WorldWideScience

Sample records for sv40 early genomic

  1. Reconstitution of wild type viral DNA in simian cells transfected with early and late SV40 defective genomes.

    Science.gov (United States)

    O'Neill, F J; Gao, Y; Xu, X

    1993-11-01

    The DNAs of polyomaviruses ordinarily exist as a single circular molecule of approximately 5000 base pairs. Variants of SV40, BKV and JCV have been described which contain two complementing defective DNA molecules. These defectives, which form a bipartite genome structure, contain either the viral early region or the late region. The defectives have the unique property of being able to tolerate variable sized reiterations of regulatory and terminus region sequences, and portions of the coding region. They can also exchange coding region sequences with other polyomaviruses. It has been suggested that the bipartite genome structure might be a stage in the evolution of polyomaviruses which can uniquely sustain genome and sequence diversity. However, it is not known if the regulatory and terminus region sequences are highly mutable. Also, it is not known if the bipartite genome structure is reversible and what the conditions might be which would favor restoration of the monomolecular genome structure. We addressed the first question by sequencing the reiterated regulatory and terminus regions of E- and L-SV40 DNAs. This revealed a large number of mutations in the regulatory regions of the defective genomes, including deletions, insertions, rearrangements and base substitutions. We also detected insertions and base substitutions in the T-antigen gene. We addressed the second question by introducing into permissive simian cells, E- and L-SV40 genomes which had been engineered to contain only a single regulatory region. Analysis of viral DNA from transfected cells demonstrated recombined genomes containing a wild type monomolecular DNA structure. However, the complete defectives, containing reiterated regulatory regions, could often compete away the wild type genomes. The recombinant monomolecular genomes were isolated, cloned and found to be infectious. All of the DNA alterations identified in one of the regulatory regions of E-SV40 DNA were present in the recombinant

  2. Differential effects of simple repeating DNA sequences on gene expression from the SV40 early promoter.

    Science.gov (United States)

    Amirhaeri, S; Wohlrab, F; Wells, R D

    1995-02-17

    The influence of simple repeat sequences, cloned into different positions relative to the SV40 early promoter/enhancer, on the transient expression of the chloramphenicol acetyltransferase (CAT) gene was investigated. Insertion of (G)29.(C)29 in either orientation into the 5'-untranslated region of the CAT gene reduced expression in CV-1 cells 50-100 fold when compared with controls with random sequence inserts. Analysis of CAT-specific mRNA levels demonstrated that the effect was due to a reduction of CAT mRNA production rather than to posttranscriptional events. In contrast, insertion of the same insert in either orientation upstream of the promoter-enhancer or downstream of the gene stimulated gene expression 2-3-fold. These effects could be reversed by cotransfection of a competitor plasmid carrying (G)25.(C)25 sequences. The results suggest that a G.C-binding transcription factor modulates gene expression in this system and that promoter strength can be regulated by providing protein-binding sites in trans. Although constructs containing longer tracts of alternating (C-G), (T-G), or (A-T) sequences inhibited CAT expression when inserted in the 5'-untranslated region of the CAT gene, the amount of CAT mRNA was unaffected. Hence, these inhibitions must be due to posttranscriptional events, presumably at the level of translation. These effects of microsatellite sequences on gene expression are discussed with respect to recent data on related simple repeat sequences which cause several human genetic diseases.

  3. Early superoxide dismutase alterations during SV40-transformation of human fibroblasts.

    Science.gov (United States)

    Bravard, A; Hoffschir, F; Sabatier, L; Ricoul, M; Pinton, A; Cassingena, R; Estrade, S; Luccioni, C; Dutrillaux, B

    1992-11-11

    The expression of superoxide dismutases (SOD) 1 and 2 was studied in 4 clones of human fibroblasts after their infection by simian virus 40 (SV40), in parallel with the alterations of chromosomes 21 and chromosome 6q arms, carrying the genes that encode for SOD1 and SOD2 respectively. For all clones, a similar scheme with 2 main phases was observed for both chromosome and SOD variations. The first phase, defined as the pre-crisis phase, was characterized by chromosomal instability, but maintenance of normal numbers of chromosome 6q arms and chromosomes 21. The level of SOD2 mRNA was high, while SOD2 activity and immunoreactive protein were low. SOD1 protein and activity were decreased. In the second phase, defined as the post-crisis phase, the accumulation of clonal chromosomal rearrangements led to the loss of 6q arms, while the number of chromosomes 21 remained normal. SOD2 mRNA level was decreased and SOD2 immunoreactive protein and activity remained low. SOD1 protein and activity increased with passages, reaching values similar to those of control cells at late passages. As in established SV40-transformed human fibroblast cell lines, good correlation was found between SOD2 activity and the relative number of 6q arms. These results allow us to reconstruct the sequence of events leading to the decrease of SOD2, a possible tumor-suppressor gene, during the process of SV40-transformation of human fibroblasts.

  4. Hyperacetylation and differential deacetylation of histones H4 and H3 define two distinct classes of acetylated SV40 chromosomes early in infection

    International Nuclear Information System (INIS)

    Milavetz, Barry

    2004-01-01

    SV40 chromosomes undergoing encapsidation late in infection and SV40 chromatin in virions are hyperacetylated on histones H4 and H3. However, the fate of the SV40 chromosomes containing hyperacetylated histones in a subsequent round of infection has not been determined. In order to determine if SV40 chromosomes undergo changes in the extent of histone acetylation during early infection, we have analyzed SV40 chromosomes isolated 30 min and 3 h postinfection by quantitative ChIP assays, depletion ChIP assays, competitive ChIP assays, and ChIP assays combined with restriction endonuclease sensitivity using antibodies to hyperacetylated histones H4 and H3. We have shown that at 30 min postinfection, the hyperacetylated histones are associated with two distinct classes of SV40 chromosomes. One form is hyperacetylated specifically on histone H4 while a second form is hyperacetylated on both H4 and H3. Both forms of chromosomes appear to contain a nucleosome-free promoter region. Over the course of the next few hours of infection, the class of SV40 chromosomes hyperacetylated on only H4 is reduced or completely eliminated through deacetylation

  5. Biological activity of SV40 DNA

    International Nuclear Information System (INIS)

    Abrahams, P.J.

    1978-01-01

    This thesis deals with a study on the biological activity of SV40 DNA. The transforming activity of SV40 DNA and DNA fragments is investigated in order to define as precisely as possible the area of the viral genome that is involved in the transformation. The infectivity of SV40 DNA is used to study the defective repair mechanisms of radiation damages of human xeroderma pigmentosum cells. (C.F.)

  6. Random integration of SV40 in SV40-transformed, immortalized human fibroblasts.

    Science.gov (United States)

    Hara, H; Kaji, H

    1987-02-01

    We have studied the relationship between immortalization of SV40-transformed human embryonic fibroblasts and their SV40 integration sites. From several independently transformed cell pools, we have isolated clones which do not harbor unintegrated SV40 DNA. We have analysed whole-cell DNA from these clones, using the Southern blot method. Our results suggest that no specific integration sites in the cellular genome exist which are a prerequisite for the immortalization process. Although some integration sites were found to be predominant in pre-crisis clones, they could not be detected in the post-crisis clones. This suggests that none of these predominating sites is selected for during the crisis period.

  7. Ultraviolet radiation inactivates SV40 by disrupting at least four genetic functions

    International Nuclear Information System (INIS)

    Brown, T.C.; Cerutti, P.A.

    1986-01-01

    The most UV sensitive region within the SV40 viral genome contains the transcriptional promotors and enhancers for the early and late viral genes plus part of the origin of DNA replication. Lesions within this regulatory region are 3.2-fold more effective in inactivating viral DNA than is the same amount of damage randomly distributed throughout the viral genome. The region least sensitive to damage lies within the coding portion of the viral coat protein genes, which are expressed only late in infection and would therefore be transcribed from undamaged progeny viral genomes, provided DNA replication occurs. Damage within this region is only 45% as effective in inactivating viral DNA as are randomly distributed lesions. Thus there is a 7-fold difference in the lethal effect of DNA damage within the most and least sensitive regions of the viral genome. Intermediate sensitivities are observed within the transcribed portion of the viral A gene, coding for the T antigen whose expression is required early in infection, and in a region at the terminus of DNA replication. The sum of the individual sensitivities for all regions of the SV40 genome is equal to the total sensitivity of viral DNA subjected to random damage. (author)

  8. The Influence of SV40 polyA on Gene Expression of Baculovirus Expression Vector Systems.

    Directory of Open Access Journals (Sweden)

    Tamer Z Salem

    Full Text Available The simian virus 40 polyadenylation signal (SV40 polyA has been routinely inserted downstream of the polyhedrin promoter in many baculovirus expression vector systems (BEVS. In the baculovirus prototype Autographa californica multiple nucleopolyhedrovirus (AcMNPV, the polyhedrin promoter (very late promoter transcribes its gene by a viral RNA polymerase therefore there is no supporting evidence that SV40 polyA is required for the proper gene expression under the polyhedrin promoter. Moreover, the effect of the SV40 polyA sequence on the polyhedrin promoter activity has not been tested either at its natural polyhedrin locus or in other loci in the viral genome. In order to test the significance of adding the SV40 polyA sequence on gene expression, the expression of the enhanced green fluorescent protein (egfp was evaluated with and without the presence of SV40 polyA under the control of the polyhedrin promoter at different genomic loci (polyherin, ecdysteroid UDP-glucosyltransferase (egt, and gp37. In this study, spectrofluorometry and western blot showed reduction of EGFP protein for all recombinant viruses with SV40 polyA, whereas qPCR showed an increase in the egfp mRNA levels. Therefore, we conclude that SV40 polyA increases mRNA levels but decreases protein production in the BEVS when the polyhedrin promoter is used at different loci. This work suggests that SV40 polyA in BEVSs should be replaced by an AcMNPV late gene polyA for optimal protein production or left untouched for optimal RNA production (RNA interference applications.

  9. The Influence of SV40 polyA on Gene Expression of Baculovirus Expression Vector Systems

    Science.gov (United States)

    Salem, Tamer Z.; Seaborn, Craig P.; Turney, Colin M.; Xue, Jianli; Shang, Hui; Cheng, Xiao-Wen

    2015-01-01

    The simian virus 40 polyadenylation signal (SV40 polyA) has been routinely inserted downstream of the polyhedrin promoter in many baculovirus expression vector systems (BEVS). In the baculovirus prototype Autographa californica multiple nucleopolyhedrovirus (AcMNPV), the polyhedrin promoter (very late promoter) transcribes its gene by a viral RNA polymerase therefore there is no supporting evidence that SV40 polyA is required for the proper gene expression under the polyhedrin promoter. Moreover, the effect of the SV40 polyA sequence on the polyhedrin promoter activity has not been tested either at its natural polyhedrin locus or in other loci in the viral genome. In order to test the significance of adding the SV40 polyA sequence on gene expression, the expression of the enhanced green fluorescent protein (egfp) was evaluated with and without the presence of SV40 polyA under the control of the polyhedrin promoter at different genomic loci (polyherin, ecdysteroid UDP-glucosyltransferase (egt), and gp37). In this study, spectrofluorometry and western blot showed reduction of EGFP protein for all recombinant viruses with SV40 polyA, whereas qPCR showed an increase in the egfp mRNA levels. Therefore, we conclude that SV40 polyA increases mRNA levels but decreases protein production in the BEVS when the polyhedrin promoter is used at different loci. This work suggests that SV40 polyA in BEVSs should be replaced by an AcMNPV late gene polyA for optimal protein production or left untouched for optimal RNA production (RNA interference applications). PMID:26659470

  10. Pleomorphic adenoma cells vary in their susceptibility to SV40 transformation depending on the initial karyotype.

    Science.gov (United States)

    Kazmierczak, B; Thode, B; Bartnitzke, S; Bullerdiek, J; Schloot, W

    1992-07-01

    Chromosomal aberrations involving 8q12 or 12q13-15 characterize two cytogenetic subgroups of salivary gland pleomorphic adenomas. As the tumors of the two groups differ in their clinical and histologic characteristics, we decided to determine their susceptibility to SV40 transformation. We transfected cell cultures from 13 adenomas with aberrations involving 8q12 and from seven adenomas with involvement of 12q13-15 using an SV40 plasmid coding for the early region of the viral genome. Whereas all cultures with aberrations of 12q13-15 showed transformed foci, only 4 of the 13 cultures with 8q12 abnormalities showed foci of transformed cells. We also observed a much higher immortalization rate in the first group (3/7 vs. 1/13). All successfully transformed tumor cell cultures showed a relatively stable karyotype in the pre-crisis stage and a high mitotic index, were T-antigen positive, and had an extended life span in vitro.

  11. SV40 host-substituted variants: a new look at the monkey DNA inserts and recombinant junctions.

    Science.gov (United States)

    Singer, Maxine; Winocour, Ernest

    2011-04-10

    The available monkey genomic data banks were examined in order to determine the chromosomal locations of the host DNA inserts in 8 host-substituted SV40 variant DNAs. Five of the 8 variants contained more than one linked monkey DNA insert per tandem repeat unit and in all cases but one, the 19 monkey DNA inserts in the 8 variants mapped to different locations in the monkey genome. The 50 parental DNAs (32 monkey and 18 SV40 DNA segments) which spanned the crossover and flanking regions that participated in monkey/monkey and monkey/SV40 recombinations were characterized by substantial levels of microhomology of up to 8 nucleotides in length; the parental DNAs also exhibited direct and inverted repeats at or adjacent to the crossover sequences. We discuss how the host-substituted SV40 variants arose and the nature of the recombination mechanisms involved. Copyright © 2011 Elsevier Inc. All rights reserved.

  12. Effect of caffeine on the ultraviolet light induction of SV40 virus from transformed hamster cells

    International Nuclear Information System (INIS)

    Zamansky, G.B.; Kleinman, L.F.; Little, J.B.; Black, P.H.; Kaplan, J.C.

    1976-01-01

    The effect of caffeine on the uv light induction of SV40 virus from two transformed hamster cell lines heterogeneous for the induction of infectious virus was studied. The amount of virus induced was significantly increased in both cell lines when exposure to uv light was followed by treatment with caffeine. Caffeine in the absence of uv irradiation did not stimulate virus induction, nor did it stimulate SV40 replication in a lytic infection. There was an apparent difference in the concentrations of caffeine which maximally stimulated SV40 virus induction in the two cell lines. This effect could not be explained by differences in cell survival after exposure to uv light and caffeine. Since caffeine is known to cause the accumulation of gaps formed in DNA during postreplication repair of uv-irradiated rodent cells, our results support the hypothesis that the formation of gaps or breaks in DNA is an important early step in virus induction

  13. Transformation and radiosensitivity of human diploid skin fibroblasts transfected with activated ras oncogene and SV40 T-antigen.

    Science.gov (United States)

    Su, L N; Little, J B

    1992-08-01

    Three normal human diploid cell strains were transfected with an activated Ha-ras oncogene (EJ ras) or SV40 T-antigen. Multiple clones were examined for morphological alterations, growth requirements, ability to grow under anchorage independent conditions, immortality and tumorigenicity in nude mice. Clones expressing SV40 T-antigen alone or in combination with ras protein p21 were significantly radioresistant as compared with their parent cells or clones transfected with the neo gene only. This radioresistant phenotype persisted in post-crisis, immortalized cell lines. Cells transfected with EJ ras alone showed no morphological alterations nor significant changes in radiosensitivity. Cell clones expressing ras and/or SV40 T-antigen showed a reduced requirement for serum supplements, an increase in aneuploidy and chromosomal aberrations, and enhanced growth in soft agar as an early cellular response to SV40 T-antigen expression. The sequential order of transfection with SV40 T-antigen and ras influenced radio-sensitivity but not the induction of morphological changes. These data suggest that expression of the SV40 T-antigen but not activated Ha-ras plays an important role in the radiosensitivity of human diploid cells. The radioresistant phenotype in SV40 T transfected cells was not related to the enhanced level of genetic instability seen in pre-crisis and newly immortalized cells, nor to the process of immortalization itself.

  14. Characterization of SV-40 Tag rats as a model to study prostate cancer

    International Nuclear Information System (INIS)

    Harper, Curt E; Patel, Brijesh B; Cook, Leah M; Wang, Jun; Shirai, Tomoyuki; Eltoum, Isam A; Lamartiniere, Coral A

    2009-01-01

    Prostate cancer is the second most frequently diagnosed cancer in men. Animal models that closely mimic clinical disease in humans are invaluable tools in the fight against prostate cancer. Recently, a Simian Virus-40 T-antigen (SV-40 Tag) targeted probasin promoter rat model was developed. This model, however, has not been extensively characterized; hence we have investigated the ontogeny of prostate cancer and determined the role of sex steroid receptor and insulin-like growth factor-1 (IGF-1) signaling proteins in the novel SV-40 Tag rat. The SV-40 Tag rat was histopathologically characterized for time to tumor development, incidence and multiplicity and in the ventral, dorsal, lateral and anterior lobes of the prostate. Immunoassay techniques were employed to measure cell proliferation, apoptosis, and sex steroid receptor and growth factor signaling-related proteins. Steroid hormone concentrations were measured via coated well enzyme linked immunosorbent assay (ELISA) kits. Prostatic intraepithelial neoplasia (PIN) and well-differentiated prostate cancer developed as early as 2 and 10 weeks of age, respectively in the ventral prostate (VP) followed by in the dorsolateral (DLP). At 8 weeks of age, testosterone and dihydrotestosterone (DHT) concentrations in SV-40 Tag rats were increased when compared to non-transgenic rats. High cell proliferation and apoptotic indices were found in VP and DLP of transgenic rats. Furthermore, we observed increased protein expression of androgen receptor, IGF-1, IGF-1 receptor, and extracellular signal-regulated kinases in the prostates of SV-40 Tag rats. The rapid development of PIN and prostate cancer in conjunction with the large prostate size makes the SV-40 Tag rat a useful model for studying prostate cancer. This study provides evidence of the role of sex steroid and growth factor proteins in prostate cancer development and defines appropriate windows of opportunity for preclinical trials and aids in the rational design of

  15. Generation of a Vero-Based Packaging Cell Line to Produce SV40 Gene Delivery Vectors for Use in Clinical Gene Therapy Studies

    Directory of Open Access Journals (Sweden)

    Miguel G. Toscano

    2017-09-01

    Full Text Available Replication-defective (RD recombinant simian virus 40 (SV40-based gene delivery vectors hold a great potential for clinical applications because of their presumed non-immunogenicity and capacity to induce immune tolerance to the transgene products in humans. However, the clinical use of SV40 vectors has been hampered by the lack of a packaging cell line that produces replication-competent (RC free SV40 particles in the vector production process. To solve this problem, we have adapted the current SV40 vector genome used for the production of vector particles and generated a novel Vero-based packaging cell line named SuperVero that exclusively expresses the SV40 large T antigen. SuperVero cells produce similar numbers of SV40 vector particles compared to the currently used packaging cell lines, albeit in the absence of contaminating RC SV40 particles. Our unique SV40 vector platform named SVac paves the way to clinically test a whole new generation of SV40-based therapeutics for a broad range of important diseases.

  16. Impaired CK1 delta activity attenuates SV40-induced cellular transformation in vitro and mouse mammary carcinogenesis in vivo.

    Directory of Open Access Journals (Sweden)

    Heidrun Hirner

    Full Text Available Simian virus 40 (SV40 is a powerful tool to study cellular transformation in vitro, as well as tumor development and progression in vivo. Various cellular kinases, among them members of the CK1 family, play an important role in modulating the transforming activity of SV40, including the transforming activity of T-Ag, the major transforming protein of SV40, itself. Here we characterized the effects of mutant CK1δ variants with impaired kinase activity on SV40-induced cell transformation in vitro, and on SV40-induced mammary carcinogenesis in vivo in a transgenic/bi-transgenic mouse model. CK1δ mutants exhibited a reduced kinase activity compared to wtCK1δ in in vitro kinase assays. Molecular modeling studies suggested that mutation N172D, located within the substrate binding region, is mainly responsible for impaired mutCK1δ activity. When stably over-expressed in maximal transformed SV-52 cells, CK1δ mutants induced reversion to a minimal transformed phenotype by dominant-negative interference with endogenous wtCK1δ. To characterize the effects of CK1δ on SV40-induced mammary carcinogenesis, we generated transgenic mice expressing mutant CK1δ under the control of the whey acidic protein (WAP gene promoter, and crossed them with SV40 transgenic WAP-T-antigen (WAP-T mice. Both WAP-T mice as well as WAP-mutCK1δ/WAP-T bi-transgenic mice developed breast cancer. However, tumor incidence was lower and life span was significantly longer in WAP-mutCK1δ/WAP-T bi-transgenic animals. The reduced CK1δ activity did not affect early lesion formation during tumorigenesis, suggesting that impaired CK1δ activity reduces the probability for outgrowth of in situ carcinomas to invasive carcinomas. The different tumorigenic potential of SV40 in WAP-T and WAP-mutCK1δ/WAP-T tumors was also reflected by a significantly different expression of various genes known to be involved in tumor progression, specifically of those involved in wnt-signaling and DNA

  17. SV40 utilizes ATM kinase activity to prevent non-homologous end joining of broken viral DNA replication products.

    Directory of Open Access Journals (Sweden)

    Gregory A Sowd

    2014-12-01

    Full Text Available Simian virus 40 (SV40 and cellular DNA replication rely on host ATM and ATR DNA damage signaling kinases to facilitate DNA repair and elicit cell cycle arrest following DNA damage. During SV40 DNA replication, ATM kinase activity prevents concatemerization of the viral genome whereas ATR activity prevents accumulation of aberrant genomes resulting from breakage of a moving replication fork as it converges with a stalled fork. However, the repair pathways that ATM and ATR orchestrate to prevent these aberrant SV40 DNA replication products are unclear. Using two-dimensional gel electrophoresis and Southern blotting, we show that ATR kinase activity, but not DNA-PK(cs kinase activity, facilitates some aspects of double strand break (DSB repair when ATM is inhibited during SV40 infection. To clarify which repair factors associate with viral DNA replication centers, we examined the localization of DSB repair proteins in response to SV40 infection. Under normal conditions, viral replication centers exclusively associate with homology-directed repair (HDR and do not colocalize with non-homologous end joining (NHEJ factors. Following ATM inhibition, but not ATR inhibition, activated DNA-PK(cs and KU70/80 accumulate at the viral replication centers while CtIP and BLM, proteins that initiate 5' to 3' end resection during HDR, become undetectable. Similar to what has been observed during cellular DSB repair in S phase, these data suggest that ATM kinase influences DSB repair pathway choice by preventing the recruitment of NHEJ factors to replicating viral DNA. These data may explain how ATM prevents concatemerization of the viral genome and promotes viral propagation. We suggest that inhibitors of DNA damage signaling and DNA repair could be used during infection to disrupt productive viral DNA replication.

  18. SV40 Utilizes ATM Kinase Activity to Prevent Non-homologous End Joining of Broken Viral DNA Replication Products

    Science.gov (United States)

    Sowd, Gregory A.; Mody, Dviti; Eggold, Joshua; Cortez, David; Friedman, Katherine L.; Fanning, Ellen

    2014-01-01

    Simian virus 40 (SV40) and cellular DNA replication rely on host ATM and ATR DNA damage signaling kinases to facilitate DNA repair and elicit cell cycle arrest following DNA damage. During SV40 DNA replication, ATM kinase activity prevents concatemerization of the viral genome whereas ATR activity prevents accumulation of aberrant genomes resulting from breakage of a moving replication fork as it converges with a stalled fork. However, the repair pathways that ATM and ATR orchestrate to prevent these aberrant SV40 DNA replication products are unclear. Using two-dimensional gel electrophoresis and Southern blotting, we show that ATR kinase activity, but not DNA-PKcs kinase activity, facilitates some aspects of double strand break (DSB) repair when ATM is inhibited during SV40 infection. To clarify which repair factors associate with viral DNA replication centers, we examined the localization of DSB repair proteins in response to SV40 infection. Under normal conditions, viral replication centers exclusively associate with homology-directed repair (HDR) and do not colocalize with non-homologous end joining (NHEJ) factors. Following ATM inhibition, but not ATR inhibition, activated DNA-PKcs and KU70/80 accumulate at the viral replication centers while CtIP and BLM, proteins that initiate 5′ to 3′ end resection during HDR, become undetectable. Similar to what has been observed during cellular DSB repair in S phase, these data suggest that ATM kinase influences DSB repair pathway choice by preventing the recruitment of NHEJ factors to replicating viral DNA. These data may explain how ATM prevents concatemerization of the viral genome and promotes viral propagation. We suggest that inhibitors of DNA damage signaling and DNA repair could be used during infection to disrupt productive viral DNA replication. PMID:25474690

  19. Alterations of DNA content in human endometrial stromal cells transfected with a temperature-sensitive SV40: tetraploidization and physiological consequences.

    Science.gov (United States)

    Rinehart, C A; Mayben, J P; Butler, T D; Haskill, J S; Kaufman, D G

    1992-01-01

    The normal genomic stability of human cells is reversed during neoplastic transformation. The SV40 large T antigen alters the DNA content in human endometrial stromal cells in a manner that relates to neoplastic progression. Human endometrial stromal cells were transfected with a plasmid containing the A209 temperature-sensitive mutant of SV40 (tsSV40), which is also defective in the viral origin of replication. Ninety-seven clonal transfectants from seven different primary cell strains were isolated. Initial analysis revealed that 20% of the clonal populations (19/97) had an apparent diploid DNA content, 35% (34/97) had an apparent tetraploid DNA content, and the remainder were mixed populations of diploid and tetraploid cells. No aneuploid populations were observed. Diploid tsSV40 transformed cells always give rise to a population of cells with a tetraploid DNA content when continuously cultured at the permissive temperature. The doubling of DNA content can be vastly accelerated by the sudden reintroduction of large T antigen activity following a shift from non-permissive to permissive temperature. Tetraploid tsSV40 transfected cells have a lower capacity for anchorage-independent growth and earlier entry into 'crisis' than diploid cells. These results indicate that during the pre-crisis, extended lifespan phase of growth, the SV40 large T antigen causes a doubling of DNA content. This apparent doubling of DNA content does not confer growth advantage during the extended lifespan that precedes 'crisis'.

  20. SV40 Assembly In Vivo and In Vitro

    Directory of Open Access Journals (Sweden)

    Ariella Oppenheim

    2008-01-01

    Full Text Available The Simian virus 40 (SV40 capsid is a T = 7d icosahedral lattice ∼45 nm in diameter surrounding the ∼5 kb circular minichromosome. The outer shell is composed of 360 monomers of the major capsid protein VP1, tightly bound in 72 pentamers. VP1 is a jellyroll β-barrel, with extending N- and C-terminal arms. The N-terminal arms bind DNA and face the interior of the capsid. The flexible C-arms tie together the 72 pentamers in three distinct kinds of interactions, thus facilitating the formation of a T = 7 icosahedron from identical pentameric building blocks. Assembly in vivo was shown to occur by addition of capsomers around the DNA. We apply a combination of biochemical and genetic approaches to study SV40 assembly. Our in vivo and in vitro studies suggest the following model: one or two capsomers bind at a high affinity to ses, the viral DNA encapsidation signal, forming the nucleation centre for assembly. Next, multiple capsomers attach concomitantly, at lower affinity, around the minichromosome. This increases their local concentration facilitating rapid, cooperative assembly reaction. Formation of the icosahedron proceeds either by gradual addition of single pentamers to the growing shell or by concerted assembly of pentamer clusters.

  1. Progressive paralysis associated with diffuse astrocyte anaplasia in delta 202 mice homozygous for a transgene encoding the SV40 T antigen.

    Science.gov (United States)

    López-Revilla, Rubén; Soto-Zárate, Carlos; Ridaura, Cecilia; Chávez-Dueñas, Lucía; Paul, Dieter

    2004-03-01

    A convenient transgenic astrocytoma model in delta202 mice, homozygous for a construct encoding the early region of the SV40 virus genome, is described. In the offspring of crosses between delta202 mice heterozygous for the transgene nearly 60% were transgenic; one third of these developed progressive paralysis starting in the hindlimbs at approximately 35 days of age and died at 90 +/- 30 days of age. In affected mice proliferating-non-neuronal cells immunostained with antibodies to the GFAP, an astrocyte marker, whose number increased with age were found in the white matter of the brain, cerebellum and spinal cord, and progressive degeneration and necrosis of spinal motoneurons was observed that-may explain the paralysis. The early onset and reproducible time course of the neurological disease suggest that homozygous delta202 mice, whose proliferating astrocytes appear to damage spinal motoneurons, are a useful model to study astrocyte differentiation, function and tumorigenesis.

  2. Oncogenic transformation of rat lung epithelioid cells by SV40 DNA and restriction enzyme fragments

    International Nuclear Information System (INIS)

    Daya-Grosjean, L.; Lasne, C.; Nardeux, P.; Chouroulinkov, I.; Monier, R.

    1979-01-01

    Rat epithelioid lung cells were transformed with various preparations of SV40 DNA using the Ca 2+ -precipitation technique. The amount of SV40 genetic information integrated into transformed clones was evaluated by DNA-DNA renaturation kinetics. The growth properties on plastic and in soft-agar were examined, as well as the ability to induce tumors in syngeneic newborn animals or in adult nude mice. One particular transformed line, which had received the HpaII/BamHIA (59 per cent) fragment, was found to contain about 3 integrated copies of this fragment per cell and no significant amount of the HpaII/BamHIB (41 per cent fragment). This line which grew to high saturatio densities and efficiently formed clones in low serum on plastic, produced tumors in both syngeneic rats and nude mice. Thus the HpaII/BamHIA fragment, which mainly includes early viral information, was sufficient to impart these properties to rat epithelioid lung cells. (author)

  3. High throughput testing of the SV40 Large T antigen binding to cellular p53 identifies putative drugs for the treatment of SV40-related cancers

    International Nuclear Information System (INIS)

    Carbone, Michele; Rudzinski, Jennifer; Bocchetta, Maurizio

    2003-01-01

    SV40 has been linked to some human malignancies, and the evidence that this virus plays a causative role in mesothelioma and brain tumors is mounting. The major SV40 oncoprotein is the Large tumor antigen (Tag). A key Tag transforming activity is connected to its capability to bind and inactivate cellular p53. In this study we developed an effective, high throughput, ELISA-based method to study Tag-p53 interaction in vitro. This assay allowed us to screen a chemical library and to identify a chemical inhibitor of the Tag binding to p53. We propose that our in vitro assay is a useful method to identify molecules that may be used as therapeutic agents for the treatment of SV40-related human cancers

  4. Analysis of plasma membrane Ca(2+)-ATPase expression in control and SV40-transformed human fibroblasts.

    Science.gov (United States)

    Reisner, P D; Brandt, P C; Vanaman, T C

    1997-01-01

    It has been long known that neoplastic transformation is accompanied by a lowered requirement for extracellular Ca2+ for growth. The studies presented here demonstrate that human fibroblastic cell lines produce the two commonly found 'housekeeping' isoforms of the plasma membrane Ca(2+)-ATPase (PMCA), PMCA1b and 4b, and at the expression of both is demonstrably lower in cell lines neoplastically transformed by SV40 than in the corresponding parental cell lines. Western blot analyses of lysates from control (GM00037) and SV40-transformed (GM00637) skin fibroblasts revealed a 138 kDa PMCA whose level was significantly lower in the SV40-transformed cells relative to either total cellular protein or alpha-tubulin. Similar analyses of plasma membrane preparations from control WI-38) and SV40-transformed (WI-38VA13) lung fibroblasts revealed 3-4-fold lower levels of PMCA in the SV40-transformed cells. Competitive ELISAs performed on detergent solubilized plasma membrane preparations indicated at least 3-4-fold lower levels of PMCA in the SV40-transformed cell lines compared to controls. Reverse transcriptase coupled-PCR analyses showed that PMCA1b and PMCA4b were the only isoforms expressed in all four cell lines. The PMCA4b mRNA level detected by Northern analysis also was substantially lower in SV40 transformed skin fibroblasts than in non-transformed fibroblasts. Quantitative RT-PCR analyses showed levels of PMCA1b and 4b mRNAs to be 5 and 10-fold lower, respectively, in GM00637 than in GM00037 when the levels of PCR products were normalized to glyceraldehyde-3-phosphate dehydrogenase (G3PDH) mRNA. These results demonstrate that the expression of these distinct PMCA genes is substantially lower in SV40 transformed human skin and lung fibroblasts and may be coordinately regulated in these cells.

  5. Test of models for replication of SV40 DNA following UV irradiation

    International Nuclear Information System (INIS)

    Barnett, S.W.

    1983-01-01

    The replication of SV40 DNA immediately after irradiation of infected monkey cells has been examined. SV40 DNA synthesis is inhibited in a UV fluence-dependent fashion, and the synthesis of completely replicated (Form I) SV40 molecules is more severely inhibited than is total SV40 DNA synthesis. Two models for DNA replication-inhibition have been tested. Experimental results have been compared to those predicted by mathematical models derived to describe two possible molecular mechanisms of replication inhibition. No effect of UV irradiation on the uptake and phosphorylation of 3 H-thymidine nor on the size of the intracellular deoxythymidine triphosphate pool of SV40-infected cells have been observed, validating the use of 3 H-thymidine incorporation as a measure of DNA synthesis in this system. In vitro studies have been performed to further investigate the mechanism of dimer-specific inhibition of completion of SV40 DNA synthesis observed in in vivo. The results of these studies are consistent with a mechanism of discontinuous synthesis past dimer sites, but it is equally possible that the mechanism of DNA replication of UV-damaged DNA in the in vitro system is different from that which occurs in vivo

  6. Attempts on producing lymphoid cell line from Penaeus monodon by induction with SV40-T and 12S EIA oncogenes.

    Science.gov (United States)

    Puthumana, Jayesh; Prabhakaran, Priyaja; Philip, Rosamma; Singh, I S Bright

    2015-12-01

    In an attempt of in vitro transformation, transfection mediated expression of Simian virus-40 (T) antigen (SV40-T) and transduction mediated expression of Adenovirus type 12 early region 1A (12S E1A) oncogene were performed in Penaeus monodon lymphoid cells. pSV3-neo vector encoding SV40-T oncogene and a recombinant baculovirus BacP2-12S E1A-GFP encoding 12S E1A oncogene under the control of hybrid promoters were used. Electroporation and lipofection mediated transformation of SV40-T in lymphoid cells confirmed the transgene expression by phenotypic variation and the expression of GFP in co-transfection experiment. The cells transfected by lipofection (≥ 5%) survived for 14 days with lower toxicity (30%), whilst on electroporation, most of the cells succumbed to death (60%) and survived cells lived up to 7 days. Transduction efficiency in primary lymphoid cells was more than 80% within 14 days of post-transduction, however, an incubation period of 7 days post-transduction was observed without detectable expression of 12S E1A. High level of oncogenic 12S E1A expression were observed after 14 day post-transduction and the proliferating cells survived for more than 90 days with GFP expression, however, without in vitro transformation and immortalization. The study put forth the requirement of transduction mediated 'specific' oncogene expression along with telomerase activation and epigenetic induction for the immortalization and establishment of shrimp cell line. Copyright © 2015. Published by Elsevier Ltd.

  7. SV40-transformed human fibroblasts: evidence for cellular aging in pre-crisis cells.

    Science.gov (United States)

    Stein, G H

    1985-10-01

    Pre-crisis SV40-transformed human diploid fibroblast (HDF) cultures have a finite proliferative lifespan, but they do not enter a viable senescent state at end of lifespan. Little is known about either the mechanism for this finite lifespan in SV40-transformed HDF or its relationship to finite lifespan in normal HDF. Recently we proposed that in normal HDF the phenomena of finite lifespan and arrest in a viable senescent state depend on two separate processes: 1) an age-related decrease in the ability of the cells to recognize or respond to serum and/or other mitogens such that the cells become functionally mitogen-deprived at the end of lifespan; and 2) the ability of the cells to enter a viable, G1-arrested state whenever they experience mitogen deprivation. In this paper, data are presented that suggest that pre-crisis SV40-transformed HDF retain the first process described above, but lack the second process. It is shown that SV40-transformed HDF have a progressively decreasing ability to respond to serum as they age, but they continue to traverse the cell cycle at the end of lifespan. Concomitantly, the rate of cell death increases steadily toward the end of lifespan, thereby causing the total population to cease growing and ultimately to decline. Previous studies have shown that when SV40-transformed HDF are environmentally serum deprived, they likewise exhibit continued cell cycle traverse coupled with increased cell death. Thus, these results support the hypothesis that pre-crisis SV40-transformed HDF still undergo the same aging process as do normal HDF, but they end their lifespan in crisis rather than in the normal G1-arrested senescent state because they have lost their ability to enter a viable, G1-arrested state in response to mitogen deprivation.

  8. Properties of the simian virus 40 (SV40) large T antigens encoded by SV40 mutants with deletions in gene A.

    Science.gov (United States)

    Cole, C N; Tornow, J; Clark, R; Tjian, R

    1986-01-01

    The biochemical properties of the large T antigens encoded by simian virus 40 (SV40) mutants with deletions at DdeI sites in the SV40 A gene were determined. Mutant large T antigens containing only the first 138 to 140 amino acids were unable to bind to the SV40 origin of DNA replication as were large T antigens containing at their COOH termini 96 or 97 amino acids encoded by the long open reading frame located between 0.22 and 0.165 map units (m.u.). All other mutant large T antigens were able to bind to the SV40 origin of replication. Mutants with in-phase deletions at 0.288 and 0.243 m.u. lacked ATPase activity, but ATPase activity was normal in mutants lacking origin-binding activity. The 627-amino acid large T antigen encoded by dlA2465, with a deletion at 0.219 m.u., was the smallest large T antigen displaying ATPase activity. Mutant large T antigens with the alternate 96- or 97-amino acid COOH terminus also lacked ATPase activity. All mutant large T antigens were found in the nuclei of infected cells; a small amount of large T with the alternate COOH terminus was also located in the cytoplasm. Mutant dlA2465 belonged to the same class of mutants as dlA2459. It was unable to form plaques on CV-1p cells at 37 or 32 degrees C but could form plaques on BSC-1 monolayers at 37 degrees C but not at 32 degrees C. It was positive for viral DNA replication and showed intracistronic complementation with any group A mutant whose large T antigen contained a normal carboxyl terminus. These findings and those of others suggest that both DNA binding and ATPase activity are required for the viral DNA replication function of large T antigen, that these two activities must be located on the same T antigen monomer, and that these two activities are performed by distinct domains of the polypeptide. These domains are distinct and separable from the domain affected by the mutation of dlA2465 and indicate that SV40 large T antigen is made up of at least three separate functional

  9. STX140, but not paclitaxel, inhibits mammary tumour initiation and progression in C3(1/SV40 T/t-antigen transgenic mice.

    Directory of Open Access Journals (Sweden)

    Florence Meyer-Losic

    Full Text Available Despite paclitxael's clinical success, treating hormone-refractory breast cancer remains challenging. Paclitaxel has a poor pharmacological profile, characterized by a low therapeutic index (TIX caused by severe dose limiting toxicities, such as neutropenia and peripheral neuropathy. Consequently, new drugs are urgently required. STX140, a compound previously shown to have excellent efficacy against many tumors, is here compared to paclitaxel in three translational in vivo breast cancer models, a rat model of peripheral neuropathy, and through pharmacological testing. Three different in vivo mouse models of breast cancer were used; the metastatic 4T1 orthotopic model, the C3(1/SV40 T-Ag model, and the MDA-MB-231 xenograft model. To determine TIX and pharmacological profile of STX140, a comprehensive dosing regime was performed in mice bearing MDA-MD-231 xenografts. Finally, peripheral neuropathy was examined using a rat plantar thermal hyperalgesia model. In the 4T1 metastatic model, STX140 and paclitaxel significantly inhibited primary tumor growth and lung metastases. All C3(1/SV40 T-Ag mice in the control and paclitaxel treated groups developed palpable mammary cancer. STX140 blocked 47% of tumors developing and significantly inhibited growth of tumors that did develop. STX140 treatment caused a significant (P<0.001 survival advantage for animals in early and late intervention groups. Conversely, in C3(1/SV40 T-Ag mice, paclitaxel failed to inhibit tumor growth and did not increase survival time. Furthermore, paclitaxel, but not STX140, induced significant peripheral neuropathy and neutropenia. These results show that STX140 has a greater anti-cancer efficacy, TIX, and reduced neurotoxicity compared to paclitaxel in C3(1/SV40 T-Ag mice and therefore may be of significant benefit to patients with breast cancer.

  10. Inhibition of in vitro SV40 DNA replication by ultraviolet light

    International Nuclear Information System (INIS)

    Gough, G.; Wood, R.W.

    1989-01-01

    Ultraviolet light-induced DNA damage was found to inhibit SV40 origin-dependent DNA synthesis carried out by soluble humancell extracts. Replication of SV40-based plasmids was reduced to approx. 35% of that in unirradiated controls after irradiation with 50-100 J/m 2 germicidal ultraviolet light, where an average of 3-6 pyrimidine dimer photoproducts were formed per plasmid circle. Inhibition of the DNA helicase activity of T antigen (required for initiation of replication in the in vitro system) was also investigated, and was only significant after much higher fluences, 1000-5000 J/m 2 . The data indicate that DNA damage by ultraviolet light inhibits DNA synthesis in cell-free extracts principally by affecting components of the replication complex other than the DNA helicase activity of T antigen. The soluble system could be used to biochemically investigate the possible bypass or tolerance of DNA damage during replication (author). 21 refs.; 2 figs

  11. SV40 late protein VP4 forms toroidal pores to disrupt membranes for viral release.

    Science.gov (United States)

    Raghava, Smita; Giorda, Kristina M; Romano, Fabian B; Heuck, Alejandro P; Hebert, Daniel N

    2013-06-04

    Nonenveloped viruses are generally released from the cell by the timely lysis of host cell membranes. SV40 has been used as a model virus for the study of the lytic nonenveloped virus life cycle. The expression of SV40 VP4 at later times during infection is concomitant with cell lysis. To investigate the role of VP4 in viral release and its mechanism of action, VP4 was expressed and purified from bacteria as a fusion protein for use in membrane disruption assays. Purified VP4 perforated membranes as demonstrated by the release of fluorescent markers encapsulated within large unilamellar vesicles or liposomes. Dynamic light scattering results revealed that VP4 treatment did not cause membrane lysis or change the size of the liposomes. Liposomes encapsulated with 4,4-difluoro-5,7-dimethyl-4-bora-3a,4a-diaza-3-indacene-labeled streptavidin were used to show that VP4 formed stable pores in membranes. These VP4 pores had an inner diameter of 1-5 nm. Asymmetrical liposomes containing pyrene-labeled lipids in the outer monolayer were employed to monitor transbilayer lipid diffusion. Consistent with VP4 forming toroidal pore structures in membranes, VP4 induced transbilayer lipid diffusion or lipid flip-flop. Altogether, these studies support a central role for VP4 acting as a viroporin in the disruption of cellular membranes to trigger SV40 viral release by forming toroidal pores that unite the outer and inner leaflets of membrane bilayers.

  12. Chimeric SV40 virus-like particles induce specific cytotoxicity and protective immunity against influenza A virus without the need of adjuvants

    International Nuclear Information System (INIS)

    Kawano, Masaaki; Morikawa, Katsuma; Suda, Tatsuya; Ohno, Naohito; Matsushita, Sho; Akatsuka, Toshitaka; Handa, Hiroshi; Matsui, Masanori

    2014-01-01

    Virus-like particles (VLPs) are a promising vaccine platform due to the safety and efficiency. However, it is still unclear whether polyomavirus-based VLPs are useful for this purpose. Here, we attempted to evaluate the potential of polyomavirus VLPs for the antiviral vaccine using simian virus 40 (SV40). We constructed chimeric SV40-VLPs carrying an HLA-A ⁎ 02:01-restricted, cytotoxic T lymphocyte (CTL) epitope derived from influenza A virus. HLA-A ⁎ 02:01-transgenic mice were then immunized with the chimeric SV40-VLPs. The chimeric SV40-VLPs effectively induced influenza-specific CTLs and heterosubtypic protection against influenza A viruses without the need of adjuvants. Because DNase I treatment of the chimeric SV40-VLPs did not disrupt CTL induction, the intrinsic adjuvant property may not result from DNA contaminants in the VLP preparation. In addition, immunization with the chimeric SV40-VLPs generated long-lasting memory CTLs. We here propose that the chimeric SV40-VLPs harboring an epitope may be a promising CTL-based vaccine platform with self-adjuvant properties. - Highlights: • We constructed chimeric SV40-VLPs carrying an influenza virus-derived CTL epitope. • Chimeric SV40-VLPs induce influenza-specific CTLs in mice without adjuvants. • Chimeric SV40-VLPs induce heterosubtypic protection against influenza A viruses. • Chimeric SV40-VLPs induce long-lasting memory CTLs. • Chimeric SV40-VLPs is a promising vaccine platform with self-adjuvant properties

  13. SV40 large T-p53 complex: evidence for the presence of two immunologically distinct forms of p53

    International Nuclear Information System (INIS)

    Milner, J.; Gamble, J.

    1985-01-01

    The transforming protein of SV40 is the large T antigen. Large T binds a cellular protein, p53, which is potentially oncogenic by virtue of its functional involvement in the control of cell proliferation. This raises the possibility that p53 may mediate, in part, the transforming function of SV40 large T. Two immunologically distinct forms of p53 have been identified in normal cells: the forms are cell-cycle dependent, one being restricted to nondividing cells (p53-Go) and the second to dividing cells (p53-G divided by). The authors have now dissociated and probed the multimeric complex of SV40 large T-p53 for the presence of immunologically distinct forms of p53. Here they present evidence for the presence of p53-Go and p53-G divided by complexed with SV40 large T

  14. Host-cell reactivation of ultraviolet-irradiated SV 40 DNA in five complementation groups of xeroderma pigmentosum

    International Nuclear Information System (INIS)

    Abrahams, P.J.; Eb, A.J. van der

    1976-01-01

    Host-cell reactivation of UV-irradiated double-stranded SV40 DNA was studied in BSC-1 monkey cells, normal human cells, heterozygous Xeroderma pigmentosum xp cells, representative cell strains of the five complemention groups of XP and in XP 'variant' cells. The following percentages of survival of the plaque-forming ability of double-stranded SV40 DNA were found in XP cells compared with the value found in normal monkey and human cells: groupA, 13%; group B, 30%; group C, 18%; group D, 14%; group E, 59%; and in the heterozygous XP cells almost 100%. The survival in XP 'variant' cells was 66%. The survival of single-stranded SV40 DNA in BSC-1 cells was much lower than that of double-stranded SV40 DNA in XP cells of complementation group A, which possibly indicates that some repair of UV damage occurs even in XP cells of group A

  15. Transformation and radiosensitivity of human diploid skin fibroblasts transfected with activated RAS oncogene and SV40 T-antigen

    Energy Technology Data Exchange (ETDEWEB)

    Su, L.-N.; Little, J.B. (Harvard School of Public Health, Boston, MA (United States))

    1992-08-01

    Three normal human diploid cell strains were transfected with an activated Ha-ras oncogene (EJ ras) or SV40 T-antigen. Multiple clones were examined for morphological alterations, growth requirements, ability to grow under anchorage independent conditions, immortality and tumorigenicity in nude mice. Clones expressing SV40 T-antigen alone or in combination with ras protein p21 were significantly radioresistant as compared with their parent cells or clones transfected with the neo gene only. This radioresistant phenotype persisted in post-crisis, immortalized cell lines. These data suggest that expression of the SV40 T-antigen but not activated Ha-ras plays an important role in the radiosensitivity of human diploid cells. The radioresistant phenotype in SV40 T transfected cells was not related to the enhanced level of genetic instability seen in pre-crisis and newly immortalized cells, nor to the process of immortalization itself. (author).

  16. Transformation and radiosensitivity of human diploid skin fibroblasts transfected with activated RAS oncogene and SV40 T-antigen

    International Nuclear Information System (INIS)

    Su, L.-N.; Little, J.B.

    1992-01-01

    Three normal human diploid cell strains were transfected with an activated Ha-ras oncogene (EJ ras) or SV40 T-antigen. Multiple clones were examined for morphological alterations, growth requirements, ability to grow under anchorage independent conditions, immortality and tumorigenicity in nude mice. Clones expressing SV40 T-antigen alone or in combination with ras protein p21 were significantly radioresistant as compared with their parent cells or clones transfected with the neo gene only. This radioresistant phenotype persisted in post-crisis, immortalized cell lines. These data suggest that expression of the SV40 T-antigen but not activated Ha-ras plays an important role in the radiosensitivity of human diploid cells. The radioresistant phenotype in SV40 T transfected cells was not related to the enhanced level of genetic instability seen in pre-crisis and newly immortalized cells, nor to the process of immortalization itself. (author)

  17. A monoclonal antibody against SV40 large T antigen (PAb416) does not label Merkel cell carcinoma.

    Science.gov (United States)

    Pelletier, Daniel J; Czeczok, Thomas W; Bellizzi, Andrew M

    2018-07-01

    Merkel cell carcinoma represents poorly differentiated neuroendocrine carcinoma of cutaneous origin. In most studies, the vast majority of Merkel cell carcinomas are Merkel cell polyomavirus (MCPyV)-associated. SV40 polyomavirus immunohistochemistry is typically used in the diagnosis of other polyomavirus-associated diseases, including tubulointerstitial nephritis and progressive multifocal leukoencephalopathy, given cross-reactivity with BK and JC polyomaviruses. MCPyV-specific immunohistochemistry is commercially available, but, if antibodies against SV40 also cross-reacted with MCPyV, that would be advantageous from a resource-utilisation perspective. Tissue microarrays were constructed from 39 Merkel cell carcinomas, 24 small-cell lung carcinomas, and 18 extrapulmonary visceral small-cell carcinomas. SV40 large T antigen immunohistochemistry (clone PAb416) was performed; MCPyV large T antigen immunohistochemistry (clone CM2B4) had been previously performed. UniProt was used to compare the amino acid sequences of the SV40, BK, JC and MCPyV large T antigens, focusing on areas recognised by the PAb416 and CM2B4 clones. SV40 immunohistochemistry was negative in all tumours; MCPyV immunohistochemistry was positive in 38% of Merkel cell carcinomas and in 0% of non-cutaneous poorly differentiated neuroendocrine carcinomas. UniProt analysis revealed a high degree of similarity between SV40, BK, and JC viruses in the region recognised by PAb416. There was less homology between SV40 and MCPyV in this region, which was also interrupted by two long stretches of amino acids unique to MCPyV. The CM2B4 clone recognises a unique epitope in one of these stretches. The PAb416 antibody against the SV40 large T antigen does not cross-react with MCPyV large T antigen, and thus does not label Merkel cell carcinoma. © 2018 John Wiley & Sons Ltd.

  18. Transcriptional repression is epigenetically marked by H3K9 methylation during SV40 replication

    OpenAIRE

    Kallestad, Les; Christensen, Kendra; Woods, Emily; Milavetz, Barry

    2014-01-01

    Background We have recently shown that T-antigen binding to Site I results in the replication-dependent introduction of H3K9me1 into SV40 chromatin late in infection. Since H3K9me2 and H3K9me3 are also present late in infection, we determined whether their presence was also related to the status of ongoing transcription and replication. Transcription was either inhibited with 5,6-dichloro-1-beta-D-ribofuranosylbenzimidizole (DRB) or stimulated with sodium butyrate and the effects on histone m...

  19. Transformation of SV40-immortalized human uroepithelial cells by 3-methylcholanthrene increases IFN- and Large T Antigen-induced transcripts

    Directory of Open Access Journals (Sweden)

    Easton Marilyn J

    2010-02-01

    Full Text Available Abstract Background Simian Virus 40 (SV40 immortalization followed by treatment of cells with 3-methylcholanthrene (3-MC has been used to elicit tumors in athymic mice. 3-MC carcinogenesis has been thoroughly studied, however gene-level interactions between 3-MC and SV40 that could have produced the observed tumors have not been explored. The commercially-available human uroepithelial cell lines were either SV40-immortalized (HUC or SV40-immortalized and then 3-MC-transformed (HUC-TC. Results To characterize the SV40 - 3MC interaction, we compared human gene expression in these cell lines using a human cancer array and confirmed selected changes by RT-PCR. Many viral Large T Antigen (Tag expression-related changes occurred in HUC-TC, and it is concluded that SV40 and 3-MC may act synergistically to transform cells. Changes noted in IFP 9-27, 2'-5' OAS, IF 56, MxA and MxAB were typical of those that occur in response to viral exposure and are part of the innate immune response. Because interferon is crucial to innate immune host defenses and many gene changes were interferon-related, we explored cellular growth responses to exogenous IFN-γ and found that treatment impeded growth in tumor, but not immortalized HUC on days 4 - 7. Cellular metabolism however, was inhibited in both cell types. We conclude that IFN-γ metabolic responses were functional in both cell lines, but IFN-γ anti-proliferative responses functioned only in tumor cells. Conclusions Synergism of SV40 with 3-MC or other environmental carcinogens may be of concern as SV40 is now endemic in 2-5.9% of the U.S. population. In addition, SV40-immortalization is a generally-accepted method used in many research materials, but the possibility of off-target effects in studies carried out using these cells has not been considered. We hope that our work will stimulate further study of this important phenomenon.

  20. A mouse model for chronic lymphocytic leukemia based on expression of the SV40 large T antigen

    DEFF Research Database (Denmark)

    ter Brugge, Petra J; Ta, Van B T; de Bruijn, Marjolein J W

    2009-01-01

    The simian virus 40 (SV40) T antigen is a potent oncogene able to transform many cell types and has been implicated in leukemia and lymphoma. In this report, we have achieved sporadic SV40 T-antigen expression in mature B cells in mice, by insertion of a SV40 T antigen gene in opposite...... transcriptional orientation in the immunoglobulin (Ig) heavy (H) chain locus between the D and J(H) segments. SV40 T-antigen expression appeared to result from retention of the targeted germline allele and concomitant antisense transcription of SV40 large T in mature B cells, leading to chronic lymphocytic...... leukemia (CLL). Although B-cell development was unperturbed in young mice, aging mice showed accumulation of a monoclonal B-cell population in which the targeted IgH allele was in germline configuration and the wild-type IgH allele had a productive V(D)J recombination. These leukemic B cells were Ig...

  1. SV40 T antigen alone drives karyotype instability that precedes neoplastic transformation of human diploid fibroblasts.

    Science.gov (United States)

    Ray, F A; Peabody, D S; Cooper, J L; Cram, L S; Kraemer, P M

    1990-01-01

    To define the role of SV40 large T antigen in the transformation and immortalization of human cells, we have constructed a plasmid lacking most of the unique coding sequences of small t antigen as well as the SV40 origin of replication. The promoter for T antigen, which lies within the origin of replication, was deleted and replaced by the Rous sarcoma virus promoter. This minimal construct was co-electroporated into normal human fibroblasts of neonatal origin along with a plasmid containing the neomycin resistance gene (neo). Three G418-resistant, T antigen-positive clones were expanded and compared to three T antigen-positive clones that received the pSV3neo plasmid (capable of expressing large and small T proteins and having two origins of replication). Autonomous replication of plasmid DNA was observed in all three clones that received pSV3neo but not in any of the three origin minus clones. Immediately after clonal expansion, several parameters of neoplastic transformation were assayed. Low percentages of cells in T antigen-positive populations were anchorage independent or capable of forming colonies in 1% fetal bovine serum. The T antigen-positive clones generally exhibited an extended lifespan in culture but rarely became immortalized. Large numbers of dead cells were continually generated in all T antigen-positive, pre-crisis populations. Ninety-nine percent of all T antigen-positive cells had numerical or structural chromosome aberrations. Control cells that received the neo gene did not have an extended life span, did not have noticeable numbers of dead cells, and did not exhibit karyotype instability. We suggest that the role of T antigen protein in the transformation process is to generate genetic hypervariability, leading to various consequences including neoplastic transformation and cell death.

  2. Chimeric SV40 virus-like particles induce specific cytotoxicity and protective immunity against influenza A virus without the need of adjuvants

    Energy Technology Data Exchange (ETDEWEB)

    Kawano, Masaaki [Department of Allergy and Immunology, Faculty of Medicine, Saitama Medical University, Moroyama-cho, Iruma-gun, Saitama 350-0495 (Japan); Morikawa, Katsuma [Department of Biological Information, Graduate School of Bioscience and Biotechnology, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama 226-8501 (Japan); Suda, Tatsuya [Department of Microbiology, Faculty of Medicine, Saitama Medical University, Moroyama-cho, Iruma-gun, Saitama 350-0495 (Japan); Laboratory for Immunopharmacology of Microbial Products, Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji, Tokyo 192-0392 (Japan); Ohno, Naohito [Laboratory for Immunopharmacology of Microbial Products, Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji, Tokyo 192-0392 (Japan); Matsushita, Sho [Department of Allergy and Immunology, Faculty of Medicine, Saitama Medical University, Moroyama-cho, Iruma-gun, Saitama 350-0495 (Japan); Allergy Center, Saitama Medical University, Moroyama-cho, Iruma-gun, Saitama 350-0495 (Japan); Akatsuka, Toshitaka [Department of Microbiology, Faculty of Medicine, Saitama Medical University, Moroyama-cho, Iruma-gun, Saitama 350-0495 (Japan); Handa, Hiroshi, E-mail: handa.h.aa@m.titech.ac.jp [Solutions Research Laboratory, Tokyo Institute of Technology, Midori-ku, Yokohama 226-8503 (Japan); Matsui, Masanori, E-mail: mmatsui@saitama-med.ac.jp [Department of Microbiology, Faculty of Medicine, Saitama Medical University, Moroyama-cho, Iruma-gun, Saitama 350-0495 (Japan)

    2014-01-05

    Virus-like particles (VLPs) are a promising vaccine platform due to the safety and efficiency. However, it is still unclear whether polyomavirus-based VLPs are useful for this purpose. Here, we attempted to evaluate the potential of polyomavirus VLPs for the antiviral vaccine using simian virus 40 (SV40). We constructed chimeric SV40-VLPs carrying an HLA-A{sup ⁎}02:01-restricted, cytotoxic T lymphocyte (CTL) epitope derived from influenza A virus. HLA-A{sup ⁎}02:01-transgenic mice were then immunized with the chimeric SV40-VLPs. The chimeric SV40-VLPs effectively induced influenza-specific CTLs and heterosubtypic protection against influenza A viruses without the need of adjuvants. Because DNase I treatment of the chimeric SV40-VLPs did not disrupt CTL induction, the intrinsic adjuvant property may not result from DNA contaminants in the VLP preparation. In addition, immunization with the chimeric SV40-VLPs generated long-lasting memory CTLs. We here propose that the chimeric SV40-VLPs harboring an epitope may be a promising CTL-based vaccine platform with self-adjuvant properties. - Highlights: • We constructed chimeric SV40-VLPs carrying an influenza virus-derived CTL epitope. • Chimeric SV40-VLPs induce influenza-specific CTLs in mice without adjuvants. • Chimeric SV40-VLPs induce heterosubtypic protection against influenza A viruses. • Chimeric SV40-VLPs induce long-lasting memory CTLs. • Chimeric SV40-VLPs is a promising vaccine platform with self-adjuvant properties.

  3. Gene expression promoted by the SV40 DNA targeting sequence and the hypoxia-responsive element under normoxia and hypoxia

    Directory of Open Access Journals (Sweden)

    C.B. Sacramento

    2010-08-01

    Full Text Available The main objective of the present study was to find suitable DNA-targeting sequences (DTS for the construction of plasmid vectors to be used to treat ischemic diseases. The well-known Simian virus 40 nuclear DTS (SV40-DTS and hypoxia-responsive element (HRE sequences were used to construct plasmid vectors to express the human vascular endothelial growth factor gene (hVEGF. The rate of plasmid nuclear transport and consequent gene expression under normoxia (20% O2 and hypoxia (less than 5% O2 were determined. Plasmids containing the SV40-DTS or HRE sequences were constructed and used to transfect the A293T cell line (a human embryonic kidney cell line in vitro and mouse skeletal muscle cells in vivo. Plasmid transport to the nucleus was monitored by real-time PCR, and the expression level of the hVEGF gene was measured by ELISA. The in vitro nuclear transport efficiency of the SV40-DTS plasmid was about 50% lower under hypoxia, while the HRE plasmid was about 50% higher under hypoxia. Quantitation of reporter gene expression in vitro and in vivo, under hypoxia and normoxia, confirmed that the SV40-DTS plasmid functioned better under normoxia, while the HRE plasmid was superior under hypoxia. These results indicate that the efficiency of gene expression by plasmids containing DNA binding sequences is affected by the concentration of oxygen in the medium.

  4. Cryo-electron microscopy of vitrified SV40 minichromosomes: the liquid drop model.

    Science.gov (United States)

    Dubochet, J; Adrian, M; Schultz, P; Oudet, P

    1986-03-01

    The structure of SV40 minichromosomes has been studied by cryo-electron microscopy of vitrified thin layers of solution. In high-salt buffer (130 mM NaCl), freshly prepared minichromosomes are condensed into globules 30 nm or more in diameter. On the micrograph, they appear to be formed by the close packing of 10 nm granules which give rise to a 10 nm reflection in the optical diffractogram. The globules can adopt many different conformations. At high concentration, they fuse into a homogeneous 'sea' of closely packed 10 nm granules. In low-salt buffer (less than 10 mM NaCl), the globules open, first into 10 nm filaments, and then into nucleosome-strings. The 'liquid drop' model is proposed to explain the condensed structure of the minichromosome in high-salt buffer: nucleosomes stack specifically on top of one another, thus forming the 10 nm filaments. 10 nm filaments in turn, tend to aggregate laterally. Optimizing both these interactions results in the condensation of 10 nm filaments or portions thereof into a structure similar to that of a liquid. Some implications of this model for the structure of cellular chromatin are discussed.

  5. Transformation and radiosensitivity of human diploid skin fibroblasts transfected with SV40 T-antigen mutants defective in RB and P53 binding domains

    International Nuclear Information System (INIS)

    LingNah Su; Little, J.B.

    1992-01-01

    A series of human diploid fibroblast cell clones were developed by DNA transfection with either wild-type SV40 T-antigen (SV40T) or T-antigen mutants defective in its various functional domains. Cell clones expressing the wild-type SV40 T were significantly radioresistant as compared with clones transfected with the neo gene only (D o 192 ± 13 vs 127 ± 19). This radioresistance persisted in post-crisis, immortalized cell lines. A series of mutants with point or deletion mutations within each functionally active domain of SV40 T were also examined for their ability to alter radiosensitivity and induce morphological transformation. Cell clones transfected with T-antigen mutants defective in nuclear localization or origin binding showed increased radioresistance similar to clones transfected with wild-type T-antigen, and expressed morphological changes characteristic of SV40 T-transfected cells. (author)

  6. Chimeric SV40 virus-like particles induce specific cytotoxicity and protective immunity against influenza A virus without the need of adjuvants.

    Science.gov (United States)

    Kawano, Masaaki; Morikawa, Katsuma; Suda, Tatsuya; Ohno, Naohito; Matsushita, Sho; Akatsuka, Toshitaka; Handa, Hiroshi; Matsui, Masanori

    2014-01-05

    Virus-like particles (VLPs) are a promising vaccine platform due to the safety and efficiency. However, it is still unclear whether polyomavirus-based VLPs are useful for this purpose. Here, we attempted to evaluate the potential of polyomavirus VLPs for the antiviral vaccine using simian virus 40 (SV40). We constructed chimeric SV40-VLPs carrying an HLA-A*02:01-restricted, cytotoxic T lymphocyte (CTL) epitope derived from influenza A virus. HLA-A*02:01-transgenic mice were then immunized with the chimeric SV40-VLPs. The chimeric SV40-VLPs effectively induced influenza-specific CTLs and heterosubtypic protection against influenza A viruses without the need of adjuvants. Because DNase I treatment of the chimeric SV40-VLPs did not disrupt CTL induction, the intrinsic adjuvant property may not result from DNA contaminants in the VLP preparation. In addition, immunization with the chimeric SV40-VLPs generated long-lasting memory CTLs. We here propose that the chimeric SV40-VLPs harboring an epitope may be a promising CTL-based vaccine platform with self-adjuvant properties. © 2013 Elsevier Inc. All rights reserved.

  7. Dissociation of DNA damage and mitochondrial injury caused by hydrogen peroxide in SV-40 transformed lung epithelial cells

    Directory of Open Access Journals (Sweden)

    Adcock Ian M

    2002-11-01

    Full Text Available Abstract Background Since lung epithelial cells are constantly being exposed to reactive oxygen intermediates (ROIs, the alveolar surface is a major site of oxidative stress, and each cell type may respond differently to oxidative stress. We compared the extent of oxidative DNA damage with that of mitochondrial injury in lung epithelial cells at the single cell level. Result DNA damage and mitochondrial injury were measured after oxidative stress in the SV-40 transformed lung epithelial cell line challenged with hydrogen peroxide (H2O2. Single cell analysis of DNA damage was determined by assessing the number of 8-oxo-2-deoxyguanosine (8-oxo-dG positive cells, a marker of DNA modification, and the length of a comet tail. Mitochondrial membrane potential, ΔΨm, was determined using JC-1. A 1 h pulse of H2O2 induced small amounts of apoptosis (3%. 8-oxo-dG-positive cells and the length of the comet tail increased within 1 h of exposure to H2O2. The number of cells with reduced ΔΨm increased after the addition of H2O2 in a concentration-dependent manner. In spite of a continual loss of ΔΨm, DNA fragmentation was reduced 2 h after exposure to H2O2. Conclusion The data suggest that SV-40 transformed lung epithelial cells are resistant to oxidative stress, showing that DNA damage can be dissociated from mitochondrial injury.

  8. Amplification of oncogenes and integrated SV40 sequences in mammalian cells by the decay of incorporated iodine-125

    International Nuclear Information System (INIS)

    Ehrfeld, A.; Planas-Bohne, F.; Luecke-Huhle, C.

    1986-01-01

    Iodine-125, in the form of 5-[ 125 I]iododeoxyuridine (I-UdR), was incorporated into the DNA of SV40 transformed Chinese hamster embryo cells. Disintegration of the 125 I led to increased cell killing with increasing dose as measured by the colony-forming ability of single cells. The D37 (the dose at which 37% of the cells survive) amounts to 95 decays per cell, corresponding to 0.66 Gy. Variations in the copy number of specific DNA sequences was measured by using dispersed cell blotting with sensitive DNA hybridizations. A 13-fold amplification of the viral DNA sequences (SV40) and a twofold amplification of two cellular oncogenes of the ras-family (Ki-ras and Ha-ras) were found. Other cellular genes, like the alpha-actin gene, were not amplified, and no variation in gene copy number was detected after incubation of cells with cold I-UdR. We suggest the observed gene amplifications are induced by the densely ionizing radiation emitted by the decay of the incorporated 125 I atoms

  9. Sequence-selective topoisomerase II inhibition by anthracycline derivatives in SV40 DNA: Relationship with DNA binding affinity and cytotoxicity

    International Nuclear Information System (INIS)

    Capranico, G.; Kohn, K.W.; Pommier, Y.; Zunino, F.

    1990-01-01

    Topoisomerase II mediated double-strand breaks produced by anthracycline analogues were studied in SV40 DNA. The compounds included doxorubicin, daunorubicin, two doxorubicin stereoisomers (4'-epimer and β-anomer), and five chromophore-modified derivatives, with a wide range of cytotoxic activity and DNA binding affinity. Cleavage of 32 P-end-labeled DNA fragments was visualized by autoradiography of agarose and polyacrylamide gels. Structure-activity relationships indicated that alterations in the chromophore structure greatly affected drug action on topoisomerase II. In particular, removal of substituents on position 4 of the D ring resulted in more active inducers of cleavage with lower DNA binding affinity. The stereochemistry between the sugar and the chromophore was also essential for activity. All the active anthracyclines induced a single region of prominent cleavage in the entire SV40 DNA, which resulted from a cluster of sites between nucleotides 4237 and 4294. DNA cleavage intensity patterns exhibited differences among analogues and were also dependent upon drug concentration. Intensity at a given site dependent on both stimulatory and suppressive effects depending upon drug concentration and DNA sequence. A good correlation was found between cytotoxicity and intensity of topoisomerase II mediated DNA breakage

  10. p53 levels, cell cycle kinetics and radiosensitivity in two SV40 transformed Wi38VA13 fibroblast strains

    International Nuclear Information System (INIS)

    Werner, F.; Zoelzer, F.; Streffer, C.

    2001-01-01

    Background: The tumor suppressor protein p53 which can mediate an ionizing radiation-induced G 1 arrest in mammalian cells, forms complexes with SV40 large T antigen (l-T-Ag). We have analyzed the p53 levels, the capability to undergo a G 1 arrest and the radiosensitivity of two SV40 transformed fibroblast strains differing in their large T antigen expression. Material and Methods: One of the two strains (VA13F) is the commercially available form of Wi38VA13, the other (VA13E) arose spontaneously from the original one in our laboratory. Their p53 levels were measured by means of flow cytometry (FCM) and Western blot (WB) with two p53 antibodies (Ab-3, clone PAb240; Ab-6, clone DO-1; both Oncogene Science). Cell cycle distributions were determined flow cytometrically after BrdU labeling at regular time intervals after exposure to 250 kV X-rays. Radiosensitivity was assessed in a clonogenicity assay. Results: The p53 levels of the two strains corresponded to their large T antigen expression, presumably due to complex formation between the two proteins. The strain with a high p53 level did not show a G 1 arrest and had a relatively high radiosensitivity, whereas the strain with a low p53 level showed a significant G 1 arrest and a lower radiosensitivity. Conclusion: These results suggest that 1. complex formation between the large T antigen and p53 reduces the latter's functionality; 2. in these two strains the G 1 arrest is one of the factors determining radiosensitivity. (orig.) [de

  11. Homologous SV40 RNA trans-splicing: Special case or prime example of viral RNA trans-splicing?

    Directory of Open Access Journals (Sweden)

    Sushmita Poddar

    2014-06-01

    Full Text Available To date the Simian Virus 40 (SV40 is the only proven example of a virus that recruits the mechanism of RNA trans-splicing to diversify its sequences and gene products. Thereby, two identical viral transcripts are efficiently joined by homologous trans-splicing triggering the formation of a highly transforming 100 kDa super T antigen. Sequences of other viruses including HIV-1 and the human adenovirus type 5 were reported to be involved in heterologous trans-splicing towards cellular or viral sequences but the meaning of these events remains unclear. We computationally and experimentally investigated molecular features associated with viral RNA trans-splicing and identified a common pattern: Viral RNA trans-splicing occurs between strong cryptic or regular viral splice sites and strong regular or cryptic splice sites of the trans-splice partner sequences. The majority of these splice sites are supported by exonic splice enhancers. Splice sites that could compete with the trans-splicing sites for cis-splice reactions are weaker or inexistent. Finally, all but one of the trans-splice reactions seem to be facilitated by one or more complementary binding domains of 11 to 16 nucleotides in length which, however occur with a statistical probability close to one for the given length of the involved sequences. The chimeric RNAs generated via heterologous viral RNA trans-splicing either did not lead to fusion proteins or led to proteins of unknown function. Our data suggest that distinct viral RNAs are highly susceptible to trans-splicing and that heterologous viral trans-splicing, unlike homologous SV40 trans-splicing, represents a chance event.

  12. Effects of radiation and chemicals on SV40 oncogenesis. Final progress report

    International Nuclear Information System (INIS)

    Coggin, J.H. Jr.

    1982-05-01

    This project is directed toward developing rapid, quantitative methods and immunologic markers which will permit the early detection of newly forming tumors induced or enhanced by x-irradiation, chemical carcinogens, viruses or combinations of the three. The projects under study in our ongoing collaborative program seek to develop the detailed understanding and precise methodology required for the early detection of embryonic antigens in transformed cells induced by the co-carcinogenic effects of viruses and low-level radiation. A new technique for assaying the earliest transformed cells appearing in a carcinogen treated population affords a unique tool for this study. Present plans involve efforts to purify embryonic determinants from fetal and transformed cells of hamsters and mice in order to define their role in the transformation process and in tumor development

  13. Structure-based design of a disulfide-linked oligomeric form of the simian virus 40 (SV40) large T antigen DNA-binding domain

    International Nuclear Information System (INIS)

    Meinke, Gretchen; Phelan, Paul; Fradet-Turcotte, Amélie; Archambault, Jacques; Bullock, Peter A.

    2011-01-01

    With the aim of forming the ‘lock-washer’ conformation of the origin-binding domain of SV40 large T antigen in solution, using structure-based analysis an intermolecular disulfide bridge was engineered into the origin-binding domain to generate higher order oligomers in solution. The 1.7 Å resolution structure shows that the mutant forms a spiral in the crystal and has the de novo disulfide bond at the protein interface, although structural rearrangements at the interface are observed relative to the wild type. The modular multifunctional protein large T antigen (T-ag) from simian virus 40 orchestrates many of the events needed for replication of the viral double-stranded DNA genome. This protein assembles into single and double hexamers on specific DNA sequences located at the origin of replication. This complicated process begins when the origin-binding domain of large T antigen (T-ag ODB) binds the GAGGC sequences in the central region (site II) of the viral origin of replication. While many of the functions of purified T-ag OBD can be studied in isolation, it is primarily monomeric in solution and cannot assemble into hexamers. To overcome this limitation, the possibility of engineering intermolecular disulfide bonds in the origin-binding domain which could oligomerize in solution was investigated. A recent crystal structure of the wild-type T-ag OBD showed that this domain forms a left-handed spiral in the crystal with six subunits per turn. Therefore, we analyzed the protein interface of this structure and identified two residues that could potentially support an intermolecular disulfide bond if changed to cysteines. SDS–PAGE analysis established that the mutant T-ag OBD formed higher oligomeric products in a redox-dependent manner. In addition, the 1.7 Å resolution crystal structure of the engineered disulfide-linked T-ag OBD is reported, which establishes that oligomerization took place in the expected manner

  14. Genomes of early onset prostate cancer

    DEFF Research Database (Denmark)

    Weischenfeldt, Joachim; Korbel, Jan O.

    2017-01-01

    Purpose of review Prostate cancer is a disease of the elderly but a clinically relevant subset occurs early in life. In the current review, we discuss recent findings and the current understanding of the molecular underpinnings associated with early-onset prostate cancer (PCa) and the evidence...... supporting age-specific differences in the cancer genomes. Recent findings Recent surveys of PCa patient cohorts have provided novel age-dependent links between germline and somatic aberrations which points to differences in the molecular cause and treatment options. Summary Identifying the earliest...... receptor pathway....

  15. Specific Antibodies Reacting with SV40 Large T Antigen Mimotopes in Serum Samples of Healthy Subjects.

    Directory of Open Access Journals (Sweden)

    Mauro Tognon

    Full Text Available Simian Virus 40, experimentally assayed in vitro in different animal and human cells and in vivo in rodents, was classified as a small DNA tumor virus. In previous studies, many groups identified Simian Virus 40 sequences in healthy individuals and cancer patients using PCR techniques, whereas others failed to detect the viral sequences in human specimens. These conflicting results prompted us to develop a novel indirect ELISA with synthetic peptides, mimicking Simian Virus 40 capsid viral protein antigens, named mimotopes. This immunologic assay allowed us to investigate the presence of serum antibodies against Simian Virus 40 and to verify whether Simian Virus 40 is circulating in humans. In this investigation two mimotopes from Simian Virus 40 large T antigen, the viral replication protein and oncoprotein, were employed to analyze for specific reactions to human sera antibodies. This indirect ELISA with synthetic peptides from Simian Virus 40 large T antigen was used to assay a new collection of serum samples from healthy subjects. This novel assay revealed that serum antibodies against Simian Virus 40 large T antigen mimotopes are detectable, at low titer, in healthy subjects aged from 18-65 years old. The overall prevalence of reactivity with the two Simian Virus 40 large T antigen peptides was 20%. This new ELISA with two mimotopes of the early viral regions is able to detect in a specific manner Simian Virus 40 large T antigen-antibody responses.

  16. Transcription and replication result in distinct epigenetic marks following repression of early gene expression

    OpenAIRE

    Kallestad, Les; Woods, Emily; Christensen, Kendra; Gefroh, Amanda; Balakrishnan, Lata; Milavetz, Barry

    2013-01-01

    Simian Virus 40 (SV40) early transcription is repressed when the product of early transcription, T-antigen, binds to its cognate regulatory sequence, Site I, in the promoter of the SV40 minichromosome. Because SV40 minichromosomes undergo replication and transcription potentially repression could occur during active transcription or during DNA replication. Since repression is frequently epigenetically marked by the introduction of specific forms of methylated histone H3, we characterized th...

  17. Epidermal cell-shape regulation and subpopulation kinetics during butyrate-induced terminal maturation of normal and SV40-transformed human keratinocytes: epithelial models of differentiation therapy.

    Science.gov (United States)

    Staiano-Coico, L; Steinberg, M; Higgins, P J

    1990-10-15

    Recent data indicate that malignant human epidermal cells may be appropriate targets for sodium butyrate (NaB)-mediated differentiation therapy. The response of pre- and post-crisis populations of SV40-transformed human keratinocytes (SVKs) to this differentiation-inducing agent was assessed, therefore, within the framework of NaB-directed normal human keratinocyte (NHK) maturation. NaB augmented cornified envelope (CE) production in NHK and pre-crisis SVK cultures; the time-course and efficiency of induced maturation were similar in the 2 cell systems. In NHKs, the percentage of amplifying ("B" substate) cells decreased with time in NaB correlating with increases in both "C" stage keratinocytes and CEs. The latter formed over one or 2 layers of nucleated basal-like cells. Inductions were accompanied by immediate cell cycle blocks (in both the G1 and G2/M phases), reorganization within the actin cytoskeleton, and transient early increases in cellular actin content. Increased NHK and pre-crisis SVK cytoskeletal-associated actin reached a maximum approximately 48 hr after NaB addition and preceded development of CEs. The CE precursors, thus, probably reside in the "B" substate. Post-crisis SVKs, in contrast, were refractive to NaB-induced terminal maturation or cell-cycle perturbation, failed to initiate actin filament rearrangements, and retained a basal cell-like phenotype. Stable transformation of human SVKs in post-crisis phase, therefore, appears to be associated with loss of maturation "competence" within the "B" keratinocyte subpopulation.

  18. Limits of transforming competence of SV40 nuclear and cytoplasmic large T mutants with altered Rb binding sequences.

    Science.gov (United States)

    Tedesco, D; Fischer-Fantuzzi, L; Vesco, C

    1993-03-01

    Multiple amino acid substitutions were introduced into the SV40 large T region that harbors the retinoblastoma protein (Rb) binding site and the nuclear transport signal, changing either one or both of these determinants. Mutant activities were examined in a set of assays allowing different levels of transforming potential to be distinguished; phenotypic changes in established and pre-crisis rat embryo fibroblasts (REFs) were detected under isogenic cell conditions, and comparisons made with other established rodent cells. The limit of the transforming ability of mutants with important substitutions in the Rb binding site fell between two transformation levels of the same established rat cells. Such cells could be induced to form dense foci but not agar colonies (their parental pre-crises REFs, as expected, were untransformed either way). Nonetheless, agar colony induction was possible in other cell lines, such as mouse NIH3T3 and (for one of the mutants) rat F2408. All these mutants efficiently immortalized pre-crisis REFs. The transforming ability of cytoplasmic mutants appeared to depend on the integrity of the Rb-binding sequence to approximately the same extent as that of the wild-type large T, although evidence of in vivo Rb-cytoplasmic large T complexes was not found. The presence or absence of small t was critical when the transforming task of mutants was near the limit of their abilities.

  19. Chloroplast Genome Evolution in Early Diverged Leptosporangiate Ferns

    OpenAIRE

    Kim, Hyoung Tae; Chung, Myong Gi; Kim, Ki-Joong

    2014-01-01

    In this study, the chloroplast (cp) genome sequences from three early diverged leptosporangiate ferns were completed and analyzed in order to understand the evolution of the genome of the fern lineages. The complete cp genome sequence of Osmunda cinnamomea (Osmundales) was 142,812 base pairs (bp). The cp genome structure was similar to that of eusporangiate ferns. The gene/intron losses that frequently occurred in the cp genome of leptosporangiate ferns were not found in the cp genome of O. c...

  20. Arginine-rich cross-linking peptides with different SV40 nuclear localization signal content as vectors for intranuclear DNA delivery.

    Science.gov (United States)

    Bogacheva, Mariia; Egorova, Anna; Slita, Anna; Maretina, Marianna; Baranov, Vladislav; Kiselev, Anton

    2017-11-01

    The major barriers for intracellular DNA transportation by cationic polymers are their toxicity, poor endosomal escape and inefficient nuclear uptake. Therefore, we designed novel modular peptide-based carriers modified with SV40 nuclear localization signal (NLS). Core peptide consists of arginine, histidine and cysteine residues for DNA condensation, endosomal escape promotion and interpeptide cross-linking, respectively. We investigated three polyplexes with different NLS content (10 mol%, 50 mol% and 90 mol% of SV40 NLS) as vectors for intranuclear DNA delivery. All carriers tested were able to condense DNA, to protect it from DNAase I and were not toxic to the cells. We observed that cell cycle arrest by hydroxyurea did not affect transfection efficacy of NLS-modified carriers which we confirmed using quantitative confocal microscopy analysis. Overall, peptide carrier modified with 90 mol% of SV40 NLS provided efficient transfection and nuclear uptake in non-dividing cells. Thus, incorporation of NLS into arginine-rich cross-linking peptides is an adequate approach to the development of efficient intranuclear gene delivery vehicles. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. Defective repair of UV-damaged DNA in human tumor and SV40-transformed human cells but not in adenovirus-transformed human cells

    International Nuclear Information System (INIS)

    Rainbow, A.J.

    1989-01-01

    The DNA repair capacities of five human tumor cell lines, one SV40-transformed human cell line and one adenovirus-transformed human cell line were compared with that of normal human fibroblasts using a sensitive host cell reactivation (HCR) technique. Unirradiated and UV-irradiated suspensions of adenovirus type 2 (Ad 2) were assayed for their ability to form viral structural antigens (Vag) in the various cell types using immunofluorescent staining. The survival of Vag formation for UV-irradiated Ad 2 was significantly reduced in all the human tumor cell lines and the SV40-transformed human line compared to the normal human fibroblasts, but was apparently normal in the adenovirus-transformed human cells. D 0 values for the UV survival of Ad 2 Vag synthesis in the tumor and virally transformed lines expressed as a percentage of that obtained on normal fibroblast strains were used as a measure of DNA repair capacity. Percent HCR values ranged from 26 to 53% in the tumor cells. These results indicate a deficiency in the repair of UV-induced DNA damage associated with human tumorigenesis and the transformation of human cells by SV40 but not the transformation of human cells by adenovirus. (author)

  2. Early Onset Malignancies - Genomic Study of Cancer Disparities

    Science.gov (United States)

    The Early Onset Malignancies Initiative studies the genomic basis of six cancers that develop at an earlier age, occur in higher rates, and are typically more aggressive in certain minority populations.

  3. Chloroplast genome evolution in early diverged leptosporangiate ferns.

    Science.gov (United States)

    Kim, Hyoung Tae; Chung, Myong Gi; Kim, Ki-Joong

    2014-05-01

    In this study, the chloroplast (cp) genome sequences from three early diverged leptosporangiate ferns were completed and analyzed in order to understand the evolution of the genome of the fern lineages. The complete cp genome sequence of Osmunda cinnamomea (Osmundales) was 142,812 base pairs (bp). The cp genome structure was similar to that of eusporangiate ferns. The gene/intron losses that frequently occurred in the cp genome of leptosporangiate ferns were not found in the cp genome of O. cinnamomea. In addition, putative RNA editing sites in the cp genome were rare in O. cinnamomea, even though the sites were frequently predicted to be present in leptosporangiate ferns. The complete cp genome sequence of Diplopterygium glaucum (Gleicheniales) was 151,007 bp and has a 9.7 kb inversion between the trnL-CAA and trnVGCA genes when compared to O. cinnamomea. Several repeated sequences were detected around the inversion break points. The complete cp genome sequence of Lygodium japonicum (Schizaeales) was 157,142 bp and a deletion of the rpoC1 intron was detected. This intron loss was shared by all of the studied species of the genus Lygodium. The GC contents and the effective numbers of codons (ENCs) in ferns varied significantly when compared to seed plants. The ENC values of the early diverged leptosporangiate ferns showed intermediate levels between eusporangiate and core leptosporangiate ferns. However, our phylogenetic tree based on all of the cp gene sequences clearly indicated that the cp genome similarity between O. cinnamomea (Osmundales) and eusporangiate ferns are symplesiomorphies, rather than synapomorphies. Therefore, our data is in agreement with the view that Osmundales is a distinct early diverged lineage in the leptosporangiate ferns.

  4. Comparative human cellular radiosensitivity: I. The effect of SV40 transformation and immortalisation on the gamma-irradiation survival of skin derived fibroblasts from normal individuals and from ataxia-telangiectasia patients and heterozygotes.

    Science.gov (United States)

    Arlett, C F; Green, M H; Priestley, A; Harcourt, S A; Mayne, L V

    1988-12-01

    We have compared cell killing following 60Co gamma irradiation in 22 primary human fibroblast strains, nine SV40-immortalized human fibroblast lines and seven SV40-transformed pre-crisis human fibroblast cultures. We have examined material from normal individuals, from ataxia-telangiectasia (A-T) patients and from A-T heterozygotes. We have confirmed the greater sensitivity of A-T derived cells to gamma radiation. The distinction between A-T and normal cells is maintained in cells immortalized by SV40 virus but the immortal cells are more gamma radiation resistant than the corresponding primary fibroblasts. Cells transformed by plasmids (pSV3gpt and pSV3neo) expressing SV40 T-antigen, both pre- and post-crisis, show this increased resistance, indicating that it is expression of SV40 T-antigen, rather than immortalization per se which is responsible for the change. We use D0, obtained from a straight line fit, and D, estimated from a multitarget curve, as parameters to compare radiosensitivity. We suggest that both have their advantages; D0 is perhaps more reproducible, but D is more realistic when comparing shouldered and non-shouldered data.

  5. p53-stabilizing Agent CP-31398 Prevents Growth and Invasion of Urothelial Cancer of the Bladder in Transgenic UPII-SV40T Mice

    Directory of Open Access Journals (Sweden)

    Venkateshwar Madka

    2013-08-01

    Full Text Available The high prevalence of bladder cancer and its recurrence make it an important target for chemoprevention. About half of invasive urothelial tumors have mutations in p53. We determined the chemopreventive efficacy of a p53-stabilizing agent, CP-31398, in a transgenic UPII-SV40T mouse model of bladder transitional cell carcinoma (TCC that strongly resembles human TCC. After genotyping, six-week-old UPII-SV40T mice (n = 30/group were fed control (AIN-76A or experimental diets containing 150 or 300 ppm of CP-31398 for 34 weeks. Progression of bladder cancer growth was monitored by magnetic resonance imaging. At 40 weeks of age, all mice were killed; urinary bladders were collected to determine weights, tumor incidence, and histopathology. There was a significant increase in bladder weights of transgenic versus wild-type mice (male: 140.2 mg vs 27.3 mg, P < .0001; female: 34.2 mg vs 14.8 mg, P < .0001. A significant decrease in the bladder tumor weights (by 68.6–80.2%, P < .0001 in males and by 36.9–55.3%, P < .0001 in females was observed in CP-31398-treated mice. Invasive papillary TCC incidence was 100% in transgenic mice fed control diet. Both male and female mice exposed to CP-31398 showed inhibition of invasive TCC. CP-31398 (300 ppm completely blocked invasion in female mice. Molecular analysis of the bladder tumors showed an increase in apoptosis markers (p53, p21, Bax, and Annexin V with a decrease in vascular endothelial growth factor in transgenic mice fed CP-31398. These results suggest that p53-modulating agents can serve as potential chemopreventive agents for bladder TCC.

  6. A subset of herpes simplex virus replication genes induces DNA amplification within the host cell genome

    Energy Technology Data Exchange (ETDEWEB)

    Heilbronn, R.; zur Hausen, H. (Deutsches Krebsforschungszentrum, Heidelberg (West Germany))

    1989-09-01

    Herpes simplex virus (HSV) induces DNA amplification of target genes within the host cell chromosome. To characterize the HSV genes that mediate the amplification effect, combinations of cloned DNA fragments covering the entire HSV genome were transiently transfected into simian virus 40 (SV40)-transformed hamster cells. This led to amplification of the integrated SV40 DNA sequences to a degree comparable to that observed after transfection of intact virion DNA. Transfection of combinations of subclones and of human cytomegalovirus immediate-early promoter-driven expression constructs for individual open reading frames led to the identification of sic HSV genes which together were necessary and sufficient for the induction of DNA amplification: UL30 (DNA polymerase), UL29 (major DNA-binding protein), UL5, UL8, UL42, and UL52. All of these genes encode proteins necessary for HSV DNA replication. However, an additional gene coding for an HSV origin-binding protein (UL9) was required for origin-dependent HSV DNA replication but was dispensable for SV40 DNA amplification. The results show that a subset of HSV replication genes is sufficient for the induction of DNA amplification. This opens the possibility that HSV expresses functions sufficient for DNA amplification but separate from those responsible for lytic viral growth. HSV infection may thereby induce DNA amplification within the host cell genome without killing the host by lytic viral growth. This may lead to persistence of a cell with a new genetic phenotype, which would have implications for the pathogenicity of the virus in vivo.

  7. Enhancement of SV40 transformation by treatment of C3H2K cells with uv light and caffeine. I. Combined effect of uv light and caffeine

    International Nuclear Information System (INIS)

    Ide, T.; Anzai, K.; Andoh, T.

    1975-01-01

    Treatment of cultured mouse cells, C3H2K, with uv light and/or caffeine enhanced the frequency of SV40-induced transformation. This enhancement depends upon the doses of uv and caffeine and the mode of combination of these agents. Irradiation of cells with increasing doses of uv just before infection resulted in approximately 2-fold enhancement of the transformation frequency up to a dose of 90 ergs/mm 2 and 3.3-fold at 150 ergs/mm 2 . Addition of 1 mM caffeine to the medium for 4 days subsequent to infection brought about a 2-fold enhancement. When cells were irradiated and treated with 1 mM caffeine, the enhancement was approximately 4-fold up to a uv dose of 90 ergs/mm 2 and 5.9-fold at 150 ergs/mm 2 . When 0.1 to 4 mM caffeine was added for 4 days postinfection, the absolute number of transformations increased, and an enhancement ratio of 1.3 to 6.8 resulted. After the addition of the same increasing doses of caffeine to uv-irradiated cells (75 ergs/mm 2 ), the enhancement of transformation frequency was even higher ranging 2.0 to 13.3. The transformation frequencies thus obtained by the double treatment were always higher than those predicted if uv and caffeine acted additively. The transformation frequency was little affected by the addition of dibutyrylcyclic AMP and theophylline

  8. Rat bone marrow progenitor cells transduced in situ by rSV40 vectors differentiate into multiple central nervous system cell lineages.

    Science.gov (United States)

    Louboutin, Jean-Pierre; Liu, Bianling; Reyes, Beverly A S; Van Bockstaele, Elisabeth J; Strayer, David S

    2006-12-01

    Using bone marrow-directed gene transfer, we tested whether bone marrow-derived cells may function as progenitors of central nervous system (CNS) cells in adult animals. SV40-derived gene delivery vectors were injected directly into femoral bone marrow, and we examined transgene expression in blood and brain for 0-16 months thereafter by immunostaining for FLAG epitope marker. An average of 5% of peripheral blood cells and 25% of femoral marrow cells were FLAG(+) throughout the study. CNS FLAG-expressing cells were mainly detected in the dentate gyrus (DG) and periventricular subependymal zone (PSZ). Although absent before 1 month and rare at 4 months, DG and PSZ FLAG(+) cells were abundant 16 months after bone marrow injection. Approximately 5% of DG cells expressed FLAG, including neurons (48.6%) and microglia (49.7%), and occasional astrocytes (1.6%), as determined by double immunostaining for FLAG and lineage markers. These data suggest that one or more populations of cells resident within adult bone marrow can migrate to the brain and differentiate into CNS-specific cells.

  9. Differential protein expression, DNA binding and interaction with SV40 large tumour antigen implicate the p63-family of proteins in replicative senescence.

    Science.gov (United States)

    Djelloul, Siham; Tarunina, Marina; Barnouin, Karin; Mackay, Alan; Jat, Parmjit S

    2002-02-07

    P53 activity plays a key role in mammalian cells when they undergo replicative senescence at their Hayflick limit. To determine whether p63 proteins, members of the family of p53-related genes, are also involved in this process, we examined their expression in serially passaged rat embryo fibroblasts. Upon senescence, two truncated DeltaNp63 proteins decreased in abundance whereas two TAp63 isoforms accumulated. 2-D gel analysis showed that the DeltaNp63 proteins underwent post-translational modifications in both proliferating and senescent cells. Direct binding of DeltaNp63 proteins to a p53 consensus motif was greater in proliferating cells than senescent cells. In contrast p63alpha isoforms bound to DNA in a p53 dependent manner and this was higher in senescent cells than proliferating cells. An interaction of p63alpha proteins with SV40 large tumour antigen was also detected and ectopic expression of DeltaNp63alpha can extend the lifespan of rat embryo fibroblasts. Taken together the results indicate that p63 proteins may play a role in replicative senescence either by competition for p53 DNA binding sites or by direct interaction with p53 protein bound to DNA.

  10. Analysis of proviral integration in human mammary epithelial cell lines immortalized by retroviral infection with a temperature-sensitive SV40 T-antigen construct.

    Science.gov (United States)

    Stamps, A C; Davies, S C; Burman, J; O'Hare, M J

    1994-06-15

    A panel of eight conditionally immortal lines derived by infection of human breast epithelial cells with an amphotropic retrovirus transducing a ts mutant of SV40 large T-antigen was analyzed with respect to individual retroviral integration patterns. Each line contained multiple integration sites which were clonal and stable over extended passage. Similar integration patterns were observed between individual lines arising separately from the same stock of pre-immortal cells, suggesting a common progenitor. Retroviral integration analysis of pre-immortal cells at different stages of pre-crisis growth showed changes indicative of a progressive transition from polyclonality to clonality as the cells approached crisis. Each of the immortal lines contained a sub-set of the integration sites of their pre-immortal progenitors, with individual combinations and copy numbers of sites. Since all the cell lines appeared to originate from single foci in separate flasks, it is likely that each set arose from a common clone of pre-immortal cells as the result of separate genetic events. There was no evidence from this analysis to suggest that specific integration sites played any part either in the selection of pre-crisis clones or in the subsequent establishment of immortal lines.

  11. Insertion of liver enriched transcription factor hepatocyte nuclear factor-4 (HNF-4) in a vector which contains simian virus (SV40) promoter

    International Nuclear Information System (INIS)

    Al-Nbaheen, M.; Pourzand, C.; Tyrrell, R.M.

    2006-01-01

    One way of targeting gene expression in vivo is to control transcription using a tissue-specific regulatory system. Tissue specific promoters or enhancers are in use in transgenic animals and could be utilized in medical for gene therapy. At present the usual method for selection of a tissue-specific promoter is to identify a gene, which is expressed at unusually high level in the target tissue, and then to use the promoter for this gene to drive expression of another therapeutic gene in the target tissue. This approach is logical but does not always lead to high levels of gene expression. A second approach is to investigate the scope for discovery of synthetic specific promoters using a target tissue. The objective of the work described in this paper was to use both approach to design plasmid DNA expression vectors that would carry liver-specific promoter/enhancer linked to reporter gene (i.e. luciferase). Then transfect these vectors to both liver-derived and non-liver cell lines. This is followed by evaluation of the liver-specificity of each construct by measuring the basal level expression of the reporter gene (i.e. luciferase activity) in both cell lines. Hepatocyte nuclear factor-4 (HNF-4) is liver-enriched transcription factor used to design new synthetic enhancers by inserting a tandem array of 1', 3' or 5' repeats of the HNF-4 binding site upstream of the SV40 promoter linked to the luciferase reporter gene within an Epstein-Barr virus (EBV)-based vector, p 706. The results of transfection revealed that unexpectedly the HNF-4 binding sites in these constructs act as a repressor rather than enhancer of the liver-specific expression of the luciferase gene. (author)

  12. Application of SV40 T-transformed human corneal epithelial cells to evaluate potential irritant chemicals for in vitro alternative eye toxicity.

    Science.gov (United States)

    Kim, Cho-Won; Park, Geon-Tae; Bae, Ok-Nam; Noh, Minsoo; Choi, Kyung-Chul

    2016-01-01

    Assessment of eye irritation potential is important to human safety, and it is necessary for various cosmetics and chemicals that may contact the human eye. Until recently, the Draize test was considered the standard method for estimating eye irritation, despite its disadvantages such as the need to sacrifice many rabbits for subjective scoring. Thus, we investigated the cytotoxicity and inflammatory response to standard eye irritants using SV40 T-transformed human corneal epithelial (SHCE) cells as a step toward development of an animal-free alternative eye irritation test. MTT and NRU assays of cell viability were performed to investigate the optimal experimental conditions for SHCE cell viability when cells were exposed to sodium dodecyl sulfate (SDS) as a standard eye irritant at 6.25×10(-3) to 1×10(-1)%. Additionally, cell viability of SHCE cells was examined in response to six potential eye irritants, benzalkonium chloride, dimethyl sulfoxide, isopropanol, SDS, Triton X-100 and Tween 20 at 5×10(-3) to 1×10(-1)%. Finally, we estimated the secretion level of cytokines in response to stimulation by eye irritants in SHCE cells. SHCE cells showed a good response to potential eye irritants when the cells were exposed to potential irritants for 10min at room temperature (RT), and cytokine production increased in a concentration-dependent manner, indicating that cytotoxicity and cytokine secretion from SHCE cells may be well correlated with the concentrations of irritants. Taken together, these results suggest that SHCE cells could be an excellent alternative in vitro model to replace in vivo animal models for eye irritation tests. Copyright © 2016 Elsevier Inc. All rights reserved.

  13. Knockdown of AMPKα decreases ATM expression and increases radiosensitivity under hypoxia and nutrient starvation in an SV40-transformed human fibroblast cell line, LM217.

    Science.gov (United States)

    Murata, Yasuhiko; Hashimoto, Takuma; Urushihara, Yusuke; Shiga, Soichiro; Takeda, Kazuya; Jingu, Keiichi; Hosoi, Yoshio

    2018-01-22

    Presence of unperfused regions containing cells under hypoxia and nutrient starvation contributes to radioresistance in solid human tumors. It is well known that hypoxia causes cellular radioresistance, but little is known about the effects of nutrient starvation on radiosensitivity. We have reported that nutrient starvation induced decrease of mTORC1 activity and decrease of radiosensitivity in an SV40-transformed human fibroblast cell line, LM217, and that nutrient starvation induced increase of mTORC1 activity and increase of radiosensitivity in human liver cancer cell lines, HepG2 and HuH6 (Murata et al., BBRC 2015). Knockdown of mTOR using small interfering RNA (siRNA) for mTOR suppressed radiosensitivity under nutrient starvation alone in HepG2 cells, which suggests that mTORC1 pathway regulates radiosensitivity under nutrient starvation alone. In the present study, effects of hypoxia and nutrient starvation on radiosensitivity were investigated using the same cell lines. LM217 and HepG2 cells were used to examine the effects of hypoxia and nutrient starvation on cellular radiosensitivity, mTORC1 pathway including AMPK, ATM, and HIF-1α, which are known as regulators of mTORC1 activity, and glycogen storage, which is induced by HIF-1 and HIF-2 under hypoxia and promotes cell survival. Under hypoxia and nutrient starvation, AMPK activity and ATM expression were increased in LM217 cells and decreased in HepG2 cells compared with AMPK activity under nutrient starvation alone or ATM expression under hypoxia alone. Under hypoxia and nutrient starvation, radiosensitivity was decreased in LM217 cells and increased in HepG2 cells compared with radiosensitivity under hypoxia alone. Under hypoxia and nutrient starvation, knockdown of AMPK decreased ATM activity and increased radiation sensitivity in LM217 cells. In both cell lines, mTORC1 activity was decreased under hypoxia and nutrient starvation. Under hypoxia alone, knockdown of mTOR slightly increased ATM

  14. Characterization of gastric adenocarcinoma cell lines established from CEA424/SV40 T antigen-transgenic mice with or without a human CEA transgene

    International Nuclear Information System (INIS)

    Nöckel, Jessica; Engel, Natasja K van den; Winter, Hauke; Hatz, Rudolf A; Zimmermann, Wolfgang; Kammerer, Robert

    2006-01-01

    Gastric carcinoma is one of the most frequent cancers worldwide. Patients with gastric cancer at an advanced disease stage have a poor prognosis, due to the limited efficacy of available therapies. Therefore, the development of new therapies, like immunotherapy for the treatment of gastric cancer is of utmost importance. Since the usability of existing preclinical models for the evaluation of immunotherapies for gastric adenocarcinomas is limited, the goal of the present study was to establish murine in vivo models which allow the stepwise improvement of immunotherapies for gastric cancer. Since no murine gastric adenocarcinoma cell lines are available we established four cell lines (424GC, mGC3, mGC5, mGC8) from spontaneously developing tumors of CEA424/SV40 T antigen (CEA424/Tag) mice and three cell lines derived from double-transgenic offsprings of CEA424/Tag mice mated with human carcinoembryonic antigen (CEA)-transgenic (CEA424/Tag-CEA) mice (mGC2 CEA , mGC4 CEA , mGC11 CEA ). CEA424/Tag is a transgenic C57BL/6 mouse strain harboring the Tag under the control of a -424/-8 bp CEA gene promoter which leads to the development of invasive adenocarcinoma in the glandular stomach. Tumor cell lines established from CEA424/Tag-CEA mice express the well defined tumor antigen CEA under the control of its natural regulatory elements. The epithelial origin of the tumor cells was proven by morphological criteria including the presence of mucin within the cells and the expression of the cell adhesion molecules EpCAM and CEACAM1. All cell lines consistently express the transgenes CEA and/or Tag and MHC class I molecules leading to their susceptibility to lysis by Tag-specific CTL in vitro. Despite the presentation of CTL-epitopes derived from the transgene products the tumor cell lines were tumorigenic when grafted into C57BL/6, CEA424/Tag or CEA424/Tag-CEA-transgenic hosts and no significant differences in tumor take and tumor growth were observed in the different hosts

  15. The mechanism of thioacetamide-induced apoptosis in the L37 albumin-SV40 T-antigen transgenic rat hepatocyte-derived cell line occurs without DNA fragmentation.

    Science.gov (United States)

    Bulera, S J; Sattler, C A; Gast, W L; Heath, S; Festerling, T A; Pitot, H C

    1998-10-01

    The hepatotoxicant thioacetamide (TH) has classically been used as a model to study hepatic necrosis; however, recent studies have shown that TH can also induce apoptosis. In this report we demonstrate that 2.68+/-0.54% of the albumin-SV40 T-antigen transgenic rat hepatocytes undergo TH-induced apoptosis, a level comparable to other in vivo models of liver apoptosis. In addition, TH could induce apoptosis and necrosis in the L37 albumin-SV40 T-antigen transgenic rat liver-derived cell line. Examination of dying L37 cells treated with 100 mM TH by electron microscopy revealed distinct morphological characteristics that could be attributed to apoptosis. Quantitation of apoptosis by FACS analysis 24 h after treatment with 100 mM TH revealed that 81.3+/-1.6% of the cells were undergoing apoptosis. In contrast, when L37 cells were treated with 250 mM TH, cells exhibited characteristics consistent with necrotic cell death. DNA fragmentation ladders were produced by growth factor withdrawal-induced apoptosis; however, in 100 mM TH-induced apoptosis, DNA fragmentation ladders were not observed. Analysis of endonuclease activity in L37 cells revealed that the enzymes were not inactivated in the presence of 100 mM TH. The data presented in this report indicate that the L37 cell line could be used to study the mechanism of TH-induced apoptosis that was not mediated through a mechanism requiring DNA fragmentation.

  16. High-density rhesus macaque oligonucleotide microarray design using early-stage rhesus genome sequence information and human genome annotations

    Directory of Open Access Journals (Sweden)

    Magness Charles L

    2007-01-01

    Full Text Available Abstract Background Until recently, few genomic reagents specific for non-human primate research have been available. To address this need, we have constructed a macaque-specific high-density oligonucleotide microarray by using highly fragmented low-pass sequence contigs from the rhesus genome project together with the detailed sequence and exon structure of the human genome. Using this method, we designed oligonucleotide probes to over 17,000 distinct rhesus/human gene orthologs and increased by four-fold the number of available genes relative to our first-generation expressed sequence tag (EST-derived array. Results We constructed a database containing 248,000 exon sequences from 23,000 human RefSeq genes and compared each human exon with its best matching sequence in the January 2005 version of the rhesus genome project list of 486,000 DNA contigs. Best matching rhesus exon sequences for each of the 23,000 human genes were then concatenated in the proper order and orientation to produce a rhesus "virtual transcriptome." Microarray probes were designed, one per gene, to the region closest to the 3' untranslated region (UTR of each rhesus virtual transcript. Each probe was compared to a composite rhesus/human transcript database to test for cross-hybridization potential yielding a final probe set representing 18,296 rhesus/human gene orthologs, including transcript variants, and over 17,000 distinct genes. We hybridized mRNA from rhesus brain and spleen to both the EST- and genome-derived microarrays. Besides four-fold greater gene coverage, the genome-derived array also showed greater mean signal intensities for genes present on both arrays. Genome-derived probes showed 99.4% identity when compared to 4,767 rhesus GenBank sequence tag site (STS sequences indicating that early stage low-pass versions of complex genomes are of sufficient quality to yield valuable functional genomic information when combined with finished genome information from

  17. Early Epstein-Barr Virus Genomic Diversity and Convergence toward the B95.8 Genome in Primary Infection.

    Science.gov (United States)

    Weiss, Eric R; Lamers, Susanna L; Henderson, Jennifer L; Melnikov, Alexandre; Somasundaran, Mohan; Garber, Manuel; Selin, Liisa; Nusbaum, Chad; Luzuriaga, Katherine

    2018-01-15

    Over 90% of the world's population is persistently infected with Epstein-Barr virus. While EBV does not cause disease in most individuals, it is the common cause of acute infectious mononucleosis (AIM) and has been associated with several cancers and autoimmune diseases, highlighting a need for a preventive vaccine. At present, very few primary, circulating EBV genomes have been sequenced directly from infected individuals. While low levels of diversity and low viral evolution rates have been predicted for double-stranded DNA (dsDNA) viruses, recent studies have demonstrated appreciable diversity in common dsDNA pathogens (e.g., cytomegalovirus). Here, we report 40 full-length EBV genome sequences obtained from matched oral wash and B cell fractions from a cohort of 10 AIM patients. Both intra- and interpatient diversity were observed across the length of the entire viral genome. Diversity was most pronounced in viral genes required for establishing latent infection and persistence, with appreciable levels of diversity also detected in structural genes, including envelope glycoproteins. Interestingly, intrapatient diversity declined significantly over time ( P < 0.01), and this was particularly evident on comparison of viral genomes sequenced from B cell fractions in early primary infection and convalescence ( P < 0.001). B cell-associated viral genomes were observed to converge, becoming nearly identical to the B95.8 reference genome over time (Spearman rank-order correlation test; r = -0.5589, P = 0.0264). The reduction in diversity was most marked in the EBV latency genes. In summary, our data suggest independent convergence of diverse viral genome sequences toward a reference-like strain within a relatively short period following primary EBV infection. IMPORTANCE Identification of viral proteins with low variability and high immunogenicity is important for the development of a protective vaccine. Knowledge of genome diversity within circulating viral

  18. Genome sequencing highlights the dynamic early history of dogs.

    Directory of Open Access Journals (Sweden)

    Adam H Freedman

    2014-01-01

    Full Text Available To identify genetic changes underlying dog domestication and reconstruct their early evolutionary history, we generated high-quality genome sequences from three gray wolves, one from each of the three putative centers of dog domestication, two basal dog lineages (Basenji and Dingo and a golden jackal as an outgroup. Analysis of these sequences supports a demographic model in which dogs and wolves diverged through a dynamic process involving population bottlenecks in both lineages and post-divergence gene flow. In dogs, the domestication bottleneck involved at least a 16-fold reduction in population size, a much more severe bottleneck than estimated previously. A sharp bottleneck in wolves occurred soon after their divergence from dogs, implying that the pool of diversity from which dogs arose was substantially larger than represented by modern wolf populations. We narrow the plausible range for the date of initial dog domestication to an interval spanning 11-16 thousand years ago, predating the rise of agriculture. In light of this finding, we expand upon previous work regarding the increase in copy number of the amylase gene (AMY2B in dogs, which is believed to have aided digestion of starch in agricultural refuse. We find standing variation for amylase copy number variation in wolves and little or no copy number increase in the Dingo and Husky lineages. In conjunction with the estimated timing of dog origins, these results provide additional support to archaeological finds, suggesting the earliest dogs arose alongside hunter-gathers rather than agriculturists. Regarding the geographic origin of dogs, we find that, surprisingly, none of the extant wolf lineages from putative domestication centers is more closely related to dogs, and, instead, the sampled wolves form a sister monophyletic clade. This result, in combination with dog-wolf admixture during the process of domestication, suggests that a re-evaluation of past hypotheses regarding dog

  19. Genomic minimalism in the early diverging intestinal parasite Giardia lamblia.

    Science.gov (United States)

    Morrison, Hilary G; McArthur, Andrew G; Gillin, Frances D; Aley, Stephen B; Adam, Rodney D; Olsen, Gary J; Best, Aaron A; Cande, W Zacheus; Chen, Feng; Cipriano, Michael J; Davids, Barbara J; Dawson, Scott C; Elmendorf, Heidi G; Hehl, Adrian B; Holder, Michael E; Huse, Susan M; Kim, Ulandt U; Lasek-Nesselquist, Erica; Manning, Gerard; Nigam, Anuranjini; Nixon, Julie E J; Palm, Daniel; Passamaneck, Nora E; Prabhu, Anjali; Reich, Claudia I; Reiner, David S; Samuelson, John; Svard, Staffan G; Sogin, Mitchell L

    2007-09-28

    The genome of the eukaryotic protist Giardia lamblia, an important human intestinal parasite, is compact in structure and content, contains few introns or mitochondrial relics, and has simplified machinery for DNA replication, transcription, RNA processing, and most metabolic pathways. Protein kinases comprise the single largest protein class and reflect Giardia's requirement for a complex signal transduction network for coordinating differentiation. Lateral gene transfer from bacterial and archaeal donors has shaped Giardia's genome, and previously unknown gene families, for example, cysteine-rich structural proteins, have been discovered. Unexpectedly, the genome shows little evidence of heterozygosity, supporting recent speculations that this organism is sexual. This genome sequence will not only be valuable for investigating the evolution of eukaryotes, but will also be applied to the search for new therapeutics for this parasite.

  20. The Genome of Naegleria gruberi Illuminates Early Eukaryotic Versatility

    Energy Technology Data Exchange (ETDEWEB)

    Fritz-Laylin, Lillian K.; Prochnik, Simon E.; Ginger, Michael L.; Dacks, Joel; Carpenter, Meredith L.; Field, Mark C.; Kuo, Alan; Paredez, Alex; Chapman, Jarrod; Pham, Jonathan; Shu, Shengqiang; Neupane, Rochak; Cipriano, Michael; Mancuso, Joel; Tu, Hank; Salamov, Asaf; Lindquist, Erika; Shapiro, Harris; Lucas, Susan; Grigoriev, Igor V.; Cande, W. Zacheus; Fulton, Chandler; Rokhsar, Daniel S.; Dawson, Scott C.

    2010-03-01

    Genome sequences of diverse free-living protists are essential for understanding eukaryotic evolution and molecular and cell biology. The free-living amoeboflagellate Naegleria gruberi belongs to a varied and ubiquitous protist clade (Heterolobosea) that diverged from other eukaryotic lineages over a billion years ago. Analysis of the 15,727 protein-coding genes encoded by Naegleria's 41 Mb nuclear genome indicates a capacity for both aerobic respiration and anaerobic metabolism with concomitant hydrogen production, with fundamental implications for the evolution of organelle metabolism. The Naegleria genome facilitates substantially broader phylogenomic comparisons of free-living eukaryotes than previously possible, allowing us to identify thousands of genes likely present in the pan-eukaryotic ancestor, with 40% likely eukaryotic inventions. Moreover, we construct a comprehensive catalog of amoeboid-motility genes. The Naegleria genome, analyzed in the context of other protists, reveals a remarkably complex ancestral eukaryote with a rich repertoire of cytoskeletal, sexual, signaling, and metabolic modules.

  1. Helicosporidia: a genomic snapshot of an early transition to parasitism

    Directory of Open Access Journals (Sweden)

    Yukun Sun

    2014-12-01

    Full Text Available Helicosporidia are gut parasites of invertebrates. These achlorophyllous, non-photosynthetic green algae are the first reported to infect insects. Helicosporidia are members of the green algal class Trebouxiophyceae and are further related to the photosynthetic and non-photosynthetic genera Auxenochlorella and Prototheca, respectively, the latter of which can also turn to parasitism under opportunistic conditions. Molecular analyses suggest that Helicosporidia diverged from other photosynthetic trebouxiophytes less than 200 million years ago and that its adaptation to parasitism is therefore recent. In this minireview, we summarize the current knowledge of helicosporidian genomics. Unlike many well-known parasitic lineages, the Helicosporidium sp. organelle and nuclear genomes have lost surprisingly little in terms of coding content aside from photosynthesis-related genes. While the small size of its nuclear genome compared to other sequenced trebouxiophycean representatives suggests that Helicosporidium is going through a streamlining process, this scenario cannot be ascertained at this stage. Genome expansions and contractions have occurred independently multiple times in the green algae, and the small size of the Helicosporidium genome may reflect a lack of expansion from a lean ancestor state rather than a tendency towards reduction.

  2. Identification of Ohnolog Genes Originating from Whole Genome Duplication in Early Vertebrates, Based on Synteny Comparison across Multiple Genomes.

    Science.gov (United States)

    Singh, Param Priya; Arora, Jatin; Isambert, Hervé

    2015-07-01

    Whole genome duplications (WGD) have now been firmly established in all major eukaryotic kingdoms. In particular, all vertebrates descend from two rounds of WGDs, that occurred in their jawless ancestor some 500 MY ago. Paralogs retained from WGD, also coined 'ohnologs' after Susumu Ohno, have been shown to be typically associated with development, signaling and gene regulation. Ohnologs, which amount to about 20 to 35% of genes in the human genome, have also been shown to be prone to dominant deleterious mutations and frequently implicated in cancer and genetic diseases. Hence, identifying ohnologs is central to better understand the evolution of vertebrates and their susceptibility to genetic diseases. Early computational analyses to identify vertebrate ohnologs relied on content-based synteny comparisons between the human genome and a single invertebrate outgroup genome or within the human genome itself. These approaches are thus limited by lineage specific rearrangements in individual genomes. We report, in this study, the identification of vertebrate ohnologs based on the quantitative assessment and integration of synteny conservation between six amniote vertebrates and six invertebrate outgroups. Such a synteny comparison across multiple genomes is shown to enhance the statistical power of ohnolog identification in vertebrates compared to earlier approaches, by overcoming lineage specific genome rearrangements. Ohnolog gene families can be browsed and downloaded for three statistical confidence levels or recompiled for specific, user-defined, significance criteria at http://ohnologs.curie.fr/. In the light of the importance of WGD on the genetic makeup of vertebrates, our analysis provides a useful resource for researchers interested in gaining further insights on vertebrate evolution and genetic diseases.

  3. Identification of a Genomic Signature Predicting for Recurrence in Early Stage Ovarian Cancer

    Science.gov (United States)

    2015-12-01

    do it. Thus, instead of simply sequencing all the FFPE samples, we used 10 tumor samples (5 recurrent and 5 non recurrent ) to test sequencing and...Award Number: W81XWH-12-1-0521 TITLE: Identification of a Genomic Signature Predicting for Recurrence in Early-Stage Ovarian Cancer PRINCIPAL...4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER 5b. GRANT NUMBER W81XWH-12-1-0521 Identification of a Genomic Signature Predicting for Recurrence in

  4. Genome-wide association scan for variants associated with early-onset prostate cancer.

    Directory of Open Access Journals (Sweden)

    Ethan M Lange

    Full Text Available Prostate cancer is the most common non-skin cancer and the second leading cause of cancer related mortality for men in the United States. There is strong empirical and epidemiological evidence supporting a stronger role of genetics in early-onset prostate cancer. We performed a genome-wide association scan for early-onset prostate cancer. Novel aspects of this study include the focus on early-onset disease (defined as men with prostate cancer diagnosed before age 56 years and use of publically available control genotype data from previous genome-wide association studies. We found genome-wide significant (p<5×10(-8 evidence for variants at 8q24 and 11p15 and strong supportive evidence for a number of previously reported loci. We found little evidence for individual or systematic inflated association findings resulting from using public controls, demonstrating the utility of using public control data in large-scale genetic association studies of common variants. Taken together, these results demonstrate the importance of established common genetic variants for early-onset prostate cancer and the power of including early-onset prostate cancer cases in genetic association studies.

  5. Comparative genomics of neuroglobin reveals its early origins.

    Directory of Open Access Journals (Sweden)

    Jasmin Dröge

    Full Text Available Neuroglobin (Ngb is a hexacoordinated globin expressed mainly in the central and peripheral nervous system of vertebrates. Although several hypotheses have been put forward regarding the role of neuroglobin, its definite function remains uncertain. Ngb appears to have a neuro-protective role enhancing cell viability under hypoxia and other types of oxidative stress. Ngb is phylogenetically ancient and has a substitution rate nearly four times lower than that of other vertebrate globins, e.g. hemoglobin. Despite its high sequence conservation among vertebrates Ngb seems to be elusive in invertebrates.We determined candidate orthologs in invertebrates and identified a globin of the placozoan Trichoplax adhaerens that is most likely orthologous to vertebrate Ngb and confirmed the orthologous relationship of the polymeric globin of the sea urchin Strongylocentrotus purpuratus to Ngb. The putative orthologous globin genes are located next to genes orthologous to vertebrate POMT2 similarly to localization of vertebrate Ngb. The shared syntenic position of the globins from Trichoplax, the sea urchin and of vertebrate Ngb strongly suggests that they are orthologous. A search for conserved transcription factor binding sites (TFBSs in the promoter regions of the Ngb genes of different vertebrates via phylogenetic footprinting revealed several TFBSs, which may contribute to the specific expression of Ngb, whereas a comparative analysis with myoglobin revealed several common TFBSs, suggestive of regulatory mechanisms common to globin genes.Identification of the placozoan and echinoderm genes orthologous to vertebrate neuroglobin strongly supports the hypothesis of the early evolutionary origin of this globin, as it shows that neuroglobin was already present in the placozoan-bilaterian last common ancestor. Computational determination of the transcription factor binding sites repertoire provides on the one hand a set of transcriptional factors that are

  6. Genomic Prediction of Single Crosses in the Early Stages of a Maize Hybrid Breeding Pipeline

    Directory of Open Access Journals (Sweden)

    Dnyaneshwar C. Kadam

    2016-11-01

    Full Text Available Prediction of single-cross performance has been a major goal of plant breeders since the beginning of hybrid breeding. Recently, genomic prediction has shown to be a promising approach, but only limited studies have examined the accuracy of predicting single-cross performance. Moreover, no studies have examined the potential of predicting single crosses among random inbreds derived from a series of biparental families, which resembles the structure of germplasm comprising the initial stages of a hybrid maize breeding pipeline. The main objectives of this study were to evaluate the potential of genomic prediction for identifying superior single crosses early in the hybrid breeding pipeline and optimize its application. To accomplish these objectives, we designed and analyzed a novel population of single crosses representing the Iowa Stiff Stalk synthetic/non-Stiff Stalk heterotic pattern commonly used in the development of North American commercial maize hybrids. The performance of single crosses was predicted using parental combining ability and covariance among single crosses. Prediction accuracies were estimated using cross-validation and ranged from 0.28 to 0.77 for grain yield, 0.53 to 0.91 for plant height, and 0.49 to 0.94 for staygreen, depending on the number of tested parents of the single cross and genomic prediction method used. The genomic estimated general and specific combining abilities showed an advantage over genomic covariances among single crosses when one or both parents of the single cross were untested. Overall, our results suggest that genomic prediction of single crosses in the early stages of a hybrid breeding pipeline holds great potential to redesign hybrid breeding and increase its efficiency.

  7. Genome-Wide Meta-Analysis of Longitudinal Alcohol Consumption Across Youth and Early Adulthood.

    Science.gov (United States)

    Adkins, Daniel E; Clark, Shaunna L; Copeland, William E; Kennedy, Martin; Conway, Kevin; Angold, Adrian; Maes, Hermine; Liu, Youfang; Kumar, Gaurav; Erkanli, Alaattin; Patkar, Ashwin A; Silberg, Judy; Brown, Tyson H; Fergusson, David M; Horwood, L John; Eaves, Lindon; van den Oord, Edwin J C G; Sullivan, Patrick F; Costello, E J

    2015-08-01

    The public health burden of alcohol is unevenly distributed across the life course, with levels of use, abuse, and dependence increasing across adolescence and peaking in early adulthood. Here, we leverage this temporal patterning to search for common genetic variants predicting developmental trajectories of alcohol consumption. Comparable psychiatric evaluations measuring alcohol consumption were collected in three longitudinal community samples (N=2,126, obs=12,166). Consumption-repeated measurements spanning adolescence and early adulthood were analyzed using linear mixed models, estimating individual consumption trajectories, which were then tested for association with Illumina 660W-Quad genotype data (866,099 SNPs after imputation and QC). Association results were combined across samples using standard meta-analysis methods. Four meta-analysis associations satisfied our pre-determined genome-wide significance criterion (FDR<0.1) and six others met our 'suggestive' criterion (FDR<0.2). Genome-wide significant associations were highly biological plausible, including associations within GABA transporter 1, SLC6A1 (solute carrier family 6, member 1), and exonic hits in LOC100129340 (mitofusin-1-like). Pathway analyses elaborated single marker results, indicating significant enriched associations to intuitive biological mechanisms, including neurotransmission, xenobiotic pharmacodynamics, and nuclear hormone receptors (NHR). These findings underscore the value of combining longitudinal behavioral data and genome-wide genotype information in order to study developmental patterns and improve statistical power in genomic studies.

  8. Deletion and acquisition of genomic content during early stage adaptation of Pseudomonas aeruginosa to a human host environment

    DEFF Research Database (Denmark)

    Rau, Martin H.; Marvig, Rasmus Lykke; Ehrlich, Garth D.

    2012-01-01

    of the change in genetic content during the early stage of host adaptation by this P. aeruginosa strain as it adapts to the cystic fibrosis (CF) lung of several patients. Considerable genome reduction is detected predominantly through the deletion of large genomic regions, and up to 8% of the genome is deleted...... adapted pathogenic strain of P. aeruginosa to strengthen the genetic basis, which serves to help our understanding of microbial evolution in a natural environment....

  9. Immortalization of Human Fetal Hepatocyte by Ectopic Expression of Human Telomerase Reverse Transcriptase, Human Papilloma Virus (E7) and Simian Virus 40 Large T (SV40 T) Antigen Towards Bioartificial Liver Support.

    Science.gov (United States)

    Giri, Shibashish; Bader, Augustinus

    2014-09-01

    Generation of genetically stable and non-tumoric immortalization cell line from primary cells would be enormously useful for research and therapeutic purposes, but progress towards this goal has so far been limited. It is now universal acceptance that immortalization of human fetal hepatocytes based on recent advances of telomerase biology and oncogene, lead to unlimited population doubling could be the possible source for bioartificial liver device. Immortalization of human fetal hepatocytes cell line by ectopic expression of human telomerase reverse transcriptase (hTERT), human papilloma virus gene (E7) and simian virus 40 large T (SV40 T) antigens is main goal of present study. We used an inducible system containing human telomerase and E7, both of which are cloned into responder constructs controlled by doxycycline transactivator. We characterized the immortalized human fetal hepatocyte cells by analysis of green fluorescent cells (GFP) positive cells using flow cytometry (FACs) cell sorting and morphology, proliferative rate and antigen expression by immunohistochemical analysis. In addition to we analysized lactate formation, glucose consumption, albumin secretion and urea production of immortalized human fetal hepatocyte cells. After 25 attempts for transfection of adult primary hepatocytes by human telomerase and E7 to immortalize them, none of the transfection systems resulted in the production of a stable, proliferating cell line. Although the transfection efficiency was more than 70% on the first day, the vast majority of the transfected hepatocytes lost their signal within the first 5-7 days. The remaining transfected hepatocytes persisted for 2-4 weeks and divided one or two times without forming a clone. After 10 attempts of transfection human fetal hepatocytes using the same transfection system, we obtained one stable human fetal hepatocytes cell line which was able albumin secretion urea production and glucose consumption. We established a

  10. Whole-genome analysis of a patient with early-stage small-cell lung cancer.

    Science.gov (United States)

    Han, J-Y; Lee, Y-S; Kim, B C; Lee, G K; Lee, S; Kim, E-H; Kim, H-M; Bhak, J

    2014-12-01

    We performed whole-genome sequencing (WGS) of a case of early-stage small-cell lung cancer (SCLC) to analyze the genomic features. WGS revealed a lot of single-nucleotide variations (SNVs), small insertion/deletions and chromosomal abnormality. Chromosomes 4p, 5q, 13q, 15q, 17p and 22q contained many block deletions. Especially, copy loss was observed in tumor suppressor genes RB1 and TP53, and copy gain in oncogene hTERT. Somatic mutations were found in TP53 and CREBBP. Novel nonsynonymous (ns) SNVs in C6ORF103 and SLC5A4 genes were also found. Sanger sequencing of the SLC5A4 gene in 23 independent SCLC samples showed another nsSNV in the SLC5A4 gene, indicating that nsSNVs in the SLC5A4 gene are recurrent in SCLC. WGS of an early-stage SCLC identified novel recurrent mutations and validated known variations, including copy number variations. These findings provide insight into the genomic landscape contributing to SCLC development.

  11. Early telomere shortening and genomic instability in tubo-ovarian preneoplastic lesions.

    Science.gov (United States)

    Chene, Gautier; Tchirkov, Andrei; Pierre-Eymard, Eleonore; Dauplat, Jacques; Raoelfils, Ines; Cayre, Anne; Watkin, Emmanuel; Vago, Philippe; Penault-Llorca, Frederique

    2013-06-01

    Genetic instability plays an important role in ovarian carcinogenesis. We investigated the level of telomere shortening and genomic instability in early and preinvasive stages of ovarian cancer, serous tubal intraepithelial carcinoma (STIC), and tubo-ovarian dysplasia (TOD). Fifty-one TOD from prophylactic salpingo-oophorectomies with BRCA1 or 2 mutation, 12 STICs, 53 tubo-ovarian high-grade serous carcinoma, and 36 noncancerous controls were laser capture microdissected from formalin-fixed, paraffin-embedded sections, analyzed by comparative genomic hybridization (array CGH) and for telomere length (using quantitative real-time PCR based on the Cawthon's method). TOD and STICs were defined by morphologic scores and immunohistochemical expressions of p53, Ki67, and γH2AX. TOD showed marked telomere shortening compared with noncancerous controls (P STICs had even shorter telomeres than TOD (P = 0.0008). Ovarian carcinoma had shorter telomeres than controls but longer than STICs and dysplasia. In TOD, telomeres were significantly shorter in those with BRCA1 mutation than in those with BRCA2 mutation (P = 0.005). In addition, γH2AX expression in TOD and STIC groups with short telomeres was significantly increased (P STICs. The total number of genetic alterations was the highest in ovarian cancers. These findings suggest that genetic instability occurs in early stages of ovarian tumorigenesis. STICs and noninvasive dysplasia are likely an important step in early serous ovarian neoplasia. ©2013 AACR

  12. Improving the baking quality of bread wheat by genomic selection in early generations.

    Science.gov (United States)

    Michel, Sebastian; Kummer, Christian; Gallee, Martin; Hellinger, Jakob; Ametz, Christian; Akgöl, Batuhan; Epure, Doru; Löschenberger, Franziska; Buerstmayr, Hermann

    2018-02-01

    Genomic selection shows great promise for pre-selecting lines with superior bread baking quality in early generations, 3 years ahead of labour-intensive, time-consuming, and costly quality analysis. The genetic improvement of baking quality is one of the grand challenges in wheat breeding as the assessment of the associated traits often involves time-consuming, labour-intensive, and costly testing forcing breeders to postpone sophisticated quality tests to the very last phases of variety development. The prospect of genomic selection for complex traits like grain yield has been shown in numerous studies, and might thus be also an interesting method to select for baking quality traits. Hence, we focused in this study on the accuracy of genomic selection for laborious and expensive to phenotype quality traits as well as its selection response in comparison with phenotypic selection. More than 400 genotyped wheat lines were, therefore, phenotyped for protein content, dough viscoelastic and mixing properties related to baking quality in multi-environment trials 2009-2016. The average prediction accuracy across three independent validation populations was r = 0.39 and could be increased to r = 0.47 by modelling major QTL as fixed effects as well as employing multi-trait prediction models, which resulted in an acceptable prediction accuracy for all dough rheological traits (r = 0.38-0.63). Genomic selection can furthermore be applied 2-3 years earlier than direct phenotypic selection, and the estimated selection response was nearly twice as high in comparison with indirect selection by protein content for baking quality related traits. This considerable advantage of genomic selection could accordingly support breeders in their selection decisions and aid in efficiently combining superior baking quality with grain yield in newly developed wheat varieties.

  13. Recalibrating Equus evolution using the genome sequence of an early Middle Pleistocene horse.

    Science.gov (United States)

    Orlando, Ludovic; Ginolhac, Aurélien; Zhang, Guojie; Froese, Duane; Albrechtsen, Anders; Stiller, Mathias; Schubert, Mikkel; Cappellini, Enrico; Petersen, Bent; Moltke, Ida; Johnson, Philip L F; Fumagalli, Matteo; Vilstrup, Julia T; Raghavan, Maanasa; Korneliussen, Thorfinn; Malaspinas, Anna-Sapfo; Vogt, Josef; Szklarczyk, Damian; Kelstrup, Christian D; Vinther, Jakob; Dolocan, Andrei; Stenderup, Jesper; Velazquez, Amhed M V; Cahill, James; Rasmussen, Morten; Wang, Xiaoli; Min, Jiumeng; Zazula, Grant D; Seguin-Orlando, Andaine; Mortensen, Cecilie; Magnussen, Kim; Thompson, John F; Weinstock, Jacobo; Gregersen, Kristian; Røed, Knut H; Eisenmann, Véra; Rubin, Carl J; Miller, Donald C; Antczak, Douglas F; Bertelsen, Mads F; Brunak, Søren; Al-Rasheid, Khaled A S; Ryder, Oliver; Andersson, Leif; Mundy, John; Krogh, Anders; Gilbert, M Thomas P; Kjær, Kurt; Sicheritz-Ponten, Thomas; Jensen, Lars Juhl; Olsen, Jesper V; Hofreiter, Michael; Nielsen, Rasmus; Shapiro, Beth; Wang, Jun; Willerslev, Eske

    2013-07-04

    The rich fossil record of equids has made them a model for evolutionary processes. Here we present a 1.12-times coverage draft genome from a horse bone recovered from permafrost dated to approximately 560-780 thousand years before present (kyr BP). Our data represent the oldest full genome sequence determined so far by almost an order of magnitude. For comparison, we sequenced the genome of a Late Pleistocene horse (43 kyr BP), and modern genomes of five domestic horse breeds (Equus ferus caballus), a Przewalski's horse (E. f. przewalskii) and a donkey (E. asinus). Our analyses suggest that the Equus lineage giving rise to all contemporary horses, zebras and donkeys originated 4.0-4.5 million years before present (Myr BP), twice the conventionally accepted time to the most recent common ancestor of the genus Equus. We also find that horse population size fluctuated multiple times over the past 2 Myr, particularly during periods of severe climatic changes. We estimate that the Przewalski's and domestic horse populations diverged 38-72 kyr BP, and find no evidence of recent admixture between the domestic horse breeds and the Przewalski's horse investigated. This supports the contention that Przewalski's horses represent the last surviving wild horse population. We find similar levels of genetic variation among Przewalski's and domestic populations, indicating that the former are genetically viable and worthy of conservation efforts. We also find evidence for continuous selection on the immune system and olfaction throughout horse evolution. Finally, we identify 29 genomic regions among horse breeds that deviate from neutrality and show low levels of genetic variation compared to the Przewalski's horse. Such regions could correspond to loci selected early during domestication.

  14. Early modern human dispersal from Africa: genomic evidence for multiple waves of migration.

    Science.gov (United States)

    Tassi, Francesca; Ghirotto, Silvia; Mezzavilla, Massimo; Vilaça, Sibelle Torres; De Santi, Lisa; Barbujani, Guido

    2015-01-01

    Anthropological and genetic data agree in indicating the African continent as the main place of origin for anatomically modern humans. However, it is unclear whether early modern humans left Africa through a single, major process, dispersing simultaneously over Asia and Europe, or in two main waves, first through the Arab Peninsula into southern Asia and Oceania, and later through a northern route crossing the Levant. Here, we show that accurate genomic estimates of the divergence times between European and African populations are more recent than those between Australo-Melanesia and Africa and incompatible with the effects of a single dispersal. This difference cannot possibly be accounted for by the effects of either hybridization with archaic human forms in Australo-Melanesia or back migration from Europe into Africa. Furthermore, in several populations of Asia we found evidence for relatively recent genetic admixture events, which could have obscured the signatures of the earliest processes. We conclude that the hypothesis of a single major human dispersal from Africa appears hardly compatible with the observed historical and geographical patterns of genome diversity and that Australo-Melanesian populations seem still to retain a genomic signature of a more ancient divergence from Africa.

  15. Ancient genomes link early farmers from Atapuerca in Spain to modern-day Basques

    Science.gov (United States)

    Günther, Torsten; Valdiosera, Cristina; Malmström, Helena; Ureña, Irene; Rodriguez-Varela, Ricardo; Sverrisdóttir, Óddny Osk; Daskalaki, Evangelia A.; Skoglund, Pontus; Naidoo, Thijessen; Svensson, Emma M.; Bermúdez de Castro, José María; Carbonell, Eudald; Dunn, Michael; Storå, Jan; Iriarte, Eneko; Arsuaga, Juan Luis; Carretero, José-Miguel; Götherström, Anders; Jakobsson, Mattias

    2015-01-01

    The consequences of the Neolithic transition in Europe—one of the most important cultural changes in human prehistory—is a subject of great interest. However, its effect on prehistoric and modern-day people in Iberia, the westernmost frontier of the European continent, remains unresolved. We present, to our knowledge, the first genome-wide sequence data from eight human remains, dated to between 5,500 and 3,500 years before present, excavated in the El Portalón cave at Sierra de Atapuerca, Spain. We show that these individuals emerged from the same ancestral gene pool as early farmers in other parts of Europe, suggesting that migration was the dominant mode of transferring farming practices throughout western Eurasia. In contrast to central and northern early European farmers, the Chalcolithic El Portalón individuals additionally mixed with local southwestern hunter–gatherers. The proportion of hunter–gatherer-related admixture into early farmers also increased over the course of two millennia. The Chalcolithic El Portalón individuals showed greatest genetic affinity to modern-day Basques, who have long been considered linguistic and genetic isolates linked to the Mesolithic whereas all other European early farmers show greater genetic similarity to modern-day Sardinians. These genetic links suggest that Basques and their language may be linked with the spread of agriculture during the Neolithic. Furthermore, all modern-day Iberian groups except the Basques display distinct admixture with Caucasus/Central Asian and North African groups, possibly related to historical migration events. The El Portalón genomes uncover important pieces of the demographic history of Iberia and Europe and reveal how prehistoric groups relate to modern-day people. PMID:26351665

  16. Plastid Genome Evolution in the Early-Diverging Legume Subfamily Cercidoideae (Fabaceae

    Directory of Open Access Journals (Sweden)

    Yin-Huan Wang

    2018-02-01

    Full Text Available The subfamily Cercidoideae is an early-branching legume lineage, which consists of 13 genera distributed in the tropical and warm temperate Northern Hemisphere. A previous study detected two plastid genomic variations in this subfamily, but the limited taxon sampling left the overall plastid genome (plastome diversification across the subfamily unaddressed, and phylogenetic relationships within this clade remained unresolved. Here, we assembled eight plastomes from seven Cercidoideae genera and conducted phylogenomic-comparative analyses in a broad evolutionary framework across legumes. The plastomes of Cercidoideae all exhibited a typical quadripartite structure with a conserved gene content typical of most angiosperm plastomes. Plastome size ranged from 151,705 to 165,416 bp, mainly due to the expansion and contraction of inverted repeat (IR regions. The order of genes varied due to the occurrence of several inversions. In Tylosema species, a plastome with a 29-bp IR-mediated inversion was found to coexist with a canonical-type plastome, and the abundance of the two arrangements of isomeric molecules differed between individuals. Complete plastome data were much more efficient at resolving intergeneric relationships of Cercidoideae than the previously used selection of only a few plastid or nuclear loci. In sum, our study revealed novel insights into the structural diversification of plastomes in an early-branching legume lineage, and, thus, into the evolutionary trajectories of legume plastomes in general.

  17. Drosophila MOF controls Checkpoint protein2 and regulates genomic stability during early embryogenesis.

    Science.gov (United States)

    Pushpavalli, Sreerangam N C V L; Sarkar, Arpita; Ramaiah, M Janaki; Chowdhury, Debabani Roy; Bhadra, Utpal; Pal-Bhadra, Manika

    2013-01-24

    In Drosophila embryos, checkpoints maintain genome stability by delaying cell cycle progression that allows time for damage repair or to complete DNA synthesis. Drosophila MOF, a member of MYST histone acetyl transferase is an essential component of male X hyperactivation process. Until recently its involvement in G2/M cell cycle arrest and defects in ionizing radiation induced DNA damage pathways was not well established. Drosophila MOF is highly expressed during early embryogenesis. In the present study we show that haplo-insufficiency of maternal MOF leads to spontaneous mitotic defects like mitotic asynchrony, mitotic catastrophe and chromatid bridges in the syncytial embryos. Such abnormal nuclei are eliminated and digested in the yolk tissues by nuclear fall out mechanism. MOF negatively regulates Drosophila checkpoint kinase 2 tumor suppressor homologue. In response to DNA damage the checkpoint gene Chk2 (Drosophila mnk) is activated in the mof mutants, there by causing centrosomal inactivation suggesting its role in response to genotoxic stress. A drastic decrease in the fall out nuclei in the syncytial embryos derived from mof¹/+; mnkp⁶/+ females further confirms the role of DNA damage response gene Chk2 to ensure the removal of abnormal nuclei from the embryonic precursor pool and maintain genome stability. The fact that mof mutants undergo DNA damage has been further elucidated by the increased number of single and double stranded DNA breaks. mof mutants exhibited genomic instability as evidenced by the occurance of frequent mitotic bridges in anaphase, asynchronous nuclear divisions, disruption of cytoskeleton, inactivation of centrosomes finally leading to DNA damage. Our findings are consistent to what has been reported earlier in mammals that; reduced levels of MOF resulted in increased genomic instability while total loss resulted in lethality. The study can be further extended using Drosophila as model system and carry out the interaction of MOF

  18. Drosophila MOF controls Checkpoint protein2 and regulates genomic stability during early embryogenesis

    Directory of Open Access Journals (Sweden)

    Pushpavalli Sreerangam NCVL

    2013-01-01

    Full Text Available Abstract Background In Drosophila embryos, checkpoints maintain genome stability by delaying cell cycle progression that allows time for damage repair or to complete DNA synthesis. Drosophila MOF, a member of MYST histone acetyl transferase is an essential component of male X hyperactivation process. Until recently its involvement in G2/M cell cycle arrest and defects in ionizing radiation induced DNA damage pathways was not well established. Results Drosophila MOF is highly expressed during early embryogenesis. In the present study we show that haplo-insufficiency of maternal MOF leads to spontaneous mitotic defects like mitotic asynchrony, mitotic catastrophe and chromatid bridges in the syncytial embryos. Such abnormal nuclei are eliminated and digested in the yolk tissues by nuclear fall out mechanism. MOF negatively regulates Drosophila checkpoint kinase 2 tumor suppressor homologue. In response to DNA damage the checkpoint gene Chk2 (Drosophila mnk is activated in the mof mutants, there by causing centrosomal inactivation suggesting its role in response to genotoxic stress. A drastic decrease in the fall out nuclei in the syncytial embryos derived from mof1/+; mnkp6/+ females further confirms the role of DNA damage response gene Chk2 to ensure the removal of abnormal nuclei from the embryonic precursor pool and maintain genome stability. The fact that mof mutants undergo DNA damage has been further elucidated by the increased number of single and double stranded DNA breaks. Conclusion mof mutants exhibited genomic instability as evidenced by the occurance of frequent mitotic bridges in anaphase, asynchronous nuclear divisions, disruption of cytoskeleton, inactivation of centrosomes finally leading to DNA damage. Our findings are consistent to what has been reported earlier in mammals that; reduced levels of MOF resulted in increased genomic instability while total loss resulted in lethality. The study can be further extended using

  19. Genomes

    National Research Council Canada - National Science Library

    Brown, T. A. (Terence A.)

    2002-01-01

    ... of genome expression and replication processes, and transcriptomics and proteomics. This text is richly illustrated with clear, easy-to-follow, full color diagrams, which are downloadable from the book's website...

  20. Adaptive genomic evolution of opsins reveals that early mammals flourished in nocturnal environments.

    Science.gov (United States)

    Borges, Rui; Johnson, Warren E; O'Brien, Stephen J; Gomes, Cidália; Heesy, Christopher P; Antunes, Agostinho

    2018-02-05

    Based on evolutionary patterns of the vertebrate eye, Walls (1942) hypothesized that early placental mammals evolved primarily in nocturnal habitats. However, not only Eutheria, but all mammals show photic characteristics (i.e. dichromatic vision, rod-dominated retina) suggestive of a scotopic eye design. Here, we used integrative comparative genomic and phylogenetic methodologies employing the photoreceptive opsin gene family in 154 mammals to test the likelihood of a nocturnal period in the emergence of all mammals. We showed that mammals possess genomic patterns concordant with a nocturnal ancestry. The loss of the RH2, VA, PARA, PARIE and OPN4x opsins in all mammals led us to advance a probable and most-parsimonious hypothesis of a global nocturnal bottleneck that explains the loss of these genes in the emerging lineage (> > 215.5 million years ago). In addition, ancestral character reconstruction analyses provided strong evidence that ancestral mammals possessed a nocturnal lifestyle, ultra-violet-sensitive vision, low visual acuity and low orbit convergence (i.e. panoramic vision). Overall, this study provides insight into the evolutionary history of the mammalian eye while discussing important ecological aspects of the photic paleo-environments ancestral mammals have occupied.

  1. Discovery of Cellular Proteins Required for the Early Steps of HCV Infection Using Integrative Genomics

    Science.gov (United States)

    Yang, Jae-Seong; Kwon, Oh Sung; Kim, Sanguk; Jang, Sung Key

    2013-01-01

    Successful viral infection requires intimate communication between virus and host cell, a process that absolutely requires various host proteins. However, current efforts to discover novel host proteins as therapeutic targets for viral infection are difficult. Here, we developed an integrative-genomics approach to predict human genes involved in the early steps of hepatitis C virus (HCV) infection. By integrating HCV and human protein associations, co-expression data, and tight junction-tetraspanin web specific networks, we identified host proteins required for the early steps in HCV infection. Moreover, we validated the roles of newly identified proteins in HCV infection by knocking down their expression using small interfering RNAs. Specifically, a novel host factor CD63 was shown to directly interact with HCV E2 protein. We further demonstrated that an antibody against CD63 blocked HCV infection, indicating that CD63 may serve as a new therapeutic target for HCV-related diseases. The candidate gene list provides a source for identification of new therapeutic targets. PMID:23593195

  2. DNA repair efficiency in germ cells and early mouse embryos and consequences for radiation-induced transgenerational genomic damage

    Energy Technology Data Exchange (ETDEWEB)

    Marchetti, Francesco; Wyrobek, Andrew J.

    2009-01-18

    Exposure to ionizing radiation and other environmental agents can affect the genomic integrity of germ cells and induce adverse health effects in the progeny. Efficient DNA repair during gametogenesis and the early embryonic cycles after fertilization is critical for preventing transmission of DNA damage to the progeny and relies on maternal factors stored in the egg before fertilization. The ability of the maternal repair machinery to repair DNA damage in both parental genomes in the fertilizing egg is especially crucial for the fertilizing male genome that has not experienced a DNA repair-competent cellular environment for several weeks prior to fertilization. During the DNA repair-deficient period of spermatogenesis, DNA lesions may accumulate in sperm and be carried into the egg where, if not properly repaired, could result in the formation of heritable chromosomal aberrations or mutations and associated birth defects. Studies with female mice deficient in specific DNA repair genes have shown that: (i) cell cycle checkpoints are activated in the fertilized egg by DNA damage carried by the sperm; and (ii) the maternal genotype plays a major role in determining the efficiency of repairing genomic lesions in the fertilizing sperm and directly affect the risk for abnormal reproductive outcomes. There is also growing evidence that implicates DNA damage carried by the fertilizing gamete as a mediator of postfertilization processes that contribute to genomic instability in subsequent generations. Transgenerational genomic instability most likely involves epigenetic mechanisms or error-prone DNA repair processes in the early embryo. Maternal and embryonic DNA repair processes during the early phases of mammalian embryonic development can have far reaching consequences for the genomic integrity and health of subsequent generations.

  3. Cadmium-induced genomic instability in Arabidopsis: Molecular toxicological biomarkers for early diagnosis of cadmium stress.

    Science.gov (United States)

    Wang, Hetong; He, Lei; Song, Jie; Cui, Weina; Zhang, Yanzhao; Jia, Chunyun; Francis, Dennis; Rogers, Hilary J; Sun, Lizong; Tai, Peidong; Hui, Xiujuan; Yang, Yuesuo; Liu, Wan

    2016-05-01

    Microsatellite instability (MSI) analysis, random-amplified polymorphic DNA (RAPD), and methylation-sensitive arbitrarily primed PCR (MSAP-PCR) are methods to evaluate the toxicity of environmental pollutants in stress-treated plants and human cancer cells. Here, we evaluate these techniques to screen for genetic and epigenetic alterations of Arabidopsis plantlets exposed to 0-5.0 mg L(-1) cadmium (Cd) for 15 d. There was a substantial increase in RAPD polymorphism of 24.5, and in genomic methylation polymorphism of 30.5-34.5 at CpG and of 14.5-20 at CHG sites under Cd stress of 5.0 mg L(-1) by RAPD and of 0.25-5.0 mg L(-1) by MSAP-PCR, respectively. However, only a tiny increase of 1.5 loci by RAPD occurred under Cd stress of 4.0 mg L(-1), and an additional high dose (8.0 mg L(-1)) resulted in one repeat by MSI analysis. MSAP-PCR detected the most significant epigenetic modifications in plantlets exposed to Cd stress, and the patterns of hypermethylation and polymorphisms were consistent with inverted U-shaped dose responses. The presence of genomic methylation polymorphism in Cd-treated seedlings, prior to the onset of RAPD polymorphism, MSI and obvious growth effects, suggests that these altered DNA methylation loci are the most sensitive biomarkers for early diagnosis and risk assessment of genotoxic effects of Cd pollution in ecotoxicology. Copyright © 2016 Elsevier Ltd. All rights reserved.

  4. Coalescent-based genome analyses resolve the early branches of the euarchontoglires.

    Directory of Open Access Journals (Sweden)

    Vikas Kumar

    Full Text Available Despite numerous large-scale phylogenomic studies, certain parts of the mammalian tree are extraordinarily difficult to resolve. We used the coding regions from 19 completely sequenced genomes to study the relationships within the super-clade Euarchontoglires (Primates, Rodentia, Lagomorpha, Dermoptera and Scandentia because the placement of Scandentia within this clade is controversial. The difficulty in resolving this issue is due to the short time spans between the early divergences of Euarchontoglires, which may cause incongruent gene trees. The conflict in the data can be depicted by network analyses and the contentious relationships are best reconstructed by coalescent-based analyses. This method is expected to be superior to analyses of concatenated data in reconstructing a species tree from numerous gene trees. The total concatenated dataset used to study the relationships in this group comprises 5,875 protein-coding genes (9,799,170 nucleotides from all orders except Dermoptera (flying lemurs. Reconstruction of the species tree from 1,006 gene trees using coalescent models placed Scandentia as sister group to the primates, which is in agreement with maximum likelihood analyses of concatenated nucleotide sequence data. Additionally, both analytical approaches favoured the Tarsier to be sister taxon to Anthropoidea, thus belonging to the Haplorrhine clade. When divergence times are short such as in radiations over periods of a few million years, even genome scale analyses struggle to resolve phylogenetic relationships. On these short branches processes such as incomplete lineage sorting and possibly hybridization occur and make it preferable to base phylogenomic analyses on coalescent methods.

  5. Pea early-browning virus -mediated genome editing via the CRISPR/Cas9 system in Nicotiana benthamiana and Arabidopsis

    KAUST Repository

    Ali, Zahir; Eid, Ayman; Ali, Shawkat; Mahfouz, Magdy M.

    2017-01-01

    The clustered regularly interspaced palindromic repeats (CRISPR)/CRISPR-associated (Cas9) system has enabled efficient genome engineering in diverse plant species. However, delivery of genome engineering reagents, such as the single guide RNA (sgRNA), into plant cells remains challenging. Here, we report the engineering of Tobacco rattle virus (TRV) and Pea early browning virus (PEBV) to deliver one or multiple sgRNAs into Nicotiana benthamiana and Arabidopsis thaliana (Col-0) plants that overexpress a nuclear localization signal containing Cas9. Our data showed that TRV and PEBV can deliver sgRNAs into inoculated and systemic leaves, and this resulted in mutagenesis of the targeted genomic loci. Moreover, in N. benthamiana, PEBV-based sgRNA delivery resulted in more targeted mutations than TRV-based delivery. Our data indicate that TRV and PEBV can facilitate plant genome engineering and can be used to produce targeted mutations for functional analysis and other biotechnological applications across diverse plant species.Key message: Delivery of genome engineering reagents into plant cells is challenging and inefficient and this limit the applications of this technology in many plant species. RNA viruses such as TRV and PEBV provide an efficient tool to systemically deliver sgRNAs for targeted genome modification.

  6. Pea early-browning virus -mediated genome editing via the CRISPR/Cas9 system in Nicotiana benthamiana and Arabidopsis

    KAUST Repository

    Ali, Zahir

    2017-10-17

    The clustered regularly interspaced palindromic repeats (CRISPR)/CRISPR-associated (Cas9) system has enabled efficient genome engineering in diverse plant species. However, delivery of genome engineering reagents, such as the single guide RNA (sgRNA), into plant cells remains challenging. Here, we report the engineering of Tobacco rattle virus (TRV) and Pea early browning virus (PEBV) to deliver one or multiple sgRNAs into Nicotiana benthamiana and Arabidopsis thaliana (Col-0) plants that overexpress a nuclear localization signal containing Cas9. Our data showed that TRV and PEBV can deliver sgRNAs into inoculated and systemic leaves, and this resulted in mutagenesis of the targeted genomic loci. Moreover, in N. benthamiana, PEBV-based sgRNA delivery resulted in more targeted mutations than TRV-based delivery. Our data indicate that TRV and PEBV can facilitate plant genome engineering and can be used to produce targeted mutations for functional analysis and other biotechnological applications across diverse plant species.Key message: Delivery of genome engineering reagents into plant cells is challenging and inefficient and this limit the applications of this technology in many plant species. RNA viruses such as TRV and PEBV provide an efficient tool to systemically deliver sgRNAs for targeted genome modification.

  7. Defining the genomic signature of totipotency and pluripotency during early human development.

    Directory of Open Access Journals (Sweden)

    Amparo Galan

    Full Text Available The genetic mechanisms governing human pre-implantation embryo development and the in vitro counterparts, human embryonic stem cells (hESCs, still remain incomplete. Previous global genome studies demonstrated that totipotent blastomeres from day-3 human embryos and pluripotent inner cell masses (ICMs from blastocysts, display unique and differing transcriptomes. Nevertheless, comparative gene expression analysis has revealed that no significant differences exist between hESCs derived from blastomeres versus those obtained from ICMs, suggesting that pluripotent hESCs involve a new developmental progression. To understand early human stages evolution, we developed an undifferentiation network signature (UNS and applied it to a differential gene expression profile between single blastomeres from day-3 embryos, ICMs and hESCs. This allowed us to establish a unique signature composed of highly interconnected genes characteristic of totipotency (61 genes, in vivo pluripotency (20 genes, and in vitro pluripotency (107 genes, and which are also proprietary according to functional analysis. This systems biology approach has led to an improved understanding of the molecular and signaling processes governing human pre-implantation embryo development, as well as enabling us to comprehend how hESCs might adapt to in vitro culture conditions.

  8. Xp22.3 genomic deletions involving the CDKL5 gene in girls with early onset epileptic encephalopathy.

    Science.gov (United States)

    Mei, Davide; Marini, Carla; Novara, Francesca; Bernardina, Bernardo D; Granata, Tiziana; Fontana, Elena; Parrini, Elena; Ferrari, Anna R; Murgia, Alessandra; Zuffardi, Orsetta; Guerrini, Renzo

    2010-04-01

    Mutations of the X-linked gene cyclin-dependent kinase-like 5 (CDKL5) cause an X-linked encephalopathy with early onset intractable epilepsy, including infantile spasms and other seizure types, and a Rett syndrome (RTT)-like phenotype. Very limited information is available on the frequency and phenotypic spectrum associated with CDKL5 deletions/duplications. We investigated the role of CDKL5 deletions/duplications in causing early onset intractable epilepsy of unknown etiology in girls. We studied 49 girls with early onset intractable epilepsy, with or without infantile spasms, and developmental impairment, for whom no etiologic factors were obvious after clinical examination, brain magnetic resonance imaging (MRI) and expanded screening for inborn errors of metabolism. We performed CDKL5 gene mutation analysis in all and multiplex ligation dependent probe amplification assay (MLPA) in those who were mutation negative. Custom Array-comparative genomic hybridization (CGH), breakpoint polymerase chain reaction (PCR) analysis, and X-inactivation studies were performed in patients in whom MLPA uncovered a genomic alteration. We found CDKL5 mutations in 8.2% (4 of 49) of patients and genomic deletions in 8.2% (4 of 49). Overall, abnormalities of the CDKL5 gene accounted for 16.3% (8 of 49) of patients. CDKL5 gene deletions are an under-ascertained cause of early onset intractable epilepsy in girls. Genetic testing of CDKL5, including both mutation and deletion/duplication analysis, should be considered in this clinical subgroup.

  9. Who ate whom? Adaptive Helicobacter genomic changes that accompanied a host jump from early humans to large felines.

    Directory of Open Access Journals (Sweden)

    Mark Eppinger

    2006-07-01

    Full Text Available Helicobacter pylori infection of humans is so old that its population genetic structure reflects that of ancient human migrations. A closely related species, Helicobacter acinonychis, is specific for large felines, including cheetahs, lions, and tigers, whereas hosts more closely related to humans harbor more distantly related Helicobacter species. This observation suggests a jump between host species. But who ate whom and when did it happen? In order to resolve this question, we determined the genomic sequence of H. acinonychis strain Sheeba and compared it to genomes from H. pylori. The conserved core genes between the genomes are so similar that the host jump probably occurred within the last 200,000 (range 50,000-400,000 years. However, the Sheeba genome also possesses unique features that indicate the direction of the host jump, namely from early humans to cats. Sheeba possesses an unusually large number of highly fragmented genes, many encoding outer membrane proteins, which may have been destroyed in order to bypass deleterious responses from the feline host immune system. In addition, the few Sheeba-specific genes that were found include a cluster of genes encoding sialylation of the bacterial cell surface carbohydrates, which were imported by horizontal genetic exchange and might also help to evade host immune defenses. These results provide a genomic basis for elucidating molecular events that allow bacteria to adapt to novel animal hosts.

  10. Comparative Genomics of Early-Diverging Brucella Strains Reveals a Novel Lipopolysaccharide Biosynthesis Pathway

    Science.gov (United States)

    Wattam, Alice R.; Inzana, Thomas J.; Williams, Kelly P.; Mane, Shrinivasrao P.; Shukla, Maulik; Almeida, Nalvo F.; Dickerman, Allan W.; Mason, Steven; Moriyón, Ignacio; O’Callaghan, David; Whatmore, Adrian M.; Sobral, Bruno W.; Tiller, Rebekah V.; Hoffmaster, Alex R.; Frace, Michael A.; De Castro, Cristina; Molinaro, Antonio; Boyle, Stephen M.; De, Barun K.; Setubal, João C.

    2012-01-01

    ABSTRACT Brucella species are Gram-negative bacteria that infect mammals. Recently, two unusual strains (Brucella inopinata BO1T and B. inopinata-like BO2) have been isolated from human patients, and their similarity to some atypical brucellae isolated from Australian native rodent species was noted. Here we present a phylogenomic analysis of the draft genome sequences of BO1T and BO2 and of the Australian rodent strains 83-13 and NF2653 that shows that they form two groups well separated from the other sequenced Brucella spp. Several important differences were noted. Both BO1T and BO2 did not agglutinate significantly when live or inactivated cells were exposed to monospecific A and M antisera against O-side chain sugars composed of N-formyl-perosamine. While BO1T maintained the genes required to synthesize a typical Brucella O-antigen, BO2 lacked many of these genes but still produced a smooth LPS (lipopolysaccharide). Most missing genes were found in the wbk region involved in O-antigen synthesis in classic smooth Brucella spp. In their place, BO2 carries four genes that other bacteria use for making a rhamnose-based O-antigen. Electrophoretic, immunoblot, and chemical analyses showed that BO2 carries an antigenically different O-antigen made of repeating hexose-rich oligosaccharide units that made the LPS water-soluble, which contrasts with the homopolymeric O-antigen of other smooth brucellae that have a phenol-soluble LPS. The results demonstrate the existence of a group of early-diverging brucellae with traits that depart significantly from those of the Brucella species described thus far. PMID:22930339

  11. Mitochondrial Genome Diversity of Native Americans Supports a Single Early Entry of Founder Populations into America

    Science.gov (United States)

    Silva Jr., Wilson A.; Bonatto, Sandro L.; Holanda, Adriano J.; Ribeiro-dos-Santos, Andrea K.; Paixão, Beatriz M.; Goldman, Gustavo H.; Abe-Sandes, Kiyoko; Rodriguez-Delfin, Luis; Barbosa, Marcela; Paçó-Larson, Maria Luiza; Petzl-Erler, Maria Luiza; Valente, Valeria; Santos, Sidney E. B.; Zago, Marco A.

    2002-01-01

    There is general agreement that the Native American founder populations migrated from Asia into America through Beringia sometime during the Pleistocene, but the hypotheses concerning the ages and the number of these migrations and the size of the ancestral populations are surrounded by controversy. DNA sequence variations of several regions of the genome of Native Americans, especially in the mitochondrial DNA (mtDNA) control region, have been studied as a tool to help answer these questions. However, the small number of nucleotides studied and the nonclocklike rate of mtDNA control-region evolution impose several limitations to these results. Here we provide the sequence analysis of a continuous region of 8.8 kb of the mtDNA outside the D-loop for 40 individuals, 30 of whom are Native Americans whose mtDNA belongs to the four founder haplogroups. Haplogroups A, B, and C form monophyletic clades, but the five haplogroup D sequences have unstable positions and usually do not group together. The high degree of similarity in the nucleotide diversity and time of differentiation (i.e., ∼21,000 years before present) of these four haplogroups support a common origin for these sequences and suggest that the populations who harbor them may also have a common history. Additional evidence supports the idea that this age of differentiation coincides with the process of colonization of the New World and supports the hypothesis of a single and early entry of the ancestral Asian population into the Americas. PMID:12022039

  12. Identification of early zygotic genes in the yellow fever mosquito Aedes aegypti and discovery of a motif involved in early zygotic genome activation.

    Science.gov (United States)

    Biedler, James K; Hu, Wanqi; Tae, Hongseok; Tu, Zhijian

    2012-01-01

    During early embryogenesis the zygotic genome is transcriptionally silent and all mRNAs present are of maternal origin. The maternal-zygotic transition marks the time over which embryogenesis changes its dependence from maternal RNAs to zygotically transcribed RNAs. Here we present the first systematic investigation of early zygotic genes (EZGs) in a mosquito species and focus on genes involved in the onset of transcription during 2-4 hr. We used transcriptome sequencing to identify the "pure" (without maternal expression) EZGs by analyzing transcripts from four embryonic time ranges of 0-2, 2-4, 4-8, and 8-12 hr, which includes the time of cellular blastoderm formation and up to the start of gastrulation. Blast of 16,789 annotated transcripts vs. the transcriptome reads revealed evidence for 63 (P<0.001) and 143 (P<0.05) nonmaternally derived transcripts having a significant increase in expression at 2-4 hr. One third of the 63 EZG transcripts do not have predicted introns compared to 10% of all Ae. aegypti genes. We have confirmed by RT-PCR that zygotic transcription starts as early as 2-3 hours. A degenerate motif VBRGGTA was found to be overrepresented in the upstream sequences of the identified EZGs using a motif identification software called SCOPE. We find evidence for homology between this motif and the TAGteam motif found in Drosophila that has been implicated in EZG activation. A 38 bp sequence in the proximal upstream sequence of a kinesin light chain EZG (KLC2.1) contains two copies of the mosquito motif. This sequence was shown to support EZG transcription by luciferase reporter assays performed on injected early embryos, and confers early zygotic activity to a heterologous promoter from a divergent mosquito species. The results of these studies are consistent with the model of early zygotic genome activation via transcriptional activators, similar to what has been found recently in Drosophila.

  13. Identification of early zygotic genes in the yellow fever mosquito Aedes aegypti and discovery of a motif involved in early zygotic genome activation.

    Directory of Open Access Journals (Sweden)

    James K Biedler

    Full Text Available During early embryogenesis the zygotic genome is transcriptionally silent and all mRNAs present are of maternal origin. The maternal-zygotic transition marks the time over which embryogenesis changes its dependence from maternal RNAs to zygotically transcribed RNAs. Here we present the first systematic investigation of early zygotic genes (EZGs in a mosquito species and focus on genes involved in the onset of transcription during 2-4 hr. We used transcriptome sequencing to identify the "pure" (without maternal expression EZGs by analyzing transcripts from four embryonic time ranges of 0-2, 2-4, 4-8, and 8-12 hr, which includes the time of cellular blastoderm formation and up to the start of gastrulation. Blast of 16,789 annotated transcripts vs. the transcriptome reads revealed evidence for 63 (P<0.001 and 143 (P<0.05 nonmaternally derived transcripts having a significant increase in expression at 2-4 hr. One third of the 63 EZG transcripts do not have predicted introns compared to 10% of all Ae. aegypti genes. We have confirmed by RT-PCR that zygotic transcription starts as early as 2-3 hours. A degenerate motif VBRGGTA was found to be overrepresented in the upstream sequences of the identified EZGs using a motif identification software called SCOPE. We find evidence for homology between this motif and the TAGteam motif found in Drosophila that has been implicated in EZG activation. A 38 bp sequence in the proximal upstream sequence of a kinesin light chain EZG (KLC2.1 contains two copies of the mosquito motif. This sequence was shown to support EZG transcription by luciferase reporter assays performed on injected early embryos, and confers early zygotic activity to a heterologous promoter from a divergent mosquito species. The results of these studies are consistent with the model of early zygotic genome activation via transcriptional activators, similar to what has been found recently in Drosophila.

  14. Recalibrating Equus evolution using the genome sequence of an early Middle Pleistocene horse

    DEFF Research Database (Denmark)

    Orlando, Ludovic Antoine Alexandre; Ginolhac, Aurélien; Zhang, Guojie

    2013-01-01

    The rich fossil record of equids has made them a model for evolutionary processes. Here we present a 1.12-times coverage draft genome from a horse bone recovered from permafrost dated to approximately 560-780 thousand years before present (kyr bp). Our data represent the oldest full genome sequen...

  15. Early Subretinal Allograft Rejection Is Characterized by Innate Immune Activity.

    Science.gov (United States)

    Kennelly, Kevin P; Holmes, Toby M; Wallace, Deborah M; O'Farrelly, Cliona; Keegan, David J

    2017-06-09

    Successful subretinal transplantation is limited by considerable early graft loss despite pharmacological suppression of adaptive immunity. We postulated that early innate immune activity is a dominant factor in determining graft survival and chose a nonimmunosuppressed mouse model of retinal pigment epithelial (RPE) cell transplantation to explore this. Expression of almost all measured cytokines by DH01 RPE cells increased significantly following graft preparation, and the neutrophil chemoattractant KC/GRO/CINC was most significantly increased. Subretinal allografts of DH01 cells (C57BL/10 origin) into healthy, nonimmunosuppressed C57BL/6 murine eyes were harvested and fixed at 1, 3, 7, and 28 days postoperatively and subsequently cryosectioned and stained. Graft cells were detected using SV40 large T antigen (SV40T) immunolabeling and apoptosis/necrosis by terminal deoxynucleotidyl transferase dUTP nick-end labeling (TUNEL). Sections were also immunolabeled for macrophage (CD11b and F4/80), neutrophil (Gr1 Ly-6G), and T-lymphocyte (CD3-ɛ) infiltration. Images captured with an Olympus FV1000 confocal microscope were analyzed using the Imaris software. The proportion of the subretinal bolus comprising graft cells (SV40T+) was significantly (p < 0.001) reduced between postoperative day (POD) 3 (90 ± 4%) and POD 7 (20 ± 7%). CD11b+, F4/80+, and Gr1 Ly-6G+ cells increased significantly (p < 0.05) from POD 1 and predominated over SV40T+ cells by POD 7. Colabeling confocal microscopic analysis demonstrated graft engulfment by neutrophils and macrophages at POD 7, and reconstruction of z-stacked confocal images confirmed SV40T inside Gr1 Ly-6G+ cells. Expression of CD3-ɛ was low and did not differ significantly between time points. By POD 28, no graft cells were detectable and few inflammatory cells remained. These studies reveal, for the first time, a critical role for innate immune mechanisms early in subretinal graft rejection. The future success

  16. Parents are interested in newborn genomic testing during the early postpartum period.

    Science.gov (United States)

    Waisbren, Susan E; Bäck, Danielle K; Liu, Christina; Kalia, Sarah S; Ringer, Steven A; Holm, Ingrid A; Green, Robert C

    2015-06-01

    We surveyed parents to ascertain interest in newborn genomic testing and determine whether these queries would provoke refusal of conventional state-mandated newborn screening. After a brief genetics orientation, parents rated their interest in receiving genomic testing for their healthy newborn on a 5-point Likert scale and answered questions about demographics and health history. We used logistic regression to explore factors associated with interest in genomic testing and tracked any subsequent rejection of newborn screening. We queried 514 parents within 48 hours after birth while still in hospital (mean age (SD) 32.7 (6.4) years, 65.2% female, 61.2% white, 79.3% married). Parents reported being not at all (6.4%), a little (10.9%), somewhat (36.6%), very (28.0%), or extremely (18.1%) interested in genomic testing for their newborns. None refused state-mandated newborn screening. Married participants and those with health concerns about their infant were less interested in newborn genomic testing (P = 0.012 and P = 0.030, respectively). Degree of interest for mothers and fathers was discordant (at least two categories different) for 24.4% of couples. Interest in newborn genomic testing was high among parents of healthy newborns, and the majority of couples had similar levels of interest. Surveying parents about genomic sequencing did not prompt rejection of newborn screening.Genet Med 17 6, 501-504.

  17. Integrative and comparative genomics analysis of early hepatocellular carcinoma differentiated from liver regeneration in young and old

    Directory of Open Access Journals (Sweden)

    Ozand Pinar T

    2010-06-01

    Full Text Available Abstract Background Hepatocellular carcinoma (HCC is the third-leading cause of cancer-related deaths worldwide. It is often diagnosed at an advanced stage, and hence typically has a poor prognosis. To identify distinct molecular mechanisms for early HCC we developed a rat model of liver regeneration post-hepatectomy, as well as liver cells undergoing malignant transformation and compared them to normal liver using a microarray approach. Subsequently, we performed cross-species comparative analysis coupled with copy number alterations (CNA of independent early human HCC microarray studies to facilitate the identification of critical regulatory modules conserved across species. Results We identified 35 signature genes conserved across species, and shared among different types of early human HCCs. Over 70% of signature genes were cancer-related, and more than 50% of the conserved genes were mapped to human genomic CNA regions. Functional annotation revealed genes already implicated in HCC, as well as novel genes which were not previously reported in liver tumors. A subset of differentially expressed genes was validated using quantitative RT-PCR. Concordance was also confirmed for a significant number of genes and pathways in five independent validation microarray datasets. Our results indicated alterations in a number of cancer related pathways, including p53, p38 MAPK, ERK/MAPK, PI3K/AKT, and TGF-β signaling pathways, and potential critical regulatory role of MYC, ERBB2, HNF4A, and SMAD3 for early HCC transformation. Conclusions The integrative analysis of transcriptional deregulation, genomic CNA and comparative cross species analysis brings new insights into the molecular profile of early hepatoma formation. This approach may lead to robust biomarkers for the detection of early human HCC.

  18. Radiation and chemotherapy bystander effects induce early genomic instability events: telomere shortening and bridge formation coupled with mitochondrial dysfunction.

    LENUS (Irish Health Repository)

    Gorman, Sheeona

    2012-02-01

    The bridge breakage fusion cycle is a chromosomal instability mechanism responsible for genomic changes. Radiation bystander effects induce genomic instability; however, the mechanism driving this instability is unknown. We examined if radiation and chemotherapy bystander effects induce early genomic instability events such as telomere shortening and bridge formation using a human colon cancer explant model. We assessed telomere lengths, bridge formations, mitochondrial membrane potential and levels of reactive oxygen species in bystander cells exposed to medium from irradiated and chemotherapy-treated explant tissues. Bystander cells exposed to media from 2Gy, 5Gy, FOLFOX treated tumor and matching normal tissue showed a significant reduction in telomere lengths (all p values <0.018) and an increase in bridge formations (all p values <0.017) compared to bystander cells treated with media from unirradiated tissue (0Gy) at 24h. There was no significant difference between 2Gy and 5Gy treatments, or between effects elicited by tumor versus matched normal tissue. Bystander cells exposed to media from 2Gy irradiated tumor tissue showed significant depolarisation of the mitochondrial membrane potential (p=0.012) and an increase in reactive oxygen species levels. We also used bystander cells overexpressing a mitochondrial antioxidant manganese superoxide dismutase (MnSOD) to examine if this antioxidant could rescue the mitochondrial changes and subsequently influence nuclear instability events. In MnSOD cells, ROS levels were reduced (p=0.02) and mitochondrial membrane potential increased (p=0.04). These events were coupled with a decrease in percentage of cells with anaphase bridges and a decrease in the number of cells undergoing telomere length shortening (p values 0.01 and 0.028 respectively). We demonstrate that radiation and chemotherapy bystander responses induce early genomic instability coupled with defects in mitochondrial function. Restoring mitochondrial

  19. The complete mitochondrial genome of Pauropus longiramus (Myriapoda: Pauropoda): implications on early diversification of the myriapods revealed from comparative analysis.

    Science.gov (United States)

    Dong, Yan; Sun, Hongying; Guo, Hua; Pan, Da; Qian, Changyuan; Hao, Sijing; Zhou, Kaiya

    2012-08-15

    Myriapods are among the earliest arthropods and may have evolved to become part of the terrestrial biota more than 400 million years ago. A noticeable lack of mitochondrial genome data from Pauropoda hampers phylogenetic and evolutionary studies within the subphylum Myriapoda. We sequenced the first complete mitochondrial genome of a microscopic pauropod, Pauropus longiramus (Arthropoda: Myriapoda), and conducted comprehensive mitogenomic analyses across the Myriapoda. The pauropod mitochondrial genome is a circular molecule of 14,487 bp long and contains the entire set of thirty-seven genes. Frequent intergenic overlaps occurred between adjacent tRNAs, and between tRNA and protein-coding genes. This is the first example of a mitochondrial genome with multiple intergenic overlaps and reveals a strategy for arthropods to effectively compact the mitochondrial genome by overlapping and truncating tRNA genes with neighbor genes, instead of only truncating tRNAs. Phylogenetic analyses based on protein-coding genes provide strong evidence that the sister group of Pauropoda is Symphyla. Additionally, approximately unbiased (AU) tests strongly support the Progoneata and confirm the basal position of Chilopoda in Myriapoda. This study provides an estimation of myriapod origins around 555 Ma (95% CI: 444-704 Ma) and this date is comparable with that of the Cambrian explosion and candidate myriapod-like fossils. A new time-scale suggests that deep radiations during early myriapod diversification occurred at least three times, not once as previously proposed. A Carboniferous origin of pauropods is congruent with the idea that these taxa are derived, rather than basal, progoneatans. Copyright © 2012 Elsevier B.V. All rights reserved.

  20. Genome-Wide Analyses Suggest Mechanisms Involving Early B-Cell Development in Canine IgA Deficiency.

    Directory of Open Access Journals (Sweden)

    Mia Olsson

    Full Text Available Immunoglobulin A deficiency (IgAD is the most common primary immune deficiency disorder in both humans and dogs, characterized by recurrent mucosal tract infections and a predisposition for allergic and other immune mediated diseases. In several dog breeds, low IgA levels have been observed at a high frequency and with a clinical resemblance to human IgAD. In this study, we used genome-wide association studies (GWAS to identify genomic regions associated with low IgA levels in dogs as a comparative model for human IgAD. We used a novel percentile groups-approach to establish breed-specific cut-offs and to perform analyses in a close to continuous manner. GWAS performed in four breeds prone to low IgA levels (German shepherd, Golden retriever, Labrador retriever and Shar-Pei identified 35 genomic loci suggestively associated (p <0.0005 to IgA levels. In German shepherd, three genomic regions (candidate genes include KIRREL3 and SERPINA9 were genome-wide significantly associated (p <0.0002 with IgA levels. A ~20kb long haplotype on CFA28, significantly associated (p = 0.0005 to IgA levels in Shar-Pei, was positioned within the first intron of the gene SLIT1. Both KIRREL3 and SLIT1 are highly expressed in the central nervous system and in bone marrow and are potentially important during B-cell development. SERPINA9 expression is restricted to B-cells and peaks at the time-point when B-cells proliferate into antibody-producing plasma cells. The suggestively associated regions were enriched for genes in Gene Ontology gene sets involving inflammation and early immune cell development.

  1. Elucidation of hepatitis C virus transmission and early diversification by single genome sequencing.

    Science.gov (United States)

    Li, Hui; Stoddard, Mark B; Wang, Shuyi; Blair, Lily M; Giorgi, Elena E; Parrish, Erica H; Learn, Gerald H; Hraber, Peter; Goepfert, Paul A; Saag, Michael S; Denny, Thomas N; Haynes, Barton F; Hahn, Beatrice H; Ribeiro, Ruy M; Perelson, Alan S; Korber, Bette T; Bhattacharya, Tanmoy; Shaw, George M

    2012-01-01

    A precise molecular identification of transmitted hepatitis C virus (HCV) genomes could illuminate key aspects of transmission biology, immunopathogenesis and natural history. We used single genome sequencing of 2,922 half or quarter genomes from plasma viral RNA to identify transmitted/founder (T/F) viruses in 17 subjects with acute community-acquired HCV infection. Sequences from 13 of 17 acute subjects, but none of 14 chronic controls, exhibited one or more discrete low diversity viral lineages. Sequences within each lineage generally revealed a star-like phylogeny of mutations that coalesced to unambiguous T/F viral genomes. Numbers of transmitted viruses leading to productive clinical infection were estimated to range from 1 to 37 or more (median = 4). Four acutely infected subjects showed a distinctly different pattern of virus diversity that deviated from a star-like phylogeny. In these cases, empirical analysis and mathematical modeling suggested high multiplicity virus transmission from individuals who themselves were acutely infected or had experienced a virus population bottleneck due to antiviral drug therapy. These results provide new quantitative and qualitative insights into HCV transmission, revealing for the first time virus-host interactions that successful vaccines or treatment interventions will need to overcome. Our findings further suggest a novel experimental strategy for identifying full-length T/F genomes for proteome-wide analyses of HCV biology and adaptation to antiviral drug or immune pressures.

  2. Whole-genome analyses resolve early branches in the tree of life of modern birds

    DEFF Research Database (Denmark)

    Sicheritz-Pontén, Thomas; Li, Cai; Li, Bo

    2014-01-01

    To better determine the history of modern birds, we performed a genome-scale phylogenetic analysis of 48 species representing all orders of Neoaves using phylogenomic methods created to handle genome-scale data. We recovered a highly resolved tree that confirms previously controversial sister...... or close relationships. We identified the first divergence in Neoaves, two groups we named Passerea and Columbea, representing independent lineages of diverse and convergently evolved land and water bird species. Among Passerea, we infer the common ancestor of core landbirds to have been an apex predator...... and confirm independent gains of vocal learning. Among Columbea, we identify pigeons and flamingoes as belonging to sister clades. Even with whole genomes, some of the earliest branches in Neoaves proved challenging to resolve, which was best explained by massive protein-coding sequence convergence and high...

  3. Early intranuclear replication of African swine fever virus genome modifies the landscape of the host cell nucleus.

    Science.gov (United States)

    Simões, Margarida; Martins, Carlos; Ferreira, Fernando

    2015-12-02

    Although African swine fever virus (ASFV) replicates in viral cytoplasmic factories, the presence of viral DNA within the host cell nucleus has been previously reported to be essential for productive infection. Herein, we described, for the first time, the intranuclear distribution patterns of viral DNA replication events, preceding those that occur in the cytoplasmic compartment. Using BrdU pulse-labelling experiments, newly synthesized ASFV genomes were exclusively detected inside the host cell nucleus at the early phase of infection, both in swine monocyte-derived macrophages (MDMs) and Vero cells. From 8hpi onwards, BrdU labelling was only observed in ASFV cytoplasmic factories. Our results also show that ASFV specifically activates the Ataxia Telangiectasia Mutated Rad-3 related (ATR) pathway in ASFV-infected swine MDMs from the early phase of infection, most probably because ASFV genome is recognized as foreign DNA. Morphological changes of promyelocytic leukaemia nuclear bodies (PML-NBs), nuclear speckles and Cajal bodies were also found in ASFV-infected swine MDMs, strongly suggesting the viral modulation of cellular antiviral responses and cellular transcription, respectively. As described for other viral infections, the nuclear reorganization that takes place during ASFV infection may also provide an environment that favours its intranuclear replication events. Altogether, our results contribute for a better understanding of ASFV replication strategies, starting with an essential intranuclear DNA replication phase which induces host nucleus changes towards a successful viral infection. Copyright © 2015 Elsevier B.V. All rights reserved.

  4. Transformation by Oncogenic Ras Expands the Early Genomic Response to Transforming Growth Factor β in Intestinal Epithelial Cells

    Directory of Open Access Journals (Sweden)

    Carl E. Allen

    2008-10-01

    Full Text Available A substantial body of evidence implicates TGFβ as a tumor promoter in epithelial cells that have become resistant to its tumor suppressor activity. To better understand early, genome-wide TGFβ responses in cells resistant to growth inhibition by TGFβ, we used microarray analysis in a well-defined cell culture system of sensitive and resistant intestinal epithelial cells. TGFβ-regulated gene expression in TGFβ-growth-sensitive, nontransformed rat intestinal epithelial cells (RIE-1 was compared to expression in TGFβ-growth-resistant RIE cells stably transformed by oncogenic Ras(12V. Treatment of RIE-1 cells with 2 ng/ml TGFβ1 for 1 hour increased the expression of eight gene sequences by 2.6-fold or more, whereas eight were down regulated 2.6-fold. In RIE-Ras(12V cells, 42 gene sequences were upregulated and only 3 were down-regulated. Comparison of RIE and RIE-Ras(12V identified 37 gene sequences as unique, Ras-dependent genomic targets of TGFβ1. TGFβ-regulation of connective tissue growth factor and vascular endothelial growth factor, two genes up-regulated in RIE-Ras cells and previously implicated in tumor promotion, was independently confirmed and further characterized by Northern analysis. Our data indicate that overexpression of oncogenic Ras in intestinal epithelial cells confers a significantly expanded repertoire of robust, early transcriptional responses to TGFβ via signaling pathways yet to be fully elucidated but including the canonical Raf-1/MAPK/Erk pathway. Loss of sensitivity to growth inhibition by TGFβ does not abrogate TGFβ signaling and actually expands the early transcriptional response to TGFβ1. Expression of some of these genes may confer to Ras-transformed cells characteristics favorable for tumor promotion.

  5. Genome-wide allelotyping of a new in vitro model system reveals early events in breast cancer progression.

    Science.gov (United States)

    Li, Zheng; Meng, Zhen Hang; Sayeed, Aejaz; Shalaby, Refaat; Ljung, Britt-Marie; Dairkee, Shanaz H

    2002-10-15

    Toward the goal of identifying early genetic losses, which mediate the release of human breast epithelium from replicative suppression leading to cellular immortalization, we have used a newly developed in vitro model system. This system consists of epithelial cultures derived from noncancerous breast tissue, treated with the chemical carcinogen N-ethyl-N-nitrosourea, and continuously passaged to yield cell populations culminating in the immortal phenotype. Genome-wide allelotyping of early passage N-ethyl-N-nitrosourea-exposed cell populations revealed aberrations at >10% (18 of 169) loci examined. Allelic losses encompassing chromosomes 6q24-6q27, implicating immortalization-associated candidate genes, hZAC and SEN6, occurred in two independently derived cell lines before the Hayflick limit. Additional LOH sites were present in one cell line at 3p11-3p26, 11p15, and 20p12-13. Allelic losses reported in this cell line preceded detectable levels of telomerase activity and the occurrence of p53-related aberrations. Information gained from the search for early immortalization-associated genetic deletions in cultured cells was applied in a novel approach toward the analysis of morphologically normal terminal ductal lobular units microdissected from 20 cases of ductal carcinoma in situ. Notably, clonal allelic losses at chromosome 3p24 and 6q24 were an early occurrence in adjoining terminal ductal lobular units of a proportion of primary tumors, which displayed loss of heterozygosity (3 of 11 and 3 of 6, respectively). The biological insights provided by the new model system reported here strongly suggest that early allelic losses delineated in immortalized cultures and validated in vivo could serve as surrogate endpoints to assist in the identification and intervention of high-risk benign breast tissue, which sustains the potential for continuous proliferation.

  6. Early stages of functional diversification in the Rab GTPase gene family revealed by genomic and localization studies in Paramecium species.

    Science.gov (United States)

    Bright, Lydia J; Gout, Jean-Francois; Lynch, Michael

    2017-04-15

    New gene functions arise within existing gene families as a result of gene duplication and subsequent diversification. To gain insight into the steps that led to the functional diversification of paralogues, we tracked duplicate retention patterns, expression-level divergence, and subcellular markers of functional diversification in the Rab GTPase gene family in three Paramecium aurelia species. After whole-genome duplication, Rab GTPase duplicates are more highly retained than other genes in the genome but appear to be diverging more rapidly in expression levels, consistent with early steps in functional diversification. However, by localizing specific Rab proteins in Paramecium cells, we found that paralogues from the two most recent whole-genome duplications had virtually identical localization patterns, and that less closely related paralogues showed evidence of both conservation and diversification. The functionally conserved paralogues appear to target to compartments associated with both endocytic and phagocytic recycling functions, confirming evolutionary and functional links between the two pathways in a divergent eukaryotic lineage. Because the functionally diversifying paralogues are still closely related to and derived from a clade of functionally conserved Rab11 genes, we were able to pinpoint three specific amino acid residues that may be driving the change in the localization and thus the function in these proteins. © 2017 Bright et al. This article is distributed by The American Society for Cell Biology under license from the author(s). Two months after publication it is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/3.0).

  7. Computational Identification Raises a Riddle for Distribution of Putative NACHT NTPases in the Genome of Early Green Plants.

    Science.gov (United States)

    Arya, Preeti; Acharya, Vishal

    2016-01-01

    NACHT NTPases and AP-ATPases belongs to STAND (signal transduction ATPases with numerous domain) P-loop NTPase class, which are known to be involved in defense signaling pathways and apoptosis regulation. The AP-ATPases (also known as NB-ARC) and NACHT NTPases are widely spread throughout all kingdoms of life except in plants, where only AP-ATPases have been extensively studied in the scenario of plant defense response against pathogen invasion and in hypersensitive response (HR). In the present study, we have employed a genome-wide survey (using stringent computational analysis) of 67 diverse organisms viz., archaebacteria, cyanobacteria, fungi, animalia and plantae to revisit the evolutionary history of these two STAND P-loop NTPases. This analysis divulged the presence of NACHT NTPases in the early green plants (green algae and the lycophyte) which had not been previously reported. These NACHT NTPases were known to be involved in diverse functional activities such as transcription regulation in addition to the defense signaling cascades depending on the domain association. In Chalmydomonas reinhardtii, a green algae, WD40 repeats found to be at the carboxyl-terminus of NACHT NTPases suggest probable role in apoptosis regulation. Moreover, the genome of Selaginella moellendorffii, an extant lycophyte, intriguingly shows the considerable number of both AP-ATPases and NACHT NTPases in contrast to a large repertoire of AP-ATPases in plants and emerge as an important node in the evolutionary tree of life. The large complement of AP-ATPases overtakes the function of NACHT NTPases and plausible reason behind the absence of the later in the plant lineages. The presence of NACHT NTPases in the early green plants and phyletic patterns results from this study raises a quandary for the distribution of this STAND P-loop NTPase with the apparent horizontal gene transfer from cyanobacteria.

  8. DNA Methylation: A Mechanism for Embedding Early Life Experiences in the Genome

    Science.gov (United States)

    Szyf, Moshe; Bick, Johanna

    2013-01-01

    Although epidemiological data provide evidence that early life experience plays a critical role in human development, the mechanism of how this works remains in question. Recent data from human and animal literature suggest that epigenetic changes, such as DNA methylation, are involved not only in cellular differentiation but also in the…

  9. Insights from early experience of a Rare Disease Genomic Medicine Multidisciplinary Team: a qualitative study.

    Science.gov (United States)

    Ormondroyd, Elizabeth; Mackley, Michael P; Blair, Edward; Craft, Jude; Knight, Julian C; Taylor, John; Taylor, Jenny C; Wilkie, Andrew Om; Watkins, Hugh

    2017-06-01

    Whole-exome/whole-genome sequencing (WES/WGS) has the potential to enhance genetic diagnosis of rare disease, and is increasingly becoming part of routine clinical care in mainstream medicine. Effective translation will require ongoing efforts in a number of areas including: selection of appropriate patients, provision of effective consent, pre- and post-test genetic counselling, improving variant interpretation algorithms and practices, and management of secondary findings including those found incidentally and those actively sought. Allied to this is the need for an effective education programme for all members of clinical teams involved in care of patients with rare disease, as well as to maintain public confidence in the use of these technologies. We established a Genomic Medicine Multidisciplinary Team (GM-MDT) in 2014 to build on the experiences of earlier successful research-based WES/WGS studies, to address these needs and to review results including pertinent and secondary findings. Here we report on a qualitative study of decision-making in the GM-MDT combined with analysis of semi-structured interviews with GM-MDT members. Study findings show that members appreciate the clinical and scientific diversity of the GM-MDT and value it for education and oversight. To date, discussions have focussed on case selection including the extent and interpretation of clinical and family history information required to establish likely monogenic aetiology and inheritance model. Achieving a balance between effective use of WES/WGS - prioritising cases in a diverse and highly complex patient population where WES/WGS will be tractable - and meeting the recruitment targets of a large project is considered challenging.

  10. Avian papillomaviruses: the parrot Psittacus erithacus papillomavirus (PePV genome has a unique organization of the early protein region and is phylogenetically related to the chaffinch papillomavirus

    Directory of Open Access Journals (Sweden)

    Jenson A Bennett

    2002-07-01

    Full Text Available Abstract Background An avian papillomavirus genome has been cloned from a cutaneous exophytic papilloma from an African grey parrot (Psittacus erithacus. The nucleotide sequence, genome organization, and phylogenetic position of the Psittacus erithacus papillomavirus (PePV were determined. This PePV sequence represents the first complete avian papillomavirus genome defined. Results The PePV genome (7304 basepairs differs from other papillomaviruses, in that it has a unique organization of the early protein region lacking classical E6 and E7 open reading frames. Phylogenetic comparison of the PePV sequence with partial E1 and L1 sequences of the chaffinch (Fringilla coelebs papillomavirus (FPV reveals that these two avian papillomaviruses form a monophyletic cluster with a common branch that originates near the unresolved center of the papillomavirus evolutionary tree. Conclusions The PePV genome has a unique layout of the early protein region which represents a novel prototypic genomic organization for avian papillomaviruses. The close relationship between PePV and FPV, and between their Psittaciformes and Passeriformes hosts, supports the hypothesis that papillomaviruses have co-evolved and speciated together with their host species throughout evolution.

  11. Optimization of CRISPR/Cas9 genome editing for loss-of-function in the early chick embryo.

    Science.gov (United States)

    Gandhi, Shashank; Piacentino, Michael L; Vieceli, Felipe M; Bronner, Marianne E

    2017-12-01

    The advent of CRISPR/Cas9 has made genome editing possible in virtually any organism, including those not previously amenable to genetic manipulations. Here, we present an optimization of CRISPR/Cas9 for application to early avian embryos with improved efficiency via a three-fold strategy. First, we employed Cas9 protein flanked with two nuclear localization signal sequences for improved nuclear localization. Second, we used a modified guide RNA (gRNA) scaffold that obviates premature termination of transcription and unstable Cas9-gRNA interactions. Third, we used a chick-specific U6 promoter that yields 4-fold higher gRNA expression than the previously utilized human U6. For rapid screening of gRNAs for in vivo applications, we also generated a chicken fibroblast cell line that constitutively expresses Cas9. As proof of principle, we performed electroporation-based loss-of-function studies in the early chick embryo to knock out Pax7 and Sox10, key transcription factors with known functions in neural crest development. The results show that CRISPR/Cas9-mediated deletion causes loss of their respective proteins and transcripts, as well as predicted downstream targets. Taken together, the results reveal the utility of this optimized CRISPR/Cas9 method for targeted gene knockout in chicken embryos in a manner that is reproducible, robust and specific. Copyright © 2017 Elsevier Inc. All rights reserved.

  12. Cell and molecular biology of simian virus 40: implications for human infections and disease

    Science.gov (United States)

    Butel, J. S.; Lednicky, J. A.

    1999-01-01

    Simian virus 40 (SV40), a polyomavirus of rhesus macaque origin, was discovered in 1960 as a contaminant of polio vaccines that were distributed to millions of people from 1955 through early 1963. SV40 is a potent DNA tumor virus that induces tumors in rodents and transforms many types of cells in culture, including those of human origin. This virus has been a favored laboratory model for mechanistic studies of molecular processes in eukaryotic cells and of cellular transformation. The viral replication protein, named large T antigen (T-ag), is also the viral oncoprotein. There is a single serotype of SV40, but multiple strains of virus exist that are distinguishable by nucleotide differences in the regulatory region of the viral genome and in the part of the T-ag gene that encodes the protein's carboxyl terminus. Natural infections in monkeys by SV40 are usually benign but may become pathogenic in immunocompromised animals, and multiple tissues can be infected. SV40 can replicate in certain types of simian and human cells. SV40-neutralizing antibodies have been detected in individuals not exposed to contaminated polio vaccines. SV40 DNA has been identified in some normal human tissues, and there are accumulating reports of detection of SV40 DNA and/or T-ag in a variety of human tumors. This review presents aspects of replication and cell transformation by SV40 and considers their implications for human infections and disease pathogenesis by the virus. Critical assessment of virologic and epidemiologic data suggests a probable causative role for SV40 in certain human cancers, but additional studies are necessary to prove etiology.

  13. Single-Genome Sequencing of Hepatitis C Virus in Donor-Recipient Pairs Distinguishes Modes and Models of Virus Transmission and Early Diversification.

    Science.gov (United States)

    Li, Hui; Stoddard, Mark B; Wang, Shuyi; Giorgi, Elena E; Blair, Lily M; Learn, Gerald H; Hahn, Beatrice H; Alter, Harvey J; Busch, Michael P; Fierer, Daniel S; Ribeiro, Ruy M; Perelson, Alan S; Bhattacharya, Tanmoy; Shaw, George M

    2016-01-01

    Despite the recent development of highly effective anti-hepatitis C virus (HCV) drugs, the global burden of this pathogen remains immense. Control or eradication of HCV will likely require the broad application of antiviral drugs and development of an effective vaccine. A precise molecular identification of transmitted/founder (T/F) HCV genomes that lead to productive clinical infection could play a critical role in vaccine research, as it has for HIV-1. However, the replication schema of these two RNA viruses differ substantially, as do viral responses to innate and adaptive host defenses. These differences raise questions as to the certainty of T/F HCV genome inferences, particularly in cases where multiple closely related sequence lineages have been observed. To clarify these issues and distinguish between competing models of early HCV diversification, we examined seven cases of acute HCV infection in humans and chimpanzees, including three examples of virus transmission between linked donors and recipients. Using single-genome sequencing (SGS) of plasma vRNA, we found that inferred T/F sequences in recipients were identical to viral sequences in their respective donors. Early in infection, HCV genomes generally evolved according to a simple model of random evolution where the coalescent corresponded to the T/F sequence. Closely related sequence lineages could be explained by high multiplicity infection from a donor whose viral sequences had undergone a pretransmission bottleneck due to treatment, immune selection, or recent infection. These findings validate SGS, together with mathematical modeling and phylogenetic analysis, as a novel strategy to infer T/F HCV genome sequences. Despite the recent development of highly effective, interferon-sparing anti-hepatitis C virus (HCV) drugs, the global burden of this pathogen remains immense. Control or eradication of HCV will likely require the broad application of antiviral drugs and the development of an effective

  14. The genome-wide early temporal response of Saccharomyces cerevisiae to oxidative stress induced by cumene hydroperoxide.

    Directory of Open Access Journals (Sweden)

    Wei Sha

    Full Text Available Oxidative stress is a well-known biological process that occurs in all respiring cells and is involved in pathophysiological processes such as aging and apoptosis. Oxidative stress agents include peroxides such as hydrogen peroxide, cumene hydroperoxide, and linoleic acid hydroperoxide, the thiol oxidant diamide, and menadione, a generator of superoxide, amongst others. The present study analyzed the early temporal genome-wide transcriptional response of Saccharomyces cerevisiae to oxidative stress induced by the aromatic peroxide cumene hydroperoxide. The accurate dataset obtained, supported by the use of temporal controls, biological replicates and well controlled growth conditions, provided a detailed picture of the early dynamics of the process. We identified a set of genes previously not implicated in the oxidative stress response, including several transcriptional regulators showing a fast transient response, suggesting a coordinated process in the transcriptional reprogramming. We discuss the role of the glutathione, thioredoxin and reactive oxygen species-removing systems, the proteasome and the pentose phosphate pathway. A data-driven clustering of the expression patterns identified one specific cluster that mostly consisted of genes known to be regulated by the Yap1p and Skn7p transcription factors, emphasizing their mediator role in the transcriptional response to oxidants. Comparison of our results with data reported for hydrogen peroxide identified 664 genes that specifically respond to cumene hydroperoxide, suggesting distinct transcriptional responses to these two peroxides. Genes up-regulated only by cumene hydroperoxide are mainly related to the cell membrane and cell wall, and proteolysis process, while those down-regulated only by this aromatic peroxide are involved in mitochondrial function.

  15. Local adaptation at the transcriptome level in brown trout: evidence from early life history temperature genomic reaction norms.

    Directory of Open Access Journals (Sweden)

    Kristian Meier

    Full Text Available Local adaptation and its underlying molecular basis has long been a key focus in evolutionary biology. There has recently been increased interest in the evolutionary role of plasticity and the molecular mechanisms underlying local adaptation. Using transcriptome analysis, we assessed differences in gene expression profiles for three brown trout (Salmo trutta populations, one resident and two anadromous, experiencing different temperature regimes in the wild. The study was based on an F2 generation raised in a common garden setting. A previous study of the F1 generation revealed different reaction norms and significantly higher QST than FST among populations for two early life-history traits. In the present study we investigated if genomic reaction norm patterns were also present at the transcriptome level. Eggs from the three populations were incubated at two temperatures (5 and 8 degrees C representing conditions encountered in the local environments. Global gene expression for fry at the stage of first feeding was analysed using a 32k cDNA microarray. The results revealed differences in gene expression between populations and temperatures and population × temperature interactions, the latter indicating locally adapted reaction norms. Moreover, the reaction norms paralleled those observed previously at early life-history traits. We identified 90 cDNA clones among the genes with an interaction effect that were differently expressed between the ecologically divergent populations. These included genes involved in immune- and stress response. We observed less plasticity in the resident as compared to the anadromous populations, possibly reflecting that the degree of environmental heterogeneity encountered by individuals throughout their life cycle will select for variable level of phenotypic plasticity at the transcriptome level. Our study demonstrates the usefulness of transcriptome approaches to identify genes with different temperature reaction

  16. Genome-wide study of the adaptation of Saccharomyces cerevisiae to the early stages of wine fermentation.

    Science.gov (United States)

    Novo, Maite; Mangado, Ana; Quirós, Manuel; Morales, Pilar; Salvadó, Zoel; Gonzalez, Ramon

    2013-01-01

    This work was designed to identify yeast cellular functions specifically affected by the stress factors predominating during the early stages of wine fermentation, and genes required for optimal growth under these conditions. The main experimental method was quantitative fitness analysis by means of competition experiments in continuous culture of whole genome barcoded yeast knockout collections. This methodology allowed the identification of haploinsufficient genes, and homozygous deletions resulting in growth impairment in synthetic must. However, genes identified as haploproficient, or homozygous deletions resulting in fitness advantage, were of little predictive power concerning optimal growth in this medium. The relevance of these functions for enological performance of yeast was assessed in batch cultures with single strains. Previous studies addressing yeast adaptation to winemaking conditions by quantitative fitness analysis were not specifically focused on the proliferative stages. In some instances our results highlight the importance of genes not previously linked to winemaking. In other cases they are complementary to those reported in previous studies concerning, for example, the relevance of some genes involved in vacuolar, peroxisomal, or ribosomal functions. Our results indicate that adaptation to the quickly changing growth conditions during grape must fermentation require the function of different gene sets in different moments of the process. Transport processes and glucose signaling seem to be negatively affected by the stress factors encountered by yeast in synthetic must. Vacuolar activity is important for continued growth during the transition to stationary phase. Finally, reduced biogenesis of peroxisomes also seems to be advantageous. However, in contrast to what was described for later stages, reduced protein synthesis is not advantageous for the early (proliferative) stages of the fermentation process. Finally, we found adenine and lysine

  17. Induced Genome-Wide Binding of Three Arabidopsis WRKY Transcription Factors during Early MAMP-Triggered Immunity.

    Science.gov (United States)

    Birkenbihl, Rainer P; Kracher, Barbara; Somssich, Imre E

    2017-01-01

    During microbial-associated molecular pattern-triggered immunity (MTI), molecules derived from microbes are perceived by cell surface receptors and upon signaling to the nucleus initiate a massive transcriptional reprogramming critical to mount an appropriate host defense response. WRKY transcription factors play an important role in regulating these transcriptional processes. Here, we determined on a genome-wide scale the flg22-induced in vivo DNA binding dynamics of three of the most prominent WRKY factors, WRKY18, WRKY40, and WRKY33. The three WRKY factors each bound to more than 1000 gene loci predominantly at W-box elements, the known WRKY binding motif. Binding occurred mainly in the 500-bp promoter regions of these genes. Many of the targeted genes are involved in signal perception and transduction not only during MTI but also upon damage-associated molecular pattern-triggered immunity, providing a mechanistic link between these functionally interconnected basal defense pathways. Among the additional targets were genes involved in the production of indolic secondary metabolites and in modulating distinct plant hormone pathways. Importantly, among the targeted genes were numerous transcription factors, encoding predominantly ethylene response factors, active during early MTI, and WRKY factors, supporting the previously hypothesized existence of a WRKY subregulatory network. Transcriptional analysis revealed that WRKY18 and WRKY40 function redundantly as negative regulators of flg22-induced genes often to prevent exaggerated defense responses. © 2016 American Society of Plant Biologists. All rights reserved.

  18. Selective genomic copy number imbalances and probability of recurrence in early-stage breast cancer.

    Directory of Open Access Journals (Sweden)

    Patricia A Thompson

    Full Text Available A number of studies of copy number imbalances (CNIs in breast tumors support associations between individual CNIs and patient outcomes. However, no pattern or signature of CNIs has emerged for clinical use. We determined copy number (CN gains and losses using high-density molecular inversion probe (MIP arrays for 971 stage I/II breast tumors and applied a boosting strategy to fit hazards models for CN and recurrence, treating chromosomal segments in a dose-specific fashion (-1 [loss], 0 [no change] and +1 [gain]. The concordance index (C-Index was used to compare prognostic accuracy between a training (n = 728 and test (n = 243 set and across models. Twelve novel prognostic CNIs were identified: losses at 1p12, 12q13.13, 13q12.3, 22q11, and Xp21, and gains at 2p11.1, 3q13.12, 10p11.21, 10q23.1, 11p15, 14q13.2-q13.3, and 17q21.33. In addition, seven CNIs previously implicated as prognostic markers were selected: losses at 8p22 and 16p11.2 and gains at 10p13, 11q13.5, 12p13, 20q13, and Xq28. For all breast cancers combined, the final full model including 19 CNIs, clinical covariates, and tumor marker-approximated subtypes (estrogen receptor [ER], progesterone receptor, ERBB2 amplification, and Ki67 significantly outperformed a model containing only clinical covariates and tumor subtypes (C-Index(full model, train[test]  =  0.72[0.71] ± 0.02 vs. C-Index(clinical + subtype model, train[test]  =  0.62[0.62] ± 0.02; p<10(-6. In addition, the full model containing 19 CNIs significantly improved prognostication separately for ER-, HER2+, luminal B, and triple negative tumors over clinical variables alone. In summary, we show that a set of 19 CNIs discriminates risk of recurrence among early-stage breast tumors, independent of ER status. Further, our data suggest the presence of specific CNIs that promote and, in some cases, limit tumor spread.

  19. Do online prognostication tools represent a valid alternative to genomic profiling in the context of adjuvant treatment of early breast cancer? A systematic review of the literature.

    Science.gov (United States)

    El Hage Chehade, Hiba; Wazir, Umar; Mokbel, Kinan; Kasem, Abdul; Mokbel, Kefah

    2018-01-01

    Decision-making regarding adjuvant chemotherapy has been based on clinical and pathological features. However, such decisions are seldom consistent. Web-based predictive models have been developed using data from cancer registries to help determine the need for adjuvant therapy. More recently, with the recognition of the heterogenous nature of breast cancer, genomic assays have been developed to aid in the therapeutic decision-making. We have carried out a comprehensive literature review regarding online prognostication tools and genomic assays to assess whether online tools could be used as valid alternatives to genomic profiling in decision-making regarding adjuvant therapy in early breast cancer. Breast cancer has been recently recognized as a heterogenous disease based on variations in molecular characteristics. Online tools are valuable in guiding adjuvant treatment, especially in resource constrained countries. However, in the era of personalized therapy, molecular profiling appears to be superior in predicting clinical outcome and guiding therapy. Copyright © 2017 Elsevier Inc. All rights reserved.

  20. Early nongenomic events in aldosterone action in renal collecting duct cells: PKCalpha activation, mineralocorticoid receptor phosphorylation, and cross-talk with the genomic response.

    Science.gov (United States)

    Le Moëllic, Cathy; Ouvrard-Pascaud, Antoine; Capurro, Claudia; Cluzeaud, Francoise; Fay, Michel; Jaisser, Frederic; Farman, Nicolette; Blot-Chabaud, Marcel

    2004-05-01

    Effects of aldosterone on its target cells have long been considered to be mediated exclusively through the genomic pathway; however, evidence has been provided for rapid effects of the hormone that may involve nongenomic mechanisms. Whether an interaction exists between these two signaling pathways is not yet established. In this study, the authors show that aldosterone triggers both early nongenomic and late genomic increase in sodium transport in the RCCD(2) rat cortical collecting duct cell line. In these cells, the early (up to 2.5 h) aldosterone-induced increase in short-circuit current (Isc) is not blocked by the mineralocorticoid receptor (MR) antagonist RU26752, it does not require mRNA or protein synthesis, and it involves the PKCalpha signaling pathway. In addition, this early response is reproduced by aldosterone-BSA, which acts at the cell surface and presumably does not enter the cells (aldo-BSA is unable to trigger the late response). The authors also show that MR is rapidly phosphorylated on serine and threonine residues by aldosterone or aldosterone-BSA. In contrast, the late (4 to 24 h) aldosterone-induced increase in ion transport occurs through activation of the MR and requires mRNA and protein synthesis. Interestingly, nongenomic and genomic aldosterone actions appear to be interdependent. Blocking the PKCalpha pathway results in the inhibition of the late genomic response to aldosterone, as demonstrated by the suppression of aldosterone-induced increase in MR transactivation activity, alpha1 Na(+)/K(+)/ATPase mRNA, and Isc. These data suggest cross-talk between the nongenomic and genomic responses to aldosterone in renal cells and suggest that the aldosterone-MR mediated increase in mRNA/protein synthesis and ion transport depends, at least in part, upon PKCalpha activation. E-mail: marcel.blot-chabaud@pharmacie.univ-mrs.fr

  1. Discovery of novel differentiation markers in the early stage of chondrogenesis by glycoform-focused reverse proteomics and genomics.

    Science.gov (United States)

    Ishihara, Takeshi; Kakiya, Kiyoshi; Takahashi, Koji; Miwa, Hiroto; Rokushima, Masatomo; Yoshinaga, Tomoyo; Tanaka, Yoshikazu; Ito, Takaomi; Togame, Hiroko; Takemoto, Hiroshi; Amano, Maho; Iwasaki, Norimasa; Minami, Akio; Nishimura, Shin-Ichiro

    2014-01-01

    Osteoarthritis (OA) is one of the most common chronic diseases among adults, especially the elderly, which is characterized by destruction of the articular cartilage. Despite affecting more than 100 million individuals all over the world, therapy is currently limited to treating pain, which is a principal symptom of OA. New approaches to the treatment of OA that induce regeneration and repair of cartilage are strongly needed. To discover potent markers for chondrogenic differentiation, glycoform-focused reverse proteomics and genomics were performed on the basis of glycoblotting-based comprehensive approach. Expression levels of high-mannose type N-glycans were up-regulated significantly at the late stage of differentiation of the mouse chondroprogenitor cells. Among 246 glycoproteins carrying this glycotype identified by ConA affinity chromatography and LC/MS, it was demonstrated that 52% are classified as cell surface glycoproteins. Gene expression levels indicated that mRNAs for 15 glycoproteins increased distinctly in the earlier stages during differentiation compared with Type II collagen. The feasibility of mouse chondrocyte markers in human chondrogenesis model was demonstrated by testing gene expression levels of these 15 glycoproteins during differentiation in human mesenchymal stem cells. The results showed clearly an evidence of up-regulation of 5 genes, ectonucleotide pyrophosphatase/phosphodiesterase family member 1, collagen alpha-1(III) chain, collagen alpha-1(XI) chain, aquaporin-1, and netrin receptor UNC5B, in the early stages of differentiation. These cell surface 5 glycoproteins become highly sensitive differentiation markers of human chondrocytes that contribute to regenerative therapies, and development of novel therapeutic reagents. © 2013.

  2. Unique genome organization of non-mammalian papillomaviruses provides insights into the evolution of viral early proteins.

    Science.gov (United States)

    Van Doorslaer, Koenraad; Ruoppolo, Valeria; Schmidt, Annie; Lescroël, Amelie; Jongsomjit, Dennis; Elrod, Megan; Kraberger, Simona; Stainton, Daisy; Dugger, Katie M; Ballard, Grant; Ainley, David G; Varsani, Arvind

    2017-07-01

    The family Papillomaviridae contains more than 320 papillomavirus types, with most having been identified as infecting skin and mucosal epithelium in mammalian hosts. To date, only nine non-mammalian papillomaviruses have been described from birds ( n  = 5), a fish ( n  = 1), a snake ( n  = 1), and turtles ( n  = 2). The identification of papillomaviruses in sauropsids and a sparid fish suggests that early ancestors of papillomaviruses were already infecting the earliest Euteleostomi. The Euteleostomi clade includes more than 90 per cent of the living vertebrate species, and progeny virus could have been passed on to all members of this clade, inhabiting virtually every habitat on the planet. As part of this study, we isolated a novel papillomavirus from a 16-year-old female Adélie penguin ( Pygoscelis adeliae ) from Cape Crozier, Ross Island (Antarctica). The new papillomavirus shares ∼64 per cent genome-wide identity to a previously described Adélie penguin papillomavirus. Phylogenetic analyses show that the non-mammalian viruses (expect the python, Morelia spilota , associated papillomavirus) cluster near the base of the papillomavirus evolutionary tree. A papillomavirus isolated from an avian host (Northern fulmar; Fulmarus glacialis ), like the two turtle papillomaviruses, lacks a putative E9 protein that is found in all other avian papillomaviruses. Furthermore, the Northern fulmar papillomavirus has an E7 more similar to the mammalian viruses than the other avian papillomaviruses. Typical E6 proteins of mammalian papillomaviruses have two Zinc finger motifs, whereas the sauropsid papillomaviruses only have one such motif. Furthermore, this motif is absent in the fish papillomavirus. Thus, it is highly likely that the most recent common ancestor of the mammalian and sauropsid papillomaviruses had a single motif E6. It appears that a motif duplication resulted in mammalian papillomaviruses having a double Zinc finger motif in E6. We

  3. Unique genome organization of non-mammalian papillomaviruses provides insights into the evolution of viral early proteins

    Science.gov (United States)

    Van Doorslaer, Koenraad; Ruoppolo, Valeria; Schmidt, Annie; Lescroël, Amelie; Jongsomjit, Dennis; Elrod, Megan; Kraberger, Simona; Stainton, Daisy; Dugger, Katie M.; Ballard, Grant; Ainley, David G.; Varsani, Arvind

    2017-01-01

    The family Papillomaviridae contains more than 320 papillomavirus types, with most having been identified as infecting skin and mucosal epithelium in mammalian hosts. To date, only nine non-mammalian papillomaviruses have been described from birds (n = 5), a fish (n = 1), a snake (n = 1), and turtles (n = 2). The identification of papillomaviruses in sauropsids and a sparid fish suggests that early ancestors of papillomaviruses were already infecting the earliest Euteleostomi. The Euteleostomi clade includes more than 90 per cent of the living vertebrate species, and progeny virus could have been passed on to all members of this clade, inhabiting virtually every habitat on the planet. As part of this study, we isolated a novel papillomavirus from a 16-year-old female Adélie penguin (Pygoscelis adeliae) from Cape Crozier, Ross Island (Antarctica). The new papillomavirus shares ∼64 per cent genome-wide identity to a previously described Adélie penguin papillomavirus. Phylogenetic analyses show that the non-mammalian viruses (expect the python, Morelia spilota, associated papillomavirus) cluster near the base of the papillomavirus evolutionary tree. A papillomavirus isolated from an avian host (Northern fulmar; Fulmarus glacialis), like the two turtle papillomaviruses, lacks a putative E9 protein that is found in all other avian papillomaviruses. Furthermore, the Northern fulmar papillomavirus has an E7 more similar to the mammalian viruses than the other avian papillomaviruses. Typical E6 proteins of mammalian papillomaviruses have two Zinc finger motifs, whereas the sauropsid papillomaviruses only have one such motif. Furthermore, this motif is absent in the fish papillomavirus. Thus, it is highly likely that the most recent common ancestor of the mammalian and sauropsid papillomaviruses had a single motif E6. It appears that a motif duplication resulted in mammalian papillomaviruses having a double Zinc finger motif in E6. We estimated the

  4. Distinct high resolution genome profiles of early onset and late onset colorectal cancer integrated with gene expression data identify candidate susceptibility loci

    Directory of Open Access Journals (Sweden)

    Merok Marianne A

    2010-05-01

    Full Text Available Abstract Background Estimates suggest that up to 30% of colorectal cancers (CRC may develop due to an increased genetic risk. The mean age at diagnosis for CRC is about 70 years. Time of disease onset 20 years younger than the mean age is assumed to be indicative of genetic susceptibility. We have compared high resolution tumor genome copy number variation (CNV (Roche NimbleGen, 385 000 oligo CGH array in microsatellite stable (MSS tumors from two age groups, including 23 young at onset patients without known hereditary syndromes and with a median age of 44 years (range: 28-53 and 17 elderly patients with median age 79 years (range: 69-87. Our aim was to identify differences in the tumor genomes between these groups and pinpoint potential susceptibility loci. Integration analysis of CNV and genome wide mRNA expression data, available for the same tumors, was performed to identify a restricted candidate gene list. Results The total fraction of the genome with aberrant copy number, the overall genomic profile and the TP53 mutation spectrum were similar between the two age groups. However, both the number of chromosomal aberrations and the number of breakpoints differed significantly between the groups. Gains of 2q35, 10q21.3-22.1, 10q22.3 and 19q13.2-13.31 and losses from 1p31.3, 1q21.1, 2q21.2, 4p16.1-q28.3, 10p11.1 and 19p12, positions that in total contain more than 500 genes, were found significantly more often in the early onset group as compared to the late onset group. Integration analysis revealed a covariation of DNA copy number at these sites and mRNA expression for 107 of the genes. Seven of these genes, CLC, EIF4E, LTBP4, PLA2G12A, PPAT, RG9MTD2, and ZNF574, had significantly different mRNA expression comparing median expression levels across the transcriptome between the two groups. Conclusions Ten genomic loci, containing more than 500 protein coding genes, are identified as more often altered in tumors from early onset versus late

  5. Transmission of clonal hepatitis C virus genomes reveals the dominant but transitory role of CD8¿ T cells in early viral evolution

    DEFF Research Database (Denmark)

    Callendret, Benoît; Bukh, Jens; Eccleston, Heather B

    2011-01-01

    occurred slowly over several years of chronic infection. Together these observations indicate that during acute hepatitis C, virus evolution was driven primarily by positive selection pressure exerted by CD8(+) T cells. This influence of immune pressure on viral evolution appears to subside as chronic......The RNA genome of the hepatitis C virus (HCV) diversifies rapidly during the acute phase of infection, but the selective forces that drive this process remain poorly defined. Here we examined whether Darwinian selection pressure imposed by CD8(+) T cells is a dominant force driving early amino acid...... replacement in HCV viral populations. This question was addressed in two chimpanzees followed for 8 to 10 years after infection with a well-defined inoculum composed of a clonal genotype 1a (isolate H77C) HCV genome. Detailed characterization of CD8(+) T cell responses combined with sequencing of recovered...

  6. Developmental defects and genomic instability after x-irradiation of wild-type and genetically modified mouse pre-implantation and early post-implantation embryos

    International Nuclear Information System (INIS)

    Jacquet, P

    2012-01-01

    Results obtained from the end of the 1950s suggested that ionizing radiation could induce foetal malformations in some mouse strains when administered during early pre-implantation stages. Starting in 1989, data obtained in Germany also showed that radiation exposure during that period could lead to a genomic instability in the surviving foetuses. Furthermore, the same group reported that both malformations and genomic instability could be transmitted to the next generation foetuses after exposure of zygotes to relatively high doses of radiation. As such results were of concern for radiation protection, we investigated this in more detail during recent years, using mice with varying genetic backgrounds including mice heterozygous for mutations involved in important cellular processes like DNA repair, cell cycle regulation or apoptosis. The main parameters which were investigated included morphological development, genomic instability and gene expression in the irradiated embryos or their own progeny. The aim of this review is to critically reassess the results obtained in that field in the different laboratories and to try to draw general conclusions on the risks of developmental defects and genomic instability from an exposure of early embryos to moderate doses of ionizing radiation. Altogether and in the range of doses normally used in diagnostic radiology, the risk of induction of embryonic death and of congenital malformation following the irradiation of a newly fertilised egg is certainly very low when compared to the ‘spontaneous’ risks for such effects. Similarly, the risk of radiation induction of a genomic instability under such circumstances seems to be very small. However, this is not a reason to not apply some precaution principles when possible. One way of doing this is to restrict the use of higher dose examinations on all potentially pregnant women to the first ten days of their menstrual cycle when conception is very unlikely to have occurred

  7. A genome-wide association study identifies CDHR3 as a susceptibility locus for early childhood asthma with severe exacerbations

    DEFF Research Database (Denmark)

    Bønnelykke, Klaus; Sleiman, Patrick; Nielsen, Kasper

    2014-01-01

    Asthma exacerbations are among the most frequent causes of hospitalization during childhood, but the underlying mechanisms are poorly understood. We performed a genome-wide association study of a specific asthma phenotype characterized by recurrent, severe exacerbations occurring between 2 and 6......1RL1, were previously reported as asthma susceptibility loci, but the effect sizes for these loci in our cohort were considerably larger than in the previous genome-wide association studies of asthma. We also obtained strong evidence for a new susceptibility gene, CDHR3 (encoding cadherin......-related family member 3), which is highly expressed in airway epithelium. These results demonstrate the strength of applying specific phenotyping in the search for asthma susceptibility genes....

  8. Insights into the genetic architecture of early stage age-related macular degeneration: a genome-wide association study meta-analysis.

    Directory of Open Access Journals (Sweden)

    Elizabeth G Holliday

    Full Text Available Genetic factors explain a majority of risk variance for age-related macular degeneration (AMD. While genome-wide association studies (GWAS for late AMD implicate genes in complement, inflammatory and lipid pathways, the genetic architecture of early AMD has been relatively under studied. We conducted a GWAS meta-analysis of early AMD, including 4,089 individuals with prevalent signs of early AMD (soft drusen and/or retinal pigment epithelial changes and 20,453 individuals without these signs. For various published late AMD risk loci, we also compared effect sizes between early and late AMD using an additional 484 individuals with prevalent late AMD. GWAS meta-analysis confirmed previously reported association of variants at the complement factor H (CFH (peak P = 1.5×10(-31 and age-related maculopathy susceptibility 2 (ARMS2 (P = 4.3×10(-24 loci, and suggested Apolipoprotein E (ApoE polymorphisms (rs2075650; P = 1.1×10(-6 associated with early AMD. Other possible loci that did not reach GWAS significance included variants in the zinc finger protein gene GLI3 (rs2049622; P = 8.9×10(-6 and upstream of GLI2 (rs6721654; P = 6.5×10(-6, encoding retinal Sonic hedgehog signalling regulators, and in the tyrosinase (TYR gene (rs621313; P = 3.5×10(-6, involved in melanin biosynthesis. For a range of published, late AMD risk loci, estimated effect sizes were significantly lower for early than late AMD. This study confirms the involvement of multiple established AMD risk variants in early AMD, but suggests weaker genetic effects on the risk of early AMD relative to late AMD. Several biological processes were suggested to be potentially specific for early AMD, including pathways regulating RPE cell melanin content and signalling pathways potentially involved in retinal regeneration, generating hypotheses for further investigation.

  9. The complete chloroplast DNA sequence of the green alga Oltmannsiellopsis viridis reveals a distinctive quadripartite architecture in the chloroplast genome of early diverging ulvophytes

    Directory of Open Access Journals (Sweden)

    Lemieux Claude

    2006-02-01

    Full Text Available Abstract Background The phylum Chlorophyta contains the majority of the green algae and is divided into four classes. The basal position of the Prasinophyceae has been well documented, but the divergence order of the Ulvophyceae, Trebouxiophyceae and Chlorophyceae is currently debated. The four complete chloroplast DNA (cpDNA sequences presently available for representatives of these classes have revealed extensive variability in overall structure, gene content, intron composition and gene order. The chloroplast genome of Pseudendoclonium (Ulvophyceae, in particular, is characterized by an atypical quadripartite architecture that deviates from the ancestral type by a large inverted repeat (IR featuring an inverted rRNA operon and a small single-copy (SSC region containing 14 genes normally found in the large single-copy (LSC region. To gain insights into the nature of the events that led to the reorganization of the chloroplast genome in the Ulvophyceae, we have determined the complete cpDNA sequence of Oltmannsiellopsis viridis, a representative of a distinct, early diverging lineage. Results The 151,933 bp IR-containing genome of Oltmannsiellopsis differs considerably from Pseudendoclonium and other chlorophyte cpDNAs in intron content and gene order, but shares close similarities with its ulvophyte homologue at the levels of quadripartite architecture, gene content and gene density. Oltmannsiellopsis cpDNA encodes 105 genes, contains five group I introns, and features many short dispersed repeats. As in Pseudendoclonium cpDNA, the rRNA genes in the IR are transcribed toward the single copy region featuring the genes typically found in the ancestral LSC region, and the opposite single copy region harbours genes characteristic of both the ancestral SSC and LSC regions. The 52 genes that were transferred from the ancestral LSC to SSC region include 12 of those observed in Pseudendoclonium cpDNA. Surprisingly, the overall gene organization of

  10. The vertebrate ancestral repertoire of visual opsins, transducin alpha subunits and oxytocin/vasopressin receptors was established by duplication of their shared genomic region in the two rounds of early vertebrate genome duplications.

    Science.gov (United States)

    Lagman, David; Ocampo Daza, Daniel; Widmark, Jenny; Abalo, Xesús M; Sundström, Görel; Larhammar, Dan

    2013-11-02

    Vertebrate color vision is dependent on four major color opsin subtypes: RH2 (green opsin), SWS1 (ultraviolet opsin), SWS2 (blue opsin), and LWS (red opsin). Together with the dim-light receptor rhodopsin (RH1), these form the family of vertebrate visual opsins. Vertebrate genomes contain many multi-membered gene families that can largely be explained by the two rounds of whole genome duplication (WGD) in the vertebrate ancestor (2R) followed by a third round in the teleost ancestor (3R). Related chromosome regions resulting from WGD or block duplications are said to form a paralogon. We describe here a paralogon containing the genes for visual opsins, the G-protein alpha subunit families for transducin (GNAT) and adenylyl cyclase inhibition (GNAI), the oxytocin and vasopressin receptors (OT/VP-R), and the L-type voltage-gated calcium channels (CACNA1-L). Sequence-based phylogenies and analyses of conserved synteny show that the above-mentioned gene families, and many neighboring gene families, expanded in the early vertebrate WGDs. This allows us to deduce the following evolutionary scenario: The vertebrate ancestor had a chromosome containing the genes for two visual opsins, one GNAT, one GNAI, two OT/VP-Rs and one CACNA1-L gene. This chromosome was quadrupled in 2R. Subsequent gene losses resulted in a set of five visual opsin genes, three GNAT and GNAI genes, six OT/VP-R genes and four CACNA1-L genes. These regions were duplicated again in 3R resulting in additional teleost genes for some of the families. Major chromosomal rearrangements have taken place in the teleost genomes. By comparison with the corresponding chromosomal regions in the spotted gar, which diverged prior to 3R, we could time these rearrangements to post-3R. We present an extensive analysis of the paralogon housing the visual opsin, GNAT and GNAI, OT/VP-R, and CACNA1-L gene families. The combined data imply that the early vertebrate WGD events contributed to the evolution of vision and the

  11. Genome-wide identification of blood DNA methylation patterns associated with early-onset hepatocellular carcinoma development in hepatitis B carriers.

    Science.gov (United States)

    Kao, Wei-Yi; Yang, Shu-Han; Liu, Wen-Jie; Yeh, Meng-Yin; Lin, Chih-Lin; Liu, Chun-Jen; Huang, Chi-Jung; Lin, Shi-Ming; Lee, Shou-Dong; Chen, Pei-Jer; Yu, Ming-Whei

    2017-02-01

    The etiology of early-onset hepatocellular carcinoma (HCC) among hepatitis B virus (HBV) carriers remains unclear. DNA methylation levels in peripheral leukocytes have been associated with different environmental exposures and immune or inflammatory response. We aimed to identify methylation signatures of peripheral leukocytes that could track hepatitis B progression to HCC, especially for early-onset HCC. We first performed an epigenome-wide association analysis on 48 matched case-control pairs in a nested case-control study within a 22-yr follow-up cohort of HBV carriers. Through this analysis we found that progression to early-onset HCC involved methylation variable positions across the genome, in which a substantial proportion displayed significant variation due to HBV viral load, chronic hepatitis status, and/or leukocyte subtype composition, and these associations were significantly enriched among genes in immune pathways. Methylation at probes cg00300879, cg06872964, and cg07080864, that are located within the proximal promoter of CNKSR1, IFI44L, and PENK, respectively, was validated by bisulfite pyrosequencing and findings were replicated in a case-sibling study of early-onset HCC (134 cases vs. 174 sibling controls). Furthermore, a high methylation score, constructed using the three probes, was predictive for the risk of early-onset HCC in two datasets (adjusted-odds ratios = 0.21-0.32, P ≤ 0.0206). This association was also observed for late-onset HCC (adjusted-odds ratio = 0.42-0.47, P ≤ 0.0194) in a nested case-control study (120 cases vs. 178 controls). In prospective analysis, change in the score was detected 5-9 yr before HCC onset. Blood-based methylation profiling provides new insights into the complexity of virus-host interaction underlying HBV-related HCC, holding promise for the disease risk management. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  12. Cost-effectiveness of the Decipher Genomic Classifier to Guide Individualized Decisions for Early Radiation Therapy After Prostatectomy for Prostate Cancer.

    Science.gov (United States)

    Lobo, Jennifer M; Trifiletti, Daniel M; Sturz, Vanessa N; Dicker, Adam P; Buerki, Christine; Davicioni, Elai; Cooperberg, Matthew R; Karnes, R Jeffrey; Jenkins, Robert B; Den, Robert B; Showalter, Timothy N

    2017-06-01

    Controversy exists regarding the effectiveness of early adjuvant versus salvage radiation therapy after prostatectomy for prostate cancer. Estimates of prostate cancer progression from the Decipher genomic classifier (GC) could guide informed decision-making and improve the outcomes for patients. We developed a Markov model to compare the costs and quality-adjusted life years (QALYs) associated with GC-based treatment decisions regarding adjuvant therapy after prostatectomy with those of 2 control strategies: usual care (determined from patterns of care studies) and the alternative of 100% adjuvant radiation therapy. Using the bootstrapping method of sampling with replacement, the cases of 10,000 patients were simulated during a 10-year time horizon, with each subject having individual estimates for cancer progression (according to GC findings) and noncancer mortality (according to age). GC-based care was more effective and less costly than 100% adjuvant radiation therapy and resulted in cost savings up to an assay cost of $11,402. Compared with usual care, GC-based care resulted in more QALYs. Assuming a $4000 assay cost, the incremental cost-effectiveness ratio was $90,833 per QALY, assuming a 7% usage rate of adjuvant radiation therapy. GC-based care was also associated with a 16% reduction in the percentage of patients with distant metastasis at 5 years compared with usual care. The Decipher GC could be a cost-effective approach for genomics-driven cancer treatment decisions after prostatectomy, with improvements in estimated clinical outcomes compared with usual care. The individualized decision analytic framework applied in the present study offers a flexible approach to estimate the potential utility of genomic assays for personalized cancer medicine. Copyright © 2016 Elsevier Inc. All rights reserved.

  13. Unsupervised Analysis of Array Comparative Genomic Hybridization Data from Early-Onset Colorectal Cancer Reveals Equivalence with Molecular Classification and Phenotypes

    Directory of Open Access Journals (Sweden)

    María Arriba

    2017-01-01

    Full Text Available AIM: To investigate whether chromosomal instability (CIN is associated with tumor phenotypes and/or with global genomic status based on MSI (microsatellite instability and CIMP (CpG island methylator phenotype in early-onset colorectal cancer (EOCRC. METHODS: Taking as a starting point our previous work in which tumors from 60 EOCRC cases (≤45 years at the time of diagnosis were analyzed by array comparative genomic hybridization (aCGH, in the present study we performed an unsupervised hierarchical clustering analysis of those aCGH data in order to unveil possible associations between the CIN profile and the clinical features of the tumors. In addition, we evaluated the MSI and the CIMP statuses of the samples with the aim of investigating a possible relationship between copy number alterations (CNAs and the MSI/CIMP condition in EOCRC. RESULTS: Based on the similarity of the CNAs detected, the unsupervised analysis stratified samples into two main clusters (A, B and four secondary clusters (A1, A2, B3, B4. The different subgroups showed a certain correspondence with the molecular classification of colorectal cancer (CRC, which enabled us to outline an algorithm to categorize tumors according to their CIMP status. Interestingly, each subcluster showed some distinctive clinicopathological features. But more interestingly, the CIN of each subcluster mainly affected particular chromosomes, allowing us to define chromosomal regions more specifically affected depending on the CIMP/MSI status of the samples. CONCLUSIONS: Our findings may provide a basis for a new form of classifying EOCRC according to the genomic status of the tumors.

  14. Nuclear routing networks span between nuclear pore complexes and genomic DNA to guide nucleoplasmic trafficking of biomolecules

    Science.gov (United States)

    Malecki, Marek; Malecki, Bianca

    2012-01-01

    In health and disease, biomolecules, which are involved in gene expression, recombination, or reprogramming have to traffic through the nucleoplasm, between nuclear pore complexes (NPCs) and genomic DNA (gDNA). This trafficking is guided by the recently revealed nuclear routing networks (NRNs). In this study, we aimed to investigate, if the NRNs have established associations with the genomic DNA in situ and if the NRNs have capabilities to bind the DNA de novo. Moreover, we aimed to study further, if nucleoplasmic trafficking of the histones, rRNA, and transgenes’ vectors, between the NPCs and gDNA, is guided by the NRNs. We used Xenopus laevis oocytes as the model system. We engineered the transgenes’ DNA vectors equipped with the SV40 LTA nuclear localization signals (NLS) and/or HIV Rev nuclear export signals (NES). We purified histones, 5S rRNA, and gDNA. We rendered all these molecules superparamagnetic and fluorescent for detection with nuclear magnetic resonance (NMR), total reflection x-ray fluorescence (TXRF), energy dispersive x-ray spectroscopy (EDXS), and electron energy loss spectroscopy (EELS). The NRNs span between the NPCs and genomic DNA. They form firm bonds with the gDNA in situ. After complete digestion of the nucleic acids with the RNases and DNases, the newly added DNA - modified with the dNTP analogs, bonds firmly to the NRNs. Moreover, the NRNs guide the trafficking of the DNA transgenes’ vectors - modified with the SV40 LTA NLS, following their import into the nuclei through the NPCs. The pathway is identical to that of histones. The NRNs also guide the trafficking of the DNA transgenes’ vectors, modified with the HIV Rev NES, to the NPCs, followed by their export out of the nuclei. Ribosomal RNAs follow the same pathway. To summarize, the NRNs are the structures connecting the NPCs and the gDNA. They guide the trafficking of the biomolecules between the NPCs and the gDNA. PMID:23275893

  15. Genome wide association (GWA study for early onset extreme obesity supports the role of fat mass and obesity associated gene (FTO variants.

    Directory of Open Access Journals (Sweden)

    Anke Hinney

    2007-12-01

    Full Text Available Obesity is a major health problem. Although heritability is substantial, genetic mechanisms predisposing to obesity are not very well understood. We have performed a genome wide association study (GWA for early onset (extreme obesity.a GWA (Genome-Wide Human SNP Array 5.0 comprising 440,794 single nucleotide polymorphisms for early onset extreme obesity based on 487 extremely obese young German individuals and 442 healthy lean German controls; b confirmatory analyses on 644 independent families with at least one obese offspring and both parents. We aimed to identify and subsequently confirm the 15 SNPs (minor allele frequency > or =10% with the lowest p-values of the GWA by four genetic models: additive, recessive, dominant and allelic. Six single nucleotide polymorphisms (SNPs in FTO (fat mass and obesity associated gene within one linkage disequilibrium (LD block including the GWA SNP rendering the lowest p-value (rs1121980; log-additive model: nominal p = 1.13 x 10(-7, corrected p = 0.0494; odds ratio (OR(CT 1.67, 95% confidence interval (CI 1.22-2.27; OR(TT 2.76, 95% CI 1.88-4.03 belonged to the 15 SNPs showing the strongest evidence for association with obesity. For confirmation we genotyped 11 of these in the 644 independent families (of the six FTO SNPs we chose only two representing the LD bock. For both FTO SNPs the initial association was confirmed (both Bonferroni corrected p<0.01. However, none of the nine non-FTO SNPs revealed significant transmission disequilibrium.Our GWA for extreme early onset obesity substantiates that variation in FTO strongly contributes to early onset obesity. This is a further proof of concept for GWA to detect genes relevant for highly complex phenotypes. We concurrently show that nine additional SNPs with initially low p-values in the GWA were not confirmed in our family study, thus suggesting that of the best 15 SNPs in the GWA only the FTO SNPs represent true positive findings.

  16. Genomic prediction in early selection stages using multi-year data in a hybrid rye breeding program.

    Science.gov (United States)

    Bernal-Vasquez, Angela-Maria; Gordillo, Andres; Schmidt, Malthe; Piepho, Hans-Peter

    2017-05-31

    The use of multiple genetic backgrounds across years is appealing for genomic prediction (GP) because past years' data provide valuable information on marker effects. Nonetheless, single-year GP models are less complex and computationally less demanding than multi-year GP models. In devising a suitable analysis strategy for multi-year data, we may exploit the fact that even if there is no replication of genotypes across years, there is plenty of replication at the level of marker loci. Our principal aim was to evaluate different GP approaches to simultaneously model genotype-by-year (GY) effects and breeding values using multi-year data in terms of predictive ability. The models were evaluated under different scenarios reflecting common practice in plant breeding programs, such as different degrees of relatedness between training and validation sets, and using a selected fraction of genotypes in the training set. We used empirical grain yield data of a rye hybrid breeding program. A detailed description of the prediction approaches highlighting the use of kinship for modeling GY is presented. Using the kinship to model GY was advantageous in particular for datasets disconnected across years. On average, predictive abilities were 5% higher for models using kinship to model GY over models without kinship. We confirmed that using data from multiple selection stages provides valuable GY information and helps increasing predictive ability. This increase is on average 30% higher when the predicted genotypes are closely related with the genotypes in the training set. A selection of top-yielding genotypes together with the use of kinship to model GY improves the predictive ability in datasets composed of single years of several selection cycles. Our results clearly demonstrate that the use of multi-year data and appropriate modeling is beneficial for GP because it allows dissecting GY effects from genomic estimated breeding values. The model choice, as well as ensuring

  17. Practical consensus recommendations on management of HR + ve early breast cancer with specific reference to genomic profiling

    Directory of Open Access Journals (Sweden)

    S Aggarwal

    2018-01-01

    Full Text Available Breast cancer is a heterogeneous disease and patients are managed clinically based on ER, PR, HER2 expression, and key risk factors. The use of gene expression assays for early stage disease is already common practice. These tests have found a place in risk stratifying the heterogeneous group of stage I–II breast cancers for recurrence, for predicting chemotherapy response, and for predicting breast cancer-related mortality. Most guidelines for hormone receptor (HR–positive early breast cancer recommend addition of adjuvant chemotherapy for most women, leading to overtreatment, which causes considerable morbidity and cost. Expert oncologist discussed about strategies of gene expression assays and aid in chemotherapy recommendations for treatment of HR + ve EBC and the expert group used data from published literature, practical experience and opinion of a large group of academic oncologists to arrive at this practical consensus recommendations for the benefit of community oncologists.

  18. Early detection of fatigue cracks by means of nondestructive testing, NDT; Tidig detektering av utmattningssprickor genom ofoerstoerande provning, OFP

    Energy Technology Data Exchange (ETDEWEB)

    Broddegaard, Mattias [Siemens Industrial Turbines, Finspaang (Sweden)

    2004-12-01

    Components in gas turbines, steam turbines and boilers are subjected to both high and low cycle fatigue. The lifetime of components is established by calculations based on conservative assumptions and safety factors, which means that most components will have a real life far exceeding the calculated. Conventional nondestructive testing is aimed at detecting macroscopic defects, such as cracks, inclusions and other discontinuities in the material. By having the possibility of detecting damage at a microscopic level, the risk of fractures in components subjected to fatigue can be reduced and the interval between testing occasions can be extended. The project goal has been to establish knowledge about possibilities and limitations for early detection of low and high cycle fatigue damage, by a literature survey and by practical experiments on low cycle fatigue specimens in 12% Cr-steel, for the following nondestructive testing methods: MWM (Meandering Winding Magnetometer) eddy current testing; and Nonlinear ultrasonics, both classical (second harmonic) and non-classical (crack closure). The project started with a literature survey. This resulted in a proposal for specimen design and selection of testing techniques and project partners. Manufacturing of specimens in 12% Cr-steel, designation X22CrMoV12-1, and low cycle fatigue testing at 300 deg C testing temperature was carried out at Siemens Industrial Turbines in Finspaang. Specimens with 0, 25, 50, 75 and 100% consumed life, based on the number of cycles to presence of macroscopic cracks, were produced. MWM eddy current testing was carried out by Jentek Sensors Inc. in the USA. Measurements with nonlinear ultrasonics were carried out by Siemens Corporate Technology in Munich and at Blekinge Univ. The specimens were finally examined in SEM and light optical microscope in Finspaang. In the literature, results showing that early detection of fatigue damage by nondestructive testing is possible, can be found. By

  19. Wolbachia Blocks Viral Genome Replication Early in Infection without a Transcriptional Response by the Endosymbiont or Host Small RNA Pathways.

    Directory of Open Access Journals (Sweden)

    Stephanie M Rainey

    2016-04-01

    Full Text Available The intracellular endosymbiotic bacterium Wolbachia can protect insects against viral infection, and is being introduced into mosquito populations in the wild to block the transmission of arboviruses that infect humans and are a major public health concern. To investigate the mechanisms underlying this antiviral protection, we have developed a new model system combining Wolbachia-infected Drosophila melanogaster cell culture with the model mosquito-borne Semliki Forest virus (SFV; Togaviridae, Alphavirus. Wolbachia provides strong antiviral protection rapidly after infection, suggesting that an early stage post-infection is being blocked. Wolbachia does appear to have major effects on events distinct from entry, assembly or exit as it inhibits the replication of an SFV replicon transfected into the cells. Furthermore, it causes a far greater reduction in the expression of proteins from the 3' open reading frame than the 5' non-structural protein open reading frame, indicating that it is blocking the replication of viral RNA. Further to this separation of the replicase proteins and viral RNA in transreplication assays shows that uncoupling of viral RNA and replicase proteins does not overcome Wolbachia's antiviral activity. This further suggests that replicative processes are disrupted, such as translation or replication, by Wolbachia infection. This may occur by Wolbachia mounting an active antiviral response, but the virus did not cause any transcriptional response by the bacterium, suggesting that this is not the case. Host microRNAs (miRNAs have been implicated in protection, but again we found that host cell miRNA expression was unaffected by the bacterium and neither do our findings suggest any involvement of the antiviral siRNA pathway. We conclude that Wolbachia may directly interfere with early events in virus replication such as translation of incoming viral RNA or RNA transcription, and this likely involves an intrinsic (as opposed to

  20. Association of pKi-67 with satellite DNA of the human genome in early G1 cells.

    Science.gov (United States)

    Bridger, J M; Kill, I R; Lichter, P

    1998-01-01

    pKi-67 is a nucleolar antigen that provides a specific marker for proliferating cells. It has been shown previously that pKi-67's distribution varies in a cell cycle-dependent manner: it coats all chromosomes during mitosis, accumulates in nuclear foci during G1 phase (type I distribution) and localizes within nucleoli in late G1 S and G2 phase (type II distribution). Although no function has as yet been ascribed to pKi-67, it has been found associated with centromeres in G1. In the present study the distribution pattern of pKi-67 during G1 in human dermal fibroblasts (HDFs) was analysed in more detail. Synchronization experiments show that in very early G1 cells pKi-67 coincides with virtually all satellite regions analysed, i.e. with centromeric (alpha-satellite), telomeric (minisatellite) and heterochromatic blocks (satellite III) on chromosomes 1 and Y (type Ia distribution). In contrast, later in the G1 phase, a smaller fraction of satellite DNA regions are found collocalized with pKi-67 foci (type Ib distribution). When all pKi-67 becomes localized within nucleoli, even fewer satellite regions remain associated with the pKi-67 staining. However, all centromeric and short arm regions of the acrocentric chromosomes, which are in very close proximity to or even contain the rRNA genes, are collocalized with anti-pKi-67 staining throughout the remaining interphase of the cell cycle. Thus, our data demonstrate that during post-mitotic reformation and nucleogenesis there is a progressive decline in the fraction of specific satellite regions of DNA that remain associated with pKi-67. This may be relevant to nucleolar reformation following mitosis.

  1. Genome-resolved metaproteomic characterization of preterm infant gut microbiota development reveals species-specific metabolic shifts and variabilities during early life.

    Science.gov (United States)

    Xiong, Weili; Brown, Christopher T; Morowitz, Michael J; Banfield, Jillian F; Hettich, Robert L

    2017-07-10

    Establishment of the human gut microbiota begins at birth. This early-life microbiota development can impact host physiology during infancy and even across an entire life span. However, the functional stability and population structure of the gut microbiota during initial colonization remain poorly understood. Metaproteomics is an emerging technology for the large-scale characterization of metabolic functions in complex microbial communities (gut microbiota). We applied a metagenome-informed metaproteomic approach to study the temporal and inter-individual differences of metabolic functions during microbial colonization of preterm human infants' gut. By analyzing 30 individual fecal samples, we identified up to 12,568 protein groups for each of four infants, including both human and microbial proteins. With genome-resolved matched metagenomics, proteins were confidently identified at the species/strain level. The maximum percentage of the proteome detected for the abundant organisms was ~45%. A time-dependent increase in the relative abundance of microbial versus human proteins suggested increasing microbial colonization during the first few weeks of early life. We observed remarkable variations and temporal shifts in the relative protein abundances of each organism in these preterm gut communities. Given the dissimilarity of the communities, only 81 microbial EggNOG orthologous groups and 57 human proteins were observed across all samples. These conserved microbial proteins were involved in carbohydrate, energy, amino acid and nucleotide metabolism while conserved human proteins were related to immune response and mucosal maturation. We identified seven proteome clusters for the communities and showed infant gut proteome profiles were unstable across time and not individual-specific. Applying a gut-specific metabolic module (GMM) analysis, we found that gut communities varied primarily in the contribution of nutrient (carbohydrates, lipids, and amino acids

  2. Bioinformatics decoding the genome

    CERN Multimedia

    CERN. Geneva; Deutsch, Sam; Michielin, Olivier; Thomas, Arthur; Descombes, Patrick

    2006-01-01

    Extracting the fundamental genomic sequence from the DNA From Genome to Sequence : Biology in the early 21st century has been radically transformed by the availability of the full genome sequences of an ever increasing number of life forms, from bacteria to major crop plants and to humans. The lecture will concentrate on the computational challenges associated with the production, storage and analysis of genome sequence data, with an emphasis on mammalian genomes. The quality and usability of genome sequences is increasingly conditioned by the careful integration of strategies for data collection and computational analysis, from the construction of maps and libraries to the assembly of raw data into sequence contigs and chromosome-sized scaffolds. Once the sequence is assembled, a major challenge is the mapping of biologically relevant information onto this sequence: promoters, introns and exons of protein-encoding genes, regulatory elements, functional RNAs, pseudogenes, transposons, etc. The methodological ...

  3. Enhanced replication of damaged SV40 DNA in carcinogen-treated monkey cells

    International Nuclear Information System (INIS)

    Maga, J.A.; Dixon, K.

    1984-01-01

    Treatment of mammalian cells with certain chemical or physical carcinogens prior to infection with ultraviolet-irradiated virus results in enhanced survival or reactivation of the damaged virus. To investigate the molecular basis of this enhanced reactivation (ER), Simian virus 40 DNA replication in carcinogen-treated cells was examined. Treatment of monkey kidney cells with N-acetoxy-2-acetylamino-fluorene or UV radiation 24 h prior to infection with ultraviolet-irradiated Simian virus 40 leads to enhancement of viral DNA replication measured at 36 h after infection by [ 3 H]thymidine incorporation or hybridization. The enhancement of DNA replication is observed when cells are treated from 1 to 60 h before infection or 1 to 16 h after infection. The fact that enhancement is observed also when cells are treated after infection rules out the possiblity that enhancement occurs at the level of adsorption or penetration of the virus. Measurements of the time course of viral DNA replication indicate that pretreatment of cells does not alter the time of onset of viral DNA replication. It is concluded that ER of Simain virus 40 occurs at the level of viral DNA replication. (author)

  4. Early experience with formalin-fixed paraffin-embedded (FFPE) based commercial clinical genomic profiling of gliomas-robust and informative with caveats.

    Science.gov (United States)

    Movassaghi, Masoud; Shabihkhani, Maryam; Hojat, Seyed A; Williams, Ryan R; Chung, Lawrance K; Im, Kyuseok; Lucey, Gregory M; Wei, Bowen; Mareninov, Sergey; Wang, Michael W; Ng, Denise W; Tashjian, Randy S; Magaki, Shino; Perez-Rosendahl, Mari; Yang, Isaac; Khanlou, Negar; Vinters, Harry V; Liau, Linda M; Nghiemphu, Phioanh L; Lai, Albert; Cloughesy, Timothy F; Yong, William H

    2017-08-01

    Commercial targeted genomic profiling with next generation sequencing using formalin-fixed paraffin embedded (FFPE) tissue has recently entered into clinical use for diagnosis and for the guiding of therapy. However, there is limited independent data regarding the accuracy or robustness of commercial genomic profiling in gliomas. As part of patient care, FFPE samples of gliomas from 71 patients were submitted for targeted genomic profiling to one commonly used commercial vendor, Foundation Medicine. Genomic alterations were determined for the following grades or groups of gliomas; Grade I/II, Grade III, primary glioblastomas (GBMs), recurrent primary GBMs, and secondary GBMs. In addition, FFPE samples from the same patients were independently assessed with conventional methods such as immunohistochemistry (IHC), Quantitative real-time PCR (qRT-PCR), or Fluorescence in situ hybridization (FISH) for three genetic alterations: IDH1 mutations, EGFR amplification, and EGFRvIII expression. A total of 100 altered genes were detected by the aforementioned targeted genomic profiling assay. The number of different genomic alterations was significantly different between the five groups of gliomas and consistent with the literature. CDKN2A/B, TP53, and TERT were the most common genomic alterations seen in primary GBMs, whereas IDH1, TP53, and PIK3CA were the most common in secondary GBMs. Targeted genomic profiling demonstrated 92.3%-100% concordance with conventional methods. The targeted genomic profiling report provided an average of 5.5 drugs, and listed an average of 8.4 clinical trials for the 71 glioma patients studied but only a third of the trials were appropriate for glioma patients. In this limited comparison study, this commercial next generation sequencing based-targeted genomic profiling showed a high concordance rate with conventional methods for the 3 genetic alterations and identified mutations expected for the type of glioma. While it may not be feasible to

  5. A novel comparative pattern count analysis reveals a chronic ethanol-induced dynamic shift in immediate early NF-κB genome-wide promoter binding during liver regeneration.

    Science.gov (United States)

    Kuttippurathu, Lakshmi; Patra, Biswanath; Hoek, Jan B; Vadigepalli, Rajanikanth

    2016-03-01

    Liver regeneration after partial hepatectomy is a clinically important process that is impaired by adaptation to chronic alcohol intake. We focused on the initial time points following partial hepatectomy (PHx) to analyze the genome-wide binding activity of NF-κB, a key immediate early regulator. We investigated the effect of chronic alcohol intake on immediate early NF-κB genome-wide localization, in the adapted state as well as in response to partial hepatectomy, using chromatin immunoprecipitation followed by promoter microarray analysis. We found many ethanol-specific NF-κB binding target promoters in the ethanol-adapted state, corresponding to the regulation of biosynthetic processes, oxidation-reduction and apoptosis. Partial hepatectomy induced a diet-independent shift in NF-κB binding loci relative to the transcription start sites. We employed a novel pattern count analysis to exhaustively enumerate and compare the number of promoters corresponding to the temporal binding patterns in ethanol and pair-fed control groups. The highest pattern count corresponded to promoters with NF-κB binding exclusively in the ethanol group at 1 h post PHx. This set was associated with the regulation of cell death, response to oxidative stress, histone modification, mitochondrial function, and metabolic processes. Integration with the global gene expression profiles to identify putative transcriptional consequences of NF-κB binding patterns revealed that several of ethanol-specific 1 h binding targets showed ethanol-specific differential expression through 6 h post PHx. Motif analysis yielded co-incident binding loci for STAT3, AP-1, CREB, C/EBP-β, PPAR-γ and C/EBP-α, likely participating in co-regulatory modules with NF-κB in shaping the immediate early response to PHx. We conclude that adaptation to chronic ethanol intake disrupts the NF-κB promoter binding landscape with consequences for the immediate early gene regulatory response to the acute challenge of PHx.

  6. Extreme genomes

    OpenAIRE

    DeLong, Edward F

    2000-01-01

    The complete genome sequence of Thermoplasma acidophilum, an acid- and heat-loving archaeon, has recently been reported. Comparative genomic analysis of this 'extremophile' is providing new insights into the metabolic machinery, ecology and evolution of thermophilic archaea.

  7. Grass genomes

    OpenAIRE

    Bennetzen, Jeffrey L.; SanMiguel, Phillip; Chen, Mingsheng; Tikhonov, Alexander; Francki, Michael; Avramova, Zoya

    1998-01-01

    For the most part, studies of grass genome structure have been limited to the generation of whole-genome genetic maps or the fine structure and sequence analysis of single genes or gene clusters. We have investigated large contiguous segments of the genomes of maize, sorghum, and rice, primarily focusing on intergenic spaces. Our data indicate that much (>50%) of the maize genome is composed of interspersed repetitive DNAs, primarily nested retrotransposons that in...

  8. Cancer genomics

    DEFF Research Database (Denmark)

    Norrild, Bodil; Guldberg, Per; Ralfkiær, Elisabeth Methner

    2007-01-01

    Almost all cells in the human body contain a complete copy of the genome with an estimated number of 25,000 genes. The sequences of these genes make up about three percent of the genome and comprise the inherited set of genetic information. The genome also contains information that determines whe...

  9. Genome sequence of a 5,310-year-old maize cob provides insights into the early stages of maize domestication

    DEFF Research Database (Denmark)

    Ramos Madrigal, Jazmin; Smith, Bruce D.; Moreno Mayar, José Victor

    2016-01-01

    The complex evolutionary history of maize (Zea mays L. ssp. mays) has been clarified with genomic-level data from modern landraces and wild teosinte grasses [1, 2], augmenting archaeological findings that suggest domestication occurred between 10,000 and 6,250 years ago in southern Mexico [3, 4......]. Maize rapidly evolved under human selection, leading to conspicuous phenotypic transformations, as well as adaptations to varied environments [5]. Still, many questions about the domestication process remain unanswered because modern specimens do not represent the full range of past diversity due...... to abandonment of unproductive lineages, genetic drift, on-going natural selection, and recent breeding activity. To more fully understand the history and spread of maize, we characterized the draft genome of a 5,310-year-old archaeological cob excavated in the Tehuacan Valley of Mexico. We compare this ancient...

  10. Genome Assembly of the Fungus Cochliobolus miyabeanus, and Transcriptome Analysis during Early Stages of Infection on American Wildrice (Zizania palustris L..

    Directory of Open Access Journals (Sweden)

    Claudia V Castell-Miller

    Full Text Available The fungus Cochliobolus miyabeanus causes severe leaf spot disease on rice (Oryza sativa and two North American specialty crops, American wildrice (Zizania palustris and switchgrass (Panicum virgatum. Despite the importance of C. miyabeanus as a disease-causing agent in wildrice, little is known about either the mechanisms of pathogenicity or host defense responses. To start bridging these gaps, the genome of C. miyabeanus strain TG12bL2 was shotgun sequenced using Illumina technology. The genome assembly consists of 31.79 Mbp in 2,378 scaffolds with an N50 = 74,921. It contains 11,000 predicted genes of which 94.5% were annotated. Approximately 10% of total gene number is expected to be secreted. The C. miyabeanus genome is rich in carbohydrate active enzymes, and harbors 187 small secreted peptides (SSPs and some fungal effector homologs. Detoxification systems were represented by a variety of enzymes that could offer protection against plant defense compounds. The non-ribosomal peptide synthetases and polyketide synthases (PKS present were common to other Cochliobolus species. Additionally, the fungal transcriptome was analyzed at 48 hours after inoculation in planta. A total of 10,674 genes were found to be expressed, some of which are known to be involved in pathogenicity or response to host defenses including hydrophobins, cutinase, cell wall degrading enzymes, enzymes related to reactive oxygen species scavenging, PKS, detoxification systems, SSPs, and a known fungal effector. This work will facilitate future research on C. miyabeanus pathogen-associated molecular patterns and effectors, and in the identification of their corresponding wildrice defense mechanisms.

  11. Molluscan Evolutionary Genomics

    Energy Technology Data Exchange (ETDEWEB)

    Simison, W. Brian; Boore, Jeffrey L.

    2005-12-01

    In the last 20 years there have been dramatic advances in techniques of high-throughput DNA sequencing, most recently accelerated by the Human Genome Project, a program that has determined the three billion base pair code on which we are based. Now this tremendous capability is being directed at other genome targets that are being sampled across the broad range of life. This opens up opportunities as never before for evolutionary and organismal biologists to address questions of both processes and patterns of organismal change. We stand at the dawn of a new 'modern synthesis' period, paralleling that of the early 20th century when the fledgling field of genetics first identified the underlying basis for Darwin's theory. We must now unite the efforts of systematists, paleontologists, mathematicians, computer programmers, molecular biologists, developmental biologists, and others in the pursuit of discovering what genomics can teach us about the diversity of life. Genome-level sampling for mollusks to date has mostly been limited to mitochondrial genomes and it is likely that these will continue to provide the best targets for broad phylogenetic sampling in the near future. However, we are just beginning to see an inroad into complete nuclear genome sequencing, with several mollusks and other eutrochozoans having been selected for work about to begin. Here, we provide an overview of the state of molluscan mitochondrial genomics, highlight a few of the discoveries from this research, outline the promise of broadening this dataset, describe upcoming projects to sequence whole mollusk nuclear genomes, and challenge the community to prepare for making the best use of these data.

  12. Intrinsically disordered region of influenza A NP regulates viral genome packaging via interactions with viral RNA and host PI(4,5)P2.

    Science.gov (United States)

    Kakisaka, Michinori; Yamada, Kazunori; Yamaji-Hasegawa, Akiko; Kobayashi, Toshihide; Aida, Yoko

    2016-09-01

    To be incorporated into progeny virions, the viral genome must be transported to the inner leaflet of the plasma membrane (PM) and accumulate there. Some viruses utilize lipid components to assemble at the PM. For example, simian virus 40 (SV40) targets the ganglioside GM1 and human immunodeficiency virus type 1 (HIV-1) utilizes phosphatidylinositol (4,5) bisphosphate [PI(4,5)P2]. Recent studies clearly indicate that Rab11-mediated recycling endosomes are required for influenza A virus (IAV) trafficking of vRNPs to the PM but it remains unclear how IAV vRNP localized or accumulate underneath the PM for viral genome incorporation into progeny virions. In this study, we found that the second intrinsically disordered region (IDR2) of NP regulates two binding steps involved in viral genome packaging. First, IDR2 facilitates NP oligomer binding to viral RNA to form vRNP. Secondly, vRNP assemble by interacting with PI(4,5)P2 at the PM via IDR2. These findings suggest that PI(4,5)P2 functions as the determinant of vRNP accumulation at the PM. Copyright © 2016 Elsevier Inc. All rights reserved.

  13. Genome Imprinting

    Indian Academy of Sciences (India)

    the cell nucleus (mitochondrial and chloroplast genomes), and. (3) traits governed ... tively good embryonic development but very poor development of membranes and ... Human homologies for the type of situation described above are naturally ..... imprint; (b) New modifications of the paternal genome in germ cells of each ...

  14. Baculovirus Genomics

    NARCIS (Netherlands)

    Oers, van M.M.; Vlak, J.M.

    2007-01-01

    Baculovirus genomes are covalently closed circles of double stranded-DNA varying in size between 80 and 180 kilobase-pair. The genomes of more than fourty-one baculoviruses have been sequenced to date. The majority of these (37) are pathogenic to lepidopteran hosts; three infect sawflies

  15. Genomic Testing

    Science.gov (United States)

    ... this database. Top of Page Evaluation of Genomic Applications in Practice and Prevention (EGAPP™) In 2004, the Centers for Disease Control and Prevention launched the EGAPP initiative to establish and test a ... and other applications of genomic technology that are in transition from ...

  16. Ancient genomes

    OpenAIRE

    Hoelzel, A Rus

    2005-01-01

    Ever since its invention, the polymerase chain reaction has been the method of choice for work with ancient DNA. In an application of modern genomic methods to material from the Pleistocene, a recent study has instead undertaken to clone and sequence a portion of the ancient genome of the cave bear.

  17. Comparison of prognostic and predictive impact of genomic or central grade and immunohistochemical subtypes or IHC4 in HR+/HER2- early breast cancer: WSG-AGO EC-Doc Trial.

    Science.gov (United States)

    Gluz, O; Liedtke, C; Huober, J; Peyro-Saint-Paul, H; Kates, R E; Kreipe, H H; Hartmann, A; Pelz, E; Erber, R; Mohrmann, S; Möbus, V; Augustin, D; Hoffmann, G; Thomssen, C; Jänicke, F; Kiechle, M; Wallwiener, D; Kuhn, W; Nitz, U; Harbeck, N

    2016-06-01

    Potential prognostic and predictive markers in early, intermediate-risk breast cancer (BC) include histological grade, Ki-67, genomic signatures, e.g. genomic grade index (GGI), and intrinsic subtypes. Their prognostic/predictive impact in hormone receptor (HR: ER and/or PR) positive/HER2- BC is controversial. WSG-AGO EC-Doc demonstrated superior event-free survival (EFS) in patients with 1-3 positive lymph node receiving epirubicin/cyclophosphamide-docetaxel (EC-Doc) versus 5-fluoruracil/epirubicin/cyclophosphamide (FEC). In a representative trial subset, we quantify concordance among factors used for clinical chemotherapy indication. We investigate the impact of central histology (n = 772), immunohistochemistry for intrinsic subtyping and IHC4, and dichotomous (GG) or continuous (GGI) genomic grade (n = 472) on patient outcome and benefit from taxane chemotherapy, focusing on HR+/HER2- patients (n = 459). Concordance of local grade (LG) with central (CG) or genomic grade was modest. In HR+/HER2- patients, low (GG-1: 16%), equivocal (GG-EQ: 17%), and high (GG-3: 67%) GG were associated with respective 5-year EFS of 100%, 93%, and 85%. GGI was prognostic for EFS within all LG subgroups and within CG3, whereas IHC4 was prognostic only in CG3 tumors.In unselected and HR+/HER2- patients, CG3 and luminal-A-like subtype entered the multivariate EFS model, but not IHC4 or GG. In the whole population, continuous GGI entered the model [hazard ratio (H.R.) of 75th versus 25th = 2.79; P = 0.01], displacing luminal-A-like subtype; within HR+/HER2- (H.R. = 5.36; P Doc versus FEC in unselected but not in HR+/HER2- patients. In the WSG-AGO EC-Doc trial for intermediate-risk BC, CG, intrinsic subtype (by IHC), and GG provide prognostic information. Continuous GGI (but not IHC4) adds prognostic information even when IHC subtype and CG are available. Finally, the high interobserver variability for histological grade and the still missing validation of Ki-67 preclude indicating or

  18. Two New Loci for Body-Weight Regulation Identified in a Joint Analysis of Genome-Wide Association Studies for Early-Onset Extreme Obesity in French and German Study Groups

    Science.gov (United States)

    Scherag, André; Dina, Christian; Hinney, Anke; Vatin, Vincent; Scherag, Susann; Vogel, Carla I. G.; Müller, Timo D.; Grallert, Harald; Wichmann, H.-Erich; Balkau, Beverley; Heude, Barbara; Jarvelin, Marjo-Riitta; Hartikainen, Anna-Liisa; Levy-Marchal, Claire; Weill, Jacques; Delplanque, Jérôme; Körner, Antje; Kiess, Wieland; Kovacs, Peter; Rayner, Nigel W.; Prokopenko, Inga; McCarthy, Mark I.; Schäfer, Helmut; Jarick, Ivonne; Boeing, Heiner; Fisher, Eva; Reinehr, Thomas; Heinrich, Joachim; Rzehak, Peter; Berdel, Dietrich; Borte, Michael; Biebermann, Heike; Krude, Heiko; Rosskopf, Dieter; Rimmbach, Christian; Rief, Winfried; Fromme, Tobias; Klingenspor, Martin; Schürmann, Annette; Schulz, Nadja; Nöthen, Markus M.; Mühleisen, Thomas W.; Erbel, Raimund; Jöckel, Karl-Heinz; Moebus, Susanne; Boes, Tanja; Illig, Thomas; Froguel, Philippe; Hebebrand, Johannes; Meyre, David

    2010-01-01

    Meta-analyses of population-based genome-wide association studies (GWAS) in adults have recently led to the detection of new genetic loci for obesity. Here we aimed to discover additional obesity loci in extremely obese children and adolescents. We also investigated if these results generalize by estimating the effects of these obesity loci in adults and in population-based samples including both children and adults. We jointly analysed two GWAS of 2,258 individuals and followed-up the best, according to lowest p-values, 44 single nucleotide polymorphisms (SNP) from 21 genomic regions in 3,141 individuals. After this DISCOVERY step, we explored if the findings derived from the extremely obese children and adolescents (10 SNPs from 5 genomic regions) generalized to (i) the population level and (ii) to adults by genotyping another 31,182 individuals (GENERALIZATION step). Apart from previously identified FTO, MC4R, and TMEM18, we detected two new loci for obesity: one in SDCCAG8 (serologically defined colon cancer antigen 8 gene; p = 1.85×10−8 in the DISCOVERY step) and one between TNKS (tankyrase, TRF1-interacting ankyrin-related ADP-ribose polymerase gene) and MSRA (methionine sulfoxide reductase A gene; p = 4.84×10−7), the latter finding being limited to children and adolescents as demonstrated in the GENERALIZATION step. The odds ratios for early-onset obesity were estimated at ∼1.10 per risk allele for both loci. Interestingly, the TNKS/MSRA locus has recently been found to be associated with adult waist circumference. In summary, we have completed a meta-analysis of two GWAS which both focus on extremely obese children and adolescents and replicated our findings in a large followed-up data set. We observed that genetic variants in or near FTO, MC4R, TMEM18, SDCCAG8, and TNKS/MSRA were robustly associated with early-onset obesity. We conclude that the currently known major common variants related to obesity overlap to a substantial degree between

  19. Two new Loci for body-weight regulation identified in a joint analysis of genome-wide association studies for early-onset extreme obesity in French and german study groups.

    Directory of Open Access Journals (Sweden)

    André Scherag

    2010-04-01

    Full Text Available Meta-analyses of population-based genome-wide association studies (GWAS in adults have recently led to the detection of new genetic loci for obesity. Here we aimed to discover additional obesity loci in extremely obese children and adolescents. We also investigated if these results generalize by estimating the effects of these obesity loci in adults and in population-based samples including both children and adults. We jointly analysed two GWAS of 2,258 individuals and followed-up the best, according to lowest p-values, 44 single nucleotide polymorphisms (SNP from 21 genomic regions in 3,141 individuals. After this DISCOVERY step, we explored if the findings derived from the extremely obese children and adolescents (10 SNPs from 5 genomic regions generalized to (i the population level and (ii to adults by genotyping another 31,182 individuals (GENERALIZATION step. Apart from previously identified FTO, MC4R, and TMEM18, we detected two new loci for obesity: one in SDCCAG8 (serologically defined colon cancer antigen 8 gene; p = 1.85x10(-8 in the DISCOVERY step and one between TNKS (tankyrase, TRF1-interacting ankyrin-related ADP-ribose polymerase gene and MSRA (methionine sulfoxide reductase A gene; p = 4.84x10(-7, the latter finding being limited to children and adolescents as demonstrated in the GENERALIZATION step. The odds ratios for early-onset obesity were estimated at approximately 1.10 per risk allele for both loci. Interestingly, the TNKS/MSRA locus has recently been found to be associated with adult waist circumference. In summary, we have completed a meta-analysis of two GWAS which both focus on extremely obese children and adolescents and replicated our findings in a large followed-up data set. We observed that genetic variants in or near FTO, MC4R, TMEM18, SDCCAG8, and TNKS/MSRA were robustly associated with early-onset obesity. We conclude that the currently known major common variants related to obesity overlap to a substantial

  20. Complete plastome sequences of Equisetum arvense and Isoetes flaccida: implications for phylogeny and plastid genome evolution of early land plant lineages

    OpenAIRE

    Karol, Kenneth G; Arumuganathan, Kathiravetpillai; Boore, Jeffrey L; Duffy, Aaron M; Everett, Karin DE; Hall, John D; Hansen, S Kellon; Kuehl, Jennifer V; Mandoli, Dina F; Mishler, Brent D; Olmstead, Richard G; Renzaglia, Karen S; Wolf, Paul G

    2010-01-01

    Abstract Background Despite considerable progress in our understanding of land plant phylogeny, several nodes in the green tree of life remain poorly resolved. Furthermore, the bulk of currently available data come from only a subset of major land plant clades. Here we examine early land plant evolution using complete plastome sequences including two previously unexamined and phylogenetically critical lineages. To better understand the evolution of land plants and their plastomes, we examined...

  1. Implementing Genome-Driven Oncology

    Science.gov (United States)

    Hyman, David M.; Taylor, Barry S.; Baselga, José

    2017-01-01

    Early successes in identifying and targeting individual oncogenic drivers, together with the increasing feasibility of sequencing tumor genomes, have brought forth the promise of genome-driven oncology care. As we expand the breadth and depth of genomic analyses, the biological and clinical complexity of its implementation will be unparalleled. Challenges include target credentialing and validation, implementing drug combinations, clinical trial designs, targeting tumor heterogeneity, and deploying technologies beyond DNA sequencing, among others. We review how contemporary approaches are tackling these challenges and will ultimately serve as an engine for biological discovery and increase our insight into cancer and its treatment. PMID:28187282

  2. The origin of snakes: revealing the ecology, behavior, and evolutionary history of early snakes using genomics, phenomics, and the fossil record.

    Science.gov (United States)

    Hsiang, Allison Y; Field, Daniel J; Webster, Timothy H; Behlke, Adam D B; Davis, Matthew B; Racicot, Rachel A; Gauthier, Jacques A

    2015-05-20

    The highly derived morphology and astounding diversity of snakes has long inspired debate regarding the ecological and evolutionary origin of both the snake total-group (Pan-Serpentes) and crown snakes (Serpentes). Although speculation abounds on the ecology, behavior, and provenance of the earliest snakes, a rigorous, clade-wide analysis of snake origins has yet to be attempted, in part due to a dearth of adequate paleontological data on early stem snakes. Here, we present the first comprehensive analytical reconstruction of the ancestor of crown snakes and the ancestor of the snake total-group, as inferred using multiple methods of ancestral state reconstruction. We use a combined-data approach that includes new information from the fossil record on extinct crown snakes, new data on the anatomy of the stem snakes Najash rionegrina, Dinilysia patagonica, and Coniophis precedens, and a deeper understanding of the distribution of phenotypic apomorphies among the major clades of fossil and Recent snakes. Additionally, we infer time-calibrated phylogenies using both new 'tip-dating' and traditional node-based approaches, providing new insights on temporal patterns in the early evolutionary history of snakes. Comprehensive ancestral state reconstructions reveal that both the ancestor of crown snakes and the ancestor of total-group snakes were nocturnal, widely foraging, non-constricting stealth hunters. They likely consumed soft-bodied vertebrate and invertebrate prey that was subequal to head size, and occupied terrestrial settings in warm, well-watered, and well-vegetated environments. The snake total-group - approximated by the Coniophis node - is inferred to have originated on land during the middle Early Cretaceous (~128.5 Ma), with the crown-group following about 20 million years later, during the Albian stage. Our inferred divergence dates provide strong evidence for a major radiation of henophidian snake diversity in the wake of the Cretaceous-Paleogene (K

  3. Genome-Wide Transcriptional Changes and Lipid Profile Modifications Induced by Medicago truncatula N5 Overexpression at an Early Stage of the Symbiotic Interaction with Sinorhizobium meliloti

    Directory of Open Access Journals (Sweden)

    Chiara Santi

    2017-12-01

    Full Text Available Plant lipid-transfer proteins (LTPs are small basic secreted proteins, which are characterized by lipid-binding capacity and are putatively involved in lipid trafficking. LTPs play a role in several biological processes, including the root nodule symbiosis. In this regard, the Medicago truncatula nodulin 5 (MtN5 LTP has been proved to positively regulate the nodulation capacity, controlling rhizobial infection and nodule primordia invasion. To better define the lipid transfer protein MtN5 function during the symbiosis, we produced MtN5-downregulated and -overexpressing plants, and we analysed the transcriptomic changes occurring in the roots at an early stage of Sinorhizobium meliloti infection. We also carried out the lipid profile analysis of wild type (WT and MtN5-overexpressing roots after rhizobia infection. The downregulation of MtN5 increased the root hair curling, an early event of rhizobia infection, and concomitantly induced changes in the expression of defence-related genes. On the other hand, MtN5 overexpression favoured the invasion of the nodules by rhizobia and determined in the roots the modulation of genes that are involved in lipid transport and metabolism as well as an increased content of lipids, especially galactolipids that characterize the symbiosome membranes. Our findings suggest the potential participation of LTPs in the synthesis and rearrangement of membranes occurring during the formation of the infection threads and the symbiosome membrane.

  4. Molecular subtypes in stage II-III colon cancer defined by genomic instability: early recurrence-risk associated with a high copy-number variation and loss of RUNX3 and CDKN2A.

    Directory of Open Access Journals (Sweden)

    Marianne Berg

    Full Text Available We sought to investigate various molecular subtypes defined by genomic instability that may be related to early death and recurrence in colon cancer.We sought to investigate various molecular subtypes defined by instability at microsatellites (MSI, changes in methylation patterns (CpG island methylator phenotype, CIMP or copy number variation (CNV in 8 genes. Stage II-III colon cancers (n = 64 were investigated by methylation-specific multiplex ligated probe amplification (MS-MLPA. Correlation of CNV, CIMP and MSI, with mutations in KRAS and BRAFV600E were assessed for overlap in molecular subtypes and early recurrence risk by uni- and multivariate regression.The CIMP phenotype occurred in 34% (22/64 and MSI in 27% (16/60 of the tumors, with noted CIMP/MSI overlap. Among the molecular subtypes, a high CNV phenotype had an associated odds ratio (OR for recurrence of 3.2 (95% CI 1.1-9.3; P = 0.026. Losses of CACNA1G (OR of 2.9, 95% CI 1.4-6.0; P = 0.001, IGF2 (OR of 4.3, 95% CI 1.1-15.8; P = 0.007, CDKN2A (p16 (OR of 2.0, 95% CI 1.1-3.6; P = 0.024, and RUNX3 (OR of 3.4, 95% CI 1.3-8.7; P = 0.002 were associated with early recurrence, while MSI, CIMP, KRAS or BRAF V600E mutations were not. The CNV was significantly higher in deceased patients (CNV in 6 of 8 compared to survivors (CNV in 3 of 8. Only stage and loss of RUNX3 and CDKN2A were significant in the multivariable risk-model for early recurrence.A high copy number variation phenotype is a strong predictor of early recurrence and death, and may indicate a dose-dependent relationship between genetic instability and outcome. Loss of tumor suppressors RUNX3 and CDKN2A were related to recurrence-risk and warrants further investigation.

  5. Herbarium genomics

    DEFF Research Database (Denmark)

    Bakker, Freek T.; Lei, Di; Yu, Jiaying

    2016-01-01

    Herbarium genomics is proving promising as next-generation sequencing approaches are well suited to deal with the usually fragmented nature of archival DNA. We show that routine assembly of partial plastome sequences from herbarium specimens is feasible, from total DNA extracts and with specimens...... up to 146 years old. We use genome skimming and an automated assembly pipeline, Iterative Organelle Genome Assembly, that assembles paired-end reads into a series of candidate assemblies, the best one of which is selected based on likelihood estimation. We used 93 specimens from 12 different...... correlation between plastome coverage and nuclear genome size (C value) in our samples, but the range of C values included is limited. Finally, we conclude that routine plastome sequencing from herbarium specimens is feasible and cost-effective (compared with Sanger sequencing or plastome...

  6. Genomics protocols [Methods in molecular biology, v. 175

    National Research Council Canada - National Science Library

    Starkey, Michael P; Elaswarapu, Ramnath

    2001-01-01

    .... Drawing on emerging technologies in the fields of bioinformatics and proteomics, these protocols cover not only those traditionally recognized as genomics, but also early therapeutich approaches...

  7. Genome-scale neurogenetics: methodology and meaning.

    Science.gov (United States)

    McCarroll, Steven A; Feng, Guoping; Hyman, Steven E

    2014-06-01

    Genetic analysis is currently offering glimpses into molecular mechanisms underlying such neuropsychiatric disorders as schizophrenia, bipolar disorder and autism. After years of frustration, success in identifying disease-associated DNA sequence variation has followed from new genomic technologies, new genome data resources, and global collaborations that could achieve the scale necessary to find the genes underlying highly polygenic disorders. Here we describe early results from genome-scale studies of large numbers of subjects and the emerging significance of these results for neurobiology.

  8. Overview of the functional virulent genome of the coffee leaf rust pathogen Hemileia vastatrix with an emphasis on early stages of infection

    Directory of Open Access Journals (Sweden)

    Pedro eTalhinhas

    2014-03-01

    Full Text Available Hemileia vastatrix is the causal agent of coffee leaf rust, the most important disease of coffee (Coffea arabica. In this work, a 454-pyrosequencing transcriptome analysis of H. vastatrix germinating urediniospores (gU and appressoria (Ap was performed and compared to previously published in planta haustoria-rich (H data. A total of 9234 transcripts were identified and annotated. Ca. 50% of these transcripts showed no significant homology to international databases. Only 784 sequences were shared by the three conditions, and 75% were exclusive of either gU (2146, Ap (1479 or H (3270. Relative transcript abundance and RT-qPCR analyses for a selection of genes indicated a particularly active metabolism, translational activity and production of new structures in the appressoria and intense signalling, transport, secretory activity and cellular multiplication in the germinating urediniospores, suggesting the onset of a plant-fungus dialogue as early as at the germ tube stage. Gene expression related to the production of carbohydrate-active enzymes and accumulation of glycerol in germinating urediniospores and appressoria suggests that combined lytic and physical mechanisms are involved in appressoria-mediated penetration. Besides contributing to the characterisation of molecular processes leading to appressoria-mediated infection by rust fungi, these results point towards the identification of new H. vastatrix candidate virulence factors, with 516 genes predicted to encode secreted proteins.

  9. The Small Nuclear Genomes of Selaginella Are Associated with a Low Rate of Genome Size Evolution.

    Science.gov (United States)

    Baniaga, Anthony E; Arrigo, Nils; Barker, Michael S

    2016-06-03

    The haploid nuclear genome size (1C DNA) of vascular land plants varies over several orders of magnitude. Much of this observed diversity in genome size is due to the proliferation and deletion of transposable elements. To date, all vascular land plant lineages with extremely small nuclear genomes represent recently derived states, having ancestors with much larger genome sizes. The Selaginellaceae represent an ancient lineage with extremely small genomes. It is unclear how small nuclear genomes evolved in Selaginella We compared the rates of nuclear genome size evolution in Selaginella and major vascular plant clades in a comparative phylogenetic framework. For the analyses, we collected 29 new flow cytometry estimates of haploid genome size in Selaginella to augment publicly available data. Selaginella possess some of the smallest known haploid nuclear genome sizes, as well as the lowest rate of genome size evolution observed across all vascular land plants included in our analyses. Additionally, our analyses provide strong support for a history of haploid nuclear genome size stasis in Selaginella Our results indicate that Selaginella, similar to other early diverging lineages of vascular land plants, has relatively low rates of genome size evolution. Further, our analyses highlight that a rapid transition to a small genome size is only one route to an extremely small genome. © The Author 2016. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.

  10. Identification and comparative profiling of miRNAs in an early flowering mutant of trifoliate orange and its wild type by genome-wide deep sequencing.

    Directory of Open Access Journals (Sweden)

    Lei-Ming Sun

    Full Text Available MicroRNAs (miRNAs are a new class of small, endogenous RNAs that play a regulatory role in various biological and metabolic processes by negatively affecting gene expression at the post-transcriptional level. While the number of known Arabidopsis and rice miRNAs is continuously increasing, information regarding miRNAs from woody plants such as citrus remains limited. Solexa sequencing was performed at different developmental stages on both an early flowering mutant of trifoliate orange (precocious trifoliate orange, Poncirus trifoliata L. Raf. and its wild-type in this study, resulting in the obtainment of 141 known miRNAs belonging to 99 families and 75 novel miRNAs in four libraries. A total of 317 potential target genes were predicted based on the 51 novel miRNAs families, GO and KEGG annotation revealed that high ranked miRNA-target genes are those implicated in diverse cellular processes in plants, including development, transcription, protein degradation and cross adaptation. To characterize those miRNAs expressed at the juvenile and adult development stages of the mutant and its wild-type, further analysis on the expression profiles of several miRNAs through real-time PCR was performed. The results revealed that most miRNAs were down-regulated at adult stage compared with juvenile stage for both the mutant and its wild-type. These results indicate that both conserved and novel miRNAs may play important roles in citrus growth and development, stress responses and other physiological processes.

  11. Complete plastome sequences of Equisetum arvense and Isoetes flaccida: implications for phylogeny and plastid genome evolution of early land plant lineages

    Directory of Open Access Journals (Sweden)

    Mandoli Dina F

    2010-10-01

    Full Text Available Abstract Background Despite considerable progress in our understanding of land plant phylogeny, several nodes in the green tree of life remain poorly resolved. Furthermore, the bulk of currently available data come from only a subset of major land plant clades. Here we examine early land plant evolution using complete plastome sequences including two previously unexamined and phylogenetically critical lineages. To better understand the evolution of land plants and their plastomes, we examined aligned nucleotide sequences, indels, gene and nucleotide composition, inversions, and gene order at the boundaries of the inverted repeats. Results We present the plastome sequences of Equisetum arvense, a horsetail, and of Isoetes flaccida, a heterosporous lycophyte. Phylogenetic analysis of aligned nucleotides from 49 plastome genes from 43 taxa supported monophyly for the following clades: embryophytes (land plants, lycophytes, monilophytes (leptosporangiate ferns + Angiopteris evecta + Psilotum nudum + Equisetum arvense, and seed plants. Resolution among the four monilophyte lineages remained moderate, although nucleotide analyses suggested that P. nudum and E. arvense form a clade sister to A. evecta + leptosporangiate ferns. Results from phylogenetic analyses of nucleotides were consistent with the distribution of plastome gene rearrangements and with analysis of sequence gaps resulting from insertions and deletions (indels. We found one new indel and an inversion of a block of genes that unites the monilophytes. Conclusions Monophyly of monilophytes has been disputed on the basis of morphological and fossil evidence. In the context of a broad sampling of land plant data we find several new pieces of evidence for monilophyte monophyly. Results from this study demonstrate resolution among the four monilophytes lineages, albeit with moderate support; we posit a clade consisting of Equisetaceae and Psilotaceae that is sister to the "true ferns

  12. Cephalopod genomics

    DEFF Research Database (Denmark)

    Albertin, Caroline B.; Bonnaud, Laure; Brown, C. Titus

    2012-01-01

    The Cephalopod Sequencing Consortium (CephSeq Consortium) was established at a NESCent Catalysis Group Meeting, ``Paths to Cephalopod Genomics-Strategies, Choices, Organization,'' held in Durham, North Carolina, USA on May 24-27, 2012. Twenty-eight participants representing nine countries (Austria......, Australia, China, Denmark, France, Italy, Japan, Spain and the USA) met to address the pressing need for genome sequencing of cephalopod mollusks. This group, drawn from cephalopod biologists, neuroscientists, developmental and evolutionary biologists, materials scientists, bioinformaticians and researchers...... active in sequencing, assembling and annotating genomes, agreed on a set of cephalopod species of particular importance for initial sequencing and developed strategies and an organization (CephSeq Consortium) to promote this sequencing. The conclusions and recommendations of this meeting are described...

  13. Genome Sequencing

    DEFF Research Database (Denmark)

    Sato, Shusei; Andersen, Stig Uggerhøj

    2014-01-01

    The current Lotus japonicus reference genome sequence is based on a hybrid assembly of Sanger TAC/BAC, Sanger shotgun and Illumina shotgun sequencing data generated from the Miyakojima-MG20 accession. It covers nearly all expressed L. japonicus genes and has been annotated mainly based on transcr......The current Lotus japonicus reference genome sequence is based on a hybrid assembly of Sanger TAC/BAC, Sanger shotgun and Illumina shotgun sequencing data generated from the Miyakojima-MG20 accession. It covers nearly all expressed L. japonicus genes and has been annotated mainly based...

  14. The genome of Eucalyptus grandis

    Energy Technology Data Exchange (ETDEWEB)

    Myburg, Alexander A.; Grattapaglia, Dario; Tuskan, Gerald A.; Hellsten, Uffe; Hayes, Richard D.; Grimwood, Jane; Jenkins, Jerry; Lindquist, Erika; Tice, Hope; Bauer, Diane; Goodstein, David M.; Dubchak, Inna; Poliakov, Alexandre; Mizrachi, Eshchar; Kullan, Anand R. K.; Hussey, Steven G.; Pinard, Desre; van der Merwe, Karen; Singh, Pooja; van Jaarsveld, Ida; Silva-Junior, Orzenil B.; Togawa, Roberto C.; Pappas, Marilia R.; Faria, Danielle A.; Sansaloni, Carolina P.; Petroli, Cesar D.; Yang, Xiaohan; Ranjan, Priya; Tschaplinski, Timothy J.; Ye, Chu-Yu; Li, Ting; Sterck, Lieven; Vanneste, Kevin; Murat, Florent; Soler, Marçal; Clemente, Hélène San; Saidi, Naijib; Cassan-Wang, Hua; Dunand, Christophe; Hefer, Charles A.; Bornberg-Bauer, Erich; Kersting, Anna R.; Vining, Kelly; Amarasinghe, Vindhya; Ranik, Martin; Naithani, Sushma; Elser, Justin; Boyd, Alexander E.; Liston, Aaron; Spatafora, Joseph W.; Dharmwardhana, Palitha; Raja, Rajani; Sullivan, Christopher; Romanel, Elisson; Alves-Ferreira, Marcio; Külheim, Carsten; Foley, William; Carocha, Victor; Paiva, Jorge; Kudrna, David; Brommonschenkel, Sergio H.; Pasquali, Giancarlo; Byrne, Margaret; Rigault, Philippe; Tibbits, Josquin; Spokevicius, Antanas; Jones, Rebecca C.; Steane, Dorothy A.; Vaillancourt, René E.; Potts, Brad M.; Joubert, Fourie; Barry, Kerrie; Pappas, Georgios J.; Strauss, Steven H.; Jaiswal, Pankaj; Grima-Pettenati, Jacqueline; Salse, Jérôme; Van de Peer, Yves; Rokhsar, Daniel S.; Schmutz, Jeremy

    2014-06-11

    Eucalypts are the world s most widely planted hardwood trees. Their broad adaptability, rich species diversity, fast growth and superior multipurpose wood, have made them a global renewable resource of fiber and energy that mitigates human pressures on natural forests. We sequenced and assembled >94% of the 640 Mbp genome of Eucalyptus grandis into its 11 chromosomes. A set of 36,376 protein coding genes were predicted revealing that 34% occur in tandem duplications, the largest proportion found thus far in any plant genome. Eucalypts also show the highest diversity of genes for plant specialized metabolism that act as chemical defence against biotic agents and provide unique pharmaceutical oils. Resequencing of a set of inbred tree genomes revealed regions of strongly conserved heterozygosity, likely hotspots of inbreeding depression. The resequenced genome of the sister species E. globulus underscored the high inter-specific genome colinearity despite substantial genome size variation in the genus. The genome of E. grandis is the first reference for the early diverging Rosid order Myrtales and is placed here basal to the Eurosids. This resource expands knowledge on the unique biology of large woody perennials and provides a powerful tool to accelerate comparative biology, breeding and biotechnology.

  15. Comparative Genomics

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 11; Issue 8. Comparative Genomics - A Powerful New Tool in Biology. Anand K Bachhawat. General Article Volume 11 Issue 8 August 2006 pp 22-40. Fulltext. Click here to view fulltext PDF. Permanent link:

  16. Personal genomics services: whose genomes?

    Science.gov (United States)

    Gurwitz, David; Bregman-Eschet, Yael

    2009-07-01

    New companies offering personal whole-genome information services over the internet are dynamic and highly visible players in the personal genomics field. For fees currently ranging from US$399 to US$2500 and a vial of saliva, individuals can now purchase online access to their individual genetic information regarding susceptibility to a range of chronic diseases and phenotypic traits based on a genome-wide SNP scan. Most of the companies offering such services are based in the United States, but their clients may come from nearly anywhere in the world. Although the scientific validity, clinical utility and potential future implications of such services are being hotly debated, several ethical and regulatory questions related to direct-to-consumer (DTC) marketing strategies of genetic tests have not yet received sufficient attention. For example, how can we minimize the risk of unauthorized third parties from submitting other people's DNA for testing? Another pressing question concerns the ownership of (genotypic and phenotypic) information, as well as the unclear legal status of customers regarding their own personal information. Current legislation in the US and Europe falls short of providing clear answers to these questions. Until the regulation of personal genomics services catches up with the technology, we call upon commercial providers to self-regulate and coordinate their activities to minimize potential risks to individual privacy. We also point out some specific steps, along the trustee model, that providers of DTC personal genomics services as well as regulators and policy makers could consider for addressing some of the concerns raised below.

  17. Visualization for genomics: the Microbial Genome Viewer.

    NARCIS (Netherlands)

    Kerkhoven, R.; Enckevort, F.H.J. van; Boekhorst, J.; Molenaar, D; Siezen, R.J.

    2004-01-01

    SUMMARY: A Web-based visualization tool, the Microbial Genome Viewer, is presented that allows the user to combine complex genomic data in a highly interactive way. This Web tool enables the interactive generation of chromosome wheels and linear genome maps from genome annotation data stored in a

  18. The raccoon polyomavirus genome and tumor antigen transcription are stable and abundant in neuroglial tumors.

    Science.gov (United States)

    Brostoff, Terza; Dela Cruz, Florante N; Church, Molly E; Woolard, Kevin D; Pesavento, Patricia A

    2014-11-01

    Raccoon polyomavirus (RacPyV) is associated with 100% of neuroglial tumors in free-ranging raccoons. Other tumor-associated polyomaviruses (PyVs), including simian virus 40 (SV40), murine PyV, and Merkel cell PyV, are found integrated in the host genome in neoplastic cells, where they constitutively express splice variants of the tumor antigen (TAg) gene. We have previously reported that RacPyV exists only as an episome (nonintegrated) in neuroglial tumors. Here, we have investigated TAg transcription in primary tumor tissue by transcriptome analysis, and we identified the alternatively spliced TAg transcripts for RacPyV. We also determined that TAg was highly transcribed relative to host cellular genes. We further colocalized TAg DNA and mRNA by in situ hybridization and found that the majority of tumor cells showed positive staining. Lastly, we examined the stability of the viral genome and TAg transcription by quantitative reverse transcriptase PCR in cultured tumor cells in vitro and in a mouse xenograft model. When tumor cells were cultured in vitro, TAg transcription increased nearly 2 log-fold over that of parental tumor tissue by passage 17. Both episomal viral genome and TAg transcription were faithfully maintained in culture and in tumors arising from xenotransplantation of cultured cells in mice. This study represents a minimal criterion for RacPyV's association with neuroglial tumors and a novel mechanism of stability for a polyomavirus in cancer. The natural cycle of polyomaviruses in mammals is to persist in the host without causing disease, but they can cause cancer in humans or in other animals. Because this is an unpredictable and rare event, the oncogenic potential of polyomavirus is primarily evaluated in laboratory animal models. Recently, raccoon polyomavirus (RacPyV) was identified in neuroglial tumors of free-ranging raccoons. Viral copy number was consistently high in these tumors but was low or undetectable in nontumor tissue or in

  19. Ancient genomics

    DEFF Research Database (Denmark)

    Der Sarkissian, Clio; Allentoft, Morten Erik; Avila Arcos, Maria del Carmen

    2015-01-01

    throughput of next generation sequencing platforms and the ability to target short and degraded DNA molecules. Many ancient specimens previously unsuitable for DNA analyses because of extensive degradation can now successfully be used as source materials. Additionally, the analytical power obtained...... by increasing the number of sequence reads to billions effectively means that contamination issues that have haunted aDNA research for decades, particularly in human studies, can now be efficiently and confidently quantified. At present, whole genomes have been sequenced from ancient anatomically modern humans...

  20. Marine genomics

    DEFF Research Database (Denmark)

    Oliveira Ribeiro, Ângela Maria; Foote, Andrew David; Kupczok, Anne

    2017-01-01

    Marine ecosystems occupy 71% of the surface of our planet, yet we know little about their diversity. Although the inventory of species is continually increasing, as registered by the Census of Marine Life program, only about 10% of the estimated two million marine species are known. This lag......-throughput sequencing approaches have been helping to improve our knowledge of marine biodiversity, from the rich microbial biota that forms the base of the tree of life to a wealth of plant and animal species. In this review, we present an overview of the applications of genomics to the study of marine life, from...

  1. The Pediatric Cancer Genome Project

    Science.gov (United States)

    Downing, James R; Wilson, Richard K; Zhang, Jinghui; Mardis, Elaine R; Pui, Ching-Hon; Ding, Li; Ley, Timothy J; Evans, William E

    2013-01-01

    The St. Jude Children’s Research Hospital–Washington University Pediatric Cancer Genome Project (PCGP) is participating in the international effort to identify somatic mutations that drive cancer. These cancer genome sequencing efforts will not only yield an unparalleled view of the altered signaling pathways in cancer but should also identify new targets against which novel therapeutics can be developed. Although these projects are still deep in the phase of generating primary DNA sequence data, important results are emerging and valuable community resources are being generated that should catalyze future cancer research. We describe here the rationale for conducting the PCGP, present some of the early results of this project and discuss the major lessons learned and how these will affect the application of genomic sequencing in the clinic. PMID:22641210

  2. The compact Selaginella genome identifies changes in gene content associated with the evolution of vascular plants

    Energy Technology Data Exchange (ETDEWEB)

    Grigoriev, Igor V.; Banks, Jo Ann; Nishiyama, Tomoaki; Hasebe, Mitsuyasu; Bowman, John L.; Gribskov, Michael; dePamphilis, Claude; Albert, Victor A.; Aono, Naoki; Aoyama, Tsuyoshi; Ambrose, Barbara A.; Ashton, Neil W.; Axtell, Michael J.; Barker, Elizabeth; Barker, Michael S.; Bennetzen, Jeffrey L.; Bonawitz, Nicholas D.; Chapple, Clint; Cheng, Chaoyang; Correa, Luiz Gustavo Guedes; Dacre, Michael; DeBarry, Jeremy; Dreyer, Ingo; Elias, Marek; Engstrom, Eric M.; Estelle, Mark; Feng, Liang; Finet, Cedric; Floyd, Sandra K.; Frommer, Wolf B.; Fujita, Tomomichi; Gramzow, Lydia; Gutensohn, Michael; Harholt, Jesper; Hattori, Mitsuru; Heyl, Alexander; Hirai, Tadayoshi; Hiwatashi, Yuji; Ishikawa, Masaki; Iwata, Mineko; Karol, Kenneth G.; Koehler, Barbara; Kolukisaoglu, Uener; Kubo, Minoru; Kurata, Tetsuya; Lalonde, Sylvie; Li, Kejie; Li, Ying; Litt, Amy; Lyons, Eric; Manning, Gerard; Maruyama, Takeshi; Michael, Todd P.; Mikami, Koji; Miyazaki, Saori; Morinaga, Shin-ichi; Murata, Takashi; Mueller-Roeber, Bernd; Nelson, David R.; Obara, Mari; Oguri, Yasuko; Olmstead, Richard G.; Onodera, Naoko; Petersen, Bent Larsen; Pils, Birgit; Prigge, Michael; Rensing, Stefan A.; Riano-Pachon, Diego Mauricio; Roberts, Alison W.; Sato, Yoshikatsu; Scheller, Henrik Vibe; Schulz, Burkhard; Schulz, Christian; Shakirov, Eugene V.; Shibagaki, Nakako; Shinohara, Naoki; Shippen, Dorothy E.; Sorensen, Iben; Sotooka, Ryo; Sugimoto, Nagisa; Sugita, Mamoru; Sumikawa, Naomi; Tanurdzic, Milos; Theilsen, Gunter; Ulvskov, Peter; Wakazuki, Sachiko; Weng, Jing-Ke; Willats, William W.G.T.; Wipf, Daniel; Wolf, Paul G.; Yang, Lixing; Zimmer, Andreas D.; Zhu, Qihui; Mitros, Therese; Hellsten, Uffe; Loque, Dominique; Otillar, Robert; Salamov, Asaf; Schmutz, Jeremy; Shapiro, Harris; Lindquist, Erika; Lucas, Susan; Rokhsar, Daniel

    2011-04-28

    We report the genome sequence of the nonseed vascular plant, Selaginella moellendorffii, and by comparative genomics identify genes that likely played important roles in the early evolution of vascular plants and their subsequent evolution

  3. The genome of Prunus mume.

    Science.gov (United States)

    Zhang, Qixiang; Chen, Wenbin; Sun, Lidan; Zhao, Fangying; Huang, Bangqing; Yang, Weiru; Tao, Ye; Wang, Jia; Yuan, Zhiqiong; Fan, Guangyi; Xing, Zhen; Han, Changlei; Pan, Huitang; Zhong, Xiao; Shi, Wenfang; Liang, Xinming; Du, Dongliang; Sun, Fengming; Xu, Zongda; Hao, Ruijie; Lv, Tian; Lv, Yingmin; Zheng, Zequn; Sun, Ming; Luo, Le; Cai, Ming; Gao, Yike; Wang, Junyi; Yin, Ye; Xu, Xun; Cheng, Tangren; Wang, Jun

    2012-01-01

    Prunus mume (mei), which was domesticated in China more than 3,000 years ago as ornamental plant and fruit, is one of the first genomes among Prunus subfamilies of Rosaceae been sequenced. Here, we assemble a 280M genome by combining 101-fold next-generation sequencing and optical mapping data. We further anchor 83.9% of scaffolds to eight chromosomes with genetic map constructed by restriction-site-associated DNA sequencing. Combining P. mume genome with available data, we succeed in reconstructing nine ancestral chromosomes of Rosaceae family, as well as depicting chromosome fusion, fission and duplication history in three major subfamilies. We sequence the transcriptome of various tissues and perform genome-wide analysis to reveal the characteristics of P. mume, including its regulation of early blooming in endodormancy, immune response against bacterial infection and biosynthesis of flower scent. The P. mume genome sequence adds to our understanding of Rosaceae evolution and provides important data for improvement of fruit trees.

  4. Simian virus 40 infection in humans and association with human diseases: results and hypotheses

    International Nuclear Information System (INIS)

    Barbanti-Brodano, Giuseppe; Sabbioni, Silvia; Martini, Fernanda; Negrini, Massimo; Corallini, Alfredo; Tognon, Mauro

    2004-01-01

    Simian virus 40 (SV40) is a monkey virus that was introduced in the human population by contaminated poliovaccines, produced in SV40-infected monkey cells, between 1955 and 1963. Epidemiological evidence now suggests that SV40 may be contagiously transmitted in humans by horizontal infection, independent of the earlier administration of SV40-contaminated poliovaccines. This evidence includes detection of SV40 DNA sequences in human tissues and of SV40 antibodies in human sera, as well as rescue of infectious SV40 from a human tumor. Detection of SV40 DNA sequences in blood and sperm and of SV40 virions in sewage points to the hematic, sexual, and orofecal routes as means of virus transmission in humans. The site of latent infection in humans is not known, but the presence of SV40 in urine suggests the kidney as a possible site of latency, as it occurs in the natural monkey host. SV40 in humans is associated with inflammatory kidney diseases and with specific tumor types: mesothelioma, lymphoma, brain, and bone. These human tumors correspond to the neoplasms that are induced by SV40 experimental inoculation in rodents and by generation of transgenic mice with the SV40 early region gene directed by its own early promoter-enhancer. The mechanisms of SV40 tumorigenesis in humans are related to the properties of the two viral oncoproteins, the large T antigen (Tag) and the small t antigen (tag). Tag acts mainly by blocking the functions of p53 and RB tumor suppressor proteins, as well as by inducing chromosomal aberrations in the host cell. These chromosome alterations may hit genes important in oncogenesis and generate genetic instability in tumor cells. The clastogenic activity of Tag, which fixes the chromosome damage in the infected cells, may explain the low viral load in SV40-positive human tumors and the observation that Tag is expressed only in a fraction of tumor cells. 'Hit and run' seems the most plausible mechanism to support this situation. The small tag

  5. Ensembl Genomes 2016: more genomes, more complexity.

    Science.gov (United States)

    Kersey, Paul Julian; Allen, James E; Armean, Irina; Boddu, Sanjay; Bolt, Bruce J; Carvalho-Silva, Denise; Christensen, Mikkel; Davis, Paul; Falin, Lee J; Grabmueller, Christoph; Humphrey, Jay; Kerhornou, Arnaud; Khobova, Julia; Aranganathan, Naveen K; Langridge, Nicholas; Lowy, Ernesto; McDowall, Mark D; Maheswari, Uma; Nuhn, Michael; Ong, Chuang Kee; Overduin, Bert; Paulini, Michael; Pedro, Helder; Perry, Emily; Spudich, Giulietta; Tapanari, Electra; Walts, Brandon; Williams, Gareth; Tello-Ruiz, Marcela; Stein, Joshua; Wei, Sharon; Ware, Doreen; Bolser, Daniel M; Howe, Kevin L; Kulesha, Eugene; Lawson, Daniel; Maslen, Gareth; Staines, Daniel M

    2016-01-04

    Ensembl Genomes (http://www.ensemblgenomes.org) is an integrating resource for genome-scale data from non-vertebrate species, complementing the resources for vertebrate genomics developed in the context of the Ensembl project (http://www.ensembl.org). Together, the two resources provide a consistent set of programmatic and interactive interfaces to a rich range of data including reference sequence, gene models, transcriptional data, genetic variation and comparative analysis. This paper provides an update to the previous publications about the resource, with a focus on recent developments. These include the development of new analyses and views to represent polyploid genomes (of which bread wheat is the primary exemplar); and the continued up-scaling of the resource, which now includes over 23 000 bacterial genomes, 400 fungal genomes and 100 protist genomes, in addition to 55 genomes from invertebrate metazoa and 39 genomes from plants. This dramatic increase in the number of included genomes is one part of a broader effort to automate the integration of archival data (genome sequence, but also associated RNA sequence data and variant calls) within the context of reference genomes and make it available through the Ensembl user interfaces. © The Author(s) 2015. Published by Oxford University Press on behalf of Nucleic Acids Research.

  6. Rodent malaria parasites : genome organization & comparative genomics

    NARCIS (Netherlands)

    Kooij, Taco W.A.

    2006-01-01

    The aim of the studies described in this thesis was to investigate the genome organization of rodent malaria parasites (RMPs) and compare the organization and gene content of the genomes of RMPs and the human malaria parasite P. falciparum. The release of the complete genome sequence of P.

  7. Funding Opportunity: Genomic Data Centers

    Science.gov (United States)

    Funding Opportunity CCG, Funding Opportunity Center for Cancer Genomics, CCG, Center for Cancer Genomics, CCG RFA, Center for cancer genomics rfa, genomic data analysis network, genomic data analysis network centers,

  8. Genome evolution during progression to breast cancer

    KAUST Repository

    Newburger, D. E.

    2013-04-08

    Cancer evolution involves cycles of genomic damage, epigenetic deregulation, and increased cellular proliferation that eventually culminate in the carcinoma phenotype. Early neoplasias, which are often found concurrently with carcinomas and are histologically distinguishable from normal breast tissue, are less advanced in phenotype than carcinomas and are thought to represent precursor stages. To elucidate their role in cancer evolution we performed comparative whole-genome sequencing of early neoplasias, matched normal tissue, and carcinomas from six patients, for a total of 31 samples. By using somatic mutations as lineage markers we built trees that relate the tissue samples within each patient. On the basis of these lineage trees we inferred the order, timing, and rates of genomic events. In four out of six cases, an early neoplasia and the carcinoma share a mutated common ancestor with recurring aneuploidies, and in all six cases evolution accelerated in the carcinoma lineage. Transition spectra of somatic mutations are stable and consistent across cases, suggesting that accumulation of somatic mutations is a result of increased ancestral cell division rather than specific mutational mechanisms. In contrast to highly advanced tumors that are the focus of much of the current cancer genome sequencing, neither the early neoplasia genomes nor the carcinomas are enriched with potentially functional somatic point mutations. Aneuploidies that occur in common ancestors of neoplastic and tumor cells are the earliest events that affect a large number of genes and may predispose breast tissue to eventual development of invasive carcinoma.

  9. Genome evolution during progression to breast cancer

    KAUST Repository

    Newburger, D. E.; Kashef-Haghighi, D.; Weng, Z.; Salari, R.; Sweeney, R. T.; Brunner, A. L.; Zhu, S. X.; Guo, X.; Varma, S.; Troxell, M. L.; West, R. B.; Batzoglou, S.; Sidow, A.

    2013-01-01

    Cancer evolution involves cycles of genomic damage, epigenetic deregulation, and increased cellular proliferation that eventually culminate in the carcinoma phenotype. Early neoplasias, which are often found concurrently with carcinomas and are histologically distinguishable from normal breast tissue, are less advanced in phenotype than carcinomas and are thought to represent precursor stages. To elucidate their role in cancer evolution we performed comparative whole-genome sequencing of early neoplasias, matched normal tissue, and carcinomas from six patients, for a total of 31 samples. By using somatic mutations as lineage markers we built trees that relate the tissue samples within each patient. On the basis of these lineage trees we inferred the order, timing, and rates of genomic events. In four out of six cases, an early neoplasia and the carcinoma share a mutated common ancestor with recurring aneuploidies, and in all six cases evolution accelerated in the carcinoma lineage. Transition spectra of somatic mutations are stable and consistent across cases, suggesting that accumulation of somatic mutations is a result of increased ancestral cell division rather than specific mutational mechanisms. In contrast to highly advanced tumors that are the focus of much of the current cancer genome sequencing, neither the early neoplasia genomes nor the carcinomas are enriched with potentially functional somatic point mutations. Aneuploidies that occur in common ancestors of neoplastic and tumor cells are the earliest events that affect a large number of genes and may predispose breast tissue to eventual development of invasive carcinoma.

  10. Exploring Other Genomes: Bacteria.

    Science.gov (United States)

    Flannery, Maura C.

    2001-01-01

    Points out the importance of genomes other than the human genome project and provides information on the identified bacterial genomes Pseudomonas aeuroginosa, Leprosy, Cholera, Meningitis, Tuberculosis, Bubonic Plague, and plant pathogens. Considers the computer's use in genome studies. (Contains 14 references.) (YDS)

  11. The Arab genome: Health and wealth.

    Science.gov (United States)

    Zayed, Hatem

    2016-11-05

    The 22 Arab nations have a unique genetic structure, which reflects both conserved and diverse gene pools due to the prevalent endogamous and consanguineous marriage culture and the long history of admixture among different ethnic subcultures descended from the Asian, European, and African continents. Human genome sequencing has enabled large-scale genomic studies of different populations and has become a powerful tool for studying disease predictions and diagnosis. Despite the importance of the Arab genome for better understanding the dynamics of the human genome, discovering rare genetic variations, and studying early human migration out of Africa, it is poorly represented in human genome databases, such as HapMap and the 1000 Genomes Project. In this review, I demonstrate the significance of sequencing the Arab genome and setting an Arab genome reference(s) for better understanding the molecular pathogenesis of genetic diseases, discovering novel/rare variants, and identifying a meaningful genotype-phenotype correlation for complex diseases. Copyright © 2016. Published by Elsevier B.V.

  12. Genomics With Cloud Computing

    OpenAIRE

    Sukhamrit Kaur; Sandeep Kaur

    2015-01-01

    Abstract Genomics is study of genome which provides large amount of data for which large storage and computation power is needed. These issues are solved by cloud computing that provides various cloud platforms for genomics. These platforms provides many services to user like easy access to data easy sharing and transfer providing storage in hundreds of terabytes more computational power. Some cloud platforms are Google genomics DNAnexus and Globus genomics. Various features of cloud computin...

  13. Genome Maps, a new generation genome browser.

    Science.gov (United States)

    Medina, Ignacio; Salavert, Francisco; Sanchez, Rubén; de Maria, Alejandro; Alonso, Roberto; Escobar, Pablo; Bleda, Marta; Dopazo, Joaquín

    2013-07-01

    Genome browsers have gained importance as more genomes and related genomic information become available. However, the increase of information brought about by new generation sequencing technologies is, at the same time, causing a subtle but continuous decrease in the efficiency of conventional genome browsers. Here, we present Genome Maps, a genome browser that implements an innovative model of data transfer and management. The program uses highly efficient technologies from the new HTML5 standard, such as scalable vector graphics, that optimize workloads at both server and client sides and ensure future scalability. Thus, data management and representation are entirely carried out by the browser, without the need of any Java Applet, Flash or other plug-in technology installation. Relevant biological data on genes, transcripts, exons, regulatory features, single-nucleotide polymorphisms, karyotype and so forth, are imported from web services and are available as tracks. In addition, several DAS servers are already included in Genome Maps. As a novelty, this web-based genome browser allows the local upload of huge genomic data files (e.g. VCF or BAM) that can be dynamically visualized in real time at the client side, thus facilitating the management of medical data affected by privacy restrictions. Finally, Genome Maps can easily be integrated in any web application by including only a few lines of code. Genome Maps is an open source collaborative initiative available in the GitHub repository (https://github.com/compbio-bigdata-viz/genome-maps). Genome Maps is available at: http://www.genomemaps.org.

  14. Understanding patient and provider perceptions and expectations of genomic medicine.

    Science.gov (United States)

    Hall, Michael J; Forman, Andrea D; Montgomery, Susan V; Rainey, Kim L; Daly, Mary B

    2015-01-01

    Advances in genome sequencing technology have fostered a new era of clinical genomic medicine. Genetic counselors, who have begun to support patients undergoing multi-gene panel testing for hereditary cancer risk, will review brief clinical vignettes, and discuss early experiences with clinical genomic testing. Their experiences will frame a discussion about how current testing may challenge patient understanding and expectations toward the evaluation of cancer risk and downstream preventive behaviors. © 2014 Wiley Periodicals, Inc.

  15. JGI Fungal Genomics Program

    Energy Technology Data Exchange (ETDEWEB)

    Grigoriev, Igor V.

    2011-03-14

    Genomes of energy and environment fungi are in focus of the Fungal Genomic Program at the US Department of Energy Joint Genome Institute (JGI). Its key project, the Genomics Encyclopedia of Fungi, targets fungi related to plant health (symbionts, pathogens, and biocontrol agents) and biorefinery processes (cellulose degradation, sugar fermentation, industrial hosts), and explores fungal diversity by means of genome sequencing and analysis. Over 50 fungal genomes have been sequenced by JGI to date and released through MycoCosm (www.jgi.doe.gov/fungi), a fungal web-portal, which integrates sequence and functional data with genome analysis tools for user community. Sequence analysis supported by functional genomics leads to developing parts list for complex systems ranging from ecosystems of biofuel crops to biorefineries. Recent examples of such 'parts' suggested by comparative genomics and functional analysis in these areas are presented here

  16. Genomic Encyclopedia of Fungi

    Energy Technology Data Exchange (ETDEWEB)

    Grigoriev, Igor

    2012-08-10

    Genomes of fungi relevant to energy and environment are in focus of the Fungal Genomic Program at the US Department of Energy Joint Genome Institute (JGI). Its key project, the Genomics Encyclopedia of Fungi, targets fungi related to plant health (symbionts, pathogens, and biocontrol agents) and biorefinery processes (cellulose degradation, sugar fermentation, industrial hosts), and explores fungal diversity by means of genome sequencing and analysis. Over 150 fungal genomes have been sequenced by JGI to date and released through MycoCosm (www.jgi.doe.gov/fungi), a fungal web-portal, which integrates sequence and functional data with genome analysis tools for user community. Sequence analysis supported by functional genomics leads to developing parts list for complex systems ranging from ecosystems of biofuel crops to biorefineries. Recent examples of such parts suggested by comparative genomics and functional analysis in these areas are presented here.

  17. Engineering the Caenorhabditis elegans genome with CRISPR/Cas9

    NARCIS (Netherlands)

    Waaijers, Selma; Boxem, Mike

    2014-01-01

    The development in early 2013 of CRISPR/Cas9-based genome engineering promises to dramatically advance our ability to alter the genomes of model systems at will. A single, easily produced targeting RNA guides the Cas9 endonuclease to a specific DNA sequence where it creates a double strand break.

  18. Application of Genomic In Situ Hybridization in Horticultural Science

    Directory of Open Access Journals (Sweden)

    Fahad Ramzan

    2017-01-01

    Full Text Available Molecular cytogenetic techniques, such as in situ hybridization methods, are admirable tools to analyze the genomic structure and function, chromosome constituents, recombination patterns, alien gene introgression, genome evolution, aneuploidy, and polyploidy and also genome constitution visualization and chromosome discrimination from different genomes in allopolyploids of various horticultural crops. Using GISH advancement as multicolor detection is a significant approach to analyze the small and numerous chromosomes in fruit species, for example, Diospyros hybrids. This analytical technique has proved to be the most exact and effective way for hybrid status confirmation and helps remarkably to distinguish donor parental genomes in hybrids such as Clivia, Rhododendron, and Lycoris ornamental hybrids. The genome characterization facilitates in hybrid selection having potential desirable characteristics during the early hybridization breeding, as this technique expedites to detect introgressed sequence chromosomes. This review study epitomizes applications and advancements of genomic in situ hybridization (GISH techniques in horticultural plants.

  19. Accelerating research through reagent repositories: the genome editing example.

    Science.gov (United States)

    Joung, J Keith; Voytas, Daniel F; Kamens, Joanne

    2015-11-20

    Keith Joung, Dan Voytas and Joanne Kamens share insights into how the genome editing field was advanced by early access to biological resources and the role in this process that plasmid repositories play.

  20. Genomics With Cloud Computing

    Directory of Open Access Journals (Sweden)

    Sukhamrit Kaur

    2015-04-01

    Full Text Available Abstract Genomics is study of genome which provides large amount of data for which large storage and computation power is needed. These issues are solved by cloud computing that provides various cloud platforms for genomics. These platforms provides many services to user like easy access to data easy sharing and transfer providing storage in hundreds of terabytes more computational power. Some cloud platforms are Google genomics DNAnexus and Globus genomics. Various features of cloud computing to genomics are like easy access and sharing of data security of data less cost to pay for resources but still there are some demerits like large time needed to transfer data less network bandwidth.

  1. The Complete Chloroplast and Mitochondrial Genome Sequences of Boea hygrometrica: Insights into the Evolution of Plant Organellar Genomes

    Science.gov (United States)

    Wang, Xumin; Deng, Xin; Zhang, Xiaowei; Hu, Songnian; Yu, Jun

    2012-01-01

    The complete nucleotide sequences of the chloroplast (cp) and mitochondrial (mt) genomes of resurrection plant Boea hygrometrica (Bh, Gesneriaceae) have been determined with the lengths of 153,493 bp and 510,519 bp, respectively. The smaller chloroplast genome contains more genes (147) with a 72% coding sequence, and the larger mitochondrial genome have less genes (65) with a coding faction of 12%. Similar to other seed plants, the Bh cp genome has a typical quadripartite organization with a conserved gene in each region. The Bh mt genome has three recombinant sequence repeats of 222 bp, 843 bp, and 1474 bp in length, which divide the genome into a single master circle (MC) and four isomeric molecules. Compared to other angiosperms, one remarkable feature of the Bh mt genome is the frequent transfer of genetic material from the cp genome during recent Bh evolution. We also analyzed organellar genome evolution in general regarding genome features as well as compositional dynamics of sequence and gene structure/organization, providing clues for the understanding of the evolution of organellar genomes in plants. The cp-derived sequences including tRNAs found in angiosperm mt genomes support the conclusion that frequent gene transfer events may have begun early in the land plant lineage. PMID:22291979

  2. Justice and the Human Genome Project

    Energy Technology Data Exchange (ETDEWEB)

    Murphy, T.F.; Lappe, M. (eds.)

    1992-01-01

    Most of the essays gathered in this volume were first presented at a conference, Justice and the Human Genome, in Chicago in early November, 1991. The goal of the, conference was to consider questions of justice as they are and will be raised by the Human Genome Project. To achieve its goal of identifying and elucidating the challenges of justice inherent in genomic research and its social applications the conference drew together in one forum members from academia, medicine, and industry with interests divergent as rate-setting for insurance, the care of newborns, and the history of ethics. The essays in this volume address a number of theoretical and practical concerns relative to the meaning of genomic research.

  3. Justice and the Human Genome Project

    Energy Technology Data Exchange (ETDEWEB)

    Murphy, T.F.; Lappe, M. [eds.

    1992-12-31

    Most of the essays gathered in this volume were first presented at a conference, Justice and the Human Genome, in Chicago in early November, 1991. The goal of the, conference was to consider questions of justice as they are and will be raised by the Human Genome Project. To achieve its goal of identifying and elucidating the challenges of justice inherent in genomic research and its social applications the conference drew together in one forum members from academia, medicine, and industry with interests divergent as rate-setting for insurance, the care of newborns, and the history of ethics. The essays in this volume address a number of theoretical and practical concerns relative to the meaning of genomic research.

  4. Dengue Virus Genome Uncoating Requires Ubiquitination

    Directory of Open Access Journals (Sweden)

    Laura A. Byk

    2016-06-01

    Full Text Available The process of genome release or uncoating after viral entry is one of the least-studied steps in the flavivirus life cycle. Flaviviruses are mainly arthropod-borne viruses, including emerging and reemerging pathogens such as dengue, Zika, and West Nile viruses. Currently, dengue virus is one of the most significant human viral pathogens transmitted by mosquitoes and is responsible for about 390 million infections every year around the world. Here, we examined for the first time molecular aspects of dengue virus genome uncoating. We followed the fate of the capsid protein and RNA genome early during infection and found that capsid is degraded after viral internalization by the host ubiquitin-proteasome system. However, proteasome activity and capsid degradation were not necessary to free the genome for initial viral translation. Unexpectedly, genome uncoating was blocked by inhibiting ubiquitination. Using different assays to bypass entry and evaluate the first rounds of viral translation, a narrow window of time during infection that requires ubiquitination but not proteasome activity was identified. In this regard, ubiquitin E1-activating enzyme inhibition was sufficient to stabilize the incoming viral genome in the cytoplasm of infected cells, causing its retention in either endosomes or nucleocapsids. Our data support a model in which dengue virus genome uncoating requires a nondegradative ubiquitination step, providing new insights into this crucial but understudied viral process.

  5. Comparative Genome Analysis and Genome Evolution

    NARCIS (Netherlands)

    Snel, Berend

    2002-01-01

    This thesis described a collection of bioinformatic analyses on complete genome sequence data. We have studied the evolution of gene content and find that vertical inheritance dominates over horizontal gene trasnfer, even to the extent that we can use the gene content to make genome phylogenies.

  6. Genomic Data Commons launches

    Science.gov (United States)

    The Genomic Data Commons (GDC), a unified data system that promotes sharing of genomic and clinical data between researchers, launched today with a visit from Vice President Joe Biden to the operations center at the University of Chicago.

  7. Rat Genome Database (RGD)

    Data.gov (United States)

    U.S. Department of Health & Human Services — The Rat Genome Database (RGD) is a collaborative effort between leading research institutions involved in rat genetic and genomic research to collect, consolidate,...

  8. Visualization for genomics: the Microbial Genome Viewer.

    Science.gov (United States)

    Kerkhoven, Robert; van Enckevort, Frank H J; Boekhorst, Jos; Molenaar, Douwe; Siezen, Roland J

    2004-07-22

    A Web-based visualization tool, the Microbial Genome Viewer, is presented that allows the user to combine complex genomic data in a highly interactive way. This Web tool enables the interactive generation of chromosome wheels and linear genome maps from genome annotation data stored in a MySQL database. The generated images are in scalable vector graphics (SVG) format, which is suitable for creating high-quality scalable images and dynamic Web representations. Gene-related data such as transcriptome and time-course microarray experiments can be superimposed on the maps for visual inspection. The Microbial Genome Viewer 1.0 is freely available at http://www.cmbi.kun.nl/MGV

  9. Closing the gap between knowledge and clinical application: challenges for genomic translation.

    Science.gov (United States)

    Burke, Wylie; Korngiebel, Diane M

    2015-01-01

    Despite early predictions and rapid progress in research, the introduction of personal genomics into clinical practice has been slow. Several factors contribute to this translational gap between knowledge and clinical application. The evidence available to support genetic test use is often limited, and implementation of new testing programs can be challenging. In addition, the heterogeneity of genomic risk information points to the need for strategies to select and deliver the information most appropriate for particular clinical needs. Accomplishing these tasks also requires recognition that some expectations for personal genomics are unrealistic, notably expectations concerning the clinical utility of genomic risk assessment for common complex diseases. Efforts are needed to improve the body of evidence addressing clinical outcomes for genomics, apply implementation science to personal genomics, and develop realistic goals for genomic risk assessment. In addition, translational research should emphasize the broader benefits of genomic knowledge, including applications of genomic research that provide clinical benefit outside the context of personal genomic risk.

  10. Genomic prediction using subsampling

    OpenAIRE

    Xavier, Alencar; Xu, Shizhong; Muir, William; Rainey, Katy Martin

    2017-01-01

    Background Genome-wide assisted selection is a critical tool for the?genetic improvement of plants and animals. Whole-genome regression models in Bayesian framework represent the main family of prediction methods. Fitting such models with a large number of observations involves a prohibitive computational burden. We propose the use of subsampling bootstrap Markov chain in genomic prediction. Such method consists of fitting whole-genome regression models by subsampling observations in each rou...

  11. Ebolavirus comparative genomics

    DEFF Research Database (Denmark)

    Jun, Se-Ran; Leuze, Michael R.; Nookaew, Intawat

    2015-01-01

    The 2014 Ebola outbreak in West Africa is the largest documented for this virus. To examine the dynamics of this genome, we compare more than 100 currently available ebolavirus genomes to each other and to other viral genomes. Based on oligomer frequency analysis, the family Filoviridae forms...

  12. The Sequenced Angiosperm Genomes and Genome Databases.

    Science.gov (United States)

    Chen, Fei; Dong, Wei; Zhang, Jiawei; Guo, Xinyue; Chen, Junhao; Wang, Zhengjia; Lin, Zhenguo; Tang, Haibao; Zhang, Liangsheng

    2018-01-01

    Angiosperms, the flowering plants, provide the essential resources for human life, such as food, energy, oxygen, and materials. They also promoted the evolution of human, animals, and the planet earth. Despite the numerous advances in genome reports or sequencing technologies, no review covers all the released angiosperm genomes and the genome databases for data sharing. Based on the rapid advances and innovations in the database reconstruction in the last few years, here we provide a comprehensive review for three major types of angiosperm genome databases, including databases for a single species, for a specific angiosperm clade, and for multiple angiosperm species. The scope, tools, and data of each type of databases and their features are concisely discussed. The genome databases for a single species or a clade of species are especially popular for specific group of researchers, while a timely-updated comprehensive database is more powerful for address of major scientific mysteries at the genome scale. Considering the low coverage of flowering plants in any available database, we propose construction of a comprehensive database to facilitate large-scale comparative studies of angiosperm genomes and to promote the collaborative studies of important questions in plant biology.

  13. Cytoplasmic ATR Activation Promotes Vaccinia Virus Genome Replication

    Directory of Open Access Journals (Sweden)

    Antonio Postigo

    2017-05-01

    Full Text Available In contrast to most DNA viruses, poxviruses replicate their genomes in the cytoplasm without host involvement. We find that vaccinia virus induces cytoplasmic activation of ATR early during infection, before genome uncoating, which is unexpected because ATR plays a fundamental nuclear role in maintaining host genome integrity. ATR, RPA, INTS7, and Chk1 are recruited to cytoplasmic DNA viral factories, suggesting canonical ATR pathway activation. Consistent with this, pharmacological and RNAi-mediated inhibition of canonical ATR signaling suppresses genome replication. RPA and the sliding clamp PCNA interact with the viral polymerase E9 and are required for DNA replication. Moreover, the ATR activator TOPBP1 promotes genome replication and associates with the viral replisome component H5. Our study suggests that, in contrast to long-held beliefs, vaccinia recruits conserved components of the eukaryote DNA replication and repair machinery to amplify its genome in the host cytoplasm.

  14. The business value and cost-effectiveness of genomic medicine.

    Science.gov (United States)

    Crawford, James M; Aspinall, Mara G

    2012-05-01

    Genomic medicine offers the promise of more effective diagnosis and treatment of human diseases. Genome sequencing early in the course of disease may enable more timely and informed intervention, with reduced healthcare costs and improved long-term outcomes. However, genomic medicine strains current models for demonstrating value, challenging efforts to achieve fair payment for services delivered, both for laboratory diagnostics and for use of molecular information in clinical management. Current models of healthcare reform stipulate that care must be delivered at equal or lower cost, with better patient and population outcomes. To achieve demonstrated value, genomic medicine must overcome many uncertainties: the clinical relevance of genomic variation; potential variation in technical performance and/or computational analysis; management of massive information sets; and must have available clinical interventions that can be informed by genomic analysis, so as to attain more favorable cost management of healthcare delivery and demonstrate improvements in cost-effectiveness.

  15. Genomics education for medical professionals - the current UK landscape.

    Science.gov (United States)

    Slade, Ingrid; Subramanian, Deepak N; Burton, Hilary

    2016-08-01

    Genomics education in the UK is at an early stage of development, and its pace of evolution has lagged behind that of the genomics research upon which it is based. As a result, knowledge of genomics and its applications remains limited among non-specialist clinicians. In this review article, we describe the complex landscape for genomics education within the UK, and highlight the large number and variety of organisations that can influence, direct and provide genomics training to medical professionals. Postgraduate genomics education is being shaped by the work of the Health Education England (HEE) Genomics Education Programme, working in conjunction with the Joint Committee on Genomics in Medicine. The success of their work will be greatly enhanced by the full cooperation and engagement of the many groups, societies and organisations involved with medical education and training (such as the royal colleges). Without this cooperation, there is a risk of poor coordination and unnecessary duplication of work. Leadership from an organisation such as the HEE Genomics Education Programme will have a key role in guiding the formulation and delivery of genomics education policy by various stakeholders among the different disciplines in medicine. © 2016 Royal College of Physicians.

  16. Genomic research in Eucalyptus.

    Science.gov (United States)

    Poke, Fiona S; Vaillancourt, René E; Potts, Brad M; Reid, James B

    2005-09-01

    Eucalyptus L'Hérit. is a genus comprised of more than 700 species that is of vital importance ecologically to Australia and to the forestry industry world-wide, being grown in plantations for the production of solid wood products as well as pulp for paper. With the sequencing of the genomes of Arabidopsis thaliana and Oryza sativa and the recent completion of the first tree genome sequence, Populus trichocarpa, attention has turned to the current status of genomic research in Eucalyptus. For several eucalypt species, large segregating families have been established, high-resolution genetic maps constructed and large EST databases generated. Collaborative efforts have been initiated for the integration of diverse genomic projects and will provide the framework for future research including exploiting the sequence of the entire eucalypt genome which is currently being sequenced. This review summarises the current position of genomic research in Eucalyptus and discusses the direction of future research.

  17. Reducing chemotherapy use in clinically high-risk, genomically low-risk pN0 and pN1 early breast cancer patients: five-year data from the prospective, randomised phase 3 West German Study Group (WSG) PlanB trial.

    Science.gov (United States)

    Nitz, Ulrike; Gluz, Oleg; Christgen, Matthias; Kates, Ronald E; Clemens, Michael; Malter, Wolfram; Nuding, Benno; Aktas, Bahriye; Kuemmel, Sherko; Reimer, Toralf; Stefek, Andrea; Lorenz-Salehi, Fatemeh; Krabisch, Petra; Just, Marianne; Augustin, Doris; Liedtke, Cornelia; Chao, Calvin; Shak, Steven; Wuerstlein, Rachel; Kreipe, Hans H; Harbeck, Nadia

    2017-10-01

    The prospective phase 3 PlanB trial used the Oncotype DX ® Recurrence Score ® (RS) to define a genomically low-risk subset of clinically high-risk pN0-1 early breast cancer (EBC) patients for treatment with adjuvant endocrine therapy (ET) alone. Here, we report five-year data evaluating the prognostic value of RS, Ki-67, and other traditional clinicopathological parameters. A central tumour bank was prospectively established within PlanB. Following an early amendment, hormone receptor (HR)+ , pN0-1 RS ≤ 11 patients were recommended to omit chemotherapy. Patients with RS ≥ 12, pN2-3, or HR-negative/HER2-negative disease were randomised to anthracycline-containing or anthracycline-free chemotherapy. Primary endpoint: disease-free survival (DFS). PlanB Clinicaltrials.gov identifier: NCT01049425. From 2009 to 2011, PlanB enrolled 3198 patients (central tumour bank, n = 3073) with the median age of 56 years, 41.1% pN+, and 32.5% grade 3 EBC. Chemotherapy was omitted in 348/404 (86.1%) eligible RS ≤ 11 patients. After 55 months of median follow-up, five-year DFS in ET-treated RS ≤ 11 patients was 94% (in both pN0 and pN1) versus 94% (RS 12-25) and 84% (RS > 25) in chemotherapy-treated patients (p 2 cm, and RS, but not IHC4 or Ki-67 were independent adverse factors. If RS was excluded, IHC4 or both Ki-67 and PR entered the model. The impact of RS was particularly pronounced in patients with intermediate Ki-67 (>10%, risk, genomically low-risk (RS ≤ 11) pN0-1 patients without adjuvant chemotherapy support using RS with standardised pathology for treatment decisions in HR+ HER2-negative EBC. Ki-67 has the potential to support patient selection for genomic testing.

  18. Genome packaging in viruses

    OpenAIRE

    Sun, Siyang; Rao, Venigalla B.; Rossmann, Michael G.

    2010-01-01

    Genome packaging is a fundamental process in a viral life cycle. Many viruses assemble preformed capsids into which the genomic material is subsequently packaged. These viruses use a packaging motor protein that is driven by the hydrolysis of ATP to condense the nucleic acids into a confined space. How these motor proteins package viral genomes had been poorly understood until recently, when a few X-ray crystal structures and cryo-electron microscopy structures became available. Here we discu...

  19. Between Two Fern Genomes

    Science.gov (United States)

    2014-01-01

    Ferns are the only major lineage of vascular plants not represented by a sequenced nuclear genome. This lack of genome sequence information significantly impedes our ability to understand and reconstruct genome evolution not only in ferns, but across all land plants. Azolla and Ceratopteris are ideal and complementary candidates to be the first ferns to have their nuclear genomes sequenced. They differ dramatically in genome size, life history, and habit, and thus represent the immense diversity of extant ferns. Together, this pair of genomes will facilitate myriad large-scale comparative analyses across ferns and all land plants. Here we review the unique biological characteristics of ferns and describe a number of outstanding questions in plant biology that will benefit from the addition of ferns to the set of taxa with sequenced nuclear genomes. We explain why the fern clade is pivotal for understanding genome evolution across land plants, and we provide a rationale for how knowledge of fern genomes will enable progress in research beyond the ferns themselves. PMID:25324969

  20. Causes of genome instability

    DEFF Research Database (Denmark)

    Langie, Sabine A S; Koppen, Gudrun; Desaulniers, Daniel

    2015-01-01

    function, chromosome segregation, telomere length). The purpose of this review is to describe the crucial aspects of genome instability, to outline the ways in which environmental chemicals can affect this cancer hallmark and to identify candidate chemicals for further study. The overall aim is to make......Genome instability is a prerequisite for the development of cancer. It occurs when genome maintenance systems fail to safeguard the genome's integrity, whether as a consequence of inherited defects or induced via exposure to environmental agents (chemicals, biological agents and radiation). Thus...

  1. Fungal Genomics Program

    Energy Technology Data Exchange (ETDEWEB)

    Grigoriev, Igor

    2012-03-12

    The JGI Fungal Genomics Program aims to scale up sequencing and analysis of fungal genomes to explore the diversity of fungi important for energy and the environment, and to promote functional studies on a system level. Combining new sequencing technologies and comparative genomics tools, JGI is now leading the world in fungal genome sequencing and analysis. Over 120 sequenced fungal genomes with analytical tools are available via MycoCosm (www.jgi.doe.gov/fungi), a web-portal for fungal biologists. Our model of interacting with user communities, unique among other sequencing centers, helps organize these communities, improves genome annotation and analysis work, and facilitates new larger-scale genomic projects. This resulted in 20 high-profile papers published in 2011 alone and contributing to the Genomics Encyclopedia of Fungi, which targets fungi related to plant health (symbionts, pathogens, and biocontrol agents) and biorefinery processes (cellulose degradation, sugar fermentation, industrial hosts). Our next grand challenges include larger scale exploration of fungal diversity (1000 fungal genomes), developing molecular tools for DOE-relevant model organisms, and analysis of complex systems and metagenomes.

  2. MIPS plant genome information resources.

    Science.gov (United States)

    Spannagl, Manuel; Haberer, Georg; Ernst, Rebecca; Schoof, Heiko; Mayer, Klaus F X

    2007-01-01

    The Munich Institute for Protein Sequences (MIPS) has been involved in maintaining plant genome databases since the Arabidopsis thaliana genome project. Genome databases and analysis resources have focused on individual genomes and aim to provide flexible and maintainable data sets for model plant genomes as a backbone against which experimental data, for example from high-throughput functional genomics, can be organized and evaluated. In addition, model genomes also form a scaffold for comparative genomics, and much can be learned from genome-wide evolutionary studies.

  3. Dengue Virus Genome Uncoating Requires Ubiquitination.

    Science.gov (United States)

    Byk, Laura A; Iglesias, Néstor G; De Maio, Federico A; Gebhard, Leopoldo G; Rossi, Mario; Gamarnik, Andrea V

    2016-06-28

    The process of genome release or uncoating after viral entry is one of the least-studied steps in the flavivirus life cycle. Flaviviruses are mainly arthropod-borne viruses, including emerging and reemerging pathogens such as dengue, Zika, and West Nile viruses. Currently, dengue virus is one of the most significant human viral pathogens transmitted by mosquitoes and is responsible for about 390 million infections every year around the world. Here, we examined for the first time molecular aspects of dengue virus genome uncoating. We followed the fate of the capsid protein and RNA genome early during infection and found that capsid is degraded after viral internalization by the host ubiquitin-proteasome system. However, proteasome activity and capsid degradation were not necessary to free the genome for initial viral translation. Unexpectedly, genome uncoating was blocked by inhibiting ubiquitination. Using different assays to bypass entry and evaluate the first rounds of viral translation, a narrow window of time during infection that requires ubiquitination but not proteasome activity was identified. In this regard, ubiquitin E1-activating enzyme inhibition was sufficient to stabilize the incoming viral genome in the cytoplasm of infected cells, causing its retention in either endosomes or nucleocapsids. Our data support a model in which dengue virus genome uncoating requires a nondegradative ubiquitination step, providing new insights into this crucial but understudied viral process. Dengue is the most significant arthropod-borne viral infection in humans. Although the number of cases increases every year, there are no approved therapeutics available for the treatment of dengue infection, and many basic aspects of the viral biology remain elusive. After entry, the viral membrane must fuse with the endosomal membrane to deliver the viral genome into the cytoplasm for translation and replication. A great deal of information has been obtained in the last decade

  4. Requirements and standards for organelle genome databases

    Energy Technology Data Exchange (ETDEWEB)

    Boore, Jeffrey L.

    2006-01-09

    Mitochondria and plastids (collectively called organelles)descended from prokaryotes that adopted an intracellular, endosymbioticlifestyle within early eukaryotes. Comparisons of their remnant genomesaddress a wide variety of biological questions, especially when includingthe genomes of their prokaryotic relatives and the many genes transferredto the eukaryotic nucleus during the transitions from endosymbiont toorganelle. The pace of producing complete organellar genome sequences nowmakes it unfeasible to do broad comparisons using the primary literatureand, even if it were feasible, it is now becoming uncommon for journalsto accept detailed descriptions of genome-level features. Unfortunatelyno database is currently useful for this task, since they have littlestandardization and are riddled with error. Here I outline what iscurrently wrong and what must be done to make this data useful to thescientific community.

  5. Genomic Evolution of the Ascomycete Yeasts

    Energy Technology Data Exchange (ETDEWEB)

    Riley, Robert; Haridas, Sajeet; Salamov, Asaf; Boundy-Mills, Kyria; Goker, Markus; Hittinger, Chris; Klenk, Hans-Peter; Lopes, Mariana; Meir-Kolthoff, Jan P.; Rokas, Antonis; Rosa, Carlos; Scheuner, Carmen; Soares, Marco; Stielow, Benjamin; Wisecaver, Jennifer H.; Wolfe, Ken; Blackwell, Meredith; Kurtzman, Cletus; Grigoriev, Igor; Jeffries, Thomas

    2015-03-16

    Yeasts are important for industrial and biotechnological processes and show remarkable metabolic and phylogenetic diversity despite morphological similarities. We have sequenced the genomes of 16 ascomycete yeasts of taxonomic and industrial importance including members of Saccharomycotina and Taphrinomycotina. Phylogenetic analysis of these and previously published yeast genomes helped resolve the placement of species including Saitoella complicata, Babjeviella inositovora, Hyphopichia burtonii, and Metschnikowia bicuspidata. Moreover, we find that alternative nuclear codon usage, where CUG encodes serine instead of leucine, are monophyletic within the Saccharomycotina. Most of the yeasts have compact genomes with a large fraction of single exon genes, and a tendency towards more introns in early-diverging species. Analysis of enzyme phylogeny gives insights into the evolution of metabolic capabilities such as methanol utilization and assimilation of alternative carbon sources.

  6. The case for early use of rapid whole genome sequencing in management of critically ill infants: Late diagnosis of Coffin-Siris syndrome in an infant with left congenital diaphragmatic hernia, congenital heart disease and recurrent infections.

    Science.gov (United States)

    Sweeney, Nathaly M; Nahas, Shareef A; Chowdhury, Shimul; Del Campo, Miguel; Jones, Marilyn C; Dimmock, David P; Kingsmore, Stephen F; Investigators, Rcigm

    2018-03-16

    Congenital diaphragmatic hernia (CDH) results from incomplete formation of the diaphragm leading to herniation of abdominal organs into the thoracic cavity. CDH is associated with pulmonary hypoplasia, congenital heart disease and pulmonary hypertension. Genetically, it is associated with aneuploidies, chromosomal copy number variants, and single gene mutations. CDH is the most expensive non-cardiac congenital defect: Management frequently requires implementation of Extracorporeal Membrane Oxygenation (ECMO), which increases management expenditures 2.4 - 3.5-fold. The cost of management of CDH has been estimated to exceed $250 million per year. Despite in hospital survival of 80-90%, current management is imperfect, as a great proportion of surviving children have long-term functional deficits. We report the case of a premature infant prenatally diagnosed with CDH and congenital heart disease, who had a protracted and complicated course in the intensive care unit with multiple surgical interventions, including post-cardiac surgery ECMO, gastrostomy tube placement with Nissen fundoplication, tracheostomy for respiratory failure, recurrent infections and developmental delay. Rapid whole genome sequencing (rWGS) identified a de novo, likely pathogenic, c.3096_3100delCAAAG (p.Lys1033Argfs*32) variant in ARID1B, providing a diagnosis of Coffin-Siris syndrome. Her parents elected palliative care and she died later that day. Had rWGS been performed as a neonate, eight months of suffering and futile healthcare utilization may have been avoided. Cold Spring Harbor Laboratory Press.

  7. Computational genomics of hyperthermophiles

    NARCIS (Netherlands)

    Werken, van de H.J.G.

    2008-01-01

    With the ever increasing number of completely sequenced prokaryotic genomes and the subsequent use of functional genomics tools, e.g. DNA microarray and proteomics, computational data analysis and the integration of microbial and molecular data is inevitable. This thesis describes the computational

  8. Safeguarding genome integrity

    DEFF Research Database (Denmark)

    Sørensen, Claus Storgaard; Syljuåsen, Randi G

    2012-01-01

    Mechanisms that preserve genome integrity are highly important during the normal life cycle of human cells. Loss of genome protective mechanisms can lead to the development of diseases such as cancer. Checkpoint kinases function in the cellular surveillance pathways that help cells to cope with D...

  9. Human genome I

    International Nuclear Information System (INIS)

    Anon.

    1989-01-01

    An international conference, Human Genome I, was held Oct. 2-4, 1989 in San Diego, Calif. Selected speakers discussed: Current Status of the Genome Project; Technique Innovations; Interesting regions; Applications; and Organization - Different Views of Current and Future Science and Procedures. Posters, consisting of 119 presentations, were displayed during the sessions. 119 were indexed for inclusion to the Energy Data Base

  10. Rumen microbial genomics

    International Nuclear Information System (INIS)

    Morrison, M.; Nelson, K.E.

    2005-01-01

    Improving microbial degradation of plant cell wall polysaccharides remains one of the highest priority goals for all livestock enterprises, including the cattle herds and draught animals of developing countries. The North American Consortium for Genomics of Fibrolytic Ruminal Bacteria was created to promote the sequencing and comparative analysis of rumen microbial genomes, offering the potential to fully assess the genetic potential in a functional and comparative fashion. It has been found that the Fibrobacter succinogenes genome encodes many more endoglucanases and cellodextrinases than previously isolated, and several new processive endoglucanases have been identified by genome and proteomic analysis of Ruminococcus albus, in addition to a variety of strategies for its adhesion to fibre. The ramifications of acquiring genome sequence data for rumen microorganisms are profound, including the potential to elucidate and overcome the biochemical, ecological or physiological processes that are rate limiting for ruminal fibre degradation. (author)

  11. Microbial Genomes Multiply

    Science.gov (United States)

    Doolittle, Russell F.

    2002-01-01

    The publication of the first complete sequence of a bacterial genome in 1995 was a signal event, underscored by the fact that the article has been cited more than 2,100 times during the intervening seven years. It was a marvelous technical achievement, made possible by automatic DNA-sequencing machines. The feat is the more impressive in that complete genome sequencing has now been adopted in many different laboratories around the world. Four years ago in these columns I examined the situation after a dozen microbial genomes had been completed. Now, with upwards of 60 microbial genome sequences determined and twice that many in progress, it seems reasonable to assess just what is being learned. Are new concepts emerging about how cells work? Have there been practical benefits in the fields of medicine and agriculture? Is it feasible to determine the genomic sequence of every bacterial species on Earth? The answers to these questions maybe Yes, Perhaps, and No, respectively.

  12. Musa sebagai Model Genom

    Directory of Open Access Journals (Sweden)

    RITA MEGIA

    2005-12-01

    Full Text Available During the meeting in Arlington, USA in 2001, the scientists grouped in PROMUSA agreed with the launching of the Global Musa Genomics Consortium. The Consortium aims to apply genomics technologies to the improvement of this important crop. These genome projects put banana as the third model species after Arabidopsis and rice that will be analyzed and sequenced. Comparing to Arabidopsis and rice, banana genome provides a unique and powerful insight into structural and in functional genomics that could not be found in those two species. This paper discussed these subjects-including the importance of banana as the fourth main food in the world, the evolution and biodiversity of this genetic resource and its parasite.

  13. The genome editing revolution

    DEFF Research Database (Denmark)

    Stella, Stefano; Montoya, Guillermo

    2016-01-01

    -Cas system has become the main tool for genome editing in many laboratories. Currently the targeted genome editing technology has been used in many fields and may be a possible approach for human gene therapy. Furthermore, it can also be used to modifying the genomes of model organisms for studying human......In the last 10 years, we have witnessed a blooming of targeted genome editing systems and applications. The area was revolutionized by the discovery and characterization of the transcription activator-like effector proteins, which are easier to engineer to target new DNA sequences than...... sequence). This ribonucleoprotein complex protects bacteria from invading DNAs, and it was adapted to be used in genome editing. The CRISPR ribonucleic acid (RNA) molecule guides to the specific DNA site the Cas9 nuclease to cleave the DNA target. Two years and more than 1000 publications later, the CRISPR...

  14. Draft Genome Sequence of Two Sphingopyxis sp. Strains, Dominant Members of the Bacterial Community Associated with a Drinking Water Distribution System Simulator

    Science.gov (United States)

    We report the draft genome of two Sphingopyxis spp. strains isolated from a chloraminated drinking water distribution system simulator. Both strains are ubiquitous residents and early colonizers of water distribution systems. Genomic annotation identified a class 1 integron (in...

  15. The Front Line of Genomic Translation

    International Nuclear Information System (INIS)

    O'Neill, C. S.; McBride, C. M.; Koehly, L. M.; Bryan, A. D.; Wideroff, L.

    2012-01-01

    Cancer prevention, detection, and treatment represent the front line of genomic translation. Increasingly, new genomic knowledge is being used to inform personalized cancer prevention recommendations and treatment [1-3]. Genomic applications proposed and realized span the full cancer continuum, from cancer prevention and early detection vis a vis genomic risk profiles to motivate behavioral risk reduction and adherence [4] to screening and prophylactic prevention recommendations for high-risk families [5-7], to enhancing cancer survivorship by using genomic tumor profiles to inform treatment decisions and targeted cancer therapies [8, 9]. Yet the utility for many of these applications is as yet unclear and will be influenced heavily by the public’s, patients’, and health care providers’ responses and in numerous other factors, such as health care delivery models [3]. The contributors to this special issue consider various target groups’ responses and contextual factors. To reflect the cancer continuum, the special issue is divided into three broad, overlapping themes-primary prevention, high risk families and family communication and clinical translation.

  16. Nutritional genomics: a practical approach by early life conditioning with dietary phosphorus Genômica nutricional: uma abordagem prática pelo condicionamento com fósforo dietético nos primeiros anos de vida

    Directory of Open Access Journals (Sweden)

    Christopher M. Ashwell

    2010-07-01

    Full Text Available The recent technologies that have led to the new field of functional genomics (how the genome of an organism regulates homeostasis and responds to stimuli are providing a clearer understanding of how organisms interact with their environment and in particular their diet. We are beginning to learn how the diet may have long-term influence on performance and health. A form of epigenetic regulation has been recently described called fetal "programming". Fueled by epidemiological data the "fetal origins" hypothesis suggests that a poor in utero environment resulting from maternal dietary or placental insufficiency may "program" susceptibility in the fetus to cardiovascular or metabolic disorders. We have observed similar apparent programming by dietary manipulation in the chicken. When birds are challenged with a diet low in phosphorus (P for 90 hours post-hatch they obtain the ability to better utilize P later in life. This increased retention of P from the diet can partially be explained by an enduring increase in the expression of the intestine-specific Na/P cotransporter (NaPcoT gene during programming as well as later in life when fed P restricted diets. The resulting data provide the first evidence for neonatal programming of gene expression in an oviparous species.As tecnologias recentes que levaram ao novo campo da genômica funcional (como o genoma de um organismo regula a homeostase e responde aos estímulos estão proporcionando uma compreensão mais clara de como os organismos interagem com seu ambiente e em especial a sua dieta. Nós estamos começando a aprender como a dieta pode ter influência a longo prazo sobre o desempenho e a saúde. Uma forma de regulação epigenética foi descrita recentemente chamada de "programação fetal". Alimentados por dados epidemiológicos da "origem fetal" hipótese sugere que um pobre no útero ambiente decorrentes da insuficiência alimentar ou placentária materna pode programar "suscetibilidade

  17. Phytozome Comparative Plant Genomics Portal

    Energy Technology Data Exchange (ETDEWEB)

    Goodstein, David; Batra, Sajeev; Carlson, Joseph; Hayes, Richard; Phillips, Jeremy; Shu, Shengqiang; Schmutz, Jeremy; Rokhsar, Daniel

    2014-09-09

    The Dept. of Energy Joint Genome Institute is a genomics user facility supporting DOE mission science in the areas of Bioenergy, Carbon Cycling, and Biogeochemistry. The Plant Program at the JGI applies genomic, analytical, computational and informatics platforms and methods to: 1. Understand and accelerate the improvement (domestication) of bioenergy crops 2. Characterize and moderate plant response to climate change 3. Use comparative genomics to identify constrained elements and infer gene function 4. Build high quality genomic resource platforms of JGI Plant Flagship genomes for functional and experimental work 5. Expand functional genomic resources for Plant Flagship genomes

  18. Genomic Analysis of Uterine Lavage Fluid Detects Early Endometrial Cancers and Reveals a Prevalent Landscape of Driver Mutations in Women without Histopathologic Evidence of Cancer: A Prospective Cross-Sectional Study.

    Directory of Open Access Journals (Sweden)

    Navya Nair

    2016-12-01

    Full Text Available Endometrial cancer is the most common gynecologic malignancy, and its incidence and associated mortality are increasing. Despite the immediate need to detect these cancers at an earlier stage, there is no effective screening methodology or protocol for endometrial cancer. The comprehensive, genomics-based analysis of endometrial cancer by The Cancer Genome Atlas (TCGA revealed many of the molecular defects that define this cancer. Based on these cancer genome results, and in a prospective study, we hypothesized that the use of ultra-deep, targeted gene sequencing could detect somatic mutations in uterine lavage fluid obtained from women undergoing hysteroscopy as a means of molecular screening and diagnosis.Uterine lavage and paired blood samples were collected and analyzed from 107 consecutive patients who were undergoing hysteroscopy and curettage for diagnostic evaluation from this single-institution study. The lavage fluid was separated into cellular and acellular fractions by centrifugation. Cellular and cell-free DNA (cfDNA were isolated from each lavage. Two targeted next-generation sequencing (NGS gene panels, one composed of 56 genes and the other of 12 genes, were used for ultra-deep sequencing. To rule out potential NGS-based errors, orthogonal mutation validation was performed using digital PCR and Sanger sequencing. Seven patients were diagnosed with endometrial cancer based on classic histopathologic analysis. Six of these patients had stage IA cancer, and one of these cancers was only detectable as a microscopic focus within a polyp. All seven patients were found to have significant cancer-associated gene mutations in both cell pellet and cfDNA fractions. In the four patients in whom adequate tumor sample was available, all tumor mutations above a specific allele fraction were present in the uterine lavage DNA samples. Mutations originally only detected in lavage fluid fractions were later confirmed to be present in tumor but at

  19. The Trichoplax Genome and the Nature of Placozoans

    Energy Technology Data Exchange (ETDEWEB)

    Srivastava, Mansi; Begovic, Emina; Chapman, Jarrod; Putnam, Nicholas H.; Hellsten, Uffe; Kawashima, Takeshi; Kuo, Alan; Mitros, Therese; Salamov, Asaf; Carpenter, Meredith L.; Signorovitch, Ana Y.; Moreno, Maria A.; Kamm, Kai; Grimwood, Jane; Schmutz, Jeremy; Shapiro, Harris; Grigoriev, Igor V.; Buss, Leo W.; Schierwater, Bernd; Dellaporta, Stephen L.; Rokhsar, Daniel S.

    2008-08-01

    Placozoans are arguably the simplest free-living animals, possibly evoking an early stage in metazoan evolution, yet their biology is poorly understood. Here we report the sequencing and analysis of the {approx}98 million base pair nuclear genome of the placozoan Trichoplax adhaerens. Whole genome phylogenetic analysis suggests that placozoans belong to a 'eumetazoan' clade that includes cnidarians and bilaterians, with sponges as the earliest diverging animals. The compact genome exhibits conserved gene content, gene structure, and synteny relative to the human and other complex eumetazoan genomes. Despite the apparent cellular and organismal simplicity of Trichoplax, its genome encodes a rich array of transcription factor and signaling pathway genes that are typically associated with diverse cell types and developmental processes in eumetazoans, motivating further searches for cryptic cellular complexity and/or as yet unobserved life history stages.

  20. Genome-derived vaccines.

    Science.gov (United States)

    De Groot, Anne S; Rappuoli, Rino

    2004-02-01

    Vaccine research entered a new era when the complete genome of a pathogenic bacterium was published in 1995. Since then, more than 97 bacterial pathogens have been sequenced and at least 110 additional projects are now in progress. Genome sequencing has also dramatically accelerated: high-throughput facilities can draft the sequence of an entire microbe (two to four megabases) in 1 to 2 days. Vaccine developers are using microarrays, immunoinformatics, proteomics and high-throughput immunology assays to reduce the truly unmanageable volume of information available in genome databases to a manageable size. Vaccines composed by novel antigens discovered from genome mining are already in clinical trials. Within 5 years we can expect to see a novel class of vaccines composed by genome-predicted, assembled and engineered T- and Bcell epitopes. This article addresses the convergence of three forces--microbial genome sequencing, computational immunology and new vaccine technologies--that are shifting genome mining for vaccines onto the forefront of immunology research.

  1. The Banana Genome Hub

    Science.gov (United States)

    Droc, Gaëtan; Larivière, Delphine; Guignon, Valentin; Yahiaoui, Nabila; This, Dominique; Garsmeur, Olivier; Dereeper, Alexis; Hamelin, Chantal; Argout, Xavier; Dufayard, Jean-François; Lengelle, Juliette; Baurens, Franc-Christophe; Cenci, Alberto; Pitollat, Bertrand; D’Hont, Angélique; Ruiz, Manuel; Rouard, Mathieu; Bocs, Stéphanie

    2013-01-01

    Banana is one of the world’s favorite fruits and one of the most important crops for developing countries. The banana reference genome sequence (Musa acuminata) was recently released. Given the taxonomic position of Musa, the completed genomic sequence has particular comparative value to provide fresh insights about the evolution of the monocotyledons. The study of the banana genome has been enhanced by a number of tools and resources that allows harnessing its sequence. First, we set up essential tools such as a Community Annotation System, phylogenomics resources and metabolic pathways. Then, to support post-genomic efforts, we improved banana existing systems (e.g. web front end, query builder), we integrated available Musa data into generic systems (e.g. markers and genetic maps, synteny blocks), we have made interoperable with the banana hub, other existing systems containing Musa data (e.g. transcriptomics, rice reference genome, workflow manager) and finally, we generated new results from sequence analyses (e.g. SNP and polymorphism analysis). Several uses cases illustrate how the Banana Genome Hub can be used to study gene families. Overall, with this collaborative effort, we discuss the importance of the interoperability toward data integration between existing information systems. Database URL: http://banana-genome.cirad.fr/ PMID:23707967

  2. Genomic instability following irradiation

    International Nuclear Information System (INIS)

    Hacker-Klom, U.B.; Goehde, W.

    2001-01-01

    Ionising irradiation may induce genomic instability. The broad spectrum of stress reactions in eukaryontic cells to irradiation complicates the discovery of cellular targets and pathways inducing genomic instability. Irradiation may initiate genomic instability by deletion of genes controlling stability, by induction of genes stimulating instability and/or by activating endogeneous cellular viruses. Alternatively or additionally it is discussed that the initiation of genomic instability may be a consequence of radiation or other agents independently of DNA damage implying non nuclear targets, e.g. signal cascades. As a further mechanism possibly involved our own results may suggest radiation-induced changes in chromatin structure. Once initiated the process of genomic instability probably is perpetuated by endogeneous processes necessary for proliferation. Genomic instability may be a cause or a consequence of the neoplastic phenotype. As a conclusion from the data available up to now a new interpretation of low level radiation effects for radiation protection and in radiotherapy appears useful. The detection of the molecular mechanisms of genomic instability will be important in this context and may contribute to a better understanding of phenomenons occurring at low doses <10 cSv which are not well understood up to now. (orig.)

  3. Genomics of Rapid Incipient Speciation in Sympatric Threespine Stickleback.

    Directory of Open Access Journals (Sweden)

    David A Marques

    2016-02-01

    Full Text Available Ecological speciation is the process by which reproductively isolated populations emerge as a consequence of divergent natural or ecologically-mediated sexual selection. Most genomic studies of ecological speciation have investigated allopatric populations, making it difficult to infer reproductive isolation. The few studies on sympatric ecotypes have focused on advanced stages of the speciation process after thousands of generations of divergence. As a consequence, we still do not know what genomic signatures of the early onset of ecological speciation look like. Here, we examined genomic differentiation among migratory lake and resident stream ecotypes of threespine stickleback reproducing in sympatry in one stream, and in parapatry in another stream. Importantly, these ecotypes started diverging less than 150 years ago. We obtained 34,756 SNPs with restriction-site associated DNA sequencing and identified genomic islands of differentiation using a Hidden Markov Model approach. Consistent with incipient ecological speciation, we found significant genomic differentiation between ecotypes both in sympatry and parapatry. Of 19 islands of differentiation resisting gene flow in sympatry, all were also differentiated in parapatry and were thus likely driven by divergent selection among habitats. These islands clustered in quantitative trait loci controlling divergent traits among the ecotypes, many of them concentrated in one region with low to intermediate recombination. Our findings suggest that adaptive genomic differentiation at many genetic loci can arise and persist in sympatry at the very early stage of ecotype divergence, and that the genomic architecture of adaptation may facilitate this.

  4. Traditional medicine and genomics

    Directory of Open Access Journals (Sweden)

    Kalpana Joshi

    2010-01-01

    Full Text Available ′Omics′ developments in the form of genomics, proteomics and metabolomics have increased the impetus of traditional medicine research. Studies exploring the genomic, proteomic and metabolomic basis of human constitutional types based on Ayurveda and other systems of oriental medicine are becoming popular. Such studies remain important to developing better understanding of human variations and individual differences. Countries like India, Korea, China and Japan are investing in research on evidence-based traditional medicines and scientific validation of fundamental principles. This review provides an account of studies addressing relationships between traditional medicine and genomics.

  5. Traditional medicine and genomics.

    Science.gov (United States)

    Joshi, Kalpana; Ghodke, Yogita; Shintre, Pooja

    2010-01-01

    'Omics' developments in the form of genomics, proteomics and metabolomics have increased the impetus of traditional medicine research. Studies exploring the genomic, proteomic and metabolomic basis of human constitutional types based on Ayurveda and other systems of oriental medicine are becoming popular. Such studies remain important to developing better understanding of human variations and individual differences. Countries like India, Korea, China and Japan are investing in research on evidence-based traditional medicines and scientific validation of fundamental principles. This review provides an account of studies addressing relationships between traditional medicine and genomics.

  6. Bacillus subtilis genome diversity.

    Science.gov (United States)

    Earl, Ashlee M; Losick, Richard; Kolter, Roberto

    2007-02-01

    Microarray-based comparative genomic hybridization (M-CGH) is a powerful method for rapidly identifying regions of genome diversity among closely related organisms. We used M-CGH to examine the genome diversity of 17 strains belonging to the nonpathogenic species Bacillus subtilis. Our M-CGH results indicate that there is considerable genetic heterogeneity among members of this species; nearly one-third of Bsu168-specific genes exhibited variability, as measured by the microarray hybridization intensities. The variable loci include those encoding proteins involved in antibiotic production, cell wall synthesis, sporulation, and germination. The diversity in these genes may reflect this organism's ability to survive in diverse natural settings.

  7. Genomic taxonomy of vibrios

    Directory of Open Access Journals (Sweden)

    Iida Tetsuya

    2009-10-01

    Full Text Available Abstract Background Vibrio taxonomy has been based on a polyphasic approach. In this study, we retrieve useful taxonomic information (i.e. data that can be used to distinguish different taxonomic levels, such as species and genera from 32 genome sequences of different vibrio species. We use a variety of tools to explore the taxonomic relationship between the sequenced genomes, including Multilocus Sequence Analysis (MLSA, supertrees, Average Amino Acid Identity (AAI, genomic signatures, and Genome BLAST atlases. Our aim is to analyse the usefulness of these tools for species identification in vibrios. Results We have generated four new genome sequences of three Vibrio species, i.e., V. alginolyticus 40B, V. harveyi-like 1DA3, and V. mimicus strains VM573 and VM603, and present a broad analyses of these genomes along with other sequenced Vibrio species. The genome atlas and pangenome plots provide a tantalizing image of the genomic differences that occur between closely related sister species, e.g. V. cholerae and V. mimicus. The vibrio pangenome contains around 26504 genes. The V. cholerae core genome and pangenome consist of 1520 and 6923 genes, respectively. Pangenomes might allow different strains of V. cholerae to occupy different niches. MLSA and supertree analyses resulted in a similar phylogenetic picture, with a clear distinction of four groups (Vibrio core group, V. cholerae-V. mimicus, Aliivibrio spp., and Photobacterium spp.. A Vibrio species is defined as a group of strains that share > 95% DNA identity in MLSA and supertree analysis, > 96% AAI, ≤ 10 genome signature dissimilarity, and > 61% proteome identity. Strains of the same species and species of the same genus will form monophyletic groups on the basis of MLSA and supertree. Conclusion The combination of different analytical and bioinformatics tools will enable the most accurate species identification through genomic computational analysis. This endeavour will culminate in

  8. Human Genome Project

    Energy Technology Data Exchange (ETDEWEB)

    Block, S. [The MITRE Corporation, McLean, VA (US). JASON Program Office; Cornwall, J. [The MITRE Corporation, McLean, VA (US). JASON Program Office; Dally, W. [The MITRE Corporation, McLean, VA (US). JASON Program Office; Dyson, F. [The MITRE Corporation, McLean, VA (US). JASON Program Office; Fortson, N. [The MITRE Corporation, McLean, VA (US). JASON Program Office; Joyce, G. [The MITRE Corporation, McLean, VA (US). JASON Program Office; Kimble, H. J. [The MITRE Corporation, McLean, VA (US). JASON Program Office; Lewis, N. [The MITRE Corporation, McLean, VA (US). JASON Program Office; Max, C. [The MITRE Corporation, McLean, VA (US). JASON Program Office; Prince, T. [The MITRE Corporation, McLean, VA (US). JASON Program Office; Schwitters, R. [The MITRE Corporation, McLean, VA (US). JASON Program Office; Weinberger, P. [The MITRE Corporation, McLean, VA (US). JASON Program Office; Woodin, W. H. [The MITRE Corporation, McLean, VA (US). JASON Program Office

    1998-01-04

    The study reviews Department of Energy supported aspects of the United States Human Genome Project, the joint National Institutes of Health/Department of Energy program to characterize all human genetic material, to discover the set of human genes, and to render them accessible for further biological study. The study concentrates on issues of technology, quality assurance/control, and informatics relevant to current effort on the genome project and needs beyond it. Recommendations are presented on areas of the genome program that are of particular interest to and supported by the Department of Energy.

  9. Human Genome Program

    Energy Technology Data Exchange (ETDEWEB)

    1993-01-01

    The DOE Human Genome program has grown tremendously, as shown by the marked increase in the number of genome-funded projects since the last workshop held in 1991. The abstracts in this book describe the genome research of DOE-funded grantees and contractors and invited guests, and all projects are represented at the workshop by posters. The 3-day meeting includes plenary sessions on ethical, legal, and social issues pertaining to the availability of genetic data; sequencing techniques, informatics support; and chromosome and cDNA mapping and sequencing.

  10. Genomic signal processing

    CERN Document Server

    Shmulevich, Ilya

    2007-01-01

    Genomic signal processing (GSP) can be defined as the analysis, processing, and use of genomic signals to gain biological knowledge, and the translation of that knowledge into systems-based applications that can be used to diagnose and treat genetic diseases. Situated at the crossroads of engineering, biology, mathematics, statistics, and computer science, GSP requires the development of both nonlinear dynamical models that adequately represent genomic regulation, and diagnostic and therapeutic tools based on these models. This book facilitates these developments by providing rigorous mathema

  11. Genomics and fish adaptation

    Directory of Open Access Journals (Sweden)

    Agostinho Antunes

    2015-12-01

    Full Text Available The completion of the human genome sequencing in 2003 opened a new perspective into the importance of whole genome sequencing projects, and currently multiple species are having their genomes completed sequenced, from simple organisms, such as bacteria, to more complex taxa, such as mammals. This voluminous sequencing data generated across multiple organisms provides also the framework to better understand the genetic makeup of such species and related ones, allowing to explore the genetic changes underlining the evolution of diverse phenotypic traits. Here, recent results from our group retrieved from comparative evolutionary genomic analyses of varied fish species will be considered to exemplify how gene novelty and gene enhancement by positive selection might have been determinant in the success of adaptive radiations into diverse habitats and lifestyles.

  12. Lophotrochozoan mitochondrial genomes

    Energy Technology Data Exchange (ETDEWEB)

    Valles, Yvonne; Boore, Jeffrey L.

    2005-10-01

    Progress in both molecular techniques and phylogeneticmethods has challenged many of the interpretations of traditionaltaxonomy. One example is in the recognition of the animal superphylumLophotrochozoa (annelids, mollusks, echiurans, platyhelminthes,brachiopods, and other phyla), although the relationships within thisgroup and the inclusion of some phyla remain uncertain. While much ofthis progress in phylogenetic reconstruction has been based on comparingsingle gene sequences, we are beginning to see the potential of comparinglarge-scale features of genomes, such as the relative order of genes.Even though tremendous progress is being made on the sequencedetermination of whole nuclear genomes, the dataset of choice forgenome-level characters for many animals across a broad taxonomic rangeremains mitochondrial genomes. We review here what is known aboutmitochondrial genomes of the lophotrochozoans and discuss the promisethat this dataset will enable insight into theirrelationships.

  13. Mouse Genome Informatics (MGI)

    Data.gov (United States)

    U.S. Department of Health & Human Services — MGI is the international database resource for the laboratory mouse, providing integrated genetic, genomic, and biological data to facilitate the study of human...

  14. Genomic definition of species

    Energy Technology Data Exchange (ETDEWEB)

    Crkvenjakov, R.; Drmanac, R.

    1991-07-01

    The subject of this paper is the definition of species based on the assumption that genome is the fundamental level for the origin and maintenance of biological diversity. For this view to be logically consistent it is necessary to assume the existence and operation of the new law which we call genome law. For this reason the genome law is included in the explanation of species phenomenon presented here even if its precise formulation and elaboration are left for the future. The intellectual underpinnings of this definition can be traced to Goldschmidt. We wish to explore some philosophical aspects of the definition of species in terms of the genome. The point of proposing the definition on these grounds is that any real advance in evolutionary theory has to be correct in both its philosophy and its science.

  15. Structural genomics in endocrinology

    NARCIS (Netherlands)

    Smit, J. W.; Romijn, J. A.

    2001-01-01

    Traditionally, endocrine research evolved from the phenotypical characterisation of endocrine disorders to the identification of underlying molecular pathophysiology. This approach has been, and still is, extremely successful. The introduction of genomics and proteomics has resulted in a reversal of

  16. Epidemiology & Genomics Research Program

    Science.gov (United States)

    The Epidemiology and Genomics Research Program, in the National Cancer Institute's Division of Cancer Control and Population Sciences, funds research in human populations to understand the determinants of cancer occurrence and outcomes.

  17. Annotating individual human genomes.

    Science.gov (United States)

    Torkamani, Ali; Scott-Van Zeeland, Ashley A; Topol, Eric J; Schork, Nicholas J

    2011-10-01

    Advances in DNA sequencing technologies have made it possible to rapidly, accurately and affordably sequence entire individual human genomes. As impressive as this ability seems, however, it will not likely amount to much if one cannot extract meaningful information from individual sequence data. Annotating variations within individual genomes and providing information about their biological or phenotypic impact will thus be crucially important in moving individual sequencing projects forward, especially in the context of the clinical use of sequence information. In this paper we consider the various ways in which one might annotate individual sequence variations and point out limitations in the available methods for doing so. It is arguable that, in the foreseeable future, DNA sequencing of individual genomes will become routine for clinical, research, forensic, and personal purposes. We therefore also consider directions and areas for further research in annotating genomic variants. Copyright © 2011 Elsevier Inc. All rights reserved.

  18. ANNOTATING INDIVIDUAL HUMAN GENOMES*

    Science.gov (United States)

    Torkamani, Ali; Scott-Van Zeeland, Ashley A.; Topol, Eric J.; Schork, Nicholas J.

    2014-01-01

    Advances in DNA sequencing technologies have made it possible to rapidly, accurately and affordably sequence entire individual human genomes. As impressive as this ability seems, however, it will not likely to amount to much if one cannot extract meaningful information from individual sequence data. Annotating variations within individual genomes and providing information about their biological or phenotypic impact will thus be crucially important in moving individual sequencing projects forward, especially in the context of the clinical use of sequence information. In this paper we consider the various ways in which one might annotate individual sequence variations and point out limitations in the available methods for doing so. It is arguable that, in the foreseeable future, DNA sequencing of individual genomes will become routine for clinical, research, forensic, and personal purposes. We therefore also consider directions and areas for further research in annotating genomic variants. PMID:21839162

  19. Yeast genome sequencing:

    DEFF Research Database (Denmark)

    Piskur, Jure; Langkjær, Rikke Breinhold

    2004-01-01

    For decades, unicellular yeasts have been general models to help understand the eukaryotic cell and also our own biology. Recently, over a dozen yeast genomes have been sequenced, providing the basis to resolve several complex biological questions. Analysis of the novel sequence data has shown...... of closely related species helps in gene annotation and to answer how many genes there really are within the genomes. Analysis of non-coding regions among closely related species has provided an example of how to determine novel gene regulatory sequences, which were previously difficult to analyse because...... they are short and degenerate and occupy different positions. Comparative genomics helps to understand the origin of yeasts and points out crucial molecular events in yeast evolutionary history, such as whole-genome duplication and horizontal gene transfer(s). In addition, the accumulating sequence data provide...

  20. Genetical Genomics for Evolutionary Studies

    NARCIS (Netherlands)

    Prins, J.C.P.; Smant, G.; Jansen, R.C.

    2012-01-01

    Genetical genomics combines acquired high-throughput genomic data with genetic analysis. In this chapter, we discuss the application of genetical genomics for evolutionary studies, where new high-throughput molecular technologies are combined with mapping quantitative trait loci (QTL) on the genome

  1. The human genome project

    International Nuclear Information System (INIS)

    Worton, R.

    1996-01-01

    The Human Genome Project is a massive international research project, costing 3 to 5 billion dollars and expected to take 15 years, which will identify the all the genes in the human genome - i.e. the complete sequence of bases in human DNA. The prize will be the ability to identify genes causing or predisposing to disease, and in some cases the development of gene therapy, but this new knowledge will raise important ethical issues

  2. Decoding the human genome

    CERN Multimedia

    CERN. Geneva. Audiovisual Unit; Antonerakis, S E

    2002-01-01

    Decoding the Human genome is a very up-to-date topic, raising several questions besides purely scientific, in view of the two competing teams (public and private), the ethics of using the results, and the fact that the project went apparently faster and easier than expected. The lecture series will address the following chapters: Scientific basis and challenges. Ethical and social aspects of genomics.

  3. Human Germline Genome Editing

    OpenAIRE

    Ormond, Kelly E.; Mortlock, Douglas P.; Scholes, Derek T.; Bombard, Yvonne; Brody, Lawrence C.; Faucett, W. Andrew; Garrison, Nanibaa’ A.; Hercher, Laura; Isasi, Rosario; Middleton, Anna; Musunuru, Kiran; Shriner, Daniel; Virani, Alice; Young, Caroline E.

    2017-01-01

    With CRISPR/Cas9 and other genome-editing technologies, successful somatic and germline genome editing are becoming feasible. To respond, an American Society of Human Genetics (ASHG) workgroup developed this position statement, which was approved by the ASHG Board in March 2017. The workgroup included representatives from the UK Association of Genetic Nurses and Counsellors, Canadian Association of Genetic Counsellors, International Genetic Epidemiology Society, and US National Society of Gen...

  4. RadGenomics project

    Energy Technology Data Exchange (ETDEWEB)

    Iwakawa, Mayumi; Imai, Takashi; Harada, Yoshinobu [National Inst. of Radiological Sciences, Chiba (Japan). Frontier Research Center] [and others

    2002-06-01

    Human health is determined by a complex interplay of factors, predominantly between genetic susceptibility, environmental conditions and aging. The ultimate aim of the RadGenomics (Radiation Genomics) project is to understand the implications of heterogeneity in responses to ionizing radiation arising from genetic variation between individuals in the human population. The rapid progression of the human genome sequencing and the recent development of new technologies in molecular genetics are providing us with new opportunities to understand the genetic basis of individual differences in susceptibility to natural and/or artificial environmental factors, including radiation exposure. The RadGenomics project will inevitably lead to improved protocols for personalized radiotherapy and reductions in the potential side effects of such treatment. The project will contribute to future research into the molecular mechanisms of radiation sensitivity in humans and will stimulate the development of new high-throughput technologies for a broader application of biological and medical sciences. The staff members are specialists in a variety of fields, including genome science, radiation biology, medical science, molecular biology, and informatics, and have joined the RadGenomics project from various universities, companies, and research institutes. The project started in April 2001. (author)

  5. Comparative Genome Viewer

    International Nuclear Information System (INIS)

    Molineris, I.; Sales, G.

    2009-01-01

    The amount of information about genomes, both in the form of complete sequences and annotations, has been exponentially increasing in the last few years. As a result there is the need for tools providing a graphical representation of such information that should be comprehensive and intuitive. Visual representation is especially important in the comparative genomics field since it should provide a combined view of data belonging to different genomes. We believe that existing tools are limited in this respect as they focus on a single genome at a time (conservation histograms) or compress alignment representation to a single dimension. We have therefore developed a web-based tool called Comparative Genome Viewer (Cgv): it integrates a bidimensional representation of alignments between two regions, both at small and big scales, with the richness of annotations present in other genome browsers. We give access to our system through a web-based interface that provides the user with an interactive representation that can be updated in real time using the mouse to move from region to region and to zoom in on interesting details.

  6. Human social genomics.

    Directory of Open Access Journals (Sweden)

    Steven W Cole

    2014-08-01

    Full Text Available A growing literature in human social genomics has begun to analyze how everyday life circumstances influence human gene expression. Social-environmental conditions such as urbanity, low socioeconomic status, social isolation, social threat, and low or unstable social status have been found to associate with differential expression of hundreds of gene transcripts in leukocytes and diseased tissues such as metastatic cancers. In leukocytes, diverse types of social adversity evoke a common conserved transcriptional response to adversity (CTRA characterized by increased expression of proinflammatory genes and decreased expression of genes involved in innate antiviral responses and antibody synthesis. Mechanistic analyses have mapped the neural "social signal transduction" pathways that stimulate CTRA gene expression in response to social threat and may contribute to social gradients in health. Research has also begun to analyze the functional genomics of optimal health and thriving. Two emerging opportunities now stand to revolutionize our understanding of the everyday life of the human genome: network genomics analyses examining how systems-level capabilities emerge from groups of individual socially sensitive genomes and near-real-time transcriptional biofeedback to empirically optimize individual well-being in the context of the unique genetic, geographic, historical, developmental, and social contexts that jointly shape the transcriptional realization of our innate human genomic potential for thriving.

  7. RadGenomics project

    International Nuclear Information System (INIS)

    Iwakawa, Mayumi; Imai, Takashi; Harada, Yoshinobu

    2002-01-01

    Human health is determined by a complex interplay of factors, predominantly between genetic susceptibility, environmental conditions and aging. The ultimate aim of the RadGenomics (Radiation Genomics) project is to understand the implications of heterogeneity in responses to ionizing radiation arising from genetic variation between individuals in the human population. The rapid progression of the human genome sequencing and the recent development of new technologies in molecular genetics are providing us with new opportunities to understand the genetic basis of individual differences in susceptibility to natural and/or artificial environmental factors, including radiation exposure. The RadGenomics project will inevitably lead to improved protocols for personalized radiotherapy and reductions in the potential side effects of such treatment. The project will contribute to future research into the molecular mechanisms of radiation sensitivity in humans and will stimulate the development of new high-throughput technologies for a broader application of biological and medical sciences. The staff members are specialists in a variety of fields, including genome science, radiation biology, medical science, molecular biology, and informatics, and have joined the RadGenomics project from various universities, companies, and research institutes. The project started in April 2001. (author)

  8. The mitochondrial genome of an aquatic plant, Spirodela polyrhiza.

    Directory of Open Access Journals (Sweden)

    Wenqin Wang

    Full Text Available BACKGROUND: Spirodela polyrhiza is a species of the order Alismatales, which represent the basal lineage of monocots with more ancestral features than the Poales. Its complete sequence of the mitochondrial (mt genome could provide clues for the understanding of the evolution of mt genomes in plant. METHODS: Spirodela polyrhiza mt genome was sequenced from total genomic DNA without physical separation of chloroplast and nuclear DNA using the SOLiD platform. Using a genome copy number sensitive assembly algorithm, the mt genome was successfully assembled. Gap closure and accuracy was determined with PCR products sequenced with the dideoxy method. CONCLUSIONS: This is the most compact monocot mitochondrial genome with 228,493 bp. A total of 57 genes encode 35 known proteins, 3 ribosomal RNAs, and 19 tRNAs that recognize 15 amino acids. There are about 600 RNA editing sites predicted and three lineage specific protein-coding-gene losses. The mitochondrial genes, pseudogenes, and other hypothetical genes (ORFs cover 71,783 bp (31.0% of the genome. Imported plastid DNA accounts for an additional 9,295 bp (4.1% of the mitochondrial DNA. Absence of transposable element sequences suggests that very few nuclear sequences have migrated into Spirodela mtDNA. Phylogenetic analysis of conserved protein-coding genes suggests that Spirodela shares the common ancestor with other monocots, but there is no obvious synteny between Spirodela and rice mtDNAs. After eliminating genes, introns, ORFs, and plastid-derived DNA, nearly four-fifths of the Spirodela mitochondrial genome is of unknown origin and function. Although it contains a similar chloroplast DNA content and range of RNA editing as other monocots, it is void of nuclear insertions, active gene loss, and comprises large regions of sequences of unknown origin in non-coding regions. Moreover, the lack of synteny with known mitochondrial genomic sequences shed new light on the early evolution of monocot

  9. "Life-bearing molecules" versus "life-embodying systems": Two contrasting views on the what-is-life (WIL) problem persisting from the early days of molecular biology to the post-genomic cell- and organism-level biology.

    Science.gov (United States)

    Sato, Naoki

    2018-05-01

    "What is life?" is an ultimate biological quest for the principle that makes organisms alive. This 'WIL problem' is not, however, a simple one that we have a straightforward strategy to attack. From the beginning, molecular biology tried to identify molecules that bear the essence of life: the double helical DNA represented replication, and enzymes were micro-actuators of biological activities. A dominating idea behind these mainstream biological studies relies on the identification of life-bearing molecules, which themselves are models of life. Another, prevalent idea emphasizes that life resides in the whole system of an organism, but not in some particular molecules. The behavior of a complex system may be considered to embody the essence of life. The thermodynamic view of life system in the early 20th century was remodeled as physics of complex systems and systems biology. The two views contrast with each other, but they are no longer heritage of the historical dualism in biology, such as mechanism/materialism versus vitalism, or reductionism versus holism. These two views are both materialistic and mechanistic, and act as driving forces of modern biology. In reality, molecules function in a context of systems, whereas systems presuppose functional molecules. A key notion to reconcile this conflict is that subjects of biological studies are given before we start to study them. Cell- or organism-level biology is destined to the dialectic of molecules and systems, but this antagonism can be resolved by dynamic thinking involving biological evolution. Copyright © 2018 Elsevier B.V. All rights reserved.

  10. Ultrafast comparison of personal genomes

    OpenAIRE

    Mauldin, Denise; Hood, Leroy; Robinson, Max; Glusman, Gustavo

    2017-01-01

    We present an ultra-fast method for comparing personal genomes. We transform the standard genome representation (lists of variants relative to a reference) into 'genome fingerprints' that can be readily compared across sequencing technologies and reference versions. Because of their reduced size, computation on the genome fingerprints is fast and requires little memory. This enables scaling up a variety of important genome analyses, including quantifying relatedness, recognizing duplicative s...

  11. Differential post-irradiation caffeine response in normal diploid versus SV40-transformed human fibroblasts: potential role of nuclear organization and protein-composition

    International Nuclear Information System (INIS)

    Taylor, Y.C.; Parsian, A.J.; Duncan, P.G.

    1993-01-01

    To test the hypothesis that the enhancement of cell killing by post-irradiation treatment with caffeine (CAF) is mediated by alterations in chromatin structure, several nuclear parameters were examined in both caffeine-responsive and non-responsive cell lines. (author)

  12. Radiation-induced transformation of SV40-immortalized human thyroid epithelial cells by single and fractionated exposure to γ-irradiation in vitro

    International Nuclear Information System (INIS)

    Riches, A.C.; Herceg, Z.; Bryant, P.E.; Wynford-Thomas, D.

    1994-01-01

    Radiation-induced transformation of a human thyroid epithelial cell line (HTori-3) has been investigated following exposure to single and fractionated doses of γ-irradiation. The human epithelial cells were irradiated in vitro and following passaging, transplanted to the athymic nude mouse. Following a single exposure to γ-irradiation in the range 0.5-4Gy, 22 tumours were observed in 45 recipients and following three equal fractions in the range 0.5-4Gy per fraction, 18 tumours were observed in 31 recipients. Tumours were undifferentiated carcinomas and were observed from 7 to 20 weeks after transplantation. They occurred after similar radiation doses to those received by the children in the Belarus region of Ukraine, who developed thyroid tumours. The number of tumours observed, in each group receiving cells irradiated with a single dose of γ-irradiation in the range 0.5-4 Gy, was similar. Cell lines were established from some tumours and the tumorigenicity confirmed by retransplantation. These tumour cell lines were more radiosensitive than the human thyroid epithelial cell line they were derived from. This indicates that transformed cells were not being selected from a subpopulation within the parent cell line but that radiation-induced transformants were being induced de novo. The human origin of the tumours was established by karyotyping, immunocytochemical demonstration of human epithelial cytokeratins and p53 analysis. DNA fingerprinting confirmed that the tumours were derived from the original cell line. (author)

  13. HIV-1 gp120 neurotoxicity proximally and at a distance from the point of exposure: protection by rSV40 delivery of antioxidant enzymes.

    Science.gov (United States)

    Louboutin, Jean-Pierre; Agrawal, Lokesh; Reyes, Beverly A S; Van Bockstaele, Elisabeth J; Strayer, David S

    2009-06-01

    Toxicity of HIV-1 envelope glycoprotein (gp120) for substantia nigra (SN) neurons may contribute to the Parkinsonian manifestations often seen in HIV-1-associated dementia (HAD). We studied the neurotoxicity of gp120 for dopaminergic neurons and potential neuroprotection by antioxidant gene delivery. Rats were injected stereotaxically into their caudate-putamen (CP); CP and (substantia nigra) SN neuron loss was quantified. The area of neuron loss extended several millimeters from the injection site, approximately 35% of the CP area. SN neurons, outside of this area of direct neurotoxicity, were also severely affected. Dopaminergic SN neurons (expressing tyrosine hydroxylase, TH, in the SN and dopamine transporter, DAT, in the CP) were mostly affected: intra-CP gp120 caused approximately 50% DAT+ SN neuron loss. Prior intra-CP gene delivery of Cu/Zn superoxide dismutase (SOD1) or glutathione peroxidase (GPx1) protected SN neurons from intra-CP gp120. Thus, SN dopaminergic neurons are highly sensitive to HIV-1 gp120-induced neurotoxicity, and antioxidant gene delivery, even at a distance, is protective.

  14. Differential post-irradiation caffeine response in normal diploid versus SV40-transformed human fibroblasts: potential role of nuclear organization and protein-composition

    Energy Technology Data Exchange (ETDEWEB)

    Taylor, Y.C.; Parsian, A.J.; Duncan, P.G. (Washington Univ., St. Louis, MO (United States). School of Medicine)

    1993-07-01

    To test the hypothesis that the enhancement of cell killing by post-irradiation treatment with caffeine (CAF) is mediated by alterations in chromatin structure, several nuclear parameters were examined in both caffeine-responsive and non-responsive cell lines. (author).

  15. STX140, but Not Paclitaxel, Inhibits Mammary Tumour Initiation and Progression in C3(1)/SV40 T/t-Antigen Transgenic Mice

    OpenAIRE

    Meyer-Losic, Florence; Newman, Simon P.; Day, Joanna M.; Reed, Michael J.; Kasprzyk, Philip G.; Purohit, Atul; Foster, Paul A.

    2013-01-01

    Despite paclitxael's clinical success, treating hormone-refractory breast cancer remains challenging. Paclitaxel has a poor pharmacological profile, characterized by a low therapeutic index (TIX) caused by severe dose limiting toxicities, such as neutropenia and peripheral neuropathy. Consequently, new drugs are urgently required. STX140, a compound previously shown to have excellent efficacy against many tumors, is here compared to paclitaxel in three translational in vivo breast cancer mode...

  16. Genomics using the Assembly of the Mink Genome

    DEFF Research Database (Denmark)

    Guldbrandtsen, Bernt; Cai, Zexi; Sahana, Goutam

    2018-01-01

    The American Mink’s (Neovison vison) genome has recently been sequenced. This opens numerous avenues of research both for studying the basic genetics and physiology of the mink as well as genetic improvement in mink. Using genotyping-by-sequencing (GBS) generated marker data for 2,352 Danish farm...... mink runs of homozygosity (ROH) were detect in mink genomes. Detectable ROH made up on average 1.7% of the genome indicating the presence of at most a moderate level of genomic inbreeding. The fraction of genome regions found in ROH varied. Ten percent of the included regions were never found in ROH....... The ability to detect ROH in the mink genome also demonstrates the general reliability of the new mink genome assembly. Keywords: american mink, run of homozygosity, genome, selection, genomic inbreeding...

  17. Genome size analyses of Pucciniales reveal the largest fungal genomes.

    Science.gov (United States)

    Tavares, Sílvia; Ramos, Ana Paula; Pires, Ana Sofia; Azinheira, Helena G; Caldeirinha, Patrícia; Link, Tobias; Abranches, Rita; Silva, Maria do Céu; Voegele, Ralf T; Loureiro, João; Talhinhas, Pedro

    2014-01-01

    Rust fungi (Basidiomycota, Pucciniales) are biotrophic plant pathogens which exhibit diverse complexities in their life cycles and host ranges. The completion of genome sequencing of a few rust fungi has revealed the occurrence of large genomes. Sequencing efforts for other rust fungi have been hampered by uncertainty concerning their genome sizes. Flow cytometry was recently applied to estimate the genome size of a few rust fungi, and confirmed the occurrence of large genomes in this order (averaging 225.3 Mbp, while the average for Basidiomycota was 49.9 Mbp and was 37.7 Mbp for all fungi). In this work, we have used an innovative and simple approach to simultaneously isolate nuclei from the rust and its host plant in order to estimate the genome size of 30 rust species by flow cytometry. Genome sizes varied over 10-fold, from 70 to 893 Mbp, with an average genome size value of 380.2 Mbp. Compared to the genome sizes of over 1800 fungi, Gymnosporangium confusum possesses the largest fungal genome ever reported (893.2 Mbp). Moreover, even the smallest rust genome determined in this study is larger than the vast majority of fungal genomes (94%). The average genome size of the Pucciniales is now of 305.5 Mbp, while the average Basidiomycota genome size has shifted to 70.4 Mbp and the average for all fungi reached 44.2 Mbp. Despite the fact that no correlation could be drawn between the genome sizes, the phylogenomics or the life cycle of rust fungi, it is interesting to note that rusts with Fabaceae hosts present genomes clearly larger than those with Poaceae hosts. Although this study comprises only a small fraction of the more than 7000 rust species described, it seems already evident that the Pucciniales represent a group where genome size expansion could be a common characteristic. This is in sharp contrast to sister taxa, placing this order in a relevant position in fungal genomics research.

  18. Early discontinuation

    DEFF Research Database (Denmark)

    Hansen, Dorte Gilså; Felde, Lina; Gichangi, Anthony

    2007-01-01

    prevalence and rate of early discontinuation of different drugs consisting of, in this study, lipid-lowering drugs, antihypertensive drugs, antidepressants, antidiabetics and drugs against osteoporosis. Material and methods This was a register study based on prescription data covering a 4-year period...... and consisting of 470,000 citizens. For each practice and group of drug, a 1-year prevalence for 2002 and the rate of early discontinuation among new users in 2002-2003 were estimated. Early discontinuation was defined as no prescriptions during the second half-year following the first prescription....... There was a positive association between the prevalence of prescribing for the specific drugs studied (antidepressants, antidiabetics, drugs against osteoporosis and lipid-lowering drugs) and early discontinuation (r = 0.29 -0.44), but not for anti-hypertensive drugs. The analysis of the association between prevalence...

  19. Early literacy

    DEFF Research Database (Denmark)

    Jensen, Anders Skriver

    2012-01-01

    This paper discusses findings from the Danish contribution to the EASE project, a European research project running from 2008 to 2010 on early literacy in relation to the transition from childcare to school. It explores a holistic, inclusive approach to early literacy that resists a narrow...... and schools. The paper also draws on Gee’s (2001, 2003, 2004, 2008) sociocultural approach to literacy, and Honneth’s (2003, 2006) concept of recognition. Emphasizing participation and recognition as key elements, it claims that stakeholders in early liter- acy must pay attention to how diverse early literacy...... opportunities empower children, especially when these opportunities are employed in a project-based learning environ- ment in which each child is able to contribute to the shared literacy events....

  20. Mitigating Mitochondrial Genome Erosion Without Recombination.

    Science.gov (United States)

    Radzvilavicius, Arunas L; Kokko, Hanna; Christie, Joshua R

    2017-11-01

    Mitochondria are ATP-producing organelles of bacterial ancestry that played a key role in the origin and early evolution of complex eukaryotic cells. Most modern eukaryotes transmit mitochondrial genes uniparentally, often without recombination among genetically divergent organelles. While this asymmetric inheritance maintains the efficacy of purifying selection at the level of the cell, the absence of recombination could also make the genome susceptible to Muller's ratchet. How mitochondria escape this irreversible defect accumulation is a fundamental unsolved question. Occasional paternal leakage could in principle promote recombination, but it would also compromise the purifying selection benefits of uniparental inheritance. We assess this tradeoff using a stochastic population-genetic model. In the absence of recombination, uniparental inheritance of freely-segregating genomes mitigates mutational erosion, while paternal leakage exacerbates the ratchet effect. Mitochondrial fusion-fission cycles ensure independent genome segregation, improving purifying selection. Paternal leakage provides opportunity for recombination to slow down the mutation accumulation, but always at a cost of increased steady-state mutation load. Our findings indicate that random segregation of mitochondrial genomes under uniparental inheritance can effectively combat the mutational meltdown, and that homologous recombination under paternal leakage might not be needed. Copyright © 2017 by the Genetics Society of America.

  1. Genomes to Proteomes

    Energy Technology Data Exchange (ETDEWEB)

    Panisko, Ellen A. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Grigoriev, Igor [USDOE Joint Genome Inst., Walnut Creek, CA (United States); Daly, Don S. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Webb-Robertson, Bobbie-Jo [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Baker, Scott E. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2009-03-01

    Biologists are awash with genomic sequence data. In large part, this is due to the rapid acceleration in the generation of DNA sequence that occurred as public and private research institutes raced to sequence the human genome. In parallel with the large human genome effort, mostly smaller genomes of other important model organisms were sequenced. Projects following on these initial efforts have made use of technological advances and the DNA sequencing infrastructure that was built for the human and other organism genome projects. As a result, the genome sequences of many organisms are available in high quality draft form. While in many ways this is good news, there are limitations to the biological insights that can be gleaned from DNA sequences alone; genome sequences offer only a bird's eye view of the biological processes endemic to an organism or community. Fortunately, the genome sequences now being produced at such a high rate can serve as the foundation for other global experimental platforms such as proteomics. Proteomic methods offer a snapshot of the proteins present at a point in time for a given biological sample. Current global proteomics methods combine enzymatic digestion, separations, mass spectrometry and database searching for peptide identification. One key aspect of proteomics is the prediction of peptide sequences from mass spectrometry data. Global proteomic analysis uses computational matching of experimental mass spectra with predicted spectra based on databases of gene models that are often generated computationally. Thus, the quality of gene models predicted from a genome sequence is crucial in the generation of high quality peptide identifications. Once peptides are identified they can be assigned to their parent protein. Proteins identified as expressed in a given experiment are most useful when compared to other expressed proteins in a larger biological context or biochemical pathway. In this chapter we will discuss the automatic

  2. Experimental Induction of Genome Chaos.

    Science.gov (United States)

    Ye, Christine J; Liu, Guo; Heng, Henry H

    2018-01-01

    Genome chaos, or karyotype chaos, represents a powerful survival strategy for somatic cells under high levels of stress/selection. Since the genome context, not the gene content, encodes the genomic blueprint of the cell, stress-induced rapid and massive reorganization of genome topology functions as a very important mechanism for genome (karyotype) evolution. In recent years, the phenomenon of genome chaos has been confirmed by various sequencing efforts, and many different terms have been coined to describe different subtypes of the chaotic genome including "chromothripsis," "chromoplexy," and "structural mutations." To advance this exciting field, we need an effective experimental system to induce and characterize the karyotype reorganization process. In this chapter, an experimental protocol to induce chaotic genomes is described, following a brief discussion of the mechanism and implication of genome chaos in cancer evolution.

  3. Genome Sequences of Oryza Species

    KAUST Repository

    Kumagai, Masahiko; Tanaka, Tsuyoshi; Ohyanagi, Hajime; Hsing, Yue-Ie C.; Itoh, Takeshi

    2018-01-01

    This chapter summarizes recent data obtained from genome sequencing, annotation projects, and studies on the genome diversity of Oryza sativa and related Oryza species. O. sativa, commonly known as Asian rice, is the first monocot species whose complete genome sequence was deciphered based on physical mapping by an international collaborative effort. This genome, along with its accurate and comprehensive annotation, has become an indispensable foundation for crop genomics and breeding. With the development of innovative sequencing technologies, genomic studies of O. sativa have dramatically increased; in particular, a large number of cultivars and wild accessions have been sequenced and compared with the reference rice genome. Since de novo genome sequencing has become cost-effective, the genome of African cultivated rice, O. glaberrima, has also been determined. Comparative genomic studies have highlighted the independent domestication processes of different rice species, but it also turned out that Asian and African rice share a common gene set that has experienced similar artificial selection. An international project aimed at constructing reference genomes and examining the genome diversity of wild Oryza species is currently underway, and the genomes of some species are publicly available. This project provides a platform for investigations such as the evolution, development, polyploidization, and improvement of crops. Studies on the genomic diversity of Oryza species, including wild species, should provide new insights to solve the problem of growing food demands in the face of rapid climatic changes.

  4. Genome Sequences of Oryza Species

    KAUST Repository

    Kumagai, Masahiko

    2018-02-14

    This chapter summarizes recent data obtained from genome sequencing, annotation projects, and studies on the genome diversity of Oryza sativa and related Oryza species. O. sativa, commonly known as Asian rice, is the first monocot species whose complete genome sequence was deciphered based on physical mapping by an international collaborative effort. This genome, along with its accurate and comprehensive annotation, has become an indispensable foundation for crop genomics and breeding. With the development of innovative sequencing technologies, genomic studies of O. sativa have dramatically increased; in particular, a large number of cultivars and wild accessions have been sequenced and compared with the reference rice genome. Since de novo genome sequencing has become cost-effective, the genome of African cultivated rice, O. glaberrima, has also been determined. Comparative genomic studies have highlighted the independent domestication processes of different rice species, but it also turned out that Asian and African rice share a common gene set that has experienced similar artificial selection. An international project aimed at constructing reference genomes and examining the genome diversity of wild Oryza species is currently underway, and the genomes of some species are publicly available. This project provides a platform for investigations such as the evolution, development, polyploidization, and improvement of crops. Studies on the genomic diversity of Oryza species, including wild species, should provide new insights to solve the problem of growing food demands in the face of rapid climatic changes.

  5. Genome position specific priors for genomic prediction

    DEFF Research Database (Denmark)

    Brøndum, Rasmus Froberg; Su, Guosheng; Lund, Mogens Sandø

    2012-01-01

    casual mutation is different between the populations but affects the same gene. Proportions of a four-distribution mixture for SNP effects in segments of fixed size along the genome are derived from one population and set as location specific prior proportions of distributions of SNP effects...... for the target population. The model was tested using dairy cattle populations of different breeds: 540 Australian Jersey bulls, 2297 Australian Holstein bulls and 5214 Nordic Holstein bulls. The traits studied were protein-, fat- and milk yield. Genotypic data was Illumina 777K SNPs, real or imputed Results...

  6. Genomic comparison of closely related Giant Viruses supports an accordion-like model of evolution.

    Directory of Open Access Journals (Sweden)

    Jonathan eFilée

    2015-06-01

    Full Text Available Genome gigantism occurs so far in Phycodnaviridae and Mimiviridae (order Megavirales. Origin and evolution of these Giant Viruses (GVs remain open questions. Interestingly, availability of a collection of closely related GV genomes enabling genomic comparisons offer the opportunity to better understand the different evolutionary forces acting on these genomes. Whole genome alignment for 5 groups of viruses belonging to the Mimiviridae and Phycodnaviridae families show that there is no trend of genome expansion or general tendency of genome contraction. Instead, GV genomes accumulated genomic mutations over the time with gene gains compensating the different losses. In addition, each lineage displays specific patterns of genome evolution. Mimiviridae (megaviruses and mimiviruses and Chlorella Phycodnaviruses evolved mainly by duplications and losses of genes belonging to large paralogous families (including movements of diverse mobiles genetic elements, whereas Micromonas and Ostreococcus Phycodnaviruses derive most of their genetic novelties thought lateral gene transfers. Taken together, these data support an accordion-like model of evolution in which GV genomes have undergone successive steps of gene gain and gene loss, accrediting the hypothesis that genome gigantism appears early, before the diversification of the different GV lineages.

  7. Genomic comparison of closely related Giant Viruses supports an accordion-like model of evolution.

    Science.gov (United States)

    Filée, Jonathan

    2015-01-01

    Genome gigantism occurs so far in Phycodnaviridae and Mimiviridae (order Megavirales). Origin and evolution of these Giant Viruses (GVs) remain open questions. Interestingly, availability of a collection of closely related GV genomes enabling genomic comparisons offer the opportunity to better understand the different evolutionary forces acting on these genomes. Whole genome alignment for five groups of viruses belonging to the Mimiviridae and Phycodnaviridae families show that there is no trend of genome expansion or general tendency of genome contraction. Instead, GV genomes accumulated genomic mutations over the time with gene gains compensating the different losses. In addition, each lineage displays specific patterns of genome evolution. Mimiviridae (megaviruses and mimiviruses) and Chlorella Phycodnaviruses evolved mainly by duplications and losses of genes belonging to large paralogous families (including movements of diverse mobiles genetic elements), whereas Micromonas and Ostreococcus Phycodnaviruses derive most of their genetic novelties thought lateral gene transfers. Taken together, these data support an accordion-like model of evolution in which GV genomes have undergone successive steps of gene gain and gene loss, accrediting the hypothesis that genome gigantism appears early, before the diversification of the different GV lineages.

  8. A genome-wide approach to children's aggressive behavior: The EAGLE consortium

    NARCIS (Netherlands)

    Pappa, I.; St Pourcain, B.; Benke, K.S.; Cavadino, A.; Hakulinen, C.; Nivard, M.G.; Nolte, I.M.; Tiesler, C.M.T.; Bakermans-Kranenburg, M.J.; Davies, G.E.; Evans, D.M.; Geoffroy, M.C.; Grallert, H.; Blokhuis, M.M.; Hudziak, J.J.; Kemp, J.P.; Keltikangas-Järvinen, L.; McMahon, G.; Mileva-Seitz, V.R.; Motazedi, E.; Power, C.; Raitakari, O.T.; Ring, S.M.; Rivadeneira, F.; Rodriguez, A.; Scheet, P.; Seppälä, I.; Snieder, H.; Standl, M.; Thiering, E.; Timpson, N.J.; Veenstra, R.; Velders, F.P.; Whitehouse, A.J.O.; Davey Smith, G.; Heinrich, J.; Hypponen, E.; Lehtimäki, T.; Middeldorp, C.M.; Oldehinkel, A.J.; Pennell, C.E.; Boomsma, D.I.; Tiemeier, H.

    2016-01-01

    Individual differences in aggressive behavior emerge in early childhood and predict persisting behavioral problems and disorders. Studies of antisocial and severe aggression in adulthood indicate substantial underlying biology. However, little attention has been given to genome-wide approaches of

  9. Genomics of Volvocine Algae

    Science.gov (United States)

    Umen, James G.; Olson, Bradley J.S.C.

    2015-01-01

    Volvocine algae are a group of chlorophytes that together comprise a unique model for evolutionary and developmental biology. The species Chlamydomonas reinhardtii and Volvox carteri represent extremes in morphological diversity within the Volvocine clade. Chlamydomonas is unicellular and reflects the ancestral state of the group, while Volvox is multicellular and has evolved numerous innovations including germ-soma differentiation, sexual dimorphism, and complex morphogenetic patterning. The Chlamydomonas genome sequence has shed light on several areas of eukaryotic cell biology, metabolism and evolution, while the Volvox genome sequence has enabled a comparison with Chlamydomonas that reveals some of the underlying changes that enabled its transition to multicellularity, but also underscores the subtlety of this transition. Many of the tools and resources are in place to further develop Volvocine algae as a model for evolutionary genomics. PMID:25883411

  10. Genomics of Preterm Birth

    Science.gov (United States)

    Swaggart, Kayleigh A.; Pavlicev, Mihaela; Muglia, Louis J.

    2015-01-01

    The molecular mechanisms controlling human birth timing at term, or resulting in preterm birth, have been the focus of considerable investigation, but limited insights have been gained over the past 50 years. In part, these processes have remained elusive because of divergence in reproductive strategies and physiology shown by model organisms, making extrapolation to humans uncertain. Here, we summarize the evolution of progesterone signaling and variation in pregnancy maintenance and termination. We use this comparative physiology to support the hypothesis that selective pressure on genomic loci involved in the timing of parturition have shaped human birth timing, and that these loci can be identified with comparative genomic strategies. Previous limitations imposed by divergence of mechanisms provide an important new opportunity to elucidate fundamental pathways of parturition control through increasing availability of sequenced genomes and associated reproductive physiology characteristics across diverse organisms. PMID:25646385

  11. Genomics of Salmonella Species

    Science.gov (United States)

    Canals, Rocio; McClelland, Michael; Santiviago, Carlos A.; Andrews-Polymenis, Helene

    Progress in the study of Salmonella survival, colonization, and virulence has increased rapidly with the advent of complete genome sequencing and higher capacity assays for transcriptomic and proteomic analysis. Although many of these techniques have yet to be used to directly assay Salmonella growth on foods, these assays are currently in use to determine Salmonella factors necessary for growth in animal models including livestock animals and in in vitro conditions that mimic many different environments. As sequencing of the Salmonella genome and microarray analysis have revolutionized genomics and transcriptomics of salmonellae over the last decade, so are new high-throughput sequencing technologies currently accelerating the pace of our studies and allowing us to approach complex problems that were not previously experimentally tractable.

  12. Ebolavirus comparative genomics

    Science.gov (United States)

    Jun, Se-Ran; Leuze, Michael R.; Nookaew, Intawat; Uberbacher, Edward C.; Land, Miriam; Zhang, Qian; Wanchai, Visanu; Chai, Juanjuan; Nielsen, Morten; Trolle, Thomas; Lund, Ole; Buzard, Gregory S.; Pedersen, Thomas D.; Wassenaar, Trudy M.; Ussery, David W.

    2015-01-01

    The 2014 Ebola outbreak in West Africa is the largest documented for this virus. To examine the dynamics of this genome, we compare more than 100 currently available ebolavirus genomes to each other and to other viral genomes. Based on oligomer frequency analysis, the family Filoviridae forms a distinct group from all other sequenced viral genomes. All filovirus genomes sequenced to date encode proteins with similar functions and gene order, although there is considerable divergence in sequences between the three genera Ebolavirus, Cuevavirus and Marburgvirus within the family Filoviridae. Whereas all ebolavirus genomes are quite similar (multiple sequences of the same strain are often identical), variation is most common in the intergenic regions and within specific areas of the genes encoding the glycoprotein (GP), nucleoprotein (NP) and polymerase (L). We predict regions that could contain epitope-binding sites, which might be good vaccine targets. This information, combined with glycosylation sites and experimentally determined epitopes, can identify the most promising regions for the development of therapeutic strategies. This manuscript has been authored by UT-Battelle, LLC under Contract No. DE-AC05-00OR22725 with the U.S. Department of Energy. The United States Government retains and the publisher, by accepting the article for publication, acknowledges that the United States Government retains a non-exclusive, paid-up, irrevocable, world-wide license to publish or reproduce the published form of this manuscript, or allow others to do so, for United States Government purposes. The Department of Energy will provide public access to these results of federally sponsored research in accordance with the DOE Public Access Plan (http://energy.gov/downloads/doe-public-access-plan). PMID:26175035

  13. Brief Guide to Genomics: DNA, Genes and Genomes

    Science.gov (United States)

    ... clinic. Most new drugs based on genome-based research are estimated to be at least 10 to 15 years away, though recent genome-driven efforts in lipid-lowering therapy have considerably shortened that interval. According ...

  14. Genomic Prediction in Barley

    DEFF Research Database (Denmark)

    Edriss, Vahid; Cericola, Fabio; Jensen, Jens D

    2015-01-01

    to next generation. The main goal of this study was to see the potential of using genomic prediction in a commercial Barley breeding program. The data used in this study was from Nordic Seed company which is located in Denmark. Around 350 advanced lines were genotyped with 9K Barely chip from Illumina....... Traits used in this study were grain yield, plant height and heading date. Heading date is number days it takes after 1st June for plant to head. Heritabilities were 0.33, 0.44 and 0.48 for yield, height and heading, respectively for the average of nine plots. The GBLUP model was used for genomic...

  15. Comparative Genomics Reveals High Genomic Diversity in the Genus Photobacterium.

    Science.gov (United States)

    Machado, Henrique; Gram, Lone

    2017-01-01

    Vibrionaceae is a large marine bacterial family, which can constitute up to 50% of the prokaryotic population in marine waters. Photobacterium is the second largest genus in the family and we used comparative genomics on 35 strains representing 16 of the 28 species described so far, to understand the genomic diversity present in the Photobacterium genus. Such understanding is important for ecophysiology studies of the genus. We used whole genome sequences to evaluate phylogenetic relationships using several analyses (16S rRNA, MLSA, fur , amino-acid usage, ANI), which allowed us to identify two misidentified strains. Genome analyses also revealed occurrence of higher and lower GC content clades, correlating with phylogenetic clusters. Pan- and core-genome analysis revealed the conservation of 25% of the genome throughout the genus, with a large and open pan-genome. The major source of genomic diversity could be traced to the smaller chromosome and plasmids. Several of the physiological traits studied in the genus did not correlate with phylogenetic data. Since horizontal gene transfer (HGT) is often suggested as a source of genetic diversity and a potential driver of genomic evolution in bacterial species, we looked into evidence of such in Photobacterium genomes. Genomic islands were the source of genomic differences between strains of the same species. Also, we found transposase genes and CRISPR arrays that suggest multiple encounters with foreign DNA. Presence of genomic exchange traits was widespread and abundant in the genus, suggesting a role in genomic evolution. The high genetic variability and indications of genetic exchange make it difficult to elucidate genome evolutionary paths and raise the awareness of the roles of foreign DNA in the genomic evolution of environmental organisms.

  16. Ancient genomes revisit the ancestry of domestic and Przewalski's horses.

    Science.gov (United States)

    Gaunitz, Charleen; Fages, Antoine; Hanghøj, Kristian; Albrechtsen, Anders; Khan, Naveed; Schubert, Mikkel; Seguin-Orlando, Andaine; Owens, Ivy J; Felkel, Sabine; Bignon-Lau, Olivier; de Barros Damgaard, Peter; Mittnik, Alissa; Mohaseb, Azadeh F; Davoudi, Hossein; Alquraishi, Saleh; Alfarhan, Ahmed H; Al-Rasheid, Khaled A S; Crubézy, Eric; Benecke, Norbert; Olsen, Sandra; Brown, Dorcas; Anthony, David; Massy, Ken; Pitulko, Vladimir; Kasparov, Aleksei; Brem, Gottfried; Hofreiter, Michael; Mukhtarova, Gulmira; Baimukhanov, Nurbol; Lõugas, Lembi; Onar, Vedat; Stockhammer, Philipp W; Krause, Johannes; Boldgiv, Bazartseren; Undrakhbold, Sainbileg; Erdenebaatar, Diimaajav; Lepetz, Sébastien; Mashkour, Marjan; Ludwig, Arne; Wallner, Barbara; Merz, Victor; Merz, Ilja; Zaibert, Viktor; Willerslev, Eske; Librado, Pablo; Outram, Alan K; Orlando, Ludovic

    2018-04-06

    The Eneolithic Botai culture of the Central Asian steppes provides the earliest archaeological evidence for horse husbandry, ~5500 years ago, but the exact nature of early horse domestication remains controversial. We generated 42 ancient-horse genomes, including 20 from Botai. Compared to 46 published ancient- and modern-horse genomes, our data indicate that Przewalski's horses are the feral descendants of horses herded at Botai and not truly wild horses. All domestic horses dated from ~4000 years ago to present only show ~2.7% of Botai-related ancestry. This indicates that a massive genomic turnover underpins the expansion of the horse stock that gave rise to modern domesticates, which coincides with large-scale human population expansions during the Early Bronze Age. Copyright © 2018 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.

  17. Complete chloroplast genome sequence of Elodea canadensis and comparative analyses with other monocot plastid genomes.

    Science.gov (United States)

    Huotari, Tea; Korpelainen, Helena

    2012-10-15

    Elodea canadensis is an aquatic angiosperm native to North America. It has attracted great attention due to its invasive nature when transported to new areas in its non-native range. We have determined the complete nucleotide sequence of the chloroplast (cp) genome of Elodea. Taxonomically Elodea is a basal monocot, and only few monocot cp genomes representing early lineages of monocots have been sequenced so far. The genome is a circular double-stranded DNA molecule 156,700 bp in length, and has a typical structure with large (LSC 86,194 bp) and small (SSC 17,810 bp) single-copy regions separated by a pair of inverted repeats (IRs 26,348 bp each). The Elodea cp genome contains 113 unique genes and 16 duplicated genes in the IR regions. A comparative analysis showed that the gene order and organization of the Elodea cp genome is almost identical to that of Amborella trichopoda, a basal angiosperm. The structure of IRs in Elodea is unique among monocot species with the whole cp genome sequenced. In Elodea and another monocot Lemna minor the borders between IRs and LSC are located upstream of rps 19 gene and downstream of trnH-GUG gene, while in most monocots, IR has extended to include both trnH and rps 19 genes. A phylogenetic analysis conducted using Bayesian method, based on the DNA sequences of 81 chloroplast genes from 17 monocot taxa provided support for the placement of Elodea together with Lemna as a basal monocot and the next diverging lineage of monocots after Acorales. In comparison with other monocots, the Elodea cp genome has gone through only few rearrangements or gene losses. IR of Elodea has a unique structure among the monocot species studied so far as its structure is similar to that of a basal angiosperm Amborella. This result together with phylogenetic analyses supports the placement of Elodea as a basal monocot to the next diverging lineage of monocots after Acorales. So far, only few cp genomes representing early lineages of monocots have been

  18. Lentiviral Delivery of Proteins for Genome Engineering.

    Science.gov (United States)

    Cai, Yujia; Mikkelsen, Jacob Giehm

    2016-01-01

    Viruses have evolved to traverse cellular barriers and travel to the nucleus by mechanisms that involve active transport through the cytoplasm and viral quirks to resist cellular restriction factors and innate immune responses. Virus-derived vector systems exploit the capacity of viruses to ferry genetic information into cells, and now - more than three decades after the discovery of HIV - lentiviral vectors based on HIV-1 have become instrumental in biomedical research and gene therapies that require genomic insertion of transgenes. By now, the efficacy of lentiviral gene delivery to stem cells, cells of the immune system including T cells, hepatic cells, and many other therapeutically relevant cell types is well established. Along with nucleic acids, HIV-1 virions carry the enzymatic tools that are essential for early steps of infection. Such capacity to package enzymes, even proteins of nonviral origin, has unveiled new ways of exploiting cellular intrusion of HIV-1. Based on early findings demonstrating the packaging of heterologous proteins into virus particles as part of the Gag and GagPol polypeptides, we have established lentiviral protein transduction for delivery of DNA transposases and designer nucleases. This strategy for delivering genome-engineering proteins facilitates high enzymatic activity within a short time frame and may potentially improve the safety of genome editing. Exploiting the full potential of lentiviral vectors, incorporation of foreign protein can be combined with the delivery of DNA transposons or a donor sequence for homology-directed repair in so-called 'all-in-one' lentiviral vectors. Here, we briefly describe intracellular restrictions that may affect lentiviral gene and protein delivery and review the current status of lentiviral particles as carriers of tool kits for genome engineering.

  19. phiGENOME: an integrative navigation throughout bacteriophage genomes.

    Science.gov (United States)

    Stano, Matej; Klucar, Lubos

    2011-11-01

    phiGENOME is a web-based genome browser generating dynamic and interactive graphical representation of phage genomes stored in the phiSITE, database of gene regulation in bacteriophages. phiGENOME is an integral part of the phiSITE web portal (http://www.phisite.org/phigenome) and it was optimised for visualisation of phage genomes with the emphasis on the gene regulatory elements. phiGENOME consists of three components: (i) genome map viewer built using Adobe Flash technology, providing dynamic and interactive graphical display of phage genomes; (ii) sequence browser based on precisely formatted HTML tags, providing detailed exploration of genome features on the sequence level and (iii) regulation illustrator, based on Scalable Vector Graphics (SVG) and designed for graphical representation of gene regulations. Bringing 542 complete genome sequences accompanied with their rich annotations and references, makes phiGENOME a unique information resource in the field of phage genomics. Copyright © 2011 Elsevier Inc. All rights reserved.

  20. Genome Sequence of Novel Human Parechovirus Type 17

    OpenAIRE

    B?ttcher, Sindy; Obermeier, Patrick E.; Diedrich, Sabine; Kabor?, Yolande; D?Alfonso, Rossella; Pfister, Herbert; Kaiser, Rolf; Di Cristanziano, Veronica

    2017-01-01

    ABSTRACT Human parechoviruses (HPeV) circulate worldwide, causing a broad variety of symptoms, preferentially in early childhood. We report here the nearly complete genome sequence of a novel HPeV type, consisting of 7,062 nucleotides and encoding 2,179?amino acids. M36/CI/2014 was taxonomically classified as HPeV-17 by the picornavirus study group.

  1. Illuminating the Druggable Genome (IDG)

    Data.gov (United States)

    Federal Laboratory Consortium — Results from the Human Genome Project revealed that the human genome contains 20,000 to 25,000 genes. A gene contains (encodes) the information that each cell uses...

  2. National Human Genome Research Institute

    Science.gov (United States)

    ... Care Genomic Medicine Working Group New Horizons and Research Patient Management Policy and Ethics Issues Quick Links for Patient Care Education All About the Human Genome Project Fact Sheets Genetic Education Resources for ...

  3. Comparative genomics of chondrichthyan Hoxa clusters

    Directory of Open Access Journals (Sweden)

    Zhong Ying-Fu

    2009-09-01

    Full Text Available Abstract Background The chondrichthyan or cartilaginous fish (chimeras, sharks, skates and rays occupy an important phylogenetic position as the sister group to all other jawed vertebrates and as an early lineage to diverge from the vertebrate lineage following two whole genome duplication events in vertebrate evolution. There have been few comparative genomic analyses incorporating data from chondrichthyan fish and none comparing genomic information from within the group. We have sequenced the complete Hoxa cluster of the Little Skate (Leucoraja erinacea and compared to the published Hoxa cluster of the Horn Shark (Heterodontus francisci and to available data from the Elephant Shark (Callorhinchus milii genome project. Results A BAC clone containing the full Little Skate Hoxa cluster was fully sequenced and assembled. Analyses of coding sequences and conserved non-coding elements reveal a strikingly high level of conservation across the cartilaginous fish, with twenty ultraconserved elements (100%,100 bp found between Skate and Horn Shark, compared to three between human and marsupials. We have also identified novel potential non-coding RNAs in the Skate BAC clone, some of which are conserved to other species. Conclusion We find that the Little Skate Hoxa cluster is remarkably similar to the previously published Horn Shark Hoxa cluster with respect to sequence identity, gene size and intergenic distance despite over 180 million years of separation between the two lineages. We suggest that the genomes of cartilaginous fish are more highly conserved than those of tetrapods or teleost fish and so are more likely to have retained ancestral non-coding elements. While useful for isolating homologous DNA, this complicates bioinformatic approaches to identify chondrichthyan-specific non-coding DNA elements

  4. Genomic prediction using subsampling.

    Science.gov (United States)

    Xavier, Alencar; Xu, Shizhong; Muir, William; Rainey, Katy Martin

    2017-03-24

    Genome-wide assisted selection is a critical tool for the genetic improvement of plants and animals. Whole-genome regression models in Bayesian framework represent the main family of prediction methods. Fitting such models with a large number of observations involves a prohibitive computational burden. We propose the use of subsampling bootstrap Markov chain in genomic prediction. Such method consists of fitting whole-genome regression models by subsampling observations in each round of a Markov Chain Monte Carlo. We evaluated the effect of subsampling bootstrap on prediction and computational parameters. Across datasets, we observed an optimal subsampling proportion of observations around 50% with replacement, and around 33% without replacement. Subsampling provided a substantial decrease in computation time, reducing the time to fit the model by half. On average, losses on predictive properties imposed by subsampling were negligible, usually below 1%. For each dataset, an optimal subsampling point that improves prediction properties was observed, but the improvements were also negligible. Combining subsampling with Gibbs sampling is an interesting ensemble algorithm. The investigation indicates that the subsampling bootstrap Markov chain algorithm substantially reduces computational burden associated with model fitting, and it may slightly enhance prediction properties.

  5. The Lotus japonicus genome

    DEFF Research Database (Denmark)

    Fabaceae, groundbreaking genetic and genomic research has established a significant body of knowledge on Lotus japonicus, which was adopted as a model species more than 20 years ago. The diverse nature of legumes means that such research has a wide potential and agricultural impact, for example...

  6. Genomic taxonomy of vibrios

    DEFF Research Database (Denmark)

    Thompson, Cristiane C.; Vicente, Ana Carolina P.; Souza, Rangel C.

    2009-01-01

    BACKGROUND: Vibrio taxonomy has been based on a polyphasic approach. In this study, we retrieve useful taxonomic information (i.e. data that can be used to distinguish different taxonomic levels, such as species and genera) from 32 genome sequences of different vibrio species. We use a variety of...

  7. The Genome Atlas Resource

    DEFF Research Database (Denmark)

    Azam Qureshi, Matloob; Rotenberg, Eva; Stærfeldt, Hans Henrik

    2010-01-01

    with scripts and algorithms developed in a variety of programming languages at the Centre for Biological Sequence Analysis in order to create a three-tier software application for genome analysis. The results are made available via a web interface developed in Java, PHP and Perl CGI. User...

  8. Genomic Signatures of Reinforcement

    Directory of Open Access Journals (Sweden)

    Austin G. Garner

    2018-04-01

    Full Text Available Reinforcement is the process by which selection against hybridization increases reproductive isolation between taxa. Much research has focused on demonstrating the existence of reinforcement, yet relatively little is known about the genetic basis of reinforcement or the evolutionary conditions under which reinforcement can occur. Inspired by reinforcement’s characteristic phenotypic pattern of reproductive trait divergence in sympatry but not in allopatry, we discuss whether reinforcement also leaves a distinct genomic pattern. First, we describe three patterns of genetic variation we expect as a consequence of reinforcement. Then, we discuss a set of alternative processes and complicating factors that may make the identification of reinforcement at the genomic level difficult. Finally, we consider how genomic analyses can be leveraged to inform if and to what extent reinforcement evolved in the face of gene flow between sympatric lineages and between allopatric and sympatric populations of the same lineage. Our major goals are to understand if genome scans for particular patterns of genetic variation could identify reinforcement, isolate the genetic basis of reinforcement, or infer the conditions under which reinforcement evolved.

  9. Better chocolate through genomics

    Science.gov (United States)

    Theobroma cacao, the cacao or chocolate tree, is a tropical understory tree whose seeds are used to make chocolate. And like any important crop, cacao is the subject of much research. On September 15, 2010, scientists publicly released a preliminary sequence of the cacao genome--which contains all o...

  10. Functional genomics of tomato

    Indian Academy of Sciences (India)

    2014-10-20

    Oct 20, 2014 ... 1Repository of Tomato Genomics Resources, Department of Plant Sciences, School .... Due to its position at the crossroads of Sanger's sequencing .... replacement for the microarray-based expression profiling. .... during RNA fragmentation step prior to library construction, ...... tomato pollen as a test case.

  11. Genomic Signatures of Reinforcement

    Science.gov (United States)

    Goulet, Benjamin E.

    2018-01-01

    Reinforcement is the process by which selection against hybridization increases reproductive isolation between taxa. Much research has focused on demonstrating the existence of reinforcement, yet relatively little is known about the genetic basis of reinforcement or the evolutionary conditions under which reinforcement can occur. Inspired by reinforcement’s characteristic phenotypic pattern of reproductive trait divergence in sympatry but not in allopatry, we discuss whether reinforcement also leaves a distinct genomic pattern. First, we describe three patterns of genetic variation we expect as a consequence of reinforcement. Then, we discuss a set of alternative processes and complicating factors that may make the identification of reinforcement at the genomic level difficult. Finally, we consider how genomic analyses can be leveraged to inform if and to what extent reinforcement evolved in the face of gene flow between sympatric lineages and between allopatric and sympatric populations of the same lineage. Our major goals are to understand if genome scans for particular patterns of genetic variation could identify reinforcement, isolate the genetic basis of reinforcement, or infer the conditions under which reinforcement evolved. PMID:29614048

  12. The Nostoc punctiforme Genome

    Energy Technology Data Exchange (ETDEWEB)

    John C. Meeks

    2001-12-31

    Nostoc punctiforme is a filamentous cyanobacterium with extensive phenotypic characteristics and a relatively large genome, approaching 10 Mb. The phenotypic characteristics include a photoautotrophic, diazotrophic mode of growth, but N. punctiforme is also facultatively heterotrophic; its vegetative cells have multiple development alternatives, including terminal differentiation into nitrogen-fixing heterocysts and transient differentiation into spore-like akinetes or motile filaments called hormogonia; and N. punctiforme has broad symbiotic competence with fungi and terrestrial plants, including bryophytes, gymnosperms and an angiosperm. The shotgun-sequencing phase of the N. punctiforme strain ATCC 29133 genome has been completed by the Joint Genome Institute. Annotation of an 8.9 Mb database yielded 7432 open reading frames, 45% of which encode proteins with known or probable known function and 29% of which are unique to N. punctiforme. Comparative analysis of the sequence indicates a genome that is highly plastic and in a state of flux, with numerous insertion sequences and multilocus repeats, as well as genes encoding transposases and DNA modification enzymes. The sequence also reveals the presence of genes encoding putative proteins that collectively define almost all characteristics of cyanobacteria as a group. N. punctiforme has an extensive potential to sense and respond to environmental signals as reflected by the presence of more than 400 genes encoding sensor protein kinases, response regulators and other transcriptional factors. The signal transduction systems and any of the large number of unique genes may play essential roles in the cell differentiation and symbiotic interaction properties of N. punctiforme.

  13. Comparative Genomics of Eukaryotes.

    NARCIS (Netherlands)

    Noort, V. van

    2007-01-01

    This thesis focuses on developing comparative genomics methods in eukaryotes, with an emphasis on applications for gene function prediction and regulatory element detection. In the past, methods have been developed to predict functional associations between gene pairs in prokaryotes. The challenge

  14. Searching for genomic constraints

    Energy Technology Data Exchange (ETDEWEB)

    Lio` , P [Cambridge, Univ. (United Kingdom). Genetics Dept.; Ruffo, S [Florence, Univ. (Italy). Fac. di Ingegneria. Dipt. di Energetica ` S. Stecco`

    1998-01-01

    The authors have analyzed general properties of very long DNA sequences belonging to simple and complex organisms, by using different correlation methods. They have distinguished those base compositional rules that concern the entire genome which they call `genomic constraints` from the rules that depend on the `external natural selection` acting on single genes, i. e. protein-centered constraints. They show that G + C content, purine / pyrimidine distributions and biological complexity of the organism are the most important factors which determine base compositional rules and genome complexity. Three main facts are here reported: bacteria with high G + C content have more restrictions on base composition than those with low G + C content; at constant G + C content more complex organisms, ranging from prokaryotes to higher eukaryotes (e.g. human) display an increase of repeats 10-20 nucleotides long, which are also partly responsible for long-range correlations; work selection of length 3 to 10 is stronger in human and in bacteria for two distinct reasons. With respect to previous studies, they have also compared the genomic sequence of the archeon Methanococcus jannaschii with those of bacteria and eukaryotes: it shows sometimes an intermediate statistical behaviour.

  15. Searching for genomic constraints

    International Nuclear Information System (INIS)

    Lio', P.; Ruffo, S.

    1998-01-01

    The authors have analyzed general properties of very long DNA sequences belonging to simple and complex organisms, by using different correlation methods. They have distinguished those base compositional rules that concern the entire genome which they call 'genomic constraints' from the rules that depend on the 'external natural selection' acting on single genes, i. e. protein-centered constraints. They show that G + C content, purine / pyrimidine distributions and biological complexity of the organism are the most important factors which determine base compositional rules and genome complexity. Three main facts are here reported: bacteria with high G + C content have more restrictions on base composition than those with low G + C content; at constant G + C content more complex organisms, ranging from prokaryotes to higher eukaryotes (e.g. human) display an increase of repeats 10-20 nucleotides long, which are also partly responsible for long-range correlations; work selection of length 3 to 10 is stronger in human and in bacteria for two distinct reasons. With respect to previous studies, they have also compared the genomic sequence of the archeon Methanococcus jannaschii with those of bacteria and eukaryotes: it shows sometimes an intermediate statistical behaviour

  16. Genomic sequencing in clinical trials

    OpenAIRE

    Mestan, Karen K; Ilkhanoff, Leonard; Mouli, Samdeep; Lin, Simon

    2011-01-01

    Abstract Human genome sequencing is the process by which the exact order of nucleic acid base pairs in the 24 human chromosomes is determined. Since the completion of the Human Genome Project in 2003, genomic sequencing is rapidly becoming a major part of our translational research efforts to understand and improve human health and disease. This article reviews the current and future directions of clinical research with respect to genomic sequencing, a technology that is just beginning to fin...

  17. Statistical Methods in Integrative Genomics

    Science.gov (United States)

    Richardson, Sylvia; Tseng, George C.; Sun, Wei

    2016-01-01

    Statistical methods in integrative genomics aim to answer important biology questions by jointly analyzing multiple types of genomic data (vertical integration) or aggregating the same type of data across multiple studies (horizontal integration). In this article, we introduce different types of genomic data and data resources, and then review statistical methods of integrative genomics, with emphasis on the motivation and rationale of these methods. We conclude with some summary points and future research directions. PMID:27482531

  18. From plant genomes to phenotypes

    OpenAIRE

    Bolger, Marie; Gundlach, Heidrun; Scholz, Uwe; Mayer, Klaus; Usadel, Björn; Schwacke, Rainer; Schmutzer, Thomas; Chen, Jinbo; Arend, Daniel; Oppermann, Markus; Weise, Stephan; Lange, Matthias; Fiorani, Fabio; Spannagl, Manuel

    2017-01-01

    Recent advances in sequencing technologies have greatly accelerated the rate of plant genome and applied breeding research. Despite this advancing trend, plant genomes continue to present numerous difficulties to the standard tools and pipelines not only for genome assembly but also gene annotation and downstream analysis.Here we give a perspective on tools, resources and services necessary to assemble and analyze plant genomes and link them to plant phenotypes.

  19. Early Math.

    Science.gov (United States)

    Van Nuys, Ute Elisabeth

    1986-01-01

    Presents reviews of the following mathematics software designed to teach young children counting, number recognition, visual discrimination, matching, addition, and subtraction skills; Stickybear Numbers, Learning with Leeper, Getting Ready to Read and Add, Counting Parade, Early Games for Young Children, Charlie Brown's 1,2,3's, Let's Go Fishing,…

  20. Simian virus 40, poliovirus vaccines, and human cancer: research progress versus media and public interests

    Science.gov (United States)

    Butel, J. S.

    2000-01-01

    From 1955 through early 1963, millions of people were inadvertently exposed to simian virus 40 (SV40) as a contaminant of poliovirus vaccines; the virus had been present in the monkey kidney cultures used to prepare the vaccines and had escaped detection. SV40 was discovered in 1960 and subsequently eliminated from poliovirus vaccines. This article reviews current knowledge about SV40 and considers public responses to reports in the media. SV40 is a potent tumour virus with broad tissue tropism that induces tumours in rodents and transforms cultured cells from many species. It is also an important laboratory model for basic studies of molecular processes in eukaryotic cells and mechanisms of neoplastic transformation. SV40 neutralizing antibodies have been detected in individuals not exposed to contaminated poliovirus vaccines. There have been many reports of detection of SV40 DNA in human tumours, especially mesotheliomas, brain tumours and osteosarcomas; and DNA sequence analyses have ruled out the possibility that the viral DNA in tumours was due to laboratory contamination or that the virus had been misidentified. However, additional studies are necessary to prove that SV40 is the cause of certain human cancers. A recently published review article evaluated the status of the field and received much media attention. The public response emphasized that there is great interest in the possibility of health risks today from vaccinations received in the past.

  1. A Thousand Fly Genomes: An Expanded Drosophila Genome Nexus.

    Science.gov (United States)

    Lack, Justin B; Lange, Jeremy D; Tang, Alison D; Corbett-Detig, Russell B; Pool, John E

    2016-12-01

    The Drosophila Genome Nexus is a population genomic resource that provides D. melanogaster genomes from multiple sources. To facilitate comparisons across data sets, genomes are aligned using a common reference alignment pipeline which involves two rounds of mapping. Regions of residual heterozygosity, identity-by-descent, and recent population admixture are annotated to enable data filtering based on the user's needs. Here, we present a significant expansion of the Drosophila Genome Nexus, which brings the current data object to a total of 1,121 wild-derived genomes. New additions include 305 previously unpublished genomes from inbred lines representing six population samples in Egypt, Ethiopia, France, and South Africa, along with another 193 genomes added from recently-published data sets. We also provide an aligned D. simulans genome to facilitate divergence comparisons. This improved resource will broaden the range of population genomic questions that can addressed from multi-population allele frequencies and haplotypes in this model species. The larger set of genomes will also enhance the discovery of functionally relevant natural variation that exists within and between populations. © The Author 2016. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.

  2. Major genomic mitochondrial lineages delineate early human expansions

    Directory of Open Access Journals (Sweden)

    Flores Carlos

    2001-08-01

    Full Text Available Abstract Background The phylogeographic distribution of human mitochondrial DNA variations allows a genetic approach to the study of modern Homo sapiens dispersals throughout the world from a female perspective. As a new contribution to this study we have phylogenetically analysed complete mitochondrial DNA(mtDNA sequences from 42 human lineages, representing major clades with known geographic assignation. Results We show the relative relationships among the 42 lineages and present more accurate temporal calibrations than have been previously possible to give new perspectives as how modern humans spread in the Old World. Conclusions The first detectable expansion occurred around 59,000–69,000 years ago from Africa, independently colonizing western Asia and India and, following this southern route, swiftly reaching east Asia. Within Africa, this expansion did not replace but mixed with older lineages detectable today only in Africa. Around 39,000–52,000 years ago, the western Asian branch spread radially, bringing Caucasians to North Africa and Europe, also reaching India, and expanding to north and east Asia. More recent migrations have entangled but not completely erased these primitive footprints of modern human expansions.

  3. Early evolution of efficient enzymes and genome organization

    Directory of Open Access Journals (Sweden)

    Szilágyi András

    2012-10-01

    Full Text Available Abstract Background Cellular life with complex metabolism probably evolved during the reign of RNA, when it served as both information carrier and enzyme. Jensen proposed that enzymes of primordial cells possessed broad specificities: they were generalist. When and under what conditions could primordial metabolism run by generalist enzymes evolve to contemporary-type metabolism run by specific enzymes? Results Here we show by numerical simulation of an enzyme-catalyzed reaction chain that specialist enzymes spread after the invention of the chromosome because protocells harbouring unlinked genes maintain largely non-specific enzymes to reduce their assortment load. When genes are linked on chromosomes, high enzyme specificity evolves because it increases biomass production, also by reducing taxation by side reactions. Conclusion The constitution of the genetic system has a profound influence on the limits of metabolic efficiency. The major evolutionary transition to chromosomes is thus proven to be a prerequisite for a complex metabolism. Furthermore, the appearance of specific enzymes opens the door for the evolution of their regulation. Reviewers This article was reviewed by Sándor Pongor, Gáspár Jékely, and Rob Knight.

  4. The perennial ryegrass GenomeZipper: targeted use of genome resources for comparative grass genomics.

    Science.gov (United States)

    Pfeifer, Matthias; Martis, Mihaela; Asp, Torben; Mayer, Klaus F X; Lübberstedt, Thomas; Byrne, Stephen; Frei, Ursula; Studer, Bruno

    2013-02-01

    Whole-genome sequences established for model and major crop species constitute a key resource for advanced genomic research. For outbreeding forage and turf grass species like ryegrasses (Lolium spp.), such resources have yet to be developed. Here, we present a model of the perennial ryegrass (Lolium perenne) genome on the basis of conserved synteny to barley (Hordeum vulgare) and the model grass genome Brachypodium (Brachypodium distachyon) as well as rice (Oryza sativa) and sorghum (Sorghum bicolor). A transcriptome-based genetic linkage map of perennial ryegrass served as a scaffold to establish the chromosomal arrangement of syntenic genes from model grass species. This scaffold revealed a high degree of synteny and macrocollinearity and was then utilized to anchor a collection of perennial ryegrass genes in silico to their predicted genome positions. This resulted in the unambiguous assignment of 3,315 out of 8,876 previously unmapped genes to the respective chromosomes. In total, the GenomeZipper incorporates 4,035 conserved grass gene loci, which were used for the first genome-wide sequence divergence analysis between perennial ryegrass, barley, Brachypodium, rice, and sorghum. The perennial ryegrass GenomeZipper is an ordered, information-rich genome scaffold, facilitating map-based cloning and genome assembly in perennial ryegrass and closely related Poaceae species. It also represents a milestone in describing synteny between perennial ryegrass and fully sequenced model grass genomes, thereby increasing our understanding of genome organization and evolution in the most important temperate forage and turf grass species.

  5. Implementing genomics and pharmacogenomics in the clinic: The National Human Genome Research Institute's genomic medicine portfolio.

    Science.gov (United States)

    Manolio, Teri A

    2016-10-01

    Increasing knowledge about the influence of genetic variation on human health and growing availability of reliable, cost-effective genetic testing have spurred the implementation of genomic medicine in the clinic. As defined by the National Human Genome Research Institute (NHGRI), genomic medicine uses an individual's genetic information in his or her clinical care, and has begun to be applied effectively in areas such as cancer genomics, pharmacogenomics, and rare and undiagnosed diseases. In 2011 NHGRI published its strategic vision for the future of genomic research, including an ambitious research agenda to facilitate and promote the implementation of genomic medicine. To realize this agenda, NHGRI is consulting and facilitating collaborations with the external research community through a series of "Genomic Medicine Meetings," under the guidance and leadership of the National Advisory Council on Human Genome Research. These meetings have identified and begun to address significant obstacles to implementation, such as lack of evidence of efficacy, limited availability of genomics expertise and testing, lack of standards, and difficulties in integrating genomic results into electronic medical records. The six research and dissemination initiatives comprising NHGRI's genomic research portfolio are designed to speed the evaluation and incorporation, where appropriate, of genomic technologies and findings into routine clinical care. Actual adoption of successful approaches in clinical care will depend upon the willingness, interest, and energy of professional societies, practitioners, patients, and payers to promote their responsible use and share their experiences in doing so. Published by Elsevier Ireland Ltd.

  6. Applied Genomics of Foodborne Pathogens

    DEFF Research Database (Denmark)

    and customized source of information designed for and accessible to microbiologists interested in applying cutting-edge genomics in food safety and public health research. This book fills this void with a well-selected collection of topics, case studies, and bioinformatics tools contributed by experts......This book provides a timely and thorough snapshot into the emerging and fast evolving area of applied genomics of foodborne pathogens. Driven by the drastic advance of whole genome shot gun sequencing (WGS) technologies, genomics applications are becoming increasingly valuable and even essential...... at the forefront of foodborne pathogen genomics research....

  7. Chromatin dynamics in genome stability

    DEFF Research Database (Denmark)

    Nair, Nidhi; Shoaib, Muhammad; Sørensen, Claus Storgaard

    2017-01-01

    Genomic DNA is compacted into chromatin through packaging with histone and non-histone proteins. Importantly, DNA accessibility is dynamically regulated to ensure genome stability. This is exemplified in the response to DNA damage where chromatin relaxation near genomic lesions serves to promote...... access of relevant enzymes to specific DNA regions for signaling and repair. Furthermore, recent data highlight genome maintenance roles of chromatin through the regulation of endogenous DNA-templated processes including transcription and replication. Here, we review research that shows the importance...... of chromatin structure regulation in maintaining genome integrity by multiple mechanisms including facilitating DNA repair and directly suppressing endogenous DNA damage....

  8. Evolution of small prokaryotic genomes

    Directory of Open Access Journals (Sweden)

    David José Martínez-Cano

    2015-01-01

    Full Text Available As revealed by genome sequencing, the biology of prokaryotes with reduced genomes is strikingly diverse. These include free-living prokaryotes with ~800 genes as well as endosymbiotic bacteria with as few as ~140 genes. Comparative genomics is revealing the evolutionary mechanisms that led to these small genomes. In the case of free-living prokaryotes, natural selection directly favored genome reduction, while in the case of endosymbiotic prokaryotes neutral processes played a more prominent role. However, new experimental data suggest that selective processes may be at operation as well for endosymbiotic prokaryotes at least during the first stages of genome reduction. Endosymbiotic prokaryotes have evolved diverse strategies for living with reduced gene sets inside a host-defined medium. These include utilization of host-encoded functions (some of them coded by genes acquired by gene transfer from the endosymbiont and/or other bacteria; metabolic complementation between co-symbionts; and forming consortiums with other bacteria within the host. Recent genome sequencing projects of intracellular mutualistic bacteria showed that previously believed universal evolutionary trends like reduced G+C content and conservation of genome synteny are not always present in highly reduced genomes. Finally, the simplified molecular machinery of some of these organisms with small genomes may be used to aid in the design of artificial minimal cells. Here we review recent genomic discoveries of the biology of prokaryotes endowed with small gene sets and discuss the evolutionary mechanisms that have been proposed to explain their peculiar nature.

  9. Informational laws of genome structures

    Science.gov (United States)

    Bonnici, Vincenzo; Manca, Vincenzo

    2016-06-01

    In recent years, the analysis of genomes by means of strings of length k occurring in the genomes, called k-mers, has provided important insights into the basic mechanisms and design principles of genome structures. In the present study, we focus on the proper choice of the value of k for applying information theoretic concepts that express intrinsic aspects of genomes. The value k = lg2(n), where n is the genome length, is determined to be the best choice in the definition of some genomic informational indexes that are studied and computed for seventy genomes. These indexes, which are based on information entropies and on suitable comparisons with random genomes, suggest five informational laws, to which all of the considered genomes obey. Moreover, an informational genome complexity measure is proposed, which is a generalized logistic map that balances entropic and anti-entropic components of genomes and is related to their evolutionary dynamics. Finally, applications to computational synthetic biology are briefly outlined.

  10. Toward genome-enabled mycology.

    Science.gov (United States)

    Hibbett, David S; Stajich, Jason E; Spatafora, Joseph W

    2013-01-01

    Genome-enabled mycology is a rapidly expanding field that is characterized by the pervasive use of genome-scale data and associated computational tools in all aspects of fungal biology. Genome-enabled mycology is integrative and often requires teams of researchers with diverse skills in organismal mycology, bioinformatics and molecular biology. This issue of Mycologia presents the first complete fungal genomes in the history of the journal, reflecting the ongoing transformation of mycology into a genome-enabled science. Here, we consider the prospects for genome-enabled mycology and the technical and social challenges that will need to be overcome to grow the database of complete fungal genomes and enable all fungal biologists to make use of the new data.

  11. Genomic research perspectives in Kazakhstan

    Directory of Open Access Journals (Sweden)

    Ainur Akilzhanova

    2014-01-01

    Full Text Available Introduction: Technological advancements rapidly propel the field of genome research. Advances in genetics and genomics such as the sequence of the human genome, the human haplotype map, open access databases, cheaper genotyping and chemical genomics, have transformed basic and translational biomedical research. Several projects in the field of genomic and personalized medicine have been conducted at the Center for Life Sciences in Nazarbayev University. The prioritized areas of research include: genomics of multifactorial diseases, cancer genomics, bioinformatics, genetics of infectious diseases and population genomics. At present, DNA-based risk assessment for common complex diseases, application of molecular signatures for cancer diagnosis and prognosis, genome-guided therapy, and dose selection of therapeutic drugs are the important issues in personalized medicine. Results: To further develop genomic and biomedical projects at Center for Life Sciences, the development of bioinformatics research and infrastructure and the establishment of new collaborations in the field are essential. Widespread use of genetic tools will allow the identification of diseases before the onset of clinical symptoms, the individualization of drug treatment, and could induce individual behavioral changes on the basis of calculated disease risk. However, many challenges remain for the successful translation of genomic knowledge and technologies into health advances, such as medicines and diagnostics. It is important to integrate research and education in the fields of genomics, personalized medicine, and bioinformatics, which will be possible with opening of the new Medical Faculty at Nazarbayev University. People in practice and training need to be educated about the key concepts of genomics and engaged so they can effectively apply their knowledge in a matter that will bring the era of genomic medicine to patient care. This requires the development of well

  12. Mycobacteriophage genome database.

    Science.gov (United States)

    Joseph, Jerrine; Rajendran, Vasanthi; Hassan, Sameer; Kumar, Vanaja

    2011-01-01

    Mycobacteriophage genome database (MGDB) is an exclusive repository of the 64 completely sequenced mycobacteriophages with annotated information. It is a comprehensive compilation of the various gene parameters captured from several databases pooled together to empower mycobacteriophage researchers. The MGDB (Version No.1.0) comprises of 6086 genes from 64 mycobacteriophages classified into 72 families based on ACLAME database. Manual curation was aided by information available from public databases which was enriched further by analysis. Its web interface allows browsing as well as querying the classification. The main objective is to collect and organize the complexity inherent to mycobacteriophage protein classification in a rational way. The other objective is to browse the existing and new genomes and describe their functional annotation. The database is available for free at http://mpgdb.ibioinformatics.org/mpgdb.php.

  13. Precision genome editing

    DEFF Research Database (Denmark)

    Steentoft, Catharina; Bennett, Eric P; Schjoldager, Katrine Ter-Borch Gram

    2014-01-01

    Precise and stable gene editing in mammalian cell lines has until recently been hampered by the lack of efficient targeting methods. While different gene silencing strategies have had tremendous impact on many biological fields, they have generally not been applied with wide success in the field...... of glycobiology, primarily due to their low efficiencies, with resultant failure to impose substantial phenotypic consequences upon the final glycosylation products. Here, we review novel nuclease-based precision genome editing techniques enabling efficient and stable gene editing, including gene disruption...... by introducing single or double-stranded breaks at a defined genomic sequence. We here compare and contrast the different techniques and summarize their current applications, highlighting cases from the field of glycobiology as well as pointing to future opportunities. The emerging potential of precision gene...

  14. Alignment of whole genomes.

    Science.gov (United States)

    Delcher, A L; Kasif, S; Fleischmann, R D; Peterson, J; White, O; Salzberg, S L

    1999-01-01

    A new system for aligning whole genome sequences is described. Using an efficient data structure called a suffix tree, the system is able to rapidly align sequences containing millions of nucleotides. Its use is demonstrated on two strains of Mycoplasma tuberculosis, on two less similar species of Mycoplasma bacteria and on two syntenic sequences from human chromosome 12 and mouse chromosome 6. In each case it found an alignment of the input sequences, using between 30 s and 2 min of computation time. From the system output, information on single nucleotide changes, translocations and homologous genes can easily be extracted. Use of the algorithm should facilitate analysis of syntenic chromosomal regions, strain-to-strain comparisons, evolutionary comparisons and genomic duplications. PMID:10325427

  15. eGenomics: Cataloguing Our Complete Genome Collection III

    Directory of Open Access Journals (Sweden)

    Dawn Field

    2007-01-01

    Full Text Available This meeting report summarizes the proceedings of the “eGenomics: Cataloguing our Complete Genome Collection III” workshop held September 11–13, 2006, at the National Institute for Environmental eScience (NIEeS, Cambridge, United Kingdom. This 3rd workshop of the Genomic Standards Consortium was divided into two parts. The first half of the three-day workshop was dedicated to reviewing the genomic diversity of our current and future genome and metagenome collection, and exploring linkages to a series of existing projects through formal presentations. The second half was dedicated to strategic discussions. Outcomes of the workshop include a revised “Minimum Information about a Genome Sequence” (MIGS specification (v1.1, consensus on a variety of features to be added to the Genome Catalogue (GCat, agreement by several researchers to adopt MIGS for imminent genome publications, and an agreement by the EBI and NCBI to input their genome collections into GCat for the purpose of quantifying the amount of optional data already available (e.g., for geographic location coordinates and working towards a single, global list of all public genomes and metagenomes.

  16. Genomics Portals: integrative web-platform for mining genomics data.

    Science.gov (United States)

    Shinde, Kaustubh; Phatak, Mukta; Johannes, Freudenberg M; Chen, Jing; Li, Qian; Vineet, Joshi K; Hu, Zhen; Ghosh, Krishnendu; Meller, Jaroslaw; Medvedovic, Mario

    2010-01-13

    A large amount of experimental data generated by modern high-throughput technologies is available through various public repositories. Our knowledge about molecular interaction networks, functional biological pathways and transcriptional regulatory modules is rapidly expanding, and is being organized in lists of functionally related genes. Jointly, these two sources of information hold a tremendous potential for gaining new insights into functioning of living systems. Genomics Portals platform integrates access to an extensive knowledge base and a large database of human, mouse, and rat genomics data with basic analytical visualization tools. It provides the context for analyzing and interpreting new experimental data and the tool for effective mining of a large number of publicly available genomics datasets stored in the back-end databases. The uniqueness of this platform lies in the volume and the diversity of genomics data that can be accessed and analyzed (gene expression, ChIP-chip, ChIP-seq, epigenomics, computationally predicted binding sites, etc), and the integration with an extensive knowledge base that can be used in such analysis. The integrated access to primary genomics data, functional knowledge and analytical tools makes Genomics Portals platform a unique tool for interpreting results of new genomics experiments and for mining the vast amount of data stored in the Genomics Portals backend databases. Genomics Portals can be accessed and used freely at http://GenomicsPortals.org.

  17. Genomics Portals: integrative web-platform for mining genomics data

    Directory of Open Access Journals (Sweden)

    Ghosh Krishnendu

    2010-01-01

    Full Text Available Abstract Background A large amount of experimental data generated by modern high-throughput technologies is available through various public repositories. Our knowledge about molecular interaction networks, functional biological pathways and transcriptional regulatory modules is rapidly expanding, and is being organized in lists of functionally related genes. Jointly, these two sources of information hold a tremendous potential for gaining new insights into functioning of living systems. Results Genomics Portals platform integrates access to an extensive knowledge base and a large database of human, mouse, and rat genomics data with basic analytical visualization tools. It provides the context for analyzing and interpreting new experimental data and the tool for effective mining of a large number of publicly available genomics datasets stored in the back-end databases. The uniqueness of this platform lies in the volume and the diversity of genomics data that can be accessed and analyzed (gene expression, ChIP-chip, ChIP-seq, epigenomics, computationally predicted binding sites, etc, and the integration with an extensive knowledge base that can be used in such analysis. Conclusion The integrated access to primary genomics data, functional knowledge and analytical tools makes Genomics Portals platform a unique tool for interpreting results of new genomics experiments and for mining the vast amount of data stored in the Genomics Portals backend databases. Genomics Portals can be accessed and used freely at http://GenomicsPortals.org.

  18. Family genome browser: visualizing genomes with pedigree information.

    Science.gov (United States)

    Juan, Liran; Liu, Yongzhuang; Wang, Yongtian; Teng, Mingxiang; Zang, Tianyi; Wang, Yadong

    2015-07-15

    Families with inherited diseases are widely used in Mendelian/complex disease studies. Owing to the advances in high-throughput sequencing technologies, family genome sequencing becomes more and more prevalent. Visualizing family genomes can greatly facilitate human genetics studies and personalized medicine. However, due to the complex genetic relationships and high similarities among genomes of consanguineous family members, family genomes are difficult to be visualized in traditional genome visualization framework. How to visualize the family genome variants and their functions with integrated pedigree information remains a critical challenge. We developed the Family Genome Browser (FGB) to provide comprehensive analysis and visualization for family genomes. The FGB can visualize family genomes in both individual level and variant level effectively, through integrating genome data with pedigree information. Family genome analysis, including determination of parental origin of the variants, detection of de novo mutations, identification of potential recombination events and identical-by-decent segments, etc., can be performed flexibly. Diverse annotations for the family genome variants, such as dbSNP memberships, linkage disequilibriums, genes, variant effects, potential phenotypes, etc., are illustrated as well. Moreover, the FGB can automatically search de novo mutations and compound heterozygous variants for a selected individual, and guide investigators to find high-risk genes with flexible navigation options. These features enable users to investigate and understand family genomes intuitively and systematically. The FGB is available at http://mlg.hit.edu.cn/FGB/. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  19. Human Germline Genome Editing.

    Science.gov (United States)

    Ormond, Kelly E; Mortlock, Douglas P; Scholes, Derek T; Bombard, Yvonne; Brody, Lawrence C; Faucett, W Andrew; Garrison, Nanibaa' A; Hercher, Laura; Isasi, Rosario; Middleton, Anna; Musunuru, Kiran; Shriner, Daniel; Virani, Alice; Young, Caroline E

    2017-08-03

    With CRISPR/Cas9 and other genome-editing technologies, successful somatic and germline genome editing are becoming feasible. To respond, an American Society of Human Genetics (ASHG) workgroup developed this position statement, which was approved by the ASHG Board in March 2017. The workgroup included representatives from the UK Association of Genetic Nurses and Counsellors, Canadian Association of Genetic Counsellors, International Genetic Epidemiology Society, and US National Society of Genetic Counselors. These groups, as well as the American Society for Reproductive Medicine, Asia Pacific Society of Human Genetics, British Society for Genetic Medicine, Human Genetics Society of Australasia, Professional Society of Genetic Counselors in Asia, and Southern African Society for Human Genetics, endorsed the final statement. The statement includes the following positions. (1) At this time, given the nature and number of unanswered scientific, ethical, and policy questions, it is inappropriate to perform germline gene editing that culminates in human pregnancy. (2) Currently, there is no reason to prohibit in vitro germline genome editing on human embryos and gametes, with appropriate oversight and consent from donors, to facilitate research on the possible future clinical applications of gene editing. There should be no prohibition on making public funds available to support this research. (3) Future clinical application of human germline genome editing should not proceed unless, at a minimum, there is (a) a compelling medical rationale, (b) an evidence base that supports its clinical use, (c) an ethical justification, and (d) a transparent public process to solicit and incorporate stakeholder input. Copyright © 2017 American Society of Human Genetics. All rights reserved.

  20. Genomic Prediction from Whole Genome Sequence in Livestock: The 1000 Bull Genomes Project

    DEFF Research Database (Denmark)

    Hayes, Benjamin J; MacLeod, Iona M; Daetwyler, Hans D

    Advantages of using whole genome sequence data to predict genomic estimated breeding values (GEBV) include better persistence of accuracy of GEBV across generations and more accurate GEBV across breeds. The 1000 Bull Genomes Project provides a database of whole genome sequenced key ancestor bulls....... In a dairy data set, predictions using BayesRC and imputed sequence data from 1000 Bull Genomes were 2% more accurate than with 800k data. We could demonstrate the method identified causal mutations in some cases. Further improvements will come from more accurate imputation of sequence variant genotypes...

  1. Comparative genomics and evolution of eukaryotic phospholipidbiosynthesis

    Energy Technology Data Exchange (ETDEWEB)

    Lykidis, Athanasios

    2006-12-01

    Phospholipid biosynthetic enzymes produce diverse molecular structures and are often present in multiple forms encoded by different genes. This work utilizes comparative genomics and phylogenetics for exploring the distribution, structure and evolution of phospholipid biosynthetic genes and pathways in 26 eukaryotic genomes. Although the basic structure of the pathways was formed early in eukaryotic evolution, the emerging picture indicates that individual enzyme families followed unique evolutionary courses. For example, choline and ethanolamine kinases and cytidylyltransferases emerged in ancestral eukaryotes, whereas, multiple forms of the corresponding phosphatidyltransferases evolved mainly in a lineage specific manner. Furthermore, several unicellular eukaryotes maintain bacterial-type enzymes and reactions for the synthesis of phosphatidylglycerol and cardiolipin. Also, base-exchange phosphatidylserine synthases are widespread and ancestral enzymes. The multiplicity of phospholipid biosynthetic enzymes has been largely generated by gene expansion in a lineage specific manner. Thus, these observations suggest that phospholipid biosynthesis has been an actively evolving system. Finally, comparative genomic analysis indicates the existence of novel phosphatidyltransferases and provides a candidate for the uncharacterized eukaryotic phosphatidylglycerol phosphate phosphatase.

  2. Genomic technologies in neonatology

    Directory of Open Access Journals (Sweden)

    L. N. Chernova

    2017-01-01

    Full Text Available In recent years, there has been a tremendous trend toward personalized medicine. Advances in the field forced clinicians, including neonatologists, to take a fresh look at prevention, tactics of management and therapy of various diseases. In the center of attention of foreign, and increasingly Russian, researchers and doctors, there are individual genomic data that allow not only to assess the risks of some form of pathology, but also to successfully apply personalized strategies of prediction, prevention and targeted treatment. This article provides a brief review of the latest achievements of genomic technologies in newborns, examines the problems and potential applications of genomics in promoting the concept of personalized medicine in neonatology. The increasing amount of personalized data simply impossible to analyze only by the human mind. In this connection, the need of computers and bioinformatics is obvious. The article reveals the role of translational bioinformatics in the analysis and integration of the results of the accumulated fundamental research into complete clinical decisions. The latest advances in neonatal translational bioinformatics such as clinical decision support systems are considered. It helps to monitor vital parameters of newborns influencing the course of a particular disease, to calculate the increased risks of the development of various pathologies and to select the drugs.

  3. Value-based genomics.

    Science.gov (United States)

    Gong, Jun; Pan, Kathy; Fakih, Marwan; Pal, Sumanta; Salgia, Ravi

    2018-03-20

    Advancements in next-generation sequencing have greatly enhanced the development of biomarker-driven cancer therapies. The affordability and availability of next-generation sequencers have allowed for the commercialization of next-generation sequencing platforms that have found widespread use for clinical-decision making and research purposes. Despite the greater availability of tumor molecular profiling by next-generation sequencing at our doorsteps, the achievement of value-based care, or improving patient outcomes while reducing overall costs or risks, in the era of precision oncology remains a looming challenge. In this review, we highlight available data through a pre-established and conceptualized framework for evaluating value-based medicine to assess the cost (efficiency), clinical benefit (effectiveness), and toxicity (safety) of genomic profiling in cancer care. We also provide perspectives on future directions of next-generation sequencing from targeted panels to whole-exome or whole-genome sequencing and describe potential strategies needed to attain value-based genomics.

  4. Single-Cell Whole-Genome Amplification and Sequencing: Methodology and Applications.

    Science.gov (United States)

    Huang, Lei; Ma, Fei; Chapman, Alec; Lu, Sijia; Xie, Xiaoliang Sunney

    2015-01-01

    We present a survey of single-cell whole-genome amplification (WGA) methods, including degenerate oligonucleotide-primed polymerase chain reaction (DOP-PCR), multiple displacement amplification (MDA), and multiple annealing and looping-based amplification cycles (MALBAC). The key parameters to characterize the performance of these methods are defined, including genome coverage, uniformity, reproducibility, unmappable rates, chimera rates, allele dropout rates, false positive rates for calling single-nucleotide variations, and ability to call copy-number variations. Using these parameters, we compare five commercial WGA kits by performing deep sequencing of multiple single cells. We also discuss several major applications of single-cell genomics, including studies of whole-genome de novo mutation rates, the early evolution of cancer genomes, circulating tumor cells (CTCs), meiotic recombination of germ cells, preimplantation genetic diagnosis (PGD), and preimplantation genomic screening (PGS) for in vitro-fertilized embryos.

  5. Advances in faba bean genetics and genomics

    Directory of Open Access Journals (Sweden)

    Donal Martin O'Sullivan

    2016-08-01

    Full Text Available Vicia faba L, is a globally important grain legume whose main centres of diversity are the Fertile Crescent and Mediterranean basin. Because of its small number (six of exceptionally large and easily observed chromosomes it became a model species for plant cytogenetics the 70s and 80s. It is somewhat ironic therefore, that the emergence of more genomically tractable model plant species such as Arabidopsis and Medicago coincided with a marked decline in genome research on the formerly favoured plant cytogenetic model. Thus, as ever higher density molecular marker coverage and dense genetic and even complete genome sequence maps of key crop and model species emerged through the 1990s and early 2000s, genetic and genome knowledge of Vicia faba lagged far behind other grain legumes such as soybean, common bean and pea.However, cheap sequencing technologies have stimulated the production of deep transcriptome coverage from several tissue types and numerous distinct cultivars in recent years. This has permitted the reconstruction of the faba bean meta-transcriptome and has fuelled development of extensive sets of Simple Sequence Repeat and Single Nucleotide Polymorphism (SNP markers. Genetics of faba bean stretches back to the 1930s, but it was not until 1993 that DNA markers were used to construct genetic maps. A series of Random Amplified Polymorphic DNA-based genetic studies mainly targeted at quantitative loci underlying resistance to a series of biotic and abiotic stresses were conducted during the 1990’s and early 2000s. More recently, SNP-based genetic maps have permitted chromosome intervals of interest to be aligned to collinear segments of sequenced legume genomes such as the model legume Medicago truncatula, which in turn opens up the possibility for hypotheses on gene content, order and function to be translated from model to crop. Some examples of where knowledge of gene content and function have already been productively exploited are

  6. The bipartite mitochondrial genome of Ruizia karukerae (Rhigonematomorpha, Nematoda).

    Science.gov (United States)

    Kim, Taeho; Kern, Elizabeth; Park, Chungoo; Nadler, Steven A; Bae, Yeon Jae; Park, Joong-Ki

    2018-05-10

    Mitochondrial genes and whole mitochondrial genome sequences are widely used as molecular markers in studying population genetics and resolving both deep and shallow nodes in phylogenetics. In animals the mitochondrial genome is generally composed of a single chromosome, but mystifying exceptions sometimes occur. We determined the complete mitochondrial genome of the millipede-parasitic nematode Ruizia karukerae and found its mitochondrial genome consists of two circular chromosomes, which is highly unusual in bilateral animals. Chromosome I is 7,659 bp and includes six protein-coding genes, two rRNA genes and nine tRNA genes. Chromosome II comprises 7,647 bp, with seven protein-coding genes and 16 tRNA genes. Interestingly, both chromosomes share a 1,010 bp sequence containing duplicate copies of cox2 and three tRNA genes (trnD, trnG and trnH), and the nucleotide sequences between the duplicated homologous gene copies are nearly identical, suggesting a possible recent genesis for this bipartite mitochondrial genome. Given that little is known about the formation, maintenance or evolution of abnormal mitochondrial genome structures, R. karukerae mtDNA may provide an important early glimpse into this process.

  7. Comparative Genomics Reveals High Genomic Diversity in the Genus Photobacterium

    DEFF Research Database (Denmark)

    Machado, Henrique; Gram, Lone

    2017-01-01

    was widespread and abundant in the genus, suggesting a role in genomic evolution. The high genetic variability and indications of genetic exchange make it difficult to elucidate genome evolutionary paths and raise the awareness of the roles of foreign DNA in the genomic evolution of environmental organisms.......Vibrionaceae is a large marine bacterial family, which can constitute up to 50% of the prokaryotic population in marine waters. Photobacterium is the second largest genus in the family and we used comparative genomics on 35 strains representing 16 of the 28 species described so far, to understand...... the genomic diversity present in the Photobacterium genus. Such understanding is important for ecophysiology studies of the genus. We used whole genome sequences to evaluate phylogenetic relationships using several analyses (16S rRNA, MLSA, fur, amino-acid usage, ANI), which allowed us to identify two...

  8. Genome update: the 1000th genome - a cautionary tale

    DEFF Research Database (Denmark)

    Lagesen, Karin; Ussery, David; Wassenaar, Gertrude Maria

    2010-01-01

    conclusions for example about the largest bacterial genome sequenced. Biological diversity is far greater than many have thought. For example, analysis of multiple Escherichia coli genomes has led to an estimate of around 45 000 gene families more genes than are recognized in the human genome. Moreover......There are now more than 1000 sequenced prokaryotic genomes deposited in public databases and available for analysis. Currently, although the sequence databases GenBank, DNA Database of Japan and EMBL are synchronized continually, there are slight differences in content at the genomes level...... for a variety of logistical reasons, including differences in format and loading errors, such as those caused by file transfer protocol interruptions. This means that the 1000th genome will be different in the various databases. Some of the data on the highly accessed web pages are inaccurate, leading to false...

  9. Efficient Breeding by Genomic Mating.

    Science.gov (United States)

    Akdemir, Deniz; Sánchez, Julio I

    2016-01-01

    Selection in breeding programs can be done by using phenotypes (phenotypic selection), pedigree relationship (breeding value selection) or molecular markers (marker assisted selection or genomic selection). All these methods are based on truncation selection, focusing on the best performance of parents before mating. In this article we proposed an approach to breeding, named genomic mating, which focuses on mating instead of truncation selection. Genomic mating uses information in a similar fashion to genomic selection but includes information on complementation of parents to be mated. Following the efficiency frontier surface, genomic mating uses concepts of estimated breeding values, risk (usefulness) and coefficient of ancestry to optimize mating between parents. We used a genetic algorithm to find solutions to this optimization problem and the results from our simulations comparing genomic selection, phenotypic selection and the mating approach indicate that current approach for breeding complex traits is more favorable than phenotypic and genomic selection. Genomic mating is similar to genomic selection in terms of estimating marker effects, but in genomic mating the genetic information and the estimated marker effects are used to decide which genotypes should be crossed to obtain the next breeding population.

  10. Comparative Genomics Reveals High Genomic Diversity in the Genus Photobacterium

    OpenAIRE

    Henrique Machado; Henrique Machado; Lone Gram

    2017-01-01

    Vibrionaceae is a large marine bacterial family, which can constitute up to 50% of the prokaryotic population in marine waters. Photobacterium is the second largest genus in the family and we used comparative genomics on 35 strains representing 16 of the 28 species described so far, to understand the genomic diversity present in the Photobacterium genus. Such understanding is important for ecophysiology studies of the genus. We used whole genome sequences to evaluate phylogenetic relationship...

  11. Genome size estimation: a new methodology

    Science.gov (United States)

    Álvarez-Borrego, Josué; Gallardo-Escárate, Crisitian; Kober, Vitaly; López-Bonilla, Oscar

    2007-03-01

    Recently, within the cytogenetic analysis, the evolutionary relations implied in the content of nuclear DNA in plants and animals have received a great attention. The first detailed measurements of the nuclear DNA content were made in the early 40's, several years before Watson and Crick proposed the molecular structure of the DNA. In the following years Hewson Swift developed the concept of "C-value" in reference to the haploid phase of DNA in plants. Later Mirsky and Ris carried out the first systematic study of genomic size in animals, including representatives of the five super classes of vertebrates as well as of some invertebrates. From these preliminary results it became evident that the DNA content varies enormously between the species and that this variation does not bear relation to the intuitive notion from the complexity of the organism. Later, this observation was reaffirmed in the following years as the studies increased on genomic size, thus denominating to this characteristic of the organisms like the "Paradox of the C-value". Few years later along with the no-codification discovery of DNA the paradox was solved, nevertheless, numerous questions remain until nowadays unfinished, taking to denominate this type of studies like the "C-value enigma". In this study, we reported a new method for genome size estimation by quantification of fluorescence fading. We measured the fluorescence intensity each 1600 milliseconds in DAPI-stained nuclei. The estimation of the area under the graph (integral fading) during fading period was related with the genome size.

  12. Rapid whole genome sequencing and precision neonatology.

    Science.gov (United States)

    Petrikin, Joshua E; Willig, Laurel K; Smith, Laurie D; Kingsmore, Stephen F

    2015-12-01

    Traditionally, genetic testing has been too slow or perceived to be impractical to initial management of the critically ill neonate. Technological advances have led to the ability to sequence and interpret the entire genome of a neonate in as little as 26 h. As the cost and speed of testing decreases, the utility of whole genome sequencing (WGS) of neonates for acute and latent genetic illness increases. Analyzing the entire genome allows for concomitant evaluation of the currently identified 5588 single gene diseases. When applied to a select population of ill infants in a level IV neonatal intensive care unit, WGS yielded a diagnosis of a causative genetic disease in 57% of patients. These diagnoses may lead to clinical management changes ranging from transition to palliative care for uniformly lethal conditions for alteration or initiation of medical or surgical therapy to improve outcomes in others. Thus, institution of 2-day WGS at time of acute presentation opens the possibility of early implementation of precision medicine. This implementation may create opportunities for early interventional, frequently novel or off-label therapies that may alter disease trajectory in infants with what would otherwise be fatal disease. Widespread deployment of rapid WGS and precision medicine will raise ethical issues pertaining to interpretation of variants of unknown significance, discovery of incidental findings related to adult onset conditions and carrier status, and implementation of medical therapies for which little is known in terms of risks and benefits. Despite these challenges, precision neonatology has significant potential both to decrease infant mortality related to genetic diseases with onset in newborns and to facilitate parental decision making regarding transition to palliative care. Copyright © 2015 Elsevier Inc. All rights reserved.

  13. Genome Surfing As Driver of Microbial Genomic Diversity.

    Science.gov (United States)

    Choudoir, Mallory J; Panke-Buisse, Kevin; Andam, Cheryl P; Buckley, Daniel H

    2017-08-01

    Historical changes in population size, such as those caused by demographic range expansions, can produce nonadaptive changes in genomic diversity through mechanisms such as gene surfing. We propose that demographic range expansion of a microbial population capable of horizontal gene exchange can result in genome surfing, a mechanism that can cause widespread increase in the pan-genome frequency of genes acquired by horizontal gene exchange. We explain that patterns of genetic diversity within Streptomyces are consistent with genome surfing, and we describe several predictions for testing this hypothesis both in Streptomyces and in other microorganisms. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Genome U-Plot: a whole genome visualization.

    Science.gov (United States)

    Gaitatzes, Athanasios; Johnson, Sarah H; Smadbeck, James B; Vasmatzis, George

    2018-05-15

    The ability to produce and analyze whole genome sequencing (WGS) data from samples with structural variations (SV) generated the need to visualize such abnormalities in simplified plots. Conventional two-dimensional representations of WGS data frequently use either circular or linear layouts. There are several diverse advantages regarding both these representations, but their major disadvantage is that they do not use the two-dimensional space very efficiently. We propose a layout, termed the Genome U-Plot, which spreads the chromosomes on a two-dimensional surface and essentially quadruples the spatial resolution. We present the Genome U-Plot for producing clear and intuitive graphs that allows researchers to generate novel insights and hypotheses by visualizing SVs such as deletions, amplifications, and chromoanagenesis events. The main features of the Genome U-Plot are its layered layout, its high spatial resolution and its improved aesthetic qualities. We compare conventional visualization schemas with the Genome U-Plot using visualization metrics such as number of line crossings and crossing angle resolution measures. Based on our metrics, we improve the readability of the resulting graph by at least 2-fold, making apparent important features and making it easy to identify important genomic changes. A whole genome visualization tool with high spatial resolution and improved aesthetic qualities. An implementation and documentation of the Genome U-Plot is publicly available at https://github.com/gaitat/GenomeUPlot. vasmatzis.george@mayo.edu. Supplementary data are available at Bioinformatics online.

  15. Genomic Data Commons and Genomic Cloud Pilots - Google Hangout

    Science.gov (United States)

    Join us for a live, moderated discussion about two NCI efforts to expand access to cancer genomics data: the Genomic Data Commons and Genomic Cloud Pilots. NCI subject matters experts will include Louis M. Staudt, M.D., Ph.D., Director Center for Cancer Genomics, Warren Kibbe, Ph.D., Director, NCI Center for Biomedical Informatics and Information Technology, and moderated by Anthony Kerlavage, Ph.D., Chief, Cancer Informatics Branch, Center for Biomedical Informatics and Information Technology. We welcome your questions before and during the Hangout on Twitter using the hashtag #AskNCI.

  16. Inter-genomic DNA Exchanges and Homeologous Gene Silencing Shaped the Nascent Allopolyploid Coffee Genome (Coffea arabica L.

    Directory of Open Access Journals (Sweden)

    Philippe Lashermes

    2016-09-01

    Full Text Available Allopolyploidization is a biological process that has played a major role in plant speciation and evolution. Genomic changes are common consequences of polyploidization, but their dynamics over time are still poorly understood. Coffea arabica, a recently formed allotetraploid, was chosen to study genetic changes that accompany allopolyploid formation. Both RNA-seq and DNA-seq data were generated from two genetically distant C. arabica accessions. Genomic structural variation was investigated using C. canephora, one of its diploid progenitors, as reference genome. The fate of 9047 duplicate homeologous genes was inferred and compared between the accessions. The pattern of SNP density along the reference genome was consistent with the allopolyploid structure. Large genomic duplications or deletions were not detected. Two homeologous copies were retained and expressed in 96% of the genes analyzed. Nevertheless, duplicated genes were found to be affected by various genomic changes leading to homeolog loss or silencing. Genetic and epigenetic changes were evidenced that could have played a major role in the stabilization of the unique ancestral allotetraploid and its subsequent diversification. While the early evolution of C. arabica mainly involved homeologous crossover exchanges, the later stage appears to have relied on more gradual evolution involving gene conversion and homeolog silencing.

  17. Ensembl 2002: accommodating comparative genomics.

    Science.gov (United States)

    Clamp, M; Andrews, D; Barker, D; Bevan, P; Cameron, G; Chen, Y; Clark, L; Cox, T; Cuff, J; Curwen, V; Down, T; Durbin, R; Eyras, E; Gilbert, J; Hammond, M; Hubbard, T; Kasprzyk, A; Keefe, D; Lehvaslaiho, H; Iyer, V; Melsopp, C; Mongin, E; Pettett, R; Potter, S; Rust, A; Schmidt, E; Searle, S; Slater, G; Smith, J; Spooner, W; Stabenau, A; Stalker, J; Stupka, E; Ureta-Vidal, A; Vastrik, I; Birney, E

    2003-01-01

    The Ensembl (http://www.ensembl.org/) database project provides a bioinformatics framework to organise biology around the sequences of large genomes. It is a comprehensive source of stable automatic annotation of human, mouse and other genome sequences, available as either an interactive web site or as flat files. Ensembl also integrates manually annotated gene structures from external sources where available. As well as being one of the leading sources of genome annotation, Ensembl is an open source software engineering project to develop a portable system able to handle very large genomes and associated requirements. These range from sequence analysis to data storage and visualisation and installations exist around the world in both companies and at academic sites. With both human and mouse genome sequences available and more vertebrate sequences to follow, many of the recent developments in Ensembl have focusing on developing automatic comparative genome analysis and visualisation.

  18. The Ensembl genome database project.

    Science.gov (United States)

    Hubbard, T; Barker, D; Birney, E; Cameron, G; Chen, Y; Clark, L; Cox, T; Cuff, J; Curwen, V; Down, T; Durbin, R; Eyras, E; Gilbert, J; Hammond, M; Huminiecki, L; Kasprzyk, A; Lehvaslaiho, H; Lijnzaad, P; Melsopp, C; Mongin, E; Pettett, R; Pocock, M; Potter, S; Rust, A; Schmidt, E; Searle, S; Slater, G; Smith, J; Spooner, W; Stabenau, A; Stalker, J; Stupka, E; Ureta-Vidal, A; Vastrik, I; Clamp, M

    2002-01-01

    The Ensembl (http://www.ensembl.org/) database project provides a bioinformatics framework to organise biology around the sequences of large genomes. It is a comprehensive source of stable automatic annotation of the human genome sequence, with confirmed gene predictions that have been integrated with external data sources, and is available as either an interactive web site or as flat files. It is also an open source software engineering project to develop a portable system able to handle very large genomes and associated requirements from sequence analysis to data storage and visualisation. The Ensembl site is one of the leading sources of human genome sequence annotation and provided much of the analysis for publication by the international human genome project of the draft genome. The Ensembl system is being installed around the world in both companies and academic sites on machines ranging from supercomputers to laptops.

  19. Comparative Genomics in Homo sapiens.

    Science.gov (United States)

    Oti, Martin; Sammeth, Michael

    2018-01-01

    Genomes can be compared at different levels of divergence, either between species or within species. Within species genomes can be compared between different subpopulations, such as human subpopulations from different continents. Investigating the genomic differences between different human subpopulations is important when studying complex diseases that are affected by many genetic variants, as the variants involved can differ between populations. The 1000 Genomes Project collected genome-scale variation data for 2504 human individuals from 26 different populations, enabling a systematic comparison of variation between human subpopulations. In this chapter, we present step-by-step a basic protocol for the identification of population-specific variants employing the 1000 Genomes data. These variants are subsequently further investigated for those that affect the proteome or RNA splice sites, to investigate potentially biologically relevant differences between the populations.

  20. A Strategic Analysis of Investment Opportunities within British Columbia's Private Healthcare Sector for a Non-Profit Genomics Research Organization

    OpenAIRE

    Barclay, John W.

    2010-01-01

    Advances in the genome sciences are leading to the development of new healthcare innovations relevant to the principles of personalized medicine. Genome BC, a non-profit research organization, invests in projects that will help facilitate the integration of these innovations into the delivery of healthcare. This analysis assesses the strategic positioning of private healthcare firms in BC to be early users of such innovations. The analysis assesses the suitability of investment from Genome BC...

  1. An Adenovirus DNA Replication Factor, but Not Incoming Genome Complexes, Targets PML Nuclear Bodies.

    Science.gov (United States)

    Komatsu, Tetsuro; Nagata, Kyosuke; Wodrich, Harald

    2016-02-01

    Promyelocytic leukemia protein nuclear bodies (PML-NBs) are subnuclear domains implicated in cellular antiviral responses. Despite the antiviral activity, several nuclear replicating DNA viruses use the domains as deposition sites for the incoming viral genomes and/or as sites for viral DNA replication, suggesting that PML-NBs are functionally relevant during early viral infection to establish productive replication. Although PML-NBs and their components have also been implicated in the adenoviral life cycle, it remains unclear whether incoming adenoviral genome complexes target PML-NBs. Here we show using immunofluorescence and live-cell imaging analyses that incoming adenovirus genome complexes neither localize at nor recruit components of PML-NBs during early phases of infection. We further show that the viral DNA binding protein (DBP), an early expressed viral gene and essential DNA replication factor, independently targets PML-NBs. We show that DBP oligomerization is required to selectively recruit the PML-NB components Sp100 and USP7. Depletion experiments suggest that the absence of one PML-NB component might not affect the recruitment of other components toward DBP oligomers. Thus, our findings suggest a model in which an adenoviral DNA replication factor, but not incoming viral genome complexes, targets and modulates PML-NBs to support a conducive state for viral DNA replication and argue against a generalized concept that PML-NBs target incoming viral genomes. The immediate fate upon nuclear delivery of genomes of incoming DNA viruses is largely unclear. Early reports suggested that incoming genomes of herpesviruses are targeted and repressed by PML-NBs immediately upon nuclear import. Genome localization and/or viral DNA replication has also been observed at PML-NBs for other DNA viruses. Thus, it was suggested that PML-NBs may immediately sense and target nuclear viral genomes and hence serve as sites for deposition of incoming viral genomes and

  2. The genome of Arabidopsis thaliana.

    OpenAIRE

    Goodman, H M; Ecker, J R; Dean, C

    1995-01-01

    Arabidopsis thaliana is a small flowering plant that is a member of the family cruciferae. It has many characteristics--diploid genetics, rapid growth cycle, relatively low repetitive DNA content, and small genome size--that recommend it as the model for a plant genome project. The current status of the genetic and physical maps, as well as efforts to sequence the genome, are presented. Examples are given of genes isolated by using map-based cloning. The importance of the Arabidopsis project ...

  3. Advances in editing microalgae genomes

    OpenAIRE

    Daboussi, Fayza

    2017-01-01

    There have been significant advances in microalgal genomics over the last decade. Nevertheless, there are still insufficient tools for the manipulation of microalgae genomes and the development of microalgae as industrial biofactories. Several research groups have recently contributed to progress by demonstrating that particular nucleases can be used for targeted and stable modifications of the genomes of some microalgae species. The nucleases include Meganucleases, Zinc Finger nucleases, TAL...

  4. Genomic selection in plant breeding.

    Science.gov (United States)

    Newell, Mark A; Jannink, Jean-Luc

    2014-01-01

    Genomic selection (GS) is a method to predict the genetic value of selection candidates based on the genomic estimated breeding value (GEBV) predicted from high-density markers positioned throughout the genome. Unlike marker-assisted selection, the GEBV is based on all markers including both minor and major marker effects. Thus, the GEBV may capture more of the genetic variation for the particular trait under selection.

  5. Genomic Feature Models

    DEFF Research Database (Denmark)

    Sørensen, Peter; Edwards, Stefan McKinnon; Rohde, Palle Duun

    -additive genetic mechanisms. These modeling approaches have proven to be highly useful to determine population genetic parameters as well as prediction of genetic risk or value. We present a series of statistical modelling approaches that use prior biological information for evaluating the collective action......Whole-genome sequences and multiple trait phenotypes from large numbers of individuals will soon be available in many populations. Well established statistical modeling approaches enable the genetic analyses of complex trait phenotypes while accounting for a variety of additive and non...... regions and gene ontologies) that provide better model fit and increase predictive ability of the statistical model for this trait....

  6. Genomic dairy cattle breeding

    DEFF Research Database (Denmark)

    Mark, Thomas; Sandøe, Peter

    2010-01-01

    the thoughts of breeders and other stakeholders on how to best make use of genomic breeding in the future. Intensive breeding has played a major role in securing dramatic increases in milk yield since the Second World War. Until recently, the main focus in dairy cattle breeding was on production traits...... it less accountable to the concern of private farmers for the welfare of their animals. It is argued that there is a need to mobilise a wide range of stakeholders to monitor developments and maintain pressure on breeding companies so that they are aware of the need to take precautionary measures to avoid...

  7. Organizational heterogeneity of vertebrate genomes.

    Science.gov (United States)

    Frenkel, Svetlana; Kirzhner, Valery; Korol, Abraham

    2012-01-01

    Genomes of higher eukaryotes are mosaics of segments with various structural, functional, and evolutionary properties. The availability of whole-genome sequences allows the investigation of their structure as "texts" using different statistical and computational methods. One such method, referred to as Compositional Spectra (CS) analysis, is based on scoring the occurrences of fixed-length oligonucleotides (k-mers) in the target DNA sequence. CS analysis allows generating species- or region-specific characteristics of the genome, regardless of their length and the presence of coding DNA. In this study, we consider the heterogeneity of vertebrate genomes as a joint effect of regional variation in sequence organization superimposed on the differences in nucleotide composition. We estimated compositional and organizational heterogeneity of genome and chromosome sequences separately and found that both heterogeneity types vary widely among genomes as well as among chromosomes in all investigated taxonomic groups. The high correspondence of heterogeneity scores obtained on three genome fractions, coding, repetitive, and the remaining part of the noncoding DNA (the genome dark matter--GDM) allows the assumption that CS-heterogeneity may have functional relevance to genome regulation. Of special interest for such interpretation is the fact that natural GDM sequences display the highest deviation from the corresponding reshuffled sequences.

  8. Organizational heterogeneity of vertebrate genomes.

    Directory of Open Access Journals (Sweden)

    Svetlana Frenkel

    Full Text Available Genomes of higher eukaryotes are mosaics of segments with various structural, functional, and evolutionary properties. The availability of whole-genome sequences allows the investigation of their structure as "texts" using different statistical and computational methods. One such method, referred to as Compositional Spectra (CS analysis, is based on scoring the occurrences of fixed-length oligonucleotides (k-mers in the target DNA sequence. CS analysis allows generating species- or region-specific characteristics of the genome, regardless of their length and the presence of coding DNA. In this study, we consider the heterogeneity of vertebrate genomes as a joint effect of regional variation in sequence organization superimposed on the differences in nucleotide composition. We estimated compositional and organizational heterogeneity of genome and chromosome sequences separately and found that both heterogeneity types vary widely among genomes as well as among chromosomes in all investigated taxonomic groups. The high correspondence of heterogeneity scores obtained on three genome fractions, coding, repetitive, and the remaining part of the noncoding DNA (the genome dark matter--GDM allows the assumption that CS-heterogeneity may have functional relevance to genome regulation. Of special interest for such interpretation is the fact that natural GDM sequences display the highest deviation from the corresponding reshuffled sequences.

  9. Genome engineering in Vibrio cholerae

    DEFF Research Database (Denmark)

    Val, Marie-Eve; Skovgaard, Ole; Ducos-Galand, Magaly

    2012-01-01

    Although bacteria with multipartite genomes are prevalent, our knowledge of the mechanisms maintaining their genome is very limited, and much remains to be learned about the structural and functional interrelationships of multiple chromosomes. Owing to its bi-chromosomal genome architecture and its....... This difficulty was surmounted using a unique and powerful strategy based on massive rearrangement of prokaryotic genomes. We developed a site-specific recombination-based engineering tool, which allows targeted, oriented, and reciprocal DNA exchanges. Using this genetic tool, we obtained a panel of V. cholerae...

  10. Genome Writing: Current Progress and Related Applications

    Directory of Open Access Journals (Sweden)

    Yueqiang Wang

    2018-02-01

    Full Text Available The ultimate goal of synthetic biology is to build customized cells or organisms to meet specific industrial or medical needs. The most important part of the customized cell is a synthetic genome. Advanced genomic writing technologies are required to build such an artificial genome. Recently, the partially-completed synthetic yeast genome project represents a milestone in this field. In this mini review, we briefly introduce the techniques for de novo genome synthesis and genome editing. Furthermore, we summarize recent research progresses and highlight several applications in the synthetic genome field. Finally, we discuss current challenges and future prospects. Keywords: Synthetic biology, Genome writing, Genome editing, Bioethics, Biosafety

  11. Comparative genomics of Lactobacillus and other LAB

    DEFF Research Database (Denmark)

    Wassenaar, Trudy M.; Lukjancenko, Oksana

    2014-01-01

    that of the others, with the two Streptococcus species having the shortest genomes. The widest distribution in genome content was observed for Lactobacillus. The number of tRNA and rRNA gene copies varied considerably, with exceptional high numbers observed for Lb. delbrueckii, while these numbers were relatively......The genomes of 66 LABs, belonging to five different genera, were compared for genome size and gene content. The analyzed genomes included 37 Lactobacillus genomes of 17 species, six Lactococcus lactis genomes, four Leuconostoc genomes of three species, six Streptococcus genomes of two species...

  12. The genome of the obligate intracellular parasite Trachipleistophora hominis: new insights into microsporidian genome dynamics and reductive evolution.

    Directory of Open Access Journals (Sweden)

    Eva Heinz

    Full Text Available The dynamics of reductive genome evolution for eukaryotes living inside other eukaryotic cells are poorly understood compared to well-studied model systems involving obligate intracellular bacteria. Here we present 8.5 Mb of sequence from the genome of the microsporidian Trachipleistophora hominis, isolated from an HIV/AIDS patient, which is an outgroup to the smaller compacted-genome species that primarily inform ideas of evolutionary mode for these enormously successful obligate intracellular parasites. Our data provide detailed information on the gene content, genome architecture and intergenic regions of a larger microsporidian genome, while comparative analyses allowed us to infer genomic features and metabolism of the common ancestor of the species investigated. Gene length reduction and massive loss of metabolic capacity in the common ancestor was accompanied by the evolution of novel microsporidian-specific protein families, whose conservation among microsporidians, against a background of reductive evolution, suggests they may have important functions in their parasitic lifestyle. The ancestor had already lost many metabolic pathways but retained glycolysis and the pentose phosphate pathway to provide cytosolic ATP and reduced coenzymes, and it had a minimal mitochondrion (mitosome making Fe-S clusters but not ATP. It possessed bacterial-like nucleotide transport proteins as a key innovation for stealing host-generated ATP, the machinery for RNAi, key elements of the early secretory pathway, canonical eukaryotic as well as microsporidian-specific regulatory elements, a diversity of repetitive and transposable elements, and relatively low average gene density. Microsporidian genome evolution thus appears to have proceeded in at least two major steps: an ancestral remodelling of the proteome upon transition to intracellular parasitism that involved reduction but also selective expansion, followed by a secondary compaction of genome

  13. Genome Update: alignment of bacterial chromosomes

    DEFF Research Database (Denmark)

    Ussery, David; Jensen, Mette; Poulsen, Tine Rugh

    2004-01-01

    There are four new microbial genomes listed in this month's Genome Update, three belonging to Gram-positive bacteria and one belonging to an archaeon that lives at pH 0; all of these genomes are listed in Table 1⇓. The method of genome comparison this month is that of genome alignment and, as an ...

  14. A genome-wide association study of anorexia nervosa suggests a risk locus implicated in dysregulated leptin signaling

    NARCIS (Netherlands)

    Li, Dong; Chang, Xiao; Connolly, John J.; Tian, Lifeng; Liu, Yichuan; Bhoj, Elizabeth J.; Robinson, Nora; Abrams, Debra; Li, Yun R.; Bradfield, Jonathan P.; Kim, Cecilia E.; Li, Jin; Wang, Fengxiang; Snyder, James; Lemma, Maria; Hou, Cuiping; Wei, Zhi; Guo, Yiran; Qiu, Haijun; Mentch, Frank D.; Thomas, Kelly A.; Chiavacci, Rosetta M.; Cone, Roger; Li, Bingshan; Sleiman, Patrick A.; Hakonarson, Hakon; Perica, Vesna Boraska; Franklin, Christopher S.; Floyd, James A.B.; Thornton, Laura M.; Huckins, Laura M.; Southam, Lorraine; Rayner, William N; Tachmazidou, Ioanna; Schmidt, Ulrike; Tozzi, Federica; Kiezebrink, Kirsty; Hebebrand, Johannes; Gorwood, Philip; Adan, Roger A.H.; Kas, Martien J.H.; Favaro, Angela; Santonastaso, Paolo; Fernánde-Aranda, Fernando; Gratacos, Monica; Rybakowski, Filip; Dmitrzak-Weglarz, Monika; Kaprio, Jaakko; Keski-Rahkonen, Anna; Raevuori-Helkamaa, Anu; Furth, Eric F.Van; Slof-Opt Landt, Margarita C.T.; Hudson, James I.; Reichborn-Kjennerud, Ted; Knudsen, Gun Peggy S.; Monteleone, Palmiero; Karwautz, Andreas; Berrettini, Wade H.; Schork, Nicholas J.; Ando, Tetsuya; Inoko, Hidetoshi; Esko, Toñu; Fischer, Krista; Männik, Katrin; Metspalu, Andres; Baker, Jessica H.; DeSocio, Janiece E.; Hilliard, Christopher E.; O'Toole, Julie K.; Pantel, Jacques; Szatkiewicz, Jin P.; Zerwas, Stephanie; Davis, Oliver S P; Helder, Sietske; Bühren, Katharina; Burghardt, Roland; De Zwaan, Martina; Egberts, Karin; Ehrlich, Stefan; Herpertz-Dahlmann, Beate; Herzog, Wolfgang; Imgart, Hartmut; Scherag, André; Zipfel, Stephan; Boni, Claudette; Ramoz, Nicolas; Versini, Audrey; Danner, Unna N.; Hendriks, Judith; Koeleman, Bobby P.C.; Ophoff, Roel A.; Strengman, Eric; van Elburg, Annemarie A.; Bruson, Alice; Clementi, Maurizio; Degortes, Daniela; Forzan, Monica; Tenconi, Elena; Docampo, Elisa; Escaramís, Geòrgia; Jiménez-Murcia, Susana; Lissowska, Jolanta; Rajewski, Andrzej; Szeszenia-Dabrowska, Neonila; Slopien, Agnieszka; Hauser, Joanna; Karhunen, Leila; Meulenbelt, Ingrid; Slagboom, P. Eline; Tortorella, Alfonso; Maj, Mario; Dedoussis, George; DIkeos, DImitris; Gonidakis, Fragiskos; Tziouvas, Konstantinos; Tsitsika, Artemis; Papezova, Hana; Slachtova, Lenka; Martaskova, Debora; Kennedy, James L.; Levitan, Robert D.; Yilmaz, Zeynep; Huemer, Julia; Koubek, Doris; Merl, Elisabeth; Wagner, Gudrun; Lichtenstein, Paul; Breen, Gerome; Cohen-Woods, Sarah; Farmer, Anne; McGuffin, Peter; Cichon, Sven; Giegling, Ina; Herms, Stefan; Rujescu, Dan; Schreiber, Stefan; Wichmann, H-Erich; Dina, Christian; Sladek, Rob; Gambaro, Giovanni; Soranzo, Nicole; Julia, Antonio; Marsal, Sara; Rabionet, Raquel; Gaborieau, Valerie; DIck, Danielle M.; Palotie, Aarno; Ripatti, Samuli; Widén, Elisabeth; Andreassen, Ole A.; Espeseth, Thomas; Lundervold, Astri J; Reinvang, Ivar; Steen, Vidar M.; Le Hellard, Stephanie; Mattingsdal, Morten; Ntalla, Ioanna; Bencko, Vladimir; Foretova, Lenka; Janout, Vladimir; Navratilova, Marie; Gallinger, Steven; Pinto, Dalila; Scherer, Stephen W.; Aschauer, Harald; Carlberg, Laura; Schosser, Alexandra; Alfredsson, Lars; Ding, Bo; Klareskog, Lars; Padyukov, Leonid; Finan, Chris; Kalsi, Gursharan; Roberts, Marion; Barrett, Jeff C.; Estivill, Xavier; Hinney, Anke; Sullivan, Patrick F; Zeggini, Eleftheria; Bulik, Cynthia M.; Brandt, Harry; Crawford, Steve; Crow, Scott; Fichter, Manfred M.; Halmi, Katherine A.; Johnson, Craig; Kaplan, Allan S.; La Via, Maria C.; Mitchell, James R.; Strober, Michael; Rotondo, Alessandro; Treasure, Janet; Woodside, D. Blake; Keel, Pamela K.; Klump, Kelly L.; Lilenfeld, Lisa; Bergen, Andrew W.; Kaye, Walter; Magistretti, Pierre

    2017-01-01

    We conducted a genome-wide association study (GWAS) of anorexia nervosa (AN) using a stringently defined phenotype. Analysis of phenotypic variability led to the identification of a specific genetic risk factor that approached genome-wide significance (rs929626 in EBF1 (Early B-Cell Factor 1); P =

  15. Insights into structural variations and genome rearrangements in prokaryotic genomes.

    Science.gov (United States)

    Periwal, Vinita; Scaria, Vinod

    2015-01-01

    Structural variations (SVs) are genomic rearrangements that affect fairly large fragments of DNA. Most of the SVs such as inversions, deletions and translocations have been largely studied in context of genetic diseases in eukaryotes. However, recent studies demonstrate that genome rearrangements can also have profound impact on prokaryotic genomes, leading to altered cell phenotype. In contrast to single-nucleotide variations, SVs provide a much deeper insight into organization of bacterial genomes at a much better resolution. SVs can confer change in gene copy number, creation of new genes, altered gene expression and many other functional consequences. High-throughput technologies have now made it possible to explore SVs at a much refined resolution in bacterial genomes. Through this review, we aim to highlight the importance of the less explored field of SVs in prokaryotic genomes and their impact. We also discuss its potential applicability in the emerging fields of synthetic biology and genome engineering where targeted SVs could serve to create sophisticated and accurate genome editing. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  16. Comparative genomics reveals insights into avian genome evolution and adaptation

    DEFF Research Database (Denmark)

    Zhang, Guojie; Li, Cai; Li, Qiye

    2014-01-01

    Birds are the most species-rich class of tetrapod vertebrates and have wide relevance across many research fields. We explored bird macroevolution using full genomes from 48 avian species representing all major extant clades. The avian genome is principally characterized by its constrained size, ...

  17. Navigating the Interface Between Landscape Genetics and Landscape Genomics

    Directory of Open Access Journals (Sweden)

    Andrew Storfer

    2018-03-01

    Full Text Available As next-generation sequencing data become increasingly available for non-model organisms, a shift has occurred in the focus of studies of the geographic distribution of genetic variation. Whereas landscape genetics studies primarily focus on testing the effects of landscape variables on gene flow and genetic population structure, landscape genomics studies focus on detecting candidate genes under selection that indicate possible local adaptation. Navigating the transition between landscape genomics and landscape genetics can be challenging. The number of molecular markers analyzed has shifted from what used to be a few dozen loci to thousands of loci and even full genomes. Although genome scale data can be separated into sets of neutral loci for analyses of gene flow and population structure and putative loci under selection for inference of local adaptation, there are inherent differences in the questions that are addressed in the two study frameworks. We discuss these differences and their implications for study design, marker choice and downstream analysis methods. Similar to the rapid proliferation of analysis methods in the early development of landscape genetics, new analytical methods for detection of selection in landscape genomics studies are burgeoning. We focus on genome scan methods for detection of selection, and in particular, outlier differentiation methods and genetic-environment association tests because they are the most widely used. Use of genome scan methods requires an understanding of the potential mismatches between the biology of a species and assumptions inherent in analytical methods used, which can lead to high false positive rates of detected loci under selection. Key to choosing appropriate genome scan methods is an understanding of the underlying demographic structure of study populations, and such data can be obtained using neutral loci from the generated genome-wide data or prior knowledge of a species

  18. The Amphimedon queenslandica genome and the evolution of animal complexity

    Energy Technology Data Exchange (ETDEWEB)

    Srivastava, Mansi; Simakov, Oleg; Chapman, Jarrod; Fahey, Bryony; Gauthier, Marie E.A.; Mitros, Therese; Richards, Gemma S.; Conaco, Cecilia; Dacre, Michael; Hellsten, Uffe; Larroux, Claire; Putnam, Nicholas H.; Stanke, Mario; Adamska, Maja; Darling, Aaron; Degnan, Sandie M.; Oakley, Todd H.; Plachetzki, David C.; Zhai, Yufeng; Adamski, Marcin; Calcino, Andrew; Cummins, Scott F.; Goodstein, David M.; Harris, Christina; Jackson, Daniel J.; Leys, Sally P.; Shu, Shengqiang; Woodcroft, Ben J.; Vervoort, Michel; Kosik, Kenneth S.; Manning, Gerard; Degnan, Bernard M.; Rokhsar, Daniel S.

    2010-07-01

    Sponges are an ancient group of animals that diverged from other metazoans over 600 million years ago. Here we present the draft genome sequence of Amphimedon queenslandica, a demosponge from the Great Barrier Reef, and show that it is remarkably similar to other animal genomes in content, structure and organization. Comparative analysis enabled by the sponge sequence reveals genomic events linked to the origin and early evolution of animals, including the appearance, expansion, and diversification of pan-metazoan transcription factor, signaling pathway, and structural genes. This diverse 'toolkit' of genes correlates with critical aspects of all metazoan body plans, and comprises cell cycle control and growth, development, somatic and germ cell specification, cell adhesion, innate immunity, and allorecognition. Notably, many of the genes associated with the emergence of animals are also implicated in cancer, which arises from defects in basic processes associated with metazoan multicellularity.

  19. Pre-genomic, genomic and post-genomic study of microbial communities involved in bioenergy.

    Science.gov (United States)

    Rittmann, Bruce E; Krajmalnik-Brown, Rosa; Halden, Rolf U

    2008-08-01

    Microorganisms can produce renewable energy in large quantities and without damaging the environment or disrupting food supply. The microbial communities must be robust and self-stabilizing, and their essential syntrophies must be managed. Pre-genomic, genomic and post-genomic tools can provide crucial information about the structure and function of these microbial communities. Applying these tools will help accelerate the rate at which microbial bioenergy processes move from intriguing science to real-world practice.

  20. Genomic instability and radiation

    Energy Technology Data Exchange (ETDEWEB)

    Little, John B [Harvard School of Public Health, Boston, MA 02115 (United States)

    2003-06-01

    Genomic instability is a hallmark of cancer cells, and is thought to be involved in the process of carcinogenesis. Indeed, a number of rare genetic disorders associated with a predisposition to cancer are characterised by genomic instability occurring in somatic cells. Of particular interest is the observation that transmissible instability can be induced in somatic cells from normal individuals by exposure to ionising radiation, leading to a persistent enhancement in the rate at which mutations and chromosomal aberrations arise in the progeny of the irradiated cells after many generations of replication. If such induced instability is involved in radiation carcinogenesis, it would imply that the initial carcinogenic event may not be a rare mutation occurring in a specific gene or set of genes. Rather, radiation may induce a process of instability in many cells in a population, enhancing the rate at which the multiple gene mutations necessary for the development of cancer may arise in a given cell lineage. Furthermore, radiation could act at any stage in the development of cancer by facilitating the accumulation of the remaining genetic events required to produce a fully malignant tumour. The experimental evidence for such induced instability is reviewed. (review)

  1. Genomic instability and radiation

    International Nuclear Information System (INIS)

    Little, John B

    2003-01-01

    Genomic instability is a hallmark of cancer cells, and is thought to be involved in the process of carcinogenesis. Indeed, a number of rare genetic disorders associated with a predisposition to cancer are characterised by genomic instability occurring in somatic cells. Of particular interest is the observation that transmissible instability can be induced in somatic cells from normal individuals by exposure to ionising radiation, leading to a persistent enhancement in the rate at which mutations and chromosomal aberrations arise in the progeny of the irradiated cells after many generations of replication. If such induced instability is involved in radiation carcinogenesis, it would imply that the initial carcinogenic event may not be a rare mutation occurring in a specific gene or set of genes. Rather, radiation may induce a process of instability in many cells in a population, enhancing the rate at which the multiple gene mutations necessary for the development of cancer may arise in a given cell lineage. Furthermore, radiation could act at any stage in the development of cancer by facilitating the accumulation of the remaining genetic events required to produce a fully malignant tumour. The experimental evidence for such induced instability is reviewed. (review)

  2. Theory of microbial genome evolution

    Science.gov (United States)

    Koonin, Eugene

    Bacteria and archaea have small genomes tightly packed with protein-coding genes. This compactness is commonly perceived as evidence of adaptive genome streamlining caused by strong purifying selection in large microbial populations. In such populations, even the small cost incurred by nonfunctional DNA because of extra energy and time expenditure is thought to be sufficient for this extra genetic material to be eliminated by selection. However, contrary to the predictions of this model, there exists a consistent, positive correlation between the strength of selection at the protein sequence level, measured as the ratio of nonsynonymous to synonymous substitution rates, and microbial genome size. By fitting the genome size distributions in multiple groups of prokaryotes to predictions of mathematical models of population evolution, we show that only models in which acquisition of additional genes is, on average, slightly beneficial yield a good fit to genomic data. Thus, the number of genes in prokaryotic genomes seems to reflect the equilibrium between the benefit of additional genes that diminishes as the genome grows and deletion bias. New genes acquired by microbial genomes, on average, appear to be adaptive. Evolution of bacterial and archaeal genomes involves extensive horizontal gene transfer and gene loss. Many microbes have open pangenomes, where each newly sequenced genome contains more than 10% `ORFans', genes without detectable homologues in other species. A simple, steady-state evolutionary model reveals two sharply distinct classes of microbial genes, one of which (ORFans) is characterized by effectively instantaneous gene replacement, whereas the other consists of genes with finite, distributed replacement rates. These findings imply a conservative estimate of at least a billion distinct genes in the prokaryotic genomic universe.

  3. Genomic selection: genome-wide prediction in plant improvement.

    Science.gov (United States)

    Desta, Zeratsion Abera; Ortiz, Rodomiro

    2014-09-01

    Association analysis is used to measure relations between markers and quantitative trait loci (QTL). Their estimation ignores genes with small effects that trigger underpinning quantitative traits. By contrast, genome-wide selection estimates marker effects across the whole genome on the target population based on a prediction model developed in the training population (TP). Whole-genome prediction models estimate all marker effects in all loci and capture small QTL effects. Here, we review several genomic selection (GS) models with respect to both the prediction accuracy and genetic gain from selection. Phenotypic selection or marker-assisted breeding protocols can be replaced by selection, based on whole-genome predictions in which phenotyping updates the model to build up the prediction accuracy. Copyright © 2014 Elsevier Ltd. All rights reserved.

  4. Parasite Genome Projects and the Trypanosoma cruzi Genome Initiative

    Directory of Open Access Journals (Sweden)

    Wim Degrave

    1997-11-01

    Full Text Available Since the start of the human genome project, a great number of genome projects on other "model" organism have been initiated, some of them already completed. Several initiatives have also been started on parasite genomes, mainly through support from WHO/TDR, involving North-South and South-South collaborations, and great hopes are vested in that these initiatives will lead to new tools for disease control and prevention, as well as to the establishment of genomic research technology in developing countries. The Trypanosoma cruzi genome project, using the clone CL-Brener as starting point, has made considerable progress through the concerted action of more than 20 laboratories, most of them in the South. A brief overview of the current state of the project is given

  5. A Taste of Algal Genomes from the Joint Genome Institute

    Energy Technology Data Exchange (ETDEWEB)

    Kuo, Alan; Grigoriev, Igor

    2012-06-17

    Algae play profound roles in aquatic food chains and the carbon cycle, can impose health and economic costs through toxic blooms, provide models for the study of symbiosis, photosynthesis, and eukaryotic evolution, and are candidate sources for bio-fuels; all of these research areas are part of the mission of DOE's Joint Genome Institute (JGI). To date JGI has sequenced, assembled, annotated, and released to the public the genomes of 18 species and strains of algae, sampling almost all of the major clades of photosynthetic eukaryotes. With more algal genomes currently undergoing analysis, JGI continues its commitment to driving forward basic and applied algal science. Among these ongoing projects are the pan-genome of the dominant coccolithophore Emiliania huxleyi, the interrelationships between the 4 genomes in the nucleomorph-containing Bigelowiella natans and Guillardia theta, and the search for symbiosis genes of lichens.

  6. OryzaGenome: Genome Diversity Database of Wild Oryza Species

    KAUST Repository

    Ohyanagi, Hajime

    2015-11-18

    The species in the genus Oryza, encompassing nine genome types and 23 species, are a rich genetic resource and may have applications in deeper genomic analyses aiming to understand the evolution of plant genomes. With the advancement of next-generation sequencing (NGS) technology, a flood of Oryza species reference genomes and genomic variation information has become available in recent years. This genomic information, combined with the comprehensive phenotypic information that we are accumulating in our Oryzabase, can serve as an excellent genotype-phenotype association resource for analyzing rice functional and structural evolution, and the associated diversity of the Oryza genus. Here we integrate our previous and future phenotypic/habitat information and newly determined genotype information into a united repository, named OryzaGenome, providing the variant information with hyperlinks to Oryzabase. The current version of OryzaGenome includes genotype information of 446 O. rufipogon accessions derived by imputation and of 17 accessions derived by imputation-free deep sequencing. Two variant viewers are implemented: SNP Viewer as a conventional genome browser interface and Variant Table as a textbased browser for precise inspection of each variant one by one. Portable VCF (variant call format) file or tabdelimited file download is also available. Following these SNP (single nucleotide polymorphism) data, reference pseudomolecules/ scaffolds/contigs and genome-wide variation information for almost all of the closely and distantly related wild Oryza species from the NIG Wild Rice Collection will be available in future releases. All of the resources can be accessed through http://viewer.shigen.info/oryzagenome/.

  7. Genomic networks of hybrid sterility.

    Directory of Open Access Journals (Sweden)

    Leslie M Turner

    2014-02-01

    Full Text Available Hybrid dysfunction, a common feature of reproductive barriers between species, is often caused by negative epistasis between loci ("Dobzhansky-Muller incompatibilities". The nature and complexity of hybrid incompatibilities remain poorly understood because identifying interacting loci that affect complex phenotypes is difficult. With subspecies in the early stages of speciation, an array of genetic tools, and detailed knowledge of reproductive biology, house mice (Mus musculus provide a model system for dissecting hybrid incompatibilities. Male hybrids between M. musculus subspecies often show reduced fertility. Previous studies identified loci and several X chromosome-autosome interactions that contribute to sterility. To characterize the genetic basis of hybrid sterility in detail, we used a systems genetics approach, integrating mapping of gene expression traits with sterility phenotypes and QTL. We measured genome-wide testis expression in 305 male F2s from a cross between wild-derived inbred strains of M. musculus musculus and M. m. domesticus. We identified several thousand cis- and trans-acting QTL contributing to expression variation (eQTL. Many trans eQTL cluster into eleven 'hotspots,' seven of which co-localize with QTL for sterility phenotypes identified in the cross. The number and clustering of trans eQTL-but not cis eQTL-were substantially lower when mapping was restricted to a 'fertile' subset of mice, providing evidence that trans eQTL hotspots are related to sterility. Functional annotation of transcripts with eQTL provides insights into the biological processes disrupted by sterility loci and guides prioritization of candidate genes. Using a conditional mapping approach, we identified eQTL dependent on interactions between loci, revealing a complex system of epistasis. Our results illuminate established patterns, including the role of the X chromosome in hybrid sterility. The integrated mapping approach we employed is

  8. Genomic networks of hybrid sterility.

    Science.gov (United States)

    Turner, Leslie M; White, Michael A; Tautz, Diethard; Payseur, Bret A

    2014-02-01

    Hybrid dysfunction, a common feature of reproductive barriers between species, is often caused by negative epistasis between loci ("Dobzhansky-Muller incompatibilities"). The nature and complexity of hybrid incompatibilities remain poorly understood because identifying interacting loci that affect complex phenotypes is difficult. With subspecies in the early stages of speciation, an array of genetic tools, and detailed knowledge of reproductive biology, house mice (Mus musculus) provide a model system for dissecting hybrid incompatibilities. Male hybrids between M. musculus subspecies often show reduced fertility. Previous studies identified loci and several X chromosome-autosome interactions that contribute to sterility. To characterize the genetic basis of hybrid sterility in detail, we used a systems genetics approach, integrating mapping of gene expression traits with sterility phenotypes and QTL. We measured genome-wide testis expression in 305 male F2s from a cross between wild-derived inbred strains of M. musculus musculus and M. m. domesticus. We identified several thousand cis- and trans-acting QTL contributing to expression variation (eQTL). Many trans eQTL cluster into eleven 'hotspots,' seven of which co-localize with QTL for sterility phenotypes identified in the cross. The number and clustering of trans eQTL-but not cis eQTL-were substantially lower when mapping was restricted to a 'fertile' subset of mice, providing evidence that trans eQTL hotspots are related to sterility. Functional annotation of transcripts with eQTL provides insights into the biological processes disrupted by sterility loci and guides prioritization of candidate genes. Using a conditional mapping approach, we identified eQTL dependent on interactions between loci, revealing a complex system of epistasis. Our results illuminate established patterns, including the role of the X chromosome in hybrid sterility. The integrated mapping approach we employed is applicable in a broad

  9. Functional genomics in renal transplantation and chronic kidney disease

    International Nuclear Information System (INIS)

    Wilflingseder, J.

    2010-01-01

    For the past decade, the development of genomic technology has revolutionized modern biological research. Functional genomic analyses enable biologists to study genetic events on a genome wide scale. Examples of applications are gene discovery, biomarker determination, disease classification, and drug target identification. Global expression profiles performed with microarrays enable a better understanding of molecular signature of human disease, including acute and chronic kidney disease. About 10 % of the population in western industrialized nations suffers from chronic kidney disease (CKD). Treatment of end stage renal disease, the final stage of CKD is performed by either hemo- or peritoneal dialysis or renal transplantation. The preferred treatment is renal transplantation, because of the higher quality of life. But the pathophysiology of the disease on a molecular level is not well enough understood and early biomarkers for acute and chronic kidney disease are missing. In my studies I focused on genomics of allograft biopsies, prevention of delayed graft function after renal transplantation, anemia after renal transplantation, biocompatibility of hemodialysis membranes and peritoneal dialysis fluids and cardiovascular diseases and bone disorders in CKD patients. Gene expression profiles, pathway analysis and protein-protein interaction networks were used to elucidate the underlying pathophysiological mechanism of the disease or phenomena, identifying early biomarkers or predictors of disease state and potentially drug targets. In summery my PhD thesis represents the application of functional genomic analyses in chronic kidney disease and renal transplantation. The results provide a deeper view into the molecular and cellular mechanisms of kidney disease. Nevertheless, future multicenter collaborative studies, meta-analyses of existing data, incorporation of functional genomics into large-scale prospective clinical trials are needed and will give biomedical

  10. Early evolution without a tree of life.

    Science.gov (United States)

    Martin, William F

    2011-06-30

    Life is a chemical reaction. Three major transitions in early evolution are considered without recourse to a tree of life. The origin of prokaryotes required a steady supply of energy and electrons, probably in the form of molecular hydrogen stemming from serpentinization. Microbial genome evolution is not a treelike process because of lateral gene transfer and the endosymbiotic origins of organelles. The lack of true intermediates in the prokaryote-to-eukaryote transition has a bioenergetic cause.

  11. Genomic analysis of Xenopus organizer function

    Directory of Open Access Journals (Sweden)

    Suhai Sándor

    2006-06-01

    Full Text Available Abstract Background Studies of the Xenopus organizer have laid the foundation for our understanding of the conserved signaling pathways that pattern vertebrate embryos during gastrulation. The two primary activities of the organizer, BMP and Wnt inhibition, can regulate a spectrum of genes that pattern essentially all aspects of the embryo during gastrulation. As our knowledge of organizer signaling grows, it is imperative that we begin knitting together our gene-level knowledge into genome-level signaling models. The goal of this paper was to identify complete lists of genes regulated by different aspects of organizer signaling, thereby providing a deeper understanding of the genomic mechanisms that underlie these complex and fundamental signaling events. Results To this end, we ectopically overexpress Noggin and Dkk-1, inhibitors of the BMP and Wnt pathways, respectively, within ventral tissues. After isolating embryonic ventral halves at early and late gastrulation, we analyze the transcriptional response to these molecules within the generated ectopic organizers using oligonucleotide microarrays. An efficient statistical analysis scheme, combined with a new Gene Ontology biological process annotation of the Xenopus genome, allows reliable and faithful clustering of molecules based upon their roles during gastrulation. From this data, we identify new organizer-related expression patterns for 19 genes. Moreover, our data sub-divides organizer genes into separate head and trunk organizing groups, which each show distinct responses to Noggin and Dkk-1 activity during gastrulation. Conclusion Our data provides a genomic view of the cohorts of genes that respond to Noggin and Dkk-1 activity, allowing us to separate the role of each in organizer function. These patterns demonstrate a model where BMP inhibition plays a largely inductive role during early developmental stages, thereby initiating the suites of genes needed to pattern dorsal tissues

  12. Overview of the creative genome: effects of genome structure and sequence on the generation of variation and evolution.

    Science.gov (United States)

    Caporale, Lynn Helena

    2012-09-01

    This overview of a special issue of Annals of the New York Academy of Sciences discusses uneven distribution of distinct types of variation across the genome, the dependence of specific types of variation upon distinct classes of DNA sequences and/or the induction of specific proteins, the circumstances in which distinct variation-generating systems are activated, and the implications of this work for our understanding of evolution and of cancer. Also discussed is the value of non text-based computational methods for analyzing information carried by DNA, early insights into organizational frameworks that affect genome behavior, and implications of this work for comparative genomics. © 2012 New York Academy of Sciences.

  13. A haplotype map of genomic variations and genome-wide association studies of agronomic traits in foxtail millet (Setaria italica).

    Science.gov (United States)

    Jia, Guanqing; Huang, Xuehui; Zhi, Hui; Zhao, Yan; Zhao, Qiang; Li, Wenjun; Chai, Yang; Yang, Lifang; Liu, Kunyan; Lu, Hengyun; Zhu, Chuanrang; Lu, Yiqi; Zhou, Congcong; Fan, Danlin; Weng, Qijun; Guo, Yunli; Huang, Tao; Zhang, Lei; Lu, Tingting; Feng, Qi; Hao, Hangfei; Liu, Hongkuan; Lu, Ping; Zhang, Ning; Li, Yuhui; Guo, Erhu; Wang, Shujun; Wang, Suying; Liu, Jinrong; Zhang, Wenfei; Chen, Guoqiu; Zhang, Baojin; Li, Wei; Wang, Yongfang; Li, Haiquan; Zhao, Baohua; Li, Jiayang; Diao, Xianmin; Han, Bin

    2013-08-01

    Foxtail millet (Setaria italica) is an important grain crop that is grown in arid regions. Here we sequenced 916 diverse foxtail millet varieties, identified 2.58 million SNPs and used 0.8 million common SNPs to construct a haplotype map of the foxtail millet genome. We classified the foxtail millet varieties into two divergent groups that are strongly correlated with early and late flowering times. We phenotyped the 916 varieties under five different environments and identified 512 loci associated with 47 agronomic traits by genome-wide association studies. We performed a de novo assembly of deeply sequenced genomes of a Setaria viridis accession (the wild progenitor of S. italica) and an S. italica variety and identified complex interspecies and intraspecies variants. We also identified 36 selective sweeps that seem to have occurred during modern breeding. This study provides fundamental resources for genetics research and genetic improvement in foxtail millet.

  14. Cocoa/Cotton Comparative Genomics

    Science.gov (United States)

    With genome sequence from two members of the Malvaceae family recently made available, we are exploring syntenic relationships, gene content, and evolutionary trajectories between the cacao and cotton genomes. An assembly of cacao (Theobroma cacao) using Illumina and 454 sequence technology yielded ...

  15. Genomic selection in dairy cattle

    NARCIS (Netherlands)

    Roos, de A.P.W.

    2011-01-01

    The objectives of this Ph.D. thesis were (1) to optimise genomic selection in dairy cattle with respect to the accuracy of predicting total genetic merit and (2) to optimise a dairy cattle breeding program using genomic selection. The study was performed using a combination of real data sets and

  16. Cloud computing for comparative genomics

    Directory of Open Access Journals (Sweden)

    Pivovarov Rimma

    2010-05-01

    Full Text Available Abstract Background Large comparative genomics studies and tools are becoming increasingly more compute-expensive as the number of available genome sequences continues to rise. The capacity and cost of local computing infrastructures are likely to become prohibitive with the increase, especially as the breadth of questions continues to rise. Alternative computing architectures, in particular cloud computing environments, may help alleviate this increasing pressure and enable fast, large-scale, and cost-effective comparative genomics strategies going forward. To test this, we redesigned a typical comparative genomics algorithm, the reciprocal smallest distance algorithm (RSD, to run within Amazon's Elastic Computing Cloud (EC2. We then employed the RSD-cloud for ortholog calculations across a wide selection of fully sequenced genomes. Results We ran more than 300,000 RSD-cloud processes within the EC2. These jobs were farmed simultaneously to 100 high capacity compute nodes using the Amazon Web Service Elastic Map Reduce and included a wide mix of large and small genomes. The total computation time took just under 70 hours and cost a total of $6,302 USD. Conclusions The effort to transform existing comparative genomics algorithms from local compute infrastructures is not trivial. However, the speed and flexibility of cloud computing environments provides a substantial boost with manageable cost. The procedure designed to transform the RSD algorithm into a cloud-ready application is readily adaptable to similar comparative genomics problems.

  17. Cloud computing for comparative genomics.

    Science.gov (United States)

    Wall, Dennis P; Kudtarkar, Parul; Fusaro, Vincent A; Pivovarov, Rimma; Patil, Prasad; Tonellato, Peter J

    2010-05-18

    Large comparative genomics studies and tools are becoming increasingly more compute-expensive as the number of available genome sequences continues to rise. The capacity and cost of local computing infrastructures are likely to become prohibitive with the increase, especially as the breadth of questions continues to rise. Alternative computing architectures, in particular cloud computing environments, may help alleviate this increasing pressure and enable fast, large-scale, and cost-effective comparative genomics strategies going forward. To test this, we redesigned a typical comparative genomics algorithm, the reciprocal smallest distance algorithm (RSD), to run within Amazon's Elastic Computing Cloud (EC2). We then employed the RSD-cloud for ortholog calculations across a wide selection of fully sequenced genomes. We ran more than 300,000 RSD-cloud processes within the EC2. These jobs were farmed simultaneously to 100 high capacity compute nodes using the Amazon Web Service Elastic Map Reduce and included a wide mix of large and small genomes. The total computation time took just under 70 hours and cost a total of $6,302 USD. The effort to transform existing comparative genomics algorithms from local compute infrastructures is not trivial. However, the speed and flexibility of cloud computing environments provides a substantial boost with manageable cost. The procedure designed to transform the RSD algorithm into a cloud-ready application is readily adaptable to similar comparative genomics problems.

  18. The promise of insect genomics

    DEFF Research Database (Denmark)

    Grimmelikhuijzen, Cornelis J P; Cazzamali, Giuseppe; Williamson, Michael

    2007-01-01

    Insects are the largest animal group in the world and are ecologically and economically extremely important. This importance of insects is reflected by the existence of currently 24 insect genome projects. Our perspective discusses the state-of-the-art of these genome projects and the impacts...

  19. Bioinformatics of genomic association mapping

    NARCIS (Netherlands)

    Vaez Barzani, Ahmad

    2015-01-01

    In this thesis we present an overview of bioinformatics-based approaches for genomic association mapping, with emphasis on human quantitative traits and their contribution to complex diseases. We aim to provide a comprehensive walk-through of the classic steps of genomic association mapping

  20. Insights into Modern Human Prehistory Using Ancient Genomes.

    Science.gov (United States)

    Yang, Melinda A; Fu, Qiaomei

    2018-03-01

    The genetic relationship of past modern humans to today's populations and each other was largely unknown until recently, when advances in ancient DNA sequencing allowed for unprecedented analysis of the genomes of these early people. These ancient genomes reveal new insights into human prehistory not always observed studying present-day populations, including greater details on the genetic diversity, population structure, and gene flow that characterized past human populations, particularly in early Eurasia, as well as increased insight on the relationship between archaic and modern humans. Here, we review genetic studies on ∼45000- to 7500-year-old individuals associated with mainly preagricultural cultures found in Eurasia, the Americas, and Africa. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. 78 FR 5816 - Guidance for Industry on Clinical Pharmacogenomics: Premarket Evaluation in Early-Phase Clinical...

    Science.gov (United States)

    2013-01-28

    .... The guidance provides recommendations on when and how genomic principles should be considered and... recommendations on when and how genomic principles should be considered and applied in early-phase clinical... the larger, later adequate, and well-controlled trials (phase 3) that are needed to support marketing...

  2. Allele coding in genomic evaluation

    DEFF Research Database (Denmark)

    Standen, Ismo; Christensen, Ole Fredslund

    2011-01-01

    Genomic data are used in animal breeding to assist genetic evaluation. Several models to estimate genomic breeding values have been studied. In general, two approaches have been used. One approach estimates the marker effects first and then, genomic breeding values are obtained by summing marker...... effects. In the second approach, genomic breeding values are estimated directly using an equivalent model with a genomic relationship matrix. Allele coding is the method chosen to assign values to the regression coefficients in the statistical model. A common allele coding is zero for the homozygous...... genotype of the first allele, one for the heterozygote, and two for the homozygous genotype for the other allele. Another common allele coding changes these regression coefficients by subtracting a value from each marker such that the mean of regression coefficients is zero within each marker. We call...

  3. Pathophysiology of MDS: genomic aberrations.

    Science.gov (United States)

    Ichikawa, Motoshi

    2016-01-01

    Myelodysplastic syndromes (MDS) are characterized by clonal proliferation of hematopoietic stem/progenitor cells and their apoptosis, and show a propensity to progress to acute myelogenous leukemia (AML). Although MDS are recognized as neoplastic diseases caused by genomic aberrations of hematopoietic cells, the details of the genetic abnormalities underlying disease development have not as yet been fully elucidated due to difficulties in analyzing chromosomal abnormalities. Recent advances in comprehensive analyses of disease genomes including whole-genome sequencing technologies have revealed the genomic abnormalities in MDS. Surprisingly, gene mutations were found in approximately 80-90% of cases with MDS, and the novel mutations discovered with these technologies included previously unknown, MDS-specific, mutations such as those of the genes in the RNA-splicing machinery. It is anticipated that these recent studies will shed new light on the pathophysiology of MDS due to genomic aberrations.

  4. Chemical biology on the genome.

    Science.gov (United States)

    Balasubramanian, Shankar

    2014-08-15

    In this article I discuss studies towards understanding the structure and function of DNA in the context of genomes from the perspective of a chemist. The first area I describe concerns the studies that led to the invention and subsequent development of a method for sequencing DNA on a genome scale at high speed and low cost, now known as Solexa/Illumina sequencing. The second theme will feature the four-stranded DNA structure known as a G-quadruplex with a focus on its fundamental properties, its presence in cellular genomic DNA and the prospects for targeting such a structure in cels with small molecules. The final topic for discussion is naturally occurring chemically modified DNA bases with an emphasis on chemistry for decoding (or sequencing) such modifications in genomic DNA. The genome is a fruitful topic to be further elucidated by the creation and application of chemical approaches. Copyright © 2014 Elsevier Ltd. All rights reserved.

  5. IMA Genome-F 5G

    OpenAIRE

    Wingfield, Brenda D.; Barnes, Irene; Wilhelm de Beer, Z.; De Vos, Lieschen; Duong, Tuan A.; Kanzi, Aquillah M.; Naidoo, Kershney; Nguyen, Hai D.T.; Santana, Quentin C.; Sayari, Mohammad; Seifert, Keith A.; Steenkamp, Emma T.; Trollip, Conrad; van der Merwe, Nicolaas A.; van der Nest, Magriet A.

    2015-01-01

    The genomes of Ceratocystis eucalypticola, Chrysoporthe cubensis, Chrysoporthe deuterocubensis, Davidsoniella virescens, Fusarium temperatum, Graphilbum fragrans, Penicillium nordicum and Thielaviopsis musarum are presented in this genome announcement. These seven genomes are from plant pathogens and otherwise economically important fungal species. The genome sizes range from 28 Mb in the case of T. musarum to 45 Mb for Fusarium temperatum. These genomes include the first reports of genomes f...

  6. [Preface for genome editing special issue].

    Science.gov (United States)

    Gu, Feng; Gao, Caixia

    2017-10-25

    Genome editing technology, as an innovative biotechnology, has been widely used for editing the genome from model organisms, animals, plants and microbes. CRISPR/Cas9-based genome editing technology shows its great value and potential in the dissection of functional genomics, improved breeding and genetic disease treatment. In the present special issue, the principle and application of genome editing techniques has been summarized. The advantages and disadvantages of the current genome editing technology and future prospects would also be highlighted.

  7. The mitochondrial genomes of the acoelomorph worms Paratomella rubra, Isodiametra pulchra and Archaphanostoma ylvae.

    Science.gov (United States)

    Robertson, Helen E; Lapraz, François; Egger, Bernhard; Telford, Maximilian J; Schiffer, Philipp H

    2017-05-12

    Acoels are small, ubiquitous - but understudied - marine worms with a very simple body plan. Their internal phylogeny is still not fully resolved, and the position of their proposed phylum Xenacoelomorpha remains debated. Here we describe mitochondrial genome sequences from the acoels Paratomella rubra and Isodiametra pulchra, and the complete mitochondrial genome of the acoel Archaphanostoma ylvae. The P. rubra and A. ylvae sequences are typical for metazoans in size and gene content. The larger I. pulchra  mitochondrial genome contains both ribosomal genes, 21 tRNAs, but only 11 protein-coding genes. We find evidence suggesting a duplicated sequence in the I. pulchra mitochondrial genome. The P. rubra, I. pulchra and A. ylvae mitochondria have a unique genome organisation in comparison to other metazoan mitochondrial genomes. We found a large degree of protein-coding gene and tRNA overlap with little non-coding sequence in the compact P. rubra genome. Conversely, the A. ylvae and I. pulchra genomes have many long non-coding sequences between genes, likely driving genome size expansion in the latter. Phylogenetic trees inferred from mitochondrial genes retrieve Xenacoelomorpha as an early branching taxon in the deuterostomes. Sequence divergence analysis between P. rubra sampled in England and Spain indicates cryptic diversity.

  8. Privacy in the Genomic Era.

    Science.gov (United States)

    Naveed, Muhammad; Ayday, Erman; Clayton, Ellen W; Fellay, Jacques; Gunter, Carl A; Hubaux, Jean-Pierre; Malin, Bradley A; Wang, Xiaofeng

    2015-09-01

    Genome sequencing technology has advanced at a rapid pace and it is now possible to generate highly-detailed genotypes inexpensively. The collection and analysis of such data has the potential to support various applications, including personalized medical services. While the benefits of the genomics revolution are trumpeted by the biomedical community, the increased availability of such data has major implications for personal privacy; notably because the genome has certain essential features, which include (but are not limited to) (i) an association with traits and certain diseases, (ii) identification capability (e.g., forensics), and (iii) revelation of family relationships. Moreover, direct-to-consumer DNA testing increases the likelihood that genome data will be made available in less regulated environments, such as the Internet and for-profit companies. The problem of genome data privacy thus resides at the crossroads of computer science, medicine, and public policy. While the computer scientists have addressed data privacy for various data types, there has been less attention dedicated to genomic data. Thus, the goal of this paper is to provide a systematization of knowledge for the computer science community. In doing so, we address some of the (sometimes erroneous) beliefs of this field and we report on a survey we conducted about genome data privacy with biomedical specialists. Then, after characterizing the genome privacy problem, we review the state-of-the-art regarding privacy attacks on genomic data and strategies for mitigating such attacks, as well as contextualizing these attacks from the perspective of medicine and public policy. This paper concludes with an enumeration of the challenges for genome data privacy and presents a framework to systematize the analysis of threats and the design of countermeasures as the field moves forward.

  9. Privacy in the Genomic Era

    Science.gov (United States)

    NAVEED, MUHAMMAD; AYDAY, ERMAN; CLAYTON, ELLEN W.; FELLAY, JACQUES; GUNTER, CARL A.; HUBAUX, JEAN-PIERRE; MALIN, BRADLEY A.; WANG, XIAOFENG

    2015-01-01

    Genome sequencing technology has advanced at a rapid pace and it is now possible to generate highly-detailed genotypes inexpensively. The collection and analysis of such data has the potential to support various applications, including personalized medical services. While the benefits of the genomics revolution are trumpeted by the biomedical community, the increased availability of such data has major implications for personal privacy; notably because the genome has certain essential features, which include (but are not limited to) (i) an association with traits and certain diseases, (ii) identification capability (e.g., forensics), and (iii) revelation of family relationships. Moreover, direct-to-consumer DNA testing increases the likelihood that genome data will be made available in less regulated environments, such as the Internet and for-profit companies. The problem of genome data privacy thus resides at the crossroads of computer science, medicine, and public policy. While the computer scientists have addressed data privacy for various data types, there has been less attention dedicated to genomic data. Thus, the goal of this paper is to provide a systematization of knowledge for the computer science community. In doing so, we address some of the (sometimes erroneous) beliefs of this field and we report on a survey we conducted about genome data privacy with biomedical specialists. Then, after characterizing the genome privacy problem, we review the state-of-the-art regarding privacy attacks on genomic data and strategies for mitigating such attacks, as well as contextualizing these attacks from the perspective of medicine and public policy. This paper concludes with an enumeration of the challenges for genome data privacy and presents a framework to systematize the analysis of threats and the design of countermeasures as the field moves forward. PMID:26640318

  10. From structure prediction to genomic screens for novel non-coding RNAs

    DEFF Research Database (Denmark)

    Gorodkin, Jan; Hofacker, Ivo L.

    2011-01-01

    Abstract: Non-coding RNAs (ncRNAs) are receiving more and more attention not only as an abundant class of genes, but also as regulatory structural elements (some located in mRNAs). A key feature of RNA function is its structure. Computational methods were developed early for folding and prediction....... This and the increased amount of available genomes have made it possible to employ structure-based methods for genomic screens. The field has moved from folding prediction of single sequences to computational screens for ncRNAs in genomic sequence using the RNA structure as the main characteristic feature. Whereas early...... upon some of the concepts in current methods that have been applied in genomic screens for de novo RNA structures in searches for novel ncRNA genes and regulatory RNA structure on mRNAs. We discuss the strengths and weaknesses of the different strategies and how they can complement each other....

  11. The genomes and comparative genomics of Lactobacillus delbrueckii phages.

    Science.gov (United States)

    Riipinen, Katja-Anneli; Forsman, Päivi; Alatossava, Tapani

    2011-07-01

    Lactobacillus delbrueckii phages are a great source of genetic diversity. Here, the genome sequences of Lb. delbrueckii phages LL-Ku, c5 and JCL1032 were analyzed in detail, and the genetic diversity of Lb. delbrueckii phages belonging to different taxonomic groups was explored. The lytic isometric group b phages LL-Ku (31,080 bp) and c5 (31,841 bp) showed a minimum nucleotide sequence identity of 90% over about three-fourths of their genomes. The genomic locations of their lysis modules were unique, and the genomes featured several putative overlapping transcription units of genes. LL-Ku and c5 virions displayed peptidoglycan hydrolytic activity associated with a ~36-kDa protein similar in size to the endolysin. Unexpectedly, the 49,433-bp genome of the prolate phage JCL1032 (temperate, group c) revealed a conserved gene order within its structural genes. Lb. delbrueckii phages representing groups a (a phage LL-H), b and c possessed only limited protein sequence homology. Genomic comparison of LL-Ku and c5 suggested that diversification of Lb. delbrueckii phages is mainly due to insertions, deletions and recombination. For the first time, the complete genome sequences of group b and c Lb. delbrueckii phages are reported.

  12. Genomics technologies to study structural variations in the grapevine genome

    Directory of Open Access Journals (Sweden)

    Cardone Maria Francesca

    2016-01-01

    Full Text Available Grapevine is one of the most important crop plants in the world. Recently there was great expansion of genomics resources about grapevine genome, thus providing increasing efforts for molecular breeding. Current cultivars display a great level of inter-specific differentiation that needs to be investigated to reach a comprehensive understanding of the genetic basis of phenotypic differences, and to find responsible genes selected by cross breeding programs. While there have been significant advances in resolving the pattern and nature of single nucleotide polymorphisms (SNPs on plant genomes, few data are available on copy number variation (CNV. Furthermore association between structural variations and phenotypes has been described in only a few cases. We combined high throughput biotechnologies and bioinformatics tools, to reveal the first inter-varietal atlas of structural variation (SV for the grapevine genome. We sequenced and compared four table grape cultivars with the Pinot noir inbred line PN40024 genome as the reference. We detected roughly 8% of the grapevine genome affected by genomic variations. Taken into account phenotypic differences existing among the studied varieties we performed comparison of SVs among them and the reference and next we performed an in-depth analysis of gene content of polymorphic regions. This allowed us to identify genes showing differences in copy number as putative functional candidates for important traits in grapevine cultivation.

  13. Marine Bacterial Genomics

    DEFF Research Database (Denmark)

    Machado, Henrique

    For decades, terrestrial microorganisms have been used as sources of countless enzymes and chemical compounds that have been produced by pharmaceutical and biotech companies and used by mankind. There is a need for new chemical compounds, including antibiotics,new enzymatic activities and new...... microorganisms to be used as cell factories for production. Therefore exploitation of new microbial niches and use of different strategies is an opportunity to boost discoveries. Even though scientists have started to explore several habitats other than the terrestrial ones, the marine environment stands out...... as a hitherto under-explored niche. This thesis work uses high-throughput sequencing technologies on a collection of marine bacteria established during the Galathea 3 expedition, with the purpose of unraveling new biodiversity and new bioactivities. Several tools were used for genomic analysis in order...

  14. The South Asian genome.

    Directory of Open Access Journals (Sweden)

    John C Chambers

    Full Text Available The genetic sequence variation of people from the Indian subcontinent who comprise one-quarter of the world's population, is not well described. We carried out whole genome sequencing of 168 South Asians, along with whole-exome sequencing of 147 South Asians to provide deeper characterisation of coding regions. We identify 12,962,155 autosomal sequence variants, including 2,946,861 new SNPs and 312,738 novel indels. This catalogue of SNPs and indels amongst South Asians provides the first comprehensive map of genetic variation in this major human population, and reveals evidence for selective pressures on genes involved in skin biology, metabolism, infection and immunity. Our results will accelerate the search for the genetic variants underlying susceptibility to disorders such as type-2 diabetes and cardiovascular disease which are highly prevalent amongst South Asians.

  15. Comparative RNA genomics

    DEFF Research Database (Denmark)

    Backofen, Rolf; Gorodkin, Jan; Hofacker, Ivo L.

    2018-01-01

    Over the last two decades it has become clear that RNA is much more than just a boring intermediate in protein expression. Ancient RNAs still appear in the core information metabolism and comprise a surprisingly large component in bacterial gene regulation. A common theme with these types of mostly...... small RNAs is their reliance of conserved secondary structures. Large scale sequencing projects, on the other hand, have profoundly changed our understanding of eukaryotic genomes. Pervasively transcribed, they give rise to a plethora of large and evolutionarily extremely flexible noncoding RNAs...... that exert a vastly diverse array of molecule functions. In this chapter we provide a—necessarily incomplete—overview of the current state of comparative analysis of noncoding RNAs, emphasizing computational approaches as a means to gain a global picture of the modern RNA world....

  16. Materials Genome Initiative

    Science.gov (United States)

    Vickers, John

    2015-01-01

    The Materials Genome Initiative (MGI) project element is a cross-Center effort that is focused on the integration of computational tools to simulate manufacturing processes and materials behavior. These computational simulations will be utilized to gain understanding of processes and materials behavior to accelerate process development and certification to more efficiently integrate new materials in existing NASA projects and to lead to the design of new materials for improved performance. This NASA effort looks to collaborate with efforts at other government agencies and universities working under the national MGI. MGI plans to develop integrated computational/experimental/ processing methodologies for accelerating discovery and insertion of materials to satisfy NASA's unique mission demands. The challenges include validated design tools that incorporate materials properties, processes, and design requirements; and materials process control to rapidly mature emerging manufacturing methods and develop certified manufacturing processes

  17. Functional genomics of physiological plasticity and local adaptation in killifish.

    Science.gov (United States)

    Whitehead, Andrew; Galvez, Fernando; Zhang, Shujun; Williams, Larissa M; Oleksiak, Marjorie F

    2011-01-01

    Evolutionary solutions to the physiological challenges of life in highly variable habitats can span the continuum from evolution of a cosmopolitan plastic phenotype to the evolution of locally adapted phenotypes. Killifish (Fundulus sp.) have evolved both highly plastic and locally adapted phenotypes within different selective contexts, providing a comparative system in which to explore the genomic underpinnings of physiological plasticity and adaptive variation. Importantly, extensive variation exists among populations and species for tolerance to a variety of stressors, and we exploit this variation in comparative studies to yield insights into the genomic basis of evolved phenotypic variation. Notably, species of Fundulus occupy the continuum of osmotic habitats from freshwater to marine and populations within Fundulus heteroclitus span far greater variation in pollution tolerance than across all species of fish. Here, we explore how transcriptome regulation underpins extreme physiological plasticity on osmotic shock and how genomic and transcriptomic variation is associated with locally evolved pollution tolerance. We show that F. heteroclitus quickly acclimate to extreme osmotic shock by mounting a dramatic rapid transcriptomic response including an early crisis control phase followed by a tissue remodeling phase involving many regulatory pathways. We also show that convergent evolution of locally adapted pollution tolerance involves complex patterns of gene expression and genome sequence variation, which is confounded with body-weight dependence for some genes. Similarly, exploiting the natural phenotypic variation associated with other established and emerging model organisms is likely to greatly accelerate the pace of discovery of the genomic basis of phenotypic variation.

  18. Impact of Genomic Technologies on Chickpea Breeding Strategies

    Directory of Open Access Journals (Sweden)

    Rajeev K. Varshney

    2012-08-01

    Full Text Available The major abiotic and biotic stresses that adversely affect yield of chickpea (Cicer arietinum L. include drought, heat, fusarium wilt, ascochyta blight and pod borer. Excellent progress has been made in developing short-duration varieties with high resistance to fusarium wilt. The early maturity helps in escaping terminal drought and heat stresses and the adaptation of chickpea to short-season environments. Ascochyta blight continues to be a major challenge to chickpea productivity in areas where chickpea is exposed to cool and wet conditions. Limited variability for pod borer resistance has been a major bottleneck in the development of pod borer resistant cultivars. The use of genomics technologies in chickpea breeding programs has been limited, since available genomic resources were not adequate and limited polymorphism was observed in the cultivated chickpea for the available molecular markers. Remarkable progress has been made in the development of genetic and genomic resources in recent years and integration of genomic technologies in chickpea breeding has now started. Marker-assisted breeding is currently being used for improving drought tolerance and combining resistance to diseases. The integration of genomic technologies is expected to improve the precision and efficiency of chickpea breeding in the development of improved cultivars with enhanced resistance to abiotic and biotic stresses, better adaptation to existing and evolving agro-ecologies and traits preferred by farmers, industries and consumers.

  19. Genomes-based phylogeny of the genus Xanthomonas

    Directory of Open Access Journals (Sweden)

    Rodriguez-R Luis M

    2012-03-01

    Full Text Available Abstract Background The genus Xanthomonas comprises several plant pathogenic bacteria affecting a wide range of hosts. Despite the economic, industrial and biological importance of Xanthomonas, the classification and phylogenetic relationships within the genus are still under active debate. Some of the relationships between pathovars and species have not been thoroughly clarified, with old pathovars becoming new species. A change in the genus name has been recently suggested for Xanthomonas albilineans, an early branching species currently located in this genus, but a thorough phylogenomic reconstruction would aid in solving these and other discrepancies in this genus. Results Here we report the results of the genome-wide analysis of DNA sequences from 989 orthologous groups from 17 Xanthomonas spp. genomes available to date, representing all major lineages within the genus. The phylogenetic and computational analyses used in this study have been automated in a Perl package designated Unus, which provides a framework for phylogenomic analyses which can be applied to other datasets at the genomic level. Unus can also be easily incorporated into other phylogenomic pipelines. Conclusions Our phylogeny agrees with previous phylogenetic topologies on the genus, but revealed that the genomes of Xanthomonas citri and Xanthomonas fuscans belong to the same species, and that of Xanthomonas albilineans is basal to the joint clade of Xanthomonas and Xylella fastidiosa. Genome reduction was identified in the species Xanthomonas vasicola in addition to the previously identified reduction in Xanthomonas albilineans. Lateral gene transfer was also observed in two gene clusters.

  20. A Three-Dimensional Model of the Yeast Genome

    Science.gov (United States)

    Noble, William; Duan, Zhi-Jun; Andronescu, Mirela; Schutz, Kevin; McIlwain, Sean; Kim, Yoo Jung; Lee, Choli; Shendure, Jay; Fields, Stanley; Blau, C. Anthony

    Layered on top of information conveyed by DNA sequence and chromatin are higher order structures that encompass portions of chromosomes, entire chromosomes, and even whole genomes. Interphase chromosomes are not positioned randomly within the nucleus, but instead adopt preferred conformations. Disparate DNA elements co-localize into functionally defined aggregates or factories for transcription and DNA replication. In budding yeast, Drosophila and many other eukaryotes, chromosomes adopt a Rabl configuration, with arms extending from centromeres adjacent to the spindle pole body to telomeres that abut the nuclear envelope. Nonetheless, the topologies and spatial relationships of chromosomes remain poorly understood. Here we developed a method to globally capture intra- and inter-chromosomal interactions, and applied it to generate a map at kilobase resolution of the haploid genome of Saccharomyces cerevisiae. The map recapitulates known features of genome organization, thereby validating the method, and identifies new features. Extensive regional and higher order folding of individual chromosomes is observed. Chromosome XII exhibits a striking conformation that implicates the nucleolus as a formidable barrier to interaction between DNA sequences at either end. Inter-chromosomal contacts are anchored by centromeres and include interactions among transfer RNA genes, among origins of early DNA replication and among sites where chromosomal breakpoints occur. Finally, we constructed a three-dimensional model of the yeast genome. Our findings provide a glimpse of the interface between the form and function of a eukaryotic genome.

  1. Inheritance of the yeast mitochondrial genome

    DEFF Research Database (Denmark)

    Piskur, Jure

    1994-01-01

    Mitochondrion, extrachromosomal genetics, intergenic sequences, genome size, mitochondrial DNA, petite mutation, yeast......Mitochondrion, extrachromosomal genetics, intergenic sequences, genome size, mitochondrial DNA, petite mutation, yeast...

  2. Plantagora: modeling whole genome sequencing and assembly of plant genomes.

    Directory of Open Access Journals (Sweden)

    Roger Barthelson

    Full Text Available BACKGROUND: Genomics studies are being revolutionized by the next generation sequencing technologies, which have made whole genome sequencing much more accessible to the average researcher. Whole genome sequencing with the new technologies is a developing art that, despite the large volumes of data that can be produced, may still fail to provide a clear and thorough map of a genome. The Plantagora project was conceived to address specifically the gap between having the technical tools for genome sequencing and knowing precisely the best way to use them. METHODOLOGY/PRINCIPAL FINDINGS: For Plantagora, a platform was created for generating simulated reads from several different plant genomes of different sizes. The resulting read files mimicked either 454 or Illumina reads, with varying paired end spacing. Thousands of datasets of reads were created, most derived from our primary model genome, rice chromosome one. All reads were assembled with different software assemblers, including Newbler, Abyss, and SOAPdenovo, and the resulting assemblies were evaluated by an extensive battery of metrics chosen for these studies. The metrics included both statistics of the assembly sequences and fidelity-related measures derived by alignment of the assemblies to the original genome source for the reads. The results were presented in a website, which includes a data graphing tool, all created to help the user compare rapidly the feasibility and effectiveness of different sequencing and assembly strategies prior to testing an approach in the lab. Some of our own conclusions regarding the different strategies were also recorded on the website. CONCLUSIONS/SIGNIFICANCE: Plantagora provides a substantial body of information for comparing different approaches to sequencing a plant genome, and some conclusions regarding some of the specific approaches. Plantagora also provides a platform of metrics and tools for studying the process of sequencing and assembly

  3. Genomes in turmoil: quantification of genome dynamics in prokaryote supergenomes.

    Science.gov (United States)

    Puigbò, Pere; Lobkovsky, Alexander E; Kristensen, David M; Wolf, Yuri I; Koonin, Eugene V

    2014-08-21

    Genomes of bacteria and archaea (collectively, prokaryotes) appear to exist in incessant flux, expanding via horizontal gene transfer and gene duplication, and contracting via gene loss. However, the actual rates of genome dynamics and relative contributions of different types of event across the diversity of prokaryotes are largely unknown, as are the sizes of microbial supergenomes, i.e. pools of genes that are accessible to the given microbial species. We performed a comprehensive analysis of the genome dynamics in 35 groups (34 bacterial and one archaeal) of closely related microbial genomes using a phylogenetic birth-and-death maximum likelihood model to quantify the rates of gene family gain and loss, as well as expansion and reduction. The results show that loss of gene families dominates the evolution of prokaryotes, occurring at approximately three times the rate of gain. The rates of gene family expansion and reduction are typically seven and twenty times less than the gain and loss rates, respectively. Thus, the prevailing mode of evolution in bacteria and archaea is genome contraction, which is partially compensated by the gain of new gene families via horizontal gene transfer. However, the rates of gene family gain, loss, expansion and reduction vary within wide ranges, with the most stable genomes showing rates about 25 times lower than the most dynamic genomes. For many groups, the supergenome estimated from the fraction of repetitive gene family gains includes about tenfold more gene families than the typical genome in the group although some groups appear to have vast, 'open' supergenomes. Reconstruction of evolution for groups of closely related bacteria and archaea reveals an extremely rapid and highly variable flux of genes in evolving microbial genomes, demonstrates that extensive gene loss and horizontal gene transfer leading to innovation are the two dominant evolutionary processes, and yields robust estimates of the supergenome size.

  4. Insights into three whole-genome duplications gleaned from the Paramecium caudatum genome sequence.

    Science.gov (United States)

    McGrath, Casey L; Gout, Jean-Francois; Doak, Thomas G; Yanagi, Akira; Lynch, Michael

    2014-08-01

    Paramecium has long been a model eukaryote. The sequence of the Paramecium tetraurelia genome reveals a history of three successive whole-genome duplications (WGDs), and the sequences of P. biaurelia and P. sexaurelia suggest that these WGDs are shared by all members of the aurelia species complex. Here, we present the genome sequence of P. caudatum, a species closely related to the P. aurelia species group. P. caudatum shares only the most ancient of the three WGDs with the aurelia complex. We found that P. caudatum maintains twice as many paralogs from this early event as the P. aurelia species, suggesting that post-WGD gene retention is influenced by subsequent WGDs and supporting the importance of selection for dosage in gene retention. The availability of P. caudatum as an outgroup allows an expanded analysis of the aurelia intermediate and recent WGD events. Both the Guanine+Cytosine (GC) content and the expression level of preduplication genes are significant predictors of duplicate retention. We find widespread asymmetrical evolution among aurelia paralogs, which is likely caused by gradual pseudogenization rather than by neofunctionalization. Finally, cases of divergent resolution of intermediate WGD duplicates between aurelia species implicate this process acts as an ongoing reinforcement mechanism of reproductive isolation long after a WGD event. Copyright © 2014 by the Genetics Society of America.

  5. 1000 Bull Genomes - Toward genomic Selectionf from whole genome sequence Data in Dairy and Beef Cattle

    NARCIS (Netherlands)

    Hayes, B.; Daetwyler, H.D.; Fries, R.; Guldbrandtsen, B.; Mogens Sando Lund, M.; Didier A. Boichard, D.A.; Stothard, P.; Veerkamp, R.F.; Hulsegge, B.; Rocha, D.; Tassell, C.; Mullaart, E.; Gredler, B.; Druet, T.; Bagnato, A.; Goddard, M.E.; Chamberlain, H.L.

    2013-01-01

    Genomic prediction of breeding values is now used as the basis for selection of dairy cattle, and in some cases beef cattle, in a number of countries. When genomic prediction was introduced most of the information was to thought to be derived from linkage disequilibrium between markers and causative

  6. An Aboriginal Australian Genome Reveals Separate Human Dispersals into Asia

    OpenAIRE

    Rasmussen, Morten; Guo, Xiaosen; Wang, Yong; Lohmueller, Kirk E.; Rasmussen, Simon; Albrechtsen, Anders; Skotte, Line; Lindgreen, Stinus; Metspalu, Mait; Jombart, Thibaut; Kivisild, Toomas; Zhai, Weiwei; Eriksson, Anders; Manica, Andrea; Orlando, Ludovic

    2011-01-01

    We present an Aboriginal Australian genomic sequence obtained from a 100-year-old lock of hair donated by an Aboriginal man from southern Western Australia in the early 20th century. We detect no evidence of European admixture and estimate contamination levels to be below 0.5%. We show that Aboriginal Australians are descendants of an early human dispersal into eastern Asia, possibly 62,000 to 75,000 years ago. This dispersal is separate from the one that gave rise to modern Asians 25,000 to ...

  7. Comparing Mycobacterium tuberculosis genomes using genome topology networks.

    Science.gov (United States)

    Jiang, Jianping; Gu, Jianlei; Zhang, Liang; Zhang, Chenyi; Deng, Xiao; Dou, Tonghai; Zhao, Guoping; Zhou, Yan

    2015-02-14

    Over the last decade, emerging research methods, such as comparative genomic analysis and phylogenetic study, have yielded new insights into genotypes and phenotypes of closely related bacterial strains. Several findings have revealed that genomic structural variations (SVs), including gene gain/loss, gene duplication and genome rearrangement, can lead to different phenotypes among strains, and an investigation of genes affected by SVs may extend our knowledge of the relationships between SVs and phenotypes in microbes, especially in pathogenic bacteria. In this work, we introduce a 'Genome Topology Network' (GTN) method based on gene homology and gene locations to analyze genomic SVs and perform phylogenetic analysis. Furthermore, the concept of 'unfixed ortholog' has been proposed, whose members are affected by SVs in genome topology among close species. To improve the precision of 'unfixed ortholog' recognition, a strategy to detect annotation differences and complete gene annotation was applied. To assess the GTN method, a set of thirteen complete M. tuberculosis genomes was analyzed as a case study. GTNs with two different gene homology-assigning methods were built, the Clusters of Orthologous Groups (COG) method and the orthoMCL clustering method, and two phylogenetic trees were constructed accordingly, which may provide additional insights into whole genome-based phylogenetic analysis. We obtained 24 unfixable COG groups, of which most members were related to immunogenicity and drug resistance, such as PPE-repeat proteins (COG5651) and transcriptional regulator TetR gene family members (COG1309). The GTN method has been implemented in PERL and released on our website. The tool can be downloaded from http://homepage.fudan.edu.cn/zhouyan/gtn/ , and allows re-annotating the 'lost' genes among closely related genomes, analyzing genes affected by SVs, and performing phylogenetic analysis. With this tool, many immunogenic-related and drug resistance-related genes

  8. A universal genomic coordinate translator for comparative genomics.

    Science.gov (United States)

    Zamani, Neda; Sundström, Görel; Meadows, Jennifer R S; Höppner, Marc P; Dainat, Jacques; Lantz, Henrik; Haas, Brian J; Grabherr, Manfred G

    2014-06-30

    Genomic duplications constitute major events in the evolution of species, allowing paralogous copies of genes to take on fine-tuned biological roles. Unambiguously identifying the orthology relationship between copies across multiple genomes can be resolved by synteny, i.e. the conserved order of genomic sequences. However, a comprehensive analysis of duplication events and their contributions to evolution would require all-to-all genome alignments, which increases at N2 with the number of available genomes, N. Here, we introduce Kraken, software that omits the all-to-all requirement by recursively traversing a graph of pairwise alignments and dynamically re-computing orthology. Kraken scales linearly with the number of targeted genomes, N, which allows for including large numbers of genomes in analyses. We first evaluated the method on the set of 12 Drosophila genomes, finding that orthologous correspondence computed indirectly through a graph of multiple synteny maps comes at minimal cost in terms of sensitivity, but reduces overall computational runtime by an order of magnitude. We then used the method on three well-annotated mammalian genomes, human, mouse, and rat, and show that up to 93% of protein coding transcripts have unambiguous pairwise orthologous relationships across the genomes. On a nucleotide level, 70 to 83% of exons match exactly at both splice junctions, and up to 97% on at least one junction. We last applied Kraken to an RNA-sequencing dataset from multiple vertebrates and diverse tissues, where we confirmed that brain-specific gene family members, i.e. one-to-many or many-to-many homologs, are more highly correlated across species than single-copy (i.e. one-to-one homologous) genes. Not limited to protein coding genes, Kraken also identifies thousands of newly identified transcribed loci, likely non-coding RNAs that are consistently transcribed in human, chimpanzee and gorilla, and maintain significant correlation of expression levels across

  9. Ultraviolet-irradiated simian virus 40 activates a mutator function in rat cells under conditions preventing viral DNA replication

    Energy Technology Data Exchange (ETDEWEB)

    Cornelis, J.; Su, Z.Z.; Dinsart, C.; Rommelaere, J. (Universite libre de Bruxelles, Rhode St Genese (Belgium))

    The UV-irradiated temperature-sensitive early SV40 mutant tsA209 is able to activate at the nonpermissive temperature the expression of mutator and recovery functions in rat cells. Unirradiated SV40 activates these functions only to a low extent. The expression of these mutator and recovery functions in SV40-infected cells was detected using the single-stranded DNA parvovirus H-1 as a probe. Because early SV40 mutants are defective in the initiation of viral DNA synthesis at the nonpermissive temperature, these results suggest that replication of UV-damaged DNA is not a prerequisite for the activation of mutator and recovery functions in mammalian cells. The expression of the mutator function is dose-dependent, i.e., the absolute number of UV-irradiated SV40 virions introduced per cell determines its level. Implications for the interpretation of mutation induction curves in the progeny of UV-irradiated SV40 in permissive host cells are discussed.

  10. Integrating genomic selection into dairy cattle breeding programmes: a review.

    Science.gov (United States)

    Bouquet, A; Juga, J

    2013-05-01

    Extensive genetic progress has been achieved in dairy cattle populations on many traits of economic importance because of efficient breeding programmes. Success of these programmes has relied on progeny testing of the best young males to accurately assess their genetic merit and hence their potential for breeding. Over the last few years, the integration of dense genomic information into statistical tools used to make selection decisions, commonly referred to as genomic selection, has enabled gains in predicting accuracy of breeding values for young animals without own performance. The possibility to select animals at an early stage allows defining new breeding strategies aimed at boosting genetic progress while reducing costs. The first objective of this article was to review methods used to model and optimize breeding schemes integrating genomic selection and to discuss their relative advantages and limitations. The second objective was to summarize the main results and perspectives on the use of genomic selection in practical breeding schemes, on the basis of the example of dairy cattle populations. Two main designs of breeding programmes integrating genomic selection were studied in dairy cattle. Genomic selection can be used either for pre-selecting males to be progeny tested or for selecting males to be used as active sires in the population. The first option produces moderate genetic gains without changing the structure of breeding programmes. The second option leads to large genetic gains, up to double those of conventional schemes because of a major reduction in the mean generation interval, but it requires greater changes in breeding programme structure. The literature suggests that genomic selection becomes more attractive when it is coupled with embryo transfer technologies to further increase selection intensity on the dam-to-sire pathway. The use of genomic information also offers new opportunities to improve preservation of genetic variation. However

  11. Ionizing radiation induced genomic instability and its relation to radiation carcinogenesis

    International Nuclear Information System (INIS)

    Wang Zhongwen

    2000-01-01

    There are widespread testimonies that the genomic instability induced by ionizing irradiation exits in mammal and its vitro cells. Genomic instability can enhance the frequency of genetic changes among the progeny of the original irradiated cells. In the radiation-leukemogenesis, there is no significant difference between controls and CBA/H mouses of PPI (preconception patent irradiation), but the offsprings of the PPI recipients show a different character (shorter latent period and higher incidence) after an extra γ-radiation. The radiation-induced genomic instability may get the genome on the verge of mutation and lead to carcinogens following mutation of some critical genes. The genomic instability, as the early event of initiation of carcinomas, may be play a specific or unique role

  12. Minimally destructive sampling of type specimens of Pyropia (Bangiales, Rhodophyta) recovers complete plastid and mitochondrial genomes.

    Science.gov (United States)

    Hughey, Jeffery R; Gabrielson, Paul W; Rohmer, Laurence; Tortolani, Jacquie; Silva, Mayra; Miller, Kathy Ann; Young, Joel D; Martell, Craig; Ruediger, Erik

    2014-06-04

    Plant species, including algae and fungi, are based on type specimens to which the name of a taxon is permanently attached. Applying a scientific name to any specimen therefore requires demonstrating correspondence between the type and that specimen. Traditionally, identifications are based on morpho-anatomical characters, but recently systematists are using DNA sequence data. These studies are flawed if the DNA is isolated from misidentified modern specimens. We propose a genome-based solution. Using 4 × 4 mm(2) of material from type specimens, we assembled 14 plastid and 15 mitochondrial genomes attributed to the red algae Pyropia perforata, Py. fucicola, and Py. kanakaensis. The chloroplast genomes were fairly conserved, but the mitochondrial genomes differed significantly among populations in content and length. Complete genomes are attainable from 19(th) and early 20(th) century type specimens; this validates the effort and cost of their curation as well as supports the practice of the type method.

  13. Minimally destructive sampling of type specimens of Pyropia (Bangiales, Rhodophyta) recovers complete plastid and mitochondrial genomes

    Science.gov (United States)

    Hughey, Jeffery R.; Gabrielson, Paul W.; Rohmer, Laurence; Tortolani, Jacquie; Silva, Mayra; Miller, Kathy Ann; Young, Joel D.; Martell, Craig; Ruediger, Erik

    2014-01-01

    Plant species, including algae and fungi, are based on type specimens to which the name of a taxon is permanently attached. Applying a scientific name to any specimen therefore requires demonstrating correspondence between the type and that specimen. Traditionally, identifications are based on morpho-anatomical characters, but recently systematists are using DNA sequence data. These studies are flawed if the DNA is isolated from misidentified modern specimens. We propose a genome-based solution. Using 4 × 4 mm2 of material from type specimens, we assembled 14 plastid and 15 mitochondrial genomes attributed to the red algae Pyropia perforata, Py. fucicola, and Py. kanakaensis. The chloroplast genomes were fairly conserved, but the mitochondrial genomes differed significantly among populations in content and length. Complete genomes are attainable from 19th and early 20th century type specimens; this validates the effort and cost of their curation as well as supports the practice of the type method. PMID:24894641

  14. The Perennial Ryegrass GenomeZipper – Targeted Use of Genome Resources for Comparative Grass Genomics

    DEFF Research Database (Denmark)

    Pfeiffer, Matthias; Martis, Mihaela; Asp, Torben

    2013-01-01

    (Lolium perenne) genome on the basis of conserved synteny to barley (Hordeum vulgare) and the model grass genome Brachypodium (Brachypodium distachyon) as well as rice (Oryza sativa) and sorghum (Sorghum bicolor). A transcriptome-based genetic linkage map of perennial ryegrass served as a scaffold......Whole-genome sequences established for model and major crop species constitute a key resource for advanced genomic research. For outbreeding forage and turf grass species like ryegrasses (Lolium spp.), such resources have yet to be developed. Here, we present a model of the perennial ryegrass...... to establish the chromosomal arrangement of syntenic genes from model grass species. This scaffold revealed a high degree of synteny and macrocollinearity and was then utilized to anchor a collection of perennial ryegrass genes in silico to their predicted genome positions. This resulted in the unambiguous...

  15. Genome-Wide Prediction and Analysis of 3D-Domain Swapped Proteins in the Human Genome from Sequence Information.

    Science.gov (United States)

    Upadhyay, Atul Kumar; Sowdhamini, Ramanathan

    2016-01-01

    3D-domain swapping is one of the mechanisms of protein oligomerization and the proteins exhibiting this phenomenon have many biological functions. These proteins, which undergo domain swapping, have acquired much attention owing to their involvement in human diseases, such as conformational diseases, amyloidosis, serpinopathies, proteionopathies etc. Early realisation of proteins in the whole human genome that retain tendency to domain swap will enable many aspects of disease control management. Predictive models were developed by using machine learning approaches with an average accuracy of 78% (85.6% of sensitivity, 87.5% of specificity and an MCC value of 0.72) to predict putative domain swapping in protein sequences. These models were applied to many complete genomes with special emphasis on the human genome. Nearly 44% of the protein sequences in the human genome were predicted positive for domain swapping. Enrichment analysis was performed on the positively predicted sequences from human genome for their domain distribution, disease association and functional importance based on Gene Ontology (GO). Enrichment analysis was also performed to infer a better understanding of the functional importance of these sequences. Finally, we developed hinge region prediction, in the given putative domain swapped sequence, by using important physicochemical properties of amino acids.

  16. Components of Adenovirus Genome Packaging

    Science.gov (United States)

    Ahi, Yadvinder S.; Mittal, Suresh K.

    2016-01-01

    Adenoviruses (AdVs) are icosahedral viruses with double-stranded DNA (dsDNA) genomes. Genome packaging in AdV is thought to be similar to that seen in dsDNA containing icosahedral bacteriophages and herpesviruses. Specific recognition of the AdV genome is mediated by a packaging domain located close to the left end of the viral genome and is mediated by the viral packaging machinery. Our understanding of the role of various components of the viral packaging machinery in AdV genome packaging has greatly advanced in recent years. Characterization of empty capsids assembled in the absence of one or more components involved in packaging, identification of the unique vertex, and demonstration of the role of IVa2, the putative packaging ATPase, in genome packaging have provided compelling evidence that AdVs follow a sequential assembly pathway. This review provides a detailed discussion on the functions of the various viral and cellular factors involved in AdV genome packaging. We conclude by briefly discussing the roles of the empty capsids, assembly intermediates, scaffolding proteins, portal vertex and DNA encapsidating enzymes in AdV assembly and packaging. PMID:27721809

  17. [Genome editing of industrial microorganism].

    Science.gov (United States)

    Zhu, Linjiang; Li, Qi

    2015-03-01

    Genome editing is defined as highly-effective and precise modification of cellular genome in a large scale. In recent years, such genome-editing methods have been rapidly developed in the field of industrial strain improvement. The quickly-updating methods thoroughly change the old mode of inefficient genetic modification, which is "one modification, one selection marker, and one target site". Highly-effective modification mode in genome editing have been developed including simultaneous modification of multiplex genes, highly-effective insertion, replacement, and deletion of target genes in the genome scale, cut-paste of a large DNA fragment. These new tools for microbial genome editing will certainly be applied widely, and increase the efficiency of industrial strain improvement, and promote the revolution of traditional fermentation industry and rapid development of novel industrial biotechnology like production of biofuel and biomaterial. The technological principle of these genome-editing methods and their applications were summarized in this review, which can benefit engineering and construction of industrial microorganism.

  18. Genome size variation in the genus Avena.

    Science.gov (United States)

    Yan, Honghai; Martin, Sara L; Bekele, Wubishet A; Latta, Robert G; Diederichsen, Axel; Peng, Yuanying; Tinker, Nicholas A

    2016-03-01

    Genome size is an indicator of evolutionary distance and a metric for genome characterization. Here, we report accurate estimates of genome size in 99 accessions from 26 species of Avena. We demonstrate that the average genome size of C genome diploid species (2C = 10.26 pg) is 15% larger than that of A genome species (2C = 8.95 pg), and that this difference likely accounts for a progression of size among tetraploid species, where AB genome configuration had similar genome sizes (average 2C = 25.74 pg). Genome size was mostly consistent within species and in general agreement with current information about evolutionary distance among species. Results also suggest that most of the polyploid species in Avena have experienced genome downsizing in relation to their diploid progenitors. Genome size measurements could provide additional quality control for species identification in germplasm collections, especially in cases where diploid and polyploid species have similar morphology.

  19. Human genome meeting 2016

    OpenAIRE

    Srivastava, A. K.; Wang, Y.; Huang, R.; Skinner, C.; Thompson, T.; Pollard, L.; Wood, T.; Luo, F.; Stevenson, R.; Polimanti, R.; Gelernter, J.; Lin, X.; Lim, I. Y.; Wu, Y.; Teh, A. L.

    2016-01-01

    Table of contents O1 The metabolomics approach to autism: identification of biomarkers for early detection of autism spectrum disorder A. K. Srivastava, Y. Wang, R. Huang, C. Skinner, T. Thompson, L. Pollard, T. Wood, F. Luo, R. Stevenson O2 Phenome-wide association study for smoking- and drinking-associated genes in 26,394 American women with African, Asian, European, and Hispanic descents R. Polimanti, J. Gelernter O3 Effects of prenatal environment, genotype and DNA methylation on birth we...

  20. Genome size evolution at the speciation level: the cryptic species complex Brachionus plicatilis (Rotifera).

    Science.gov (United States)

    Stelzer, Claus-Peter; Riss, Simone; Stadler, Peter

    2011-04-07

    Studies on genome size variation in animals are rarely done at lower taxonomic levels, e.g., slightly above/below the species level. Yet, such variation might provide important clues on the tempo and mode of genome size evolution. In this study we used the flow-cytometry method to study the evolution of genome size in the rotifer Brachionus plicatilis, a cryptic species complex consisting of at least 14 closely related species. We found an unexpectedly high variation in this species complex, with genome sizes ranging approximately seven-fold (haploid '1C' genome sizes: 0.056-0.416 pg). Most of this variation (67%) could be ascribed to the major clades of the species complex, i.e. clades that are well separated according to most species definitions. However, we also found substantial variation (32%) at lower taxonomic levels--within and among genealogical species--and, interestingly, among species pairs that are not completely reproductively isolated. In one genealogical species, called B. 'Austria', we found greatly enlarged genome sizes that could roughly be approximated as multiples of the genomes of its closest relatives, which suggests that whole-genome duplications have occurred early during separation of this lineage. Overall, genome size was significantly correlated to egg size and body size, even though the latter became non-significant after controlling for phylogenetic non-independence. Our study suggests that substantial genome size variation can build up early during speciation, potentially even among isolated populations. An alternative, but not mutually exclusive interpretation might be that reproductive isolation tends to build up unusually slow in this species complex.

  1. Genome size evolution at the speciation level: The cryptic species complex Brachionus plicatilis (Rotifera

    Directory of Open Access Journals (Sweden)

    Riss Simone

    2011-04-01

    Full Text Available Abstract Background Studies on genome size variation in animals are rarely done at lower taxonomic levels, e.g., slightly above/below the species level. Yet, such variation might provide important clues on the tempo and mode of genome size evolution. In this study we used the flow-cytometry method to study the evolution of genome size in the rotifer Brachionus plicatilis, a cryptic species complex consisting of at least 14 closely related species. Results We found an unexpectedly high variation in this species complex, with genome sizes ranging approximately seven-fold (haploid '1C' genome sizes: 0.056-0.416 pg. Most of this variation (67% could be ascribed to the major clades of the species complex, i.e. clades that are well separated according to most species definitions. However, we also found substantial variation (32% at lower taxonomic levels - within and among genealogical species - and, interestingly, among species pairs that are not completely reproductively isolated. In one genealogical species, called B. 'Austria', we found greatly enlarged genome sizes that could roughly be approximated as multiples of the genomes of its closest relatives, which suggests that whole-genome duplications have occurred early during separation of this lineage. Overall, genome size was significantly correlated to egg size and body size, even though the latter became non-significant after controlling for phylogenetic non-independence. Conclusions Our study suggests that substantial genome size variation can build up early during speciation, potentially even among isolated populations. An alternative, but not mutually exclusive interpretation might be that reproductive isolation tends to build up unusually slow in this species complex.

  2. Epigenetics of obesity: beyond the genome sequence.

    Science.gov (United States)

    Cordero, Paul; Li, Jiawei; Oben, Jude A

    2015-07-01

    After the study of the gene code as a trigger for obesity, epigenetic code has appeared as a novel tool in the diagnosis, prognosis and treatment of obesity, and its related comorbidities. This review summarizes the status of the epigenetic field associated with obesity, and the current epigenetic-based approaches for obesity treatment. Thanks to technical advances, novel and key obesity-associated polymorphisms have been described by genome-wide association studies, but there are limitations with their predictive power. Epigenetics is also studied for disease association, which involves decoding of the genome information, transcriptional status and later phenotypes. Obesity could be induced during adult life by feeding and other environmental factors, and there is a strong association between obesity features and specific epigenetic patterns. These patterns could be established during early life stages, and programme the risk of obesity and its comorbidities during adult life. Furthermore, recent studies have shown that DNA methylation profile could be applied as biomarkers of diet-induced weight loss treatment. High-throughput technologies, recently implemented for commercial genetic test panels, could soon lead to the creation of epigenetic test panels for obesity. Nonetheless, epigenetics is a modifiable risk factor, and different dietary patterns or environmental insights during distinct stages of life could lead to rewriting of the epigenetic profile.

  3. OryzaGenome: Genome Diversity Database of Wild Oryza Species

    KAUST Repository

    Ohyanagi, Hajime; Ebata, Toshinobu; Huang, Xuehui; Gong, Hao; Fujita, Masahiro; Mochizuki, Takako; Toyoda, Atsushi; Fujiyama, Asao; Kaminuma, Eli; Nakamura, Yasukazu; Feng, Qi; Wang, Zi Xuan; Han, Bin; Kurata, Nori

    2015-01-01

    . Portable VCF (variant call format) file or tabdelimited file download is also available. Following these SNP (single nucleotide polymorphism) data, reference pseudomolecules/ scaffolds/contigs and genome-wide variation information for almost all

  4. Genome Modeling System: A Knowledge Management Platform for Genomics.

    Directory of Open Access Journals (Sweden)

    Malachi Griffith

    2015-07-01

    Full Text Available In this work, we present the Genome Modeling System (GMS, an analysis information management system capable of executing automated genome analysis pipelines at a massive scale. The GMS framework provides detailed tracking of samples and data coupled with reliable and repeatable analysis pipelines. The GMS also serves as a platform for bioinformatics development, allowing a large team to collaborate on data analysis, or an individual researcher to leverage the work of others effectively within its data management system. Rather than separating ad-hoc analysis from rigorous, reproducible pipelines, the GMS promotes systematic integration between the two. As a demonstration of the GMS, we performed an integrated analysis of whole genome, exome and transcriptome sequencing data from a breast cancer cell line (HCC1395 and matched lymphoblastoid line (HCC1395BL. These data are available for users to test the software, complete tutorials and develop novel GMS pipeline configurations. The GMS is available at https://github.com/genome/gms.

  5. Comparative genomics reveals insights into avian genome evolution and adaptation

    Science.gov (United States)

    Zhang, Guojie; Li, Cai; Li, Qiye; Li, Bo; Larkin, Denis M.; Lee, Chul; Storz, Jay F.; Antunes, Agostinho; Greenwold, Matthew J.; Meredith, Robert W.; Ödeen, Anders; Cui, Jie; Zhou, Qi; Xu, Luohao; Pan, Hailin; Wang, Zongji; Jin, Lijun; Zhang, Pei; Hu, Haofu; Yang, Wei; Hu, Jiang; Xiao, Jin; Yang, Zhikai; Liu, Yang; Xie, Qiaolin; Yu, Hao; Lian, Jinmin; Wen, Ping; Zhang, Fang; Li, Hui; Zeng, Yongli; Xiong, Zijun; Liu, Shiping; Zhou, Long; Huang, Zhiyong; An, Na; Wang, Jie; Zheng, Qiumei; Xiong, Yingqi; Wang, Guangbiao; Wang, Bo; Wang, Jingjing; Fan, Yu; da Fonseca, Rute R.; Alfaro-Núñez, Alonzo; Schubert, Mikkel; Orlando, Ludovic; Mourier, Tobias; Howard, Jason T.; Ganapathy, Ganeshkumar; Pfenning, Andreas; Whitney, Osceola; Rivas, Miriam V.; Hara, Erina; Smith, Julia; Farré, Marta; Narayan, Jitendra; Slavov, Gancho; Romanov, Michael N; Borges, Rui; Machado, João Paulo; Khan, Imran; Springer, Mark S.; Gatesy, John; Hoffmann, Federico G.; Opazo, Juan C.; Håstad, Olle; Sawyer, Roger H.; Kim, Heebal; Kim, Kyu-Won; Kim, Hyeon Jeong; Cho, Seoae; Li, Ning; Huang, Yinhua; Bruford, Michael W.; Zhan, Xiangjiang; Dixon, Andrew; Bertelsen, Mads F.; Derryberry, Elizabeth; Warren, Wesley; Wilson, Richard K; Li, Shengbin; Ray, David A.; Green, Richard E.; O’Brien, Stephen J.; Griffin, Darren; Johnson, Warren E.; Haussler, David; Ryder, Oliver A.; Willerslev, Eske; Graves, Gary R.; Alström, Per; Fjeldså, Jon; Mindell, David P.; Edwards, Scott V.; Braun, Edward L.; Rahbek, Carsten; Burt, David W.; Houde, Peter; Zhang, Yong; Yang, Huanming; Wang, Jian; Jarvis, Erich D.; Gilbert, M. Thomas P.; Wang, Jun

    2015-01-01

    Birds are the most species-rich class of tetrapod vertebrates and have wide relevance across many research fields. We explored bird macroevolution using full genomes from 48 avian species representing all major extant clades. The avian genome is principally characterized by its constrained size, which predominantly arose because of lineage-specific erosion of repetitive elements, large segmental deletions, and gene loss. Avian genomes furthermore show a remarkably high degree of evolutionary stasis at the levels of nucleotide sequence, gene synteny, and chromosomal structure. Despite this pattern of conservation, we detected many non-neutral evolutionary changes in protein-coding genes and noncoding regions. These analyses reveal that pan-avian genomic diversity covaries with adaptations to different lifestyles and convergent evolution of traits. PMID:25504712

  6. The bonobo genome compared with the chimpanzee and human genomes

    Science.gov (United States)

    Prüfer, Kay; Munch, Kasper; Hellmann, Ines; Akagi, Keiko; Miller, Jason R.; Walenz, Brian; Koren, Sergey; Sutton, Granger; Kodira, Chinnappa; Winer, Roger; Knight, James R.; Mullikin, James C.; Meader, Stephen J.; Ponting, Chris P.; Lunter, Gerton; Higashino, Saneyuki; Hobolth, Asger; Dutheil, Julien; Karakoç, Emre; Alkan, Can; Sajjadian, Saba; Catacchio, Claudia Rita; Ventura, Mario; Marques-Bonet, Tomas; Eichler, Evan E.; André, Claudine; Atencia, Rebeca; Mugisha, Lawrence; Junhold, Jörg; Patterson, Nick; Siebauer, Michael; Good, Jeffrey M.; Fischer, Anne; Ptak, Susan E.; Lachmann, Michael; Symer, David E.; Mailund, Thomas; Schierup, Mikkel H.; Andrés, Aida M.; Kelso, Janet; Pääbo, Svante

    2012-01-01

    Two African apes are the closest living relatives of humans: the chimpanzee (Pan troglodytes) and the bonobo (Pan paniscus). Although they are similar in many respects, bonobos and chimpanzees differ strikingly in key social and sexual behaviours1–4, and for some of these traits they show more similarity with humans than with each other. Here we report the sequencing and assembly of the bonobo genome to study its evolutionary relationship with the chimpanzee and human genomes. We find that more than three per cent of the human genome is more closely related to either the bonobo or the chimpanzee genome than these are to each other. These regions allow various aspects of the ancestry of the two ape species to be reconstructed. In addition, many of the regions that overlap genes may eventually help us understand the genetic basis of phenotypes that humans share with one of the two apes to the exclusion of the other. PMID:22722832

  7. Genome-wide association study of swine farrowing traits. Part I: genetic and genomic parameter estimates.

    Science.gov (United States)

    Schneider, J F; Rempel, L A; Rohrer, G A

    2012-10-01

    The primary objective of this study was to determine genetic and genomic parameters among swine (Sus scrofa) farrowing traits. Genetic parameters were obtained using MTDFREML. Genomic parameters were obtained using GENSEL. Genetic and residual variances obtained from MTDFREML were used as priors for the Bayes C analysis of GENSEL. Farrowing traits included total number born (TNB), number born alive (NBA), number born dead (NBD), number stillborn (NSB), number of mummies (MUM), litter birth weight (LBW), and average piglet birth weight (ABW). Statistically significant heritabilities included TNB (0.09, P = 0.048), NBA (0.09, P = 0.041), LBW (0.20, P = 0.002), and ABW (0.26, P NBA (0.97, P NBA-LBW (0.56, P NBA (0.06), NBD (0.00), NSB (0.01), MUM (0.00), LBW (0.11), and ABW (0.31). Limited information is available in the literature about genomic parameters. Only the GP estimate for NSB is significantly lower than what has been published. The GP estimate for ABW is greater than the estimate for heritability found in this study. Other traits with significant heritability had GP estimates half the value of heritability. This research indicates that significant genetic markers will be found for TNB, NBA, LBW, and ABW that will have either immediate use in industry or provide a roadmap to further research with fine mapping or sequencing of areas of significance. Furthermore, these results indicate that genomic selection implemented at an early age would have similar annual progress as traditional selection, and could be incorporated along with traditional selection procedures to improve genetic progress of litter traits.

  8. Population genomics of Bronze Age Eurasia

    DEFF Research Database (Denmark)

    Allentoft, Morten E.; Sikora, Martin; Sjögren, Karl-Göran

    2015-01-01

    The Bronze Age of Eurasia (around 3000-1000 BC) was a period of major cultural changes. However, there is debate about whether these changes resulted from the circulation of ideas or from human migrations, potentially also facilitating the spread of languages and certain phenotypic traits. We...... investigated this by using new, improved methods to sequence low-coverage genomes from 101 ancient humans from across Eurasia. We show that the Bronze Age was a highly dynamic period involving large-scale population migrations and replacements, responsible for shaping major parts of present-day demographic...... structure in both Europe and Asia. Our findings are consistent with the hypothesized spread of Indo-European languages during the Early Bronze Age. We also demonstrate that light skin pigmentation in Europeans was already present at high frequency in the Bronze Age, but not lactose tolerance, indicating...

  9. Whole genome amplification in preimplantation genetic diagnosis*

    Science.gov (United States)

    Zheng, Ying-ming; Wang, Ning; Li, Lei; Jin, Fan

    2011-01-01

    Preimplantation genetic diagnosis (PGD) refers to a procedure for genetically analyzing embryos prior to implantation, improving the chance of conception for patients at high risk of transmitting specific inherited disorders. This method has been widely used for a large number of genetic disorders since the first successful application in the early 1990s. Polymerase chain reaction (PCR) and fluorescent in situ hybridization (FISH) are the two main methods in PGD, but there are some inevitable shortcomings limiting the scope of genetic diagnosis. Fortunately, different whole genome amplification (WGA) techniques have been developed to overcome these problems. Sufficient DNA can be amplified and multiple tasks which need abundant DNA can be performed. Moreover, WGA products can be analyzed as a template for multi-loci and multi-gene during the subsequent DNA analysis. In this review, we will focus on the currently available WGA techniques and their applications, as well as the new technical trends from WGA products. PMID:21194180

  10. Population genomics of Bronze Age Eurasia.

    Science.gov (United States)

    Allentoft, Morten E; Sikora, Martin; Sjögren, Karl-Göran; Rasmussen, Simon; Rasmussen, Morten; Stenderup, Jesper; Damgaard, Peter B; Schroeder, Hannes; Ahlström, Torbjörn; Vinner, Lasse; Malaspinas, Anna-Sapfo; Margaryan, Ashot; Higham, Tom; Chivall, David; Lynnerup, Niels; Harvig, Lise; Baron, Justyna; Della Casa, Philippe; Dąbrowski, Paweł; Duffy, Paul R; Ebel, Alexander V; Epimakhov, Andrey; Frei, Karin; Furmanek, Mirosław; Gralak, Tomasz; Gromov, Andrey; Gronkiewicz, Stanisław; Grupe, Gisela; Hajdu, Tamás; Jarysz, Radosław; Khartanovich, Valeri; Khokhlov, Alexandr; Kiss, Viktória; Kolář, Jan; Kriiska, Aivar; Lasak, Irena; Longhi, Cristina; McGlynn, George; Merkevicius, Algimantas; Merkyte, Inga; Metspalu, Mait; Mkrtchyan, Ruzan; Moiseyev, Vyacheslav; Paja, László; Pálfi, György; Pokutta, Dalia; Pospieszny, Łukasz; Price, T Douglas; Saag, Lehti; Sablin, Mikhail; Shishlina, Natalia; Smrčka, Václav; Soenov, Vasilii I; Szeverényi, Vajk; Tóth, Gusztáv; Trifanova, Synaru V; Varul, Liivi; Vicze, Magdolna; Yepiskoposyan, Levon; Zhitenev, Vladislav; Orlando, Ludovic; Sicheritz-Pontén, Thomas; Brunak, Søren; Nielsen, Rasmus; Kristiansen, Kristian; Willerslev, Eske

    2015-06-11

    The Bronze Age of Eurasia (around 3000-1000 BC) was a period of major cultural changes. However, there is debate about whether these changes resulted from the circulation of ideas or from human migrations, potentially also facilitating the spread of languages and certain phenotypic traits. We investigated this by using new, improved methods to sequence low-coverage genomes from 101 ancient humans from across Eurasia. We show that the Bronze Age was a highly dynamic period involving large-scale population migrations and replacements, responsible for shaping major parts of present-day demographic structure in both Europe and Asia. Our findings are consistent with the hypothesized spread of Indo-European languages during the Early Bronze Age. We also demonstrate that light skin pigmentation in Europeans was already present at high frequency in the Bronze Age, but not lactose tolerance, indicating a more recent onset of positive selection on lactose tolerance than previously thought.

  11. Capturing prokaryotic dark matter genomes.

    Science.gov (United States)

    Gasc, Cyrielle; Ribière, Céline; Parisot, Nicolas; Beugnot, Réjane; Defois, Clémence; Petit-Biderre, Corinne; Boucher, Delphine; Peyretaillade, Eric; Peyret, Pierre

    2015-12-01

    Prokaryotes are the most diverse and abundant cellular life forms on Earth. Most of them, identified by indirect molecular approaches, belong to microbial dark matter. The advent of metagenomic and single-cell genomic approaches has highlighted the metabolic capabilities of numerous members of this dark matter through genome reconstruction. Thus, linking functions back to the species has revolutionized our understanding of how ecosystem function is sustained by the microbial world. This review will present discoveries acquired through the illumination of prokaryotic dark matter genomes by these innovative approaches. Copyright © 2015 Institut Pasteur. Published by Elsevier Masson SAS. All rights reserved.

  12. Human genome. 1993 Program report

    Energy Technology Data Exchange (ETDEWEB)

    1994-03-01

    The purpose of this report is to update the Human Genome 1991-92 Program Report and provide new information on the DOE genome program to researchers, program managers, other government agencies, and the interested public. This FY 1993 supplement includes abstracts of 60 new or renewed projects and listings of 112 continuing and 28 completed projects. These two reports, taken together, present the most complete published view of the DOE Human Genome Program through FY 1993. Research is progressing rapidly toward 15-year goals of mapping and sequencing the DNA of each of the 24 different human chromosomes.

  13. Deep whole-genome sequencing of 90 Han Chinese genomes.

    Science.gov (United States)

    Lan, Tianming; Lin, Haoxiang; Zhu, Wenjuan; Laurent, Tellier Christian Asker Melchior; Yang, Mengcheng; Liu, Xin; Wang, Jun; Wang, Jian; Yang, Huanming; Xu, Xun; Guo, Xiaosen

    2017-09-01

    Next-generation sequencing provides a high-resolution insight into human genetic information. However, the focus of previous studies has primarily been on low-coverage data due to the high cost of sequencing. Although the 1000 Genomes Project and the Haplotype Reference Consortium have both provided powerful reference panels for imputation, low-frequency and novel variants remain difficult to discover and call with accuracy on the basis of low-coverage data. Deep sequencing provides an optimal solution for the problem of these low-frequency and novel variants. Although whole-exome sequencing is also a viable choice for exome regions, it cannot account for noncoding regions, sometimes resulting in the absence of important, causal variants. For Han Chinese populations, the majority of variants have been discovered based upon low-coverage data from the 1000 Genomes Project. However, high-coverage, whole-genome sequencing data are limited for any population, and a large amount of low-frequency, population-specific variants remain uncharacterized. We have performed whole-genome sequencing at a high depth (∼×80) of 90 unrelated individuals of Chinese ancestry, collected from the 1000 Genomes Project samples, including 45 Northern Han Chinese and 45 Southern Han Chinese samples. Eighty-three of these 90 have been sequenced by the 1000 Genomes Project. We have identified 12 568 804 single nucleotide polymorphisms, 2 074 210 short InDels, and 26 142 structural variations from these 90 samples. Compared to the Han Chinese data from the 1000 Genomes Project, we have found 7 000 629 novel variants with low frequency (defined as minor allele frequency genome. Compared to the 1000 Genomes Project, these Han Chinese deep sequencing data enhance the characterization of a large number of low-frequency, novel variants. This will be a valuable resource for promoting Chinese genetics research and medical development. Additionally, it will provide a valuable supplement to the 1000

  14. Identification of genomic sites for CRISPR/Cas9-based genome editing in the Vitis vinifera genome

    Science.gov (United States)

    CRISPR/Cas9 has been recently demonstrated as an effective and popular genome editing tool for modifying genomes of human, animals, microorganisms, and plants. Success of such genome editing is highly dependent on the availability of suitable target sites in the genomes to be edited. Many specific t...

  15. Genomics and the human genome project: implications for psychiatry

    OpenAIRE

    Kelsoe, J R

    2004-01-01

    In the past decade the Human Genome Project has made extraordinary strides in understanding of fundamental human genetics. The complete human genetic sequence has been determined, and the chromosomal location of almost all human genes identified. Presently, a large international consortium, the HapMap Project, is working to identify a large portion of genetic variation in different human populations and the structure and relationship of these variants to each other. The Human Genome Project h...

  16. Challenges in Whole-Genome Annotation of Pyrosequenced Eukaryotic Genomes

    Energy Technology Data Exchange (ETDEWEB)

    Kuo, Alan; Grigoriev, Igor

    2009-04-17

    Pyrosequencing technologies such as 454/Roche and Solexa/Illumina vastly lower the cost of nucleotide sequencing compared to the traditional Sanger method, and thus promise to greatly expand the number of sequenced eukaryotic genomes. However, the new technologies also bring new challenges such as shorter reads and new kinds and higher rates of sequencing errors, which complicate genome assembly and gene prediction. At JGI we are deploying 454 technology for the sequencing and assembly of ever-larger eukaryotic genomes. Here we describe our first whole-genome annotation of a purely 454-sequenced fungal genome that is larger than a yeast (>30 Mbp). The pezizomycotine (filamentous ascomycote) Aspergillus carbonarius belongs to the Aspergillus section Nigri species complex, members of which are significant as platforms for bioenergy and bioindustrial technology, as members of soil microbial communities and players in the global carbon cycle, and as agricultural toxigens. Application of a modified version of the standard JGI Annotation Pipeline has so far predicted ~;;10k genes. ~;;12percent of these preliminary annotations suffer a potential frameshift error, which is somewhat higher than the ~;;9percent rate in the Sanger-sequenced and conventionally assembled and annotated genome of fellow Aspergillus section Nigri member A. niger. Also,>90percent of A. niger genes have potential homologs in the A. carbonarius preliminary annotation. Weconclude, and with further annotation and comparative analysis expect to confirm, that 454 sequencing strategies provide a promising substrate for annotation of modestly sized eukaryotic genomes. We will also present results of annotation of a number of other pyrosequenced fungal genomes of bioenergy interest.

  17. Genome projects and the functional-genomic era.

    Science.gov (United States)

    Sauer, Sascha; Konthur, Zoltán; Lehrach, Hans

    2005-12-01

    The problems we face today in public health as a result of the -- fortunately -- increasing age of people and the requirements of developing countries create an urgent need for new and innovative approaches in medicine and in agronomics. Genomic and functional genomic approaches have a great potential to at least partially solve these problems in the future. Important progress has been made by procedures to decode genomic information of humans, but also of other key organisms. The basic comprehension of genomic information (and its transfer) should now give us the possibility to pursue the next important step in life science eventually leading to a basic understanding of biological information flow; the elucidation of the function of all genes and correlative products encoded in the genome, as well as the discovery of their interactions in a molecular context and the response to environmental factors. As a result of the sequencing projects, we are now able to ask important questions about sequence variation and can start to comprehensively study the function of expressed genes on different levels such as RNA, protein or the cell in a systematic context including underlying networks. In this article we review and comment on current trends in large-scale systematic biological research. A particular emphasis is put on technology developments that can provide means to accomplish the tasks of future lines of functional genomics.

  18. The Amaranth Genome: Genome, Transcriptome, and Physical Map Assembly

    Directory of Open Access Journals (Sweden)

    J. W. Clouse

    2016-03-01

    Full Text Available Amaranth ( L. is an emerging pseudocereal native to the New World that has garnered increased attention in recent years because of its nutritional quality, in particular its seed protein and more specifically its high levels of the essential amino acid lysine. It belongs to the Amaranthaceae family, is an ancient paleopolyploid that shows disomic inheritance (2 = 32, and has an estimated genome size of 466 Mb. Here we present a high-quality draft genome sequence of the grain amaranth. The genome assembly consisted of 377 Mb in 3518 scaffolds with an N of 371 kb. Repetitive element analysis predicted that 48% of the genome is comprised of repeat sequences, of which -like elements were the most commonly classified retrotransposon. A de novo transcriptome consisting of 66,370 contigs was assembled from eight different amaranth tissue and abiotic stress libraries. Annotation of the genome identified 23,059 protein-coding genes. Seven grain amaranths (, , and and their putative progenitor ( were resequenced. A single nucleotide polymorphism (SNP phylogeny supported the classification of as the progenitor species of the grain amaranths. Lastly, we generated a de novo physical map for using the BioNano Genomics’ Genome Mapping platform. The physical map spanned 340 Mb and a hybrid assembly using the BioNano physical maps nearly doubled the N of the assembly to 697 kb. Moreover, we analyzed synteny between amaranth and sugar beet ( L. and estimated, using analysis, the age of the most recent polyploidization event in amaranth.

  19. Whole genome sequencing and bioinformatics analysis of two Egyptian genomes.

    Science.gov (United States)

    ElHefnawi, Mahmoud; Jeon, Sungwon; Bhak, Youngjune; ElFiky, Asmaa; Horaiz, Ahmed; Jun, JeHoon; Kim, Hyunho; Bhak, Jong

    2018-05-15

    We report two Egyptian male genomes (EGP1 and EGP2) sequenced at ~ 30× sequencing depths. EGP1 had 4.7 million variants, where 198,877 were novel variants while EGP2 had 209,109 novel variants out of 4.8 million variants. The mitochondrial haplogroup of the two individuals were identified to be H7b1 and L2a1c, respectively. We also identified the Y haplogroup of EGP1 (R1b) and EGP2 (J1a2a1a2 > P58 > FGC11). EGP1 had a mutation in the NADH gene of the mitochondrial genome ND4 (m.11778 G > A) that causes Leber's hereditary optic neuropathy. Some SNPs shared by the two genomes were associated with an increased level of cholesterol and triglycerides, probably related with Egyptians obesity. Comparison of these genomes with African and Western-Asian genomes can provide insights on Egyptian ancestry and genetic history. This resource can be used to further understand genomic diversity and functional classification of variants as well as human migration and evolution across Africa and Western-Asia. Copyright © 2017. Published by Elsevier B.V.

  20. Comparative genomic hybridization.

    Science.gov (United States)

    Pinkel, Daniel; Albertson, Donna G

    2005-01-01

    Altering DNA copy number is one of the many ways that gene expression and function may be modified. Some variations are found among normal individuals ( 14, 35, 103 ), others occur in the course of normal processes in some species ( 33 ), and still others participate in causing various disease states. For example, many defects in human development are due to gains and losses of chromosomes and chromosomal segments that occur prior to or shortly after fertilization, whereas DNA dosage alterations that occur in somatic cells are frequent contributors to cancer. Detecting these aberrations, and interpreting them within the context of broader knowledge, facilitates identification of critical genes and pathways involved in biological processes and diseases, and provides clinically relevant information. Over the past several years array comparative genomic hybridization (array CGH) has demonstrated its value for analyzing DNA copy number variations. In this review we discuss the state of the art of array CGH and its applications in medical genetics and cancer, emphasizing general concepts rather than specific results.

  1. Functional Genomics Group. Program Description

    National Research Council Canada - National Science Library

    Burian, Dennis

    2008-01-01

    .... This article reviews mechanisms of gene regulation and discusses how genomics is changing the way medicine is practiced today as a means of demonstrating that molecular medicine is here to stay...

  2. Genomic Resources for Cancer Epidemiology

    Science.gov (United States)

    This page provides links to research resources, complied by the Epidemiology and Genomics Research Program, that may be of interest to genetic epidemiologists conducting cancer research, but is not exhaustive.

  3. Fungal genomics beyond Saccharomyces cerevisiae?

    DEFF Research Database (Denmark)

    Hofmann, Gerald; Mcintyre, Mhairi; Nielsen, Jens

    2003-01-01

    Fungi are used extensively in both fundamental research and industrial applications. Saccharomyces cerevisiae has been the model organism for fungal research for many years, particularly in functional genomics. However, considering the diversity within the fungal kingdom, it is obvious...

  4. Genome engineering in human cells.

    Science.gov (United States)

    Song, Minjung; Kim, Young-Hoon; Kim, Jin-Soo; Kim, Hyongbum

    2014-01-01

    Genome editing in human cells is of great value in research, medicine, and biotechnology. Programmable nucleases including zinc-finger nucleases, transcription activator-like effector nucleases, and RNA-guided engineered nucleases recognize a specific target sequence and make a double-strand break at that site, which can result in gene disruption, gene insertion, gene correction, or chromosomal rearrangements. The target sequence complexities of these programmable nucleases are higher than 3.2 mega base pairs, the size of the haploid human genome. Here, we briefly introduce the structure of the human genome and the characteristics of each programmable nuclease, and review their applications in human cells including pluripotent stem cells. In addition, we discuss various delivery methods for nucleases, programmable nickases, and enrichment of gene-edited human cells, all of which facilitate efficient and precise genome editing in human cells.

  5. [Advances in microbial genome reduction and modification].

    Science.gov (United States)

    Wang, Jianli; Wang, Xiaoyuan

    2013-08-01

    Microbial genome reduction and modification are important strategies for constructing cellular chassis used for synthetic biology. This article summarized the essential genes and the methods to identify them in microorganisms, compared various strategies for microbial genome reduction, and analyzed the characteristics of some microorganisms with the minimized genome. This review shows the important role of genome reduction in constructing cellular chassis.

  6. 2004 Structural, Function and Evolutionary Genomics

    Energy Technology Data Exchange (ETDEWEB)

    Douglas L. Brutlag Nancy Ryan Gray

    2005-03-23

    This Gordon conference will cover the areas of structural, functional and evolutionary genomics. It will take a systematic approach to genomics, examining the evolution of proteins, protein functional sites, protein-protein interactions, regulatory networks, and metabolic networks. Emphasis will be placed on what we can learn from comparative genomics and entire genomes and proteomes.

  7. Draft Genome Sequence of Lactobacillus rhamnosus 2166.

    OpenAIRE

    Karlyshev, Andrey V.; Melnikov, Vyacheslav G.; Kosarev, Igor V.; Abramov, Vyacheslav M.

    2014-01-01

    In this report, we present a draft sequence of the genome of Lactobacillus rhamnosus strain 2166, a potential novel probiotic. Genome annotation and read mapping onto a reference genome of L. rhamnosus str