WorldWideScience

Sample records for sustained flight operations

  1. Shuttle operations era planning for flight operations

    Science.gov (United States)

    Holt, J. D.; Beckman, D. A.

    1984-01-01

    The Space Transportation System (STS) provides routine access to space for a wide range of customers in which cargos vary from single payloads on dedicated flights to multiple payloads that share Shuttle resources. This paper describes the flight operations planning process from payload introduction through flight assignment to execution of the payload objectives and the changes that have been introduced to improve that process. Particular attention is given to the factors that influence the amount of preflight preparation necessary to satisfy customer requirements. The partnership between the STS operations team and the customer is described in terms of their functions and responsibilities in the development of a flight plan. A description of the Mission Control Center (MCC) and payload support capabilities completes the overview of Shuttle flight operations.

  2. Radioastron flight operations

    Science.gov (United States)

    Altunin, V. I.; Sukhanov, K. G.; Altunin, K. R.

    1993-01-01

    Radioastron is a space-based very-long-baseline interferometry (VLBI) mission to be operational in the mid-90's. The spacecraft and space radio telescope (SRT) will be designed, manufactured, and launched by the Russians. The United States is constructing a DSN subnet to be used in conjunction with a Russian subnet for Radioastron SRT science data acquisition, phase link, and spacecraft and science payload health monitoring. Command and control will be performed from a Russian tracking facility. In addition to the flight element, the network of ground radio telescopes which will be performing co-observations with the space telescope are essential to the mission. Observatories in 39 locations around the world are expected to participate in the mission. Some aspects of the mission that have helped shaped the flight operations concept are: separate radio channels will be provided for spacecraft operations and for phase link and science data acquisition; 80-90 percent of the spacecraft operational time will be spent in an autonomous mode; and, mission scheduling must take into account not only spacecraft and science payload constraints, but tracking station and ground observatory availability as well. This paper will describe the flight operations system design for translating the Radioastron science program into spacecraft executed events. Planning for in-orbit checkout and contingency response will also be discussed.

  3. Crew Factors in Flight Operations X: Alertness Management in Flight Operations

    Science.gov (United States)

    Rosekind, Mark R.; Gander, Philippa H.; Connell, Linda J.; Co, Elizabeth L.

    2001-01-01

    In response to a 1980 congressional request, NASA Ames Research Center initiated a Fatigue/Jet Lag Program to examine fatigue, sleep loss, and circadian disruption in aviation. Research has examined fatigue in a variety of flight environments using a range of measures (from self-report to performance to physiological). In 1991, the program evolved into the Fatigue Countermeasures Program, emphasizing the development and evaluation of strategies to maintain alertness and performance in operational settings. Over the years, the Federal Aviation Administration (FAA) has become a collaborative partner in support of fatigue research and other Program activities. From the inception of the Program, a principal goal was to return the information learned from research and other Program activities to the operational community. The objectives of this Education and Training Module are to explain what has been learned about the physiological mechanisms that underlie fatigue, demonstrate the application of this information in flight operations, and offer some specific fatigue countermeasure recommendations. It is intended for all segments of the aeronautics industry, including pilots, flight attendants, managers, schedulers, safety and policy personnel, maintenance crews, and others involved in an operational environment that challenges human physiological capabilities because of fatigue, sleep loss, and circadian disruption.

  4. Sustainable Building Operation

    DEFF Research Database (Denmark)

    Jensen, Jesper Ole

    2009-01-01

    of sustainable building operation and a survey amongst building administrators from the private and the social housing sector. Our results show that there are many good examples on sustainable building operation in Danish housing estates, where local building managers, residents etc. have gained impressive......Energy-savings in the existing building stock have becomes a main goal in national and international policies. Often focus is on building-renovations, whereas the potential of sustainable building operation to a large extent has been neglected. Nevertheless, international research as well...... as practical experiences from Danish housing estates indicates that there are large potentials for energy savings by focusing on the operation of the buildings. We suggest that in order to achieve sustainability in the existing housing, renovation and operations should be seen as integrated parts...

  5. The Differential Effect of Sustained Operations on Psychomotor Skills of Helicopter Pilots.

    Science.gov (United States)

    McMahon, Terry W; Newman, David G

    2018-06-01

    Flying a helicopter is a complex psychomotor skill requiring constant control inputs from pilots. A deterioration in psychomotor performance of a helicopter pilot may be detrimental to operational safety. The aim of this study was to test the hypothesis that psychomotor performance deteriorates over time during sustained operations and that the effect is more pronounced in the feet than the hands. The subjects were helicopter pilots conducting sustained multicrew offshore flight operations in a demanding environment. The remote flight operations involved constant workload in hot environmental conditions with complex operational tasking. Over a period of 6 d 10 helicopter pilots were tested. At the completion of daily flying duties, a helicopter-specific screen-based compensatory tracking task measuring tracking accuracy (over a 5-min period) tested both hands and feet. Data were compared over time and tested for statistical significance for both deterioration and differential effect. A statistically significant deterioration of psychomotor performance was evident in the pilots over time for both hands and feet. There was also a statistically significant differential effect between the hands and the feet in terms of tracking accuracy. The hands recorded a 22.6% decrease in tracking accuracy, while the feet recorded a 39.9% decrease in tracking accuracy. The differential effect may be due to prioritization of limb movement by the motor cortex due to factors such as workload-induced cognitive fatigue. This may result in a greater reduction in performance in the feet than the hands, posing a significant risk to operational safety.McMahon TW, Newman DG. The differential effect of sustained operations on psychomotor skills of helicopter pilots. Aerosp Med Hum Perform. 2018; 89(6):496-502.

  6. Flight Operations . [Zero Knowledge to Mission Complete

    Science.gov (United States)

    Forest, Greg; Apyan, Alex; Hillin, Andrew

    2016-01-01

    Outline the process that takes new hires with zero knowledge all the way to the point of completing missions in Flight Operations. Audience members should be able to outline the attributes of a flight controller and instructor, outline the training flow for flight controllers and instructors, and identify how the flight controller and instructor attributes are necessary to ensure operational excellence in mission prep and execution. Identify how the simulation environment is used to develop crisis management, communication, teamwork, and leadership skills for SGT employees beyond what can be provided by classroom training.

  7. Sustainability in Fashion Business Operations

    Directory of Open Access Journals (Sweden)

    Tsan-Ming Choi

    2015-11-01

    Full Text Available Under the global trend of sustainability, many companies selling fashion products have to reshape their operational strategies. Over the past few years, we have witnessed many fashion companies going green by re-engineering their business processes and establishing their formal sustainability programs. Many important topics, such as closed-loop supply chain management, corporate social responsibility, and economic sustainability, are all related to sustainable fashion business operations management. This paper provides a brief review of these critical topics, introduces the special issue, and proposes future research areas to achieve sustainable operations management in the fashion business.

  8. Alertness management in two-person long-haul flight operations

    Science.gov (United States)

    Rosekind, M. R.; Gander, P. H.

    1992-01-01

    Long-haul flight operations involve cumulative sleep loss, circadian disruption, and extended and irregular duty schedules. These factors reduce pilot alertness and performance on the flightdeck. Conceptually and operationally, alertness management in flight operations can be divided into preventive strategies and operational countermeasures. Preventive strategies are utilized prior to a duty period to mitigate or reduce the effects of sleep loss, circadian disruption and fatigue during subsequent flight operations. Operational countermeasures are used during operations as acute techniques for maintaining performance and alertness. Results from previous NASA Ames field studies document the sleep loss and circadian disruption in three-person long-haul flying and illustrate the application of preventive strategies and operational countermeasures. One strategy that can be used in both a preventive and operational manner is strategic napping. The application and effectiveness of strategic napping in long-haul operations will be discussed. Finally, long-haul flying in two-person highly automated aircraft capable of extended range operations will create new challenges to maintaining pilot alertness and performance. Alertness management issues in this flight environment will be explored.

  9. Flight Technical Error Analysis of the SATS Higher Volume Operations Simulation and Flight Experiments

    Science.gov (United States)

    Williams, Daniel M.; Consiglio, Maria C.; Murdoch, Jennifer L.; Adams, Catherine H.

    2005-01-01

    This paper provides an analysis of Flight Technical Error (FTE) from recent SATS experiments, called the Higher Volume Operations (HVO) Simulation and Flight experiments, which NASA conducted to determine pilot acceptability of the HVO concept for normal operating conditions. Reported are FTE results from simulation and flight experiment data indicating the SATS HVO concept is viable and acceptable to low-time instrument rated pilots when compared with today s system (baseline). Described is the comparative FTE analysis of lateral, vertical, and airspeed deviations from the baseline and SATS HVO experimental flight procedures. Based on FTE analysis, all evaluation subjects, low-time instrument-rated pilots, flew the HVO procedures safely and proficiently in comparison to today s system. In all cases, the results of the flight experiment validated the results of the simulation experiment and confirm the utility of the simulation platform for comparative Human in the Loop (HITL) studies of SATS HVO and Baseline operations.

  10. Crew Factors in Flight Operations XIV: Alertness Management in Regional Flight Operations Education Module

    Science.gov (United States)

    Rosekind, Mark R.; Co, Elizabeth L.; Neri, David F.; Oyung, Raymond L.; Mallis, Melissa M.

    2002-01-01

    Regional operations encompass a broad range of pilots and equipment. This module is intended to help all those involved in regional aviation, including pilots, schedulers, dispatchers, maintenance technicians, policy makers, and others, to understand the physiological factors underlying fatigue, how flight operations affect fatigue, and what can be done to counteract fatigue and maximize alertness and performance in their operations. The overall purpose of this module is to promote aviation safety, performance, and productivity. It is intended to meet three specific objectives: (1) to explain the current state of knowledge about the physiological mechanisms underlying fatigue; (2) to demonstrate how this knowledge can be applied to improving flight crew sleep, performance, and alertness; and (3) to offer strategies for alertness management. Aviation Safety Reporting System (ASRS) and National Transportation Safety Board (NISH) reports are used throughout this module to demonstrate that fatigue is a safety issue in the regional operations community. The appendices at the end of this module include the ASRS reports used for the examples contained in this publication, brief introductions to sleep disorders and relaxation techniques, summaries of relevant NASA publications, and a list of general readings on sleep, sleep disorders, and circadian rhythms.

  11. Advanced Transport Operating System (ATOPS) Flight Management/Flight Controls (FM/FC) software description

    Science.gov (United States)

    Wolverton, David A.; Dickson, Richard W.; Clinedinst, Winston C.; Slominski, Christopher J.

    1993-01-01

    The flight software developed for the Flight Management/Flight Controls (FM/FC) MicroVAX computer used on the Transport Systems Research Vehicle for Advanced Transport Operating Systems (ATOPS) research is described. The FM/FC software computes navigation position estimates, guidance commands, and those commands issued to the control surfaces to direct the aircraft in flight. Various modes of flight are provided for, ranging from computer assisted manual modes to fully automatic modes including automatic landing. A high-level system overview as well as a description of each software module comprising the system is provided. Digital systems diagrams are included for each major flight control component and selected flight management functions.

  12. From damselflies to pterosaurs: how burst and sustainable flight performance scale with size.

    Science.gov (United States)

    Marden, J H

    1994-04-01

    Recent empirical data for short-burst lift and power production of flying animals indicate that mass-specific lift and power output scale independently (lift) or slightly positively (power) with increasing size. These results contradict previous theory, as well as simple observation, which argues for degradation of flight performance with increasing size. Here, empirical measures of lift and power during short-burst exertion are combined with empirically based estimates of maximum muscle power output in order to predict how burst and sustainable performance scale with body size. The resulting model is used to estimate performance of the largest extant flying birds and insects, along with the largest flying animals known from fossils. These estimates indicate that burst flight performance capacities of even the largest extinct fliers (estimated mass 250 kg) would allow takeoff from the ground; however, limitations on sustainable power output should constrain capacity for continuous flight at body sizes exceeding 0.003-1.0 kg, depending on relative wing length and flight muscle mass.

  13. NASA/FAA/NCAR Supercooled Large Droplet Icing Flight Research: Summary of Winter 1996-1997 Flight Operations

    Science.gov (United States)

    Miller, Dean; Ratvasky, Thomas; Bernstein, Ben; McDonough, Frank; Strapp, J. Walter

    1998-01-01

    During the winter of 1996-1997, a flight research program was conducted at the NASA-Lewis Research Center to study the characteristics of Supercooled Large Droplets (SLD) within the Great Lakes region. This flight program was a joint effort between the National Aeronautics and Space Administration (NASA), the National Center for Atmospheric Research (NCAR), and the Federal Aviation Administration (FAA). Based on weather forecasts and real-time in-flight guidance provided by NCAR, the NASA-Lewis Icing Research Aircraft was flown to locations where conditions were believed to be conducive to the formation of Supercooled Large Droplets aloft. Onboard instrumentation was then used to record meteorological, ice accretion, and aero-performance characteristics encountered during the flight. A total of 29 icing research flights were conducted, during which "conventional" small droplet icing, SLD, and mixed phase conditions were encountered aloft. This paper will describe how flight operations were conducted, provide an operational summary of the flights, present selected experimental results from one typical research flight, and conclude with practical "lessons learned" from this first year of operation.

  14. Comparison of Commercial Aircraft Fuel Requirements in Regards to FAR, Flight Profile Simulation, and Flight Operational Techniques

    Science.gov (United States)

    Heitzman, Nicholas

    There are significant fuel consumption consequences for non-optimal flight operations. This study is intended to analyze and highlight areas of interest that affect fuel consumption in typical flight operations. By gathering information from actual flight operators (pilots, dispatch, performance engineers, and air traffic controllers), real performance issues can be addressed and analyzed. A series of interviews were performed with various individuals in the industry and organizations. The wide range of insight directed this study to focus on FAA regulations, airline policy, the ATC system, weather, and flight planning. The goal is to highlight where operational performance differs from design intent in order to better connect optimization with actual flight operations. After further investigation and consensus from the experienced participants, the FAA regulations do not need any serious attention until newer technologies and capabilities are implemented. The ATC system is severely out of date and is one of the largest limiting factors in current flight operations. Although participants are pessimistic about its timely implementation, the FAA's NextGen program for a future National Airspace System should help improve the efficiency of flight operations. This includes situational awareness, weather monitoring, communication, information management, optimized routing, and cleaner flight profiles like Required Navigation Performance (RNP) and Continuous Descent Approach (CDA). Working off the interview results, trade-studies were performed using an in-house flight profile simulation of a Boeing 737-300, integrating NASA legacy codes EDET and NPSS with a custom written mission performance and point-performance "Skymap" calculator. From these trade-studies, it was found that certain flight conditions affect flight operations more than others. With weather, traffic, and unforeseeable risks, flight planning is still limited by its high level of precaution. From this

  15. Sustainability in Housing and Dining Operations

    Science.gov (United States)

    Pursehouse, Clive

    2012-01-01

    Residential life, housing, and dining operations have the potential to touch all students by integrating sustainability issues into all operations. There are numerous ways that sustainable practices are enacted in campus housing and dining. Although faculty and staff in academic affairs may look strategically at how sustainability can be…

  16. Operations Research Flight Ground Service Education/Outreach

    Science.gov (United States)

    Smith, Scott M.

    2011-01-01

    This viewgraph presentation describes a nutritional biochemistry assessment of astronauts in preflight, in-flight, and post-flight operations. In-flight collections of blood and urine samples from astronauts to test the effects of Vitamin K, Pro K, Vitamin D, Omega-3 Fatty Acids, Iron, and Sodium in spaceflight is shown. A demonstration of a 1-carbon metabolism pathway that determines the existence of enzymes and polymorphisms is also presented.

  17. The operational flight and multi-crew scheduling problem

    Directory of Open Access Journals (Sweden)

    Stojković Mirela

    2005-01-01

    Full Text Available This paper introduces a new kind of operational multi-crew scheduling problem which consists in simultaneously modifying, as necessary, the existing flight departure times and planned individual work days (duties for the set of crew members, while respecting predefined aircraft itineraries. The splitting of a planned crew is allowed during a day of operations, where it is more important to cover a flight than to keep planned crew members together. The objective is to cover a maximum number of flights from a day of operations while minimizing changes in both the flight schedule and the next-day planned duties for the considered crew members. A new type of the same flight departure time constraints is introduced. They ensure that a flight which belongs to several personalized duties, where the number of duties is equal to the number of crew members assigned to the flight, will have the same departure time in each of these duties. Two variants of the problem are considered. The first variant allows covering of flights by less than the planned number of crew members, while the second one requires covering of flights by a complete crew. The problem is mathematically formulated as an integer nonlinear multi-commodity network flow model with time windows and supplementary constraints. The optimal solution approach is based on Dantzig-Wolfe decomposition/column generation embedded into a branch-and-bound scheme. The resulting computational times on commercial-size problems are very good. Our new simultaneous approach produces solutions whose quality is far better than that of the traditional sequential approach where the flight schedule has been changed first and then input as a fixed data to the crew scheduling problem.

  18. Sustainable operations management: A typological approach

    Directory of Open Access Journals (Sweden)

    Lawrence Michael Corbett

    2009-07-01

    Full Text Available This paper discusses the nature of sustainability and sustainable development as they relate to operations management. It proposes a typology for sustainable operations management that is based on the life cycle stages of a product and the three dimensions of corporate social responsibility. The aim is to show how this typology development could provide a useful approach to integrating the diverse strands of sustainability in operations, using industrial ecology and carbon neutrality as examples. It does this by providing a focused subset of environmental concerns for an industrial ecology approach, and some research propositions for the issue of carbon neutrality.

  19. Crew factors in flight operations II : psychophysiological responses to short-haul air transport operations

    Science.gov (United States)

    1994-11-01

    This report is the second in a series on the physiological and psychological effects of flight operations on flight crews, and on the operational significance of these effects. This overview presents a comprehensive review and interpretation of the m...

  20. Spacelab operations planning. [ground handling, launch, flight and experiments

    Science.gov (United States)

    Lee, T. J.

    1976-01-01

    The paper reviews NASA planning in the fields of ground, launch and flight operations and experiment integration to effectively operate Spacelab. Payload mission planning is discussed taking consideration of orbital analysis and the mission of a multiuser payload which may be either single or multidiscipline. Payload analytical integration - as active process of analyses to ensure that the experiment payload is compatible to the mission objectives and profile ground and flight operations and that the resource demands upon Spacelab can be satisfied - is considered. Software integration is touched upon and the major integration levels in ground operational processing of Spacelab and its experimental payloads are examined. Flight operations, encompassing the operation of the Space Transportation System and the payload, are discussed as are the initial Spacelab missions. Charts and diagrams are presented illustrating the various planning areas.

  1. Sustainable Rest Area Design and Operations

    Science.gov (United States)

    2017-10-01

    One way in which State Departments of Transportation (DOTs) can modernize their rest areas while reducing operations and maintenance costs is by incorporating sustainable practices into rest area design and operations. Sustainability practices that D...

  2. 14 CFR 63.23 - Special purpose flight engineer and flight navigator certificates: Operation of U.S.-registered...

    Science.gov (United States)

    2010-01-01

    ... purpose flight engineer and flight navigator certificates: Operation of U.S.-registered civil airplanes... flight engineer or flight navigator duties on a civil airplane of U.S. registry, leased to a person not a... certificate holder is performing flight engineer or flight navigator duties on the U.S.-registered civil...

  3. Tour operators, environment and sustainable development

    International Nuclear Information System (INIS)

    Andriola, L.; Chirico, R.; Declich, P.

    2001-01-01

    The purpose of this work is to characterize the role of the tour operators in achieving sustainable development meaning a process of development which leaves at least the same amount of capital, natural and man-made, to future generations as current generations have access to. Tourism is one of the largest and fastest growing global industries, creating significant employment and economic development, particularly in many developing countries. Tourism can also have negative environmental and social impact resulting from resource consumption, pollution, generation of wastes and from the compromise of local culture while introducing new activities. Most tour operators has started to recognised that a clean environment is critical to their success, but few tour operators have the management tools or experience to design and conduct tours that minimize their negative environmental and social impacts. A group of tour operators from different parts of the world have joined forces to create the Tour Operators' Initiative for Sustainable Tourism Development. With this initiatives, tour operators are moving towards sustainable tourism by committing themselves to address the environmental, social, and cultural aspects of sustainable development within the tourism sector [it

  4. Pilot In Command: A Feasibility Assessment of Autonomous Flight Management Operations

    Science.gov (United States)

    Wing, David J.; Ballin, Mark G.; Krishnamurthy, Karthik

    2004-01-01

    Several years of NASA research have produced the air traffic management operational concept of Autonomous Flight Management with high potential for operational feasibility, significant system and user benefits, and safety. Among the chief potential benefits are demand-adaptive or scalable capacity, user flexibility and autonomy that may finally enable truly successful business strategies, and compatibility with current-day operations such that the implementation rate can be driven from within the user community. A concept summary of Autonomous Flight Management is provided, including a description of how these operations would integrate in shared airspace with existing ground-controlled flight operations. The mechanisms enabling the primary benefits are discussed, and key findings of a feasibility assessment of airborne autonomous operations are summarized. Concept characteristics that impact safety are presented, and the potential for initially implementing Autonomous Flight Management is discussed.

  5. Guidance concepts for time-based flight operations

    Science.gov (United States)

    Vicroy, Dan D.

    1990-01-01

    Airport congestion and the associated delays are severe in today's airspace system and are expected to increase. NASA and the FAA is investigating various methods of alleviating this problem through new technology and operational procedures. One concept for improving airspace productivity is time-based control of aircraft. Research to date has focused primarily on the development of time-based flight management systems and Air Traffic Control operational procedures. Flight operations may, however, require special onboard guidance in order to satisfy the Air Traffic Control imposed time constraints. The results are presented of a simulation study aimed at evaluating several time-based guidance concepts in terms of tracking performance, pilot workload, and subjective preference. The guidance concepts tested varied in complexity from simple digital time-error feedback to an advanced time-referenced-energy guidance scheme.

  6. Poor weather conditions and flight operations: Implications for air ...

    African Journals Online (AJOL)

    This paper examined various weather hazards which include thunderstorm, fog, dust haze and line squall that affect flight operation such as flight delays, diversion and cancellation. The study revealed that fog accounted for 13.2% of flight cancellation at the airport and line squall similarly accounted for 10.1% of delays, ...

  7. The FLP microsatellite platform flight operations manual

    CERN Document Server

    2016-01-01

    This book represents the Flight Operations Manual for a reusable microsatellite platform – the “Future Low-cost Platform” (FLP), developed at the University of Stuttgart, Germany. It provides a basic insight on the onboard software functions, the core data handling system and on the power, communications, attitude control and thermal subsystem of the platform. Onboard failure detection, isolation and recovery functions are treated in detail. The platform is suited for satellites in the 50-150 kg class and is baseline of the microsatellite “Flying Laptop” from the University. The book covers the essential information for ground operators to controls an FLP-based satellite applying international command and control standards (CCSDS and ECSS PUS). Furthermore it provides an overview on the Flight Control Center in Stuttgart and on the link to the German Space Agency DLR Ground Station which is used for early mission phases. Flight procedure and mission planning chapters complement the book. .

  8. Final Environmental Assessment for the Beddown and Flight Operations of Unmanned Aircraft Systems at Grand Forks Air Force Base, North Dakota

    Science.gov (United States)

    2008-08-01

    southwest border and assisted in 3,065 apprehensions and the seizure of 14,240 pounds of marijuana . Four Predator B UASs now operate out of Sierra Vista...Sustainable design concepts emphasize state-of-the-art strategies for site development, efficient water and energy use and improved indoor environmental...improved indoor environmental quality. EA for the Beddown and Flight Operations of Unmanned Aircraft Systems at GFAFB, North Dakota Final 6-1 August

  9. Zero Gravity Flights as the Most Effective Embryonic Operation for Planned Commercial Spaceport

    Science.gov (United States)

    Abu Samah, Shamsul Kamar; Ridzuan Zakaria, Norul; Nasrun, Nasri; Abu, Jalaluddin; Muszaphar Shukor, Dato'Sheikh

    2013-09-01

    From the experience gained by the management team of Spaceport Malaysia, a popular service that can be provided by a planned commercial spaceport in a country without existing space travel infrastructure are zero gravity flights. Zero gravity flights range from parabolic flights using aerobatic airplane to suborbital flights using rockets, and in the near future using suborbital rocketplanes. Therefore, zero gravity flights can be operated from a certified runway or planned for operation at a future commercial spaceport. With such range of operation, zero gravity flights provide a natural link between a low cost operation of small airplane to exclusive high profile operation of suborbital rocketplane, and this attracts the attention of individuals and organizations that are planning for the establishment of a commercial spaceport. This is the approach chosen by the planners and developers of Spaceport Malaysia. A significant factor in zero gravity flight is the zero gravity time, the period where the payload onboard the airplane or rocketplane will experience zero gravity. Based on the momentum of the airplane or rocketplane, the zero gravity time may vary from few seconds to few minutes and that determines the quality of the zero gravity flight. To achieve zero gravity, the airplane or rocketplane will fly with a steady velocity for a significant time as a gravity control flight, accelerate upwards with an angle producing hypergravity and perform parabolic flight with natural momentum producing zero gravity and followed by dive that will result in another hypergravity flight. 2 zero gravity platforms being considered for operation at and by Spaceport Malaysia are F-5E Tiger II and Airbus A300, since both platforms have been successfully used by a partner of Spaceport Malaysia in performing zero gravity flights. An F-5E fighter jet owned by Royal Malaysian Air Force is being planned to be converted into a zero gravity platform to be operated at and by Spaceport

  10. Crew Factors in Flight Operations. 8; A Survey of Fatigue Factors in Corporate/Executive A Viation Operations

    Science.gov (United States)

    Rosekind, Mark R.; Co, Elizabeth L.; Gregory, Kevin B.; Miller, Donna L.

    2000-01-01

    Corporate flight crews face unique challenges including unscheduled flights, quickly changing schedules, extended duty days, long waits, time zone changes, and peripheral tasks. Most corporate operations are regulated by Part 91 FARs which set no flight or duty time limits. The objective of this study was to identify operationally significant factors that may influence fatigue, alertness, and performance in corporate operations. In collaboration with the National Business Aircraft Association and the Flight Safety Foundation, NASA developed and distributed a retrospective survey comprising 107 questions addressing demographics, home sleep habits, flight experience, duty schedules, fatigue during operations, and work environment. Corporate crewmembers returned 1,488 surveys. Respondents averaged 45.2 years of age, had 14.9 years of corporate flying experience, and 9,750 total flight hours. The majority (89%) rated themselves as 'good' or 'very good' sleepers at home. Most (82%) indicated they are subject to call for duty and described an average duty day of 9.9 h. About two-thirds reported having a daily duty time limit and over half (57%) reported a daily flight time limit. Nearly three-quarters (71%) acknowledged having 'nodded off' during a flight. Only 21% reported that their flight departments offer training on fatigue issues. Almost three-quarters (74%) described fatigue as a 'moderate' or 'serious' concern, and a majority (61%) characterized it as a common occurrence. Most (85%) identified fatigue as a 'moderate' or 'serious' safety issue.

  11. Autonomous Operations Design Guidelines for Flight Hardware

    Data.gov (United States)

    National Aeronautics and Space Administration — SSC experimentally modified an autonomous operations flexible system suite developed for a ground application for a flight system under development by JSC. The...

  12. Implementing Sustainability into Supply Chain Operations

    DEFF Research Database (Denmark)

    Jørsfeldt, Lilyana Makarowa

    2016-01-01

    empirical studies have investigated in detail how sustainability agendas are implemented or how they affect supply chain operations. These studies have mostly investigated the impact of implementation, explored the relationship between strategy formulation and performance, or provided descriptions...... chain practices? Research Question 2. How does a new agenda of sustainability affect supplier-buyer relationships? Research Question 3. How does operational coordination between suppliers and customers change with the introduction of a sustainability agenda? To answer these specific research questions...... and present a simplified model to explore the complexity of the phenomenon. (2) Means for the deployment (i.e., successful implementation) of a sustainability agenda in supply chain practices are identified. The discussion of means provides some explanations for relationships among frameworks components. More...

  13. Space Flight Resource Management for ISS Operations

    Science.gov (United States)

    Schmidt, Larry; Slack, Kelley; O'Keefe, William; Huning, Therese; Sipes, Walter; Holland, Albert

    2011-01-01

    This slide presentation reviews the International Space Station (ISS) Operations space flight resource management, which was adapted to the ISS from the shuttle processes. It covers crew training and behavior elements.

  14. Current and Future Flight Operating Systems

    Science.gov (United States)

    Cudmore, Alan

    2007-01-01

    This viewgraph presentation reviews the current real time operating system (RTOS) type in use with current flight systems. A new RTOS model is described, i.e. the process model. Included is a review of the challenges of migrating from the classic RTOS to the Process Model type.

  15. Alertness management in flight operations - Strategic napping

    Science.gov (United States)

    Rosekind, Mark R.; Gander, Philippa H.; Dinges, David F.

    1991-01-01

    Strategic napping in two different flight operation environments is considered to illustrate its application as a fatigue countermeasure. Data obtained from commercial short-haul and long-haul operations demonstrated the utility and current practices of strategic napping. A preplanned cockpit nap acted as an acute 'safety valve' for the sleep loss, circadian disruption, and fatigue that occurs in long-haul flying.

  16. Asset Analysis and Operational Concepts for Separation Assurance Flight Testing at Dryden Flight Research Center

    Science.gov (United States)

    Costa, Guillermo J.; Arteaga, Ricardo A.

    2011-01-01

    A preliminary survey of existing separation assurance and collision avoidance advancements, technologies, and efforts has been conducted in order to develop a concept of operations for flight testing autonomous separation assurance at Dryden Flight Research Center. This effort was part of the Unmanned Aerial Systems in the National Airspace System project. The survey focused primarily on separation assurance projects validated through flight testing (including lessons learned), however current forays into the field were also examined. Comparisons between current Dryden flight and range assets were conducted using House of Quality matrices in order to allow project management to make determinations regarding asset utilization for future flight tests. This was conducted in order to establish a body of knowledge of the current collision avoidance landscape, and thus focus Dryden s efforts more effectively towards the providing of assets and test ranges for future flight testing within this research field.

  17. Present and future of vision systems technologies in commercial flight operations

    Science.gov (United States)

    Ward, Jim

    2016-05-01

    The development of systems to enable pilots of all types of aircraft to see through fog, clouds, and sandstorms and land in low visibility has been widely discussed and researched across aviation. For military applications, the goal has been to operate in a Degraded Visual Environment (DVE), using sensors to enable flight crews to see and operate without concern to weather that limits human visibility. These military DVE goals are mainly oriented to the off-field landing environment. For commercial aviation, the Federal Aviation Agency (FAA) implemented operational regulations in 2004 that allow the flight crew to see the runway environment using an Enhanced Flight Vision Systems (EFVS) and continue the approach below the normal landing decision height. The FAA is expanding the current use and economic benefit of EFVS technology and will soon permit landing without any natural vision using real-time weather-penetrating sensors. The operational goals of both of these efforts, DVE and EFVS, have been the stimulus for development of new sensors and vision displays to create the modern flight deck.

  18. Modeling of Supersonic Combustion Systems for Sustained Hypersonic Flight

    Directory of Open Access Journals (Sweden)

    Stephen M. Neill

    2017-11-01

    Full Text Available Through Computational Fluid Dynamics and validation, an optimal scramjet combustor has been designed based on twin-strut Hydrogen injection to sustain flight at a desired speed of Mach 8. An investigation undertaken into the efficacy of supersonic combustion through various means of injection saw promising results for Hydrogen-based systems, whereby strut-style injectors were selected over transverse injectors based on their pressure recovery performance and combustive efficiency. The final configuration of twin-strut injectors provided robust combustion and a stable region of net thrust (1873 kN in the nozzle. Using fixed combustor inlet parameters and injection equivalence ratio, the finalized injection method advanced to the early stages of two-dimensional (2-D and three-dimensional (3-D scramjet engine integration. The overall investigation provided a feasible supersonic combustion system, such that Mach 8 sustained cruise could be achieved by the aircraft concept in a computational design domain.

  19. Space Flight Resource Management for ISS Operations

    Science.gov (United States)

    Schmidt, Lacey L.; Slack, Kelley; Holland, Albert; Huning, Therese; O'Keefe, William; Sipes, Walter E.

    2010-01-01

    Although the astronaut training flow for the International Space Station (ISS) spans 2 years, each astronaut or cosmonaut often spends most of their training alone. Rarely is it operationally feasible for all six ISS crewmembers to train together, even more unlikely that crewmembers can practice living together before launch. Likewise, ISS Flight Controller training spans 18 months of learning to manage incredibly complex systems remotely in plug-and-play ground teams that have little to no exposure to crewmembers before a mission. How then do all of these people quickly become a team - a team that must respond flexibly yet decisively to a variety of situations? The answer implemented at NASA is Space Flight Resource Management (SFRM), the so-called "soft skills" or team performance skills. Based on Crew Resource Management, SFRM was developed first for shuttle astronauts and focused on managing human errors during time-critical events (Rogers, et al. 2002). Given the nature of life on ISS, the scope of SFRM for ISS broadened to include teamwork during prolonged and routine operations (O'Keefe, 2008). The ISS SFRM model resembles a star with one competency for each point: Communication, Cross-Culture, Teamwork, Decision Making, Team Care, Leadership/Followership, Conflict Management, and Situation Awareness. These eight competencies were developed with international participation by the Human Behavior and Performance Training Working Group. Over the last two years, these competencies have been used to build a multi-modal SFRM training flow for astronaut candidates and flight controllers that integrates team performance skills into the practice of technical skills. Preliminary results show trainee skill increases as the flow progresses; and participants find the training invaluable to performing well and staying healthy during ISS operations. Future development of SFRM training will aim to help support indirect handovers as ISS operations evolve further with the

  20. Alertness Management In Flight Operations: A NASA Education and Training Module

    Science.gov (United States)

    Rosekind, Mark R.; Lebacqz, Victor J.; Gander, Philippa H.; Co, Elizabeth L.; Weldon, Keri J.; Smith, Roy M.; Miller, Donna L.; Gregory, Kevin B.; Statler, Irving C. (Technical Monitor)

    1994-01-01

    Since 1980, the NASA Ames Fatigue Countermeasures Program has been conducting research on sleep, circadian rhythms, and fatigue in a variety of flight operations 1. An original goal of the program was to return the scientific and operational knowledge to the aviation industry. To meet this goal, the NASA Ames Fatigue Countermeasures Program has created an Education and Training Module entitled, "Strategies for Alertness Management in Flight Operations." The Module was designed to meet three objectives: 1) explain the current state of knowledge about the physiological mechanisms underlying fatigue, 2) demonstrate how this knowledge can be applied to improve flight crew sleep, performance, and alertness, and 3) offer countermeasure recommendations. The Module is composed of two components: 1) a 60-minute live presentation provided by a knowledgeable individual and 2) a NASA/FAA Technical Memorandum (TM) that contains the presentation materials and appendices with complementary information. The TM is provided to all individuals attending the live presentation. The Module content is divided into three parts: 1) basic information on sleep, sleepiness, circadian rhythms, fatigue, and how flight operations affect these physiological factors, 2) common misconceptions about sleep, sleepiness, and fatigue, and 3) alertness management strategies. The Module is intended for pilots, management personnel, schedulers, flight attendants, and the many other individuals involved in the aviation system.

  1. Sustainability indicators - a tool for regional co-operation

    OpenAIRE

    Koitka, Heike

    2002-01-01

    Sustainability indicators are more than just numbers. Besides their main function of illustrating the complex vision of sustainability they could support some factors for success of regional co-operation through their development. Today the discussion on indicators and co-operation is mainly separated from each other. Sustainability indicators are developed on all spatial levels from neighbourhoods up to the United Nations. In some cases the indicators are developed but remain unused. Regiona...

  2. Development of Small UAS Beyond-Visual-Line-of-Sight (BVLOS Flight Operations: System Requirements and Procedures

    Directory of Open Access Journals (Sweden)

    Scott Xiang Fang

    2018-04-01

    Full Text Available Due to safety concerns of integrating small unmanned aircraft systems (UAS into non-segregated airspace, aviation authorities have required a set of detect and avoid (DAA systems to be equipped on small UAS for beyond-visual-line-of-sight (BVLOS flight operations in civil airspace. However, the development of small UAS DAA systems also requires BVLOS flights for testing and validation. To mitigate operational risks for small UAS BVLOS flight operations, this paper proposes to initially test small UAS DAA systems in BVLOS flights in a restricted airspace with additional safety features. Later, this paper further discusses the operating procedures and emergency action plans for small UAS BVLOS flight operations. The testing results show that these safety systems developed can help improve operational safety for small UAS BVLOS flight operations.

  3. Cassini's Test Methodology for Flight Software Verification and Operations

    Science.gov (United States)

    Wang, Eric; Brown, Jay

    2007-01-01

    The Cassini spacecraft was launched on 15 October 1997 on a Titan IV-B launch vehicle. The spacecraft is comprised of various subsystems, including the Attitude and Articulation Control Subsystem (AACS). The AACS Flight Software (FSW) and its development has been an ongoing effort, from the design, development and finally operations. As planned, major modifications to certain FSW functions were designed, tested, verified and uploaded during the cruise phase of the mission. Each flight software upload involved extensive verification testing. A standardized FSW testing methodology was used to verify the integrity of the flight software. This paper summarizes the flight software testing methodology used for verifying FSW from pre-launch through the prime mission, with an emphasis on flight experience testing during the first 2.5 years of the prime mission (July 2004 through January 2007).

  4. Management of Operational Support Requirements for Manned Flight Missions

    Science.gov (United States)

    1991-01-01

    This Instruction establishes responsibilities for managing the system whereby operational support requirements are levied for support of manned flight missions including associated payloads. This management system will ensure that support requirements are properly requested and responses are properly obtained to meet operational objectives.

  5. Integrated co-operative governance in the context of sustainable development

    Directory of Open Access Journals (Sweden)

    Eric Nealer

    2011-07-01

    Keywords:Sustainable development, governance, co-operative governance, integrated,organising, and communication. Disciplines:Public Administration, Public Management, Social Welfare, Environmental Management, Municipal public service delivery, Social Development, Organisational Behaviour, Co-operative Governance, Communication, Sustainable Development, Sustainable Organisational Development

  6. Oceanic Flights and Airspace: Improving Efficiency by Trajectory-Based Operations

    Science.gov (United States)

    Fernandes, Alicia Borgman; Rebollo, Juan; Koch, Michael

    2016-01-01

    Oceanic operations suffer from multiple inefficiencies, including pre-departure planning that does not adequately consider uncertainty in the proposed trajectory, restrictions on the routes that a flight operator can choose for an oceanic crossing, time-consuming processes and procedures for amending en route trajectories, and difficulties exchanging data between Flight Information Regions (FIRs). These inefficiencies cause aircraft to fly suboptimal trajectories, burning fuel and time that could be conserved. A concept to support integration of existing and emerging capabilities and concepts is needed to transition to an airspace system that employs Trajectory Based Operations (TBO) to improve efficiency and safety in oceanic operations. This paper describes such a concept and the results of preliminary activities to evaluate the concept, including a stakeholder feedback activity, user needs analysis, and high level benefits analysis.

  7. A practical model for sustainable operational performance

    International Nuclear Information System (INIS)

    Vlek, C.A.J.; Steg, E.M.; Feenstra, D.; Gerbens-Leenis, W.; Lindenberg, S.; Moll, H.; Schoot Uiterkamp, A.; Sijtsma, F.; Van Witteloostuijn, A.

    2002-01-01

    By means of a concrete model for sustainable operational performance enterprises can report uniformly on the sustainability of their contributions to the economy, welfare and the environment. The development and design of a three-dimensional monitoring system is presented and discussed [nl

  8. Noise exposure during ambulance flights and repatriation operations.

    Science.gov (United States)

    Küpper, Thomas E; Zimmer, Bernd; Conrad, Gerson; Jansing, Paul; Hardt, Aline

    2010-01-01

    Although ambulance flights are routine work and thousands of employees work in repatriation organizations, there is no data on noise exposure which may be used for preventive advice. We investigated the noise exposure of crews working in ambulance flight organizations for international patient repatriation to get the data for specific guidelines concerning noise protection. Noise levels inside Learjet 35A, the aircraft type which is most often used for repatriation operations, were collected from locations where flight crews typically spend their time. A sound level meter class 1 meeting the DIN IEC 651 requirements was used for noise measurements, but several factors during the real flight situations caused a measurement error of ~3%. Therefore, the results fulfill the specifications for class 2. The data was collected during several real repatriation operations and was combined with the flight data (hours per day) regarding the personnel to evaluate the occupationally encountered equivalent noise level according to DIN 45645-2. The measured noise levels were safely just below the 85 dB(A) threshold and should not induce permanent threshold shifts, provided that additional high noise exposure by non-occupational or private activities was avoided. As the levels of the noise produced by the engines outside the cabin are significantly above the 85 dB(A) threshold, the doors of the aircraft must be kept closed while the engines are running, and any activity performed outside the aircraft - or with the doors opened while the engines are running - must be done with adequate noise protection. The new EU noise directive (2003/10/EG) states that protective equipment must be made available to the aircrew to protect their hearing, though its use is not mandatory.

  9. MODELING THE FLIGHT TRAJECTORY OF OPERATIONAL-TACTICAL BALLISTIC MISSILES

    Directory of Open Access Journals (Sweden)

    I. V. Filipchenko

    2018-01-01

    Full Text Available The article gives the basic approaches to updating the systems of combat operations modeling in the part of enemy missile attack simulation taking into account the possibility of tactical ballistic missile maneuvering during the flight. The results of simulation of combat tactical missile defense operations are given. 

  10. Towards sustainability in offshore oil and gas operations

    Science.gov (United States)

    Khan, M. Ibrahim

    Human activities are causing irreversible damage to the natural world and threaten our ability to sustain future generations. According to Millennium Ecosystem Assessment of 2005, sixty percent of world pristine habitats are destroyed or disturbed and species extinction rate is 100-1000 times higher than the normal background rate. One of the main reasons of these problems is the use of unsustainable technology. In this dissertation, the essential features of the modern technology development are discussed and a new single-parameter screening criterion is proposed. This criterion will allow the development of truly sustainable technologies. Previously developed technologies, particularly the ones developed after the industrial revolution, are evaluated based on the new criterion. The root cause for unsustainability of these technologies especially in the energy sector is discussed. The proposed criterion is applied to the petroleum sector. Petroleum hydrocarbons are considered to be the lifeblood of the modern society. Petroleum industry that took off from the golden era of 1930's never ceased to dominate all aspects of our society. Until now, there is no suitable alternative to fossil fuel and all trends indicate continued dominance of the petroleum industry in the foreseeable future. Even though petroleum operations have been based on solid scientific excellence and engineering marvels; only recently it has been discovered that many of the practices are not environmentally sustainable. Practically all activities of hydrocarbon operations are accompanied by undesirable discharges of liquid, solid, and gaseous wastes, which have enormous impacts on the environment. Consequently, reducing environmental impact is the most pressing issue today and many environmentalist groups are calling for curtailing petroleum operations altogether. There is clearly a need to develop a new management approach in hydrocarbon operations. This approach will have to be environmentally

  11. Sustainability management for operating organizations of research reactors

    Energy Technology Data Exchange (ETDEWEB)

    Kibrit, Eduardo; Aquino, Afonso Rodrigues de, E-mail: ekibrit@ipen.br, E-mail: araquino@ipen.br [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNE-SP), Sao Paulo, SP (Brazil)

    2017-07-01

    Sustainable development is development that meets the needs of the present without compromising the ability of future generations to meet their own needs. In a country like Brazil, where nuclear activity is geared towards peaceful purposes, any operating organization of research reactor should emphasize its commitment to social, environmental, economic and institutional aspects. Social aspects include research and development, production and supply of radiopharmaceuticals, radiation safety and special training for the nuclear sector. Environmental aspects include control of the surroundings and knowledge directed towards environment preservation. Economic aspects include import substitution and diversification of production. Institutional aspects include technology, innovation and knowledge. These aspects, if considered in the management system of an operating organization of research reactor, will help with its long-term maintenance and success in an increasingly competitive market scenario. About this, we propose a sustainability management system approach for operating organizations of research reactors. A bibliographical review on the theme is made. A methodology for identifying indicators for measuring sustainability in nuclear research reactors processes is also described. Finally, we propose a methodology for sustainability perception assessment to be applied at operating organizations of research reactors. (author)

  12. Sustainability management for operating organizations of research reactors

    International Nuclear Information System (INIS)

    Kibrit, Eduardo; Aquino, Afonso Rodrigues de

    2017-01-01

    Sustainable development is development that meets the needs of the present without compromising the ability of future generations to meet their own needs. In a country like Brazil, where nuclear activity is geared towards peaceful purposes, any operating organization of research reactor should emphasize its commitment to social, environmental, economic and institutional aspects. Social aspects include research and development, production and supply of radiopharmaceuticals, radiation safety and special training for the nuclear sector. Environmental aspects include control of the surroundings and knowledge directed towards environment preservation. Economic aspects include import substitution and diversification of production. Institutional aspects include technology, innovation and knowledge. These aspects, if considered in the management system of an operating organization of research reactor, will help with its long-term maintenance and success in an increasingly competitive market scenario. About this, we propose a sustainability management system approach for operating organizations of research reactors. A bibliographical review on the theme is made. A methodology for identifying indicators for measuring sustainability in nuclear research reactors processes is also described. Finally, we propose a methodology for sustainability perception assessment to be applied at operating organizations of research reactors. (author)

  13. Sustainable Tourism: its Interpretation and Operational Scope

    Directory of Open Access Journals (Sweden)

    Marcela Bertoni

    2008-01-01

    Full Text Available The application of sustainability principles in tourism is an essential reference for the processes of development and promotion of potential destinations and for the restructuring  of current ones. However, there is a dichotomy between the wide spread of the concept of sustainable tourism and the limitations of the reached progress. This paper intends to encourage a theoretical discussion to examine the definitions of sustainable tourism from diverse approaches, viewpoints and scopes, and to analyze the relevant aspects of its operability, related to the integration of massive and sustainable tourism and to the implications of sustainable development, politics and social participation.

  14. Using wide area differential GPS to improve total system error for precision flight operations

    Science.gov (United States)

    Alter, Keith Warren

    Total System Error (TSE) refers to an aircraft's total deviation from the desired flight path. TSE can be divided into Navigational System Error (NSE), the error attributable to the aircraft's navigation system, and Flight Technical Error (FTE), the error attributable to pilot or autopilot control. Improvement in either NSE or FTE reduces TSE and leads to the capability to fly more precise flight trajectories. The Federal Aviation Administration's Wide Area Augmentation System (WAAS) became operational for non-safety critical applications in 2000 and will become operational for safety critical applications in 2002. This navigation service will provide precise 3-D positioning (demonstrated to better than 5 meters horizontal and vertical accuracy) for civil aircraft in the United States. Perhaps more importantly, this navigation system, which provides continuous operation across large regions, enables new flight instrumentation concepts which allow pilots to fly aircraft significantly more precisely, both for straight and curved flight paths. This research investigates the capabilities of some of these new concepts, including the Highway-In-The Sky (HITS) display, which not only improves FTE but also reduces pilot workload when compared to conventional flight instrumentation. Augmentation to the HITS display, including perspective terrain and terrain alerting, improves pilot situational awareness. Flight test results from demonstrations in Juneau, AK, and Lake Tahoe, CA, provide evidence of the overall feasibility of integrated, low-cost flight navigation systems based on these concepts. These systems, requiring no more computational power than current-generation low-end desktop computers, have immediate applicability to general aviation flight from Cessnas to business jets and can support safer and ultimately more economical flight operations. Commercial airlines may also, over time, benefit from these new technologies.

  15. Web Content Analysis On Sustainable Campus Operation (SCO Initiatives

    Directory of Open Access Journals (Sweden)

    Razman Ruzaimah

    2017-01-01

    Full Text Available The purpose of this paper is to identify and analyse the current practices implemented in global universities for achieving sustainability throughout campus operations. This study adopted a web content analysis method where 30 international green universities’ websites have been thoroughly examined to identify common initiatives implemented to achieve sustainability through campus operations. The findings are ranked based on the implementation of these initiatives by participating universities. From the websites reviewed, as much as 31 initiatives have been identified as common initiatives frequently implemented by green universities to achieve sustainability in campus operations. It was found that the common initiatives frequently implemented by most of the universities include ‘Provide bin with clearly marked signs to increase the number of recycling items’, and ‘Generate electricity on campus by establishing power generation plants’ with 87% and 83% respectively. This paper fills the gap by presenting the investigation of sustainability initiatives from some of the major green universities internationally. It is suggested that higher education institutions, particularly Malaysian universities, initiate or manage their implementation of sustainable campus operation (SCO initiatives based on the findings of this research.

  16. Operational computer graphics in the flight dynamics environment

    Science.gov (United States)

    Jeletic, James F.

    1989-01-01

    Over the past five years, the Flight Dynamics Division of the National Aeronautics and Space Administration's (NASA's) Goddard Space Flight Center has incorporated computer graphics technology into its operational environment. In an attempt to increase the effectiveness and productivity of the Division, computer graphics software systems have been developed that display spacecraft tracking and telemetry data in 2-d and 3-d graphic formats that are more comprehensible than the alphanumeric tables of the past. These systems vary in functionality from real-time mission monitoring system, to mission planning utilities, to system development tools. Here, the capabilities and architecture of these systems are discussed.

  17. A manned maneuvering unit proximity operations planning and flight guidance display and control system

    Science.gov (United States)

    Gershzohn, Gary R.; Sirko, Robert J.; Zimmerman, K.; Jones, A. D.

    1990-01-01

    This task concerns the design, development, testing, and evaluation of a new proximity operations planning and flight guidance display and control system for manned space operations. A forecast, derivative manned maneuvering unit (MMU) was identified as a candidate for the application of a color, highway-in-the-sky display format for the presentation of flight guidance information. A silicon graphics 4D/20-based simulation is being developed to design and test display formats and operations concepts. The simulation includes the following: (1) real-time color graphics generation to provide realistic, dynamic flight guidance displays and control characteristics; (2) real-time graphics generation of spacecraft trajectories; (3) MMU flight dynamics and control characteristics; (4) control algorithms for rotational and translational hand controllers; (5) orbital mechanics effects for rendezvous and chase spacecraft; (6) inclusion of appropriate navigation aids; and (7) measurement of subject performance. The flight planning system under development provides for: (1) selection of appropriate operational modes, including minimum cost, optimum cost, minimum time, and specified ETA; (2) automatic calculation of rendezvous trajectories, en route times, and fuel requirements; (3) and provisions for manual override. Man/machine function allocations in planning and en route flight segments are being evaluated. Planning and en route data are presented on one screen composed of two windows: (1) a map display presenting a view perpendicular to the orbital plane, depicting flight planning trajectory and time data attitude display presenting attitude and course data for use en route; and (2) an attitude display presenting local vertical-local horizontal attitude data superimposed on a highway-in-the-sky or flight channel representation of the flight planned course. Both display formats are presented while the MMU is en route. In addition to these displays, several original display

  18. Pilot interaction with cockpit automation - Operational experiences with the Flight Management System

    Science.gov (United States)

    Sarter, Nadine B.; Woods, David D.

    1992-01-01

    Results are presented of two studies on the potential effect of cockpit automation on the pilot's performance, which provide data on pilots' difficulties with understanding and operating one of the core systems of cockpit automation, the Flight Management System (FMS). The results of both studies indicate that, although pilots do become proficient in standard FMS operations through ground training and subsequent flight experience, they still have difficulties tracking the FMS status and behavior in certain flight contexts and show gaps in the understanding of the functional structure of the system. The results suggest that design-related factors such as opaque interfaces contribute to these difficulties, which can affect the pilot's situation awareness.

  19. MODELING OF BEHAVIORAL ACTIVITY OF AIR NAVIGATION SYSTEM'S HUMAN-OPERATOR IN FLIGHT EMERGENCIES

    Directory of Open Access Journals (Sweden)

    Volodymyr Kharchenko

    2012-09-01

    Full Text Available  The Air Navigation System is presented as a complex socio-technical system. The influence on decision-making by Air Navigation System's human-operator of the professional factors as well as the factors of non-professional nature has been defined. Logic determined and stochastic models of decision-making by the Air Navigation System's human-operator in flight emergencies have been developed. The scenarios of developing a flight situation in case of selecting either the positive or negative pole in accordance with the reflexive theory have been obtained. The informational support system of the operator in the unusual situations on the basis of Neural Network model of evaluating the efficiency of the potential alternative of flight completion has been built.

  20. Flight Deck Display Technologies for 4DT and Surface Equivalent Visual Operations

    Science.gov (United States)

    Prinzel, Lawrence J., III; Jones, Denis R.; Shelton, Kevin J.; Arthur, Jarvis J., III; Bailey, Randall E.; Allamandola, Angela S.; Foyle, David C.; Hooey, Becky L.

    2009-01-01

    NASA research is focused on flight deck display technologies that may significantly enhance situation awareness, enable new operating concepts, and reduce the potential for incidents/accidents for terminal area and surface operations. The display technologies include surface map, head-up, and head-worn displays; 4DT guidance algorithms; synthetic and enhanced vision technologies; and terminal maneuvering area traffic conflict detection and alerting systems. This work is critical to ensure that the flight deck interface technologies and the role of the human participants can support the full realization of the Next Generation Air Transportation System (NextGen) and its novel operating concepts.

  1. Tour operators, environment and sustainable development; Tour operator, ambiente e sviluppo sostenibile

    Energy Technology Data Exchange (ETDEWEB)

    Andriola, L.; Chirico, R.; Declich, P. [ENEA, Divisione Caratterizzazione dell' Ambiente e del Territorio, Centro Ricerche Casaccia, Rome (Italy)

    2001-07-01

    The purpose of this work is to characterize the role of the tour operators in achieving sustainable development meaning a process of development which leaves at least the same amount of capital, natural and man-made, to future generations as current generations have access to. Tourism is one of the largest and fastest growing global industries, creating significant employment and economic development, particularly in many developing countries. Tourism can also have negative environmental and social impact resulting from resource consumption, pollution, generation of wastes and from the compromise of local culture while introducing new activities. Most tour operators has started to recognised that a clean environment is critical to their success, but few tour operators have the management tools or experience to design and conduct tours that minimize their negative environmental and social impacts. A group of tour operators from different parts of the world have joined forces to create the Tour Operators' Initiative for Sustainable Tourism Development. With this initiatives, tour operators are moving towards sustainable tourism by committing themselves to address the environmental, social, and cultural aspects of sustainable development within the tourism sector. [Italian] Lo scopo del presente lavoro e' individuare il ruolo dei Tour Operator nel perseguire uno sviluppo sostenibile ossia un processo di sviluppo che lasci alle generazioni future lo stesso capitale, naturale e creato dall'uomo, di cui dispone l'attuale generazione. Il turismo e' tra le industrie globali piu' vaste ed in rapida crescita che crea una occupazione ed uno sviluppo economico significativo, particolarmente in molti paesi in via di sviluppo. Il turismo puo' anche generare impatti sia ambientali che sociali derivanti dallo sfruttamento delle risorse, dall'inquinamento, dalla produzione di rifiuti e dalla compromissione delle culture locali introducendo

  2. Tour operators, environment and sustainable development; Tour operator, ambiente e sviluppo sostenibile

    Energy Technology Data Exchange (ETDEWEB)

    Andriola, L; Chirico, R; Declich, P [ENEA, Divisione Caratterizzazione dell' Ambiente e del Territorio, Centro Ricerche Casaccia, Rome (Italy)

    2001-07-01

    The purpose of this work is to characterize the role of the tour operators in achieving sustainable development meaning a process of development which leaves at least the same amount of capital, natural and man-made, to future generations as current generations have access to. Tourism is one of the largest and fastest growing global industries, creating significant employment and economic development, particularly in many developing countries. Tourism can also have negative environmental and social impact resulting from resource consumption, pollution, generation of wastes and from the compromise of local culture while introducing new activities. Most tour operators has started to recognised that a clean environment is critical to their success, but few tour operators have the management tools or experience to design and conduct tours that minimize their negative environmental and social impacts. A group of tour operators from different parts of the world have joined forces to create the Tour Operators' Initiative for Sustainable Tourism Development. With this initiatives, tour operators are moving towards sustainable tourism by committing themselves to address the environmental, social, and cultural aspects of sustainable development within the tourism sector. [Italian] Lo scopo del presente lavoro e' individuare il ruolo dei Tour Operator nel perseguire uno sviluppo sostenibile ossia un processo di sviluppo che lasci alle generazioni future lo stesso capitale, naturale e creato dall'uomo, di cui dispone l'attuale generazione. Il turismo e' tra le industrie globali piu' vaste ed in rapida crescita che crea una occupazione ed uno sviluppo economico significativo, particolarmente in molti paesi in via di sviluppo. Il turismo puo' anche generare impatti sia ambientali che sociali derivanti dallo sfruttamento delle risorse, dall'inquinamento, dalla produzione di rifiuti e dalla compromissione delle culture locali introducendo nuove attivita'. La maggiore parte dei

  3. Sustainable operations in nuclear research reactors. A bibliographical study

    International Nuclear Information System (INIS)

    Kibrit, Eduardo; Rodrigues de Aquino, Afonso; Marotti de Mello, Adriana; Tromboni de Souza Nascimento, Paulo

    2017-01-01

    Sustainability is gaining prominence in the area of operations management. By means of a bibliographical research, we identified in literature sustainable operations carried out by operating organizations of nuclear research reactors. The methodology applied consisted in gathering material, descriptive analysis, selection of analytical categories and evaluation of the material collected. The collection of material was performed by a search made on academic and nuclear databases, with keywords structured for the subject of the research. The collected material was analysed and analytical categories on the theme sustainable operations were established. The evaluation of the collected material resulted in references accepted for the study, classified according to the pre-established analytical categories. The results were significant. From then on, a theoretical review on the topic under study was structured, based on pre-defined analytical categories. Thus, we were able to identify gaps in the literature and propose new studies on the subject.

  4. Sustainable operations in nuclear research reactors. A bibliographical study

    Energy Technology Data Exchange (ETDEWEB)

    Kibrit, Eduardo; Rodrigues de Aquino, Afonso [Cidade Univ., Sao Paolo (Brazil). Inst. de Pesquisas Energeticas e Nucleares; Marotti de Mello, Adriana [Sao Paolo Univ. (Brazil). Faculdade de Economia; Tromboni de Souza Nascimento, Paulo [Sao Paolo Univ. (Brazil). Faculdade de Economia Administracao e Contabilidade

    2017-10-15

    Sustainability is gaining prominence in the area of operations management. By means of a bibliographical research, we identified in literature sustainable operations carried out by operating organizations of nuclear research reactors. The methodology applied consisted in gathering material, descriptive analysis, selection of analytical categories and evaluation of the material collected. The collection of material was performed by a search made on academic and nuclear databases, with keywords structured for the subject of the research. The collected material was analysed and analytical categories on the theme sustainable operations were established. The evaluation of the collected material resulted in references accepted for the study, classified according to the pre-established analytical categories. The results were significant. From then on, a theoretical review on the topic under study was structured, based on pre-defined analytical categories. Thus, we were able to identify gaps in the literature and propose new studies on the subject.

  5. Building reactor operator sustain expert system with C language integrated production system

    International Nuclear Information System (INIS)

    Ouyang Qin; Hu Shouyin; Wang Ruipian

    2002-01-01

    The development of the reactor operator sustain expert system is introduced, the capability of building reactor operator sustain expert system is discussed with C Language Integrated Production System (Clips), and a simple antitype of expert system is illustrated. The limitation of building reactor operator sustain expert system with Clips is also discussed

  6. Research and development portfolio of the sustainability science team national sustainable operations USDA Forest Service

    Science.gov (United States)

    Trista Patterson; David Nicholls; Jonathan Long

    2015-01-01

    The Sustainability Science Team (SST) of the U.S. Department of Agriculture (USDA) Forest Service Sustainable Operations Initiative is a 18-member virtual research and development team, located across five regions and four research stations of the USDA Forest Service. The team provides research, publication, systems analysis, and decision support to the Sustainable...

  7. Simulations of Continuous Descent Operations with Arrival-management Automation and Mixed Flight-deck Interval Management Equipage

    Science.gov (United States)

    Callantine, Todd J.; Kupfer, Michael; Martin, Lynne Hazel; Prevot, Thomas

    2013-01-01

    Air traffic management simulations conducted in the Airspace Operations Laboratory at NASA Ames Research Center have addressed the integration of trajectory-based arrival-management automation, controller tools, and Flight-Deck Interval Management avionics to enable Continuous Descent Operations (CDOs) during periods of sustained high traffic demand. The simulations are devoted to maturing the integrated system for field demonstration, and refining the controller tools, clearance phraseology, and procedures specified in the associated concept of operations. The results indicate a variety of factors impact the concept's safety and viability from a controller's perspective, including en-route preconditioning of arrival flows, useable clearance phraseology, and the characteristics of airspace, routes, and traffic-management methods in use at a particular site. Clear understanding of automation behavior and required shifts in roles and responsibilities is important for controller acceptance and realizing potential benefits. This paper discusses the simulations, drawing parallels with results from related European efforts. The most recent study found en-route controllers can effectively precondition arrival flows, which significantly improved route conformance during CDOs. Controllers found the tools acceptable, in line with previous studies.

  8. International Space Station Sustaining Engineering: A Ground-Based Test Bed for Evaluating Integrated Environmental Control and Life Support System and Internal Thermal Control System Flight Performance

    Science.gov (United States)

    Ray, Charles D.; Perry, Jay L.; Callahan, David M.

    2000-01-01

    As the International Space Station's (ISS) various habitable modules are placed in service on orbit, the need to provide for sustaining engineering becomes increasingly important to ensure the proper function of critical onboard systems. Chief among these are the Environmental Control and Life Support System (ECLSS) and the Internal Thermal Control System (ITCS). Without either, life onboard the ISS would prove difficult or nearly impossible. For this reason, a ground-based ECLSS/ITCS hardware performance simulation capability has been developed at NASA's Marshall Space Flight Center. The ECLSS/ITCS Sustaining Engineering Test Bed will be used to assist the ISS Program in resolving hardware anomalies and performing periodic performance assessments. The ISS flight configuration being simulated by the test bed is described as well as ongoing activities related to its preparation for supporting ISS Mission 5A. Growth options for the test facility are presented whereby the current facility may be upgraded to enhance its capability for supporting future station operation well beyond Mission 5A. Test bed capabilities for demonstrating technology improvements of ECLSS hardware are also described.

  9. Conceptual framework for opening sustainability in pratices of printing industry operations

    Directory of Open Access Journals (Sweden)

    Dalton Alexandre Kai (

    2014-12-01

    Full Text Available There is worldwide concern with global development and this has compelled organizations to modify their management and operations in order to remain competitive, even for their own survival. Develop sustainably means to be economically viable, change each operation to reduce or even not generate waste, conserve energy and natural resources, be safe and not harmful to workers, communities and consumers. Companies that make up the Brazilian printing sector still lack this understanding. The overall goal of this research is to propose a conceptual framework based on the Triple Bottom Line (3BL for sustainability practices in printing industry operations. A literature review process checked the particularities of this industry’s operations, with different perspectives on economic, environmental and social operations. The model presented is expected to be applied, becoming a starting point to enable printing industry companies to adapt their modes of operation, adopting best sustainable practices in sustainable development.

  10. A Reusable and Adaptable Software Architecture for Embedded Space Flight System: The Core Flight Software System (CFS)

    Science.gov (United States)

    Wilmot, Jonathan

    2005-01-01

    The contents include the following: High availability. Hardware is in harsh environment. Flight processor (constraints) very widely due to power and weight constraints. Software must be remotely modifiable and still operate while changes are being made. Many custom one of kind interfaces for one of a kind missions. Sustaining engineering. Price of failure is high, tens to hundreds of millions of dollars.

  11. Space shuttle orbiter guidance, naviagation and control software functional requirements: Horizontal flight operations

    Science.gov (United States)

    1972-01-01

    The shuttle GN&C software functions for horizontal flight operations are defined. Software functional requirements are grouped into two categories: first horizontal flight requirements and full mission horizontal flight requirements. The document privides the intial step in the shuttle GN&C software design process. It also serves as a management tool to identify analyses which are required to define requirements.

  12. Towards Sustainability: Effective Operations Strategies, Quality Management and Operational Excellence in Banking

    OpenAIRE

    Vesna Tornjanski; Sanja Marinković; Željka Jančić

    2017-01-01

    This paper sets out to extend and deepen the understanding the ways toward economic sustainability through efficient and effective growth operations strategies, quality management and operational excellence in banking. In this study we define new quality management practices based on developed conceptual architecture of digital platform for operations function in banking. Additionally, we employ decision making framework consisted of two parts: introduction of new operations services using To...

  13. System security in the space flight operations center

    Science.gov (United States)

    Wagner, David A.

    1988-01-01

    The Space Flight Operations Center is a networked system of workstation-class computers that will provide ground support for NASA's next generation of deep-space missions. The author recounts the development of the SFOC system security policy and discusses the various management and technology issues involved. Particular attention is given to risk assessment, security plan development, security implications of design requirements, automatic safeguards, and procedural safeguards.

  14. MSFC Doppler Lidar Science experiments and operations plans for 1981 airborne test flight

    Science.gov (United States)

    Fichtl, G. H.; Bilbro, J. W.; Kaufman, J. W.

    1981-01-01

    The flight experiment and operations plans for the Doppler Lidar System (DLS) are provided. Application of DLS to the study of severe storms and local weather penomena is addressed. Test plans involve 66 hours of flight time. Plans also include ground based severe storm and local weather data acquisition.

  15. Captain upgrade CRM training: A new focus for enhanced flight operations

    Science.gov (United States)

    Taggart, William R.

    1993-01-01

    Crew Resource Management (CRM) research has resulted in numerous payoffs of applied applications in flight training and standardization of air carrier flight operations. This paper describes one example of how basic research into human factors and crew performance was used to create a specific training intervention for upgrading new captains for a major United States air carrier. The basis for the training is examined along with some of the specific training methods used, and several unexpeced results.

  16. The Transition from Spacecraft Development Ot Flight Operation: Human Factor Considerations

    Science.gov (United States)

    Basilio, Ralph R.

    2000-01-01

    In the field of aeronautics and astronautics, a paradigm shift has been witnessed by those in academia, research and development, and private industry. Long development life cycles and the budgets to support such programs and projects has given way to aggressive task schedules and leaner resources to draw from all the while challenging assigned individuals to create and produce improved products of processes. however, this "faster, better, cheaper" concept cannot merely be applied to the design, development, and test of complex systems such as earth-orbiting of interplanetary robotic spacecraft. Full advantage is not possible without due consideration and application to mission operations planning and flight operations, Equally as important as the flight system, the mission operations system consisting of qualified personnel, ground hardware and software tools, and verified and validated operational processes, should also be regarded as a complex system requiring personnel to draw upon formal education, training, related experiences, and heuristic reasoning in engineering an effective and efficient system. Unquestionably, qualified personnel are the most important elements of a mission operations system. This paper examines the experiences of the Deep Space I Project, the first in a series of new technology in-flight validation missions sponsored by the United States National Aeronautics and Space Administration (NASA), specifically, in developing a subsystems analysis and technology validation team comprised of former spacecraft development personnel. Human factor considerations are investigated from initial concept/vision formulation; through operational process development; personnel test and training; to initial uplink product development and test support. Emphasis has been placed on challenges and applied or recommended solutions, so as to provide opportunities for future programs and projects to address and disposition potential issues and concerns as early

  17. Greening Operations Management: An Online Sustainable Procurement Course for Practitioners

    Science.gov (United States)

    Walker, Helen L.; Gough, Stephen; Bakker, Elmer F.; Knight, Louise A.; McBain, Darian

    2009-01-01

    In the Operations Management field, sustainable procurement has emerged as a way to green the purchasing and supply process. This paper explores issues in sustainable procurement training. The authors formed an interdisciplinary team to design, deliver and evaluate a training programme to promote and develop sustainable procurement in the United…

  18. The Building Blocks for JWST I and T (Integrations and Test) to Operations - From Simulator to Flight Units

    Science.gov (United States)

    Fatig, Curtis; Ochs, William; Johns, Alan; Seaton, Bonita; Adams, Cynthia; Wasiak, Francis; Jones, Ronald; Jackson, Wallace

    2012-01-01

    The James Webb Space Telescope (JWST) Project has an extended integration and test (I&T) phase due to long procurement and development times of various components as well as recent launch delays. The JWST Ground Segment and Operations group has developed a roadmap of the various ground and flight elements and their use in the various JWST I&T test programs. The JWST Project s building block approach to the eventual operational systems, while not new, is complex and challenging; a large-scale mission like JWST involves international partners, many vendors across the United States, and competing needs for the same systems. One of the challenges is resource balancing so simulators and flight products for various elements congeal into integrated systems used for I&T and flight operations activities. This building block approach to an incremental buildup provides for early problem identification with simulators and exercises the flight operations systems, products, and interfaces during the JWST I&T test programs. The JWST Project has completed some early I&T with the simulators, engineering models and some components of the operational ground system. The JWST Project is testing the various flight units as they are delivered and will continue to do so for the entire flight and operational system. The JWST Project has already and will continue to reap the value of the building block approach on the road to launch and flight operations.

  19. Communicating Sustainability: An Operational Model for Evaluating Corporate Websites

    Directory of Open Access Journals (Sweden)

    Alfonso Siano

    2016-09-01

    Full Text Available The interest in corporate sustainability has increased rapidly in recent years and has encouraged organizations to adopt appropriate digital communication strategies, in which the corporate website plays a key role. Despite this growing attention in both the academic and business communities, models for the analysis and evaluation of online sustainability communication have not been developed to date. This paper aims to develop an operational model to identify and assess the requirements of sustainability communication in corporate websites. It has been developed from a literature review on corporate sustainability and digital communication and the analysis of the websites of the organizations included in the “Global CSR RepTrak 2015” by the Reputation Institute. The model identifies the core dimensions of online sustainability communication (orientation, structure, ergonomics, content—OSEC, sub-dimensions, such as stakeholder engagement and governance tools, communication principles, and measurable items (e.g., presence of the materiality matrix, interactive graphs. A pilot study on the websites of the energy and utilities companies included in the Dow Jones Sustainability World Index 2015 confirms the applicability of the OSEC framework. Thus, the model can provide managers and digital communication consultants with an operational tool that is useful for developing an industry ranking and assessing the best practices. The model can also help practitioners to identify corrective actions in the critical areas of digital sustainability communication and avoid greenwashing.

  20. 76 FR 57635 - Restrictions on Operators Employing Former Flight Standards Service Aviation Safety Inspectors...

    Science.gov (United States)

    2011-09-16

    ... Standards Service Aviation Safety Inspectors; Correction AGENCY: Federal Aviation Administration (FAA), DOT... ``Restrictions on Operators Employing Former Flight Standards Service Aviation Safety Inspectors'' (76 FR 52231... of, a Flight Standards Service Aviation Safety Inspector, and had direct responsibility to inspect...

  1. On-Board File Management and Its Application in Flight Operations

    Science.gov (United States)

    Kuo, N.

    1998-01-01

    In this paper, the author presents the minimum functions required for an on-board file management system. We explore file manipulation processes and demonstrate how the file transfer along with the file management system will be utilized to support flight operations and data delivery.

  2. Wetland harvesting systems -- developing alternatives for sustainable operation

    Science.gov (United States)

    Robert B. Rummer; Bryce J. Stokes; Alvin Schilling

    1997-01-01

    Wetland forests represent some of the most productive forest lands in the Southeast. They are also an environmentally sensitive ecotype which presents unique problems for forest operations. Sustaining active management in these areas will require systems which can operate on weak soil conditions without adversely affecting soil properties or stand regeneration. The...

  3. RF Regional Technical Centers for MPC and A Sustainability Operations

    International Nuclear Information System (INIS)

    Lambert, L D; Toth, W J; Hendrickson, S

    2004-01-01

    The National Nuclear Security Administration (NNSA) programmatic vision to be a catalyst in Russia's assumption of responsibility for long-term system operation is exemplified in the sustainability cooperation with the RF Ministry of Defense (MOD). An identified goal for the MPC and A Program is to encourage the development of Russian Federation (RF) capabilities and commitments to operate and maintain safeguard improvements. The RF MOD Technical Support Center development fulfills the NNSA mission and MPC and A Program goal. The regional technical center concept involves a systematic approach to aid in the determination of the level of sustainability assistance required to transition operators, maintenance, training, and testing of MPC and A systems to the RF MOD. This paper describes the process used to create the RF MOD Technical support center. First are described the needs analyses conducted to determine the key system sustainability factors requiring support. These sustainability functions are then compiled to influence the form and ultimate physical design of the technical support center. Operational interfaces are described, in detail that show the benefit of the center to the individual sites. Finally, benefits relating to information accessibility and other economies of scale are described that highlight the central center concept's strengths

  4. Test Hardware Design for Flight-Like Operation of Advanced Stirling Convertors

    Science.gov (United States)

    Oriti, Salvatore M.

    2012-01-01

    NASA Glenn Research Center (GRC) has been supporting development of the Advanced Stirling Radioisotope Generator (ASRG) since 2006. A key element of the ASRG project is providing life, reliability, and performance testing of the Advanced Stirling Convertor (ASC). For this purpose, the Thermal Energy Conversion branch at GRC has been conducting extended operation of a multitude of free-piston Stirling convertors. The goal of this effort is to generate long-term performance data (tens of thousands of hours) simultaneously on multiple units to build a life and reliability database. The test hardware for operation of these convertors was designed to permit in-air investigative testing, such as performance mapping over a range of environmental conditions. With this, there was no requirement to accurately emulate the flight hardware. For the upcoming ASC-E3 units, the decision has been made to assemble the convertors into a flight-like configuration. This means the convertors will be arranged in the dual-opposed configuration in a housing that represents the fit, form, and thermal function of the ASRG. The goal of this effort is to enable system level tests that could not be performed with the traditional test hardware at GRC. This offers the opportunity to perform these system-level tests much earlier in the ASRG flight development, as they would normally not be performed until fabrication of the qualification unit. This paper discusses the requirements, process, and results of this flight-like hardware design activity.

  5. Local and Sustainable Food Supply: The Role of European Retail Consumer Co-operatives

    Directory of Open Access Journals (Sweden)

    Martin Hingley

    2012-03-01

    Full Text Available  This paper investigates the rationale for local and sustainable food systems and retailer co-operatives as their entry points within local conditions. Emphasis is on localised food networks and connection between socially as well as environmentally sustainable production, distribution and consumption. Investigated is the premise that co-operative organisational structures, for reasons of their long-term socially responsible origins are at the forefront of development of local and sustainable food systems and are thereby in a position to offer a specific contribution to market development. Two key research questions are proposed: Firstly, is there a pre-determination of co-operatives to issues of sustainable and local food sourcing given the historical and practical context of their ethical/socially responsible and stakeholder-based business model? Secondly, do co-ops express support for re-localising food systems and what contribution do they make concerning sustainable food and their relationships with local food suppliers? The method of investigation is through a two country retailer co-operative sector analysis and comparison (Finland and Italy. The enquiry is qualitative and exploratory in nature in the form of an embedded, multiple case design. The paper makes practical and theoretical contribution to knowledge concerning interpretation of ‘localness’ in food, the role of co-operatives and the co-operative ethos in sustainable food systems and the development of the local food economy. Results of the study show a positive relationship between co-operative ethos and (social sustainability in local food, but the de-centralised nature of retailer co-operation also provides a barrier to replication of good practice.

  6. A Multiple Agent Model of Human Performance in Automated Air Traffic Control and Flight Management Operations

    Science.gov (United States)

    Corker, Kevin; Pisanich, Gregory; Condon, Gregory W. (Technical Monitor)

    1995-01-01

    A predictive model of human operator performance (flight crew and air traffic control (ATC)) has been developed and applied in order to evaluate the impact of automation developments in flight management and air traffic control. The model is used to predict the performance of a two person flight crew and the ATC operators generating and responding to clearances aided by the Center TRACON Automation System (CTAS). The purpose of the modeling is to support evaluation and design of automated aids for flight management and airspace management and to predict required changes in procedure both air and ground in response to advancing automation in both domains. Additional information is contained in the original extended abstract.

  7. Conceptual Model Development of Sustainability Practices: The Case of Port Operations for Collaboration and Governance

    Directory of Open Access Journals (Sweden)

    Dalwon Kang

    2017-12-01

    Full Text Available Sustainability practices in port operations are critical issue to achieve port sustainability involving economic, social and environmental issues. To assist ports to successfully implant sustainability practices into their operations, this paper conceptualized the structure of sustainability practices in international port operations, by clustering the relevant issues, empirically. Using 203 samples collected from port stakeholders in the major ports in Northeast Asia, multi-measurement items were analyzed on exploratory factor analysis in SPSS 21. Results generated a structure that consists of five sub-dimensions conceptualizing sustainability practices in the context of port operations. As operative practices to accommodate current and future demands in a port, the five-factor model clustering the relevant issues incorporate environmental technologies, process and quality improvement, monitoring and upgrading, communication and cooperation, and active participation. Providing useful insights for strategic agenda to assist ports to incorporate sustainability practices in their operations, the five-factor model offer both a descriptive and diagnostic management tool for future improvement in port operations.

  8. Operational Lessons Learned from the Ares I-X Flight Test

    Science.gov (United States)

    Davis, Stephan R.

    2010-01-01

    The Ares I-X flight test, launched in 2009, is the first test of the Ares I crew launch vehicle. This development flight test evaluated the flight dynamics, roll control, and separation events, but also provided early insights into logistical, stacking, launch, and recovery operations for Ares I. Operational lessons will be especially important for NASA as the agency makes the transition from the Space Shuttle to the Constellation Program, which is designed to be less labor-intensive. The mission team itself comprised only 700 individuals over the life of the project compared to the thousands involved in Shuttle and Apollo missions; while missions to and beyond low-Earth orbit obviously will require additional personnel, this lean approach will serve as a model for future Constellation missions. To prepare for Ares I-X, vehicle stacking and launch infrastructure had to be modified at Kennedy Space Center's Vehicle Assembly Building (VAB) as well as Launch Complex (LC) 39B. In the VAB, several platforms and other structures designed for the Shuttle s configuration had to be removed to accommodate the in-line, much taller Ares I-X. Vehicle preparation activities resulted in delays, but also in lessons learned for ground operations personnel, including hardware deliveries, cable routing, transferred work and custodial paperwork. Ares I-X also proved to be a resource challenge, as individuals and ground service equipment (GSE) supporting the mission also were required for Shuttle or Atlas V operations at LC 40/41 at Cape Canaveral Air Force Station. At LC 39B, several Shuttle-specific access arms were removed and others were added to accommodate the in-line Ares vehicle. Ground command, control, and communication (GC3) hardware was incorporated into the Mobile Launcher Platform (MLP). The lightning protection system at LC 39B was replaced by a trio of 600-foot-tall towers connected by a catenary wire to account for the much greater height of the vehicle. Like Shuttle

  9. Lift and Power Required for Flapping Wing Hovering Flight on Mars

    Science.gov (United States)

    Pohly, Jeremy; Sridhar, Madhu; Bluman, James; Kang, Chang-Kwon; Landrum, D. Brian; Fahimi, Farbod; Aono, Hikaru; Liu, Hao

    2017-11-01

    Achieving flight on Mars is challenging due to the ultra-low density atmosphere. Bio-inspired flapping motion can generate sufficient lift if bumblebee-inspired wings are scaled up between 2 and 4 times their nominal size. However, due to this scaling, the inertial power required to sustain hover increases and dominates over the aerodynamic power. Our results show that a torsional spring placed at the wing root can reduce the flapping power required for hover by efficiently storing and releasing energy while operating at its resonance frequency. The spring assisted reduction in flapping power is demonstrated with a well-validated, coupled Navier-Stokes and flight dynamics solver. The total power is reduced by 79%, whereas the flapping power is reduced by 98%. Such a reduction in power paves the way for an efficient, realizable micro air vehicle capable of vertical takeoff and landing as well as sustained flight on Mars. Alabama Space Grant Consortium Fellowship.

  10. Using Web 2.0 (and Beyond?) in Space Flight Operations Control Centers

    Science.gov (United States)

    Scott, David W.

    2010-01-01

    Word processing was one of the earliest uses for small workstations, but we quickly learned that desktop computers were far more than e-typewriters. Similarly, "Web 2.0" capabilities, particularly advanced search engines, chats, wikis, blogs, social networking, and the like, offer tools that could significantly improve our efficiency at managing the avalanche of information and decisions needed to operate space vehicles in realtime. However, could does not necessarily equal should. We must wield two-edged swords carefully to avoid stabbing ourselves. This paper examines some Web 2.0 tools, with an emphasis on social media, and suggests which ones might be useful or harmful in real-time space operations co rnotl environments, based on the author s experience as a Payload Crew Communicator (PAYCOM) at Marshall Space Flight Center s (MSFC) Payload Operations Integration Center (POIC) for the International Space Station (ISS) and on discussions with other space flight operations control organizations and centers. There is also some discussion of an offering or two that may come from beyond the current cyber-horizon.

  11. Initial Flight Test of the Production Support Flight Control Computers at NASA Dryden Flight Research Center

    Science.gov (United States)

    Carter, John; Stephenson, Mark

    1999-01-01

    The NASA Dryden Flight Research Center has completed the initial flight test of a modified set of F/A-18 flight control computers that gives the aircraft a research control law capability. The production support flight control computers (PSFCC) provide an increased capability for flight research in the control law, handling qualities, and flight systems areas. The PSFCC feature a research flight control processor that is "piggybacked" onto the baseline F/A-18 flight control system. This research processor allows for pilot selection of research control law operation in flight. To validate flight operation, a replication of a standard F/A-18 control law was programmed into the research processor and flight-tested over a limited envelope. This paper provides a brief description of the system, summarizes the initial flight test of the PSFCC, and describes future experiments for the PSFCC.

  12. Advanced transport operating system software upgrade: Flight management/flight controls software description

    Science.gov (United States)

    Clinedinst, Winston C.; Debure, Kelly R.; Dickson, Richard W.; Heaphy, William J.; Parks, Mark A.; Slominski, Christopher J.; Wolverton, David A.

    1988-01-01

    The Flight Management/Flight Controls (FM/FC) software for the Norden 2 (PDP-11/70M) computer installed on the NASA 737 aircraft is described. The software computes the navigation position estimates, guidance commands, those commands to be issued to the control surfaces to direct the aircraft in flight based on the modes selected on the Advanced Guidance Control System (AGSC) mode panel, and the flight path selected via the Navigation Control/Display Unit (NCDU).

  13. Space Flight Operations Center local area network

    Science.gov (United States)

    Goodman, Ross V.

    1988-01-01

    The existing Mission Control and Computer Center at JPL will be replaced by the Space Flight Operations Center (SFOC). One part of the SFOC is the LAN-based distribution system. The purpose of the LAN is to distribute the processed data among the various elements of the SFOC. The SFOC LAN will provide a robust subsystem that will support the Magellan launch configuration and future project adaptation. Its capabilities include (1) a proven cable medium as the backbone for the entire network; (2) hardware components that are reliable, varied, and follow OSI standards; (3) accurate and detailed documentation for fault isolation and future expansion; and (4) proven monitoring and maintenance tools.

  14. SWIFT BAT Loop Heat Pipe Thermal System Characteristics and Ground/Flight Operation Procedure

    Science.gov (United States)

    Choi, Michael K.

    2003-01-01

    The SWIFT Burst Alert Telescope (BAT) Detector Array has a total power dissipation of 208 W. To meet the stringent temperature gradient and thermal stability requirements in the normal operational mode, and heater power budget in both the normal operational and safehold modes, the Detector Array is thermally well coupled to eight constant conductance heat pipes (CCHPs) embedded in the Detector Array Plate (DAP), and two loop heat pipes (LHPs) transport heat fiom the CCHPs to a radiator. The CCHPs have ammonia as the working fluid and the LHPs have propylene as the working fluid. Precision heater controllers, which have adjustable set points in flight, are used to control the LHP compensation chamber and Detector Array XA1 ASIC temperatures. The radiator has the AZ-Tek AZW-LA-II low-alpha white paint as the thermal coating and is located on the anti-sun side of the spacecraft. This paper presents the characteristics, ground operation and flight operation procedures of the LHP thermal system.

  15. A review on the sustainability of constructed wetlands for wastewater treatment: Design and operation.

    Science.gov (United States)

    Wu, Haiming; Zhang, Jian; Ngo, Huu Hao; Guo, Wenshan; Hu, Zhen; Liang, Shuang; Fan, Jinlin; Liu, Hai

    2015-01-01

    Constructed wetlands (CWs) have been used as a green technology to treat various wastewaters for several decades. CWs offer a land-intensive, low-energy, and less-operational-requirements alternative to conventional treatment systems, especially for small communities and remote locations. However, the sustainable operation and successful application of these systems remains a challenge. Hence, this paper aims to provide and inspire sustainable solutions for the performance and application of CWs by giving a comprehensive review of CWs' application and the recent development on their sustainable design and operation for wastewater treatment. Firstly, a brief summary on the definition, classification and application of current CWs was presented. The design parameters and operational conditions of CWs including plant species, substrate types, water depth, hydraulic load, hydraulic retention time and feeding mode related to the sustainable operation for wastewater treatments were then discussed. Lastly, future research on improving the stability and sustainability of CWs were highlighted. Copyright © 2014 Elsevier Ltd. All rights reserved.

  16. Integrating Sustainable Development into Operations Management Courses

    Science.gov (United States)

    Fredriksson, Peter; Persson, Magnus

    2011-01-01

    Purpose: It is widely acknowledged that aspects of sustainable development (SD) should be integrated into higher level operations management (OM) education. The aim of the paper is to outline the experiences gained at Chalmers University of Technology in Sweden from integrating aspects of SD into OM courses. Design/methodology/approach: The paper…

  17. Operational Art and the Sustainment Warfighting Function

    Science.gov (United States)

    2011-12-01

    Infantry Division (ID) a continuous sustainment line of operation. The leap- frogging of Forward Logisitics Bases provided 3rd Infantry Division (ID...victims. A C-17 Globemaster III departed North Carolina and delivered 14,000 Meals Ready-to- Eat , or MREs, and 14,000 quarts of water in a 7-hour round

  18. Capital Flight and Economic Performance

    OpenAIRE

    Beja, Edsel Jr.

    2007-01-01

    Capital flight aggravates resource constraints and contributes to undermine long-term economic growth. Counterfactual calculations on the Philippines suggest that capital flight contributed to lower the quality of long-term economic growth. Sustained capital flight over three decades means that capital flight had a role for the Philippines to lose the opportunities to achieve economic takeoff. Unless decisive policy actions are taken up to address enduring capital flight and manage the macroe...

  19. Enhanced vision flight deck technology for commercial aircraft low-visibility surface operations

    Science.gov (United States)

    Arthur, Jarvis J.; Norman, R. M.; Kramer, Lynda J.; Prinzel, Lawerence J.; Ellis, Kyle K.; Harrison, Stephanie J.; Comstock, J. R.

    2013-05-01

    NASA Langley Research Center and the FAA collaborated in an effort to evaluate the effect of Enhanced Vision (EV) technology display in a commercial flight deck during low visibility surface operations. Surface operations were simulated at the Memphis, TN (FAA identifier: KMEM) airfield during nighttime with 500 Runway Visual Range (RVR) in a high-fidelity, full-motion simulator. Ten commercial airline flight crews evaluated the efficacy of various EV display locations and parallax and minification effects. The research paper discusses qualitative and quantitative results of the simulation experiment, including the effect of EV display placement on visual attention, as measured by the use of non-obtrusive oculometry and pilot mental workload. The results demonstrated the potential of EV technology to enhance situation awareness which is dependent on the ease of access and location of the displays. Implications and future directions are discussed.

  20. Flight Test Evaluation of an Unmanned Aircraft System Traffic Management (UTM) Concept for Multiple Beyond-Visual-Line-of-Sight Operations

    Science.gov (United States)

    Johnson, Marcus; Jung, Jaewoo; Rios, Joseph; Mercer, Joey; Homola, Jeffrey; Prevot, Thomas; Mulfinger, Daniel; Kopardekar, Parimal

    2017-01-01

    This study evaluates a traffic management concept designed to enable simultaneous operations of multiple small unmanned aircraft systems (UAS) in the national airspace system (NAS). A five-day flight-test activity is described that examined the feasibility of operating multiple UAS beyond visual line of sight (BVLOS) of their respective operators in the same airspace. Over the five-day campaign, three groups of five flight crews operated a total of eleven different aircraft. Each group participated in four flight scenarios involving five simultaneous missions. Each vehicle was operated BVLOS up to 1.5 miles from the pilot in command. Findings and recommendations are presented to support the feasibility and safety of routine BVLOS operations for small UAS.

  1. Operational Problems Associated with Head-Up Displays during Instrument Flight.

    Science.gov (United States)

    1980-10-01

    Force project engineers were Major Michael F. Rundle and Mr. William L. Welde . 41 4 TABLE OF CONTENTS Page ABBREVIATIONS...of Automotive Engineers SETP Society of Experimental Test Pilots SI Solid Instruments SNPL Syndicat National des Pilotes des Lignes (French ALPA) TACAN...Factors Relevent to Jet Upsets ," Lessons with Emphasis on Flight Mechanics from Operating Experience, Incidents, and Accidents, AGARD CP-76, 1971 153 J

  2. Sleep/Wakefulness Management in Continuous/Sustained Operations

    Science.gov (United States)

    2002-11-01

    eleventh and last lecture. Measures like phototherapy and adapted social environments are discussed, and problems associated with the use of chronobiotic...1-1 Individual Differences in Vigilance and Performance during Continuous/Sustained Operations Maria Casagrande Dipartimento di Psicologia Università...Carver CS, Scheier MF, Weintraub JK (1989) Assessing coping strategies: a theoretical based approach, Journal of Personality and Social Psychology

  3. Fostering sustainable operations in a natural resource management agency: insights from the field

    Science.gov (United States)

    Patricia L. Winter; Shawn M. Burn

    2010-01-01

    Sustainable operations (SO; operating in an environmentally, economically, and socially sustainable manner) is consistent with the environmental stewardship mission of natural resource management organizations. This study sought to examine SO practices in the daily work lives of US Forest Service employees, including those primarily stationed in the office and in the...

  4. Towards Sustainability: Effective Operations Strategies, Quality Management and Operational Excellence in Banking

    Directory of Open Access Journals (Sweden)

    Vesna Tornjanski

    2017-02-01

    Full Text Available This paper sets out to extend and deepen the understanding the ways toward economic sustainability through efficient and effective growth operations strategies, quality management and operational excellence in banking. In this study we define new quality management practices based on developed conceptual architecture of digital platform for operations function in banking. Additionally, we employ decision making framework consisted of two parts: introduction of new operations services using Total Unduplicated Reach and Frequency (TURF statistical analysis and segregation of core from actual and augmented operations services utilizing Analytic Network Process (ANP method based on BOCR model. Proposed quality management practices were used for the first time in this paper for particular purposes and have the high potential to impact the excellence in banking business. The study can contribute to operations management, quality management, innovation management, IT management, business process management and decision making in service organizations.

  5. Supervision functions - Secure operation of sustainable power systems

    DEFF Research Database (Denmark)

    Morais, Hugo; Zhang, Xinxin; Lind, Morten

    2013-01-01

    of power systems operation control. The use of PMUs allows more penetration of DG mainly, with technologies based on renewable resources with intermittent and unpredictable operation such a wind power. This paper introduces the Secure Operation of Sustainable Power Systems (SOSPO) project. The SOSPO...... project tries to respond to the question "How to ensure a secure operation of the future power system where the operating point is heavily is fluctuating?" focusing in the Supervision module architecture and in the power system operation states. The main goal of Supervision module is to determine...... the power system operation state based on new stability and security parameters derived from PMUs measurement and coordinate the use of automatic and manual control actions. The coordination of the control action is based not only in the static indicators but also in the performance evaluation of control...

  6. Implementation and Test of the Automatic Flight Dynamics Operations for Geostationary Satellite Mission

    Directory of Open Access Journals (Sweden)

    Sangwook Park

    2009-12-01

    Full Text Available This paper describes the Flight Dynamics Automation (FDA system for COMS Flight Dynamics System (FDS and its test result in terms of the performance of the automation jobs. FDA controls the flight dynamics functions such as orbit determination, orbit prediction, event prediction, and fuel accounting. The designed FDA is independent from the specific characteristics which are defined by spacecraft manufacturer or specific satellite missions. Therefore, FDA could easily links its autonomous job control functions to any satellite mission control system with some interface modification. By adding autonomous system along with flight dynamics system, it decreases the operator’s tedious and repeated jobs but increase the usability and reliability of the system. Therefore, FDA is used to improve the completeness of whole mission control system’s quality. The FDA is applied to the real flight dynamics system of a geostationary satellite, COMS and the experimental test is performed. The experimental result shows the stability and reliability of the mission control operations through the automatic job control.

  7. The Final Count Down: A Review of Three Decades of Flight Controller Training Methods for Space Shuttle Mission Operations

    Science.gov (United States)

    Dittermore, Gary; Bertels, Christie

    2011-01-01

    Operations of human spaceflight systems is extremely complex; therefore, the training and certification of operations personnel is a critical piece of ensuring mission success. Mission Control Center (MCC-H), at the Lyndon B. Johnson Space Center in Houston, Texas, manages mission operations for the Space Shuttle Program, including the training and certification of the astronauts and flight control teams. An overview of a flight control team s makeup and responsibilities during a flight, and details on how those teams are trained and certified, reveals that while the training methodology for developing flight controllers has evolved significantly over the last thirty years the core goals and competencies have remained the same. In addition, the facilities and tools used in the control center have evolved. Changes in methodology and tools have been driven by many factors, including lessons learned, technology, shuttle accidents, shifts in risk posture, and generational differences. Flight controllers share their experiences in training and operating the space shuttle. The primary training method throughout the program has been mission simulations of the orbit, ascent, and entry phases, to truly train like you fly. A review of lessons learned from flight controller training suggests how they could be applied to future human spaceflight endeavors, including missions to the moon or to Mars. The lessons learned from operating the space shuttle for over thirty years will help the space industry build the next human transport space vehicle.

  8. Enhanced Vision Flight Deck Technology for Commercial Aircraft Low-Visibility Surface Operations

    Science.gov (United States)

    Arthur, Jarvis J., III; Norman, R. Michael; Kramer, Lynda J.; Prinzel, Lawrence J., III; Ellis, Kyle K. E.; Harrison, Stephanie J.; Comstock, J. Ray

    2013-01-01

    NASA Langley Research Center and the FAA collaborated in an effort to evaluate the effect of Enhanced Vision (EV) technology display in a commercial flight deck during low visibility surface operations. Surface operations were simulated at the Memphis, TN (FAA identifier: KMEM) air field during nighttime with 500 Runway Visual Range (RVR) in a high-fidelity, full-motion simulator. Ten commercial airline flight crews evaluated the efficacy of various EV display locations and parallax and mini cation effects. The research paper discusses qualitative and quantitative results of the simulation experiment, including the effect of EV display placement on visual attention, as measured by the use of non-obtrusive oculometry and pilot mental workload. The results demonstrated the potential of EV technology to enhance situation awareness which is dependent on the ease of access and location of the displays. Implications and future directions are discussed.

  9. Sustaining Operational Resiliency: A Process Improvement Approach to Security Management

    National Research Council Canada - National Science Library

    Caralli, Richard A

    2006-01-01

    .... Coordinating these efforts to sustain operational resiliency requires a process-oriented approach that can be defined, measured, and actively managed. This report describes the fundamental elements and benefits of a process approach to security and operational resiliency and provides a notional view of a framework for process improvement.

  10. Desired, Perceived, and Achieved Sustainability: Trade-Offs in Strategic and Operational Packaging Development

    Directory of Open Access Journals (Sweden)

    Bjorn de Koeijer

    2017-10-01

    Full Text Available The alignment of the strategic and the operational level of packaging development in relation to the integration of sustainability is not addressed extensively in current research. This paper aims to address this, by focusing on the decision-making interrelations of key actors (marketing and packaging development within multidisciplinary product-packaging development teams. The research is conducted by means of a qualitative approach, consisting of semi-structured interviews with individual packaging development team members, complemented with a newly developed visualization tool. The research builds upon eight cases within brand owners, packaging material suppliers and packaging development consultants. The main findings of the study include the decision-making trade-offs between sustainability considerations and other project indicators, such as costs, time-to-market and technical challenges. These trade-offs are linked to the strategic and operational roles of key actors, and to internal and external factors influencing sustainable development processes. This research’s contribution is to address the alignment of the strategic and the operational levels of sustainable packaging development, in relation to (1 decision making and interrelations within multidisciplinary development teams; and (2 the relevance of development-influencing factors. This provides opportunities for further development of sustainable packaging models and tools, in order to align the strategic and operational level of development.

  11. Sustainability of Biomass Utilisation in Changing operational Environment - SUBICHOE

    Energy Technology Data Exchange (ETDEWEB)

    Soimakallio, S.; Hongisto, M.; Koponen, K. (VTT Technical Research Centre of Finland, Espoo (Finland)), e-mail: sampo.soimakallio@vtt.fi (and others)

    2011-11-15

    Sustainability is a multi-faceted and challenging target, but at the same time a crucial issue to assess when setting policies and targets for the future. The main objective of the SUBICHOE project is to assist public administration and companies in strategic decision- making in the most sustainable use of biomass, by taking into account the changing operational environment. The project aimed to assess how the sustainability criteria, in particular those set by the EC, ensure the sustainability of biofuels from short and long term perspectives. The project is carried out jointly by VTT Technical Research Centre of Finland, Finnish Environment Institute SYKE, MTT Agrifood Research Finland, Finnish Forest Research Institute (Metla) and The Government Institute for Economic Research (VATT). The work plan of the project is divided into four Work Packages. In this article, a summary of main findings of the project is presented. (orig.)

  12. The use of social media for improving sustainable energy and building operation

    DEFF Research Database (Denmark)

    Knudsen, Helene Hjort

    2015-01-01

    This paper will draw perspectives of the experiences from the housing estate “Eight House”, using the social intranet media “Borigo”. How can Social Intranet Media support sustainable building operation with an overall aim of improving the residents’ sustainable practice? Can local operational...... managers of the residential area function as change agents in the process? What kind of process is needed? Can the use of social media support communities of practice?...

  13. A Fatigue Management System for Sustained Military Operations

    Science.gov (United States)

    2008-03-31

    Medications in Sustained Operations – Storm et al. DRAFT anxiolytic, myorelaxant, and anticonvulsant properties, and...sedation in pediatric anesthesia (Scheepers, Montgomery, Kinahan, et al., 2000). Submucosal administration was compared to intravenous administration...Arheart KL, & Mandrell TD (2000). Comparative pharmacokinetics of submucosal vs. intravenous flumazenil (Romazicon) in an animal model. Pediatr

  14. Flight Test Evaluation of an Unmanned Aircraft System Traffic Management (UTM) Concept for Multiple Beyond-Visual-Line-of-Sight (BVLOS) Operations

    Science.gov (United States)

    Johnson, Marcus; Jung, Jaewoo; Rios, Joseph; Mercer, Joey; Homola, Jeffrey; Prevot, Thomas; Mulfinger, Daniel; Kopardekar, Parimal

    2017-01-01

    This study evaluates a traffic management concept designed to enable simultaneous operations of multiple small unmanned aircraft systems (UAS) in the national airspace system (NAS). A five-day flight-test activity is described that examined the feasibility of operating multiple UAS beyond visual line of sight (BVLOS) of their respective operators in the same airspace. Over the five-day campaign, three groups of five flight crews operated a total of eleven different aircraft. Each group participated in four flight scenarios involving five simultaneous missions. Each vehicle was operated BVLOS up to 1.5 miles from the pilot in command. Findings and recommendations are presented to support the feasibility and safety of routine BVLOS operations for small UAS.

  15. Crew Factors in Flight Operations XV: Alertness Management in General Aviation Education Module

    Science.gov (United States)

    Rosekind, Mark R.; Co, Elizabeth L.; Neri, David F.; Oyung, Raymond L.; Mallis, Melissa M.; Cannon, Mary M. (Technical Monitor)

    2002-01-01

    Regional operations encompass a broad range of pilots and equipment. This module is intended to help all those involved in regional aviation, including pilots, schedulers, dispatchers, maintenance technicians, policy makers, and others, to understand the physiological factors underlying fatigue, how flight operations affect fatigue, and what can be done to counteract fatigue and maximize alertness and performance in their operations. The overall purpose of this module is to promote aviation safety, performance, and productivity. It is intended to meet three specific objectives: (1) to explain the current state of knowledge about the physiological mechanisms underlying fatigue; (2) to demonstrate how this knowledge can be applied to improving flight crew sleep, performance, and alertness; and (3) to offer strategies for alertness management. Aviation Safety Reporting System (ASRS) and National Transportation Safety Board (NISH) reports are used throughout this module to demonstrate that fatigue is a safety issue in the regional operations community. The appendices at the end of this module include the ASRS reports used for the examples contained in this publication, brief introductions to sleep disorders and relaxation techniques, summaries of relevant NASA publications, and a list of general readings on sleep, sleep disorders, and circadian rhythms.

  16. The nature of operating flight loads and their effect on propulsion system structures

    Science.gov (United States)

    Dickenson, K. H.; Martin, R. L.

    1981-01-01

    Past diagnostics studies revealed the primary causes of performance deterioration of high by-pass turbofan engines to be flight loads, erosion, and thermal distortion. The various types of airplane loads that are imposed on the engine throughout the lifetime of an airplane are examined. These include flight loads from gusts and maneuvers and ground loads from takeoff, landing, and taxi conditions. Clarification is made in definitions of the airframer's limit and ultimate design loads and the engine manufacturer's operating design loads. Finally, the influence of these loads on the propulsion system structures is discussed.

  17. From a Systematic Literature Review to a Classification Framework: Sustainability Integration in Fashion Operations

    Directory of Open Access Journals (Sweden)

    Hakan Karaosman

    2016-12-01

    Full Text Available Sustainability management in global fashion operations is an area of growing concern. This can be seen by the number of research articles and industrial reports published. To establish a further debate, this study pursues two objectives. Firstly, it provides a systematic literature review pertaining to environmental and social sustainability management in fashion operations by encompassing 38 research articles indexed in Scopus from 2006 to 2016. Secondly, it presents a classification framework in which sustainability practices are categorized according to a three-dimensional concurrent engineering framework by focusing on product, process and supply chain levels. Results address that the breakdown of environmental and social sustainability practices identified in earlier research is not homogenous. For instance, some critical social aspects such as human rights are not widely covered in production processes. Similarly, serious environmental aspects such as biodiversity are not entirely focused on at the chain level. Last, this study concludes with a framework illustrating strategic priorities to be taken to advance sustainability in fashion operations.

  18. Net-Centric Sustainment and Operational Reach on the Modern Battlefield

    Science.gov (United States)

    2012-05-17

    Halliday, Marc L. Robbins , and Kenneth J. Girardini. "Sustainment of Army Forces in Operation Iraqi Freedom: Battlefield Logistics and Effects on Operations... Robbins , Kenneth J. Girardini, Rick Eden, John M. Halliday, and Jeffrey Angers. "Operation Iraqi Freedom: Major Findings and Recommendations...Timothy P. Williams, Tony R. Sherrill, Amy R. McGrath, Morris G. Hayes, Antoniette C. McGrady, and John M. Sheckler. "Logistics Command and Control

  19. Use of Data Comm by Flight Crew to Conduct Interval Management Operations to Parallel Dependent Runways

    Science.gov (United States)

    Baxley, Brian T.; Hubbs, Clay; Shay, Rick; Karanian, James

    2011-01-01

    The Interval Management (IM) concept is being developed as a method to maintain or increase high traffic density airport arrival throughput while allowing aircraft to conduct near idle thrust descents. The Interval Management with Spacing to Parallel Dependent Runways (IMSPiDR1) experiment at NASA Langley Research Center used 24 commercial pilots to examine IM procedures to conduct parallel dependent runway arrival operations while maintaining safe but efficient intervals behind the preceding aircraft. The use of IM procedures during these operations requires a lengthy and complex clearance from Air Traffic Control (ATC) to the participating aircraft, thereby making the use of Controller Pilot Data Link Communications (CPDLC) highly desirable as the communication method. The use of CPDLC reduces the need for voice transmissions between controllers and flight crew, and enables automated transfer of IM clearance elements into flight management systems or other aircraft avionics. The result is reduced crew workload and an increase in the efficiency of crew procedures. This paper focuses on the subset of data collected related to the use of CPDLC for IM operations into a busy airport. Overall, the experiment and results were very successful, with the mean time under 43 seconds for the flight crew to load the clearance into the IM spacing tool, review the calculated speed, and respond to ATC. An overall mean rating of Moderately Agree was given when the crews were asked if the use of CPDLC was operationally acceptable as simulated in this experiment. Approximately half of the flight crew reported the use of CPDLC below 10,000 for IM operations was unacceptable, with 83% reporting below 5000 was unacceptable. Also described are proposed modifications to the IM operations that may reduce CPDLC Respond time to less than 30 seconds and should significantly reduce the complexity of crew procedures, as well as follow-on research issues for operational use of CPDLC during IM

  20. Sustainability of biomass utilisation in changing operational environment - SUBICHOE

    Energy Technology Data Exchange (ETDEWEB)

    Soimakallio, S. [VTT Technical Research Centre of Finland, Espoo (Finland)], email: sampo.soimakallio@vtt.fi

    2012-07-01

    The main objective of the project was to assist in strategic decision-making of public administration and companies, as regards the most sustainable use of biomass, by taking into account the changing operational environment. This project continued the work of the BIOVAIKU project by exploring in more details the most critical issues identified in sustainability assessment. These include the need to develop assessment methods and criteria in particular for land use and land-use change due to biomass cultivation and harvesting and indirect impacts due to resource competition.

  1. Eye Tracking Metrics for Workload Estimation in Flight Deck Operation

    Science.gov (United States)

    Ellis, Kyle; Schnell, Thomas

    2010-01-01

    Flight decks of the future are being enhanced through improved avionics that adapt to both aircraft and operator state. Eye tracking allows for non-invasive analysis of pilot eye movements, from which a set of metrics can be derived to effectively and reliably characterize workload. This research identifies eye tracking metrics that correlate to aircraft automation conditions, and identifies the correlation of pilot workload to the same automation conditions. Saccade length was used as an indirect index of pilot workload: Pilots in the fully automated condition were observed to have on average, larger saccadic movements in contrast to the guidance and manual flight conditions. The data set itself also provides a general model of human eye movement behavior and so ostensibly visual attention distribution in the cockpit for approach to land tasks with various levels of automation, by means of the same metrics used for workload algorithm development.

  2. Lean waste classification model to support the sustainable operational practice

    Science.gov (United States)

    Sutrisno, A.; Vanany, I.; Gunawan, I.; Asjad, M.

    2018-04-01

    Driven by growing pressure for a more sustainable operational practice, improvement on the classification of non-value added (waste) is one of the prerequisites to realize sustainability of a firm. While the use of the 7 (seven) types of the Ohno model now becoming a versatile tool to reveal the lean waste occurrence. In many recent investigations, the use of the Seven Waste model of Ohno is insufficient to cope with the types of waste occurred in industrial practices at various application levels. Intended to a narrowing down this limitation, this paper presented an improved waste classification model based on survey to recent studies discussing on waste at various operational stages. Implications on the waste classification model to the body of knowledge and industrial practices are provided.

  3. CUTTING THE CORD: SUSTAINING UNTETHERED AIR SUPERIORITY OPERATIONS IN THE PACIFIC

    Science.gov (United States)

    2016-06-01

    AU/ACSC/2016 AIR COMMAND AND STAFF COLLEGE AIR UNIVERSITY CUTTING THE CORD: SUSTAINING UNTETHERED AIR SUPERIORITY OPERATIONS IN THE PACIFIC...advanced their weapons systems may be. Since the end of the Cold War, the USAF has generated sorties from main operating bases ( MOB ) in support of...Operations Desert Storm, Allied Force, Enduring Freedom, and Iraqi Freedom. MOBs in rear sanctuaries allow aircraft to operate safely from enemy attack

  4. Flight dynamics facility operational orbit determination support for the ocean topography experiment

    Science.gov (United States)

    Bolvin, D. T.; Schanzle, A. F.; Samii, M. V.; Doll, C. E.

    1991-01-01

    The Ocean Topography Experiment (TOPEX/POSEIDON) mission is designed to determine the topography of the Earth's sea surface across a 3 yr period, beginning with launch in June 1992. The Goddard Space Flight Center Dynamics Facility has the capability to operationally receive and process Tracking and Data Relay Satellite System (TDRSS) tracking data. Because these data will be used to support orbit determination (OD) aspects of the TOPEX mission, the Dynamics Facility was designated to perform TOPEX operational OD. The scientific data require stringent OD accuracy in navigating the TOPEX spacecraft. The OD accuracy requirements fall into two categories: (1) on orbit free flight; and (2) maneuver. The maneuver OD accuracy requirements are of two types; premaneuver planning and postmaneuver evaluation. Analysis using the Orbit Determination Error Analysis System (ODEAS) covariance software has shown that, during the first postlaunch mission phase of the TOPEX mission, some postmaneuver evaluation OD accuracy requirements cannot be met. ODEAS results also show that the most difficult requirements to meet are those that determine the change in the components of velocity for postmaneuver evaluation.

  5. Power grid operation risk management: V2G deployment for sustainable development

    Science.gov (United States)

    Haddadian, Ghazale J.

    The production, transmission, and delivery of cost--efficient energy to supply ever-increasing peak loads along with a quest for developing a low-carbon economy require significant evolutions in the power grid operations. Lower prices of vast natural gas resources in the United States, Fukushima nuclear disaster, higher and more intense energy consumptions in China and India, issues related to energy security, and recent Middle East conflicts, have urged decisions makers throughout the world to look into other means of generating electricity locally. As the world look to combat climate changes, a shift from carbon-based fuels to non-carbon based fuels is inevitable. However, the variability of distributed generation assets in the electricity grid has introduced major reliability challenges for power grid operators. While spearheading sustainable and reliable power grid operations, this dissertation develops a multi-stakeholder approach to power grid operation design; aiming to address economic, security, and environmental challenges of the constrained electricity generation. It investigates the role of Electric Vehicle (EV) fleets integration, as distributed and mobile storage assets to support high penetrations of renewable energy sources, in the power grid. The vehicle-to-grid (V2G) concept is considered to demonstrate the bidirectional role of EV fleets both as a provider and consumer of energy in securing a sustainable power grid operation. The proposed optimization modeling is the application of Mixed-Integer Linear Programing (MILP) to large-scale systems to solve the hourly security-constrained unit commitment (SCUC) -- an optimal scheduling concept in the economic operation of electric power systems. The Monte Carlo scenario-based approach is utilized to evaluate different scenarios concerning the uncertainties in the operation of power grid system. Further, in order to expedite the real-time solution of the proposed approach for large-scale power systems

  6. Flight Planning

    Science.gov (United States)

    1991-01-01

    Seagull Technology, Inc., Sunnyvale, CA, produced a computer program under a Langley Research Center Small Business Innovation Research (SBIR) grant called STAFPLAN (Seagull Technology Advanced Flight Plan) that plans optimal trajectory routes for small to medium sized airlines to minimize direct operating costs while complying with various airline operating constraints. STAFPLAN incorporates four input databases, weather, route data, aircraft performance, and flight-specific information (times, payload, crew, fuel cost) to provide the correct amount of fuel optimal cruise altitude, climb and descent points, optimal cruise speed, and flight path.

  7. Results from an Interval Management (IM) Flight Test and Its Potential Benefit to Air Traffic Management Operations

    Science.gov (United States)

    Baxley, Brian; Swieringa, Kurt; Berckefeldt, Rick; Boyle, Dan

    2017-01-01

    NASA's first Air Traffic Management Technology Demonstration (ATD-1) subproject successfully completed a 19-day flight test of an Interval Management (IM) avionics prototype. The prototype was built based on IM standards, integrated into two test aircraft, and then flown in real-world conditions to determine if the goals of improving aircraft efficiency and airport throughput during high-density arrival operations could be met. The ATD-1 concept of operation integrates advanced arrival scheduling, controller decision support tools, and the IM avionics to enable multiple time-based arrival streams into a high-density terminal airspace. IM contributes by calculating airspeeds that enable an aircraft to achieve a spacing interval behind the preceding aircraft. The IM avionics uses its data (route of flight, position, etc.) and Automatic Dependent Surveillance-Broadcast (ADS-B) state data from the Target aircraft to calculate this airspeed. The flight test demonstrated that the IM avionics prototype met the spacing accuracy design goal for three of the four IM operation types tested. The primary issue requiring attention for future IM work is the high rate of IM speed commands and speed reversals. In total, during this flight test, the IM avionics prototype showed significant promise in contributing to the goals of improving aircraft efficiency and airport throughput.

  8. Sustainable operations management and benchmarking in brewing: A factor weighting approach

    Directory of Open Access Journals (Sweden)

    Daniel P. Bumblauskas

    2017-06-01

    Full Text Available The brewing industry has been moving towards more efficient use of energy, water reuse and stewardship, and the tracking of greenhouse gas (GHG emissions to better manage environmental and social responsibility. Commercial breweries use a great deal of water and energy to convert one gallon (liter of water into one gallon (liter of beer. An analysis was conducted on sustainable operations and supply chain management at various United States and international breweries, specifically Europe, to benchmark brewery performance and establish common metrics for sustainability in the beer supply chain. The primary research questions explored in this article are whether water reclamation and GHG emissions can be properly monitored and measured and if processes can be created to help control waste (lean and emissions. Additional questions include how we can use operations management strategies and techniques such as the Factor-Weighted Method (FWM in industries such as brewing to develop sustainability scorecards.

  9. The effects of risk perception and flight experience on airline pilots' locus of control with regard to safety operation behaviors.

    Science.gov (United States)

    You, Xuqun; Ji, Ming; Han, Haiyan

    2013-08-01

    The primary objective of this paper was to integrate two research traditions, social cognition approach and individual state approach, and to understand the relationships between locus of control (LOC), risk perception, flight time, and safety operation behavior (SOB) among Chinese airline pilots. The study sample consisted of 193 commercial airline pilots from China Southern Airlines Ltd. The results showed that internal locus of control directly affected pilot safety operation behavior. Risk perception seemed to mediate the relationship between locus of control and safety operation behaviors, and total flight time moderated internal locus of control. Thus, locus of control primarily influences safety operation behavior indirectly by affecting risk perception. The total effect of internal locus of control on safety behaviors is larger than that of external locus of control. Furthermore, the safety benefit of flight experience is more pronounced among pilots with high internal loci of control in the early and middle flight building stages. Practical implications for aviation safety and directions for future research are also discussed. Copyright © 2013 Elsevier Ltd. All rights reserved.

  10. Competitively Distinct Operations as a Key for Superior and Sustainable Business Performance: An Example from Walmart

    Directory of Open Access Journals (Sweden)

    Binod Timilsina

    2015-09-01

    Full Text Available Existing research on the resource-based view (RBV has provided limited evidence on how firms achieve superior and sustainable business performance; this failure is because current literature de-emphasizes the importance of operations. This paper argues that to gain and sustain superior business performance, a firm’s sustainable competitive advantage is not enough, its operations also needs to be competitively distinct. Therefore, through unifying the necessary conditions of superior and sustainable business performance the paper presents a better understanding of the RBV. The success story of Walmart, from existing literature, is considered as an example to support the proposed framework. The paper concludes that the cost of operations, opportunity cost, cost of resources and possible output are the crucial factors in resource choice and operations decision to secure competitively distinct operations. Finally, theoretical and managerial implications, research limitations and future research possibilities are discussed.

  11. STS payloads mission control study. Volume 2-A, Task 1: Joint products and functions for preflight planning of flight operations, training and simulations

    Science.gov (United States)

    1976-01-01

    Specific products and functions, and associated facility availability, applicable to preflight planning of flight operations were studied. Training and simulation activities involving joint participation of STS and payload operations organizations, are defined. The prelaunch activities required to prepare for the payload flight operations are emphasized.

  12. A Vision and Roadmap for Increasing User Autonomy in Flight Operations in the National Airspace

    Science.gov (United States)

    Cotton, William B.; Hilb, Robert; Koczo, Stefan; Wing, David

    2016-01-01

    The purpose of Air Transportation is to move people and cargo safely, efficiently and swiftly to their destinations. The companies and individuals who use aircraft for this purpose, the airspace users, desire to operate their aircraft according to a dynamically optimized business trajectory for their specific mission and operational business model. In current operations, the dynamic optimization of business trajectories is limited by constraints built into operations in the National Airspace System (NAS) for reasons of safety and operational needs of the air navigation service providers. NASA has been developing and testing means to overcome many of these constraints and permit operations to be conducted closer to the airspace user's changing business trajectory as conditions unfold before and during the flight. A roadmap of logical steps progressing toward increased user autonomy is proposed, beginning with NASA's Traffic Aware Strategic Aircrew Requests (TASAR) concept that enables flight crews to make informed, deconflicted flight-optimization requests to air traffic control. These steps include the use of data communications for route change requests and approvals, integration with time-based arrival flow management processes under development by the Federal Aviation Administration (FAA), increased user authority for defining and modifying downstream, strategic portions of the trajectory, and ultimately application of self-separation. This progression takes advantage of existing FAA NextGen programs and RTCA standards development, and it is designed to minimize the number of hardware upgrades required of airspace users to take advantage of these advanced capabilities to achieve dynamically optimized business trajectories in NAS operations. The roadmap is designed to provide operational benefits to first adopters so that investment decisions do not depend upon a large segment of the user community becoming equipped before benefits can be realized. The issues of

  13. Sleep and sleepiness during an ultra long-range flight operation between the Middle East and United States.

    Science.gov (United States)

    Holmes, Alexandra; Al-Bayat, Soha; Hilditch, Cassie; Bourgeois-Bougrine, Samira

    2012-03-01

    This study provides a practical example of fatigue risk management in aviation. The sleep and sleepiness of 44 pilots (11 trips × 4 pilot crew) working an ultra long-range (ULR; flight time >16 h) round-trip operation between Doha and Houston was assessed. Sleep was assessed using activity monitors and self-reported sleep diaries. Mean Karolinska Sleepiness Scores (KSS) for climb and descent did not exceed 5 ("neither alert nor sleepy"). Mean daily sleep duration was maintained above 6.3h throughout the operation. During in-flight rest periods, 98% of pilots obtained sleep and sleepiness was subsequently reduced. On layover (49.5h) crew were advised to sleep on Doha or Universal Co-ordinated Time (UTC), but 64% slept during the local (social) night time. Pilots originating from regions with a siesta culture were more likely to nap and made particularly effective use of their daytime in-flight rest periods. The results indicate that the operation is well designed from a fatigue management perspective. Copyright © 2011 Elsevier Ltd. All rights reserved.

  14. A stochastic global identification framework for aerospace structures operating under varying flight states

    Science.gov (United States)

    Kopsaftopoulos, Fotis; Nardari, Raphael; Li, Yu-Hung; Chang, Fu-Kuo

    2018-01-01

    In this work, a novel data-based stochastic "global" identification framework is introduced for aerospace structures operating under varying flight states and uncertainty. In this context, the term "global" refers to the identification of a model that is capable of representing the structure under any admissible flight state based on data recorded from a sample of these states. The proposed framework is based on stochastic time-series models for representing the structural dynamics and aeroelastic response under multiple flight states, with each state characterized by several variables, such as the airspeed, angle of attack, altitude and temperature, forming a flight state vector. The method's cornerstone lies in the new class of Vector-dependent Functionally Pooled (VFP) models which allow the explicit analytical inclusion of the flight state vector into the model parameters and, hence, system dynamics. This is achieved via the use of functional data pooling techniques for optimally treating - as a single entity - the data records corresponding to the various flight states. In this proof-of-concept study the flight state vector is defined by two variables, namely the airspeed and angle of attack of the vehicle. The experimental evaluation and assessment is based on a prototype bio-inspired self-sensing composite wing that is subjected to a series of wind tunnel experiments under multiple flight states. Distributed micro-sensors in the form of stretchable sensor networks are embedded in the composite layup of the wing in order to provide the sensing capabilities. Experimental data collected from piezoelectric sensors are employed for the identification of a stochastic global VFP model via appropriate parameter estimation and model structure selection methods. The estimated VFP model parameters constitute two-dimensional functions of the flight state vector defined by the airspeed and angle of attack. The identified model is able to successfully represent the wing

  15. 14 CFR 121.412 - Qualifications: Flight instructors (airplane) and flight instructors (simulator).

    Science.gov (United States)

    2010-01-01

    ... (airplane) and flight instructors (simulator). 121.412 Section 121.412 Aeronautics and Space FEDERAL... OPERATIONS Training Program § 121.412 Qualifications: Flight instructors (airplane) and flight instructors (simulator). (a) For the purposes of this section and § 121.414: (1) A flight instructor (airplane) is a...

  16. Analyzing Sustainable Competitive Advantage: Strategically Managing Resource Allocations to Achieve Operational Competitiveness

    Directory of Open Access Journals (Sweden)

    Abdul Malek Nurul Aida

    2015-12-01

    Full Text Available In today’s dynamic business environment, a key challenge for all companies is to make adaptive adjustments to their manufacturing strategy. This study demonstrates the competitive priorities of manufacturing strategy in hydro-power case company to evaluate the level of sustainable competitive advantage and also to further analyze how business strategies are aligned with manufacturing strategies. This research is based on new holistic analytical evaluation of manufacturing strategy index, sense and respond, and sustainable competitive advantage models. These models help to describe, evaluate, and optimize resource allocation to meet the performance requirements in dynamic decision making. Furthermore, these models evaluate operational competitiveness for manufacturing strategies according to the multi-criteria priority. The results show that the adjustments of competitive priorities in manufacturing strategies by implementing the proposed holistic analytical models are helpful in strategically managing business operations. The discussion derives the most critical attributes in business operations while alignment of resource allocation with competitive priorities help to strategically focus those attributes. In conclusion, we argue that resource allocation and manufacturing strategies have become the most important capabilities in a business environment where companies focus to get a sustainable competitive advantage.

  17. Flight control actuation system

    Science.gov (United States)

    Wingett, Paul T. (Inventor); Gaines, Louie T. (Inventor); Evans, Paul S. (Inventor); Kern, James I. (Inventor)

    2006-01-01

    A flight control actuation system comprises a controller, electromechanical actuator and a pneumatic actuator. During normal operation, only the electromechanical actuator is needed to operate a flight control surface. When the electromechanical actuator load level exceeds 40 amps positive, the controller activates the pneumatic actuator to offset electromechanical actuator loads to assist the manipulation of flight control surfaces. The assistance from the pneumatic load assist actuator enables the use of an electromechanical actuator that is smaller in size and mass, requires less power, needs less cooling processes, achieves high output forces and adapts to electrical current variations. The flight control actuation system is adapted for aircraft, spacecraft, missiles, and other flight vehicles, especially flight vehicles that are large in size and travel at high velocities.

  18. The Simulation Operations Officer in a Sustainment Brigade

    Science.gov (United States)

    2016-05-17

    exercise . FA57 core competencies (sim- ulation supported training, battle command systems integration, and operational KM) range across all six warfi...want to assist FA57s who will be assigned to sustain- ment brigades in the future and to describe the training exercises and road to war (RTW) that...bomb during a convoy live-fire exercise at Peason Ridge, north of Fort Polk, Louisiana. (Photo by Sgt. 1st Class Clinton Wood) July–August 2015

  19. A Data Filter for Identifying Steady-State Operating Points in Engine Flight Data for Condition Monitoring Applications

    Science.gov (United States)

    Simon, Donald L.; Litt, Jonathan S.

    2010-01-01

    This paper presents an algorithm that automatically identifies and extracts steady-state engine operating points from engine flight data. It calculates the mean and standard deviation of select parameters contained in the incoming flight data stream. If the standard deviation of the data falls below defined constraints, the engine is assumed to be at a steady-state operating point, and the mean measurement data at that point are archived for subsequent condition monitoring purposes. The fundamental design of the steady-state data filter is completely generic and applicable for any dynamic system. Additional domain-specific logic constraints are applied to reduce data outliers and variance within the collected steady-state data. The filter is designed for on-line real-time processing of streaming data as opposed to post-processing of the data in batch mode. Results of applying the steady-state data filter to recorded helicopter engine flight data are shown, demonstrating its utility for engine condition monitoring applications.

  20. A process synthesis-intensification framework for the development of sustainable membrane-based operations

    DEFF Research Database (Denmark)

    Babi, Deenesh Kavi; Lutze, Philip; Woodley, John

    2014-01-01

    In this paper a multi-level, multi-scale framework for process synthesis-intensification that aims to make the process more sustainable than a base-case, which may represent a new process or an existing process, is presented. At the first level (operation-scale) a conceptual base case design...... of extension of the combined intensification-synthesis method and its application to generate membrane-based operations. Also, application of the framework is illustrated through a case study involving the production of methyl acetate where membrane-based intensified operations play a major role in determining...... is synthesized through the sequencing of unit operations and subsequently analyzed for identifying process hot-spots using economic, life cycle and sustainability metrics. These hot-spots are limitations/bottlenecks associated with tasks that may be targeted for overall process improvement. At the second level...

  1. Decision Analysis with Value-Focused Thinking as a Methodology in Structuring the Civil Engineer Operations Flight

    National Research Council Canada - National Science Library

    Katzer, Dee

    2002-01-01

    .... To provide insight and defensible support for an operations flight commander faced with this decision, a value-focused thinking process was used to create a value model that aids in evaluating...

  2. Keynote speech - Manned Space Flights: Lessons Learned from Space Craft Operation and Maintenance

    CERN Multimedia

    CERN. Geneva

    2013-01-01

    Following graduation in 1973 from the Ecole de l'Air (the French Air Force Academy), Michel Tognini served in the French Air Force as an operational fighter pilot, flight leader in 1976, flight commander in 1979, test pilot then chief test pilot from 1983 to 1985. In 1985, France opened a recruitment program to expand its astronaut corps, and Michel Tognini was one of seven candidates selected by CNES. In July 1986, he was one of four candidates to undergo medical examinations in Moscow. In August 1986, he was assigned as a back-up crew member for the Soyuz TM-7 mission. Although he remained a French Air Force officer, he was placed on detachment to CNES for his space flight activities from September 1986 onwards. In 1991 he went to Star City, Russia, to start prime crew training for the third Soviet-French ANTARES mission. During his stay in Russia, he linked up with Mir (ANTARES mission) and spent 14 days (July 27–Aug. 10, 1992; Soyuz TM-14 and TM-14)carrying out a program of joint Soviet-French experimen...

  3. Inheritance of female flight in Lymantria dispar (Lepidoptera: Lymantriidae)

    Science.gov (United States)

    M.A. Keena; P.S. Grinberg; W.E. Wallner

    2007-01-01

    A clinal female fight polymorphism exists in the gypsy moth, Lymantria dispar, L., where female flight diminishes from east to west across Eurasia. A Russian population where females are capable of sustained ascending flight and a North American population with females incapable of flight were crossed: parentals, reciprocal F1,...

  4. Flight test of a head-worn display as an equivalent-HUD for terminal operations

    Science.gov (United States)

    Shelton, K. J.; Arthur, J. J.; Prinzel, L. J.; Nicholas, S. N.; Williams, S. P.; Bailey, R. E.

    2015-05-01

    Research, development, test, and evaluation of flight deck interface technologies is being conducted by NASA to proactively identify, develop, and mature tools, methods, and technologies for improving overall aircraft safety of new and legacy vehicles operating in the Next Generation Air Transportation System (NextGen). Under NASA's Aviation Safety Program, one specific area of research is the use of small Head-Worn Displays (HWDs) as a potential equivalent display to a Head-up Display (HUD). Title 14 of the US CFR 91.175 describes a possible operational credit which can be obtained with airplane equipage of a HUD or an "equivalent"' display combined with Enhanced Vision (EV). A successful HWD implementation may provide the same safety and operational benefits as current HUD-equipped aircraft but for significantly more aircraft in which HUD installation is neither practical nor possible. A flight test was conducted to evaluate if the HWD, coupled with a head-tracker, can provide an equivalent display to a HUD. Approach and taxi testing was performed on-board NASA's experimental King Air aircraft in various visual conditions. Preliminary quantitative results indicate the HWD tested provided equivalent HUD performance, however operational issues were uncovered. The HWD showed significant potential as all of the pilots liked the increased situation awareness attributable to the HWD's unique capability of unlimited field-of-regard.

  5. 14 CFR 91.1061 - Augmented flight crews.

    Science.gov (United States)

    2010-01-01

    ...) Minimum After Duty Rest Period for Multi-Time Zone Flights 18 hours 24 hours ...) AIR TRAFFIC AND GENERAL OPERATING RULES GENERAL OPERATING AND FLIGHT RULES Fractional Ownership... crewmember, and no flight crewmember may accept an assignment, for flight time as a member of an augmented...

  6. How sulphur was dislodged to sustain plant operation

    International Nuclear Information System (INIS)

    Verma, A.N.; Agarwal, A.K.

    1997-01-01

    Heavy Water Plant (Kota) employs chemical exchange between water and hydrogen sulphide gas. Formation of sulphur is a known phenomena during production of heavy water in G.S. process plants. It is observed that after three years of plant operation this sulphur is enough to choke the cold tower trays causing flooding of exchange towers and resultant decrease in throughput. G.S. process plants normally go for major turn around once in four years when sulphur is either manually cleaned or removed by steam wash after hydrogen sulphide gas has been removed from the system and towers have been fully decontaminated. As throughput starts decreasing after third year and plant operation becomes more difficult in fourth year, HWP (Kota) had evolved a procedure of heating the towers for dislodging sulphur from sieve trays when plant is running. With these procedures plant operation could be sustained without tower floodings even in fourth year, before plant could go for major turn around for manual removal of sulphur

  7. Evidence Based Medicine in Space Flight: Evaluation of Inflight Vision Data for Operational Decision-Making

    Science.gov (United States)

    Van Baalen, Mary; Mason, Sara; Foy, Millennia; Wear, Mary; Taiym, Wafa; Moynihan, Shannan; Alexander, David; Hart, Steve; Tarver, William

    2015-01-01

    Due to recently identified vision changes associated with space flight, JSC Space and Clinical Operations (SCO) implemented broad mission-related vision testing starting in 2009. Optical Coherence Tomography (OCT), 3 Tesla Brain and Orbit MRIs, Optical Biometry were implemented terrestrially for clinical monitoring. While no inflight vision testing was in place, already available onorbit technology was leveraged to facilitate in-flight clinical monitoring, including visual acuity, Amsler grid, tonometry, and ultrasonography. In 2013, on-orbit testing capabilities were expanded to include contrast sensitivity testing and OCT. As these additional testing capabilities have been added, resource prioritization, particularly crew time, is under evaluation.

  8. Sustained operation of sensor nodes with energy harvesters and supercapacitors

    Energy Technology Data Exchange (ETDEWEB)

    Renner, Bernd-Christian

    2013-06-01

    Sensor nodes powered by energy harvesters and supercapacitors open the door to unlimited and uninterrupted operation. This dissertation closes the persistent gap of system integration w.r.t. holistic online energy assessment, develops a new concept for harvest forecasting while assessing the behavior and quality of known approaches, and proposes a novel load adaptation scheme to achieve sustained and uniform sensor node operation with low complexity and computational overhead. For this purpose, a prototype of an energy harvester with a supercapacitor for off-the-shelf sensor nodes is developed and used for practical evaluation.

  9. IceBridge Mission Flight Reports

    Data.gov (United States)

    National Aeronautics and Space Administration — The IceBridge Mission Flight Reports data set contains flight reports from NASA Operation IceBridge Greenland, Arctic, Antarctic, and Alaska missions. Flight reports...

  10. Advanced software development workstation: Object-oriented methodologies and applications for flight planning and mission operations

    Science.gov (United States)

    Izygon, Michel

    1993-01-01

    The work accomplished during the past nine months in order to help three different organizations involved in Flight Planning and in Mission Operations systems, to transition to Object-Oriented Technology, by adopting one of the currently most widely used Object-Oriented analysis and Design Methodology is summarized.

  11. Genitourinary Injuries Sustained by Female U.S. Service Members During Operation Iraqi Freedom and Operation Enduring Freedom

    Science.gov (United States)

    2017-10-07

    2. REPORT TYPE 10/07/2017 Presentation 4. TITLE AND SUBTITLE GENITOURINARY INJURIES SUSTAINED BY FEMALE U.S. SERVICE MEMBERS DURING OPERATION...for increased female GU injuries in future conflicts and the long-term sequelae from these injury patterns. Materials and Methods: The Department of

  12. Operation analysis of AC traction motors in terms of electromagnetic torque capability on sustainable railway vehicles

    Directory of Open Access Journals (Sweden)

    Bulucea Cornelia A.

    2016-01-01

    Full Text Available Sustainable operation of electric railway systems represents a significant purpose nowadays in the development of high power and high speed locomotives and trains. At present, high speed electric vehicles mostly work with three-phase induction motors or three-phase synchronous motors as traction motors. The two electric machine types have different efficiencies at different operation points, and experience differences with respect to safety, speed and power, energy use and exergy efficiency. An important issue that correlates these aspects is the electromagnetic torque developed by an electric traction motor. In order to provide an overview of the technical performance of the operation of sustainable railway systems, a detailed analysis is carried out of the electromagnetic torque capability of AC electric motors utilized as traction motors in modern locomotives of high power and/or high speed. The results of this work may help in enhancing the main criteria for optimising the safe and sustainable operation of electric railway traction systems.

  13. The Joint Tactical Aerial Resupply Vehicle Impact on Sustainment Operations

    Science.gov (United States)

    2017-06-09

    Artificial Intelligence , Sustainment Operations, Rifle Company, Autonomous Aerial Resupply, Joint Tactical Autonomous Aerial Resupply System 16...Integrations and Development System AI Artificial Intelligence ARCIC Army Capabilities Integration Center ARDEC Armament Research, Development and...Government Printing Office, 2016), 176. 3 HQDA, TRADOC Pam 525-3-1, 11-12. 3 combat team types, such as the Armored Brigade Combat Team and Stryker

  14. An Extended Flexible Job Shop Scheduling Model for Flight Deck Scheduling with Priority, Parallel Operations, and Sequence Flexibility

    Directory of Open Access Journals (Sweden)

    Lianfei Yu

    2017-01-01

    Full Text Available Efficient scheduling for the supporting operations of aircrafts in flight deck is critical to the aircraft carrier, and even several seconds’ improvement may lead to totally converse outcome of a battle. In the paper, we ameliorate the supporting operations of carrier-based aircrafts and investigate three simultaneous operation relationships during the supporting process, including precedence constraints, parallel operations, and sequence flexibility. Furthermore, multifunctional aircrafts have to take off synergistically and participate in a combat cooperatively. However, their takeoff order must be restrictively prioritized during the scheduling period accorded by certain operational regulations. To efficiently prioritize the takeoff order while minimizing the total time budget on the whole takeoff duration, we propose a novel mixed integer liner programming formulation (MILP for the flight deck scheduling problem. Motivated by the hardness of MILP, we design an improved differential evolution algorithm combined with typical local search strategies to improve computational efficiency. We numerically compare the performance of our algorithm with the classical genetic algorithm and normal differential evolution algorithm and the results show that our algorithm obtains better scheduling schemes that can meet both the operational relations and the takeoff priority requirements.

  15. The relevance of operational skills towards business sustainability: A focus on SMME manufacturers in the Vaal triangle region

    Directory of Open Access Journals (Sweden)

    R. Naidoo

    2010-12-01

    Full Text Available Purpose: Activities in the manufacturing sector are often considered the bedrock of an economy and a key driver of growth and development. Within the South African manufacturing sector, operations skills are reported to be deficient and are often cited as a main cause of failure in small, medium and micro enterprises (SMMEs. This study explores and tests this fragile relationship between operations skills and SMME sustainability. Empirical investigations are conducted in a high-density SMME manufacturing environment - the Vaal Triangle Region. Design/Methodology/Approach: Building on previously established literature on SMME sustainability and operations skills, various measures are developed and tested for reliability and validity. Factor analysis is used to identify relevant factors in terms of operations skills. Co-relational analysis is then employed to test the hypothesised relationship. The study is cross-sectional in design and relies on trained fieldworkers administering surveys for data collection. Findings: Five clear factors for operations skills are identified through factor analysis with an overall high reliability value. Based on descriptive and co-relational analysis results reveal that operations skills are positively associated with sustainability. Implications: SMME owners, educators and service providers may benefit from the study's findings in terms of the nature and associations that operational skills have on developing sustainable SMME's. Originality/Value: The study focused on a neglected area of SMMEs - the importance of operations towards business sustainability, and made an important contribution towards theory development through empirical explorations. In South Africa, this is the first time an instrument measuring operations skills has been validated and associated with SMMEs in a manufacturing context.

  16. Sustainable Design Operations in the Supply Chain: Non-Profit Manufacturer vs. For-Profit Manufacturer

    Directory of Open Access Journals (Sweden)

    Qingying Li

    2016-07-01

    Full Text Available Sustainable design aims to reduce the negative impacts either on people (e.g., create healthy or on planet (e.g., minimize waste. In other words, sustainable design is the philosophy thattendstoimprovedesignperformancebyincorporatinghealthandsafetyattributes(forpeople, and environmental attributes (for planet into products. In this paper, we develop an analytical model to examine the sustainable design operations in a supply chain which consists of one retailer and one manufacturer. The manufacturer designs the products by investigating sustainable design efforts, such that the products can better coordinate human needs. Motivated by the real industry practice, we consider two business modes for the manufacturer: a nonprofit organization (i.e., a demand quantity seeker or a commercial firm (i.e., a profit seeker. We obtain the optimal operational decisions in both the decentralized case and the centralized case, and we also compare the results. Managerial insights are derived, and the efficiency of the sustainable design is also discussed.

  17. 14 CFR 121.543 - Flight crewmembers at controls.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 3 2010-01-01 2010-01-01 false Flight crewmembers at controls. 121.543... REQUIREMENTS: DOMESTIC, FLAG, AND SUPPLEMENTAL OPERATIONS Flight Operations § 121.543 Flight crewmembers at controls. (a) Except as provided in paragraph (b) of this section, each required flight crewmember on...

  18. A multi evaporator desalination system operated with thermocline energy for future sustainability

    KAUST Repository

    Shahzad, Muhammad Wakil; Burhan, Muhammad; Ghaffour, NorEddine; Ng, Kim Choon

    2017-01-01

    ) of desalination is at 828. Despite slightly better UPRs for the RO plants, all practical desalination plants available, hitherto, operate at only less than 12% of the TL, rendering them highly energy intensive and unsustainable for future sustainability. More

  19. Aircraft Configuration and Flight Crew Compliance with Procedures While Conducting Flight Deck Based Interval Management (FIM) Operations

    Science.gov (United States)

    Shay, Rick; Swieringa, Kurt A.; Baxley, Brian T.

    2012-01-01

    Flight deck based Interval Management (FIM) applications using ADS-B are being developed to improve both the safety and capacity of the National Airspace System (NAS). FIM is expected to improve the safety and efficiency of the NAS by giving pilots the technology and procedures to precisely achieve an interval behind the preceding aircraft by a specific point. Concurrently but independently, Optimized Profile Descents (OPD) are being developed to help reduce fuel consumption and noise, however, the range of speeds available when flying an OPD results in a decrease in the delivery precision of aircraft to the runway. This requires the addition of a spacing buffer between aircraft, reducing system throughput. FIM addresses this problem by providing pilots with speed guidance to achieve a precise interval behind another aircraft, even while flying optimized descents. The Interval Management with Spacing to Parallel Dependent Runways (IMSPiDR) human-in-the-loop experiment employed 24 commercial pilots to explore the use of FIM equipment to conduct spacing operations behind two aircraft arriving to parallel runways, while flying an OPD during high-density operations. This paper describes the impact of variations in pilot operations; in particular configuring the aircraft, their compliance with FIM operating procedures, and their response to changes of the FIM speed. An example of the displayed FIM speeds used incorrectly by a pilot is also discussed. Finally, this paper examines the relationship between achieving airline operational goals for individual aircraft and the need for ATC to deliver aircraft to the runway with greater precision. The results show that aircraft can fly an OPD and conduct FIM operations to dependent parallel runways, enabling operational goals to be achieved efficiently while maintaining system throughput.

  20. A Review on Critical Success Factors of Governance towards Sustainable Campus Operations

    Science.gov (United States)

    Halid Abdullah, Abd; Razman, Ruzaimah; Muslim, Rahmat

    2017-08-01

    Campus Sustainability is an effort that integrates environmentally sustainable practices into institutional practices. A successful transition to a sustainable campus requires the involvement of the university community; the administration, academics departments (faculty and students), researchers and he local community. Our research seeks to identify Critical Success Factors (CSFs) of university governance that contribute to the success in implementing Sustainable Campus Operation (SCO) initiatives. The common CSFs have been identified from 22 published and unpublished articles, conference proceedings, university reports, books, and website documents. The CSFs are mapped and ranked based on the frequency of the identified CSFs. 23 CSFs of SCO have been identified through this research. This research revealed that the CSF that contributes the highest frequency as indicated by most researchers is “developing network with external parties for gaining consensus and commitment”. By identifying these CSFs, this research will help assist universities in successfully plan and implement their SCO initiatives.

  1. Development and Flight Test of an Augmented Thrust-Only Flight Control System on an MD-11 Transport Airplane

    Science.gov (United States)

    Burcham, Frank W., Jr.; Maine, Trindel A.; Burken, John J.; Pappas, Drew

    1996-01-01

    An emergency flight control system using only engine thrust, called Propulsion-Controlled Aircraft (PCA), has been developed and flight tested on an MD-11 airplane. In this thrust-only control system, pilot flight path and track commands and aircraft feedback parameters are used to control the throttles. The PCA system was installed on the MD-11 airplane using software modifications to existing computers. Flight test results show that the PCA system can be used to fly to an airport and safely land a transport airplane with an inoperative flight control system. In up-and-away operation, the PCA system served as an acceptable autopilot capable of extended flight over a range of speeds and altitudes. The PCA approaches, go-arounds, and three landings without the use of any non-nal flight controls have been demonstrated, including instrument landing system-coupled hands-off landings. The PCA operation was used to recover from an upset condition. In addition, PCA was tested at altitude with all three hydraulic systems turned off. This paper reviews the principles of throttles-only flight control; describes the MD-11 airplane and systems; and discusses PCA system development, operation, flight testing, and pilot comments.

  2. Flight demonstration of flight termination system and solid rocket motor ignition using semiconductor laser initiated ordnance

    Science.gov (United States)

    Schulze, Norman R.; Maxfield, B.; Boucher, C.

    1995-01-01

    Solid State Laser Initiated Ordnance (LIO) offers new technology having potential for enhanced safety, reduced costs, and improved operational efficiency. Concerns over the absence of programmatic applications of the technology, which has prevented acceptance by flight programs, should be abated since LIO has now been operationally implemented by the Laser Initiated Ordnance Sounding Rocket Demonstration (LOSRD) Program. The first launch of solid state laser diode LIO at the NASA Wallops Flight Facility (WFF) occurred on March 15, 1995 with all mission objectives accomplished. This project, Phase 3 of a series of three NASA Headquarters LIO demonstration initiatives, accomplished its objective by the flight of a dedicated, all-LIO sounding rocket mission using a two-stage Nike-Orion launch vehicle. LIO flight hardware, made by The Ensign-Bickford Company under NASA's first Cooperative Agreement with Profit Making Organizations, safely initiated three demanding pyrotechnic sequence events, namely, solid rocket motor ignition from the ground and in flight, and flight termination, i.e., as a Flight Termination System (FTS). A flight LIO system was designed, built, tested, and flown to support the objectives of quickly and inexpensively putting LIO through ground and flight operational paces. The hardware was fully qualified for this mission, including component testing as well as a full-scale system test. The launch accomplished all mission objectives in less than 11 months from proposal receipt. This paper concentrates on accomplishments of the ordnance aspects of the program and on the program's implementation and results. While this program does not generically qualify LIO for all applications, it demonstrated the safety, technical, and operational feasibility of those two most demanding applications, using an all solid state safe and arm system in critical flight applications.

  3. Investigation of controlled flight into terrain : descriptions of flight paths for selected controlled flight into terrain (CFIT) aircraft accidents, 1985-1997

    Science.gov (United States)

    1999-03-01

    This report documents an investigation of the flight paths of 13 selected controlled flight into terrain (CFIT) aircraft accidents that occurred between 1985 and 1997. The Operations Assessment Division (DTS-43) and the Aviation Safety Division (DTS-...

  4. 46th Annual meeting on nuclear technology (AMNT 2015). Key topic / Enhanced safety and operation excellence / Sustainable reactor operation management - safe, efficient, valuable

    International Nuclear Information System (INIS)

    Fischer, Erwin

    2015-01-01

    Summary report on the following Topical Session of the 46 th Annual Conference on Nuclear Technology (AMNT 2015) held in Berlin, 5 to 7 May 2015: - Sustainable Reactor Operation Management - Safe, Efficient, Valuable (Erwin Fischer) The other Sessions of the Key Topics - ''Outstanding Know-How and Sustainable Innovations'', - ''Enhanced Safety and Operation Excellence'' and - ''Decommissioning Experience and Waste Management Solutions'' have been covered in atw 7 (2015) and will be covered in further issues of atw.

  5. Sustainable Design Operations in the Supply Chain: Non-Profit Manufacturer vs. For-Profit Manufacturer

    OpenAIRE

    Qingying Li; Bin Shen

    2016-01-01

    Sustainable design aims to reduce the negative impacts either on people (e.g., create healthy) or on planet (e.g., minimize waste). In other words, sustainable design is the philosophy thattendstoimprovedesignperformancebyincorporatinghealthandsafetyattributes(forpeople), and environmental attributes (for planet) into products. In this paper, we develop an analytical model to examine the sustainable design operations in a supply chain which consists of one retailer and one manufacturer. The m...

  6. Theseus in Flight

    Science.gov (United States)

    1996-01-01

    The twin pusher propeller-driven engines of the Theseus research aircraft can be clearly seen in this photo, taken during a 1996 research flight at NASA's Dryden Flight Research Center, Edwards, California. The Theseus aircraft, built and operated by Aurora Flight Sciences Corporation, Manassas, Virginia, was a unique aircraft flown at NASA's Dryden Flight Research Center, Edwards, California, under a cooperative agreement between NASA and Aurora. Dryden hosted the Theseus program, providing hangar space and range safety for flight testing. Aurora Flight Sciences was responsible for the actual flight testing, vehicle flight safety, and operation of the aircraft. The Theseus remotely piloted aircraft flew its maiden flight on May 24, 1996, at Dryden. During its sixth flight on November 12, 1996, Theseus experienced an in-flight structural failure that resulted in the loss of the aircraft. As of the beginning of the year 2000, Aurora had not rebuilt the aircraft. Theseus was built for NASA under an innovative, $4.9 million fixed-price contract by Aurora Flight Sciences Corporation and its partners, West Virginia University, Morgantown, West Virginia, and Fairmont State College, Fairmont, West Virginia. The twin-engine, unpiloted vehicle had a 140-foot wingspan, and was constructed largely of composite materials. Powered by two 80-horsepower, turbocharged piston engines that drove twin 9-foot-diameter propellers, Theseus was designed to fly autonomously at high altitudes, with takeoff and landing under the active control of a ground-based pilot in a ground control station 'cockpit.' With the potential ability to carry 700 pounds of science instruments to altitudes above 60,000 feet for durations of greater than 24 hours, Theseus was intended to support research in areas such as stratospheric ozone depletion and the atmospheric effects of future high-speed civil transport aircraft engines. Instruments carried aboard Theseus also would be able to validate satellite

  7. 76 FR 16236 - Prohibition Against Certain Flights Within the Tripoli (HLLL) Flight Information Region (FIR)

    Science.gov (United States)

    2011-03-23

    ... Tripoli (HLLL) Flight Information Region (FIR) AGENCY: Federal Aviation Administration (FAA), Department... the Tripoli (HLLL) Flight Information Region (FIR) by all U.S. air carriers; U.S. commercial operators...) Flight Information Region (FIR). (a) Applicability. This section applies to the following persons: (1...

  8. Flight Test Evaluation of an Unmanned Aircraft System Traffic Management (UTM) Concept for Multiple Beyond-Visual-Line-of-Sight (BVLOS) Operations

    Science.gov (United States)

    Johnson, Marcus; Jung, Jaewoo; Rios, Joseph; Mercer, Joey; Homola, Jeffrey; Prevot, Thomas; Mulfinger, Daniel; Kopardekar, Parimal

    2017-01-01

    Many applications of small Unmanned Aircraft System (UAS) have been envisioned. These include surveillance of key assets such as pipelines, rail, or electric wires, deliveries, search and rescue, traffic monitoring, videography, and precision agriculture. These operations are likely to occur in the same airspace in the presence of many static and dynamic constraints such as airports, and high wind areas. Therefore, operations of small UAS need to be managed to ensure safety and operation efficiency is maintained. NASA has advanced a concept for UAS Traffic Management (UTM) and has initiated a research effort to refine that concept and develop operational and system requirements. A UTM research platform is in development and flight test activities to evaluate core functions and key assumptions focusing exclusively on UAS operations in different environments are underway. This seminar will present lessons learned from a recent flight test focused on enabling operations of multiple UAS in lower-risk environments within and beyond visual line of sight (BVLOS).

  9. Study of Flapping Flight Using Discrete Vortex Method Based Simulations

    Science.gov (United States)

    Devranjan, S.; Jalikop, Shreyas V.; Sreenivas, K. R.

    2013-12-01

    In recent times, research in the area of flapping flight has attracted renewed interest with an endeavor to use this mechanism in Micro Air vehicles (MAVs). For a sustained and high-endurance flight, having larger payload carrying capacity we need to identify a simple and efficient flapping-kinematics. In this paper, we have used flow visualizations and Discrete Vortex Method (DVM) based simulations for the study of flapping flight. Our results highlight that simple flapping kinematics with down-stroke period (tD) shorter than the upstroke period (tU) would produce a sustained lift. We have identified optimal asymmetry ratio (Ar = tD/tU), for which flapping-wings will produce maximum lift and find that introducing optimal wing flexibility will further enhances the lift.

  10. Operational requirements for avoidance and eventual elimination of Gz-induced loss of consciousness (G-LOC) in flight.

    Science.gov (United States)

    Wood, E

    1993-02-01

    Fifty years of more or less active research experiences concerning the cardiovascular, respiratory, and neurologic dynamics of G-LOC carried out in healthy humans, both on centrifuges and in flight, have convinced me that on the basis of the physiology involved and because of the risk of the very high cost in pilot lives and their planes due to G-LOC, three operational requirements should be adopted as follows. Operational Requirement I. A noninvasive continuous on-line, real-time recording of arterial pulsations at brain level should be a mandatory requirement for every human centrifuge exposure to Gz accelerations that carry an appreciable likelihood of loss of vision and/or consciousness. A similar system should be a mandatory requirement for every pilot when performing high G air-to-air or air-to-ground combat maneuvers both in training and in actual combat conditions. Operational Requirement II. A physiological G-LOC forewarning system based on arterial pulsations at head level coupled with a last-resort automatic plane recovery system should be installed in all advanced fighter aircraft. Operational Requirement III. Because of the inherent biomedical hazards associated with very high Gz protection and the risk of G-LOC when in conventional upright or partially supinated positions, an automatic 9 Gz or greater activated timer, G-LOC avoidance system should be installed in advanced fighter aircraft. This system should be set to activate an auditory G-LOC forewarning signal when a Gz level of more than 9 is maintained for 3 seconds, i.e., a period less than the cerebral anoxic reserve time. Failure of pilot response, that is, maintenance of Gz levels of greater than 9 for more than 4 seconds following this forewarning signal (i.e., a total sustained very high period of 6-7 seconds, a period equal to the average human cerebral anoxic reserve time), then activates a follow-on automatic plane recovery system.

  11. TAX EVASION THROUGH FICTITIOUS ECONOMIC OPERATIONS, OBSTACLE TO SUSTAINABLE DEVELOPMENT

    OpenAIRE

    SERGIU-BOGDAN CONSTANTIN

    2016-01-01

    Tax evasion means the avoidance of declaring and paying taxes. The purpose of the research is to identify ways and mechanisms of tax evasion through fictitious economic operations and how this kind o tax evasion can influence sustainable development. The principal methods are researching tax evasion cases investigated by the Romanian authorities responsible for combating this phenomenon, court trials on tax evasion and using the bibliographic references in the field. The data used...

  12. Flight Dynamics Operations Management of the Large and Heterogeneous Eutelsat Fleet of Commercial Satellites

    Science.gov (United States)

    Bellido, E.

    The EUTELSAT FDU (Flight Dynamics Unit) manages the resources to perform the typical activities of the large satellite operators and faces the usual difficulties raising from a vast and heterogeneous fleet. At present 20 satellites from 9 different platforms/sub-platforms are controlled from our Satellite Control Centre. The FDU was created in 2002 with the aim to respond to the operational needs of a growing fleet in terms of number of satellites and activities. It is at present composed of 6 engineering staff with the objective to provide operations service covering the whole lifecycle of the satellites from the procurement phase till the decommissioning. The most demanding activity is the daily operations, which must ensure maximum safety and continuity of service with the highest efficiency. Solutions have been applied from different areas: management, structure, operations organisation, processes, facilities, quality standards, etc. In addition to this, EUTELSAT is a growing communications operator and the FDU needs to contribute to the global objectives of the company. This paper covers our approach.

  13. Making Sustainability Operational : Coping With Contextual Circumstances

    NARCIS (Netherlands)

    Pupphachai, Uma; Zuidema, Christian

    2012-01-01

    Sustainability became popular through Brundtland Commission’s report published in 1987 and has subsequently been introduced as a key planning guideline in urban governance. To make the abstract and fuzzy notion of sustainability palpable, various governments are using a list of Sustainability

  14. Writing executable assertions to test flight software

    Science.gov (United States)

    Mahmood, A.; Andrews, D. M.; Mccluskey, E. J.

    1984-01-01

    An executable assertion is a logical statement about the variables or a block of code. If there is no error during execution, the assertion statement results in a true value. Executable assertions can be used for dynamic testing of software. They can be employed for validation during the design phase, and exception and error detection during the operation phase. The present investigation is concerned with the problem of writing executable assertions, taking into account the use of assertions for testing flight software. They can be employed for validation during the design phase, and for exception handling and error detection during the operation phase The digital flight control system and the flight control software are discussed. The considered system provides autopilot and flight director modes of operation for automatic and manual control of the aircraft during all phases of flight. Attention is given to techniques for writing and using assertions to test flight software, an experimental setup to test flight software, and language features to support efficient use of assertions.

  15. Integrated flight path planning system and flight control system for unmanned helicopters.

    Science.gov (United States)

    Jan, Shau Shiun; Lin, Yu Hsiang

    2011-01-01

    This paper focuses on the design of an integrated navigation and guidance system for unmanned helicopters. The integrated navigation system comprises two systems: the Flight Path Planning System (FPPS) and the Flight Control System (FCS). The FPPS finds the shortest flight path by the A-Star (A*) algorithm in an adaptive manner for different flight conditions, and the FPPS can add a forbidden zone to stop the unmanned helicopter from crossing over into dangerous areas. In this paper, the FPPS computation time is reduced by the multi-resolution scheme, and the flight path quality is improved by the path smoothing methods. Meanwhile, the FCS includes the fuzzy inference systems (FISs) based on the fuzzy logic. By using expert knowledge and experience to train the FIS, the controller can operate the unmanned helicopter without dynamic models. The integrated system of the FPPS and the FCS is aimed at providing navigation and guidance to the mission destination and it is implemented by coupling the flight simulation software, X-Plane, and the computing software, MATLAB. Simulations are performed and shown in real time three-dimensional animations. Finally, the integrated system is demonstrated to work successfully in controlling the unmanned helicopter to operate in various terrains of a digital elevation model (DEM).

  16. Integrated Flight Path Planning System and Flight Control System for Unmanned Helicopters

    Science.gov (United States)

    Jan, Shau Shiun; Lin, Yu Hsiang

    2011-01-01

    This paper focuses on the design of an integrated navigation and guidance system for unmanned helicopters. The integrated navigation system comprises two systems: the Flight Path Planning System (FPPS) and the Flight Control System (FCS). The FPPS finds the shortest flight path by the A-Star (A*) algorithm in an adaptive manner for different flight conditions, and the FPPS can add a forbidden zone to stop the unmanned helicopter from crossing over into dangerous areas. In this paper, the FPPS computation time is reduced by the multi-resolution scheme, and the flight path quality is improved by the path smoothing methods. Meanwhile, the FCS includes the fuzzy inference systems (FISs) based on the fuzzy logic. By using expert knowledge and experience to train the FIS, the controller can operate the unmanned helicopter without dynamic models. The integrated system of the FPPS and the FCS is aimed at providing navigation and guidance to the mission destination and it is implemented by coupling the flight simulation software, X-Plane, and the computing software, MATLAB. Simulations are performed and shown in real time three-dimensional animations. Finally, the integrated system is demonstrated to work successfully in controlling the unmanned helicopter to operate in various terrains of a digital elevation model (DEM). PMID:22164029

  17. The Development of Plant Maintenance Scheduling Via lnventory System for Sustainable Plant Operation

    Directory of Open Access Journals (Sweden)

    Masripan Roslizan

    2016-01-01

    Full Text Available Industrial sector becomes the main concern for developing country. By the time, it was increased rapidly. However, there are many problems observed such as maintenance scheduling, stock inventory and supply chain. Therefore, this research develops new inventory system to develop sustainable plant operation with a high capability to plant operation especially to stock inventory of machine component. In also required green application with minimised used on paper. This system is developed using Radio Frequency Identification (RFID for inventory control which integrated with web-based system. This system consists of several modules such as station module, item module and item request module and report of critical stock in the store. This system can be controlled from a hand-phone with internet connection or automatic alert such as Short Massage Send (SMS and email. The developed system is very effective in monitoring the stock material through the barcode, supply chain and worker performance as well as to reduce the lead time for maintenance activities of the company through sustainable plant operation.

  18. 14 CFR 375.50 - Transit flights; scheduled international air service operations.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 4 2010-01-01 2010-01-01 false Transit flights; scheduled international... WITHIN THE UNITED STATES Transit Flights § 375.50 Transit flights; scheduled international air service... to the International Air Services Transit Agreement in transit across the United States may not be...

  19. Reducing the operational energy demand in buildings using building information modeling tools and sustainability approaches

    Directory of Open Access Journals (Sweden)

    Mojtaba Valinejad Shoubi

    2015-03-01

    Full Text Available A sustainable building is constructed of materials that could decrease environmental impacts, such as energy usage, during the lifecycle of the building. Building Information Modeling (BIM has been identified as an effective tool for building performance analysis virtually in the design stage. The main aims of this study were to assess various combinations of materials using BIM and identify alternative, sustainable solutions to reduce operational energy consumption. The amount of energy consumed by a double story bungalow house in Johor, Malaysia, and assessments of alternative material configurations to determine the best energy performance were evaluated by using Revit Architecture 2012 and Autodesk Ecotect Analysis software to show which of the materials helped in reducing the operational energy use of the building to the greatest extent throughout its annual life cycle. At the end, some alternative, sustainable designs in terms of energy savings have been suggested.

  20. 46{sup th} Annual meeting on nuclear technology (AMNT 2015). Key topic / Enhanced safety and operation excellence / Sustainable reactor operation management - safe, efficient, valuable

    Energy Technology Data Exchange (ETDEWEB)

    Fischer, Erwin [E.ON Kernkraft GmbH, Global Unit Next Generation, Hannover (Germany)

    2015-08-15

    Summary report on the following Topical Session of the 46{sup th} Annual Conference on Nuclear Technology (AMNT 2015) held in Berlin, 5 to 7 May 2015: - Sustainable Reactor Operation Management - Safe, Efficient, Valuable (Erwin Fischer) The other Sessions of the Key Topics - ''Outstanding Know-How and Sustainable Innovations'', - ''Enhanced Safety and Operation Excellence'' and - ''Decommissioning Experience and Waste Management Solutions'' have been covered in atw 7 (2015) and will be covered in further issues of atw.

  1. Targeted neurosurgical outreach: 5-year follow-up of operative skill transfer and sustainable care in Lima, Peru.

    Science.gov (United States)

    Duenas, Vincent J; Hahn, Edward J; Aryan, Henry E; Levy, Michael V; Jandial, Rahul

    2012-08-01

    This study evaluates the efficacy of operative skill transfer in the context of targeted pediatric outreach missions. In addition, the ability to implement surgical care improvements that are sustainable is investigated. Three 1-week targeted neurosurgical missions were performed (2004-2006) to teach neuroendoscopy, which included donation of the necessary equipment so newly acquired surgical skills could be performed by local neurosurgeons in between and after the departure of the mission team. After the targeted missions were completed, 5 years of neuroendoscopy case follow-up data were obtained. After performing pediatric neurosurgery missions in 2004-2006, with a focus on teaching neuroendoscopy, the host team demonstrated the sustainability of our didactic efforts in the subsequent 5 years by performing cases independently for their citizens. To date, a total of 196 operations have been performed in the past 5 years independent of any visiting team. Effective operative skill transfer to host neurosurgeons can be accomplished with limited international team visits utilizing a targeted approach that minimizes expenditures on personnel and capital. With the priority being teaching of an operative technique, as opposed to perennially performing operations by the mission team, sustainable surgical care was achieved after missions officially concluded.

  2. In-flight sleep of flight crew during a 7-hour rest break: implications for research and flight safety.

    Science.gov (United States)

    Signal, T Leigh; Gander, Philippa H; van den Berg, Margo J; Graeber, R Curtis

    2013-01-01

    To assess the amount and quality of sleep that flight crew are able to obtain during flight, and identify factors that influence the sleep obtained. Flight crew operating flights between Everett, WA, USA and Asia had their sleep recorded polysomnographically for 1 night in a layover hotel and during a 7-h in-flight rest opportunity on flights averaging 15.7 h. Layover hotel and in-flight crew rest facilities onboard the Boeing 777-200ER aircraft. Twenty-one male flight crew (11 Captains, mean age 48 yr and 10 First Officers, mean age 35 yr). N/A. Sleep was recorded using actigraphy during the entire tour of duty, and polysomnographically in a layover hotel and during the flight. Mixed model analysis of covariance was used to determine the factors affecting in-flight sleep. In-flight sleep was less efficient (70% vs. 88%), with more nonrapid eye movement Stage 1/Stage 2 and more frequent awakenings per h (7.7/h vs. 4.6/h) than sleep in the layover hotel. In-flight sleep included very little slow wave sleep (median 0.5%). Less time was spent trying to sleep and less sleep was obtained when sleep opportunities occurred during the first half of the flight. Multivariate analyses suggest age is the most consistent factor affecting in-flight sleep duration and quality. This study confirms that even during long sleep opportunities, in-flight sleep is of poorer quality than sleep on the ground. With longer flight times, the quality and recuperative value of in-flight sleep is increasingly important for flight safety. Because the age limit for flight crew is being challenged, the consequences of age adversely affecting sleep quantity and quality need to be evaluated.

  3. Use of Virtual Reality for Space Flight

    Science.gov (United States)

    Harm, Deborah; Taylor, L. C.; Reschke, M. F.

    2011-01-01

    Virtual environments offer unique training opportunities, particularly for training astronauts and preadapting them to the novel sensory conditions of microgravity. Two unresolved human factors issues in virtual reality (VR) systems are: 1) potential "cybersickness", and 2) maladaptive sensorimotor performance following exposure to VR systems. Interestingly, these aftereffects are often quite similar to adaptive sensorimotor responses observed in astronauts during and/or following space flight. Active exploratory behavior in a new environment, with resulting feedback and the formation of new associations between sensory inputs and response outputs, promotes appropriate perception and motor control in the new environment. Thus, people adapt to consistent, sustained alterations of sensory input such as those produced by microgravity. Our research examining the effects of repeated exposures to a full field of view dome VR system showed that motion sickness and initial decrements in eye movement and postural control were greatly diminished following three exposures. These results suggest that repeated transitions between VR and the normal environment preflight might be a useful countermeasure for neurosensory and sensorimotor effects of space flight. The range of VR applications is enormous, extending from ground-based VR training for extravehicular activities at NASA, to medical and educational uses. It seems reasonable to suggest that other space related uses of VR should be investigated. For example, 1) use of head-mounted VR on orbit to rehearse/practice upcoming operational activities, and 2) ground-based VR training for emergency egress procedures. We propose that by combining VR designed for operational activities preflight, along with an appropriate schedule to facilitate sensorimotor adaptation and improve spatial orientation would potentially accomplish two important goals for astronauts and cosmonauts, preflight sensorimotor adaption and enhanced operational

  4. Shuttle Flight Operations Contract Generator Maintenance Facility Land Use Control Implementation Plan (LUCIP)

    Science.gov (United States)

    Applegate, Joseph L.

    2014-01-01

    This Land Use Control Implementation Plan (LUCIP) has been prepared to inform current and potential future users of the Kennedy Space Center (KSC) Shuttle Flight Operations Contract Generator Maintenance Facility (SFOC; SWMU 081; "the Site") of institutional controls that have been implemented at the Site1. Although there are no current unacceptable risks to human health or the environment associated with the SFOC, an institutional land use control (LUC) is necessary to prevent human health exposure to antimony-affected groundwater at the Site. Controls will include periodic inspection, condition certification, and agency notification.

  5. 14 CFR 61.193 - Flight instructor privileges.

    Science.gov (United States)

    2010-01-01

    ... than Flight Instructors With a Sport Pilot Rating § 61.193 Flight instructor privileges. A person who...; (e) An aircraft rating; (f) An instrument rating; (g) A flight review, operating privilege, or...

  6. Performance evaluation of operational energy use in refurbishment, reuse, and conservation of heritage buildings for optimum sustainability

    Directory of Open Access Journals (Sweden)

    O.K. Akande

    2016-09-01

    Full Text Available The operational phase of a building project has increasingly gained importance with their energy performance becoming valuable and determining their operational excellence. In most heritage building projects (HBPs, the operational energy use aspects are less considered, and a systematic way of analyzing their energy performance following project delivery is often lacking. The aim of this study is to evaluate the operational performance of refurbishment and reuse of UK listed church projects. The objective is to assess the operational energy use with a view to optimizing their sustainable performance. The methodology includes eight selected case study buildings refurbished and converted for multipurpose use. The case study approach provided qualitative insights into how the study contributes to a more structured requirements for energy management in HBPs with specific attention to energy-efficient building operations. The findings show the need to focus on fundamental areas of operational management (i.e. by developing and implementing more focused policy on operational energy performance of heritage buildings to minimize the energy required to operate them. The challenges of implementing changes in operational energy performance improvement of heritage buildings are addressed in the form of recommendations that could lead to real results. The study concludes that leveraging these areas requires commitment from all heritage building stakeholders because they all have substantial roles in harmonizing the requirement for the project׳s sustainability and not just the building operators. Meanwhile, baseline project planning, periodic updating, monitoring, and managing the energy use pattern are suggested as measures that could greatly facilitate better energy performance to optimizing their sustainable reuse compared with the traditional approach of trying to improve their thermal performance.

  7. The flights before the flight - An overview of shuttle astronaut training

    Science.gov (United States)

    Sims, John T.; Sterling, Michael R.

    1989-01-01

    Space shuttle astronaut training is centered at NASA's Johnson Space Center in Houston, Texas. Each astronaut receives many different types of training from many sources. This training includes simulator training in the Shuttle Mission Simulator, in-flight simulator training in the Shuttle Training Aircraft, Extravehicular Activity training in the Weightless Environment Training Facility and a variety of lectures and briefings. Once the training program is completed each shuttle flight crew is well-prepared to perform the normal operations required for their flight and deal with any shuttle system malfunctions that might occur.

  8. Development and Flight Test of an Emergency Flight Control System Using Only Engine Thrust on an MD-11 Transport Airplane

    Science.gov (United States)

    Burcham, Frank W., Jr.; Burken, John J.; Maine, Trindel A.; Fullerton, C. Gordon

    1997-01-01

    An emergency flight control system that uses only engine thrust, called the propulsion-controlled aircraft (PCA) system, was developed and flight tested on an MD-11 airplane. The PCA system is a thrust-only control system, which augments pilot flightpath and track commands with aircraft feedback parameters to control engine thrust. The PCA system was implemented on the MD-11 airplane using only software modifications to existing computers. Results of a 25-hr flight test show that the PCA system can be used to fly to an airport and safely land a transport airplane with an inoperative flight control system. In up-and-away operation, the PCA system served as an acceptable autopilot capable of extended flight over a range of speeds, altitudes, and configurations. PCA approaches, go-arounds, and three landings without the use of any normal flight controls were demonstrated, including ILS-coupled hands-off landings. PCA operation was used to recover from an upset condition. The PCA system was also tested at altitude with all three hydraulic systems turned off. This paper reviews the principles of throttles-only flight control, a history of accidents or incidents in which some or all flight controls were lost, the MD-11 airplane and its systems, PCA system development, operation, flight testing, and pilot comments.

  9. In-Flight Sleep of Flight Crew During a 7-hour Rest Break: Implications for Research and Flight Safety

    Science.gov (United States)

    Signal, T. Leigh; Gander, Philippa H.; van den Berg, Margo J.; Graeber, R. Curtis

    2013-01-01

    Study Objectives: To assess the amount and quality of sleep that flight crew are able to obtain during flight, and identify factors that influence the sleep obtained. Design: Flight crew operating flights between Everett, WA, USA and Asia had their sleep recorded polysomnographically for 1 night in a layover hotel and during a 7-h in-flight rest opportunity on flights averaging 15.7 h. Setting: Layover hotel and in-flight crew rest facilities onboard the Boeing 777-200ER aircraft. Participants: Twenty-one male flight crew (11 Captains, mean age 48 yr and 10 First Officers, mean age 35 yr). Interventions: N/A. Measurements and Results: Sleep was recorded using actigraphy during the entire tour of duty, and polysomnographically in a layover hotel and during the flight. Mixed model analysis of covariance was used to determine the factors affecting in-flight sleep. In-flight sleep was less efficient (70% vs. 88%), with more nonrapid eye movement Stage 1/Stage 2 and more frequent awakenings per h (7.7/h vs. 4.6/h) than sleep in the layover hotel. In-flight sleep included very little slow wave sleep (median 0.5%). Less time was spent trying to sleep and less sleep was obtained when sleep opportunities occurred during the first half of the flight. Multivariate analyses suggest age is the most consistent factor affecting in-flight sleep duration and quality. Conclusions: This study confirms that even during long sleep opportunities, in-flight sleep is of poorer quality than sleep on the ground. With longer flight times, the quality and recuperative value of in-flight sleep is increasingly important for flight safety. Because the age limit for flight crew is being challenged, the consequences of age adversely affecting sleep quantity and quality need to be evaluated. Citation: Signal TL; Gander PH; van den Berg MJ; Graeber RC. In-flight sleep of flight crew during a 7-hour rest break: implications for research and flight safety. SLEEP 2013;36(1):109–115. PMID:23288977

  10. Desired, Perceived, and Achieved Sustainability: Trade-Offs in Strategic and Operational Packaging Development

    NARCIS (Netherlands)

    de Koeijer, Bjorn; de Lange, Jos; Wever, Renee

    2017-01-01

    The alignment of the strategic and the operational level of packaging development in relation to the integration of sustainability is not addressed extensively in current research. This paper aims to address this, by focusing on the decision-making interrelations of key actors (marketing and

  11. Ramjet Nozzle Analysis for Transport Aircraft Configuration for Sustained Hypersonic Flight

    Directory of Open Access Journals (Sweden)

    Raman Baidya

    2018-04-01

    Full Text Available For the past several decades, research dealing with hypersonic flight regimes has been restricted mainly to military applications. Hypersonic transportation could be a possible and affordable solution to travel in the medium term and there is renewed interest from several private organisations for commercial exploitation in this direction. Various combined cycle propulsion configurations have been proposed and the present paper deals with implications for the nozzle component of a ramjet configuration as part of one such combined cycle propulsion configuration. An investigation was undertaken for a method of turbine-based propulsion which enables the hypersonic vehicle to take off under its own power and propel the aircraft under different mission profiles into ramjet operational Mach regimes. The present study details an optimal method of ramjet exhaust expansion to produce sufficient thrust to propel the vehicle into altitudes and Mach regimes where scramjet operation can be initiated. This aspect includes a Computational Fluid Dynamics (CFD-based geometric study to determine the optimal configuration to provide the best thrust values. The CFD parametric analysis investigated three candidate nozzles and indicated that the dual bell nozzle design produced the highest thrust values when compared to other nozzle geometries. The altitude adaptation study also validated the effectiveness of the nozzle thrust at various altitudes without compromising its thrust-producing capabilities. Computational data were validated against published experimental data, which indicated that the computed values correlated well with the experimental data.

  12. Flight test operations using an F-106B research airplane modified with a wing leading-edge vortex flap

    Science.gov (United States)

    Dicarlo, Daniel J.; Brown, Philip W.; Hallissy, James B.

    1992-01-01

    Flight tests of an F-106B aircraft equipped with a leading-edge vortex flap, which represented the culmination of a research effort to examine the effectiveness of the flap, were conducted at the NASA Langley Research Center. The purpose of the flight tests was to establish a data base on the use of a wing leading-edge vortex flap as a means to validate the design and analysis methods associated with the development of such a vortical flow-control concept. The overall experiment included: refinements of the design codes for vortex flaps; numerous wind tunnel entries to aid in verifying design codes and determining basic aerodynamic characteristics; design and fabrication of the flaps, structural modifications to the wing tip and leading edges of the test aircraft; development and installation of an aircraft research instrumentation system, including wing and flap surface pressure measurements and selected structural loads measurements; ground-based simulation to assess flying qualities; and finally, flight testing. This paper reviews the operational aspects associated with the flight experiment, which includes a description of modifications to the research airplane, the overall flight test procedures, and problems encountered. Selected research results are also presented to illustrate the accomplishments of the research effort.

  13. 14 CFR 121.387 - Flight engineer.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 3 2010-01-01 2010-01-01 false Flight engineer. 121.387 Section 121.387..., FLAG, AND SUPPLEMENTAL OPERATIONS Airman and Crewmember Requirements § 121.387 Flight engineer. No... holding a current flight engineer certificate. For each airplane type certificated after January 1, 1964...

  14. 14 CFR 125.265 - Flight engineer requirements.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 3 2010-01-01 2010-01-01 false Flight engineer requirements. 125.265... Requirements § 125.265 Flight engineer requirements. (a) No person may operate an airplane for which a flight engineer is required by the type certification requirements without a flight crewmember holding a current...

  15. Remotely Piloted Vehicles for Experimental Flight Control Testing

    Science.gov (United States)

    Motter, Mark A.; High, James W.

    2009-01-01

    A successful flight test and training campaign of the NASA Flying Controls Testbed was conducted at Naval Outlying Field, Webster Field, MD during 2008. Both the prop and jet-powered versions of the subscale, remotely piloted testbeds were used to test representative experimental flight controllers. These testbeds were developed by the Subsonic Fixed Wing Project s emphasis on new flight test techniques. The Subsonic Fixed Wing Project is under the Fundamental Aeronautics Program of NASA's Aeronautics Research Mission Directorate (ARMD). The purpose of these testbeds is to quickly and inexpensively evaluate advanced concepts and experimental flight controls, with applications to adaptive control, system identification, novel control effectors, correlation of subscale flight tests with wind tunnel results, and autonomous operations. Flight tests and operator training were conducted during four separate series of tests during April, May, June and August 2008. Experimental controllers were engaged and disengaged during fully autonomous flight in the designated test area. Flaps and landing gear were deployed by commands from the ground control station as unanticipated disturbances. The flight tests were performed NASA personnel with support from the Maritime Unmanned Development and Operations (MUDO) team of the Naval Air Warfare Center, Aircraft Division

  16. Sustainability of biomass utilisation in changing operational environment - SUBICHOE

    Energy Technology Data Exchange (ETDEWEB)

    Soimakallio, S.; Hongisto, M.; Koponen, K.; Sokka, L. (VTT Technical Research Centre of Finland, Espoo (Finland)), Email: sampo.soimakallio@vtt.fi; Antikainen, R.; Manninen, K. (Finnish Environment Inst. SYKE, Helsinki (Finland)); Thun, R.; Sinkko, T. (MTT Agrifood Research Finland, Jokioinen (Finland)); Pasanen, K. (Finnish Forest Research Inst., Joensuu (Finland))

    2010-10-15

    Sustaibability is a multi-faceted and challenging target, but at the same time a crucial issue to assess when setting policies and targets for the future. The main objective of the SUBICHOE project is to assist in strategic decision- making of public administration and companies, as regards the most sustainable use of biomass, by taking into account the changing operational environment. In the project the sustainability of biofuels and the criteria, in particular those set by the EC, for ensuring that set requirements can and will be fulfilled are being assessed from short and long term perspectives. The project is carried out jointly by VTT Technical Research Centre of Finland, Finnish Environment Institute SYKE, MTT Agrifood Research Finland, Finnish Forest Research Institute (Metla) and The Government Institute for Economic Research (VATT). The project started in June 2009 and it is scheduled to be finalised in June 2011. The work plan of the project is divided into four Work Packages. In this article, a summary of a critical view on the requirements and challenges related to the implementation of the RES Directive is also provided based on the main findings of the WP1. (orig.)

  17. Pathfinder-Plus on flight in Hawaii

    Science.gov (United States)

    1998-01-01

    Pathfinder-Plus on a flight over Hawaii in 1998. Pathfinder was a remotely controlled, solar-powered flying wing, designed and built as a proof-of-concept vehicle for a much larger aircraft capable of flying at extremely high altitudes for weeks at a time. It was built by AeroVironment, Inc., a California company that developed the human-powered Gossamer Condor and Gossamer Albatross lightweight aircraft during the 1970s, and later made the solar-electric powered Gossamer Penguin and Solar Challenger. The basic configuration and concepts for Pathfinder were first realized with the HALSOL (High Altitude Solar) aircraft, built in 1983 by AeroVironment and the Lawrence Livermore Laboratory. Pathfinder was constructed of advanced composites, plastics, and foam, and despite a wingspan of nearly 100 feet, it weighed only about 600 pounds. Pathfinder was one of several unpiloted prototypes under study by NASA's ERAST (Environmental Research Aircraft and Sensor Technology) program, a NASA-industry alliance which is helping develop advanced technologies that will enable aircraft to study the earth's environment during extremely long flights at altitudes in excess of 100,000 feet. (See project description below for Pathfinder's conversion to Pathfinder Plus.) In 1998, the Pathfinder solar-powered flying wing (see its photographs and project description) was modified into the longer-winged Pathfinder Plus configuration and on Aug. 6, 1998, Pathfinder Plus set an altitude record (for propeller-driven aircraft) of approximately 80,285 feet at the Pacific Missile Range Facility. The goal of the Pathfinder Plus flights was to validate new solar, aerodynamic, propulsion, and systems technology developed for its successor, the Centurion, which was designed to reach and sustain altitudes in the 100,000-foot range. The Centurion was succeeded by the Helios Prototype with a goal of reaching and sustaining flight at an altitude of 100,000 feet and flying non-stop for at least 4 days

  18. Pathfinder-Plus on flight over Hawaii

    Science.gov (United States)

    1998-01-01

    Pathfinder-Plus on flight over Hawaii. Pathfinder was a remotely controlled, solar-powered flying wing, designed and built as a proof-of-concept vehicle for a much larger aircraft capable of flying at extremely high altitudes for weeks at a time. It was built by AeroVironment, Inc., a California company that developed the human-powered Gossamer Condor and Gossamer Albatross lightweight aircraft during the 1970s, and later made the solar-electric powered Gossamer Penguin and Solar Challenger. The basic configuration and concepts for Pathfinder were first realized with the HALSOL (High Altitude Solar) aircraft, built in 1983 by AeroVironment and the Lawrence Livermore Laboratory. Pathfinder was constructed of advanced composites, plastics, and foam, and despite a wingspan of nearly 100 feet, it weighed only about 600 pounds. Pathfinder was one of several unpiloted prototypes under study by NASA's ERAST (Environmental Research Aircraft and Sensor Technology) program, a NASA-industry alliance which is helping develop advanced technologies that will enable aircraft to study the earth's environment during extremely long flights at altitudes in excess of 100,000 feet. (See project description below for Pathfinder's conversion to Pathfinder Plus.) In 1998, the Pathfinder solar-powered flying wing (see its photographs and project description) was modified into the longer-winged Pathfinder Plus configuration and on Aug. 6, 1998, Pathfinder Plus set an altitude record (for propeller-driven aircraft) of approximately 80,285 feet at the Pacific Missile Range Facility. The goal of the Pathfinder Plus flights was to validate new solar, aerodynamic, propulsion, and systems technology developed for its successor, the Centurion, which was designed to reach and sustain altitudes in the 100,000-foot range. The Centurion was succeeded by the Helios Prototype with a goal of reaching and sustaining flight at an altitude of 100,000 feet and flying non-stop for at least 4 days above 50

  19. 14 CFR 63.42 - Flight engineer certificate issued on basis of a foreign flight engineer license.

    Science.gov (United States)

    2010-01-01

    ... section, may have a flight engineer certificate issued to him for the operation of civil aircraft of U.S... engineer certificate issued under this section may act as a flight engineer of a civil aircraft of U.S... 14 Aeronautics and Space 2 2010-01-01 2010-01-01 false Flight engineer certificate issued on basis...

  20. Development flight tests of JetStar LFC leading-edge flight test experiment

    Science.gov (United States)

    Fisher, David F.; Fischer, Michael C.

    1987-01-01

    The overall objective of the flight tests on the JetStar aircraft was to demonstrate the effectiveness and reliability of laminar flow control under representative flight conditions. One specific objective was to obtain laminar flow on the JetStar leading-edge test articles for the design and off-design conditions. Another specific objective was to obtain operational experience on a Laminar Flow Control (LFC) leading-edge system in a simulated airline service. This included operational experience with cleaning requirements, the effect of clogging, possible foreign object damage, erosion, and the effects of ice particle and cloud encounters. Results are summarized.

  1. Flight Simulator Evaluation of Enhanced Propulsion Control Modes for Emergency Operation

    Science.gov (United States)

    Litt, Jonathan, S; Sowers, T.; Owen, A., Karl; Fulton, Christopher, E.; Chicatelli, Amy, K.

    2012-01-01

    This paper describes piloted evaluation of enhanced propulsion control modes for emergency operation of aircraft. Fast Response and Overthrust modes were implemented to assess their ability to help avoid or mitigate potentially catastrophic situations, both on the ground and in flight. Tests were conducted to determine the reduction in takeoff distance achievable using the Overthrust mode. Also, improvements in Dutch roll damping, enabled by using yaw rate feedback to the engines to replace the function of a stuck rudder, were investigated. Finally, pilot workload and ability to handle the impaired aircraft on approach and landing were studied. The results showed that improvement in all aspects is possible with these enhanced propulsion control modes, but the way in which they are initiated and incorporated is important for pilot comfort and perceived benefit.

  2. Integrated Neural Flight and Propulsion Control System

    Science.gov (United States)

    Kaneshige, John; Gundy-Burlet, Karen; Norvig, Peter (Technical Monitor)

    2001-01-01

    This paper describes an integrated neural flight and propulsion control system. which uses a neural network based approach for applying alternate sources of control power in the presence of damage or failures. Under normal operating conditions, the system utilizes conventional flight control surfaces. Neural networks are used to provide consistent handling qualities across flight conditions and for different aircraft configurations. Under damage or failure conditions, the system may utilize unconventional flight control surface allocations, along with integrated propulsion control, when additional control power is necessary for achieving desired flight control performance. In this case, neural networks are used to adapt to changes in aircraft dynamics and control allocation schemes. Of significant importance here is the fact that this system can operate without emergency or backup flight control mode operations. An additional advantage is that this system can utilize, but does not require, fault detection and isolation information or explicit parameter identification. Piloted simulation studies were performed on a commercial transport aircraft simulator. Subjects included both NASA test pilots and commercial airline crews. Results demonstrate the potential for improving handing qualities and significantly increasing survivability rates under various simulated failure conditions.

  3. 14 CFR 121.550 - Secret Service Agents: Admission to flight deck.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 3 2010-01-01 2010-01-01 false Secret Service Agents: Admission to flight... OPERATING REQUIREMENTS: DOMESTIC, FLAG, AND SUPPLEMENTAL OPERATIONS Flight Operations § 121.550 Secret Service Agents: Admission to flight deck. Whenever an Agent of the Secret Service who is assigned the duty...

  4. Flight telerobotic servicer legacy

    Science.gov (United States)

    Shattuck, Paul L.; Lowrie, James W.

    1992-11-01

    The Flight Telerobotic Servicer (FTS) was developed to enhance and provide a safe alternative to human presence in space. The first step for this system was a precursor development test flight (DTF-1) on the Space Shuttle. DTF-1 was to be a pathfinder for manned flight safety of robotic systems. The broad objectives of this mission were three-fold: flight validation of telerobotic manipulator (design, control algorithms, man/machine interfaces, safety); demonstration of dexterous manipulator capabilities on specific building block tasks; and correlation of manipulator performance in space with ground predictions. The DTF-1 system is comprised of a payload bay element (7-DOF manipulator with controllers, end-of-arm gripper and camera, telerobot body with head cameras and electronics module, task panel, and MPESS truss) and an aft flight deck element (force-reflecting hand controller, crew restraint, command and display panel and monitors). The approach used to develop the DTF-1 hardware, software and operations involved flight qualification of components from commercial, military, space, and R controller, end-of-arm tooling, force/torque transducer) and the development of the telerobotic system for space applications. The system is capable of teleoperation and autonomous control (advances state of the art); reliable (two-fault tolerance); and safe (man-rated). Benefits from the development flight included space validation of critical telerobotic technologies and resolution of significant safety issues relating to telerobotic operations in the Shuttle bay or in the vicinity of other space assets. This paper discusses the lessons learned and technology evolution that stemmed from developing and integrating a dexterous robot into a manned system, the Space Shuttle. Particular emphasis is placed on the safety and reliability requirements for a man-rated system as these are the critical factors which drive the overall system architecture. Other topics focused on include

  5. Core Flight System Satellite Starter Kit

    Data.gov (United States)

    National Aeronautics and Space Administration — The Core Flight System Satellite Starter Kit (cFS Kit) will allow a small satellite or CubeSat developer to rapidly develop, deploy, test, and operate flight...

  6. What to Expect During In-Flight Operations

    Science.gov (United States)

    Kosobud, Beth; Perry, Marc; Schwanbeck, Nichole

    2017-01-01

    Executing human research on ISS has to navigate a unique risk environment. NASA planning efforts focus on an investigation's in-flight success but much of the threats to research objectives are not mitigated. A balanced requirement set affords the ability to remain flexible for each subject's data set while protecting the study's integrity across all subjects.

  7. Mentoring SFRM: A New Approach to International Space Station Flight Control Training

    Science.gov (United States)

    Huning, Therese; Barshi, Immanuel; Schmidt, Lacey

    2009-01-01

    The Mission Operations Directorate (MOD) of the Johnson Space Center is responsible for providing continuous operations support for the International Space Station (ISS). Operations support requires flight controllers who are skilled in team performance as well as the technical operations of the ISS. Space Flight Resource Management (SFRM), a NASA adapted variant of Crew Resource Management (CRM), is the competency model used in the MOD. ISS flight controller certification has evolved to include a balanced focus on development of SFRM and technical expertise. The latest challenge the MOD faces is how to certify an ISS flight controller (Operator) to a basic level of effectiveness in 1 year. SFRM training uses a twopronged approach to expediting operator certification: 1) imbed SFRM skills training into all Operator technical training and 2) use senior flight controllers as mentors. This paper focuses on how the MOD uses senior flight controllers as mentors to train SFRM skills.

  8. The advancement of a new human factors report--'The Unique Report'--facilitating flight crew auditing of performance/operations as part of an airline's safety management system.

    Science.gov (United States)

    Leva, M C; Cahill, J; Kay, A M; Losa, G; McDonald, N

    2010-02-01

    This paper presents the findings of research relating to the specification of a new human factors report, conducted as part of the work requirements for the Human Integration into the Lifecycle of Aviation Systems project, sponsored by the European Commission. Specifically, it describes the proposed concept for a unique report, which will form the basis for all operational and safety reports completed by flight crew. This includes all mandatory and optional reports. Critically, this form is central to the advancement of improved processes and technology tools, supporting airline performance management, safety management, organisational learning and knowledge integration/information-sharing activities. Specifically, this paper describes the background to the development of this reporting form, the logic and contents of this form and how reporting data will be made use of by airline personnel. This includes a description of the proposed intelligent planning process and the associated intelligent flight plan concept, which makes use of airline operational and safety analyses information. Primarily, this new reporting form has been developed in collaboration with a major Spanish airline. In addition, it has involved research with five other airlines. Overall, this has involved extensive field research, collaborative prototyping and evaluation of new reports/flight plan concepts and a number of evaluation activities. Participants have included both operational and management personnel, across different airline flight operations processes. Statement of Relevance: This paper presents the development of a reporting concept outlined through field research and collaborative prototyping within an airline. The resulting reporting function, embedded in the journey log compiled at the end of each flight, aims at enabling employees to audit the operations of the company they work for.

  9. Space flight calcium: implications for astronaut health, spacecraft operations, and Earth.

    Science.gov (United States)

    Smith, Scott M; McCoy, Torin; Gazda, Daniel; Morgan, Jennifer L L; Heer, Martina; Zwart, Sara R

    2012-12-18

    The space flight environment is known to induce bone loss and, subsequently, calcium loss. The longer the mission, generally the more bone and calcium are lost. This review provides a history of bone and calcium studies related to space flight and highlights issues related to calcium excretion that the space program must consider so that urine can be recycled. It also discusses a novel technique using natural stable isotopes of calcium that will be helpful in the future to determine calcium and bone balance during space flight.

  10. 14 CFR 417.415 - Post-launch and post-flight-attempt hazard controls.

    Science.gov (United States)

    2010-01-01

    ...-flight-attempt hazard controls. (a) A launch operator must establish, maintain and perform procedures for... system operation. The flight termination system receivers must remain captured by the command control... launch operator must establish procedural controls for hazards associated with an unsuccessful flight...

  11. Positive Exchange of Flight Controls Program

    Science.gov (United States)

    1995-03-10

    This advisory circular provides guidance for all pilots, especially student pilots, flight instructors, and pilot examiners, on the recommended procedure to use for the positive exchange of flight controls between pilots when operating an aircraft.

  12. A multi evaporator desalination system operated with thermocline energy for future sustainability

    KAUST Repository

    Shahzad, Muhammad Wakil

    2017-05-05

    All existing commercial seawater desalination processes, i.e. thermally-driven and membrane-based reverse osmosis (RO), are operated with universal performance ratios (UPR) varying up to 105, whilst the UPR for an ideal or thermodynamic limit (TL) of desalination is at 828. Despite slightly better UPRs for the RO plants, all practical desalination plants available, hitherto, operate at only less than 12% of the TL, rendering them highly energy intensive and unsustainable for future sustainability. More innovative desalination methods must be sought to meet the needs of future sustainable desalination and these methods should attain an upper UPR bound of about 25 to 30% of the TL. In this paper, we examined the efficacy of a multi-effect distillation (MED) system operated with thermocline energy from the sea; a proven desalination technology that can exploit the narrow temperature gradient of 20°C all year round created between the warm surface seawater and the cold-seawater at depths of about 300–600m. Such a seawater thermocline (ST)-driven MED system, simply called the ST-MED process, has the potential to achieve up to 2 folds improvement in desalination efficiency over the existing methods, attaining about 18.8% of the ideal limit. With the major energy input emanated from the renewable solar, the ST-MED is truly a “green desalination” method of low global warming potential, best suited for tropical coastal shores having bathymetry depths of 300m or more.

  13. The ASAC Flight Segment and Network Cost Models

    Science.gov (United States)

    Kaplan, Bruce J.; Lee, David A.; Retina, Nusrat; Wingrove, Earl R., III; Malone, Brett; Hall, Stephen G.; Houser, Scott A.

    1997-01-01

    To assist NASA in identifying research art, with the greatest potential for improving the air transportation system, two models were developed as part of its Aviation System Analysis Capability (ASAC). The ASAC Flight Segment Cost Model (FSCM) is used to predict aircraft trajectories, resource consumption, and variable operating costs for one or more flight segments. The Network Cost Model can either summarize the costs for a network of flight segments processed by the FSCM or can be used to independently estimate the variable operating costs of flying a fleet of equipment given the number of departures and average flight stage lengths.

  14. NOAA Aircraft Operations Center (AOC) Flight Level Data

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NOAA AOC WP-3D Research Flight Data is digital data set DSI-6420, archived at the National Climatic Data Center (NCDC). This data set is meteorological data gathered...

  15. UAV Research, Operations, and Flight Test at the NASA Dryden Flight Research Center

    Science.gov (United States)

    Cosentino, Gary B.

    2009-01-01

    This slide presentation reviews some of the projects that have extended NASA Dryden's capabilities in designing, testing, and using Unmanned Aerial Vehicles (UAV's). Some of the UAV's have been for Science and experimental applications, some have been for flight research and demonstration purposes, and some have been small UAV's for other customers.

  16. Perception of tilt (somatogravic illusion) in response to sustained linear acceleration during space flight

    Science.gov (United States)

    Clement, G.; Moore, S. T.; Raphan, T.; Cohen, B.

    2001-01-01

    During the 1998 Neurolab mission (STS-90), four astronauts were exposed to interaural and head vertical (dorsoventral) linear accelerations of 0.5 g and 1 g during constant velocity rotation on a centrifuge, both on Earth and during orbital space flight. Subjects were oriented either left-ear-out or right-ear-out (Gy centrifugation), or lay supine along the centrifuge arm with their head off-axis (Gz centrifugation). Pre-flight centrifugation, producing linear accelerations of 0.5 g and 1 g along the Gy (interaural) axis, induced illusions of roll-tilt of 20 degrees and 34 degrees for gravito-inertial acceleration (GIA) vector tilts of 27 degrees and 45 degrees , respectively. Pre-flight 0.5 g and 1 g Gz (head dorsoventral) centrifugation generated perceptions of backward pitch of 5 degrees and 15 degrees , respectively. In the absence of gravity during space flight, the same centrifugation generated a GIA that was equivalent to the centripetal acceleration and aligned with the Gy or Gz axes. Perception of tilt was underestimated relative to this new GIA orientation during early in-flight Gy centrifugation, but was close to the GIA after 16 days in orbit, when subjects reported that they felt as if they were 'lying on side'. During the course of the mission, inflight roll-tilt perception during Gy centrifugation increased from 45 degrees to 83 degrees at 1 g and from 42 degrees to 48 degrees at 0.5 g. Subjects felt 'upside-down' during in-flight Gz centrifugation from the first in-flight test session, which reflected the new GIA orientation along the head dorsoventral axis. The different levels of in-flight tilt perception during 0.5 g and 1 g Gy centrifugation suggests that other non-vestibular inputs, including an internal estimate of the body vertical and somatic sensation, were utilized in generating tilt perception. Interpretation of data by a weighted sum of body vertical and somatic vectors, with an estimate of the GIA from the otoliths, suggests that

  17. Theseus Landing Following Maiden Flight

    Science.gov (United States)

    1996-01-01

    The Theseus prototype research aircraft shows off its high aspect-ratio wing as it comes in for a landing on Rogers Dry Lake after its first test flight from NASA's Dryden Flight Research Center, Edwards, California, on May 24, 1996. The Theseus aircraft, built and operated by Aurora Flight Sciences Corporation, Manassas, Virginia, was a unique aircraft flown at NASA's Dryden Flight Research Center, Edwards, California, under a cooperative agreement between NASA and Aurora. Dryden hosted the Theseus program, providing hangar space and range safety for flight testing. Aurora Flight Sciences was responsible for the actual flight testing, vehicle flight safety, and operation of the aircraft. The Theseus remotely piloted aircraft flew its maiden flight on May 24, 1996, at Dryden. During its sixth flight on November 12, 1996, Theseus experienced an in-flight structural failure that resulted in the loss of the aircraft. As of the beginning of the year 2000, Aurora had not rebuilt the aircraft. Theseus was built for NASA under an innovative, $4.9 million fixed-price contract by Aurora Flight Sciences Corporation and its partners, West Virginia University, Morgantown, West Virginia, and Fairmont State College, Fairmont, West Virginia. The twin-engine, unpiloted vehicle had a 140-foot wingspan, and was constructed largely of composite materials. Powered by two 80-horsepower, turbocharged piston engines that drove twin 9-foot-diameter propellers, Theseus was designed to fly autonomously at high altitudes, with takeoff and landing under the active control of a ground-based pilot in a ground control station 'cockpit.' With the potential ability to carry 700 pounds of science instruments to altitudes above 60,000 feet for durations of greater than 24 hours, Theseus was intended to support research in areas such as stratospheric ozone depletion and the atmospheric effects of future high-speed civil transport aircraft engines. Instruments carried aboard Theseus also would be able

  18. 14 CFR 121.141 - Airplane flight manual.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 3 2010-01-01 2010-01-01 false Airplane flight manual. 121.141 Section 121... REQUIREMENTS: DOMESTIC, FLAG, AND SUPPLEMENTAL OPERATIONS Manual Requirements § 121.141 Airplane flight manual. (a) Each certificate holder shall keep a current approved airplane flight manual for each type of...

  19. A Flight Control System Architecture for the NASA AirSTAR Flight Test Infrastructure

    Science.gov (United States)

    Murch, Austin M.

    2008-01-01

    A flight control system architecture for the NASA AirSTAR infrastructure has been designed to address the challenges associated with safe and efficient flight testing of research control laws in adverse flight conditions. The AirSTAR flight control system provides a flexible framework that enables NASA Aviation Safety Program research objectives, and includes the ability to rapidly integrate and test research control laws, emulate component or sensor failures, inject automated control surface perturbations, and provide a baseline control law for comparison to research control laws and to increase operational efficiency. The current baseline control law uses an angle of attack command augmentation system for the pitch axis and simple stability augmentation for the roll and yaw axes.

  20. Deep-Space Ka-Band Flight Experience

    Science.gov (United States)

    Morabito, D. D.

    2017-11-01

    Lower frequency bands have become more congested in allocated bandwidth as there is increased competition between flight projects and other entities. Going to higher frequency bands offers significantly more bandwidth, allowing for the use of much higher data rates. However, Ka-band is more susceptible to weather effects than lower frequency bands currently used for most standard downlink telemetry operations. Future or prospective flight projects considering deep-space Ka-band (32-GHz) telemetry data links have expressed an interest in understanding past flight experience with received Ka-band downlink performance. Especially important to these flight projects is gaining a better understanding of weather effects from the experience of current or past missions that operated Ka-band radio systems. We will discuss the historical flight experience of several Ka-band missions starting from Mars Observer in 1993 up to present-day deep-space missions such as Kepler. The study of historical Ka-band flight experience allows one to recommend margin policy for future missions. Of particular interest, we will review previously reported-on flight experience with the Cassini spacecraft Ka-band radio system that has been used for radio science investigations as well as engineering studies from 2004 to 2015, when Cassini was in orbit around the planet Saturn. In this article, we will focus primarily on the Kepler spacecraft Ka-band link, which has been used for operational telemetry downlink from an Earth trailing orbit where the spacecraft resides. We analyzed the received Ka-band signal level data in order to characterize link performance over a wide range of weather conditions and as a function of elevation angle. Based on this analysis of Kepler and Cassini flight data, we found that a 4-dB margin with respect to adverse conditions ensures that we achieve at least a 95 percent data return.

  1. Safety reloaded: lean operations and high involvement work practices for sustainable workplaces

    OpenAIRE

    Camuffo, Arnaldo; De Stefano, Federica; Paolino, Chiara

    2017-01-01

    Starting from the recent quest to investigate the human side of organizational sustainability, this study applies a variety of regression analyses to investigate the effects of Lean Operations, High Involvement Work Practices, and management behaviors on occupational safety. It tests and finds support for the hypotheses that Lean Production systems, High Involvement Work Practices, and two specific management behaviors—workers’ capability development (coaching and teaching of workers) and emp...

  2. Improving sustainability during hospital design and operation a multidisciplinary evaluation tool

    CERN Document Server

    Bottero, Marta; Buffoli, Maddalena; Lettieri, Emanuele

    2015-01-01

    This book describes the Sustainable High Quality Healthcare (SustHealth) project, which had the goal of developing an original multidisciplinary evaluation tool that can be applied to assess and improve hospitals’ overall sustainability. The comprehensive nature of the appraisal offered by this tool exceeds the scope of most current rating systems, which typically permit a thorough evaluation of relevant environmental factors when designing a new building but fail to consider social and economic impacts of the design phase or the performance of the hospital’s operational structure in these fields. The multidisciplinary evaluation system was developed, from its very inception through to its testing, by following a scientific experimental method in which a global perspective was constantly maintained, as opposed to a focus only on specific technical issues. Application of the SustHealth rating tool to a currently functioning hospital, or one under design, will identify weaknesses and guide users to potentia...

  3. Comparing future options for human space flight

    Science.gov (United States)

    Sherwood, Brent

    2011-09-01

    The paper analyzes the "value proposition" for government-funded human space flight, a vexing question that persistently dogs efforts to justify its $10 10/year expense in the US. The original Mercury/Gemini/Apollo value proposition is not valid today. Neither was it the value proposition actually promoted by von Braun, which the post-Apollo 80% of human space flight history has persistently attempted to fulfill. Divergent potential objectives for human space flight are captured in four strategic options— Explore Mars; accelerate Space Passenger Travel; enable Space Power for Earth; and Settle the Moon—which are then analyzed for their purpose, societal myth, legacy benefits, core needs, and result as measured by the number and type of humans they would fly in space. This simple framework is proposed as a way to support productive dialog with public and other stakeholders, to determine a sustainable value proposition for human space flight.

  4. 14 CFR 121.453 - Flight engineer qualifications.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 3 2010-01-01 2010-01-01 false Flight engineer qualifications. 121.453... REQUIREMENTS: DOMESTIC, FLAG, AND SUPPLEMENTAL OPERATIONS Crewmember Qualifications § 121.453 Flight engineer qualifications. (a) No certificate holder may use any person nor may any person serve as a flight engineer on an...

  5. Operational Issues: What Science in Available?

    Science.gov (United States)

    Rosekind, Mark R.; Neri, David F.

    1997-01-01

    Flight/duty/rest considerations involve two highly complex factors: the diverse demands of aviation operations and human physiology (especially sleep and circadian rhythms). Several core operational issues related to fatigue have been identified, such as minimum rest requirements, duty length, flight time considerations, crossing multiple time zones, and night flying. Operations also can involve on-call reserve status and callout, delays due to unforeseen circumstances (e.g., weather, mechanical), and on-demand flights. Over 40 years of scientific research is now available to apply to these complex issues of flight/duty/rest requirements. This research involves controlled 'laboratory studies, simulations, and data collected during regular flight operations. When flight/duty/rest requirements are determined they are typically based on a variety of considerations, such as operational demand, safety, economic, etc. Rarely has the available, state-of-the-art science been a consideration along with these other factors when determining flight/duty/rest requirements. While the complexity of the operational demand and human physiology precludes an absolute solution, there is an opportunity to take full advantage of the current scientific data. Incorporating these data in a rational operational manner into flight/duty/rest requirements can improve flight crew performance, alertness, and ultimately, aviation safety.

  6. Pathfinder-Plus on a flight in Hawaii

    Science.gov (United States)

    1998-01-01

    Pathfinder-Plus on a flight in 1998 over Hawaiian waters. Pathfinder was a remotely controlled, solar-powered flying wing, designed and built as a proof-of-concept vehicle for a much larger aircraft capable of flying at extremely high altitudes for weeks at a time. It was built by AeroVironment, Inc., a California company that developed the human-powered Gossamer Condor and Gossamer Albatross lightweight aircraft during the 1970s, and later made the solar-electric powered Gossamer Penguin and Solar Challenger. The basic configuration and concepts for Pathfinder were first realized with the HALSOL (High Altitude Solar) aircraft, built in 1983 by AeroVironment and the Lawrence Livermore Laboratory. Pathfinder was constructed of advanced composites, plastics, and foam, and despite a wingspan of nearly 100 feet, it weighed only about 600 pounds. Pathfinder was one of several unpiloted prototypes under study by NASA's ERAST (Environmental Research Aircraft and Sensor Technology) program, a NASA-industry alliance which is helping develop advanced technologies that will enable aircraft to study the earth's environment during extremely long flights at altitudes in excess of 100,000 feet. (See project description below for Pathfinder's conversion to Pathfinder Plus.) In 1998, the Pathfinder solar-powered flying wing (see its photographs and project description) was modified into the longer-winged Pathfinder Plus configuration and on Aug. 6, 1998, Pathfinder Plus set an altitude record (for propeller-driven aircraft) of approximately 80,285 feet at the Pacific Missile Range Facility. The goal of the Pathfinder Plus flights was to validate new solar, aerodynamic, propulsion, and systems technology developed for its successor, the Centurion, which was designed to reach and sustain altitudes in the 100,000-foot range. The Centurion was succeeded by the Helios Prototype with a goal of reaching and sustaining flight at an altitude of 100,000 feet and flying non-stop for at least

  7. Pathfinder-Plus on flight over Hawaiian Islands

    Science.gov (United States)

    1998-01-01

    Pathfinder-Plus on flight over Hawaiian Islands in 1998. Pathfinder was a remotely controlled, solar-powered flying wing, designed and built as a proof-of-concept vehicle for a much larger aircraft capable of flying at extremely high altitudes for weeks at a time. It was built by AeroVironment, Inc., a California company that developed the human-powered Gossamer Condor and Gossamer Albatross lightweight aircraft during the 1970s, and later made the solar-electric powered Gossamer Penguin and Solar Challenger. The basic configuration and concepts for Pathfinder were first realized with the HALSOL (High Altitude Solar) aircraft, built in 1983 by AeroVironment and the Lawrence Livermore Laboratory. Pathfinder was constructed of advanced composites, plastics, and foam, and despite a wingspan of nearly 100 feet, it weighed only about 600 pounds. Pathfinder was one of several unpiloted prototypes under study by NASA's ERAST (Environmental Research Aircraft and Sensor Technology) program, a NASA-industry alliance which is helping develop advanced technologies that will enable aircraft to study the earth's environment during extremely long flights at altitudes in excess of 100,000 feet. (See project description below for Pathfinder's conversion to Pathfinder Plus.) In 1998, the Pathfinder solar-powered flying wing (see its photographs and project description) was modified into the longer-winged Pathfinder Plus configuration and on Aug. 6, 1998, Pathfinder Plus set an altitude record (for propeller-driven aircraft) of approximately 80,285 feet at the Pacific Missile Range Facility. The goal of the Pathfinder Plus flights was to validate new solar, aerodynamic, propulsion, and systems technology developed for its successor, the Centurion, which was designed to reach and sustain altitudes in the 100,000-foot range. The Centurion was succeeded by the Helios Prototype with a goal of reaching and sustaining flight at an altitude of 100,000 feet and flying non-stop for at least 4

  8. The effects of display and autopilot functions on pilot workload for Single Pilot Instrument Flight Rule (SPIFR) operations

    Science.gov (United States)

    Hoh, Roger H.; Smith, James C.; Hinton, David A.

    1987-01-01

    An analytical and experimental research program was conducted to develop criteria for pilot interaction with advanced controls and displays in single pilot instrument flight rules (SPIFR) operations. The analytic phase reviewed fundamental considerations for pilot workload taking into account existing data, and using that data to develop a divided attention SPIFR pilot workload model. The pilot model was utilized to interpret the two experimental phases. The first experimental phase was a flight test program that evaluated pilot workload in the presence of current and near-term displays and autopilot functions. The second experiment was conducted on a King Air simulator, investigating the effects of co-pilot functions in the presence of very high SPIFR workload. The results indicate that the simplest displays tested were marginal for SPIFR operations. A moving map display aided the most in mental orientation, but had inherent deficiencies as a stand alone replacement for an HSI. Autopilot functions were highly effective for reducing pilot workload. The simulator tests showed that extremely high workload situations can be adequately handled when co-pilot functions are provided.

  9. Mobilizing First-Line Managers as Organizational Strategy Makers: The Case of Environmentally Sustainable Operations

    OpenAIRE

    Gjøsæter, Åge

    2013-01-01

    The purpose of the paper is to investigate how first-line managers are mobilized as organizational strategy makers. The research case is a campaign launched by a Norwegian shipping company servicing the petroleum industry. The strategic idea on which the campaign was based was to operate the company`s fleet of offshore service vessels in an environmentally sustainable way, to be realized by carrying out fuel-saving operations on board the vessels. A strategic idea is supposed to set out a vie...

  10. 14 CFR 125.75 - Airplane flight manual.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 3 2010-01-01 2010-01-01 false Airplane flight manual. 125.75 Section 125... OPERATIONS: AIRPLANES HAVING A SEATING CAPACITY OF 20 OR MORE PASSENGERS OR A MAXIMUM PAYLOAD CAPACITY OF 6... Airplane flight manual. (a) Each certificate holder shall keep a current approved Airplane Flight Manual or...

  11. In-flight Assessment of Lower Body Negative Pressure as a Countermeasure for Post-flight Orthostatic Intolerance

    Science.gov (United States)

    Charles, J. B.; Stenger, M. B.; Phillips, T. R.; Arzeno, N. M.; Lee, S. M. C.

    2009-01-01

    Introduction. We investigated the efficacy of combining fluid loading with sustained lower body negative pressure (LBNP) to reverse orthostatic intolerance associated with weightlessness during and immediately after Space Shuttle missions. Methods. Shuttle astronauts (n=13) underwent 4 hours of LBNP at -30 mm(Hg) and ingested water and salt ( soak treatment) during flight in two complementary studies. In the first study (n=8), pre-flight heart rate (HR) and blood pressure (BP) responses to an LBNP ramp (5-min stages of -10 mm(Hg) steps to -50 mm(Hg) were compared to responses in-flight one and two days after LBNP soak treatment. In the second study (n=5), the soak was performed 24 hr before landing, and post-flight stand test results of soak subjects were compared with those of an untreated cohort (n=7). In both studies, the soak was scheduled late in the mission and was preceded by LBNP ramp tests at approximately 3-day intervals to document the in-flight loss of orthostatic tolerance. Results. Increased HR and decreased BP responses to LBNP were evident early in-flight. In-flight, one day after LBNP soak, HR and BP responses to LBNP were not different from pre-flight, but the effect was absent the second day after treatment. Post-flight there were no between-group differences in HR and BP responses to standing, but all 5 treatment subjects completed the 5-minute stand test whereas 2 of 7 untreated cohort subjects did not. Discussion. Exaggerated HR and BP responses to LBNP were evident within the first few days of space flight, extending results from Skylab. The combined LBNP and fluid ingestion countermeasure restored in-flight LBNP HR and BP responses to pre-flight levels and provided protection of post-landing orthostatic function. Unfortunately, any benefits of the combined countermeasure were offset by the complexity of its implementation, making it inappropriate for routine application during Shuttle flights.

  12. Comparative Analysis of Bat Genomes Provides Insight into the Evolution of Flight and Immunity

    DEFF Research Database (Denmark)

    Zhang, Guojie; Cowled, Christopher; Shi, Zhengli

    2013-01-01

    Bats are the only mammals capable of sustained flight and are notorious reservoir hosts for some of the world's most highly pathogenic viruses, including Nipah, Hendra, Ebola, and severe acute respiratory syndrome (SARS). To identify genetic changes associated with the development of bat-specific......Bats are the only mammals capable of sustained flight and are notorious reservoir hosts for some of the world's most highly pathogenic viruses, including Nipah, Hendra, Ebola, and severe acute respiratory syndrome (SARS). To identify genetic changes associated with the development of bat...

  13. IRVE-II Post-Flight Trajectory Reconstruction

    Science.gov (United States)

    O'Keefe, Stephen A.; Bose, David M.

    2010-01-01

    NASA s Inflatable Re-entry Vehicle Experiment (IRVE) II successfully demonstrated an inflatable aerodynamic decelerator after being launched aboard a sounding rocket from Wallops Flight Facility (WFF). Preliminary day of flight data compared well with pre-flight Monte Carlo analysis, and a more complete trajectory reconstruction performed with an Extended Kalman Filter (EKF) approach followed. The reconstructed trajectory and comparisons to an attitude solution provided by NASA Sounding Rocket Operations Contract (NSROC) personnel at WFF are presented. Additional comparisons are made between the reconstructed trajectory and pre and post-flight Monte Carlo trajectory predictions. Alternative observations of the trajectory are summarized which leverage flight accelerometer measurements, the pre-flight aerodynamic database, and on-board flight video. Finally, analysis of the payload separation and aeroshell deployment events are presented. The flight trajectory is reconstructed to fidelity sufficient to assess overall project objectives related to flight dynamics and overall, IRVE-II flight dynamics are in line with expectations

  14. Sustainability innovation foundry - FY13: Merging research and operations

    Energy Technology Data Exchange (ETDEWEB)

    Mizner, Jack Harry [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Passell, Howard David [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Keller, Elizabeth James Kistin [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Gordon, Margaret Ellen [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); McNeish, Jerry A. [Sandia National Laboratories, Livermore, CA (United States); Sullivan, Kristina [Sandia National Laboratories, Livermore, CA (United States)

    2013-12-01

    Sustainability is a critical national security issue for the U.S. and other nations. Sandia National Laboratories (SNL) is already a global leader in sustainability science and technology (SS&T) as documented in this report. This report documents the ongoing work conducted this year as part of the Sustainability Innovation Foundry (SIF). The efforts of the SIF support Sandia's national and international security missions related to sustainability and resilience revolving around energy use, water use, and materials, both on site at Sandia and externally. The SIF leverages existing Sandia research and development (R&D) in sustainability science and technology to support new solutions to complex problems. The SIF also builds on existing Sandia initiatives to support transformation of Sandia into a fully sustainable entity in terms of materials, energy, and water use. In the long term, the SIF will demonstrate the efficacy of sustainability technology developed at Sandia through prototyping and test bed approaches and will provide a common platform for support of solutions to the complex problems surrounding sustainability. Highlights from this year include the Sustainability Idea Challenge, improvements in facilities energy use, lectures and presentations from relevant experts in sustainability [Dr. Barry Hughes, University of Denver], and significant development of the Institutional Transformation (IX) modeling tools to support evaluation of proposed modifications to the SNL infrastructure to realize energy savings.

  15. 75 FR 7345 - Filtered Flight Data

    Science.gov (United States)

    2010-02-19

    ... digital flight data recorder regulations affecting certain air carriers and operators. This final rule prohibits the filtering of some original flight recorder sensor signals unless a certificate holder can show... A. Verna, Avionics Systems Branch, Aircraft Certification Service, AIR-130, Federal Aviation...

  16. The development of a Flight Test Engineer's Workstation for the Automated Flight Test Management System

    Science.gov (United States)

    Tartt, David M.; Hewett, Marle D.; Duke, Eugene L.; Cooper, James A.; Brumbaugh, Randal W.

    1989-01-01

    The Automated Flight Test Management System (ATMS) is being developed as part of the NASA Aircraft Automation Program. This program focuses on the application of interdisciplinary state-of-the-art technology in artificial intelligence, control theory, and systems methodology to problems of operating and flight testing high-performance aircraft. The development of a Flight Test Engineer's Workstation (FTEWS) is presented, with a detailed description of the system, technical details, and future planned developments. The goal of the FTEWS is to provide flight test engineers and project officers with an automated computer environment for planning, scheduling, and performing flight test programs. The FTEWS system is an outgrowth of the development of ATMS and is an implementation of a component of ATMS on SUN workstations.

  17. From Sustainability-as-usual to Sustainability Excellence in Local Bioenergy Business

    Directory of Open Access Journals (Sweden)

    Heli Kasurinen

    2017-06-01

    Full Text Available Bioenergy business operators can significantly contribute to the sustainability of bioenergy systems. While research has addressed the maturity of corporate responsibility for sustainability, the maturity levels of bioenergy business have not been determined. The objectives of this research were to characterise the maturity levels of bioenergy corporate responsibility for sustainability and outline an approach by which companies can operate at the most mature sustainability excellence level. Literature, three workshops attended by bioenergy experts and a case study on biobutanol production in Brazil were used to develop the maturity model and approach. The results characterise the profitability, acceptability, and sustainability orientation maturity levels through sustainability questions and methods, and list the components of a systemic, holistic approach. Although the shift of business mindset from sustainability-as-usual to sustainability excellence is challenging, a systemic approach is necessary to broadly identify sustainability questions and a multitude of methods by which they can be answered.

  18. 14 CFR 61.98 - Flight proficiency.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 2 2010-01-01 2010-01-01 false Flight proficiency. 61.98 Section 61.98 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED) AIRMEN...) Navigation; (viii) Slow flight and stalls; (ix) Emergency operations; and (x) Postflight procedures. (2) For...

  19. Fuzzy measurements of a degree of destruction of professional skills at interruptions in training for operations in the emergency cases of flight

    Directory of Open Access Journals (Sweden)

    А. М. Невиніцин

    2000-12-01

    Full Text Available The paper deals with the problem of definition of optimal and ultimate-acceptable interruptions in training for operations in emergency cases of flight. The theory of fuzzy sets is applied for this purpose and built are belonging functions of a linguistic variable "professional preparation level". For the 1st, 2nd and 3rd classes of air traffic controllers the optimal and ultimate-acceptable interruptions in learning are determined depending on the type of emergency case of flight

  20. Setting the Theater: US Sustainment Operations in the Pacific during World War II

    Science.gov (United States)

    2016-05-26

    Clausewitz and Baron Antoine -Henri Jomini, discussed getting service members and their equipment to the right place at the right time. The sustainment of... Antoine H. Jomini, The Art of War (London: Greenhill Books; California: Presidio Press, 1992), 69. 9 Ibid. 10 Ibid. 4 operational...Jomini, Antoine Henri. The Art of War. Westport, CT: Greenwood Press, 1971. 48 Kaigun, Nihon. "Guadalcanal Campaign | Nihon Kaigun

  1. Range Flight Safety Requirements

    Science.gov (United States)

    Loftin, Charles E.; Hudson, Sandra M.

    2018-01-01

    The purpose of this NASA Technical Standard is to provide the technical requirements for the NPR 8715.5, Range Flight Safety Program, in regards to protection of the public, the NASA workforce, and property as it pertains to risk analysis, Flight Safety Systems (FSS), and range flight operations. This standard is approved for use by NASA Headquarters and NASA Centers, including Component Facilities and Technical and Service Support Centers, and may be cited in contract, program, and other Agency documents as a technical requirement. This standard may also apply to the Jet Propulsion Laboratory or to other contractors, grant recipients, or parties to agreements to the extent specified or referenced in their contracts, grants, or agreements, when these organizations conduct or participate in missions that involve range flight operations as defined by NPR 8715.5.1.2.2 In this standard, all mandatory actions (i.e., requirements) are denoted by statements containing the term “shall.”1.3 TailoringTailoring of this standard for application to a specific program or project shall be formally documented as part of program or project requirements and approved by the responsible Technical Authority in accordance with NPR 8715.3, NASA General Safety Program Requirements.

  2. Flight Management System Execution of Idle-Thrust Descents in Operations

    Science.gov (United States)

    Stell, Laurel L.

    2011-01-01

    To enable arriving aircraft to fly optimized descents computed by the flight management system (FMS) in congested airspace, ground automation must accurately predict descent trajectories. To support development of the trajectory predictor and its error models, commercial flights executed idle-thrust descents, and the recorded data includes the target speed profile and FMS intent trajectories. The FMS computes the intended descent path assuming idle thrust after top of descent (TOD), and any intervention by the controllers that alters the FMS execution of the descent is recorded so that such flights are discarded from the analysis. The horizontal flight path, cruise and meter fix altitudes, and actual TOD location are extracted from the radar data. Using more than 60 descents in Boeing 777 aircraft, the actual speeds are compared to the intended descent speed profile. In addition, three aspects of the accuracy of the FMS intent trajectory are analyzed: the meter fix crossing time, the TOD location, and the altitude at the meter fix. The actual TOD location is within 5 nmi of the intent location for over 95% of the descents. Roughly 90% of the time, the airspeed is within 0.01 of the target Mach number and within 10 KCAS of the target descent CAS, but the meter fix crossing time is only within 50 sec of the time computed by the FMS. Overall, the aircraft seem to be executing the descents as intended by the designers of the onboard automation.

  3. Flight Test of an Intelligent Flight-Control System

    Science.gov (United States)

    Davidson, Ron; Bosworth, John T.; Jacobson, Steven R.; Thomson, Michael Pl; Jorgensen, Charles C.

    2003-01-01

    inputs with the outputs provided to instrumentation only. The IFCS was not used to control the airplane. In another stage of the flight test, the Phase I pre-trained neural network was integrated into a Phase III version of the flight control system. The Phase I pretrained neural network provided realtime stability and control derivatives to a Phase III controller that was based on a stochastic optimal feedforward and feedback technique (SOFFT). This combined Phase I/III system was operated together with the research flight-control system (RFCS) of the F-15 ACTIVE during the flight test. The RFCS enables the pilot to switch quickly from the experimental- research flight mode back to the safe conventional mode. These initial IFCS ACP flight tests were completed in April 1999. The Phase I/III flight test milestone was to demonstrate, across a range of subsonic and supersonic flight conditions, that the pre-trained neural network could be used to supply real-time aerodynamic stability and control derivatives to the closed-loop optimal SOFFT flight controller. Additional objectives attained in the flight test included (1) flight qualification of a neural-network-based control system; (2) the use of a combined neural-network/closed-loop optimal flight-control system to obtain level-one handling qualities; and (3) demonstration, through variation of control gains, that different handling qualities can be achieved by setting new target parameters. In addition, data for the Phase-II (on-line-learning) neural network were collected, during the use of stacked-frequency- sweep excitation, for post-flight analysis. Initial analysis of these data showed the potential for future flight tests that will incorporate the real-time identification and on-line learning aspects of the IFCS.

  4. Trends and individual differences in response to short-haul flight operations

    Science.gov (United States)

    Chidester, Thomas R.

    1990-01-01

    A survey of airline pilots was undertaken to determine normative patterns and individual differences in mood and sleep during short-haul flight operations. The results revealed that over the course of a typical 2-d trip, pilots experience a decline in positive mood, or activity, and an increase in negative mood, or tension. On layovers, pilots report experiencing sleep of shorter duration and poorer quality than at home. These patterns are very similar to those reported by Gander and Graeber (1987) and by Gander et al. (1988), using high-fidelity sleep and activity monitoring equipment. Examination of the impact of two personality dimensions extracted from the Jenkins Activity Survey measure of the Type A personality, Achievement Striving and Impatience/Irritability, suggested that Impatience/Irritability may serve as a marker of individuals most likely to experience health-related problems on trips. Achievement Striving may serve as a predictor of performance in crew settings.

  5. Sustainable operation of submerged Anammox membrane bioreactor with recycling biogas sparging for alleviating membrane fouling.

    Science.gov (United States)

    Li, Ziyin; Xu, Xindi; Xu, Xiaochen; Yang, FengLin; Zhang, ShuShen

    2015-12-01

    A submerged anaerobic ammonium oxidizing (Anammox) membrane bioreactor with recycling biogas sparging for alleviating membrane fouling has been successfully operated for 100d. Based on the batch tests, a recycling biogas sparging rate at 0.2m(3)h(-1) was fixed as an ultimate value for the sustainable operation. The mixed liquor volatile suspended solid (VSS) of the inoculum for the long operation was around 3000mgL(-1). With recycling biogas sparging rate increasing stepwise from 0 to 0.2m(3)h(-1), the reactor reached an influent total nitrogen (TN) up to 1.7gL(-1), a stable TN removal efficiency of 83% and a maximum specific Anammox activity (SAA) of 0.56kg TNkg(-1) VSSd(-1). With recycling biogas sparging rate at 0.2 m(3) h(-1) (corresponding to an aeration intensity of 118m(3)m(-2)h(-1)), the membrane operation circle could prolong by around 20 times compared to that without gas sparging. Furthermore, mechanism of membrane fouling was proposed. And with recycling biogas sparging, the VSS and EPS content increasing rate in cake layer were far less than the ones without biogas sparging. The TN removal performance and sustainable membrane operation of this system showed the appealing potential of the submerged Anammox MBR with recycling biogas sparging in treating high-strength nitrogen-containing wastewaters. Copyright © 2014 Elsevier Ltd. All rights reserved.

  6. Ranking the criteria for sustainability of community-based rural homestay programmes from the perspective of the operators

    Science.gov (United States)

    Ramli, Rohaini; Kasim, Maznah Mat; Ramli, Razamin; Kayat, Kalsom; Razak, Rafidah Abd

    2015-12-01

    Homestay is one of the government's products that promote the cultural tourism of country around the world. Homestay in Malaysia is not only thriving, but also its operation is moving gradually toward development of economic growth. Many homestays have been built throughout the country and this will give tourists an opportunity to enjoy the different and interesting environment in Malaysia. However, most of them receive less support from tourists and only certain numbers of homestays have operated consistently. This paper examines eleven sustainability criteria for homestay programme in Malaysia covering environmental, economic and sociocultural dimensions. The required data were collected through a survey of 246 homestay operators using a structured questionnaire. Data obtained was analyzed by utilizing percentage and arithmetic average. The findings revealed that the three most important criteria for homestay to remain sustained in this business area are ability and capacity, leadership and conservation of community resources. In order to improve the business performance of homestays in this country, homestay operators should focus on improving their ability and capacity and focus on enhancing their leadership skills.

  7. Pre-Flight Tests with Astronauts, Flight and Ground Hardware, to Assure On-Orbit Success

    Science.gov (United States)

    Haddad Michael E.

    2010-01-01

    On-Orbit Constraints Test (OOCT's) refers to mating flight hardware together on the ground before they will be mated on-orbit or on the Lunar surface. The concept seems simple but it can be difficult to perform operations like this on the ground when the flight hardware is being designed to be mated on-orbit in a zero-g/vacuum environment of space or low-g/vacuum environment on the Lunar/Mars Surface. Also some of the items are manufactured years apart so how are mating tasks performed on these components if one piece is on-orbit/on Lunar/Mars surface before its mating piece is planned to be built. Both the Internal Vehicular Activity (IVA) and Extra-Vehicular Activity (EVA) OOCT's performed at Kennedy Space Center will be presented in this paper. Details include how OOCT's should mimic on-orbit/Lunar/Mars surface operational scenarios, a series of photographs will be shown that were taken during OOCT's performed on International Space Station (ISS) flight elements, lessons learned as a result of the OOCT's will be presented and the paper will conclude with possible applications to Moon and Mars Surface operations planned for the Constellation Program.

  8. Development of sustainability reports for farming operations in the Basque Country using the Delphi method

    Directory of Open Access Journals (Sweden)

    Igor Alvarez Etxeberria

    2015-01-01

    Full Text Available In recent decades, publications of sustainability reports from a variety of organisations all over the world have significantly increased. Most of these companies are large and belong to the secondary and tertiary sector. This paper uses stakeholder theory to attempt to contribute to the development of sustainability reports specifically related to farming operations. This paper also uses the Delphi methodology to collect information from different stakeholders that, in turn, represent different groups of agents within the organisations involved. The conclusions indicate a difference in the assessments from the three subgroups of experts that comprise the panel.

  9. Review on flight simulators (today and tomorrow); Flight simulatior no genjo to kongo

    Energy Technology Data Exchange (ETDEWEB)

    Komura, T. [Mitsubishi Precision Company Limited, Tokyo (Japan)

    2000-04-05

    This paper presents various flight simulators. A flight simulator is classified into that for R and D on aircraft and that for flight training according to its usage. As an example of the former, the general-purpose flight simulation test facility of National Aerospace Laboratory, Science and Technology Agency is in use for development of the STOL experimental aircraft 'Asuka' and simulation experiments for space development. A civil aircraft simulator simulating the interior of a cockpit, operation feeling of piloting devices, flight performance, dynamic characteristics, an engine system and a hydraulic system like a real aircraft is in wide use for training pilots. A fighter simulator for air force is used for training detection of enemy's aircraft by radar, and missile shooting. An antisubmarine patrol aircraft simulator is used for training detection of submarines by sonic detector and magnetic detector, and torpedo air-launching. For both simulators, real simulation of detection sensors or battle environment is required. (NEDO)

  10. Annual Sustainability Report FY 2014. Incorporates NREL Site Sustainability Plan

    Energy Technology Data Exchange (ETDEWEB)

    Rukavina, Frank [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2015-07-01

    NREL's Sustainability Program is responsible for upholding all executive orders, federal regulations, U.S. Department of Energy (DOE) orders, and goals related to sustainable and resilient facility operations. But NREL continues to expand sustainable practices above and beyond the laboratory's regulations and requirements to ensure that the laboratory fulfills its mission into the future, leaves the smallest possible legacy footprint, and models sustainable operations and behaviors on national, regional, and local levels. The report, per the GRI reporting format, elaborates on multi-year goals relative to executive orders, achievements, and challenges; and success stories provide specific examples. A section called 'Sustaining NREL's Future Through Integration' provides insight into how NREL is successfully expanding the adoption of renewable energy technologies through integration.

  11. Theseus First Flight - May 24, 1996

    Science.gov (United States)

    1996-01-01

    The Theseus prototype research aircraft shows off its high aspect-ratio wing as it lifts off from Rogers Dry Lake during its first test flight from NASA's Dryden Flight Research Center, Edwards, California, on May 24, 1996. The Theseus aircraft, built and operated by Aurora Flight Sciences Corporation, Manassas, Virginia, was a unique aircraft flown at NASA's Dryden Flight Research Center, Edwards, California, under a cooperative agreement between NASA and Aurora. Dryden hosted the Theseus program, providing hangar space and range safety for flight testing. Aurora Flight Sciences was responsible for the actual flight testing, vehicle flight safety, and operation of the aircraft. The Theseus remotely piloted aircraft flew its maiden flight on May 24, 1996, at Dryden. During its sixth flight on November 12, 1996, Theseus experienced an in-flight structural failure that resulted in the loss of the aircraft. As of the beginning of the year 2000, Aurora had not rebuilt the aircraft. Theseus was built for NASA under an innovative, $4.9 million fixed-price contract by Aurora Flight Sciences Corporation and its partners, West Virginia University, Morgantown, West Virginia, and Fairmont State College, Fairmont, West Virginia. The twin-engine, unpiloted vehicle had a 140-foot wingspan, and was constructed largely of composite materials. Powered by two 80-horsepower, turbocharged piston engines that drove twin 9-foot-diameter propellers, Theseus was designed to fly autonomously at high altitudes, with takeoff and landing under the active control of a ground-based pilot in a ground control station 'cockpit.' With the potential ability to carry 700 pounds of science instruments to altitudes above 60,000 feet for durations of greater than 24 hours, Theseus was intended to support research in areas such as stratospheric ozone depletion and the atmospheric effects of future high-speed civil transport aircraft engines. Instruments carried aboard Theseus also would be able to

  12. Application of exergetic sustainability index to a nano-scale irreversible Brayton cycle operating with ideal Bose and Fermi gasses

    Energy Technology Data Exchange (ETDEWEB)

    Açıkkalp, Emin, E-mail: eacikkalp@gmail.com [Department of Mechanical and Manufacturing Engineering, Engineering Faculty, Bilecik S.E. University, Bilecik (Turkey); Caner, Necmettin [Department of Chemistry, Faculty of Arts and Sciences, Eskisehir Osmangazi University, Eskisehir (Turkey)

    2015-09-25

    Highlights: • An irreversible Brayton cycle operating quantum gasses is considered. • Exergetic sustainability index is derived for nano-scale cycles. • Nano-scale effects are considered. • Calculation are conducted for irreversible cycles. • Numerical results are presented and discussed. - Abstract: In this study, a nano-scale irreversible Brayton cycle operating with quantum gasses including Bose and Fermi gasses is researched. Developments in the nano-technology cause searching the nano-scale machines including thermal systems to be unavoidable. Thermodynamic analysis of a nano-scale irreversible Brayton cycle operating with Bose and Fermi gasses was performed (especially using exergetic sustainability index). In addition, thermodynamic analysis involving classical evaluation parameters such as work output, exergy output, entropy generation, energy and exergy efficiencies were conducted. Results are submitted numerically and finally some useful recommendations were conducted. Some important results are: entropy generation and exergetic sustainability index are affected mostly for Bose gas and power output and exergy output are affected mostly for the Fermi gas by x. At the high temperature conditions, work output and entropy generation have high values comparing with other degeneracy conditions.

  13. Proactive sustainability strategy and corporate sustainability performance: The mediating effect of sustainability control systems.

    Science.gov (United States)

    Wijethilake, Chaminda

    2017-07-01

    This study examines to what extent corporations use sustainability control systems (SCS) to translate proactive sustainability strategy into corporate sustainability performance. The study investigates the mediating effect of SCS on the relationship between proactive sustainability strategy and corporate sustainability performance. Survey data were collected from top managers in 175 multinational and local corporations operating in Sri Lanka and analyzed using Partial Least Squares Structural Equation Modeling (PLS-SEM). SCS were observed to only partially mediate the relationship between proactive sustainability strategy and corporate sustainability performance. The mediating effect of SCS is further examined under three sustainability strategies; environmental and social strategies reveal a partial mediation, while the economic strategy exhibits no mediation. The study also finds that (i) a proactive sustainability strategy is positively associated with SCS and corporate sustainability performance and (ii) SCS are positively associated with corporate sustainability performance. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Pathfinder-Plus takes off on flight in Hawaii

    Science.gov (United States)

    1998-01-01

    Pathfinder-Plus on a flight over Hawaii in 1998. Pathfinder was a remotely controlled, solar-powered flying wing, designed and built as a proof-of-concept vehicle for a much larger aircraft capable of flying at extremely high altitudes for weeks at a time. It was built by AeroVironment, Inc., a California company that developed the human-powered Gossamer Condor and Gossamer Albatross lightweight aircraft during the 1970s, and later made the solar-electric powered Gossamer Penguin and Solar Challenger. The basic configuration and concepts for Pathfinder were first realized with the HALSOL (High Altitude Solar) aircraft, built in 1983 by AeroVironment and the Lawrence Livermore Laboratory. Pathfinder was constructed of advanced composites, plastics, and foam, and despite a wingspan of nearly 100 feet, it weighed only about 600 pounds. Pathfinder was one of several unpiloted prototypes under study by NASA's ERAST (Environmental Research Aircraft and Sensor Technology) program, a NASA-industry alliance which is helping develop advanced technologies that will enable aircraft to study the earth's environment during extremely long flights at altitudes in excess of 100,000 feet. (See project description below for Pathfinder's conversion to Pathfinder Plus.) In 1998, the Pathfinder solar-powered flying wing (see its photographs and project description) was modified into the longer-winged Pathfinder Plus configuration and on Aug. 6, 1998, Pathfinder Plus set an altitude record (for propeller-driven aircraft) of approximately 80,285 feet at the Pacific Missile Range Facility. The goal of the Pathfinder Plus flights was to validate new solar, aerodynamic, propulsion, and systems technology developed for its successor, the Centurion, which was designed to reach and sustain altitudes in the 100,000-foot range. The Centurion was succeeded by the Helios Prototype with a goal of reaching and sustaining flight at an altitude of 100,000 feet and flying non-stop for at least 4 days

  15. 14 CFR 121.503 - Flight time limitations: Pilots: airplanes.

    Science.gov (United States)

    2010-01-01

    ... Operations § 121.503 Flight time limitations: Pilots: airplanes. (a) A certificate holder conducting supplemental operations may schedule a pilot to fly in an airplane for eight hours or less during any 24... 14 Aeronautics and Space 3 2010-01-01 2010-01-01 false Flight time limitations: Pilots: airplanes...

  16. Nutritional Biochemistry of Space Flight

    Science.gov (United States)

    Smith, Scott M.

    2000-01-01

    Adequate nutrition is critical for maintenance of crew health during and after extended-duration space flight. The impact of weightlessness on human physiology is profound, with effects on many systems related to nutrition, including bone, muscle, hematology, fluid and electrolyte regulation. Additionally, we have much to learn regarding the impact of weightlessness on absorption, mtabolism , and excretion of nutrients, and this will ultimately determine the nutrient requirements for extended-duration space flight. Existing nutritional requirements for extended-duration space flight have been formulated based on limited flight research, and extrapolation from ground-based research. NASA's Nutritional Biochemistry Laboratory is charged with defining the nutritional requirements for space flight. This is accomplished through both operational and research projects. A nutritional status assessment program is included operationally for all International Space Station astronauts. This medical requirement includes biochemical and dietary assessments, and is completed before, during, and after the missions. This program will provide information about crew health and nutritional status, and will also provide assessments of countermeasure efficacy. Ongoing research projects include studies of calcium and bone metabolism, and iron absorption and metabolism. The calcium studies include measurements of endocrine regulation of calcium homeostasis, biochemical marker of bone metabolism, and tracer kinetic studies of calcium movement in the body. These calcium kinetic studies allow for estimation of intestinal absorption, urinary excretion, and perhaps most importantly - deposition and resorption of calcium from bone. The Calcium Kinetics experiment is currently being prepared for flight on the Space Shuttle in 2001, and potentially for subsequent Shuttle and International Space Station missions. The iron study is intended to assess whether iron absorption is down-regulated dUl1ng

  17. Operation analysis of AC traction motors in terms of electromagnetic torque capability on sustainable railway vehicles

    OpenAIRE

    Bulucea Cornelia A.; Nicola Doru A.; Rosen Marc A.; Mastorakis Nikos E.; Bulucea Carmen A.

    2016-01-01

    Sustainable operation of electric railway systems represents a significant purpose nowadays in the development of high power and high speed locomotives and trains. At present, high speed electric vehicles mostly work with three-phase induction motors or three-phase synchronous motors as traction motors. The two electric machine types have different efficiencies at different operation points, and experience differences with respect to safety, speed and power, energy use and exergy efficiency. ...

  18. Theseus on Take-off for First Flight

    Science.gov (United States)

    1996-01-01

    The Theseus prototype research aircraft takes off for its first test flight from NASA's Dryden Flight Research Center, Edwards, California, on May 24, 1996. The Theseus aircraft, built and operated by Aurora Flight Sciences Corporation, Manassas, Virginia, was a unique aircraft flown at NASA's Dryden Flight Research Center, Edwards, California, under a cooperative agreement between NASA and Aurora. Dryden hosted the Theseus program, providing hangar space and range safety for flight testing. Aurora Flight Sciences was responsible for the actual flight testing, vehicle flight safety, and operation of the aircraft. The Theseus remotely piloted aircraft flew its maiden flight on May 24, 1996, at Dryden. During its sixth flight on November 12, 1996, Theseus experienced an in-flight structural failure that resulted in the loss of the aircraft. As of the beginning of the year 2000, Aurora had not rebuilt the aircraft. Theseus was built for NASA under an innovative, $4.9 million fixed-price contract by Aurora Flight Sciences Corporation and its partners, West Virginia University, Morgantown, West Virginia, and Fairmont State College, Fairmont, West Virginia. The twin-engine, unpiloted vehicle had a 140-foot wingspan, and was constructed largely of composite materials. Powered by two 80-horsepower, turbocharged piston engines that drove twin 9-foot-diameter propellers, Theseus was designed to fly autonomously at high altitudes, with takeoff and landing under the active control of a ground-based pilot in a ground control station 'cockpit.' With the potential ability to carry 700 pounds of science instruments to altitudes above 60,000 feet for durations of greater than 24 hours, Theseus was intended to support research in areas such as stratospheric ozone depletion and the atmospheric effects of future high-speed civil transport aircraft engines. Instruments carried aboard Theseus also would be able to validate satellite-based global environmental change measurements. Dryden

  19. 14 CFR 125.311 - Flight crewmembers at controls.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 3 2010-01-01 2010-01-01 false Flight crewmembers at controls. 125.311... CAPACITY OF 6,000 POUNDS OR MORE; AND RULES GOVERNING PERSONS ON BOARD SUCH AIRCRAFT Flight Operations § 125.311 Flight crewmembers at controls. (a) Except as provided in paragraph (b) of this section, each...

  20. A basal dromaeosaurid and size evolution preceding avian flight.

    Science.gov (United States)

    Turner, Alan H; Pol, Diego; Clarke, Julia A; Erickson, Gregory M; Norell, Mark A

    2007-09-07

    Fossil evidence for changes in dinosaurs near the lineage leading to birds and the origin of flight has been sparse. A dinosaur from Mongolia represents the basal divergence within Dromaeosauridae. The taxon's small body size and phylogenetic position imply that extreme miniaturization was ancestral for Paraves (the clade including Avialae, Troodontidae, and Dromaeosauridae), phylogenetically earlier than where flight evolution is strongly inferred. In contrast to the sustained small body sizes among avialans throughout the Cretaceous Period, the two dinosaurian lineages most closely related to birds, dromaeosaurids and troodontids, underwent four independent events of gigantism, and in some lineages size increased by nearly three orders of magnitude. Thus, change in theropod body size leading to flight's origin was not unidirectional.

  1. Flight testing a propulsion-controlled aircraft emergency flight control system on an F-15 airplane

    Science.gov (United States)

    Burcham, F. W., Jr.; Burken, John; Maine, Trindel A.

    1994-01-01

    Flight tests of a propulsion-controlled aircraft (PCA) system on an F-15 airplane have been conducted at the NASA Dryden Flight Research Center. The airplane was flown with all flight control surfaces locked both in the manual throttles-only mode and in an augmented system mode. In the latter mode, pilot thumbwheel commands and aircraft feedback parameters were used to position the throttles. Flight evaluation results showed that the PCA system can be used to land an airplane that has suffered a major flight control system failure safely. The PCA system was used to recover the F-15 airplane from a severe upset condition, descend, and land. Pilots from NASA, U.S. Air Force, U.S. Navy, and McDonnell Douglas Aerospace evaluated the PCA system and were favorably impressed with its capability. Manual throttles-only approaches were unsuccessful. This paper describes the PCA system operation and testing. It also presents flight test results and pilot comments.

  2. Guidance system operations plan for manned CM earth orbital missions using program SKYLARK 1. Section 4: Operational modes

    Science.gov (United States)

    Dunbar, J. C.

    1972-01-01

    The operational modes for the guidance system operations plan for Program SKYLARK 1 are presented. The procedures control the guidance and navigation system interfaces with the flight crew and the mission control center. The guidance operational concept is designed to comprise a set of manually initiated programs and functions which may be arranged by the flight crew to implement a large class of flight plans. This concept will permit both a late flight plan definition and a capability for real time flight plan changes.

  3. Characterization of In-Flight Processing of Alumina Powder Using a DC-RF Hybrid Plasma Flow System at Constant Low Operating Power

    Science.gov (United States)

    Nishiyama, H.; Onodera, M.; Igawa, J.; Nakajima, T.

    2009-12-01

    The aim of this study is to provide the optimum operating conditions for enhancing in-flight alumina particle heating as much as possible for particle spheroidization and aggregation of melted particles using a DC-RF hybrid plasma flow system even at constant low operating power based on the thermofluid considerations. It is clarified that the swirl flow and higher operating pressure enhance the particle melting and aggregation of melted particles coupled with increasing gas temperature downstream of a plasma uniformly in the radial direction at constant electrical discharge conditions.

  4. SURF: Taking Sustainable Remediation from Concept to Standard Operating Procedure (Invited)

    Science.gov (United States)

    Smith, L. M.; Wice, R. B.; Torrens, J.

    2013-12-01

    Over the last decade, many sectors of industrialized society have been rethinking behavior and re-engineering practices to reduce consumption of energy and natural resources. During this time, green and sustainable remediation (GSR) has evolved from conceptual discussions to standard operating procedure for many environmental remediation practitioners. Government agencies and private sector entities have incorporated GSR metrics into their performance criteria and contracting documents. One of the early think tanks for the development of GSR was the Sustainable Remediation Forum (SURF). SURF brings together representatives of government, industry, consultancy, and academia to parse the means and ends of incorporating societal and economic considerations into environmental cleanup projects. Faced with decades-old treatment programs with high energy outputs and no endpoints in sight, a small group of individuals published the institutional knowledge gathered in two years of ad hoc meetings into a 2009 White Paper on sustainable remediation drivers, practices, objectives, and case studies. Since then, SURF has expanded on those introductory topics, publishing its Framework for Integrating Sustainability into Remediation Projects, Guidance for Performing Footprint Analyses and Life-Cycle Assessments for the Remediation Industry, a compendium of metrics, and a call to improve the integration of land remediation and reuse. SURF's research and members have also been instrumental in the development of additional guidance through ASTM International and the Interstate Technology and Regulatory Council. SURF's current efforts focus on water reuse, the international perspective on GSR (continuing the conversations that were the basis of SURF's December 2012 meeting at the National Academy of Sciences in Washington, DC), and ways to capture and evaluate the societal benefits of site remediation. SURF also promotes and supports student chapters at universities across the US

  5. Formation flying as an innovative air transportation system for long-haul commercial flight : A focus on operational feasibility and potential gain

    NARCIS (Netherlands)

    Herinckx, L.E.; Gutleb, T.L.M.; Van Nunen, R.; Van Rompuy, E.; Bos, D.A.; Dijkers, H.P.A.; De Wit, J.; Radfar, H.; Sahin, S.E.; Beelarts van Blokland, W.W.A.

    2011-01-01

    Formation flying is introduced as a new and innovative air transportation system for long-haul commercial flight. With this paper the operational feasibility of formation flying is addressed, both from a market demand and economic, as well as an air traffic control perspective. Preliminary results

  6. Free Flight Rotorcraft Flight Test Vehicle Technology Development

    Science.gov (United States)

    Hodges, W. Todd; Walker, Gregory W.

    1994-01-01

    A rotary wing, unmanned air vehicle (UAV) is being developed as a research tool at the NASA Langley Research Center by the U.S. Army and NASA. This development program is intended to provide the rotorcraft research community an intermediate step between rotorcraft wind tunnel testing and full scale manned flight testing. The technologies under development for this vehicle are: adaptive electronic flight control systems incorporating artificial intelligence (AI) techniques, small-light weight sophisticated sensors, advanced telepresence-telerobotics systems and rotary wing UAV operational procedures. This paper briefly describes the system's requirements and the techniques used to integrate the various technologies to meet these requirements. The paper also discusses the status of the development effort. In addition to the original aeromechanics research mission, the technology development effort has generated a great deal of interest in the UAV community for related spin-off applications, as briefly described at the end of the paper. In some cases the technologies under development in the free flight program are critical to the ability to perform some applications.

  7. Inbound tour operators and sustainable tourism in Kenya

    African Journals Online (AJOL)

    Research in Hospitality Management is co-published by NISC (Pty) Ltd and Routledge, ... (CSR) are concepts devised in developed countries that need ... case in debates about the need to adapt sustainability's definitions to the context of developing countries. ..... sustainable strategy of the organisation as highlighted in the.

  8. Multi-objective optimisation of aircraft flight trajectories in the ATM and avionics context

    Science.gov (United States)

    Gardi, Alessandro; Sabatini, Roberto; Ramasamy, Subramanian

    2016-05-01

    The continuous increase of air transport demand worldwide and the push for a more economically viable and environmentally sustainable aviation are driving significant evolutions of aircraft, airspace and airport systems design and operations. Although extensive research has been performed on the optimisation of aircraft trajectories and very efficient algorithms were widely adopted for the optimisation of vertical flight profiles, it is only in the last few years that higher levels of automation were proposed for integrated flight planning and re-routing functionalities of innovative Communication Navigation and Surveillance/Air Traffic Management (CNS/ATM) and Avionics (CNS+A) systems. In this context, the implementation of additional environmental targets and of multiple operational constraints introduces the need to efficiently deal with multiple objectives as part of the trajectory optimisation algorithm. This article provides a comprehensive review of Multi-Objective Trajectory Optimisation (MOTO) techniques for transport aircraft flight operations, with a special focus on the recent advances introduced in the CNS+A research context. In the first section, a brief introduction is given, together with an overview of the main international research initiatives where this topic has been studied, and the problem statement is provided. The second section introduces the mathematical formulation and the third section reviews the numerical solution techniques, including discretisation and optimisation methods for the specific problem formulated. The fourth section summarises the strategies to articulate the preferences and to select optimal trajectories when multiple conflicting objectives are introduced. The fifth section introduces a number of models defining the optimality criteria and constraints typically adopted in MOTO studies, including fuel consumption, air pollutant and noise emissions, operational costs, condensation trails, airspace and airport operations

  9. Design and Development of a Flight Route Modification, Logging, and Communication Network

    Science.gov (United States)

    Merlino, Daniel K.; Wilson, C. Logan; Carboneau, Lindsey M.; Wilder, Andrew J.; Underwood, Matthew C.

    2016-01-01

    There is an overwhelming desire to create and enhance communication mechanisms between entities that operate within the National Airspace System. Furthermore, airlines are always extremely interested in increasing the efficiency of their flights. An innovative system prototype was developed and tested that improves collaborative decision making without modifying existing infrastructure or operational procedures within the current Air Traffic Management System. This system enables collaboration between flight crew and airline dispatchers to share and assess optimized flight routes through an Internet connection. Using a sophisticated medium-fidelity flight simulation environment, a rapid-prototyping development, and a unified modeling language, the software was designed to ensure reliability and scalability for future growth and applications. Ensuring safety and security were primary design goals, therefore the software does not interact or interfere with major flight control or safety systems. The system prototype demonstrated an unprecedented use of in-flight Internet to facilitate effective communication with Airline Operations Centers, which may contribute to increased flight efficiency for airlines.

  10. Data Mining Methods Applied to Flight Operations Quality Assurance Data: A Comparison to Standard Statistical Methods

    Science.gov (United States)

    Stolzer, Alan J.; Halford, Carl

    2007-01-01

    In a previous study, multiple regression techniques were applied to Flight Operations Quality Assurance-derived data to develop parsimonious model(s) for fuel consumption on the Boeing 757 airplane. The present study examined several data mining algorithms, including neural networks, on the fuel consumption problem and compared them to the multiple regression results obtained earlier. Using regression methods, parsimonious models were obtained that explained approximately 85% of the variation in fuel flow. In general data mining methods were more effective in predicting fuel consumption. Classification and Regression Tree methods reported correlation coefficients of .91 to .92, and General Linear Models and Multilayer Perceptron neural networks reported correlation coefficients of about .99. These data mining models show great promise for use in further examining large FOQA databases for operational and safety improvements.

  11. DataComm in Flight Deck Surface Trajectory-Based Operations

    Science.gov (United States)

    Bakowski, Deborah L.; Foyle, David C.; Hooey, Becky L.; Meyer, Glenn R.; Wolter, Cynthia A.

    2012-01-01

    The purpose of this pilot-in-the-loop aircraft taxi simulation was to evaluate a NextGen concept for surface trajectory-based operations (STBO) in which air traffic control (ATC) issued taxi clearances with a required time of arrival (RTA) by Data Communications (DataComm). Flight deck avionics, driven by an error-nulling algorithm, displayed the speed needed to meet the RTA. To ensure robustness of the algorithm, the ability of 10 two-pilot crews to meet the RTA was tested in nine experimental trials representing a range of realistic conditions including a taxi route change, an RTA change, a departure clearance change, and a crossing traffic hold scenario. In some trials, these DataComm taxi clearances or clearance modifications were accompanied by 'preview' information, in which the airport map display showed a preview of the proposed route changes, including the necessary speed to meet the RTA. Overall, the results of this study show that with the aid of the RTA speed algorithm, pilots were able to meet their RTAs with very little time error in all of the robustness-testing scenarios. Results indicated that when taxi clearance changes were issued by DataComm only, pilots required longer notification distances than with voice communication. However, when the DataComm was accompanied by graphical preview, the notification distance required by pilots was equivalent to that for voice.

  12. Critical Care Air Transport Team severe traumatic brain injury short-term outcomes during flight for Operation Iraqi Freedom/Operation Enduring Freedom.

    Science.gov (United States)

    Boyd, L Renee; Borawski, J; Lairet, J; Limkakeng, A T

    2017-10-01

    Our understanding of the expertise and equipment required to air transport injured soldiers with severe traumatic brain injuries (TBIs) continue to evolve. We conducted a retrospective chart review of characteristics, interventions required and short-term outcomes of patients with severe TBI managed by the US Air Force Critical Care Air Transport Teams (CCATTs) deployed in support of Operation Iraqi Freedom and Operation Enduring Freedom between 1 June 2007 and 31 August 2010. Patients were cared for based on guidelines given by the Brain Trauma Foundation and the Joint Theater Trauma System by non-neurosurgeon physicians with dedicated neurocritical care training. We report basic characteristics, injuries, interventions required and complications during transport. Intracranial haemorrhage was the most common diagnosis in this cohort. Most injuries were weapon related. During this study, there were no reported in-flight deaths. The majority of patients were mechanically ventilated. There were 45 patients who required at least one vasopressor to maintain adequate tissue perfusion, including four patients who required three or more. Some patients required intracranial pressure (ICP) management, treatment of diabetes insipidus and/or seizure prophylaxis medications. Air transport personnel must be prepared to provide standard critical care but also care specific to TBIs, including ICP control and management of diabetes insipidus. Although these patients and their potential complications are traditionally managed by neurosurgeons, those providers without neurosurgical backgrounds can be provided this training to help fill a wartime need. This study provides data for the future development of air transport guidelines for validating and clearing flight surgeons. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/.

  13. Ambiguous Tilt and Translation Motion Cues after Space Flight and Otolith Assessment during Post-Flight Re-Adaptation

    Science.gov (United States)

    Wood, Scott J.; Clarke, A. H.; Harm, D. L.; Rupert, A. H.; Clement, G. R.

    2009-01-01

    Adaptive changes during space flight in how the brain integrates vestibular cues with other sensory information can lead to impaired movement coordination, vertigo, spatial disorientation and perceptual illusions following Gtransitions. These studies are designed to examine both the physiological basis and operational implications for disorientation and tilt-translation disturbances following short duration space flights.

  14. Product Lifecycle Management and Sustainable Space Exploration

    Science.gov (United States)

    Caruso, Pamela W.; Dumbacher, Daniel L.; Grieves, Michael

    2011-01-01

    This slide presentation reviews the use of product lifecycle management (PLM) in the general aerospace industry, its use and development at NASA and at Marshall Space Flight Center, and how the use of PLM can lead to sustainable space exploration.

  15. An adaptive dual-optimal path-planning technique for unmanned air vehicles with application to solar-regenerative high altitude long endurance flight

    Science.gov (United States)

    Whitfield, Clifford A.

    2009-12-01

    A multi-objective technique for Unmanned Air Vehicle (UAV) path and trajectory autonomy generation, through task allocation and sensor fusion has been developed. The Dual-Optimal Path-Planning (D-O.P-P.) Technique generates on-line adaptive flight paths for UAVs based on available flight windows and environmental influenced objectives. The environmental influenced optimal condition, known as the driver' determines the condition, within a downstream virtual window of possible vehicle destinations and orientation built from the UAV kinematics. The intermittent results are pursued by a dynamic optimization technique to determine the flight path. This sequential optimization technique is a multi-objective optimization procedure consisting of two goals, without requiring additional information to combine the conflicting objectives into a single-objective. An example case-study and additional applications are developed and the results are discussed; including the application to the field of Solar Regenerative (SR) High Altitude Long Endurance (HALE) UAV flight. Harnessing solar energy has recently been adapted for use on high altitude UAV platforms. An aircraft that uses solar panels and powered by the sun during the day and through the night by SR systems, in principle could sustain flight for weeks or months. The requirements and limitations of solar powered flight were determined. The SR-HALE UAV platform geometry and flight characteristics were selected from an existing aircraft that has demonstrated the capability for sustained flight through flight tests. The goals were to maintain continual Situational Awareness (SA) over a case-study selected Area of Interest (AOI) and existing UAV power and surveillance systems. This was done for still wind and constant wind conditions at altitude along with variations in latitude. The characteristics of solar flux and the dependence on the surface location and orientation were established along with fixed flight maneuvers for

  16. A Decentralized Approach to Formation Flight Routing

    NARCIS (Netherlands)

    Visser, H.G.; Lopes dos Santos, Bruno F.; Verhagen, C.M.A.

    2016-01-01

    This paper describes the development of an optimization-based cooperative planning system for the efficient routing and scheduling of flight formations. This study considers the use of formation flight as a means to reduce the overall fuel consumption of civil aviation in long-haul operations. It

  17. Rocket-borne time-of-flight mass spectrometry

    Science.gov (United States)

    Reiter, R. F.

    1976-01-01

    Theoretical and numerical analyses are made of planar, cylindrical and spherical-electrode two-field time-of-flight mass spectrometers in order to optimize their operating conditions. A method is introduced which can improve the resolving power of these instruments by a factor of 7.5. Potential barrier gating in time-of-flight mass spectrometers is also analyzed. Experimental studies of a miniature cylindrical-electrode and a hemispherical-electrode time-of-flight mass spectrometer are presented. Their sensitivity and ability to operate at D-region pressures with an open source make them ideal instruments for D-region ion composition measurements. A sounding rocket experiment package carrying a cylindrical electrode time-of-flight mass spectrometer was launched. The data indicate that essentially 100% of the positive electric charge on positive ions is carried by ions with mass-to-charge ratios greater than 500 below an altitude of 92 km. These heavy charge carriers were present at altitudes up to about 100 km.

  18. Rocket-borne time-of-flight mass spectrometry

    International Nuclear Information System (INIS)

    Reiter, R.F.

    1976-08-01

    Theoretical and numerical analyses are made of planar-, cylindrical- and spherical-electrode two-field time-of-flight mass spectrometers in order to optimize their operating conditions. A method is introduced which can improve the resolving power of these instruments by a factor of 7.5. Potential barrier gating in time-of-flight mass spectrometers is also analyzed. Experimental studies of a miniature cylindrical-electrode and a hemispherical-electrode time-of-flight mass spectrometer are presented. Their sensitivity and ability to operate at D-region pressures with an open source make them ideal instruments for D-region ion composition measurements. A sounding rocket experiment package carrying a cylindrical electrode time-of-flight mass spectrometer was launched. The data indicate that essentially 100% of the positive electric charge on positive ions is carried by ions with mass-to-charge ratios greater than 500 below an altitude of 92 km. These heavy charge carriers were present at altitudes up to about 100 km

  19. Implementation and flight tests for the Digital Integrated Automatic Landing System (DIALS). Part 1: Flight software equations, flight test description and selected flight test data

    Science.gov (United States)

    Hueschen, R. M.

    1986-01-01

    Five flight tests of the Digital Automated Landing System (DIALS) were conducted on the Advanced Transport Operating Systems (ATOPS) Transportation Research Vehicle (TSRV) -- a modified Boeing 737 aircraft for advanced controls and displays research. These flight tests were conducted at NASA's Wallops Flight Center using the microwave landing system (MLS) installation on runway 22. This report describes the flight software equations of the DIALS which was designed using modern control theory direct-digital design methods and employed a constant gain Kalman filter. Selected flight test performance data is presented for localizer (runway centerline) capture and track at various intercept angles, for glideslope capture and track of 3, 4.5, and 5 degree glideslopes, for the decrab maneuver, and for the flare maneuver. Data is also presented to illustrate the system performance in the presence of cross, gust, and shear winds. The mean and standard deviation of the peak position errors for localizer capture were, respectively, 24 feet and 26 feet. For mild wind conditions, glideslope and localizer tracking position errors did not exceed, respectively, 5 and 20 feet. For gusty wind conditions (8 to 10 knots), these errors were, respectively, 10 and 30 feet. Ten hands off automatic lands were performed. The standard deviation of the touchdown position and velocity errors from the mean values were, respectively, 244 feet and 0.7 feet/sec.

  20. On modeling human reliability in space flights - Redundancy and recovery operations

    Science.gov (United States)

    Aarset, M.; Wright, J. F.

    The reliability of humans is of paramount importance to the safety of space flight systems. This paper describes why 'back-up' operators might not be the best solution, and in some cases, might even degrade system reliability. The problem associated with human redundancy calls for special treatment in reliability analyses. The concept of Standby Redundancy is adopted, and psychological and mathematical models are introduced to improve the way such problems can be estimated and handled. In the past, human reliability has practically been neglected in most reliability analyses, and, when included, the humans have been modeled as a component and treated numerically the way technical components are. This approach is not wrong in itself, but it may lead to systematic errors if too simple analogies from the technical domain are used in the modeling of human behavior. In this paper redundancy in a man-machine system will be addressed. It will be shown how simplification from the technical domain, when applied to human components of a system, may give non-conservative estimates of system reliability.

  1. Anesthesia and critical-care delivery in weightlessness: A challenge for research in parabolic flight analogue space surgery studies

    Science.gov (United States)

    Ball, Chad G.; Keaney, Marilyn A.; Chun, Rosaleen; Groleau, Michelle; Tyssen, Michelle; Keyte, Jennifer; Broderick, Timothy J.; Kirkpatrick, Andrew W.

    2010-03-01

    BackgroundMultiple nations are actively pursuing manned exploration of space beyond low-earth orbit. The responsibility to improve surgical care for spaceflight is substantial. Although the use of parabolic flight as a terrestrial analogue to study surgery in weightlessness (0 g) is well described, minimal data is available to guide the appropriate delivery of anesthesia. After studying anesthetized pigs in a 0 g parabolic flight environment, our group developed a comprehensive protocol describing prolonged anesthesia in a parabolic flight analogue space surgery study (PFASSS). Novel challenges included a physically remote vivarium, prolonged (>10 h) anesthetic requirements, and the provision of veterinary operating room/intensive care unit (ICU) equivalency on-board an aircraft with physical dimensions of ethical approval, multiple ground laboratory sessions were conducted with combinations of anesthetic, pre-medication, and induction protocols on Yorkshire-cross specific pathogen-free (SPF) pigs. Several constant rate infusion (CRI) intravenous anesthetic combinations were tested. In each regimen, opioids were administered to ensure analgesia. Ventilation was supported mechanically with blended gradients of oxygen. The best performing terrestrial 1 g regime was flight tested in parabolic flight for its effectiveness in sustaining optimal and prolonged anesthesia, analgesia, and maintaining hemodynamic stability. Each flight day, a fully anesthetized, ventilated, and surgically instrumented pig was transported to the Flight Research Laboratory (FRL) in a temperature-controlled animal ambulance. A modular on-board surgical/ICU suite with appropriate anesthesia/ICU and surgical support capabilities was employed. ResultsThe mean duration of anesthesia (per flight day) was 10.28 h over four consecutive days. A barbiturate and ketamine-based CRI anesthetic regimen supplemented with narcotic analgesia by bolus administration offered the greatest prolonged hemodynamic

  2. Pathfinder-Plus on flight over Hawaiian island N'ihau

    Science.gov (United States)

    1998-01-01

    Pathfinder-Plus on a flight over the Hawaiian island of N'ihau in 1998. Pathfinder was a remotely controlled, solar-powered flying wing, designed and built as a proof-of-concept vehicle for a much larger aircraft capable of flying at extremely high altitudes for weeks at a time. It was built by AeroVironment, Inc., a California company that developed the human-powered Gossamer Condor and Gossamer Albatross lightweight aircraft during the 1970s, and later made the solar-electric powered Gossamer Penguin and Solar Challenger. The basic configuration and concepts for Pathfinder were first realized with the HALSOL (High Altitude Solar) aircraft, built in 1983 by AeroVironment and the Lawrence Livermore Laboratory. Pathfinder was constructed of advanced composites, plastics, and foam, and despite a wingspan of nearly 100 feet, it weighed only about 600 pounds. Pathfinder was one of several unpiloted prototypes under study by NASA's ERAST (Environmental Research Aircraft and Sensor Technology) program, a NASA-industry alliance which is helping develop advanced technologies that will enable aircraft to study the earth's environment during extremely long flights at altitudes in excess of 100,000 feet. (See project description below for Pathfinder's conversion to Pathfinder Plus.) In 1998, the Pathfinder solar-powered flying wing (see its photographs and project description) was modified into the longer-winged Pathfinder Plus configuration and on Aug. 6, 1998, Pathfinder Plus set an altitude record (for propeller-driven aircraft) of approximately 80,285 feet at the Pacific Missile Range Facility. The goal of the Pathfinder Plus flights was to validate new solar, aerodynamic, propulsion, and systems technology developed for its successor, the Centurion, which was designed to reach and sustain altitudes in the 100,000-foot range. The Centurion was succeeded by the Helios Prototype with a goal of reaching and sustaining flight at an altitude of 100,000 feet and flying non

  3. Pathfinder-Plus on flight near Hawaiian island N'ihau

    Science.gov (United States)

    1998-01-01

    Pathfinder-Plus on a flight with the Hawaiian island of N'ihau in the background. Pathfinder was a remotely controlled, solar-powered flying wing, designed and built as a proof-of-concept vehicle for a much larger aircraft capable of flying at extremely high altitudes for weeks at a time. It was built by AeroVironment, Inc., a California company that developed the human-powered Gossamer Condor and Gossamer Albatross lightweight aircraft during the 1970s, and later made the solar-electric powered Gossamer Penguin and Solar Challenger. The basic configuration and concepts for Pathfinder were first realized with the HALSOL (High Altitude Solar) aircraft, built in 1983 by AeroVironment and the Lawrence Livermore Laboratory. Pathfinder was constructed of advanced composites, plastics, and foam, and despite a wingspan of nearly 100 feet, it weighed only about 600 pounds. Pathfinder was one of several unpiloted prototypes under study by NASA's ERAST (Environmental Research Aircraft and Sensor Technology) program, a NASA-industry alliance which is helping develop advanced technologies that will enable aircraft to study the earth's environment during extremely long flights at altitudes in excess of 100,000 feet. (See project description below for Pathfinder's conversion to Pathfinder Plus.) In 1998, the Pathfinder solar-powered flying wing (see its photographs and project description) was modified into the longer-winged Pathfinder Plus configuration and on Aug. 6, 1998, Pathfinder Plus set an altitude record (for propeller-driven aircraft) of approximately 80,285 feet at the Pacific Missile Range Facility. The goal of the Pathfinder Plus flights was to validate new solar, aerodynamic, propulsion, and systems technology developed for its successor, the Centurion, which was designed to reach and sustain altitudes in the 100,000-foot range. The Centurion was succeeded by the Helios Prototype with a goal of reaching and sustaining flight at an altitude of 100,000 feet and

  4. Initial Investigations of Controller Tools and Procedures for Schedule-Based Arrival Operations with Mixed Flight-Deck Interval Management Equipage

    Science.gov (United States)

    Callantine, Todd J.; Cabrall, Christopher; Kupfer, Michael; Omar, Faisal G.; Prevot, Thomas

    2012-01-01

    NASA?s Air Traffic Management Demonstration-1 (ATD-1) is a multi-year effort to demonstrate high-throughput, fuel-efficient arrivals at a major U.S. airport using NASA-developed scheduling automation, controller decision-support tools, and ADS-B-enabled Flight-Deck Interval Management (FIM) avionics. First-year accomplishments include the development of a concept of operations for managing scheduled arrivals flying Optimized Profile Descents with equipped aircraft conducting FIM operations, and the integration of laboratory prototypes of the core ATD-1 technologies. Following each integration phase, a human-in-the-loop simulation was conducted to evaluate and refine controller tools, procedures, and clearance phraseology. From a ground-side perspective, the results indicate the concept is viable and the operations are safe and acceptable. Additional training is required for smooth operations that yield notable benefits, particularly in the areas of FIM operations and clearance phraseology.

  5. Supersonic Retropropulsion Flight Test Concepts

    Science.gov (United States)

    Post, Ethan A.; Dupzyk, Ian C.; Korzun, Ashley M.; Dyakonov, Artem A.; Tanimoto, Rebekah L.; Edquist, Karl T.

    2011-01-01

    NASA's Exploration Technology Development and Demonstration Program has proposed plans for a series of three sub-scale flight tests at Earth for supersonic retropropulsion, a candidate decelerator technology for future, high-mass Mars missions. The first flight test in this series is intended to be a proof-of-concept test, demonstrating successful initiation and operation of supersonic retropropulsion at conditions that replicate the relevant physics of the aerodynamic-propulsive interactions expected in flight. Five sub-scale flight test article concepts, each designed for launch on sounding rockets, have been developed in consideration of this proof-of-concept flight test. Commercial, off-the-shelf components are utilized as much as possible in each concept. The design merits of the concepts are compared along with their predicted performance for a baseline trajectory. The results of a packaging study and performance-based trade studies indicate that a sounding rocket is a viable launch platform for this proof-of-concept test of supersonic retropropulsion.

  6. A Vision of Quantitative Imaging Technology for Validation of Advanced Flight Technologies

    Science.gov (United States)

    Horvath, Thomas J.; Kerns, Robert V.; Jones, Kenneth M.; Grinstead, Jay H.; Schwartz, Richard J.; Gibson, David M.; Taylor, Jeff C.; Tack, Steve; Dantowitz, Ronald F.

    2011-01-01

    Flight-testing is traditionally an expensive but critical element in the development and ultimate validation and certification of technologies destined for future operational capabilities. Measurements obtained in relevant flight environments also provide unique opportunities to observe flow phenomenon that are often beyond the capabilities of ground testing facilities and computational tools to simulate or duplicate. However, the challenges of minimizing vehicle weight and internal complexity as well as instrumentation bandwidth limitations often restrict the ability to make high-density, in-situ measurements with discrete sensors. Remote imaging offers a potential opportunity to noninvasively obtain such flight data in a complementary fashion. The NASA Hypersonic Thermodynamic Infrared Measurements Project has demonstrated such a capability to obtain calibrated thermal imagery on a hypersonic vehicle in flight. Through the application of existing and accessible technologies, the acreage surface temperature of the Shuttle lower surface was measured during reentry. Future hypersonic cruise vehicles, launcher configurations and reentry vehicles will, however, challenge current remote imaging capability. As NASA embarks on the design and deployment of a new Space Launch System architecture for access beyond earth orbit (and the commercial sector focused on low earth orbit), an opportunity exists to implement an imagery system and its supporting infrastructure that provides sufficient flexibility to incorporate changing technology to address the future needs of the flight test community. A long term vision is offered that supports the application of advanced multi-waveband sensing technology to aid in the development of future aerospace systems and critical technologies to enable highly responsive vehicle operations across the aerospace continuum, spanning launch, reusable space access and global reach. Motivations for development of an Agency level imagery

  7. Theseus Waits on Lakebed for First Flight

    Science.gov (United States)

    1996-01-01

    The Theseus prototype remotely-piloted aircraft (RPA) waits on the lakebed before its first test flight from NASA's Dryden Flight Research Center, Edwards, California, on May 24, 1996. The Theseus aircraft, built and operated by Aurora Flight Sciences Corporation, Manassas, Virginia, was a unique aircraft flown at NASA's Dryden Flight Research Center, Edwards, California, under a cooperative agreement between NASA and Aurora. Dryden hosted the Theseus program, providing hangar space and range safety for flight testing. Aurora Flight Sciences was responsible for the actual flight testing, vehicle flight safety, and operation of the aircraft. The Theseus remotely piloted aircraft flew its maiden flight on May 24, 1996, at Dryden. During its sixth flight on November 12, 1996, Theseus experienced an in-flight structural failure that resulted in the loss of the aircraft. As of the beginning of the year 2000, Aurora had not rebuilt the aircraft. Theseus was built for NASA under an innovative, $4.9 million fixed-price contract by Aurora Flight Sciences Corporation and its partners, West Virginia University, Morgantown, West Virginia, and Fairmont State College, Fairmont, West Virginia. The twin-engine, unpiloted vehicle had a 140-foot wingspan, and was constructed largely of composite materials. Powered by two 80-horsepower, turbocharged piston engines that drove twin 9-foot-diameter propellers, Theseus was designed to fly autonomously at high altitudes, with takeoff and landing under the active control of a ground-based pilot in a ground control station 'cockpit.' With the potential ability to carry 700 pounds of science instruments to altitudes above 60,000 feet for durations of greater than 24 hours, Theseus was intended to support research in areas such as stratospheric ozone depletion and the atmospheric effects of future high-speed civil transport aircraft engines. Instruments carried aboard Theseus also would be able to validate satellite-based global environmental

  8. Data Mining of NASA Boeing 737 Flight Data: Frequency Analysis of In-Flight Recorded Data

    Science.gov (United States)

    Butterfield, Ansel J.

    2001-01-01

    Data recorded during flights of the NASA Trailblazer Boeing 737 have been analyzed to ascertain the presence of aircraft structural responses from various excitations such as the engine, aerodynamic effects, wind gusts, and control system operations. The NASA Trailblazer Boeing 737 was chosen as a focus of the study because of a large quantity of its flight data records. The goal of this study was to determine if any aircraft structural characteristics could be identified from flight data collected for measuring non-structural phenomena. A number of such data were examined for spatial and frequency correlation as a means of discovering hidden knowledge of the dynamic behavior of the aircraft. Data recorded from on-board dynamic sensors over a range of flight conditions showed consistently appearing frequencies. Those frequencies were attributed to aircraft structural vibrations.

  9. Space shuttle operations integration plan

    Science.gov (United States)

    1975-01-01

    The Operations Integration Plan is presented, which is to provide functional definition of the activities necessary to develop and integrate shuttle operating plans and facilities to support flight, flight control, and operations. It identifies the major tasks, the organizations responsible, their interrelationships, the sequence of activities and interfaces, and the resultant products related to operations integration.

  10. The Italian Cloud-based brokering Infrastructure to sustain Interoperability for Operative Hydrology

    Science.gov (United States)

    Boldrini, E.; Pecora, S.; Bussettini, M.; Bordini, F.; Nativi, S.

    2015-12-01

    This work presents the informatics platform carried out to implement the National Hydrological Operative Information System of Italy. In particular, the presentation will focus on the governing aspects of the cloud infrastructure and brokering software that make possible to sustain the hydrology data flow between heterogeneous user clients and data providers.The Institute for Environmental Protection and Research, ISPRA (Istituto Superiore per la Protezione e la Ricerca Ambientale) in collaboration with the Regional Agency for Environmental Protection in the Emilia-Romagna region, ARPA-ER (Agenzia Regionale per la Prevenzione e l´Ambiente dell´Emilia-Romagna) and CNR-IIA (National Research Council of Italy) designed and developed an innovative platform for the discovery and access of hydrological data coming from 19 Italian administrative regions and 2 Italian autonomous provinces, in near real time. ISPRA has deployed and governs such a system. The presentation will introduce and discuss the technological barriers for interoperability as well as social and policy ones. The adopted solutions will be described outlining the sustainability challenges and benefits.

  11. 14 CFR 91.1059 - Flight time limitations and rest requirements: One or two pilot crews.

    Science.gov (United States)

    2010-01-01

    ... OPERATING AND FLIGHT RULES Fractional Ownership Operations Program Management § 91.1059 Flight time... Rest 10 Hours 12 Hours. (6) Minimum After Duty Rest Period for Multi-Time Zone Flights 14 Hours 18... 14 Aeronautics and Space 2 2010-01-01 2010-01-01 false Flight time limitations and rest...

  12. Simulation Tools in the Armed Forces Interfaced by the Operational Design

    Directory of Open Access Journals (Sweden)

    Žentek Miroslav

    2017-06-01

    Full Text Available The operational design and its practical application are directly influenced by the training, experiences of the individual command levels and as well they are determined by the economic development of the country. Its quality implementation in the practice is directly addicted upon operational art, which is the real output of the cognitive approach by commanders and staff, by air traffic control instructors and inspectors. And that's what it is sustained by their experience, cognition and as well as verdict - to propose strategies and operations to set up and utilize armed forces. The usage of the simulation tool and synthetic environment is the core part to reach the aim of the high level of the efficiency and at the same time to reach the required level in the flight region safety.

  13. A Systematic Approach for Real-Time Operator Functional State Assessment

    Science.gov (United States)

    Zhang, Guangfan; Wang, Wei; Pepe, Aaron; Xu, Roger; Schnell, Thomas; Anderson, Nick; Heitkamp, Dean; Li, Jiang; Li, Feng; McKenzie, Frederick

    2012-01-01

    A task overload condition often leads to high stress for an operator, causing performance degradation and possibly disastrous consequences. Just as dangerous, with automated flight systems, an operator may experience a task underload condition (during the en-route flight phase, for example), becoming easily bored and finding it difficult to maintain sustained attention. When an unexpected event occurs, either internal or external to the automated system, the disengaged operator may neglect, misunderstand, or respond slowly/inappropriately to the situation. In this paper, we discuss an approach for Operator Functional State (OFS) monitoring in a typical aviation environment. A systematic ground truth finding procedure has been designed based on subjective evaluations, performance measures, and strong physiological indicators. The derived OFS ground truth is continuous in time compared to a very sparse estimation of OFS based on an expert review or subjective evaluations. It can capture the variations of OFS during a mission to better guide through the training process of the OFS assessment model. Furthermore, an OFS assessment model framework based on advanced machine learning techniques was designed and the systematic approach was then verified and validated with experimental data collected in a high fidelity Boeing 737 simulator. Preliminary results show highly accurate engagement/disengagement detection making it suitable for real-time applications to assess pilot engagement.

  14. 75 FR 56857 - Pilot, Flight Instructor, and Pilot School Certification

    Science.gov (United States)

    2010-09-17

    ...-2006-26661; Amendment No., 141-14] RIN 2120-AI86 Pilot, Flight Instructor, and Pilot School..., certification, and operating requirements for pilots, flight instructors, ground instructors, and pilot schools...: Background On August 21, 2009, the FAA published the ``Pilot, Flight Instructor, and Pilot School...

  15. Corporate Sustainability Reporting in the BIST Sustainability Index

    Directory of Open Access Journals (Sweden)

    Burcu Demirel

    2016-11-01

    Full Text Available In recent years, there is a growing focus on corporate operations especially since the publication of the first environmental reports in 1989. Companies have started to publish information about its environmental, social and sustainability policies. The study examines the sustainability reporting elements of Borsa Istanbul Sustainability Index (BIST in Turkey and to evaluate which elements is most vital in this context. This study will begin with the sustainability reporting that will be examined under the roof of corporation sustainability and end with the examination of sustainability reports of 15 firms, which are included in the BIST Sustainability Index in Turkey, and a content analysis. The reports of companies under study were taken from special web site and GRI (Global Reporting Initiative database of companies. Being the first study in examining the sustainability report of companies in BIST Sustainability Index, it is expected to contribute in literature about sustainability reporting recently started to gain importance in Turkey. Overall our findings suggest that the sustainability index established in Turkey is still in development stage, but the enterprises in the endeavor are working day by day to develop the sustainability qualities.

  16. Design and flight testing of a nullable compressor face rake

    Science.gov (United States)

    Holzman, J. K.; Payne, G. A.

    1973-01-01

    A compressor face rake with an internal valve arrangement to permit nulling was designed, constructed, and tested in the laboratory and in flight at the NASA Flight Research Center. When actuated by the pilot in flight, the nullable rake allowed the transducer zero shifts to be determined and then subsequently removed during data reduction. Design details, the fabrication technique, the principle of operation, brief descriptions of associated digital zero-correction programs and the qualification tests, and test results are included. Sample flight data show that the zero shifts were large and unpredictable but could be measured in flight with the rake. The rake functioned reliably and as expected during 25 hours of operation under flight environmental conditions and temperatures from 230 K (-46 F) to greater than 430 K (314 F). The rake was nulled approximately 1000 times. The in-flight zero-shift measurement technique, as well as the rake design, was successful and should be useful in future applications, particularly where accurate measurements of both steady-state and dynamic pressures are required under adverse environmental conditions.

  17. PHARAO laser source flight model: Design and performances

    Energy Technology Data Exchange (ETDEWEB)

    Lévèque, T., E-mail: thomas.leveque@cnes.fr; Faure, B.; Esnault, F. X.; Delaroche, C.; Massonnet, D.; Grosjean, O.; Buffe, F.; Torresi, P. [Centre National d’Etudes Spatiales, 18 avenue Edouard Belin, 31400 Toulouse (France); Bomer, T.; Pichon, A.; Béraud, P.; Lelay, J. P.; Thomin, S. [Sodern, 20 Avenue Descartes, 94451 Limeil-Brévannes (France); Laurent, Ph. [LNE-SYRTE, CNRS, UPMC, Observatoire de Paris, 61 avenue de l’Observatoire, 75014 Paris (France)

    2015-03-15

    In this paper, we describe the design and the main performances of the PHARAO laser source flight model. PHARAO is a laser cooled cesium clock specially designed for operation in space and the laser source is one of the main sub-systems. The flight model presented in this work is the first remote-controlled laser system designed for spaceborne cold atom manipulation. The main challenges arise from mechanical compatibility with space constraints, which impose a high level of compactness, a low electric power consumption, a wide range of operating temperature, and a vacuum environment. We describe the main functions of the laser source and give an overview of the main technologies developed for this instrument. We present some results of the qualification process. The characteristics of the laser source flight model, and their impact on the clock performances, have been verified in operational conditions.

  18. Helicopter Flight Procedures for Community Noise Reduction

    Science.gov (United States)

    Greenwood, Eric

    2017-01-01

    A computationally efficient, semiempirical noise model suitable for maneuvering flight noise prediction is used to evaluate the community noise impact of practical variations on several helicopter flight procedures typical of normal operations. Turns, "quick-stops," approaches, climbs, and combinations of these maneuvers are assessed. Relatively small variations in flight procedures are shown to cause significant changes to Sound Exposure Levels over a wide area. Guidelines are developed for helicopter pilots intended to provide effective strategies for reducing the negative effects of helicopter noise on the community. Finally, direct optimization of flight trajectories is conducted to identify low noise optimal flight procedures and quantify the magnitude of community noise reductions that can be obtained through tailored helicopter flight procedures. Physically realizable optimal turns and approaches are identified that achieve global noise reductions of as much as 10 dBA Sound Exposure Level.

  19. The Small Aircraft Transportation System (SATS), Higher Volume Operations (HVO) Off-Nominal Operations

    Science.gov (United States)

    Baxley, B.; Williams, D.; Consiglio, M.; Conway, S.; Adams, C.; Abbott, T.

    2005-01-01

    The ability to conduct concurrent, multiple aircraft operations in poor weather, at virtually any airport, offers an important opportunity for a significant increase in the rate of flight operations, a major improvement in passenger convenience, and the potential to foster growth of charter operations at small airports. The Small Aircraft Transportation System, (SATS) Higher Volume Operations (HVO) concept is designed to increase traffic flow at any of the 3400 nonradar, non-towered airports in the United States where operations are currently restricted to one-in/one-out procedural separation during Instrument Meteorological Conditions (IMC). The concept's key feature is pilots maintain their own separation from other aircraft using procedures, aircraft flight data sent via air-to-air datalink, cockpit displays, and on-board software. This is done within the Self-Controlled Area (SCA), an area of flight operations established during poor visibility or low ceilings around an airport without Air Traffic Control (ATC) services. The research described in this paper expands the HVO concept to include most off-nominal situations that could be expected to occur in a future SATS environment. The situations were categorized into routine off-nominal operations, procedural deviations, equipment malfunctions, and aircraft emergencies. The combination of normal and off-nominal HVO procedures provides evidence for an operational concept that is safe, requires little ground infrastructure, and enables concurrent flight operations in poor weather.

  20. Enhanced Flight Vision Systems and Synthetic Vision Systems for NextGen Approach and Landing Operations

    Science.gov (United States)

    Kramer, Lynda J.; Bailey, Randall E.; Ellis, Kyle K. E.; Williams, Steven P.; Arthur, Jarvis J., III; Prinzel, Lawrence J., III; Shelton, Kevin J.

    2013-01-01

    Synthetic Vision Systems and Enhanced Flight Vision System (SVS/EFVS) technologies have the potential to provide additional margins of safety for aircrew performance and enable operational improvements for low visibility operations in the terminal area environment with equivalent efficiency as visual operations. To meet this potential, research is needed for effective technology development and implementation of regulatory standards and design guidance to support introduction and use of SVS/EFVS advanced cockpit vision technologies in Next Generation Air Transportation System (NextGen) operations. A fixed-base pilot-in-the-loop simulation test was conducted at NASA Langley Research Center that evaluated the use of SVS/EFVS in NextGen low visibility approach and landing operations. Twelve crews flew approach and landing operations in a simulated NextGen Chicago O'Hare environment. Various scenarios tested the potential for using EFVS to conduct approach, landing, and roll-out operations in visibility as low as 1000 feet runway visual range (RVR). Also, SVS was tested to evaluate the potential for lowering decision heights (DH) on certain instrument approach procedures below what can be flown today. Expanding the portion of the visual segment in which EFVS can be used in lieu of natural vision from 100 feet above the touchdown zone elevation to touchdown and rollout in visibilities as low as 1000 feet RVR appears to be viable as touchdown performance was acceptable without any apparent workload penalties. A lower DH of 150 feet and/or possibly reduced visibility minima using SVS appears to be viable when implemented on a Head-Up Display, but the landing data suggests further study for head-down implementations.

  1. Mentoring SFRM: A New Approach to International Space Station Flight Controller Training

    Science.gov (United States)

    Huning, Therese; Barshi, Immanuel; Schmidt, Lacey

    2008-01-01

    The Mission Operations Directorate (MOD) of the Johnson Space Center is responsible for providing continuous operations support for the International Space Station (ISS). Operations support requires flight controllers who are skilled in team performance as well as the technical operations of the ISS. Space Flight Resource Management (SFRM), a NASA adapted variant of Crew Resource Management (CRM), is the competency model used in the MOD. ISS flight controller certification has evolved to include a balanced focus on development of SFRM and technical expertise. The latest challenge the MOD faces is how to certify an ISS flight controller (operator) to a basic level of effectiveness in 1 year. SFRM training uses a two-pronged approach to expediting operator certification: 1) imbed SFRM skills training into all operator technical training and 2) use senior flight controllers as mentors. This paper focuses on how the MOD uses senior flight controllers as mentors to train SFRM skills. Methods: A mentor works with an operator throughout the training flow. Inserted into the training flow are guided-discussion sessions and on-the-job observation opportunities focusing on specific SFRM skills, including: situational leadership, conflict management, stress management, cross-cultural awareness, self care and team care while on-console, communication, workload management, and situation awareness. The mentor and operator discuss the science and art behind the skills, cultural effects on skills applications, recognition of good and bad skills applications, recognition of how skills application changes subtly in different situations, and individual goals and techniques for improving skills. Discussion: This mentoring program provides an additional means of transferring SFRM knowledge compared to traditional CRM training programs. Our future endeavors in training SFRM skills (as well as other organization s) may benefit from adding team performance skills mentoring. This paper

  2. Concept of Operations Evaluation for Mitigating Space Flight-Relevant Medical Issues in a Planetary Habitat

    Science.gov (United States)

    Barsten, Kristina; Hurst, Victor, IV; Scheuring, Richard; Baumann, David K.; Johnson-Throop, Kathy

    2010-01-01

    Introduction: Analogue environments assist the NASA Human Research Program (HRP) in developing capabilities to mitigate high risk issues to crew health and performance for space exploration. The Habitat Demonstration Unit (HDU) is an analogue habitat used to assess space-related products for planetary missions. The Exploration Medical Capability (ExMC) element at the NASA Johnson Space Center (JSC) was tasked with developing planetary-relevant medical scenarios to evaluate the concept of operations for mitigating medical issues in such an environment. Methods: Two medical scenarios were conducted within the simulated planetary habitat with the crew executing two space flight-relevant procedures: Eye Examination with a corneal injury and Skin Laceration. Remote guidance for the crew was provided by a flight surgeon (FS) stationed at a console outside of the habitat. Audio and video data were collected to capture the communication between the crew and the FS, as well as the movements of the crew executing the procedures. Questionnaire data regarding procedure content and remote guidance performance also were collected from the crew immediately after the sessions. Results: Preliminary review of the audio, video, and questionnaire data from the two scenarios conducted within the HDU indicate that remote guidance techniques from an FS on console can help crew members within a planetary habitat mitigate planetary-relevant medical issues. The content and format of the procedures were considered concise and intuitive, respectively. Discussion: Overall, the preliminary data from the evaluation suggest that use of remote guidance techniques by a FS can help HDU crew execute space exploration-relevant medical procedures within a habitat relevant to planetary missions, however further evaluations will be needed to implement this strategy into the complete concept of operations for conducting general space medicine within similar environments

  3. Sustainable Process Synthesis-Intensification

    DEFF Research Database (Denmark)

    Babi, Deenesh Kavi; Holtbruegge, Johannes; Lutze, Philip

    2014-01-01

    Sustainable process design can be achieved by performing process synthesis and process intensification together. This approach first defines a design target through a sustainability analysis and then finds design alternatives that match the target through process intensification. A systematic......, multi-stage framework for process synthesis- intensification that identifies more sustainable process designs has been developed. At stages 1-2, the working scale is at the level of unit operations, where a base case design is identified and analyzed with respect to sustainability metrics. At stages 3......, a phenomena-based process synthesis method is applied, where the phenomena involved in each tasks are identified, manipulated and recombined to generate new and/or existing unit operations configured into flowsheets that are more sustainable from those found in the previous levels. An overview of the key...

  4. TAX EVASION THROUGH FICTITIOUS ECONOMIC OPERATIONS, OBSTACLE TO SUSTAINABLE DEVELOPMENT

    Directory of Open Access Journals (Sweden)

    SERGIU-BOGDAN CONSTANTIN

    2016-06-01

    Full Text Available Tax evasion means the avoidance of declaring and paying taxes. The purpose of the research is to identify ways and mechanisms of tax evasion through fictitious economic operations and how this kind o tax evasion can influence sustainable development. The principal methods are researching tax evasion cases investigated by the Romanian authorities responsible for combating this phenomenon, court trials on tax evasion and using the bibliographic references in the field. The data used are obtained through open sources of the authorities specialized in combating tax evasion for the cases made public, the media and also from specialised literature. The principal results are that this type of tax evasion is manifested through transactions with “ghost companies”, with offshore companies and transactions between associated enterprises. The main causes of this problem are: high taxation, corruption, inefficient government and tax authorities, no fiscal education and very hard tax legislation. The consequences are that the state budget is affected, the companies that do business legally are affected and also the final consumers, so Romania will not have economic growth and the quality of life will not improve. The main conclusion is that in order to have sustainable development, tax evasion in general and this kind of tax evasion in particular must be eradicated. The measures that have to be taken are to prevent tax evasion and to tighten controls but without violating taxpayers rights and without making abuses

  5. Development and Flight Evaluation of an Emergency Digital Flight Control System Using Only Engine Thrust on an F-15 Airplane

    Science.gov (United States)

    Burcham, Frank W., Jr.; Maine, Trindel A.; Fullerton, C. Gordon; Webb, Lannie Dean

    1996-01-01

    A propulsion-controlled aircraft (PCA) system for emergency flight control of aircraft with no flight controls was developed and flight tested on an F-15 aircraft at the NASA Dryden Flight Research Center. The airplane has been flown in a throttles-only manual mode and with an augmented system called PCA in which pilot thumbwheel commands and aircraft feedback parameters were used to drive the throttles. Results from a 36-flight evaluation showed that the PCA system can be used to safety land an airplane that has suffered a major flight control system failure. The PCA system was used to recover from a severe upset condition, descend, and land. Guest pilots have also evaluated the PCA system. This paper describes the principles of throttles-only flight control; a history of loss-of-control accidents; a description of the F-15 aircraft; the PCA system operation, simulation, and flight testing; and the pilot comments.

  6. Crew Factors in Flight Operations XII: A Survey of Sleep Quantity and Quality in On-Board Crew Rest Facilities

    Science.gov (United States)

    Rosekind, Mark R.; Gregory, Kevin B.; Co, Elizabeth L.; Miller, Donna L.; Dinges, David F.

    2000-01-01

    Many aircraft operated on long-haul commercial airline flights are equipped with on-board crew rest facilities, or bunks, to allow crewmembers to rest during the flight. The primary objectives of this study were to gather data on how the bunks were used, the quantity and quality of sleep obtained by flight crewmembers in the facilities, and the factors that affected their sleep. A retrospective survey comprising 54 questions of varied format addressed demographics, home sleep habits, and bunk sleep habits. Crewmembers from three airlines with long-haul fleets carrying augmented crews consisting of B747-100/200, B747-400, and MD-11 aircraft equipped with bunks returned a total of 1404 completed surveys (a 37% response rate). Crewmembers from the three carriers were comparable demographically, although one carrier had older, more experienced flight crewmembers. Each group, on average, rated themselves as "good" or "very good" sleepers at home, and all groups obtained about the same average amount of sleep each night. Most were able to sleep in the bunks, and about two thirds indicated that these rest opportunities benefited their subsequent flight deck alertness and performance. Comfort, environment, and physiology (e.g., being ready for sleep) were identified as factors that most promoted sleep. Factors cited as interfering with sleep included random noise, thoughts, heat, and the need to use the bathroom. These factors, in turn, suggest potential improvements to bunk facilities and their use. Ratings of the three aircraft types suggested differences among facilities. Bunks in the MD-11 were rated significantly better than either of the B747 types, and the B747-400 bunks received better ratings than did the older, B747-100/200 facilities.

  7. Integrating Space Flight Resource Management Skills into Technical Lessons for International Space Station Flight Controller Training

    Science.gov (United States)

    Baldwin, Evelyn

    2008-01-01

    The Johnson Space Center s (JSC) International Space Station (ISS) Space Flight Resource Management (SFRM) training program is designed to teach the team skills required to be an effective flight controller. It was adapted from the SFRM training given to Shuttle flight controllers to fit the needs of a "24 hours a day/365 days a year" flight controller. More recently, the length reduction of technical training flows for ISS flight controllers impacted the number of opportunities for fully integrated team scenario based training, where most SFRM training occurred. Thus, the ISS SFRM training program is evolving yet again, using a new approach of teaching and evaluating SFRM alongside of technical materials. Because there are very few models in other industries that have successfully tied team and technical skills together, challenges are arising. Despite this, the Mission Operations Directorate of NASA s JSC is committed to implementing this integrated training approach because of the anticipated benefits.

  8. Aurora Flight Sciences' Perseus B Remotely Piloted Aircraft in Flight

    Science.gov (United States)

    1998-01-01

    A long, slender wing and a pusher propeller at the rear characterize the Perseus B remotely piloted research aircraft, seen here during a test flight in June 1998. Perseus B is a remotely piloted aircraft developed as a design-performance testbed under NASA's Environmental Research Aircraft and Sensor Technology (ERAST) project. Perseus is one of several flight vehicles involved in the ERAST project. A piston engine, propeller-powered aircraft, Perseus was designed and built by Aurora Flight Sciences Corporation, Manassas, Virginia. The objectives of Perseus B's ERAST flight tests have been to reach and maintain horizontal flight above altitudes of 60,000 feet and demonstrate the capability to fly missions lasting from 8 to 24 hours, depending on payload and altitude requirements. The Perseus B aircraft established an unofficial altitude record for a single-engine, propeller-driven, remotely piloted aircraft on June 27, 1998. It reached an altitude of 60,280 feet. In 1999, several modifications were made to the Perseus aircraft including engine, avionics, and flight-control-system improvements. These improvements were evaluated in a series of operational readiness and test missions at the Dryden Flight Research Center, Edwards, California. Perseus is a high-wing monoplane with a conventional tail design. Its narrow, straight, high-aspect-ratio wing is mounted atop the fuselage. The aircraft is pusher-designed with the propeller mounted in the rear. This design allows for interchangeable scientific-instrument payloads to be placed in the forward fuselage. The design also allows for unobstructed airflow to the sensors and other devices mounted in the payload compartment. The Perseus B that underwent test and development in 1999 was the third generation of the Perseus design, which began with the Perseus Proof-Of-Concept aircraft. Perseus was initially developed as part of NASA's Small High-Altitude Science Aircraft (SHASA) program, which later evolved into the ERAST

  9. 14 CFR 91.1057 - Flight, duty and rest time requirements: All crewmembers.

    Science.gov (United States)

    2010-01-01

    ... RULES Fractional Ownership Operations Program Management § 91.1057 Flight, duty and rest time... cabin-safety-related responsibilities. Multi-time zone flight means an easterly or westerly flight or... 14 Aeronautics and Space 2 2010-01-01 2010-01-01 false Flight, duty and rest time requirements...

  10. Pathfinder-Plus on a flight over Hawaiian island N'ihau

    Science.gov (United States)

    1998-01-01

    Pathfinder-Plus on a flight over the Hawaiian island of N'ihau in 1998. Pathfinder was a remotely controlled, solar-powered flying wing, designed and built as a proof-of-concept vehicle for a much larger aircraft capable of flying at extremely high altitudes for weeks at a time. It was built by AeroVironment, Inc., a California company that developed the human-powered Gossamer Condor and Gossamer Albatross lightweight aircraft during the 1970s, and later made the solar-electric powered Gossamer Penguin and Solar Challenger. The basic configuration and concepts for Pathfinder were first realized with the HALSOL (High Altitude Solar) aircraft, built in 1983 by AeroVironment and the Lawrence Livermore Laboratory. Pathfinder was constructed of advanced composites, plastics, and foam, and despite a wingspan of nearly 100 feet, it weighed only about 600 pounds. Pathfinder was one of several unpiloted prototypes under study by NASA's ERAST (Environmental Research Aircraft and Sensor Technology) program, a NASA-industry alliance which is helping develop advanced technologies that will enable aircraft to study the earth's environment during extremely long flights at altitudes in excess of 100,000 feet. (See project description below for Pathfinder's conversion to Pathfinder Plus.) In 1998, the Pathfinder solar-powered flying wing (see its photographs and project description) was modified into the longer-winged Pathfinder Plus configuration and on Aug. 6, 1998, Pathfinder Plus set an altitude record (for propeller-driven aircraft) of approximately 80,285 feet at the Pacific Missile Range Facility. The goal of the Pathfinder Plus flights was to validate new solar, aerodynamic, propulsion, and systems technology developed for its successor, the Centurion, which was designed to reach and sustain altitudes in the 100,000-foot range. The Centurion was succeeded by the Helios Prototype with a goal of reaching and sustaining flight at an altitude of 100,000 feet and flying non

  11. Sustainable intensification of agriculture for human prosperity and global sustainability

    NARCIS (Netherlands)

    Rockstrom, J.; Williams, J.; Daily, G.; Noble, A.; Matthews, N.; Gordon, L.; Wetterstrand, H.; DeClerck, F.; Fraiture, de C.M.S.

    2017-01-01

    There is an ongoing debate on what constitutes sustainable intensification of agriculture (SIA). In this paper, we propose that a paradigm for sustainable intensification can be defined and translated into an operational framework for agricultural development. We argue that this paradigm must now be

  12. Self-Sustained Operation of Radiation Detectors Based on Embedded Signal Processing

    International Nuclear Information System (INIS)

    Talnishnikh, Elena; Paganini, Lucia; Stegenga, Jan; Woertche, Heinrich; Limburgy, Han

    2013-06-01

    Radiation detectors featuring long term stability, self-sustained operation and low power consumption are crucial for long-term environmental monitoring (e.g. nuclear waste disposals and mining activities) and provide enhanced applications of nuclear fingerprinting e.g. in farming and geological surveying. INCAS3 is developing a compact modular system consisting of four functional modules, namely analogue conditioning and signal digitalization, dead-time-free real-time signal processing, embedded high level analysis of the processed signal, and wireless communication. The modules are organized such that they can be interchanged and modified independently. For the input module one can choose an ADC sampling frequency to be either 100 MHz with 14 bit precision or 1 GHz with reduced precision (10 bit). The main focus of the signal processing section, based on an FPGA, is on providing dead-time-free signal handling in real time. Other useful features such as base line correction, pulse shape analysis (energy, decay and arrival time) are being developed as (VHDL) library functions. Additional modules, e.g. anomaly detection in the incoming signal, pile-up correction if operated at high rates and advanced signal shape processing, can be included in the processing if required and can be applied to autonomously generate the information necessary to control the sensor parameters and stabilize energy spectra and sensitivity. At present we operate the system in conjunction with inorganic scintillators (NaI, CsI) read out by a photomultiplier in order to provide a system capable of long term quantification of nuclear contaminations in natural environments. The underlying technology is based on detecting natural or anthropogenic gamma radiation and generating corresponding energy spectra in real time. The generated spectra are analyzed either in a standard way by any suitable desktop software in a lab or, as it is described in this work, by the ENSA (Embedded Nuclear Spectra

  13. Implementing sustainable development programs in Chicago

    Energy Technology Data Exchange (ETDEWEB)

    Henderson, H.

    1994-12-31

    Achieving sustainable development requires a revision of the present view of the nature of the city as an environment, and its relation to a larger ecosystem of which it is an essential part. The environmental health of a wilderness area is inextricably related to the environmental, and economic, health of the great urban centers. The vitality of dense metropolitan areas, where population and economic activities are concentrated, is key to the preservation of productive farm lands, wildlife habitat, and open spaces. The social and economic crisis which grips many metropolitan centers, with attendant flight of industry and development to the so-called {open_quotes}greenfields,{close_quotes} fundamentally spreads a broader crisis to our common ecosystem. This crisis is marked by the obliteration of habitat necessary for biodiversity, loss of fertile farm land, and the contamination of air, water and land, as an unescapable effect of the sprawl created by flight from the urban centers. The removal of false conceptual distinctions between the city and nature, distinctions that are unfortunately at the heart of so much of American environmental philosophy, is key to the concept of `sustainable development.` This article sets forth how the City of Chicago is implementing this understanding of the nature of the urban environment, in pursuit of sustainable development within the city.

  14. Implementing sustainable development programs in Chicago

    International Nuclear Information System (INIS)

    Henderson, H.

    1994-01-01

    Achieving sustainable development requires a revision of the present view of the nature of the city as an environment, and its relation to a larger ecosystem of which it is an essential part. The environmental health of a wilderness area is inextricably related to the environmental, and economic, health of the great urban centers. The vitality of dense metropolitan areas, where population and economic activities are concentrated, is key to the preservation of productive farm lands, wildlife habitat, and open spaces. The social and economic crisis which grips many metropolitan centers, with attendant flight of industry and development to the so-called open-quotes greenfields,close quotes fundamentally spreads a broader crisis to our common ecosystem. This crisis is marked by the obliteration of habitat necessary for biodiversity, loss of fertile farm land, and the contamination of air, water and land, as an unescapable effect of the sprawl created by flight from the urban centers. The removal of false conceptual distinctions between the city and nature, distinctions that are unfortunately at the heart of so much of American environmental philosophy, is key to the concept of 'sustainable development.' This article sets forth how the City of Chicago is implementing this understanding of the nature of the urban environment, in pursuit of sustainable development within the city

  15. Duration of post-operative hypocortisolism predicts sustained remission after pituitary surgery for Cushing’s disease

    Directory of Open Access Journals (Sweden)

    Prachi Bansal

    2017-10-01

    Full Text Available Purpose: Transsphenoidal surgery (TSS is the primary treatment modality for Cushing’s disease (CD. However, the predictors of post-operative remission and recurrence remain debatable. Thus, we studied the post-operative remission and long-term recurrence rates, as well as their respective predictive factors. Methods: A retrospective analysis of case records of 230 CD patients who underwent primary microscopic TSS at our tertiary care referral centre between 1987 and 2015 was undertaken. Demographic features, pre- and post-operative hormonal values, MRI findings, histopathological features and follow-up data were recorded. Remission and recurrence rates as well as their respective predictive factors were studied. Results: Overall, the post-operative remission rate was 65.6% (early remission 46%; delayed remission 19.6%, while the recurrence rate was 41% at mean follow-up of 74 ± 61.1 months (12–270 months. Significantly higher early remission rates were observed in patients with microadenoma vs macroadenoma (51.7% vs 30.6%, P = 0.005 and those with unequivocal vs equivocal MRI for microadenoma (55.8% vs 38.5%, P = 0.007. Patients with invasive macroadenoma had poorer (4.5% vs 45%, P = 0.001 remission rates. Recurrence rates were higher in patients with delayed remission than those with early remission (61.5% vs 30.8%, P = 0.001. Duration of post-operative hypocortisolemia ≥13 months predicted sustained remission with 100% specificity and 46.4% sensitivity. Recurrence could be detected significantly earlier (27.7 vs 69.2 months, P < 0.001 in patients with available serial follow-up biochemistry as compared to those with infrequent follow-up after remission. Conclusion: In our study, remission and recurrence rates were similar to that of reported literature, but proportion of delayed remission was relatively higher. Negative/equivocal MRI findings and presence of macroadenoma, especially those with cavernous sinus invasion were

  16. Perseus Post-flight

    Science.gov (United States)

    1991-01-01

    Crew members check out the Perseus proof-of-concept vehicle on Rogers Dry Lake, adjacent to the Dryden Flight Research Center, Edwards, California, after a test flight in 1991. Perseus B is a remotely piloted aircraft developed as a design-performance testbed under NASA's Environmental Research Aircraft and Sensor Technology (ERAST) project. Perseus is one of several flight vehicles involved in the ERAST project. A piston engine, propeller-powered aircraft, Perseus was designed and built by Aurora Flight Sciences Corporation, Manassas, Virginia. The objectives of Perseus B's ERAST flight tests have been to reach and maintain horizontal flight above altitudes of 60,000 feet and demonstrate the capability to fly missions lasting from 8 to 24 hours, depending on payload and altitude requirements. The Perseus B aircraft established an unofficial altitude record for a single-engine, propeller-driven, remotely piloted aircraft on June 27, 1998. It reached an altitude of 60,280 feet. In 1999, several modifications were made to the Perseus aircraft including engine, avionics, and flight-control-system improvements. These improvements were evaluated in a series of operational readiness and test missions at the Dryden Flight Research Center, Edwards, California. Perseus is a high-wing monoplane with a conventional tail design. Its narrow, straight, high-aspect-ratio wing is mounted atop the fuselage. The aircraft is pusher-designed with the propeller mounted in the rear. This design allows for interchangeable scientific-instrument payloads to be placed in the forward fuselage. The design also allows for unobstructed airflow to the sensors and other devices mounted in the payload compartment. The Perseus B that underwent test and development in 1999 was the third generation of the Perseus design, which began with the Perseus Proof-Of-Concept aircraft. Perseus was initially developed as part of NASA's Small High-Altitude Science Aircraft (SHASA) program, which later evolved

  17. Shippers and freight operators perceptions of sustainable initiatives.

    Science.gov (United States)

    Vieira, José Geraldo Vidal; Mendes, Juliana Veiga; Suyama, Suzi Sanae

    2016-02-01

    The purpose of this paper is to document the extent to which Brazilian companies in retail channels have committed to adopting environmental sustainability measures, goals and strategies for waste disposal in the evaluation and planning of sustainable transportation. This paper also aims to examine the different viewpoints of sustainability issues and the preventive actions taken by companies in terms of controlling carbon dioxide emissions and proper disposal of tires, lubricant oils, accessories and spare parts. Finally, taking the perspective of these companies, this paper examines their difficulties in meeting environmental regulations. The research involved a survey completed by 185 representatives of different types of companies, including shippers (represented by manufacturers), LSPs (logistics service providers) and carriers. The non-linear canonical correlation was calculated to verify the opinions of these representatives from different companies regarding issues that impact on the environment, the preventive actions they adopt to reduce their environmental impact and their difficulties in meeting environmental regulations. The results show that shippers and LSPs have the same perceptions regarding these sustainability issues and preventive actions. In addition, the companies perceive high costs and the lack of training for their partners as the major challenges experienced in addressing these issues and undertaking preventive actions. Therefore they need to plan their transportation activities. Copyright © 2015 Elsevier Ltd. All rights reserved.

  18. ASTP (SA-210) Launch vehicle operational flight trajectory. Part 3: Final documentation

    Science.gov (United States)

    Carter, A. B.; Klug, G. W.; Williams, N. W.

    1975-01-01

    Trajectory data are presented for a nominal and two launch window trajectory simulations. These trajectories are designed to insert a manned Apollo spacecraft into a 150/167 km. (81/90 n. mi.) earth orbit inclined at 51.78 degrees for rendezvous with a Soyuz spacecraft, which will be orbiting at approximately 225 km. (121.5 n. mi.). The launch window allocation defined for this launch is 500 pounds of S-IVB stage propellant. The launch window opening trajectory simulation depicts the earliest launch time deviation from a planar flight launch which conforms to this constraint. The launch window closing trajectory simulation was developed for the more stringent Air Force Eastern Test Range (AFETR) flight azimuth restriction of 37.4 degrees east-of-north. These trajectories enclose a 12.09 minute launch window, pertinent features of which are provided in a tabulation. Planar flight data are included for mid-window reference.

  19. Comprehensive analysis of transport aircraft flight performance

    Science.gov (United States)

    Filippone, Antonio

    2008-04-01

    This paper reviews the state-of-the art in comprehensive performance codes for fixed-wing aircraft. The importance of system analysis in flight performance is discussed. The paper highlights the role of aerodynamics, propulsion, flight mechanics, aeroacoustics, flight operation, numerical optimisation, stochastic methods and numerical analysis. The latter discipline is used to investigate the sensitivities of the sub-systems to uncertainties in critical state parameters or functional parameters. The paper discusses critically the data used for performance analysis, and the areas where progress is required. Comprehensive analysis codes can be used for mission fuel planning, envelope exploration, competition analysis, a wide variety of environmental studies, marketing analysis, aircraft certification and conceptual aircraft design. A comprehensive program that uses the multi-disciplinary approach for transport aircraft is presented. The model includes a geometry deck, a separate engine input deck with the main parameters, a database of engine performance from an independent simulation, and an operational deck. The comprehensive code has modules for deriving the geometry from bitmap files, an aerodynamics model for all flight conditions, a flight mechanics model for flight envelopes and mission analysis, an aircraft noise model and engine emissions. The model is validated at different levels. Validation of the aerodynamic model is done against the scale models DLR-F4 and F6. A general model analysis and flight envelope exploration are shown for the Boeing B-777-300 with GE-90 turbofan engines with intermediate passenger capacity (394 passengers in 2 classes). Validation of the flight model is done by sensitivity analysis on the wetted area (or profile drag), on the specific air range, the brake-release gross weight and the aircraft noise. A variety of results is shown, including specific air range charts, take-off weight-altitude charts, payload-range performance

  20. NASA Langley's AirSTAR Testbed: A Subscale Flight Test Capability for Flight Dynamics and Control System Experiments

    Science.gov (United States)

    Jordan, Thomas L.; Bailey, Roger M.

    2008-01-01

    As part of the Airborne Subscale Transport Aircraft Research (AirSTAR) project, NASA Langley Research Center (LaRC) has developed a subscaled flying testbed in order to conduct research experiments in support of the goals of NASA s Aviation Safety Program. This research capability consists of three distinct components. The first of these is the research aircraft, of which there are several in the AirSTAR stable. These aircraft range from a dynamically-scaled, twin turbine vehicle to a propeller driven, off-the-shelf airframe. Each of these airframes carves out its own niche in the research test program. All of the airplanes have sophisticated on-board data acquisition and actuation systems, recording, telemetering, processing, and/or receiving data from research control systems. The second piece of the testbed is the ground facilities, which encompass the hardware and software infrastructure necessary to provide comprehensive support services for conducting flight research using the subscale aircraft, including: subsystem development, integrated testing, remote piloting of the subscale aircraft, telemetry processing, experimental flight control law implementation and evaluation, flight simulation, data recording/archiving, and communications. The ground facilities are comprised of two major components: (1) The Base Research Station (BRS), a LaRC laboratory facility for system development, testing and data analysis, and (2) The Mobile Operations Station (MOS), a self-contained, motorized vehicle serving as a mobile research command/operations center, functionally equivalent to the BRS, capable of deployment to remote sites for supporting flight tests. The third piece of the testbed is the test facility itself. Research flights carried out by the AirSTAR team are conducted at NASA Wallops Flight Facility (WFF) on the Eastern Shore of Virginia. The UAV Island runway is a 50 x 1500 paved runway that lies within restricted airspace at Wallops Flight Facility. The

  1. Advantages for passengers and cabin crew of operating a Gas-Phase Adsorption air purifier in 11-h simulated flights

    DEFF Research Database (Denmark)

    Strøm-Tejsen, Peter; Zukowska, Daria; Fang, Lei

    2008-01-01

    Experiments were carried out in a 3-row, 21-seat section of a simulated aircraft cabin installed in a climate chamber to evaluate the extent to which passengers’ perception of cabin air quality is affected by the operation of a Gas-Phase Adsorption (GPA) purification unit. A total of 68 subjects......, divided into four groups of 17 subjects took part in simulated 11-hour flights. Each group experienced 4 conditions in balanced order, defined by two outside air supply rates (2.4 and 3.3 L/s per person), with and without the GPA purification unit installed in the recirculated air system. During each...... flight the subjects completed questionnaires five times to provide subjective assessments of air quality, cabin environment, intensity of symptoms, and thermal comfort. Additionally, the subjects’ visual acuity, finger temperature, skin dryness and nasal peak flow were measured three times during each...

  2. Flight Path Recovery System (FPRS) design study

    International Nuclear Information System (INIS)

    1978-09-01

    The study contained herein presents a design for a Flight Path Recovery System (FPPS) for use in the NURE Program which will be more accurate than systems presently used, provide position location data in digital form suitable for automatic data processing, and provide for flight path recovery in a more economic and operationally suitable manner. The design is based upon the use of presently available hardware and technoloy, and presents little, it any, development risk. In addition, a Flight Test Plan designed to test the FPRS design concept is presented

  3. Flight Path Recovery System (FPRS) design study

    Energy Technology Data Exchange (ETDEWEB)

    1978-09-01

    The study contained herein presents a design for a Flight Path Recovery System (FPPS) for use in the NURE Program which will be more accurate than systems presently used, provide position location data in digital form suitable for automatic data processing, and provide for flight path recovery in a more economic and operationally suitable manner. The design is based upon the use of presently available hardware and technoloy, and presents little, it any, development risk. In addition, a Flight Test Plan designed to test the FPRS design concept is presented.

  4. Small Aircraft Transportation System, Higher Volume Operations Concept: Off-Nominal Operations

    Science.gov (United States)

    Abbott, Terence S.; Consiglio, Maria C.; Baxley, Brian T.; Williams, Daniel M.; Conway, Sheila R.

    2005-01-01

    This document expands the Small Aircraft Transportation System, (SATS) Higher Volume Operations (HVO) concept to include off-nominal conditions. The general philosophy underlying the HVO concept is the establishment of a newly defined area of flight operations called a Self-Controlled Area (SCA). During periods of poor weather, a block of airspace would be established around designated non-towered, non-radar airports. Aircraft flying enroute to a SATS airport would be on a standard instrument flight rules flight clearance with Air Traffic Control providing separation services. Within the SCA, pilots would take responsibility for separation assurance between their aircraft and other similarly equipped aircraft. Previous work developed the procedures for normal HVO operations. This document provides details for off-nominal and emergency procedures for situations that could be expected to occur in a future SCA.

  5. RLV/X-33 operations overview

    Science.gov (United States)

    Black, Stephen T.; Eshleman, Wally

    1997-01-01

    This paper describes the VentureStar™ SSTO RLV and X-33 operations concepts. Applications of advanced technologies, automated ground support systems, advanced aircraft and launch vehicle lessons learned have been integrated to develop a streamlined vehicle and mission processing concept necessary to meet the goals of a commercial SSTO RLV. These concepts will be validated by the X-33 flight test program where financial and technical risk mitigation are required. The X-33 flight test program totally demonstrates the vehicle performance, technology, and efficient ground operations at the lowest possible cost. The Skunk Work's test program approach and test site proximity to the production plant are keys. The X-33 integrated flight and ground test program incrementally expands the knowledge base of the overall system allowing minimum risk progression to the next flight test program milestone. Subsequent X-33 turnaround processing flows will be performed with an aircraft operations philosophy. The differences will be based on research and development, component reliability and flight test requirements.

  6. The Propulsive-Only Flight Control Problem

    Science.gov (United States)

    Blezad, Daniel J.

    1996-01-01

    Attitude control of aircraft using only the throttles is investigated. The long time constants of both the engines and of the aircraft dynamics, together with the coupling between longitudinal and lateral aircraft modes make piloted flight with failed control surfaces hazardous, especially when attempting to land. This research documents the results of in-flight operation using simulated failed flight controls and ground simulations of piloted propulsive-only control to touchdown. Augmentation control laws to assist the pilot are described using both optimal control and classical feedback methods. Piloted simulation using augmentation shows that simple and effective augmented control can be achieved in a wide variety of failed configurations.

  7. In-flight sleep, pilot fatigue and Psychomotor Vigilance Task performance on ultra-long range versus long range flights.

    Science.gov (United States)

    Gander, Philippa H; Signal, T Leigh; van den Berg, Margo J; Mulrine, Hannah M; Jay, Sarah M; Jim Mangie, Captain

    2013-12-01

    This study evaluated whether pilot fatigue was greater on ultra-long range (ULR) trips (flights >16 h on 10% of trips in a 90-day period) than on long range (LR) trips. The within-subjects design controlled for crew complement, pattern of in-flight breaks, flight direction and departure time. Thirty male Captains (mean age = 54.5 years) and 40 male First officers (mean age = 48.0 years) were monitored on commercial passenger flights (Boeing 777 aircraft). Sleep was monitored (actigraphy, duty/sleep diaries) from 3 days before the first study trip to 3 days after the second study trip. Karolinska Sleepiness Scale, Samn-Perelli fatigue ratings and a 5-min Psychomotor Vigilance Task were completed before, during and after every flight. Total sleep in the 24 h before outbound flights and before inbound flights after 2-day layovers was comparable for ULR and LR flights. All pilots slept on all flights. For each additional hour of flight time, they obtained an estimated additional 12.3 min of sleep. Estimated mean total sleep was longer on ULR flights (3 h 53 min) than LR flights (3 h 15 min; P(F) = 0.0004). Sleepiness ratings were lower and mean reaction speed was faster at the end of ULR flights. Findings suggest that additional in-flight sleep mitigated fatigue effectively on longer flights. Further research is needed to clarify the contributions to fatigue of in-flight sleep versus time awake at top of descent. The study design was limited to eastward outbound flights with two Captains and two First Officers. Caution must be exercised when extrapolating to different operations. © 2013 European Sleep Research Society.

  8. FEATURES OF THE APPLICATION OF STATISTICAL INDICATORS OF SCHEDULED FLIGHTS OF AIRCRAFT

    Directory of Open Access Journals (Sweden)

    2016-01-01

    Full Text Available Тhe possibilities of increasing the effectiveness of management of safety of regular aircraft operations on the basis of systematic approach, under normal operating conditions are considered. These new opportunities within the airline are based on Flight Safety Management System integration with quality management system. So far, however, these possibili- ties are practically not implemented due to the limited application of statistical methods. A necessary condition for the implementation of the proposed approach is the use of statistical flight data results of the quality control flight. The proper- ties and peculiarities of application of statistical indicators of flight parameters during the monitoring of flight data are analyzed. It is shown that the main statistical indicators of the controlled process are averages and variations. The features of the application of theoretical models of mathematical statistics in the analysis of flight information are indicated. It is noted that in practice the theoretical models often do not fit into the framework of its application because of the violation of the initial assumptions. Recommendations are given for the integrated use of statistical indicators of the current quality control of flights. Ultimately, the article concludes that the capabilities of the proposed approach allows on the basis of knowledge about the dynamics of statistical indicators of controlled flight process to identify hazards and develop safety indicators for the new information based on data flight operation aircraft.

  9. Perseus in Flight

    Science.gov (United States)

    1991-01-01

    The Perseus proof-of-concept vehicle flies over Rogers Dry Lake at the Dryden Flight Research Center, Edwards, California, to test basic design concepts for the remotely-piloted, high-altitude vehicle. Perseus B is a remotely piloted aircraft developed as a design-performance testbed under NASA's Environmental Research Aircraft and Sensor Technology (ERAST) project. Perseus is one of several flight vehicles involved in the ERAST project. A piston engine, propeller-powered aircraft, Perseus was designed and built by Aurora Flight Sciences Corporation, Manassas, Virginia. The objectives of Perseus B's ERAST flight tests have been to reach and maintain horizontal flight above altitudes of 60,000 feet and demonstrate the capability to fly missions lasting from 8 to 24 hours, depending on payload and altitude requirements. The Perseus B aircraft established an unofficial altitude record for a single-engine, propeller-driven, remotely piloted aircraft on June 27, 1998. It reached an altitude of 60,280 feet. In 1999, several modifications were made to the Perseus aircraft including engine, avionics, and flight-control-system improvements. These improvements were evaluated in a series of operational readiness and test missions at the Dryden Flight Research Center, Edwards, California. Perseus is a high-wing monoplane with a conventional tail design. Its narrow, straight, high-aspect-ratio wing is mounted atop the fuselage. The aircraft is pusher-designed with the propeller mounted in the rear. This design allows for interchangeable scientific-instrument payloads to be placed in the forward fuselage. The design also allows for unobstructed airflow to the sensors and other devices mounted in the payload compartment. The Perseus B that underwent test and development in 1999 was the third generation of the Perseus design, which began with the Perseus Proof-Of-Concept aircraft. Perseus was initially developed as part of NASA's Small High-Altitude Science Aircraft (SHASA

  10. 2nd Generation QUATARA Flight Computer Project

    Science.gov (United States)

    Falker, Jay; Keys, Andrew; Fraticelli, Jose Molina; Capo-Iugo, Pedro; Peeples, Steven

    2015-01-01

    Single core flight computer boards have been designed, developed, and tested (DD&T) to be flown in small satellites for the last few years. In this project, a prototype flight computer will be designed as a distributed multi-core system containing four microprocessors running code in parallel. This flight computer will be capable of performing multiple computationally intensive tasks such as processing digital and/or analog data, controlling actuator systems, managing cameras, operating robotic manipulators and transmitting/receiving from/to a ground station. In addition, this flight computer will be designed to be fault tolerant by creating both a robust physical hardware connection and by using a software voting scheme to determine the processor's performance. This voting scheme will leverage on the work done for the Space Launch System (SLS) flight software. The prototype flight computer will be constructed with Commercial Off-The-Shelf (COTS) components which are estimated to survive for two years in a low-Earth orbit.

  11. The Route Analysis Based On Flight Plan

    Science.gov (United States)

    Feriyanto, Nur; Saleh, Chairul; Fauzi, Achmad; Rachman Dzakiyullah, Nur; Riza Iwaputra, Kahfi

    2016-02-01

    Economic development effects use of air transportation since the business process in every aspect was increased. Many people these days was prefer using airplane because it can save time and money. This situation also effects flight routes, many airlines offer new routes to deal with competition. Managing flight routes is one of the problems that must be faced in order to find the efficient and effective routes. This paper investigates the best routes based on flight performance by determining the amount of block fuel for the Jakarta-Denpasar flight route. Moreover, in this work compares a two kinds of aircraft and tracks by calculating flight distance, flight time and block fuel. The result shows Jakarta-Denpasar in the Track II has effective and efficient block fuel that can be performed by Airbus 320-200 aircraft. This study can contribute to practice in making an effective decision, especially helping executive management of company due to selecting appropriate aircraft and the track in the flight plan based on the block fuel consumption for business operation.

  12. Design and analysis of advanced flight planning concepts

    Science.gov (United States)

    Sorensen, John A.

    1987-01-01

    The objectives of this continuing effort are to develop and evaluate new algorithms and advanced concepts for flight management and flight planning. This includes the minimization of fuel or direct operating costs, the integration of the airborne flight management and ground-based flight planning processes, and the enhancement of future traffic management systems design. Flight management (FMS) concepts are for on-board profile computation and steering of transport aircraft in the vertical plane between a city pair and along a given horizontal path. Flight planning (FPS) concepts are for the pre-flight ground based computation of the three-dimensional reference trajectory that connects the city pair and specifies the horizontal path, fuel load, and weather profiles for initializing the FMS. As part of these objectives, a new computer program called EFPLAN has been developed and utilized to study advanced flight planning concepts. EFPLAN represents an experimental version of an FPS. It has been developed to generate reference flight plans compatible as input to an FMS and to provide various options for flight planning research. This report describes EFPLAN and the associated research conducted in its development.

  13. ACTEX flight experiment: development issues and lessons learned

    Science.gov (United States)

    Schubert, S. R.

    1993-09-01

    The ACTEX flight experiment is scheduled for launch and to begin its on orbit operations in early 1994. The objective of the ACTEX experiment is to demonstrate active vibration control in space, using the smart structure technology. This paper discusses primarily the hardware development and program management issues associated with delivering low cost flight experiments.

  14. Environmentally Sustainable Economic Growth

    Directory of Open Access Journals (Sweden)

    Stelian Brad

    2016-05-01

    Full Text Available Economic growth and sustainable development are important issues for social prosperity. Sustainable development strives for moderate and responsible use within the economic activity of the limited resources of our planet, whereas economic growth does not limit the resource exploitation and energy, being mainly focused on productivity increase. From this perspective, both conceptual and operational contradictions occur between the two pillars of prosperity. This paper looks to these contradictions and proposes some streams of intervention such as economic growth and environmental sustainability to operate in harmony. A structured framework for innovative problem solving is considered in this respect. Results of this research show that it is possible to induce smart measures in the economic system for directing businesses towards new paradigms where economic growth is possible without negative effects on environmental sustainability.

  15. Data-Link and Surface Map Traffic Intent Displays for NextGen 4DT and Equivalent Visual Surface Operations

    Science.gov (United States)

    Shelton, Kevin J.; Prinzel, Lawrence J., III; Arthur, Jarvis J., III; Jones, Deise R.; Allamandola, Angela S.; Bailey, Randall E.

    2009-01-01

    By 2025, U.S. air traffic is predicted to increase 3-fold and may strain the current air traffic management system, which may not be able to accommodate this growth. In response to this challenge, a consortium of industry, academia and government agencies have proposed a revolutionary new concept for U.S. aviation operations, termed the Next Generation Air Transportation System or "NextGen". Many key capabilities are being identified to enable NextGen, including the concept of "net-centric" operations whereby each aircraft and air services provider shares information to allow real-time adaptability to ever-changing factors such as weather, traffic, flight trajectories, and security. Data-link is likely to be the primary source of communication in NextGen. Because NextGen represents a radically different approach to air traffic management and requires a dramatic shift in the tasks, roles, and responsibilities for the flight deck, there are numerous research issues and challenges that must be overcome to ensure a safe, sustainable air transportation system. Flight deck display and crew-vehicle interaction concepts are being developed that proactively investigate and overcome potential technology and safety barriers that might otherwise constrain the full realization of NextGen.

  16. Pigeons (C. livia Follow Their Head during Turning Flight: Head Stabilization Underlies the Visual Control of Flight

    Directory of Open Access Journals (Sweden)

    Ivo G. Ros

    2017-12-01

    Full Text Available Similar flight control principles operate across insect and vertebrate fliers. These principles indicate that robust solutions have evolved to meet complex behavioral challenges. Following from studies of visual and cervical feedback control of flight in insects, we investigate the role of head stabilization in providing feedback cues for controlling turning flight in pigeons. Based on previous observations that the eyes of pigeons remain at relatively fixed orientations within the head during flight, we test potential sensory control inputs derived from head and body movements during 90° aerial turns. We observe that periods of angular head stabilization alternate with rapid head repositioning movements (head saccades, and confirm that control of head motion is decoupled from aerodynamic and inertial forces acting on the bird's continuously rotating body during turning flapping flight. Visual cues inferred from head saccades correlate with changes in flight trajectory; whereas the magnitude of neck bending predicts angular changes in body position. The control of head motion to stabilize a pigeon's gaze may therefore facilitate extraction of important motion cues, in addition to offering mechanisms for controlling body and wing movements. Strong similarities between the sensory flight control of birds and insects may also inspire novel designs of robust controllers for human-engineered autonomous aerial vehicles.

  17. Sustainable Transportation

    DEFF Research Database (Denmark)

    Hall, Ralph P.; Gudmundsson, Henrik; Marsden, Greg

    2014-01-01

    The transportation system is the backbone of economic and social progress and the means by which humans access goods and services and connect with one another. Yet, as the scale of transportation activities has grown worldwide, so too have the negative environmental, social, and economic impacts...... that relate to the construction and maintenance of transportation infrastructure and the operation or use of the different transportation modes. The concept of sustainable transportation emerged in response to these concerns as part of the broader notion of sustainable development. Given the transportation...... sector’s significant contribution to global challenges such as climate change, it is often said that sustainable development cannot be achieved without sustainable transportation....

  18. The integrated manual and automatic control of complex flight systems

    Science.gov (United States)

    Schmidt, David K.

    1991-01-01

    Research dealt with the general area of optimal flight control synthesis for manned flight vehicles. The work was generic; no specific vehicle was the focus of study. However, the class of vehicles generally considered were those for which high authority, multivariable control systems might be considered, for the purpose of stabilization and the achievement of optimal handling characteristics. Within this scope, the topics of study included several optimal control synthesis techniques, control-theoretic modeling of the human operator in flight control tasks, and the development of possible handling qualities metrics and/or measures of merit. Basic contributions were made in all these topics, including human operator (pilot) models for multi-loop tasks, optimal output feedback flight control synthesis techniques; experimental validations of the methods developed, and fundamental modeling studies of the air-to-air tracking and flared landing tasks.

  19. NextGen Flight Deck Surface Trajectory-Based Operations (STBO): Contingency Holds

    Science.gov (United States)

    Bakowski, Deborah Lee; Hooey, Becky Lee; Foyle, David C.; Wolter, Cynthia A.; Cheng, Lara W. S.

    2013-01-01

    The purpose of this pilot-in-the-loop taxi simulation was to investigate a NextGen Surface Trajectory-Based Operations (STBO) concept called "contingency holds." The contingency-hold concept parses a taxi route into segments, allowing an air traffic control (ATC) surface traffic management (STM) system to hold an aircraft when necessary for safety. Under nominal conditions, if the intersection or active runway crossing is clear, the hold is removed, allowing the aircraft to continue taxiing without slowing, thus improving taxi efficiency, while minimizing the excessive brake use, fuel burn, and emissions associated with stop-and-go taxi. However, when a potential traffic conflict exists, the hold remains in place as a fail-safe mechanism. In this departure operations simulation, the taxi clearance included a required time of arrival (RTA) to a specified intersection. The flight deck was equipped with speed-guidance avionics to aid the pilot in safely meeting the RTA. On two trials, the contingency hold was not released, and pilots were required to stop. On two trials the contingency hold was released 15 sec prior to the RTA, and on two trials the contingency hold was released 30 sec prior to the RTA. When the hold remained in place, all pilots complied with the hold. Results also showed that when the hold was released at 15-sec or 30-sec prior to the RTA, the 30-sec release allowed pilots to maintain nominal taxi speed, thus supporting continuous traffic flow; whereas, the 15-sec release did not. The contingency-hold concept, with at least a 30-sec release, allows pilots to improve taxiing efficiency by reducing braking, slowing, and stopping, but still maintains safety in that no pilots "busted" the clearance holds. Overall, the evidence suggests that the contingency-hold concept is a viable concept for optimizing efficiency while maintaining safety.

  20. Quantifying Pilot Contribution to Flight Safety During an In-Flight Airspeed Failure

    Science.gov (United States)

    Etherington, Timothy J.; Kramer, Lynda J.; Bailey, Randall E.; Kennedey, Kellie D.

    2017-01-01

    Accident statistics cite the flight crew as a causal factor in over 60% of large transport fatal accidents. Yet a well-trained and well-qualified crew is acknowledged as the critical center point of aircraft systems safety and an integral component of the entire commercial aviation system. A human-in-the-loop test was conducted using a Level D certified Boeing 737-800 simulator to evaluate the pilot's contribution to safety-of-flight during routine air carrier flight operations and in response to system failures. To quantify the human's contribution, crew complement was used as an independent variable in a between-subjects design. This paper details the crew's actions and responses while dealing with an in-flight airspeed failure. Accident statistics often cite flight crew error (Baker, 2001) as the primary contributor in accidents and incidents in transport category aircraft. However, the Air Line Pilots Association (2011) suggests "a well-trained and well-qualified pilot is acknowledged as the critical center point of the aircraft systems safety and an integral safety component of the entire commercial aviation system." This is generally acknowledged but cannot be verified because little or no quantitative data exists on how or how many accidents/incidents are averted by crew actions. Anecdotal evidence suggest crews handle failures on a daily basis and Aviation Safety Action Program data generally supports this assertion, even if the data is not released to the public. However without hard evidence, the contribution and means by which pilots achieve safety of flight is difficult to define. Thus, ways to improve the human ability to contribute or overcome deficiencies are ill-defined.

  1. Methodology for Evaluating the Simulator Flight Performance of Pilots

    National Research Council Canada - National Science Library

    Smith, Jennifer

    2004-01-01

    The type of research that investigates operational tasks such as flying an aircraft or flight simulator is extremely useful to the Air Force's operational community because the results apply directly...

  2. Concept for Sustainable Dose Reduction in Operating BWRs and PWRs with FSD (Full System decontamination)

    Energy Technology Data Exchange (ETDEWEB)

    Sempere Belda, L.; Stiepani, C.; Topf, C.

    2011-07-01

    Nuclear power plants experience an increase in dose rates during operation due to the build-up of the activity inventory. The activity build-up is influenced by the construction materials, past and present water chemistries, and the individual operating history of the plant. Depending on these factors the dose levels in an operating plant may reach a point in which concrete actions to reduce the overall radiation exposure become necessary. AREVA has developed the Concept for Sustainable Dose Reduction in Operating BWRs and PWRs. This is a program of joint corrective measures to minimize dose levels and keep them low for continued operation. It can be applied in plants from all constructors and designs. The concept is put into practice through the coordinated application of proven technologies, including: . Full System Decontamination to minimize the activity inventory . The formation of new, very stable protective oxides on the system surfaces including injection of depleted zinc . Introduction of advanced water chemistry for maintaining the low dose levels achieved during ongoing operation The implementation of this program is particularly interesting for plants with a long operation history, especially when considering life extension. A description of the activities involved is provided, including an approximate timeline for the implementation from the initial planning stages until completion.

  3. Concept for Sustainable Dose Reduction in Operating BWRs and PWRs with FSD (Full System decontamination)

    International Nuclear Information System (INIS)

    Sempere Belda, L.; Stiepani, C.; Topf, C.

    2011-01-01

    Nuclear power plants experience an increase in dose rates during operation due to the build-up of the activity inventory. The activity build-up is influenced by the construction materials, past and present water chemistries, and the individual operating history of the plant. Depending on these factors the dose levels in an operating plant may reach a point in which concrete actions to reduce the overall radiation exposure become necessary. AREVA has developed the Concept for Sustainable Dose Reduction in Operating BWRs and PWRs. This is a program of joint corrective measures to minimize dose levels and keep them low for continued operation. It can be applied in plants from all constructors and designs. The concept is put into practice through the coordinated application of proven technologies, including: . Full System Decontamination to minimize the activity inventory . The formation of new, very stable protective oxides on the system surfaces including injection of depleted zinc . Introduction of advanced water chemistry for maintaining the low dose levels achieved during ongoing operation The implementation of this program is particularly interesting for plants with a long operation history, especially when considering life extension. A description of the activities involved is provided, including an approximate timeline for the implementation from the initial planning stages until completion.

  4. Flight Deck I-Glasses, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Flight Deck i-Glasses is a color, stereoscopic 3-D display mounted on consumer style eye glass frames that will enhance operator performance and multi-modal...

  5. A Behavioral Framework for Managing Massive Airline Flight Disruptions through Crisis Management, Organization Development, and Organization Learning

    Science.gov (United States)

    Larsen, Tulinda Deegan

    In this study the researcher provides a behavioral framework for managing massive airline flight disruptions (MAFD) in the United States. Under conditions of MAFD, multiple flights are disrupted throughout the airline's route network, customer service is negatively affected, additional costs are created for airlines, and governments intervene. This study is different from other studies relating to MAFD that have focused on the operational, technical, economic, financial, and customer service impacts. The researcher argues that airlines could improve the management of events that led to MAFD by applying the principles of crisis management where the entire organization is mobilized, rather than one department, adapting organization development (OD) interventions to implement change and organization learning (OL) processes to create culture of innovation, resulting in sustainable improvement in customer service, cost reductions, and mitigation of government intervention. At the intersection of crisis management, OD, and OL, the researcher has developed a new conceptual framework that enhances the resiliency of individuals and organizations in responding to unexpected-yet-recurring crises (e.g., MAFD) that impact operations. The researcher has adapted and augmented Lalonde's framework for managing crises through OD interventions by including OL processes. The OD interventions, coupled with OL, provide a framework for airline leaders to manage more effectively events that result in MAFD with the goal of improving passenger satisfaction, reducing costs, and preventing further government intervention. Further research is warranted to apply this conceptual framework to unexpected-yet-recurring crises that affect operations in other industries.

  6. Server Operation and Virtualization to Save Energy and Cost in Future Sustainable Computing

    Directory of Open Access Journals (Sweden)

    Jun-Ho Huh

    2018-06-01

    Full Text Available Since the introduction of the LTE (Long Term Evolution service, we have lived in a time of expanding amounts of data. The amount of data produced has increased every year with the increase of smart phone distribution in particular. Telecommunication service providers have to struggle to secure sufficient network capacity in order to maintain quick access to necessary data by consumers. Nonetheless, maintaining the maximum capacity and bandwidth at all times requires considerable cost and excessive equipment. Therefore, to solve such a problem, telecommunication service providers need to maintain an appropriate level of network capacity and to provide sustainable service to customers through a quick network development in case of shortage. So far, telecommunication service providers have bought and used the network equipment directly produced by network equipment manufacturers such as Ericsson, Nokia, Cisco, and Samsung. Since the equipment is specialized for networking, which satisfied consumers with their excellent performances, they are very costly because they are developed with advanced technologies. Moreover, it takes much time due to the purchase process wherein the telecommunication service providers place an order and the manufacturer produces and delivers. Accordingly, there are cases that require signaling and two-way data traffic as well as capacity because of the diversity of IoT devices. For these purposes, the need for NFV (Network Function Virtualization is raised. Equipment virtualization is performed so that it is operated on an x86-based compatible server instead of working on the network equipment manufacturer’s dedicated hardware. By operating in some compatible servers, it can reduce the wastage of hardware and cope with the change thanks to quick hardware development. This study proposed an efficient system of reducing cost in network server operation using such NFV technology and found that the cost was reduced by 24

  7. Flight Test Guide (Part 61 Revised): Instrument Pilot: Helicopter.

    Science.gov (United States)

    Federal Aviation Administration (DOT), Washington, DC. Flight Standards Service.

    The guide provides an outline of the skills required to pass the flight test for an Instrument Pilot Helicopter Rating under Part 61 (revised) of Federal Aviation Regulations. General procedures for flight tests are described and the following pilot operations outlined: maneuvering by reference to instruments, IFR navigation, instrument…

  8. Liability and Insurance for Suborbital Flights

    Science.gov (United States)

    Masson-Zwaan, T.

    2012-01-01

    This paper analyzes and compares liability and liability insurance in the fields of aviation and spaceflight in order to propose solutions for a liability regime and insurance options for suborbital flights. Suborbital flights can be said to take place in the grey zone between air and space, between air law and space law, as well as between aviation insurance and space insurance. In terms of liability, the paper discusses air law and space law provisions in the fields of second and third party liability for damage to passengers and 'innocent bystanders' respectively, touching upon international treaties, national law and EU law, and on insurance to cover those risks. Although the insurance market is currently not ready to provide tailor-made products for operators of suborbital flights, it is expected to adapt rapidly once such flights will become reality. A hybrid approach will provide the best solution in the medium term.

  9. Analyzing Supply Chain Uncertainty to Deliver Sustainable Operational Performance: Symmetrical and Asymmetrical Modeling Approaches

    Directory of Open Access Journals (Sweden)

    Mohammad Asif Salam

    2017-11-01

    Full Text Available The purpose of this study is to analyze different types of supply chain uncertainties and suggest strategies to deal with unexpected contingencies to deliver superior operational performance (OP using symmetrical and asymmetrical modeling approaches. The data were collected through a survey given to 146 supply chain managers within the fast moving consumer goods industry in Thailand. Symmetrical modeling is applied via partial least squares structural equation modeling (PLS-SEM in order to assess the theoretical relationships among the latent variables, while asymmetrical modeling is applied via fuzzy set qualitative comparative analysis (fsQCA to emphasize their combinatory causal relation. The empirical results support the theory by highlighting the mediating effect of supply chain strategy (SCS in the relation between supply chain uncertainty (SCU and firms’ OP and, hence, deliver business sustainability for the firms, demonstrating that the choice of SCS should not be an “either-or” decision. This research contributes by providing an illustration of a PLS-SEM and fsQCA based estimation for the rapidly emerging field of sustainable supply chain management. This study provides empirical support for resource dependence theory (RDT in explaining the relation between SCU and SCS, which leads to sustainable OP. From a methodological standpoint, this study also illustrates predictive validation testing of models using holdout samples and testing for causal asymmetry.

  10. Establishing a Regulatory Framework for the Development & Operations of Sub-Orbital & Orbital Aircraft (SOA) in the EU

    Science.gov (United States)

    Marciacq, Jean-Bruno; Tomasello, Filippo; Erdelyi, Zsuzsanna; Gerhard, Michael

    2013-09-01

    The Treaty of the European Union allows for the development of common policies for all sectors of transport, including aviation, and its safety. To this end, the European legislator established in 2002 the European Aviation Safety Agency (EASA), located in Cologne, Germany, and gave it responsibility for the regulation of aviation safety, successively encompassing airworthiness, air operations and Flight Crew Licensing (FCL), Air Traffic Management (ATM), Air Navigation Systems (ANS), as well as Aerodromes (ADR).The Annexes 6 and 8 of the International Civil Aviation Organization (ICAO) to the Chicago Convention define an aircraft as "any machine that can derive support in the atmosphere from the reactions of the air other than the reactions of the air against the earth's surface". The aerodynamic lift generated during the atmospheric part of the flight is commonly used to sustain and control the vehicle, that is to take-off, climb, pull-up, perform manoeuvres, fly back to the airport and land. Thus, Sub- orbital and Orbital Aircraft (SOA) are considered to be aircraft, as opposed to rockets which are symmetrical bodies not generating lift, and solely sustained by their rocket engine(s).Consequently, the regulation of SOA airworthiness, their crew, operations, insertion into the traffic and utilisation of aerodromes would in principle fall under the remit of EASA, which would have to fulfil its role of protection of the European citizens in relation to civil suborbital and orbital flights, that is to certify SOAs and their operations before they would be operated for Commercial Transport in the EU.Since EASA was first contacted by potential applicants in 2007, many projects have developed and the context has evolved. Thus, this paper intends to update the approach initially proposed at the 3rd IAASS in Rome in October 2008 and complemented at the 4th IAASS in Huntsville in May 2010 to accommodate sub-orbital and orbital aircraft into the EU regulatory system, and

  11. Hovering and intermittent flight in birds

    International Nuclear Information System (INIS)

    Tobalske, Bret W

    2010-01-01

    Two styles of bird locomotion, hovering and intermittent flight, have great potential to inform future development of autonomous flying vehicles. Hummingbirds are the smallest flying vertebrates, and they are the only birds that can sustain hovering. Their ability to hover is due to their small size, high wingbeat frequency, relatively large margin of mass-specific power available for flight and a suite of anatomical features that include proportionally massive major flight muscles (pectoralis and supracoracoideus) and wing anatomy that enables them to leave their wings extended yet turned over (supinated) during upstroke so that they can generate lift to support their weight. Hummingbirds generate three times more lift during downstroke compared with upstroke, with the disparity due to wing twist during upstroke. Much like insects, hummingbirds exploit unsteady mechanisms during hovering including delayed stall during wing translation that is manifest as a leading-edge vortex (LEV) on the wing and rotational circulation at the end of each half stroke. Intermittent flight is common in small- and medium-sized birds and consists of pauses during which the wings are flexed (bound) or extended (glide). Flap-bounding appears to be an energy-saving style when flying relatively fast, with the production of lift by the body and tail critical to this saving. Flap-gliding is thought to be less costly than continuous flapping during flight at most speeds. Some species are known to shift from flap-gliding at slow speeds to flap-bounding at fast speeds, but there is an upper size limit for the ability to bound (∼0.3 kg) and small birds with rounded wings do not use intermittent glides.

  12. Hovering and intermittent flight in birds

    Energy Technology Data Exchange (ETDEWEB)

    Tobalske, Bret W, E-mail: bret.tobalske@mso.umt.ed [Field Research Station at Fort Missoula, Division of Biological Sciences, University of Montana, Missoula, MT 59812 (United States)

    2010-12-15

    Two styles of bird locomotion, hovering and intermittent flight, have great potential to inform future development of autonomous flying vehicles. Hummingbirds are the smallest flying vertebrates, and they are the only birds that can sustain hovering. Their ability to hover is due to their small size, high wingbeat frequency, relatively large margin of mass-specific power available for flight and a suite of anatomical features that include proportionally massive major flight muscles (pectoralis and supracoracoideus) and wing anatomy that enables them to leave their wings extended yet turned over (supinated) during upstroke so that they can generate lift to support their weight. Hummingbirds generate three times more lift during downstroke compared with upstroke, with the disparity due to wing twist during upstroke. Much like insects, hummingbirds exploit unsteady mechanisms during hovering including delayed stall during wing translation that is manifest as a leading-edge vortex (LEV) on the wing and rotational circulation at the end of each half stroke. Intermittent flight is common in small- and medium-sized birds and consists of pauses during which the wings are flexed (bound) or extended (glide). Flap-bounding appears to be an energy-saving style when flying relatively fast, with the production of lift by the body and tail critical to this saving. Flap-gliding is thought to be less costly than continuous flapping during flight at most speeds. Some species are known to shift from flap-gliding at slow speeds to flap-bounding at fast speeds, but there is an upper size limit for the ability to bound ({approx}0.3 kg) and small birds with rounded wings do not use intermittent glides.

  13. Prototype readout system for a multi Mpixels UV single-photon imaging detector capable of space flight operation

    Science.gov (United States)

    Seljak, A.; Cumming, H. S.; Varner, G.; Vallerga, J.; Raffanti, R.; Virta, V.

    2018-02-01

    Our collaboration works on the development of a large aperture, high resolution, UV single-photon imaging detector, funded through NASA's Strategic Astrophysics Technology (SAT) program. The detector uses a microchannel plate for charge multiplication, and orthogonal cross strip (XS) anodes for charge readout. Our target is to make an advancement in the technology readiness level (TRL), which enables real scale prototypes to be tested for future NASA missions. The baseline detector has an aperture of 50×50 mm and requires 160 low-noise charge-sensitive channels, in order to extrapolate the incoming photon position with a spatial resolution of about 20 μm FWHM. Technologies involving space flight require highly integrated electronic systems operating at very low power. We have designed two ASICs which enable the construction of such readout system. First, a charge sensitive amplifier (CSAv3) ASIC provides an equivalent noise charge (ENC) of around 600 e-, and a baseline gain of 10 mV/fC. The second, a Giga Sample per Second (GSPS) ASIC, called HalfGRAPH, is a 12-bit analog to digital converter. Its architecture is based on waveform sampling capacitor arrays and has about 8 μs of analog storage memory per channel. Both chips encapsulate 16 measurement channels. Using these chips, a small scale prototype readout system has been constructed on a FPGA Mezzanine Board (FMC), equipped with 32 measurement channels for system evaluation. We describe the construction of HalfGRAPH ASIC, detector's readout system concept and obtained results from the prototype system. As part of the space flight qualification, these chips were irradiated with a Cobalt gamma-ray source, to verify functional operation under ionizing radiation exposure.

  14. Using Engine Thrust for Emergency Flight Control: MD-11 and B-747 Results

    Science.gov (United States)

    Burcham, Frank W., Jr.; Maine, Trindel A.; Burken, John J.; Bull, John

    1998-01-01

    With modern digital control systems, using engine thrust for emergency flight control to supplement or replace failed aircraft normal flight controls has become a practical consideration. The NASA Dryden Flight Research Center has developed a propulsion-controlled aircraft (PCA) system in which computer-controlled engine thrust provides emergency flight control. An F-15 and an MD-11 airplane have been landed without using any flight control surfaces. Preliminary studies have also been conducted that show that engines on only one wing can provide some flight control capability if the lateral center of gravity can be shifted toward the side of the airplane that has the operating engine(s). Simulator tests of several airplanes with no flight control surfaces operating and all engines out on the left wing have all shown positive control capability within the available range of lateral center-of-gravity offset. Propulsion-controlled aircraft systems that can operate without modifications to engine control systems, thus allowing PCA technology to be installed on less capable airplanes or at low cost, are also desirable. Further studies have examined simplified 'PCA Lite' and 'PCA Ultralite' concepts in which thrust control is provided by existing systems such as auto-throttles or a combination of existing systems and manual pilot control.

  15. IRIS Mission Operations Director's Colloquium

    Science.gov (United States)

    Carvalho, Robert; Mazmanian, Edward A.

    2014-01-01

    Pursuing the Mysteries of the Sun: The Interface Region Imaging Spectrograph (IRIS) Mission. Flight controllers from the IRIS mission will present their individual experiences on IRIS from development through the first year of flight. This will begin with a discussion of the unique nature of IRISs mission and science, and how it fits into NASA's fleet of solar observatories. Next will be a discussion of the critical roles Ames contributed in the mission including spacecraft and flight software development, ground system development, and training for launch. This will be followed by experiences from launch, early operations, ongoing operations, and unusual operations experiences. The presentation will close with IRIS science imagery and questions.

  16. A Survey on Open-Source Flight Control Platforms of Unmanned Aerial Vehicle

    DEFF Research Database (Denmark)

    Ebeid, Emad Samuel Malki; Skriver, Martin; Jin, Jie

    2017-01-01

    Recently, Unmanned Aerial Vehicle (UAV), so-called drones, have gotten a lot of attention in academic research and commercial applications due to their simple structure, ease of operations and low-cost hardware components. Flight controller, embedded electronics component, represents the core part...... of the drone. It aims at performing the main operations of the drone (e.g., autonomous control and navigation). There are various types of flight controllers and each of them has its own characteristics and features. This paper presents an extensive survey on the publicly available open-source flight...

  17. An analysis of flight Quick Access Recorder (QAR) data and its applications in preventing landing incidents

    International Nuclear Information System (INIS)

    Wang, Lei; Wu, Changxu; Sun, Ruishan

    2014-01-01

    A long landing is one type of flight incident that will multiply the risk of a runway excursion. It occurs frequently but receives little attention in research due to difficulty in obtaining the real flight data. The aim of this paper is to discover key flight parameter features of long landing incidents by analyzing Quick Access Recorder (QAR) data and put forward prevention measures from the perspective of pilot operation at the same time. First, 73 flight performance parameter variables and 4 operation parameter variables were defined, covering major landing stages from 1500 ft to touchdown. Then 128 cases of selected QAR data were divided into two groups according to the threshold of identifying normal and long landing. Second, each flight parameter variable of these 128 flights was compared between groups and then the logistic and linear regression models were developed respectively to further examine the links between touchdown distance and these flight parameter variables. Third, potential flight operation causing performance difference of long landing incidents was also analyzed. Finally results indicate that the period of 200 ft to touchdown is the key stage of landing and flare is the most critical operation affecting touchdown distance. It is suggested that the pilot should inspect the ratio of descent rate and groundspeed carefully at the height of 50 ft and pilot's faster and steady pulling up columns is probably helpful for an excellent flare and landing. The findings are expected to be applied into flight operation practice for further preventing long landing incidents and even the runway excursion accidents

  18. The Legacy of Space Shuttle Flight Software

    Science.gov (United States)

    Hickey, Christopher J.; Loveall, James B.; Orr, James K.; Klausman, Andrew L.

    2011-01-01

    The initial goals of the Space Shuttle Program required that the avionics and software systems blaze new trails in advancing avionics system technology. Many of the requirements placed on avionics and software were accomplished for the first time on this program. Examples include comprehensive digital fly-by-wire technology, use of a digital databus for flight critical functions, fail operational/fail safe requirements, complex automated redundancy management, and the use of a high-order software language for flight software development. In order to meet the operational and safety goals of the program, the Space Shuttle software had to be extremely high quality, reliable, robust, reconfigurable and maintainable. To achieve this, the software development team evolved a software process focused on continuous process improvement and defect elimination that consistently produced highly predictable and top quality results, providing software managers the confidence needed to sign each Certificate of Flight Readiness (COFR). This process, which has been appraised at Capability Maturity Model (CMM)/Capability Maturity Model Integration (CMMI) Level 5, has resulted in one of the lowest software defect rates in the industry. This paper will present an overview of the evolution of the Primary Avionics Software System (PASS) project and processes over thirty years, an argument for strong statistical control of software processes with examples, an overview of the success story for identifying and driving out errors before flight, a case study of the few significant software issues and how they were either identified before flight or slipped through the process onto a flight vehicle, and identification of the valuable lessons learned over the life of the project.

  19. Efficient flapping flight of pterosaurs

    Science.gov (United States)

    Strang, Karl Axel

    In the late eighteenth century, humans discovered the first pterosaur fossil remains and have been fascinated by their existence ever since. Pterosaurs exploited their membrane wings in a sophisticated manner for flight control and propulsion, and were likely the most efficient and effective flyers ever to inhabit our planet. The flapping gait is a complex combination of motions that sustains and propels an animal in the air. Because pterosaurs were so large with wingspans up to eleven meters, if they could have sustained flapping flight, they would have had to achieve high propulsive efficiencies. Identifying the wing motions that contribute the most to propulsive efficiency is key to understanding pterosaur flight, and therefore to shedding light on flapping flight in general and the design of efficient ornithopters. This study is based on published results for a very well-preserved specimen of Coloborhynchus robustus, for which the joints are well-known and thoroughly described in the literature. Simplifying assumptions are made to estimate the characteristics that can not be inferred directly from the fossil remains. For a given animal, maximizing efficiency is equivalent to minimizing power at a given thrust and speed. We therefore aim at finding the flapping gait, that is the joint motions, that minimize the required flapping power. The power is computed from the aerodynamic forces created during a given wing motion. We develop an unsteady three-dimensional code based on the vortex-lattice method, which correlates well with published results for unsteady motions of rectangular wings. In the aerodynamic model, the rigid pterosaur wing is defined by the position of the bones. In the aeroelastic model, we add the flexibility of the bones and of the wing membrane. The nonlinear structural behavior of the membrane is reduced to a linear modal decomposition, assuming small deflections about the reference wing geometry. The reference wing geometry is computed for

  20. Time-of-flight spectrometers

    International Nuclear Information System (INIS)

    Carrico, J.P.

    1976-01-01

    The flight time of an ion in an inhomogeneous, oscillatory electric field (IOFE) is an m/e-dependent property of this field and is independent of the initial position and velocity. The d.c. component of the equation of motion for an ion in the IOFE describes a harmonic oscillation of constant period. When ions oscillate for many periods with one species overtaking another the motion may no longer be truly periodic although the resulting period or 'quasi-period' still remains independent of the initial conditions. This period or 'quasi-period' is used in the time-of-flight mass spectrometer described. The principle of operation is also described and both analytical and experimental results are reported. (B.D.)

  1. In-Space Manufacturing at NASA Marshall Space Flight Center: Enabling Technologies for Exploration

    Science.gov (United States)

    Bean, Quincy; Johnston, Mallory; Ordonez, Erick; Ryan, Rick; Prater, Tracie; Werkeiser, Niki

    2015-01-01

    NASA Marshall Space Flight Center is currently engaged in a number of in-space manufacturing(ISM)activities that have the potential to reduce launch costs, enhance crew safety, and provide the capabilities needed to undertake long duration spaceflight safely and sustainably.

  2. Implementation and flight-test of a multi-mode rotorcraft flight-control system for single-pilot use in poor visibility

    Science.gov (United States)

    Hindson, William S.

    1987-01-01

    A flight investigation was conducted to evaluate a multi-mode flight control system designed according to the most recent recommendations for handling qualities criteria for new military helicopters. The modes and capabilities that were included in the system are those considered necessary to permit divided-attention (single-pilot) lowspeed and hover operations near the ground in poor visibility conditions. Design features included mode-selection and mode-blending logic, the use of an automatic position-hold mode that employed precision measurements of aircraft position, and a hover display which permitted manually-controlled hover flight tasks in simulated instrument conditions. Pilot evaluations of the system were conducted using a multi-segment evaluation task. Pilot comments concerning the use of the system are provided, and flight-test data are presented to show system performance.

  3. Simbol-X Formation Flight and Image Reconstruction

    Science.gov (United States)

    Civitani, M.; Djalal, S.; Le Duigou, J. M.; La Marle, O.; Chipaux, R.

    2009-05-01

    Simbol-X is the first operational mission relying on two satellites flying in formation. The dynamics of the telescope, due to the formation flight concept, raises a variety of problematic, like image reconstruction, that can be better evaluated via a simulation tools. We present here the first results obtained with Simulos, simulation tool aimed to study the relative spacecrafts navigation and the weight of the different parameters in image reconstruction and telescope performance evaluation. The simulation relies on attitude and formation flight sensors models, formation flight dynamics and control, mirror model and focal plane model, while the image reconstruction is based on the Line of Sight (LOS) concept.

  4. AirSTAR Hardware and Software Design for Beyond Visual Range Flight Research

    Science.gov (United States)

    Laughter, Sean; Cox, David

    2016-01-01

    The National Aeronautics and Space Administration (NASA) Airborne Subscale Transport Aircraft Research (AirSTAR) Unmanned Aerial System (UAS) is a facility developed to study the flight dynamics of vehicles in emergency conditions, in support of aviation safety research. The system was upgraded to have its operational range significantly expanded, going beyond the line of sight of a ground-based pilot. A redesign of the airborne flight hardware was undertaken, as well as significant changes to the software base, in order to provide appropriate autonomous behavior in response to a number of potential failures and hazards. Ground hardware and system monitors were also upgraded to include redundant communication links, including ADS-B based position displays and an independent flight termination system. The design included both custom and commercially available avionics, combined to allow flexibility in flight experiment design while still benefiting from tested configurations in reversionary flight modes. A similar hierarchy was employed in the software architecture, to allow research codes to be tested, with a fallback to more thoroughly validated flight controls. As a remotely piloted facility, ground systems were also developed to ensure the flight modes and system state were communicated to ground operations personnel in real-time. Presented in this paper is a general overview of the concept of operations for beyond visual range flight, and a detailed review of the airborne hardware and software design. This discussion is held in the context of the safety and procedural requirements that drove many of the design decisions for the AirSTAR UAS Beyond Visual Range capability.

  5. Space Flight-Associated Neuro-ocular Syndrome.

    Science.gov (United States)

    Lee, Andrew G; Mader, Thomas H; Gibson, C Robert; Tarver, William

    2017-09-01

    New and unique physiologic and pathologic systemic and neuro-ocular responses have been documented in astronauts during and after long-duration space flight. Although the precise cause remains unknown, space flight-associated neuro-ocular syndrome (SANS) has been adopted as an appropriate descriptive term. The Space Medicine Operations Division of the US National Aeronautics and Space Administration (NASA) has documented the variable occurrence of SANS in astronauts returning from long-duration space flight on the International Space Station. These clinical findings have included unilateral and bilateral optic disc edema, globe flattening, choroidal and retinal folds, hyperopic refractive error shifts, and nerve fiber layer infarcts. The clinical findings of SANS have been correlated with structural changes on intraorbital and intracranial magnetic resonance imaging and in-flight and terrestrial ultrasonographic studies and ocular optical coherence tomography. Further study of SANS is ongoing for consideration of future manned missions to space, including a return trip to the moon or Mars.

  6. Fiscal Year 2015 Site Sustainability Plan

    Energy Technology Data Exchange (ETDEWEB)

    Witt, Monica Rene [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2015-03-16

    Los Alamos National Laboratory is taking action to operate as a living laboratory for sustainable solutions in buildings, climate, energy, purchasing, transportation, waste, and water. LANL prepared the fiscal year (FY) 2015 Site Sustainability Plan (SSP) to describe progress towards the goals established in the SSPP. In addition, per the requirements of DOE Order 436.1, Departmental Sustainability, Los Alamos National Laboratory (LANL) uses its International Organization for Standardization (ISO) 14001:2004 certified Environmental Management System (EMS) to establish objectives to improve compliance, reduce environmental impacts, increase operational capacity, and meet long-term sustainability goals. The goals of the 2015 SSP are fully integrated into LANL’s institutional environmental objectives under the EMS and its Long-Term Strategy for Environmental Stewardship & Sustainability (LTSESS).

  7. Operational Overview for UAS Integration in the NAS Project Flight Test Series 3

    Science.gov (United States)

    Valkov, Steffi B.; Sternberg, Daniel; Marston, Michael

    2018-01-01

    The National Aeronautics and Space Administration Unmanned Aircraft Systems Integration in the National Airspace System Project has conducted a series of flight tests intended to support the reduction of barriers that prevent unmanned aircraft from flying without the required waivers from the Federal Aviation Administration. The 2015 Flight Test Series 3, supported two separate test configurations. The first configuration investigated the timing of Detect and Avoid alerting thresholds using a radar equipped unmanned vehicle and multiple live intruders flown at varying encounter geometries.

  8. An Operational evaluation of head up displays for civil transport operations. NASA/FAA phase 3 report

    Science.gov (United States)

    Lauber, J. K.; Bray, R. S.; Harrison, R. L.; Hemingway, J. C.; Scott, B. C.

    1982-01-01

    The advantages and disadvantages of head-up displays (HUDs) in commercial jet transport approach and landing operations was evaluated. Ten airline captains currently qualified in the B-727 aircraft flew a series of instrument landing system (ILS) and nonprecision approaches in a motion base simulator using both a flight director HUD concept and a flightpath HUD concept as well as conventional head-down instruments under a variety of environmental and operational conditions to assess: (1) the potential benefits of these HUDs in airline operations; (2) problems which might be associated with their use; and (3) flight crew training requirements and flight crew operating procedures suitable for use with the HUDs. Results are presented in terms of objective simulator based performance measures, subject pilot opinion and rating data, and observer data.

  9. SCI 236 AGARDograph. Part Two; National Aeronautics and Space Administration Armstrong Flight Research Center Annex

    Science.gov (United States)

    Neal, Bradford A.; Stoliker, Patrick C.

    2018-01-01

    NASA AFRC is a United States government entity that conducts the integration and operation of new and unproven technologies into proven flight vehicles as well as the flight test of one-of-a-kind experimental aircraft. AFRC also maintains and operates several platform aircraft that allow the integration of a wide range of sensors to conduct airborne remote sensing, science observations and airborne infrared astronomy. To support these types of operations AFRC has the organization, facilities and tools to support the experimental flight test of unique vehicles and conduct airborne sensing/observing.

  10. DataComm in Flight Deck Surface Trajectory-Based Operations. Chapter 20

    Science.gov (United States)

    Bakowski, Deborah L.; Foyle, David C.; Hooey, Becky L.; Meyer, Glenn R.; Wolter, Cynthia A.

    2012-01-01

    The purpose of this pilot-in-the-loop aircraft taxi simulation was to evaluate a NextGen concept for surface trajectory-based operations (STBO) in which air traffic control (ATC) issued taxi clearances with a required time of arrival (RTA) by Data Communications (DataComm). Flight deck avionics, driven by an error-nulling algorithm, displayed the speed needed to meet the RTA. To ensure robustness of the algorithm, the ability of 10 two-pilot crews to meet the RTA was tested in nine experimental trials representing a range of realistic conditions including a taxi route change, an RTA change, a departure clearance change, and a crossing traffic hold scenario. In some trials, these DataComm taxi clearances or clearance modifications were accompanied by preview information, in which the airport map display showed a preview of the proposed route changes, including the necessary speed to meet the RTA. Overall, the results of this study show that with the aid of the RTA speed algorithm, pilots were able to meet their RTAs with very little time error in all of the robustness-testing scenarios. Results indicated that when taxi clearance changes were issued by DataComm only, pilots required longer notification distances than with voice communication. However, when the DataComm was accompanied by graphical preview, the notification distance required by pilots was equivalent to that for voice.

  11. Predicting Sustainable Work Behavior

    DEFF Research Database (Denmark)

    Hald, Kim Sundtoft

    2013-01-01

    Sustainable work behavior is an important issue for operations managers – it has implications for most outcomes of OM. This research explores the antecedents of sustainable work behavior. It revisits and extends the sociotechnical model developed by Brown et al. (2000) on predicting safe behavior...

  12. Production of isometric forces during sustained acceleration.

    Science.gov (United States)

    Sand, D P; Girgenrath, M; Bock, O; Pongratz, H

    2003-06-01

    The operation of high-performance aircraft requires pilots to apply finely graded forces on controls. Since they are often exposed to high levels of acceleration in flight, we investigated to what extent this ability is degraded in such an environment. Twelve healthy non-pilot volunteers were seated in the gondola of a centrifuge and their performance was tested at normal gravity (1 G) and while exposed to sustained forces of 1.5 G and 3 G oriented from head to foot (+Gz). Using an isometric joystick, they attempted to produce force vectors with specific lengths and directions commanded in random order by a visual display. Acceleration had substantial effects on the magnitude of produced force. Compared with 1 G, maximum produced force was about 2 N higher at 1.5 G and about 10 N higher at 3 G. The size of this effect was constant across the different magnitudes, but varied with the direction of the prescribed force. Acceleration degrades control of force production. This finding may indicate that the motor system misinterprets the unusual gravitoinertial environment and/or that proprioceptive feedback is degraded due to increased muscle tone. The production of excessive isometric force could affect the safe operation of high-performance aircraft.

  13. Distributed Optimization of Sustainable Power Dispatch and Flexible Consumer Loads for Resilient Power Grid Operations

    Science.gov (United States)

    Srikantha, Pirathayini

    Today's electric grid is rapidly evolving to provision for heterogeneous system components (e.g. intermittent generation, electric vehicles, storage devices, etc.) while catering to diverse consumer power demand patterns. In order to accommodate this changing landscape, the widespread integration of cyber communication with physical components can be witnessed in all tenets of the modern power grid. This ubiquitous connectivity provides an elevated level of awareness and decision-making ability to system operators. Moreover, devices that were typically passive in the traditional grid are now `smarter' as these can respond to remote signals, learn about local conditions and even make their own actuation decisions if necessary. These advantages can be leveraged to reap unprecedented long-term benefits that include sustainable, efficient and economical power grid operations. Furthermore, challenges introduced by emerging trends in the grid such as high penetration of distributed energy sources, rising power demands, deregulations and cyber-security concerns due to vulnerabilities in standard communication protocols can be overcome by tapping onto the active nature of modern power grid components. In this thesis, distributed constructs in optimization and game theory are utilized to design the seamless real-time integration of a large number of heterogeneous power components such as distributed energy sources with highly fluctuating generation capacities and flexible power consumers with varying demand patterns to achieve optimal operations across multiple levels of hierarchy in the power grid. Specifically, advanced data acquisition, cloud analytics (such as prediction), control and storage systems are leveraged to promote sustainable and economical grid operations while ensuring that physical network, generation and consumer comfort requirements are met. Moreover, privacy and security considerations are incorporated into the core of the proposed designs and these

  14. Mathematical model validation of a thermal architecture system connecting east/west radiators by flight data

    International Nuclear Information System (INIS)

    Torres, Alejandro; Mishkinis, Donatas; Kaya, Tarik

    2014-01-01

    A novel satellite thermal architecture connecting the east and west radiators of a geostationary telecommunication satellite via loop heat pipes (LHPs) is flight tested on board the satellite Hispasat 1E. The LHP operating temperature is regulated by using pressure regulating valves (PRVs). The flight data demonstrated the successful operation of the proposed concept. A transient numerical model specifically developed for the design of this system satisfactorily simulated the flight data. The validated mathematical model can be used to design and analyze the thermal behavior of more complex architectures. - Highlights: •A novel spacecraft thermal control architecture is presented. •The east–west radiators of a GEO communications satellite are connected using LHPs. •A transient mathematical model is validated with flight data. •The space flight data proved successful in-orbit operation of the novel architecture. •The model can be used to design/analyze LHP based complex thermal architectures

  15. The Distribution of Flight Tracks Across Air Combat Command Military Training Routes

    National Research Council Canada - National Science Library

    Bradley, Kevin

    1996-01-01

    To validate the flight track dispersion algorithms currently in the ROUTEMAP and MR_NMAP noise models, measurements of the lateral distribution of flight operations were conducted on five low-altitude Military Training (MTRs...

  16. Staircase To Sustainable Development

    Directory of Open Access Journals (Sweden)

    Doorasamy Mishelle

    2015-06-01

    Full Text Available The aim of this article to provide a theoretical framework on the concepts of Sustainable Development and the process that companies need to follow in order to ensure the future sustainability of business operations. Various secondary sources and previous literature was reviewed to clearly identify why companies are finding it difficult to conduct their business operations in a sustainable manner. Stricter legislation and regulations, increased competition, depletion of natural resources and market pressures have placed organisations under increased pressure to improve environmental performance and achieve eco-efficiency. This paper provides comprehensive overview of how companies can achieve the ‘Triple bottom line’ by committing to continuous improvement and adhering to the regulations stipulated according to the International Standards of Organisations (ISO14001.

  17. Knowledge-based system for flight information management. Thesis

    Science.gov (United States)

    Ricks, Wendell R.

    1990-01-01

    The use of knowledge-based system (KBS) architectures to manage information on the primary flight display (PFD) of commercial aircraft is described. The PFD information management strategy used tailored the information on the PFD to the tasks the pilot performed. The KBS design and implementation of the task-tailored PFD information management application is described. The knowledge acquisition and subsequent system design of a flight-phase-detection KBS is also described. The flight-phase output of this KBS was used as input to the task-tailored PFD information management KBS. The implementation and integration of this KBS with existing aircraft systems and the other KBS is described. The flight tests are examined of both KBS's, collectively called the Task-Tailored Flight Information Manager (TTFIM), which verified their implementation and integration, and validated the software engineering advantages of the KBS approach in an operational environment.

  18. Nickel-Cadmium Battery Operation Management Optimization Using Robust Design

    Science.gov (United States)

    Blosiu, Julian O.; Deligiannis, Frank; DiStefano, Salvador

    1996-01-01

    In recent years following several spacecraft battery anomalies, it was determined that managing the operational factors of NASA flight NiCd rechargeable battery was very important in order to maintain space flight battery nominal performance. The optimization of existing flight battery operational performance was viewed as something new for a Taguchi Methods application.

  19. Initial Concept of Operations for Full Management by Trajectory

    Science.gov (United States)

    Fernandes, Alicia D.; Atkins, Steve; Leiden, Ken; Kaler, Curt; Evans, Mark; Bell, Alan; Kilbourne, Todd; Jackson, Michael

    2017-01-01

    This document describes Management by Trajectory (MBT), a concept for future air traffic management (ATM) in which flights are assigned four-dimensional trajectories (4DTs) through a negotiation process between the Federal Aviation Administration (FAA) and flight operators that respects the flight operator's goals while complying with National Airspace System (NAS) constraints.

  20. Task complexity modulates pilot electroencephalographic activity during real flights.

    Science.gov (United States)

    Di Stasi, Leandro L; Diaz-Piedra, Carolina; Suárez, Juan; McCamy, Michael B; Martinez-Conde, Susana; Roca-Dorda, Joaquín; Catena, Andrés

    2015-07-01

    Most research connecting task performance and neural activity to date has been conducted in laboratory conditions. Thus, field studies remain scarce, especially in extreme conditions such as during real flights. Here, we investigated the effects of flight procedures of varied complexity on the in-flight EEG activity of military helicopter pilots. Flight procedural complexity modulated the EEG power spectrum: highly demanding procedures (i.e., takeoff and landing) were associated with higher EEG power in the higher frequency bands, whereas less demanding procedures (i.e., flight exercises) were associated with lower EEG power over the same frequency bands. These results suggest that EEG recordings may help to evaluate an operator's cognitive performance in challenging real-life scenarios, and thus could aid in the prevention of catastrophic events. © 2015 Society for Psychophysiological Research.

  1. New Methodology for Optimal Flight Control using Differential Evolution Algorithms applied on the Cessna Citation X Business Aircraft – Part 2. Validation on Aircraft Research Flight Level D Simulator

    OpenAIRE

    Yamina BOUGHARI; Georges GHAZI; Ruxandra Mihaela BOTEZ; Florian THEEL

    2017-01-01

    In this paper the Cessna Citation X clearance criteria were evaluated for a new Flight Controller. The Flight Control Law were optimized and designed for the Cessna Citation X flight envelope by combining the Deferential Evolution algorithm, the Linear Quadratic Regulator method, and the Proportional Integral controller during a previous research presented in part 1. The optimal controllers were used to reach satisfactory aircraft’s dynamic and safe flight operations with respect to the augme...

  2. Operating System Abstraction Layer (OSAL)

    Science.gov (United States)

    Yanchik, Nicholas J.

    2007-01-01

    This viewgraph presentation reviews the concept of the Operating System Abstraction Layer (OSAL) and its benefits. The OSAL is A small layer of software that allows programs to run on many different operating systems and hardware platforms It runs independent of the underlying OS & hardware and it is self-contained. The benefits of OSAL are that it removes dependencies from any one operating system, promotes portable, reusable flight software. It allows for Core Flight software (FSW) to be built for multiple processors and operating systems. The presentation discusses the functionality, the various OSAL releases, and describes the specifications.

  3. 14 CFR 121.434 - Operating experience, operating cycles, and consolidation of knowledge and skills.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 3 2010-01-01 2010-01-01 false Operating experience, operating cycles, and... Qualifications § 121.434 Operating experience, operating cycles, and consolidation of knowledge and skills. (a... position, the operating experience, operating cycles, and the line operating flight time for consolidation...

  4. Commercial Flight Crew Decision-Making during Low-Visibility Approach Operations Using Fused Synthetic/Enhanced Vision Systems

    Science.gov (United States)

    Kramer, Lynda J.; Bailey, Randall E.; Prinzel, Lawrence J., III

    2007-01-01

    NASA is investigating revolutionary crew-vehicle interface technologies that strive to proactively overcome aircraft safety barriers that would otherwise constrain the full realization of the next-generation air transportation system. A fixed-based piloted simulation experiment was conducted to evaluate the complementary use of Synthetic and Enhanced Vision technologies. Specific focus was placed on new techniques for integration and/or fusion of Enhanced and Synthetic Vision and its impact within a two-crew flight deck on the crew's decision-making process during low-visibility approach and landing operations. Overall, the experimental data showed that significant improvements in situation awareness, without concomitant increases in workload and display clutter, could be provided by the integration and/or fusion of synthetic and enhanced vision technologies for the pilot-flying and the pilot-not-flying. During non-normal operations, the ability of the crew to handle substantial navigational errors and runway incursions were neither improved nor adversely impacted by the display concepts. The addition of Enhanced Vision may not, unto itself, provide an improvement in runway incursion detection without being specifically tailored for this application. Existing enhanced vision system procedures were effectively used in the crew decision-making process during approach and missed approach operations but having to forcibly transition from an excellent FLIR image to natural vision by 100 ft above field level was awkward for the pilot-flying.

  5. Research & Technology Report Goddard Space Flight Center

    Science.gov (United States)

    Soffen, Gerald A. (Editor); Truszkowski, Walter (Editor); Ottenstein, Howard (Editor); Frost, Kenneth (Editor); Maran, Stephen (Editor); Walter, Lou (Editor); Brown, Mitch (Editor)

    1995-01-01

    The main theme of this edition of the annual Research and Technology Report is Mission Operations and Data Systems. Shifting from centralized to distributed mission operations, and from human interactive operations to highly automated operations is reported. The following aspects are addressed: Mission planning and operations; TDRSS, Positioning Systems, and orbit determination; hardware and software associated with Ground System and Networks; data processing and analysis; and World Wide Web. Flight projects are described along with the achievements in space sciences and earth sciences. Spacecraft subsystems, cryogenic developments, and new tools and capabilities are also discussed.

  6. The impact of minimum pay implementation on small businesses operating cost and sustainability: A case of service business

    Directory of Open Access Journals (Sweden)

    Hanim Rusly Fariza

    2017-01-01

    Full Text Available The implementation of minimum wage requirement in Malaysia beginning mid 2016 seems to impact both employees and employers in different ways. While this implementation could increase household income and claimed to boost employees’ productivity, employers or business operators, on the other hand are experiencing stringent effect on their business operating cost. The effect is more significant for small business operators, including the childcare centers. Childcare industry operates in the service sector, which represents the main contributor of Malaysian SMEs. Unfortunately for the industry, there is an increasing numbers of childcare centers have to cease their operation due to inability to comply with the minimum pay requirement. In the absence of thorough understanding of the phenomena, the small businesses, particularly among institution-based childcare, is at the risk of losing their businesses. This exploratory study intends to assess how the implementation of minimum pay requirement affects the existing operating cost structure, and consequently business sustainability of Malaysian childcare industry.

  7. Development of Chemical Process Design and Control for Sustainability

    Directory of Open Access Journals (Sweden)

    Shuyun Li

    2016-07-01

    Full Text Available This contribution describes a novel process systems engineering framework that couples advanced control with sustainability evaluation for the optimization of process operations to minimize environmental impacts associated with products, materials and energy. The implemented control strategy combines a biologically-inspired method with optimal control concepts for finding more sustainable operating trajectories. The sustainability assessment of process operating points is carried out by using the U.S. EPA’s Gauging Reaction Effectiveness for the ENvironmental Sustainability of Chemistries with a multi-Objective Process Evaluator (GREENSCOPE tool that provides scores for the selected indicators in the economic, material efficiency, environmental and energy areas. The indicator scores describe process performance on a sustainability measurement scale, effectively determining which operating point is more sustainable if there are more than several steady states for one specific product manufacturing. Through comparisons between a representative benchmark and the optimal steady states obtained through the implementation of the proposed controller, a systematic decision can be made in terms of whether the implementation of the controller is moving the process towards a more sustainable operation. The effectiveness of the proposed framework is illustrated through a case study of a continuous fermentation process for fuel production, whose material and energy time variation models are characterized by multiple steady states and oscillatory conditions.

  8. Modeling and Advanced Control for Sustainable Process ...

    Science.gov (United States)

    This book chapter introduces a novel process systems engineering framework that integrates process control with sustainability assessment tools for the simultaneous evaluation and optimization of process operations. The implemented control strategy consists of a biologically-inspired, multi-agent-based method. The sustainability and performance assessment of process operating points is carried out using the U.S. E.P.A.’s GREENSCOPE assessment tool that provides scores for the selected economic, material management, environmental and energy indicators. The indicator results supply information on whether the implementation of the controller is moving the process towards a more sustainable operation. The effectiveness of the proposed framework is illustrated through a case study of a continuous bioethanol fermentation process whose dynamics are characterized by steady-state multiplicity and oscillatory behavior. This book chapter contribution demonstrates the application of novel process control strategies for sustainability by increasing material management, energy efficiency, and pollution prevention, as needed for SHC Sustainable Uses of Wastes and Materials Management.

  9. Evaluation of Mixed-Mode Data-Link Communications for NextGen 4DT and Equivalent Visual Surface Operations

    Science.gov (United States)

    Prinzel, Lawrence J., III; Shelton, Kevin J.; Jones, Denise R.; Allamandola, Angela S.; Arthur, Jarvis, J., III; Bailey, Randall E.

    2010-01-01

    By 2025, U.S. air traffic is predicted to increase 3-fold and may strain the current air traffic management system, which may not be able to accommodate this growth. In response to this challenge, a revolutionary new concept has been proposed for U.S. aviation operations, termed the Next Generation Air Transportation System or NextGen. Many key capabilities are being identified to enable NextGen, including the use of data-link communications. Because NextGen represents a radically different approach to air traffic management and requires a dramatic shift in the tasks, roles, and responsibilities for the flight deck, there are numerous research issues and challenges that must be overcome to ensure a safe, sustainable air transportation system. Flight deck display and crew-vehicle interaction concepts are being developed that proactively investigate and overcome potential technology and safety barriers that might otherwise constrain the full realization of NextGen. The paper describes simulation research examining data-link communications during 4DT and equivalent visual surface operations.

  10. The trans-Himalayan flights of bar-headed geese (Anser indicus)

    Science.gov (United States)

    Hawkes, L.A.; Balachandran, S.; Batbayar, N.; Butler, P.J.; Frappell, P.B.; Milsom, W.K.; Tseveenmyadag, N.; Newman, S.H.; Scott, G.R.; Sathiyaselvam, P.; Takekawa, John Y.; Wikelski, M.; Bishop, C.M.

    2011-01-01

    Birds that fly over mountain barriers must be capable of meeting the increased energetic cost of climbing in low-density air, even though less oxygen may be available to support their metabolism. This challenge is magnified by the reduction in maximum sustained climbing rates in large birds. Bar-headed geese (Anser indicus) make one of the highest and most iconic transmountain migrations in the world. We show that those populations of geese that winter at sea level in India are capable of passing over the Himalayas in 1 d, typically climbing between 4,000 and 6,000min 7-8 h. Surprisingly, these birds do not rely on the assistance of upslope tailwinds that usually occur during the day and can support minimum climb rates of 0.8-2.2 km??h-1, even in the relative stillness of the night. They appear to strategically avoid higher speed winds during the afternoon, thus maximizing safety and control during flight. It would seem, therefore, that bar-headed geese are capable of sustained climbing flight over the passes of the Himalaya under their own aerobic power.

  11. Proof-of-Concept Demonstrations of a Flight Adjustment Logging and Communication Network

    Science.gov (United States)

    Underwood, Matthew C.; Merlino, Daniel K.; Carboneau, Lindsey M.; Wilson, C. Logan; Wilder, Andrew J.

    2016-01-01

    The National Airspace System is a highly complex system of systems within which a number of participants with widely varying business and operating models exist. From the airspace user's perspective, a means by which to operate flights in a more flexible and efficient manner is highly desired to meet their business objectives. From the air navigation service provider's viewpoint, there is a need for increasing the capacity of the airspace, while maintaining or increasing the levels of efficiency and safety that currently exist in order to meet the charter under which they operate. Enhancing the communication between airspace operators and users is essential in order to meet these demands. In the spring of 2015, a prototype system that implemented an airborne tool to optimize en-route flight paths for fuel and time savings was designed and tested. The system utilized in-flight Internet as a high-bandwidth data link to facilitate collaborative decision making between the flight deck and an airline dispatcher. The system was tested and demonstrated in a laboratory environment, as well as in-situ. Initial results from these tests indicate that this system is not only feasible, but could also serve as a growth path and testbed for future air traffic management concepts that rely on shared situational awareness through data exchange and electronic negotiation between multiple entities operating within the National Airspace System.

  12. Sustainable Bauxite Mining — A Global Perspective

    Science.gov (United States)

    Wagner, Christian

    In 2008 the International Aluminium Institute commissioned its fourth sustainable bauxite mining report with the aim to collect global data on the environmental, social and economic impacts of bauxite mining operations and their rehabilitation programmes. The report shows that bauxite mining has become sustainable and land area footprint neutral;it is a relatively small land use operation when compared to most other types of mining. All operations have clearly defined rehabilitation objectives, fully integrated rehabilitation programmes, and written rehabilitation procedures. The rehabilitation objectives can be summarized as follows: "The bauxite mining operations aim to restore pre-mining environment and the respective conditions; this can be a self-sustaining ecosystem consisting of native flora and fauna or any other land-use to the benefit of the local community".

  13. Exploring Organizational Antecedents for Sustainable Product Development for International Tour Operating Businesses

    DEFF Research Database (Denmark)

    Budeanu, Adriana

    The development of sustainable products or services is defined by Maxwell as the process of making products or services in a more sustainable way (production) throughout their entire life cycle, from conception to the end-of-life (Maxwell & van der Vorst, 2003). Essentially, sustainable products...

  14. Simpler ISS Flight Control Communications and Log Keeping via Social Tools and Techniques

    Science.gov (United States)

    Scott, David W.; Cowart, Hugh; Stevens, Dan

    2012-01-01

    The heart of flight operations control involves a) communicating effectively in real time with other controllers in the room and/or in remote locations and b) tracking significant events, decisions, and rationale to support the next set of decisions, provide a thorough shift handover, and troubleshoot/improve operations. International Space Station (ISS) flight controllers speak with each other via multiple voice circuits or loops, each with a particular purpose and constituency. Controllers monitor and/or respond to several loops concurrently. The primary tracking tools are console logs, typically kept by a single operator and not visible to others in real-time. Information from telemetry, commanding, and planning systems also plays into decision-making. Email is very secondary/tertiary due to timing and archival considerations. Voice communications and log entries supporting ISS operations have increased by orders of magnitude because the number of control centers, flight crew, and payload operations have grown. This paper explores three developmental ground system concepts under development at Johnson Space Center s (JSC) Mission Control Center Houston (MCC-H) and Marshall Space Flight Center s (MSFC) Payload Operations Integration Center (POIC). These concepts could reduce ISS control center voice traffic and console logging yet increase the efficiency and effectiveness of both. The goal of this paper is to kindle further discussion, exploration, and tool development.

  15. Annual Sustainability Report FY2015

    Energy Technology Data Exchange (ETDEWEB)

    2016-08-01

    NREL's Sustainability Program is responsible for upholding all executive orders, federal regulations, U.S. Department of Energy (DOE) orders, and goals related to sustainable and resilient facility operations. But NREL continues to expand sustainable practices above and beyond the laboratory's regulations and requirements to ensure that the laboratory fulfills its mission into the future, leaves the smallest possible legacy footprint, and models sustainable operations and behaviors on national, regional, and local levels. The report, per the GRI reporting format, elaborates on multi-year goals relative to executive orders, achievements, and challenges; and success stories provide specific examples. A section called 'NREL's Resiliency is Taking Many Forms' provides insight into how NREL is drawing on its deep knowledge of renewable energy and energy efficiency to help mitigate or avoid climate change impacts.

  16. Healthcare Building Sustainability Assessment tool - Sustainable Effective Design criteria in the Portuguese context

    International Nuclear Information System (INIS)

    Castro, Maria de Fátima; Mateus, Ricardo; Bragança, Luís

    2017-01-01

    Tools and methods to improve current practices and quality in the healthcare building sector are necessary to support decision-making at different building life cycle phases. Furthermore, Healthcare Building Sustainability Assessment (HBSA) Methods are based on criteria organised into different levels, such as categories and indicators. These criteria highlight aspects of significant importance when designing and operating a sustainable healthcare building. To bring more objectivity to the sustainability assessments, the standardisation bodies (CEN and ISO) proposed core indicators that should be used in the evaluation of the environmental, societal and economic performances of buildings. Nevertheless, relying on state of the art analysis, it is possible to conclude that there are aspects of major importance for the operation of healthcare buildings that are not considered in the HBSA methods. Thus, the aim of this paper is to discuss the context of sustainability assessment methods in the field of healthcare buildings and to present a proposal for the incorporation of Sustainable-Effective Design (SED) criteria in a new HBSA method. The used research method is innovative since in the development of the list of sustainability criteria it considers the opinion of main healthcare buildings' stakeholders, the existing healthcare assessment methods and the ISO and CEN standardisation works in the field of the methods to assess the sustainability of construction works. As a result, the proposed method is composed of fifty-two sustainability indicators that cover the different dimensions of the sustainability concept to support decision making during the design of a new or retrofitted healthcare building in urban areas. - Highlights: •A new system to assess the sustainability of healthcare buildings is presented. •We propose a method to develop the list of sustainability indicators for hospitals. •We propose a new concept – Sustainable-Effective Design (SED

  17. Aircraft operations management manual

    Science.gov (United States)

    1992-01-01

    The NASA aircraft operations program is a multifaceted, highly diverse entity that directly supports the agency mission in aeronautical research and development, space science and applications, space flight, astronaut readiness training, and related activities through research and development, program support, and mission management aircraft operations flights. Users of the program are interagency, inter-government, international, and the business community. This manual provides guidelines to establish policy for the management of NASA aircraft resources, aircraft operations, and related matters. This policy is an integral part of and must be followed when establishing field installation policy and procedures covering the management of NASA aircraft operations. Each operating location will develop appropriate local procedures that conform with the requirements of this handbook. This manual should be used in conjunction with other governing instructions, handbooks, and manuals.

  18. Backward flight in hummingbirds employs unique kinematic adjustments and entails low metabolic cost.

    Science.gov (United States)

    Sapir, Nir; Dudley, Robert

    2012-10-15

    Backward flight is a frequently used transient flight behavior among members of the species-rich hummingbird family (Trochilidae) when retreating from flowers, and is known from a variety of other avian and hexapod taxa, but the biomechanics of this intriguing locomotor mode have not been described. We measured rates of oxygen uptake (V(O2)) and flight kinematics of Anna's hummingbirds, Calypte anna (Lesson), within a wind tunnel using mask respirometry and high-speed videography, respectively, during backward, forward and hovering flight. We unexpectedly found that in sustained backward flight is similar to that in forward flight at equivalent airspeed, and is about 20% lower than hovering V(O2). For a bird that was measured throughout a range of backward airspeeds up to a speed of 4.5 m s(-1), the power curve resembled that of forward flight at equivalent airspeeds. Backward flight was facilitated by steep body angles coupled with substantial head flexion, and was also characterized by a higher wingbeat frequency, a flat stroke plane angle relative to horizontal, a high stroke plane angle relative to the longitudinal body axis, a high ratio of maximum:minimum wing positional angle, and a high upstroke:downstroke duration ratio. Because of the convergent evolution of hummingbird and some hexapod flight styles, flying insects may employ similar kinematics while engaged in backward flight, for example during station keeping or load lifting. We propose that backward flight behavior in retreat from flowers, together with other anatomical, physiological, morphological and behavioral adaptations, enables hummingbirds to maintain strictly aerial nectarivory.

  19. An electronic flight bag for NextGen avionics

    Science.gov (United States)

    Zelazo, D. Eyton

    2012-06-01

    The introduction of the Next Generation Air Transportation System (NextGen) initiative by the Federal Aviation Administration (FAA) will impose new requirements for cockpit avionics. A similar program is also taking place in Europe by the European Organisation for the Safety of Air Navigation (Eurocontrol) called the Single European Sky Air Traffic Management Research (SESAR) initiative. NextGen will require aircraft to utilize Automatic Dependent Surveillance-Broadcast (ADS-B) in/out technology, requiring substantial changes to existing cockpit display systems. There are two ways that aircraft operators can upgrade their aircraft in order to utilize ADS-B technology. The first is to replace existing primary flight displays with new displays that are ADS-B compatible. The second, less costly approach is to install an advanced Class 3 Electronic Flight Bag (EFB) system. The installation of Class 3 EFBs in the cockpit will allow aircraft operators to utilize ADS-B technology in a lesser amount of time with a decreased cost of implementation and will provide additional benefits to the operator. This paper describes a Class 3 EFB, the NexisTM Flight-Intelligence System, which has been designed to allow users a direct interface with NextGen avionics sensors while additionally providing the pilot with all the necessary information to meet NextGen requirements.

  20. Joint NASA/USAF Airborne Field Mill Program - Operation and safety considerations during flights of a Lear 28 airplane in adverse weather

    Science.gov (United States)

    Fisher, Bruce D.; Phillips, Michael R.; Maier, Launa M.

    1992-01-01

    A NASA Langley Research Center Learjet 28 research airplane was flown in various adverse weather conditions in the vicinity of the NASA Kennedy Space Center from 1990-1992 to measure airborne electric fields during the Joint NASA/USAF Airborne Field Mill Program. The objective of this program was to characterize the electrical activity in various weather phenomena common to the NASA-Kennedy area in order to refine Launch Commit Criteria for natural and triggered lightning. The purpose of the program was to safely relax the existing launch commit criteria, thereby increasing launch availability and reducing the chance for weather holds and delays. This paper discusses the operational conduct of the flight test, including environmental/safety considerations, aircraft instrumentation and modification, test limitations, flight procedures, and the procedures and responsibilities of the personnel in the ground station. Airborne field mill data were collected for all the Launch Commit Criteria during two summer and two winter deployments. These data are now being analyzed.

  1. [Study on relationship between emotional stability in flight and nerve system excitability].

    Science.gov (United States)

    Liu, Fang; Huang, Wei-fen; Jing, Xiao-lu; Zhang, Ping

    2003-06-01

    To study the related factors of emotional stability in flight. Based on the operable definition of emotional stability in flight and the related literature review, 63 experienced pilots and flight coaches were investigated and the other-rating questionnaire of emotional stability in flight was established. To test the senior nerve system, Uchida Kraeplin (UK) test was administrated on 153 19-21 years old male student pilots of the second grade in the department of flight technique in China Civil Aviation College, who were selected through 13 h flight, 35 h solo flight, and acted as the standardization group. In the end, the correlation was explored between the testing results and their emotional behavioral characteristics in flight. Significant positive correlation was found between emotional feature indexes of emotional stability in flight and excitability in UK test. The excitability in UK test are good predictors for emotional stability in flight.

  2. Launch and Landing Effects Ground Operations (LLEGO) Model

    Science.gov (United States)

    2008-01-01

    LLEGO is a model for understanding recurring launch and landing operations costs at Kennedy Space Center for human space flight. Launch and landing operations are often referred to as ground processing, or ground operations. Currently, this function is specific to the ground operations for the Space Shuttle Space Transportation System within the Space Shuttle Program. The Constellation system to follow the Space Shuttle consists of the crewed Orion spacecraft atop an Ares I launch vehicle and the uncrewed Ares V cargo launch vehicle. The Constellation flight and ground systems build upon many elements of the existing Shuttle flight and ground hardware, as well as upon existing organizations and processes. In turn, the LLEGO model builds upon past ground operations research, modeling, data, and experience in estimating for future programs. Rather than to simply provide estimates, the LLEGO model s main purpose is to improve expenses by relating complex relationships among functions (ground operations contractor, subcontractors, civil service technical, center management, operations, etc.) to tangible drivers. Drivers include flight system complexity and reliability, as well as operations and supply chain management processes and technology. Together these factors define the operability and potential improvements for any future system, from the most direct to the least direct expenses.

  3. 14 CFR 121.483 - Flight time limitations: Two pilots and one additional flight crewmember.

    Science.gov (United States)

    2010-01-01

    ... crewmember. (a) No certificate holder conducting flag operations may schedule a pilot to fly, in an airplane... 12 hours during any 24 consecutive hours. (b) If a pilot has flown 20 or more hours during any 48... consecutive hours of rest during any seven consecutive days. (c) No pilot may fly as a flight crewmember more...

  4. Understanding Crew Decision-Making in the Presence of Complexity: A Flight Simulation Experiment

    Science.gov (United States)

    Young, Steven D.; Daniels, Taumi S.; Evans, Emory; deHaag, Maarten Uijt; Duan, Pengfei

    2013-01-01

    Crew decision making and response have long been leading causal and contributing factors associated with aircraft accidents. Further, it is anticipated that future aircraft and operational environments will increase exposure to risks related to these factors if proactive steps are not taken to account for ever-increasing complexity. A flight simulation study was designed to collect data to help in understanding how complexity can, or may, be manifest. More specifically, an experimental apparatus was constructed that allowed for manipulation of information complexity and uncertainty, while also manipulating operational complexity and uncertainty. Through these manipulations, and the aid of experienced airline pilots, several issues have been discovered, related most prominently to the influence of information content, quality, and management. Flight crews were immersed in an environment that included new operational complexities suggested for the future air transportation system as well as new technological complexities (e.g. electronic flight bags, expanded data link services, synthetic and enhanced vision systems, and interval management automation). In addition, a set of off-nominal situations were emulated. These included, for example, adverse weather conditions, traffic deviations, equipment failures, poor data quality, communication errors, and unexpected clearances, or changes to flight plans. Each situation was based on one or more reference events from past accidents or incidents, or on a similar case that had been used in previous developmental tests or studies. Over the course of the study, 10 twopilot airline crews participated, completing over 230 flights. Each flight consisted of an approach beginning at 10,000 ft. Based on the recorded data and pilot and research observations, preliminary results are presented regarding decision-making issues in the presence of the operational and technological complexities encountered during the flights.

  5. 14 CFR 91.1097 - Pilot and flight attendant crewmember training programs.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 2 2010-01-01 2010-01-01 false Pilot and flight attendant crewmember... RULES Fractional Ownership Operations Program Management § 91.1097 Pilot and flight attendant crewmember training programs. (a) Each program manager must establish and maintain an approved pilot training program...

  6. Fused Reality for Enhanced Flight Test Capabilities

    Science.gov (United States)

    Bachelder, Ed; Klyde, David

    2011-01-01

    The feasibility of using Fused Reality-based simulation technology to enhance flight test capabilities has been investigated. In terms of relevancy to piloted evaluation, there remains no substitute for actual flight tests, even when considering the fidelity and effectiveness of modern ground-based simulators. In addition to real-world cueing (vestibular, visual, aural, environmental, etc.), flight tests provide subtle but key intangibles that cannot be duplicated in a ground-based simulator. There is, however, a cost to be paid for the benefits of flight in terms of budget, mission complexity, and safety, including the need for ground and control-room personnel, additional aircraft, etc. A Fused Reality(tm) (FR) Flight system was developed that allows a virtual environment to be integrated with the test aircraft so that tasks such as aerial refueling, formation flying, or approach and landing can be accomplished without additional aircraft resources or the risk of operating in close proximity to the ground or other aircraft. Furthermore, the dynamic motions of the simulated objects can be directly correlated with the responses of the test aircraft. The FR Flight system will allow real-time observation of, and manual interaction with, the cockpit environment that serves as a frame for the virtual out-the-window scene.

  7. Design and simulation of flight control system for man-portable micro reconnaissance quadcopter

    Science.gov (United States)

    Yin, Xinfan; Zhang, Daibing; Fang, Qiang; Shen, Lincheng

    2017-10-01

    The quadcopter has been widely used in the field of aerial photography and environmental detection, because of its advantages of VTOL, simple structure, and easy-control. In the field of urban anti-terrorism or special operations, micro reconnaissance quadcpter has its unique advantages such as all-weather taking off and landing, small noise and so on, and it is very popular with special forces and riot police. This paper aims at the flight control problem of the micro quadcopter, for the purposes of attitude stabilization control and trajectory tracking control of the micro quadcopter, first, the modeling of the micro quadcopter is presented. And using the MATLAB/SIMULINK toolbox to build the flight controller of the micro quadcopter, and then simulation analysis and real flight test are given. The results of the experiment show that the designed PID controller can correct the flight attitude shift effectively and track the planned tracks well, and can achieve the goal of stable and reliable flight of the quadcopter. It can be a useful reference for the flight control system design of future special operations micro UAV.

  8. Development of a Free-Flight Simulation Infrastructure

    Science.gov (United States)

    Miles, Eric S.; Wing, David J.; Davis, Paul C.

    1999-01-01

    In anticipation of a projected rise in demand for air transportation, NASA and the FAA are researching new air-traffic-management (ATM) concepts that fall under the paradigm known broadly as ":free flight". This paper documents the software development and engineering efforts in progress by Seagull Technology, to develop a free-flight simulation (FFSIM) that is intended to help NASA researchers test mature-state concepts for free flight, otherwise referred to in this paper as distributed air / ground traffic management (DAG TM). Under development is a distributed, human-in-the-loop simulation tool that is comprehensive in its consideration of current and envisioned communication, navigation and surveillance (CNS) components, and will allow evaluation of critical air and ground traffic management technologies from an overall systems perspective. The FFSIM infrastructure is designed to incorporate all three major components of the ATM triad: aircraft flight decks, air traffic control (ATC), and (eventually) airline operational control (AOC) centers.

  9. 14 CFR 61.127 - Flight proficiency.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 2 2010-01-01 2010-01-01 false Flight proficiency. 61.127 Section 61.127 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED) AIRMEN...; (x) High-altitude operations; and (xi) Postflight procedures. (2) For an airplane category rating...

  10. A large-scale multi-objective flights conflict avoidance approach supporting 4D trajectory operation

    OpenAIRE

    Guan, Xiangmin; Zhang, Xuejun; Lv, Renli; Chen, Jun; Weiszer, Michal

    2017-01-01

    Recently, the long-term conflict avoidance approaches based on large-scale flights scheduling have attracted much attention due to their ability to provide solutions from a global point of view. However, the current approaches which focus only on a single objective with the aim of minimizing the total delay and the number of conflicts, cannot provide the controllers with variety of optional solutions, representing different trade-offs. Furthermore, the flight track error is often overlooked i...

  11. Developing a Model for Solving the Flight Perturbation Problem

    Directory of Open Access Journals (Sweden)

    Amirreza Nickkar

    2015-02-01

    Full Text Available Purpose: In the aviation and airline industry, crew costs are the second largest direct operating cost next to the fuel costs. But unlike the fuel costs, a considerable portion of the crew costs can be saved through optimized utilization of the internal resources of an airline company. Therefore, solving the flight perturbation scheduling problem, in order to provide an optimized schedule in a comprehensive manner that covered all problem dimensions simultaneously, is very important. In this paper, we defined an integrated recovery model as that which is able to recover aircraft and crew dimensions simultaneously in order to produce more economical solutions and create fewer incompatibilities between the decisions. Design/methodology/approach: Current research is performed based on the development of one of the flight rescheduling models with disruption management approach wherein two solution strategies for flight perturbation problem are presented: Dantzig-Wolfe decomposition and Lagrangian heuristic. Findings: According to the results of this research, Lagrangian heuristic approach for the DW-MP solved the problem optimally in all known cases. Also, this strategy based on the Dantig-Wolfe decomposition manage to produce a solution within an acceptable time (Under 1 Sec. Originality/value: This model will support the decisions of the flight controllers in the operation centers for the airlines. When the flight network faces a problem the flight controllers achieve a set of ranked answers using this model thus, applying crew’s conditions in the proposed model caused this model to be closer to actual conditions.

  12. The sustainable project management: A review and future possibilities

    Directory of Open Access Journals (Sweden)

    V.K. Chawla

    2018-06-01

    Full Text Available Sustainability in project operations such as financial, social and environmental sustainability is one of the most prominent issues of the present times to address. The increased focus on sus-tainable business operations has changed the viewpoint of researchers and corporate community towards the project management. Today sustainability in business operations along with sustain-ability of natural and environmental resources are of paramount significance which has further caused a huge impact on conception, planning, scheduling and execution of the project manage-ment activities. In this paper, a literature review between 1987 and 2018 on different issues af-fecting the sustainability in project management is carried out. The present study also identifies and discusses the future possibilities to apply computational procedures in order to estimate and optimize the sustainability issues in the management of projects, for example the computational evolutionary algorithms can be applied to formulate the multi-objective decision-making problem after considering critical factors of sustainability in the projects and then yielding optimized solu-tions for the formulated problem to achieve sustainability in the projects. A new integrated framework with the inclusion of feedback function for assessment of each decision and actions taken towards the sustainability of the projects is also identified and presented.

  13. Exploring sustainable manufacturing principles and practices

    OpenAIRE

    Alayón, Claudia

    2016-01-01

    The manufacturing industry remains a critical force in the quest for global sustainability. An increasing number of companies are modifying their operations in favor of more sustainable practices. It is hugely important that manufacturers, irrespective of the subsector they belong to, or their organizational size, implement practices that reduce or eliminate negative environmental, social and economic impacts generated by their manufacturing operations. Consequently, scholars have called for ...

  14. Marketing Sustainable Retail Development

    Directory of Open Access Journals (Sweden)

    Dragan Ilić

    2013-06-01

    Full Text Available One of the primary benefits of sustainable retail over the long run has to be the marketing gain from having something other competitors do not: lower operating costs, a more socially responsible public profile, ease of gaining planning approval for new projects, better access to certain investment pools, higher rents (in the case of developers, ease of recruiting and retaining key people. Each of these benefits needs marketing and public relations support; each benefits from a clear and consistent corporate message that promotes sustainable retail. To date, there are very few retailers or developers who have championed sustainability long enough, consistently enough and with enough actual demonstration of changes in standard operations to gain the benefits of green marketing, but the very paucity of examples serves to underscore the point: the green marketing space is wide open for large retailers and developers. What would be the marketing steps that a company could take to benefit from its “sustainability focus?” The key to any marketing program is to differentiate a company’s actions from those of competitors and to do it along lines that its various stakeholders care about. This practice of differentiation is often expressed as “finding a difference that makes a difference, to someone who makes difference to you.” For retail developers, the first differentiator should be to attract more and better tenants to all of their centers, tenants who value lower operating costs and the developer’s program of sustainable development and corporate social responsibility.

  15. On sustainable operation of warehouse order picking systems

    NARCIS (Netherlands)

    Andriansyah, R.; Etman, L.F.P.; Rooda, J.E.

    2009-01-01

    Sustainable development calls for an efficient utilization of natural and human resources. This issue also arises for warehouse systems, where typically extensive capital investment and labor intensive work are involved. It is therefore important to assess and continuously monitor the performance of

  16. Delivering Sustainable Facilities Management in Danish Housing Estates

    DEFF Research Database (Denmark)

    Nielsen, Susanne Balslev; Jensen, Jesper Ole; Jensen, Per Anker

    2009-01-01

    Housing plays a central role in sustainable development due to large resource consumption and as transition agent towards sustainable lifestyles. The aim is to evaluate current practice of housing administration in Denmark in order to evaluate if and how sustainable facilities management is suppo......Housing plays a central role in sustainable development due to large resource consumption and as transition agent towards sustainable lifestyles. The aim is to evaluate current practice of housing administration in Denmark in order to evaluate if and how sustainable facilities management...... is supporting social, economical and environmental sustainable development. Sustainable facility management (SFM) is as an 'umbrella' for various ways of reducing flows of energy, water and waste in the daily operation of the buildings, for instance by regular monitoring the consumption, by using 'green......-setting including the ownership of the building, the organisation of daily operation, the roles and relation between stakeholders are equally important in order to utilise the monitoring as a mean for transformation towards sustainable buildings and lifestyles....

  17. 14 CFR Appendix D to Part 125 - Airplane Flight Recorder Specification

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 3 2010-01-01 2010-01-01 false Airplane Flight Recorder Specification D... AND OPERATIONS: AIRPLANES HAVING A SEATING CAPACITY OF 20 OR MORE PASSENGERS OR A MAXIMUM PAYLOAD... Appendix D to Part 125—Airplane Flight Recorder Specification Parameters Range Accuracy sensor input to...

  18. On the design of flight-deck procedures

    Science.gov (United States)

    Degani, Asaf; Wiener, Earl L.

    1994-01-01

    In complex human-machine systems, operations, training, and standardization depend on a elaborate set of procedures which are specified and mandated by the operational management of the organization. The intent is to provide guidance to the pilots, to ensure a logical, efficient, safe, and predictable means of carrying out the mission objectives. In this report the authors examine the issue of procedure use and design from a broad viewpoint. The authors recommend a process which we call 'The Four P's:' philosophy, policies, procedures, and practices. We believe that if an organization commits to this process, it can create a set of procedures that are more internally consistent, less confusing, better respected by the flight crews, and that will lead to greater conformity. The 'Four-P' model, and the guidelines for procedural development in appendix 1, resulted from cockpit observations, extensive interviews with airline management and pilots, interviews and discussion at one major airframe manufacturer, and an examination of accident and incident reports. Although this report is based on airline operations, we believe that the principles may be applicable to other complex, high-risk systems, such as nuclear power production, manufacturing process control, space flight, and military operations.

  19. 14 CFR 93.341 - Aircraft operations in the DC FRZ.

    Science.gov (United States)

    2010-01-01

    ... notification to the FAA and the National Capital Regional Coordination Center (NCRCC). These flights may land... Area Special Flight Rules Area § 93.341 Aircraft operations in the DC FRZ. (a) Except as provided in paragraph (b) of this section, no pilot may conduct any flight operation under part 91, 101, 103, 105, 125...

  20. Benign Episodic Unilateral Mydriasis in a Flight Nurse.

    Science.gov (United States)

    Schiemer, Anthony

    2017-05-01

    Benign episodic unilateral mydriasis is one cause of anisocoria. This phenomenon is thought to be related to an imbalance between the sympathetic and parasympathetic nervous systems. There is a documented association with migraines, but asymptomatic cases have also been reported. A challenge with all cases is the level of investigation required to exclude more sinister causes of nervous system dysfunction. In a dynamic flight environment, additional considerations need to be made, such as varying light levels and use of night vision devices. A 27-yr-old woman on deployment to Afghanistan as a flight nurse presented to the role one clinic with right-sided mydriasis. The patient denied headache or any history of migraines. A dilated right pupil that was reactive to light was found on exam. Symptoms and exam findings resolved shortly after initial presentation. We consulted an ophthalmologist who requested patient transfer for review. He made a diagnosis of benign episodic unilateral mydriasis. There are a variety of causes for anisocoria. A thorough history and examination are required to avoid unnecessary investigations that may not be locally available in the more austere deployed military settings. From an operational perspective, the decision needs to be made regarding the maintenance of flight status. Consideration needs to be given to patient care capability when treating a flight nurse. In cases of rapid resolution such as this, removal from operational status is not reasonable should a clinician be confident of the diagnosis.Schiemer A. Benign episodic unilateral mydriasis in a flight nurse. Aerosp Med Hum Perform. 2017; 88(5):500-502.

  1. The Impact of Flight Hardware Scavenging on Space Logistics

    Science.gov (United States)

    Oeftering, Richard C.

    2011-01-01

    For a given fixed launch vehicle capacity the logistics payload delivered to the moon may be only roughly 20 percent of the payload delivered to the International Space Station (ISS). This is compounded by the much lower flight frequency to the moon and thus low availability of spares for maintenance. This implies that lunar hardware is much more scarce and more costly per kilogram than ISS and thus there is much more incentive to preserve hardware. The Constellation Lunar Surface System (LSS) program is considering ways of utilizing hardware scavenged from vehicles including the Altair lunar lander. In general, the hardware will have only had a matter of hours of operation yet there may be years of operational life remaining. By scavenging this hardware the program, in effect, is treating vehicle hardware as part of the payload. Flight hardware may provide logistics spares for system maintenance and reduce the overall logistics footprint. This hardware has a wide array of potential applications including expanding the power infrastructure, and exploiting in-situ resources. Scavenging can also be seen as a way of recovering the value of, literally, billions of dollars worth of hardware that would normally be discarded. Scavenging flight hardware adds operational complexity and steps must be taken to augment the crew s capability with robotics, capabilities embedded in flight hardware itself, and external processes. New embedded technologies are needed to make hardware more serviceable and scavengable. Process technologies are needed to extract hardware, evaluate hardware, reconfigure or repair hardware, and reintegrate it into new applications. This paper also illustrates how scavenging can be used to drive down the cost of the overall program by exploiting the intrinsic value of otherwise discarded flight hardware.

  2. Sustainable Foods and Medicines Support Vitality, Sex and Longevity for a 100-Year Starship Expedition

    Science.gov (United States)

    Edwards, M. R.

    Extended space flight requires foods and medicines that sustain crew health and vitality. The health and therapeutic needs for the entire crew and their children for a 100-year space flight must be sustainable. The starship cannot depend on resupply or carry a large cargo of pharmaceuticals. Everything in the starship must be completely recyclable and reconstructable, including food, feed, textiles, building materials, pharmaceuticals, vaccines, and medicines. Smart microfarms will produce functional foods with superior nutrition and sensory attributes. These foods provide high-quality protein and nutralence (nutrient density), that avoids obesity, diabetes, and other Western diseases. The combination of functional foods, lifestyle actions, and medicines will support crew immunity, energy, vitality, sustained strong health, and longevity. Smart microfarms enable the production of fresh medicines in hours or days, eliminating the need for a large dispensary, which eliminates concern over drug shelf life. Smart microfarms are adaptable to the extreme growing area, resource, and environmental constraints associated with an extended starship expedition.

  3. 77 FR 61721 - Pilot, Flight Instructor, and Pilot School Certification; Technical Amendment

    Science.gov (United States)

    2012-10-11

    ...-26661; Amdt. No. 61-129A] RIN 2120-AI86 Pilot, Flight Instructor, and Pilot School Certification... revise the training, qualification, certification, and operating requirements for pilots, flight instructors, ground instructors, and pilot schools. A portion of the codified text was inadvertently deleted...

  4. Crew Transportation Operations Standards

    Science.gov (United States)

    Mango, Edward J.; Pearson, Don J. (Compiler)

    2013-01-01

    The Crew Transportation Operations Standards contains descriptions of ground and flight operations processes and specifications and the criteria which will be used to evaluate the acceptability of Commercial Providers' proposed processes and specifications.

  5. Sustainable supply chains : a research-based textbook on operations and strategy

    NARCIS (Netherlands)

    Bouchery, Y.; Corbett, C.J.; Fransoo, J.C.; Tan, T.

    2017-01-01

    This book is primarily intended to serve as a research-based textbook on sustainable supply chains for graduate programs in Business, Management, Industrial Engineering, and Industrial Ecology, but it should also be of interest for researchers in the broader sustainable supply chain space, whether

  6. Neurophysiologic monitoring of mental workload and fatigue during operation of a flight simulator

    Science.gov (United States)

    Smith, Michael E.; Gevins, Alan

    2005-05-01

    In one experiment, EEG recordings were made during a daytime session while 16 well-rested participants performed versions of a PC flight simulator task that were either low, moderate, or high in difficulty. In another experiment, the same subjects repeatedly performed high difficulty versions of the same task during an all night session with total sleep deprivation. Multivariate EEG metrics of cortical activation were derived for frontal brain regions essential for working memory and executive control processes that are presumably important for maintaining situational awareness, central brain regions essential for sensorimotor control, and posterior parietal and occipital regions essential for visuoperceptual processing. During the daytime session each of these regional measures displayed greater activation during the high difficulty task than during the low difficulty task, and degree of cortical activation was positively correlated with subjective workload ratings in these well-rested subjects. During the overnight session, cortical activation declined with time-on-task, and the degree of this decline over frontal regions was negatively correlated with subjective workload ratings. Since participants were already highly skilled in the task, such changes likely reflect fatigue-related diminishment of frontal executive capability rather than practice effects. These findings suggest that the success of efforts to gauge mental workload via proxy cortical activation measures in the context of adaptive automation systems will likely depend on use of user models that take both task demands and the operator"s state of alertness into account. Further methodological development of the measurement approach outlined here would be required to achieve a practical, effective objective means for monitoring transient changes in cognitive brain function during performance of complex real-world tasks.

  7. 14 CFR Appendix E to Part 125 - Airplane Flight Recorder Specifications

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 3 2010-01-01 2010-01-01 false Airplane Flight Recorder Specifications E... AND OPERATIONS: AIRPLANES HAVING A SEATING CAPACITY OF 20 OR MORE PASSENGERS OR A MAXIMUM PAYLOAD... Appendix E to Part 125—Airplane Flight Recorder Specifications The recorded values must meet the designated...

  8. Operating a sustainable disease management program for chronic obstructive pulmonary disease.

    Science.gov (United States)

    Endicott, Linda; Corsello, Phillip; Prinzi, Michele; Tinkelman, David G; Schwartz, Abby

    2003-01-01

    Chronic obstructive pulmonary disease (COPD) is one of our nation's most rapidly growing chronic health conditions. It is estimated that over 16 million individuals are diagnosed with COPD (Friedman & Hilleman, 2001). In addition, another 16 million are misdiagnosed as asthma or not diagnosed at all. COPD is a condition that affects the working-age as well as the elderly. Despite the high mortality rate, COPD is a treatable and modifiable condition. Disease management programs (DMPs) for asthma are a common initiative within many health insurance plans and integrated delivery networks. Similar initiatives are not as common for COPD. This article will highlight the National Jewish Medical and Research Center's COPD DMP interventions and outcomes. To outline interventions and operational strategies critical in developing and operating a sustainable and effective disease management program for COPD. Disease Management is an effective model for managing individuals with COPD. Applying a case management model that includes (1) risk-identification and stratification; (2) education and empowerment regarding self-monitoring and management; (3) lifestyle modification; (4) communication and collaboration amongst patients, healthcare providers, and case managers to enhance the treatment plan; (5) providing after-hours support; and (6) monitoring care outcomes is crucial. Applying these interventions in a credible manner will improve the quality of life and quality of care delivered to individuals with mild, moderate, severe, and very severe COPD. Additionally, these interventions can significantly reduce utilization events.

  9. FLIGHT SAFETY MANAGEMENT PROBLEMS AND EVALUATION OF FLIGHT SAFETY LEVEL OF AN AVIATION ENTERPRISE

    Directory of Open Access Journals (Sweden)

    B. V. Zubkov

    2017-01-01

    Full Text Available This article is devoted to studying the problem of safety management system (SMS and evaluating safety level of an aviation enterprise.This article discusses the problems of SMS, presented at the 41st meeting of the Russian Aviation Production Commanders Club in June 2014 in St. Petersburg in connection with the verification of the status of the CA of the Russian Federation by the International Civil Aviation Organization (ICAO in the same year, a set of urgent measures to eliminate the deficiencies identified in the current safety management system by participants of this meeting were proposed.In addition, the problems of evaluating flight safety level based on operation data of an aviation enterprise were analyzed. This analysis made it possible to take into account the problems listed in this article as a tool for a comprehensive study of SMS parameters and allows to analyze the quantitative indicators of the flights safety level.The concepts of Acceptable Safety Level (ASL indicators are interpreted differently depending on the available/applicable methods of their evaluation and how to implement them in SMS. However, the indicators for assessing ASL under operational condition at the aviation enterprise should become universal. Currently, defined safety levels and safety indicators are not yet established functionally and often with distorted underrepresented models describing their contextual contents, as well as ways of integrating them into SMS aviation enterprise.The results obtained can be used for better implementation of SMS and solving problems determining the aviation enterprise technical level of flight safety.

  10. SCRL-Model for Human Space Flight Operations Enterprise Supply Chain

    Science.gov (United States)

    Tucker, Brian

    2010-01-01

    Standard approach to evaluate and configure adaptable and sustainable program and mission supply chains at an enterprise level. End-to-end view. Total Lifecycle. Evaluate the readiness of the supply chain during the supply chain development phase.

  11. SOSPO-SP: Secure Operation of Sustainable Power Systems Simulation Platform for Real-Time System State Evaluation and Control

    DEFF Research Database (Denmark)

    Morais, Hugo; Vancraeyveld, Pieter; Pedersen, Allan Henning Birger

    2014-01-01

    Measurement Units (PMUs) provides more information and enables wide-area monitoring with accurate timing. One of the challenges in the near future is converting the high quantity and quality of information provided by PMUs into useful knowledge about operational state of a global system. The use of real-time...... simulation in closed-loop is essential to develop and validate new real-time applications of wide-area PMU data. This paper presents a simulation platform developed within the research project Secure Operation of Sustainable Power Systems (SOSPO). The SOSPO simulation platform (SOSPO-SP) functions...... in a closed-loop, integrating new real-time assessment methods to provide useful information to operators in power system control centers and to develop new control methodologies that handle emergency situations and avoid power system blackouts....

  12. Operational modeling of a sustainable gas supply chain

    NARCIS (Netherlands)

    Bekkering, Jan; Broekhuis, A. A.; van Gemert, Wim

    2010-01-01

    Biogas production from codigestion of cattle manure and biomass can have a significant contribution to a sustainable gas supply when this gas is upgraded to specifications prescribed for injection into the national gas grid and injected into this grid. In this study, we analyzed such a gas supply

  13. Business Case: Sustainable Energy for De-mining Operations

    DEFF Research Database (Denmark)

    Buur, Jacob; Finnemann, Winie

    2011-01-01

    small, Danish companies work with an NGO and two university partners to develop a sustainable energy solution for humanitarian landmine removal in Angola as an alternative to the presently used diesel generators. I will discuss the challenges that face the companies, if they are to bring the project...

  14. "Initiate-build-operate-transfer" - a strategy for establishing sustainable telemedicine programs not only in the developing countries.

    Science.gov (United States)

    Latifi, Rifat

    2011-01-01

    Establishing sustainable telemedicine has become a goal of many developing countries around the world. Yet, despite initiatives from a select few individuals and on occasion from various governments, often these initiatives never mature to become sustainable programs. The introduction of telemedicine and e-learning in the Balkans has been a pivotal step in advancing the quality and availability of medical services in a region whose infrastructure and resources have been decimated by wars, neglect, lack of funding, and poor management. The concept and establishment of the International Virtual e-Hospital (IVeH) has significantly impacted telemedicine and e-health services in Kosova. The success of the IVeH in Kosova has led to the development of similar programs in other Balkan countries and other developing countries in the hope of modernizing and improving their healthcare infrastructure. A comprehensive, four-pronged strategy developed by IVeH "Initiate-Build-Operate-Transfer" (IBOT), may be a useful approach in establishing telemedicine and e-health educational services not only in developing countries, but in developed countries. The development strategy, IBOT, used by the IVeH to establish and develop telemedicine programs is described. IBOT includes assessment of healthcare needs of each country, the development of a curriculum and education program, the establishment of a nationwide telemedicine network, and the integration of the telemedicine program into the very core of healthcare infrastructure. The end point is the transfer of a sustainable telehealth program to the nation involved. By applying IBOT, a sustainable telemedicine program of Kosova and Albania has been established as an effective prototype for telemedicine in the Balkans. Once fully matured, the program is transitioned to the Ministry of Health, which ensures the sustainability and ownership of the program. Similar programs are being established in Macedonia, Montenegro and other countries

  15. Solar-powered Gossamer Penguin in flight

    Science.gov (United States)

    1979-01-01

    determine the power required to fly the airplane, optimize the airframe/propulsion system, and train the pilot. He made the first flights on April 7, 1980, and made a brief solar-powered flight on May 18. The official project pilot was Janice Brown, a Bakersfield school teacher who weighed in at slightly under 100 pounds and was a charter pilot with commercial, instrument, and glider ratings. She checked out in the plane at Shafter and made about 40 flights under battery and solar power there. Wind direction, turbulence, convection, temperature and radiation at Shafter in mid-summer proved to be less than ideal for Gossamer Penguin because takeoffs required no crosswind and increases in temperature reduced the power output from the solar cells. Consequently, the project moved to Dryden in late July, although conditions there also were not ideal. Nevertheless, Janice finished the testing, and on August 7, 1980, she flew a public demonstration of the aircraft at Dryden in which it went roughly 1.95 miles in 14 minutes and 21 seconds. This was significant as the first sustained flight of an aircraft relying solely on direct solar power rather than batteries. It provided the designers with practical experience for developing a more advanced, solar-powered aircraft, since the Gossamer Penguin was fragile and had limited controllability. This necessitated its flying early in the day when there were minimal wind and turbulence levels, but the angle of the sun was also low, requiring a panel for the solar cells that could be tilted toward the sun. Using the specific conclusions derived from their experience with Gossamer Penguin, the AeroVironment engineers designed Solar Challenger, a piloted, solar-powered aircraft strong enough to handle both long and high flights when encountering normal turbulence.

  16. First Middle East Aircraft Parabolic Flights for ISU Participant Experiments

    Science.gov (United States)

    Pletser, Vladimir; Frischauf, Norbert; Cohen, Dan; Foster, Matthew; Spannagel, Ruven; Szeszko, Adam; Laufer, Rene

    2017-06-01

    Aircraft parabolic flights are widely used throughout the world to create microgravity environment for scientific and technology research, experiment rehearsal for space missions, and for astronaut training before space flights. As part of the Space Studies Program 2016 of the International Space University summer session at the Technion - Israel Institute of Technology, Haifa, Israel, a series of aircraft parabolic flights were organized with a glider in support of departmental activities on `Artificial and Micro-gravity' within the Space Sciences Department. Five flights were organized with manoeuvres including several parabolas with 5 to 6 s of weightlessness, bank turns with acceleration up to 2 g and disorientation inducing manoeuvres. Four demonstration experiments and two experiments proposed by SSP16 participants were performed during the flights by on board operators. This paper reports on the microgravity experiments conducted during these parabolic flights, the first conducted in the Middle East for science and pedagogical experiments.

  17. The FAA/NASA flight loads monitoring program - The prototype system and its benefits for the aviation community

    Science.gov (United States)

    Whitehead, Julia H.; Thomas, Mitchel E.; Carrelli, David J.; Crabill, Norman L.

    1992-01-01

    The FAA established the flight load monitoring program to collect a data base of typical flight operational loads experienced by commercial transports. This system will provide a comprehensive monitoring of aircraft loading conditions with over 20 flight parameters being recorded simultaneously. NASA is designing and testing a prototype data collection and analysis system which will be implemented into an FAA operational program. This paper presents the program's objectives and the proposed development testing on a commercial Boeing 737-400. The prototype system, its data processing schemes, and reports are described. The searching criteria or flight attributes generated for each flight are listed. The data processing system will provide the aviation community with a powerful tool for the study of transport flight loading conditions and the system's flexibility will accommodate individual studies and specialized concerns.

  18. Seaports as turntables for sustainability. Policy memo Sustainable Seaports

    International Nuclear Information System (INIS)

    Lammers, J.

    2008-11-01

    Dutch seaports are expected to operate at top level worldwide with regard to their quality of service. Sustainable development of the seaports is an essential prerequisite to achieve this. Therefore the Dutch government will cooperate with decentralized authorities, port managers, enterprises linked to the Dutch ports, knowledge institutes and societal groups to increase the sustainability of the Dutch seaports. The following five themes are focuses upon in this effort: air quality; energy, CO2 and residual flows; spatial use; environmental conservation and development; water quality and management. [mk] [nl

  19. VEGA Launch Vehicle: VV02 Flight Campaign Thermal Analysis

    Science.gov (United States)

    Moroni, D.; Perugini, P.; Mancini, R.; Bonnet, M.

    2014-06-01

    A reliable tool for the prediction of temperature trends vs. time during the operative timeline of a launcher represents one of the key elements for the qualification of a launch vehicle itself.The correct evaluation of the thermal behaviour during the mission, both for the launcher elements (structures, electronic items, tanks, motors...) and for the Payloads carried by the same Launcher, is one of the preliminary activities to be performed before a flight campaign.For such scope AVIO constructed a Thermal Mathematical Model (TMM) by means of the ESA software "ESATAN Thermal Modelling Suite (TMS)" [1] used for the prediction of the temperature trends both on VV01 (VEGA LV Qualification Flight) and VV02 (First VEGA LV commercial flight) with successfully results in terms of post-flight comparison with the sensor data outputs.Aim of this paper is to show the correlation obtained by AVIO VEGA LV SYS TMM in the frame of VV02 Flight.

  20. Sustainability considerations for integrated biorefineries.

    Science.gov (United States)

    Azapagic, Adisa

    2014-01-01

    Integrated biorefineries have the potential to contribute towards sustainable production of transportation fuels, energy, and chemicals. However, because there are currently no commercial biorefining plants in operation, it is not clear how sustainable they really are. This paper sets out to examine key issues associated with biorefining that should be considered carefully along the whole supply chain to ensure sustainable development of the sector. Copyright © 2013 Elsevier Ltd. All rights reserved.

  1. Multi-stakeholder initiatives in sustainable supply chains: Putting sustainability performance in context

    Directory of Open Access Journals (Sweden)

    Cory Searcy

    2017-12-01

    Full Text Available The purpose of this article is to explore the role of multi-stakeholder initiatives (MSIs in sustainable supply chains. I argue that MSIs are needed to help establish and institutionalize the natural and social thresholds in which a sustainable supply chain must operate. While a multitude of MSIs relevant to supply chains already exist, they do not yet adequately address sustainability thresholds. Building on theory and literature, I elaborate on four interrelated roles for MSIs in this area: (1 providing learning platforms, (2 developing standards, (3 developing enforcement mechanisms, and (4 issuing labels and certifications. All four roles emphasize the need for supply chains to operate within the thresholds set by nature and society. Staying within thresholds is what distinguishes between sustainable and unsustainable supply chains. The four roles form part of a broader conceptual framework outlining a way forward for MSIs in sustainable supply chains. Different MSIs could address one or more of these roles. I argue that all MSIs must be developed with special attention to their input and output legitimacy. Stakeholders from both within and beyond the supply chain must be involved in developing and implementing a MSI for it to be viewed as legitimate. I note that the conceptual framework presented here is a starting point. It would benefit from further testing and refinement. For example, future work could add further specificity to the four roles I discuss. Future research could also focus on integrating economic thresholds for sustainable supply chains into the framework.

  2. Roadmap for Integrating Sustainable Design into Site-Level Operations

    Energy Technology Data Exchange (ETDEWEB)

    Peterson, Keith L.; Dorsey, Judy A.

    2000-04-19

    Sustainable Design recognizes that products and processes are interdependent with the environmental, economic, and social systems surrounding them and implements measures to prevent an unsustainable compromise to these systems.

  3. System theoretic approach to sustainable development problems

    Directory of Open Access Journals (Sweden)

    Batanović Vladan

    2011-01-01

    Full Text Available This paper shows that the concepts and methodology contained in the system theory and operations research are suitable for application in the planning and control of the sustainable development. The sustainable development problems can be represented using the state space concepts, such as the transition of system, from the given initial state to the final state. It is shown that sustainable development represents a specific control problem. The peculiarity of the sustainable development is that the target is to keep the system in the prescribed feasible region of the state space. The analysis of planning and control problems of sustainable development has also shown that methods developed in the operations research area, such as multicriteria optimization, dynamic processes simulation, non-conventional treatment of uncertainty etc. are adequate, exact base, suitable for resolution of these problems.

  4. Flight performance summary for three NASA Terrier-Malemute II sounding rockets

    Science.gov (United States)

    Patterson, R. A.

    1982-01-01

    The subject of this paper is the presentation of flight data for three Terrier-Malemute II sounding rocket vehicles. The Malemute motor was modified by adding insulation and using a propellant that produced less Al2O3 agglomerate in the chamber. This modification, designated Malemute II, reduced the sensitivity of the motor to the roll rate induced motor case burnthrough experienced on some earlier Malemute flights. Two flight tests, including a single stage Malemute II and a Terrier-Malemute II, were made by Sandia to qualify this modification. The three NASA operational flights that are the subject of this paper were made using the modified Malemute II motors.

  5. Managing Transportation Infrastructure for Sustainable Development

    NARCIS (Netherlands)

    Akinyemi, Edward O.; Zuidgeest, M.H.P.

    Major requirements for operationalization of the concept of sustainable development in urban transportation infrastructure operations management are presented. In addition, it is shown that the current approach to management is incompatible with the requirements for sustainable urban development.

  6. NASA Ames Sustainability Initiatives: Aeronautics, Space Exploration, and Sustainable Futures

    Science.gov (United States)

    Grymes, Rosalind A.

    2015-01-01

    In support of the mission-specific challenges of aeronautics and space exploration, NASA Ames produces a wealth of research and technology advancements with significant relevance to larger issues of planetary sustainability. NASA research on NexGen airspace solutions and its development of autonomous and intelligent technologies will revolutionize both the nation's air transporation systems and have applicability to the low altitude flight economy and to both air and ground transporation, more generally. NASA's understanding of the Earth as a complex of integrated systems contributes to humanity's perception of the sustainability of our home planet. Research at NASA Ames on closed environment life support systems produces directly applicable lessons on energy, water, and resource management in ground-based infrastructure. Moreover, every NASA campus is a 'city'; including an urbanscape and a workplace including scientists, human relations specialists, plumbers, engineers, facility managers, construction trades, transportation managers, software developers, leaders, financial planners, technologists, electricians, students, accountants, and even lawyers. NASA is applying the lessons of our mission-related activities to our urbanscapes and infrastructure, and also anticipates a leadership role in developing future environments for living and working in space.

  7. Tether dynamics and control results for tethered satellite system's initial flight

    Science.gov (United States)

    Chapel, Jim D.; Flanders, Howard

    The recent Tethered Satellite System-1 (TSS-1) mission has provided a wealth of data concerning the dynamics of tethered systems in space and has demonstrated the effectiveness of operational techniques designed to control these dynamics. In this paper, we review control techniques developed for managing tether dynamics, and discuss the results of using these techniques for the Tethered Satellite System's maiden flight on STS-46. In particular, the flight results of controlling libration dynamics, string dynamics, and slack tether are presented. These results show that tether dynamics can be safely managed. The overall stability of the system was found to be surprisingly good even at relatively short tether lengths. In fact, the system operated in passive mode at a tether length of 256 meters for over 9 hours. Only monitoring of the system was required during this time. Although flight anomalies prevented the planned deployment to 20 km, the extended operations at shorter tether lengths have proven the viability of using tethers in space. These results should prove invaluable in preparing for future missions with tethered objects in space.

  8. Weathering the Storm - GOCE Flight Operations in 2010

    Science.gov (United States)

    Steiger, C.; Da Costa, A.; Floberghagen, R.; Fehringer, M.; Emanuelli, P. P.

    2011-07-01

    ESA's Gravity Field and Steady-State Ocean Circulation Explorer (GOCE) was successfully launched on 17th March 2009. The mission is controlled by ESA's European Space Operations Centre (ESOC) in Darmstadt, Germany. Following completion of commissioning, routine operations started in September 2009, keeping the S/C in drag-free mode at an altitude of 259.6 km. Operations are driven by the unique aspects of the mission, in particular the very low altitude and the high complexity of GOCE's drag- free control system. Following a general introduction, the main focus is put on the special events of 2010, when science operations were interrupted for several months due to problems with the main platform computer. These anomalies presented a major challenge, requiring to operate the spacecraft "in the blind" with no status information available, and extensive modifications of the on-board software to recover the mission.

  9. The IAEA network on environmental management and remediation (ENVIRONET) - promoting sustainable uranium production operations by taking environmental remediation under a life-cycle perspective

    International Nuclear Information System (INIS)

    Monken-Fernandes, H.

    2010-01-01

    Some of the past uranium production operations have caused extensive environmental problems. The lack of appropriate regulatory framework in addition to the fact that environmental issues were not conveniently addressed in the operations contributed to this situation. Nowadays, this situation has changed dramatically and lessons learned from the past have led to the implementation of responsible operations from both environmental and social perspectives. Involvement of different stakeholders in the decision making process turned out to be a mandatory issue in many countries. With the so called 'Renascence of Nuclear Power' new production sites will come into play. The sustainability of the uranium industry will depend on the adoption of good practices in these operations under a life-cycle perspective. The recently launched IAEA initiative - the ENVIRONET is aimed at contributing to expedite the transfer of experience amongst its members. It brings together private and state-owned companies, research institutes, and governmental organizations providing a forum for information and experience exchange. Sharing of practical experience is to be addressed by means of training courses and workshops. In addition to this long distance training and educational material will be made available. This paper will present the ENVIRONET and describe how networking can contribute to the implementation of sustainable and responsible uranium production operations worldwide. (author)

  10. R and T report: Goddard Space Flight Center

    Science.gov (United States)

    Soffen, Gerald A. (Editor)

    1993-01-01

    The 1993 Research and Technology Report for Goddard Space Flight Center is presented. Research covered areas such as (1) flight projects; (2) space sciences including cosmology, high energy, stars and galaxies, and the solar system; (3) earth sciences including process modeling, hydrology/cryology, atmospheres, biosphere, and solid earth; (4) networks, planning, and information systems including support for mission operations, data distribution, advanced software and systems engineering, and planning/scheduling; and (5) engineering and materials including spacecraft systems, material and testing, optics and photonics and robotics.

  11. Pathfinder-Plus on flight over Hawaiian Islands, with N'ihau and Lehua in the background

    Science.gov (United States)

    1998-01-01

    Pathfinder-Plus on flight over Hawaiian Islands, with N'ihau and Lehua in the background. Pathfinder was a remotely controlled, solar-powered flying wing, designed and built as a proof-of-concept vehicle for a much larger aircraft capable of flying at extremely high altitudes for weeks at a time. It was built by AeroVironment, Inc., a California company that developed the human-powered Gossamer Condor and Gossamer Albatross lightweight aircraft during the 1970s, and later made the solar-electric powered Gossamer Penguin and Solar Challenger. The basic configuration and concepts for Pathfinder were first realized with the HALSOL (High Altitude Solar) aircraft, built in 1983 by AeroVironment and the Lawrence Livermore Laboratory. Pathfinder was constructed of advanced composites, plastics, and foam, and despite a wingspan of nearly 100 feet, it weighed only about 600 pounds. Pathfinder was one of several unpiloted prototypes under study by NASA's ERAST (Environmental Research Aircraft and Sensor Technology) program, a NASA-industry alliance which is helping develop advanced technologies that will enable aircraft to study the earth's environment during extremely long flights at altitudes in excess of 100,000 feet. (See project description below for Pathfinder's conversion to Pathfinder Plus.) In 1998, the Pathfinder solar-powered flying wing (see its photographs and project description) was modified into the longer-winged Pathfinder Plus configuration and on Aug. 6, 1998, Pathfinder Plus set an altitude record (for propeller-driven aircraft) of approximately 80,285 feet at the Pacific Missile Range Facility. The goal of the Pathfinder Plus flights was to validate new solar, aerodynamic, propulsion, and systems technology developed for its successor, the Centurion, which was designed to reach and sustain altitudes in the 100,000-foot range. The Centurion was succeeded by the Helios Prototype with a goal of reaching and sustaining flight at an altitude of 100,000 feet

  12. Eclipse takeoff and flight

    Science.gov (United States)

    1998-01-01

    made by the simulation, aerodynamic characteristics and elastic properties of the tow rope were a significant component of the towing system; and the Dryden high-fidelity simulation provided a representative model of the performance of the QF-106 and C-141A airplanes in tow configuration. Total time on tow for the entire project was 5 hours, 34 minutes, and 29 seconds. All six flights were highly productive, and all project objectives were achieved. All three of the project objectives were successfully accomplished. The objectives were: demonstration of towed takeoff, climb-out, and separation of the EXD-01 from the towing aircraft; validation of simulation models of the towed aircraft systems; and development of ground and flight procedures for towing and launching a delta-winged airplane configuration safely behind a transport-type aircraft. NASA Dryden served as the responsible test organization and had flight safety responsibility for the Eclipse project. Dryden also supplied engineering, simulation, instrumentation, range support, research pilots, and chase aircraft for the test series. Dryden personnel also performed the modifications to convert the QF-106 into the piloted EXD-01 aircraft. During the early flight phase of the project, Tracor, Inc. provided maintenance and ground support for the two QF-106 airplanes. The Air Force Flight Test Center (AFFTC), Edwards, California, provided the C-141A transport aircraft for the project, its flight and engineering support, and the aircrew. Kelly Space and Technology provided the modification design and fabrication of the hardware that was installed on the EXD-01 aircraft. Kelly Space and Technology hopes to use the data gleaned from the tow tests to develop a series of low-cost reusable launch vehicles, in particular to gain experience towing delta-wing aircraft having high wing loading, and in general to demonstrate various operational procedures such as ground processing and abort scenarios. The first successful

  13. Development and application of a model for the analysis of trades between space launch system operations and acquisition costs

    Science.gov (United States)

    Nix, Michael B.

    2005-12-01

    Early design decisions in the development of space launch systems determine the costs to acquire and operate launch systems. Some sources indicate that as much as 90% of life cycle costs are fixed by the end of the critical design review phase. System characteristics determined by these early decisions are major factors in the acquisition cost of flight hardware elements and facilities and influence operations costs through the amount of maintenance and support labor required to sustain system function. Operations costs are also dependent on post-development management decisions regarding how much labor will be deployed to meet requirements of market demand and ownership profit. The ability to perform early trade-offs between these costs is vital to the development of systems that have the necessary capacity to provide service and are profitable to operate. An Excel-based prototype model was developed for making early analyses of trade-offs between the costs to operate a space launch system and to acquire the necessary assets to meet a given set of operational requirements. The model, integrating input from existing models and adding missing capability, allows the user to make such trade-offs across a range of operations concepts (required flight rates, staffing levels, shifts per workday, workdays per week and per year, unreliability, wearout and depot maintenance) and the number, type and capability of assets (flight hardware elements, processing and supporting facilities and infrastructure). The costs and capabilities of hypothetical launch systems can be modeled as a function of interrelated turnaround times and labor resource levels, and asset loss and retirement. The number of flight components and facilities required can be calculated and the operations and acquisition costs compared for a specified scenario. Findings, based on the analysis of a hypothetical two stage to orbit, reusable, unmanned launch system, indicate that the model is suitable for the

  14. Flight plan optimization

    Science.gov (United States)

    Dharmaseelan, Anoop; Adistambha, Keyne D.

    2015-05-01

    Fuel cost accounts for 40 percent of the operating cost of an airline. Fuel cost can be minimized by planning a flight on optimized routes. The routes can be optimized by searching best connections based on the cost function defined by the airline. The most common algorithm that used to optimize route search is Dijkstra's. Dijkstra's algorithm produces a static result and the time taken for the search is relatively long. This paper experiments a new algorithm to optimize route search which combines the principle of simulated annealing and genetic algorithm. The experimental results of route search, presented are shown to be computationally fast and accurate compared with timings from generic algorithm. The new algorithm is optimal for random routing feature that is highly sought by many regional operators.

  15. NASA's Rodent Research Project: Validation of Flight Hardware, Operations and Science Capabilities for Conducting Long Duration Experiments in Space

    Science.gov (United States)

    Choi, S. Y.; Beegle, J. E.; Wigley, C. L.; Pletcher, D.; Globus, R. K.

    2015-01-01

    Research using rodents is an essential tool for advancing biomedical research on Earth and in space. Rodent Research (RR)-1 was conducted to validate flight hardware, operations, and science capabilities that were developed at the NASA Ames Research Center. Twenty C57BL/6J adult female mice were launched on Sept 21, 2014 in a Dragon Capsule (SpaceX-4), then transferred to the ISS for a total time of 21-22 days (10 commercial mice) or 37 (10 validation mice). Tissues collected on-orbit were either rapidly frozen or preserved in RNA later at less than or equal to -80 C (n=2/group) until their return to Earth. Remaining carcasses were rapidly frozen for dissection post-flight. The three controls groups at Kennedy Space Center consisted of: Basal mice euthanized at the time of launch, Vivarium controls, housed in standard cages, and Ground Controls (GC), housed in flight hardware within an environmental chamber. FLT mice appeared more physically active on-orbit than GC, and behavior analysis are in progress. Upon return to Earth, there were no differences in body weights between FLT and GC at the end of the 37 days in space. RNA was of high quality (RIN greater than 8.5). Liver enzyme activity levels of FLT mice and all control mice were similar in magnitude to those of the samples that were optimally processed in the laboratory. Liver samples collected from the intact frozen FLT carcasses had RNA RIN of 7.27 +/- 0.52, which was lower than that of the samples processed on-orbit, but similar to those obtained from the control group intact carcasses. Nonetheless, the RNA samples from the intact carcasses were acceptable for the most demanding transcriptomic analyses. Adrenal glands, thymus and spleen (organs associated with stress response) showed no significant difference in weights between FLT and GC. Enzymatic activity was also not significantly different. Over 3,000 tissues collected from the four groups of mice have become available for the Biospecimen Sharing

  16. The Sustainability Cycle and Loop: models for a more unified understanding of sustainability.

    Science.gov (United States)

    Hay, Laura; Duffy, Alex; Whitfield, R I

    2014-01-15

    In spite of the considerable research on sustainability, reports suggest that we are barely any closer to a more sustainable society. As such, there is an urgent need to improve the effectiveness of human efforts towards sustainability. A clearer and more unified understanding of sustainability among different people and sectors could help to facilitate this. This paper presents the results of an inductive literature investigation, aiming to develop models to explain the nature of sustainability in the Earth system, and how humans can effectively strive for it. The major contributions are two general and complementary models, that may be applied in any context to provide a common basis for understanding sustainability: the Sustainability Cycle (S-Cycle), and the Sustainability Loop (S-Loop). Literature spanning multiple sectors is examined from the perspective of three concepts, emerging as significant in relation to our aim. Systems are shown to provide the context for human action towards sustainability, and the nature of the Earth system and its sub-systems is explored. Activities are outlined as a fundamental target that humans need to sustain, since they produce the entities both needed and desired by society. The basic behaviour of activities operating in the Earth system is outlined. Finally, knowledge is positioned as the driver of human action towards sustainability, and the key components of knowledge involved are examined. The S-Cycle and S-Loop models are developed via a process of induction from the reviewed literature. The S-Cycle describes the operation of activities in a system from the perspective of sustainability. The sustainability of activities in a system depends upon the availability of resources, and the availability of resources depends upon the rate that activities consume and produce them. Humans may intervene in these dynamics via an iterative process of interpretation and action, described in the S-Loop model. The models are briefly

  17. Use of high performance networks and supercomputers for real-time flight simulation

    Science.gov (United States)

    Cleveland, Jeff I., II

    1993-01-01

    In order to meet the stringent time-critical requirements for real-time man-in-the-loop flight simulation, computer processing operations must be consistent in processing time and be completed in as short a time as possible. These operations include simulation mathematical model computation and data input/output to the simulators. In 1986, in response to increased demands for flight simulation performance, NASA's Langley Research Center (LaRC), working with the contractor, developed extensions to the Computer Automated Measurement and Control (CAMAC) technology which resulted in a factor of ten increase in the effective bandwidth and reduced latency of modules necessary for simulator communication. This technology extension is being used by more than 80 leading technological developers in the United States, Canada, and Europe. Included among the commercial applications are nuclear process control, power grid analysis, process monitoring, real-time simulation, and radar data acquisition. Personnel at LaRC are completing the development of the use of supercomputers for mathematical model computation to support real-time flight simulation. This includes the development of a real-time operating system and development of specialized software and hardware for the simulator network. This paper describes the data acquisition technology and the development of supercomputing for flight simulation.

  18. Sprint: The first flight demonstration of the external work system robots

    Science.gov (United States)

    Price, Charles R.; Grimm, Keith

    1995-01-01

    The External Works Systems (EWS) 'X Program' is a new NASA initiative that will, in the next ten years, develop a new generation of space robots for active and participative support of zero g external operations. The robotic development will center on three areas: the assistant robot, the associate robot, and the surrogate robot that will support external vehicular activities (EVA) prior to and after, during, and instead of space-suited human external activities respectively. The EWS robotics program will be a combination of technology developments and flight demonstrations for operational proof of concept. The first EWS flight will be a flying camera called 'Sprint' that will seek to demonstrate operationally flexible, remote viewing capability for EVA operations, inspections, and contingencies for the space shuttle and space station. This paper describes the need for Sprint and its characteristics.

  19. Building the Sustainable Library at Macquarie University

    Science.gov (United States)

    Brodie, Maxine

    2012-01-01

    This article explores a number of current issues and challenges in sustainability, both of and in academic libraries of the future, using as a case study the new library opened at Macquarie University, Sydney in 2011. Issues covered include sustainable design and operation of library buildings, sustainability in relation to library collections,…

  20. NASA Aerosciences Activities to Support Human Space Flight

    Science.gov (United States)

    LeBeau, Gerald J.

    2011-01-01

    The Lyndon B. Johnson Space Center (JSC) has been a critical element of the United State's human space flight program for over 50 years. It is the home to NASA s Mission Control Center, the astronaut corps, and many major programs and projects including the Space Shuttle Program, International Space Station Program, and the Orion Project. As part of JSC's Engineering Directorate, the Applied Aeroscience and Computational Fluid Dynamics Branch is charted to provide aerosciences support to all human spacecraft designs and missions for all phases of flight, including ascent, exo-atmospheric, and entry. The presentation will review past and current aeroscience applications and how NASA works to apply a balanced philosophy that leverages ground testing, computational modeling and simulation, and flight testing, to develop and validate related products. The speaker will address associated aspects of aerodynamics, aerothermodynamics, rarefied gas dynamics, and decelerator systems, involving both spacecraft vehicle design and analysis, and operational mission support. From these examples some of NASA leading aerosciences challenges will be identified. These challenges will be used to provide foundational motivation for the development of specific advanced modeling and simulation capabilities, and will also be used to highlight how development activities are increasing becoming more aligned with flight projects. NASA s efforts to apply principles of innovation and inclusion towards improving its ability to support the myriad of vehicle design and operational challenges will also be briefly reviewed.

  1. 14 CFR Special Federal Aviation... - Prohibition Against Certain Flights Within the Territory and Airspace of Somalia

    Science.gov (United States)

    2010-01-01

    ... the Territory and Airspace of Somalia Federal Special Federal Aviation Regulation No. 107 Aeronautics... Regulation No. 107—Prohibition Against Certain Flights Within the Territory and Airspace of Somalia 1... 1 may conduct flight operations within the territory and airspace of Somalia below flight level (FL...

  2. Location and data collection for long stratospheric balloon flights

    Science.gov (United States)

    Malaterre, P.

    Stratospheric balloons capable of taking a 30 kg scientific payload to an altitude of 22 to 30 km for 1 month or more were developed. In-flight experiments were used to qualify the designs of a pumpkin shaped superpressure balloon and an infrared hot air balloon. Tracking of the flights (location and transmission of the parameters measured on board) was achieved using a telemetry gondola including an ARGOS beacon adapted for operation in the low temperatures encountered.

  3. Taking a Holistic Approach to Sustainability

    Science.gov (United States)

    Girouard, Miles

    2011-01-01

    The benefits of sustainability go way beyond improving the environment. School districts that choose to build facilities using sustainable principles reap the benefits of environmentally friendly, healthy establishments; attractive work spaces (which improve recruiting and retention); and significant operational cost savings. Districts realize…

  4. Sustainable Operation of Arterial Networks

    Science.gov (United States)

    2017-07-14

    This report describes operational data analysis and modeling of arterial networks with signalized intersections as follows: The setup for data collection, analysis and simulation is presented in Section 2.1. Detailed analysis of collected signal phas...

  5. TAMU: A New Space Mission Operations Paradigm

    Science.gov (United States)

    Meshkat, Leila; Ruszkowski, James; Haensly, Jean; Pennington, Granvil A.; Hogle, Charles

    2011-01-01

    The Transferable, Adaptable, Modular and Upgradeable (TAMU) Flight Production Process (FPP) is a model-centric System of System (SoS) framework which cuts across multiple organizations and their associated facilities, that are, in the most general case, in geographically diverse locations, to develop the architecture and associated workflow processes for a broad range of mission operations. Further, TAMU FPP envisions the simulation, automatic execution and re-planning of orchestrated workflow processes as they become operational. This paper provides the vision for the TAMU FPP paradigm. This includes a complete, coherent technique, process and tool set that result in an infrastructure that can be used for full lifecycle design and decision making during any flight production process. A flight production process is the process of developing all products that are necessary for flight.

  6. Lessons Learned for Planning and Estimating Operations Support Requirements

    Science.gov (United States)

    Newhouse, Marilyn

    2011-01-01

    Operations (phase E) costs are typically small compared to the spacecraft development and test costs. This, combined with the long lead time for realizing operations costs, can lead projects to focus on hardware development schedules and costs, de-emphasizing estimation of operations support requirements during proposal, early design, and replan cost exercises. The Discovery and New Frontiers (D&NF) programs comprise small, cost-capped missions supporting scientific exploration of the solar system. Even moderate yearly underestimates of the operations costs can present significant LCC impacts for deep space missions with long operational durations, and any LCC growth can directly impact the programs ability to fund new missions. The D&NF Program Office at Marshall Space Flight Center recently studied cost overruns for 7 D&NF missions related to phase C/D development of operational capabilities and phase E mission operations. The goal was to identify the underlying causes for the overruns and develop practical mitigations to assist the D&NF projects in identifying potential operations risks and controlling the associated impacts to operations development and execution costs. The study found that the drivers behind these overruns include overly optimistic assumptions regarding the savings resulting from the use of heritage technology, late development of operations requirements, inadequate planning for sustaining engineering and the special requirements of long duration missions (e.g., knowledge retention and hardware/software refresh), and delayed completion of ground system development work. This presentation summarizes the study and the results, providing a set of lessons NASA can use to improve early estimation and validation of operations costs.

  7. Sustainability Assessment of Higher Education Institutions in Saudi Arabia

    Directory of Open Access Journals (Sweden)

    Habib M. Alshuwaikhat

    2016-08-01

    Full Text Available Universities are paramount change drivers in bringing about a culture of sustainability in society by setting themselves up as models and nurseries for sustainable development. Thus, assessment of sustainability integration within universities is key to their impact on sustainable development. This study conducted an assessment of different public sector universities of Saudi Arabia based on five components: (i Teaching and Curriculum; (ii Research and Scholarship; (iii Campus Operations; (iv Management and Community; and (v Financial Management. The sustainability assessment questionnaire (SAQ was utilized as a tool to discern the component-wise sustainability assessment for Saudi universities. The outcomes of the survey reveal that, in stark contrast with the universities of the developed world, offerings of sustainability relevant academic courses in Saudi Arabia are still lacking. Most Saudi universities still need to integrate research and scholarship in the area of sustainability; sustainable-campus operations in the current scenario are not sufficient. The results also reveal that sustainability-related projects are not prioritized within universities and sustainable financial management practices are not significant. This article concludes by proposing some recommendations emphasizing the importance of adopting sustainability practices in Saudi universities.

  8. The technology of waste, biofuels and global warming in viable closed loop, sustainable operations

    International Nuclear Information System (INIS)

    Butterworth, W. R.

    2009-01-01

    This research set out to explore and develop a route relating the recycling of urban and industrial wastes to land to produce agricultural crops with energy crops in the rotation, using the green leaf to 'harvest' sunlight and to examine the sequestration of carbon dioxide and release of oxygen in a sustainable closed loop. Further, to establish if the pollution, particularly of nitrogen and phosphates (often associated with cultivations and use of mineral fertilisers) could be reduced or eliminated, so as to be able to develop systems which could contribute to the reversal of global warming. Finally, to probe whether practical operators on the ground could understand the technology, use it, and express what they were doing in a way acceptable to a wider society. (author)

  9. Operation of an enclosed aquatic ecosystem in the Shenzhou-8 mission

    Science.gov (United States)

    Li, Xiaoyan; Richter, Peter R.; Hao, Zongjie; An, Yanjun; Wang, Gaohong; Li, Dunhai; Liu, Yongding; Strauch, Sebastian M.; Schuster, Martin; Haag, Ferdinand W.; Lebert, Michael

    2017-05-01

    Long- term spaceflight needs reliable Biological life support systems (BLSS) to supply astronauts with enough food, fresh air and recycle wasters, but the knowledge about the operation pattern and controlling strategy is rear. For this purpose, a miniaturized enclosed aquatic ecosystem was developed and flown on the Chinese spaceship Shenzhou-8. The system with a total volume of about 60 mL was separated into two chambers by means of a gas transparent membrane. The lower chamber was inoculated with Euglena gracilis cells, and the upper chamber was cultured with Chlorella cells and three snails. After 17.5 days flight, the samples were analyzed. It was found that all snails in the ground module (GM) were alive, while in the flight module (FM) only one snail survived. The total cell numbers, assimilation of nutrients like nitrogen and phosphorus, soluble proteins and carbohydrate contents showed a decrease in FM than in GM. The correlation analysis showed upper chambers of both FM and GM had the same positive and negative correlation factors, while differential correlation was found in lower chambers. These results suggested primary productivity in the enclosed system decreased in microgravity, accompanied with nutrients assimilation. The FM chamber endured lacking of domination species to sustain the system development and GM chamber endured richness in population abundance. These results implied photosynthesis intensity should be reduced to keep the system healthy. More Chlorella but less Euglena might be a useful strategy to sustain system stability. It is the first systematic analysis of enclosed systems in microgravity.

  10. Ethernet for Space Flight Applications

    Science.gov (United States)

    Webb, Evan; Day, John H. (Technical Monitor)

    2002-01-01

    NASA's Goddard Space Flight Center (GSFC) is adapting current data networking technologies to fly on future spaceflight missions. The benefits of using commercially based networking standards and protocols have been widely discussed and are expected to include reduction in overall mission cost, shortened integration and test (I&T) schedules, increased operations flexibility, and hardware and software upgradeability/scalability with developments ongoing in the commercial world. The networking effort is a comprehensive one encompassing missions ranging from small University Explorer (UNEX) class spacecraft to large observatories such as the Next Generation Space Telescope (NGST). Mission aspects such as flight hardware and software, ground station hardware and software, operations, RF communications, and security (physical and electronic) are all being addressed to ensure a complete end-to-end system solution. One of the current networking development efforts at GSFC is the SpaceLAN (Spacecraft Local Area Network) project, development of a space-qualifiable Ethernet network. To this end we have purchased an IEEE 802.3-compatible 10/100/1000 Media Access Control (MAC) layer Intellectual Property (IP) core and are designing a network node interface (NNI) and associated network components such as a switch. These systems will ultimately allow the replacement of the typical MIL-STD-1553/1773 and custom interfaces that inhabit most spacecraft. In this paper we will describe our current Ethernet NNI development along with a novel new space qualified physical layer that will be used in place of the standard interfaces. We will outline our plans for development of space qualified network components that will allow future spacecraft to operate in significant radiation environments while using a single onboard network for reliable commanding and data transfer. There will be a brief discussion of some issues surrounding system implications of a flight Ethernet. Finally, we will

  11. STEP flight experiments Large Deployable Reflector (LDR) telescope

    Science.gov (United States)

    Runge, F. C.

    1984-01-01

    Flight testing plans for a large deployable infrared reflector telescope to be tested on a space platform are discussed. Subsystem parts, subassemblies, and whole assemblies are discussed. Assurance of operational deployability, rigidization, alignment, and serviceability will be sought.

  12. 14 CFR Appendix F to Part 135 - Airplane Flight Recorder Specification

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 3 2010-01-01 2010-01-01 false Airplane Flight Recorder Specification F.... F Appendix F to Part 135—Airplane Flight Recorder Specification The recorded values must meet the....125 0.004g 6. Pitch Attitude ±75% ±2° 1 or 0.25 for airplanes operated under § 135.152(j) 0.5° A...

  13. Synergistic Allocation of Flight Expertise on the Flight Deck (SAFEdeck): A Design Concept to Combat Mode Confusion, Complacency, and Skill Loss in the Flight Deck

    Science.gov (United States)

    Schutte, Paul; Goodrich, Kenneth; Williams, Ralph

    2016-01-01

    This paper presents a new design and function allocation philosophy between pilots and automation that seeks to support the human in mitigating innate weaknesses (e.g., memory, vigilance) while enhancing their strengths (e.g., adaptability, resourcefulness). In this new allocation strategy, called Synergistic Allocation of Flight Expertise in the Flight Deck (SAFEdeck), the automation and the human provide complementary support and backup for each other. Automation is designed to be compliant with the practices of Crew Resource Management. The human takes a more active role in the normal operation of the aircraft without adversely increasing workload over the current automation paradigm. This designed involvement encourages the pilot to be engaged and ready to respond to unexpected situations. As such, the human may be less prone to error than the current automation paradigm.

  14. Spacecraft operations

    CERN Document Server

    Sellmaier, Florian; Schmidhuber, Michael

    2015-01-01

    The book describes the basic concepts of spaceflight operations, for both, human and unmanned missions. The basic subsystems of a space vehicle are explained in dedicated chapters, the relationship of spacecraft design and the very unique space environment are laid out. Flight dynamics are taught as well as ground segment requirements. Mission operations are divided into preparation including management aspects, execution and planning. Deep space missions and space robotic operations are included as special cases. The book is based on a course held at the German Space Operation Center (GSOC).

  15. Functional integration of vertical flight path and speed control using energy principles

    Science.gov (United States)

    Lambregts, A. A.

    1984-01-01

    A generalized automatic flight control system was developed which integrates all longitudinal flight path and speed control functions previously provided by a pitch autopilot and autothrottle. In this design, a net thrust command is computed based on total energy demand arising from both flight path and speed targets. The elevator command is computed based on the energy distribution error between flight path and speed. The engine control is configured to produce the commanded net thrust. The design incorporates control strategies and hierarchy to deal systematically and effectively with all aircraft operational requirements, control nonlinearities, and performance limits. Consistent decoupled maneuver control is achieved for all modes and flight conditions without outer loop gain schedules, control law submodes, or control function duplication.

  16. Ratioing methods for in-flight response calibration of space-based spectro-radiometers, operating in the solar spectral region

    Science.gov (United States)

    Lobb, Dan

    2017-11-01

    One of the most significant problems for space-based spectro-radiometer systems, observing Earth from space in the solar spectral band (UV through short-wave IR), is in achievement of the required absolute radiometric accuracy. Classical methods, for example using one or more sun-illuminated diffusers as reflectance standards, do not generally provide methods for monitoring degradation of the in-flight reference after pre-flight characterisation. Ratioing methods have been proposed that provide monitoring of degradation of solar attenuators in flight, thus in principle allowing much higher confidence in absolute response calibration. Two example methods are described. It is shown that systems can be designed for relatively low size and without significant additions to the complexity of flight hardware.

  17. Computer Software Configuration Item-Specific Flight Software Image Transfer Script Generator

    Science.gov (United States)

    Bolen, Kenny; Greenlaw, Ronald

    2010-01-01

    A K-shell UNIX script enables the International Space Station (ISS) Flight Control Team (FCT) operators in NASA s Mission Control Center (MCC) in Houston to transfer an entire or partial computer software configuration item (CSCI) from a flight software compact disk (CD) to the onboard Portable Computer System (PCS). The tool is designed to read the content stored on a flight software CD and generate individual CSCI transfer scripts that are capable of transferring the flight software content in a given subdirectory on the CD to the scratch directory on the PCS. The flight control team can then transfer the flight software from the PCS scratch directory to the Electronically Erasable Programmable Read Only Memory (EEPROM) of an ISS Multiplexer/ Demultiplexer (MDM) via the Indirect File Transfer capability. The individual CSCI scripts and the CSCI Specific Flight Software Image Transfer Script Generator (CFITSG), when executed a second time, will remove all components from their original execution. The tool will identify errors in the transfer process and create logs of the transferred software for the purposes of configuration management.

  18. Supply Chain Management and Sustainability: Procrastinating Integration in Mainstream Research

    Directory of Open Access Journals (Sweden)

    Marisa P. de Brito

    2010-03-01

    Full Text Available Research has pointed out opportunities and research agendas to integrate sustainability issues with supply chain and operations management. However, we find that it is still not mainstream practice to systematically take a sustainability approach in tackling supply chain and operations management issues. In this paper, we make use of behavioral theory to explain the current lack of integration. We conclude through abductive reasoning that the reasons for procrastinating integration of sustainability in supply chain and operations management research are the conflicting nature of the task and the inherent context, which is the focus on operations rather than environmental or social issues.

  19. Sustainable development strategy : moving forward

    International Nuclear Information System (INIS)

    2004-01-01

    This publication demonstrates the steps that Natural Resources Canada has taken to optimize the contribution of natural resources to sustainable development. Canada's forestry, minerals, metals and energy sectors are key components to Canada's overall economy and society. The Sustainable Development Strategy (SDS) focuses on the development and use of Canada's resources in a responsible manner that will maintain the integrity of natural ecosystems and safeguard the quality of life for Canadians. All decision-making takes into account economic, environmental and social considerations. The challenges facing the natural resources sector include the management of forests, the development of clean energy options, and the recycling and reuse of minerals and metals resources. This publication outlines the specific goals and objectives set by Natural Resources Canada that will make the SDS possible through programs, policies, legislation, technology utilization and operations. It also describes Canada's progress in meeting the following 4 commitments: (1) Canadians make better decisions that advance sustainable development, (2) Canadians are taking action to reduce greenhouse gas emissions and adapt to the effects of climate change, (3) Canada is recognized globally as a responsible steward of natural resources and a leader in advancing sustainable development, and (4) Natural Resources Canada demonstrates its commitment to sustainable development in its operations. tabs

  20. Utilising the Potential of Design Briefs in Sustainable Packaging Development

    OpenAIRE

    ten Klooster, Roland; de Koeijer, Bjorn

    2016-01-01

    Sustainable considerations in the development of product-packaging combinations require activities on both the strategic and operational level. As part of a company’s vision, the strategic level of development targets the desired implementation of sustainability considerations. The activities of the multidisciplinary teams of marketers, designers and engineers, which specifies the achieved sustainability in finished packaging concepts, largely determines the operational level of product-packa...

  1. Miracle Flights

    Science.gov (United States)

    ... a Flight Get Involved Events Shop Miles Contact Miracle Flights Blog Giving Tuesday 800-359-1711 Thousands of children have been saved, but we still have miles to go. Request a Flight Click Here to Donate - Your ...

  2. TAMU: Blueprint for A New Space Mission Operations System Paradigm

    Science.gov (United States)

    Ruszkowski, James T.; Meshkat, Leila; Haensly, Jean; Pennington, Al; Hogle, Charles

    2011-01-01

    The Transferable, Adaptable, Modular and Upgradeable (TAMU) Flight Production Process (FPP) is a System of System (SOS) framework which cuts across multiple organizations and their associated facilities, that are, in the most general case, in geographically disperse locations, to develop the architecture and associated workflow processes of products for a broad range of flight projects. Further, TAMU FPP provides for the automatic execution and re-planning of the workflow processes as they become operational. This paper provides the blueprint for the TAMU FPP paradigm. This blueprint presents a complete, coherent technique, process and tool set that results in an infrastructure that can be used for full lifecycle design and decision making during the flight production process. Based on the many years of experience with the Space Shuttle Program (SSP) and the International Space Station (ISS), the currently cancelled Constellation Program which aimed on returning humans to the moon as a starting point, has been building a modern model-based Systems Engineering infrastructure to Re-engineer the FPP. This infrastructure uses a structured modeling and architecture development approach to optimize the system design thereby reducing the sustaining costs and increasing system efficiency, reliability, robustness and maintainability metrics. With the advent of the new vision for human space exploration, it is now necessary to further generalize this framework to take into consideration a broad range of missions and the participation of multiple organizations outside of the MOD; hence the Transferable, Adaptable, Modular and Upgradeable (TAMU) concept.

  3. Nuclear Power and Sustainable Development

    International Nuclear Information System (INIS)

    2016-09-01

    Transforming the energy system is at the core of the dedicated sustainable development goal on energy within the new United Nations development agenda. This publication explores the possible contribution of nuclear energy to addressing the issues of sustainable development through a large selection of indicators. It reviews the characteristics of nuclear power in comparison with alternative sources of electricity supply, according to economic, social and environmental pillars of sustainability. The findings summarized in this publication will help the reader to consider, or reconsider, the contribution that can be made by the development and operation of nuclear power plants in contributing to more sustainable energy systems.

  4. Respiratory evolution facilitated the origin of pterosaur flight and aerial gigantism.

    Directory of Open Access Journals (Sweden)

    Leon P A M Claessens

    Full Text Available Pterosaurs, enigmatic extinct Mesozoic reptiles, were the first vertebrates to achieve true flapping flight. Various lines of evidence provide strong support for highly efficient wing design, control, and flight capabilities. However, little is known of the pulmonary system that powered flight in pterosaurs. We investigated the structure and function of the pterosaurian breathing apparatus through a broad scale comparative study of respiratory structure and function in living and extinct archosaurs, using computer-assisted tomographic (CT scanning of pterosaur and bird skeletal remains, cineradiographic (X-ray film studies of the skeletal breathing pump in extant birds and alligators, and study of skeletal structure in historic fossil specimens. In this report we present various lines of skeletal evidence that indicate that pterosaurs had a highly effective flow-through respiratory system, capable of sustaining powered flight, predating the appearance of an analogous breathing system in birds by approximately seventy million years. Convergent evolution of gigantism in several Cretaceous pterosaur lineages was made possible through body density reduction by expansion of the pulmonary air sac system throughout the trunk and the distal limb girdle skeleton, highlighting the importance of respiratory adaptations in pterosaur evolution, and the dramatic effect of the release of physical constraints on morphological diversification and evolutionary radiation.

  5. Respiratory evolution facilitated the origin of pterosaur flight and aerial gigantism.

    Science.gov (United States)

    Claessens, Leon P A M; O'Connor, Patrick M; Unwin, David M

    2009-01-01

    Pterosaurs, enigmatic extinct Mesozoic reptiles, were the first vertebrates to achieve true flapping flight. Various lines of evidence provide strong support for highly efficient wing design, control, and flight capabilities. However, little is known of the pulmonary system that powered flight in pterosaurs. We investigated the structure and function of the pterosaurian breathing apparatus through a broad scale comparative study of respiratory structure and function in living and extinct archosaurs, using computer-assisted tomographic (CT) scanning of pterosaur and bird skeletal remains, cineradiographic (X-ray film) studies of the skeletal breathing pump in extant birds and alligators, and study of skeletal structure in historic fossil specimens. In this report we present various lines of skeletal evidence that indicate that pterosaurs had a highly effective flow-through respiratory system, capable of sustaining powered flight, predating the appearance of an analogous breathing system in birds by approximately seventy million years. Convergent evolution of gigantism in several Cretaceous pterosaur lineages was made possible through body density reduction by expansion of the pulmonary air sac system throughout the trunk and the distal limb girdle skeleton, highlighting the importance of respiratory adaptations in pterosaur evolution, and the dramatic effect of the release of physical constraints on morphological diversification and evolutionary radiation.

  6. Incidence and predictors of onboard injuries among Sri Lankan flight attendants

    Directory of Open Access Journals (Sweden)

    Agampodi Thilini C

    2009-07-01

    Full Text Available Abstract Background Occupational injuries among flight attendants have not been given appropriate attention in Sri Lanka. The purpose of this study was to estimate the incidence of onboard injury among Sri Lankan flight attendants and to describe the determinants of onboard injury. Methods A descriptive cross-sectional study was carried out among Sri Lankan flight attendants. All flight attendants undergoing their annual health and first aid training were invited to participate. Flight attendants who flew continuously for a six-month period prior to data collection were included in the study sample. Recall history of injuries for a period of six months was recorded. Results The study sample consisted of 98 (30.4% male and 224 (69.6% female flight attendants. The mean age of the study sample was 31 years (SD = 8 and the average duration of service was 10 years (SD = 7. A total of 100 onboard falls, slips or trips in the previous six months were reported by 52 (16.1% respondents. Of the total sample, 128 (39.8% cabin crew members reported an injury in the six months preceding the study. This represents a total injury incidence of 795 per 1000 person per year. The leading causes of injury was pulling, pushing or lifting (60.2%. The commonest type of injuries were strains and sprains (52.3%. Turbulence related injuries were reported by 38 (29.7% flight attendants. The upper limbs (44.5% and the back (32% were the commonest sites affected. After controlling for other factors, female flight attendants had 2.9 times higher risk (95% CI 1.2–7.2 of sustaining and injury than males. Irrespective of sex, body weight less than 56 kilograms (OR 2.9, 95% CI 1.4–5.8 and less than seven years of on board experience (OR 10.5, 95% CI 3.6–31.0 were associated with higher risk of injury. Conclusion Work related injury is a major occupational hazard to flight attendants. Appropriate preventive strategies are required to minimize them.

  7. Perseus A in Flight with Moon

    Science.gov (United States)

    1994-01-01

    The Perseus A, a remotely-piloted, high-altitude research aircraft, is seen here framed against the moon and sky during a research mission at the Dryden Flight Research Center, Edwards, California in August 1994. Perseus B is a remotely piloted aircraft developed as a design-performance testbed under NASA's Environmental Research Aircraft and Sensor Technology (ERAST) project. Perseus is one of several flight vehicles involved in the ERAST project. A piston engine, propeller-powered aircraft, Perseus was designed and built by Aurora Flight Sciences Corporation, Manassas, Virginia. The objectives of Perseus B's ERAST flight tests have been to reach and maintain horizontal flight above altitudes of 60,000 feet and demonstrate the capability to fly missions lasting from 8 to 24 hours, depending on payload and altitude requirements. The Perseus B aircraft established an unofficial altitude record for a single-engine, propeller-driven, remotely piloted aircraft on June 27, 1998. It reached an altitude of 60,280 feet. In 1999, several modifications were made to the Perseus aircraft including engine, avionics, and flight-control-system improvements. These improvements were evaluated in a series of operational readiness and test missions at the Dryden Flight Research Center, Edwards, California. Perseus is a high-wing monoplane with a conventional tail design. Its narrow, straight, high-aspect-ratio wing is mounted atop the fuselage. The aircraft is pusher-designed with the propeller mounted in the rear. This design allows for interchangeable scientific-instrument payloads to be placed in the forward fuselage. The design also allows for unobstructed airflow to the sensors and other devices mounted in the payload compartment. The Perseus B that underwent test and development in 1999 was the third generation of the Perseus design, which began with the Perseus Proof-Of-Concept aircraft. Perseus was initially developed as part of NASA's Small High-Altitude Science Aircraft

  8. The Two Faces of Sustainability : Fuzzy Evaluation of Sustainable Development

    NARCIS (Netherlands)

    Cornelissen, T.

    2003-01-01

    An evaluative framework of sustainable development operates at both the production system level and the society level: objective information gathered at the production system level is given subjective meaning at the society level. The evaluative framework constitutes a complete cycle to monitor

  9. Neutron Time-Of-Flight (n_TOF) experiment

    CERN Multimedia

    Brugger, M; Kaeppeler, F K; Jericha, E; Cortes rossell, G P; Riego perez, A; Baccomi, R; Laurent, B G; Griesmayer, E; Leeb, H; Dressler, M; Cano ott, D; Variale, V; Ventura, A; Carrillo de albornoz trillo, A; Andrzejewski, J J; Pavlik, A F; Kadi, Y; Zanni vlastou, R; Krticka, M; Kokkoris, M; Praena rodriguez, A J; Cortes giraldo, M A; Perkowski, J; Losito, R; Audouin, L; Weiss, C; Tagliente, G; Wallner, A; Woods, P J; Mengoni, A; Guerrero sanchez, C G; Tain enriquez, J L; Vlachoudis, V; Calviani, M; Junghans, A R; Reifarth, R; Mendoza cembranos, E; Quesada molina, J M; Babiano suarez, V; Schumann, M D; Tsinganis, A; Rauscher, T; Calvino tavares, F; Mingrone, F; Gonzalez romero, E M; Colonna, N; Negret, A L; Chiaveri, E; Milazzo, P M; De almeida carrapico, C A; Castelluccio, D M

    The neutron time-of-flight facility n_TOF at CERN, Switzerland, operational since 2001, delivers neutrons using the Proton Synchrotron (PS) 20 GeV/c proton beam impinging on a lead spallation target. The facility combines a very high instantaneous neutron flux, an excellent time of flight resolution due to the distance between the experimental area and the production target (185 meters), a low intrinsic background and a wide range of neutron energies, from thermal to GeV neutrons. These characteristics provide a unique possibility to perform neutron-induced capture and fission cross-section measurements for applications in nuclear astrophysics and in nuclear reactor technology.

  10. Supply Chain Management and Sustainability : Procrastinating Integration in Mainstream Research

    NARCIS (Netherlands)

    De Brito, M.P.; Van der Laan, E.A.

    2010-01-01

    Research has pointed out opportunities and research agendas to integrate sustainability issues with supply chain and operations management. However, we find that it is still not mainstream practice to systematically take a sustainability approach in tackling supply chain and operations management

  11. Supply Chain Management and Sustainability: Procrastinating Integration in Mainstream Research

    NARCIS (Netherlands)

    M.P. de Brito (Marisa); E.A. van der Laan (Erwin)

    2010-01-01

    textabstractResearch has pointed out opportunities and research agendas to integrate sustainability issues with supply chain and operations management. However, we find that it is still not mainstream practice to systematically take a sustainability approach in tackling supply chain and operations

  12. Aeromedical Factors in Aviator Fatigue, Crew Work/Rest Schedules and Extended Flight Operations: An Annotated Bibliography.

    Science.gov (United States)

    1981-01-01

    medicina aeronatica). Revisti de Aoronautica y Astronautica. 37:109-118. (In Spanish.) English translation NASA TM-75165, October 1977. Literature on...treatment of flight fatigue. Rxi.t,, 9. Medicina Aeronautica E Spaziale. 32:231-268. (In Italian.) The author frames nosologically flight fatigue syndrome... China Lake, CA 93555 (1) Warminster, PA 18974 (1) US Navy US Navy Naval Aerospace Medical Institute Naval Research Laboratory Library Library Shock

  13. Checking Flight Rules with TraceContract: Application of a Scala DSL for Trace Analysis

    Science.gov (United States)

    Barringer, Howard; Havelund, Klaus; Morris, Robert A.

    2011-01-01

    Typically during the design and development of a NASA space mission, rules and constraints are identified to help reduce reasons for failure during operations. These flight rules are usually captured in a set of indexed tables, containing rule descriptions, rationales for the rules, and other information. Flight rules can be part of manual operations procedures carried out by humans. However, they can also be automated, and either implemented as on-board monitors, or as ground based monitors that are part of a ground data system. In the case of automated flight rules, one considerable expense to be addressed for any mission is the extensive process by which system engineers express flight rules in prose, software developers translate these requirements into code, and then both experts verify that the resulting application is correct. This paper explores the potential benefits of using an internal Scala DSL for general trace analysis, named TRACECONTRACT, to write executable specifications of flight rules. TRACECONTRACT can generally be applied to analysis of for example log files or for monitoring executing systems online.

  14. 14 CFR Appendix B to Part 29 - Airworthiness Criteria for Helicopter Instrument Flight

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Airworthiness Criteria for Helicopter... Appendix B to Part 29—Airworthiness Criteria for Helicopter Instrument Flight I. General. A transport category helicopter may not be type certificated for operation under the instrument flight rules (IFR) of...

  15. Monte-Carlo study of ICRF-sustained mode operation in tandem mirrors

    Energy Technology Data Exchange (ETDEWEB)

    Todd, A.M.M. (Grumman Aerospace Corp., Princeton, NJ (USA))

    1984-09-01

    A study, using a Monte-Carlo simulation code, of ICRF-sustained mode operation in tandem mirrors by way of ICRF end-cell fuelling and heating is described. Although the basic parameter space considered corresponds to the Phaedrus experiment, the central-cell density and temperatures are extended towards the reactor regime. It is found that significant end cell ion potential barriers can be generated with ICRF, but that, owing to choking of the central-cell ion source stream by the plugging potential, saturation occurs and power requirements rapidly increase, so that the potential rise is limited to about twice the central-cell ion temperature. Although performance is improved as the ion cyclotron resonance approaches the end-cell mid-plane, no significant difference is found between inboard, outboard or double resonance location. As the central-cell density and temperatures are increased, the RF power requirement is found to increase dramatically. Optimum performance for end cell fuelling results when the central-cell electron temperature is higher than the ion temperature, but the magnitude of this ratio is limited by an increase in threshold power level with electron temperature.

  16. Critical factors for sustainable food procurement in zoological collections.

    Science.gov (United States)

    Hanson, Jonathan H

    2015-01-01

    Food procurement can play an important role in sustainable food supply chain management by zoos, linking organizational operations to the biodiversity conservation and sustainability mission of zoological collections. This study therefore examines the critical factors that shape sustainable food procurement in zoo and aquariums. Using a web-based survey data was collected from 41 members of the British and Irish Association of Zoos and Aquariums (BIAZA). This included information on the sustainable food procurement practices of these institutions for both their human and animal food supply chains, as well as profile information and data on the factors contributing to and inhibiting sustainable procurement practices. Zoological collections operated by charities, and those with a certified sustainability standard, were found to have significantly higher levels of sustainable food procurement. Zoos and aquariums whose human food operations were not contracted to an external party were also found to have significantly higher levels of sustainable food procurement in their human food supply chain. The most important drivers of sustainable food procurement were cost savings, adequate financial support and improved product quality. The highest ranking barriers were higher costs, other issues taking priority and a lack of alternative suppliers. The results suggest that a number of critical factors shape sustainable food procurement in zoological collections in the British Isles. Financial factors, such as cost savings, were important considerations. The significance of mission-related factors, such as charity status, indicated that core values held by zoos and aquariums can also influence their food procurement practices. © 2015 Wiley Periodicals, Inc.

  17. Rapid and sustained cost management

    International Nuclear Information System (INIS)

    Hanson, D.

    2009-01-01

    Accenture helps clients develop comprehensive, process-driven strategies for rapid and sustained cost management that leverage deep insights and analytics. This approach enables companies to gain operating cost advantages by rationalizing, simplifying and automating current operating capabilities. It drives structural cost advantages by optimizing business mix, capital structure, organizational structure and geographic presence. This paper discussed how successful companies achieve high performance during times of economic turmoil. It also discussed the value of the winner's strategy in terms of rapid and sustained cost management (RSCM). It discussed how Accenture operates and its leveraged capabilities, improved efficiency, margins and cash flow while maintaining customer service levels. Building structural advantage and the Accenture difference were also discussed. It was concluded that RSCM is one vital way that Accenture can help companies achieve success. 4 figs

  18. Risk Perception and Communication in Commercial Reusable Launch Vehicle Operations

    Science.gov (United States)

    Hardy, Terry L.

    2005-12-01

    A number of inventors and entrepreneurs are currently attempting to develop and commercially operate reusable launch vehicles to carry voluntary participants into space. The operation of these launch vehicles, however, produces safety risks to the crew, to the space flight participants, and to the uninvolved public. Risk communication therefore becomes increasingly important to assure that those involved in the flight understand the risk and that those who are not directly involved understand the personal impact of RLV operations on their lives. Those involved in the launch vehicle flight may perceive risk differently from those non-participants, and these differences in perception must be understood to effectively communicate this risk. This paper summarizes existing research in risk perception and communication and applies that research to commercial reusable launch vehicle operations. Risk communication is discussed in the context of requirements of United States law for informed consent from any space flight participants on reusable suborbital launch vehicles.

  19. Transport, environment and sustainability

    DEFF Research Database (Denmark)

    Joumard, Robert; Gudmundsson, Henrik; Kehagia, Fotini

    2010-01-01

    This report is the final report of the action COST 356 'EST - Towards the definition of a measurable environmentally sustainable transport'. It tries to answer the following questions: How can environmental impacts of transport be measured? How can measurements be transformed into operational...... indicators? How can several indicators be jointly considered? And how can indicators be used in planning and decision making? Firstly we provide definition of 'indicator of environmental sustainability in transport'. The functions, strengths and weaknesses of indicators as measurement tools, and as decision...... support tools are discussed. We define what "environmental sustainability in transport" may mean through the transport system, the concepts of sustainable development and of environment. The concept of 'chain of causality' between a source and a final target is developed, as a common reference...

  20. The Cibola flight experiment

    Energy Technology Data Exchange (ETDEWEB)

    Caffrey, Michael Paul [Los Alamos National Laboratory; Nelson, Anthony [Los Alamos National Laboratory; Salazar, Anthony [Los Alamos National Laboratory; Roussel - Dupre, Diane [Los Alamos National Laboratory; Katko, Kim [Los Alamos National Laboratory; Palmer, Joseph [ISE-3; Robinson, Scott [Los Alamos National Laboratory; Wirthlin, Michael [BRIGHAM YOUNG UNIV; Howes, William [BRIGHAM YOUNG UNIV; Richins, Daniel [BRIGHAM YOUNG UNIV

    2009-01-01

    The Cibola Flight Experiment (CFE) is an experimental small satellite carrying a reconfigurable processing instrument developed at the Los Alamos National Laboratory that demonstrates the feasibility of using FPGA-based high-performance computing for sensor processing in the space environment. The CFE satellite was launched on March 8, 2007 in low-earth orbit and has operated extremely well since its deployment. The nine Xilinx Virtex FPGAs used in the payload have been used for several high-throughput sensor processing applications and for single-event upset (SEU) monitoring and mitigation. This paper will describe the CFE system and summarize its operational results. In addition, this paper will describe the results from several SEU detection circuits that were performed on the spacecraft.