Unification of SUSY breaking and GUT breaking
Energy Technology Data Exchange (ETDEWEB)
Kobayashi, Tatsuo [Department of Physics, Hokkaido University,Sapporo 060-0810 (Japan); Omura, Yuji [Department of Physics, Nagoya University,Nagoya 464-8602 (Japan)
2015-02-18
We build explicit supersymmetric unification models where grand unified gauge symmetry breaking and supersymmetry (SUSY) breaking are caused by the same sector. Besides, the SM-charged particles are also predicted by the symmetry breaking sector, and they give the soft SUSY breaking terms through the so-called gauge mediation. We investigate the mass spectrums in an explicit model with SU(5) and additional gauge groups, and discuss its phenomenological aspects. Especially, nonzero A-term and B-term are generated at one-loop level according to the mediation via the vector superfields, so that the electro-weak symmetry breaking and 125 GeV Higgs mass may be achieved by the large B-term and A-term even if the stop mass is around 1 TeV.
Lifshitz-sector mediated SUSY breaking
Pospelov, MaximDepartment of Physics and Astronomy, University of Victoria, Victoria, BC, V8P 5C2, Canada; Tamarit, Carlos(Perimeter Institute for Theoretical Physics, Waterloo, ON, N2L 2Y5, Canada)
2014-01-01
We propose a novel mechanism of SUSY breaking by coupling a Lorentz-invariant supersymmetric matter sector to non-supersymmetric gravitational interactions with Lifshitz scaling. The improved UV properties of Lifshitz propagators moderate the otherwise uncontrollable ultraviolet divergences induced by gravitational loops. This ensures that both the amount of induced Lorentz violation and SUSY breaking in the matter sector are controlled by $ {{{\\Lambda_{\\mathrm{HL}}^2}} \\left/ {{M_P^2}} \\righ...
Lifshitz-sector mediated SUSY breaking
International Nuclear Information System (INIS)
Pospelov, Maxim; Tamarit, Carlos
2014-01-01
We propose a novel mechanism of SUSY breaking by coupling a Lorentz-invariant supersymmetric matter sector to non-supersymmetric gravitational interactions with Lifshitz scaling. The improved UV properties of Lifshitz propagators moderate the otherwise uncontrollable ultraviolet divergences induced by gravitational loops. This ensures that both the amount of induced Lorentz violation and SUSY breaking in the matter sector are controlled by Λ HL 2 /M P 2 , the ratio of the Hořava-Lifshitz cross-over scale Λ HL to the Planck scale M P . This ratio can be kept very small, providing a novel way of explicitly breaking supersymmetry without reintroducing fine-tuning. We illustrate our idea by considering a model of scalar gravity with Hořava-Lifshitz scaling coupled to a supersymmetric Wess-Zumino matter sector, in which we compute the two-loop SUSY breaking corrections to the masses of the light scalars due to the gravitational interactions and the heavy fields
Neutrino masses from SUSY breaking in radiative seesaw models
International Nuclear Information System (INIS)
Figueiredo, Antonio J.R.
2015-01-01
Radiatively generated neutrino masses (m ν ) are proportional to supersymmetry (SUSY) breaking, as a result of the SUSY non-renormalisation theorem. In this work, we investigate the space of SUSY radiative seesaw models with regard to their dependence on SUSY breaking (SUSY). In addition to contributions from sources of SUSY that are involved in electroweak symmetry breaking (SUSY EWSB contributions), and which are manifest from left angle F H † right angle = μ left angle anti H right angle ≠ 0 and left angle D right angle = g sum H left angle H † x H H right angle ≠ 0, radiatively generated m ν can also receive contributions from SUSY sources that are unrelated to EWSB (SUSY EWS contributions). We point out that recent literature overlooks pure-SUSY EWSB contributions (∝ μ/M) that can arise at the same order of perturbation theory as the leading order contribution from SUSY EWS . We show that there exist realistic radiative seesaw models in which the leading order contribution to m ν is proportional to SUSY EWS . To our knowledge no model with such a feature exists in the literature. We give a complete description of the simplest model topologies and their leading dependence on SUSY. We show that in one-loop realisations LLHH operators are suppressed by at least μ m soft /M 3 or m soft 2 /M 3 . We construct a model example based on a oneloop type-II seesaw. An interesting aspect of these models lies in the fact that the scale of soft-SUSY effects generating the leading order m ν can be quite small without conflicting with lower limits on the mass of new particles. (orig.)
Yukawa unification in moduli-dominant SUSY breaking
International Nuclear Information System (INIS)
Khalil, S.; Tatsuo Kobayashi
1997-07-01
We study Yukawa in string models with moduli-dominant SUSY breaking. This type of SUSY breaking in general leads to non-universal soft masses, i.e. soft scalar masses and gaugino masses. Such non-universality is important for phenomenological aspects of Yukawa unification, i.e., successful electroweak breaking, SUSY corrections to the bottom mass and the branching ratio of b → sγ. We show three regions in the whole parameter space which lead to successful electroweak breaking and allow small SUSY corrections to the bottom mass. For these three regions we investigated the b → sγ decay and mass spectra. (author). 26 refs, 6 figs
Spontaneous SUSY breaking without R symmetry in supergravity
Maekawa, Nobuhiro; Omura, Yuji; Shigekami, Yoshihiro; Yoshida, Manabu
2018-03-01
We discuss spontaneous supersymmetry (SUSY) breaking in a model with an anomalous U (1 )A symmetry. In this model, the size of the each term in the superpotential is controlled by the U (1 )A charge assignment and SUSY is spontaneously broken via the Fayet-Iliopoulos of U (1 )A at the metastable vacuum. In the global SUSY analysis, the gaugino masses become much smaller than the sfermion masses, because an approximate R symmetry appears at the SUSY breaking vacuum. In this paper, we show that gaugino masses can be as large as gravitino mass, taking the supergravity effect into consideration. This is because the R symmetry is not imposed so that the constant term in the superpotential, which is irrelevant to the global SUSY analysis, largely contributes to the soft SUSY breaking terms in the supergravity. As the mediation mechanism, we introduce the contributions of the field not charged under U (1 )A and the moduli field to cancel the anomaly of U (1 )A. We comment on the application of our SUSY breaking scenario to the grand unified theory.
Non-universal SUSY breaking, hierarchy and squark degeneracty
International Nuclear Information System (INIS)
Murayama, Hitoshi.
1995-01-01
I discuss non-trivial effects in the soft SUSY breaking terms which appear when one integrates out heavy fields. The effects exist only when the SUSY breaking terms are non-universal. They may spoil (1) the hierarchy between the weak and high-energy scales, or (2) degeneracy among the squark masses even in the presense of a horizontal symmetry. I argue, in the end, that such new effects may be useful in probing physics at high-energy scales from TeV-scale experiments
Improved GUT and SUSY breaking by the same field
International Nuclear Information System (INIS)
Agashe, Kaustubh
2000-01-01
In a previous paper [hep-ph/9809421; Phys. Lett. B 444 (1998) 61], we presented a model in which the same modulus field breaks SUSY and a simple GUT gauge group, and which has dynamical origins for both SUSY breaking and GUT scales. In this model, the supergravity (SUGRA) and gauge mediated contributions to MSSM scalar and gaugino masses are comparable -- this enables a realistic spectrum to be attained since the gauge mediated contribution to the right-handed (RH) slepton (mass) 2 (at the weak scale) by itself (i.e., neglecting SUGRA contribution to sfermion and gaugino masses) is negative. But, in general, the SUGRA contribution to sfermion masses (from non-renormalizable contact Kaehler terms) leads to flavor violation. In this paper, we use the recently proposed idea of gaugino mediated SUSY breaking ( g-tilde MSB) to improve the above model. With MSSM matter and SUSY breaking fields localized on separate branes in an extra dimension of size R∼5M -1 Pl (in which gauge fields propagate), the SUGRA contribution to sfermion masses (which violates flavor) is suppressed. As in 4 dimensions, MSSM gauginos acquire non-universal masses from both SUGRA and gauge mediation - gaugino masses (in particular the SUGRA contribution to gaugino masses), in turn, generate acceptable sfermion masses through renormalization group evolution; the phenomenology is discussed briefly. We also point out that (a) in models where SUSY is broken by a GUT non-singlet field, there is, in general, a contribution to MSSM gaugino (and scalar) masses from the coupling to heavy gauge multiplet which might be comparable to the SUGRA contribution and (b) models of gauge mediation proposed earlier which also have negative RH slepton (mass) 2 can be rendered viable using the g-tilde MSB idea
SUSY breaking mediation by throat fields
International Nuclear Information System (INIS)
Bruemmer, F.; Hebecker, A.; Trapletti, M.
2006-01-01
We investigate, in the general framework of KKLT, the mediation of supersymmetry breaking by fields propagating in the strongly warped region of the compactification manifold ('throat fields'). Such fields can couple both to the supersymmetry breaking sector at the IR end of the throat and to the visible sector at the UV end. We model the supersymmetry breaking sector by a chiral superfield which develops an F term vacuum expectation value (also responsible for the uplift). It turns out that the mediation effect of vector multiplets propagating in the throat can compete with modulus-anomaly mediation. Moreover, such vector fields are naturally present as the gauge fields arising from isometries of the throat (most notably the SO(4) isometry of the Klebanov-Strassler solution). Their mediation effect is important in spite of their large 4d mass. The latter is due to the breaking of the throat isometry by the compact manifold at the UV end of the throat. The contribution from heavy chiral superfields is found to be subdominant
B-L mediated SUSY breaking with radiative B-L symmetry breaking
International Nuclear Information System (INIS)
Kikuchi, Tatsuru; Kubo, Takayuki
2008-01-01
We explore a mechanism of radiative B-L symmetry breaking in analogous to the radiative electroweak symmetry breaking. The breaking scale of B-L symmetry is related to the neutrino masses through the see-saw mechanism. Once we incorporate the U(1) B-L gauge symmetry in SUSY models, the U(1) B-L gaugino, Z-tilde B-L appears, and it can mediate the SUSY breaking (Z-prime mediated SUSY breaking) at around the scale of 10 6 GeV. Then we find a links between the neutrino mass (more precisly the see-saw or B-L scale of order 10 6 GeV) and the Z-prime mediated SUSY breaking scale. It is also very interesting that the gluino at the weak scale becomes relatively light, and almost compressed mass spectra for the gaugino sector can be realized in this scenario, which is very interesting in scope of the LHC.
Some features of SUSY breaking in N=2 supergravity
International Nuclear Information System (INIS)
Cecotti, S.; Giradello, L.; Porrati, M.
1984-08-01
We discuss some features of SUSY breaking in N=2 Supergravity. Firstly, we show that in a general N=2 Sugra model (constructed according to the tensor calculus) all stationary points of the potential, at Λ=0, are fully supersymmetric if the compensating multiplet is not gauged. Thus a viable super-Higgs effect in N=2 supergravity can occur only in the presence of a Fayet-Iliopoulos term. Then we present an explicit model with two scales of breaking in anti-de Sitter space. Moreover, the ratio of the two gravitino masses is sliding i.e. not determined by the classical potential. In the extreme situation one of the gravitino mass equals √-Λ/3, and thus we have partial super-Higgs (in AdS space). The cosmological constant may be arranged to an arbitrary small value while keeping the mass of the heavy gravitino constant. (author)
Reach of the Fermilab Tevatron and CERN LHC for gaugino mediated SUSY breaking models
International Nuclear Information System (INIS)
Baer, Howard; Belyaev, Alexander; Krupovnickas, Tadas; Tata, Xerxes
2002-01-01
In supersymmetric models with gaugino mediated SUSY breaking (gMSB), it is assumed that SUSY breaking on a hidden brane is communicated to the visible brane via gauge superfields which propagate in the bulk. This leads to GUT models where the common gaugino mass m 1/2 is the only soft SUSY breaking term to receive contributions at the tree level. To obtain a viable phenomenology, it is assumed that the gaugino mass is induced at some scale M c beyond the GUT scale, and that additional renormalization group running takes place between M c and M GUT as in a SUSY GUT. We assume an SU(5) SUSY GUT above the GUT scale, and compute the SUSY particle spectrum expected in models with gMSB. We use the Monte Carlo program ISAJET to simulate signals within the gMSB model, and compute the SUSY reach including cuts and triggers appropriate to Fermilab Tevatron and CERN LHC experiments. We find no reach for SUSY by the Tevatron collider in the trilepton channel. At the CERN LHC, values of m 1/2 =1000 (1160) GeV can be probed with 10 (100) fb -1 of integrated luminosity, corresponding to a reach in terms of m g-tilde of 2150 (2500) GeV. The gMSB model and MSUGRA can likely only be differentiated at a linear e + e - collider with sufficient energy to produce sleptons and charginos
Low-scale SUSY breaking and the (s)goldstino physics
Antoniadis, I.
2013-01-01
For a 4D N=1 supersymmetric model with a low SUSY breaking scale (f) and general Kahler potential K(Phi^i,Phi_j^*) and superpotential W(Phi^i) we study, in an effective theory approach, the relation of the goldstino superfield to the (Ferrara-Zumino) superconformal symmetry breaking chiral superfield X. In the presence of more sources of supersymmetry breaking, we verify the conjecture that the goldstino superfield is the (infrared) limit of X for zero-momentum and Lambda->\\infty. (Lambda is the effective cut-off scale). We then study the constraint X^2=0, which in the one-field case is known to decouple a massive sgoldstino and thus provide an effective superfield description of the Akulov-Volkov action for the goldstino. In the presence of additional fields that contribute to SUSY breaking we identify conditions for which X^2=0 remains valid, in the effective theory below a large but finite sgoldstino mass. The conditions ensure that the effective expansion (in 1/Lambda) of the initial Lagrangian is not in ...
A realistic extension of gauge-mediated SUSY-breaking model with superconformal hidden sector
International Nuclear Information System (INIS)
Asano, Masaki; Hisano, Junji; Okada, Takashi; Sugiyama, Shohei
2009-01-01
The sequestering of supersymmetry (SUSY) breaking parameters, which is induced by superconformal hidden sector, is one of the solutions for the μ/B μ problem in gauge-mediated SUSY-breaking scenario. However, it is found that the minimal messenger model does not derive the correct electroweak symmetry breaking. In this Letter we present a model which has the coupling of the messengers with the SO(10) GUT-symmetry breaking Higgs fields. The model is one of the realistic extensions of the gauge mediation model with superconformal hidden sector. It is shown that the extension is applicable for a broad range of conformality breaking scale
International Nuclear Information System (INIS)
Gato, B.; Leon, J.; Ramon-Medrano, M.
1984-01-01
We present a model for a SUSY GUT coupled to N=1 supergravity in which local supersymmetry breaks down in the gauge singlet sector. The constraints for the model to be physically acceptable are incompatible with inflation. The simultaneous breaking of local supersymmetry and gauge symmetry is proposed as a good prospect for inflation. (orig.)
A low energy dynamical SUSY breaking scenario motivated from superstring derived unification
Faraggi, Alon E.
1996-01-01
Recently there has been a resurgence of interest in gauge mediated dynamical supersymmetry breaking scenarios. I investigate how low energy dynamical SUSY breaking may arise from superstring models. In a three generation string derived model I propose that the unbroken hidden non--Abelian gauge group at the string scale is SU(3)_H with matter multiplets. Due to the small gauge content of the hidden gauge group the supersymmetry breaking scale may be consistent with the dynamical SUSY breaking scenarios. The messenger states are obtained in the superstring model from sectors which arise due to the ``Wilson--line'' breaking of the unifying non--Abelian gauge symmetry. An important property of the string motivated messenger states is the absence of superpotential terms with the Standard Model states. The stringy symmetries therefore forbid the flavor changing processes which may arise due to couplings between the messenger sector states and the Standard Model states. Motivated from the problem of string gauge co...
Stability of neutrino parameters and self-complementarity relation with varying SUSY breaking scale
Singh, K. Sashikanta; Roy, Subhankar; Singh, N. Nimai
2018-03-01
The scale at which supersymmetry (SUSY) breaks (ms) is still unknown. The present article, following a top-down approach, endeavors to study the effect of varying ms on the radiative stability of the observational parameters associated with the neutrino mixing. These parameters get additional contributions in the minimal supersymmetric model (MSSM). A variation in ms will influence the bounds for which the Standard Model (SM) and MSSM work and hence, will account for the different radiative contributions received from both sectors, respectively, while running the renormalization group equations (RGE). The present work establishes the invariance of the self complementarity relation among the three mixing angles, θ13+θ12≈θ23 against the radiative evolution. A similar result concerning the mass ratio, m2:m1 is also found to be valid. In addition to varying ms, the work incorporates a range of different seesaw (SS) scales and tries to see how the latter affects the parameters.
Flavour symmetries and SUSY soft breaking in the LHC era
International Nuclear Information System (INIS)
Vives, O
2008-01-01
The so-called supersymmetric flavour problem does not exist in isolation to the Standard Model flavour problem. We show that a realistic flavour symmetry can simultaneously solve both problems without ad hoc modifications of the SUSY model. Furthermore, departures from the SM expectations in these models can be used to discriminate among different possibilities. In particular we present the expected values for the electron EDM in a flavour model solving the supersymmetric flavour and CP problems
Muon g−2 in anomaly mediated SUSY breaking
Energy Technology Data Exchange (ETDEWEB)
Chowdhury, Debtosh; Yokozaki, Norimi [Istituto Nazionale di Fisica Nucleare, Sezione di Roma,Piazzale Aldo Moro 2, I-00185 Rome (Italy)
2015-08-24
Motivated by two experimental facts, the muon g−2 anomaly and the observed Higgs boson mass around 125 GeV, we propose a simple model of anomaly mediation, which can be seen as a generalization of mixed modulus-anomaly mediation. In our model, the discrepancy of the muon g−2 and the Higgs boson mass around 125 GeV are easily accommodated. The required mass splitting between the strongly and weakly interacting SUSY particles are naturally achieved by the contribution from anomaly mediation. This model is easily consistent with SU(5) or SO(10) grand unified theory.
Muon g−2 in anomaly mediated SUSY breaking
International Nuclear Information System (INIS)
Chowdhury, Debtosh; Yokozaki, Norimi
2015-01-01
Motivated by two experimental facts, the muon g−2 anomaly and the observed Higgs boson mass around 125 GeV, we propose a simple model of anomaly mediation, which can be seen as a generalization of mixed modulus-anomaly mediation. In our model, the discrepancy of the muon g−2 and the Higgs boson mass around 125 GeV are easily accommodated. The required mass splitting between the strongly and weakly interacting SUSY particles are naturally achieved by the contribution from anomaly mediation. This model is easily consistent with SU(5) or SO(10) grand unified theory.
Cosmological constant in SUGRA models with Planck scale SUSY breaking and degenerate vacua
International Nuclear Information System (INIS)
Froggatt, C.D.; Nevzorov, R.; Nielsen, H.B.; Thomas, A.W.
2014-01-01
The empirical mass of the Higgs boson suggests small to vanishing values of the quartic Higgs self-coupling and the corresponding beta function at the Planck scale, leading to degenerate vacua. This leads us to suggest that the measured value of the cosmological constant can originate from supergravity (SUGRA) models with degenerate vacua. This scenario is realised if there are at least three exactly degenerate vacua. In the first vacuum, associated with the physical one, local supersymmetry (SUSY) is broken near the Planck scale while the breakdown of the SU(2) W ×U(1) Y symmetry takes place at the electroweak (EW) scale. In the second vacuum local SUSY breaking is induced by gaugino condensation at a scale which is just slightly lower than Λ QCD in the physical vacuum. Finally, in the third vacuum local SUSY and EW symmetry are broken near the Planck scale
On the diversity of gauge mediation: footprints of dynamical SUSY breaking
International Nuclear Information System (INIS)
Abel, Steven; Jaeckel, Joerg; Khoze, Valentin V.; Matos, Luis
2009-01-01
Recent progress in realising dynamical supersymmetry breaking allows the construction of simple and calculable models of gauge mediation. We discuss the phenomenology of the particularly minimal case in which the mediation is direct, and show that there are generic new and striking predictions. These include new particles with masses comparable to those of the Standard Model superpartners, associated with the pseudo-Goldstone modes of the dynamical SUSY breaking sector. Consequently there is an unavoidable departure from the MSSM. In addition the gaugino masses are typically significantly lighter than the sfermions, and their mass ratios can be different from the pattern dictated by the gauge couplings in standard (i.e. explicit) gauge mediation. We investigate these features in two distinct realisations of the dynamical SUSY breaking sector.
On SUSY breaking and χSB from string duals
International Nuclear Information System (INIS)
Gomis, Jaume
2002-01-01
We find regular string duals of three-dimensional N=1 SYM with a Chern-Simons interaction at level k for SO and Sp gauge groups. Using the string dual we exactly reproduce the conjectured pattern of supersymmetry breaking proposed by Witten by showing that there is dynamical supersymmetry breaking for k 2h →Z 2 by analyzing the symmetries of the string solution
Probing the Higgs sector of high-scale SUSY-breaking models at the Tevatron
International Nuclear Information System (INIS)
Carena, Marcela; Liu, Tao
2010-12-01
A canonical signature of the Minimal Supersymmetric Standard Model (MSSM) is the presence of a neutral Higgs boson with mass bounded from above by about 135 GeV and Standard Model (SM)-like couplings to the electroweak gauge bosons. In this note we investigate the reach of the Tevatron collider for the MSSM Higgs sector parameter space associated with a variety of high-scale minimal models of supersymmetry (SUSY)-breaking, including the Constrained MSSM (CMSSM), minimal Gauge Mediated SUSY-breaking (mGMSB), and minimal Anomaly Mediated SUSY-breaking (mAMSB). We find that the Tevatron can provide strong constraints on these models via Higgs boson searches. Considering a simple projection for the efficiency improvements in the Tevatron analyses, we find that with an integrated luminosity of 16 fb -1 per detector and an efficiency improvement of 20% compared to the present situation, these models could be probed essentially over their entire ranges of validity. With 40% analysis improvements and 16 fb -1 , our projection shows that evidence at the 3σ level for the light Higgs boson could be expected in extended regions of parameter space. (orig.)
Probing the Higgs sector of high-scale SUSY-breaking models at the Tevatron
Energy Technology Data Exchange (ETDEWEB)
Carena, Marcela [Fermi National Accelerator Laboratory, Batavia, IL (United States); Chicago Univ., Chicago, IL (United States). Enrico Fermi Inst.; Draper, Patrick [Chicago Univ., Chicago, IL (United States). Enrico Fermi Inst.; Heinemeyer, Sven [Instituto de Fisica de Cantabria (CSIC-UC), Santander (Spain); Liu, Tao [Chicago Univ., Chicago, IL (United States). Enrico Fermi Inst.; California Univ., Santa Barbara, CA (United States). Dept. of Physics; Wagner, Carlos E.M. [Chicago Univ., Chicago, IL (United States). Enrico Fermi Inst.; Argonne National Laboratory, Argonne, IL (United States). HEP Div.; Chicago Univ., Chicago, IL (United States). KICP and Dept. of Physics; Weiglein, Georg [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany)
2010-12-15
A canonical signature of the Minimal Supersymmetric Standard Model (MSSM) is the presence of a neutral Higgs boson with mass bounded from above by about 135 GeV and Standard Model (SM)-like couplings to the electroweak gauge bosons. In this note we investigate the reach of the Tevatron collider for the MSSM Higgs sector parameter space associated with a variety of high-scale minimal models of supersymmetry (SUSY)-breaking, including the Constrained MSSM (CMSSM), minimal Gauge Mediated SUSY-breaking (mGMSB), and minimal Anomaly Mediated SUSY-breaking (mAMSB). We find that the Tevatron can provide strong constraints on these models via Higgs boson searches. Considering a simple projection for the efficiency improvements in the Tevatron analyses, we find that with an integrated luminosity of 16 fb{sup -1} per detector and an efficiency improvement of 20% compared to the present situation, these models could be probed essentially over their entire ranges of validity. With 40% analysis improvements and 16 fb{sup -1}, our projection shows that evidence at the 3{sigma} level for the light Higgs boson could be expected in extended regions of parameter space. (orig.)
Dynamical SUSY breaking in meta-stable vacua
International Nuclear Information System (INIS)
Intriligator, Kenneth; Seiberg, Nathan; Shih, David
2006-01-01
Dynamical supersymmetry breaking in a long-lived meta-stable vacuum is a phenomenologically viable possibility. This relatively unexplored avenue leads to many new models of dynamical supersymmetry breaking. Here, we present a surprisingly simple class of models with meta-stable dynamical supersymmetry breaking: N = 1 supersymmetric QCD, with massive flavors. Though these theories are strongly coupled, we definitively demonstrate the existence of meta-stable vacua by using the free-magnetic dual. Model building challenges, such as large flavor symmetries and the absence of an R-symmetry, are easily accommodated in these theories. Their simplicity also suggests that broken supersymmetry is generic in supersymmetric field theory and in the landscape of string vacua
Sgoldstino-less inflation and low energy SUSY breaking
Energy Technology Data Exchange (ETDEWEB)
Argurio, Riccardo [Physique Théorique et Mathématique and International Solvay Institutes, Université Libre de Bruxelles, CP231, B-1050 Brussels (Belgium); Coone, Dries; Mariotti, Alberto [Theoretische Natuurkunde and IIHE/ELEM, Vrije Universiteit Brussel, and International Solvay Institutes, Pleinlaan 2, B-1050 Brussels (Belgium); Heurtier, Lucien, E-mail: rargurio@ulb.ac.be, E-mail: a.a.coone@rug.nl, E-mail: lucien.heurtier@ulb.ac.be, E-mail: alberto.mariotti@vub.ac.be [Service de Physique Théorique, Université Libre de Bruxelles, CP225, B-1050 Brussels (Belgium)
2017-07-01
We assess the range of validity of sgoldstino-less inflation in a scenario of low energy supersymmetry breaking. We first analyze the consistency conditions that an effective theory of the inflaton and goldstino superfields should satisfy in order to be faithfully described by a sgoldstino-less model. Enlarging the scope of previous studies, we investigate the case where the effective field theory cut-off, and hence also the sgoldstino mass, are inflaton-dependent. We then introduce a UV complete model where one can realize successfully sgoldstino-less inflation and gauge mediation of supersymmetry breaking, combining the α-attractor mechanism and a weakly coupled model of spontaneous breaking of supersymmetry. In this class of models we find that, given current limits on superpartner masses, the gravitino mass has a lower bound of the order of the MeV, i.e. we cannot reach very low supersymmetry breaking scales. On the plus side, we recognize that in this framework, one can derive the complete superpartner spectrum as well as compute inflation observables, the reheating temperature, and address the gravitino overabundance problem. We then show that further constraints come from collider results and inflation observables. Their non trivial interplay seems a staple feature of phenomenological studies of supersymmetric inflationary models.
Anatomy of new SUSY breaking holographic RG flows
Energy Technology Data Exchange (ETDEWEB)
Argurio, Riccardo [Physique Théorique et Mathématique andInternational Solvay Institutes, Université Libre de Bruxelles,C.P. 231, 1050 Brussels (Belgium); Musso, Daniele [International Center of Theoretical Physics (ICTP),Strada Costiera 11, I 34014 Trieste (Italy); Redigolo, Diego [Physique Théorique et Mathématique andInternational Solvay Institutes, Université Libre de Bruxelles,C.P. 231, 1050 Brussels (Belgium); Sorbonne Universités, UPMC University Paris 06, UMR 7589, LPTHE,F-75005, Paris (France); CNRS, UMR 7589, LPTHE,F-75005, Paris (France)
2015-03-17
We find and thoroughly study new supergravity domain wall solutions which are holographic realizations of supersymmetry breaking strongly coupled gauge theories. We set ourselves in an N=2 gauged supergravity with a minimal content in order to reproduce a dual N=1 effective SCFT which has a U(1){sub R} symmetry, a chiral operator whose components are responsible for triggering the RG flow, and an additional U(1){sub F} symmetry. We present a full three dimensional parameter space of solutions, which generically break supersymmetry. Some known solutions are recovered for specific sets of values of the parameters, with the new solutions interpolating between them. The generic backgrounds being singular, we provide a stability test of their dual theories by showing that there are no tachyonic resonances in the two point correlators. We compute the latter by holographic renormalization. We also carefully analyze the appearance of massless modes, such as the dilaton and the R axion, when the respective symmetries are spontaneously broken, and their lifting when the breaking is explicit. We further comment on the application of such class of backgrounds as archetypes of strongly coupled hidden sectors for gauge mediation of supersymmetry breaking. In particular, we show that it is possible to model in this way all types of hierarchies between the visible sector gaugino and sfermion masses.
A Bottom-Up Approach to SUSY Analyses
Energy Technology Data Exchange (ETDEWEB)
Horn, Claus; /SLAC
2011-11-11
This paper proposes a new way to do event generation and analysis in searches for new physics at the LHC. An abstract notation is used to describe the new particles on a level which better corresponds to detector resolution of LHC experiments. In this way the SUSY discovery space can be decomposed into a small number of eigenmodes each with only a few parameters, which allows to investigate the SUSY parameter space in a model-independent way. By focusing on the experimental observables for each process investigated the Bottom-Up Approach allows to systematically study the boarders of the experimental efficiencies and thus to extend the sensitivity for new physics.
Predictions from a flavour GUT model combined with a SUSY breaking sector
Antusch, Stefan; Hohl, Christian
2017-10-01
We discuss how flavour GUT models in the context of supergravity can be completed with a simple SUSY breaking sector, such that the flavour-dependent (non-universal) soft breaking terms can be calculated. As an example, we discuss a model based on an SU(5) GUT symmetry and A 4 family symmetry, plus additional discrete "shaping symmetries" and a ℤ 4 R symmetry. We calculate the soft terms and identify the relevant high scale input parameters, and investigate the resulting predictions for the low scale observables, such as flavour violating processes, the sparticle spectrum and the dark matter relic density.
Dark matter and Bs→μ+μ- with minimal SO10 soft SUSY breaking
International Nuclear Information System (INIS)
Dermisek, R.; Roszkowski, L.; Ruiz de Austri, R.; Raby, S.
2003-01-01
CMSSM boundary conditions are usually used when calculating cosmological dark matter densities. In this paper we calculate the cosmological density of dark matter in the MSSM using minimal SO 10 soft SUSY breaking boundary conditions. These boundary conditions incorporate several attractive features: they are consistent with SO 10 Yukawa unification, they result in a 'natural' inverted scalar mass hierarchy and they reduce the dimension 5 operator contribution to the proton decay rate. With regards to dark matter, on the other hand, this is to a large extent an unexplored territory with large squark and slepton masses m 16 , large A 0 and small {μ,M 1/2 }. We find that in most regions of parameter space the cosmological density of dark matter is considerably less than required by the data. However there is a well-defined, narrow region of parameter space which provides the observed relic density of dark matter, as well as a good fit to precision electroweak data, including top, bottom and tau masses, and acceptable bounds on the branching fraction of B s →μ + μ - . We present predictions for Higgs and SUSY spectra, the dark matter detection cross section and the branching ratio BR(B s →μ + μ - ) in this region of parameter space. (author)
Metastable SUSY breaking, de Sitter moduli stabilisation and Kaehler moduli inflation
International Nuclear Information System (INIS)
Krippendorf, Sven; Quevedo, Fernando
2009-01-01
We study the influence of anomalous U(1) symmetries and their associated D-terms on the vacuum structure of global field theories once they are coupled to N = 1 supergravity and in the context of string compactifications with moduli stabilisation. In particular, we focus on a IIB string motivated construction of the ISS scenario and examine the influence of one additional U(1) symmetry on the vacuum structure. We point out that in the simplest one-Kaehler modulus compactification, the original ISS vacuum gets generically destabilised by a runaway behaviour of the potential in the modulus direction. In more general compactifications with several Kaehler moduli, we find a novel realisation of the LARGE volume scenario with D-term uplifting to de Sitter space and both D-term and F-term supersymmetry breaking. The structure of soft supersymmetry breaking terms is determined in the preferred scenario where the standard model cycle is not stabilised non-perturbatively and found to be flavour universal. Our scenario also provides a purely supersymmetric realisation of Kaehler moduli (blow-up and fibre) inflation, with similar observational properties as the original proposals but without the need to include an extra (non-SUSY) uplifting term.
Large tan β in gauge-mediated SUSY-breaking models
International Nuclear Information System (INIS)
Rattazzi, R.
1997-01-01
We explore some topics in the phenomenology of gauge-mediated SUSY-breaking scenarios having a large hierarchy of Higgs VEVs, v U /v D = tan β>>1. Some motivation for this scenario is first presented. We then use a systematic, analytic expansion (including some threshold corrections) to calculate the μ-parameter needed for proper electroweak breaking and the radiative corrections to the B-parameter, which fortuitously cancel at leading order. If B = 0 at the messenger scale then tan β is naturally large and calculable; we calculate it. We then confront this prediction with classical and quantum vacuum stability constraints arising from the Higgs-slepton potential, and indicate the preferred values of the top quark mass and messenger scale(s). The possibility of vacuum instability in a different direction yields an upper bound on the messenger mass scale complementary to the familiar bound from gravitino relic abundance. Next, we calculate the rate for b→sγ and show the possibility of large deviations (in the direction currently favored by experiment) from standard-model and small tan β predictions. Finally, we discuss the implications of these findings and their applicability to future, broader and more detailed investigations. (orig.)
Cavallo, F R
1997-01-01
A search for these decays was carried out in the context of Gauge Mediated SUSY Breaking models, using the data collected by DELPHI in 1995 and 1996 at the center of mass energies of 133, 161 and 172 GeV. No evidence of these processes was found for a decay length ranging from ~ 1mm to ~ 20cm and limits were derived on the gravitino and scalar tau masses.
Large neutrino mixings in MSSM and SUSY GUTs: Democratic approach
International Nuclear Information System (INIS)
Shafi, Qaisar; Tavartkiladze, Zurab
2003-01-01
We show how, with aid from a U (1) flavor symmetry, the hierarchical structure in the charged fermion sector and a democratic approach for neutrinos that yields large solar and atmospheric neutrino mixings can be simultaneously realized in the MSSM framework. In SU(5), due to the unified multiplets, we encounter difficulties. Namely, democracy for the neutrinos leads to a wrong hierarchical pattern for charged fermion masses and mixings. We discuss how this is overcome in flipped SU(5). We then proceed to an example based on 5D SUSY SU(5) GUT in which the neutrino democracy idea can be realized. A crucial role is played by bulk states, the so-called 'copies', which are split by compactifying the fifth dimension on an S(1)/Z2 x Z'2 orbifold
Intersecting branes, Higgs sector, and chirality from N = 4 SYM with soft SUSY breaking
Sperling, Marcus; Steinacker, Harold C.
2018-04-01
We consider SU( N ) N = 4 super Yang-Mills with cubic and quadratic soft SUSY breaking potential, such that the global SU(4) R is broken to SU(3) or further. As shown recently, this set-up supports a rich set of non-trivial vacua with the geometry of self-intersecting SU(3) branes in 6 extra dimensions. The zero modes on these branes can be interpreted as 3 generations of bosonic and chiral fermionic strings connecting the branes at their intersections. Here, we uncover a large class of exact solutions consisting of branes connected by Higgs condensates, leading to Yukawa couplings between the chiral fermionic zero modes. Under certain decoupling conditions, the backreaction of the Higgs on the branes vanishes exactly. The resulting physics is that of a spontaneously broken chiral gauge theory on branes with fluxes. In particular, we identify combined brane plus Higgs configurations which lead to gauge fields that couple to chiral fermions at low energy. This turns out to be quite close to the Standard Model and its constructions via branes in string theory. As a by-product, we construct a G 2-brane solution corresponding to a squashed fuzzy coadjoint orbit of G 2.
Álvarez-Gaumé, Luis; Jimenez, Raul
We show how general initial conditions for small field inflation can be obtained in multi-field models. This is provided by non-linear angular friction terms in the inflaton that provide a phase of non-slow-roll inflation before the slow-roll inflation phase. This in turn provides a natural mechanism to star small-field slow-roll at nearly zero velocity for arbitrary initial conditions. We also show that there is a relation between the scale of SUSY breaking sqrt (f) and the amount of non-gaussian fluctuations generated by the inflaton. In particular, we show that in the local non-gaussian shape there exists the relation sqrt (f) = 10^{13} GeV sqrt (f_NL). With current observational limits from Planck, and adopting the minimum amount of non-gaussian fluctuations allowed by single-field inflation, this provides a very tight constraint for the SUSY breaking energy scale sqrt (f) = 3-7 x 10^{13} GeV at 95% confidence. Further limits, or detection, from next year's Planck polarisation data will further tighten th...
SUSY Unparticle and Conformal Sequestering
Energy Technology Data Exchange (ETDEWEB)
Nakayama, Yu; Nakayama, Yu
2007-07-17
We investigate unparticle physics with supersymmetry (SUSY). The SUSY breaking effects due to the gravity mediation induce soft masses for the SUSY unparticles and hence break the conformal invariance. The unparticle physics observable in near future experiments is only consistent if the SUSY breakingeffects from the hidden sector to the standard model sector are dominated by the gauge mediation, or if the SUSY breaking effects to the unparticle sector are sufficiently sequestered. We argue that the natural realization of the latter possibility is the conformal sequestering scenario.
International Nuclear Information System (INIS)
Nakayama, Yu
2008-01-01
We show a calculable example of stable supersymmetry (SUSY) breaking models with O(10) eV gravitino mass based on the combination of D-term gauge mediation and U(1)' mediation. A potential problem of the negative mass squared for the SUSY standard model (SSM) sfermions in the D-term gauge mediation is solved by the contribution from the U(1)' mediation. On the other hand, the splitting between the SSM gauginos and sfermions in the U(1)' mediation is circumvented by the contributions from the D-term gauge mediation. Since the U(1)' mediation does not introduce any new SUSY vacua, we achieve a completely stable model under thermal effects. Our model, therefore, has no cosmological difficulty
Search for SUSY in gauge mediated and anomaly mediated supersymmetry breaking models
International Nuclear Information System (INIS)
Nunnnemann, Thomas
2004-01-01
In this note, recent results on the search for Gauge Mediated Supersymmetry Breaking (GMSB) and Anomaly Mediated Supersymmetry Breaking (AMSB) at the LEP and Tevatron colliders are summarized. We report on DOe's search for GMSB in di-photon events with large missing transverse energy and discuss the sensitivity of similar searches based on future Tevatron integrated luminosities. (orig.)
Naturalness, SUSY heavy higgses and flavor constraints
CERN. Geneva
2014-01-01
I will demonstrate that supersymmetric (SUSY) higgses provide an important diagnostic for electroweak naturalness in the SUSY paradigm. I first review the naturalness problem of the Standard Model (SM) and SUSY as one of its most promising solutions. I study the masses of heavy Higgses in SUSY theories under broad assumptions, and show how they are constrained by their role in Electroweak symmetry breaking. I then show how Flavor Physics severely constrains large parts of SUSY parameter space, otherwise favored by naturalness. If SUSY Higgses are not discovered at relatively low mass during the next LHC run, this tension will further increase, disfavoring naturalness from SUSY.
Energy Technology Data Exchange (ETDEWEB)
Katz, Andrey [Theory Division, CERN,CH-1211 Geneva 23 (Switzerland); Département de Physique Théorique and Center for Astroparticle Physics (CAP),Université de Genève,24 quai Ansermet, CH-1211 Genève 4 (Switzerland); Mariotti, Alberto [Theoretische Natuurkunde and IIHE/ELEM, Vrije Universiteit Brussel,and International Solvay Institutes,Pleinlaan 2, B-1050 Brussels (Belgium); Pokorski, Stefan [Institute of Theoretical Physics, Faculty of Physics, University of Warsaw,ul. Pasteura 5, PL-02-093 Warsaw (Poland); Redigolo, Diego [Raymond and Beverly Sackler School of Physics and Astronomy, Tel-Aviv University,Tel-Aviv 69978 (Israel); Department of Particle Physics and Astrophysics, Weizmann Institute of Science,Rehovot 7610001 (Israel); Ziegler, Robert [Institute for Theoretical Particle Physics (TTP), Karlsruhe Institute of Technology,Engesserstraße 7, D-76128 Karlsruhe (Germany)
2017-01-31
We investigate the general structure of mirror symmetry breaking in the Twin Higgs scenario. We show, using the IR effective theory, that a significant gain in fine tuning can be achieved if the symmetry is broken hardly. We emphasize that weakly coupled UV completions can naturally accommodate this scenario. We analyze SUSY UV completions and present a simple Twin SUSY model with a tuning of around 10% and colored superpartners as heavy as 2 TeV. The collider signatures of general Twin SUSY models are discussed with a focus on the extended Higgs sectors.
SUSY breaking mediation mechanisms and (g-2)μ, B→Xsγ, B→Xsl+l- and Bs→μ+μ-
International Nuclear Information System (INIS)
Baek, Seungwon; Ko, P.; Song, Wan Young
2003-01-01
We show that there are qualitative differences in correlations among (g-2)μ, B→X s γ, B→X l + l - and B s →μ + μ - in various SUSY breaking mediation mechanisms: minimal supergravity (mSUGRA), gauge mediation (GMSB), anomaly mediation (AMSB), guagino mediation (g-tildeMSB), weakly and strongly interacting string theories, and D brane models. After imposing the direct search limits on the Higgs boson and SUSY particle search limits and B→X s γ branching ratio, we find all the scenarios can accommodate the aμ≡(g-2)μ/2 in the range of (a few tens) x 10 -10 , and predict that the branching ratio for B→X s l + l - can differ from the standard model (SM) prediction by ±20% but no more. On the other hand, the B s →μ + μ - is sensitive to the SUSY breaking mediation mechanisms through the pseudoscalar and stop masses (m A and mt-tilde 1 ), and the stop mixing angle. In the GMSB with a small messenger number, the AMSB, the g-tildeMSB and the noscale scenarios, one finds that B(B s →μ + μ - ) -8 , which is below the search limit at the Tevatron Run II. Only the mSUGRA or string inspired models can generate a large branching ratio for this decay. (author)
Gauging MSSM global symmetries and SUSY breaking in de Sitter vacuum
Antoniadis, Ignatios
2016-01-01
We elaborate on a recent study of a model of supersymmetry breaking we proposed recently, in the presence of a tunable positive cosmological constant, based on a gauged shift symmetry of a string modulus, external to the Standard Model (SM) sector. Here, we identify this symmetry with a global symmetry of the SM and work out the corresponding phenomenology. A particularly attracting possibility is to use a combination of Baryon and Lepton number that contains the known matter parity and guarantees absence of dimension-four and five operators that violate B and L.
Metastable SUSY Breaking, de Sitter Moduli Stabilisation and Kähler Moduli Inflation
Krippendorf, Sven
2009-01-01
We study the influence of anomalous U(1) symmetries and their associated D-terms on the vacuum structure of global field theories once they are coupled to N=1 supergravity and in the context of string compactifications with moduli stabilisation. In particular, we focus on a IIB string motivated construction of the ISS scenario and examine the influence of one additional U(1) symmetry on the vacuum structure. We point out that in the simplest one-Kahler modulus compactification, the original ISS vacuum gets generically destabilised by a runaway behaviour of the potential in the modulus direction. In more general compactifications with several Kahler moduli, we find a novel realisation of the LARGE volume scenario with D-term uplifting to de Sitter space and both D-term and F-term supersymmetry breaking. The structure of soft supersymmetry breaking terms is determined in the preferred scenario where the standard model cycle is not stabilised non-perturbatively and found to be flavour universal. Our scenario als...
A new two-faced scalar solution and cosmological SUSY breaking
International Nuclear Information System (INIS)
Shmakova, Marina
2010-01-01
We propose a possible new way to resolve the long standing problem of strong supersymmetry breaking coexisting with a small cosmological constant. We consider a scalar component of a minimally coupled N = 1 supermultiplet in a general Friedmann-Robertson-Walker (FRW) expanding universe. We argue that a tiny term, proportional to H 2 ∼ 10 -122 in Plank's units, appearing in the field equations due to this expansion will provide both, the small vacuum energy and the heavy mass of the scalar supersymmetric partner. We present a non-perturbative solution for the scalar field with an unusual dual-frequency behavior. This solution has two characteristic mass scales related to the Hubble parameter as H 1/4 and H 1/2 measured in Plank's units.
Dynamical SUSY Breaking at Meta-Stable Minima from D-branes at Obstructed Geometries
Franco, S; Franco, Sebastian; Uranga, Angel M .
2006-01-01
We study the existence of long-lived meta-stable supersymmetry breaking vacua in gauge theories with massless quarks, upon the addition of extra massive flavors. A simple realization is provided by a modified version of SQCD with N_{f,0} < N_c massless flavors, N_{f,1} massive flavors and additional singlet chiral fields. This theory has local meta-stable minima separated from a runaway behavior at infinity by a potential barrier. We find further examples of such meta-stable minima in flavored versions of quiver gauge theories on fractional branes at singularities with obstructed complex deformations, and study the case of the dP_1 theory in detail. Finally, we provide an explicit String Theory construction of such theories. The additional flavors arise from D7-branes on non-compact 4-cycles of the singularity, for which we find a new efficient description using dimer techniques.
Anomaly mediated SUSY breaking scenarios in the light of cosmology and in the dark (matter)
Arbey, A; Tarhini, A
2011-01-01
Anomaly mediation is a popular and well motivated supersymmetry breaking scenario. Different possible detailed realisations of this set-up are studied and actively searched for at colliders. Apart from limits coming from flavour, low energy physics and direct collider searches, these models are usually constrained by the requirement of reproducing the observations on dark matter density in the universe. We reanalyse these bounds and in particular we focus on the dark matter bounds both considering the standard cosmological model and alternative cosmological scenarios. These scenarios do not change the observable cosmology but relic dark matter density bounds strongly depend on them. We consider few benchmark points excluded by standard cosmology dark matter bounds and suggest that loosening the dark matter constraints is necessary in order to avoid a too strong (cosmological) model dependence in the limits that are obtained for these models. We also discuss briefly the implications for phenomenology and in pa...
International Nuclear Information System (INIS)
Misra, Aalok; Shukla, Pramod
2010-01-01
We consider type IIB large volume compactifications involving orientifolds of the Swiss Cheese Calabi-Yau WCP 4 [1,1,1,6,9] with a single mobile space-time filling D3-brane and stacks of D7-branes wrapping the 'big' divisor Σ B (as opposed to the 'small' divisor usually done in the literature thus far) as well as supporting D7-brane fluxes. After reviewing our proposal of (Misra and Shukla, 2010) for resolving a long-standing tension between large volume cosmology and phenomenology pertaining to obtaining a 10 12 GeV gravitino in the inflationary era and a TeV gravitino in the present era, and summarizing our results of (Misra and Shukla, 2010) on soft supersymmetry breaking terms and open-string moduli masses, we discuss the one-loop RG running of the squark and slepton masses in mSUGRA-like models (using the running of the gaugino masses) to the EW scale in the large volume limit. Phenomenological constraints and some of the calculated soft SUSY parameters identify the D7-brane Wilson line moduli as the first two generations/families of squarks and sleptons and the D3-brane (restricted to the big divisor) position moduli as the two Higgses for MSSM-like models at TeV scale. We also discuss how the obtained open-string/matter moduli make it easier to impose FCNC constraints, as well as RG flow of off-diagonal squark mass(-squared) matrix elements.
Misra, Aalok; Shukla, Pramod
2010-03-01
We consider type IIB large volume compactifications involving orientifolds of the Swiss Cheese Calabi-Yau WCP[1,1,1,6,9] with a single mobile space-time filling D3-brane and stacks of D7-branes wrapping the “big” divisor ΣB (as opposed to the “small” divisor usually done in the literature thus far) as well as supporting D7-brane fluxes. After reviewing our proposal of [1] (Misra and Shukla, 2010) for resolving a long-standing tension between large volume cosmology and phenomenology pertaining to obtaining a 10 GeV gravitino in the inflationary era and a TeV gravitino in the present era, and summarizing our results of [1] (Misra and Shukla, 2010) on soft supersymmetry breaking terms and open-string moduli masses, we discuss the one-loop RG running of the squark and slepton masses in mSUGRA-like models (using the running of the gaugino masses) to the EW scale in the large volume limit. Phenomenological constraints and some of the calculated soft SUSY parameters identify the D7-brane Wilson line moduli as the first two generations/families of squarks and sleptons and the D3-brane (restricted to the big divisor) position moduli as the two Higgses for MSSM-like models at TeV scale. We also discuss how the obtained open-string/matter moduli make it easier to impose FCNC constraints, as well as RG flow of off-diagonal squark mass(-squared) matrix elements.
Reducing the fine-tuning of gauge-mediated SUSY breaking
Energy Technology Data Exchange (ETDEWEB)
Casas, J.A.; Moreno, Jesus M. [Universidad Autonoma de Madrid, Instituto de Fisica Teorica, IFT-UAM/CSIC, Madrid (Spain); Robles, Sandra [Universidad Autonoma de Madrid, Instituto de Fisica Teorica, IFT-UAM/CSIC, Madrid (Spain); Universidad Autonoma de Madrid, Departamento de Fisica Teorica, Madrid (Spain); Rolbiecki, Krzysztof [Universidad Autonoma de Madrid, Instituto de Fisica Teorica, IFT-UAM/CSIC, Madrid (Spain); University of Warsaw, Faculty of Physics, Warsaw (Poland)
2016-08-15
Despite their appealing features, models with gauge-mediated supersymmetry breaking (GMSB) typically present a high degree of fine-tuning, due to the initial absence of the top trilinear scalar couplings, A{sub t} = 0. In this paper, we carefully evaluate such a tuning, showing that is worse than per mil in the minimal model. Then, we examine some existing proposals to generate A{sub t} ≠ 0 term in this context. We find that, although the stops can be made lighter, usually the tuning does not improve (it may be even worse), with some exceptions, which involve the generation of A{sub t} at one loop or tree level. We examine both possibilities and propose a conceptually simplified version of the latter; which is arguably the optimum GMSB setup (with minimal matter content), concerning the fine-tuning issue. The resulting fine-tuning is better than one per mil, still severe but similar to other minimal supersymmetric standard model constructions. We also explore the so-called ''little A{sub t}{sup 2}/m{sup 2} problem'', i.e. the fact that a large A{sub t}-term is normally accompanied by a similar or larger sfermion mass, which typically implies an increase in the fine-tuning. Finally, we find the version of GMSB for which this ratio is optimized, which, nevertheless, does not minimize the fine-tuning. (orig.)
A new approach to Naturalness in SUSY models
Ghilencea, D M
2013-01-01
We review recent results that provide a new approach to the old problem of naturalness in supersymmetric models, without relying on subjective definitions for the fine-tuning associated with {\\it fixing} the EW scale (to its measured value) in the presence of quantum corrections. The approach can address in a model-independent way many questions related to this problem. The results show that naturalness and its measure (fine-tuning) are an intrinsic part of the likelihood to fit the data that {\\it includes} the EW scale. One important consequence is that the additional {\\it constraint} of fixing the EW scale, usually not imposed in the data fits of the models, impacts on their overall likelihood to fit the data (or chi^2/ndf, ndf: number of degrees of freedom). This has negative implications for the viability of currently popular supersymmetric extensions of the Standard Model.
International Nuclear Information System (INIS)
Berger, C.
2008-01-01
We begin an exploration of the physics associated with the general CP-conserving MSSM with Minimal Flavor Violation, the pMSSM. The 19 soft SUSY breaking parameters in this scenario are chosen so as to satisfy all existing experimental and theoretical constraints assuming that the WIMP is a thermal relic, i.e., the lightest neutralino. We scan this parameter space twice using both flat and log priors for the soft SUSY breaking mass parameters and compare the results which yield similar conclusions. Detailed constraints from both LEP and the Tevatron searches play a particularly important role in obtaining our final model samples. We find that the pMSSM leads to a much broader set of predictions for the properties of the SUSY partners as well as for a number of experimental observables than those found in any of the conventional SUSY breaking scenarios such as mSUGRA. This set of models can easily lead to atypical expectations for SUSY signals at the LHC
Energy Technology Data Exchange (ETDEWEB)
Cari, C., E-mail: carinln@yahoo.com; Suparmi, A., E-mail: carinln@yahoo.com [Physics Department, Sebelas Maret University, Jl. Ir. Sutami no 36A Kentingan Surakarta 57126 (Indonesia)
2014-09-30
Dirac equation of 3D harmonics oscillator plus trigonometric Scarf non-central potential for spin symmetric case is solved using supersymmetric quantum mechanics approach. The Dirac equation for exact spin symmetry reduces to Schrodinger like equation. The relativistic energy and wave function for spin symmetric case are simply obtained using SUSY quantum mechanics method and idea of shape invariance.
International Nuclear Information System (INIS)
Suparmi, A.; Cari, C.; Deta, U. A.; Handhika, J.
2016-01-01
The non-relativistic energies and wave functions of extended hyperbolic Scarf I plus separable non-central shape invariant potential in four dimensions are investigated using Supersymmetric Quantum Mechanics (SUSY QM) Approach. The three dimensional separable non-central shape invariant angular potential consists of trigonometric Scarf II, Manning Rosen and Poschl-Teller potentials. The four dimensional Schrodinger equation with separable shape invariant non-central potential is reduced into four one dimensional Schrodinger equations through variable separation method. By using SUSY QM, the non-relativistic energies and radial wave functions are obtained from radial Schrodinger equation, the orbital quantum numbers and angular wave functions are obtained from angular Schrodinger equations. The extended potential means there is perturbation terms in potential and cause the decrease in energy spectra of Scarf I potential. (paper)
SUSY Searches at ATLAS and CMS
Urquijo, P; The ATLAS collaboration
2009-01-01
We review the current strategies to search for Supersymmetry (SUSY) with the ATLAS and CMS detectors at the LHC. The early data discovery potential will be presented for search channels based on missing transverse momentum from undetected neutralinos and multiple high transverse momentum jets. We describe the search for models of gauge-mediated SUSY breaking for which the next to lightest SUSY particle is a neutralino that decays into a photon and gravitino. Examples of measurement techniques that probe the SUSY mass scale in the first data, through reconstruction of kinematic endpoints, are also shown.
Nath, Pran
1994-01-01
Analysis of the SUSY spectrum in supergravity unified models is given under the naturalness criterion that the universal scalar mass (m_0) and the gluino mass (m_{\\tilde g}) satisfy the constraint m_0, m_{\\tilde g} less than or equal to 1 TeV. The SUSY spectrum is analysed in four different scenarios: (1) minimal supergravity models ignoring proton decay from dimension five operators, (2) imposing proton stability constraint in supergravity models with SU(5) type embedding which allow proton decay via dimension five operators, (3) with inclusion of dark matter constraints in models of type (1), and (4) with inclusion of dark matter constraint in models of type (2). It is found that there is a very strong upper limit on the light chargino mass in models of type (4), i.e., the light chargino mass is less than or equals 120 GeV.
Cassel, S; Ross, G G
2010-01-01
If SUSY provides a solution to the hierarchy problem then supersymmetric states should not be too heavy. This requirement is quantified by the Barbieri-Giudice fine tuning measure that provides a quantitative test of SUSY as a solution to the hierarchy problem. The measure is useful in correlating the impact of the various experimental measurements relevant to the search for supersymmetry and also in identifying the most sensitive measurements for testing SUSY. In this paper we apply the measure to the CMSSM, computing it to two-loop order and taking account of current experimental limits and the constraint on dark matter abundance. Using this we determine the present limits on the CMSSM parameter space and identify the measurements at the LHC that are most significant in covering the remaining parameter space. Without imposing the LEP Higgs mass bound we show that the smallest fine tuning (1:14.5) consistent with a saturation of the relic density within the 1$\\sigma$ WMAP bounds corresponds to a Higgs mass o...
Lie-algebra approach to symmetry breaking
International Nuclear Information System (INIS)
Anderson, J.T.
1981-01-01
A formal Lie-algebra approach to symmetry breaking is studied in an attempt to reduce the arbitrariness of Lagrangian (Hamiltonian) models which include several free parameters and/or ad hoc symmetry groups. From Lie algebra it is shown that the unbroken Lagrangian vacuum symmetry can be identified from a linear function of integers which are Cartan matrix elements. In broken symmetry if the breaking operators form an algebra then the breaking symmetry (or symmetries) can be identified from linear functions of integers characteristic of the breaking symmetries. The results are applied to the Dirac Hamiltonian of a sum of flavored fermions and colored bosons in the absence of dynamical symmetry breaking. In the partially reduced quadratic Hamiltonian the breaking-operator functions are shown to consist of terms of order g 2 , g, and g 0 in the color coupling constants and identified with strong (boson-boson), medium strong (boson-fermion), and fine-structure (fermion-fermion) interactions. The breaking operators include a boson helicity operator in addition to the familiar fermion helicity and ''spin-orbit'' terms. Within the broken vacuum defined by the conventional formalism, the field divergence yields a gauge which is a linear function of Cartan matrix integers and which specifies the vacuum symmetry. We find that the vacuum symmetry is chiral SU(3) x SU(3) and the axial-vector-current divergence gives a PCAC -like function of the Cartan matrix integers which reduces to PCAC for SU(2) x SU(2) breaking. For the mass spectra of the nonets J/sup P/ = 0 - ,1/2 + ,1 - the integer runs through the sequence 3,0,-1,-2, which indicates that the breaking subgroups are the simple Lie groups. Exact axial-vector-current conservation indicates a breaking sum rule which generates octet enhancement. Finally, the second-order breaking terms are obtained from the second-order spin tensor sum of the completely reduced quartic Hamiltonian
Energy Technology Data Exchange (ETDEWEB)
Papucci, Michele; Ruderman, Joshua T. [Lawrence Berkeley National Laboratory, CA (United States). Theoretical Physics Group; California Univ., Berkeley, CA (United States). Dept. of Physics; Weiler, Andreas [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); European Organization for Nuclear Research, Geneva (Switzerland). Theoretical Physics Div.
2011-10-31
The first 1 fb{sup -1} of LHC searches have set impressive limits on new colored particles decaying to missing energy. We address the implication of these searches for naturalness in supersymmetry (SUSY). General bottom-up considerations of natural electroweak symmetry breaking show that higgsinos, stops, and the gluino should not be too far above the weak scale. The rest of the spectrum, including the squarks of the first two generations, can be heavier and beyond the current LHC reach. We have used collider simulations to determine the limits that all of the 1 fb{sup -1} searches pose on higgsinos, stops, and the gluino. We find that stops and the left-handed sbottom are starting to be constrained and must be heavier than about 200-300 GeV when decaying to higgsinos. The gluino must be heavier than about 600-800 GeV when it decays to stops and sbottoms. While these findings point toward scenarios with a lighter third generation split from the other squarks, we do find that moderately-tuned regions remain, where the gluino is just above 1 TeV and all the squarks are degenerate and light. Among all the searches, jets plus missing energy and same-sign dileptons often provide the most powerful probes of natural SUSY. Overall, our results indicate that natural SUSY has survived the first 1 fb{sup -1} of data. The LHC is now on the brink of exploring the most interesting region of SUSY parameter space. (orig.)
Energy Technology Data Exchange (ETDEWEB)
Berggren, Mikael
2013-08-15
At the ILC, one has the possibility to search for SUSY in an model-independent way: The corner-stone of SUSY is that sparticles couple as particles. This is independent of the mechanism responsible for SUSY breaking. Any model will have one Lightest SUSY Particle (LSP), and one Next to Lightest SUSY Particle (NLSP). In models with conserved R-parity, the NLSP must decay solely to the LSP and the SM partner of the NLSP. Therefore, studying NLSP production and decay can be regarded as a ''simplified model without simplification'': Any SUSY model will have such a process. The NLSP could be any sparticle: a slepton, an electroweak-ino, or even a squark. However, since there are only a finite number of sparticles, one can systematically search for signals of all possible NLSP:s. This way, the entire space of models that have a kinematically reachable NLSP can be covered. For any NLSP, the ''worst case'' can be determined, since the SUSY principle allows to calculate the cross-section once the NLSP nature and mass are given. The region in the LSP-NLSP mass-plane where the ''worst case'' could be discovered or excluded experimentally can be found by estimating background and efficiency at each point in the plane. From experience at LEP, it is expected that the lower signal-to background ratio will indeed be found for models with conserved R-parity. In this document, we show that at the ILC, such a program is possible, as it was at LEP. No loop-holes are left, even for difficult or non-standard cases: whatever the NLSP is it will be detectable.
International Nuclear Information System (INIS)
Berggren, Mikael
2013-08-01
At the ILC, one has the possibility to search for SUSY in an model-independent way: The corner-stone of SUSY is that sparticles couple as particles. This is independent of the mechanism responsible for SUSY breaking. Any model will have one Lightest SUSY Particle (LSP), and one Next to Lightest SUSY Particle (NLSP). In models with conserved R-parity, the NLSP must decay solely to the LSP and the SM partner of the NLSP. Therefore, studying NLSP production and decay can be regarded as a ''simplified model without simplification'': Any SUSY model will have such a process. The NLSP could be any sparticle: a slepton, an electroweak-ino, or even a squark. However, since there are only a finite number of sparticles, one can systematically search for signals of all possible NLSP:s. This way, the entire space of models that have a kinematically reachable NLSP can be covered. For any NLSP, the ''worst case'' can be determined, since the SUSY principle allows to calculate the cross-section once the NLSP nature and mass are given. The region in the LSP-NLSP mass-plane where the ''worst case'' could be discovered or excluded experimentally can be found by estimating background and efficiency at each point in the plane. From experience at LEP, it is expected that the lower signal-to background ratio will indeed be found for models with conserved R-parity. In this document, we show that at the ILC, such a program is possible, as it was at LEP. No loop-holes are left, even for difficult or non-standard cases: whatever the NLSP is it will be detectable.
Adjoint string breaking in the pseudoparticle approach
International Nuclear Information System (INIS)
Szasz, Christian; Wagner, Marc
2008-01-01
We apply the pseudoparticle approach to SU(2) Yang-Mills theory and perform a detailed study of the potential between two static charges for various representations. Whereas for charges in the fundamental representation we find a linearly rising confining potential, we clearly observe string breaking, when considering charges in the adjoint representation. We also demonstrate Casimir scaling and compute gluelump masses for different spin and parity. Numerical results are in qualitative agreement with lattice results.
Towards N = 2 SUSY homogeneous quantum cosmology; Einstein-Yang-Mills systems
International Nuclear Information System (INIS)
Donets, E.E.; Tentyukov, M.N.; Tsulaya, M.M.
1998-01-01
The application of N = 2 supersymmetric Quantum Mechanics for the quantization of homogeneous systems coupled with gravity is discussed. Starting with the superfield formulation of N = 2 SUSY sigma-model, Hermitian self-adjoint expressions for quantum Hamiltonians and Lagrangians for any signature of a sigma-model metric are obtained. This approach is then applied to coupled SU (2) Einstein-Yang-Mills (EYM) systems in axially-symmetric Bianchi - I,II,VIII, IX, Kantowski-Sachs and closed Friedmann-Robertson-Walker cosmological models. It is shown that all these models admit the embedding into N = 2 SUSY sigma-model with the explicit expressions for superpotentials, being direct sums of gravitational and Yang-Mills (YM) parts. In addition, YM parts of superpotentials exactly coincide with the corresponding Chern-Simons terms. The spontaneous SUSY breaking, caused by YM instantons in EYM systems is discussed in a number of examples
Antonella Del Rosso
2012-01-01
Recent information from the LHC experiments, the relatively low mass of the new boson and other data coming from experiments looking for dark matter worldwide are placing new constraints on the existence of supersymmetry (SUSY). However, there is a large community of scientists that still believes that SUSY particles are out there. Like lost keys at night, perhaps we have been looking for SUSY under the wrong lamp-posts… Can you work out this rebus? Source: Caroline Duc. So far, SUSY is “just” a theoretical physics model, which could solve problems beyond the Standard Model by accounting for dark matter and other phenomena in the Universe. However, SUSY has not been spotted so far, and might be hiding because of features different from what physicists previously expected. “Currently, there is no evidence for SUSY, but neither has any experimental data ruled it out. Many searches have focused on simplified versions of the theory but, given the recen...
Mamuzic, Judita; The ATLAS collaboration
2017-01-01
Supersymmetry (SUSY) is considered one of the best motivated extensions of the Standard Model. It postulates a fundamental symmetry between fermions and bosons, and introduces a set of new supersymmetric particles at the electroweak scale. It addresses the hierarchy and naturalness problem, gives a solution to the gauge coupling unification, and offers a cold dark matter candidate. Different aspects of SUSY searches, using strong, electroweak, third generation production, and R-parity violation and long lived particles are being studied at the LHC. An overview of most recent SUSY searches results using the 13 TeV ATLAS RUN2 data will be presented.
R-symmetry violation in N=2 SUSY
International Nuclear Information System (INIS)
Volkov, G.G.; Maslikov, A.A.
1990-01-01
The present paper discusses the spontaneous R-symmetry violation in the N=2 SUSY SU(4)xU(1) model with soft SUSY breaking terms preserving finiteness. (In this case an invisible axion appears). In particular, the mechanism producting a light photino mass up to some GeV is suggested. In R-odd version of this model the mechanisms of enhancement of the neutrino decay is discussed. 10 refs.; 3 figs
International Nuclear Information System (INIS)
Dawson, S.
1997-01-01
In these lectures, the author discusses the theoretical motivation for supersymmetric theories and introduce the minimal low energy effective supersymmetric theory, (MSSM). I consider only the MSSM and its simplest grand unified extension here. Some of the other possible low-energy SUSY models are summarized. The particles and their interactions are examined in detail in the next sections and a grand unified SUSY model presented which gives additional motivation for pursuing supersymmetric theories
International Nuclear Information System (INIS)
Ross, G.G.
2014-01-01
Given that there is currently no direct evidence for supersymmetric particles at the LHC it is timely to re-evaluate the need for low scale supersymmetry and to ask whether it is likely to be discoverable by the LHC running at its full energy. We review the status of simple SUSY extensions of the Standard Model in the light of the Higgs discovery and the non-observation of evidence for SUSY at the LHC. The need for large radiative corrections to drive the Higgs mass up to 126 GeV and for the coloured SUSY states to be heavy to explain their non-observation introduces a little hierarchy problem and we discuss how to quantify the associated fine tuning. The requirement of low fine tuning requires non-minimal SUSY extensions and we discuss the nature and phenomenology of models which still have perfectly acceptable low fine tuning. A brief discussion of SUSY flavour-changing and CP-violation problems and their resolution is presented. (orig.)
Electroweak SUSY production searches at ATLAS and CMS
Flowerdew, M; The ATLAS collaboration
2014-01-01
The discovery of weak-scale supersymmetric (SUSY) particles is one of the primary goals of the Large Hadron Collider experiments. Depending on the mechanism of SUSY breaking, it could be that strongly interacting squarks and gluinos are too massive to produce at the LHC. In this case, the primary SUSY production mode is of charginos, neutralinos and sleptons, mediated by electroweak interactions. However, the experimental signatures for discovery vary widely, depending on the mass hierarchy, SUSY particle mixing parameters and conservation/violation of R-parity, necessitating a large and complex suite of experimental search strategies. These strategies include searching for events with multiple charged leptons, photons, reconstructed higgs bosons or new long-lived particles. In this presentation, the latest ATLAS and CMS search results in these channels are presented, based mainly on $20~$fb$^{-1}$ of $pp$ collisions at $\\sqrt{s} = 8~$TeV collected in 2012. The resulting constraints on the parameter spaces of...
EW SUSY production searches at ATLAS and CMS
Flowerdew, MJ; The ATLAS collaboration
2014-01-01
The discovery of weak-scale supersymmetric (SUSY) particles is one of the primary goals of the Large Hadron Collider experiments. Depending on the mechanism of SUSY breaking, it could be that strongly interacting squarks and gluinos are too massive to produce at the LHC. In this case, the primary SUSY production mode is of charginos, neutralinos and sleptons, mediated by electroweak interactions. However, the experimental signatures for discovery vary widely, depending on the mass hierarchy, SUSY particle mixing parameters and conservation/violation of R-parity, necessitating a large and complex suite of experimental search strategies. These strategies include searching for events with multiple charged leptons, photons, reconstructed higgs bosons or new long-lived particles. In this presentation, the latest ATLAS and CMS search results in these channels are presented, based mainly on 20 fb$^{-1}$ of pp collisions at $\\sqrt{s} = 8$ TeV collected in 2012. The resulting constraints on the parameter spaces of var...
International Nuclear Information System (INIS)
Kharchilava, A.
1997-01-01
One of the main motivations of experiments at the LHC is to search for SUSY particles. The talk is based on recent analyses, performed by CMS Collaboration, within the framework of the Supergravity motivated minimal SUSY extension of the Standard Model. The emphasis is put on leptonic channels. The strategies for obtaining experimental signatures for strongly and weakly interacting sparticles productions, as well as examples of determination of SUSY masses and model parameters are discussed. The domain of parameter space where SUSY can be discovered is investigated. Results show, that if SUSY is of relevance at Electro-Weak scale it could hardly escape detection at LHC. (author)
Energy Technology Data Exchange (ETDEWEB)
Anon.
1992-11-15
Supersymmetry, affectionately known as SUSY, is still the darling of theoretical particle physics. Invented some 20 years ago, the charismatic idea really took off at the beginning of the 1980s. At the time, a workshop at CERN reflected the youthful enthusiasm for these new ideas.
Xu, Da; The ATLAS collaboration
2018-01-01
Despite the absence of experimental evidence, weak scale supersymmetry remains one of the best motivated and studied Standard Model extensions. This talk gives an overview of the most recent SUSY searches in ATLAS and CMS experiments using 13 TeV ATLAS Run2 data.
International Nuclear Information System (INIS)
Raby, Stuart
2008-01-01
In this talk I discuss the evolution of SUSY GUT model building as I see it. Starting with 4 dimensional model building, I then consider orbifold GUTs in 5 dimensions and finally orbifold GUTs embedded into the E 8 xE 8 heterotic string.
International Nuclear Information System (INIS)
Anon.
1992-01-01
Supersymmetry, affectionately known as SUSY, is still the darling of theoretical particle physics. Invented some 20 years ago, the charismatic idea really took off at the beginning of the 1980s. At the time, a workshop at CERN reflected the youthful enthusiasm for these new ideas
International Nuclear Information System (INIS)
Jayaraman, Jambunatha; Lima Rodrigues, R. de
1994-01-01
In the context of the 3 D generalized SUSY model oscillator Hamiltonian of Celka and Hussin (CH), a generalized Dirac oscillator interaction is studied, that leads, in the non-relativistic limit considered for both signs of energy, to the CH's generalized 3 D SUSY oscillator. The relevance of this interaction to the CH's SUSY model and the SUSY breaking dependent on the Wigner parameter is brought out. (author). 6 refs
Hilltop supernatural inflation and SUSY unified models
Kohri, Kazunori; Lim, C. S.; Lin, Chia-Min; Mimura, Yukihiro
2014-01-01
In this paper, we consider high scale (100TeV) supersymmetry (SUSY) breaking and realize the idea of hilltop supernatural inflation in concrete particle physics models based on flipped-SU(5)and Pati-Salam models in the framework of supersymmetric grand unified theories (SUSY GUTs). The inflaton can be a flat direction including right-handed sneutrino and the waterfall field is a GUT Higgs. The spectral index is ns = 0.96 which fits very well with recent data by PLANCK satellite. There is no both thermal and non-thermal gravitino problems. Non-thermal leptogenesis can be resulted from the decay of right-handed sneutrino which plays (part of) the role of inflaton.
Hilltop supernatural inflation and SUSY unified models
Energy Technology Data Exchange (ETDEWEB)
Kohri, Kazunori [Cosmophysics Group, Theory Center, IPNS KEK, and The Graduate University for Advanced Studies (Sokendai), 1-1 Oho, Tsukuba, 305-0801 (Japan); Lim, C.S. [Department of Mathematics, Tokyo Woman' s Christian University, Tokyo, 167-8585 (Japan); Lin, Chia-Min [Department of Physics, Chuo University, Bunkyo-ku, Tokyo, 112 (Japan); Mimura, Yukihiro, E-mail: kohri@post.kek.jp, E-mail: lim@lab.twcu.ac.jp, E-mail: lin@chuo-u.ac.jp, E-mail: mimura@hep1.phys.ntu.edu.tw [Department of Physics, National Taiwan University, Taipei, 10617 Taiwan (China)
2014-01-01
In this paper, we consider high scale (100TeV) supersymmetry (SUSY) breaking and realize the idea of hilltop supernatural inflation in concrete particle physics models based on flipped-SU(5)and Pati-Salam models in the framework of supersymmetric grand unified theories (SUSY GUTs). The inflaton can be a flat direction including right-handed sneutrino and the waterfall field is a GUT Higgs. The spectral index is n{sub s} = 0.96 which fits very well with recent data by PLANCK satellite. There is no both thermal and non-thermal gravitino problems. Non-thermal leptogenesis can be resulted from the decay of right-handed sneutrino which plays (part of) the role of inflaton.
Hilltop supernatural inflation and SUSY unified models
International Nuclear Information System (INIS)
Kohri, Kazunori; Lim, C.S.; Lin, Chia-Min; Mimura, Yukihiro
2014-01-01
In this paper, we consider high scale (100TeV) supersymmetry (SUSY) breaking and realize the idea of hilltop supernatural inflation in concrete particle physics models based on flipped-SU(5)and Pati-Salam models in the framework of supersymmetric grand unified theories (SUSY GUTs). The inflaton can be a flat direction including right-handed sneutrino and the waterfall field is a GUT Higgs. The spectral index is n s = 0.96 which fits very well with recent data by PLANCK satellite. There is no both thermal and non-thermal gravitino problems. Non-thermal leptogenesis can be resulted from the decay of right-handed sneutrino which plays (part of) the role of inflaton
Interpretation of Higgs and Susy searches in MSUGRA and GMSB Models
International Nuclear Information System (INIS)
Vivie, J.B. de
1999-10-01
HIGGS and SUSY searches performed by the ALEPH Experiment at LEP are interpreted in the framework of two constrained R-parity conserving models: Minimal Supergravity and minimal Gauge Mediated Supersymmetry Breaking. (author)
SUSY Without Prejudice at Linear Colliders
International Nuclear Information System (INIS)
Rizzo, T.
2008-01-01
We explore the physics of the general CP-conserving MSSM with Minimal Flavor Violation, the pMSSM. The 19 soft SUSY breaking parameters are chosen so to satisfy all existing experimental and theoretical constraints assuming that the WIMP is the lightest neutralino. We scan this parameter space twice using both flat and log priors and compare the results which yield similar conclusions. Constraints from both LEP and the Tevatron play an important role in obtaining our final model samples. Implications for future TeV-scale e + e - linear colliders (LC) are discussed
Kaehler geometry and SUSY mechanics
International Nuclear Information System (INIS)
Bellucci, Stefano; Nersessian, Armen
2001-01-01
We present two examples of SUSY mechanics related with Kaehler geometry. The first system is the N = 4 supersymmetric one-dimensional sigma-model proposed in hep-th/0101065. Another system is the N = 2 SUSY mechanics whose phase space is the external algebra of an arbitrary Kaehler manifold. The relation of these models with antisymplectic geometry is discussed
Implications for new physics from fine-tuning arguments 1. Application to SUSY and seesaw cases
International Nuclear Information System (INIS)
Alberto Casas, J.; Hidalgo, Irene; Espinosa, Jose R.
2004-01-01
We revisit the standard argument to estimate the scale of new physics (NP) beyond the SM, based on the sensitivity of the Higgs mass to quadratic divergences. Although this argument is arguably naive, the corresponding estimate, Λ SM SM . One can obtain more precise implications from fine-tuning arguments in specific examples of NP. Here we consider SUSY and right-handed (seesaw) neutrinos. SUSY is a typical example for which the previous general estimate is indeed conservative: the MSSM is fine-tuned a few %, even for soft masses of a few hundred GeV. In contrast, other SUSY scenarios, in particular those with low-scale SUSY breaking, can easily saturate the general bound on Λ SM . The seesaw mechanism requires large fine-tuning if M R > or approx.10 7 GeV, unless there is additional NP (SUSY being a favourite option). (author)
Electric dipole moments from spontaneous CP violation in SU(3)-flavoured SUSY
International Nuclear Information System (INIS)
Jones Perez, J
2009-01-01
The SUSY flavour problem is deeply related to the origin of flavour and hence to the origin of the SM Yukawa couplings themselves. Since all CP-violation in the SM is restricted to the flavour sector, it is possible that the SUSY CP problem is related to the origin of flavour as well. In this work, we present three variations of an SU(3) flavour model with spontaneous CP violation. Such models explain the hierarchy in the fermion masses and mixings, and predict the structure of the flavoured soft SUSY breaking terms. In such a situation, both SUSY flavour and CP problems do not exist. We use electric dipole moments and lepton flavour violation processes to distinguish between these models, and place constraints on the SUSY parameter space.
FlexibleSUSY-A spectrum generator generator for supersymmetric models
Athron, Peter; Park, Jae-hyeon; Stöckinger, Dominik; Voigt, Alexander
2015-05-01
We introduce FlexibleSUSY, a Mathematica and C++ package, which generates a fast, precise C++ spectrum generator for any SUSY model specified by the user. The generated code is designed with both speed and modularity in mind, making it easy to adapt and extend with new features. The model is specified by supplying the superpotential, gauge structure and particle content in a SARAH model file; specific boundary conditions e.g. at the GUT, weak or intermediate scales are defined in a separate FlexibleSUSY model file. From these model files, FlexibleSUSY generates C++ code for self-energies, tadpole corrections, renormalization group equations (RGEs) and electroweak symmetry breaking (EWSB) conditions and combines them with numerical routines for solving the RGEs and EWSB conditions simultaneously. The resulting spectrum generator is then able to solve for the spectrum of the model, including loop-corrected pole masses, consistent with user specified boundary conditions. The modular structure of the generated code allows for individual components to be replaced with an alternative if available. FlexibleSUSY has been carefully designed to grow as alternative solvers and calculators are added. Predefined models include the MSSM, NMSSM, E6SSM, USSM, R-symmetric models and models with right-handed neutrinos.
SUSY long-lived massive particles. Detection and physics at the LHC
International Nuclear Information System (INIS)
Ambrosiano, S.; Mele, B.; Nisati, A.; Petrarca, S.; Polesello, G.; Rimoldi, A.; Salvini, G.
2001-01-01
It was drawn a possible scenario for the observation of massive long-lived charged particles at the LHC detector ATLAS. The required flexibility of the detector triggers and of the identification and reconstruction systems are discussed. As an example, it was focused on the measurement of the mass and lifetime of long-lived charged sleptons predicted in the framework of supersymmetric models with gauge-mediated supersymmetry (SUSY) breaking. In this case the next-to-lightest SUSY particle can be the light scalar partner of the tau lepton (τ 1 ), possibly decaying slowly into a gravitino. A wide region of the SUSY parameters space was explored. The accessible range and precision on the measurement of the SUSY breaking scale parameter of √ F achievable with a counting method are assessed [it
The Higgs boson mass and SUSY spectra in 10D SYM theory with magnetized extra dimensions
Directory of Open Access Journals (Sweden)
Hiroyuki Abe
2014-11-01
Full Text Available We study the Higgs boson mass and the spectrum of supersymmetric (SUSY particles in the well-motivated particle physics model derived from a ten-dimensional supersymmetric Yang–Mills theory compactified on three factorizable tori with magnetic fluxes. This model was proposed in a previous work, where the flavor structures of the standard model including the realistic Yukawa hierarchies are obtained from non-hierarchical input parameters on the magnetized background. Assuming moduli- and anomaly-mediated contributions dominate the soft SUSY breaking terms, we study the precise SUSY spectra and analyze the Higgs boson mass in this mode, which are compared with the latest experimental data.
Soft see-saw: Radiative origin of neutrino masses in SUSY theories
Directory of Open Access Journals (Sweden)
Luka Megrelidze
2017-01-01
Full Text Available Radiative neutrino mass generation within supersymmetric (SUSY construction is studied. The mechanism is considered where the lepton number violation is originating from the soft SUSY breaking terms. This requires MSSM extensions with states around the TeV scale. We present several explicit realizations based on extensions either by MSSM singlet or SU(2w triplet states. Besides some novelties of the proposed scenarios, various phenomenological implications are also discussed.
Searching for vortex solutions in graphene within an N=2 SUSY framework
International Nuclear Information System (INIS)
Abreu, Everton M.C.; Assis, Leonardo P.G. de; Helayel-Neto, Jose Abdalla; Nogueira, Alvaro L.M.A.; Paschoal, Ricardo C.
2011-01-01
Full text: In a recent work, we proposed an N=1-D=3 supersymmetric (SUSY) extension of Jackiw's et al. chiral gauge theory for graphene. As a first approach, we explored the idea that the chiral gauge formulation for Dirac fermions in graphene could be a sector of a wider SUSY theoretical setup, namely, the N=1 π 3 -QED. As a matter of fact, adding a superpotential operator to the N=1 π 3 -QED prescription, properly endowed with the constitutive chiral gauge and discrete symmetries that prevail in Jackiw's proposal, allows for the recognition of the Yukawa-like terms, along with spontaneous symmetry breaking configurations and corresponding non-null mass eigenvalues to the physical degrees of freedom. However, the additional requirement of invariance under a global phase transformation (GPT), meant to be associated to the electric charge, severely constrains the superpotential, leading to the exclusion of the sector that contains Jackiw's operators. As we proceed to investigate how the GP symmetry could be accommodated in a SUSY formulation, in the work of Ref. [E.M.C. Abreu, M.A. De Andrade, L.P.G. de Assis, J.A. Helayel-Neto, A.L.M.A. Nogueira and R.C. Paschoal, N=2-D=3 Supersymmetry and the Electric Charge in Graphene] we assess the straightforward N=1-generalization of Jackiw-Pi's chiral gauge theory, obtained at the cost of adding an extra superfield to the original SUSY-π 3 -QED field content. Moreover, we are able to construct an N=2-D=3 further extension of the chiral gauge theory for electrons in graphene. Such an N=2 SUSY framework provides an algebraic structure rich enough to imply a set of equations that minimizes the energy functional, namely, the well-known Bogomol'nyi equations. In this work, by taking the action of one of the supersymmetry charges to be trivial, we obtain the proper set of Bogomol'nyi equations. We finally impose a vortex-like trial solution, as we wish to discuss the resulting non-perturbative spectrum of the present N=2 setup
Searching for vortex solutions in graphene within an N=2 SUSY framework
Energy Technology Data Exchange (ETDEWEB)
Abreu, Everton M.C. [Universidade Federal Rural do Rio de Janeiro (UFRRJ), Seropedica, RJ (Brazil). Dept. de Fisica; Andrade, Marco A. de [Universidade do Estado do Rio de Janeiro (UERJ), Resende, RJ (Brazil); Grupo de Fisica Teorica Jose Leite Lopes (GFT-JLL), Petropolis, RJ (Brazil); Assis, Leonardo P.G. de [Centro Brasileiro de Pesquisas Fisicas (CBPF), Rio de Janeiro, RJ (Brazil); Helayel-Neto, Jose Abdalla [Centro Brasileiro de Pesquisas Fisicas (CBPF), Rio de Janeiro, RJ (Brazil); Grupo de Fisica Teorica Jose Leite Lopes (GFT-JLL), Petropolis, RJ (Brazil); Nogueira, Alvaro L.M.A.; Paschoal, Ricardo C. [Centro Federal de Educacao Tecnologica Celso Suckow da Fonseca (CEFET/RJ), Rio de Janeiro, RJ (Brazil); Grupo de Fisica Teorica Jose Leite Lopes (GFT-JLL), Petropolis, RJ (Brazil)
2011-07-01
Full text: In a recent work, we proposed an N=1-D=3 supersymmetric (SUSY) extension of Jackiw's et al. chiral gauge theory for graphene. As a first approach, we explored the idea that the chiral gauge formulation for Dirac fermions in graphene could be a sector of a wider SUSY theoretical setup, namely, the N=1 {pi}{sub 3}-QED. As a matter of fact, adding a superpotential operator to the N=1 {pi}{sub 3}-QED prescription, properly endowed with the constitutive chiral gauge and discrete symmetries that prevail in Jackiw's proposal, allows for the recognition of the Yukawa-like terms, along with spontaneous symmetry breaking configurations and corresponding non-null mass eigenvalues to the physical degrees of freedom. However, the additional requirement of invariance under a global phase transformation (GPT), meant to be associated to the electric charge, severely constrains the superpotential, leading to the exclusion of the sector that contains Jackiw's operators. As we proceed to investigate how the GP symmetry could be accommodated in a SUSY formulation, in the work of Ref. [E.M.C. Abreu, M.A. De Andrade, L.P.G. de Assis, J.A. Helayel-Neto, A.L.M.A. Nogueira and R.C. Paschoal, N=2-D=3 Supersymmetry and the Electric Charge in Graphene] we assess the straightforward N=1-generalization of Jackiw-Pi's chiral gauge theory, obtained at the cost of adding an extra superfield to the original SUSY-{pi}{sub 3}-QED field content. Moreover, we are able to construct an N=2-D=3 further extension of the chiral gauge theory for electrons in graphene. Such an N=2 SUSY framework provides an algebraic structure rich enough to imply a set of equations that minimizes the energy functional, namely, the well-known Bogomol'nyi equations. In this work, by taking the action of one of the supersymmetry charges to be trivial, we obtain the proper set of Bogomol'nyi equations. We finally impose a vortex-like trial solution, as we wish to discuss the resulting non
SUSY naturalness without prejudice
Ghilencea, D M
2014-01-01
Unlike the Standard Model (SM), supersymmetric models stabilize the electroweak (EW) scale $v$ at the quantum level and {\\it predict} that $v$ is a function of the TeV-valued SUSY parameters ($\\gamma_\\alpha$) of the UV Lagrangian. We show that the (inverse of the) covariance matrix of the model in the basis of these parameters and the usual deviation $\\delta\\chi^2$ (from $\\chi^2_{min}$ of a model) automatically encode information about the "traditional" EW fine-tuning measuring this stability, {\\it provided that} the EW scale $v\\sim m_Z$ is indeed regarded as a function $v=v(\\gamma)$. It is known that large EW fine-tuning may signal an incomplete theory of soft terms and can be reduced when relations among $\\gamma_\\alpha$ exist (due to GUT symmetries, etc). The global correlation coefficient of this matrix can help one investigate if such relations are present. An upper bound on the usual EW fine-tuning measure ("in quadrature") emerges from the analysis of the $\\delta\\chi^2$ and the s-standard deviation conf...
SUSY naturalness without prejudice
Ghilencea, D. M.
2014-05-01
Unlike the Standard Model (SM), supersymmetric models stabilize the electroweak (EW) scale v at the quantum level and predict that v is a function of the TeV-valued SUSY parameters (γα) of the UV Lagrangian. We show that the (inverse of the) covariance matrix of the model in the basis of these parameters and the usual deviation δχ2 (from χmin2 of a model) automatically encode information about the "traditional" EW fine-tuning measuring this stability, provided that the EW scale v ˜mZ is indeed regarded as a function v =v(γ). It is known that large EW fine-tuning may signal an incomplete theory of soft terms and can be reduced when relations among γα exist (due to GUT symmetries, etc.). The global correlation coefficient of this matrix can help one investigate if such relations are present. An upper bound on the usual EW fine-tuning measure ("in quadrature") emerges from the analysis of the δχ2 and the s-standard deviation confidence interval by using v =v(γ) and the theoretical approximation (loop order) considered for the calculation of the observables. This upper bound avoids subjective criteria for the "acceptable" level of EW fine-tuning for which the model is still "natural."
Mamuzic, Judita; The ATLAS collaboration
2018-01-01
Supersymmetry (SUSY) is considered one of the best motivated extensions of the Standard Model. It postulates a fundamental symmetry between fermions and bosons, and introduces a set of new supersymmetric particles at the electroweak scale. It addresses the hierarchy and natu- ralness problem, gives a solution to the gauge couplings unification, and offers a cold dark matter candidate. Different aspects of SUSY searches, using strong, electroweak, third generation production, R-parity violation models, and long lived particles are being studied at the LHC. An overview of most recent results in SUSY searches using Run 2 ATLAS data, at 13 TeV with 36.1 fb−1 of integrated luminosity, was presented.
International Nuclear Information System (INIS)
Shifman, M.A.; Vainstejn, A.I.; Zakharov, V.I.
1985-01-01
This survey is a written version of lectures given at the Bakuriani Workshop on High Energy Physics, January, 1985. The authors discuss the recent discovery on a new phenomenon - dynamical symmetry breaking in supersymmetric gauge theories with matter - which is generated by instantons. Under a certain choice of the matter multiplets the gauge invariance is inevitably spontaneously broken, gauge bosons acquire masses, the evolution of the running coupling constant is frozen and there is a weak coupling regime. Sometimes the pattern includes also spontaneous supersymmetry breaking. Both basic aspects of the mechanism and particular dynamical scenarios realized in typical models are described
Temperature renormalization group approach to spontaneous symmetry breaking
International Nuclear Information System (INIS)
Manesis, E.; Sakakibara, S.
1985-01-01
We apply renormalization group equations that describe the finite-temperature behavior of Green's functions to investigate thermal properties of spontaneous symmetry breaking. Specifically, in the O(N).O(N) symmetric model we study the change of symmetry breaking patterns with temperature, and show that there always exists the unbroken symmetry phase at high temperature, modifying the naive result of leading order in finite-temperature perturbation theory. (orig.)
Peccei-Quinn invariant singlet extended SUSY with anomalous U(1) gauge symmetry
Energy Technology Data Exchange (ETDEWEB)
Im, Sang Hui; Seo, Min-Seok [Center for Theoretical Physics of the Universe, Institute for Basic Science (IBS),Daejeon 305-811 (Korea, Republic of)
2015-05-13
Recent discovery of the SM-like Higgs boson with m{sub h}≃125 GeV motivates an extension of the minimal supersymmetric standard model (MSSM), which involves a singlet Higgs superfield with a sizable Yukawa coupling to the doublet Higgs superfields. We examine such singlet-extended SUSY models with a Peccei-Quinn (PQ) symmetry that originates from an anomalous U(1){sub A} gauge symmetry. We focus on the specific scheme that the PQ symmetry is spontaneously broken at an intermediate scale v{sub PQ}∼√(m{sub SUSY}M{sub Pl}) by an interplay between Planck scale suppressed operators and tachyonic soft scalar mass m{sub SUSY}∼√(D{sub A}) induced dominantly by the U(1){sub A}D-term D{sub A}. This scheme also results in spontaneous SUSY breaking in the PQ sector, generating the gaugino masses M{sub 1/2}∼√(D{sub A}) when it is transmitted to the MSSM sector by the conventional gauge mediation mechanism. As a result, the MSSM soft parameters in this scheme are induced mostly by the U(1){sub A}D-term and the gauge mediated SUSY breaking from the PQ sector, so that the sparticle masses can be near the present experimental bounds without causing the SUSY flavor problem. The scheme is severely constrained by the condition that a phenomenologically viable form of the low energy operators of the singlet and doublet Higgs superfields is generated by the PQ breaking sector in a way similar to the Kim-Nilles solution of the μ problem, and the resulting Higgs mass parameters allow the electroweak symmetry breaking with small tan β. We find two minimal models with two singlet Higgs superfields, satisfying this condition with a relatively simple form of the PQ breaking sector, and briefly discuss some phenomenological aspects of the model.
SUSY/non-SUSY duality in U(N gauge model with partially broken N=2 supersymmetry
Directory of Open Access Journals (Sweden)
Kazunobu Maruyoshi
2009-03-01
Full Text Available We study the vacuum structure of the U(N gauge model with partially broken N=2 supersymmetry. From the analysis of the classical vacua of this model, we point out that in addition to the ordinary N=1 supersymmetric vacua, there are vacua with negative gauge coupling constants, which preserve another N=1 supersymmetry. These latter vacua can be analyzed by using SUSY/non-SUSY duality which is recently proposed by Aganagic, Beem, Seo and Vafa. A dual description of these in UV is U(N gauge theory where the supersymmetry is broken by spurion superfields. Following them, we see that there are supersymmetry preserving vacua as well as supersymmetry breaking vacua of low energy effective theory.
Highlights on SUSY phenomenology
International Nuclear Information System (INIS)
Masiero, Antonio
2004-01-01
In spite of the extraordinary success of the Standard Model (SM) supplemented with massive neutrinos in accounting for the whole huge bulk of phenomenology which has been accumulating in the last three decades, there exist strong theoretical reasons in particle physics and significant 'observational' hints in astroparticle physics for new physics beyond it. My lecture is devoted to a critical assessment of our belief in such new physics at the electroweak scale, in particular identifying it with low-energy supersymmetric extensions of the SM. I'll explain why we have concrete hopes that this decade will shed definite light on what stands behind the phenomenon of electroweak symmetry breaking
A Benders approach for the constrained minimum break problem
DEFF Research Database (Denmark)
Rasmussen, Rasmus Vinther; Trick, Michael
2007-01-01
This paper presents a hybrid IP/CP algorithm for designing a double round robin schedule with a minimal number of breaks. Both mirrored and non-mirrored schedules with and without place constraints are considered. The algorithm uses Benders cuts to obtain feasible home-away pattern sets in few it...
A non extensive approach for DNA breaking by ionizing radiation
Sotolongo-Costa, O; Guzman, F; Antoranz, JC; Rodgers, GJ; Rodriguez, O; Arruda Neto, JDT; Deepman, A
2002-01-01
Tsallis entropy and a maximum entropy principle allows to reproduce experimental data of DNA double strand breaking by electron and neutron radiation. Analytic results for the probability of finding a DNA segment of length l are obtained reproducing quite well the fragment distribution function experimentally obtained.
Hard and soft supersymmetry breaking for ‘graphinos’ in uniform magnetic fields
International Nuclear Information System (INIS)
Hernández-Ortíz, S; Raya, A; Murguía, G
2012-01-01
Using irreducible and reducible representations of the Dirac matrices, we study the two- and four-component quantum mechanical supersymmetric (SUSY) theories for ultrarelativistic fermions in (2 + 1) dimensions (‘graphinos’) in a background uniform magnetic field perpendicular to their plane of motion. We then consider ordinary and parity-violating mass terms and identify the former as a soft SUSY breaking term and the latter as the hard SUSY breaking one. (paper)
Direct gauge mediation of uplifted metastable supersymmetry breaking in supergravity
International Nuclear Information System (INIS)
Maru, Nobuhito
2010-01-01
We propose a direct gauge mediation model based on an uplifted metastable supersymmetry (SUSY) breaking coupled to supergravity. A constant superpotential plays an essential role to fix the moduli as well as breaking SUSY and R symmetry and the cancellation of the cosmological constant. Gaugino masses are generated at leading order of SUSY breaking scale, and comparable to the sfermion masses as in the ordinary gauge mediation. The Landau pole problem for QCD coupling can be easily solved since more than half of messengers become superheavy, which are heavier than the grand unified theory (GUT) scale.
Status of SUSY searches at the LHC (including SUSY Higgs bosons)
Marshall, Zach; The ATLAS collaboration
2017-01-01
We review the status of SUSY searches at the LHC, including searches for SUSY Higgs Bosons. ATLAS and CMS have both prepared a large number of search results on the full 2015+2016 dataset, pushing the bounds on SUSY further than ever before.
Naturalness in low-scale SUSY models and "non-linear" MSSM
Antoniadis, I; Ghilencea, D M
2014-01-01
In MSSM models with various boundary conditions for the soft breaking terms (m_{soft}) and for a higgs mass of 126 GeV, there is a (minimal) electroweak fine-tuning Delta\\approx 800 to 1000 for the constrained MSSM and Delta\\approx 500 for non-universal gaugino masses. These values, often regarded as unacceptably large, may indicate a problem of supersymmetry (SUSY) breaking, rather than of SUSY itself. A minimal modification of these models is to lower the SUSY breaking scale in the hidden sector (\\sqrt f) to few TeV, which we show to restore naturalness to more acceptable levels Delta\\approx 80 for the most conservative case of low tan_beta and ultraviolet boundary conditions as in the constrained MSSM. This is done without introducing additional fields in the visible sector, unlike other models that attempt to reduce Delta. In the present case Delta is reduced due to additional (effective) quartic higgs couplings proportional to the ratio m_{soft}/(\\sqrt f) of the visible to the hidden sector SUSY breaking...
Novel approach for dam break flow modeling using computational intelligence
Seyedashraf, Omid; Mehrabi, Mohammad; Akhtari, Ali Akbar
2018-04-01
A new methodology based on the computational intelligence (CI) system is proposed and tested for modeling the classic 1D dam-break flow problem. The reason to seek for a new solution lies in the shortcomings of the existing analytical and numerical models. This includes the difficulty of using the exact solutions and the unwanted fluctuations, which arise in the numerical results. In this research, the application of the radial-basis-function (RBF) and multi-layer-perceptron (MLP) systems is detailed for the solution of twenty-nine dam-break scenarios. The models are developed using seven variables, i.e. the length of the channel, the depths of the up-and downstream sections, time, and distance as the inputs. Moreover, the depths and velocities of each computational node in the flow domain are considered as the model outputs. The models are validated against the analytical, and Lax-Wendroff and MacCormack FDM schemes. The findings indicate that the employed CI models are able to replicate the overall shape of the shock- and rarefaction-waves. Furthermore, the MLP system outperforms RBF and the tested numerical schemes. A new monolithic equation is proposed based on the best fitting model, which can be used as an efficient alternative to the existing piecewise analytic equations.
Finite N=1 SUSY gauge field theories
International Nuclear Information System (INIS)
Kazakov, D.I.
1986-01-01
The authors give a detailed description of the method to construct finite N=1 SUSY gauge field theories in the framework of N=1 superfields within dimensional regularization. The finiteness of all Green functions is based on supersymmetry and gauge invariance and is achieved by a proper choice of matter content of the theory and Yukawa couplings in the form Y i =f i (ε)g, where g is the gauge coupling, and the function f i (ε) is regular at ε=0 and is calculated in perturbation theory. Necessary and sufficient conditions for finiteness are determined already in the one-loop approximation. The correspondence with an earlier proposed approach to construct finite theories based on aigenvalue solutions of renormalization-group equations is established
Search for SUSY in the AMSB scenario with the DELPHI detector
Abdallah, J.; Adam, W.; Adzic, P.; Albrecht, T.; Alderweireld, T.; Alemany-Fernandez, R.; Allmendinger, T.; Allport, P.P.; Amaldi, U.; Amapane, N.; Amato, S.; Anashkin, E.; Andreazza, A.; Andringa, S.; Anjos, N.; Antilogus, P.; Apel, W.D.; Arnoud, Y.; Ask, S.; Asman, B.; Augustin, J.E.; Augustinus, A.; Baillon, P.; Ballestrero, A.; Bambade, P.; Barbier, R.; Bardin, D.; Barker, G.; Baroncelli, A.; Battaglia, M.; Baubillier, M.; Becks, K.H.; Begalli, M.; Behrmann, A.; Ben-Haim, E.; Benekos, N.; Benvenuti, A.; Berat, C.; Berggren, M.; Berntzon, L.; Bertrand, D.; Besancon, M.; Besson, N.; Bloch, D.; Blom, M.; Bluj, M.; Bonesini, M.; Boonekamp, M.; Booth, P.S.L.; Borisov, G.; Botner, O.; Bouquet, B.; Bowcock, T.J.V.; Boyko, I.; Bracko, M.; Brenner, R.; Brodet, E.; Bruckman, P.; Brunet, J.M.; Bugge, L.; Buschmann, P.; Calvi, M.; Camporesi, T.; Canale, V.; Carena, F.; Castro, Nuno Filipe; Cavallo, F.; Chapkin, M.; Charpentier, Ph.; Checchia, P.; Chierici, R.; Chliapnikov, P.; Chudoba, J.; Chung, S.U.; Cieslik, K.; Collins, P.; Contri, R.; Cosme, G.; Cossutti, F.; Costa, M.J.; Crennell, D.; Cuevas, J.; D'Hondt, J.; Dalmau, J.; da Silva, T.; Da Silva, W.; Della Ricca, G.; De Angelis, A.; De Boer, W.; De Clercq, C.; De Lotto, B.; De Maria, N.; De Min, A.; de Paula, L.; Di Ciaccio, L.; Di Simone, A.; Doroba, K.; Drees, J.; Dris, M.; Eigen, G.; Ekelof, T.; Ellert, M.; Elsing, M.; Espirito Santo, M.C.; Fanourakis, G.; Fassouliotis, D.; Feindt, M.; Fernandez, J.; Ferrer, A.; Ferro, F.; Flagmeyer, U.; Foeth, H.; Fokitis, E.; Fulda-Quenzer, F.; Fuster, J.; Gandelman, M.; Garcia, C.; Gavillet, Ph.; Gazis, Evangelos; Gokieli, R.; Golob, B.; Gomez-Ceballos, G.; Goncalves, P.; Graziani, E.; Grosdidier, G.; Grzelak, K.; Guy, J.; Haag, C.; Hallgren, A.; Hamacher, K.; Hamilton, K.; Haug, S.; Hauler, F.; Hedberg, V.; Hennecke, M.; Herr, H.; Hoffman, J.; Holmgren, S.O.; Holt, P.J.; Houlden, M.A.; Hultqvist, K.; Jackson, John Neil; Jarlskog, G.; Jarry, P.; Jeans, D.; Johansson, Erik Karl; Johansson, P.D.; Jonsson, P.; Joram, C.; Jungermann, L.; Kapusta, Frederic; Katsanevas, S.; Katsoufis, E.; Kernel, G.; Kersevan, B.P.; Kerzel, U.; Kiiskinen, A.; King, B.T.; Kjaer, N.J.; Kluit, P.; Kokkinias, P.; Kourkoumelis, C.; Kouznetsov, O.; Krumstein, Z.; Kucharczyk, M.; Lamsa, J.; Leder, G.; Ledroit, Fabienne; Leinonen, L.; Leitner, R.; Lemonne, J.; Lepeltier, V.; Lesiak, T.; Liebig, W.; Liko, D.; Lipniacka, A.; Lopes, J.H.; Lopez, J.M.; Loukas, D.; Lutz, P.; Lyons, L.; MacNaughton, J.; Malek, A.; Maltezos, S.; Mandl, F.; Marco, J.; Marco, R.; Marechal, B.; Margoni, M.; Marin, J.C.; Mariotti, C.; Markou, A.; Martinez-Rivero, C.; Masik, J.; Mastroyiannopoulos, N.; Matorras, F.; Matteuzzi, C.; Mazzucato, F.; Mazzucato, M.; McNulty, R.; Meroni, C.; Migliore, E.; Mitaroff, W.; Mjoernmark, U.; Moa, T.; Moch, M.; Monig, Klaus; Monge, R.; Montenegro, J.; Moraes, D.; Moreno, S.; Morettini, P.; Mueller, U.; Muenich, K.; Mulders, M.; Mundim, L.; Murray, W.; Muryn, B.; Myatt, G.; Myklebust, T.; Nassiakou, M.; Navarria, F.; Nawrocki, K.; Nicolaidou, R.; Nikolenko, M.; Oblakowska-Mucha, A.; Obraztsov, V.; Olshevski, A.; Onofre, A.; Orava, R.; Osterberg, K.; Ouraou, A.; Oyanguren, A.; Paganoni, M.; Paiano, S.; Palacios, J.P.; Palka, H.; Papadopoulou, Th.D.; Pape, L.; Parkes, C.; Parodi, F.; Parzefall, U.; Passeri, A.; Passon, O.; Peralta, L.; Perepelitsa, V.; Perrotta, A.; Petrolini, A.; Piedra, J.; Pieri, L.; Pierre, F.; Pimenta, M.; Piotto, E.; Podobnik, T.; Poireau, V.; Pol, M.E.; Polok, G.; Poropat, P.; Pozdniakov, V.; Pukhaeva, N.; Pullia, A.; Rames, J.; Ramler, L.; Read, Alexander L.; Rebecchi, P.; Rehn, J.; Reid, D.; Reinhardt, R.; Renton, P.; Richard, F.; Ridky, J.; Rivero, M.; Rodriguez, D.; Romero, A.; Ronchese, P.; Roudeau, P.; Rovelli, T.; Ruhlmann-Kleider, V.; Ryabtchikov, D.; Sadovsky, A.; Salmi, L.; Salt, J.; Savoy-Navarro, A.; Schwickerath, U.; Segar, A.; Sekulin, R.; Siebel, M.; Sisakian, A.; Smadja, G.; Smirnova, O.; Sokolov, A.; Sopczak, A.; Sosnowski, R.; Spassov, T.; Stanitzki, M.; Stocchi, A.; Strauss, J.; Stugu, B.; Szczekowski, M.; Szeptycka, M.; Szumlak, T.; Tabarelli, T.; Taffard, A.C.; Tegenfeldt, F.; Timmermans, Jan; Tkatchev, L.; Tobin, M.; Todorovova, S.; Tome, B.; Tonazzo, A.; Tortosa, P.; Travnicek, P.; Treille, D.; Tristram, G.; Trochimczuk, M.; Troncon, C.; Turluer, M.L.; Tyapkin, I.A.; Tyapkin, P.; Tzamarias, S.; Uvarov, V.; Valenti, G.; Van Dam, Piet; Van Eldik, J.; Van Lysebetten, A.; van Remortel, N.; Van Vulpen, I.; Vegni, G.; Veloso, F.; Venus, W.; Verdier, P.; Verzi, V.; Vilanova, D.; Vitale, L.; Vrba, V.; Wahlen, H.; Washbrook, A.J.; Weiser, C.; Wicke, D.; Wickens, J.; Wilkinson, G.; Winter, M.; Witek, M.; Yushchenko, O.; Zalewska, A.; Zalewski, P.; Zavrtanik, D.; Zhuravlov, V.; Zimine, N.I.; Zintchenko, A.; Zupan, M.
2004-01-01
The DELPHI experiment at the LEP e+e- collider collected almost 700 pb^-1 at centre-of-mass energies above the Z0 mass pole and up to 208 GeV. Those data were used to search for SUSY in the Anomaly Mediated SUSY Breaking (AMSB) scenario with a flavour independent common sfermion mass parameter. The searches covered several possible signatures experimentally accessible at LEP, with either the neutralino, the sneutrino or the stau being the Lightest Supersymmetric Particle (LSP). They included: the search for nearly mass-degenerate chargino and neutralino, which is a typical feature of AMSB; the search for Standard-Model-like or invisibly decaying Higgs boson; the search for stable staus; the search for cascade decays of SUSY particles resulting in the LSP and a low multiplicity final state containing neutrinos. No evidence of a signal was found, and thus constraints were set in the space of the parameters of the model.
Susy seesaw inflation and NMSO(10)GUT
International Nuclear Information System (INIS)
Aulakh, Charanjit S.
2013-01-01
We show that Supersymmetric models with Type I seesaw neutrino masses support slow roll inflection point inflation. The inflaton is the D-flat direction labelled by the chiral invariant HLN composed of the Higgs(H), slepton(L) and conjugate sneutrino(N) superfields. The scale of inflation and fine tuning is set by the conjugate neutrino Majorana mass M ν c ∼ 10 6 - 10 12 GeV. The cubic term in the (quartic) inflaton potential is dominantly from superpotential (not soft Susy breaking) couplings. The tuning conditions are thus insensitive to soft supersymmetry breaking parameters and are generically much less stringent than for previous 'A-term' inflation scenarios controlled by mass scales ∼TeV. WMAP limits on the ratio of tensor to scalar perturbations limit the scale M controlling inflection point inflation: M 13 GeV. 'Instant preheating' is operative and dumps the inflaton energy into MSSM modes giving a high reheat temperature: T rh ≈M ν c (3/4) 10 6 GeV ∼ 10 11 - 10 15 GeV. A large gravitino mass > 50 TeV is therefore required to avoid over closure by reheat produced gravitinos. 'Instant preheating' and NLH inflaton facilitate production of right handed neutrinos during inflaton decay and thus non-thermal leptogenesis in addition to thermal leptogenesis. We show that the embedding in the fully realistic New Minimal Supersymmetric SO(10) GUT requires use of the heaviest righthanded neutrino mass as the controlling scale but the possibility of a measurable tensor scalar perturbation ratio seems marginal. We examine the parametric difficulties remaining.
Metastable Supersymmetry Breaking in a Cooling Universe
International Nuclear Information System (INIS)
Kaplunovsky, Vadim S.
2007-01-01
I put metastable supersymmetry breaking in a cosmological context. I argue that under reasonable assumptions, the cooling down early Universe favors metastable SUSY-breaking vacua over the stable supersymmetric vacua. To illustrate the general argument, I analyze the early-Universe history of the Intriligator-Seiberg-Shih model
Gauge-mediated supersymmetry breaking in string compactifications
International Nuclear Information System (INIS)
Diaconescu, Duiliu-Emanuel; Florea, Bogdan; Kachru, Shamit; Svrcek, Peter
2006-01-01
We provide string theory examples where a toy model of a SUSY GUT or the MSSM is embedded in a compactification along with a gauge sector which dynamically breaks supersymmetry. We argue that by changing microscopic details of the model (such as precise choices of flux), one can arrange for the dominant mediation mechanism transmitting SUSY breaking to the Standard Model to be either gravity mediation or gauge mediation. Systematic improvement of such examples may lead to top-down models incorporating a solution to the SUSY flavor problem
Comparative study of approaches to estimate pipe break frequencies
Energy Technology Data Exchange (ETDEWEB)
Simola, K.; Pulkkinen, U.; Talja, H.; Saarenheimo, A.; Karjalainen-Roikonen, P. [VTT Industrial Systems (Finland)
2002-12-01
The report describes the comparative study of two approaches to estimate pipe leak and rupture frequencies for piping. One method is based on a probabilistic fracture mechanistic (PFM) model while the other one is based on statistical estimation of rupture frequencies from a large database. In order to be able to compare the approaches and their results, the rupture frequencies of some selected welds have been estimated using both of these methods. This paper highlights the differences both in methods, input data, need and use of plant specific information and need of expert judgement. The study focuses on one specific degradation mechanism, namely the intergranular stress corrosion cracking (IGSCC). This is the major degradation mechanism in old stainless steel piping in BWR environment, and its growth is influenced by material properties, stresses and water chemistry. (au)
Natural SUSY dark matter model
International Nuclear Information System (INIS)
Mohanty, Subhendra; Rao, Soumya; Roy, D.P.
2013-01-01
The most natural region of cosmologically compatible dark matter relic density in terms of low fine-tuning in a minimal supersymmetric standard model with nonuniversal gaugino masses is the so called bulk annihilation region. We study this region in a simple and predictive SUSY- GUT model of nonuniversal gaugino masses, where the latter transform as a combination of singlet plus a nonsinglet representation of the GUTgroup SU(5). The model prediction for the direct dark matter detection rates is well below the present CDMS and XENON100 limits, but within the reach of a future 1Ton XENON experiment. The most interesting and robust model prediction is an indirect detection signal of hard positron events, which resembles closely the shape of the observed positron spectrum from the PAMELA experiment. (author)
RPV SUSY searches at ATLAS and CMS
Pettersson, Nora Emilia; The ATLAS collaboration
2015-01-01
Experimental searches for Supersymmetry (SUSY) at the Large Hadronic Collider (LHC) often assume R-Parity Conservation (RPC) to avoid proton decay. A consequence RPC is that it implies a stable SUSY-particle that cannot decay. The search strategies are strongly based on the hypothesize of weakly interacting massive particles escaping without detection - yielding missing transverse energy (MET) to the collision events. It is vital to explore all possibilities considering that no observation of SUSY has been made and that strong exclusions already have been placed on RPC-SUSY scenarios. Introducing individually baryon- and lepton-number violating couplings in R-Parity Violating (RPV) models would avoid rapid proton decay. The strong mass and cross-section exclusion set for RPC-SUSY are weaken if RPV couplings are allowed in the SUSY Lagrangian - as these standard searches lose sensitivity due to less expected MET. This talk aims to summarise a few of the experimental searches for both prompt and long-lived RPV ...
Gieseking, Rebecca L.; Ravva, Mahesh Kumar; Coropceanu, Veaceslav; Bredas, Jean-Luc
2016-01-01
in polar solvents. Using an approach based on LRC functionals, a reduction in the crossover length is found with increasing medium dielectric constant, which is related to localization of the excess charge on the end groups. Symmetry-breaking is associated
Predicting the sparticle spectrum from GUTs via SUSY threshold corrections with SusyTC
Energy Technology Data Exchange (ETDEWEB)
Antusch, Stefan [Department of Physics, University of Basel,Klingelbergstr. 82, CH-4056 Basel (Switzerland); Max-Planck-Institut für Physik (Werner-Heisenberg-Institut),Föhringer Ring 6, D-80805 München (Germany); Sluka, Constantin [Department of Physics, University of Basel,Klingelbergstr. 82, CH-4056 Basel (Switzerland)
2016-07-21
Grand Unified Theories (GUTs) can feature predictions for the ratios of quark and lepton Yukawa couplings at high energy, which can be tested with the increasingly precise results for the fermion masses, given at low energies. To perform such tests, the renormalization group (RG) running has to be performed with sufficient accuracy. In supersymmetric (SUSY) theories, the one-loop threshold corrections (TC) are of particular importance and, since they affect the quark-lepton mass relations, link a given GUT flavour model to the sparticle spectrum. To accurately study such predictions, we extend and generalize various formulas in the literature which are needed for a precision analysis of SUSY flavour GUT models. We introduce the new software tool SusyTC, a major extension to the Mathematica package REAP http://dx.doi.org/10.1088/1126-6708/2005/03/024, where these formulas are implemented. SusyTC extends the functionality of REAP by a full inclusion of the (complex) MSSM SUSY sector and a careful calculation of the one-loop SUSY threshold corrections for the full down-type quark, up-type quark and charged lepton Yukawa coupling matrices in the electroweak-unbroken phase. Among other useful features, SusyTC calculates the one-loop corrected pole mass of the charged (or the CP-odd) Higgs boson as well as provides output in SLHA conventions, i.e. the necessary input for external software, e.g. for performing a two-loop Higgs mass calculation. We apply SusyTC to study the predictions for the parameters of the CMSSM (mSUGRA) SUSY scenario from the set of GUT scale Yukawa relations ((y{sub e})/(y{sub d}))=−(1/2), ((y{sub μ})/(y{sub s}))=6, and ((y{sub τ})/(y{sub b}))=−(3/2), which has been proposed recently in the context of SUSY GUT flavour models.
International Nuclear Information System (INIS)
Hagedorn, Claudia; King, Stephen F.; Luhn, Christoph
2012-01-01
Following the recent results from Daya Bay and RENO, which measure the lepton mixing angle θ 13 l ≈0.15, we revisit a supersymmetric (SUSY) S 4 ×SU(5) model, which predicts tri-bimaximal (TB) mixing in the neutrino sector with θ 13 l being too small in its original version. We show that introducing one additional S 4 singlet flavon into the model gives rise to a sizable θ 13 l via an operator which leads to the breaking of one of the two Z 2 symmetries preserved in the neutrino sector at leading order (LO). The results of the original model for fermion masses, quark mixing and the solar mixing angle are maintained to good precision. The atmospheric and solar mixing angle deviations from TB mixing are subject to simple sum rule bounds.
Supersymmetry breaking and Nambu-Goldstone fermions with cubic dispersion
Sannomiya, Noriaki; Katsura, Hosho; Nakayama, Yu
2017-03-01
We introduce a lattice fermion model in one spatial dimension with supersymmetry (SUSY) but without particle number conservation. The Hamiltonian is defined as the anticommutator of two nilpotent supercharges Q and Q†. Each supercharge is built solely from spinless fermion operators and depends on a parameter g . The system is strongly interacting for small g , and in the extreme limit g =0 , the number of zero-energy ground states grows exponentially with the system size. By contrast, in the large-g limit, the system is noninteracting and SUSY is broken spontaneously. We study the model for modest values of g and show that under certain conditions spontaneous SUSY breaking occurs in both finite and infinite chains. We analyze the low-energy excitations both analytically and numerically. Our analysis suggests that the Nambu-Goldstone fermions accompanying the spontaneous SUSY breaking have cubic dispersion at low energies.
The BSM-AI project: SUSY-AI-generalizing LHC limits on supersymmetry with machine learning
Energy Technology Data Exchange (ETDEWEB)
Caron, Sascha [Radboud Universiteit, Institute for Mathematics, Astro- and Particle Physics IMAPP, Nijmegen (Netherlands); Nikhef, Amsterdam (Netherlands); Kim, Jong Soo [UAM/CSIC, Instituto de Fisica Teorica, Madrid (Spain); Rolbiecki, Krzysztof [UAM/CSIC, Instituto de Fisica Teorica, Madrid (Spain); University of Warsaw, Faculty of Physics, Warsaw (Poland); Ruiz de Austri, Roberto [IFIC-UV/CSIC, Instituto de Fisica Corpuscular, Valencia (Spain); Stienen, Bob [Radboud Universiteit, Institute for Mathematics, Astro- and Particle Physics IMAPP, Nijmegen (Netherlands)
2017-04-15
A key research question at the Large Hadron Collider is the test of models of new physics. Testing if a particular parameter set of such a model is excluded by LHC data is a challenge: it requires time consuming generation of scattering events, simulation of the detector response, event reconstruction, cross section calculations and analysis code to test against several hundred signal regions defined by the ATLAS and CMS experiments. In the BSM-AI project we approach this challenge with a new idea. A machine learning tool is devised to predict within a fraction of a millisecond if a model is excluded or not directly from the model parameters. A first example is SUSY-AI, trained on the phenomenological supersymmetric standard model (pMSSM). About 300, 000 pMSSM model sets - each tested against 200 signal regions by ATLAS - have been used to train and validate SUSY-AI. The code is currently able to reproduce the ATLAS exclusion regions in 19 dimensions with an accuracy of at least 93%. It has been validated further within the constrained MSSM and the minimal natural supersymmetric model, again showing high accuracy. SUSY-AI and its future BSM derivatives will help to solve the problem of recasting LHC results for any model of new physics. SUSY-AI can be downloaded from http://susyai.hepforge.org/. An on-line interface to the program for quick testing purposes can be found at http://www.susy-ai.org/. (orig.)
The BSM-AI project: SUSY-AI-generalizing LHC limits on supersymmetry with machine learning
International Nuclear Information System (INIS)
Caron, Sascha; Kim, Jong Soo; Rolbiecki, Krzysztof; Ruiz de Austri, Roberto; Stienen, Bob
2017-01-01
A key research question at the Large Hadron Collider is the test of models of new physics. Testing if a particular parameter set of such a model is excluded by LHC data is a challenge: it requires time consuming generation of scattering events, simulation of the detector response, event reconstruction, cross section calculations and analysis code to test against several hundred signal regions defined by the ATLAS and CMS experiments. In the BSM-AI project we approach this challenge with a new idea. A machine learning tool is devised to predict within a fraction of a millisecond if a model is excluded or not directly from the model parameters. A first example is SUSY-AI, trained on the phenomenological supersymmetric standard model (pMSSM). About 300, 000 pMSSM model sets - each tested against 200 signal regions by ATLAS - have been used to train and validate SUSY-AI. The code is currently able to reproduce the ATLAS exclusion regions in 19 dimensions with an accuracy of at least 93%. It has been validated further within the constrained MSSM and the minimal natural supersymmetric model, again showing high accuracy. SUSY-AI and its future BSM derivatives will help to solve the problem of recasting LHC results for any model of new physics. SUSY-AI can be downloaded from http://susyai.hepforge.org/. An on-line interface to the program for quick testing purposes can be found at http://www.susy-ai.org/. (orig.)
SUSY searches with the ATLAS detector
Ventura, Andrea; The ATLAS collaboration
2016-01-01
Despite the absence of experimental evidence, weak scale supersymmetry remains one of the best motivated and studied Standard Model extensions. This talk summarises recent ATLAS results for searches for supersymmetric (SUSY) particles, with focus on those obtained using proton-proton collisions at a centre of mass energy of 13 TeV. Strong production in both R-Parity conserving and R-Parity violating SUSY scenarios are considered. The searches involved final states including jets, missing transverse momentum, light leptons, as well as long-lived particle signatures.
Zwirner, F
1992-01-01
We summarize the present status of low-energy supersymmetry, exemplified by the Minimal Supersymmetric extension of the Standard Model (MSSM). We review the searches for Supersymmetric particles and supersymmetric Higgs bosons. We conclude with some comments on the open theoretical problems related to spontaneous supersymmetry breaking in the underlying fundamental theory.
Constraints of chromoelectric dipole moments to natural SUSY type sfermion spectrum
Maekawa, Nobuhiro; Muramatsu, Yu; Shigekami, Yoshihiro
2017-06-01
We investigate the lower bounds of sfermion masses from the constraints of chromoelectric dipole moments (CEDMs) in the natural SUSY-type sfermion mass spectrum, in which stop mass mt ˜ is much smaller than the other sfermion masses m0. The natural SUSY-type sfermion mass spectrum has been studied since the supersymmetric (SUSY) flavor-changing neutral currents (FCNC) are suppressed because of large sfermion masses of the first two generations, and the weak scale is stabilized because of the light stop. However, this type of sfermion mass spectrum is severely constrained by CEDM, because the light stop contributions to the up quark CEDM are not decoupled in the limit m0→∞ , while the down quark CEDM is decoupled in the limit. It is important that the constraints are severe even if SUSY-breaking parameters (and Higgsino mass) are taken to be real because complex diagonalizing matrices of Yukawa matrices, which are from complex Yukawa couplings, generate nonvanishing C P phases in off-diagonal elements of sfermion mass matrices. We calculate the CEDM of up and down quarks numerically in the minimal SUSY standard model, and give the lower bounds for stop mass and the other sfermion masses. We show that the lower bound of stop mass becomes 7 TeV to satisfy the CEDM constraints from Hg EDM. The result is not acceptable if the weak scale stability is considered seriously. We show that if the up-type Yukawa couplings are taken to be real at the grand unification scale, the CEDM constraints are satisfied even if mt ˜˜1 TeV .
A Clifford algebra approach to chiral symmetry breaking and fermion mass hierarchies
Lu, Wei
2017-09-01
We propose a Clifford algebra approach to chiral symmetry breaking and fermion mass hierarchies in the context of composite Higgs bosons. Standard model fermions are represented by algebraic spinors of six-dimensional binary Clifford algebra, while ternary Clifford algebra-related flavor projection operators control allowable flavor-mixing interactions. There are three composite electroweak Higgs bosons resulted from top quark, tau neutrino, and tau lepton condensations. Each of the three condensations gives rise to masses of four different fermions. The fermion mass hierarchies within these three groups are determined by four-fermion condensations, which break two global chiral symmetries. The four-fermion condensations induce axion-like pseudo-Nambu-Goldstone bosons and can be dark matter candidates. In addition to the 125 GeV Higgs boson observed at the Large Hadron Collider, we anticipate detection of tau neutrino composite Higgs boson via the charm quark decay channel.
Fermion Masses and Mixing in SUSY Grand Unified Gauge Models with Extended Gut Gauge Groups
Energy Technology Data Exchange (ETDEWEB)
Chou, Chih-Lung
2005-04-05
The authors discuss a class of supersymmetric (SUSY) grand unified gauge (GUT) models based on the GUT symmetry G x G or G x G x G, where G denotes the GUT group that has the Standard Model symmetry (SU(3){sub c} x SU(2){sub L} x U(1){sub Y}) embedded as a subgroup. As motivated from string theory, these models are constructed without introducing any Higgs field of rani two or higher. Thus all the Higgs fields are in the fundamental representations of the extended GUT symmetry or, when G = SO(10), in the spinorial representation. These Higgs fields, when acquiring their vacuum expectation values, would break the extended GUT symmetry down to the Standard Model symmetry. In this dissertation, they argue that the features required of unified models, such as the Higgs doublet-triplet splitting, proton stability, and the hierarchy of fermion masses and mixing angles, could have natural explanations in the framework of the extended SUSY GUTs. Furthermore, they argue that the frameworks used previously to construct SO(10) GUT models using adjoint Higgs fields can naturally arise from the SO(10) x SO(10) and SO(10) x SO(10) x SO(10) models by integrating out heavy fermions. This observation thus suggests that the traditional SUSY GUT SO(10) theories can be viewed as the low energy effective theories generated by breaking the extended GUT symmetry down to the SO(10) symmetry.
Recent results on SUSY searches from CMS
CERN. Geneva
2013-01-01
The latest results on searches for Supersymmetry from CMS are reviewed. We present searches for direct stop production, searches in final states with four W bosons and multiple b-quarks, and searches for R-Parity violating SUSY. The results use up to 20/fb of data from the 8 TeV LHC run of 2012.
Kepribadian Dan Komunikasi Susi Pudjiastuti Dalam Membentuk Personal Branding
Directory of Open Access Journals (Sweden)
Stevani
2017-07-01
Full Text Available The life story of Susi Pudjiastuti is admired by many people for her hard work, until becoming successful by having so much company in the field of aviation and fisheries. Susi Pudjiastuti is also well known to the public for his work in the ministry. Good performance makes Susi Pudjiastuti popular among Jokowi's working cabinet. Currently, the Brand Name in humans is personal branding which is the trend of the formation of self-image and the creation of good perception from others to us. This research will discuss about personality, communication and personal branding Susi Pudjiastuti with qualitative research method. Good personality makes Susi Pudjiastuti has the ability to communicate well and liked by the community. Personality and communication can form a personal branding Susi Pudjiastuti a natural. By exposing the personality and communication of Susi Pudjiastuti in forming personal branding, then people will realize the importance of personality and Communication in forming a natural personal branding. Kisah hidup Susi Pudjiastuti banyak dikagumi oleh banyak orang atas kerja kerasnya hingga menjadi sukses dengan memiliki banyak perusahaan di bidang penerbangan dan perikanan. Susi Pudjiastuti juga dikenal baik oleh masyarakat akan kinerjanya dalam bekerja di kementerian. Kinerja yang baik menjadikan Susi Pudjiastuti popular diantara kabinet kerja Jokowi. Saat ini, Sebutan merek pada manusia adalah personal branding yang merupakan trend dari pembentukan pencitraan diri dan penciptaan persepsi yang baik dari orang lain kepada kita. Penelitian ini akan membahas mengenai kepribadian, komunikasi serta personal branding Susi Pudjiastuti dengan metode penelitian kualitatif. Kepribadian yang baik menjadikan Susi Pudjiastuti memiliki kemampuan berkomunikasi dengan baik dan disenangi oleh masyarakat. Kepribadian dan komunikasi tersebut dapat membentuk personal branding Susi Pudjiastuti yang alami. Dengan memaparkan kepribadian dan komunikasi Susi
D-term contributions and CEDM constraints in E6 × SU(2)F × U(1)A SUSY GUT model
Shigekami, Yoshihiro
2017-11-01
We focus on E6 × SU(2)F × U(1)A supersymmetric (SUSY) grand unified theory (GUT) model. In this model, realistic Yukawa hierarchies and mixings are realized by introducing all allowed interactions with 𝓞(1) coefficients. Moreover, we can take stop mass is smaller than the other sfermion masses. This type of spectrum called by natural SUSY type sfermion mass spectrum can suppress the SUSY contributions to flavor changing neutral current (FCNC) and stabilize weak scale at the same time. However, light stop predicts large up quark CEDM and stop contributions are not decoupled. Since there is Kobayashi-Maskawa phase, stop contributions to the up quark CEDM is severely constrained even if all SUSY breaking parameters and Higgsino mass parameter μ are real. In this model, real up Yukawa couplings are realized at the GUT scale because of spontaneous CP violation. Therefore CEDM bounds are satisfied, although up Yukawa couplings are complex at the SUSY scale through the renormalization equation group effects. We calculated the CEDMs and found that EDM constraints can be satisfied even if stop mass is 𝓞(1) TeV. In addition, we investigate the size of D-terms in this model. Since these D-term contributions is flavor dependent, the degeneracy of sfermion mass spectrum is destroyed and the size of D-term is strongly constrained by FCNCs when SUSY breaking scale is the weak scale. However, SUSY breaking scale is larger than 1 TeV in order to obtain 125 GeV Higgs mass, and therefore sizable D-term contribution is allowed. Furthermore, we obtained the non-trivial prediction for the difference of squared sfermion mass.
Prospects for R-Parity Conserving SUSY searches at the LHC
The ATLAS collaboration
2009-01-01
The talk reviews the current strategies to search for generic SUSY models with R-parity conservation in the ATLAS and CMS detectors at the LHC. The discovery reach in early data is presented for different search channels based on missing transverse momentum from undetected neutralinos and multiple jets. The talk will also describe the search for models of gauge-mediated supersymmetry breaking for which the NLSP is a neutralino decaying to a photon and a gravitino. In this scenario, the search strategy exploits the distinct signature of a non-pointing photon. Finally, we present recent work on techniques used to reconstruct the decays of SUSY particles at the LHC in early data, based on the selection of final-state exclusive decay chains.
Prospects for R-Parity Conserving SUSY searches at the LHC
Genest, Marie-Helene
2009-01-01
We review the current strategies to search for generic SUSY models with R-parity conservation in the ATLAS and CMS detectors at the LHC. The discovery reach in early data will be presented for the diﬀerent search channels based on missing transverse momentum from undetected neutralinos and multiple jets. We will also describe the search for models of gauge-mediated supersymmetry breaking for which the NLSP is a neutralino decaying to a photon and a gravitino. Finally, we will present recent work on techniques used to reconstruct the decays of SUSY particles at the LHC in early data, based on the selection of ﬁnal-state exclusive decay chains.
International Nuclear Information System (INIS)
Bhasin, Vivek; Kushwaha, H.S.; Mahajan, S.C.; Kakodkar, A.
1993-01-01
In order to evaluate the possible release of radioactivity in extreme events, some postulated accidents are analysed and studied during the design stage of Steam Generator (SG). Among the various accidents postulated, the most important are Feed Water Line Break (FWLB) and Main Steam Line Break (MSLB). This report concerns with dynamic structural analysis of SG internals following FWLB/MSLB. The pressure/drag-force time histories considered were corresponding to the conditions leading to the accident of maximum potential. The SG internals were analysed using two approaches of structural dynamics. In first approach simplified DLF method was adopted. This method yields an upper bound values of stresses and deflection. In the second approach time history analysis by Mode Superposition Technique was adopted. This approach gives more realistic results. The structure was qualified as per ASME B and PV Code SecIII NB. It was concluded that in all the components except perforated flow distribution plate, the stress values based on elastic analysis are within the limits specified by ASME Code. In case of perforated flow distribution plate during the MSLB transient the stress values based on elastic analysis are higher than the ASME Code limits. Therefore, its limit load analysis had to be done. Finally, the collapse pressure evaluated using limit load analysis was shown to be within the limits of ASME B and PV Code SecIII Nb. (author). 31 refs., 94 figs., 16 tabs
A new approach for determination of break points for protection co-ordination
International Nuclear Information System (INIS)
Askarian Abyaneh, H.; Razavi, F.; Al-Dabbagh, M.; Kazemi; Kargar, H.; Jannatian, M.
2003-01-01
Interconnected power system networks are multi lop structured. Settings determination of all overcurrent and distance relays in such networks can be in different forms and complicated. The main problem is the determination of starting points i. e. the location of starting relays in the producer for settings, which is referred to as break points. In this paper, a new approach based on graph theory is introduced in which the relevant matrices dimensions are reduced. The method is flexible and achievement of the desired solution can obtained in a relatively short time
Gieseking, Rebecca L.
2016-04-25
Long polymethines are well-known experimentally to symmetry-break, which dramatically modifies their linear and nonlinear optical properties. Computational modeling could be very useful to provide insight into the symmetry-breaking process, which is not readily available experimentally; however, accurately predicting the crossover point from symmetric to symmetry-broken structures has proven challenging. Here, we benchmark the accuracy of several DFT approaches relative to CCSD(T) geometries. In particular, we compare analogous hybrid and long-range corrected (LRC) functionals to clearly show the influence of the functional exchange term. Although both hybrid and LRC functionals can be tuned to reproduce the CCSD(T) geometries, the LRC functionals are better performing at reproducing the geometry evolution with chain length and provide a finite upper limit for the gas-phase crossover point; these methods also provide good agreement with the experimental crossover points for more complex polymethines in polar solvents. Using an approach based on LRC functionals, a reduction in the crossover length is found with increasing medium dielectric constant, which is related to localization of the excess charge on the end groups. Symmetry-breaking is associated with the appearance of an imaginary frequency of b2 symmetry involving a large change in the degree of bond-length alternation. Examination of the IR spectra show that short, isolated streptocyanines have a mode at ~1200 cm-1 involving a large change in bond-length alternation; as the polymethine length or the medium dielectric increases, the frequency of this mode decreases before becoming imaginary at the crossover point.
Susy theories and QCD: numerical approaches
International Nuclear Information System (INIS)
Ita, Harald
2011-01-01
We review on-shell and unitarity methods and discuss their application to precision predictions for Large Hadron Collider (LHC) physics. Being universal and numerically robust, these methods are straightforward to automate for next-to-leading-order computations within standard model and beyond. Several state-of-the-art results including studies of (W/Z+3)-jet and (W+4)-jet production have explicitly demonstrated the effectiveness of the unitarity method for describing multi-parton scattering. Here we review central ideas needed to obtain efficient numerical implementations. This includes on-shell loop-level recursions, the unitarity method, color management and further refined tricks. (review)
SUSY-hierarchy of one-dimensional reflectionless potentials
International Nuclear Information System (INIS)
Maydanyuk, Sergei P.
2005-01-01
A class of one-dimensional reflectionless potentials is studied. It is found that all possible types of the reflectionless potentials can be combined into one SUSY-hierarchy with a constant potential. An approach for determination of a general form of the reflectionless potential on the basis of construction of such a hierarchy by the recurrent method is proposed. A general integral form of interdependence between superpotentials with neighboring numbers of this hierarchy, opening a possibility to find new reflectionless potentials, is found and has a simple analytical view. It is supposed that any possible type of the reflectionless potential can be expressed through finite number of elementary functions (unlike some presentations of the reflectionless potentials, which are constructed on the basis of soliton solutions or are shape invariant in one or many steps with involving scaling of parameters, and are expressed through series). An analysis of absolute transparency existence for the potential which has the inverse power dependence on space coordinate (and here tunneling is possible), i.e., which has the form V (x) = ± α/ vertical bar x-x 0 vertical bar n (where α and x 0 are constants, n is natural number), is fulfilled. It is shown that such a potential can be reflectionless at n = 2 only. A SUSY-hierarchy of the inverse power reflectionless potentials is constructed. Isospectral expansions of this hierarchy are analyzed
Energy Technology Data Exchange (ETDEWEB)
Bruemmer, Felix [SISSA/ISAS, Trieste (Italy); Kraml, Sabine; Kulkarni, Suchita; Smith, Christopher [Universite Grenoble-Alpes, CNRS/IN2P3, Laboratoire de Physique Subatomique et de Cosmologie, Grenoble Cedex (France)
2014-09-15
An inverted mass hierarchy in the squark sector, as in so-called ''natural supersymmetry'', requires non-universal boundary conditions at the mediation scale of supersymmetry breaking. We propose a formalism to define such boundary conditions in a basis-independent manner and apply it to generic scenarios where the third-generation squarks are light, while the first two-generation squarks are heavy and near-degenerate. We show that not only is our formalism particularly well suited to study such hierarchical squark mass patterns, but in addition the resulting soft terms at the TeV scale are manifestly compatible with the principle of minimal flavour violation, and thus automatically obey constraints from flavour physics. (orig.)
Extraction of the Susy and Higgs parameters
International Nuclear Information System (INIS)
Adam-Bourdarios, Claire
2010-01-01
If supersymmetry is discovered by the next generation of collider experiments, it will be crucial to determine its fundamental high-scale parameters. Three scenarios have been recently investigated by the SFitter collaboration : the case where the LHC 'only' measures a light Higgs like signal, the case where SUSY signal are discovered at the LHC, and the dream scenario, where LHC and ILC measurements can be combined.
Status of the SUSY Les Houches Accord II Project
International Nuclear Information System (INIS)
Allanch, B.C.; Balazs, C.; Belanger, G.; Boudjema, F.; Choudhury, D.; Desch, K.; Ellwanger, U.; Gambino, P.; Godbole, R.; Guasch, J.; Guchait, M.; Heinemeyer, S.; Hugonie, C.; Hurth, T.; Kraml, S.; Lykken, J.; Mangano, M.; Moortgat, F.; Moretti, S.; Penaranda, S.; Porod, W.; Fermilab
2005-01-01
Supersymmetric (SUSY) spectrum generators, decay packages, Monte-Carlo programs, dark matter evaluators, and SUSY fitting programs often need to communicate in the process of an analysis. The SUSY Les Houches Accord provides a common interface that conveys spectral and decay information between the various packages. Here, we propose extensions of the conventions of the first SUSY Les Houches Accord to include various generalizations: violation of CP, R-parity and flavor as well as the simplest next-to-minimal supersymmetric standard model (NMSSM)
International Nuclear Information System (INIS)
Kristof, Marian; Kliment, Tomas; Petruzzi, Alessandro; Lipka, Jozef
2009-01-01
Licensing calculations in a majority of countries worldwide still rely on the application of combined approach using best estimate computer code without evaluation of the code models uncertainty and conservative assumptions on initial and boundary, availability of systems and components and additional conservative assumptions. However best estimate plus uncertainty (BEPU) approach representing the state-of-the-art in the area of safety analysis has a clear potential to replace currently used combined approach. There are several applications of BEPU approach in the area of licensing calculations, but some questions are discussed, namely from the regulatory point of view. In order to find a proper solution to these questions and to support the BEPU approach to become a standard approach for licensing calculations, a broad comparison of both approaches for various transients is necessary. Results of one of such comparisons on the example of the VVER-440/213 NPP pressurizer surge line break event are described in this paper. A Kv-scaled simulation based on PH4-SLB experiment from PMK-2 integral test facility applying its volume and power scaling factor is performed for qualitative assessment of the RELAP5 computer code calculation using the VVER-440/213 plant model. Existing hardware differences are identified and explained. The CIAU method is adopted for performing the uncertainty evaluation. Results using combined and BEPU approaches are in agreement with the experimental values in PMK-2 facility. Only minimal difference between combined and BEPU approached has been observed in the evaluation of the safety margins for the peak cladding temperature. Benefits of the CIAU uncertainty method are highlighted.
Connected Green function approach to symmetry breaking in Φ1+14-theory
International Nuclear Information System (INIS)
Haeuser, J.M.; Cassing, W.; Peter, A.; Thoma, M.H.
1995-01-01
Using the cluster expansions for n-point Green functions we derive a closed set of dynamical equations of motion for connected equal-time Green functions by neglecting all connected functions higher than 4 th order for the λΦ 4 -theory in 1+1 dimensions. We apply the equations to the investigation of spontaneous symmetry breaking, i.e. to the evaluation of the effective potential at temperature T=0. Within our momentum space discretization we obtain a second order phase transition (in agreement with the Simon-Griffith theorem) and a critical coupling of λ crit /4m 2 =2.446 ascompared to a first order phase transition and λ crit /4m 2 =2.568 from the Gaussian effective potential approach. (orig.)
One-loop stabilization of the fuzzy four-sphere via softly broken SUSY
Energy Technology Data Exchange (ETDEWEB)
Steinacker, Harold C. [Faculty of Physics, University of Vienna,Boltzmanngasse 5, A-1090 Vienna (Austria)
2015-12-17
We describe a stabilization mechanism for fuzzy S{sub N}{sup 4} in the Euclidean IIB matrix model due to vacuum energy in the presence of a positive mass term. The one-loop effective potential for the radius contains an attractive contribution attributed to supergravity, while the mass term induces a repulsive contribution for small radius due to SUSY breaking. This leads to a stabilization of the radius. The mechanism should be pertinent to recent results on the genesis of 3+1-dimensional space-time in the Minkowskian IIB model.
The large break LOCA evaluation method with the simplified statistic approach
International Nuclear Information System (INIS)
Kamata, Shinya; Kubo, Kazuo
2004-01-01
USNRC published the Code Scaling, Applicability and Uncertainty (CSAU) evaluation methodology to large break LOCA which supported the revised rule for Emergency Core Cooling System performance in 1989. In USNRC regulatory guide 1.157, it is required that the peak cladding temperature (PCT) cannot exceed 2200deg F with high probability 95th percentile. In recent years, overseas countries have developed statistical methodology and best estimate code with the model which can provide more realistic simulation for the phenomena based on the CSAU evaluation methodology. In order to calculate PCT probability distribution by Monte Carlo trials, there are approaches such as the response surface technique using polynomials, the order statistics method, etc. For the purpose of performing rational statistic analysis, Mitsubishi Heavy Industries, LTD (MHI) tried to develop the statistic LOCA method using the best estimate LOCA code MCOBRA/TRAC and the simplified code HOTSPOT. HOTSPOT is a Monte Carlo heat conduction solver to evaluate the uncertainties of the significant fuel parameters at the PCT positions of the hot rod. The direct uncertainty sensitivity studies can be performed without the response surface because the Monte Carlo simulation for key parameters can be performed in short time using HOTSPOT. With regard to the parameter uncertainties, MHI established the treatment that the bounding conditions are given for LOCA boundary and plant initial conditions, the Monte Carlo simulation using HOTSPOT is applied to the significant fuel parameters. The paper describes the large break LOCA evaluation method with the simplified statistic approach and the results of the application of the method to the representative four-loop nuclear power plant. (author)
Results from GRACE/SUSY at one-loop
Indian Academy of Sciences (India)
We report the recent development on the SUSY calculations with the help of GRACE system. GRACE/SUSY/1LOOP is the computer code which can generate Feynman diagrams in the MSSM automatically and compute one-loop amplitudes in the numerical way. We present new results of various two-body decay widths ...
Searches for Electroweak SUSY by ATLAS and CMS
Khoo, Teng Jian; The ATLAS collaboration
2018-01-01
While strongly-produced SUSY and third-generation squark searches have already breached the TeV mass range, direct production of electroweak gauginos is less tightly constrained. New searches are presented, showcasing novel strategies for filling in the gaps in sensitivity to electroweak SUSY at ATLAS and CMS.
SUSY-hierarchy of one-dimensional reflectionless potentials
Maydanyuk, Sergei P
2004-01-01
A class of one-dimensional reflectionless potentials, an absolute transparency of which is concerned with their belonging to one SUSY-hierarchy with a constant potential, is studied. An approach for determination of a general form of the reflectionless potential on the basis of construction of such a hierarchy by the recurrent method is proposed. A general form of interdependence between superpotentials with neighboring numbers of this hierarchy, opening a possibility to find new reflectionless potentials, have a simple analytical view and are expressed through finite number of elementary functions (unlike some reflectionless potentials, which are constructed on the basis of soliton solutions or are shape invariant in one or many steps with involving scaling of parameters, and are expressed through series), is obtained. An analysis of absolute transparency existence for the potential which has the inverse power dependence on space coordinate (and here tunneling is possible), i.e. which has the form $V(x) = \\p...
What is a natural SUSY scenario?
Energy Technology Data Exchange (ETDEWEB)
Casas, J. Alberto; Moreno, Jesús M.; Robles, Sandra; Rolbiecki, Krzysztof [Instituto de Física Teórica, IFT-UAM/CSIC, Universidad Autónoma de Madrid,Cantoblanco, 28049 Madrid (Spain); Zaldívar, Bryan [Service de Physique Théorique, Université Libre de Bruxelles,Boulevard du Triomphe, CP225, 1050 Brussels (Belgium)
2015-06-11
The idea of “Natural SUSY', understood as a supersymmetric scenario where the fine-tuning is as mild as possible, is a reasonable guide to explore supersymmetric phenomenology. In this paper, we re-examine this issue in the context of the MSSM including several improvements, such as the mixing of the fine-tuning conditions for different soft terms and the presence of potential extra fine-tunings that must be combined with the electroweak one. We give tables and plots that allow to easily evaluate the fine-tuning and the corresponding naturalness bounds for any theoretical model defined at any high-energy (HE) scale. Then, we analyze in detail the complete fine-tuning bounds for the unconstrained MSSM, defined at any HE scale. We show that Natural SUSY does not demand light stops. Actually, an average stop mass below 800 GeV is disfavored, though one of the stops might be very light. Regarding phenomenology, the most stringent upper bound from naturalness is the one on the gluino mass, which typically sets the present level fine-tuning at O(1%). However, this result presents a strong dependence on the HE scale. E.g. if the latter is 10{sup 7} GeV the level of fine-tuning is ∼ four times less severe. Finally, the most robust result of Natural SUSY is by far that Higgsinos should be rather light, certainly below 700 GeV for a fine-tuning of O(1%) or milder. Incidentally, this upper bound is not far from ≃1 TeV, which is the value required if dark matter is made of Higgsinos.
SUSY searches in early CMS data
International Nuclear Information System (INIS)
Tricomi, A
2008-01-01
In the first year of data taking at LHC, the CMS experiment expects to collect about 1 fb -1 of data, which make possible the first searches for new phenomena. All such searches require however the measurement of the SM background and a detailed understanding of the detector performance, reconstruction algorithms and triggering. The CMS efforts are hence addressed to designing a realistic analysis plan in preparation to the data taking. In this paper, the CMS perspectives and analysis strategies for Supersymmetry (SUSY) discovery with early data are presented
Mandelstam cuts and light-like Wilson loops in N=4 SUSY
Energy Technology Data Exchange (ETDEWEB)
Lipatov, L.N. [Hamburg Univ. (Germany). 2. Inst. fuer Theoretische Physik; St. Petersburg Inst. of Nuclear Physics, Gatchina (Russian Federation); Prygarin, A. [Hamburg Univ. (Germany). 2. Inst. fuer Theoretische Physik
2010-08-15
We perform an analytic continuation of the two-loop remainder function for the six-point planar MHV amplitude in N=4 SUSY, found by Goncharov, Spradlin, Vergu and Volovich from the light-like Wilson loop representation. The remainder function is continued into a physical region, where all but two energy invariants are negative. It turns out to be pure imaginary in the multi-Regge kinematics, which is in an agreement with the predictions based on the Steinmann relations for the Regge poles and Mandelstam cut contributions. The leading term reproduces correctly the expression calculated by one of the authors in the BFKL approach, while the subleading term presents a result, that was not yet found with the use of the unitarity techniques. This supports the applicability of the Wilson loop approach to the planar MHV amplitudes in N=4 SUSY. (orig.)
Mandelstam cuts and light-like Wilson loops in N=4 SUSY
International Nuclear Information System (INIS)
Lipatov, L.N.; Prygarin, A.
2010-08-01
We perform an analytic continuation of the two-loop remainder function for the six-point planar MHV amplitude in N=4 SUSY, found by Goncharov, Spradlin, Vergu and Volovich from the light-like Wilson loop representation. The remainder function is continued into a physical region, where all but two energy invariants are negative. It turns out to be pure imaginary in the multi-Regge kinematics, which is in an agreement with the predictions based on the Steinmann relations for the Regge poles and Mandelstam cut contributions. The leading term reproduces correctly the expression calculated by one of the authors in the BFKL approach, while the subleading term presents a result, that was not yet found with the use of the unitarity techniques. This supports the applicability of the Wilson loop approach to the planar MHV amplitudes in N=4 SUSY. (orig.)
Signatures of non-universal soft breaking sfermion masses at Hadron colliders
International Nuclear Information System (INIS)
Datta, Amitava; Datta, Aseshkrishna; Parida, M.K.
1997-12-01
We identify several mass patterns, within the framework of N = 1 SUGRA with nonuniversal soft breaking masses for the sfermions, which may significantly alter SUSY signals and the current squark-gluino mass limits from the Tevatron. These effects are illustrated in a SO(10) SUSY GUT with an intermediate mass scale, but the conclusions are also valid in SUSU SO(10) models with grand deserts. (author)
Energy Technology Data Exchange (ETDEWEB)
Barenboim, G.; Bernabeu, J.; Vives, O. [Universitat de Valencia, Departament de Fisica Teorica, Burjassot (Spain); Universitat de Valencia-CSIC, Parc Cientific U.V., IFIC, Paterna (Spain); Mitsou, V.A.; Romero, E. [Universitat de Valencia-CSIC, Parc Cientific U.V., IFIC, Paterna (Spain)
2016-02-15
Recently the ATLAS experiment announced a 3 σ excess at the Z-peak consisting of 29 pairs of leptons together with two or more jets, E{sub T}{sup miss} > 225 GeV and HT > 600 GeV, to be compared with 10.6 ± 3.2 expected lepton pairs in the Standard Model. No excess outside the Z-peak was observed. By trying to explain this signal with SUSY we find that only relatively light gluinos, m{sub g}
International Nuclear Information System (INIS)
Barenboim, G.; Bernabeu, J.; Vives, O.; Mitsou, V.A.; Romero, E.
2016-01-01
Recently the ATLAS experiment announced a 3 σ excess at the Z-peak consisting of 29 pairs of leptons together with two or more jets, E T miss > 225 GeV and HT > 600 GeV, to be compared with 10.6 ± 3.2 expected lepton pairs in the Standard Model. No excess outside the Z-peak was observed. By trying to explain this signal with SUSY we find that only relatively light gluinos, m g
Minimal duality breaking in the Kallen-Lehman approach to 3D Ising model: A numerical test
International Nuclear Information System (INIS)
Astorino, Marco; Canfora, Fabrizio; Martinez, Cristian; Parisi, Luca
2008-01-01
A Kallen-Lehman approach to 3D Ising model is analyzed numerically both at low and high temperatures. It is shown that, even assuming a minimal duality breaking, one can fix three parameters of the model to get a very good agreement with the Monte Carlo results at high temperatures. With the same parameters the agreement is satisfactory both at low and near critical temperatures. How to improve the agreement with Monte Carlo results by introducing a more general duality breaking is shortly discussed
International Nuclear Information System (INIS)
Chang, D.; Mohapatra, R.N.; Parida, M.K.
1984-01-01
A new approach to left-right symmetric models is proposed, where the left-right discrete-symmetry- and SU(2)/sub R/-breaking scales are decoupled from each other. This changes the spectrum of physical Higgs bosons which leads to different patterns for gauge hierarchies in SU(2)/sub L/xSU(2)/sub R/xSU(4)/sub C/ and SO(10) models. Most interesting are two SO(10) symmetry-breaking chains with an intermediate U(1)/sub R/ symmetry. These are such as to provide new motivation to search for ΔB = 2 and right-handed current effects at low energies
The detection of leaks on sodium pipes in a 'leak before break' approach
International Nuclear Information System (INIS)
Antonakas, D.
1989-01-01
The operation of circuits containing liquid sodium requires, given the chemical affinity of this fluid for air and water, a reliable detection of possible leaks. This system of detection should alert the operators to the occurrence of a leak in sufficient time to limit the potential consequences of a discharge of sodium in the building, leading to a severe sodium fire or at least to an extended corrosion of the pipe system. From a design point of view, the most likely event leading to this situation can be the consequence. of an initial undetected defect which develops under the effect of thermo-mechanical loadings, produces a sodium. leak below the dejection threshold remains undetectable white progressing and finally leads to a guillotine-type rupture when an incidental loading is superimposed to the normal one. The 'leak before break' approach which is now currently introduced in design considerations consists of insuring the detection of incipient leaks corresponding to through-the-wall cracks well below instability of the pipe. Under this short statement, lies a considerable and still necessary effort of research broadly presented in the present paper
Directory of Open Access Journals (Sweden)
Manon L Dontje
2015-10-01
It can be concluded that a mixed methods approach, by combining objective data of an activity monitor with contextual information from time-lapse photos and subjective information from people regarding their own behaviour, is an useful method to provide indepth information about (breaking sedentary behaviour in older adults. The results of this study showed that there is a difference in what older adults believe that are reasons for them to remain sedentary or break their sedentary time and what their actual reasons are. A personal story board based on objective measurements of sedentary behaviour can be a useful method to raise awareness and find individual and tailored ways to reduce sedentary behaviour and to increase the number of breaks in sedentary behaviour without much interference in daily routine.
Concordia elas tuleviku arvelt / Mart Susi ; interv. Krister Kivi
Susi, Mart, 1965-
2003-01-01
Ilmunud ka: Infopress 21. märts nr. 12 lk. 30-31. Concordia Ülikooli rektor Mart Susi räägib kooli senisest juhtimisest ning asjaoludest, mis on põhjustanud pankroti. Tabel: Concordia kronoloogia
Search for non-standard SUSY signatures in CMS
International Nuclear Information System (INIS)
Teyssier, Daniel
2008-01-01
New studies of the CMS collaboration are presented on the sensitivity to searches for non-standard signatures of particular SUSY scenarios. These signatures include non-pointing photons as well as pairs of prompt photons as expected GMSB SUSY models, as well as heavy stable charged particles produced in split supersymmetry models, long lived staus from GMSB SUSY and long lived stops in other SUSY scenarios. Detailed detector simulation is used for the study, and all relevant Standard Model background and detector effects that can mimic these special signatures are included. It is shown that with already with less than 100 pb -1 the CMS sensitivity will probe an interesting as yet by data unexplored parameter range of these models.
Results from GRACE/SUSY at one-loop
International Nuclear Information System (INIS)
Fujimoto, J.; Ishikawa, T.; Kurihara, Y.; Jimbo, M.; Yasui, Y.; Kaneko, T.; Kon, T.; Kuroda, M.; Shimizu, Y.
2007-01-01
We report the recent development on the SUSY calculations with the help of GRACE system. GRACE/SUSY/1LOOP is the computer code which can generate Feynman diagrams in the MSSM automatically and compute one-loop amplitudes in the numerical way. We present new results of various two-body widths and chargino pair production at ILC (international linear collider) at one-loop level. (author)
Latest news on SUSY from the ATLAS experiment
CERN. Geneva
2016-01-01
Despite the absence of experimental evidence, weak scale supersymmetry remains one of the best motivated and studied Standard Model extensions. This talk reports the latest ATLAS results for searches for supersymmetric (SUSY) particles, obtained with 13 to 18 fb-1 of 13 TeV data. Weak and strong production in both R-Parity conserving and R-Parity violating SUSY scenarios are considered. The searches involved final states including jets, missing transverse momentum, light leptons, taus or photons.
R-Parity Violating SUSY Results from ATLAS and CMS
AUTHOR|(INSPIRE)INSPIRE-00360876; The ATLAS collaboration
2016-01-01
Experimental searches for Supersymmetry (SUSY) at the Large Hadronic Collider (LHC) often assume R-Parity Conservation (RPC) to avoid proton decay. A consequence of RPC is that it implies the existence of a stable SUSY-particle that cannot decay. The search strategies are strongly based on the hypothesize of weakly interacting massive particles escaping without detection - yielding missing transverse energy (MET) to the collision events. It is vital to explore all possibilities considering that no observation of SUSY has been made and that strong exclusions already have been placed on RPC-SUSY scenarios. Introducing individually baryon- and lepton-number violating couplings in R-Parity Violating (RPV) models would avoid rapid proton decay. The strong mass and cross-section exclusion set for RPC-SUSY are weaken if RPV couplings are allowed in the SUSY Lagrangian - as these standard searches lose sensitivity due to less expected MET. A summarization a few of the experimental searches for both prompt and long-li...
A new approach to assess COPD by identifying lung function break-points
Directory of Open Access Journals (Sweden)
Eriksson G
2015-10-01
Full Text Available Göran Eriksson,1,* Linnea Jarenbäck,1,* Stefan Peterson,2 Jaro Ankerst,1 Leif Bjermer,1 Ellen Tufvesson11Respiratory Medicine and Allergology, Department of Clinical Sciences, Lund University, 2Regional Cancer Center South, Skåne University Hospital, Lund, Sweden*These authors contributed equally to this workPurpose: COPD is a progressive disease, which can take different routes, leading to great heterogeneity. The aim of the post-hoc analysis reported here was to perform continuous analyses of advanced lung function measurements, using linear and nonlinear regressions.Patients and methods: Fifty-one COPD patients with mild to very severe disease (Global Initiative for Chronic Obstructive Lung Disease [GOLD] Stages I–IV and 41 healthy smokers were investigated post-bronchodilation by flow-volume spirometry, body plethysmography, diffusion capacity testing, and impulse oscillometry. The relationship between COPD severity, based on forced expiratory volume in 1 second (FEV1, and different lung function parameters was analyzed by flexible nonparametric method, linear regression, and segmented linear regression with break-points.Results: Most lung function parameters were nonlinear in relation to spirometric severity. Parameters related to volume (residual volume, functional residual capacity, total lung capacity, diffusion capacity [diffusion capacity of the lung for carbon monoxide], diffusion capacity of the lung for carbon monoxide/alveolar volume and reactance (reactance area and reactance at 5Hz were segmented with break-points at 60%–70% of FEV1. FEV1/forced vital capacity (FVC and resonance frequency had break-points around 80% of FEV1, while many resistance parameters had break-points below 40%. The slopes in percent predicted differed; resistance at 5 Hz minus resistance at 20 Hz had a linear slope change of -5.3 per unit FEV1, while residual volume had no slope change above and -3.3 change per unit FEV1 below its break-point of 61
ProLBB - A Probabilistic Approach to Leak Before Break Demonstration
Energy Technology Data Exchange (ETDEWEB)
Dillstroem, Peter; Weilin Zang (Inspecta Technology AB, Stockholm (SE))
2007-11-15
Recently, the Swedish Nuclear Power Inspectorate has developed guidelines on how to demonstrate the existence of Leak Before Break (LBB). The guidelines, mainly based on NUREG/CR-6765, define the steps that must be fulfilled to get a conservative assessment of LBB acceptability. In this report, a probabilistic LBB approach is defined and implemented into the software ProLBB. The main conclusions, from the study presented in this report, are summarized below. - The probabilistic approach developed in this study was applied to different piping systems in both Boiler Water Reactors (BWR) and Pressurised Water Reactors (PWR). Pipe sizes were selected so that small, medium and large pipes were included in the analysis. The present study shows that the conditional probability of fracture is in general small for the larger diameter pipes when evaluated as function of leak flow rate. However, when evaluated as function of fraction of crack length around the circumference, then the larger diameter pipes will belong to the ones with the highest conditional fracture probabilities. - The total failure probability, corresponding to the product between the leak probability and the conditional fracture probability, will be very small for all pipe geometries when evaluated as function of fraction of crack length around the circumference. This is mainly due to a small leak probability which is consistent with expectations since no active damage mechanism has been assumed. - One of the objectives of the approach was to be able to check the influence of off-centre cracks (i.e. the possibility that cracks occur randomly around the pipe circumference). To satisfy this objective, new stress intensity factor solutions for off-centre cracks were developed. Also to check how off-centre cracks influence crack opening areas, new form factors solutions for COA were developed taking plastic deformation into account. - The influence from an off-center crack position on the conditional
ProLBB - A Probabilistic Approach to Leak Before Break Demonstration
International Nuclear Information System (INIS)
Dillstroem, Peter; Weilin Zang
2007-11-01
Recently, the Swedish Nuclear Power Inspectorate has developed guidelines on how to demonstrate the existence of Leak Before Break (LBB). The guidelines, mainly based on NUREG/CR-6765, define the steps that must be fulfilled to get a conservative assessment of LBB acceptability. In this report, a probabilistic LBB approach is defined and implemented into the software ProLBB. The main conclusions, from the study presented in this report, are summarized below. - The probabilistic approach developed in this study was applied to different piping systems in both Boiler Water Reactors (BWR) and Pressurised Water Reactors (PWR). Pipe sizes were selected so that small, medium and large pipes were included in the analysis. The present study shows that the conditional probability of fracture is in general small for the larger diameter pipes when evaluated as function of leak flow rate. However, when evaluated as function of fraction of crack length around the circumference, then the larger diameter pipes will belong to the ones with the highest conditional fracture probabilities. - The total failure probability, corresponding to the product between the leak probability and the conditional fracture probability, will be very small for all pipe geometries when evaluated as function of fraction of crack length around the circumference. This is mainly due to a small leak probability which is consistent with expectations since no active damage mechanism has been assumed. - One of the objectives of the approach was to be able to check the influence of off-centre cracks (i.e. the possibility that cracks occur randomly around the pipe circumference). To satisfy this objective, new stress intensity factor solutions for off-centre cracks were developed. Also to check how off-centre cracks influence crack opening areas, new form factors solutions for COA were developed taking plastic deformation into account. - The influence from an off-center crack position on the conditional
Fine-tuning implications for complementary dark matter and LHC SUSY searches
Cassel, S; Kraml, S; Lessa, A; Ross, G G
2011-01-01
The requirement that SUSY should solve the hierarchy problem without undue fine-tuning imposes severe constraints on the new supersymmetric states. With the MSSM spectrum and soft SUSY breaking originating from universal scalar and gaugino masses at the Grand Unification scale, we show that the low-fine-tuned regions fall into two classes that will require complementary collider and dark matter searches to explore in the near future. The first class has relatively light gluinos or squarks which should be found by the LHC in its first run. We identify the multijet plus E_T^miss signal as the optimal channel and determine the discovery potential in the first run. The second class has heavier gluinos and squarks but the LSP has a significant Higgsino component and should be seen by the next generation of direct dark matter detection experiments. The combined information from the 7 TeV LHC run and the next generation of direct detection experiments can test almost all of the CMSSM parameter space consistent with ...
Directory of Open Access Journals (Sweden)
Akhsyim Afandi
2017-03-01
Full Text Available There was a question whether monetary policy works through bank lending channelrequired a monetary-induced change in bank loans originates from the supply side. Mostempirical studies that employed vector autoregressive (VAR models failed to fulfill thisrequirement. Aiming to offer a solution to this identification problem, this paper developed afive-variable vector error correction (VEC model of two separate bank credit markets inIndonesia. Departing from previous studies, the model of each market took account of onestructural break endogenously determined by implementing a unit root test. A cointegrationtest that took account of one structural break suggested two cointegrating vectors identifiedas bank lending supply and demand relations. The estimated VEC system for both marketssuggested that bank loans adjusted more strongly in the direction of the supply equation.
Adamović, Vladimir M; Antanasijević, Davor Z; Ristić, Mirjana Đ; Perić-Grujić, Aleksandra A; Pocajt, Viktor V
2017-01-01
This paper presents the development of a general regression neural network (GRNN) model for the prediction of annual municipal solid waste (MSW) generation at the national level for 44 countries of different size, population and economic development level. Proper modelling of MSW generation is essential for the planning of MSW management system as well as for the simulation of various environmental impact scenarios. The main objective of this work was to examine the potential influence of economy crisis (global or local) on the forecast of MSW generation obtained by the GRNN model. The existence of the so-called structural breaks that occur because of the economic crisis in the studied period (2000-2012) for each country was determined and confirmed using the Chow test and Quandt-Andrews test. Two GRNN models, one which did not take into account the influence of the economic crisis (GRNN) and another one which did (SB-GRNN), were developed. The novelty of the applied method is that it uses broadly available social, economic and demographic indicators and indicators of sustainability, together with GRNN and structural break testing for the prediction of MSW generation at the national level. The obtained results demonstrate that the SB-GRNN model provide more accurate predictions than the model which neglected structural breaks, with a mean absolute percentage error (MAPE) of 4.0 % compared to 6.7 % generated by the GRNN model. The proposed model enhanced with structural breaks can be a viable alternative for a more accurate prediction of MSW generation at the national level, especially for developing countries for which a lack of MSW data is notable.
Supersimplicity: a Remarkable High Energy SUSY Property
International Nuclear Information System (INIS)
Gounaris, G.J.; Renard, F.M.
2011-01-01
It is known that for any 2-to-2 process in MSSM, only the helicity conserving (HC) amplitudes survive asymptotically. Studying many such processes, at the 1-loop Electroweak (EW) order, it is found that their high energy HC amplitudes are determined by just three forms: a log-squared function of the ratio of two of the (s, t, u) variables, to which a π 2 is added; and two Sudakov-like ln- and ln 2 -terms accompanied by respective mass-dependent constants. Apart from a possible additional residual constant (which is also discussed), these HC amplitudes, may be expressed as linear combinations of the above three forms, with coefficients being rational functions of the (s, t, u) variables. This 1-loop property, called supersimplicity, is of course claimed for the 2-to-2 processes considered; but no violating examples are known at present. For ug → dW, supersimplicity is found to be a very good approximation at LHC energies, provided the SUSY scale is not too high. SM processes are also discussed, and their differences are explored. (authors)
On SUSY inspired minimal lepton number violation
International Nuclear Information System (INIS)
Chkareuli, J.L.; Gogoladze, I.G.; Green, M.G.; Hutchroft, D.E.; Kobakhidze, A.B.
2000-03-01
A minimal lepton number violation (LNV) is proposed which could naturally appear in SUSY theories, if Yukawa and LNV couplings had a common origin. According to this idea properly implemented into MSSM with an additional abelian flavor symmetry the prototype LNV appears due to a mixing of leptons with superheavy Higgs doublet mediating Yukawa couplings. As a result, all significant physical manifestations of LNV reduce to those of the effective trilinear couplings LLE-bar and LQD-bar aligned, by magnitude and orientation in a flavor space, with the down fermion (charged lepton and down quark) effective Yukawa couplings, while the effective bilinear terms appear generically suppressed relative to an ordinary μ-term of MSSM. Detailed phenomenology of the model related to the flavor-changing processes both in quark and lepton sectors, radiatively induced neutrino masses and decays of the LSP is presented. Remarkably, the model can straightforwardly be extended to a Grand Unified framework and an explicit example with SU(7) GUT is thoroughly discussed. (author)
Mart ja Mari-Ann Susi taotlevad omanikena Concordia pankrotti / Andri Maimets
Maimets, Andri, 1979-
2003-01-01
Concordia Ülikooli rektor Mart Susi esitas kohtule avalduse, milles taotleb ülikooli pidanud Concordia Varahalduse OÜ pankroti väljakuulutamist. Vt. samas: Mari-Ann Susi õigustas ülikooli raha kasutamist
Post LHC8 SUSY benchmark points for ILC physics
International Nuclear Information System (INIS)
Baer, Howard; List, Jenny
2013-07-01
We re-evaluate prospects for supersymmetry at the proposed International Linear e + e - Collider (ILC) in light of the first two years of serious data taking at LHC: LHC7 with ∝5 fb -1 of pp collisions at √(s)=7 TeV and LHC8 with ∝20 fb -1 at √(s)=8 TeV. Strong new limits from LHC8 SUSY searches, along with the discovery of a Higgs boson with m h ≅125 GeV, suggest a paradigm shift from previously popular models to ones with new and compelling signatures. After a review of the current status of supersymmetry, we present a variety of new ILC benchmark models, including: natural SUSY, radiatively-driven natural SUSY (RNS), NUHM2 with low m A , a focus point case from mSUGRA/CMSSM, non-universal gaugino mass (NUGM) model, τ-coannihilation, Kallosh-Linde/spread SUSY model, mixed gauge-gravity mediation, normal scalar mass hierarchy (NMH), and one example with the recently discovered Higgs boson being the heavy CP-even state H. While all these models at present elude the latest LHC8 limits, they do offer intriguing case study possibilities for ILC operating at √(s)≅ 0.25-1 TeV. The benchmark points also present a view of the widely diverse SUSY phenomena which might still be expected in the post LHC8 era at both LHC and ILC.
Coupling between scattering channels with SUSY transformations for equal thresholds
International Nuclear Information System (INIS)
Pupasov, Andrey M; Samsonov, Boris F; Sparenberg, Jean-Marc; Baye, Daniel
2009-01-01
Supersymmetric (SUSY) transformations of the multichannel Schroedinger equation with equal thresholds and arbitrary partial waves in all channels are studied. The structures of the transformation function and the superpotential are analysed. Relations between Jost and scattering matrices of superpartner potentials are obtained. In particular, we show that a special type of SUSY transformation allows us to introduce a coupling between scattering channels starting from a potential with an uncoupled scattering matrix. The possibility for this coupling to be trivial is discussed. We show that the transformation introduces bound and virtual states with a definite degeneracy at the factorization energy. A detailed study of the potential and scattering matrices is given for the 2 x 2 case. The possibility of inverting coupled-channel scattering data by such a SUSY transformation is demonstrated by several examples (s-s, s-p and s-d partial waves)
Cornering natural SUSY at LHC Run II and beyond
Buckley, Matthew R.; Feld, David; Macaluso, Sebastian; Monteux, Angelo; Shih, David
2017-08-01
We derive the latest constraints on various simplified models of natural SUSY with light higgsinos, stops and gluinos, using a detailed and comprehensive reinterpretation of the most recent 13 TeV ATLAS and CMS searches with ˜ 15 fb-1 of data. We discuss the implications of these constraints for fine-tuning of the electroweak scale. While the most "vanilla" version of SUSY (the MSSM with R-parity and flavor-degenerate sfermions) with 10% fine-tuning is ruled out by the current constraints, models with decoupled valence squarks or reduced missing energy can still be fully natural. However, in all of these models, the mediation scale must be extremely low ( model-building directions for natural SUSY that are motivated by this work.
Nd break-up process with considering 3NF at intermediate energies in a 3D approach
Energy Technology Data Exchange (ETDEWEB)
Radin, M., E-mail: harzchi@kntu.ac.ir; Ghasemi, H.
2016-01-15
In this work we have applied a three-dimensional approach to solve the three-nucleon Faddeev equation in the Jacobi momenta space. To this end, we have considered the inhomogeneous part of the Faddeev equation as an appropriate approximation for projectile intermediate energies. As an application the Bonn-B and the Tucson–Melbourne two- and three-nucleon forces have been used for calculating the differential cross section for proton–deuteron break-up process. Finally, comparing our results with the experimental data has been performed for 197 MeV and 346 MeV projectile energies.
Minimal SUSY SO(10) and Yukawa unification
International Nuclear Information System (INIS)
Okada, Nobuchika
2013-01-01
The minimal supersymmetric (SUSY) SO(10) model, where only two Higgs multiplets {10⊕126-bar} are utilized for Yukawa couplings with matter fields, can nicely fit the neutrino oscillation parameters as well as charged fermion masses and mixing angles. In the fitting of the fermion mass matrix data, the largest element in the Yukawa coupling with the 126-bar -plet Higgs (Y 126 ) is found to be of order one, so that the right see-saw scale should be provided by Higgs vacuum expectation values (VEVs) of β(10 14 GeV). This fact causes a serious problem, namely, the gauge coupling unification is spoiled because of the presence of many exotic Higgs multiples emerging at the see-saw scale. In order to solve this problem, we consider a unification between bottom-quark and tau Yukawa couplings (b - τ Yukawa coupling unification) at the grand unified theory (GUT) scale, due to threshold corrections of superpartners to the Yukawa couplings at the 1 TeV scale. When the b - τ Yukawa coupling unification is very accurate, the largest element in Y 126 can become β(0.01), so that the right see-saw scale is realized by the GUT scale VEV and the usual gauge coupling unification is maintained. Since the b - τ Yukawa unification alters the Yukawa coupling data at the GUT scale, we re-analyze the fitting of the fermion mass matrix data by taking all the relevant free parameters into account. Unfortunately, we find that no parameter region shows up to give a nice fit for the current neutrino oscillation data and therefore, the usual picture of the gauge coupling unification cannot accommodate the fermion mass matrix data fitting in our procedure.
Dynamical Compactification as a Mechanism of Spontaneous Supersymmetry Breaking
Dvali, Gia
1997-01-01
Supersymmetry breaking and compactification of extra space-time dimensions may have a common dynamical origin if our universe is spontaneously generated in the form of a four-dimensional topological or non-topological defect in higher dimensional space-time. Within such an approach the conventional particles are zero modes trapped in the core of the defect. In many cases solutions of this type spontaneously break all supersymmetries of the original theory, so that the low-energy observer from ``our'' universe inside the core would not detect supersymmetry. Since the extra dimensions are not compact but, rather, inaccessible to low-energy observers, the usual infinite tower of the Kaluza-Klein excitations does not exist. Production of superpartners at the energy scale of SUSY restoration will be accompanied by four-momentum non-conservation. (Depending on the nature of the solution at hand, the non-conservation may either happen above some threshold energy or be continuous). In either case, the door to extra d...
The SUSY oscillator from local geometry: Dynamics and coherent states
International Nuclear Information System (INIS)
Thienel, H.P.
1994-01-01
The choice of a coordinate chart on an analytical R n (R a n ) provides a representation of the n-dimensional SUSY oscillator. The corresponding Hilbert space is Cartan's exterior algebra endowed with a suitable scalar product. The exterior derivative gives rise to the algebra of the n-dimensional SUSY oscillator. Its euclidean dynamics is an inherent consequence of the geometry imposed by the Lie derivative generating the dilations, i.e. evolution of the quantum system corresponds to parametrization of a sequence of charts by euclidean time. Coherent states emerge as a natural structure related to the Lie derivative generating the translations. (orig.)
Reconstruction of tau leptons and prospects for SUSY in ATLAS
International Nuclear Information System (INIS)
Zendler, Carolin
2010-01-01
Final states with tau leptons may play a special role among the broad variety of signatures for the production of supersymmetric particles at the LHC. The algorithms for tau reconstruction and identification are discussed, which are essential ingredients to reject the huge background from QCD processes. The status of analyses of SUSY tau lepton final states within the ATLAS experiment at the LHC are presented, which range from a study of semi-inclusive discovery prospects to more exclusive processes with two tau leptons from χ-tilde 2 0 decays and their implications for the determination of SUSY parameters. Also, the prospects for exploiting tau lepton polarization are discussed.
Prospects for (non-SUSY) new physics with first LHC data
International Nuclear Information System (INIS)
Butterworth, Jonathan
2007-01-01
The ATLAS and CMS experiments will take first data soon. I consider here the prospects for new physics (excluding SUSY) with a few fb -1 of data. This means processes with signal cross sections of a few 100 fb or less, with clear and fairly simple signatures--precision comparison of data to Standard Model tails will take longer, needing more luminosity and very good understanding of detector calibrations, resolutions and trigger efficiencies. The approach I take here is signature rather than model based, but examples of models will be given
Natural X-ray lines from the low scale supersymmetry breaking
Energy Technology Data Exchange (ETDEWEB)
Kang, Zhaofeng, E-mail: zhaofengkang@gmail.com [Center for High-Energy Physics, Peking University, Beijing 100871 (China); School of Physics, Korea Institute for Advanced Study, Seoul 130-722 (Korea, Republic of); Ko, P., E-mail: pko@kias.re.kr [School of Physics, Korea Institute for Advanced Study, Seoul 130-722 (Korea, Republic of); Li, Tianjun, E-mail: tli@itp.ac.cn [State Key Laboratory of Theoretical Physics and Kavli Institute for Theoretical Physics China (KITPC), Institute of Theoretical Physics, Chinese Academy of Sciences, Beijing 100190 (China); School of Physical Electronics, University of Electronic Science and Technology of China, Chengdu 610054 (China); Liu, Yandong, E-mail: ydliu@itp.ac.cn [State Key Laboratory of Theoretical Physics and Kavli Institute for Theoretical Physics China (KITPC), Institute of Theoretical Physics, Chinese Academy of Sciences, Beijing 100190 (China)
2015-03-06
In the supersymmetric models with low scale supersymmetry (SUSY) breaking where the gravitino mass is around keV, we show that the 3.5 keV X-ray lines can be explained naturally through several different mechanisms: (I) a keV scale dark gaugino plays the role of sterile neutrino in the presence of bilinear R-parity violation. Because the light dark gaugino obtains Majorana mass only via gravity mediation, it is a decaying warm dark matter (DM) candidate; (II) the compressed cold DM states, whose mass degeneracy is broken by gravity mediated SUSY breaking, emit such a line via the heavier one decay into the lighter one plus photon(s). A highly supersymmetric dark sector may readily provide such kind of system; (III) the light axino, whose mass again is around the gravitino mass, decays to neutrino plus gamma in the R-parity violating SUSY. Moreover, we comment on dark radiation from dark gaugino.
Modeling seasonality: An extension of the HEGY approach in the presence of two structural breaks
Directory of Open Access Journals (Sweden)
Tasseven Ozlem
2008-01-01
Full Text Available In this paper the HEGY testing procedure (Hylleberg et al. 1990 of analyzing seasonal unit roots is tried to be re-examined by allowing for seasonal mean shifts with exogenous break points. Using some Monte Carlo experiments the distribution of the HEGY and the extended HEGY tests for seasonal unit roots subject to mean shifts and the small sample behavior of the test statistics have been investigated. Based on an empirical analysis upon the conventional money demand relationships in the Turkish economy, our results indicate that seasonal unit roots appear for the GDP deflator, real M2 and the expected inflation variables while seasonal unit roots at annual frequency seem to be disappear for the real M1 balances when the possible structural changes in one or more seasons at 1994 and 2001 crisis years have been taken into account. .
Neuhauser, Daniel; Gao, Yi; Arntsen, Christopher; Karshenas, Cyrus; Rabani, Eran; Baer, Roi
2014-08-15
We develop a formalism to calculate the quasiparticle energy within the GW many-body perturbation correction to the density functional theory. The occupied and virtual orbitals of the Kohn-Sham Hamiltonian are replaced by stochastic orbitals used to evaluate the Green function G, the polarization potential W, and, thereby, the GW self-energy. The stochastic GW (sGW) formalism relies on novel theoretical concepts such as stochastic time-dependent Hartree propagation, stochastic matrix compression, and spatial or temporal stochastic decoupling techniques. Beyond the theoretical interest, the formalism enables linear scaling GW calculations breaking the theoretical scaling limit for GW as well as circumventing the need for energy cutoff approximations. We illustrate the method for silicon nanocrystals of varying sizes with N_{e}>3000 electrons.
Isospin-symmetry-breaking effects in A∼70 nuclei within beyond-mean-field approach
Energy Technology Data Exchange (ETDEWEB)
Petrovici, A.; Andrei, O. [National Institute for Physics and Nuclear Engineering, R-077125 Bucharest (Romania)
2015-02-24
Particular isospin-symmetry-breaking probes including Coulomb energy differences (CED), mirror energy differences (MED), and triplet energy differences (TED) manifest anomalies in the A∼70 isovector triplets of nuclei. The structure of proton-rich nuclei in the A∼70 mass region suggests shape coexistence and competition between pairing correlations in different channels. Recent results concerning the interplay between isospin-mixing and shape-coexistence effects on exotic phenomena in A∼70 nuclei obtained within the beyond-mean-field complex Excited Vampir variational model with symmetry projection before variation using a realistic effective interaction in a relatively large model space are presented. Excited Vampir predictions concerning the Gamow-Teller β decay to the odd-odd N=Z {sup 66}As and {sup 70}Br nuclei correlated with the pair structure analysis in the T=1 and T=0 channel of the involved wave functions are discussed.
SUSY formalism for the symmetric double well potential
Indian Academy of Sciences (India)
symmetric double well potential barrier we have obtained a class of exactly solvable potentials subject to moving boundary condition. The eigenstates are also obtained by the same technique. Keywords. SUSY; moving boundary condition; exactly solvable; symmetric double well; NH3 molecule. PACS Nos 02.30.Ik; 03.50.
Post LHC7 SUSY benchmark points for ILC physics
Energy Technology Data Exchange (ETDEWEB)
Baer, Howard [Oklahoma Univ., Norman, OK (United States); List, Jenny [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany)
2012-05-15
We re-evaluate prospects for supersymmetry at the proposed International Linear e{sup +}e{sup -} Collider (ILC) in light of the first year of serious data taking at LHC with {radical}(s)=7 TeV and {proportional_to}5 fb{sup -1} of pp collisions (LHC7). Strong new limits from LHC SUSY searches, along with a hint of a Higgs boson signal around m{sub h}{proportional_to}125 GeV, suggest a paradigm shift from previously popular models to ones with new and compelling signatures. We present a variety of new ILC benchmark models, including: natural SUSY, hidden SUSY, NUHM2 with low m{sub A}, non-universal gaugino mass (NUGM) model, pMSSM, Kallosh-Linde model, Bruemmer-Buchmueller model, normal scalar mass hierarchy (NMH) plus one surviving case from mSUGRA/CMSSM in the far focus point region. While all these models at present elude the latest LHC limits, they do offer intriguing case study possibilities for ILC operating at {radical}(s){proportional_to}0.25-1 TeV, and present a view of some of the diverse SUSY phenomena which might be expected at both LHC and ILC in the post LHC7 era.
Post LHC7 SUSY benchmark points for ILC physics
International Nuclear Information System (INIS)
Baer, Howard; List, Jenny
2012-05-01
We re-evaluate prospects for supersymmetry at the proposed International Linear e + e - Collider (ILC) in light of the first year of serious data taking at LHC with √(s)=7 TeV and ∝5 fb -1 of pp collisions (LHC7). Strong new limits from LHC SUSY searches, along with a hint of a Higgs boson signal around m h ∝125 GeV, suggest a paradigm shift from previously popular models to ones with new and compelling signatures. We present a variety of new ILC benchmark models, including: natural SUSY, hidden SUSY, NUHM2 with low m A , non-universal gaugino mass (NUGM) model, pMSSM, Kallosh-Linde model, Bruemmer-Buchmueller model, normal scalar mass hierarchy (NMH) plus one surviving case from mSUGRA/CMSSM in the far focus point region. While all these models at present elude the latest LHC limits, they do offer intriguing case study possibilities for ILC operating at √(s)∝0.25-1 TeV, and present a view of some of the diverse SUSY phenomena which might be expected at both LHC and ILC in the post LHC7 era.
Vast antimatter regions and SUSY-condensate baryogenesis
International Nuclear Information System (INIS)
Kirilova, D.; Panayotova, M.; Valchanov, T.
2002-10-01
Natural and abundant creation of antimatter in the Universe in a SUSY baryogenesis model is described. The scenario predicts vast quantities of antimatter, corresponding to galaxy and galaxy cluster scales, separated from the matter ones by baryonically empty voids. Observational constraints on such antimatter regions are discussed. (author)
A self-consistent mean-field approach to the dynamical symmetry breaking
International Nuclear Information System (INIS)
Kunihiro, Teiji; Hatsuda, Tetsuo.
1984-01-01
The dynamical symmetry breaking phenomena in the Nambu and Jona-Lasimio model are reexamined in the framework of a self-consistent mean-field (SCMF) theory. First, we formulate the SCMF theory in a lucid manner based on a successful decomposition of the Lagrangian into semiclassical and residual interaction parts by imposing a condition that ''the dangerous term'' in Bogoliubov's sense should vanish. Then, we show that the difference of the energy density between the super and normal phases, the correct expression of which the original authors failed to give, can be readily obtained by applying the SCMF theory. Futhermore, it is shown that the expression thus obtained is identical to that of the effective potential (E.P.) given by the path-integral method with an auxiliary field up to the one loop order in the loop expansion, then one finds a new and simple way to get the E.P. Some numerical results of the E.P. and the dynamically generated mass of fermion are also shown. As another demonstration of the powerfulness of the SCMF theory, we derive, in the Appendix, the energy density of the O(N)-phi 4 model including the higher order corrections in the sense of large N expansion. (author)
Spontaneous CP breaking in QCD and the axion potential: an effective Lagrangian approach
Di Vecchia, Paolo; Rossi, Giancarlo; Veneziano, Gabriele; Yankielowicz, Shimon
2017-12-01
Using the well-known low-energy effective Lagrangian of QCD — valid for small (non-vanishing) quark masses and a large number of colors — we study in detail the regions of parameter space where CP is spontaneously broken/unbroken for a vacuum angle θ = π. In the CP broken region there are first order phase transitions as one crosses θ = π, while on the (hyper)surface separating the two regions, there are second order phase transitions signalled by the vanishing of the mass of a pseudo Nambu-Goldstone boson and by a divergent QCD topological susceptibility. The second order point sits at the end of a first order line associated with the CP spontaneous breaking, in the appropriate complex parameter plane. When the effective Lagrangian is extended by the inclusion of an axion these features of QCD imply that standard calculations of the axion potential have to be revised if the QCD parameters fall in the above mentioned CP broken region, in spite of the fact that the axion solves the strong- CP problem. These last results could be of interest for axionic dark matter calculations if the topological susceptibility of pure Yang-Mills theory falls off sufficiently fast when temperature is increased towards the QCD deconfining transition.
Exploring non-holomorphic soft terms in the framework of gauge mediated supersymmetry breaking
Chattopadhyay, Utpal; Das, Debottam; Mukherjee, Samadrita
2018-01-01
It is known that in the absence of a gauge singlet field, a specific class of supersymmetry (SUSY) breaking non-holomorphic (NH) terms can be soft breaking in nature so that they may be considered along with the Minimal Supersymmetric Standard Model (MSSM) and beyond. There have been studies related to these terms in minimal supergravity based models. Consideration of an F-type SUSY breaking scenario in the hidden sector with two chiral superfields however showed Planck scale suppression of such terms. In an unbiased point of view for the sources of SUSY breaking, the NH terms in a phenomenological MSSM (pMSSM) type of analysis showed a possibility of a large SUSY contribution to muon g - 2, a reasonable amount of corrections to the Higgs boson mass and a drastic reduction of the electroweak fine-tuning for a higgsino dominated {\\tilde{χ}}_1^0 in some regions of parameter space. We first investigate here the effects of the NH terms in a low scale SUSY breaking scenario. In our analysis with minimal gauge mediated supersymmetry breaking (mGMSB) we probe how far the results can be compared with the previous pMSSM plus NH terms based study. We particularly analyze the Higgs, stop and the electroweakino sectors focusing on a higgsino dominated {\\tilde{χ}}_1^0 and {\\tilde{χ}}_1^{± } , a feature typically different from what appears in mGMSB. The effect of a limited degree of RG evolutions and vanishing of the trilinear coupling terms at the messenger scale can be overcome by choosing a non-minimal GMSB scenario, such as one with a matter-messenger interaction.
Neutrino oscillations in a predictive SUSY GUT
International Nuclear Information System (INIS)
Blazek, T.; Raby, S.; Tobe, K.
1999-01-01
In this paper we present a predictive SO(10) supersymmetric grand unified theory with the family symmetry U(2)xU(1) which has several nice features. We are able to fit fermion masses and mixing angles, including recent neutrino data, with nine parameters in the charged fermion sector and four in the neutrino sector. The family symmetry plays a preeminent role. (i) The model is ''natural''--we include all terms allowed by the symmetry. It restricts the number of arbitrary parameters and enforces many zeros in the effective mass matrices. (ii) Family symmetry breaking from U(2)xU(1)→U(1)→ nothing generates the family hierarchy. It also constrains squark and slepton mass matrices, thus ameliorating flavor violation resulting from squark and slepton loop contributions. (iii) It naturally gives large angle ν μ -ν τ mixing describing atmospheric neutrino oscillation data and small angle ν e -ν s mixing, consistent with the small mixing angle Mikheyev-Smirnov-Wolfenstein (MSW) solution to solar neutrino data. (iv) Finally, in this paper we assume minimal family symmetry-breaking vacuum expectation values (VEV's). As a result we cannot obtain a three neutrino solution to both atmospheric and solar neutrino oscillations. In addition, the solution discussed here cannot fit liquid scintillation neutrino detector (LSND) data even though this solution requires a sterile neutrino ν s . It is important to note, however, that with nonminimal family symmetry-breaking VEV's, a three neutrino solution is possible with the small mixing angle MSW solution to solar neutrino data and large angle ν μ -ν τ mixing describing atmospheric neutrino oscillation data. In the four neutrino case, nonminimal family VEV's may also permit a solution for LSND. The results with nonminimal family breaking are still under investigation and will be reported in a future paper. (c) 1999 The American Physical Society
Post LHC8 SUSY benchmark points for ILC physics
Energy Technology Data Exchange (ETDEWEB)
Baer, Howard [Oklahoma Univ., Norman, OK (United States); List, Jenny [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany)
2013-07-15
We re-evaluate prospects for supersymmetry at the proposed International Linear e{sup +}e{sup -} Collider (ILC) in light of the first two years of serious data taking at LHC: LHC7 with {proportional_to}5 fb{sup -1} of pp collisions at {radical}(s)=7 TeV and LHC8 with {proportional_to}20 fb{sup -1} at {radical}(s)=8 TeV. Strong new limits from LHC8 SUSY searches, along with the discovery of a Higgs boson with m{sub h}{approx_equal}125 GeV, suggest a paradigm shift from previously popular models to ones with new and compelling signatures. After a review of the current status of supersymmetry, we present a variety of new ILC benchmark models, including: natural SUSY, radiatively-driven natural SUSY (RNS), NUHM2 with low m{sub A}, a focus point case from mSUGRA/CMSSM, non-universal gaugino mass (NUGM) model, {tau}-coannihilation, Kallosh-Linde/spread SUSY model, mixed gauge-gravity mediation, normal scalar mass hierarchy (NMH), and one example with the recently discovered Higgs boson being the heavy CP-even state H. While all these models at present elude the latest LHC8 limits, they do offer intriguing case study possibilities for ILC operating at {radical}(s){approx_equal} 0.25-1 TeV. The benchmark points also present a view of the widely diverse SUSY phenomena which might still be expected in the post LHC8 era at both LHC and ILC.
A general approach to break the concentration barrier in single-molecule imaging
Loveland, Anna B.; Habuchi, Satoshi; Walter, Johannes C.; van Oijen, Antoine M.
2012-01-01
Single-molecule fluorescence imaging is often incompatible with physiological protein concentrations, as fluorescence background overwhelms an individual molecule's signal. We solve this problem with a new imaging approach called PhADE (Photo
Aguilar, Isaac-Cesar; Kagan, David
2013-01-01
The sight of a broken bat in Major League Baseball can produce anything from a humorous dribbler in the infield to a frightening pointed projectile headed for the stands. Bats usually break at the weakest point, typically in the handle. Breaking happens because the wood gets bent beyond the breaking point due to the wave sent down the bat created…
Eikonal approach to the atomic break-up process by polarized electrons
International Nuclear Information System (INIS)
Onaga, Tomohide
1992-01-01
The cross section asymmetry for ionization of hydrogen atoms by electron impact is analysed in the eikonal approach. A new formulation is given for the evaluation of the exchange amplitude up to higher partial Coulomb waves. It is concluded that the cross section asymmetry gives an important criterion or interesting test of validity of approximation methods with the exchange effect. (author)
Non-simplified SUSY. {tau}-coannihilation at LHC and ILC
Energy Technology Data Exchange (ETDEWEB)
Berggren, M.; Cakir, A.; Krueger, D.; List, J.; Lobanov, A.; Melzer-Pellmann, I.A.
2013-07-15
Simplified models have become a widely used and important tool to cover the more diverse phenomenology beyond constrained SUSY models. However, they come with a substantial number of caveats themselves, and great care needs to be taken when drawing conclusions from limits based on the simplified approach. To illustrate this issue with a concrete example, we examine the applicability of simplified model results to a series of full SUSY model points which all feature a small {tau} -LSP mass difference, and are compatible with electroweak and flavor precision observables as well as current LHC results. Various channels have been studied using the Snowmass Combined LHC detector implementation in the Delphes simulation package, as well as the Letter of Intent or Technical Design Report simulations of the ILD detector concept at the ILC. We investigated both the LHC and ILC capabilities for discovery, separation and identification of all parts of the spectrum. While parts of the spectrum would be discovered at the LHC, there is substantial room for further discoveries and property determination at the ILC.
SLAM, a Mathematica interface for SUSY spectrum generators
International Nuclear Information System (INIS)
Marquard, Peter; Zerf, Nikolai
2013-09-01
We present and publish a Mathematica package, which can be used to automatically obtain any numerical MSSM input parameter from SUSY spectrum generators, which follow the SLHA standard, like SPheno, SOFTSUSY or Suspect. The package enables a very comfortable way of numerical evaluations within the MSSM using Mathematica. It implements easy to use predefined high scale and low scale scenarios like mSUGRA or m h max and if needed enables the user to directly specify the input required by the spectrum generators. In addition it supports an automatic saving and loading of SUSY spectra to and from a SQL data base, avoiding the rerun of a spectrum generator for a known spectrum.
Heavy colored SUSY partners from deflected anomaly mediation
Energy Technology Data Exchange (ETDEWEB)
Wang, Fei [Department of Physics and Engineering, Zhengzhou University,Zhengzhou 450000 (China); State Key Laboratory of Theoretical Physics, Institute of Theoretical Physics, Academia Sinica,Beijing 100190 (China); Wang, Wenyu [Institute of Theoretical Physics, College of Applied Science, Beijing University of Technology,Beijing 100124 (China); Yang, Jin Min; Zhang, Yang [State Key Laboratory of Theoretical Physics, Institute of Theoretical Physics, Academia Sinica,Beijing 100190 (China)
2015-07-27
We propose a deflected anomaly mediation scenario from SUSY QCD which can lead to both positive and negative deflection parameters (there is a smooth transition between these two deflection parameter regions by adjusting certain couplings). Such a scenario can naturally give a SUSY spectrum in which all the colored sparticles are heavy while the sleptons are light. As a result, the discrepancy between the Brookheaven g{sub μ}−2 experiment and LHC data can be reconciled in this scenario. We also find that the parameter space for explaining the g{sub μ}−2 anomaly at 1σ level can be fully covered by the future LUX-ZEPLIN 7.2 Ton experiment.
SLAM, a Mathematica interface for SUSY spectrum generators
Energy Technology Data Exchange (ETDEWEB)
Marquard, Peter [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany); Zerf, Nikolai [Alberta Univ., Edmonton, AB (Canada). Dept. of Physics
2013-09-15
We present and publish a Mathematica package, which can be used to automatically obtain any numerical MSSM input parameter from SUSY spectrum generators, which follow the SLHA standard, like SPheno, SOFTSUSY or Suspect. The package enables a very comfortable way of numerical evaluations within the MSSM using Mathematica. It implements easy to use predefined high scale and low scale scenarios like mSUGRA or m{sub h}{sup max} and if needed enables the user to directly specify the input required by the spectrum generators. In addition it supports an automatic saving and loading of SUSY spectra to and from a SQL data base, avoiding the rerun of a spectrum generator for a known spectrum.
New two-dimensional integrable quantum models from SUSY intertwining
International Nuclear Information System (INIS)
Ioffe, M V; Negro, J; Nieto, L M; Nishnianidze, D N
2006-01-01
Supersymmetrical intertwining relations of second order in the derivatives are investigated for the case of supercharges with deformed hyperbolic metric g ik = diag(1, - a 2 ). Several classes of particular solutions of these relations are found. The corresponding Hamiltonians do not allow the conventional separation of variables, but they commute with symmetry operators of fourth order in momenta. For some of these models the specific SUSY procedure of separation of variables is applied
Search for compressed SUSY scenarios with the ATLAS detector
Maurer, Julien; The ATLAS collaboration
2017-01-01
Scenarios where multiple SUSY states are nearly degenerate in mass produce soft decay products, and they represent an experimental challenge for ATLAS. This talk presents recent results of analyses explicitly targeting such “compressed” scenarios with a variety of experimental techniques. All results make use of proton-proton collisions collected at a centre of mass of 13 TeV with the ATLAS detector.
Search for compressed SUSY scenarios with the ATLAS detector
Maurer, Julien; The ATLAS collaboration
2017-01-01
Scenarios where multiple SUSY states are nearly degenerate in mass produce soft decay products, and they represent an experimental challenge for ATLAS. This contribution presented recent results of analyses explicitly targeting such ``compressed'' scenarios with a variety of experimental techniques. All results made use of proton-proton collisions collected at a centre-of-mass energy of 13 TeV with the ATLAS detector at the LHC.
SUSY Flat Directions - to get a VEV or not?
International Nuclear Information System (INIS)
Basboell, Anders
2010-01-01
We investigate the potential of SUSY flat directions (FDs). Large FD vacuum expectation values (VEVs) can delay thermalisation and solve the gravitino problem--if FDs decay perturbatively. This depends on how many and which directions get the VEVs. Recently the decay of the FDs have been studied with the VEVs as input. Here we look at how the VEVs come about--statistically and analytically.
Electroweak contributions to SUSY particle production processes at the LHC
International Nuclear Information System (INIS)
Mirabella, Edoardo
2009-01-01
In this thesis we have computed the electroweak contributions of O(α s α), O(α 2 ) and O(α s 2 ) to three different classes of processes leading to the hadronic production of the SUSY partners of quarks and gluons, i.e. squarks and gluinos. The theoretical framework is the Minimal Supersymmetric extension of the Standard Model, the MSSM. The three processes are gluino pair production, diagonal squark-antisquark and associated squark-gluino production.
A general approach to break the concentration barrier in single-molecule imaging
Loveland, Anna B.
2012-09-09
Single-molecule fluorescence imaging is often incompatible with physiological protein concentrations, as fluorescence background overwhelms an individual molecule\\'s signal. We solve this problem with a new imaging approach called PhADE (PhotoActivation, Diffusion and Excitation). A protein of interest is fused to a photoactivatable protein (mKikGR) and introduced to its surface-immobilized substrate. After photoactivation of mKikGR near the surface, rapid diffusion of the unbound mKikGR fusion out of the detection volume eliminates background fluorescence, whereupon the bound molecules are imaged. We labeled the eukaryotic DNA replication protein flap endonuclease 1 with mKikGR and added it to replication-competent Xenopus laevis egg extracts. PhADE imaging of high concentrations of the fusion construct revealed its dynamics and micrometer-scale movements on individual, replicating DNA molecules. Because PhADE imaging is in principle compatible with any photoactivatable fluorophore, it should have broad applicability in revealing single-molecule dynamics and stoichiometry of macromolecular protein complexes at previously inaccessible fluorophore concentrations. © 2012 Nature America, Inc. All rights reserved.
Precision natural SUSY at CEPC, FCC-ee, and ILC
International Nuclear Information System (INIS)
Fan, JiJi; Reece, Matthew; Wang, Lian-Tao
2015-01-01
Testing the idea of naturalness is and will continue to be one of the most important goals of high energy physics experiments. It will play a central role in the physics program of future colliders. In this paper, we present projections of the reach of natural SUSY at future lepton colliders: CEPC, FCC-ee and ILC. We focus on the observables which give the strongest reach, the electroweak precision observables (for left-handed stops), and Higgs to gluon and photon decay rates (for both left- and right-handed stops). There is a “blind spot” when the stop mixing parameter X t is approximately equal to the average stop mass. We argue that in natural scenarios, bounds on the heavy Higgs bosons from tree-level mixing effects that modify the hbb̄ coupling together with bounds from b→sγ play a complementary role in probing the blind spot region. For specific natural SUSY scenarios such as folded SUSY in which the top partners do not carry Standard Model color charges, electroweak precision observables could be the most sensitive probe. In all the scenarios discussed in this paper, the combined set of precision measurements will probe down to a few percent in fine-tuning.
Optimization of Markov chains for a SUSY fitter: Fittino
Energy Technology Data Exchange (ETDEWEB)
Prudent, Xavier [IKTP, Technische Universitaet, Dresden (Germany); Bechtle, Philip [DESY, Hamburg (Germany); Desch, Klaus; Wienemann, Peter [Universitaet Bonn (Germany)
2010-07-01
A Markov chains is a ''random walk'' algorithm which allows an efficient scan of a given profile and the search of the absolute minimum, even when this profil suffers from the presence of many secondary minima. This property makes them particularly suited to the study of Supersymmetry (SUSY) models, where minima have to be found in up-to 18-dimensional space for the general MSSM. Hence the SUSY fitter ''Fittino'' uses a Metropolis*Hastings Markov chain in a frequentist interpretation to study the impact of current low -energy measurements, as well as expected measurements from LHC and ILC, on the SUSY parameter space. The expected properties of an optimal Markov chain should be the independence of final results with respect to the starting point and a fast convergence. These two points can be achieved by optimizing the width of the proposal distribution, that is the ''average step length'' between two links in the chain. We developped an algorithm for the optimization of the proposal width, by modifying iteratively the width so that the rejection rate be around fifty percent. This optimization leads to a starting point independent chain as well as a faster convergence.
Nucleon decay in a realistic SO(10) SUSY GUT
International Nuclear Information System (INIS)
Lucas, V.; Raby, S.
1997-01-01
In this paper, we calculate neutron and proton decay rates and branching ratios in a predictive SO(10) SUSY GUT which agrees well with low energy data. We show that the nucleon lifetimes are consistent with the experimental bounds. The nucleon decay rates are calculated using all one-loop chargino and gluino-dressed diagrams regardless of their chiral structure. We show that the four-fermion operator C jk (u R d jR )(d kL ν τL ), commonly neglected in previous nucleon decay calculations, not only contributes significantly to nucleon decay, but, for many values of the initial GUT parameters and for large tanβ, actually dominates the decay rate. As a consequence, we find that τ p /τ n is often substantially larger than the prediction obtained in small tanβ models. We also find that gluino-dressed diagrams, often neglected in nucleon decay calculations, contribute significantly to nucleon decay. In addition we find that the branching ratios obtained from this realistic SO(10) SUSY GUT differ significantly from the predictions obtained from open-quotes genericclose quotes SU(5) SUSY GUT close-quote s. Thus, nucleon decay branching ratios, when observed, can be used to test theories of fermion masses. copyright 1997 The American Physical Society
Implications of low and high energy measurements on SUSY models
Energy Technology Data Exchange (ETDEWEB)
Jegerlehner, Fred [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany); Humboldt-Universitaet, Berlin (Germany). Inst. fuer Physik
2012-04-15
New Physics searches at the LHC have increased significantly lower bounds on unknown particle masses. This increases quite dramatically the tension in the interpretation of the data: low energy precision data which are predicted accurately by the SM (LEP observables like M{sub W} or loop induced rare processes like B {yields}X{sub s}{gamma} or B{sub s}{yields}{mu}{sup +}{mu}{sup -}) and quantities exhibiting an observed discrepancy between SM theory and experiment, most significantly found for the muon g-2 seem to be in conflict now. (g-2){sub {mu}} appears to be the most precisely understood observable which at the same time reveals a 3-4 {sigma} deviation between theory and experiment and thus requires a significant new physics contribution. The hints for a Higgs of mass about 125 GeV, which is precisely what SUSY extensions of the SM predict, seem to provide a strong indication for SUSY. At the same time it brings into serious trouble the interpretation of the (g-2){sub {mu}} deviation as a SUSY contribution.
Higgs, Binos and Gluinos: Split Susy within Reach
Energy Technology Data Exchange (ETDEWEB)
Alves, Daniele S.M.; Izaguirre, Eder; /SLAC /Stanford U., Phys. Dept.; Wacker, Jay G.; /SLAC /Stanford U., ITP
2012-09-14
Recent results from the LHC for the Higgs boson with mass between 142 GeV {approx}< m{sub h{sup 0}} {approx}< 147 GeV points to PeV-scale Split Supersymmetry. This article explores the consequences of a Higgs mass in this range and possible discovery modes for Split Susy. Moderate lifetime gluinos, with decay lengths in the 25 {micro}m to 10 yr range, are its imminent smoking gun signature. The 7TeV LHC will be sensitive to the moderately lived gluinos and trilepton signatures from direct electroweakino production. Moreover, the dark matter abundance may be obtained from annihilation through an s-channel Higgs resonance, with the LSP almost purely bino and mass m{sub {chi}{sub 1}{sup 0}} {approx_equal} 70 GeV. The Higgs resonance region of Split Susy has visible signatures in dark matter direct and indirect detection and electric dipole moment experiments. If the anomalies go away, the majority of Split Susy parameter space will be excluded.
Kennett, G A; Clifton, P G
2010-11-01
In this review we assess the range of centrally active anorectics that are either in human clinical trials, or are likely to be so in the near future. We describe their weight loss efficacy, mode of action at both pharmacological and behavioural levels, where understood, together with the range of side effects that might be expected in clinical use. We have however evaluated these compounds against the considerably more rigorous criteria that are now being used by the Federal Drugs Agency and European Medicines Agency to decide approvals and market withdrawals. Several trends are evident. Recent advances in the understanding of energy balance control have resulted in the exploitation of a number of new targets, some of which have yielded promising data in clinical trials for weight loss. A second major trend is derived from the hypothesis that improved weight loss efficacy over current therapy is most likely to emerge from treatments targeting multiple mechanisms of energy balance control. This reasoning has led to the development of a number of new treatments for obesity where multiple mechanisms are targeted, either by a single molecule, such as tesofensine, or through drug combinations such as qnexa, contrave, empatic, and pramlintide+metreleptin. Many of these approaches also utilise advances in formulation technology to widen safety margins. Finally, the practicality of peptide therapies for obesity has become better validated in recent studies and this may allow more rapid exploitation of novel targets, rather than awaiting the development of orally available small molecules. We conclude that novel, more efficacious and better tolerated treatments for obesity may become available in the near future. Copyright © 2010 Elsevier Inc. All rights reserved.
Interplay of LFV and slepton mass splittings at the LHC as a probe of the SUSY seesaw
Abada, A; Romao, J C; Teixeira, A M
2010-01-01
We study the impact of a type-I SUSY seesaw concerning lepton flavour violation (LFV) both at low-energies and at the LHC. The study of the di-lepton invariant mass distribution at the LHC allows to reconstruct some of the masses of the different sparticles involved in a decay chain. In particular, the combination with other observables renders feasible the reconstruction of the masses of the intermediate sleptons involved in $ \\chi_2^0\\to \\tilde \\ell \\,\\ell \\to \\ell \\,\\ell\\,\\chi_1^0$ decays. Slepton mass splittings can be either interpreted as a signal of non-universality in the SUSY soft breaking-terms (signalling a deviation from constrained scenarios as the cMSSM) or as being due to the violation of lepton flavour. In the latter case, in addition to these high-energy processes, one expects further low-energy manifestations of LFV such as radiative and three-body lepton decays. Under the assumption of a type-I seesaw as the source of neutrino masses and mixings, all these LFV observables are related. Worki...
Soft supersymmetry breaking in KKLT flux compactification
International Nuclear Information System (INIS)
Choi, K.; Falkowski, A.; Nilles, H.P.; Olechowski, M.
2005-01-01
We examine the structure of soft supersymmetry breaking terms in KKLT models of flux compactification with low energy supersymmetry. Moduli are stabilized by fluxes and nonperturbative dynamics while a de Sitter vacuum is obtained by adding supersymmetry breaking anti-branes. We discuss the characteristic pattern of mass scales in such a set-up as well as some features of 4D N=1 supergravity breakdown by anti-branes. Anomaly mediation is found to always give an important contribution and one can easily arrange for flavor-independent soft terms. In its most attractive realization, the modulus mediation is comparable to the anomaly mediation, yielding a quite distinctive sparticle spectrum. In addition, the axion component of the modulus/dilaton superfield dynamically cancels the relative CP phase between the contributions of anomaly and modulus mediation, thereby avoiding dangerous SUSY CP violation
Dynamics of Symmetry Breaking and Tachyonic Preheating
Felder, G; Greene, P B; Kofman, L A; Linde, Andrei D; Tkachev, Igor I; Felder, Gary; Garcia-Bellido, Juan; Greene, Patrick B.; Kofman, Lev; Linde, Andrei; Tkachev, Igor
2001-01-01
We reconsider the old problem of the dynamics of spontaneous symmetry breaking using 3d lattice simulations, and develop a theory of tachyonic preheating, which occurs due to the spinodal instability of the scalar field. Tachyonic preheating is so efficient that symmetry breaking typically completes within a single oscillation of the field distribution as it rolls towards the minimum of its effective potential. As an application of this theory we consider preheating in the hybrid inflation scenario, including SUSY-motivated F-term and D-term inflationary models. We show that preheating in hybrid inflation is typically tachyonic and the stage of oscillations of a homogeneous component of the scalar fields driving inflation ends after a single oscillation. Our results may also be relevant for the theory of the formation of disoriented chiral condensates in heavy ion collisions.
The minimal SUSY B−L model: simultaneous Wilson lines and string thresholds
Energy Technology Data Exchange (ETDEWEB)
Deen, Rehan; Ovrut, Burt A. [Department of Physics, University of Pennsylvania,209 South 33rd Street, Philadelphia, PA 19104-6396 (United States); Purves, Austin [Department of Physics, University of Pennsylvania,209 South 33rd Street, Philadelphia, PA 19104-6396 (United States); Department of Physics, Manhattanville College,2900 Purchase Street, Purchase, NY 10577 (United States)
2016-07-08
In previous work, we presented a statistical scan over the soft supersymmetry breaking parameters of the minimal SUSY B−L model. For specificity of calculation, unification of the gauge parameters was enforced by allowing the two ℤ{sub 3}×ℤ{sub 3} Wilson lines to have mass scales separated by approximately an order of magnitude. This introduced an additional “left-right” sector below the unification scale. In this paper, for three important reasons, we modify our previous analysis by demanding that the mass scales of the two Wilson lines be simultaneous and equal to an “average unification” mass 〈M{sub U}〉. The present analysis is 1) more “natural” than the previous calculations, which were only valid in a very specific region of the Calabi-Yau moduli space, 2) the theory is conceptually simpler in that the left-right sector has been removed and 3) in the present analysis the lack of gauge unification is due to threshold effects — particularly heavy string thresholds, which we calculate statistically in detail. As in our previous work, the theory is renormalization group evolved from 〈M{sub U}〉 to the electroweak scale — being subjected, sequentially, to the requirement of radiative B−L and electroweak symmetry breaking, the present experimental lower bounds on the B−L vector boson and sparticle masses, as well as the lightest neutral Higgs mass of ∼125 GeV. The subspace of soft supersymmetry breaking masses that satisfies all such constraints is presented and shown to be substantial.
Energy Technology Data Exchange (ETDEWEB)
Ghoshal, Nitin [Molecular Genetics Laboratory, Department of Biotechnology & Bioinformatics, North-Eastern Hill University, Shillong, Meghalaya-793022 (India); Sharma, Sheetal [Department of Biochemistry, Indian Institute of Science, Bangalore, 560 012 (India); Banerjee, Atanu; Kurkalang, Sillarine [Molecular Genetics Laboratory, Department of Biotechnology & Bioinformatics, North-Eastern Hill University, Shillong, Meghalaya-793022 (India); Raghavan, Sathees C. [Department of Biochemistry, Indian Institute of Science, Bangalore, 560 012 (India); Chatterjee, Anupam, E-mail: chatterjeeanupam@hotmail.com [Molecular Genetics Laboratory, Department of Biotechnology & Bioinformatics, North-Eastern Hill University, Shillong, Meghalaya-793022 (India)
2017-01-15
Highlights: • DNA lesions induced by Blem and radiation interact well and form higher frequency of exchange aberrations. • Cellular level of glutathione does influence such interaction of DNA lesions. • Oligomer-based cell-free assay system demonstrated better end-joining efficiency at higher level of endogenous GSH. - Abstract: Radiation induced DNA double-strand breaks (DSB) are the major initial lesions whose misrejoining may lead to exchange aberrations. However, the role of glutathione (GSH), a major cellular thiol, in regulating cell’s sensitivity to DNA damaging agents is not well understood. Influence of endogenous GSH on the efficiency of X-rays and bleomycin (Blem) induced DNA DSBs end-joining has been tested here cytogenetically, in human lymphocytes and Hct116 cells. In another approach, oligomeric DNA (75 bp) containing 5′-compatible and non-compatible overhangs mimicking the endogenous DSB were for rejoining in presence of cell-free extracts from cells having different endogenous GSH levels. Frequency of aberrations, particularly exchange aberrations, was significantly increased when Blem was combined with radiation. The exchange aberration frequency was further enhanced when combined treatment was given at 4 °C since DNA lesions are poorly repaired at 4 °C so that a higher number of DNA breaks persist and interact when shifted from 4 °C to 37 °C. The exchange aberrations increased further when the combined treatment was given to Glutathione-ester (GE) pre-treated cells, indicating more frequent rejoining of DNA lesions in presence of higher cellular GSH. This is further supported by the drastic reduction in frequency of exchange aberrations but significant increase in incidences of deletions when combined treatment was given to GSH-depleted cells. End-joining efficiency of DNA DSBs with compatible ends was better than for non-compatible ends. End-joining efficiency of testicular and MCF7 cell extracts was better than that of lungs and
DEFF Research Database (Denmark)
Strand, Anete Mikkala Camille; Larsen, Jens
2015-01-01
the challenges of the million-dollar question is stemming from the ‘bets on the future’ – or what David Boje coins as ‘antenarratives’, (Boje, 2008) that emerged through various reconfiguring story actions, on two different occasions. The paper thus elaborates on two cases of restorying events; One taking place...... that language and the social has been granted too much power on the dispense of the bodily, physical and biological – or in short, in dispense of the material. The break To be or not to be poses the theoretical notion of dis-/continuity (Barad, 2007, 2010) from the quantum approach to storytelling (Strand 2012...... in their use of the communicative platform of Object theatre from the methodology of Material Storytelling (Strand 2012). The Bets on the Future piece discusses the extend to which the cases of using this kind of technologies may provide fruitful ‘bets on the future’ in regard to the million-dollar question...
Mart ja Mari-Ann Susi taotlevad omanikena Concordia pankrotti / Andri Maimets
Maimets, Andri
2003-01-01
Concordia Ülikooli rektori kohast loobunud Mart Susi ning prorektori ametikohalt lahkunud Mari-Ann Susi taotlevad neile kuuluvat ülikooli pidanud miljonivõlgades firma pankrotti. Hiljuti loodi õppejõududest, tudengitest js töötajatest mittetulundusühing Concordia Akadeemiline Ühisus (CAU), selle nõukogu esimees on Hagi Šein
Non-linear way to supersymmetry and N-extended SUSY
International Nuclear Information System (INIS)
Akulov, V.
2001-01-01
In this report I give a short historical review of some of the first steps that were done towards the invention of SUSY by the Kharkov team headed by D. Volkov. This article is dedicated to the memory of Prof. Yuri Golfand, whose ideas of SUSY inspired the most active developments in High Energy Physics over thirty years
Energy Technology Data Exchange (ETDEWEB)
Grasso, Marco [Univ. of Milan-Bicocca (Italy). International Environmental Policy; J. Roberts, Timmons [Brown Univ., Providence, RI (United States). Environmental Studies and Sociology; The Brookings Institution, Washington, DC (United States)
2013-04-15
Key messages of the study are: Given the stalemate in U.N. climate negotiations, the best arena to strike a workable deal is among the members the Major Economies Forum on Energy and Climate (MEF); The 13 MEF members—including the EU-27 (but not double-counting the four EU countries that are also individual members of the MEF)—account for 81.3 percent of all global emissions; This proposal devises a fair compromise to break the impasse to develop a science-based approach for fairly sharing the carbon budget in order to have a 75 percent chance of avoiding dangerous climate change; To increase the likelihood of a future climate agreement, carbon accounting must shift from production-based inventories to consumption-based ones; The shares of a carbon budget to stay below 2 deg C through 2050 are calculated by cumulative emissions since 1990, i.e. according to a short-horizon polluter pays principle, and national capability (income), and allocated to MEF members through emission rights. This proposed fair compromise addresses key concerns of major emitters; According to this accounting, no countries have negative carbon budgets, there is substantial time for greening major developing economies, and some developed countries need to institute very rapid reductions in emissions; and, To provide a 'green ladder' to developing countries and to ensure a fair global deal, it will be crucial to agree how to extend sufficient and predictable financial support and the rapid transfer of technology.
BSM searches (SUSY and Exotic) from ATLAS
ATLAS Collaboration; The ATLAS collaboration
2015-01-01
Searches for new physics beyond the Standard Model (SM) at the LHC are mainly driven by two approaches: a signature-based search where one looks for a deviation from the SM prediction in event yield or kinematic properties, and a more theory-oriented approach where the search is designed to look for specific signatures/topologies predicted by certain beyond standard model (BSM ) scenarios. Typical examples for the latter are searches for Supersymmetry and other BSM theories with extended symmetries. Supersymmetry predicts a new partner for every SM particle. An extension to the SM by introducing new gauge or global symmetries (including in Hidden Sector) usually leads to the presence of new heavy gauge bosons. Extensive searches for such particles have been performed in ATLAS at LHC in the context of Supersymmetry, Extended Gauge models, Technicolor, Little Higgs, Extra Dimensions, Left-Right symmetric models, and many other BSM scenarios. Highlights from these searches are presented.
Muon g - 2 through a flavor structure on soft SUSY terms
International Nuclear Information System (INIS)
Flores-Baez, F.V.; Gomez Bock, M.; Mondragon, M.
2016-01-01
In this work we analyze the possibility to explain the muon anomalous magnetic moment discrepancy within theory and experiment through lepton-flavor violation processes. We propose a flavor extended MSSM by considering a hierarchical family structure for the trilinear scalar soft-supersymmetric terms of the Lagrangian, present at the SUSY breaking scale. We obtain analytical results for the rotation mass matrix, with the consequence of having non-universal slepton masses and the possibility of leptonic flavor mixing. The one-loop supersymmetric contributions to the leptonic flavor violating process τ → μγ are calculated in the physical basis, instead of using the well-known mass-insertion method. The flavor violating processes BR(l_i → l_jγ) are also obtained, in particular τ → μγ is well within the experimental bounds. We present the regions in parameter space where the muon g - 2 problem is either entirely solved or partially reduced through the contribution of these flavor violating processes. (orig.)
Natural inflation in SUSY and gauge-mediated curvature of the flat directions
Dvali, Gia
1996-01-01
Supersymmetric theories often include the non-compact directions in the field space along which the tree level potential grows only up to a certain limited value (determined by the mass scale of the theory) and then stays constant for the arbitrarily large expectation value of the field parametrizing the direction. Above the critical value, the tree-level curvature is large and positive in the other directions. Such plateaux are natural candidates for the hybrid inflaton. The non-zero F-term density along the plateau spontaneously breaks SUSY and induces the one-loop logarithmic slope for the inflaton potential. The coupling of the inflaton to the Higgs fields in the complex representations of the gauge group, may result in a radiatively induced Fayet--Iliopoulos D-term during inflation, which destabilizes some of the squark and slepton flat directions. Corresponding soft masses can be larger than the Hubble parameter and thus, play a crucial role for the Affleck--Dine baryogenesis.
Viable and testable SUSY GUTs with Yukawa unification the case of split trilinears
Guadagnoli, Diego; Straub, David M
2009-01-01
We explore general SUSY GUT models with exact third-generation Yukawa unification, but where the requirement of universal soft terms at the GUT scale is relaxed. We consider the scenario in which the breaking of universality inherits from the Yukawa couplings, i.e. is of minimal flavor violating (MFV) type. In particular, the MFV principle allows for a splitting between the up-type and the down-type soft trilinear couplings. We explore the viability of this trilinear splitting scenario by means of a fitting procedure to electroweak observables, quark masses as well as flavor-changing neutral current processes. Phenomenological viability singles out one main scenario. This scenario is characterized by a sizable splitting between the trilinear soft terms and a large mu term. Remarkably, this scenario does not invoke a partial decoupling of the sparticle spectrum, as in the case of universal soft terms, but instead it requires part of the spectrum, notably the lightest stop, the gluino and the lightest charginos...
Muon g - 2 through a flavor structure on soft SUSY terms
Energy Technology Data Exchange (ETDEWEB)
Flores-Baez, F.V. [Universidad Autonoma de Nuevo Leon, UANL Ciudad Universitaria, FCFM, San Nicolas de los Garza, Nuevo Leon (Mexico); Gomez Bock, M. [Universidad de las Americas Puebla, UDLAP, Ex-Hacienda Sta. Catarina Martir, DAFM, Cholula, Puebla (Mexico); Mondragon, M. [Universidad Nacional Autonoma de Mexico, Instituto de Fisica, Apdo. Postal 20-364, Mexico, D.F. (Mexico)
2016-10-15
In this work we analyze the possibility to explain the muon anomalous magnetic moment discrepancy within theory and experiment through lepton-flavor violation processes. We propose a flavor extended MSSM by considering a hierarchical family structure for the trilinear scalar soft-supersymmetric terms of the Lagrangian, present at the SUSY breaking scale. We obtain analytical results for the rotation mass matrix, with the consequence of having non-universal slepton masses and the possibility of leptonic flavor mixing. The one-loop supersymmetric contributions to the leptonic flavor violating process τ → μγ are calculated in the physical basis, instead of using the well-known mass-insertion method. The flavor violating processes BR(l{sub i} → l{sub j}γ) are also obtained, in particular τ → μγ is well within the experimental bounds. We present the regions in parameter space where the muon g - 2 problem is either entirely solved or partially reduced through the contribution of these flavor violating processes. (orig.)
SUSY field theories in higher dimensions and integrable spin chains
International Nuclear Information System (INIS)
Gorsky, A.; Gukov, S.; Mironov, A.
1998-01-01
Five- and six-dimensional SUSY gauge theories, with one or two compactified directions, are discussed. The 5d theories with the matter hypermultiplets in the fundamental representation are associated with the twisted XXZ spin chain, while the group product case with bi-fundamental matter corresponds to the higher rank spin chains. The Riemann surfaces for 6d theories with fundamental matter and two compact directions are proposed to correspond to the XYZ spin chain based on the Sklyanin algebra. We also discuss the obtained results within the brane and geometrical engineering frameworks and explain the relation to the toric diagrams. (orig.)
Electroweak contributions to SUSY particle production processes at the LHC
Energy Technology Data Exchange (ETDEWEB)
Mirabella, Edoardo
2009-07-22
In this thesis we have computed the electroweak contributions of O({alpha}{sub s}{alpha}), O({alpha}{sup 2}) and O({alpha}{sub s}{sup 2}) to three different classes of processes leading to the hadronic production of the SUSY partners of quarks and gluons, i.e. squarks and gluinos. The theoretical framework is the Minimal Supersymmetric extension of the Standard Model, the MSSM. The three processes are gluino pair production, diagonal squark-antisquark and associated squark-gluino production.
Hilkka Punainen & Susi : mediakasvatuksellisen iPad-kirjan suunnittelu
Kontiola, Sanna
2012-01-01
Opinnäytetyön tavoitteena oli tehdä mediakasvatuksellinen iPad-kirja "Hilkka Punainen & Susi", jota voitaisiin käyttää kirjastoissa, kouluissa ja kotona mediakasvatuksen apuvälineenä. Mediakasvatus ei ole ainoastaan medioiden ja välineiden käyttötaidon opettelua, vaan myös sellaisten turvataitojen opettelua, joiden tarkoituksena on parantaa lasten taitoja selviytyä uhkaavissa tilanteissa ja ohjata heitä turvautumaan luotettaviin aikuisiin. Teoksella on useita mediakasvatuksellisia tasoja. Teo...
A continuous family of realistic SUSY SU(5) GUTs
Energy Technology Data Exchange (ETDEWEB)
Bajc, Borut, E-mail: borut.bajc@ijs.si [J. Stefan Institute, Jamova cesta 39, 1000, Ljubljana (Slovenia)
2016-06-21
It is shown that the minimal renormalizable supersymmetric SU(5) is still realistic providing the supersymmetric scale is at least few tens of TeV or large R-parity violating terms are considered. In the first case the vacuum is metastable, and different consistency constraints can give a bounded allowed region in the tan β − m{sub susy} plane. In the second case the mass eigenstate electron (down quark) is a linear combination of the original electron (down quark) and Higgsino (heavy colour triplet), and the mass ratio of bino and wino is determined. Both limits lead to light gravitino dark matter.
Directory of Open Access Journals (Sweden)
Arpit Aggarwal
2016-01-01
Full Text Available A great number of glacial lakes have appeared in many mountain regions across the world during the last half-century due to receding of glaciers and global warming. In the present study, glacial lake outburst flood (GLOF risk assessment has been carried out in the Teesta river basin located in the Sikkim state of India. First, the study focuses on accurate mapping of the glaciers and glacial lakes using multispectral satellite images of Landsat and Indian Remote Sensing satellites. For glacier mapping, normalized difference snow index (NDSI image and slope map of the area have been utilized. NDSI approach can identify glaciers covered with clean snow but debris-covered glaciers cannot be mapped using NDSI method alone. For the present study, slope map has been utilized along with the NDSI approach to delineate glaciers manually. Glacial lakes have been mapped by supervised maximum likelihood classification and normalized difference water index followed by manual editing afterwards using Google Earth images. Second, the first proper inventory of glacial lakes for Teesta basin has been compiled containing information of 143 glacial lakes. Third, analysis of these lakes has been carried out for identification of potentially dangerous lakes. Vulnerable lakes have been identified on the basis of parameters like surface area, position with respect to parent glacier, growth since 2009, slope, distance from the outlet of the basin, presence of supraglacial lakes, presence of other lakes in downstream, condition of moraine, condition of the terrain around them, etc. From these criterions, in total, 18 lakes have been identified as potentially dangerous glacial lakes. Out of these 18 lakes, further analysis has been carried out for the identification of the most vulnerable lake. Lake 140 comes out to be the most vulnerable for a GLOF event. Lastly, for this potentially dangerous lake, different dam break parameters have been generated using satellite data
Overview of SUSY results from the ATLAS experiment
Directory of Open Access Journals (Sweden)
Federico Brazzale Simone
2014-04-01
Full Text Available The search for Supersymmetric extensions of the Standard Model (SUSY remains a hot topic in high energy phisycs in the light of the discovery of the Higgs boson with mass of 125 GeV. Supersymmetric particles can cancel out the quadratically-divergent loop corrections to the Higgs boson mass and can explain presence of Dark Matter in the Universe. Moreover, SUSY can unify the gauge couplings of the Standard Model at high energy scales. Under certain theoretical assumptions, some of the super-symmetric particles are preferred to be lighter than one TeV and their discovery can thus be accessible at the LHC. The recent results from searches for Supersymmetry with the ATLAS experiment which utilized up to 21 fb−1 of proton-proton collisions at a center of mass energy of 8 TeV are presented. These searches are focused on inclusive production of squarks and gluinos, on production of third generations squarks, and on electroweak production of charginos and neutralinos. Searches for long-lived particles and R-parity violation are also summarized in the document.
López, Jorge L; Zichichi, A
1994-01-01
The determination of the most straightforward evidence for the existence of the Superworld requires a guide for non-experts (especially experimental physicists) for them to make their own judgement on the value of such predictions. For this purpose we review the most basic results of Super-Grand unification in a simple and clear way. We focus the attention on two specific models and their predictions. These two models represent an example of a direct comparison between a traditional unified-theory and a string-inspired approach to the solution of the many open problems of the Standard Model. We emphasize that viable models must satisfy {\\em all} available experimental constraints and be as simple as theoretically possible. The two well defined supergravity models, $SU(5)$ and $SU(5)\\times U(1)$, can be described in terms of only a few parameters (five and three respectively) instead of the more than twenty needed in the MSSM model, \\ie, the Minimal Supersymmetric extension of the Standard Model. A case of spe...
DEFF Research Database (Denmark)
Strand, Anete Mikkala Camille
2018-01-01
storytelling to enact fruitful breakings of patterns unbecoming. The claim being, that the hamster wheel of Work-life anno 2016 needs reconfiguration and the simple yet fruitful manner by which this is done is through acknowledging the benefits of bodies, spaces and artifacts – and the benefits of actually...... taking a break, discontinuing for a moment in order to continue better, wiser and more at ease. Both within and as part of the daily routines, and – now and then – outside these routines in the majesty of nature with time to explore and redirect the course of life in companionships with fellow man...
Possible constraints on SUSY-model parameters from direct dark matter search
International Nuclear Information System (INIS)
Bednyakov, V.A.; Kovalenko, S.G.
1993-01-01
We consider the SUSY-model neutralino as a dominant Dark Matter particle in the galactic halo and investigate some general issues of direct DM searches via elastic neutralino-nucleus scattering. On the basis of conventional assumptions about the nuclear and nucleon structure, without referring to a specific SUSY-model, we prove that it is impossible in principle to extract more than three constrains on fundamental SUSY-model parameters from the direct Dark Matter searches. Three types of Dark Matter detector probing different groups of parameters are recognized. 21 refs., 1 tab
Search for SUSY in final states with photons at CMS
Directory of Open Access Journals (Sweden)
Ntomari Eleni
2013-05-01
Full Text Available Résumé The Compact Muon Solenoid (CMS collaboration has developed a complete program of searches beyond the Standard Model (SM covering a wide range of final states. This document focuses on searches in final states with photons and missing transverse energy ETmiss organised in three analyses. The first two include comparison of the ETmiss distribution (isolation sideband method in events with either at least two photons plus at least one hadronic jet, or at least one photon plus at least two hadronic jets. The third analysis corresponds to a new approach, the Jet-Gamma Balance (JGB method, for events with at least one photon plus at least three hadronic jets.We observe no significant deviations from the SM expectation and thus derive upper limits on the signal cross section at the 95% confidence level (CL for a range of squark, gluino and neutralino mass points in the Gauge Mediated Supersymmetry Breaking scenario.
Directory of Open Access Journals (Sweden)
Nasrin Baghdari
2017-06-01
Full Text Available Background and objective: Breaking bad news is a very stressful task for both health professionals and patients. Teaching how to break bad news appropriately is one of the important concerns in medical education. So, this study aimed to compare role play and multimedia methods based on SPIKES strategy on midwifery students’ knowledge and attitude in breaking bad news to patients. Materials and Methods: A clinical trial study was done in three groups on 90 midwifery students in Mashhad University of Medical Sciences who were selected randomly. Students were trained by role play and multimedia methods. Control group had not received any intervention. Knowledge and attitude questionnaires were filled out before and two weeks after intervention. Results: Knowledge and attitude mean scores after intervention in the 3 groups had significant difference (P< 0.05. Moreover, attitude score in multimedia group was higher than role play group and there was a significant difference between them (P=0.045. Conclusion: Multimedia as an independent and non-attendance program can increase students’ knowledge as same as the role play while, it can change students’ attitude more than the role play method.
Leptogenesis after chaotic sneutrino inflation and the supersymmetry breaking scale
Directory of Open Access Journals (Sweden)
Fredrik Björkeroth
2017-03-01
Full Text Available We discuss resonant leptogenesis arising from the decays of two nearly-degenerate right-handed neutrinos, identified as the inflaton and stabiliser superfields in a model of chaotic sneutrino inflation. We compare an analytical estimate of the baryon asymmetry ηB in the Boltzmann approximation to a numerical solution of the full density matrix equations, and find that the analytical result fails to capture the correct physics in certain regions of parameter space. The observed baryon asymmetry can be realised for a breaking of the mass degeneracy as small as O(10−8. The origin of such a small mass splitting is explained by considering supersymmetry (SUSY breaking in supergravity, which requires a constant in the superpotential of the order of the gravitino mass m3/2 to cancel the cosmological constant. This yields additional terms in the (sneutrino mass matrices, lifting the degeneracy and linking ηB to the SUSY breaking scale. We find that achieving the correct baryon asymmetry requires a gravitino mass m3/2≥O(100 TeV.
A (critical) overview of electroweak symmetry breaking
International Nuclear Information System (INIS)
Csaki, Csaba
2010-01-01
This presentation discusses the following points: The standard Higgs, big vs. little hierarchy; Electroweak Symmetry Breaking in supersymmetry and little hierarchy of Minimal Supersymmetric Standard Model (MSSM): Buried Higgs, Bigger quartic (D-terms, Next-to-Minimal Supersymmetric Standard Model (NMSSM), fat Higgs,..); Strong dynamics and related models: Technicolor, Monopole condensate, Warped extra dimensions, Realistic RS, Higgs-less, Composite Higgs, Little Higgs. In summary, we do not understand how Higgs is light and still no trace of new physics. In Supersymmetry (SUSY) it calls for extension of MSSM. In strong dynamics models: electroweak penguin (EWP) usually issue (Warped extra dimension - composite Higgs, Higgs-less, Little Higgs, Technicolor, monopole condensation,..). None of them is fully convincing but LHC should settle these
Supersymmetry Breaking, Gauge Mediation, and the LHC
International Nuclear Information System (INIS)
Shih, David
2015-01-01
Gauge mediated SUSY breaking (GMSB) is a promising class of supersymmetric models that automatically satisfies the precision constraints. Prior work of Meade, Seiberg and Shih in 2008 established the full, model-independent parameter space of GMSB, which they called 'General Gauge Mediation' (GGM). During the first half of 2010-2015, Shih and his collaborators thoroughly explored the parameter space of GGM and established many well-motivated benchmark models for use by the experimentalists at the LHC. Through their work, the current constraints on GGM from LEP, the Tevatron and the LHC were fully elucidated, together with the possible collider signatures of GMSB at the LHC. This ensured that the full discovery potential for GGM could be completely realized at the LHC.
Flavour and collider interplay for SUSY at LHC7
International Nuclear Information System (INIS)
Calibbi, L.; Hodgkinson, R.N.; Vives, O.; Jones Perez, J.; Masiero, A.
2012-01-01
The current 7 TeV run of the LHC experiment shall be able to probe gluino and squark masses up to values larger than 1 TeV. Assuming that hints for SUSY are found in the jets plus missing energy channel by the end of a 5 fb -1 run, we explore the flavour constraints on three models with a CMSSM-like spectrum: the CMSSM itself, a seesaw extension of the CMSSM, and Flavoured CMSSM. In particular, we focus on decays that might have been measured by the time the run is concluded, such as B s →μμ and μ→e γ. We also analyse constraints imposed by neutral meson bounds and electric dipole moments. The interplay between collider and flavour experiments is explored through the use of three benchmark scenarios, finding the flavour feedback useful in order to determine the model parameters and to test the consistency of the different models. (orig.)
Supersymmetric grand unified theories from quarks to strings via SUSY GUTs
Raby, Stuart
2017-01-01
These course-tested lectures provide a technical introduction to Supersymmetric Grand Unified Theories (SUSY GUTs), as well as a personal view on the topic by one of the pioneers in the field. While the Standard Model of Particle Physics is incredibly successful in describing the known universe it is, nevertheless, an incomplete theory with many free parameters and open issues. An elegant solution to all of these quandaries is the proposed theory of SUSY GUTs. In a GUT, quarks and leptons are related in a simple way by the unifying symmetry and their electric charges are quantized, further the relative strength of the strong, weak and electromagnetic forces are predicted. SUSY GUTs additionally provide a framework for understanding particle masses and offer candidates for dark matter. Finally, with the extension of SUSY GUTs to string theory, a quantum-mechanically consistent unification of the four known forces (including gravity) is obtained. The book is organized in three sections: the first section contai...
SUSY WT identity in a lattice formulation of 2D N=(2,2) SYM
International Nuclear Information System (INIS)
Kadoh, Daisuke; Suzuki, Hiroshi
2010-01-01
We address some issues relating to a supersymmetric (SUSY) Ward-Takahashi (WT) identity in Sugino's lattice formulation of two-dimensional (2D) N=(2,2)SU(k) supersymmetric Yang-Mills theory (SYM). A perturbative argument shows that the SUSY WT identity in the continuum theory is reproduced in the continuum limit without any operator renormalization/mixing and tuning of lattice parameters. As application of the lattice SUSY WT identity, we show that a prescription for the Hamiltonian density in this lattice formulation, proposed by Kanamori, Sugino and Suzuki, is justified also from a perspective of an operator algebra among correctly-normalized supercurrents. We explicitly confirm the SUSY WT identity in the continuum limit to the first nontrivial order in a semi-perturbative expansion.
Effective Lagrangians for SUSY QCD with properties seen in perturbation theory
International Nuclear Information System (INIS)
Sharatchandra, H.S.
1984-06-01
We construct effective Lagrangians for supersymmetric QCD which properly incorporate the relevant Ward identities and possess features encountered in perturbation theory. This shows that the unusual scenarios, proposed for SUSY QCD, are not necessary. (author)
Raggad, Bechir
2018-05-01
This study investigates the existence of long-run relationship between CO 2 emissions, economic growth, energy use, and urbanization in Saudi Arabia over the period 1971-2014. The autoregressive distributed lag (ARDL) approach with structural breaks, where structural breaks are identified with the recently impulse saturation break tests, is applied to conduct the analysis. The bounds test result supports the existence of long-run relationship among the variables. The existence of environmental Kuznets curve (EKC) hypothesis has also been tested. The results reveal the non-validity of the EKC hypothesis for Saudi Arabia as the relationship between GDP and pollution is positive in both the short and the long run. Moreover, energy use increases pollution both in short and long run in the country. On the contrary, the results show a negative and significant impact of urbanization on carbon emissions in Saudi Arabia, which means that urban development is not an obstacle to the improvement of environmental quality. Consequently, policy-makers in Saudi Arabia should consider the efficiency enhancement, frugality in energy consumption, and especially increase the share of renewable energies in the total energy mix.
Directory of Open Access Journals (Sweden)
Derdous Oussama
2015-12-01
Full Text Available The construction of dams in rivers can offer many advantages, however the consequences resulting from their failure could result in major damage, including loss of life and property destruction. To mitigate the threats of dam break it is essential to appreciate the characteristics of the potential flood in realistic manner. In this study an approach based on the integration of hydraulic modelling and GIS has been used to assess the risks resulting from a potential failure of Zardezas dam, a concrete dam located in Skikda, in the North East of Algeria. HEC-GeoRAS within GIS was used to extract geometric information from a digital elevation model and then imported into HEC-RAS. Flow simulation of the dam break was performed using HEC-RAS and results were mapped using the GIS. Finally, a flood hazard map based on water depth and flow velocity maps was created in GIS environment. According to this map the potential failure of Zardezas dam will place a large number in people in danger. The present study has shown that Application of Geographical Information System (GIS techniques in integration with hydraulic modelling can significantly reduce the time and the resources required to forecast potential dam break flood hazard which can play a crucial role in improving both flood disaster management and land use planning downstream of dams.
Prospects for SUSY discovery based on inclusive searches with the ATLAS detector
International Nuclear Information System (INIS)
Ventura, Andrea
2009-01-01
The search for Supersymmetry (SUSY) among the possible scenarios of new physics is one of the most relevant goals of the ATLAS experiment running at CERN's Large Hadron Collider. In the present work the expected prospects for discovering SUSY with the ATLAS detector are reviewed, in particular for the first fb -1 of collected integrated luminosity. All studies and results reported here are based on inclusive search analyses realized with Monte Carlo signal and background data simulated through the ATLAS apparatus.
Breaking of ocean surface waves
International Nuclear Information System (INIS)
Babanin, A.V.
2009-01-01
Wind-generated waves are the most prominent feature of the ocean surface, and so are breaking waves manifested by the appearance of sporadic whitecaps. Such breaking represents one of the most interesting and most challenging problems for both fluid mechanics and physical oceanography. It is an intermittent random process, very fast by comparison with other processes in the wave breaking on the water surface is not continuous, but its role in maintaining the energy balance within the continuous wind-wave field is critical. Ocean wave breaking also plays the primary role in the air-sea exchange of momentum, mass and heat, and it is of significant importance for ocean remote sensing, coastal and maritime engineering, navigation and other practical applications. Understanding the wave breaking its occurrence, the breaking rates and even ability to describe its onset has been hindered for decades by the strong non-linearity of the process, together with its irregular and ferocious nature. Recently, this knowledge has significantly advanced, and the review paper is an attempt to summarise the facts into a consistent, albeit still incomplete picture of the phenomenon. In the paper, variety of definitions related to the were breaking are discussed and formulated and methods for breaking detection and measurements are examined. Most of attention is dedicated to the research of wave breaking probability and severity. Experimental, observational, numerical and statistical approaches and their outcomes are reviewed. Present state of the wave-breaking research and knowledge is analysed and main outstanding problems are outlined (Authors)
International Nuclear Information System (INIS)
Patra, Sudhanwa; Pritimita, Prativa
2014-01-01
''Post-sphaleron baryogenesis'', a fresh and profound mechanism of baryogenesis accounts for the matter-antimatter asymmetry of our present universe in a framework of Pati-Salam symmetry. We attempt here to embed this mechanism in a non-SUSY SO(10) grand unified theory by reviving a novel symmetry breaking chain with Pati-Salam symmetry as an intermediate symmetry breaking step and as well to address post-sphaleron baryogenesis and neutron-antineutron oscillation in a rational manner. The Pati-Salam symmetry based on the gauge group SU(2) L x SU(2) R x SU(4) C is realized in our model at 10 5 -10 6 GeV and the mixing time for the neutron-antineutron oscillation process having ΔB = 2 is found to be τ n- anti n ≅ 10 8 -10 10 s with the model parameters, which is within the reach of forthcoming experiments. Other novel features of the model include low scale right-handed W R ± , Z R gauge bosons, explanation for neutrino oscillation data via the gauged inverse (or extended) seesaw mechanism and most importantly TeV scale color sextet scalar particles responsible for an observable n- anti n oscillation which may be accessible to LHC. We also look after gauge coupling unification and an estimation of the proton lifetime with and without the addition of color sextet scalars. (orig.)
Searches for Gauge-Mediated Supersymmetry Breaking Topologies in $e^{+}e^{-}$ collisions at LEP2
Abbiendi, G.; Akesson, P.F.; Alexander, G.; Anagnostou, G.; Anderson, K.J.; Asai, S.; Axen, D.; Bailey, I.; Barberio, E.; Barillari, T.; Barlow, R.J.; Batley, R.J.; Bechtle, P.; Behnke, T.; Bell, Kenneth Watson; Bell, P.J.; Bella, G.; Bellerive, A.; Benelli, G.; Bethke, S.; Biebel, O.; Boeriu, O.; Bock, P.; Boutemeur, M.; Braibant, S.; Brown, Robert M.; Burckhart, H.J.; Campana, S.; Capiluppi, P.; Carnegie, R.K.; Carter, A.A.; Carter, J.R.; Chang, C.Y.; Charlton, D.G.; Ciocca, C.; Csilling, A.; Cuffiani, M.; Dado, S.; Roeck, A.De; Wolf, E.A.De; Desch, K.; Dienes, B.; Dubbert, J.; Duchovni, E.; Duckeck, G.; Duerdoth, I.P.; Etzion, E.; Fabbri, F.; Ferrari, P.; Fiedler, F.; Fleck, I.; Ford, M.; Frey, A.; Gagnon, P.; Gary, John William; Geich-Gimbel, C.; Giacomelli, G.; Giacomelli, P.; Giunta, Marina; Goldberg, J.; Gross, E.; Grunhaus, J.; Gruwe, M.; Gunther, P.O.; Gupta, A.; Hajdu, C.; Hamann, M.; Hanson, G.G.; Harel, A.; Hauschild, M.; Hawkes, C.M.; Hawkings, R.; Hemingway, R.J.; Herten, G.; Heuer, R.D.; Hill, J.C.; Horvath, D.; Igo-Kemenes, P.; Ishii, K.; Jeremie, H.; Jovanovic, P.; Junk, T.R.; Kanzaki, J.; Karlen, D.; Kawagoe, K.; Kawamoto, T.; Keeler, R.K.; Kellogg, R.G.; Kennedy, B.W.; Kluth, S.; Kobayashi, T.; Kobel, M.; Komamiya, S.; Kramer, T.; Krasznahorkay, A.; Krieger, P.; Krogh, J.von; Kuhl, T.; Kupper, M.; Lafferty, G.D.; Landsman, H.; Lanske, D.; Lellouch, D.; Letts, J.; Levinson, L.; Lillich, J.; Lloyd, S.L.; Loebinger, F.K.; Lu, J.; Ludwig, A.; Ludwig, J.; Mader, W.; Marcellini, S.; Martin, A.J.; Mashimo, T.; Mattig, Peter; McKenna, J.; McPherson, R.A.; Meijers, F.; Menges, W.; Merritt, F.S.; Mes, H.; Meyer, Niels T.; Michelini, A.; Mihara, S.; Mikenberg, G.; Miller, D.J.; Mohr, W.; Mori, T.; Mutter, A.; Nagai, K.; Nakamura, I.; Nanjo, H.; Neal, H.A.; Nisius, R.; O'Neale, S.W.; Oh, A.; Oreglia, M.J.; Orito, S.; Pahl, C.; Pasztor, G.; Pater, J.R.; Pilcher, J.E.; Pinfold, J.; Plane, David E.; Pooth, O.; Przybycien, M.; Quadt, A.; Rabbertz, K.; Rembser, C.; Renkel, P.; Roney, J.M.; Rossi, A.M.; Rozen, Y.; Runge, K.; Sachs, K.; Saeki, T.; Sarkisyan, E.K.G.; Schaile, A.D.; Schaile, O.; Scharff-Hansen, P.; Schieck, J.; Schorner-Sadenius, T.; Schroder, Matthias; Schumacher, M.; Seuster, R.; Shears, T.G.; Shen, B.C.; Sherwood, P.; Skuja, A.; Smith, A.M.; Sobie, R.; Soldner-Rembold, S.; Spano, F.; Stahl, A.; Strom, David M.; Strohmer, R.; Tarem, S.; Tasevsky, M.; Teuscher, R.; Thomson, M.A.; Torrence, E.; Toya, D.; Tran, P.; Trigger, I.; Trocsanyi, Z.; Tsur, E.; Turner-Watson, M.F.; Ueda, I.; Ujvari, B.; Vollmer, C.F.; Vannerem, P.; Vertesi, R.; Verzocchi, M.; Voss, H.; Vossebeld, J.; Ward, C.P.; Ward, D.R.; Watkins, P.M.; Watson, A.T.; Watson, N.K.; Wells, P.S.; Wengler, T.; Wermes, N.; Wilson, G.W.; Wilson, J.A.; Wolf, G.; Wyatt, T.R.; Yamashita, S.; Zer-Zion, D.; Zivkovic, Lidija
2006-01-01
Searches were performed for topologies predicted by gauge-mediated Supersymmetry breaking models (GMSB). All possible lifetimes of the next-to-lightest SUSY particle (NLSP), either the lightest neutralino or slepton, decaying into the lightest SUSY particle, the gravitino, were considered. No evidence for GMSB signatures was found in the OPAL data sample collected at centre-of-mass energies of sqrt{s}=189-209 GeV at LEP. Limits on the product of the production cross-sections and branching fractions are presented for all search topologies. To test the impact of the searches, a complete scan over the parameters of the minimal model of GMSB was performed. NLSP masses below 53.5 GeV/c^2 in the neutralino NLSP scenario, below 87.4 GeV/c^2 in the stau NLSP scenario and below 91.9 GeV/c^2 in the slepton co-NLSP scenario are excluded at 95% confidence level for all NLSP lifetimes. The scan determines constraints on the universal SUSY mass scale Lambda from the direct SUSY particle searches of Lambda > 40,27,21,17,15 ...
Russo, Lucia; Russo, Paola; Siettos, Constantinos I
2016-01-01
Based on complex network theory, we propose a computational methodology which addresses the spatial distribution of fuel breaks for the inhibition of the spread of wildland fires on heterogeneous landscapes. This is a two-level approach where the dynamics of fire spread are modeled as a random Markov field process on a directed network whose edge weights are determined by a Cellular Automata model that integrates detailed GIS, landscape and meteorological data. Within this framework, the spatial distribution of fuel breaks is reduced to the problem of finding network nodes (small land patches) which favour fire propagation. Here, this is accomplished by exploiting network centrality statistics. We illustrate the proposed approach through (a) an artificial forest of randomly distributed density of vegetation, and (b) a real-world case concerning the island of Rhodes in Greece whose major part of its forest was burned in 2008. Simulation results show that the proposed methodology outperforms the benchmark/conventional policy of fuel reduction as this can be realized by selective harvesting and/or prescribed burning based on the density and flammability of vegetation. Interestingly, our approach reveals that patches with sparse density of vegetation may act as hubs for the spread of the fire.
Directory of Open Access Journals (Sweden)
Lucia Russo
Full Text Available Based on complex network theory, we propose a computational methodology which addresses the spatial distribution of fuel breaks for the inhibition of the spread of wildland fires on heterogeneous landscapes. This is a two-level approach where the dynamics of fire spread are modeled as a random Markov field process on a directed network whose edge weights are determined by a Cellular Automata model that integrates detailed GIS, landscape and meteorological data. Within this framework, the spatial distribution of fuel breaks is reduced to the problem of finding network nodes (small land patches which favour fire propagation. Here, this is accomplished by exploiting network centrality statistics. We illustrate the proposed approach through (a an artificial forest of randomly distributed density of vegetation, and (b a real-world case concerning the island of Rhodes in Greece whose major part of its forest was burned in 2008. Simulation results show that the proposed methodology outperforms the benchmark/conventional policy of fuel reduction as this can be realized by selective harvesting and/or prescribed burning based on the density and flammability of vegetation. Interestingly, our approach reveals that patches with sparse density of vegetation may act as hubs for the spread of the fire.
Innes, G M; Sosnow, P L
1995-05-01
While life as hospital employees was comfortable, the lure of independence won out for these two emergency department physicians. Breaking away to develop a new company was not easy, but it's paid off for the entrepreneurs of the Capital Region Emergency Medicine, P.C. Developing an emergency medicine business meant learning all aspects of business: billing services, evaluating legal services, raising capital, and becoming employers. The advantage has been an ability to use profits to improve the moral of staff, an increase in salary, and an overall sense of satisfaction.
International Nuclear Information System (INIS)
Francescone, David; Akula, Sujeet; Altunkaynak, Baris; Nath, Pran
2015-01-01
Sparticle mass hierarchies contain significant information regarding the origin and nature of supersymmetry breaking. The hierarchical patterns are severely constrained by electroweak symmetry breaking as well as by the astrophysical and particle physics data. They are further constrained by the Higgs boson mass measurement. The sparticle mass hierarchies can be used to generate simplified models consistent with the high scale models. In this work we consider supergravity models with universal boundary conditions for soft parameters at the unification scale as well as supergravity models with nonuniversalities and delineate the list of sparticle mass hierarchies for the five lightest sparticles. Simplified models can be obtained by a truncation of these, retaining a smaller set of lightest particles. The mass hierarchies and their truncated versions enlarge significantly the list of simplified models currently being used in the literature. Benchmarks for a variety of supergravity unified models appropriate for SUSY searches at future colliders are also presented. The signature analysis of two benchmark models has been carried out and a discussion of the searches needed for their discovery at LHC Run-II is given. An analysis of the spin-independent neutralino-proton cross section exhibiting the Higgs boson mass dependence and the hierarchical patterns is also carried out. It is seen that a knowledge of the spin-independent neutralino-proton cross section and the neutralino mass will narrow down the list of the allowed sparticle mass hierarchies. Thus dark matter experiments along with analyses for the LHC Run-II will provide strong clues to the nature of symmetry breaking at the unification scale.
Low Scale Supersymmetry Breaking and its LHC Signatures
Dudas, Emilian; Tziveloglou, Pantelis
2013-01-01
We study the most general extension of the MSSM Lagrangian that includes scenarios in which supersymmetry is spontaneously broken at a low scale f. The spurion that parametrizes supersymmetry breaking in the MSSM is promoted to a dynamical superfield involving the goldstino, with (and without) its scalar superpartner, the sgoldstino. The low energy effective Lagrangian is written as an expansion in terms of m_{SUSY}/sqrt{f}, where m_{SUSY} is the induced supersymmetry breaking scale, and contains, in addition to the usual MSSM Lagrangian with the soft terms, couplings involving the component fields of the goldstino superfield and the MSSM fields. This Lagrangian can provide significant corrections to the usual couplings in the Standard Model and the MSSM. We study how these new corrections affect the Higgs couplings to gauge bosons and fermions, and how LHC bounds can be used in order to constrain f. We also discuss that, from the effective field theory point of view, the couplings of the goldstino interactio...
Mandal, Raju Kumar; Mittal, Rama Devi
2018-04-01
DNA repair capacity is essential in maintaining cellular functions and homeostasis. Identification of genetic polymorphisms responsible for reduced DNA repair capacity may allow better cancer prevention. Double strand break repair pathway plays critical roles in maintaining genome stability. Present study was conducted to determine distribution of XRCC3 Exon 7 (C18067T, rs861539) and XRCC7 Intron 8 (G6721T, rs7003908) gene polymorphisms in North Indian population and compare with different populations globally. The genotype assays were performed in 224 normal healthy individuals of similar ethnicity using the polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP). Allelic frequencies of wild type were 79% (C) in XRCC3 Exon 7 C > T and 57% (G) in XRCC7 Intron 8 (G > T) 57% (G) observed. On the other hand, the variant allele frequency were 21% (T) in XRCC3 Exon 7 C > T and 43% (T) in XRCC7 Intron 8 G > T respectively. Major differences from other ethnic populations were observed. Our results suggest that frequency in these DNA repair genes exhibit distinctive pattern in India that could be attributed to ethnicity variation. This could assist in high-risk screening of humans exposed to environmental carcinogens and cancer predisposition in different ethnic groups.
Directory of Open Access Journals (Sweden)
Carlos Fernando Odir Rodrigues Melo
Full Text Available Recent outbreaks of Zika virus in Oceania and Latin America, accompanied by unexpected clinical complications, made this infection a global public health concern. This virus has tropism to neural tissue, leading to microcephaly in newborns in a significant proportion of infected mothers. The clinical relevance of this infection, the difficulty to perform accurate diagnosis and the small amount of data in literature indicate the necessity of studies on Zika infection in order to characterize new biomarkers of this infection and to establish new targets for viral control in vertebrates and invertebrate vectors. Thus, this study aims at establishing a lipidomics profile of infected mosquito cells compared to a control group to define potential targets for viral control in mosquitoes. Thirteen lipids were elected as specific markers for Zika virus infection (Brazilian strain, which were identified as putatively linked to the intracellular mechanism of viral replication and/or cell recognition. Our findings bring biochemical information that may translate into useful targets for breaking the transmission cycle.
Directory of Open Access Journals (Sweden)
Ion C. Baianu
2009-04-01
Full Text Available A novel algebraic topology approach to supersymmetry (SUSY and symmetry breaking in quantum field and quantum gravity theories is presented with a view to developing a wide range of physical applications. These include: controlled nuclear fusion and other nuclear reaction studies in quantum chromodynamics, nonlinear physics at high energy densities, dynamic Jahn-Teller effects, superfluidity, high temperature superconductors, multiple scattering by molecular systems, molecular or atomic paracrystal structures, nanomaterials, ferromagnetism in glassy materials, spin glasses, quantum phase transitions and supergravity. This approach requires a unified conceptual framework that utilizes extended symmetries and quantum groupoid, algebroid and functorial representations of non-Abelian higher dimensional structures pertinent to quantized spacetime topology and state space geometry of quantum operator algebras. Fourier transforms, generalized Fourier-Stieltjes transforms, and duality relations link, respectively, the quantum groups and quantum groupoids with their dual algebraic structures; quantum double constructions are also discussed in this context in relation to quasi-triangular, quasi-Hopf algebras, bialgebroids, Grassmann-Hopf algebras and higher dimensional algebra. On the one hand, this quantum algebraic approach is known to provide solutions to the quantum Yang-Baxter equation. On the other hand, our novel approach to extended quantum symmetries and their associated representations is shown to be relevant to locally covariant general relativity theories that are consistent with either nonlocal quantum field theories or local bosonic (spin models with the extended quantum symmetry of entangled, 'string-net condensed' (ground states.
Detecting kinematic boundary surfaces in phase space: particle mass measurements in SUSY-like events
Debnath, Dipsikha; Gainer, James S.; Kilic, Can; Kim, Doojin; Matchev, Konstantin T.; Yang, Yuan-Pao
2017-06-01
We critically examine the classic endpoint method for particle mass determination, focusing on difficult corners of parameter space, where some of the measurements are not independent, while others are adversely affected by the experimental resolution. In such scenarios, mass differences can be measured relatively well, but the overall mass scale remains poorly constrained. Using the example of the standard SUSY decay chain \\tilde{q}\\to {\\tilde{χ}}_2^0\\to \\tilde{ℓ}\\to {\\tilde{χ}}_1^0 , we demonstrate that sensitivity to the remaining mass scale parameter can be recovered by measuring the two-dimensional kinematical boundary in the relevant three-dimensional phase space of invariant masses squared. We develop an algorithm for detecting this boundary, which uses the geometric properties of the Voronoi tessellation of the data, and in particular, the relative standard deviation (RSD) of the volumes of the neighbors for each Voronoi cell in the tessellation. We propose a new observable, \\overline{Σ} , which is the average RSD per unit area, calculated over the hypothesized boundary. We show that the location of the \\overline{Σ} maximum correlates very well with the true values of the new particle masses. Our approach represents the natural extension of the one-dimensional kinematic endpoint method to the relevant three dimensions of invariant mass phase space.
Constraining SUSY models with Fittino using measurements before, with and beyond the LHC
Energy Technology Data Exchange (ETDEWEB)
Bechtle, Philip [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Desch, Klaus; Uhlenbrock, Mathias; Wienemann, Peter [Bonn Univ. (Germany). Physikalisches Inst.
2009-07-15
We investigate the constraints on Supersymmetry (SUSY) arising from available precision measurements using a global fit approach.When interpreted within minimal supergravity (mSUGRA), the data provide significant constraints on the masses of supersymmetric particles (sparticles), which are predicted to be light enough for an early discovery at the Large Hadron Collider (LHC). We provide predicted mass spectra including, for the first time, full uncertainty bands. The most stringent constraint is from the measurement of the anomalous magnetic moment of the muon. Using the results of these fits, we investigate to which precision mSUGRA and more general MSSM parameters can be measured by the LHC experiments with three different integrated luminosities for a parameter point which approximately lies in the region preferred by current data. The impact of the already available measurements on these precisions, when combined with LHC data, is also studied. We develop a method to treat ambiguities arising from different interpretations of the data within one model and provide a way to differentiate between values of different digital parameters of a model (e. g. sign({mu}) within mSUGRA). Finally, we show how measurements at a linear collider with up to 1 TeV centre-of-mass energy will help to improve precision by an order of magnitude. (orig.)
SUSY non-Abelian gauge models: exact beta function from one loop of perturbation theory
International Nuclear Information System (INIS)
Shifman, M.A.; Vajnshtejn, A.I.; Zakharov, V.I.
1985-01-01
The method for calculating the exact β function (to all orders in the coupling constant) proposed earlier in supersymmetric electrodynamics is extended. The starting point is the observation that the low-energy effective action is exhausted by one loop provided that the theory is regularized supersymmetrically both in the ultraviolet and infrared domains in four dimensions. The Pouli-Villars method of the ultraviolet regularization is used. Two methods for the infrared regularization are considered. The first one - quantization in a box with a finite volume L 3 - is universally applicable to anygauge theory. The second method is based on the effective Higgs mechanism for mass generation and requires the presence of certain matter superfields in the lagrangian. Within this method the necessary condition is the existence of flat directions, so called valeys, along which the vacuum energy vanishes. The theory is quantized near epsilon non-vanishing value of the scalar field from the bottom of the valley. After calculating the one-loop effective action one and the same exact expression is obtained for the β function within the both approaches, and it also coincides with our earlier result extracted from instanton calculus. A few remarks on the problem of anomalies in SUSY gauge theories are presented
Smith, R Scott; Kay, Bruce D
2012-03-15
Experimental measurements of the properties of supercooled liquids at temperatures near their glass transition temperatures, Tg, are requisite for understanding the behavior of glasses and amorphous solids. Unfortunately, many supercooled molecular liquids rapidly crystallize at temperatures far above their Tg, making such measurements difficult to nearly impossible. In this Perspective, we discuss some recent alternative approaches to obtain experimental data in the temperature regime near Tg. These new approaches may yield the additional experimental data necessary to test current theoretical models of the dynamical slowdown that occurs in supercooled liquids approaching the glass transition.
Petrou, Zisis I.; Xian, Yang; Tian, YingLi
2018-04-01
Estimation of sea ice motion at fine scales is important for a number of regional and local level applications, including modeling of sea ice distribution, ocean-atmosphere and climate dynamics, as well as safe navigation and sea operations. In this study, we propose an optical flow and super-resolution approach to accurately estimate motion from remote sensing images at a higher spatial resolution than the original data. First, an external example learning-based super-resolution method is applied on the original images to generate higher resolution versions. Then, an optical flow approach is applied on the higher resolution images, identifying sparse correspondences and interpolating them to extract a dense motion vector field with continuous values and subpixel accuracies. Our proposed approach is successfully evaluated on passive microwave, optical, and Synthetic Aperture Radar data, proving appropriate for multi-sensor applications and different spatial resolutions. The approach estimates motion with similar or higher accuracy than the original data, while increasing the spatial resolution of up to eight times. In addition, the adopted optical flow component outperforms a state-of-the-art pattern matching method. Overall, the proposed approach results in accurate motion vectors with unprecedented spatial resolutions of up to 1.5 km for passive microwave data covering the entire Arctic and 20 m for radar data, and proves promising for numerous scientific and operational applications.
Split-Family SUSY, U(2)^5 Flavour Symmetry and Neutrino Physics
Jones-Pérez, Joel
2014-01-01
In split-family SUSY, one can use a U(2)^3 symmetry to protect flavour observables in the quark sector from SUSY contributions. However, attempts to extend this procedure to the lepton sector by using an analogous U(2)^5 symmetry fail to reproduce the neutrino data without introducing some form of fine-tuning. In this work, we solve this problem by shifting the U(2)^2 symmetry acting on leptons towards the second and third generations. This allows neutrino data to be reproduced without much difficulties, as well as protecting the leptonic flavour observables from SUSY. Key signatures are a $\\mu\\to e\\gamma$ branching ratio possibly observable in the near future, as well as having selectrons as the lightest sleptons.
Deletion analysis of susy-sl promoter for the identification of optimal promoter sequence
International Nuclear Information System (INIS)
Bacha, S.; Khatoon, A.; Asif, M.; Bshir, A.
2015-01-01
The promoter region of sucrose synthase (susy-Sl) was identified and isolated from tomato. The 5? deletion analysis was carried out for the identification of minimum optimal promoter. Transgenic lines of Arabidopsis thaliana were developed by floral dip method incorporating various promoter deletion cassettes controlling GUS reporter gene. GUS assay of transgenic tissues indicated that full length susy-Sl promoter and its deletion mutants were constitutively expressed in vegetative and floral tissues of A. thaliana. The expression was observed in roots, shoots and flowers of A. thaliana. Analysis of 5? deletion series of susy-Sl promoter showed that a minimum of 679 bp fragment of the promoter was sufficient to drive expression of GUS reporter gene in the major tissues of transgenic A. thaliana. (author)
Bose-fermi symmetries and SUSY in nuclei
International Nuclear Information System (INIS)
Casten, R.F.
1986-01-01
Most of the comparison with theory has compared energy levels and we have seen many beautiful examples of one-to-one level correspondences, sometimes supported with a few B(E2) values. However, what we really need to check, the author thinks, is the structural correspondence, to make sure these levels really correspond to each other, and that the energy level agreement is not just accidental; for that we need to look at transfer reactions, and more B(E2)'s. This brings up the very important question of the transfer operator. The author hopes that its importance can be seen in recent cases where a few B(E2)'s for a few transfer strengths have substantially changed the correspondence between theoretical and experimental levels even though the overall energy level agreement is neither better or worse. So it's clearly sensitive to that question. Also cases have been seen now where several different supergroups have been applied to the same regions, U(6/4) and U(6/20) for example, to the mass 130 region, and so the question of the single-particle spaces and the single-particle energies is an important one. The question of microscopic understanding of the parameters and the interactions, these bose-fermi symmetries is important since it probes the underlying physical basis. And finally there have be some very interesting, what the author calls ''exotic'' extensions of bose-fermi symmetry ideas presented at this meeting. One is the extension to odd-odd nuclei, another is the generalized SUSY extension that can apply to transition regions, and this is the interesting beta decay calculations of Dobes that were reported yesterday, and probably some others the author has missed
Long-lived and compressed SUSY searches at CMS and ATLAS
Barlow, Nick; The ATLAS collaboration
2015-01-01
Two challenging scenarios for SUSY searches at the LHC are when there are small mass differences between particles in the decay chain ("compressed" spectra) and where the SUSY particles have a non-negligible lifetime. The compressed case can be addressed by looking at events containing Initial State Radiation (ISR), while long-lifetimes can give rise to a wide range of possible detector signatures. This talk describes these diverse and interesting searches, performed by the ATLAS and CMS collaborations on the Run 1 LHC data.
International Nuclear Information System (INIS)
Wilson, J.J.; Lee, D.W.; Yeske, B.M.; Kuipers, F.
2000-01-01
The feasibility of treating a 1985 pipeline spill of light Pembina Cardium crude oil at a bog near Violet Grove, Alberta was discussed. Pembina Pipeline Corporation arranged for a treatability test to be conducted on oil-contaminated sphagnum peat moss from the site to determine effective in situ or ex situ remediation options for the site. The test was used to evaluate the biodegradation potential of contaminants. Four tests were designed to simulate field different field treatment approaches and to collect critical data on toxicity and leachability of the peat moss. The tests included a bioslurry test, a soil microcosm test, an aerated water saturated peat column test, and a standard toxicity characteristic leachate potential test. The first three tests gave similar results of at least 74 per cent biodegradation of the residual crude oil on the peat solids and no residual toxicity as measured by the Microtox Assay. It was determined that both in situ bioremediation using an aerated water injection system or an ex situ landfarming approach would achieve required criteria and no fertilizers would be necessary to maintain active bioremediation. The new gas-liquid reactor (GLR) aeration technology used in these tests creates a constant supply of hyperoxygenated water prior to column injection. The continuous release of tiny air bubbles maximizes air surface area and increases the gas transfer rates. 3 tabs., 3 figs
DEFF Research Database (Denmark)
Harlev, Mikkel Alexander; Sun Yin, Haohua; Langenheldt, Klaus Christian
2018-01-01
Bitcoin is a cryptocurrency whose transactions are recorded on a distributed, openly accessible ledger. On the Bitcoin Blockchain, an entity’s real-world identity is hidden behind a pseudonym, a so-called address. Therefore, Bitcoin is widely assumed to provide a high degree of anonymity, which...... is a driver for its frequent use for illicit activities. This paper presents a novel approach for reducing the anonymity of the Bitcoin Blockchain by using Supervised Machine Learning to predict the type of yet-unidentified entities. We utilised a sample of 434 entities with â‰ˆ 200 million transactions...... discuss our novel approach of Supervised Machine Learning for uncovering Blockchain anonymity and its potential applications to forensics and financial compliance and its societal implications, outline study limitations and propose future research directions....
Keskin, Havva; Storici, Francesca
2018-01-01
A double-strand break (DSB) is one of the most dangerous DNA lesion, and its repair is crucial for genome stability. Homologous recombination is considered the safest way to repair a DNA DSB and requires an identical or nearly identical DNA template, such as a sister chromatid or a homologous chromosome for accurate repair. Can transcript RNA serve as donor template for DSB repair? Here, we describe an approach that we developed to detect and study DNA repair by transcript RNA. Key features of the method are: (i) use of antisense (noncoding) RNA as template for DSB repair by RNA, (ii) use of intron splicing to distinguish the sequence of the RNA template from that of the DNA that generates the RNA template, and (iii) use of a trans and cis system to study how RNA repairs a DSB in homologous but distant DNA or in its own DNA, respectively. This chapter provides details on how to use a spliced-antisense RNA template to detect and study DSB repair by RNA in trans or cis in yeast cells. Our approach for detection of DSB repair by RNA in cells can be applied to cell types other than yeast, such as bacteria, mammalian cells, or other eukaryotic cells. © 2018 Elsevier Inc. All rights reserved.
DEFF Research Database (Denmark)
. Its capacity to provide explanatory accounts of seemingly unstructured situations provides an opportunity to link experience-based and culture-oriented approaches not only to contemporary problems but also to undertake comparisons across historical periods. From a perspective of liminality...... produce desperate attempts to maintain old or create new differences. Political and sociological research into these complex processes has been mainly guided by structural and normative concerns. Faced with growing evidence about the instability of world order and domestic social structures alike, policy...
Top-down approach to unified supergravity models
International Nuclear Information System (INIS)
Hempfling, R.
1994-03-01
We introduce a new approach for studying unified supergravity models. In this approach all the parameters of the grand unified theory (GUT) are fixed by imposing the corresponding number of low energy observables. This determines the remaining particle spectrum whose dependence on the low energy observables can now be investigated. We also include some SUSY threshold corrections that have previously been neglected. In particular the SUSY threshold corrections to the fermion masses can have a significant impact on the Yukawa coupling unification. (orig.)
Generalized Jaynes-Cummings Hamiltonians by shape-invariant hierarchies and their SUSY partners
International Nuclear Information System (INIS)
Hussin, V; Kuru, S; Negro, J
2006-01-01
A generalization of the matrix Jaynes-Cummings model in the rotating wave approximation is proposed by means of the shape-invariant hierarchies of scalar factorized Hamiltonians. A class of Darboux transformations (sometimes called SUSY transformations in this context) suitable for these generalized Jaynes-Cummings models is constructed. Finally one example is worked out using the methods developed
High scale parity invariance as a solution to the SUSY CP problem ...
Indian Academy of Sciences (India)
scale SUSY ДК model provides a solution to the CP problems of the MSSM. A minimal version of this .... the renormalizable seesaw model so that К-parity conservation remains automatic. Pramana – J. Phys., Vol ... from the Planck scale to ЪК in the squark sector is to split the third generation squarks slightly from the first two ...
Holographic entanglement entropy and entanglement thermodynamics of 'black' non-susy D3 brane
Bhattacharya, Aranya; Roy, Shibaji
2018-06-01
Like BPS D3 brane, the non-supersymmetric (non-susy) D3 brane of type IIB string theory is also known to have a decoupling limit and leads to a non-supersymmetric AdS/CFT correspondence. The throat geometry in this case represents a QFT which is neither conformal nor supersymmetric. The 'black' version of the non-susy D3 brane in the decoupling limit describes a QFT at finite temperature. Here we first compute the entanglement entropy for small subsystem of such QFT from the decoupled geometry of 'black' non-susy D3 brane using holographic technique. Then we study the entanglement thermodynamics for the weakly excited states of this QFT from the asymptotically AdS geometry of the decoupled 'black' non-susy D3 brane. We observe that for small subsystem this background indeed satisfies a first law like relation with a universal (entanglement) temperature inversely proportional to the size of the subsystem and an (entanglement) pressure normal to the entangling surface. Finally we show how the entanglement entropy makes a cross-over to the thermal entropy at high temperature.
Bremsstrahlung and Ion Beam Current Measurements with SuSI ECR Ion Source
International Nuclear Information System (INIS)
Ropponen, T.
2012-01-01
This series of slides presents: the Superconducting Source for Ions (SuSI), the X-ray measurement setup, the different collimation schemes, the flat B operation versus B(min) operation, and the impact of tuning ∇B while keeping fixed field profile
SUSY method for the three-dimensional Schrödinger equation with effective mass
International Nuclear Information System (INIS)
Ioffe, M.V.; Kolevatova, E.V.; Nishnianidze, D.N.
2016-01-01
Highlights: • SUSY intertwining relations for the 3-dim Schrödinger equation with effective mass were studied. • The general solution of these intertwining relations with first order supercharges was obtained. • Four different options for parameters values were considered separately to find the mass functions and partner potentials. - Abstract: The three-dimensional Schrödinger equation with a position-dependent (effective) mass is studied in the framework of Supersymmetrical (SUSY) Quantum Mechanics. The general solution of SUSY intertwining relations with first order supercharges is obtained without any preliminary constraints. Several forms of coefficient functions of the supercharges are investigated and analytical expressions for the mass function and partner potentials are found. As usual for SUSY Quantum Mechanics with nonsingular superpotentials, the spectra of intertwined Hamiltonians coincide up to zero modes of supercharges, and the corresponding wave functions are connected by intertwining relations. All models are partially integrable by construction: each of them has at least one second order symmetry operator.
Decoupling limit and throat geometry of non-susy D3 brane
Energy Technology Data Exchange (ETDEWEB)
Nayek, Kuntal, E-mail: kuntal.nayek@saha.ac.in; Roy, Shibaji, E-mail: shibaji.roy@saha.ac.in
2017-03-10
Recently it has been shown by us that, like BPS Dp branes, bulk gravity gets decoupled from the brane even for the non-susy Dp branes of type II string theories indicating a possible extension of AdS/CFT correspondence for the non-supersymmetric case. In that work, the decoupling of gravity on the non-susy Dp branes has been shown numerically for the general case as well as analytically for some special case. Here we discuss the decoupling limit and the throat geometry of the non-susy D3 brane when the charge associated with the brane is very large. We show that in the decoupling limit the throat geometry of the non-susy D3 brane, under appropriate coordinate change, reduces to the Constable–Myers solution and thus confirming that this solution is indeed the holographic dual of a (non-gravitational) gauge theory discussed there. We also show that when one of the parameters of the solution takes a specific value, it reduces, under another coordinate change, to the five-dimensional solution obtained by Csaki and Reece, again confirming its gauge theory interpretation.
Directory of Open Access Journals (Sweden)
Ken White
2010-03-01
Full Text Available Some common, mental models shape how people in the US perceive political changes over time. The one-dimensional pendulum swing model and the two-dimensional cyclical model are prevalent. When generational differences are mapped onto such political change cycles, they orient to cohorts or age groups. This leads to viewing generational cohorts as experiencing one- or two-dimensional cycles without deeper scrutiny. Cohort differences that surface in the Generations Salons that I and others conducted in California suggest a different, three-dimensional model may be more representative of the potential for societal change in the US. Using a musical metaphor, that model is explained in terms of different political “keys” and the value of distinguishing among them as time passes. It also underlies a speculation about a “politics in a new key,” which might prove more useful.Summary-level reporting of the action research conducted with the Generations Salons supports the three-dimensional model. We expect new politics to emerge from the Millennial cohort coming of age now, yet it will not be without the support and wisdom of the cohorts that came of age before it. This must be the case if the burden of expectations we place on the Millennials will indeed pave the way for transformative change in US society. Intergenerational support of Millennials is essential. This initial research and application suggests the potential for the generational/ developmental approach as a wellspring for transformational—and practically successful—political work. It begs the question: What will you do to help?
Directory of Open Access Journals (Sweden)
Ken White
2010-03-01
Full Text Available Some common, mental models shape how people in the US perceive political changes over time. The one-dimensional pendulum swing model and the two-dimensional cyclical model are prevalent. When generational differences are mapped onto such political change cycles, they orient to cohorts or age groups. This leads to viewing generational cohorts as experiencing one- or two-dimensional cycles without deeper scrutiny. Cohort differences that surface in the Generations Salons that I and others conducted in California suggest a different, three-dimensional model may be more representative of the potential for societal change in the US. Using a musical metaphor, that model is explained in terms of different political “keys” and the value of distinguishing among them as time passes. It also underlies a speculation about a “politics in a new key,” which might prove more useful. Summary-level reporting of the action research conducted with the Generations Salons supports the three-dimensional model. We expect new politics to emerge from the Millennial cohort coming of age now, yet it will not be without the support and wisdom of the cohorts that came of age before it. This must be the case if the burden of expectations we place on the Millennials will indeed pave the way for transformative change in US society. Intergenerational support of Millennials is essential. This initial research and application suggests the potential for the generational/ developmental approach as a wellspring for transformational—and practically successful—political work. It begs the question: What will you do to help?
Radiative breaking of the minimal supersymmetric left–right model
Directory of Open Access Journals (Sweden)
Nobuchika Okada
2016-05-01
Full Text Available We study a variation to the SUSY Left–Right symmetric model based on the gauge group SU(3c×SU(2L×SU(2R×U(1BL. Beyond the quark and lepton superfields we only introduce a second Higgs bidoublet to produce realistic fermion mass matrices. This model does not include any SU(2R triplets. We calculate renormalization group evolutions of soft SUSY parameters at the one-loop level down to low energy. We find that an SU(2R slepton doublet acquires a negative mass squared at low energies, so that the breaking of SU(2R×U(1BL→U(1Y is realized by a non-zero vacuum expectation value of a right-handed sneutrino. Small neutrino masses are produced through neutrino mixings with gauginos. Mass limits on the SU(2R×U(1BL sector are obtained by direct search results at the LHC as well as lepton-gaugino mixing bounds from the LEP precision data.
Lima, Sílvia T R M; Souza, Bárbara S N; França, Ana K T; Salgado, João V; Salgado-Filho, Natalino; Sichieri, Rosely
2014-08-01
Hypertensive patients often have an unfavorable lipid and glucose profile. The main goal of dietary treatment for these patients is to achieve adequate control of blood pressure and reducing cardiovascular morbidity and mortality. The aim of this study was to evaluate whether the Brazilian Dietary Approach to Break Hypertension (BRADA) based on Dietary Approaches to Stop Hypertension but with both low sodium and glycemic index foods could reduce lipid and glycemic profiles in hypertensive patients who were seeing primary health care providers in a low-income region of Brazil. A randomized study of 206 individuals were followed up for the duration of 6 months. The experimental group received orientation and planned monthly menus from the BRADA diet. In the control group, counseling was based on standard care and mainly focused on salt intake reduction. Differences in all biochemical parameters were compared at the baseline and at the 6-month follow-up period. The mean age was 60.1 (±12.9) years old, and 156 subjects (119 females) completed the study. An intention-to-treat analysis showed that both groups reduced fasting plasma glucose, glycated hemoglobin, total cholesterol, and low-density lipoprotein cholesterol concentrations; however, statistically significant between-group differences were found for these parameters. The mean difference in fasting glucose was -7.0 (P < .01), -0.2 for HbA1c (P < .01), -28.6 for TC (P < .01), and -23.8 for LDL-c (P < .01) for the experimental group compared with the control group. This study showed the efficacy of the BRADA diet to treat hypertension on biochemical parameters tested in a primary health care service setting. Copyright © 2014 Elsevier Inc. All rights reserved.
Directory of Open Access Journals (Sweden)
Langher Viviana
2012-01-01
Full Text Available The multidisciplinary approach for the treatment of hearing impaired children presented the work group with several tasks: the group had to integrate different competences and techniques, to share common treatment goals, to manage relational dynamics with the children and their parents, and to explore the families' expectancies. These efforts may create stressful conditions for the work group and, consequently, might negatively affect the quality of the intervention to be carried out. Our aim was to illustrate a psychosocial analysis performed in a religious Institute for hearing impaired children, intended to break the pattern of the Institute's stalled productivity, to avoid inefficient and fragmented treatments, to prevent unelaborated relational dynamics among the staff members and between the staff and the children's families. By means of the Content Analysis of semi-structured interviews administered to staff-members and families we have analyzed the quality of the teamwork, the relational arrangements towards the families and local services (25 interviews with 5 staff members; the family-Institute relationship and the family's representation and satisfaction of the Institute (7 interviews with 13 hearing impaired parents and non-hearing impaired parents. The institute activity seemed to be more characterized by the maintenance of the relationship with the families per se, rather than oriented to productive goals. The non hearing impaired parents seemed to be more satisfied than the hearing-impaired parents, possibly because the former are more prepared to receive the Institute's help. The stalled productivity can only be overcome by the elaboration of those relational/emotional dynamics which prevent staff members and children's parents from focusing on productive goals. The staffmembers' training should be improved in order to develop specific competences, to perform an integrated, multidisciplinary approach in treatments, to negotiate
Identifying fake leptons in ATLAS while hunting SUSY in 8 TeV proton-proton collisions
Gillam, Thomas P S
For several theoretically and experimentally motivated reasons, super- symmetry (SUSY) has for some time been identified as an interesting candidate for a theory of fundamental particle physics beyond the Stan- dard Model. The ATLAS collaboration, of which I am a member, possess a detector emplaced in the Large Hadron Collider experiment at CERN. If SUSY does in fact describe our universe, then it is hoped that evidence of it will be visible in data collected in the ATLAS detector. I present an analysis looking for a particular signature that could indicate the presence of SUSY; events containing two like-charge leptons (e or μ). This signature benefits from having both low Standard Model backgrounds as well as potential to observe several SUSY scenarios, par- ticularly those involving strong production processes. These include pair production of squarks and gluinos. The latter of these are particularly relevant for the analysis presented herein since gluinos are Majorana fermions; hence they can decay to...
Break-glass handling exceptional situations in access control
Petritsch, Helmut
2014-01-01
Helmut Petritsch describes the first holistic approach to Break-Glass which covers the whole life-cycle: from access control modeling (pre-access), to logging the security-relevant system state during Break-Glass accesses (at-access), and the automated analysis of Break-Glass accesses (post-access). Break-Glass allows users to override security restrictions in exceptional situations. While several Break-Glass models specific to given access control models have already been discussed in research (e.g., extending RBAC with Break-Glass), the author introduces a generic Break-Glass model. The pres
Generalized messenger sector for gauge mediation of supersymmetry breaking and the soft spectrum
International Nuclear Information System (INIS)
Marques, Diego
2009-01-01
We consider a generic renormalizable and gauge invariant messenger sector and derive the sparticle mass spectrum using the formalism introduced for General Gauge Mediation. Our results recover many expressions found in the literature in various limits. Constraining the messenger sector with a global symmetry under which the spurion field is charged, we analyze Extraordinary Gauge Mediation beyond the small SUSY breaking limit. Finally, we include D-term contributions and compute their corrections to the soft masses. This leads to a perturbative framework allowing to explore models capable of fully covering the parameter space of General Gauge Mediation to the Supersymmetric Standard Model.
Energy Technology Data Exchange (ETDEWEB)
Bae, Kyu Jung [Center for Theoretical Physics of the Universe, Institute for Basic Science (IBS), Daejeon 34051 (Korea, Republic of); Baer, Howard; Serce, Hasan, E-mail: kyujungbae@ibs.re.kr, E-mail: baer@nhn.ou.edu, E-mail: serce@ou.edu [Department of Physics and Astronomy, University of Oklahoma, Norman, OK 73019 (United States)
2017-06-01
Under the expectation that nature is natural, we extend the Standard Model to include SUSY to stabilize the electroweak sector and PQ symmetry to stabilize the QCD sector. Then natural SUSY arises from a Kim-Nilles solution to the SUSY μ problem which allows for a little hierarchy where μ∼ f {sub a} {sup 2}/ M {sub P} {sub ∼} 100−300 GeV while the SUSY particle mass scale m {sub SUSY}∼ 1−10 TeV >> μ. Dark matter then consists of two particles: a higgsino-like WIMP and a SUSY DFSZ axion. The range of allowed axion mass values m {sub a} depends on the mixed axion-higgsino relic density. The range of m {sub a} is actually restricted in this case by limits on WIMPs from direct and indirect detection experiments. We plot the expected axion detection rate at microwave cavity experiments. The axion-photon-photon coupling is severely diminished by charged higgsino contributions to the anomalous coupling. In this case, the axion may retreat, at least temporarily, back into the regime of near invisibility. From our results, we urge new ideas for techniques which probe both deeper and more broadly into axion coupling versus axion mass parameter space.
String breaking with Wilson loops?
Kratochvila, S; Kratochvila, Slavo; Forcrand, Philippe de
2003-01-01
A convincing, uncontroversial observation of string breaking, when the static potential is extracted from Wilson loops only, is still missing. This failure can be understood if the overlap of the Wilson loop with the broken string is exponentially small. In that case, the broken string ground state will only be seen if the Wilson loop is long enough. Our preliminary results show string breaking in the context of the 3d SU(2) adjoint static potential, using the L\\"uscher-Weisz exponential variance reduction approach. As a by-product, we measure the fundamental SU(2) static potential with improved accuracy and see clear deviations from Casimir scaling.
Benchmark models, planes lines and points for future SUSY searches at the LHC
International Nuclear Information System (INIS)
AbdusSalam, S.S.; Allanach, B.C.; Dreiner, H.K.
2012-03-01
We define benchmark models for SUSY searches at the LHC, including the CMSSM, NUHM, mGMSB, mAMSB, MM-AMSB and p19MSSM, as well as models with R-parity violation and the NMSSM. Within the parameter spaces of these models, we propose benchmark subspaces, including planes, lines and points along them. The planes may be useful for presenting results of the experimental searches in different SUSY scenarios, while the specific benchmark points may serve for more detailed detector performance tests and comparisons. We also describe algorithms for defining suitable benchmark points along the proposed lines in the parameter spaces, and we define a few benchmark points motivated by recent fits to existing experimental data.
Radiative natural SUSY spectrum from deflected AMSB scenario with messenger-matter interactions
Energy Technology Data Exchange (ETDEWEB)
Wang, Fei [School of Physics, Zhengzhou University,Zhengzhou 450000 (China); State Key Laboratory of Theoretical Physics,Institute of Theoretical Physics, Chinese Academy of Sciences,Beijing 100080 (China); Yang, Jin Min [State Key Laboratory of Theoretical Physics,Institute of Theoretical Physics, Chinese Academy of Sciences,Beijing 100080 (China); Department of Physics, Tohoku University,Sendai 980-8578 (Japan); Zhang, Yang [State Key Laboratory of Theoretical Physics,Institute of Theoretical Physics, Chinese Academy of Sciences,Beijing 100080 (China)
2016-04-29
A radiative natural SUSY spectrum are proposed in the deflected anomaly mediation scenario with general messenger-matter interactions. Due to the contributions from the new interactions, positive slepton masses as well as a large |A{sub t}| term can naturally be obtained with either sign of deflection parameter and few messenger species (thus avoid the possible Landau pole problem). In this scenario, in contrast to the ordinary (radiative) natural SUSY scenario with under-abundance of dark matter (DM), the DM can be the mixed bino-higgsino and have the right relic density. The 125 GeV Higgs mass can also be easily obtained in our scenario. The majority of low EW fine tuning points can be covered by the XENON-1T direct detection experiments.
Benchmark models, planes lines and points for future SUSY searches at the LHC
Energy Technology Data Exchange (ETDEWEB)
AbdusSalam, S.S. [The Abdus Salam International Centre for Theoretical Physics, Trieste (Italy); Allanach, B.C. [Cambridge Univ. (United Kingdom). Dept. of Applied Mathematics and Theoretical Physics; Dreiner, H.K. [Bonn Univ. (DE). Bethe Center for Theoretical Physics and Physikalisches Inst.] (and others)
2012-03-15
We define benchmark models for SUSY searches at the LHC, including the CMSSM, NUHM, mGMSB, mAMSB, MM-AMSB and p19MSSM, as well as models with R-parity violation and the NMSSM. Within the parameter spaces of these models, we propose benchmark subspaces, including planes, lines and points along them. The planes may be useful for presenting results of the experimental searches in different SUSY scenarios, while the specific benchmark points may serve for more detailed detector performance tests and comparisons. We also describe algorithms for defining suitable benchmark points along the proposed lines in the parameter spaces, and we define a few benchmark points motivated by recent fits to existing experimental data.
Analytic properties of high energy production amplitudes in N=4 SUSY
International Nuclear Information System (INIS)
Lipatov, L.N.; Hamburg Univ.
2010-08-01
We investigate analytic properties of the six point planar amplitude in N=4 SUSY at the multi-Regge kinematics for final state particles. For inelastic processes the Steinmann relations play an important role because they give a possibility to fix the phase structure of the Regge pole and Mandelstam cut contributions. The analyticity and factorization constraints allow us to reproduce the two-loop correction to the 6- point BDS amplitude in N=4 SUSY obtained earlier in the leading logarithmic approximation with the use of the s-channel unitarity. The cut contribution has the Moebius invariant form in the transverse momentum subspace. The exponentiation hypothesis for the amplitude in the multi-Regge kinematics is also investigated in LLA. (orig.)
Benchmark Models, Planes, Lines and Points for Future SUSY Searches at the LHC
AbdusSalam, S S; Dreiner, H K; Ellis, J; Ellwanger, U; Gunion, J; Heinemeyer, S; Krämer, M; Mangano, M L; Olive, K A; Rogerson, S; Roszkowski, L; Schlaffer, M; Weiglein, G
2011-01-01
We define benchmark models for SUSY searches at the LHC, including the CMSSM, NUHM, mGMSB, mAMSB, MM-AMSB and p19MSSM, as well as models with R-parity violation and the NMSSM. Within the parameter spaces of these models, we propose benchmark subspaces, including planes, lines and points along them. The planes may be useful for presenting results of the experimental searches in different SUSY scenarios, while the specific benchmark points may serve for more detailed detector performance tests and comparisons. We also describe algorithms for defining suitable benchmark points along the proposed lines in the parameter spaces, and we define a few benchmark points motivated by recent fits to existing experimental data.
Analytic properties of high energy production amplitudes in N=4 SUSY
Energy Technology Data Exchange (ETDEWEB)
Lipatov, L.N. [St. Petersburg Inst. of Nuclear Physics, Gatchina (Russian Federation); Hamburg Univ. (Germany). 1. Inst. fuer Theoretische Physik
2010-08-15
We investigate analytic properties of the six point planar amplitude in N=4 SUSY at the multi-Regge kinematics for final state particles. For inelastic processes the Steinmann relations play an important role because they give a possibility to fix the phase structure of the Regge pole and Mandelstam cut contributions. The analyticity and factorization constraints allow us to reproduce the two-loop correction to the 6- point BDS amplitude in N=4 SUSY obtained earlier in the leading logarithmic approximation with the use of the s-channel unitarity. The cut contribution has the Moebius invariant form in the transverse momentum subspace. The exponentiation hypothesis for the amplitude in the multi-Regge kinematics is also investigated in LLA. (orig.)
The di-photon excess in a perturbative SUSY model
Energy Technology Data Exchange (ETDEWEB)
Benakli, Karim, E-mail: kbenakli@lpthe.jussieu.fr [Sorbonne Universités, UPMC Univ Paris 06, UMR 7589, LPTHE, F-75005, Paris (France); CNRS, UMR 7589, LPTHE, F-75005, Paris (France); Darmé, Luc, E-mail: darme@lpthe.jussieu.fr [Sorbonne Universités, UPMC Univ Paris 06, UMR 7589, LPTHE, F-75005, Paris (France); CNRS, UMR 7589, LPTHE, F-75005, Paris (France); Sorbonne Universités, Institut Lagrange de Paris (ILP), 98 bis Boulevard Arago, 75014 Paris (France); Goodsell, Mark D., E-mail: goodsell@lpthe.jussieu.fr [Sorbonne Universités, UPMC Univ Paris 06, UMR 7589, LPTHE, F-75005, Paris (France); CNRS, UMR 7589, LPTHE, F-75005, Paris (France); Harz, Julia, E-mail: jharz@lpthe.jussieu.fr [Sorbonne Universités, UPMC Univ Paris 06, UMR 7589, LPTHE, F-75005, Paris (France); CNRS, UMR 7589, LPTHE, F-75005, Paris (France); Sorbonne Universités, Institut Lagrange de Paris (ILP), 98 bis Boulevard Arago, 75014 Paris (France)
2016-10-15
We show that a 750 GeV di-photon excess as reported by the ATLAS and CMS experiments can be reproduced by the Minimal Dirac Gaugino Supersymmetric Standard Model (MDGSSM) without the need of any ad-hoc addition of new states. The scalar resonance is identified with the spin-0 partner of the Dirac bino. We perform a thorough analysis of constraints coming from the mixing of the scalar with the Higgs boson, the stability of the vacuum and the requirement of perturbativity of the couplings up to very high energy scales. We exhibit examples of regions of the parameter space that respect all the constraints while reproducing the excess. We point out how trilinear couplings that are expected to arise in supersymmetry-breaking mediation scenarios, but were ignored in the previous literature on the subject, play an important role.
Dontje, Manon L; Leask, Calum F; Harvey, Juliet; Skelton, Dawn A; Chastin, Sebastien F M
2018-04-01
Older adults are recommended to reduce their sedentary time to promote healthy ageing. To develop effective interventions identifying when, why, and how older adults are able to change their sitting habits is important. The aim of this mixed-method study was to improve our understanding of reasons for (breaking) sedentary behavior in older adults. Thirty older adults (74.0 [±5.3] years old, 73% women) were asked about their believed reasons for (breaking) sedentary behavior, and about their actual reasons when looking at a personal storyboard with objective records of activPAL monitor data and time-lapse camera pictures showing all their periods of sedentary time in a day. The most often mentioned believed reason for remaining sedentary was television/radio (mentioned by 48.3%), while eating/drinking was most often mentioned as actual reason (96.6%). Only 17.2% believed that food/tea preparation was a reason to break up sitting, while this was an actual reason for 82.8% of the study sample. Results of this study show that there is a discrepancy between believed and actual reasons for (breaking) sedentary behavior. These findings suggest developing interventions utilizing the actual reasons for breaking sedentary behavior to reduce sedentary time in older adults.
Duality after supersymmetry breaking
International Nuclear Information System (INIS)
Shadmi, Yael; Cheng, Hsin-Chia
1998-05-01
Starting with two supersymmetric dual theories, we imagine adding a chiral perturbation that breaks supersymmetry dynamically. At low energy we then get two theories with soft supersymmetry-breaking terms that are generated dynamically. With a canonical Kaehler potential, some of the scalars of the ''magnetic'' theory typically have negative mass-squared, and the vector-like symmetry is broken. Since for large supersymmetry breaking the ''electric'' theory becomes ordinary QCD, the two theories are then incompatible. For small supersymmetry breaking, if duality still holds, the magnetic theory analysis implies specific patterns of chiral symmetry breaking in supersymmetric QCD with small soft masses
The fine-tuning cost of the likelihood in SUSY models
International Nuclear Information System (INIS)
Ghilencea, D.M.; Ross, G.G.
2013-01-01
In SUSY models, the fine-tuning of the electroweak (EW) scale with respect to their parameters γ i ={m 0 ,m 1/2 ,μ 0 ,A 0 ,B 0 ,…} and the maximal likelihood L to fit the experimental data are usually regarded as two different problems. We show that, if one regards the EW minimum conditions as constraints that fix the EW scale, this commonly held view is not correct and that the likelihood contains all the information about fine-tuning. In this case we show that the corrected likelihood is equal to the ratio L/Δ of the usual likelihood L and the traditional fine-tuning measure Δ of the EW scale. A similar result is obtained for the integrated likelihood over the set {γ i }, that can be written as a surface integral of the ratio L/Δ, with the surface in γ i space determined by the EW minimum constraints. As a result, a large likelihood actually demands a large ratio L/Δ or equivalently, a small χ new 2 =χ old 2 +2lnΔ. This shows the fine-tuning cost to the likelihood (χ new 2 ) of the EW scale stability enforced by SUSY, that is ignored in data fits. A good χ new 2 /d.o.f.≈1 thus demands SUSY models have a fine-tuning amount Δ≪exp(d.o.f./2), which provides a model-independent criterion for acceptable fine-tuning. If this criterion is not met, one can thus rule out SUSY models without a further χ 2 /d.o.f. analysis. Numerical methods to fit the data can easily be adapted to account for this effect.
Symmetric neutrino mass matrix with two zeros in SUSY SO(10) GUT
International Nuclear Information System (INIS)
Bando, Masako; Kaneko, Satoru; Obara, Midori; Tanimoto, Morimitsu
2004-01-01
We study the symmetric 2-zero texture of lepton and quark mass matrix, for the SUSY SO(10) GUT model including the Pati-Salam symmetry. We show that our model can simultaneously explain the current neutrino experimental data, predicted rate of lepton flavor violating processes are safely below the experimental bounds and baryon asymmetry of the universe can be obtained through thermal leptogenesis. (author)
Extension of the SUSY Les Houches Accord 2 for see-saw mechanisms
International Nuclear Information System (INIS)
Basso, L.; Belyaev, A.; Chowdhury, D.; Ghosh, D.K.; Hirsch, M.; Khalil, S.; Moretti, S.; O'Leary, B.; Porod, W.; Staub, F.
2012-01-01
The SUSY Les Houches Accord (SLHA) 2 extended the first SLHA to include various generalisations of the Minimal Supersymmetric Standard Model (MSSM) as well as its simplest next-to-minimal version. Here, we propose further extensions to it, to include the most general and well-established see-saw descriptions (types I/II/III, inverse, and linear) in both an effective and a simple gauged extension of the MSSM framework. (authors)
Calculating the renormalisation group equations of a SUSY model with Susyno
Fonseca, Renato M.
2012-10-01
Susyno is a Mathematica package dedicated to the computation of the 2-loop renormalisation group equations of a supersymmetric model based on any gauge group (the only exception being multiple U(1) groups) and for any field content. Program summary Program title: Susyno Catalogue identifier: AEMX_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AEMX_v1_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.html No. of lines in distributed program, including test data, etc.: 30829 No. of bytes in distributed program, including test data, etc.: 650170 Distribution format: tar.gz Programming language: Mathematica 7 or higher. Computer: All systems that Mathematica 7+ is available for (PC, Mac). Operating system: Any platform supporting Mathematica 7+ (Windows, Linux, Mac OS). Classification: 4.2, 5, 11.1. Nature of problem: Calculating the renormalisation group equations of a supersymmetric model involves using long and complicated general formulae [1, 2]. In addition, to apply them it is necessary to know the Lagrangian in its full form. Building the complete Lagrangian of models with small representations of SU(2) and SU(3) might be easy but in the general case of arbitrary representations of an arbitrary gauge group, this task can be hard, lengthy and error prone. Solution method: The Susyno package uses group theoretical functions to calculate the super-potential and the soft-SUSY-breaking Lagrangian of a supersymmetric model, and calculates the two-loop RGEs of the model using the general equations of [1, 2]. Susyno works for models based on any representation(s) of any gauge group (the only exception being multiple U(1) groups). Restrictions: As the program is based on the formalism of [1, 2], it shares its limitations. Running time can also be a significant restriction, in particular for models with many fields. Unusual features
The hyperbolic step potential: Anti-bound states, SUSY partners and Wigner time delays
Energy Technology Data Exchange (ETDEWEB)
Gadella, M. [Departamento de Física Teórica, Atómica y Óptica and IMUVA, Universidad de Valladolid, E-47011 Valladolid (Spain); Kuru, Ş. [Department of Physics, Faculty of Science, Ankara University, 06100 Ankara (Turkey); Negro, J., E-mail: jnegro@fta.uva.es [Departamento de Física Teórica, Atómica y Óptica and IMUVA, Universidad de Valladolid, E-47011 Valladolid (Spain)
2017-04-15
We study the scattering produced by a one dimensional hyperbolic step potential, which is exactly solvable and shows an unusual interest because of its asymmetric character. The analytic continuation of the scattering matrix in the momentum representation has a branch cut and an infinite number of simple poles on the negative imaginary axis which are related with the so called anti-bound states. This model does not show resonances. Using the wave functions of the anti-bound states, we obtain supersymmetric (SUSY) partners which are the series of Rosen–Morse II potentials. We have computed the Wigner reflection and transmission time delays for the hyperbolic step and such SUSY partners. Our results show that the more bound states a partner Hamiltonian has the smaller is the time delay. We also have evaluated time delays for the hyperbolic step potential in the classical case and have obtained striking similitudes with the quantum case. - Highlights: • The scattering matrix of hyperbolic step potential is studied. • The scattering matrix has a branch cut and an infinite number of poles. • The poles are associated to anti-bound states. • Susy partners using antibound states are computed. • Wigner time delays for the hyperbolic step and partner potentials are compared.
Leptogenesis in a Δ(27)×SO(10) SUSY GUT
Energy Technology Data Exchange (ETDEWEB)
Björkeroth, Fredrik [School of Physics and Astronomy, University of Southampton,SO17 1BJ Southampton (United Kingdom); Anda, Francisco J. de [Departamento de Física, CUCEI, Universidad de Guadalajara,Guadalajara (Mexico); Varzielas, Ivo de Medeiros; King, Stephen F. [School of Physics and Astronomy, University of Southampton,SO17 1BJ Southampton (United Kingdom)
2017-01-17
Although SO(10) Supersymmetric (SUSY) Grand Unification Theories (GUTs) are very attractive for neutrino mass and mixing, it is often quite difficult to achieve successful leptogenesis from the lightest right-handed neutrino N{sub 1} due to the strong relations between neutrino and up-type quark Yukawa couplings. We show that in a realistic model these constraints are relaxed, making N{sub 1} leptogenesis viable. To illustrate this, we calculate the baryon asymmetry of the Universe Y{sub B} from flavoured N{sub 1} leptogenesis in a recently proposed Δ(27)×SO(10) SUSY GUT. The flavoured Boltzmann equations are solved numerically, and comparison with the observed Y{sub B} places constraints on the allowed values of right-handed neutrino masses and neutrino Yukawa couplings. The flavoured SO(10) SUSY GUT is not only fairly complete and predictive in the lepton sector, but can also explain the BAU through leptogenesis with natural values in the lepton sector albeit with some tuning in the quark sector.
SUSI 62 A ROBUST AND SAFE PARACHUTE UAV WITH LONG FLIGHT TIME AND GOOD PAYLOAD
Directory of Open Access Journals (Sweden)
H. P. Thamm
2012-09-01
Full Text Available In many research areas in the geo-sciences (erosion, land use, land cover change, etc. or applications (e.g. forest management, mining, land management etc. there is a demand for remote sensing images of a very high spatial and temporal resolution. Due to the high costs of classic aerial photo campaigns, the use of a UAV is a promising option for obtaining the desired remote sensed information at the time it is needed. However, the UAV must be easy to operate, safe, robust and should have a high payload and long flight time. For that purpose, the parachute UAV SUSI 62 was developed. It consists of a steel frame with a powerful 62 cm3 2- stroke engine and a parachute wing. The frame can be easily disassembled for transportation or to replace parts. On the frame there is a gimbal mounted sensor carrier where different sensors, standard SLR cameras and/or multi-spectral and thermal sensors can be mounted. Due to the design of the parachute, the SUSI 62 is very easy to control. Two different parachute sizes are available for different wind speed conditions. The SUSI 62 has a payload of up to 8 kg providing options to use different sensors at the same time or to extend flight duration. The SUSI 62 needs a runway of between 10 m and 50 m, depending on the wind conditions. The maximum flight speed is approximately 50 km/h. It can be operated in a wind speed of up to 6 m/s. The design of the system utilising a parachute UAV makes it comparatively safe as a failure of the electronics or the remote control only results in the UAV coming to the ground at a slow speed. The video signal from the camera, the GPS coordinates and other flight parameters are transmitted to the ground station in real time. An autopilot is available, which guarantees that the area of investigation is covered at the desired resolution and overlap. The robustly designed SUSI 62 has been used successfully in Europe, Africa and Australia for scientific projects and also for
Ranganathan, Kavitha; Hong, Xiaowei; Cholok, David; Habbouche, Joe; Priest, Caitlin; Breuler, Christopher; Chung, Michael; Li, John; Kaura, Arminder; Hsieh, Hsiao Hsin Sung; Butts, Jonathan; Ucer, Serra; Schwartz, Ean; Buchman, Steven R; Stegemann, Jan P; Deng, Cheri X; Levi, Benjamin
2018-04-01
Early treatment of heterotopic ossification (HO) is currently limited by delayed diagnosis due to limited visualization at early time points. In this study, we validate the use of spectral ultrasound imaging (SUSI) in an animal model to detect HO as early as one week after burn tenotomy. Concurrent SUSI, micro CT, and histology at 1, 2, 4, and 9weeks post-injury were used to follow the progression of HO after an Achilles tenotomy and 30% total body surface area burn (n=3-5 limbs per time point). To compare the use of SUSI in different types of injury models, mice (n=5 per group) underwent either burn/tenotomy or skin incision injury and were imaged using a 55MHz probe on VisualSonics VEVO 770 system at one week post injury to evaluate the ability of SUSI to distinguish between edema and HO. Average acoustic concentration (AAC) and average scatterer diameter (ASD) were calculated for each ultrasound image frame. Micro CT was used to calculate the total volume of HO. Histology was used to confirm bone formation. Using SUSI, HO was visualized as early as 1week after injury. HO was visualized earliest by 4weeks after injury by micro CT. The average acoustic concentration of HO was 33% more than that of the control limb (n=5). Spectroscopic foci of HO present at 1week that persisted throughout all time points correlated with the HO present at 9weeks on micro CT imaging. SUSI visualizes HO as early as one week after injury in an animal model. SUSI represents a new imaging modality with promise for early diagnosis of HO. Copyright © 2018 Elsevier Inc. All rights reserved.
Genetic algorithms and experimental discrimination of SUSY models
International Nuclear Information System (INIS)
Allanach, B.C.; Quevedo, F.; Grellscheid, D.
2004-01-01
We introduce genetic algorithms as a means to estimate the accuracy required to discriminate among different models using experimental observables. We exemplify the technique in the context of the minimal supersymmetric standard model. If supersymmetric particles are discovered, models of supersymmetry breaking will be fit to the observed spectrum and it is beneficial to ask beforehand: what accuracy is required to always allow the discrimination of two particular models and which are the most important masses to observe? Each model predicts a bounded patch in the space of observables once unknown parameters are scanned over. The questions can be answered by minimising a 'distance' measure between the two hypersurfaces. We construct a distance measure that scales like a constant fraction of an observable, since that is how the experimental errors are expected to scale. Genetic algorithms, including concepts such as natural selection, fitness and mutations, provide a solution to the minimisation problem. We illustrate the efficiency of the method by comparing three different classes of string models for which the above questions could not be answered with previous techniques. The required accuracy is in the range accessible to the Large Hadron Collider (LHC) when combined with a future linear collider (LC) facility. The technique presented here can be applied to more general classes of models or observables. (author)
Thorpe, S. A.
1980-01-01
The physical processes which control the transfer of gases between the atmosphere and oceans or lakes are poorly understood. Clouds of micro-bubbles have been detected below the surface of Loch Ness when the wind is strong enough to cause the waves to break. The rate of transfer of gas into solution from these bubbles is estimated to be significant if repeated on a global scale. We present here further evidence that the bubbles are caused by breaking waves, and discuss the relationship between the mean frequency of wave breaking at a fixed point and the average distance between breaking waves, as might be estimated from an aerial photograph.
Measuring Gauge-Mediated SuperSymmetry Breaking Parameters at a 500 GeV $e^{+}e^{-}$ Linear Collider
Ambrosanio, S; Ambrosanio, Sandro; Blair, Grahame A.
2000-01-01
We consider the phenomenology of a class of gauge-mediated supersymmetry (SUSY) breaking (GMSB) models at a e+e- Linear Collider (LC) with c.o.m. energy up to 500 GeV. In particular, we refer to a high-luminosity (L ~ 3 x 10^34 cm^-2 s^-1) machine, and use detailed simulation tools for a proposed detector. Among the GMSB-model building options, we define a simple framework and outline its predictions at the LC, under the assumption that no SUSY signal is detected at LEP or Tevatron. Our focus is on the case where a neutralino (N1) is the next-to-lightest SUSY particle (NLSP), for which we determine the relevant regions of the GMSB parameter space. Many observables are calculated and discussed, including production cross sections, NLSP decay widths, branching ratios and distributions, for dominant and rare channels. We sketch how to extract the messenger and electroweak scale model parameters from a spectrum measured via, e.g. threshold-scanning techniques. Several experimental methods to measure the NLSP mass...
'BREAKS' Protocol for Breaking Bad News.
Narayanan, Vijayakumar; Bista, Bibek; Koshy, Cheriyan
2010-05-01
Information that drastically alters the life world of the patient is termed as bad news. Conveying bad news is a skilled communication, and not at all easy. The amount of truth to be disclosed is subjective. A properly structured and well-orchestrated communication has a positive therapeutic effect. This is a process of negotiation between patient and physician, but physicians often find it difficult due to many reasons. They feel incompetent and are afraid of unleashing a negative reaction from the patient or their relatives. The physician is reminded of his or her own vulnerability to terminal illness, and find themselves powerless over emotional distress. Lack of sufficient training in breaking bad news is a handicap to most physicians and health care workers. Adherence to the principles of client-centered counseling is helpful in attaining this skill. Fundamental insight of the patient is exploited and the bad news is delivered in a structured manner, because the patient is the one who knows what is hurting him most and he is the one who knows how to move forward. Six-step SPIKES protocol is widely used for breaking bad news. In this paper, we put forward another six-step protocol, the BREAKS protocol as a systematic and easy communication strategy for breaking bad news. Development of competence in dealing with difficult situations has positive therapeutic outcome and is a professionally satisfying one.
International Nuclear Information System (INIS)
Weinberg, S.
1976-01-01
The problem of how gauge symmetries of the weak interactions get broken is discussed. Some reasons why such a heirarchy of gauge symmetry breaking is needed, the reason gauge heirarchies do not seem to arise in theories of a given and related type, and the implications of theories with dynamical symmetry breaking, which can exhibit a gauge hierarchy
Dynamical supersymmetry breaking
International Nuclear Information System (INIS)
Affleck, I.
1985-03-01
Supersymmetry, and in particular, dynamical supersymmetry breaking, offers the hope of a natural solution of the gauge hierarchy problem in grand unification. I briefly review recent work on dynamical supersymmetry breaking in four-dimensional Higgs theories and its application to grand unified model building
Polarization effects in early SUSY searches at the CERN LHC
Energy Technology Data Exchange (ETDEWEB)
Wang, Kai; Wang, Liucheng; Xu, Tao; Zhang, Liangliang [Zhejiang University, Department of Physics, Zhejiang Institute of Modern Physics, Hangzhou, Zhejiang (China)
2015-06-15
An on-shell effective theory (OSET) approach has been widely used in searches of various supersymmetric signals, in particular, gluino/squark pairs with long cascade decay chains in which complete matrix element calculations may encounter high dimensional integrations. On the other hand, leptons from polarized chargino decays may show a significant boost effect in some scenarios and simulation without polarization information may underestimate or overestimate the lepton p{sub T} cut efficiencies in the first place. We study the polarization effects in leptonic decaying charginos from squarks or gluinos. Taking the polarization effects into account, we find it still justifiable to take only the OSET approach for a large parameter region, for instance, the first two generation squarks due to indistinguishable final states as well as a flat angular distribution in the motion of the lepton. On the other hand, we use the leptonic stop to illustrate the feature and find that the lepton p{sub T} cut efficiencies in cross section measurements can have maximally 25 % reduction or maximally 17 % enhancement in comparison with the kinematics-only approach. The signal rates after the cuts simulated by OSET are then underestimated/overestimated and the real bound on the squark/gluino should be more stringent or loose for a specific choice of the chargino and one can take the simulated efficiencies as a fast-simulation factor to multiply to the OSET simulated results. (orig.)
Neutralino Dark Matter in non-universal and non-minimal SUSY
International Nuclear Information System (INIS)
King, S.F.
2010-01-01
We discuss neutralino dark matter in non-universal SUSY including the NUHM, SU(5) with non-universal gauginos. In the MSSM we argue from naturalness that non-universal soft mass parameters are preferred, with non-universal gaugino masses enabling supernatural dark matter beyond the MSSM, we also discuss neutralino dark matter in the U SSM and E 6 SSM. In the E 6 SSM a light neutralino LSP coming from the inert Higgsino and singlino sector is unavoidable and makes an attractive dark matter candidate.
Susy-QCD corrections to neutrlino pair production in association with a jet
Energy Technology Data Exchange (ETDEWEB)
Cullen, Gavin [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany); Greiner, Nicolas; Heinrich, Gudrun [Max-Planck-Institut fuer Physik, Muenchen (Germany)
2012-12-15
We present the NLO Susy-QCD corrections to the production of a pair of the lightest neutralinos plus one jet at the LHC, appearing as a monojet signature in combination with missing energy. We fully include all non-resonant diagrams, i.e. we do not assume that production and decay factorise. We derive a parameter point based on the p19MSSM which is compatible with current experimental bounds and show distributions based on missing transverse energy and jet observables. Our results are produced with the program GoSam for automated one-loop calculations in combination with MadDipole/- MadGraph for the real radiation part.
SUSY-QCD corrections to Higgs boson production at hadron colliders
International Nuclear Information System (INIS)
Djouadi, A.; Spira, M.
1999-12-01
We analyze the next-to-leading order SUSY-QCD corrections to the production of Higgs particles at hadron colliders in supersymmetric extensions of the standard model. Besides the standard QCD corrections due to gluon exchange and emission, genuine supersymmetric corrections due to the virtual exchange of squarks and gluinos are present. At both the Tevatron and the LHC, these corrections are found to be small in the Higgs-strahlung, Drell-Yan-like Higgs pair production and vector boson fusion processes. (orig.)
Consistency of Trend Break Point Estimator with Underspecified Break Number
Directory of Open Access Journals (Sweden)
Jingjing Yang
2017-01-01
Full Text Available This paper discusses the consistency of trend break point estimators when the number of breaks is underspecified. The consistency of break point estimators in a simple location model with level shifts has been well documented by researchers under various settings, including extensions such as allowing a time trend in the model. Despite the consistency of break point estimators of level shifts, there are few papers on the consistency of trend shift break point estimators in the presence of an underspecified break number. The simulation study and asymptotic analysis in this paper show that the trend shift break point estimator does not converge to the true break points when the break number is underspecified. In the case of two trend shifts, the inconsistency problem worsens if the magnitudes of the breaks are similar and the breaks are either both positive or both negative. The limiting distribution for the trend break point estimator is developed and closely approximates the finite sample performance.
Prophylactic treatment of retinal breaks
DEFF Research Database (Denmark)
Blindbæk, Søren Leer; Grauslund, Jakob
2015-01-01
Prophylactic treatment of retinal breaks has been examined in several studies and reviews, but so far, no studies have successfully applied a systematic approach. In the present systematic review, we examined the need of follow-up after posterior vitreous detachment (PVD) - diagnosed by slit...... published before 2012. Four levels of screening identified 13 studies suitable for inclusion in this systematic review. No meta-analysis was conducted as no data suitable for statistical analysis were identified. In total, the initial examination after symptomatic PVD identified 85-95% of subsequent retinal......-47% of cases, respectively. The cumulated incidence of RRD despite prophylactic treatment was 2.1-8.8%. The findings in this review suggest that follow-up after symptomatic PVD is only necessary in cases of incomplete retinal examination at presentation. Prophylactic treatment of symptomatic retinal breaks...
International Nuclear Information System (INIS)
Wichmann, K.
2009-01-01
Recently, Letters of Intent (LoI) for experiments at the International Linear Collider (ILC) have been submitted. Among the three proposals is the International Large Detector (ILD) concept which is at the focus of these studies. From various subjects addressed in the LoI, a wide spectrum of studies of SUSY particle properties is presented here. Most of them are benchmark reactions for the ILC and can be used both in physics studies and in work on detector design and optimization, respectively. All studies were performed with a full detector simulation using GEANT4, which is a great improvement compared to the previous results with much less detailed, so called f ast , simulation (SIMDET). The importance of this improved simulation is reflected in the results. The presented analyzes have been chosen to be the most challenging for the detector to study its performance and guide the detector development. Additionally an important problem of unavoidable beam induced backgrounds at linear colliders is addressed and ways of reducing its impact on physics studies are shown for an example SUSY analysis. (author)
Rencontres de Moriond QCD 2012: Searches for Dark Matter, SUSY and other exotic particles
CERN Bulletin
2012-01-01
The fact that SUSY and other new physics signals do not seem to hide in “obvious” places is bringing a healthy excitement to Moriond. Yesterday’s presentations confirmed that, with the 2012 LHC data, experiments will concentrate on searches for exotic particles that might decay into yet unexplored modes. In the meantime, they are setting unprecedented boundaries to regions where new particles (not just SUSY) could exist. The limits of what particle accelerators can bring to enlighten the mystery of Dark Matter were also presented and discussed. Each bar on the picture represents a decay channel that the ATLAS Collaboration (top) and the CMS Collaborations (bottom) have analysed. The value indicated on the scale (or on the relevant bar) defines the maximum mass that the particle in that search cannot have. Not knowing what kind of new physics we should really expect, and given the fact that it does not seem to be hiding in any of the obvious places, e...
Testing SUSY at the LHC: Electroweak and Dark matter fine tuning at two-loop order
Cassel, S; Ross, G G
2010-01-01
In the framework of the Constrained Minimal Supersymmetric Standard Model (CMSSM) we evaluate the electroweak fine tuning measure that provides a quantitative test of supersymmetry as a solution to the hierarchy problem. Taking account of current experimental constraints we compute the fine tuning at two-loop order and determine the limits on the CMSSM parameter space and the measurements at the LHC most relevant in covering it. Without imposing the LEPII bound on the Higgs mass, it is shown that the fine tuning computed at two-loop has a minimum $\\Delta=8.8$ corresponding to a Higgs mass $m_h=114\\pm 2$ GeV. Adding the constraint that the SUSY dark matter relic density should be within present bounds we find $\\Delta=15$ corresponding to $m_h=114.7\\pm 2$ GeV and this rises to $\\Delta=17.8$ ($m_h=115.9\\pm 2$ GeV) for SUSY dark matter abundance within 3$\\sigma$ of the WMAP constraint. We extend the analysis to include the contribution of dark matter fine tuning. In this case the overall fine tuning and Higgs mas...
Leptogenesis scenarios for natural SUSY with mixed axion-higgsino dark matter
International Nuclear Information System (INIS)
Bae, Kyu Jung; Baer, Howard; Serce, Hasan; Zhang, Yi-Fan
2016-01-01
Supersymmetric models with radiatively-driven electroweak naturalness require light higgsinos of mass ∼ 100–300 GeV . Naturalness in the QCD sector is invoked via the Peccei-Quinn (PQ) axion leading to mixed axion-higgsino dark matter. The SUSY DFSZ axion model provides a solution to the SUSY μ problem and the Little Hierarchy μ|| m 3/2 may emerge as a consequence of a mismatch between PQ and hidden sector mass scales. The traditional gravitino problem is now augmented by the axino and saxion problems, since these latter particles can also contribute to overproduction of WIMPs or dark radiation, or violation of BBN constraints. We compute regions of the T R vs. m 3/2 plane allowed by BBN, dark matter and dark radiation constraints for various PQ scale choices f a . These regions are compared to the values needed for thermal leptogenesis, non-thermal leptogenesis, oscillating sneutrino leptogenesis and Affleck-Dine leptogenesis. The latter three are allowed in wide regions of parameter space for PQ scale f a∼ 10 10 –10 12 GeV which is also favored by naturalness: f a ∼ √μM P /λ μ ∼ 10 10 –10 12 GeV . These f a values correspond to axion masses somewhat above the projected ADMX search regions
Supersymmetry breaking from superstrings
International Nuclear Information System (INIS)
Gaillard, M.K.; Lawrence Berkeley Lab., CA; California Univ., Berkeley
1990-01-01
The gauge hierarchy problem is briefly reviewed and a class of effective field theories obtained from superstrings is described. These are characterized by a clasical symmetry, related to the space-time duality of string theory, that is responsible for the suppression of observable supersymmetry breaking effects. At the quantum level, the symmetry is broken by anomalies that provide the seed of observable supersymmetry breaking, and an acceptably large gauge hierarchy may be generated
Supersymmetry breaking from superstrings
International Nuclear Information System (INIS)
Gaillard, M.K.
1990-05-01
The gauge hierarchy problem is briefly reviewed and a class of effective field theories obtained from superstrings is described. These are characterized by a classical symmetry, related to the space-time duality of string theory, that is responsible for the suppression of observable supersymmetry breaking effects. At the quantum level, the symmetry is broken by anomalies that provide the seed of observable supersymmetry breaking, and an acceptably large gauge hierarchy may be generated. 26 refs
International Nuclear Information System (INIS)
Loebrich, M.; Ikpeme, S.; Kiefer, J.
1994-01-01
DNA samples prepared from human SP 3 cells, which had not been exposed to various doses of X-ray, were treated with NotI restriction endonuclease before being run in a contour-clamped homogeneous electrophoresis system. The restriction enzyme cuts the DNA at defined positions delivering DNA sizes which can be resolved by pulsed-field gel electrophoresis (PFGE). In order to investigate only one of the DNA fragments, a human lactoferrin cDNA, pHL-41, was hybridized to the DNA separated by PFGE. As a result, only the DNA fragment which contains the hybridized gene was detected resulting in a one-band pattern. The decrease of this band was found to be exponential with increasing radiation dose. From the slope, a double-strand break induction rate of (6.3±0.7) x 10 -3 /Mbp/Gy was deduced for 80 kV X-rays. (Author)
SU(2) symmetry and degeneracy from SUSY QM of a neutron in the magnetic field of a linear current
International Nuclear Information System (INIS)
Martinez, D.; Granados, V.D.; Mota, R.D.
2006-01-01
From SUSY ladder operators in momentum space of a neutron in the magnetic field of a linear current, we construct 2x2 matrix operators that together with the z-component of the total angular momentum satisfy the su(2) Lie algebra. We use this fact to explain the degeneracy of the energy spectrum
Calculation of the single lepton SUSY analysis limits in the cMSSM m0-m1/2 plane
Megas, Efstathios
2014-01-01
The goal of the summer student project was the calculation of the single lepton SUSY analysis limits in the cMSSM $m_0$-$m_{1/2}$ plane. To this end, the analysis code, the production of the ntuples and a familarization with the higgs combination tool was needed.
Supersymmetry breaking at finite temperature
International Nuclear Information System (INIS)
Kratzert, K.
2002-11-01
The mechanism of supersymmetry breaking at finite temperature is still only partly understood. Though it has been proven that temperature always breaks supersymmetry, the spontaneous nature of this breaking remains unclear, in particular the role of the Goldstone fermion. The aim of this work is to unify two existing approaches to the subject. From a hydrodynamic point of view, it has been argued under very general assumptions that in any supersymmetric quantum field theory at finite temperature there should exist a massless fermionic collective excitation, named phonino because of the analogy to the phonon. In the framework of a self-consistent resummed perturbation theory, it is shown for the example of the Wess-Zumino model that this mode fits very well into the quantum field theoretical framework pursued by earlier works. Interpreted as a bound state of boson and fermion, it contributes to the supersymmetric Ward-Takahashi identities in a way showing that supersymmetry is indeed broken spontaneously with the phonino playing the role of the Goldstone fermion. The second part of the work addresses the case of supersymmetric quantum electrodynamics. It is shown that also here the phonino exists and must be interpreted as the Goldstone mode. This knowledge allows a generalization to a wider class of models. (orig.)
Energy Technology Data Exchange (ETDEWEB)
Sudiarta, I. Wayan; Angraini, Lily Maysari, E-mail: lilyangraini@unram.ac.id [Physics Study Program, University of Mataram, Jln. Majapahit 62 Mataram, NTB (Indonesia)
2016-04-19
We have applied the finite difference time domain (FDTD) method with the supersymmetric quantum mechanics (SUSY-QM) procedure to determine excited energies of one dimensional quantum systems. The theoretical basis of FDTD, SUSY-QM, a numerical algorithm and an illustrative example for a particle in a one dimensional square-well potential were given in this paper. It was shown that the numerical results were in excellent agreement with theoretical results. Numerical errors produced by the SUSY-QM procedure was due to errors in estimations of superpotentials and supersymmetric partner potentials.
Strong Electroweak Symmetry Breaking
Grinstein, Benjamin
2011-01-01
Models of spontaneous breaking of electroweak symmetry by a strong interaction do not have fine tuning/hierarchy problem. They are conceptually elegant and use the only mechanism of spontaneous breaking of a gauge symmetry that is known to occur in nature. The simplest model, minimal technicolor with extended technicolor interactions, is appealing because one can calculate by scaling up from QCD. But it is ruled out on many counts: inappropriately low quark and lepton masses (or excessive FCNC), bad electroweak data fits, light scalar and vector states, etc. However, nature may not choose the minimal model and then we are stuck: except possibly through lattice simulations, we are unable to compute and test the models. In the LHC era it therefore makes sense to abandon specific models (of strong EW breaking) and concentrate on generic features that may indicate discovery. The Technicolor Straw Man is not a model but a parametrized search strategy inspired by a remarkable generic feature of walking technicolor,...
DEFF Research Database (Denmark)
Bajc, Borut; Dondi, Nicola Andrea; Sannino, Francesco
2018-01-01
We investigate the short distance fate of distinct classes of not asymptotically free supersymmetric gauge theories. Examples include super QCD with two adjoint fields and generalised superpotentials, gauge theories without superpotentials and with two types of matter representation and semi-simp...
Hadronic EDMs in SUSY SU(5) GUTs with right-handed neutrinos
International Nuclear Information System (INIS)
Hisano, Junji; Kakizaki, Mitsuru; Nagai, Minoru; Shimizu, Yasuhiro
2004-01-01
We discuss hadronic EDM constraints on the neutrino sector in the SUSY SU(5) GUT with the right-handed neutrinos. The hadronic EDMs are sensitive to the right-handed down-type squark mixings, especially between the second and third generations and between the first and third ones, compared with the other low-energy hadronic observables, and the flavor mixings are induced by the neutrino Yukawa interaction. The current experimental bound of the neutron EDM may imply that the right-handed tau neutrino mass is smaller than about 10 14 GeV in the minimal supergravity scenario, and it may be improved furthermore in future experiments, such as the deuteron EDM measurement
Squark production in R-symmetric SUSY with Dirac gluinos. NLO corrections
Energy Technology Data Exchange (ETDEWEB)
Diessner, Philip [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Kotlarski, Wojciech [Technische Univ. Dresden (Germany). Inst. fuer Kern- und Teilchenphysik; Warsaw Univ. (Poland). Faculty of Physics; Liebschner, Sebastian; Stoeckinger, Dominik [Technische Univ. Dresden (Germany). Inst. fuer Kern- und Teilchenphysik
2017-11-15
R-symmetry leads to a distinct realisation of SUSY with a significantly modified coloured sector featuring a Dirac gluino and a scalar colour octet (sgluon). We present the impact of R-symmetry on squark production at the 13 TeV LHC. We study the total cross sections and their NLO corrections from all strongly interacting states, their dependence on the Dirac gluino mass and sgluon mass as well as their systematics for selected benchmark points. We find that tree-level cross sections in the R-symmetric model are reduced compared to the MSSM but the NLO K-factors are generally larger in the order of ten to twenty per cent. In the course of this work we derive the required DREG → DRED transition counterterms and necessary on-shell renormalisation constants. The real corrections are treated using FKS subtraction, with results cross checked against an independent calculation employing the two cut phase space slicing method.
The Challenge of Determining SUSY Parameters in Focus-Point-Inspired Cases
Rolbiecki, K.; Kalinowski, J.; Moortgat-Pick, G.
2006-01-01
We discuss the potential of combined LHC and ILC experiments for SUSY searches in a difficult region of the parameter space, in which all sfermion masses are above the TeV scale. Precision analyses of cross sections of light chargino production and forward--backward asymmetries of decay leptons and hadrons at the ILC, together with mass information on \\tilde{\\chi}^0_2 and squarks from the LHC, allow us to fit rather precisely the underlying fundamental gaugino/higgsino MSSM parameters and to constrain the masses of the heavy virtual sparticles. For such analyses the complete spin correlations between the production and decay processes have to be taken into account. We also took into account expected experimental uncertainties.
SUSY simplified models at 14, 33, and 100 TeV proton colliders
International Nuclear Information System (INIS)
Cohen, Timothy; Golling, Tobias; Hance, Mike; Henrichs, Anna; Howe, Kiel; Loyal, Joshua; Padhi, Sanjay; Wacker, Jay G.
2014-01-01
Results are presented for a variety of SUSY Simplified Models at the 14 TeV LHC as well as a 33 and 100 TeV proton collider. Our focus is on models whose signals are driven by colored production. We present projections of the upper limit and discovery reach in the gluino-neutralino (for both light and heavy flavor decays), squark-neutralino, and gluino-squark Simplified Model planes. Depending on the model a jets + E T miss , mono-jet, or same-sign di-lepton search is applied. The impact of pileup is explored. This study utilizes the Snowmass backgrounds and combined detector. Assuming 3000/,fb −1 of integrated luminosity, a gluino that decays to light flavor quarks can be discovered below 2.3 TeV at the 14 TeV LHC and below 11 TeV at a 100 TeV machine
Matching conditions and duality in N=1 SUSY gauge theories in the conformal window
International Nuclear Information System (INIS)
Kogan, I.I.; Shifman, M.; Vainshtein, A.
1996-01-01
We discuss duality in N=1 SUSY gauge theories in Seiberg close-quote s conformal window, 3N c /2 f c . The close-quote t Hooft consistency conditions, the basic tool for establishing the infrared duality, are considered taking into account higher order α corrections. The conserved (anomaly-free) R current is built to all orders in α. Although this current contains all orders in α the close-quote t Hooft consistency conditions for this current are shown to be one loop. This observation thus justifies Seiberg close-quote s matching procedure. We also briefly discuss the inequivalence of the open-quote open-quote electric close-quote close-quote and open-quote open-quote magnetic close-quote close-quote theories at short distances. copyright 1996 The American Physical Society
Squark production in R-symmetric SUSY with Dirac gluinos. NLO corrections
International Nuclear Information System (INIS)
Diessner, Philip; Kotlarski, Wojciech; Warsaw Univ.; Liebschner, Sebastian; Stoeckinger, Dominik
2017-11-01
R-symmetry leads to a distinct realisation of SUSY with a significantly modified coloured sector featuring a Dirac gluino and a scalar colour octet (sgluon). We present the impact of R-symmetry on squark production at the 13 TeV LHC. We study the total cross sections and their NLO corrections from all strongly interacting states, their dependence on the Dirac gluino mass and sgluon mass as well as their systematics for selected benchmark points. We find that tree-level cross sections in the R-symmetric model are reduced compared to the MSSM but the NLO K-factors are generally larger in the order of ten to twenty per cent. In the course of this work we derive the required DREG → DRED transition counterterms and necessary on-shell renormalisation constants. The real corrections are treated using FKS subtraction, with results cross checked against an independent calculation employing the two cut phase space slicing method.
Search for resonant sneutrino production in R-parity violating SUSY scenarios with CMS
Energy Technology Data Exchange (ETDEWEB)
Keller, Henning; Erdweg, Soeren; Gueth, Andreas; Hebbeker, Thomas; Meyer, Arnd; Mukherjee, Swagata [III. Physikalisches Institut A, RWTH Aachen (Germany)
2016-07-01
Supersymmetric models are among the most promising extensions of the standard model. In many models R-parity is said to be conserved. However, allowing R-parity violation can permit interesting final states and signatures that are not covered by SUSY scenarios with R-parity conservation. The decay of a resonant sneutrino to two standard model leptons of different flavour is analyzed. The focus lies on the electron-muon final state investigating the R-parity violating couplings and the mass of the resonantly produced sneutrino. The analysis is based on the 2015 data of proton-proton collisions corresponding to an integrated luminosity of 2.5 fb{sup -1} at a centre-of-mass energy of 13 TeV recorded with the CMS detector at the LHC.
PySLHA: a Pythonic interface to SUSY Les Houches accord data
International Nuclear Information System (INIS)
Buckley, Andy
2015-01-01
This paper describes the PySLHA package, a Python language module and program collection for reading, writing and visualising SUSY model data in the SLHA format. PySLHA can read and write SLHA data in a very general way, including the official SLHA2 extension and user customisations, and with arbitrarily deep indexing of data block entries and a dedicated, intuitive interface for particle data and decay information. The draft SLHA3 XSECTION feature is also fully supported. PySLHA can additionally read and write the legacy ISAWIG model format, and provides format conversion scripts. A publication-quality mass spectrum and decay chain plotting tool, slhaplot, is included in the package. (orig.)
Finding viable models in SUSY parameter spaces with signal specific discovery potential
Burgess, Thomas; Lindroos, Jan Øye; Lipniacka, Anna; Sandaker, Heidi
2013-08-01
Recent results from ATLAS giving a Higgs mass of 125.5 GeV, further constrain already highly constrained supersymmetric models such as pMSSM or CMSSM/mSUGRA. As a consequence, finding potentially discoverable and non-excluded regions of model parameter space is becoming increasingly difficult. Several groups have invested large effort in studying the consequences of Higgs mass bounds, upper limits on rare B-meson decays, and limits on relic dark matter density on constrained models, aiming at predicting superpartner masses, and establishing likelihood of SUSY models compared to that of the Standard Model vis-á-vis experimental data. In this paper a framework for efficient search for discoverable, non-excluded regions of different SUSY spaces giving specific experimental signature of interest is presented. The method employs an improved Markov Chain Monte Carlo (MCMC) scheme exploiting an iteratively updated likelihood function to guide search for viable models. Existing experimental and theoretical bounds as well as the LHC discovery potential are taken into account. This includes recent bounds on relic dark matter density, the Higgs sector and rare B-mesons decays. A clustering algorithm is applied to classify selected models according to expected phenomenology enabling automated choice of experimental benchmarks and regions to be used for optimizing searches. The aim is to provide experimentalist with a viable tool helping to target experimental signatures to search for, once a class of models of interest is established. As an example a search for viable CMSSM models with τ-lepton signatures observable with the 2012 LHC data set is presented. In the search 105209 unique models were probed. From these, ten reference benchmark points covering different ranges of phenomenological observables at the LHC were selected.
DEFF Research Database (Denmark)
Konradsen, Hanne; Kirkevold, Marit; McCallin, Antoinette
2012-01-01
and individual interviews were analyzed using the grounded theory method. The findings revealed that the main concern of the patients was feeling isolated, which was resolved using a process of interactional integration. Interactional integration begins by breaking the silence to enable the progression from...
DEFF Research Database (Denmark)
Bredmose, Henrik; Peregrine, D.H.; Bullock, G.N.
2009-01-01
When an ocean wave breaks against a steep-fronted breakwater, sea wall or a similar marine structure, its impact on the structure can be very violent. This paper describes the theoretical studies that, together with field and laboratory investigations, have been carried out in order to gain a bet...
A Geometric Approach to CP Violation: Applications to the MCPMFV SUSY Model
Ellis, John; Pilaftsis, Apostolos
2010-01-01
We analyze the constraints imposed by experimental upper limits on electric dipole moments (EDMs) within the Maximally CP- and Minimally Flavour-Violating (MCPMFV) version of the MSSM. Since the MCPMFV scenario has 6 non-standard CP-violating phases, in addition to the CP-odd QCD vacuum phase \\theta_QCD, cancellations may occur among the CP-violating contributions to the three measured EDMs, those of the Thallium, neutron and Mercury, leaving open the possibility of relatively large values of the other CP-violating observables. We develop a novel geometric method that uses the small-phase approximation as a starting point, takes the existing EDM constraints into account, and enables us to find maximal values of other CP-violating observables, such as the EDMs of the Deuteron and muon, the CP-violating asymmetry in b --> s \\gamma decay, and the B_s mixing phase. We apply this geometric method to provide upper limits on these observables within specific benchmark supersymmetric scenarios, including extensions t...
Towards a Decision Making Model for City Break Travel
Dunne, Gerard; Flanagan, Sheila; Buckley, Joan
2011-01-01
Purpose The purpose of this paper is to examine the city break travel decision and in particular to develop a decision making model that reflects the characteristics of this type of trip taking. Method The research follows a sequential mixed methods approach consisting of two phases. Phase One involves a quantitative survey of 1,000 visitors to Dublin, from which city break and non city break visitor cohorts are separated and compared. Phase Two entails a qualitative analysis (involvin...
Higgs mass prediction with non-universal soft supersymmetry breaking in MSSM
International Nuclear Information System (INIS)
Codoban, S.; Jurcisin, M.; Kazakov, D.
2001-01-01
In the framework of the MSSM (Minimal supersymmetric extension of the standard model) the non-universal boundary conditions of soft SUSY breaking parameters are considered. Taking as input the top, bottom and Z-boson masses, the values of the gauge couplings at the EW scale and the infrared quasi-fixed points for Yukawa couplings and the soft parameters the mass of the lightest CP-even Higgs boson is found to be m h = 92.7 -4.9 +10 ± 5 ± 0.4 GeV/c 2 for the low tan(β) case and m h 125.7 -9.0 +6.4 ± 5 ± 0.4 GeV/c 2 (μ > 0) or m h 125.4 -9.0 +6.6 ± 5 ± 0.4 Ge V/c 2 (μ < 0) in the case of large tan(β). (authors)
Rencontres de Moriond EW 2012: Addressing symmetry breaking and mass hierarchy
Pauline Gagnon
2012-01-01
Last Friday at the Moriond conference in La Thuile in Italy, Lisa Randall from Harvard University reminded the audience how all fields are related: electroweak symmetry breaking must take into account flavour physics for example. Every good model should address this intrinsic connection. Despite many expectations, no signs for supersymmetry (SUSY) of any type has been found to date. So Lisa Randall worked with Csaba Csaki and John Terning to explore alternatives and developed a version of supersymmetry built on the Minimal Composite Supersymmetry Standard Model (MCSSM) that Csaki, Shirman, and Terning had developed, incorporating a strongly interacting theory with compositeness that addresses among other things the fact that the top quark is so much heavier than all other quarks. Randall and collaborators showed that this model, when supersymmetry is incorporated, naturally accommodates both a Higgs boson around 125 GeV and a light stop, the supersymmetric partner to the top quark. &a...
Massive Higher Dimensional Gauge Fields as Messengers of Supersymmetry Breaking
International Nuclear Information System (INIS)
Chacko, Z.; Luty, Markus A.; Ponton, Eduardo
2000-01-01
We consider theories with one or more compact dimensions with size r > 1/M, where M is the fundamental Planck scale, with the visible and hidden sectors localized on spatially separated 3 -branes''. We show that a bulk U(1) gauge field spontaneously broken on the hidden-sector 3-brane is an attractive candidate for the messenger of supersymmetry breaking. In this scenario scalar mass-squared terms are proportional to U(1) charges, and therefore naturally conserve flavor. Arbitrary flavor violation at the Planck scale gives rise to exponentially suppressed flavor violation at low energies. Gaugino masses can be generated if the standard gauge fields propagate in the bulk; μ and Bμ terms can be generated by the Giudice-Masiero or by the VEV of a singlet in the visible sector. The latter case naturally solves the SUSY CP problem. Realistic phenomenology can be obtained either if all microscopic parameters are order one in units of M, or if the theory is strongly coupled at the scale M. (For the latter case, we estimate parameters by extending n aive dimensional analysis'' to higher-dimension theories with branes.) In either case, the only unexplained hierarchy is the l arge'' size of the extra dimensions in fundamental units, which need only be an order of magnitude. All soft masses are naturally within an order of magnitude of m 3/2 , and trilinear scalar couplings are negligible. Squark and slepton masses can naturally unify even in the absence of grand unification. (author)
Optimal charge and color breaking conditions in the MSSM
International Nuclear Information System (INIS)
Le Moueel, C.
2001-01-01
In the MSSM, we make a careful tree-level study of charge and color breaking conditions in the plane (H 2 ,u-tilde L ,u-tilde R ), focusing on the top quark scalar case. A simple and fast procedure to compute the VEVs of the dangerous vacuum is presented and used to derive a model-independent optimal CCB bound on A t . This bound takes into account all possible deviations of the CCB vacuum from the D-flat directions. For large tanβ, it provides a CCB maximal mixing for the stop scalar fields t-tilde 1 ,t-tilde 2 , which automatically rules out the Higgs maximal mixing vertical bar A t vertical bar = √6 m t-tilde . As a result, strong limits on the stop mass spectrum and a reduction, in some cases substantial, of the one-loop upper bound on the CP-even lightest Higgs boson mass, m h , are obtained. To incorporate one-loop leading corrections, this tree-level CCB condition should be evaluated at an appropriate renormalization scale which proves to be the SUSY scale
The issue of supersymmetry breaking in strings
International Nuclear Information System (INIS)
Binetruy, P.
1989-12-01
We discuss the central role that supersymmetry plays in string models, both in spacetime and at the level of the string world-sheet. The problems associated with supersymmetry-breaking are reviewed together with some of the attempts to solve them, in the string as well as the field theory approach
DEFF Research Database (Denmark)
Hartley, Jannie Møller
2011-01-01
This chapter revisits seminal theoretical categorizations of news proposed three decades earlier by US sociologist Gaye Tuchman. By exploring the definition of ”breaking news” in the contemporary online newsrooms of three Danish news organisations, the author offers us a long overdue re-theorizat......-theorization of journalistic practice in the online context and helpfully explores well-evidenced limitations to online news production, such as the relationship between original reporting and the use of ”shovelware.”......This chapter revisits seminal theoretical categorizations of news proposed three decades earlier by US sociologist Gaye Tuchman. By exploring the definition of ”breaking news” in the contemporary online newsrooms of three Danish news organisations, the author offers us a long overdue re...
Breaking News as Radicalisation
DEFF Research Database (Denmark)
Hartley, Jannie Møller
The aim of the paper is to make explicit how the different categories are applied in the online newsroom and thus how new categories can be seen as positioning strategies in the form of radicalisations of already existing categories. Thus field theory provides us with tools to analyse how online...... journalists are using the categorisations to create hierarchies within the journalistic field in order to position themselves as specialists in what Tuchman has called developing news, aiming and striving for what today is know as breaking news and the “exclusive scoop,” as the trademark of online journalism...... in a media environment where immediacy rules (Domingo 2008a). Following this research the primary focus of this paper is the category breaking news and Tuchmans developing news, but as they are all connected the analysis will also draw upon the other categories in Tuchmans typology. The theoretical framework...
Predicting appointment breaking.
Bean, A G; Talaga, J
1995-01-01
The goal of physician referral services is to schedule appointments, but if too many patients fail to show up, the value of the service will be compromised. The authors found that appointment breaking can be predicted by the number of days to the scheduled appointment, the doctor's specialty, and the patient's age and gender. They also offer specific suggestions for modifying the marketing mix to reduce the incidence of no-shows.
Single sector supersymmetry breaking
International Nuclear Information System (INIS)
Luty, Markus A.; Terning, John
1999-01-01
We review recent work on realistic models that break supersymmetry dynamically and give rise to composite quarks and leptons, all in a single sector. These models have a completely natural suppression of flavor-changing neutral currents, and the hierarchy of Yukawa couplings is explained by the dimensionality of composite states. The generic signatures are unification of scalar masses with different quantum numbers at the compositeness scale, and lighter gaugino, Higgsino, and third-generation sfermion masses
Automated calculation of sinθ{sub W} and M{sub W} from muon decay within FlexibleSUSY
Energy Technology Data Exchange (ETDEWEB)
Bach, Markus; Stoeckinger, Dominik [IKTP, TU Dresden (Germany); Voigt, Alexander [DESY, Hamburg (Germany)
2016-07-01
The spectrum generator generator FlexibleSUSY can be utilized to investigate a variety of supersymmetric and non-supersymmetric models. We present an implementation which calculates the weak mixing angle from the precisely measured muon decay, especially taking vertex and box diagram corrections of the respective model into account. This framework also offers a prediction of the W boson mass which can be compared to the experimental value and thus used to exclude parameter regions.
Heidegger, Constantin
2017-01-01
This poster reports on the search for the production of charginos and neutralinos in events with either two leptons of the same charge or three or more leptons using the full 2016 proton-proton collision dataset of $35.9\\,\\mathrm{fb}^{-1}$ at $\\sqrt{s}=13\\,\\mathrm{TeV}$ collected by the CMS detector. Exclusion limits at $95\\,\\%$ confidence level range between $450-1100\\,\\mathrm{GeV}$ depending on the SUSY scenario.
Dual descriptions of supersymmetry breaking
International Nuclear Information System (INIS)
Intrilligator, K.; Thomas, S.
1996-08-01
Dynamical supersymmetry breaking is considered in models which admit descriptions in terms of electric, confined, or magnetic degrees of freedom in various limits. In this way, a variety of seemingly different theories which break supersymmetry are actually interrelated by confinement or duality. Specific examples are given in which there are two dual descriptions of the supersymmetry breaking ground state
Detecting Structural Breaks using Hidden Markov Models
DEFF Research Database (Denmark)
Ntantamis, Christos
Testing for structural breaks and identifying their location is essential for econometric modeling. In this paper, a Hidden Markov Model (HMM) approach is used in order to perform these tasks. Breaks are defined as the data points where the underlying Markov Chain switches from one state to another....... The estimation of the HMM is conducted using a variant of the Iterative Conditional Expectation-Generalized Mixture (ICE-GEMI) algorithm proposed by Delignon et al. (1997), that permits analysis of the conditional distributions of economic data and allows for different functional forms across regimes...
SUSY-QCD corrections to the (co)annihilation of neutralino dark matter within the MSSM
Energy Technology Data Exchange (ETDEWEB)
Meinecke, Moritz
2015-06-15
Based on experimental observations, it is nowadays assumed that a large component of the matter content in the universe is comprised of so-called cold dark matter. Furthermore, latest measurements of the temperature fluctuations of the cosmic microwave background provided an estimation of the dark matter relic density at a measurement error of one percent (concerning the experimental 1σ-error). The lightest neutralino χ 0{sub 1}, a particle which subsumes under the phenomenologically interesting category of weakly interacting massive particles, is a viable dark matter candidate for many supersymmetric (SUSY) models whose relic density Ω{sub χ} {sub 0{sub 1}} happens to lie quite naturally within the experimentally favored ballpark of dark matter. The high experimental precision can be used to constrain the SUSY parameter space to its cosmologically favored regions and to pin down phenomenologically interesting scenarios. However, to actually benefit from this progress on the experimental side it is also mandatory to minimize the theoretical uncertainties. An important quantity within the calculation of the neutralino relic density is the thermally averaged sum over different annihilation and coannihilation cross sections of the neutralino and further supersymmetric particles. It is now assumed and also partly proven that these cross sections can be subject to large loop corrections which can even shift the associated Ω{sub χ} {sub 0{sub 1}} by a factor larger than the current experimental error. However, most of these corrections are yet unknown. In this thesis, we calculate higher-order corrections for some of the most important (co)annihilation channels both within the framework of the R-parity conserving Minimal Supersymmetric Standard Model (MSSM) and investigate their impact on the final neutralino relic density Ω{sub χ} {sub 0{sub 1}}. More precisely, this work provides the full O(α{sub s}) corrections of supersymmetric quantum chromodynamics (SUSY
Four-dimensional aether-like Lorentz-breaking QED revisited and problem of ambiguities
Energy Technology Data Exchange (ETDEWEB)
Baeta Scarpelli, A.P. [Setor Tecnico-Cientifico, Departamento de Policia Federal, Rua Hugo D' Antola, 95, Lapa, Sao Paulo (Brazil); Mariz, T. [Universidade Federal de Alagoas, Instituto de Fisica, Maceio, Alagoas (Brazil); Nascimento, J.R.; Petrov, A.Yu. [Universidade Federal da Paraiba, Departamento de Fisica, Caixa Postal 5008, Joao Pessoa, Paraiba (Brazil)
2013-08-15
In this paper, we consider the perturbative generation of the CPT-even aether-like Lorentz-breaking term in the extended Lorentz-breaking QED within different approaches and discuss its ambiguities. (orig.)
Four-dimensional aether-like Lorentz-breaking QED revisited and problem of ambiguities
International Nuclear Information System (INIS)
Baeta Scarpelli, A.P.; Mariz, T.; Nascimento, J.R.; Petrov, A.Yu.
2013-01-01
In this paper, we consider the perturbative generation of the CPT-even aether-like Lorentz-breaking term in the extended Lorentz-breaking QED within different approaches and discuss its ambiguities. (orig.)
Large eddy simulation of breaking waves
DEFF Research Database (Denmark)
Christensen, Erik Damgaard; Deigaard, Rolf
2001-01-01
A numerical model is used to simulate wave breaking, the large scale water motions and turbulence induced by the breaking process. The model consists of a free surface model using the surface markers method combined with a three-dimensional model that solves the flow equations. The turbulence....... The incoming waves are specified by a flux boundary condition. The waves are approaching in the shore-normal direction and are breaking on a plane, constant slope beach. The first few wave periods are simulated by a two-dimensional model in the vertical plane normal to the beach line. The model describes...... the steepening and the overturning of the wave. At a given instant, the model domain is extended to three dimensions, and the two-dimensional flow field develops spontaneously three-dimensional flow features with turbulent eddies. After a few wave periods, stationary (periodic) conditions are achieved...
BOOK REVIEW: Symmetry Breaking
Ryder, L. H.
2005-11-01
One of the most fruitful and enduring advances in theoretical physics during the last half century has been the development of the role played by symmetries. One needs only to consider SU(3) and the classification of elementary particles, the Yang Mills enlargement of Maxwell's electrodynamics to the symmetry group SU(2), and indeed the tremendous activity surrounding the discovery of parity violation in the weak interactions in the late 1950s. This last example is one of a broken symmetry, though the symmetry in question is a discrete one. It was clear to Gell-Mann, who first clarified the role of SU(3) in particle physics, that this symmetry was not exact. If it had been, it would have been much easier to discover; for example, the proton, neutron, Σ, Λ and Ξ particles would all have had the same mass. For many years the SU(3) symmetry breaking was assigned a mathematical form, but the importance of this formulation fell away when the quark model began to be taken seriously; the reason the SU(3) symmetry was not exact was simply that the (three, in those days) quarks had different masses. At the same time, and in a different context, symmetry breaking of a different type was being investigated. This went by the name of `spontaneous symmetry breaking' and its characteristic was that the ground state of a given system was not invariant under the symmetry transformation, though the interactions (the Hamiltonian, in effect) was. A classic example is ferromagnetism. In a ferromagnet the atomic spins are aligned in one direction only—this is the ground state of the system. It is clearly not invariant under a rotation, for that would change the ground state into a (similar but) different one, with the spins aligned in a different direction; this is the phenomenon of a degenerate vacuum. The contribution of the spin interaction, s1.s2, to the Hamiltonian, however, is actually invariant under rotations. As Coleman remarked, a little man living in a ferromagnet would
Energy Technology Data Exchange (ETDEWEB)
Hill, Christopher T.
2018-03-19
We review and expand upon recent work demonstrating that Weyl invariant theories can be broken "inertially," which does not depend upon a potential. This can be understood in a general way by the "current algebra" of these theories, independently of specific Lagrangians. Maintaining the exact Weyl invariance in a renormalized quantum theory can be accomplished by renormalization conditions that refer back to the VEV's of fields in the action. We illustrate the computation of a Weyl invariant Coleman-Weinberg potential that breaks a U(1) symmetry together,with scale invariance.
DEFF Research Database (Denmark)
Hasse, Cathrine; Trentemøller, Stine
Break the Pattern! A critical enquiry into three scientific workplace cultures: Hercules, Caretakers and Worker Bees is the third publication of the international three year long project "Understanding Puzzles in the Gendered European Map" (UPGEM). By contrasting empirical findings from academic ...... (physics in culture) and discuss how physics as and in culture influence the perception of science, of work and family life, of the interplay between religion and science as well as how physics as culture can either hinder or promote the career of female scientists....
DEFF Research Database (Denmark)
Christensen, Poul Rind; Kirketerp, Anne
2006-01-01
The paper shortly reveals the history of a small school - the KaosPilots - dedicated to educate young people to carriers as entrepreneurs. In this contribution we want to explore how the KaosPilots managed to break the waves of institutionalised concepts and practices of teaching entrepreneurship....... Following the so-called 'Dogma' concept developed by Danish filmmakers, this contribution aim to explore the key elements making up the recipes guiding the entrepreneurship training program exercised by the school. Key factors forming a community of learning practice are outlined as well as the critical...... pedagogical elements on which the education in entrepreneurship rests....
Directory of Open Access Journals (Sweden)
Laura Sánchez-Romero
2017-12-01
Full Text Available The Navalmaíllo site is a karstic rockshelter located in a mountain environment near the Lozoya river. The location of the site allows for the close monitoring of the surrounding area, for following the migrations of animals and for the temporary residence of human groups. The difficulties associated with estimating the time span of occupational processes at archaeological sites raise the problem of the synchrony and diachrony of occupations that form palimpsests. Archaeostratigraphy has revealed the integrity of the sedimentary deposit, how it has been affected by both natural agents (falling boulders and the conservation of the site and human agents (the excavation method. The deformation of the plastic deposit is reflected in the archaeostratigraphy, but the two periods of occupation identified have been preserved and were not largely affected. The archaeostratigraphic approach has resulted in the identification of some of the taphosedimentary aspects of Layer F and in the deciphering of the cultural palimpsest, establishing the cultural sequence of occupations at the Navalmaíllo site.
Energy Technology Data Exchange (ETDEWEB)
Bourke, Philippe; Caron-Malenfant, Julie
2010-09-15
Quebec population and socio economic agents are little or not summoned to in the definition of a vision relating to the dependency of Quebec to petroleum. The presented approach expects to include them as determining actors in the research for solutions to this collective issue, exploring aspects linked both to the energy consumption and production. The question to which the consultation is looking for answers is: How can Quebec reduce its petroleum consumption and increase its energy independence while promoting the harmonious economic and social development of its territory?. [French] La population et les agents socioeconomiques du Quebec sont peu ou pas interpelles dans la definition d'une vision entourant la dependance du Quebec au petrole. La demarche presentee prevoit les inclure comme acteurs determinants vers la recherche de solutions a cet enjeu collectif, explorant les aspects lies tant a la consommation qu'a la production energetique. La question a laquelle la consultation lancee cherchera des reponses est : Comment le Quebec peut-il diminuer sa consommation de petrole et accroitre son independance energetique tout en favorisant le developpement economique et social harmonieux de son territoire?.
The fine-tuning cost of the likelihood in SUSY models
Ghilencea, D M
2013-01-01
In SUSY models, the fine tuning of the electroweak (EW) scale with respect to their parameters gamma_i={m_0, m_{1/2}, mu_0, A_0, B_0,...} and the maximal likelihood L to fit the experimental data are usually regarded as two different problems. We show that, if one regards the EW minimum conditions as constraints that fix the EW scale, this commonly held view is not correct and that the likelihood contains all the information about fine-tuning. In this case we show that the corrected likelihood is equal to the ratio L/Delta of the usual likelihood L and the traditional fine tuning measure Delta of the EW scale. A similar result is obtained for the integrated likelihood over the set {gamma_i}, that can be written as a surface integral of the ratio L/Delta, with the surface in gamma_i space determined by the EW minimum constraints. As a result, a large likelihood actually demands a large ratio L/Delta or equivalently, a small chi^2_{new}=chi^2_{old}+2*ln(Delta). This shows the fine-tuning cost to the likelihood ...
Top-squark in natural SUSY under current LHC run-2 data
Energy Technology Data Exchange (ETDEWEB)
Han, Chengcheng [University of Tokyo, Kavli IPMU (WPI), UTIAS, Kashiwa (Japan); Ren, Jie [Chinese Academy of Sciences, Computer Network Information Center, Beijing (China); Wu, Lei [Nanjing Normal University, Department of Physics and Institute of Theoretical Physics, Nanjing, Jiangsu (China); The University of Sydney, ARC Centre of Excellence for Particle Physics at the Terascale, School of Physics, Sydney, NSW (Australia); Yang, Jin Min [Chinese Academy of Sciences, Key Laboratory of Theoretical Physics, Institute of Theoretical Physics, Beijing (China); Zhang, Mengchao [Institute for Basic Science (IBS), Center for Theoretical Physics and Universe, Taejon (Korea, Republic of)
2017-02-15
We utilize the recent LHC-13 TeV data to study the lower mass bound on the top-squark (stop) in natural supersymmetry. We recast the LHC sparticle inclusive search of (≥1)jets + E{sub T} with α{sub T} variable, the direct stop pair search (1-lepton channel and all-hadronic channel) and the monojet analyses. We find that these searches are complementary depending on stop and higgsino masses: for a heavy stop the all-hadronic stop pair search provides the strongest bound, for an intermediate stop the inclusive SUSY analysis with α{sub T} variable is most efficient, while for a compressed stop-higgsino scenario the monojet search plays the key role. Finally, the lower mass bound on a stop is: (1) 320 GeV for compressed stop-higgsino scenario (mass splitting less than 20 GeV); (2) 765 (860) GeV for higgsinos lighter than 300 (100) GeV. (orig.)
SUSY Higgs at the LHC large stop mixing effects and associated production
Bélanger, G; Sridhar, K
2000-01-01
We revisit the effect of the large stop mixing on the decay and production of the lightest SUSY Higgs at the LHC. We stress that whenever the inclusive 2-photon signature is substantially reduced, associated production, $Wh$ and $t\\bar t h$, with the subsequent decay of the Higgs into photons is enhanced and becomes an even more important discovery channel. We also point out that these reductions in the inclusive channel do not occur for the smallest Higgs mass where the significance is known to be lowest. We show that in such scenarios the Higgs can be produced in the decay of the heaviest stop. For not too heavy masses of the pseudo-scalar Higgs where the inclusive channel is even further reduced, we show that large stop mixing also allows the production of the pseudo-scalar Higgs through stop decays. These large mixing scenarios therefore offer much better prospects than previously thought. As a by-product we have recalculated stop1-stop1-h production at the LHC and give a first evaluation of stop1-stop1-Z...
Debnath, Dipsikha; Kilic, Can; Kim, Doojin; Matchev, Konstantin T.; Yang, Yuan-Pao
2017-06-19
We critically examine the classic endpoint method for particle mass determination, focusing on difficult corners of parameter space, where some of the measurements are not independent, while others are adversely affected by the experimental resolution. In such scenarios, mass differences can be measured relatively well, but the overall mass scale remains poorly constrained. Using the example of the standard SUSY decay chain $\\tilde q\\to \\tilde\\chi^0_2\\to \\tilde \\ell \\to \\tilde \\chi^0_1$, we demonstrate that sensitivity to the remaining mass scale parameter can be recovered by measuring the two-dimensional kinematical boundary in the relevant three-dimensional phase space of invariant masses squared. We develop an algorithm for detecting this boundary, which uses the geometric properties of the Voronoi tessellation of the data, and in particular, the relative standard deviation (RSD) of the volumes of the neighbors for each Voronoi cell in the tessellation. We propose a new observable, $\\bar\\Sigma$, which is ...
Non-simplified SUSY. τ-coannihilation at LHC and ILC
Energy Technology Data Exchange (ETDEWEB)
Berggren, M.; Kruecker, D.; List, J.; Melzer-Pellmann, I.A.; Seitz, C. [DESY, Hamburg (Germany); Cakir, A. [DESY, Hamburg (Germany); Istanbul Technical University, Department of Physics Engineering, Istanbul (Turkey); Samani, B.S. [DESY, Hamburg (Germany); IPM, P.O. Box 19395-5531, Tehran (Iran, Islamic Republic of); Wayand, S. [KIT IEKP, Karlsruhe (Germany)
2016-04-15
If new phenomena beyond the Standard Model will be discovered at the LHC, the properties of the new particles could be determined with data from the High-Luminosity LHC and from a future linear collider like the ILC. We discuss the possible interplay between measurements at the two accelerators in a concrete example, namely a full SUSY model which features a small τ-LSP mass difference. Various channels have been studied using the Snowmass 2013 combined LHC detector implementation in the Delphes simulation package, as well as simulations of the ILD detector concept from the Technical Design Report. We investigate both the LHC and the ILC capabilities for discovery, separation and identification of various parts of the spectrum. While some parts would be discovered at the LHC, there is substantial room for further discoveries at the ILC. We finally highlight examples where the precise knowledge about the lower part of the mass spectrum which could be acquired at the ILC would enable a more in-depth analysis of the LHC data with respect to the heavier states. (orig.)
SUSY see-saw and NMSO(10)GUT inflation after BICEP2
International Nuclear Information System (INIS)
Garg, Ila
2016-01-01
Supersymmetric see-saw slow roll inflection point inflation occurs along a MSSM D-flat direction associated with gauge invariant combination of Higgs, s lepton and right-handed s neutrino at a scale set by the right-handed neutrino mass M vc ∼ 10 6 -10 13 GeV. The tensor to scalar perturbation ratio r ∼ 10 -3 can be achieved in this scenario. However, this scenario faced difficulty in being embedded in the realistic new minimal supersymmetric SO(10) grand unified theory (NMSO(10)GUT). The recent discovery of B-mode polarization by BICEP2, changes the prospects of NMSO(10) GUT inflation. Inflection point models become strongly disfavoured, as the trilinear coupling of SUSY see-saw inflation potential gets suppressed relative to the mass parameter favoured by BICEP2. Large values of r ≈ 0.2 can be achieved with super-Planck scale inflaton values and mass scales of inflaton ≥10 13 GeV. In NMSO(10)GUT, this can be made possible with an admixture of heavy Higgs doublet fields, i.e., other than MSSM Higgs field, which are present and have masses of order GUT scale. (author)
Multiscale N=2 SUSY field theories, integrable systems and their stringy/brane origin
International Nuclear Information System (INIS)
Gorsky, A.; Gukov, S.; Mironov, A.
1998-01-01
We discuss supersymmetric Yang-Mills theories with multiple scales in the brane language. The issue concerns N=2 SUSY gauge theories with massive fundamental matter including the UV finite case of n f =2n c , theories involving products of SU(n) gauge groups with bifundamental matter, and systems with several parameters similar to Λ QCD . We argue that the proper integrable systems are, accordingly, twisted XXX SL(2) spin chain, SL(p) magnets and degenerations of the spin Calogero system. The issue of symmetries underlying integrable systems is addressed. Relations with the monopole systems are specially discussed. Brane pictures behind all these integrable structures in the IIB and M-theory are suggested. We argue that degrees of freedom in integrable systems are related to KK excitations in M-theory or D-particles in the IIA string theory, which substitute the infinite number of instantons in the field theory. This implies the presence of more BPS states in the low-energy sector. (orig.)
More dynamical supersymmetry breaking
International Nuclear Information System (INIS)
Csaki, C.; Randall, L.; Skiba, W.
1996-01-01
In this paper we introduce a new class of theories which dynamically break supersymmetry based on the gauge group SU(n) x SU(3) x U(1) for even n. These theories are interesting in that no dynamical superpotential is generated in the absence of perturbations. For the example SU(4) x SU(3) x U(1) we explicitly demonstrate that all flat directions can be lifted through a renormalizable superpotential and that supersymmetry is dynamically broken. We derive the exact superpotential for this theory, which exhibits new and interesting dynamical phenomena. For example, modifications to classical constraints can be field dependent. We also consider the generalization to SU(n) x SU(3) x U(1) models (with even n>4). We present a renormalizable superpotential which lifts all flat directions. Because SU(3) is not confining in the absence of perturbations, the analysis of supersymmetry breaking is very different in these theories from the n=4 example. When the SU(n) gauge group confines, the Yukawa couplings drive the SU(3) theory into a regime with a dynamically generated superpotential. By considering a simplified version of these theories we argue that supersymmetry is probably broken. (orig.)
Bootstrap Dynamical Symmetry Breaking
Directory of Open Access Journals (Sweden)
Wei-Shu Hou
2013-01-01
Full Text Available Despite the emergence of a 125 GeV Higgs-like particle at the LHC, we explore the possibility of dynamical electroweak symmetry breaking by strong Yukawa coupling of very heavy new chiral quarks Q . Taking the 125 GeV object to be a dilaton with suppressed couplings, we note that the Goldstone bosons G exist as longitudinal modes V L of the weak bosons and would couple to Q with Yukawa coupling λ Q . With m Q ≳ 700 GeV from LHC, the strong λ Q ≳ 4 could lead to deeply bound Q Q ¯ states. We postulate that the leading “collapsed state,” the color-singlet (heavy isotriplet, pseudoscalar Q Q ¯ meson π 1 , is G itself, and a gap equation without Higgs is constructed. Dynamical symmetry breaking is affected via strong λ Q , generating m Q while self-consistently justifying treating G as massless in the loop, hence, “bootstrap,” Solving such a gap equation, we find that m Q should be several TeV, or λ Q ≳ 4 π , and would become much heavier if there is a light Higgs boson. For such heavy chiral quarks, we find analogy with the π − N system, by which we conjecture the possible annihilation phenomena of Q Q ¯ → n V L with high multiplicity, the search of which might be aided by Yukawa-bound Q Q ¯ resonances.
Small break loss of coolant accidents: Bottom and side break
International Nuclear Information System (INIS)
Hardy, P.G.; Richter, H.J.
1987-01-01
A LOCA can be caused, e.g. by a small break in the primary cooling system. The rate of fluid escaping through such a break will define the time until the core will be uncovered. Therefore the prediction of fluid loss and pressure transient is of major importance to plan for timely action in response to such an event. Stratification of the two phases might be present upstream of the break, thus, the location of the break relative to the vapor-liquid interface and the overall upstream fluid conditions are relevant for the calculation of fluid loss. Experimental results and analyses are presented here for small breaks at the bottom or at the side of a small pressure vessel. It was found that in such a case the onset of the so-called ''vapor pull through'' is important but swelling at sufficient depressurization rates of the liquid due to flashing is also of significance. It was also discovered that in the bottom break the flow rate is strongly dependent on the break entrance quality of the vapour-liquid mixture. The side break can be treated similarly to the bottom break if the interface level is above the break. The analyses developed on the basis of experimental observations showed reasonable agreement of predicted and measured pressure transients. It was possible to calculate the changing interface level and mixture void fraction history in a way compatible with the behavior observed during the experiments. Even though the experiments were performed at low pressures, this work should help to get a better understanding of physical phenomena occurring in a full scale small break LOCA. (orig./HP)
Electroweak breaking in supersymmetric models
Ibáñez, L E
1992-01-01
We discuss the mechanism for electroweak symmetry breaking in supersymmetric versions of the standard model. After briefly reviewing the possible sources of supersymmetry breaking, we show how the required pattern of symmetry breaking can automatically result from the structure of quantum corrections in the theory. We demonstrate that this radiative breaking mechanism works well for a heavy top quark and can be combined in unified versions of the theory with excellent predictions for the running couplings of the model. (To be published in ``Perspectives in Higgs Physics'', G. Kane editor.)
Pipe break prediction based on evolutionary data-driven methods with brief recorded data
International Nuclear Information System (INIS)
Xu Qiang; Chen Qiuwen; Li Weifeng; Ma Jinfeng
2011-01-01
Pipe breaks often occur in water distribution networks, imposing great pressure on utility managers to secure stable water supply. However, pipe breaks are hard to detect by the conventional method. It is therefore necessary to develop reliable and robust pipe break models to assess the pipe's probability to fail and then to optimize the pipe break detection scheme. In the absence of deterministic physical models for pipe break, data-driven techniques provide a promising approach to investigate the principles underlying pipe break. In this paper, two data-driven techniques, namely Genetic Programming (GP) and Evolutionary Polynomial Regression (EPR) are applied to develop pipe break models for the water distribution system of Beijing City. The comparison with the recorded pipe break data from 1987 to 2005 showed that the models have great capability to obtain reliable predictions. The models can be used to prioritize pipes for break inspection and then improve detection efficiency.
Liu, Yang; The ATLAS collaboration
2017-01-01
Supersymmetry (SUSY) is a well motivated extension of the Standard Model (SM) that postulates the existence of a superpartner for each SM particle. A search for strongly produced SUSY particles decaying to a pair of two isolated \\textbf{same-sign leptons (SS)} or \\textbf{three leptons (3L)} has been carried out using the complete data set collected by the ATLAS experiment in 2015-16 at 13 TeV ($36.5 fb^{-1}$). The analysis benefits from a low SM background and uses looser kinematic requirements compared to other beyond the SM (BSM) searches which increases its sensitivity to scenarios with small mass differences between the SUSY particles, or in which R-parity is not conserved. The results are interpreted in the context of \\textbf{R-parity conserving (RPC)} or \\textbf{R-parity violating (RPV)} simplified signal models
International Nuclear Information System (INIS)
Cari, C; Suparmi, A; Yunianto, M; Pratiwi, B N
2016-01-01
The Dirac equation of q-deformed hyperbolic Manning Rosen potential in D dimension was solved by using Supersymmetric Quantum Mechanics (SUSY QM). The D dimensional relativistic energy spectra were obtained by using SUSY QM and shape invariant properties and D dimensional wave functions of q-deformed hyperbolic Manning Rosen potential were obtained by using the SUSY raising and lowering operators. In the nonrelativistic limit, the relativistic energy spectra for exact spin symmetry case reduced into nonrelativistic energy spectra and so for the wave functions. In the classical regime, the partition function, the vibrational specific heat, and the vibrational mean energy of some diatomic molecules were calculated from the non-relativistic energy spectra with the help of error function and imaginary error function. (paper)
Modelling approach for gravity dam break analysis
Directory of Open Access Journals (Sweden)
Boussekine Mourad
2016-09-01
Full Text Available The construction of dams in rivers can provide considerable benefits such as the supply of drinking and irrigation water; however the consequences which would result in the event of their failure could be catastrophic. They vary dramatically depending on the extent of the inundation area, the size of the population at risk.
Gluino reach and mass extraction at the LHC in radiatively-driven natural SUSY
Energy Technology Data Exchange (ETDEWEB)
Baer, Howard; Savoy, Michael; Sengupta, Dibyashree [University of Oklahoma, Department of Physics and Astronomy, Norman, OK (United States); Barger, Vernon [University of Wisconsin, Department of Physics, Madison, WI (United States); Gainer, James S.; Tata, Xerxes [University of Hawaii, Department of Physics and Astronomy, Honolulu, HI (United States); Huang, Peisi [University of Chicago, Enrico Fermi Institute, Chicago, IL (United States); HEP Division, Argonne National Laboratory, Argonne, IL (United States); Texas A and M University, Mitchell Institute for Fundamental Physics and Astronomy, College Station, TX (United States)
2017-07-15
Radiatively-driven natural SUSY (RNS) models enjoy electroweak naturalness at the 10% level while respecting LHC sparticle and Higgs mass constraints. Gluino and top-squark masses can range up to several TeV (with other squarks even heavier) but a set of light Higgsinos are required with mass not too far above m{sub h} ∝ 125 GeV. Within the RNS framework, gluinos dominantly decay via g → tt{sub 1}{sup *}, anti tt{sub 1} → t anti tZ{sub 1,2} or t anti bW{sub 1}{sup -} + c.c., where the decay products of the higgsino-like W{sub 1} and Z{sub 2} are very soft. Gluino pair production is, therefore, signaled by events with up to four hard b-jets and large E{sub T}. We devise a set of cuts to isolate a relatively pure gluino sample at the (high-luminosity) LHC and show that in the RNS model with very heavy squarks, the gluino signal will be accessible for m{sub g} < 2400 (2800) GeV for an integrated luminosity of 300 (3000) fb{sup -1}. We also show that the measurement of the rate of gluino events in the clean sample mentioned above allows for a determination of m{sub g} with a statistical precision of 2-5% (depending on the integrated luminosity and the gluino mass) over the range of gluino masses where a 5σ discovery is possible at the LHC. (orig.)
Direct SUSY dark matter detection-theoretical rates due to the spin
International Nuclear Information System (INIS)
Vergados, J D
2004-01-01
The recent WMAP data have confirmed that exotic dark matter together with the vacuum energy (cosmological constant) dominate in the flat Universe. Thus direct dark matter detection, consisting of detecting the recoiling nucleus, is central to particle physics and cosmology. Supersymmetry provides a natural dark matter candidate, the lightest supersymmetric particle (LSP). The relevant cross sections arise out of two mechanisms: (i) the coherent mode, due to the scalar interaction and (ii) the spin contribution arising from the axial current. In this paper we will focus on the spin contribution, which is expected to dominate for light targets. For both modes it is possible to obtain detectable rates, but in most models the expected rates are much lower than the present experimental goals. So one should exploit two characteristic signatures of the reaction, namely the modulation effect and in directional experiments the correlation of the event rates with the sun's motion. In standard non-directional experiments the modulation is small, less than 2 per cent. In the case of the directional event rates we would like to suggest that the experiments exploit two features of the process, which are essentially independent of the SUSY model employed, namely: (1) the forward-backward asymmetry, with respect to the sun's direction of motion, is very large and (2) the modulation is much larger, especially if the observation is made in a plane perpendicular to the sun's velocity. In this case the difference between maximum and minimum can be larger than 40 per cent and the phase of the earth at the maximum is direction dependent
Atmospheric noise of a breaking tidal bore.
Chanson, Hubert
2016-01-01
A tidal bore is a surge of waters propagating upstream in an estuary as the tidal flow turns to rising and the flood tide propagates into a funnel-shaped system. Large tidal bores have a marked breaking roller. The sounds generated by breaking tidal bores were herein investigated in the field (Qiantang River) and in laboratory. The sound pressure record showed two dominant periods, with some similarity with an earlier study [Chanson (2009). J. Acoust. Soc. Am. 125(6), 3561-3568]. The two distinct phases were the incoming tidal bore when the sound amplitude increased with the approaching bore, and the passage of the tidal bore in front of the microphone when loud and powerful noises were heard. The dominant frequency ranged from 57 to 131 Hz in the Qiantang River bore. A comparison between laboratory and prototype tidal bores illustrated both common features and differences. The low pitch sound of the breaking bore had a dominant frequency close to the collective oscillations of bubble clouds, which could be modeled with a bubble cloud model using a transverse dimension of the bore roller. The findings suggest that this model might be over simplistic in the case of a powerful breaking bore, like that of the Qiantang River.
Search for beyond standard model physics (non-SUSY) in final states with photons at the Tevatron
Energy Technology Data Exchange (ETDEWEB)
Palencia, Jose Enrique; /Fermilab
2009-01-01
We present the results of searches for non-standard model phenomena in photon final states. These searches use data from integrated luminosities of {approx} 1-4 fb{sup -1} of p{bar p} collisions at {radical}s = 1.96 TeV, collected with the CDF and D0 detectors at the Fermilab Tevatron. No significant excess in data has been observed. We report limits on the parameters of several BSM models (excluding SUSY) for events containing photons.
R-parity breaking phenomenology
International Nuclear Information System (INIS)
Vissani, F.
1996-02-01
We review various features of the R-parity breaking phenomenology, with particular attention to the low energy observables, and to the patterns of the R-parity breaking interactions that arise in Grand Unified models. (author). 22 refs, 1 fig., 3 tabs
International Nuclear Information System (INIS)
Gosdzik, Bjoern
2011-03-01
In November 2009 the ATLAS experiment started operation at the Large Hadron Collider (LHC) at CERN. The detector is optimized to search for the Higgs Boson and new physics at the TeV scale. Until the end of the data-taking period with proton-proton collisions on November 3rd, 2010, the ATLAS detector recorded an integrated luminosity of 45.0 pb -1 at a center-of-mass energy of √(s) = 7 TeV. In many signals of the Standard Model and new physics (e.g. SUSY and Higgs) τ-leptons play an important role. A cut-based approach for the identification of hadronically decaying τ-leptons is being used, particularly for the first data-taking period. Using Monte Carlo Data, the development of a cut-based identification method for hadronically decaying τ-lepton with the ATLAS detector at the Large Hadron Collider (LHC) with a center-of-mass energy of √(s) = 14 TeV is presented. The separation of signal and the large QCD jet background is a challenge to the identification of hadronically decaying τ-lepton. The identification is separated into two methods: the calorimeter-based method uses exclusive calorimeter information, while the calorimeter+track-based method combines calorimeter and tracking information. The cut optimization is separately accomplished for τ candidates with one charged decay product (1-prong) and τ candidates with three charged decay products (3-prong). Additionally the optimisation is split into bins of the visible transverse energy of the τ candidate (E T vis ). First of all the optimization is presented and afterwards the performance of the cut-based identification method is discussed. The reconstruction efficiency for τ-leptons is determined by comparing first data corresponding to an integrated luminosity of 244 nb -1 and Monte Carlo simulation. The effect of systematic uncertainties is investigated. The CP violation predicted by the Standard Model is not sufficient to explain the matter - anti-matter asymmetry in the universe of the order of
Energy Technology Data Exchange (ETDEWEB)
Gosdzik, Bjoern
2011-03-15
In November 2009 the ATLAS experiment started operation at the Large Hadron Collider (LHC) at CERN. The detector is optimized to search for the Higgs Boson and new physics at the TeV scale. Until the end of the data-taking period with proton-proton collisions on November 3rd, 2010, the ATLAS detector recorded an integrated luminosity of 45.0 pb{sup -1} at a center-of-mass energy of {radical}(s) = 7 TeV. In many signals of the Standard Model and new physics (e.g. SUSY and Higgs) {tau}-leptons play an important role. A cut-based approach for the identification of hadronically decaying {tau}-leptons is being used, particularly for the first data-taking period. Using Monte Carlo Data, the development of a cut-based identification method for hadronically decaying {tau}-lepton with the ATLAS detector at the Large Hadron Collider (LHC) with a center-of-mass energy of {radical}(s) = 14 TeV is presented. The separation of signal and the large QCD jet background is a challenge to the identification of hadronically decaying {tau}-lepton. The identification is separated into two methods: the calorimeter-based method uses exclusive calorimeter information, while the calorimeter+track-based method combines calorimeter and tracking information. The cut optimization is separately accomplished for {tau} candidates with one charged decay product (1-prong) and {tau} candidates with three charged decay products (3-prong). Additionally the optimisation is split into bins of the visible transverse energy of the {tau} candidate (E{sub T}{sup vis}). First of all the optimization is presented and afterwards the performance of the cut-based identification method is discussed. The reconstruction efficiency for {tau}-leptons is determined by comparing first data corresponding to an integrated luminosity of 244 nb{sup -1} and Monte Carlo simulation. The effect of systematic uncertainties is investigated. The CP violation predicted by the Standard Model is not sufficient to explain the matter
Energy Technology Data Exchange (ETDEWEB)
Gosdzik, Bjoern
2011-03-15
In November 2009 the ATLAS experiment started operation at the Large Hadron Collider (LHC) at CERN. The detector is optimized to search for the Higgs Boson and new physics at the TeV scale. Until the end of the data-taking period with proton-proton collisions on November 3rd, 2010, the ATLAS detector recorded an integrated luminosity of 45.0 pb{sup -1} at a center-of-mass energy of {radical}(s) = 7 TeV. In many signals of the Standard Model and new physics (e.g. SUSY and Higgs) {tau}-leptons play an important role. A cut-based approach for the identification of hadronically decaying {tau}-leptons is being used, particularly for the first data-taking period. Using Monte Carlo Data, the development of a cut-based identification method for hadronically decaying {tau}-lepton with the ATLAS detector at the Large Hadron Collider (LHC) with a center-of-mass energy of {radical}(s) = 14 TeV is presented. The separation of signal and the large QCD jet background is a challenge to the identification of hadronically decaying {tau}-lepton. The identification is separated into two methods: the calorimeter-based method uses exclusive calorimeter information, while the calorimeter+track-based method combines calorimeter and tracking information. The cut optimization is separately accomplished for {tau} candidates with one charged decay product (1-prong) and {tau} candidates with three charged decay products (3-prong). Additionally the optimisation is split into bins of the visible transverse energy of the {tau} candidate (E{sub T}{sup vis}). First of all the optimization is presented and afterwards the performance of the cut-based identification method is discussed. The reconstruction efficiency for {tau}-leptons is determined by comparing first data corresponding to an integrated luminosity of 244 nb{sup -1} and Monte Carlo simulation. The effect of systematic uncertainties is investigated. The CP violation predicted by the Standard Model is not sufficient to explain the matter
Inflation from supersymmetry breaking
Energy Technology Data Exchange (ETDEWEB)
Antoniadis, I. [UMR CNRS 7589 Sorbonne Universites, UPMC Paris 6, LPTHE, Paris (France); University of Bern, Albert Einstein Center, Institute for Theoretical Physics, Bern (Switzerland); Chatrabhuti, A.; Isono, H.; Knoops, R. [Chulalongkorn University, Department of Physics, Faculty of Science, Pathumwan, Bangkok (Thailand)
2017-11-15
We explore the possibility that inflation is driven by supersymmetry breaking with the superpartner of the goldstino (sgoldstino) playing the role of the inflaton. Moreover, we impose an R-symmetry that allows one to satisfy easily the slow-roll conditions, avoiding the so-called η-problem, and leads to two different classes of small-field inflation models; they are characterised by an inflationary plateau around the maximum of the scalar potential, where R-symmetry is either restored or spontaneously broken, with the inflaton rolling down to a minimum describing the present phase of our Universe. To avoid the Goldstone boson and be left with a single (real) scalar field (the inflaton), R-symmetry is gauged with the corresponding gauge boson becoming massive. This framework generalises a model studied recently by the present authors, with the inflaton identified by the string dilaton and R-symmetry together with supersymmetry restored at weak coupling, at infinity of the dilaton potential. The presence of the D-term allows a tuning of the vacuum energy at the minimum. The proposed models agree with cosmological observations and predict a tensor-to-scalar ratio of primordial perturbations 10{sup -9}
Symmetry breaking by bifundamentals
Schellekens, A. N.
2018-03-01
We derive all possible symmetry breaking patterns for all possible Higgs fields that can occur in intersecting brane models: bifundamentals and rank-2 tensors. This is a field-theoretic problem that was already partially solved in 1973 by Ling-Fong Li [1]. In that paper the solution was given for rank-2 tensors of orthogonal and unitary group, and U (N )×U (M ) and O (N )×O (M ) bifundamentals. We extend this first of all to symplectic groups. When formulated correctly, this turns out to be straightforward generalization of the previous results from real and complex numbers to quaternions. The extension to mixed bifundamentals is more challenging and interesting. The scalar potential has up to six real parameters. Its minima or saddle points are described by block-diagonal matrices built out of K blocks of size p ×q . Here p =q =1 for the solutions of Ling-Fong Li, and the number of possibilities for p ×q is equal to the number of real parameters in the potential, minus 1. The maximum block size is p ×q =2 ×4 . Different blocks cannot be combined, and the true minimum occurs for one choice of basic block, and for either K =1 or K maximal, depending on the parameter values.
Symmetry and symmetry breaking
International Nuclear Information System (INIS)
Balian, R.; Lambert, D.; Brack, A.; Lachieze-Rey, M.; Emery, E.; Cohen-Tannoudji, G.; Sacquin, Y.
1999-01-01
The symmetry concept is a powerful tool for our understanding of the world. It allows a reduction of the volume of information needed to apprehend a subject thoroughly. Moreover this concept does not belong to a particular field, it is involved in the exact sciences but also in artistic matters. Living beings are characterized by a particular asymmetry: the chiral asymmetry. Although this asymmetry is visible in whole organisms, it seems it comes from some molecules that life always produce in one chirality. The weak interaction presents also the chiral asymmetry. The mass of particles comes from the breaking of a fundamental symmetry and the void could be defined as the medium showing as many symmetries as possible. The texts put together in this book show to a great extent how symmetry goes far beyond purely geometrical considerations. Different aspects of symmetry ideas are considered in the following fields: the states of matter, mathematics, biology, the laws of Nature, quantum physics, the universe, and the art of music. (A.C.)
Science Illiteracy: Breaking the Cycle
Lebofsky, L. A.; Lebofsky, N. R.
2003-12-01
At the University of Arizona, as at many state universities and colleges, the introductory science classes for non-science majors may be the only science classes that future K--8 teachers will take. The design of the UA's General Education program requires all future non-science certified teachers to take the General Education science classes. These classes are therefore an ideal venue for the training of the state's future teachers. Many students, often including future teachers, are ill-prepared for college, i.e., they lack basic science content knowledge, basic mathematics skills, and reading and writing skills. They also lack basic critical thinking skills and study skills. It is within this context that our future teachers are trained. How do we break the cycle of science illiteracy? There is no simple solution, and certainly not a one-size-fits-all panacea that complements every professor's style of instruction. However, there are several programs at the University of Arizona, and also principles that I apply in my own classes, that may be adaptable in other classrooms. Assessment of K--12 students' learning supports the use of inquiry-based science instruction. This approach can be incorporated in college classes. Modeling proven and productive teaching methods for the future teachers provides far more than ``just the facts,'' and all students gain from the inquiry approach. Providing authentic research opportunities employs an inquiry-based approach. Reading (outside the textbook) and writing provide feedback to students with poor writing and critical thinking skills. Using peer tutors and an instant messaging hot line gives experience to the tutors and offers "comfortable" assistance to students.
Breaking the fault tree circular logic
International Nuclear Information System (INIS)
Lankin, M.
2000-01-01
Event tree - fault tree approach to model failures of nuclear plants as well as of other complex facilities is noticeably dominant now. This approach implies modeling an object in form of unidirectional logical graph - tree, i.e. graph without circular logic. However, genuine nuclear plants intrinsically demonstrate quite a few logical loops (circular logic), especially where electrical systems are involved. This paper shows the incorrectness of existing practice of circular logic breaking by elimination of part of logical dependencies and puts forward a formal algorithm, which enables the analyst to correctly model the failure of complex object, which involves logical dependencies between system and components, in form of fault tree. (author)
AUTHOR|(SzGeCERN)731691
This thesis describes the jet smearing method, a data-driven technique for estimating the multijet background to Supersymmetry (SUSY) searches using the ATLAS detector at the Large Hadron Collider (LHC). The final 2011 and 2012 “ATLAS jets, missing transverse energy and zero leptons analysis” searches for SUSY are also documented. These analyses used the full ATLAS 2011 4.7 fb^{-1} $\\sqrt{s}$ = 7 TeV and 2012 20.3 fb$^{-1}$ $\\sqrt{s}$ = 8 TeV data sets. No statistically significant excess was found in either of these analyses; therefore, 95% C.L. mass exclusion limits were set on the mSUGRA/CMSSM m$_{0}$-m$_{1/2}$ and $m_{\\tilde{q}}$-$m_{\\tilde{g}}$ mass planes, and the simplified squark-gluino-neutralino pMSSM model. The jet smearing method was used in these analyses to estimate the multijet distributions of the Signal, Validation and Control Regions and also to calculate the multijet background Transfer Factors. This thesis also describes the missing transverse energy (E$_{miss}^{T}$ ) performance studi...
Leptogenesis as an origin of hot dark matter and baryon asymmetry in the E6 inspired SUSY models
Nevzorov, R.
2018-04-01
We explore leptogenesis within the E6 inspired U (1) extension of the MSSM in which exact custodial symmetry forbids tree-level flavour-changing transitions and the most dangerous baryon and lepton number violating operators. This supersymmetric (SUSY) model involves extra exotic matter beyond the MSSM. In the simplest phenomenologically viable scenarios the lightest exotic fermions are neutral and stable. These states should be substantially lighter than 1eV forming hot dark matter in the Universe. The low-energy effective Lagrangian of the SUSY model under consideration possesses an approximate global U(1)E symmetry associated with the exotic states. The U(1)E symmetry is explicitly broken because of the interactions between the right-handed neutrino superfields and exotic matter supermultiplets. As a consequence the decays of the lightest right-handed neutrino/sneutrino give rise to both U(1)E and U(1) B - L asymmetries. When all right-handed neutrino/sneutrino are relatively light ∼106-107GeV the appropriate amount of the baryon asymmetry can be induced via these decays if the Yukawa couplings of the lightest right-handed neutrino superfields to the exotic matter supermultiplets vary between ∼10-4-10-3.
Energy Technology Data Exchange (ETDEWEB)
Kaminska, Anna [Oxford Univ. (United Kingdom). Centre for Theoretical Physics; Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Ross, Graham G. [Oxford Univ. (United Kingdom). Centre for Theoretical Physics; Schmidt-Hoberg, Kai [European Lab. for Particle Physics (CERN), Geneva (Switzerland)
2013-08-15
For the case of the MSSM and the most general form of the NMSSM (GNMSSM) we determine the reduction in the fine tuning that follows from allowing gaugino masses to be non-degenerate at the unification scale, taking account of the LHC8 bounds on SUSY masses, the Higgs mass bound, gauge coupling unification and the requirement of an acceptable dark matter density. We show that low-fine tuned points fall in the region of gaugino mass ratios predicted by specific unified and string models. For the case of the MSSM the minimum fine tuning is still large, approximately 1:60 allowing for a 3 GeV uncertainty in the Higgs mass (1:500 for the central value), but for the GNMSSM it is below 1:20. We find that the spectrum of SUSY states corresponding to the low-fine tuned points in the GNMSSM is often compressed, weakening the LHC bounds on coloured states. The prospect for testing the remaining low-fine-tuned regions at LHC14 is discussed.
Kaminska, Anna; Schmidt-Hoberg, Kai
2013-01-01
For the case of the MSSM and the most general form of the NMSSM (GNMSSM) we determine the reduction in the fine tuning that follows from allowing gaugino masses to be non-degenerate at the unification scale, taking account of the LHC8 bounds on SUSY masses, the Higgs mass bound, gauge coupling unification and the requirement of an acceptable dark matter density. We show that low-fine tuned points fall in the region of gaugino mass ratios predicted by specific unified and string models. For the case of the MSSM the minimum fine tuning is still large, approximately 1:60 allowing for a 3 GeV uncertainty in the Higgs mass (1:500 for the central value), but for the GNMSSM it is below 1:20. We find that the spectrum of SUSY states corresponding to the low-fine tuned points in the GNMSSM is often compressed, weakening the LHC bounds on coloured states. The prospect for testing the remaining low-fine-tuned regions at LHC14 is discussed.
Schulte, Jan-Frederik
2017-01-01
Searches for Supersymmetry (SUSY) in events with two opposite-sign same-flavour leptons offer sensitivity to the production of sleptons or Z bosons in the cascade decays of initially produced heavy SUSY particles. In the considered models, this signature is accompanied by the presence of several jets and high missing transverse energy. Analysing their respective datasets recorded at √ s = 8 TeV, the ATLAS and CMS collaborations previously reported deviations from the pre- dicted Standard Model backgrounds in this final state, with significances between 2.6 and 3.0 σ . However, these excesses had been observed in different regions of the dilepton invariant mass. The dataset recorded with the CMS detector at √ s = 13 TeV in 2015, corresponding to 2.3 fb − 1 , offers the opportunity to substantiate or refute these interesting hints for new phenomena. Unfor- tunately, no significant deviation from the background estimates are observed in either of the two selections which had shown excesses in the √ s = ...
Amino acid chirality breaking by N-phosphorylation
International Nuclear Information System (INIS)
Zhao Yufen; Yan Qingjin.
1995-01-01
The chirality breaking of amino acid is a focus issue in the origin of life. For chemists, there are some interesting chemical approaches to solve the symmetry breaking problem. Our previous experiments indicated that when amino acids were phosphorylated, there were many bio-mimic reactions happened. In this paper, it was found that there had significant difference between the N-phosphoryl L- and D- amino acids such as serine and threonine. The optical rotation tracing experiments of the racemic N-phosphoamino acids also showed the similar results. The chirality breaking of amino acids by N-phosphorylation was a novel phenomena. (author). 3 refs, 1 fig. Abstract only
Supersymmetry breaking with extra dimensions
International Nuclear Information System (INIS)
Zwirner, Fabio
2004-01-01
This talk reviews some aspects of supersymmetry breaking in the presence of extra dimensions. The first part is a general introduction, recalling the motivations for supersymmetry and extra dimensions, as well as some unsolved problems of four-dimensional models of supersymmetry breaking. The central part is a more focused introduction to a mechanism for (super)symmetry breaking, proposed first by Scherk and Schwarz, where extra dimensions play a crucial role. The last part is devoted to the description of some recent results and of some open problems. (author)
Analysis of chiral symmetry breaking mechanism
International Nuclear Information System (INIS)
Guo, X. H.; Academia Sinica, Beijing; Huang, T.; CCAST
1997-01-01
The renormalization group invariant quark condensate μ is determined both from the consistent equation for quark condensate in the chiral limit and from the Schwinger-Dyson (SD) equation improved by the intermediate range QCD force singular like δ (q) which is associated with the gluon condensate. The solutions of μ in these two equations are consistent. The authors also obtain the critical strong coupling constant α c above which chiral symmetry breaks in these two approaches. The nonperturbative kernel of the SD equation makes α c smaller and μ bigger. An intuitive picture of the condensation above α c is discussed. In addition, with the help of the Slavnov-Taylor-Ward (STW) identity they derive the equations for the nonperturbative quark propagator from the SD equation in the presence of the intermediate range force and find that the intermediate-range force is also responsible for dynamical chiral symmetry breaking
Break preclusion concept and its application to the EPRTM reactor
Energy Technology Data Exchange (ETDEWEB)
Chapuliot, S., E-mail: stephane.chapuliot@areva.com; Migné, C.
2014-04-01
This paper provides a synthesis of the technical basis supporting the break preclusion concept and its implementation on the Main Coolant Lines and Main Steam Lines of the EPR™ reactor. In a first step, it describes the background of the break preclusion concept, and then it details the requirements associated to its implementation in a Defense In Depth approach.In second steps, main benefits and few illustrative examples are given for the MCL.
Stochastic mechanism of symmetry breaking
International Nuclear Information System (INIS)
Baseyan, H.Z.
1983-01-01
A new symmetry breaking mechanism conditioned by presence of random fields in vacuum is proposed. Massive Yang-Mills fields finally arise, that may be interpreted as ''macroscopic'' manifestation of the ''microscopic'' Yang-Mills massless theory
Mart Susi müüb Concordia ülikooli hüvanguks Kolu mõisa / Sigrid Laev
Laev, Sigrid
2003-01-01
Concordia ülikooli rektor Mart Susi pani müüki endale kuuluva Kolu mõisa, et sellest saadava rahaga katta ülikooli vajadusi. Tallinna Pedagoogikaülikool on Concordia ostmisest huvitatud. Concordia ülikooli tudengid on teinud üleskutse ühinemiseks, et kooli tuleviku suhtes kaasa rääkida
DEFF Research Database (Denmark)
Merryman Boncori, John Peter; Dall, Jørgen; Ahlstrøm, A. P.
2010-01-01
This paper describes the validation of an ice-motion processing chain developed for the PROMICE project – a long-term program funded by the Danish ministry of Climate and Energy to monitor the mass budget of the Greenland ice-sheet. The processor, named SUSIE, (Scripts and Utilities for SAR Ice...
Dynamic breaking of a single gold bond
DEFF Research Database (Denmark)
Pobelov, Ilya V.; Lauritzen, Kasper Primdal; Yoshida, Koji
2017-01-01
While one might assume that the force to break a chemical bond gives a measure of the bond strength, this intuition is misleading. If the force is loaded slowly, thermal fluctuations may break the bond before it is maximally stretched, and the breaking force will be less than the bond can sustain...... of a single Au-Au bond and show that the breaking force is dependent on the loading rate. We probe the temperature and structural dependencies of breaking and suggest that the paradox can be explained by fast breaking of atomic wires and slow breaking of point contacts giving very similar breaking forces....
Brown, Tom; Boehringer, Kim
2007-01-01
Students in a fourth-grade class participated in a series of dynamic sound learning centers followed by a dramatic capstone event--an exploration of the amazing Trashcan Whoosh Waves. It's a notoriously difficult subject to teach, but this hands-on, exploratory approach ignited student interest in sound, promoted language acquisition, and built…
Attributing Changing Rates of Temperature Record Breaking to Anthropogenic Influences
King, Andrew D.
2017-11-01
Record-breaking temperatures attract attention from the media, so understanding how and why the rate of record breaking is changing may be useful in communicating the effects of climate change. A simple methodology designed for estimating the anthropogenic influence on rates of record breaking in a given time series is proposed here. The frequency of hot and cold record-breaking temperature occurrences is shown to be changing due to the anthropogenic influence on the climate. Using ensembles of model simulations with and without human-induced forcings, it is demonstrated that the effect of climate change on global record-breaking temperatures can be detected as far back as the 1930s. On local scales, a climate change signal is detected more recently at most locations. The anthropogenic influence on the increased occurrence of hot record-breaking temperatures is clearer than it is for the decreased occurrence of cold records. The approach proposed here could be applied in rapid attribution studies of record extremes to quantify the influence of climate change on the rate of record breaking in addition to the climate anomaly being studied. This application is demonstrated for the global temperature record of 2016 and the Central England temperature record in 2014.
Symmetry breaking: The standard model and superstrings
International Nuclear Information System (INIS)
Gaillard, M.K.
1988-01-01
The outstanding unresolved issue of the highly successful standard model is the origin of electroweak symmetry breaking and of the mechanism that determines its scale, namely the vacuum expectation value (vev)v that is fixed by experiment at the value v = 4m//sub w//sup 2///g 2 = (√2G/sub F/)/sup /minus/1/ ≅ 1/4 TeV. In this talk I will discuss aspects of two approaches to this problem. One approach is straightforward and down to earth: the search for experimental signatures, as discussed previously by Pierre Darriulat. This approach covers the energy scales accessible to future and present laboratory experiments: roughly (10/sup /minus/9/ /minus/ 10 3 )GeV. The second approach involves theoretical speculations, such as technicolor and supersymmetry, that attempt to explain the TeV scale. 23 refs., 5 figs
EXECUTIVE SUMMARY OF THE SNOWMASS 2001 WORKING GROUP : ELECTROWEAK SYMMETRY BREAKING
International Nuclear Information System (INIS)
CARENA, M.; GERDES, D.W.; HABER, H.E.; TURCOT, A.S.; ZERWAS, P.M.
2001-01-01
In this summary report of the 2001 Snowmass Electroweak Symmetry Breaking Working Group, the main candidates for theories of electroweak symmetry breaking are surveyed, and the criteria for distinguishing among the different approaches are discussed. The potential for observing electroweak symmetry breaking phenomena at the upgraded Tevatron and the LHC is described. We emphasize the importance of a high-luminosity e + e - linear collider for precision measurements to clarify the underlying electroweak symmetry breaking dynamics. Finally, we note the possible roles of the μ + μ - collider and VLHC for further elucidating the physics of electroweak symmetry breaking
DEFF Research Database (Denmark)
Neergaard, Helle; Christensen, Dorthe Refslund
2015-01-01
Learning is related to the environment created for the learning experience. This learning environment is often highly routinized and involves a certain social structure but in entrepreneurship education such routinization and structure may actually counteract the learning goals. The purpose of th...... is installed properly then it can provide a safe space for experimentation....... a scaffold and a marker. The scaffold approach results in less unease with the introduction of new ways of doing things. Ritualization markers used to emphasize how the learning environment functions, decouple existing routines and create new rituals, further helps students feel safe. If the ritual room...
DEFF Research Database (Denmark)
Neergaard, Helle; Christensen, Dorthe Refslund
2017-01-01
Learning is related to the environment created for the learning experience. This learning environment is often highly routinized and involves a certain social structure but in entrepreneurship education such routinization and structure may actually counteract the learning goals. The purpose of th...... is installed properly then it can provide a safe space for experimentation....... a scaffold and a marker. The scaffold approach results in less unease with the introduction of new ways of doing things. Ritualization markers used to emphasize how the learning environment functions, decouple existing routines and create new rituals, further help students feel safe. If the ritual room...
DEFF Research Database (Denmark)
Villadsen, Katrine Weiersoe; Blix, Charlotte; Boisen, Kirsten A
2015-01-01
analysis, the following themes emerged: Recreation; Structure, participation, and motivation; and Friends and social network. The social-pedagogical approach is a combination of interpersonal relationships and individually tailored recreational activities. Even small entertaining activities changed...... their motivation to go through their treatment. The interviewees emphasized the importance of experiencing something that was worth telling their friends about to help them stay in touch. CONCLUSION: Although the young patients emphasized the recreational aspects, the time spent with the social educator...... facilitated training in social competencies as well as conversations about emotional and sensitive topics....
Sequential flavor symmetry breaking
International Nuclear Information System (INIS)
Feldmann, Thorsten; Jung, Martin; Mannel, Thomas
2009-01-01
The gauge sector of the standard model exhibits a flavor symmetry that allows for independent unitary transformations of the fermion multiplets. In the standard model the flavor symmetry is broken by the Yukawa couplings to the Higgs boson, and the resulting fermion masses and mixing angles show a pronounced hierarchy. In this work we connect the observed hierarchy to a sequence of intermediate effective theories, where the flavor symmetries are broken in a stepwise fashion by vacuum expectation values of suitably constructed spurion fields. We identify the possible scenarios in the quark sector and discuss some implications of this approach.
Sequential flavor symmetry breaking
Feldmann, Thorsten; Jung, Martin; Mannel, Thomas
2009-08-01
The gauge sector of the standard model exhibits a flavor symmetry that allows for independent unitary transformations of the fermion multiplets. In the standard model the flavor symmetry is broken by the Yukawa couplings to the Higgs boson, and the resulting fermion masses and mixing angles show a pronounced hierarchy. In this work we connect the observed hierarchy to a sequence of intermediate effective theories, where the flavor symmetries are broken in a stepwise fashion by vacuum expectation values of suitably constructed spurion fields. We identify the possible scenarios in the quark sector and discuss some implications of this approach.
Threshold corrections to dimension-six proton decay operators in non-minimal SUSY SU(5 GUTs
Directory of Open Access Journals (Sweden)
Borut Bajc
2016-09-01
Full Text Available We calculate the high and low scale threshold corrections to the D=6 proton decay mode in supersymmetric SU(5 grand unified theories with higher-dimensional representation Higgs multiplets. In particular, we focus on a missing-partner model in which the grand unified group is spontaneously broken by the 75-dimensional Higgs multiplet and the doublet–triplet splitting problem is solved. We find that in the missing-partner model the D=6 proton decay rate gets suppressed by about 60%, mainly due to the threshold effect at the GUT scale, while the SUSY-scale threshold corrections are found to be less prominent when sfermions are heavy.
SUSY search using trilepton events from p bar p collisions at √s = 1.8 TeV
International Nuclear Information System (INIS)
1993-08-01
In a preliminary analysis, we have looked for evidence of the production and decay of SUSY chargino-neutralino (often referred to as Wino-Zino) pairs into the trilepton events using 11.1 pb -1 of p bar p collision data at √s = 1.8 TeV collected in 1992--1993 by CDF. Using all possible electron and muon decay channels, we observe two events which pass our trilepton criteria. Assuming, for the purposes of a conservative limit, that these events are all signal events, we exclude a point in the parameter space of the Minimal Supersymmetric Standard Model (MSSM) which corresponds to the limit of sensitivity of LEP measurements. Systematic errors have not been included in the result. Larger data samples and a more careful treatment should allow a large region of MSSM parameter space to be explored using the trilepton channel
Search for SUSY using the missing ET signature with the ATLAS and CMS experiments at the LHC
International Nuclear Information System (INIS)
Janus, M.
2014-01-01
In this paper, a selection of current searches for supersymmetric particles in proton-proton collisions at the Large Hadron Collider (LHC) at √(s)= 7 TeV with the ATLAS and CMS detectors is presented. All these searches apply a requirement on large missing transverse energy, which is a signature of many SUSY scenarios. Many different final states sensitive to gluino and first and second generation squark production are discussed, including purely hadronic final states as well as with leptons or photons. As no excesses beyond Standard Model predictions have been found, further searches are anticipated, especially in final states that are sensitive to the production of super-partners of the third generation fermions or of the electroweak bosons. (author)
S-duality, deconstruction and confinement for a marginal deformation of N=4 SUSY Yang-Mills
International Nuclear Information System (INIS)
Dorey, Nick
2004-01-01
We study an exactly marginal deformation of N=4 SUSY Yang-Mills with gauge group U(N) using field theory and string theory methods. The classical theory has a Higgs branch for rational values of the deformation parameter. We argue that the quantum theory also has an S-dual confining branch which cannot be seen classically. The low-energy effective theory on these branches is a six-dimensional non-commutative gauge theory with sixteen supercharges. Confinement of magnetic and electric charges, on the Higgs and confining branches respectively, occurs due to the formation of BPS-saturated strings in the low energy theory. The results also suggest a new way of deconstructing Little String Theory as a large-N limit of a confining gauge theory in four dimensions. (author)
Antonella Del Rosso
2013-01-01
The EU-cofunded project ULICE (Union of Light Ion Centres in Europe) was launched in 2009 in response to the need to share clinical experience in hadron therapy treatment in Europe and knowledge of the associated complex technical aspects. After four successful years of activity the project is now over but the “transnational access” idea will survive thanks to an extension granted by the European Commission. A treatment room at CNAO, the Italian centre for hadron therapy. CNAO is participating in ULICE’s transnational access initiative. Image: CNAO. Until a few years ago, the landscape of hadron therapy in Europe was advancing in a fragmented way and facilities were being built without a common shared approach. EU-cofunded projects such as ENLIGHT, ULICE, PARTNER, ENVISION and ENTERVISION helped to build a unified platform where the different – private and public – stakeholders were able to share their views and practical experience in the ...
Break up of light ions in the nuclear and Coulomb field of nuclei
International Nuclear Information System (INIS)
Srivastava, D.K.
1985-12-01
The break up of light ion projectiles in the nuclear and Coulomb field of nuclei is considered. Current theoretical concepts for describing break up processes and their theoretical features are discussed. An alternative method, based on a prior-interaction DWBA, is introduced for the calculation of the direct elastic break up cross sections. This method reveals the role of the internal momentum distribution of the break up fragments and includes corresponding 'finite range' effects. The Coulomb break up of 6 Li is studied on the basis of a quasi-sequential break up approach (following Rybicki and Austern) and results are obtained for very low relative energies of the emerging α-particles and deuteron fragments. The astrophysical interest in these cross sections is noted. A view on further extensions of the break up theory is given. (orig.) [de
Margins in high temperature leak-before-break assessments
International Nuclear Information System (INIS)
Budden, P.J.; Hooton, D.G.
1997-01-01
Developments in the defect assessment procedure R6 to include high-temperature mechanisms in Leak-before-Break arguments are described. In particular, the effect of creep on the time available to detect a leak and on the crack opening area, and hence leak rate, is discussed. The competing influence of these two effects is emphasized by an example. The application to Leak-before-Break of the time-dependent failure assessment diagram approach for high temperature defect assessment is then outlined. The approach is shown to be of use in assessing the erosion of margins by creep
Margins in high temperature leak-before-break assessments
Energy Technology Data Exchange (ETDEWEB)
Budden, P.J.; Hooton, D.G.
1997-04-01
Developments in the defect assessment procedure R6 to include high-temperature mechanisms in Leak-before-Break arguments are described. In particular, the effect of creep on the time available to detect a leak and on the crack opening area, and hence leak rate, is discussed. The competing influence of these two effects is emphasized by an example. The application to Leak-before-Break of the time-dependent failure assessment diagram approach for high temperature defect assessment is then outlined. The approach is shown to be of use in assessing the erosion of margins by creep.
Donovan, Peter
2014-01-01
Covers the historical context and the evolution of the technically complex Allied Signals Intelligence (Sigint) activity against Japan from 1920 to 1945 Describes, explains and analyzes the code breaking techniques developed during the war in the Pacific Exposes the blunders (in code construction and use) made by the Japanese Navy that led to significant US Naval victories
Strong coupling electroweak symmetry breaking
International Nuclear Information System (INIS)
Barklow, T.L.; Burdman, G.; Chivukula, R.S.
1997-04-01
The authors review models of electroweak symmetry breaking due to new strong interactions at the TeV energy scale and discuss the prospects for their experimental tests. They emphasize the direct observation of the new interactions through high-energy scattering of vector bosons. They also discuss indirect probes of the new interactions and exotic particles predicted by specific theoretical models
Appointment breaking: causes and solutions.
Bean, A G; Talaga, J
1992-12-01
From a review of research on health care appointment breaking, the authors find that patient demographic characteristics, psychosocial problems, previous appointment keeping, health beliefs, and situational factors predict no-show behavior. Suggestions are offered for designing the marketing mix to increase patient appointment keeping. Methods for mitigating the negative effects of no-shows on health care providers are described.
Strong coupling electroweak symmetry breaking
Energy Technology Data Exchange (ETDEWEB)
Barklow, T.L. [Stanford Linear Accelerator Center, Menlo Park, CA (United States); Burdman, G. [Univ. of Wisconsin, Madison, WI (United States). Dept. of Physics; Chivukula, R.S. [Boston Univ., MA (United States). Dept. of Physics
1997-04-01
The authors review models of electroweak symmetry breaking due to new strong interactions at the TeV energy scale and discuss the prospects for their experimental tests. They emphasize the direct observation of the new interactions through high-energy scattering of vector bosons. They also discuss indirect probes of the new interactions and exotic particles predicted by specific theoretical models.
International Nuclear Information System (INIS)
Noguera, José
2013-01-01
This paper contributes to the literature of the stationarity of financial time series and the literature on oil and macroeconomics in several ways. First, it uses Kejriwal and Perron (2010) sequential procedure to endogenously determine multiple structural changes in real oil prices without facing the circular testing problem between structural changes and stationary assumptions of previous tests. Second, it performs a diagnostic check to detect the significance and magnitude of the potential breaks. Third, it uses the above information to test for the existence of stochastic trends in real oil prices, and fourth, it speculates about possible explanations for the break dates found in order to encourage further work and discussions. The exercise uses monthly data from January 1861 to August 2011. - Highlights: ► The model endogenously determine multiple structural changes in real oil prices. ► The methods used does not face the circular testing problem. ► It also detect the significance and magnitude of the breaks detected. ► It tests for the existence of stochastic trends. ► It explains the reasons for the break dates found
Instantons and chiral symmetry breaking
International Nuclear Information System (INIS)
Carneiro, C.E.I.; McDougall, N.A.
1984-01-01
A detailed investigation of chiral symmetry breaking due to instanton dynamics is carried out, within the framework of the dilute gas approximation, for quarks in both the fundamental and adjoint representations of SU(2). The momentum dependence of the dynamical mass is found to be very similar in each representation. (orig.)
Instantons and chiral symmetry breaking
Energy Technology Data Exchange (ETDEWEB)
Carneiro, C.E.I.; McDougall, N.A. (Oxford Univ. (UK). Dept. of Theoretical Physics)
1984-10-22
A detailed investigation of chiral symmetry breaking due to instanton dynamics is carried out, within the framework of the dilute gas approximation, for quarks in both the fundamental and adjoint representations of SU(2). The momentum dependence of the dynamical mass is found to be very similar in each representation.
Inflationary implications of supersymmetry breaking
Borghese, Andrea; Roest, Diederik; Zavala, Ivonne
2013-01-01
We discuss a general bound on the possibility to realise inflation in any minimal supergravity with F-terms. The derivation crucially depends on the sGoldstini, the scalar field directions that are singled out by spontaneous supersymmetry breaking. The resulting bound involves both slow-roll
Heinemann, Martina; Groot, R.A. de
1997-01-01
Ab initio molecular dynamics is used to study the contribution of a single Al atom to an aluminum breakpoint contact during the final stages of breaking and the initial stages of the formation of such a contact. A hysteresis effect is found in excellent agreement with experiment and the form of the
DEFF Research Database (Denmark)
Driscoll, Patrick Arthur
2014-01-01
This central focus of this paper is to highlight the ways in which path dependencies and increasing returns (network effects) serve to reinforce carbon lock-in in large-scale road transportation infrastructure projects. Breaking carbon lock-in requires drastic changes in the way we plan future...
DEFF Research Database (Denmark)
Dissing, Agnete S.; Dich, Nadya; Nybo Andersen, Anne-Marie
2017-01-01
Background: Parental break-up is wide spread, and the effects of parental break-up on children’s well-being are known. The evidence regarding child age at break-up and subsequent family arrangements is inconclusive. Aim: to estimate the effects of parental break-up on stress in pre-adolescent chi......Background: Parental break-up is wide spread, and the effects of parental break-up on children’s well-being are known. The evidence regarding child age at break-up and subsequent family arrangements is inconclusive. Aim: to estimate the effects of parental break-up on stress in pre......-adolescent children with a specific focus on age at break-up and post-breakup family arrangements. Methods: We used data from the Danish National Birth Cohort. Participants included 44 509 children followed from birth to age 11. Stress was self-reported by children at age 11, when the children also reported...... on parental break-up and post break-up family arrangements. Results: Twenty-one percent of the children had experienced a parental break-up at age 11, and those who had experienced parental break-up showed a higher risk of stress (OR:1.72, 95%CI:1.55;1.91) regardless of the child’s age at break-up. Children...
Improving long term driving comfort by taking breaks - how break activity affects effectiveness
Sammonds, GM; Mansfield, NJ; Fray, M
2017-01-01
During long duration journeys, drivers are encouraged to take regular breaks. The benefits of breaks have been documented for safety; breaks may also be beneficial for comfort. The activity undertaken during a break may influence its effectiveness. Volunteers completed 3 journeys on a driving simulator. Each 130 min journey included a 10 min break after the first hour. During the break volunteers either stayed seated, left the simulator and sat in an adjacent room, or took a walk on a treadmi...
Report of the Beyond the MSSM Subgroup for the Tevatron Run II SUSY/Higgs Workshop
Ambrosanio, S.; Brignole, A.; Castro, A.; Chertok, M.B.; Cheung, King-man; Clavelli, L.; Cutts, D.; Cvetic, Mirjam; Dooling, D.; Dreiner, Herbert K.; Dutta, Bhaskar; Ellwanger, U.; Everett, L.L.; Feruglio, F.; Giudice, G.F.; Gunion, J.F.; Hewett, J.L.; Hugonie, C.; Kang, K.; Kang, S.K.; Landsberg, Greg L.; Langacker, P.; Mangano, Michelangelo L.; McKay, D.; Mohapatra, R.N.; Mrenna, S.; Muller, D.J.; Rattazzi, R.; Rizzo, T.; Wang, J.W.; Wells, J.D.; Zwirner, F.
2000-01-01
There are many low-energy models of supersymmetry breaking parameters which are motivated by theoretical and experimental considerations. Here, we discuss some of the lesser-known theories of low-energy supersymmetry, and outline their phenomenological consequences. In some cases, these theories have more gauge symmetry or particle content than the Minimal Supersymmetric Standard Model. In other cases, the parameters of the Lagrangian are unusual compared to commonly accepted norms (e.g., Wino LSP, heavy gluino LSP, light gluino, etc.). The phenomenology of supersymmetry varies greatly between the different models. Correspondingly, particular aspects of the detectors assume greater or lesser importance. Detection of supersymmetry and the determination of all parameters may well depend upon having the widest possible view of supersymmetry phenomenology.
Muon anomalous magnetic moment in SUSY B−L model with inverse seesaw
Directory of Open Access Journals (Sweden)
Shaaban Khalil
2016-12-01
Full Text Available Motivated by the tension between the Higgs mass and muon g−2 in minimal supersymmetric standard model (MSSM, we analyze the muon g−2 in supersymmetric B−L extension of the standard model (BLSSM with inverse seesaw mechanism. In this model, the Higgs mass receives extra important radiative corrections proportional to large neutrino Yukawa coupling. We point out that muon g−2 also gets significant contribution, due to the constructive interferences of light neutralino effects. The light neutralinos are typically the MSSM Bino like and the supersymmetric partner of U(1B−L gauge boson (B˜′-ino. We show that with universal soft supersymmetry breaking terms, the muon g−2 resides within 2σ of the measured value, namely ∼20×10−10, with Higgs mass equal to 125 GeV.
A model of intrinsic symmetry breaking
International Nuclear Information System (INIS)
Ge, Li; Li, Sheng; George, Thomas F.; Sun, Xin
2013-01-01
Different from the symmetry breaking associated with a phase transition, which occurs when the controlling parameter is manipulated across a critical point, the symmetry breaking presented in this Letter does not need parameter manipulation. Instead, the system itself suddenly undergoes symmetry breaking at a certain time during its evolution, which is intrinsic symmetry breaking. Through a polymer model, it is revealed that the origin of the intrinsic symmetry breaking is nonlinearity, which produces instability at the instance when the evolution crosses an inflexion point, where this instability breaks the original symmetry
Supersymmetry Reach of Tevatron Upgrades and LHC in Gauge-mediated Supersymmetry-breaking Models
Wang, Y
2002-01-01
We examine signals for sparticle production at the Fermilab Tevatron and the CERN Large Hadron Collider (LHC) within the framework of gauge mediated supersymmetry breaking models. We divide our analysis into four different model lines, each of which leads to qualitatively different signatures. We identify cuts to enhance the signal above Standard Model backgrounds, and use ISAJET to evaluate the SUSY reach of experiments at the Fermilab Main Injector and at its luminosity upgrades and also at the LHC. We examine the reach of the LHC via the canonical E/ and multilepton channels that have been advocated within the mSUGRA framework. For the model lines that we have examined, we find that the reach is at least as large, and frequently larger, than in the mSUGRA framework. For two of these model lines, we find that the ability to identify b-quarks and τ-leptons with high efficiency and purity is essential for the detection of the signal.
Soft masses in theories with supersymmetry breaking by TeV compactification
International Nuclear Information System (INIS)
Antoniadis, I.; Dimopoulos, S.; Pomarol, A.; Quiros, M.
1999-01-01
We study the sparticle spectroscopy and electroweak breaking of theories where supersymmetry is broken by compactification (Scherk-Schwarz mechanism) at a TeV The evolution of the soft terms above the compactification scale and the resulting sparticle spectrum are very different from those of the usual MSSM and gauge-mediated theories. This is traced to the softness of the Scherk-Schwarz mechanism which leads to scalar sparticle masses that are only logarithmically sensitive to the cutoff starting at two loops. As a result, the mass-squareds of the squarks and sleptons are a loop factor smaller than those of the gauginos. In addition, the mechanism is very predictive and the sparticle spectrum depends on just two new parameters. A significant advantage of this mechanism relative to gauge mediation is that a Higgsino mass μ ∼ M susy is automatically generated when supersymmetry is broken. Our analysis applies equally well to theories where the cutoff is near a TeV or M Pl or some intermediate scale. We also use these observations to show how we may obtain compactification radii which are hierarchically larger than the fundamental cutoff scale
Isospin Breaking Corrections to the HVP with Domain Wall Fermions
Boyle, Peter; Guelpers, Vera; Harrison, James; Juettner, Andreas; Lehner, Christoph; Portelli, Antonin; Sachrajda, Christopher
2018-03-01
We present results for the QED and strong isospin breaking corrections to the hadronic vacuum polarization using Nf = 2 + 1 Domain Wall fermions. QED is included in an electro-quenched setup using two different methods, a stochastic and a perturbative approach. Results and statistical errors from both methods are directly compared with each other.
Operator reliability analysis during NPP small break LOCA
International Nuclear Information System (INIS)
Zhang Jiong; Chen Shenglin
1990-01-01
To assess the human factor characteristic of a NPP main control room (MCR) design, the MCR operator reliability during a small break LOCA is analyzed, and some approaches for improving the MCR operator reliability are proposed based on the analyzing results
Using Appreciative Intelligence for Ice-Breaking: A New Design
Verma, Neena; Pathak, Anil Anand
2011-01-01
Purpose: The purpose of this paper is to highlight the importance of applying appreciative intelligence and appreciative inquiry concepts to design a possibly new model of ice-breaking, which is strengths-based and very often used in any training in general and team building training in particular. Design/methodology/approach: The design has…
Physics of chiral symmetry breaking
International Nuclear Information System (INIS)
Shuryak, E.V.
1991-01-01
This subsection of the 'Modeling QCD' Workshop has included five talks. E. Shuryak spoke on 'Recent Progress in Understanding Chiral Symmetry Breaking'; below it is split into two parts: (i) a mini-review of the field and (ii) a brief presentation of the status of the theory of interacting instantons. The next sections correspond to the following talks: (iii) K. Goeke et al., 'Chiral Restoration and Medium Corrections to Nucleon in the NJL Model'; (iv) M. Takizawa and K. Kubodera, 'Study of Meson Properties and Quark Condensates in the NJL Model with Instanton Effects'; (v) G. Klein and A. G. Williams, 'Dynamical Chiral Symmetry Breaking in Dual QCD'; and (vi) R. D. Ball, 'Skyrmions and Baryons.' (orig.)
Supersymmetry breaking by gaugino condensation
International Nuclear Information System (INIS)
Casas, J.A.
1991-01-01
We briefly review the status and some of the recent work on supersymmetry breaking by gaugino condensation effects in the context of superstring theories. This issue is intimately related to the structure of the effective potential coming from superstrings. Minimization of this not only allows to find the scale of supersymmetry breaking, but also to determine dynamically other fundamental parameters of the theory, in particular the gauge coupling constant at the unification point and the expectation values of the moduli which give the size and shape of the compactified space. In a multiple condensate scenario these get reasonable values which may, in turn, lead to a determination of the family mass hierarchy. Some directions for future work are examined too. (author). 23 refs
Post accidental small breaks analysis
International Nuclear Information System (INIS)
Depond, G.; Gandrille, J.
1980-04-01
EDF ordered to FRAMATOME by 1977 to complete post accidental long term studies on 'First Contrat-Programme' reactors, in order to demonstrate the safety criteria long term compliance, to get information on NSSS behaviour and to improve the post accidental procedures. Convenient analytical models were needed and EDF and FRAMATOME respectively developped the AXEL and FRARELAP codes. The main results of these studies is that for the smallest breaks, it is possible to manually undertake cooling and pressure reducing actions by dumping the steam generators secondary side in order to meet the RHR operating specifications and perform long term cooling through this system. A specific small breaks procedure was written on this basis. The EDF and FRAMATOME codes are continuously improved; the results of a French set of separate effects experiments will be incorporated as well as integral system verification
Breaking through the tranfer tunnel
Laurent Guiraud
2001-01-01
This image shows the tunnel boring machine breaking through the transfer tunnel into the LHC tunnel. Proton beams will be transferred from the SPS pre-accelerator to the LHC at 450 GeV through two specially constructed transfer tunnels. From left to right: LHC Project Director, Lyn Evans; CERN Director-General (at the time), Luciano Maiani, and Director for Accelerators, Kurt Hubner.
Models of electroweak symmetry breaking
Pomarol, Alex
2015-01-01
This chapter present models of electroweak symmetry breaking arising from strongly interacting sectors, including both Higgsless models and mechanisms involving a composite Higgs. These scenarios have also been investigated in the framework of five-dimensional warped models that, according to the AdS/CFT correspondence, have a four-dimensional holographic interpretation in terms of strongly coupled field theories. We explore the implications of these models at the LHC.
The geometric role of symmetry breaking in gravity
International Nuclear Information System (INIS)
Wise, Derek K
2012-01-01
In gravity, breaking symmetry from a group G to a group H plays the role of describing geometry in relation to the geometry of the homogeneous space G/H. The deep reason for this is Cartan's 'method of equivalence,' giving, in particular, an exact correspondence between metrics and Cartan connections. I argue that broken symmetry is thus implicit in any gravity theory, for purely geometric reasons. As an application, I explain how this kind of thinking gives a new approach to Hamiltonian gravity in which an observer field spontaneously breaks Lorentz symmetry and gives a Cartan connection on space.
Mechanical break junctions: enormous information in a nanoscale package.
Natelson, Douglas
2012-04-24
Mechanical break junctions, particularly those in which a metal tip is repeatedly moved in and out of contact with a metal film, have provided many insights into electronic conduction at the atomic and molecular scale, most often by averaging over many possible junction configurations. This averaging throws away a great deal of information, and Makk et al. in this issue of ACS Nano demonstrate that, with both simulated and real experimental data, more sophisticated two-dimensional analysis methods can reveal information otherwise obscured in simple histograms. As additional measured quantities come into play in break junction experiments, including thermopower, noise, and optical response, these more sophisticated analytic approaches are likely to become even more powerful. While break junctions are not directly practical for useful electronic devices, they are incredibly valuable tools for unraveling the electronic transport physics relevant for ultrascaled nanoelectronics.
Detecting structural breaks in time series via genetic algorithms
DEFF Research Database (Denmark)
Doerr, Benjamin; Fischer, Paul; Hilbert, Astrid
2016-01-01
of the time series under consideration is available. Therefore, a black-box optimization approach is our method of choice for detecting structural breaks. We describe a genetic algorithm framework which easily adapts to a large number of statistical settings. To evaluate the usefulness of different crossover...... and mutation operations for this problem, we conduct extensive experiments to determine good choices for the parameters and operators of the genetic algorithm. One surprising observation is that use of uniform and one-point crossover together gave significantly better results than using either crossover...... operator alone. Moreover, we present a specific fitness function which exploits the sparse structure of the break points and which can be evaluated particularly efficiently. The experiments on artificial and real-world time series show that the resulting algorithm detects break points with high precision...
Duality, exchange-degeneracy breaking, and exotic states
International Nuclear Information System (INIS)
Goldstein, G.R.; Haridas, P.
1979-01-01
We study the connection between exchange-degeneracy breaking and multiquark states within the framework of a highly constrained dual approach. We show that M 4 (baryonium) states emerge at the daughter trajectory level as a consequence of small exchange-degeneracy breaking in the meson-meson system (approx.delta) and larger exchange-degeneracy breaking of the baryon trajectories in the meson-baryon system (approx.epsilon). The M 4 states are coupled weakly to external mesons in proportion to the breaking parameter delta. Assuming M 4 couplings to B-barB channels are strong, as determined by duality with normal mesons in the B-barB system, consistency requires epsilon approx. √delta-bar, thereby relating the larger breaking of baryon trajectories to the violation of the Okubo-Zweig-Iizuka-type rule for M 4 . It is shown that exotic baryon states, B 5 , also emerge from this scheme at the daughter level and that dibaryons will appear at the second daughter level
Search for Higgs Bosons in SUSY Cascades in CMS and Dark Matter with Non-universal Gaugino Masses
Huitu, Katri; Laamanen, Jari; Lehti, Sami; Roy, Sourov; Salminen, Tapio
2008-01-01
In grand unified theories (GUT), non-universal boundary conditions for the gaugino masses may arise at the unification scale, and affect the observability of the neutral MSSM Higgs bosons (h/H/A) at the LHC. The implications of such non-universal gaugino masses are investigated for the Higgs boson production in the SUSY cascade decay chain gluino --> squark quark, squark --> neutralino_2 quark, neutralino_2 --> neutralino_1 h/H/A, h/H/A --> b b-bar produced in pp interactions. In the singlet representation with universal gaugino masses only the light Higgs boson can be produced in this cascade with the parameter region of interest for us, while with non-universal gaugino masses heavy neutral MSSM Higgs boson production may dominate. The allowed parameter space in the light of the WMAP constraints on the cold dark matter relic density is investigated in the above scenarios for gaugino mass parameters. We also demonstrate that combination of representations can give the required amount of dark matter in any poi...
Besjes, Geert Jan; Caron, Sascha
In this thesis, a search for new elementary particles predicted by a theory called supersymmetry (SUSY), which attempts to address shortcomings in our current description of particle physics, the Standard Model, is presented. No events incompatible with the Standard Model are observed, however. The results obtained in this search are also used in fits to a larger supersymmetric model, and combined with different analyses to obtain improved limits on simplified models. In addition, prospects for a similar search at the proposed high-luminosity LHC are discussed. Finally, HistFitter is presented, a program developed to perform searches in high-energy physics. Supersymmetry is searched for in a decay channel with 2 to 6 jets, missing energy, and no leptons in the final state. The coupling of squarks and gluinos to the strong force leads to a final state with many jets, in which the lightest supersymmetric particle produced in the cascade decay escapes the detector unseen. The analysis is designed using 15 signa...
Dirac gauginos in low scale supersymmetry breaking
International Nuclear Information System (INIS)
Goodsell, Mark D.; Tziveloglou, Pantelis
2014-01-01
It has been claimed that Dirac gaugino masses are necessary for realistic models of low-scale supersymmetry breaking, and yet very little attention has been paid to the phenomenology of a light gravitino when gauginos have Dirac masses. We begin to address this deficit by investigating the couplings and phenomenology of the gravitino in the effective Lagrangian approach. We pay particular attention to the phenomenology of the scalar octets, where new decay channels open up. This leads us to propose a new simplified effective scenario including only light gluinos, sgluons and gravitinos, allowing the squarks to be heavy – with the possible exception of the third generation. Finally, we comment on the application of our results to Fake Split Supersymmetry
Symmetry breaking during seeded growth of nanocrystals.
Xia, Xiaohu; Xia, Younan
2012-11-14
Currently, most of the reported noble-metal nanocrystals are limited to a high level of symmetry, as constrained by the inherent, face-centered cubic (fcc) lattice of these metals. In this paper, we report, for the first time, a facile and versatile approach (backed up by a clear mechanistic understanding) for breaking the symmetry of an fcc lattice and thus obtaining nanocrystals with highly unsymmetrical shapes. The key strategy is to induce and direct the growth of nanocrystal seeds into unsymmetrical modes by manipulating the reduction kinetics. With silver as an example, we demonstrated that the diversity of possible shapes taken by noble-metal nanocrystals could be greatly expanded by incorporating a series of new shapes drastically deviated from the fcc lattice. This work provides a new method to investigate shape-controlled synthesis of metal nanocrystal.
Supersymmetry breaking and composite extra dimensions
International Nuclear Information System (INIS)
Luty, Markus A.; Sundrum, Raman
2002-01-01
We study supergravity models in four dimensions where the hidden sector is superconformal and strongly coupled over several decades of energy below the Planck scale, before undergoing spontaneous breakdown of scale invariance and supersymmetry. We show that large anomalous dimensions can suppress Kaehler contact terms between the hidden and visible sectors, leading to models in which the hidden sector is 'sequestered' and anomaly-mediated supersymmetry breaking can naturally dominate, thus solving the supersymmetric flavor problem. We construct simple, explicit models of the hidden sector based on supersymmetric QCD in the conformal window. The present approach can be usefully interpreted as having an extra dimension responsible for sequestering replaced by the many states of a (spontaneously broken) strongly coupled superconformal hidden sector, as dictated by the anti-de Sitter conformal field theory correspondence
SARAH goes left and right looking beyond the Standard Model and meets SUSY
Energy Technology Data Exchange (ETDEWEB)
Opferkuch, Toby Oliver
2017-07-07
Progress in the search for physics beyond the Standard Model (BSM) proceeds through two main avenues. The first requires the development of models that address the host of theoretical and experimental deficiencies of the Standard Model (SM). The second avenue requires scrutinising these models against all available data as well as checks for theoretical consistency. Unfortunately there exists a large number of strongly motivated models as well as an absence of any signs illuminating the correct path nature has chosen. With the lack of a clear direction, automated tools provide an effective means to test as many models as possible. In this thesis we demonstrate how the SARAH framework can be used in this context as well as its adaptability for confronting unexpected hints of new physics, such as the diphoton excess, that have arisen at the Large Hadron Collider (LHC) over the previous years. We then turn to more theoretical constraints namely, studying the stability of the electroweak vacuum in minimal supersymmetric models. Here we studied the impact of previously neglected directions when including non-standard vacuum expectation values. In the second half of this thesis we consider low-scale left-right symmetric models both with and without supersymmetry. In the non-supersymmetric case we consider constraints arising from charged lepton flavour violation. We have significantly improved existing parametrisations allowing for the new Yukawa couplings to be determined as a function of the underlying model parameters. The last scenario we consider is a model based on SO(10) unification at the high-scale. We build a complete model with TeV-scale breaking of the left-right phase studying in detail the phenomenology.
Leaders break ground for INFINITY
2008-01-01
Community leaders from Mississippi and Louisiana break ground for the new INFINITY at NASA Stennis Space Center facility during a Nov. 20 ceremony. Groundbreaking participants included (l to r): Gottfried Construction representative John Smith, Mississippi Highway Commissioner Wayne Brown, INFINITY board member and Apollo 13 astronaut Fred Haise, Stennis Director Gene Goldman, Studio South representative David Hardy, Leo Seal Jr. family representative Virginia Wagner, Hancock Bank President George Schloegel, Mississippi Rep. J.P. Compretta, Mississippi Band of Choctaw Indians representative Charlie Benn and Louisiana Sen. A.G. Crowe.
Energy Technology Data Exchange (ETDEWEB)
Wiley, H. S.
2009-11-01
There has been much concern about the impact of tight funding on the careers of young scientists. When only a small percentage of grants are approved, even the smallest problem or error with an application can push it out of the funding range. Unfortunately, the relative lack of grant writing skills by new investigators often has this effect. To avoid a situation where only experienced investigators with polished writing skills are funded, the National Institutes of Health has instituted a more generous ranking scale for new investigators. Not surprisingly, some senior investigators have protested, calling it reverse discrimination. I say that their anger is misplaced. New investigators do deserve a break.
Inflationary implications of supersymmetry breaking
Energy Technology Data Exchange (ETDEWEB)
Borghese, Andrea; Roest, Diederik; Zavala, Ivonne [Centre for Theoretical Physics, University of Groningen, Nijenborgh 4, 9747 AG Groningen (Netherlands)
2013-07-23
We discuss a general bound on the possibility to realise inflation in any minimal supergravity with F-terms. The derivation crucially depends on the sGoldstini, the scalar field directions that are singled out by spontaneous supersymmetry breaking. The resulting bound involves both slow-roll parameters and the geometry of the Kähler manifold of the chiral scalars. We analyse the inflationary implications of this bound, and in particular discuss to what extent the requirements of single field and slow-roll can both be met in F-term inflation.
History of electroweak symmetry breaking
International Nuclear Information System (INIS)
Kibble, T W B
2015-01-01
In this talk, I recall the history of the development of the unified electroweak theory, incorporating the symmetry-breaking Higgs mechanism, as I saw it from my standpoint as a member of Abdus Salam's group at Imperial College. I start by describing the state of physics in the years after the Second World War, explain how the goal of a unified gauge theory of weak and electromagnetic interactions emerged, the obstacles encountered, in particular the Goldstone theorem, and how they were overcome, followed by a brief account of more recent history, culminating in the historic discovery of the Higgs boson in 2012. (paper)
Sediment transport under breaking waves
DEFF Research Database (Denmark)
Christensen, Erik Damgaard; Hjelmager Jensen, Jacob; Mayer, Stefan
2000-01-01
The sediment transport in the surf zone is modelled by combining a Navier-Stokes solver, a free surface model, a turbulence model, and a sediment transport model. The flow solver is based on the finite volume technique for non-orthogonal grids. The model is capable of simulating the turbulence...... generated at the surface where the wave breaks as well as the turbulence generated near the bed due to the wave-motion and the undertow. In general, the levels of turbulent kinetic energy are found to be higher than experiments show. This results in an over prediction of the sediment transport. Nevertheless...
Structural Break Tests Robust to Regression Misspecification
Directory of Open Access Journals (Sweden)
Alaa Abi Morshed
2018-05-01
Full Text Available Structural break tests for regression models are sensitive to model misspecification. We show—analytically and through simulations—that the sup Wald test for breaks in the conditional mean and variance of a time series process exhibits severe size distortions when the conditional mean dynamics are misspecified. We also show that the sup Wald test for breaks in the unconditional mean and variance does not have the same size distortions, yet benefits from similar power to its conditional counterpart in correctly specified models. Hence, we propose using it as an alternative and complementary test for breaks. We apply the unconditional and conditional mean and variance tests to three US series: unemployment, industrial production growth and interest rates. Both the unconditional and the conditional mean tests detect a break in the mean of interest rates. However, for the other two series, the unconditional mean test does not detect a break, while the conditional mean tests based on dynamic regression models occasionally detect a break, with the implied break-point estimator varying across different dynamic specifications. For all series, the unconditional variance does not detect a break while most tests for the conditional variance do detect a break which also varies across specifications.
Symmetry breaking in gauge glasses
International Nuclear Information System (INIS)
Hansen, K.
1988-09-01
In order to explain why nature selects the gauge groups of the Standard Model, Brene and Nielsen have proposed a way to break gauge symmetry which does not rely on the existence of a Higgs field. The observed gauge groups will in this scheme appear as the only surviving ones when this mechanism is applied to a random selection of gauge groups. The essential assumption is a discrete space-time with random couplings. Some working assumptions were made for computational reasons of which the most important is that quantum fluctuations were neclected. This work presents an example which under the same conditions show that a much wider class of groups than predicted by Brene and Nielsen will be broken. In particular no possible Standard Model Group survives unbroken. Numerical calculations support the analytical result. (orig.)
Rotational Symmetry Breaking in Baby Skyrme Models
Karliner, Marek; Hen, Itay
We discuss one of the most interesting phenomena exhibited by baby skyrmions - breaking of rotational symmetry. The topics we will deal with here include the appearance of rotational symmetry breaking in the static solutions of baby Skyrme models, both in flat as well as in curved spaces, the zero-temperature crystalline structure of baby skyrmions, and finally, the appearance of spontaneous breaking of rotational symmetry in rotating baby skyrmions.
Energy Technology Data Exchange (ETDEWEB)
Miller, G.A. [Department of Physics, University of Washington, Seattle (United States); Kolck, U. van [Department of Physics, University of Arizona, Tucson (United States)
2003-06-01
Two new experiments have detected charge-symmetry breaking, the mechanism responsible for protons and neutrons having different masses. Symmetry is a crucial concept in the theories that describe the subatomic world because it has an intimate connection with the laws of conservation. The theory of the strong interaction between quarks - quantum chromodynamics - is approximately invariant under what is called charge symmetry. In other words, if we swap an up quark for a down quark, then the strong interaction will look almost the same. This symmetry is related to the concept of {sup i}sospin{sup ,} and is not the same as charge conjugation (in which a particle is replaced by its antiparticle). Charge symmetry is broken by the competition between two different effects. The first is the small difference in mass between up and down quarks, which is about 200 times less than the mass of the proton. The second is their different electric charges. The up quark has a charge of +2/3 in units of the proton charge, while the down quark has a negative charge of -1/3. If charge symmetry was exact, the proton and the neutron would have the same mass and they would both be electrically neutral. This is because the proton is made of two up quarks and a down quark, while the neutron comprises two downs and an up. Replacing up quarks with down quarks, and vice versa, therefore transforms a proton into a neutron. Charge-symmetry breaking causes the neutron to be about 0.1% heavier than the proton because the down quark is slightly heavier than the up quark. Physicists had already elucidated certain aspects of charge-symmetry breaking, but our spirits were raised greatly when we heard of the recent work of Allena Opper of Ohio University in the US and co-workers at the TRIUMF laboratory in British Columbia, Canada. Her team has been trying to observe a small charge-symmetry-breaking effect for several years, using neutron beams at the TRIUMF accelerator. The researchers studied the
Rock breaking methods to replace blasting
Zhou, Huisheng; Xie, Xinghua; Feng, Yuqing
2018-03-01
The method of breaking rock by blasting has a high efficiency and the cost is relatively low, but the associated vibration, flyrock, production of toxic gases since the 1970’s, the Western developed countries began to study the safety of breaking rock. This paper introduces different methods and their progress to safely break rock. Ideally, safe rock breaking would have little vibration, no fly stone, and no toxic gases, which can be widely used in municipal engineering, road excavation, high-risk mining, quarrying and complex environment.
NPP Krsko small break LOCA analysis
International Nuclear Information System (INIS)
Mavko, B.; Petelin, S.; Peterlin, G.
1987-01-01
Parametric analysis of small break loss of coolant accident for the Krsko NPP was calculated by using RELAP5/MOD1 computer code. The model that was used in our calculations has been improved over several years and was previously tested in simulation (s) of start-up tests and known NPP Krsko transients. In our calculations we modelled automatic actions initiated by control, safety and protection systems. We also modelled the required operator actions as specified in emergency operating instructions. In small-break LOCA calculations, we varied break sizes in the cold leg. The influence of steam generator tube plugging on small break LOCA accidents was also analysed. (author)
Give me a better break: Choosing workday break activities to maximize resource recovery.
Hunter, Emily M; Wu, Cindy
2016-02-01
Surprisingly little research investigates employee breaks at work, and even less research provides prescriptive suggestions for better workday breaks in terms of when, where, and how break activities are most beneficial. Based on the effort-recovery model and using experience sampling methodology, we examined the characteristics of employee workday breaks with 95 employees across 5 workdays. In addition, we examined resources as a mediator between break characteristics and well-being. Multilevel analysis results indicated that activities that were preferred and earlier in the work shift related to more resource recovery following the break. We also found that resources mediated the influence of preferred break activities and time of break on health symptoms and that resource recovery benefited person-level outcomes of emotional exhaustion, job satisfaction, and organizational citizenship behavior. Finally, break length interacted with the number of breaks per day such that longer breaks and frequent short breaks were associated with more resources than infrequent short breaks. (c) 2016 APA, all rights reserved).
Clinically undetected retinal breaks causing retinal detachment: A review of options for management.
Gupta, Deepak; Ching, Jared; Tornambe, Paul E
2017-08-12
The successful detection of retinal breaks is a critical step in rhegmatogenous retinal detachment surgery in order to prevent persistent/recurrent retinal detachments. Not all retinal breaks causing retinal detachments are obvious. Retinal breaks may be obscured by opacities that are either anterior segment related, lens related, or posterior segment related. Rules to identify breaks based on subretinal fluid configuration are more difficult to apply in pseudophakic, aphakic, and scleral buckle encircled eyes-and in eyes with repeat detachments and those with proliferative vitreoretinopathy. Exudative detachments exhibit characteristic features and must be ruled out. A thorough clinical examination preoperatively is important even if a vitrectomy is planned. We review the incidence and causes of undetected breaks, along with preoperative/clinical issues that may hinder break detection. We review the literature with respect to investigative approaches and techniques that are available to the vitreoretinal surgeon when primary breaks remain clinically undetected during the preoperative examination. We broadly divide the surgical approaches into ones where the surgeon utilizes techniques to pursue actively a search for breaks versus adopting a purely speculative approach. Advantages and disadvantages of various techniques are appraised. Intuitively one might argue that an encircling scleral buckle combined with vitrectomy would give higher single operation success than pars plana vitrectomy alone because "undetected" retinal breaks would be addressed by a 360° plombage. We could not confirm this concept. Newer techniques, such as pars plana vitrectomy augmented with dye extrusion or endoscopic-assisted pars plana vitrectomy, show encouraging results. Technological advances such as intraoperative optical coherence tomography will also help to broaden the vitreoretinal surgeon's armamentarium. At this time, there is no gold standard in terms of the recommended
Rice Research to Break Yield Barriers
Verma, Vivek; Ramamoorthy, Rengasamy; Kohli, Ajay; Kumar, Prakash P.
2015-10-01
The world’s population continues to expand and it is expected to cross 9 billion by 2050. This would significantly amplify the demand for food, which will pose serious threats to global food security. Additional challenges are being imposed due to a gradual decrease in the total arable land and global environmental changes. Hence, it is of utmost importance to review and revise the existing food production strategies by incorporating novel biotechnological approaches that can help to break the crop yield barriers in the near future. In this review, we highlight some of the concerns hampering crop yield enhancements. The review also focuses on modern breeding techniques based on genomics as well as proven biotechnological approaches that enable identification and utilization of candidate genes. Another aspect of discussion is the important area of research, namely hormonal regulation of plant development, which is likely to yield valuable regulatory genes for such crop improvement efforts in the future. These strategies can serve as potential tools for developing elite crop varieties for feeding the growing billions.
The leak before break criteria, requirements and implications
International Nuclear Information System (INIS)
Martinez M, E.
1992-05-01
Inside this work a general balance is made on the Leak before break approach (LBB), like they are the history and licensing, those limitations, the acceptance criteria of the LBB, the current state of the regulatory development and the current state of it application in countries like E.U.A, Germany, Canada, Italy and France. Everything it with the purpose of evaluating the opportunities that offers the LBB criteria for it possible application in Mexico. (Author)
Mass quantization in quantum and susy cosmological models with matter content
International Nuclear Information System (INIS)
Ortiz, C; Socorro, J; Tkach, V I; Torres, J; Rosales, J
2005-01-01
We present the study of the quantum closed Friedmann-Robertson-Walker (FRW) cosmological model with a matter content given by a perfect fluid with barotropic state equation p = γρ The Wheeler-DeWitt equation is viewed as the Schroedinger equation for the linear harmonic oscillator with energy E. Such type of Universe has quantized masses of the order of the Planck mass and harmonic oscillator wave functions. Then, we consider the n = 2 supersymmetric superfield approach for the same model and obtain a normalizable wave function (at zero energy) of the universe. Besides, the mass parameter spectrum is found in the Schroedinger picture, being similar to those obtained by other methods, using a black hole system
Controlling break-the-glass through alignment
Adriansyah, A.; Dongen, van B.F.; Zannone, N.
2013-01-01
Modern IT systems have to deal with unpredictable situations and exceptions more and more often. In contrast, security mechanisms are usually very rigid. Functionality like break-the-glass is thus employed to allow users to bypass security mechanisms in case of emergencies. However, break-the-glass
Charge-symmetry-breaking nucleon form factors
Energy Technology Data Exchange (ETDEWEB)
Kubis, Bastian, E-mail: kubis@hiskp.uni-bonn.de [Universitaet Bonn, Helmholtz-Institut fuer Strahlen- und Kernphysik (Theorie) and Bethe Center for Theoretical Physics (Germany)
2011-11-15
A quantitative understanding of charge-symmetry breaking is an increasingly important ingredient for the extraction of the nucleon's strange vector form factors. We review the theoretical understanding of the charge-symmetry-breaking form factors, both for single nucleons and for {sup 4}He.
Charge-symmetry-breaking nucleon form factors
International Nuclear Information System (INIS)
Kubis, Bastian
2011-01-01
A quantitative understanding of charge-symmetry breaking is an increasingly important ingredient for the extraction of the nucleon’s strange vector form factors. We review the theoretical understanding of the charge-symmetry-breaking form factors, both for single nucleons and for 4 He.
Breaking antidunes: Cyclic behavior due to hysteresis
DEFF Research Database (Denmark)
Deigaard, Rolf
2006-01-01
The cyclic behavior of breaking antidunes (growth, breaking of surface wave, obliteration) is investigated by use of a numerical model. The model includes the transition between supercritical and transcritical flow. As the antidune grows the flow becomes transcritical and a hydraulic jump is form...
Laskaris, James; Regan, Katie
2013-12-01
Changes in the economic and legislative environment have complicated the capital acquisition landscape. Hospitals and health systems should: Question the assumptions that underlie their break-even analysis. Revamp the break-even calculator. Engage in discussions about the clinical aspects of equipment and technology acquisition decisions.
Strongly coupled semidirect mediation of supersymmetry breaking
International Nuclear Information System (INIS)
Ibe, M.; Izawa, K.-I.; Nakai, Y.
2009-01-01
Strongly coupled semidirect gauge mediation models of supersymmetry breaking through massive mediators with standard-model charges are investigated by means of composite degrees of freedom. Sizable mediation is realized to generate the standard-model gaugino masses for a small mediator mass without breaking the standard-model symmetries.
Multiscale Simulation of Breaking Wave Impacts
DEFF Research Database (Denmark)
Lindberg, Ole
compare reasonably well. The incompressible and inviscid ALE-WLS model is coupled with the potential flow model of Engsig-Karup et al. [2009], to perform multiscale calculation of breaking wave impacts on a vertical breakwater. The potential flow model provides accurate calculation of the wave...... with a potential flow model to provide multiscale calculation of forces from breaking wave impacts on structures....
Research progress on dam-break floods
Wu, Jiansong; Bao, Kai; Zhang, Hui
2011-01-01
Because of the catastrophic effects downstream of dam-break failure, more and more researchers around the world have been working on the study of dam-break flows to accurately forecast the downstream inundation mapping. With the rapid development of computer hardware and computing techniques, numerical study on dam-break flows has been a popular research subject. In the paper, the numerical methodologies used to solve the governing partial differential equations of dam-break flows are classified and summarized, and their characteristics and applications are discussed respectively. Furthermore, the fully-developed mathematical models developed in recent decades are reviewed, and also introduced the authors' on-going work. Finally, some possible future developments on modeling the dam-break flows and some solutions are presented and discussed. © 2011 IEEE.
Dynamical study of symmetries: breaking and restauration
International Nuclear Information System (INIS)
Schuck, P.
1986-09-01
First symmetry breaking (spontaneous) is explained and the physical implication discussed for infinite systems. The relation with phase transitions is indicated. Then the specific aspects of symmetry breaking in finite systems is treated and illustrated in detail for the case of translational invariance with the help of an oversimplified but exactly solvable model. The method of projection (restauration of symmetry) is explained for the static case and also applied to the model. Symmetry breaking in the dynamical case and for instance the notion of a soft mode responsible for the symmetry breaking is discussed in the case of superfluidity and another exactly solvable model is introduced. The Goldstone mode is treated in detail. Some remarks on analogies with the breaking of chiral symmetry are made. Some recent developments in the theory of symmetry restauration are briefly outlined [fr
Research progress on dam-break floods
Wu, Jiansong
2011-08-01
Because of the catastrophic effects downstream of dam-break failure, more and more researchers around the world have been working on the study of dam-break flows to accurately forecast the downstream inundation mapping. With the rapid development of computer hardware and computing techniques, numerical study on dam-break flows has been a popular research subject. In the paper, the numerical methodologies used to solve the governing partial differential equations of dam-break flows are classified and summarized, and their characteristics and applications are discussed respectively. Furthermore, the fully-developed mathematical models developed in recent decades are reviewed, and also introduced the authors\\' on-going work. Finally, some possible future developments on modeling the dam-break flows and some solutions are presented and discussed. © 2011 IEEE.
Chiral symmetry and chiral-symmetry breaking
International Nuclear Information System (INIS)
Peskin, M.E.
1982-12-01
These lectures concern the dynamics of fermions in strong interaction with gauge fields. Systems of fermions coupled by gauge forces have a very rich structure of global symmetries, which are called chiral symmetries. These lectures will focus on the realization of chiral symmetries and the causes and consequences of thier spontaneous breaking. A brief introduction to the basic formalism and concepts of chiral symmetry breaking is given, then some explicit calculations of chiral symmetry breaking in gauge theories are given, treating first parity-invariant and then chiral models. These calculations are meant to be illustrative rather than accurate; they make use of unjustified mathematical approximations which serve to make the physics more clear. Some formal constraints on chiral symmetry breaking are discussed which illuminate and extend the results of our more explicit analysis. Finally, a brief review of the phenomenological theory of chiral symmetry breaking is presented, and some applications of this theory to problems in weak-interaction physics are discussed
Miller, G A
2003-01-01
Two new experiments have detected charge-symmetry breaking, the mechanism responsible for protons and neutrons having different masses. Symmetry is a crucial concept in the theories that describe the subatomic world because it has an intimate connection with the laws of conservation. The theory of the strong interaction between quarks - quantum chromodynamics - is approximately invariant under what is called charge symmetry. In other words, if we swap an up quark for a down quark, then the strong interaction will look almost the same. This symmetry is related to the concept of sup i sospin sup , and is not the same as charge conjugation (in which a particle is replaced by its antiparticle). Charge symmetry is broken by the competition between two different effects. The first is the small difference in mass between up and down quarks, which is about 200 times less than the mass of the proton. The second is their different electric charges. The up quark has a charge of +2/3 in units of the proton charge, while ...
Improving long term driving comfort by taking breaks - How break activity affects effectiveness.
Sammonds, George M; Mansfield, Neil J; Fray, Mike
2017-11-01
During long duration journeys, drivers are encouraged to take regular breaks. The benefits of breaks have been documented for safety; breaks may also be beneficial for comfort. The activity undertaken during a break may influence its effectiveness. Volunteers completed 3 journeys on a driving simulator. Each 130 min journey included a 10 min break after the first hour. During the break volunteers either stayed seated, left the simulator and sat in an adjacent room, or took a walk on a treadmill. The results show a reduction in driver discomfort during the break for all 3 conditions, but the effectiveness of the break was dependent on activity undertaken. Remaining seated in the vehicle provided some improvement in comfort, but more was experienced after leaving the simulator and sitting in an adjacent room. The most effective break occurred when the driver walked for 10 min on a treadmill. The benefits from taking a break continued until the end of the study (after a further hour of driving), such that comfort remained the best after taking a walk and worst for those who remained seated. It is concluded that taking a break and taking a walk is an effective method for relieving driving discomfort. Copyright © 2017 Elsevier Ltd. All rights reserved.
Signatures of SUSY dark matter at the LHC and in the spectra of cosmic rays
International Nuclear Information System (INIS)
Olzem, J.
2007-01-01
This thesis discusses the search for supersymmetry at the future Large Hadron Collider (LHC) and the ongoing construction of one of the four large LHC experiments, the Compact Muon Solenoid (CMS), and focuses on the detection of signals from the annihilation of supersymmetric dark matter in the spectra of cosmic rays. The final steps of assembly of 1061 silicon microstrip detector modules for the CMS tracker endcaps are performed at the 1. Physikalisches Institut B at the RWTH Aachen. A laser test facility for these modules was developed and is described in this thesis. In contrast to test procedures based only on the evaluation of pedestal and noise data, the test facility relies on the generation of signals in the silicon sensors by infrared laser illumination. The fully automatic test facility provides high throughput and easy operation for the series production of the modules. Its performance is validated by investigating a reference module with artificially prepared defects of three types: open wirebonds, short-circuited strips and pinholes. It is shown that all defects are clearly detected. In addition to defect detection, an indication for the type of defect is provided. In a further validation step, nine modules from a prototype series are investigated with the laser test facility. Confirming the earlier results on the reference module, defective strips are reliably identified. This thesis describes a novel approach of positron identification with the space-borne AMS-01 experiment, namely through the detection of bremsstrahlung conversion in a silicon microstrip detector. In order to obtain the highest positron selection efficiency possible, novel combinatorial track finding algorithms were developed, particularly optimized for the signature of converted bremsstrahlung. By applying restrictions on the invariant mass of particles the background to the positron sample is largely eliminated. The remaining background contamination is determined from large
Signatures of SUSY dark matter at the LHC and in the spectra of cosmic rays
Energy Technology Data Exchange (ETDEWEB)
Olzem, J.
2007-02-27
This thesis discusses the search for supersymmetry at the future Large Hadron Collider (LHC) and the ongoing construction of one of the four large LHC experiments, the Compact Muon Solenoid (CMS), and focuses on the detection of signals from the annihilation of supersymmetric dark matter in the spectra of cosmic rays. The final steps of assembly of 1061 silicon microstrip detector modules for the CMS tracker endcaps are performed at the 1. Physikalisches Institut B at the RWTH Aachen. A laser test facility for these modules was developed and is described in this thesis. In contrast to test procedures based only on the evaluation of pedestal and noise data, the test facility relies on the generation of signals in the silicon sensors by infrared laser illumination. The fully automatic test facility provides high throughput and easy operation for the series production of the modules. Its performance is validated by investigating a reference module with artificially prepared defects of three types: open wirebonds, short-circuited strips and pinholes. It is shown that all defects are clearly detected. In addition to defect detection, an indication for the type of defect is provided. In a further validation step, nine modules from a prototype series are investigated with the laser test facility. Confirming the earlier results on the reference module, defective strips are reliably identified. This thesis describes a novel approach of positron identification with the space-borne AMS-01 experiment, namely through the detection of bremsstrahlung conversion in a silicon microstrip detector. In order to obtain the highest positron selection efficiency possible, novel combinatorial track finding algorithms were developed, particularly optimized for the signature of converted bremsstrahlung. By applying restrictions on the invariant mass of particles the background to the positron sample is largely eliminated. The remaining background contamination is determined from large
Financial Management: An Organic Approach
Laux, Judy
2013-01-01
Although textbooks present corporate finance using a topical approach, good financial management requires an organic approach that integrates the various assignments financial managers confront every day. Breaking the tasks into meaningful subcategories, the current article offers one approach.
Banks, David; Wiley, Anthony; Catania, Nicolas; Coles, Alastair N.; Smith, Duncan; Baynham, Simon; Deliot, Eric; Chidzey, Rod
1998-02-01
In this paper we describe the work being done at HP Labs Bristol in the area of home networks and gateways. This work is based on the idea of breaking open the set top box by physically separating the access network specific functions from the application specific functions. The access network specific functions reside in an access network gateway that can be shared by many end user devices. The first section of the paper present the philosophy behind this approach. The end user devices and the access network gateways must be interconnected by a high bandwidth network which can offer a bounded delay service for delay sensitive traffic. We are advocating the use of IEEE 1394 for this network, and the next section of the paper gives a brief introduction to this technology. We then describe a prototype digital video broadcasting satellite compliant gateway that we have built. This gateway could be used, for example, by a PC for receiving a data service or by a digital TV for receiving an MPEG-2 video service. A control architecture is the presented which uses a PC application to provide a web based user interface to the system. Finally, we provide details of our work on extending the reach of IEEE 1394 and its standardization status.
Isospin symmetry breaking in sd shell nuclei
International Nuclear Information System (INIS)
Lam, Y.W.
2011-12-01
In the thesis, we develop a microscopic approach to describe the isospin-symmetry breaking effects in sd-shell nuclei. The work is performed within the nuclear shell model. A realistic isospin-conserving Hamiltonian is perfected by a charge-dependent part consisting of the Coulomb interaction and Yukawa-type meson exchange potentials to model charge-dependent forces of nuclear origin. The extended database of the experimental isobaric mass multiplet equation coefficients was compiled during the thesis work and has been used in a fit of the Hamiltonian parameters. The constructed Hamiltonian provides an accurate theoretical description of the isospin mixing nuclear states. A specific behaviour of the IMME (Isobaric Multiplet Mass Equation) coefficients have been revealed. We present two important applications: (i) calculations of isospin-forbidden proton emission amplitudes, which is often of interest for nuclear astrophysics, and (ii) calculation on corrections to nuclear Fermi beta decay, which is crucial for the tests of fundamental symmetries of the weak interaction. (author)
Tornambe, Peter; The ATLAS collaboration
2017-01-01
Supersymmetry (SUSY) is one of the most studied theories to extend the Standard Model (SM) beyond the electroweak scale. If R-parity is conserved, SUSY particles are produced in pairs and the lightest supersymmetric particle (LSP), which is typically the lightest neutrino $\\tilde{\\chi}_1^0$, is stable. In many models the LSP can be a suitable candidate for dark matter. This poster presents a search for supersymmetric phenomena in final states with two leptons (electrons or muons) of the same electric charge or three leptons, jets and missing transverse energy. While the same-sign or three leptons signature is present in many SUSY scenarios, SM processes leading to such events have very small cross-sections. Therefore, this analysis benefits from a small SM background in the signal regions leading to a good sensitivity especially in SUSY scenarios with compressed mass spectra or in which the R-parity is not conserved. Except from the prompt production of same-sign lepton pairs or three leptons, the main source...
Deflected Mirage Mediation: A Phenomenological Framework for Generalized Supersymmetry Breaking
International Nuclear Information System (INIS)
Everett, Lisa L.; Kim, Ian-Woo; Ouyang, Peter; Zurek, Kathryn M.
2008-01-01
We present a general phenomenological framework for dialing between gravity mediation, gauge mediation, and anomaly mediation. The approach is motivated from recent developments in moduli stabilization, which suggest that gravity mediated terms can be effectively loop suppressed and thus comparable to gauge and anomaly mediated terms. The gauginos exhibit a mirage unification behavior at a ''deflected'' scale, and gluinos are often the lightest colored sparticles. The approach provides a rich setting in which to explore generalized supersymmetry breaking at the CERN Large Hadron Collider
Dynamical Symmetry Breaking of Extended Gauge Symmetries
Appelquist, Thomas; Shrock, Robert
2003-01-01
We construct asymptotically free gauge theories exhibiting dynamical breaking of the left-right, strong-electroweak gauge group $G_{LR} = {\\rm SU}(3)_c \\times {\\rm SU}(2)_L \\times {\\rm SU}(2)_R \\times {\\rm U}(1)_{B-L}$, and its extension to the Pati-Salam gauge group $G_{422}={\\rm SU}(4)_{PS} \\times {\\rm SU}(2)_L \\times {\\rm SU}(2)_R$. The models incorporate technicolor for electroweak breaking, and extended technicolor for the breaking of $G_{LR}$ and $G_{422}$ and the generation of fermion ...
Spontaneous symmetry breaking and its cosmological consequences
International Nuclear Information System (INIS)
Kobzarev, I.Yu.
1975-01-01
The concept of symmetry and of the spontaneous symmetry breaking are presented in popular form as applied to quantum physics. Though the presence of the spontaneous symmetry breaking is not proved directly for interactions of elementary particles, on considering the hypothesis of its presence as applied to the hot Universe theory a possibility of obtaining rather uncommon cosmological consequences is discussed. In particular, spontaneous symmetry breaking of vacuum and the rather hot Universe lead necessarily to the presence of the domain structure of the Universe with the surfase energy at the domain interface in the form of a real physical object
Supersymmetry Breaking through Transparent Extra Dimensions
Energy Technology Data Exchange (ETDEWEB)
Schmaltz, Martin
1999-11-23
We propose a new framework for mediating supersymmetry breaking through an extra dimension. It predicts positive scalar masses and solves the supersymmetric flavor problem. Supersymmetry breaks on a ''source'' brane that is spatially separated from a parallel brane on which the standard model matter fields and their superpartners live. The gauge and gaugino fields propagate in the bulk, the latter receiving a supersymmetry breaking mass from direct couplings to the source brane. Scalar masses are suppressed at the high scale but are generated via the renormalization group. We briefly discuss the spectrum and collider signals for a range of compactification scales.
Aspects of leak before break quantification in pressurized pipes
International Nuclear Information System (INIS)
Hellen, R.A.J.; Darlaston, B.J.L.; Connors, D.C.
1980-01-01
In fitness for purpose studies of pressurized structures containing defects, the concept of leak before break is often invoked. As the assumptions used in the concept are sometimes very pessimistic it is desirable to be able to quantify them more precisely. Two aspects are currently receiving attention; these are the way in which a crack profile develops during fatigue and what happens when the remaining ligament below the crack fails. These aspects are being evaluated experimentally and theoretically. Data are presented from tests on pipes subjected to cyclic pressure and subsequently failed. An analytical approach is proposed on the question of ligament failure, this being based on the development of some recent work on flat plates. The overall question of leak before break is considered. As the understanding and confidence increases, it is possible to reduce the range of interest and focus on specific aspects of the problem. This paper examines these aspects. (author)
Comparing the role of fuel breaks across southern California national forests
Syphard, Alexandra D.; Keeley, Jon E.; Brennan, Teresa J.
2011-01-01
Fuel treatment of wildland vegetation is the primary approach advocated for mitigating fire risk at the wildland-urban interface (WUI), but little systematic research has been conducted to understand what role fuel treatments play in controlling large fires, which factors influence this role, or how the role of fuel treatments may vary over space and time. We assembled a spatial database of fuel breaks and fires from the last 30 years in four southern California national forests to better understand which factors are consistently important for fuel breaks in the control of large fires. We also explored which landscape features influence where fires and fuel breaks are most likely to intersect. The relative importance of significant factors explaining fuel break outcome and number of fire and fuel break intersections varied among the forests, which reflects high levels of regional landscape diversity. Nevertheless, several factors were consistently important across all the forests. In general, fuel breaks played an important role in controlling large fires only when they facilitated fire management, primarily by providing access for firefighting activities. Fire weather and fuel break maintenance were also consistently important. Models and maps predicting where fuel breaks and fires are most likely to intersect performed well in the regions where the models were developed, but these models did not extend well to other regions, reflecting how the environmental controls of fire regimes vary even within a single ecoregion. Nevertheless, similar mapping methods could be adopted in different landscapes to help with strategic location of fuel breaks. Strategic location of fuel breaks should also account for access points near communities, where fire protection is most important.
A leak-before-break strategy for CANDU primary piping systems
International Nuclear Information System (INIS)
Aggarwal, M.L.; Kozluk, M.J.; Lin, T.C.; Manning, B.W.; Vijay, D.K.
1986-01-01
Recent advances in elastic-plastic fracture mechanics have made it possible to assess the stability of cracks in ductile piping systems. These technological developments have been used by Ontario Hydro as the nucleus of an approach for demonstrating that CANDU primary heat transport piping systems will not break catastrophically; at worst they would leak at a detectable rate. This leak-before-break approach has been taken on the Darlington nuclear generating station as a design stage alternative to the provision of pipe whip restraints on large diameter, primary heat transport system piping. Positive conclusions reached via this approach are considered sufficient to exclude the requirement to provide protective devices, such as pipe whip restraints. In arriving at the proposed leak-before-break approach a review of current and proposed leak-before-break licensing positions of other jurisdictions (particularly those in the United States and the Federal Republic of Germany) was carried out. The approach presented makes use of recent American developments in the area of elastic-plastic fracture mechanics. It also gives consideration to aspects which are unique to the pressurized heavy water (CANDU) reactors used by Ontario Hydro. The proposed leak-before-break approach is described and its use is illustrated by applying it to the Darlington generating station primary heat transport system pump suction piping. (author)