms that preserve genome integrity are highly important during the normal life cycle of human cells. Loss of genome protective mechanisms can lead to the development of diseases such as cancer. Checkpoint kinases function in the cellular surveillance pathways that help cells to cope with DNA....... This could generate structures that are cleaved by DNA endonucleases leading to the formation of DNA double-strand breaks. Finally, we discuss how these S phase effects may impact on our understanding of cancer development following disruption of these checkpoint kinases, as well as on the potential...

  12. Genomics and Metagenomics of Extreme Acidophiles in Biomining Environments

    Science.gov (United States)

    Holmes, D. S.

    2015-12-01

    Over 160 draft or complete genomes of extreme acidophiles (pH metagenomic studies of such environments. This provides a rich source of latent data that can be exploited for understanding the biology of biomining environments and for advancing biotechnological applications. Genomic and metagenomic data are already yielding valuable insights into cellular processes, including carbon and nitrogen management, heavy metal and acid resistance, iron and sulfur oxido-reduction, linking biogeochemical processes to organismal physiology. The data also allow the construction of useful models of the ecophysiology of biomining environments and provide insight into the gene and genome evolution of extreme acidophiles. Additionally, since most of these acidophiles are also chemoautolithotrophs that use minerals as energy sources or electron sinks, their genomes can be plundered for clues about the evolution of cellular metabolism and bioenergetic pathways during the Archaean abiotic/biotic transition on early Earth. Acknowledgements: Fondecyt 1130683.

  13. Lentiviral Delivery of Proteins for Genome Engineering.

    Science.gov (United States)

    Cai, Yujia; Mikkelsen, Jacob Giehm

    2016-01-01

    Viruses have evolved to traverse cellular barriers and travel to the nucleus by mechanisms that involve active transport through the cytoplasm and viral quirks to resist cellular restriction factors and innate immune responses. Virus-derived vector systems exploit the capacity of viruses to ferry genetic information into cells, and now - more than three decades after the discovery of HIV - lentiviral vectors based on HIV-1 have become instrumental in biomedical research and gene therapies that require genomic insertion of transgenes. By now, the efficacy of lentiviral gene delivery to stem cells, cells of the immune system including T cells, hepatic cells, and many other therapeutically relevant cell types is well established. Along with nucleic acids, HIV-1 virions carry the enzymatic tools that are essential for early steps of infection. Such capacity to package enzymes, even proteins of nonviral origin, has unveiled new ways of exploiting cellular intrusion of HIV-1. Based on early findings demonstrating the packaging of heterologous proteins into virus particles as part of the Gag and GagPol polypeptides, we have established lentiviral protein transduction for delivery of DNA transposases and designer nucleases. This strategy for delivering genome-engineering proteins facilitates high enzymatic activity within a short time frame and may potentially improve the safety of genome editing. Exploiting the full potential of lentiviral vectors, incorporation of foreign protein can be combined with the delivery of DNA transposons or a donor sequence for homology-directed repair in so-called 'all-in-one' lentiviral vectors. Here, we briefly describe intracellular restrictions that may affect lentiviral gene and protein delivery and review the current status of lentiviral particles as carriers of tool kits for genome engineering.

  14. Genome Size and Species Diversification.

    Science.gov (United States)

    Kraaijeveld, Ken

    2010-12-01

    Theoretically, there are reasons to believe that large genome size should favour speciation. Several major factors contributing to genome size, such as duplications and transposable element activity have been proposed to facilitate the formation of new species. However, it is also possible that small genome size promotes speciation. For example, selection for genome reduction may be resolved in different ways in incipient species, leading to incompatibilities. Mutations and chromosomal rearrangements may also be more stably inherited in smaller genomes. Here I review the following lines of empirical evidence bearing on this question: (i) Correlations between genome size and species richness of taxa are often negative. (ii) Fossil evidence in lungfish shows that the accumulation of DNA in the genomes of this group coincided with a reduction in species diversity. (iii) Estimates of speciation interval in mammals correlate positively with genome size. (iv) Genome reductions are inferred at the base of particular species radiations and genome expansions at the base of others. (v) Insect clades that have been increasing in diversity up to the present have smaller genomes than clades that have remained stable or have decreased in diversity. The general pattern emerging from these observations is that higher diversification rates are generally found in small-genome taxa. Since diversification rates are the net effect of speciation and extinction, large genomes may thus either constrain speciation rate, increase extinction rate, or both. I argue that some of the cited examples are unlikely to be explained by extinction alone.

  15. Ecological and evolutionary genomics of marine photosynthetic organisms.

    Science.gov (United States)

    Coelho, Susana M; Simon, Nathalie; Ahmed, Sophia; Cock, J Mark; Partensky, Frédéric

    2013-02-01

    Environmental (ecological) genomics aims to understand the genetic basis of relationships between organisms and their abiotic and biotic environments. It is a rapidly progressing field of research largely due to recent advances in the speed and volume of genomic data being produced by next generation sequencing (NGS) technologies. Building on information generated by NGS-based approaches, functional genomic methodologies are being applied to identify and characterize genes and gene systems of both environmental and evolutionary relevance. Marine photosynthetic organisms (MPOs) were poorly represented amongst the early genomic models, but this situation is changing rapidly. Here we provide an overview of the recent advances in the application of ecological genomic approaches to both prokaryotic and eukaryotic MPOs. We describe how these approaches are being used to explore the biology and ecology of marine cyanobacteria and algae, particularly with regard to their functions in a broad range of marine ecosystems. Specifically, we review the ecological and evolutionary insights gained from whole genome and transcriptome sequencing projects applied to MPOs and illustrate how their genomes are yielding information on the specific features of these organisms. © 2012 Blackwell Publishing Ltd.

  16. Genomic newborn screening: public health policy considerations and recommendations.

    Science.gov (United States)

    Friedman, Jan M; Cornel, Martina C; Goldenberg, Aaron J; Lister, Karla J; Sénécal, Karine; Vears, Danya F

    2017-02-21

    The use of genome-wide (whole genome or exome) sequencing for population-based newborn screening presents an opportunity to detect and treat or prevent many more serious early-onset health conditions than is possible today. The Paediatric Task Team of the Global Alliance for Genomics and Health's Regulatory and Ethics Working Group reviewed current understanding and concerns regarding the use of genomic technologies for population-based newborn screening and developed, by consensus, eight recommendations for clinicians, clinical laboratory scientists, and policy makers. Before genome-wide sequencing can be implemented in newborn screening programs, its clinical utility and cost-effectiveness must be demonstrated, and the ability to distinguish disease-causing and benign variants of all genes screened must be established. In addition, each jurisdiction needs to resolve ethical and policy issues regarding the disclosure of incidental or secondary findings to families and ownership, appropriate storage and sharing of genomic data. The best interests of children should be the basis for all decisions regarding the implementation of genomic newborn screening.

  17. Speciation in Cloudless Sulphurs Gleaned from Complete Genomes

    Science.gov (United States)

    Cong, Qian; Shen, Jinhui; Warren, Andrew D.; Borek, Dominika; Otwinowski, Zbyszek; Grishin, Nick V.

    2016-01-01

    For 200 years, zoologists have relied on phenotypes to learn about the evolution of animals. A glance at the genotype, even through several gene markers, revolutionized our understanding of animal phylogeny. Recent advances in sequencing techniques allow researchers to study speciation mechanisms and the link between genotype and phenotype using complete genomes. We sequenced and assembled a complete genome of the Cloudless Sulphur (Phoebis sennae) from a single wild-caught specimen. This genome was used as reference to compare genomes of six specimens, three from the eastern populations (Oklahoma and north Texas), referred to as a subspecies Phoebis sennae eubule, and three from the southwestern populations (south Texas) known as a subspecies Phoebis sennae marcellina. While the two subspecies differ only subtly in phenotype and mitochondrial DNA, comparison of their complete genomes revealed consistent and significant differences, which are more prominent than those between tiger swallowtails Pterourus canadensis and Pterourus glaucus. The two sulphur taxa differed in histone methylation regulators, chromatin-associated proteins, circadian clock, and early development proteins. Despite being well separated on the whole-genome level, the two taxa show introgression, with gene flow mainly from P. s. marcellina to P. s. eubule. Functional analysis of introgressed genes reveals enrichment in transmembrane transporters. Many transporters are responsible for nutrient uptake, and their introgression may be of selective advantage for caterpillars to feed on more diverse food resources. Phylogenetically, complete genomes place family Pieridae away from Papilionidae, which is consistent with previous analyses based on several gene markers. PMID:26951782

  18. Neanderthal genomics and the evolution of modern humans

    Science.gov (United States)

    Noonan, James P.

    2010-01-01

    Humans possess unique physical and cognitive characteristics relative to other primates. Comparative analyses of the human and chimpanzee genomes are beginning to reveal sequence changes on the human lineage that may have contributed to the evolution of human traits. However, these studies cannot identify the genetic differences that distinguish modern humans from archaic human species. Here, I will discuss efforts to obtain genomic sequence from Neanderthal, the closest known relative of modern humans. Recent studies in this nascent field have focused on developing methods to recover nuclear DNA from Neanderthal remains. The success of these early studies has inspired a Neanderthal genome project, which promises to produce a reference Neanderthal genome sequence in the near future. Technical issues, such as the level of Neanderthal sequence coverage that can realistically be obtained from a single specimen and the presence of modern human contaminating sequences, reduce the detection of authentic human–Neanderthal sequence differences but may be remedied by methodological improvements. More critical for the utility of a Neanderthal genome sequence is the evolutionary relationship of humans and Neanderthals. Current evidence suggests that the modern human and Neanderthal lineages diverged before the emergence of contemporary humans. A fraction of biologically relevant human–chimpanzee sequence differences are thus likely to have arisen and become fixed exclusively on the modern human lineage. A reconstructed Neanderthal genome sequence could be integrated into human–primate genome comparisons to help reveal the evolutionary genetic events that produced modern humans. PMID:20439435

  19. The draft genome of the parasitic nematode Trichinella spiralis.

    Science.gov (United States)

    Mitreva, Makedonka; Jasmer, Douglas P; Zarlenga, Dante S; Wang, Zhengyuan; Abubucker, Sahar; Martin, John; Taylor, Christina M; Yin, Yong; Fulton, Lucinda; Minx, Pat; Yang, Shiaw-Pyng; Warren, Wesley C; Fulton, Robert S; Bhonagiri, Veena; Zhang, Xu; Hallsworth-Pepin, Kym; Clifton, Sandra W; McCarter, James P; Appleton, Judith; Mardis, Elaine R; Wilson, Richard K

    2011-03-01

    Genome evolution studies for the phylum Nematoda have been limited by focusing on comparisons involving Caenorhabditis elegans. We report a draft genome sequence of Trichinella spiralis, a food-borne zoonotic parasite, which is the most common cause of human trichinellosis. This parasitic nematode is an extant member of a clade that diverged early in the evolution of the phylum, enabling identification of archetypical genes and molecular signatures exclusive to nematodes. We sequenced the 64-Mb nuclear genome, which is estimated to contain 15,808 protein-coding genes, at ∼35-fold coverage using whole-genome shotgun and hierarchal map-assisted sequencing. Comparative genome analyses support intrachromosomal rearrangements across the phylum, disproportionate numbers of protein family deaths over births in parasitic compared to a non-parasitic nematode and a preponderance of gene-loss and -gain events in nematodes relative to Drosophila melanogaster. This genome sequence and the identified pan-phylum characteristics will contribute to genome evolution studies of Nematoda as well as strategies to combat global parasites of humans, food animals and crops.

  20. The Brachypodium genome sequence: a resource for oat genomics research

    Science.gov (United States)

    Oat (Avena sativa) is an important cereal crop used as both an animal feed and for human consumption. Genetic and genomic research on oat is hindered because it is hexaploid and possesses a large (13 Gb) genome. Diploid Avena relatives have been employed for genetic and genomic studies, but only mod...

  1. Brief Guide to Genomics: DNA, Genes and Genomes

    Science.gov (United States)

    Skip to main content A Brief Guide to Genomics Enter Search Term(s): Español Research Funding An Overview ... Breve guía de genómica A Brief Guide to Genomics DNA, Genes and Genomes Deoxyribonucleic acid (DNA) is ...

  2. Comparative genomics of chondrichthyan Hoxa clusters

    Directory of Open Access Journals (Sweden)

    Zhong Ying-Fu

    2009-09-01

    Full Text Available Abstract Background The chondrichthyan or cartilaginous fish (chimeras, sharks, skates and rays occupy an important phylogenetic position as the sister group to all other jawed vertebrates and as an early lineage to diverge from the vertebrate lineage following two whole genome duplication events in vertebrate evolution. There have been few comparative genomic analyses incorporating data from chondrichthyan fish and none comparing genomic information from within the group. We have sequenced the complete Hoxa cluster of the Little Skate (Leucoraja erinacea and compared to the published Hoxa cluster of the Horn Shark (Heterodontus francisci and to available data from the Elephant Shark (Callorhinchus milii genome project. Results A BAC clone containing the full Little Skate Hoxa cluster was fully sequenced and assembled. Analyses of coding sequences and conserved non-coding elements reveal a strikingly high level of conservation across the cartilaginous fish, with twenty ultraconserved elements (100%,100 bp found between Skate and Horn Shark, compared to three between human and marsupials. We have also identified novel potential non-coding RNAs in the Skate BAC clone, some of which are conserved to other species. Conclusion We find that the Little Skate Hoxa cluster is remarkably similar to the previously published Horn Shark Hoxa cluster with respect to sequence identity, gene size and intergenic distance despite over 180 million years of separation between the two lineages. We suggest that the genomes of cartilaginous fish are more highly conserved than those of tetrapods or teleost fish and so are more likely to have retained ancestral non-coding elements. While useful for isolating homologous DNA, this complicates bioinformatic approaches to identify chondrichthyan-specific non-coding DNA elements

  3. National Human Genome Research Institute

    Science.gov (United States)

    ... Barb Biesecker, highlights a recent dog genome project Reddit AMA and provides a reminder to learn your family health history on Thanksgiving. Reddit "Ask Me Anything" Recap: The NHGRI Dog Genome ...

  4. Company profile: Complete Genomics Inc.

    Science.gov (United States)

    Reid, Clifford

    2011-02-01

    Complete Genomics Inc. is a life sciences company that focuses on complete human genome sequencing. It is taking a completely different approach to DNA sequencing than other companies in the industry. Rather than building a general-purpose platform for sequencing all organisms and all applications, it has focused on a single application - complete human genome sequencing. The company's Complete Genomics Analysis Platform (CGA™ Platform) comprises an integrated package of biochemistry, instrumentation and software that sequences human genomes at the highest quality, lowest cost and largest scale available. Complete Genomics offers a turnkey service that enables customers to outsource their human genome sequencing to the company's genome sequencing center in Mountain View, CA, USA. Customers send in their DNA samples, the company does all the library preparation, DNA sequencing, assembly and variant analysis, and customers receive research-ready data that they can use for biological discovery.

  5. Chromatin dynamics in genome stability

    DEFF Research Database (Denmark)

    Nair, Nidhi; Shoaib, Muhammad; Sørensen, Claus Storgaard

    2017-01-01

    Genomic DNA is compacted into chromatin through packaging with histone and non-histone proteins. Importantly, DNA accessibility is dynamically regulated to ensure genome stability. This is exemplified in the response to DNA damage where chromatin relaxation near genomic lesions serves to promote ...... of chromatin structure regulation in maintaining genome integrity by multiple mechanisms including facilitating DNA repair and directly suppressing endogenous DNA damage.......Genomic DNA is compacted into chromatin through packaging with histone and non-histone proteins. Importantly, DNA accessibility is dynamically regulated to ensure genome stability. This is exemplified in the response to DNA damage where chromatin relaxation near genomic lesions serves to promote...... access of relevant enzymes to specific DNA regions for signaling and repair. Furthermore, recent data highlight genome maintenance roles of chromatin through the regulation of endogenous DNA-templated processes including transcription and replication. Here, we review research that shows the importance...

  6. On genomics, kin, and privacy.

    Science.gov (United States)

    Telenti, Amalio; Ayday, Erman; Hubaux, Jean Pierre

    2014-01-01

    The storage of greater numbers of exomes or genomes raises the question of loss of privacy for the individual and for families if genomic data are not properly protected. Access to genome data may result from a personal decision to disclose, or from gaps in protection. In either case, revealing genome data has consequences beyond the individual, as it compromises the privacy of family members. Increasing availability of genome data linked or linkable to metadata through online social networks and services adds one additional layer of complexity to the protection of genome privacy.  The field of computer science and information technology offers solutions to secure genomic data so that individuals, medical personnel or researchers can access only the subset of genomic information required for healthcare or dedicated studies.

  7. Illuminating the Druggable Genome (IDG)

    Data.gov (United States)

    Federal Laboratory Consortium — Results from the Human Genome Project revealed that the human genome contains 20,000 to 25,000 genes. A gene contains (encodes) the information that each cell uses...

  8. MCMC genome rearrangement.

    Science.gov (United States)

    Miklós, István

    2003-10-01

    As more and more genomes have been sequenced, genomic data is rapidly accumulating. Genome-wide mutations are believed more neutral than local mutations such as substitutions, insertions and deletions, therefore phylogenetic investigations based on inversions, transpositions and inverted transpositions are less biased by the hypothesis on neutral evolution. Although efficient algorithms exist for obtaining the inversion distance of two signed permutations, there is no reliable algorithm when both inversions and transpositions are considered. Moreover, different type of mutations happen with different rates, and it is not clear how to weight them in a distance based approach. We introduce a Markov Chain Monte Carlo method to genome rearrangement based on a stochastic model of evolution, which can estimate the number of different evolutionary events needed to sort a signed permutation. The performance of the method was tested on simulated data, and the estimated numbers of different types of mutations were reliable. Human and Drosophila mitochondrial data were also analysed with the new method. The mixing time of the Markov Chain is short both in terms of CPU times and number of proposals. The source code in C is available on request from the author.

  9. The Nostoc punctiforme Genome

    Energy Technology Data Exchange (ETDEWEB)

    John C. Meeks

    2001-12-31

    Nostoc punctiforme is a filamentous cyanobacterium with extensive phenotypic characteristics and a relatively large genome, approaching 10 Mb. The phenotypic characteristics include a photoautotrophic, diazotrophic mode of growth, but N. punctiforme is also facultatively heterotrophic; its vegetative cells have multiple development alternatives, including terminal differentiation into nitrogen-fixing heterocysts and transient differentiation into spore-like akinetes or motile filaments called hormogonia; and N. punctiforme has broad symbiotic competence with fungi and terrestrial plants, including bryophytes, gymnosperms and an angiosperm. The shotgun-sequencing phase of the N. punctiforme strain ATCC 29133 genome has been completed by the Joint Genome Institute. Annotation of an 8.9 Mb database yielded 7432 open reading frames, 45% of which encode proteins with known or probable known function and 29% of which are unique to N. punctiforme. Comparative analysis of the sequence indicates a genome that is highly plastic and in a state of flux, with numerous insertion sequences and multilocus repeats, as well as genes encoding transposases and DNA modification enzymes. The sequence also reveals the presence of genes encoding putative proteins that collectively define almost all characteristics of cyanobacteria as a group. N. punctiforme has an extensive potential to sense and respond to environmental signals as reflected by the presence of more than 400 genes encoding sensor protein kinases, response regulators and other transcriptional factors. The signal transduction systems and any of the large number of unique genes may play essential roles in the cell differentiation and symbiotic interaction properties of N. punctiforme.

  10. Better chocolate through genomics

    Science.gov (United States)

    Theobroma cacao, the cacao or chocolate tree, is a tropical understory tree whose seeds are used to make chocolate. And like any important crop, cacao is the subject of much research. On September 15, 2010, scientists publicly released a preliminary sequence of the cacao genome--which contains all o...

  11. Comparative genomics of Eukaryotes

    NARCIS (Netherlands)

    Noort, Vera van

    2007-01-01

    This thesis focuses on developing comparative genomics methods in eukaryotes, with an emphasis on applications for gene function prediction and regulatory element detection. In the past, methods have been developed to predict functional associations between gene pairs in prokaryotes. The challenge

  12. Engineering the Chloroplast Genome

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 10; Issue 10. Engineering the Chloroplast Genome. P Manju Elizabeth. Research News Volume 10 Issue 10 October 2005 pp 94-95. Fulltext. Click here to view fulltext PDF. Permanent link: http://www.ias.ac.in/article/fulltext/reso/010/10/0094-0095 ...

  13. The Genome Atlas Resource

    DEFF Research Database (Denmark)

    Azam Qureshi, Matloob; Rotenberg, Eva; Stærfeldt, Hans Henrik

    2010-01-01

    with scripts and algorithms developed in a variety of programming languages at the Centre for Biological Sequence Analysis in order to create a three-tier software application for genome analysis. The results are made available via a web interface developed in Java, PHP and Perl CGI. User...

  14. Comparative RNA genomics

    DEFF Research Database (Denmark)

    Backofen, Rolf; Gorodkin, Jan; Hofacker, Ivo L.

    2018-01-01

    small RNAs is their reliance of conserved secondary structures. Large scale sequencing projects, on the other hand, have profoundly changed our understanding of eukaryotic genomes. Pervasively transcribed, they give rise to a plethora of large and evolutionarily extremely flexible noncoding RNAs...

  15. The Lotus japonicus genome

    DEFF Research Database (Denmark)

    This book provides insights into some of the key achievements made in the study of Lotus japonicus (birdsfoot trefoil), as well as a timely overview of topics that are pertinent for future developments in legume genomics. Key topics covered include endosymbiosis, development, hormone regulation...

  16. Major genomic mitochondrial lineages delineate early human expansions

    Directory of Open Access Journals (Sweden)

    Flores Carlos

    2001-08-01

    Full Text Available Abstract Background The phylogeographic distribution of human mitochondrial DNA variations allows a genetic approach to the study of modern Homo sapiens dispersals throughout the world from a female perspective. As a new contribution to this study we have phylogenetically analysed complete mitochondrial DNA(mtDNA sequences from 42 human lineages, representing major clades with known geographic assignation. Results We show the relative relationships among the 42 lineages and present more accurate temporal calibrations than have been previously possible to give new perspectives as how modern humans spread in the Old World. Conclusions The first detectable expansion occurred around 59,000–69,000 years ago from Africa, independently colonizing western Asia and India and, following this southern route, swiftly reaching east Asia. Within Africa, this expansion did not replace but mixed with older lineages detectable today only in Africa. Around 39,000–52,000 years ago, the western Asian branch spread radially, bringing Caucasians to North Africa and Europe, also reaching India, and expanding to north and east Asia. More recent migrations have entangled but not completely erased these primitive footprints of modern human expansions.

  17. Early evolution of efficient enzymes and genome organization

    Directory of Open Access Journals (Sweden)

    Szilágyi András

    2012-10-01

    Full Text Available Abstract Background Cellular life with complex metabolism probably evolved during the reign of RNA, when it served as both information carrier and enzyme. Jensen proposed that enzymes of primordial cells possessed broad specificities: they were generalist. When and under what conditions could primordial metabolism run by generalist enzymes evolve to contemporary-type metabolism run by specific enzymes? Results Here we show by numerical simulation of an enzyme-catalyzed reaction chain that specialist enzymes spread after the invention of the chromosome because protocells harbouring unlinked genes maintain largely non-specific enzymes to reduce their assortment load. When genes are linked on chromosomes, high enzyme specificity evolves because it increases biomass production, also by reducing taxation by side reactions. Conclusion The constitution of the genetic system has a profound influence on the limits of metabolic efficiency. The major evolutionary transition to chromosomes is thus proven to be a prerequisite for a complex metabolism. Furthermore, the appearance of specific enzymes opens the door for the evolution of their regulation. Reviewers This article was reviewed by Sándor Pongor, Gáspár Jékely, and Rob Knight.

  18. [Story of the tomato through its genome].

    Science.gov (United States)

    Gilgenkrantz, Simone

    2012-11-01

    Tomato (Solanum lycopersicum) is a model for fruit development. The tomato history has origins traced back to the early Aztecs. It was not until around the 16(th) century that Europeans were introduced to this fruit, but only as ornamental plant since it was related to nightshade belladona. Then it was accepted into the kitchen all around the world. The genome sequence of the inbred cultivar Heinz 1706 is sequenced and provides interesting insights into the fleshy evolution. © 2012 médecine/sciences – Inserm / SRMS.

  19. Hybrid de novo genome assembly and centromere characterization of the gray mouse lemur (Microcebus murinus).

    Science.gov (United States)

    Larsen, Peter A; Harris, R Alan; Liu, Yue; Murali, Shwetha C; Campbell, C Ryan; Brown, Adam D; Sullivan, Beth A; Shelton, Jennifer; Brown, Susan J; Raveendran, Muthuswamy; Dudchenko, Olga; Machol, Ido; Durand, Neva C; Shamim, Muhammad S; Aiden, Erez Lieberman; Muzny, Donna M; Gibbs, Richard A; Yoder, Anne D; Rogers, Jeffrey; Worley, Kim C

    2017-11-16

    The de novo assembly of repeat-rich mammalian genomes using only high-throughput short read sequencing data typically results in highly fragmented genome assemblies that limit downstream applications. Here, we present an iterative approach to hybrid de novo genome assembly that incorporates datasets stemming from multiple genomic technologies and methods. We used this approach to improve the gray mouse lemur (Microcebus murinus) genome from early draft status to a near chromosome-scale assembly. We used a combination of advanced genomic technologies to iteratively resolve conflicts and super-scaffold the M. murinus genome. We improved the M. murinus genome assembly to a scaffold N50 of 93.32 Mb. Whole genome alignments between our primary super-scaffolds and 23 human chromosomes revealed patterns that are congruent with historical comparative cytogenetic data, thus demonstrating the accuracy of our de novo scaffolding approach and allowing assignment of scaffolds to M. murinus chromosomes. Moreover, we utilized our independent datasets to discover and characterize sequences associated with centromeres across the mouse lemur genome. Quality assessment of the final assembly found 96% of mouse lemur canonical transcripts nearly complete, comparable to other published high-quality reference genome assemblies. We describe a new assembly of the gray mouse lemur (Microcebus murinus) genome with chromosome-scale scaffolds produced using a hybrid bioinformatic and sequencing approach. The approach is cost effective and produces superior results based on metrics of contiguity and completeness. Our results show that emerging genomic technologies can be used in combination to characterize centromeres of non-model species and to produce accurate de novo chromosome-scale genome assemblies of complex mammalian genomes.

  20. The genomic landscape of African populations in health and disease.

    Science.gov (United States)

    Rotimi, Charles N; Bentley, Amy R; Doumatey, Ayo P; Chen, Guanjie; Shriner, Daniel; Adeyemo, Adebowale

    2017-10-01

    A deeper appreciation of the complex architecture of African genomes is critical to the global effort to understand human history, biology and differential distribution of disease by geography and ancestry. Here, we report on how the growing engagement of African populations in genome science is providing new insights into the forces that shaped human genomes before and after the Out-of-Africa migrations. As a result of this human evolutionary history, African ancestry populations have the greatest genomic diversity in the world, and this diversity has important ramifications for genomic research. In the case of pharmacogenomics, for instance, variants of consequence are not limited to those identified in other populations, and diversity within African ancestry populations precludes summarizing risk across different African ethnic groups. Exposure of Africans to fatal pathogens, such as Plasmodium falciparum, Lassa Virus and Trypanosoma brucei rhodesiense, has resulted in elevated frequencies of alleles conferring survival advantages for infectious diseases, but that are maladaptive in modern-day environments. Illustrating with cardiometabolic traits, we show that while genomic research in African ancestry populations is still in early stages, there are already many examples of novel and African ancestry-specific disease loci that have been discovered. Furthermore, the shorter haplotypes in African genomes have facilitated fine-mapping of loci discovered in other human ancestry populations. Given the insights already gained from the interrogation of African genomes, it is imperative to continue and increase our efforts to describe genomic risk in and across African ancestry populations. Published by Oxford University Press 2017. This work is written by US Government employees and is in the public domain in the US.

  1. Implementing genomics and pharmacogenomics in the clinic: The National Human Genome Research Institute's genomic medicine portfolio.

    Science.gov (United States)

    Manolio, Teri A

    2016-10-01

    Increasing knowledge about the influence of genetic variation on human health and growing availability of reliable, cost-effective genetic testing have spurred the implementation of genomic medicine in the clinic. As defined by the National Human Genome Research Institute (NHGRI), genomic medicine uses an individual's genetic information in his or her clinical care, and has begun to be applied effectively in areas such as cancer genomics, pharmacogenomics, and rare and undiagnosed diseases. In 2011 NHGRI published its strategic vision for the future of genomic research, including an ambitious research agenda to facilitate and promote the implementation of genomic medicine. To realize this agenda, NHGRI is consulting and facilitating collaborations with the external research community through a series of "Genomic Medicine Meetings," under the guidance and leadership of the National Advisory Council on Human Genome Research. These meetings have identified and begun to address significant obstacles to implementation, such as lack of evidence of efficacy, limited availability of genomics expertise and testing, lack of standards, and difficulties in integrating genomic results into electronic medical records. The six research and dissemination initiatives comprising NHGRI's genomic research portfolio are designed to speed the evaluation and incorporation, where appropriate, of genomic technologies and findings into routine clinical care. Actual adoption of successful approaches in clinical care will depend upon the willingness, interest, and energy of professional societies, practitioners, patients, and payers to promote their responsible use and share their experiences in doing so. Published by Elsevier Ireland Ltd.

  2. Comparative genomics of Lactobacillus and other LAB

    DEFF Research Database (Denmark)

    Wassenaar, Trudy M.; Lukjancenko, Oksana

    2014-01-01

    The genomes of 66 LABs, belonging to five different genera, were compared for genome size and gene content. The analyzed genomes included 37 Lactobacillus genomes of 17 species, six Lactococcus lactis genomes, four Leuconostoc genomes of three species, six Streptococcus genomes of two species......, twelve Enterococcus genomes of four species and a single Weissella genome. Genomes of pathogenic strains or species were not included. Since the gene density in these genomes is relatively constant, genome size is a measure of gene content. The genomes of Enterococcus were significantly larger than...... that of the others, with the two Streptococcus species having the shortest genomes. The widest distribution in genome content was observed for Lactobacillus. The number of tRNA and rRNA gene copies varied considerably, with exceptional high numbers observed for Lb. delbrueckii, while these numbers were relatively...

  3. Genome Editing Tools in Plants.

    Science.gov (United States)

    Mohanta, Tapan Kumar; Bashir, Tufail; Hashem, Abeer; Abd Allah, Elsayed Fathi; Bae, Hanhong

    2017-12-19

    Genome editing tools have the potential to change the genomic architecture of a genome at precise locations, with desired accuracy. These tools have been efficiently used for trait discovery and for the generation of plants with high crop yields and resistance to biotic and abiotic stresses. Due to complex genomic architecture, it is challenging to edit all of the genes/genomes using a particular genome editing tool. Therefore, to overcome this challenging task, several genome editing tools have been developed to facilitate efficient genome editing. Some of the major genome editing tools used to edit plant genomes are: Homologous recombination (HR), zinc finger nucleases (ZFNs), transcription activator-like effector nucleases (TALENs), pentatricopeptide repeat proteins (PPRs), the CRISPR/Cas9 system, RNA interference (RNAi), cisgenesis, and intragenesis. In addition, site-directed sequence editing and oligonucleotide-directed mutagenesis have the potential to edit the genome at the single-nucleotide level. Recently, adenine base editors (ABEs) have been developed to mutate A-T base pairs to G-C base pairs. ABEs use deoxyadeninedeaminase (TadA) with catalytically impaired Cas9 nickase to mutate A-T base pairs to G-C base pairs.

  4. Evolution of small prokaryotic genomes

    Directory of Open Access Journals (Sweden)

    David José Martínez-Cano

    2015-01-01

    Full Text Available As revealed by genome sequencing, the biology of prokaryotes with reduced genomes is strikingly diverse. These include free-living prokaryotes with ~800 genes as well as endosymbiotic bacteria with as few as ~140 genes. Comparative genomics is revealing the evolutionary mechanisms that led to these small genomes. In the case of free-living prokaryotes, natural selection directly favored genome reduction, while in the case of endosymbiotic prokaryotes neutral processes played a more prominent role. However, new experimental data suggest that selective processes may be at operation as well for endosymbiotic prokaryotes at least during the first stages of genome reduction. Endosymbiotic prokaryotes have evolved diverse strategies for living with reduced gene sets inside a host-defined medium. These include utilization of host-encoded functions (some of them coded by genes acquired by gene transfer from the endosymbiont and/or other bacteria; metabolic complementation between co-symbionts; and forming consortiums with other bacteria within the host. Recent genome sequencing projects of intracellular mutualistic bacteria showed that previously believed universal evolutionary trends like reduced G+C content and conservation of genome synteny are not always present in highly reduced genomes. Finally, the simplified molecular machinery of some of these organisms with small genomes may be used to aid in the design of artificial minimal cells. Here we review recent genomic discoveries of the biology of prokaryotes endowed with small gene sets and discuss the evolutionary mechanisms that have been proposed to explain their peculiar nature.

  5. Toward genome-enabled mycology.

    Science.gov (United States)

    Hibbett, David S; Stajich, Jason E; Spatafora, Joseph W

    2013-01-01

    Genome-enabled mycology is a rapidly expanding field that is characterized by the pervasive use of genome-scale data and associated computational tools in all aspects of fungal biology. Genome-enabled mycology is integrative and often requires teams of researchers with diverse skills in organismal mycology, bioinformatics and molecular biology. This issue of Mycologia presents the first complete fungal genomes in the history of the journal, reflecting the ongoing transformation of mycology into a genome-enabled science. Here, we consider the prospects for genome-enabled mycology and the technical and social challenges that will need to be overcome to grow the database of complete fungal genomes and enable all fungal biologists to make use of the new data.

  6. Genome size analyses of Pucciniales reveal the largest fungal genomes

    Directory of Open Access Journals (Sweden)

    Silvia eTavares

    2014-08-01

    Full Text Available Rust fungi (Basidiomycota, Pucciniales are biotrophic plant pathogens which exhibit diverse complexities in their life cycles and host ranges. The completion of genome sequencing of a few rust fungi has revealed the occurrence of large genomes. Sequencing efforts for other rust fungi have been hampered by uncertainty concerning their genome sizes. Flow cytometry was recently applied to estimate the genome size of a few rust fungi, and confirmed the occurrence of large genomes in this order (averaging 151.5 Mbp, while the average for Basidiomycota was 49.9 Mbp and was 37.7 Mbp for all fungi. In this work, we have used an innovative and simple approach to simultaneously isolate nuclei from the rust and its host plant in order to estimate the genome size of 30 rust species by flow cytometry. Genome sizes varied over 10-fold, from 70 to 893 Mbp, with an average genome size value of 380.2 Mbp. Compared to the genome sizes of over 1,800 fungi, Gymnosporangium confusum possesses the largest fungal genome ever reported (893.2 Mbp. Moreover, even the smallest rust genome determined in this study is larger than the vast majority of fungal genomes (94 %. The average genome size of the Pucciniales is now of 305.5 Mbp, while the average Basidiomycota genome size has shifted to 70.4 Mbp and the average for all fungi reached 44.2 Mbp. Despite the fact that no correlation could be drawn between the genome sizes, the phylogenomics or the life cycle of rust fungi, it is interesting to note that rusts with Fabaceae hosts present genomes clearly larger than those with Poaceae hosts. Although this study comprises only a small fraction of the more than 7,000 rust species described, it seems already evident that the Pucciniales represent a group where genome size expansion could be a common characteristic. This is in sharp contrast to sister taxa, placing this order in a relevant position in fungal genomics research.

  7. Marine Bacterial Genomics

    DEFF Research Database (Denmark)

    Machado, Henrique

    microorganisms to be used as cell factories for production. Therefore exploitation of new microbial niches and use of different strategies is an opportunity to boost discoveries. Even though scientists have started to explore several habitats other than the terrestrial ones, the marine environment stands out...... as a hitherto under-explored niche. This thesis work uses high-throughput sequencing technologies on a collection of marine bacteria established during the Galathea 3 expedition, with the purpose of unraveling new biodiversity and new bioactivities. Several tools were used for genomic analysis in order...... to better understand the potential harbored in marine bacteria. The work presented makes use of whole genome sequencing of marine bacteria to prove that the genetic repertoire for secondary metabolite production harbored in these bacteria is far larger than anticipated; to identify and develop a new...

  8. Precision genome editing

    DEFF Research Database (Denmark)

    Steentoft, Catharina; Bennett, Eric P; Schjoldager, Katrine Ter-Borch Gram

    2014-01-01

    Precise and stable gene editing in mammalian cell lines has until recently been hampered by the lack of efficient targeting methods. While different gene silencing strategies have had tremendous impact on many biological fields, they have generally not been applied with wide success in the field...... of glycobiology, primarily due to their low efficiencies, with resultant failure to impose substantial phenotypic consequences upon the final glycosylation products. Here, we review novel nuclease-based precision genome editing techniques enabling efficient and stable gene editing, including gene disruption...... by introducing single or double-stranded breaks at a defined genomic sequence. We here compare and contrast the different techniques and summarize their current applications, highlighting cases from the field of glycobiology as well as pointing to future opportunities. The emerging potential of precision gene...

  9. Lessons from Structural Genomics*

    Science.gov (United States)

    Terwilliger, Thomas C.; Stuart, David; Yokoyama, Shigeyuki

    2010-01-01

    A decade of structural genomics, the large-scale determination of protein structures, has generated a wealth of data and many important lessons for structural biology and for future large-scale projects. These lessons include a confirmation that it is possible to construct large-scale facilities that can determine the structures of a hundred or more proteins per year, that these structures can be of high quality, and that these structures can have an important impact. Technology development has played a critical role in structural genomics, the difficulties at each step of determining a structure of a particular protein can be quantified, and validation of technologies is nearly as important as the technologies themselves. Finally, rapid deposition of data in public databases has increased the impact and usefulness of the data and international cooperation has advanced the field and improved data sharing. PMID:19416074

  10. Lessons from structural genomics.

    Science.gov (United States)

    Terwilliger, Thomas C; Stuart, David; Yokoyama, Shigeyuki

    2009-01-01

    A decade of structural genomics, the large-scale determination of protein structures, has generated a wealth of data and many important lessons for structural biology and for future large-scale projects. These lessons include a confirmation that it is possible to construct large-scale facilities that can determine the structures of a hundred or more proteins per year, that these structures can be of high quality, and that these structures can have an important impact. Technology development has played a critical role in structural genomics, the difficulties at each step of determining a structure of a particular protein can be quantified, and validation of technologies is nearly as important as the technologies themselves. Finally, rapid deposition of data in public databases has increased the impact and usefulness of the data and international cooperation has advanced the field and improved data sharing.

  11. Comparative genomics and evolution of eukaryotic phospholipidbiosynthesis

    Energy Technology Data Exchange (ETDEWEB)

    Lykidis, Athanasios

    2006-12-01

    Phospholipid biosynthetic enzymes produce diverse molecular structures and are often present in multiple forms encoded by different genes. This work utilizes comparative genomics and phylogenetics for exploring the distribution, structure and evolution of phospholipid biosynthetic genes and pathways in 26 eukaryotic genomes. Although the basic structure of the pathways was formed early in eukaryotic evolution, the emerging picture indicates that individual enzyme families followed unique evolutionary courses. For example, choline and ethanolamine kinases and cytidylyltransferases emerged in ancestral eukaryotes, whereas, multiple forms of the corresponding phosphatidyltransferases evolved mainly in a lineage specific manner. Furthermore, several unicellular eukaryotes maintain bacterial-type enzymes and reactions for the synthesis of phosphatidylglycerol and cardiolipin. Also, base-exchange phosphatidylserine synthases are widespread and ancestral enzymes. The multiplicity of phospholipid biosynthetic enzymes has been largely generated by gene expansion in a lineage specific manner. Thus, these observations suggest that phospholipid biosynthesis has been an actively evolving system. Finally, comparative genomic analysis indicates the existence of novel phosphatidyltransferases and provides a candidate for the uncharacterized eukaryotic phosphatidylglycerol phosphate phosphatase.

  12. The opossum MHC genomic region revisited.

    Science.gov (United States)

    Krasnec, Katina V; Sharp, Alana R; Williams, Tracey L; Miller, Robert D

    2015-04-01

    The gray short-tailed opossum Monodelphis domestica is one of the few marsupial species for which a high quality whole genome sequence is available and the major histocompatibility complex (MHC) region has been annotated. Previous analyses revealed only a single locus within the opossum MHC region, designated Modo-UA1, with the features expected for encoding a functionally classical class I α-chain. Nine other class I genes found within the MHC are highly divergent and have features usually associated with non-classical roles. The original annotation, however, was based on an early version of the opossum genome assembly. More recent analyses of allelic variation in individual opossums revealed too many Modo-UA1 sequences per individual to be accounted for by a single MHC class I locus found in the genome assembly. A reanalysis of a later generation assembly, MonDom5, revealed the presence of two additional loci, now designated Modo-UA3 and UA4, in a region that was expanded and more complete than in the earlier assembly. Modo-UA1, UA3, and UA4 are all transcribed, although Modo-UA4 transcripts are rarer. Modo-UA4 is also relatively non-polymorphic. Evidence presented support the accuracy of the later assembly and the existence of three related class I genes in the opossum, making opossums more typical of mammals and most tetrapods by having multiple apparent classical MHC class I loci.

  13. Genome annotation for clinical genomic diagnostics: strengths and weaknesses.

    Science.gov (United States)

    Steward, Charles A; Parker, Alasdair P J; Minassian, Berge A; Sisodiya, Sanjay M; Frankish, Adam; Harrow, Jennifer

    2017-05-30

    The Human Genome Project and advances in DNA sequencing technologies have revolutionized the identification of genetic disorders through the use of clinical exome sequencing. However, in a considerable number of patients, the genetic basis remains unclear. As clinicians begin to consider whole-genome sequencing, an understanding of the processes and tools involved and the factors to consider in the annotation of the structure and function of genomic elements that might influence variant identification is crucial. Here, we discuss and illustrate the strengths and weaknesses of approaches for the annotation and classification of important elements of protein-coding genes, other genomic elements such as pseudogenes and the non-coding genome, comparative-genomic approaches for inferring gene function, and new technologies for aiding genome annotation, as a practical guide for clinicians when considering pathogenic sequence variation. Complete and accurate annotation of structure and function of genome features has the potential to reduce both false-negative (from missing annotation) and false-positive (from incorrect annotation) errors in causal variant identification in exome and genome sequences. Re-analysis of unsolved cases will be necessary as newer technology improves genome annotation, potentially improving the rate of diagnosis.

  14. Hymenoptera Genome Database: integrating genome annotations in HymenopteraMine.

    Science.gov (United States)

    Elsik, Christine G; Tayal, Aditi; Diesh, Colin M; Unni, Deepak R; Emery, Marianne L; Nguyen, Hung N; Hagen, Darren E

    2016-01-04

    We report an update of the Hymenoptera Genome Database (HGD) (http://HymenopteraGenome.org), a model organism database for insect species of the order Hymenoptera (ants, bees and wasps). HGD maintains genomic data for 9 bee species, 10 ant species and 1 wasp, including the versions of genome and annotation data sets published by the genome sequencing consortiums and those provided by NCBI. A new data-mining warehouse, HymenopteraMine, based on the InterMine data warehousing system, integrates the genome data with data from external sources and facilitates cross-species analyses based on orthology. New genome browsers and annotation tools based on JBrowse/WebApollo provide easy genome navigation, and viewing of high throughput sequence data sets and can be used for collaborative genome annotation. All of the genomes and annotation data sets are combined into a single BLAST server that allows users to select and combine sequence data sets to search. © The Author(s) 2015. Published by Oxford University Press on behalf of Nucleic Acids Research.

  15. eGenomics: Cataloguing Our Complete Genome Collection III

    Directory of Open Access Journals (Sweden)

    Dawn Field

    2007-01-01

    Full Text Available This meeting report summarizes the proceedings of the “eGenomics: Cataloguing our Complete Genome Collection III” workshop held September 11–13, 2006, at the National Institute for Environmental eScience (NIEeS, Cambridge, United Kingdom. This 3rd workshop of the Genomic Standards Consortium was divided into two parts. The first half of the three-day workshop was dedicated to reviewing the genomic diversity of our current and future genome and metagenome collection, and exploring linkages to a series of existing projects through formal presentations. The second half was dedicated to strategic discussions. Outcomes of the workshop include a revised “Minimum Information about a Genome Sequence” (MIGS specification (v1.1, consensus on a variety of features to be added to the Genome Catalogue (GCat, agreement by several researchers to adopt MIGS for imminent genome publications, and an agreement by the EBI and NCBI to input their genome collections into GCat for the purpose of quantifying the amount of optional data already available (e.g., for geographic location coordinates and working towards a single, global list of all public genomes and metagenomes.

  16. Genomics Portals: integrative web-platform for mining genomics data

    Science.gov (United States)

    2010-01-01

    Background A large amount of experimental data generated by modern high-throughput technologies is available through various public repositories. Our knowledge about molecular interaction networks, functional biological pathways and transcriptional regulatory modules is rapidly expanding, and is being organized in lists of functionally related genes. Jointly, these two sources of information hold a tremendous potential for gaining new insights into functioning of living systems. Results Genomics Portals platform integrates access to an extensive knowledge base and a large database of human, mouse, and rat genomics data with basic analytical visualization tools. It provides the context for analyzing and interpreting new experimental data and the tool for effective mining of a large number of publicly available genomics datasets stored in the back-end databases. The uniqueness of this platform lies in the volume and the diversity of genomics data that can be accessed and analyzed (gene expression, ChIP-chip, ChIP-seq, epigenomics, computationally predicted binding sites, etc), and the integration with an extensive knowledge base that can be used in such analysis. Conclusion The integrated access to primary genomics data, functional knowledge and analytical tools makes Genomics Portals platform a unique tool for interpreting results of new genomics experiments and for mining the vast amount of data stored in the Genomics Portals backend databases. Genomics Portals can be accessed and used freely at http://GenomicsPortals.org. PMID:20070909

  17. Ascaris suum draft genome.

    Science.gov (United States)

    Jex, Aaron R; Liu, Shiping; Li, Bo; Young, Neil D; Hall, Ross S; Li, Yingrui; Yang, Linfeng; Zeng, Na; Xu, Xun; Xiong, Zijun; Chen, Fangyuan; Wu, Xuan; Zhang, Guojie; Fang, Xiaodong; Kang, Yi; Anderson, Garry A; Harris, Todd W; Campbell, Bronwyn E; Vlaminck, Johnny; Wang, Tao; Cantacessi, Cinzia; Schwarz, Erich M; Ranganathan, Shoba; Geldhof, Peter; Nejsum, Peter; Sternberg, Paul W; Yang, Huanming; Wang, Jun; Wang, Jian; Gasser, Robin B

    2011-10-26

    Parasitic diseases have a devastating, long-term impact on human health, welfare and food production worldwide. More than two billion people are infected with geohelminths, including the roundworms Ascaris (common roundworm), Necator and Ancylostoma (hookworms), and Trichuris (whipworm), mainly in developing or impoverished nations of Asia, Africa and Latin America. In humans, the diseases caused by these parasites result in about 135,000 deaths annually, with a global burden comparable with that of malaria or tuberculosis in disability-adjusted life years. Ascaris alone infects around 1.2 billion people and, in children, causes nutritional deficiency, impaired physical and cognitive development and, in severe cases, death. Ascaris also causes major production losses in pigs owing to reduced growth, failure to thrive and mortality. The Ascaris-swine model makes it possible to study the parasite, its relationship with the host, and ascariasis at the molecular level. To enable such molecular studies, we report the 273 megabase draft genome of Ascaris suum and compare it with other nematode genomes. This genome has low repeat content (4.4%) and encodes about 18,500 protein-coding genes. Notably, the A. suum secretome (about 750 molecules) is rich in peptidases linked to the penetration and degradation of host tissues, and an assemblage of molecules likely to modulate or evade host immune responses. This genome provides a comprehensive resource to the scientific community and underpins the development of new and urgently needed interventions (drugs, vaccines and diagnostic tests) against ascariasis and other nematodiases. ©2011 Macmillan Publishers Limited. All rights reserved

  18. Human Germline Genome Editing.

    Science.gov (United States)

    Ormond, Kelly E; Mortlock, Douglas P; Scholes, Derek T; Bombard, Yvonne; Brody, Lawrence C; Faucett, W Andrew; Garrison, Nanibaa' A; Hercher, Laura; Isasi, Rosario; Middleton, Anna; Musunuru, Kiran; Shriner, Daniel; Virani, Alice; Young, Caroline E

    2017-08-03

    With CRISPR/Cas9 and other genome-editing technologies, successful somatic and germline genome editing are becoming feasible. To respond, an American Society of Human Genetics (ASHG) workgroup developed this position statement, which was approved by the ASHG Board in March 2017. The workgroup included representatives from the UK Association of Genetic Nurses and Counsellors, Canadian Association of Genetic Counsellors, International Genetic Epidemiology Society, and US National Society of Genetic Counselors. These groups, as well as the American Society for Reproductive Medicine, Asia Pacific Society of Human Genetics, British Society for Genetic Medicine, Human Genetics Society of Australasia, Professional Society of Genetic Counselors in Asia, and Southern African Society for Human Genetics, endorsed the final statement. The statement includes the following positions. (1) At this time, given the nature and number of unanswered scientific, ethical, and policy questions, it is inappropriate to perform germline gene editing that culminates in human pregnancy. (2) Currently, there is no reason to prohibit in vitro germline genome editing on human embryos and gametes, with appropriate oversight and consent from donors, to facilitate research on the possible future clinical applications of gene editing. There should be no prohibition on making public funds available to support this research. (3) Future clinical application of human germline genome editing should not proceed unless, at a minimum, there is (a) a compelling medical rationale, (b) an evidence base that supports its clinical use, (c) an ethical justification, and (d) a transparent public process to solicit and incorporate stakeholder input. Copyright © 2017 American Society of Human Genetics. All rights reserved.

  19. The canine genome.

    Science.gov (United States)

    Ostrander, Elaine A; Wayne, Robert K

    2005-12-01

    The dog has emerged as a premier species for the study of morphology, behavior, and disease. The recent availability of a high-quality draft sequence lifts the dog system to a new threshold. We provide a primer to use the dog genome by first focusing on its evolutionary history. We overview the relationship of dogs to wild canids and discuss their origin and domestication. Dogs clearly originated from a substantial number of gray wolves and dog breeds define distinct genetic units that can be divided into at least four hierarchical groupings. We review evidence showing that dogs have high levels of linkage disequilibrium. Consequently, given that dog breeds express specific phenotypic traits and vary in behavior and the incidence of genetic disease, genomic-wide scans for linkage disequilibrium may allow the discovery of genes influencing breed-specific characteristics. Finally, we review studies that have utilized the dog to understand the genetic underpinning of several traits, and we summarize genomic resources that can be used to advance such studies. We suggest that given these resources and the unique characteristics of breeds, that the dog is a uniquely valuable resource for studying the genetic basis of complex traits.

  20. Mapping the human genome

    Energy Technology Data Exchange (ETDEWEB)

    Cantor, Charles R.

    1989-06-01

    The following pages aim to lay a foundation for understanding the excitement surrounding the ''human genome project,'' as well as to convey a flavor of the ongoing efforts and plans at the Human Genome Center at the Lawrence Berkeley Laboratory. Our own work, of course, is only part of a broad international effort that will dramatically enhance our understanding of human molecular genetics before the end of this century. In this country, the bulk of the effort will be carried out under the auspices of the Department of Energy and the National Institutes of Health, but significant contributions have already been made both by nonprofit private foundations and by private corporation. The respective roles of the DOE and the NIH are being coordinated by an inter-agency committee, the aims of which are to emphasize the strengths of each agency, to facilitate cooperation, and to avoid unnecessary duplication of effort. The NIH, for example, will continue its crucial work in medical genetics and in mapping the genomes of nonhuman species. The DOE, on the other hand, has unique experience in managing large projects, and its national laboratories are repositories of expertise in physics, engineering, and computer science, as well as the life sciences. The tools and techniques the project will ultimately rely on are thus likely to be developed in multidisciplinary efforts at laboratories like LBL. Accordingly, we at LBL take great pride in this enterprise -- an enterprise that will eventually transform our understanding of ourselves.

  1. Pattern Analysis and Decision Support for Cancer through Clinico-Genomic Profiles

    Science.gov (United States)

    Exarchos, Themis P.; Giannakeas, Nikolaos; Goletsis, Yorgos; Papaloukas, Costas; Fotiadis, Dimitrios I.

    Advances in genome technology are playing a growing role in medicine and healthcare. With the development of new technologies and opportunities for large-scale analysis of the genome, genomic data have a clear impact on medicine. Cancer prognostics and therapeutics are among the first major test cases for genomic medicine, given that all types of cancer are related with genomic instability. In this paper we present a novel system for pattern analysis and decision support in cancer. The system integrates clinical data from electronic health records and genomic data. Pattern analysis and data mining methods are applied to these integrated data and the discovered knowledge is used for cancer decision support. Through this integration, conclusions can be drawn for early diagnosis, staging and cancer treatment.

  2. The Ciona intestinalis genome: when the constraints are off

    Science.gov (United States)

    Holland, Linda Z.; Gibson-Brown, Jeremy J.

    2003-01-01

    The recent genome sequencing of a non-vertebrate deuterostome, the ascidian tunicate Ciona intestinalis, makes a substantial contribution to the fields of evolutionary and developmental biology.1 Tunicates have some of the smallest bilaterian genomes, embryos with relatively few cells, fixed lineages and early determination of cell fates. Initial analyses of the C. intestinalis genome indicate that it has been evolving rapidly. Comparisons with other bilaterians show that C. intestinalis has lost a number of genes, and that many genes linked together in most other bilaterians have become uncoupled. In addition, a number of independent, lineage-specific gene duplications have been detected. These new results, although interesting in themselves, will take on a deeper significance once the genomes of additional invertebrate deuterostomes (e.g. echinoderms, hemichordates and amphioxus) have been sequenced. With such a broadened database, comparative genomics can begin to ask pointed questions about the relationship between the evolution of genomes and the evolution of body plans. Copyright 2003 Wiley Periodicals, Inc.

  3. Molecular analysis of the murine C4b-binding protein gene. Chromosome assignment and partial gene organization

    DEFF Research Database (Denmark)

    Barum, Scott B; Kristensen, Torsten; Chaplin, David D

    1989-01-01

    the nonrepeat and untranslated region spans approximately 12 kb; however, genomic Southern blot analysis suggests that the gene is between 20 and 30 kb in length. Analysis of the 3' genomic sequence demonstrates that this region of the gene has homology with SV-40 late (class II) RNA sequences....

  4. Fish welfare and genomics.

    Science.gov (United States)

    Prunet, P; Øverli, Ø; Douxfils, J; Bernardini, G; Kestemont, P; Baron, D

    2012-02-01

    There is a considerable public and scientific debate concerning welfare of fish in aquaculture. In this review, we will consider fish welfare as an integration of physiological, behavioral, and cognitive/emotional responses, all of which are essentially adaptative responses to stressful situations. An overview of fish welfare in this context suggests that understanding will rely on knowledge of all components of allostatic responses to stress and environmental perturbations. The development of genomic technologies provides new approaches to this task, exemplified by how genome-wide analysis of genetic structures and corresponding expression patterns can lead to the discovery of new aspects of adaptative responses. We will illustrate how the genomic approach may give rise to new biomarkers for fish welfare and also increase our understanding of the interaction between physiological, behavioral, and emotional responses. In a first part, we present data on expression of candidate genes selected a priori. This is a common avenue to develop molecular biomarkers capable of diagnosing a stress condition at its earliest onset, in order to allow quick corrective intervention in an aquaculture setting. However, most of these studies address isolated physiological functions and stress responses that may not be truly indicative of animal welfare, and there is only rudimentary understanding of genes related to possible cognitive and emotional responses in fish. We also present an overview on transcriptomic analysis related to the effect of aquaculture stressors, environmental changes (temperature, salinity, hypoxia), or concerning specific behavioral patterns. These studies illustrate the potential of genomic approaches to characterize the complexity of the molecular mechanisms which underlies not only physiological but also behavioral responses in relation to fish welfare. Thirdly, we address proteomic studies on biological responses to stressors such as salinity change and

  5. Translational genomics for plant breeding with the genome sequence explosion.

    Science.gov (United States)

    Kang, Yang Jae; Lee, Taeyoung; Lee, Jayern; Shim, Sangrea; Jeong, Haneul; Satyawan, Dani; Kim, Moon Young; Lee, Suk-Ha

    2016-04-01

    The use of next-generation sequencers and advanced genotyping technologies has propelled the field of plant genomics in model crops and plants and enhanced the discovery of hidden bridges between genotypes and phenotypes. The newly generated reference sequences of unstudied minor plants can be annotated by the knowledge of model plants via translational genomics approaches. Here, we reviewed the strategies of translational genomics and suggested perspectives on the current databases of genomic resources and the database structures of translated information on the new genome. As a draft picture of phenotypic annotation, translational genomics on newly sequenced plants will provide valuable assistance for breeders and researchers who are interested in genetic studies. © 2015 The Authors. Plant Biotechnology Journal published by Society for Experimental Biology and The Association of Applied Biologists and John Wiley & Sons Ltd.

  6. Parasite genome analysis. Progress in the Leishmania genome project.

    Science.gov (United States)

    Blackwell, J M

    1997-01-01

    Genome projects have been established for 7 major groups of human parasitic infections: malaria, leishmaniasis, African trypanosomiasis, American trypanosomiasis, toxoplasmosis, schistosomiasis and filariasis. All except malaria and toxoplasmosis have come under the umbrella of the World Health Organization's Strategic Committee on Parasite Genome Analysis. The focus of this meeting of the Society was to review progress made in the Leishmania and African trypanosome genome projects. This paper introduces the genome projects and reviews briefly progress in pulsed-field gel karyotype mapping and gene identification via expressed sequence tag sequencing for the leishmaniasis genome project. The overall aim of the genome projects is to harness the latest developments in molecular genetic technology and sequence analysis for the rapid-generation of new data which may, in turn, revolutionize our approaches to the study of the biology of these organisms.

  7. Inter-genomic DNA Exchanges and Homeologous Gene Silencing Shaped the Nascent Allopolyploid Coffee Genome (Coffea arabica L.

    Directory of Open Access Journals (Sweden)

    Philippe Lashermes

    2016-09-01

    Full Text Available Allopolyploidization is a biological process that has played a major role in plant speciation and evolution. Genomic changes are common consequences of polyploidization, but their dynamics over time are still poorly understood. Coffea arabica, a recently formed allotetraploid, was chosen to study genetic changes that accompany allopolyploid formation. Both RNA-seq and DNA-seq data were generated from two genetically distant C. arabica accessions. Genomic structural variation was investigated using C. canephora, one of its diploid progenitors, as reference genome. The fate of 9047 duplicate homeologous genes was inferred and compared between the accessions. The pattern of SNP density along the reference genome was consistent with the allopolyploid structure. Large genomic duplications or deletions were not detected. Two homeologous copies were retained and expressed in 96% of the genes analyzed. Nevertheless, duplicated genes were found to be affected by various genomic changes leading to homeolog loss or silencing. Genetic and epigenetic changes were evidenced that could have played a major role in the stabilization of the unique ancestral allotetraploid and its subsequent diversification. While the early evolution of C. arabica mainly involved homeologous crossover exchanges, the later stage appears to have relied on more gradual evolution involving gene conversion and homeolog silencing.

  8. Decoding the massive genome of loblolly pine using haploid DNA and novel assembly strategies.

    Science.gov (United States)

    Neale, David B; Wegrzyn, Jill L; Stevens, Kristian A; Zimin, Aleksey V; Puiu, Daniela; Crepeau, Marc W; Cardeno, Charis; Koriabine, Maxim; Holtz-Morris, Ann E; Liechty, John D; Martínez-García, Pedro J; Vasquez-Gross, Hans A; Lin, Brian Y; Zieve, Jacob J; Dougherty, William M; Fuentes-Soriano, Sara; Wu, Le-Shin; Gilbert, Don; Marçais, Guillaume; Roberts, Michael; Holt, Carson; Yandell, Mark; Davis, John M; Smith, Katherine E; Dean, Jeffrey F D; Lorenz, W Walter; Whetten, Ross W; Sederoff, Ronald; Wheeler, Nicholas; McGuire, Patrick E; Main, Doreen; Loopstra, Carol A; Mockaitis, Keithanne; deJong, Pieter J; Yorke, James A; Salzberg, Steven L; Langley, Charles H

    2014-03-04

    The size and complexity of conifer genomes has, until now, prevented full genome sequencing and assembly. The large research community and economic importance of loblolly pine, Pinus taeda L., made it an early candidate for reference sequence determination. We develop a novel strategy to sequence the genome of loblolly pine that combines unique aspects of pine reproductive biology and genome assembly methodology. We use a whole genome shotgun approach relying primarily on next generation sequence generated from a single haploid seed megagametophyte from a loblolly pine tree, 20-1010, that has been used in industrial forest tree breeding. The resulting sequence and assembly was used to generate a draft genome spanning 23.2 Gbp and containing 20.1 Gbp with an N50 scaffold size of 66.9 kbp, making it a significant improvement over available conifer genomes. The long scaffold lengths allow the annotation of 50,172 gene models with intron lengths averaging over 2.7 kbp and sometimes exceeding 100 kbp in length. Analysis of orthologous gene sets identifies gene families that may be unique to conifers. We further characterize and expand the existing repeat library based on the de novo analysis of the repetitive content, estimated to encompass 82% of the genome. In addition to its value as a resource for researchers and breeders, the loblolly pine genome sequence and assembly reported here demonstrates a novel approach to sequencing the large and complex genomes of this important group of plants that can now be widely applied.

  9. Closing the gap between knowledge and clinical application: challenges for genomic translation.

    Directory of Open Access Journals (Sweden)

    Wylie Burke

    Full Text Available Despite early predictions and rapid progress in research, the introduction of personal genomics into clinical practice has been slow. Several factors contribute to this translational gap between knowledge and clinical application. The evidence available to support genetic test use is often limited, and implementation of new testing programs can be challenging. In addition, the heterogeneity of genomic risk information points to the need for strategies to select and deliver the information most appropriate for particular clinical needs. Accomplishing these tasks also requires recognition that some expectations for personal genomics are unrealistic, notably expectations concerning the clinical utility of genomic risk assessment for common complex diseases. Efforts are needed to improve the body of evidence addressing clinical outcomes for genomics, apply implementation science to personal genomics, and develop realistic goals for genomic risk assessment. In addition, translational research should emphasize the broader benefits of genomic knowledge, including applications of genomic research that provide clinical benefit outside the context of personal genomic risk.

  10. Genomic prediction using QTL derived from whole genome sequence data

    DEFF Research Database (Denmark)

    Brøndum, Rasmus Froberg; Su, Guosheng; Janss, Luc

    This study investigated the gain in accuracy of genomic prediction when a small number of significant variants from single marker analysis based on whole genome sequence data were added to the regular 54k SNP data. Analyses were performed for Nordic Holstein and Danish Jersey animals, using either...... a genomic BLUP or a Bayesian variable selection model. When using the genomic BLUP model, results showed increases in accuracy of up to two percentage points for production traits in both Holstein and Jersey animals by including the extra variants in the analysis, and an extra 1.5 percentage points...

  11. Tick genomics: the Ixodes genome project and beyond.

    Science.gov (United States)

    Pagel Van Zee, J; Geraci, N S; Guerrero, F D; Wikel, S K; Stuart, J J; Nene, V M; Hill, C A

    2007-10-01

    Ticks and mites (subphylum Chelicerata; subclass Acari) include important pests of animals and plants worldwide. The Ixodes scapularis (black-legged tick) genome sequencing project marks the beginning of the genomics era for the field of acarology. This project is the first to sequence the genome of a blood-feeding tick vector of human disease and a member of the subphylum Chelicerata. Genome projects for other species of Acari are forthcoming and their genome sequences will likely feature significantly in the future of tick research. Parasitologists interested in advancing the field of tick genomics research will be faced with specific challenges. The development of genetic tools and resources, and the size and repetitive nature of tick genomes are important considerations. Innovative approaches may be required to sequence, assemble, annotate and analyse tick genomes. Overcoming these challenges will enable scientists to investigate the genes and genome organisation of this important group of arthropods and may ultimately lead to new solutions for control of ticks and tick-borne diseases.

  12. Genomic Data Commons and Genomic Cloud Pilots - Google Hangout

    Science.gov (United States)

    Join us for a live, moderated discussion about two NCI efforts to expand access to cancer genomics data: the Genomic Data Commons and Genomic Cloud Pilots. NCI subject matters experts will include Louis M. Staudt, M.D., Ph.D., Director Center for Cancer Genomics, Warren Kibbe, Ph.D., Director, NCI Center for Biomedical Informatics and Information Technology, and moderated by Anthony Kerlavage, Ph.D., Chief, Cancer Informatics Branch, Center for Biomedical Informatics and Information Technology. We welcome your questions before and during the Hangout on Twitter using the hashtag #AskNCI.

  13. An Adenovirus DNA Replication Factor, but Not Incoming Genome Complexes, Targets PML Nuclear Bodies.

    Science.gov (United States)

    Komatsu, Tetsuro; Nagata, Kyosuke; Wodrich, Harald

    2015-11-25

    Promyelocytic leukemia protein nuclear bodies (PML-NBs) are subnuclear domains implicated in cellular antiviral responses. Despite the antiviral activity, several nuclear replicating DNA viruses use the domains as deposition sites for the incoming viral genomes and/or as sites for viral DNA replication, suggesting that PML-NBs are functionally relevant during early viral infection to establish productive replication. Although PML-NBs and their components have also been implicated in the adenoviral life cycle, it remains unclear whether incoming adenoviral genome complexes target PML-NBs. Here we show using immunofluorescence and live-cell imaging analyses that incoming adenovirus genome complexes neither localize at nor recruit components of PML-NBs during early phases of infection. We further show that the viral DNA binding protein (DBP), an early expressed viral gene and essential DNA replication factor, independently targets PML-NBs. We show that DBP oligomerization is required to selectively recruit the PML-NB components Sp100 and USP7. Depletion experiments suggest that the absence of one PML-NB component might not affect the recruitment of other components toward DBP oligomers. Thus, our findings suggest a model in which an adenoviral DNA replication factor, but not incoming viral genome complexes, targets and modulates PML-NBs to support a conducive state for viral DNA replication and argue against a generalized concept that PML-NBs target incoming viral genomes. The immediate fate upon nuclear delivery of genomes of incoming DNA viruses is largely unclear. Early reports suggested that incoming genomes of herpesviruses are targeted and repressed by PML-NBs immediately upon nuclear import. Genome localization and/or viral DNA replication has also been observed at PML-NBs for other DNA viruses. Thus, it was suggested that PML-NBs may immediately sense and target nuclear viral genomes and hence serve as sites for deposition of incoming viral genomes and

  14. Invariants of DNA genomic signals

    Science.gov (United States)

    Cristea, Paul Dan A.

    2005-02-01

    For large scale analysis purposes, the conversion of genomic sequences into digital signals opens the possibility to use powerful signal processing methods for handling genomic information. The study of complex genomic signals reveals large scale features, maintained over the scale of whole chromosomes, that would be difficult to find by using only the symbolic representation. Based on genomic signal methods and on statistical techniques, the paper defines parameters of DNA sequences which are invariant to transformations induced by SNPs, splicing or crossover. Re-orienting concatenated coding regions in the same direction, regularities shared by the genomic material in all exons are revealed, pointing towards the hypothesis of a regular ancestral structure from which the current chromosome structures have evolved. This property is not found in non-nuclear genomic material, e.g., plasmids.

  15. Recent advances in Schistosoma genomics.

    Science.gov (United States)

    Mourão, M M; Grunau, C; LoVerde, P T; Jones, M K; Oliveira, G

    2012-01-01

    Schistosome research has entered the genomic era with the publications reporting the Schistosoma mansoni and Schistosoma japonicum genomes. Schistosome genomics is motivated by the need for new control tools. However, much can also be learned about the biology of Schistosoma, which is a tractable experimental model. In this article, we review the recent achievements in the field of schistosome research and discuss future perspectives on genomics and how it can be integrated in a usable format, on the genetic mapping and how it has improved the genome assembly and provided new research approaches, on how epigenetics provides interesting insights into the biology of the species and on new functional genomics tools that will contribute to the understanding of the function of genes, many of which are parasite- or taxon specific. © 2011 Blackwell Publishing Ltd.

  16. Comparative Genomics in Homo sapiens.

    Science.gov (United States)

    Oti, Martin; Sammeth, Michael

    2018-01-01

    Genomes can be compared at different levels of divergence, either between species or within species. Within species genomes can be compared between different subpopulations, such as human subpopulations from different continents. Investigating the genomic differences between different human subpopulations is important when studying complex diseases that are affected by many genetic variants, as the variants involved can differ between populations. The 1000 Genomes Project collected genome-scale variation data for 2504 human individuals from 26 different populations, enabling a systematic comparison of variation between human subpopulations. In this chapter, we present step-by-step a basic protocol for the identification of population-specific variants employing the 1000 Genomes data. These variants are subsequently further investigated for those that affect the proteome or RNA splice sites, to investigate potentially biologically relevant differences between the populations.

  17. Wheat genomics comes of age.

    Science.gov (United States)

    Uauy, Cristobal

    2017-04-01

    Advances in wheat genomics have lagged behind other major cereals (e.g., rice and maize) due to its highly repetitive and large polyploid genome. Recent technological developments in sequencing and assembly methods, however, have largely overcome these barriers. The community now moves to an era centred on functional characterisation of the genome. This includes understanding sequence and structural variation as well as how information is integrated across multiple homoeologous genomes. This understanding promises to uncover variation previously hidden from natural and human selection due to the often observed functional redundancy between homoeologs. Key functional genomic resources will enable this, including sequenced mutant populations and gene editing technologies which are now available in wheat. Training the next-generation of genomics-enabled researchers will be essential to ensure these advances are quickly translated into farmers' fields. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.

  18. The success of structural genomics

    OpenAIRE

    Terwilliger, Thomas C.

    2011-01-01

    The International Conference on Structural Genomics (ICSG 2011, http://www.icsg2011.org), held in Toronto Canada May 10–14, 2011 was a rich and exciting demonstration of how far structural genomics has come. Structural genomics has now matured into a field that includes both structure and the biology that structure enables. This has allowed targeting based on systematic approaches and on known biological importance and allows biochemical studies to be closely tied to structure determination. ...

  19. Functional genomics of cancer.

    Science.gov (United States)

    Liu, Edison T

    2008-06-01

    Cancer genomics has focused on the discovery of genetic mutations and chromosomal structural rearrangements that either increase susceptibility to cancer or support the cancer phenotype. Though each individual mutation may induce specific cancer phenotypes, it is the interaction of the functional changes in transcription and proteins that give the characteristics of cancer. Whereas molecular biology focuses on the impact of individual genes on the cancer state, functional genomics assesses the comprehensive genetic alterations in a cancer cell and seeks to integrate the dynamic changes in these networks so that cancer phenotypes can be explained. Most commonly, the transcriptome is the target of analysis because of the maturity, completeness, and speed of the technologies, but progressively the proteome is being studied in the same comprehensive manner. The focus of this review, however, will be on the functional consequences of cancer genomic alterations with special reference to the transcriptome and in the perturbed gene expression found in cancer states. The developments in the past two years (which is our time horizon) have been heavily driven by the applications of the new ultra high-throughput sequencing approaches assisted by computational discovery strategies. The precision and comprehensiveness of the analyses are astonishing. The collective results, when taken together, suggest that despite the large range of mutational and epigenetic events, there is a convergence onto a finite number of pathways that drive cancer behavior. Moreover, the interconnectivity of regulatory control mechanisms suggest that the earlier concepts distinguishing driver from passenger abnormalities may undervalue the contribution of the numerous aberrations that have small but additive effects on cancer virulence.

  20. Dedifferentiation-mediated changes in transposition behavior make the Activator transposon an ideal tool for functional genomics in rice

    NARCIS (Netherlands)

    Kohli, A.; Prynne, M.Q.; Miro, B.; Pereira, A.B.; Twyman, R.M.; Capell, T.; Christou, P.

    2004-01-01

    There is an inverse relationship between the level of cytosine methylation in genomic DNA and the activity of plant transposable elements. Increased transpositional activity is seen during early plant development when genomic methylation patterns are first erased and then reset. Prolonging the

  1. A genome-wide association study of anorexia nervosa suggests a risk locus implicated in dysregulated leptin signaling

    NARCIS (Netherlands)

    Li, Xiang-Dong; Chang, Xiao; Connolly, John J.; Tian, Lifeng; Liu, Yichuan; Bhoj, Elizabeth J; Robinson, Nora; Abrams, Debra; Li, Yun R.; Bradfield, Jonathan P.; Kim, Cecilia E.; Li, Jin; Wang, Fengxiang; Snyder, James; Lemma, Maria; Hou, Cuiping; Wei, Zhi; Guo, Yiran; Qiu, Haijun; Mentch, Frank D.; Thomas, Kelly A.; Chiavacci, Rosetta M.; Cone, Roger; Li, Bingshan; Sleiman, Patrick M. A.; Hakonarson, Hakon; Kas, Martien J.H.

    2017-01-01

    We conducted a genome-wide association study (GWAS) of anorexia nervosa (AN) using a stringently defined phenotype. Analysis of phenotypic variability led to the identification of a specific genetic risk factor that approached genome-wide significance (rs929626 in EBF1 (Early B-Cell Factor 1);

  2. A genome-wide association study of anorexia nervosa suggests a risk locus implicated in dysregulated leptin signaling

    NARCIS (Netherlands)

    Li, Dong; Chang, Xiao; Connolly, John J.; Tian, Lifeng; Liu, Yichuan; Bhoj, Elizabeth J.; Robinson, Nora; Abrams, Debra; Li, Yun R.; Bradfield, Jonathan P.; Kim, Cecilia E.; Li, Jin; Wang, Fengxiang; Snyder, James; Lemma, Maria; Hou, Cuiping; Wei, Zhi; Guo, Yiran; Qiu, Haijun; Mentch, Frank D.; Thomas, Kelly A.; Chiavacci, Rosetta M.; Cone, Roger; Li, Bingshan; Sleiman, Patrick A.; Hakonarson, Hakon; Perica, Vesna Boraska; Franklin, Christopher S.; Floyd, James A.B.; Thornton, Laura M.; Huckins, Laura M.; Southam, Lorraine; Rayner, William N; Tachmazidou, Ioanna; Schmidt, Ulrike; Tozzi, Federica; Kiezebrink, Kirsty; Hebebrand, Johannes; Gorwood, Philip; Adan, Roger A.H.|info:eu-repo/dai/nl/096757191; Kas, Martien J.H.|info:eu-repo/dai/nl/185967019; Favaro, Angela; Santonastaso, Paolo; Fernánde-Aranda, Fernando; Gratacos, Monica; Rybakowski, Filip; Dmitrzak-Weglarz, Monika; Kaprio, Jaakko; Keski-Rahkonen, Anna; Raevuori-Helkamaa, Anu; Furth, Eric F.Van; Slof-Opt Landt, Margarita C.T.; Hudson, James I.; Reichborn-Kjennerud, Ted; Knudsen, Gun Peggy S.; Monteleone, Palmiero; Karwautz, Andreas; Berrettini, Wade H.; Schork, Nicholas J.; Ando, Tetsuya; Inoko, Hidetoshi; Esko, Toñu; Fischer, Krista; Männik, Katrin; Metspalu, Andres; Baker, Jessica H.; DeSocio, Janiece E.; Hilliard, Christopher E.; O'Toole, Julie K.; Pantel, Jacques; Szatkiewicz, Jin P.; Zerwas, Stephanie; Davis, Oliver S P; Helder, Sietske; Bühren, Katharina; Burghardt, Roland; De Zwaan, Martina; Egberts, Karin; Ehrlich, Stefan; Herpertz-Dahlmann, Beate; Herzog, Wolfgang; Imgart, Hartmut; Scherag, André; Zipfel, Stephan; Boni, Claudette; Ramoz, Nicolas; Versini, Audrey; Danner, Unna N.; Hendriks, Judith; Koeleman, Bobby P.C.|info:eu-repo/dai/nl/157197468; Ophoff, Roel A.|info:eu-repo/dai/nl/16237299X; Strengman, Eric|info:eu-repo/dai/nl/304815195; van Elburg, Annemarie A.; Bruson, Alice; Clementi, Maurizio; Degortes, Daniela; Forzan, Monica; Tenconi, Elena; Docampo, Elisa; Escaramís, Geòrgia; Jiménez-Murcia, Susana; Lissowska, Jolanta; Rajewski, Andrzej; Szeszenia-Dabrowska, Neonila; Slopien, Agnieszka; Hauser, Joanna; Karhunen, Leila; Meulenbelt, Ingrid; Slagboom, P. Eline; Tortorella, Alfonso; Maj, Mario; Dedoussis, George; DIkeos, DImitris; Gonidakis, Fragiskos; Tziouvas, Konstantinos; Tsitsika, Artemis; Papezova, Hana; Slachtova, Lenka; Martaskova, Debora; Kennedy, James L.; Levitan, Robert D.; Yilmaz, Zeynep; Huemer, Julia; Koubek, Doris; Merl, Elisabeth; Wagner, Gudrun; Lichtenstein, Paul; Breen, Gerome; Cohen-Woods, Sarah; Farmer, Anne; McGuffin, Peter; Cichon, Sven; Giegling, Ina; Herms, Stefan; Rujescu, Dan; Schreiber, Stefan; Wichmann, H-Erich; Dina, Christian; Sladek, Rob; Gambaro, Giovanni; Soranzo, Nicole; Julia, Antonio; Marsal, Sara; Rabionet, Raquel; Gaborieau, Valerie; DIck, Danielle M.; Palotie, Aarno; Ripatti, Samuli; Widén, Elisabeth; Andreassen, Ole A.; Espeseth, Thomas; Lundervold, Astri J; Reinvang, Ivar; Steen, Vidar M.; Le Hellard, Stephanie; Mattingsdal, Morten; Ntalla, Ioanna; Bencko, Vladimir; Foretova, Lenka; Janout, Vladimir; Navratilova, Marie; Gallinger, Steven; Pinto, Dalila; Scherer, Stephen W.; Aschauer, Harald; Carlberg, Laura; Schosser, Alexandra; Alfredsson, Lars; Ding, Bo; Klareskog, Lars; Padyukov, Leonid; Finan, Chris; Kalsi, Gursharan; Roberts, Marion; Barrett, Jeff C.; Estivill, Xavier; Hinney, Anke; Sullivan, Patrick F; Zeggini, Eleftheria; Bulik, Cynthia M.; Brandt, Harry; Crawford, Steve; Crow, Scott; Fichter, Manfred M.; Halmi, Katherine A.; Johnson, Craig; Kaplan, Allan S.; La Via, Maria C.; Mitchell, James R.; Strober, Michael; Rotondo, Alessandro; Treasure, Janet; Woodside, D. Blake; Keel, Pamela K.; Klump, Kelly L.; Lilenfeld, Lisa; Bergen, Andrew W.|info:eu-repo/dai/nl/345481240; Kaye, Walter; Magistretti, Pierre

    2017-01-01

    We conducted a genome-wide association study (GWAS) of anorexia nervosa (AN) using a stringently defined phenotype. Analysis of phenotypic variability led to the identification of a specific genetic risk factor that approached genome-wide significance (rs929626 in EBF1 (Early B-Cell Factor 1); P =

  3. Bacterial genome reengineering.

    Science.gov (United States)

    Zhou, Jindan; Rudd, Kenneth E

    2011-01-01

    The web application PrimerPair at ecogene.org generates large sets of paired DNA sequences surrounding- all protein and RNA genes of Escherichia coli K-12. Many DNA fragments, which these primers amplify, can be used to implement a genome reengineering strategy using complementary in vitro cloning and in vivo recombineering. The integration of a primer design tool with a model organism database increases the level of quality control. Computer-assisted design of gene primer pairs relies upon having highly accurate genomic DNA sequence information that exactly matches the DNA of the cells being used in the laboratory to ensure predictable DNA hybridizations. It is equally crucial to have confidence that the predicted start codons define the locations of genes accurately. Annotations in the EcoGene database are queried by PrimerPair to eliminate pseudogenes, IS elements, and other problematic genes before the design process starts. These projects progressively familiarize users with the EcoGene content, scope, and application interfaces that are useful for genome reengineering projects. The first protocol leads to the design of a pair of primer sequences that were used to clone and express a single gene. The N-terminal protein sequence was experimentally verified and the protein was detected in the periplasm. This is followed by instructions to design PCR primer pairs for cloning gene fragments encoding 50 periplasmic proteins without their signal peptides. The design process begins with the user simply designating one pair of forward and reverse primer endpoint positions relative to all start and stop codon positions. The gene name, genomic coordinates, and primer DNA sequences are reported to the user. When making chromosomal deletions, the integrity of the provisional primer design is checked to see whether it will generate any unwanted double deletions with adjacent genes. The bad designs are recalculated and replacement primers are provided alongside the

  4. Genomics for environmental microbiology

    Energy Technology Data Exchange (ETDEWEB)

    Deutschbauer, Adam M.; Chivian, Dylan; Arkin, Adam P.

    2006-03-16

    The utilization of natural microbial diversity inbiotechnology is hindered by both our inability to culture the vastmajority of microorganisms and the observation that lab engineeredbacteria rarely function in the wild. It is now clear that anunderstanding of the community structure, function, and evolution ofbacteria in their natural environments is required to meet the promise ofmicrobial biotechnology. To meet these new challenges, microbiologistsare applying the tools of genomics and related high-throughputtechnologies to both cultured microbes and environmental samples. The newviews on ecosystems and biological function together with thebiotechnology that are enabled by this science are discussed as are thenew technologies and the challenges therein.

  5. Genomics of Bacillus Species

    Science.gov (United States)

    Økstad, Ole Andreas; Kolstø, Anne-Brit

    Members of the genus Bacillus are rod-shaped spore-forming bacteria belonging to the Firmicutes, the low G+C gram-positive bacteria. The Bacillus genus was first described and classified by Ferdinand Cohn in Cohn (1872), and Bacillus subtilis was defined as the type species (Soule, 1932). Several Bacilli may be linked to opportunistic infections. However, pathogenicity among Bacillus spp. is mainly a feature of bacteria belonging to the Bacillus cereus group, including B. cereus, Bacillus anthracis, and Bacillus thuringiensis. Here we review the genomics of B. cereus group bacteria in relation to their roles as etiological agents of two food poisoning syndromes (emetic and diarrhoeal).

  6. Genomic rearrangements and diseases

    OpenAIRE

    Loviglio, M.N.

    2016-01-01

    Copy number variations (CNVs) are major contributors of genomic imbalances disorders. On the short arm of chromosome 16, CNVs of the distal 220 kb BP2-BP3 region show mirror effect on BMI and head size, and association with autism and schizophrenia, as previously reported for the proximal 600 kb BP4-BP5 deletion and duplication. These two CNVs-prone regions at 16p11.2 are also reciprocally engaged in complex chromatin looping, successfully confirmed by 4C-seq, FISH, Hi-C and concomitant...

  7. Cancer epigenomics: beyond genomics.

    Science.gov (United States)

    Sandoval, Juan; Esteller, Manel

    2012-02-01

    For many years cancer research has focused on genetic defects, but during the last decade epigenetic deregulation has been increasingly recognized as a hallmark of cancer. The advent of genome-scale analysis techniques, including the recently developed next-generation sequencing, has enabled an invaluable advance in the molecular mechanisms underlying tumor initiation, progression, and expansion. In this review we describe recent advances in the field of cancer epigenomics concerning DNA methylation, histone modifications, and miRNAs. In the near future, this information will be used to generate novel biomarkers of relevance to diagnosis, prognosis, and chemotherapeutic response. Copyright © 2012 Elsevier Ltd. All rights reserved.

  8. [Progresses on Neandertal genomics].

    Science.gov (United States)

    Bi, Cai-Li; Guo, Guang-Yan; Zhang, Xiao; Tian, Yan-Hui; Shen, Yin-Zhu

    2012-06-01

    Neandertal is our closest known relative and also an archaic hominid reserving the richest fossils. Whether the Neandertals exchanged their DNA with modern human or not is a matter of debate on the modern human origin. The progresses on the mitochondrial and nuclear genomes of Neandertals in recent years were reviewed in this paper. Recent study has revealed possible genetic contribution of Neandertals to the modern human to some extent, which arose the rethinking of modern human origin. The experiences gained in the research on Neandertals will benefit the study on archaic hominids, unravel the mystery of modern human origin, and enrich the relative theoretical systems in evolutionary biological field.

  9. Organizational heterogeneity of vertebrate genomes.

    Directory of Open Access Journals (Sweden)

    Svetlana Frenkel

    Full Text Available Genomes of higher eukaryotes are mosaics of segments with various structural, functional, and evolutionary properties. The availability of whole-genome sequences allows the investigation of their structure as "texts" using different statistical and computational methods. One such method, referred to as Compositional Spectra (CS analysis, is based on scoring the occurrences of fixed-length oligonucleotides (k-mers in the target DNA sequence. CS analysis allows generating species- or region-specific characteristics of the genome, regardless of their length and the presence of coding DNA. In this study, we consider the heterogeneity of vertebrate genomes as a joint effect of regional variation in sequence organization superimposed on the differences in nucleotide composition. We estimated compositional and organizational heterogeneity of genome and chromosome sequences separately and found that both heterogeneity types vary widely among genomes as well as among chromosomes in all investigated taxonomic groups. The high correspondence of heterogeneity scores obtained on three genome fractions, coding, repetitive, and the remaining part of the noncoding DNA (the genome dark matter--GDM allows the assumption that CS-heterogeneity may have functional relevance to genome regulation. Of special interest for such interpretation is the fact that natural GDM sequences display the highest deviation from the corresponding reshuffled sequences.

  10. The genomics of memory and learning in songbirds.

    Science.gov (United States)

    Clayton, David F

    2013-01-01

    Songbirds have unique value as a model for memory and learning. In their natural social life, they communicate through vocalizations that they must learn to produce and recognize. Song communication elicits abrupt changes in gene expression in regions of the forebrain responsible for song perception and production--what is the functional significance of this genomic response? For 20 years, the focus of research was on just a few genes [primarily ZENK, now known as egr1 (early gene response 1)]. Recently, however, DNA microarrays have been developed and applied to songbird behavioral research, and in 2010 the initial draft assembly of the zebra finch genome was published. Together, these new data reveal that the genomic involvement in song processing is far more complex than anticipated. The concepts of neurogenomic computation and biological embedding are introduced as frameworks for future research.

  11. The Amphimedon queenslandica genome and the evolution of animal complexity

    Energy Technology Data Exchange (ETDEWEB)

    Srivastava, Mansi; Simakov, Oleg; Chapman, Jarrod; Fahey, Bryony; Gauthier, Marie E.A.; Mitros, Therese; Richards, Gemma S.; Conaco, Cecilia; Dacre, Michael; Hellsten, Uffe; Larroux, Claire; Putnam, Nicholas H.; Stanke, Mario; Adamska, Maja; Darling, Aaron; Degnan, Sandie M.; Oakley, Todd H.; Plachetzki, David C.; Zhai, Yufeng; Adamski, Marcin; Calcino, Andrew; Cummins, Scott F.; Goodstein, David M.; Harris, Christina; Jackson, Daniel J.; Leys, Sally P.; Shu, Shengqiang; Woodcroft, Ben J.; Vervoort, Michel; Kosik, Kenneth S.; Manning, Gerard; Degnan, Bernard M.; Rokhsar, Daniel S.

    2010-07-01

    Sponges are an ancient group of animals that diverged from other metazoans over 600 million years ago. Here we present the draft genome sequence of Amphimedon queenslandica, a demosponge from the Great Barrier Reef, and show that it is remarkably similar to other animal genomes in content, structure and organization. Comparative analysis enabled by the sponge sequence reveals genomic events linked to the origin and early evolution of animals, including the appearance, expansion, and diversification of pan-metazoan transcription factor, signaling pathway, and structural genes. This diverse 'toolkit' of genes correlates with critical aspects of all metazoan body plans, and comprises cell cycle control and growth, development, somatic and germ cell specification, cell adhesion, innate immunity, and allorecognition. Notably, many of the genes associated with the emergence of animals are also implicated in cancer, which arises from defects in basic processes associated with metazoan multicellularity.

  12. Down syndrome and the complexity of genome dosage imbalance.

    Science.gov (United States)

    Antonarakis, Stylianos E

    2017-03-01

    Down syndrome (also known as trisomy 21) is the model human phenotype for all genomic gain dosage imbalances, including microduplications. The functional genomic exploration of the post-sequencing years of chromosome 21, and the generation of numerous cellular and mouse models, have provided an unprecedented opportunity to decipher the molecular consequences of genome dosage imbalance. Studies of Down syndrome could provide knowledge far beyond the well-known characteristics of intellectual disability and dysmorphic features, as several other important features, including congenital heart defects, early ageing, Alzheimer disease and childhood leukaemia, are also part of the Down syndrome phenotypic spectrum. The elucidation of the molecular mechanisms that cause or modify the risk for different Down syndrome phenotypes could lead to the introduction of previously unimaginable therapeutic options.

  13. Demographic history, selection and functional diversity of the canine genome.

    Science.gov (United States)

    Ostrander, Elaine A; Wayne, Robert K; Freedman, Adam H; Davis, Brian W

    2017-12-01

    The domestic dog represents one of the most dramatic long-term evolutionary experiments undertaken by humans. From a large wolf-like progenitor, unparalleled diversity in phenotype and behaviour has developed in dogs, providing a model for understanding the developmental and genomic mechanisms of diversification. We discuss pattern and process in domestication, beginning with general findings about early domestication and problems in documenting selection at the genomic level. Furthermore, we summarize genotype-phenotype studies based first on single nucleotide polymorphism (SNP) genotyping and then with whole-genome data and show how an understanding of evolution informs topics as different as human history, adaptive and deleterious variation, morphological development, ageing, cancer and behaviour.

  14. Genome Update: alignment of bacterial chromosomes

    DEFF Research Database (Denmark)

    Ussery, David; Jensen, Mette; Poulsen, Tine Rugh

    2004-01-01

    There are four new microbial genomes listed in this month's Genome Update, three belonging to Gram-positive bacteria and one belonging to an archaeon that lives at pH 0; all of these genomes are listed in Table 1⇓. The method of genome comparison this month is that of genome alignment and...

  15. Genome update: the 1000th genome - a cautionary tale

    DEFF Research Database (Denmark)

    Lagesen, Karin; Ussery, David; Wassenaar, Gertrude Maria

    2010-01-01

    There are now more than 1000 sequenced prokaryotic genomes deposited in public databases and available for analysis. Currently, although the sequence databases GenBank, DNA Database of Japan and EMBL are synchronized continually, there are slight differences in content at the genomes level for a ...

  16. Comparative genomics reveals insights into avian genome evolution and adaptation

    DEFF Research Database (Denmark)

    Zhang, Guojie; Li, Cai; Li, Qiye

    2014-01-01

    Birds are the most species-rich class of tetrapod vertebrates and have wide relevance across many research fields. We explored bird macroevolution using full genomes from 48 avian species representing all major extant clades. The avian genome is principally characterized by its constrained size, ...

  17. Parsing of genomic graffiti

    Energy Technology Data Exchange (ETDEWEB)

    Tibbetts, C.; Golden, J. III; Torgersen, D. [Vanderbilt Univ. School of Engineering, Nashville, TN (United States)

    1996-12-31

    A focal point of modern biology is investigation of wide varieties of phenomena at the level of molecular genetics. The nucleotide sequences of deoxyribonucleic acid (DNA) and ribonucleic acid (RNA) define the ultimate resolution of this reductionist approach to understand the determinants of heritable traits. The structure and function of genes, their composite genomic organization, and their regulated expression have been studied in systems representing every class of organism. Many human diseases or pathogenic syndromes can be directly attributed to inherited defects in either the regulated expression, or the quality of the products of specific genes. Genetic determinants of susceptibility to infectious agents or environmental hazards are amply documented. Mapping and sequencing of the DNA molecules encoding human genes have provided powerful technology for pharmaceutical bioengineering and forensic investigations. From an alternative perspective, we may anticipate that voluminous archives of singular DNA sequences alone will not suffice to define and understand the functional determinants of genome organization, allelic diversity and evolutionary plasticity of living organisms. New insights will accumulate pertaining to human evolutionary origins and relationships of human biology to models based on other mammals. Investigators of population genetics and epidemiology now exploit the technology of molecular genetics to more powerfully probe variation within the human gene pool at the level of DNA sequences. 40 refs., 7 figs., 2 tabs.

  18. Genomic networks of hybrid sterility.

    Directory of Open Access Journals (Sweden)

    Leslie M Turner

    2014-02-01

    Full Text Available Hybrid dysfunction, a common feature of reproductive barriers between species, is often caused by negative epistasis between loci ("Dobzhansky-Muller incompatibilities". The nature and complexity of hybrid incompatibilities remain poorly understood because identifying interacting loci that affect complex phenotypes is difficult. With subspecies in the early stages of speciation, an array of genetic tools, and detailed knowledge of reproductive biology, house mice (Mus musculus provide a model system for dissecting hybrid incompatibilities. Male hybrids between M. musculus subspecies often show reduced fertility. Previous studies identified loci and several X chromosome-autosome interactions that contribute to sterility. To characterize the genetic basis of hybrid sterility in detail, we used a systems genetics approach, integrating mapping of gene expression traits with sterility phenotypes and QTL. We measured genome-wide testis expression in 305 male F2s from a cross between wild-derived inbred strains of M. musculus musculus and M. m. domesticus. We identified several thousand cis- and trans-acting QTL contributing to expression variation (eQTL. Many trans eQTL cluster into eleven 'hotspots,' seven of which co-localize with QTL for sterility phenotypes identified in the cross. The number and clustering of trans eQTL-but not cis eQTL-were substantially lower when mapping was restricted to a 'fertile' subset of mice, providing evidence that trans eQTL hotspots are related to sterility. Functional annotation of transcripts with eQTL provides insights into the biological processes disrupted by sterility loci and guides prioritization of candidate genes. Using a conditional mapping approach, we identified eQTL dependent on interactions between loci, revealing a complex system of epistasis. Our results illuminate established patterns, including the role of the X chromosome in hybrid sterility. The integrated mapping approach we employed is

  19. Genomic networks of hybrid sterility.

    Science.gov (United States)

    Turner, Leslie M; White, Michael A; Tautz, Diethard; Payseur, Bret A

    2014-02-01

    Hybrid dysfunction, a common feature of reproductive barriers between species, is often caused by negative epistasis between loci ("Dobzhansky-Muller incompatibilities"). The nature and complexity of hybrid incompatibilities remain poorly understood because identifying interacting loci that affect complex phenotypes is difficult. With subspecies in the early stages of speciation, an array of genetic tools, and detailed knowledge of reproductive biology, house mice (Mus musculus) provide a model system for dissecting hybrid incompatibilities. Male hybrids between M. musculus subspecies often show reduced fertility. Previous studies identified loci and several X chromosome-autosome interactions that contribute to sterility. To characterize the genetic basis of hybrid sterility in detail, we used a systems genetics approach, integrating mapping of gene expression traits with sterility phenotypes and QTL. We measured genome-wide testis expression in 305 male F2s from a cross between wild-derived inbred strains of M. musculus musculus and M. m. domesticus. We identified several thousand cis- and trans-acting QTL contributing to expression variation (eQTL). Many trans eQTL cluster into eleven 'hotspots,' seven of which co-localize with QTL for sterility phenotypes identified in the cross. The number and clustering of trans eQTL-but not cis eQTL-were substantially lower when mapping was restricted to a 'fertile' subset of mice, providing evidence that trans eQTL hotspots are related to sterility. Functional annotation of transcripts with eQTL provides insights into the biological processes disrupted by sterility loci and guides prioritization of candidate genes. Using a conditional mapping approach, we identified eQTL dependent on interactions between loci, revealing a complex system of epistasis. Our results illuminate established patterns, including the role of the X chromosome in hybrid sterility. The integrated mapping approach we employed is applicable in a broad

  20. Genomic Networks of Hybrid Sterility

    Science.gov (United States)

    Turner, Leslie M.; White, Michael A.; Tautz, Diethard; Payseur, Bret A.

    2014-01-01

    Hybrid dysfunction, a common feature of reproductive barriers between species, is often caused by negative epistasis between loci (“Dobzhansky-Muller incompatibilities”). The nature and complexity of hybrid incompatibilities remain poorly understood because identifying interacting loci that affect complex phenotypes is difficult. With subspecies in the early stages of speciation, an array of genetic tools, and detailed knowledge of reproductive biology, house mice (Mus musculus) provide a model system for dissecting hybrid incompatibilities. Male hybrids between M. musculus subspecies often show reduced fertility. Previous studies identified loci and several X chromosome-autosome interactions that contribute to sterility. To characterize the genetic basis of hybrid sterility in detail, we used a systems genetics approach, integrating mapping of gene expression traits with sterility phenotypes and QTL. We measured genome-wide testis expression in 305 male F2s from a cross between wild-derived inbred strains of M. musculus musculus and M. m. domesticus. We identified several thousand cis- and trans-acting QTL contributing to expression variation (eQTL). Many trans eQTL cluster into eleven ‘hotspots,’ seven of which co-localize with QTL for sterility phenotypes identified in the cross. The number and clustering of trans eQTL—but not cis eQTL—were substantially lower when mapping was restricted to a ‘fertile’ subset of mice, providing evidence that trans eQTL hotspots are related to sterility. Functional annotation of transcripts with eQTL provides insights into the biological processes disrupted by sterility loci and guides prioritization of candidate genes. Using a conditional mapping approach, we identified eQTL dependent on interactions between loci, revealing a complex system of epistasis. Our results illuminate established patterns, including the role of the X chromosome in hybrid sterility. The integrated mapping approach we employed is

  1. Genome-wide screen for differentially methylated long noncoding RNAs identifies Esrp2 and lncRNA Esrp2-as regulated by enhancer DNA methylation with prognostic relevance for human breast cancer.

    Science.gov (United States)

    Heilmann, K; Toth, R; Bossmann, C; Klimo, K; Plass, C; Gerhauser, C

    2017-11-16

    The majority of long noncoding RNAs (lncRNAs) is still poorly characterized with respect to function, interactions with protein-coding genes, and mechanisms that regulate their expression. As for protein-coding RNAs, epigenetic deregulation of lncRNA expression by alterations in DNA methylation might contribute to carcinogenesis. To provide genome-wide information on lncRNAs aberrantly methylated in breast cancer we profiled tumors of the C3(1) SV40TAg mouse model by MCIp-seq (Methylated CpG Immunoprecipitation followed by sequencing). This approach detected 69 lncRNAs differentially methylated between tumor tissue and normal mammary glands, with 26 located in antisense orientation of a protein-coding gene. One of the hypomethylated lncRNAs, 1810019D21Rik (now called Esrp2-antisense (as)) was identified in proximity to the epithelial splicing regulatory protein 2 (Esrp2) that is significantly elevated in C3(1) tumors. ESRPs were shown previously to have a dual role in carcinogenesis. Both gain and loss have been associated with poor prognosis in human cancers, but the mechanisms regulating expression are not known. In-depth analyses indicate that coordinate overexpression of Esrp2 and Esrp2-as inversely correlates with DNA methylation. Luciferase reporter gene assays support co-expression of Esrp2 and the major short Esrp2-as variant from a bidirectional promoter, and transcriptional regulation by methylation of a proximal enhancer. Ultimately, this enhancer-based regulatory mechanism provides a novel explanation for tissue-specific expression differences and upregulation of Esrp2 during carcinogenesis. Knockdown of Esrp2-as reduced Esrp2 protein levels without affecting mRNA expression and resulted in an altered transcriptional profile associated with extracellular matrix (ECM), cell motility and reduced proliferation, whereas overexpression enhanced proliferation. Our findings not only hold true for the murine tumor model, but led to the identification of an

  2. A Taste of Algal Genomes from the Joint Genome Institute

    Energy Technology Data Exchange (ETDEWEB)

    Kuo, Alan; Grigoriev, Igor

    2012-06-17

    Algae play profound roles in aquatic food chains and the carbon cycle, can impose health and economic costs through toxic blooms, provide models for the study of symbiosis, photosynthesis, and eukaryotic evolution, and are candidate sources for bio-fuels; all of these research areas are part of the mission of DOE's Joint Genome Institute (JGI). To date JGI has sequenced, assembled, annotated, and released to the public the genomes of 18 species and strains of algae, sampling almost all of the major clades of photosynthetic eukaryotes. With more algal genomes currently undergoing analysis, JGI continues its commitment to driving forward basic and applied algal science. Among these ongoing projects are the pan-genome of the dominant coccolithophore Emiliania huxleyi, the interrelationships between the 4 genomes in the nucleomorph-containing Bigelowiella natans and Guillardia theta, and the search for symbiosis genes of lichens.

  3. Parasite Genome Projects and the Trypanosoma cruzi Genome Initiative

    Directory of Open Access Journals (Sweden)

    Wim Degrave

    1997-11-01

    Full Text Available Since the start of the human genome project, a great number of genome projects on other "model" organism have been initiated, some of them already completed. Several initiatives have also been started on parasite genomes, mainly through support from WHO/TDR, involving North-South and South-South collaborations, and great hopes are vested in that these initiatives will lead to new tools for disease control and prevention, as well as to the establishment of genomic research technology in developing countries. The Trypanosoma cruzi genome project, using the clone CL-Brener as starting point, has made considerable progress through the concerted action of more than 20 laboratories, most of them in the South. A brief overview of the current state of the project is given

  4. Theory of microbial genome evolution

    Science.gov (United States)

    Koonin, Eugene

    Bacteria and archaea have small genomes tightly packed with protein-coding genes. This compactness is commonly perceived as evidence of adaptive genome streamlining caused by strong purifying selection in large microbial populations. In such populations, even the small cost incurred by nonfunctional DNA because of extra energy and time expenditure is thought to be sufficient for this extra genetic material to be eliminated by selection. However, contrary to the predictions of this model, there exists a consistent, positive correlation between the strength of selection at the protein sequence level, measured as the ratio of nonsynonymous to synonymous substitution rates, and microbial genome size. By fitting the genome size distributions in multiple groups of prokaryotes to predictions of mathematical models of population evolution, we show that only models in which acquisition of additional genes is, on average, slightly beneficial yield a good fit to genomic data. Thus, the number of genes in prokaryotic genomes seems to reflect the equilibrium between the benefit of additional genes that diminishes as the genome grows and deletion bias. New genes acquired by microbial genomes, on average, appear to be adaptive. Evolution of bacterial and archaeal genomes involves extensive horizontal gene transfer and gene loss. Many microbes have open pangenomes, where each newly sequenced genome contains more than 10% `ORFans', genes without detectable homologues in other species. A simple, steady-state evolutionary model reveals two sharply distinct classes of microbial genes, one of which (ORFans) is characterized by effectively instantaneous gene replacement, whereas the other consists of genes with finite, distributed replacement rates. These findings imply a conservative estimate of at least a billion distinct genes in the prokaryotic genomic universe.

  5. OryzaGenome: Genome Diversity Database of Wild Oryza Species

    KAUST Repository

    Ohyanagi, Hajime

    2015-11-18

    The species in the genus Oryza, encompassing nine genome types and 23 species, are a rich genetic resource and may have applications in deeper genomic analyses aiming to understand the evolution of plant genomes. With the advancement of next-generation sequencing (NGS) technology, a flood of Oryza species reference genomes and genomic variation information has become available in recent years. This genomic information, combined with the comprehensive phenotypic information that we are accumulating in our Oryzabase, can serve as an excellent genotype-phenotype association resource for analyzing rice functional and structural evolution, and the associated diversity of the Oryza genus. Here we integrate our previous and future phenotypic/habitat information and newly determined genotype information into a united repository, named OryzaGenome, providing the variant information with hyperlinks to Oryzabase. The current version of OryzaGenome includes genotype information of 446 O. rufipogon accessions derived by imputation and of 17 accessions derived by imputation-free deep sequencing. Two variant viewers are implemented: SNP Viewer as a conventional genome browser interface and Variant Table as a textbased browser for precise inspection of each variant one by one. Portable VCF (variant call format) file or tabdelimited file download is also available. Following these SNP (single nucleotide polymorphism) data, reference pseudomolecules/ scaffolds/contigs and genome-wide variation information for almost all of the closely and distantly related wild Oryza species from the NIG Wild Rice Collection will be available in future releases. All of the resources can be accessed through http://viewer.shigen.info/oryzagenome/.

  6. Genome Projector: zoomable genome map with multiple views

    Directory of Open Access Journals (Sweden)

    Ikegami Keita

    2009-01-01

    Full Text Available Abstract Background Molecular biology data exist on diverse scales, from the level of molecules to -omics. At the same time, the data at each scale can be categorised into multiple layers, such as the genome, transcriptome, proteome, metabolome, and biochemical pathways. Due to the highly multi-layer and multi-dimensional nature of biological information, software interfaces for database browsing should provide an intuitive interface that allows for rapid migration across different views and scales. The Zoomable User Interface (ZUI and tabbed browsing have proven successful for this purpose in other areas, especially to navigate the vast information in the World Wide Web. Results This paper presents Genome Projector, a Web-based gateway for genomics information with a zoomable user interface using Google Maps API, equipped with four seamlessly accessible and searchable views: a circular genome map, a traditional genome map, a biochemical pathways map, and a DNA walk map. The Web application for 320 bacterial genomes is available at http://www.g-language.org/GenomeProjector/. All data and software including the source code, documentations, and development API are freely available under the GNU General Public License. Zoomable maps can be easily created from any image file using the development API, and an online data mapping service for Genome Projector is also available at our Web site. Conclusion Genome Projector is an intuitive Web application for browsing genomics information, implemented with a zoomable user interface and tabbed browsing utilising Google Maps API and Asynchronous JavaScript and XML (AJAX technology.

  7. Structural genomics and drug discovery: all in the family.

    Science.gov (United States)

    Weigelt, Johan; McBroom-Cerajewski, Linda D B; Schapira, Matthieu; Zhao, Yong; Arrowsmith, Cheryl H; Arrowmsmith, Cheryl H

    2008-02-01

    Structural genomics is starting to have an impact on the early stages of drug discovery and target validation through the contribution of new structures of known and potential drug targets, their complexes with ligands and protocols and reagents for additional structural work within a drug discovery program. Recent progress includes structures of targets from bacterial, viral and protozoan human pathogens, and human targets from known or potential druggable protein families such as, kinases, phosphatases, dehydrogenases/oxidoreductases, sulfo-, acetyl- and methyl-transferases, and a number of other key metabolic enzymes. Importantly, many of these structures contained ligands in the active sites, including for example, the first structures of target-bound therapeutics. Structural genomics of protein families combined with ligand discovery holds particular promise for advancing early stage discovery programs.

  8. Cloud computing for comparative genomics.

    Science.gov (United States)

    Wall, Dennis P; Kudtarkar, Parul; Fusaro, Vincent A; Pivovarov, Rimma; Patil, Prasad; Tonellato, Peter J

    2010-05-18

    Large comparative genomics studies and tools are becoming increasingly more compute-expensive as the number of available genome sequences continues to rise. The capacity and cost of local computing infrastructures are likely to become prohibitive with the increase, especially as the breadth of questions continues to rise. Alternative computing architectures, in particular cloud computing environments, may help alleviate this increasing pressure and enable fast, large-scale, and cost-effective comparative genomics strategies going forward. To test this, we redesigned a typical comparative genomics algorithm, the reciprocal smallest distance algorithm (RSD), to run within Amazon's Elastic Computing Cloud (EC2). We then employed the RSD-cloud for ortholog calculations across a wide selection of fully sequenced genomes. We ran more than 300,000 RSD-cloud processes within the EC2. These jobs were farmed simultaneously to 100 high capacity compute nodes using the Amazon Web Service Elastic Map Reduce and included a wide mix of large and small genomes. The total computation time took just under 70 hours and cost a total of $6,302 USD. The effort to transform existing comparative genomics algorithms from local compute infrastructures is not trivial. However, the speed and flexibility of cloud computing environments provides a substantial boost with manageable cost. The procedure designed to transform the RSD algorithm into a cloud-ready application is readily adaptable to similar comparative genomics problems.

  9. Cocoa/Cotton Comparative Genomics

    Science.gov (United States)

    With genome sequence from two members of the Malvaceae family recently made available, we are exploring syntenic relationships, gene content, and evolutionary trajectories between the cacao and cotton genomes. An assembly of cacao (Theobroma cacao) using Illumina and 454 sequence technology yielded ...

  10. Tetranucleotide frequencies in microbial genomes.

    Science.gov (United States)

    Noble, P A; Citek, R W; Ogunseitan, O A

    1998-04-01

    A computational strategy for determining the variability of long DNA sequences in microbial genomes is described. Composite portraits of bacterial genomes were obtained by computing tetranucleotide frequencies of sections of genomic DNA, converting the frequencies to color images and arranging the images according to their genetic position. The resulting images revealed that the tetranucleotide frequencies of genomic DNA sequences are highly conserved. Sections that were visibly different from those of the rest of the genome contained ribosomal RNA, bacteriophage, or undefined coding regions and had corresponding differences in the variances of tetranucleotide frequencies and GC content. Comparison of nine completely sequenced bacterial genomes showed that there was a nonlinear relationship between variances of the tetranucleotide frequencies and GC content, with the highest variances occurring in DNA sequences with low GC contents (less than 0.30 mol). High variances were also observed in DNA sequences having high GC contents (greater than 0.60 mol), but to a much lesser extent than DNA sequences having low GC contents. Differences in the tetranucleotide frequencies may be due to the mechanisms of intercellular genetic exchange and/or processes involved in maintaining intracellular genetic stability. Identification of sections that were different from those of the rest of the genome may provide information on the evolution and plasticity of bacterial genomes.

  11. Fueling Future with Algal Genomics

    Energy Technology Data Exchange (ETDEWEB)

    Grigoriev, Igor

    2012-07-05

    Algae constitute a major component of fundamental eukaryotic diversity, play profound roles in the carbon cycle, and are prominent candidates for biofuel production. The US Department of Energy Joint Genome Institute (JGI) is leading the world in algal genome sequencing (http://jgi.doe.gov/Algae) and contributes of the algal genome projects worldwide (GOLD database, 2012). The sequenced algal genomes offer catalogs of genes, networks, and pathways. The sequenced first of its kind genomes of a haptophyte E.huxleyii, chlorarachniophyte B.natans, and cryptophyte G.theta fill the gaps in the eukaryotic tree of life and carry unique genes and pathways as well as molecular fossils of secondary endosymbiosis. Natural adaptation to conditions critical for industrial production is encoded in algal genomes, for example, growth of A.anophagefferens at very high cell densities during the harmful algae blooms or a global distribution across diverse environments of E.huxleyii, able to live on sparse nutrients due to its expanded pan-genome. Communications and signaling pathways can be derived from simple symbiotic systems like lichens or complex marine algae metagenomes. Collectively these datasets derived from algal genomics contribute to building a comprehensive parts list essential for algal biofuel development.

  12. Bioinformatics for plant genome annotation

    NARCIS (Netherlands)

    Fiers, M.W.E.J.

    2006-01-01

    Large amounts of genome sequence data are available and much more will become available in the near future. A DNA sequence alone has, however, limited use. Genome annotation is required to assign biological interpretation to the DNA sequence. This thesis

  13. The promise of insect genomics

    DEFF Research Database (Denmark)

    Grimmelikhuijzen, Cornelis J P; Cazzamali, Giuseppe; Williamson, Michael

    2007-01-01

    Insects are the largest animal group in the world and are ecologically and economically extremely important. This importance of insects is reflected by the existence of currently 24 insect genome projects. Our perspective discusses the state-of-the-art of these genome projects and the impacts...

  14. Future Health Applications of Genomics

    Science.gov (United States)

    McBride, Colleen M.; Bowen, Deborah; Brody, Lawrence C.; Condit, Celeste M.; Croyle, Robert T.; Gwinn, Marta; Khoury, Muin J.; Koehly, Laura M.; Korf, Bruce R.; Marteau, Theresa M.; McLeroy, Kenneth; Patrick, Kevin; Valente, Thomas W.

    2014-01-01

    Despite the quickening momentum of genomic discovery, the communication, behavioral, and social sciences research needed for translating this discovery into public health applications has lagged behind. The National Human Genome Research Institute held a 2-day workshop in October 2008 convening an interdisciplinary group of scientists to recommend forward-looking priorities for translational research. This research agenda would be designed to redress the top three risk factors (tobacco use, poor diet, and physical inactivity) that contribute to the four major chronic diseases (heart disease, type 2 diabetes, lung disease, and many cancers) and account for half of all deaths worldwide. Three priority research areas were identified: (1) improving the public’s genetic literacy in order to enhance consumer skills; (2) gauging whether genomic information improves risk communication and adoption of healthier behaviors more than current approaches; and (3) exploring whether genomic discovery in concert with emerging technologies can elucidate new behavioral intervention targets. Important crosscutting themes also were identified, including the need to: (1) anticipate directions of genomic discovery; (2) take an agnostic scientific perspective in framing research questions asking whether genomic discovery adds value to other health promotion efforts; and (3) consider multiple levels of influence and systems that contribute to important public health problems. The priorities and themes offer a framework for a variety of stakeholders, including those who develop priorities for research funding, interdisciplinary teams engaged in genomics research, and policymakers grappling with how to use the products born of genomics research to address public health challenges. PMID:20409503

  15. Comparative Genomics of the Cucurbitaceae

    Science.gov (United States)

    The genome size for watermelon, melon, cucumber, and pumpkin is 425, 454, 367, and 502 Mbp, respectively, and considered medium size as compared with most other crops. Whole-genome duplication is common in angiosperm plants. Research has revealed a paleohexaploidy (') event in the common ancestor of...

  16. Genomic Organization of Fungal Plant Pathogenicity

    Science.gov (United States)

    The recent large scale genomic sequencing of fungal phytopathogens has revolutionized the study of plant pathogenesis. Initially, having whole genome sequence (WGS) data for individual fungal genomes has accelerated classical forward and reverse genetic approaches for identifying pathogenicity genes...

  17. International genomic evaluation methods for dairy cattle

    Science.gov (United States)

    Background Genomic evaluations are rapidly replacing traditional evaluation systems used for dairy cattle selection. Economies of scale in genomics promote cooperation across country borders. Genomic information can be transferred across countries using simple conversion equations, by modifying mult...

  18. RNA exosome regulates AID DNA mutator activity in the B cell genome

    Science.gov (United States)

    Pefanis, Evangelos; Basu, Uttiya

    2015-01-01

    The immunoglobulin diversification processes of somatic hypermutation and class switch recombination critically rely on transcription coupled targeting of AID to Ig loci in activated B lymphocytes. AID catalyzes deamination of cytidine deoxynucleotides on exposed single stranded DNA. In addition to driving immunoglobulin diversity, promiscuous targeting of AID mutagenic activity poses a deleterious threat to genomic stability. Recent genome-wide studies have uncovered pervasive AID activity throughout the B cell genome. It is increasingly apparent that AID activity is frequently targeted to genomic loci undergoing early transcription termination where RNA exosome promotes the resolution of stalled transcription complexes via co-transcriptional RNA degradation mechanisms. Here we review aspects and consequences of eukaryotic transcription that lead to early termination, RNA exosome recruitment, and ultimately targeting of AID mutagenic activity. PMID:26073986

  19. [The Washington summit: orange light for genome editing?].

    Science.gov (United States)

    Jordan, Bertrand

    2016-02-01

    The summit organised in early December 2015 considered in depth the various issues (technical, scientific, societal and ethical) raised by the prospect of genome editing using the extremely effective CRISPR system. Germline editing (for therapeutic or "enhancement" purposes) was stated to be irresponsible under current conditions, but the possibility that this could be considered in the future was not excluded; a mechanism for monitoring progress and possibly revising recommendations was proposed. © 2016 médecine/sciences – Inserm.

  20. Open chromatin in plant genomes.

    Science.gov (United States)

    Zhang, Wenli; Zhang, Tao; Wu, Yufeng; Jiang, Jiming

    2014-01-01

    Sensitivity to DNase I digestion is an indicator of the accessibility and configuration of chromatin in eukaryotic genomes. Open chromatin exhibits high sensitivity to DNase I cleavage. DNase I hypersensitive sites (DHSs) in eukaryotic genomes can be identified through DNase I treatment followed by sequencing (DNase-seq). DHSs are most frequently associated with various cis-regulatory DNA elements, including promoters, enhancers, and silencers in both animal and plant genomes. Genome-wide identification of DHSs provides an efficient method to interpret previously un-annotated regulatory DNA sequences. In this review, we provide an overview of the historical perspective of DHS research in eukaryotes. We summarize the main achievements of DHS research in model animal species and review the recent progress of DHS research in plants. We finally discuss possible future directions of using DHS as a tool in plant genomics research. © 2014 S. Karger AG, Basel.

  1. Pathophysiology of MDS: genomic aberrations.

    Science.gov (United States)

    Ichikawa, Motoshi

    2016-01-01

    Myelodysplastic syndromes (MDS) are characterized by clonal proliferation of hematopoietic stem/progenitor cells and their apoptosis, and show a propensity to progress to acute myelogenous leukemia (AML). Although MDS are recognized as neoplastic diseases caused by genomic aberrations of hematopoietic cells, the details of the genetic abnormalities underlying disease development have not as yet been fully elucidated due to difficulties in analyzing chromosomal abnormalities. Recent advances in comprehensive analyses of disease genomes including whole-genome sequencing technologies have revealed the genomic abnormalities in MDS. Surprisingly, gene mutations were found in approximately 80-90% of cases with MDS, and the novel mutations discovered with these technologies included previously unknown, MDS-specific, mutations such as those of the genes in the RNA-splicing machinery. It is anticipated that these recent studies will shed new light on the pathophysiology of MDS due to genomic aberrations.

  2. The success of structural genomics.

    Science.gov (United States)

    Terwilliger, Thomas C

    2011-07-01

    The International Conference on Structural Genomics (ICSG 2011, http://sgc.utoronto.ca/ICSG2011/index.php ) [corrected], held in Toronto Canada May 10-14, 2011 was a rich and exciting demonstration of how far structural genomics has come. Structural genomics has now matured into a field that includes both structure and the biology that structure enables. This has allowed targeting based on systematic approaches and on known biological importance and allows biochemical studies to be closely tied to structure determination. The wealth of purified proteins, clones, and chemical probes produced by structural genomics groups will enable a vast amount of follow-on research. The technologies, the structures, and the biology that were described at the meeting were at the cutting edge of science. Structural genomics has become a success.

  3. Embryogenomics: developmental biology meets genomics.

    Science.gov (United States)

    Ko, M S

    2001-12-01

    Fundamental questions in developmental biology are: what genes are expressed, where and when they are expressed, what is the level of expression and how are these programs changed by the functional and structural alteration of genes? These questions have been addressed by studying one gene at a time, but a new research field that handles many genes in parallel is emerging. The methodology is at the interface of large-scale genomics approaches and developmental biology. Genomics needs developmental biology because one of the goals of genomics--collection and analysis of all genes in an organism--cannot be completed without working on embryonic tissues in which many genes are uniquely expressed. However, developmental biology needs genomics--the high-throughput approaches of genomics generate information about genes and pathways that can give an integrated view of complex processes. This article discusses these new approaches and their applications to mammalian developmental biology.

  4. The mitochondrial genomes of the acoelomorph worms Paratomella rubra, Isodiametra pulchra and Archaphanostoma ylvae.

    Science.gov (United States)

    Robertson, Helen E; Lapraz, François; Egger, Bernhard; Telford, Maximilian J; Schiffer, Philipp H

    2017-05-12

    Acoels are small, ubiquitous - but understudied - marine worms with a very simple body plan. Their internal phylogeny is still not fully resolved, and the position of their proposed phylum Xenacoelomorpha remains debated. Here we describe mitochondrial genome sequences from the acoels Paratomella rubra and Isodiametra pulchra, and the complete mitochondrial genome of the acoel Archaphanostoma ylvae. The P. rubra and A. ylvae sequences are typical for metazoans in size and gene content. The larger I. pulchra  mitochondrial genome contains both ribosomal genes, 21 tRNAs, but only 11 protein-coding genes. We find evidence suggesting a duplicated sequence in the I. pulchra mitochondrial genome. The P. rubra, I. pulchra and A. ylvae mitochondria have a unique genome organisation in comparison to other metazoan mitochondrial genomes. We found a large degree of protein-coding gene and tRNA overlap with little non-coding sequence in the compact P. rubra genome. Conversely, the A. ylvae and I. pulchra genomes have many long non-coding sequences between genes, likely driving genome size expansion in the latter. Phylogenetic trees inferred from mitochondrial genes retrieve Xenacoelomorpha as an early branching taxon in the deuterostomes. Sequence divergence analysis between P. rubra sampled in England and Spain indicates cryptic diversity.

  5. Genomes-based phylogeny of the genus Xanthomonas

    Directory of Open Access Journals (Sweden)

    Rodriguez-R Luis M

    2012-03-01

    Full Text Available Abstract Background The genus Xanthomonas comprises several plant pathogenic bacteria affecting a wide range of hosts. Despite the economic, industrial and biological importance of Xanthomonas, the classification and phylogenetic relationships within the genus are still under active debate. Some of the relationships between pathovars and species have not been thoroughly clarified, with old pathovars becoming new species. A change in the genus name has been recently suggested for Xanthomonas albilineans, an early branching species currently located in this genus, but a thorough phylogenomic reconstruction would aid in solving these and other discrepancies in this genus. Results Here we report the results of the genome-wide analysis of DNA sequences from 989 orthologous groups from 17 Xanthomonas spp. genomes available to date, representing all major lineages within the genus. The phylogenetic and computational analyses used in this study have been automated in a Perl package designated Unus, which provides a framework for phylogenomic analyses which can be applied to other datasets at the genomic level. Unus can also be easily incorporated into other phylogenomic pipelines. Conclusions Our phylogeny agrees with previous phylogenetic topologies on the genus, but revealed that the genomes of Xanthomonas citri and Xanthomonas fuscans belong to the same species, and that of Xanthomonas albilineans is basal to the joint clade of Xanthomonas and Xylella fastidiosa. Genome reduction was identified in the species Xanthomonas vasicola in addition to the previously identified reduction in Xanthomonas albilineans. Lateral gene transfer was also observed in two gene clusters.

  6. A Three-Dimensional Model of the Yeast Genome

    Science.gov (United States)

    Noble, William; Duan, Zhi-Jun; Andronescu, Mirela; Schutz, Kevin; McIlwain, Sean; Kim, Yoo Jung; Lee, Choli; Shendure, Jay; Fields, Stanley; Blau, C. Anthony

    Layered on top of information conveyed by DNA sequence and chromatin are higher order structures that encompass portions of chromosomes, entire chromosomes, and even whole genomes. Interphase chromosomes are not positioned randomly within the nucleus, but instead adopt preferred conformations. Disparate DNA elements co-localize into functionally defined aggregates or factories for transcription and DNA replication. In budding yeast, Drosophila and many other eukaryotes, chromosomes adopt a Rabl configuration, with arms extending from centromeres adjacent to the spindle pole body to telomeres that abut the nuclear envelope. Nonetheless, the topologies and spatial relationships of chromosomes remain poorly understood. Here we developed a method to globally capture intra- and inter-chromosomal interactions, and applied it to generate a map at kilobase resolution of the haploid genome of Saccharomyces cerevisiae. The map recapitulates known features of genome organization, thereby validating the method, and identifies new features. Extensive regional and higher order folding of individual chromosomes is observed. Chromosome XII exhibits a striking conformation that implicates the nucleolus as a formidable barrier to interaction between DNA sequences at either end. Inter-chromosomal contacts are anchored by centromeres and include interactions among transfer RNA genes, among origins of early DNA replication and among sites where chromosomal breakpoints occur. Finally, we constructed a three-dimensional model of the yeast genome. Our findings provide a glimpse of the interface between the form and function of a eukaryotic genome.

  7. Functional genomics of physiological plasticity and local adaptation in killifish.

    Science.gov (United States)

    Whitehead, Andrew; Galvez, Fernando; Zhang, Shujun; Williams, Larissa M; Oleksiak, Marjorie F

    2011-01-01

    Evolutionary solutions to the physiological challenges of life in highly variable habitats can span the continuum from evolution of a cosmopolitan plastic phenotype to the evolution of locally adapted phenotypes. Killifish (Fundulus sp.) have evolved both highly plastic and locally adapted phenotypes within different selective contexts, providing a comparative system in which to explore the genomic underpinnings of physiological plasticity and adaptive variation. Importantly, extensive variation exists among populations and species for tolerance to a variety of stressors, and we exploit this variation in comparative studies to yield insights into the genomic basis of evolved phenotypic variation. Notably, species of Fundulus occupy the continuum of osmotic habitats from freshwater to marine and populations within Fundulus heteroclitus span far greater variation in pollution tolerance than across all species of fish. Here, we explore how transcriptome regulation underpins extreme physiological plasticity on osmotic shock and how genomic and transcriptomic variation is associated with locally evolved pollution tolerance. We show that F. heteroclitus quickly acclimate to extreme osmotic shock by mounting a dramatic rapid transcriptomic response including an early crisis control phase followed by a tissue remodeling phase involving many regulatory pathways. We also show that convergent evolution of locally adapted pollution tolerance involves complex patterns of gene expression and genome sequence variation, which is confounded with body-weight dependence for some genes. Similarly, exploiting the natural phenotypic variation associated with other established and emerging model organisms is likely to greatly accelerate the pace of discovery of the genomic basis of phenotypic variation.

  8. Genomes-based phylogeny of the genus Xanthomonas

    Science.gov (United States)

    2012-01-01

    Background The genus Xanthomonas comprises several plant pathogenic bacteria affecting a wide range of hosts. Despite the economic, industrial and biological importance of Xanthomonas, the classification and phylogenetic relationships within the genus are still under active debate. Some of the relationships between pathovars and species have not been thoroughly clarified, with old pathovars becoming new species. A change in the genus name has been recently suggested for Xanthomonas albilineans, an early branching species currently located in this genus, but a thorough phylogenomic reconstruction would aid in solving these and other discrepancies in this genus. Results Here we report the results of the genome-wide analysis of DNA sequences from 989 orthologous groups from 17 Xanthomonas spp. genomes available to date, representing all major lineages within the genus. The phylogenetic and computational analyses used in this study have been automated in a Perl package designated Unus, which provides a framework for phylogenomic analyses which can be applied to other datasets at the genomic level. Unus can also be easily incorporated into other phylogenomic pipelines. Conclusions Our phylogeny agrees with previous phylogenetic topologies on the genus, but revealed that the genomes of Xanthomonas citri and Xanthomonas fuscans belong to the same species, and that of Xanthomonas albilineans is basal to the joint clade of Xanthomonas and Xylella fastidiosa. Genome reduction was identified in the species Xanthomonas vasicola in addition to the previously identified reduction in Xanthomonas albilineans. Lateral gene transfer was also observed in two gene clusters. PMID:22443110

  9. Aquatic Plant Genomics: Advances, Applications, and Prospects

    Science.gov (United States)

    Li, Gaojie; Yang, Jingjing

    2017-01-01

    Genomics is a discipline in genetics that studies the genome composition of organisms and the precise structure of genes and their expression and regulation. Genomics research has resolved many problems where other biological methods have failed. Here, we summarize advances in aquatic plant genomics with a focus on molecular markers, the genes related to photosynthesis and stress tolerance, comparative study of genomes and genome/transcriptome sequencing technology. PMID:28900619

  10. Recombination drives vertebrate genome contraction.

    Science.gov (United States)

    Nam, Kiwoong; Ellegren, Hans

    2012-01-01

    Selective and/or neutral processes may govern variation in DNA content and, ultimately, genome size. The observation in several organisms of a negative correlation between recombination rate and intron size could be compatible with a neutral model in which recombination is mutagenic for length changes. We used whole-genome data on small insertions and deletions within transposable elements from chicken and zebra finch to demonstrate clear links between recombination rate and a number of attributes of reduced DNA content. Recombination rate was negatively correlated with the length of introns, transposable elements, and intergenic spacer and with the rate of short insertions. Importantly, it was positively correlated with gene density, the rate of short deletions, the deletion bias, and the net change in sequence length. All these observations point at a pattern of more condensed genome structure in regions of high recombination. Based on the observed rates of small insertions and deletions and assuming that these rates are representative for the whole genome, we estimate that the genome of the most recent common ancestor of birds and lizards has lost nearly 20% of its DNA content up until the present. Expansion of transposable elements can counteract the effect of deletions in an equilibrium mutation model; however, since the activity of transposable elements has been low in the avian lineage, the deletion bias is likely to have had a significant effect on genome size evolution in dinosaurs and birds, contributing to the maintenance of a small genome. We also demonstrate that most of the observed correlations between recombination rate and genome contraction parameters are seen in the human genome, including for segregating indel polymorphisms. Our data are compatible with a neutral model in which recombination drives vertebrate genome size evolution and gives no direct support for a role of natural selection in this process.

  11. Privacy in the Genomic Era

    Science.gov (United States)

    NAVEED, MUHAMMAD; AYDAY, ERMAN; CLAYTON, ELLEN W.; FELLAY, JACQUES; GUNTER, CARL A.; HUBAUX, JEAN-PIERRE; MALIN, BRADLEY A.; WANG, XIAOFENG

    2015-01-01

    Genome sequencing technology has advanced at a rapid pace and it is now possible to generate highly-detailed genotypes inexpensively. The collection and analysis of such data has the potential to support various applications, including personalized medical services. While the benefits of the genomics revolution are trumpeted by the biomedical community, the increased availability of such data has major implications for personal privacy; notably because the genome has certain essential features, which include (but are not limited to) (i) an association with traits and certain diseases, (ii) identification capability (e.g., forensics), and (iii) revelation of family relationships. Moreover, direct-to-consumer DNA testing increases the likelihood that genome data will be made available in less regulated environments, such as the Internet and for-profit companies. The problem of genome data privacy thus resides at the crossroads of computer science, medicine, and public policy. While the computer scientists have addressed data privacy for various data types, there has been less attention dedicated to genomic data. Thus, the goal of this paper is to provide a systematization of knowledge for the computer science community. In doing so, we address some of the (sometimes erroneous) beliefs of this field and we report on a survey we conducted about genome data privacy with biomedical specialists. Then, after characterizing the genome privacy problem, we review the state-of-the-art regarding privacy attacks on genomic data and strategies for mitigating such attacks, as well as contextualizing these attacks from the perspective of medicine and public policy. This paper concludes with an enumeration of the challenges for genome data privacy and presents a framework to systematize the analysis of threats and the design of countermeasures as the field moves forward. PMID:26640318

  12. Materials Genome Initiative

    Science.gov (United States)

    Vickers, John

    2015-01-01

    The Materials Genome Initiative (MGI) project element is a cross-Center effort that is focused on the integration of computational tools to simulate manufacturing processes and materials behavior. These computational simulations will be utilized to gain understanding of processes and materials behavior to accelerate process development and certification to more efficiently integrate new materials in existing NASA projects and to lead to the design of new materials for improved performance. This NASA effort looks to collaborate with efforts at other government agencies and universities working under the national MGI. MGI plans to develop integrated computational/experimental/ processing methodologies for accelerating discovery and insertion of materials to satisfy NASA's unique mission demands. The challenges include validated d