WorldWideScience

Sample records for sustainable energy environment

  1. Intelligent computing for sustainable energy and environment

    Energy Technology Data Exchange (ETDEWEB)

    Li, Kang [Queen' s Univ. Belfast (United Kingdom). School of Electronics, Electrical Engineering and Computer Science; Li, Shaoyuan; Li, Dewei [Shanghai Jiao Tong Univ., Shanghai (China). Dept. of Automation; Niu, Qun (eds.) [Shanghai Univ. (China). School of Mechatronic Engineering and Automation

    2013-07-01

    Fast track conference proceedings. State of the art research. Up to date results. This book constitutes the refereed proceedings of the Second International Conference on Intelligent Computing for Sustainable Energy and Environment, ICSEE 2012, held in Shanghai, China, in September 2012. The 60 full papers presented were carefully reviewed and selected from numerous submissions and present theories and methodologies as well as the emerging applications of intelligent computing in sustainable energy and environment.

  2. Renewable energy for sustainable development and environment

    Energy Technology Data Exchange (ETDEWEB)

    Omer, Abdeen

    2010-09-15

    The increased availability of reliable and efficient energy services stimulates new development alternatives. This article discusses the potential for such integrated systems in the stationary and portable power market in response to the critical need for a cleaner energy technology. Throughout the theme several issues relating to renewable energies, environment and sustainable development are examined from both current and future perspectives. It is concluded that renewable environmentally friendly energy must be encouraged, promoted, implemented and demonstrated by full-scale plan especially for use in remote rural areas.

  3. Sustainable development of energy, water and environment systems

    DEFF Research Database (Denmark)

    Duić, Neven; Guzović, Zvonimir; Kafarov, Vyatcheslav

    2013-01-01

    The 6th Dubrovnik Conference on Sustainable Development of Energy, Water and Environment Systems (SDEWES Conference), attended by 418 scientists from 55 countries representing six continents. It was held in 2011 and dedicated to the improvement and dissemination of knowledge on methods, policies...... and technologies for increasing the sustainability of development, taking into account its economic, environmental and social pillars, as well as methods for assessing and measuring sustainability of development, regarding energy, transport, water and environment systems and their many combinations....

  4. Sustainable Development of Energy, Water and Environment Systems

    DEFF Research Database (Denmark)

    Markovska, Natasa; Duić, Neven; Mathiesen, Brian Vad

    2016-01-01

    The Conference on Sustainable Development of Energy, Water and Environment Systems (SDEWES) in 2015 returned to its hometown, Dubrovnik, and once again served as a significant venue for scientists and specialists in different areas of sustainable development from all over the world to initiate...... traditionally cover a range of energy issues - higher renewables penetration and various technologies and fuels assessments at energy supply side, as well as, energy efficiency in various sectors, buildings, district heating, electric vehicles and demand modelling at energy demand side. Also, a review paper...

  5. Energy, Transport, & the Environment Addressing the Sustainable Mobility Paradigm

    CERN Document Server

    King, Sir

    2012-01-01

    Sustainable mobility is a highly complex problem as it is affected by the interactions between socio-economic, environmental, technological and political issues. Energy, Transport, & the Environment: Addressing the Sustainable Mobility Paradigm brings together leading figures from business, academia and governments to address the challenges and opportunities involved in working towards sustainable mobility. Key thinkers and decision makers approach topics and debates including:   ·         energy security and resource scarcity ·         greenhouse gas and pollutant emissions ·         urban planning, transport systems and their management ·         governance and finance of transformation ·         the threats of terrorism and climate change to our transport systems.   Introduced by a preface from U.S. Secretary Steven Chu and an outline by the editors, Dr Oliver Inderwildi and Sir David King, Energy, Transport, & the Environment is divided into six secti...

  6. Enhancing energy security in Malayia: the challenges towards sustainable environment

    Science.gov (United States)

    Sahid, E. J. M.; Siang, C. Ch; Peng, L. Y.

    2013-06-01

    Energy is known as one of the essential ingredients for economic development and security of energy supply is crucial in ensuring continuous economic development of a country. Malaysia's proven domestic oil reserves are estimated to last for another 25 years, while that of gas for another 39 years as of 2011. Despite the depleting indigenous energy resources, the primary energy demand has continued to grow robustly, at an annual rate of 6.3 percent per year from 1990 to 2010, while the primary energy import has grown 7.2% per year and the primary energy export has grown at a slower rate of 1.9% per year. This worrying trend is further compounded by the faster rate of primary oil import averaging 10.5% per year while the primary energy export has shrink at a rate of 1.4% per year. This paper has identified two main concerns namely overdependence on fossil fuel and increasing energy import dependency in creating a precarious position towards energy self-sufficiency. The study will analyse the energy security of the country and explore possible options and challenges in enhancing the energy supply security toward sustainable environment.

  7. Smart sustainable energy for the rural built environment

    CSIR Research Space (South Africa)

    Szewczuk, S

    2015-12-01

    Full Text Available robust methodology to adapt innovative and renewable smart grid technologies to deliver real and sustainable decentralised energy solutions for remote and rural communities, thereby improving livelihoods and opportunities for inclusive growth...

  8. Energy-water-environment nexus underpinning future desalination sustainability

    KAUST Repository

    Shahzad, Muhammad Wakil

    2017-03-11

    Energy-water-environment nexus is very important to attain COP21 goal, maintaining environment temperature increase below 2°C, but unfortunately two third share of CO2 emission has already been used and the remaining will be exhausted by 2050. A number of technological developments in power and desalination sectors improved their efficiencies to save energy and carbon emission but still they are operating at 35% and 10% of their thermodynamic limits. Research in desalination processes contributing to fuel World population for their improved living standard and to reduce specific energy consumption and to protect environment. Recently developed highly efficient nature-inspired membranes (aquaporin & graphene) and trend in thermally driven cycle\\'s hybridization could potentially lower then energy requirement for water purification. This paper presents a state of art review on energy, water and environment interconnection and future energy efficient desalination possibilities to save energy and protect environment.

  9. Energy, sustainability and the environment technology, incentives, behavior

    CERN Document Server

    2011-01-01

    The complexity of carbon reduction and economic sustainability is significantly complicated by competing aspects of socioeconomic practices as well as legislative, regulatory, and scientific requirements and protocols. An easy to read and understand guide, Sioshansi, along with an international group of contributors, moves through the maze of carbon reduction methods and technologies, providing steps and insights to meet carbon reduction requirements and maintaining the health and welfare of the firm. The book's three part treatment is based on a clear and rigorous exposition of a wide range of options to reduce the carbon footprint Part 1 of the book, Challenge of Sustainability, examines the fundamental drivers of energy demand - economic growth, the need for basic energy services, and the interdependence of economic, political, environmental, social, equity, legacy and policy issues. Part 2 of the book, Technological Solutions, examines how energy can be used to support basic energy service needs of homes...

  10. E3: Economy - Energy - Environment; Supporting Manufacturing Leadership through Sustainability

    Data.gov (United States)

    U.S. Environmental Protection Agency — The E3 initiative is designed to help you thrive in a new business era focused on sustainability and, working together, to promote sustainable manufacturing and...

  11. Journal of Sustainable Development of Energy, Water and Environment Systems - Volume II

    Directory of Open Access Journals (Sweden)

    Neven Duić

    2014-12-01

    Full Text Available The Journal of Sustainable Development of Energy, Water and Environment Systems – JSDEWES is an international journal dedicated to the improvement and dissemination of knowledge on methods, policies and technologies for increasing the sustainability of development by de-coupling growth from natural resources and replacing them with knowledge based economy, taking into account its economic, environmental and social pillars, as well as methods for assessing and measuring sustainability of development, regarding energy, transport, water, environment and food production systems and their many combinations. In total 32 manuscripts were published in Volume II, all of them reviewed by at least two reviewers. The Journal of Sustainable Development of Energy, Water and Environment Systems would like to thank reviewers for their contribution to the quality of the published manuscripts.

  12. Study benefit value of utilization water resources for energy and sustainable environment

    Science.gov (United States)

    Juniah, Restu; Sastradinata, Marwan

    2017-11-01

    Referring to the concept of sustainable development, the environment is said to be sustainable if the fulfillment of three pillars of development that is economic, social and ecological or the environment itself. The environment can sustained in the principle of ecology or basic principles of environmental science, when the three environmental components, namely the natural environment, the artificial environment (the built environment) and the social environment can be aligned for sustainability. The natural environment in this study is the water resources, the artificial environment is micro hydroelectric power generation (MHPG), and the social environment is the community living around the MHPG. The existence of MHPG is intended for the sustainability of special electrical energy for areas not yet reached by electricity derived from the state electricity company (SEC). The utilization of MHPG Singalaga in South Ogan Komering Ulu (OKUS) district is not only intended for economic, ecological, and social sustainability in Southern OKU district especially those who live in Singalaga Village, Kisam Tinggi District. This paper discusses the economic, ecological and social benefits of water resources utilization in Southern OKU District for MHPG Singalaga. The direct economic benefits that arise for people living around MHPG Singalaga is the cost incurred by the community for the use of electricity is less than if the community uses electricity coming from outside the MHPG. The cost to society in the form of dues amounting to IDR 15,000 a month / household. Social benefits with the absorption of manpower to manage the MHPG is chairman, secretary and 3 members, while the ecological benefits of water resources and sustainable energy as well as the community while maintaining the natural vegetation that is located around the MHPG for the continuity of water resources.

  13. Sustainable nuclear energy dilemma

    Directory of Open Access Journals (Sweden)

    Afgan Naim H.

    2013-01-01

    Full Text Available Sustainable energy development implies the need for the emerging potential energy sources which are not producing adverse effect to the environment. In this respect nuclear energy has gained the complimentary favor to be considered as the potential energy source without degradation of the environment. The sustainability evaluation of the nuclear energy systems has required the special attention to the criteria for the assessment of nuclear energy system before we can make firm justification of the sustainability of nuclear energy systems. In order to demonstrate the sustainability assessment of nuclear energy system this exercise has been devoted to the potential options of nuclear energy development, namely: short term option, medium term option, long term option and classical thermal system option. Criteria with following indicators are introduced in this analysis: nuclear indicator, economic indicator, environment indicator, social indicator... The Sustainability Index is used as the merit for the priority assessment among options under consideration.

  14. Journal of Sustainable Development of Energy, Water and Environment Systems – Volume IV

    Directory of Open Access Journals (Sweden)

    Neven Duić

    2016-12-01

    In total 32 manuscripts were published in Volume IV, all of them reviewed by at least two reviewers. The Journal of Sustainable Development of Energy, Water and Environment Systems would like to thank reviewers for their contribution to the quality of the published manuscripts.

  15. Journal of Sustainable Development of Energy, Water and Environment Systems – Volume I

    Directory of Open Access Journals (Sweden)

    Neven Duić

    2013-12-01

    In total 28 manuscripts were published in Volume I, all of them reviewed by at least two reviewers. The Journal of Sustainable Development of Energy, Water and Environment Systems would like to thank reviewers for their contribution to the quality of the published manuscripts.

  16. An integrated strategy for sustainable forest-energy-environment interactions in Nigeria.

    Science.gov (United States)

    Akinbami, J-F K; Salami, A T; Siyanbola, W O

    2003-10-01

    The Nigerian forests have been subjected to unguarded exploitation over the years. Although there is overwhelming empirical evidence, which show that Nigeria's forest, may soon vanish, available statistics have shown its increasing importance in the energy sector. With increasing population come the attendant demands on the biotic environment through increased land clearing, deforestation, devegetation, decertification, with attendant soil erosion, flooding, sand dune formation, and changes in the micro-climate with consequent loss of biological productivity and associated socio-economic and socio-political problems in the country. There is therefore the need to adopt measures that will shift the attention of the Nigerian populace from the forest to satisfy their energy needs. However, such measures that will address the challenges confronting the forestry, forest-based energy systems and the environment should be consistent with the development needs, resources and priorities of the nation. Hence, for sustainable forest-energy-environment interactions, a holistic and integrated strategy that can be adopted to minimise the observed forest depletion must take cognisance of options from various land use practices, energy and forest sectors. The focus of this paper is on a strategy of options from both the energy and forest sectors. Based on the socio-economic, socio-political and environmental analyses of various options from the energy and forest sectors, the philosophy behind the mosaic approach to sustainable development has been considered in developing the proposed strategy. Policy measures to implement this strategy of options in the national development programs are also suggested.

  17. Analysis of the interrelationship of energy, economy, and environment: A model of a sustainable energy future for Korea

    Science.gov (United States)

    Boo, Kyung-Jin

    The primary purpose of this dissertation is to provide the groundwork for a sustainable energy future in Korea. For this purpose, a conceptual framework of sustainable energy development was developed to provide a deeper understanding of interrelationships between energy, the economy, and the environment (E 3). Based on this theoretical work, an empirical simulation model was developed to investigate the ways in which E3 interact. This dissertation attempts to develop a unified concept of sustainable energy development by surveying multiple efforts to integrate various definitions of sustainability. Sustainable energy development should be built on the basis of three principles: ecological carrying capacity, economic efficiency, and socio-political equity. Ecological carrying capacity delineates the earth's resource constraints as well as its ability to assimilate wastes. Socio-political equity implies an equitable distribution of the benefits and costs of energy consumption and an equitable distribution of environmental burdens. Economic efficiency dictates efficient allocation of scarce resources. The simulation model is composed of three modules: an energy module, an environmental module and an economic module. Because the model is grounded on economic structural behaviorism, the dynamic nature of the current economy is effectively depicted and simulated through manipulating exogenous policy variables. This macro-economic model is used to simulate six major policy intervention scenarios. Major findings from these policy simulations were: (1) carbon taxes are the most effective means of reducing air-pollutant emissions; (2) sustainable energy development can be achieved through reinvestment of carbon taxes into energy efficiency and renewable energy programs; and (3) carbon taxes would increase a nation's welfare if reinvested in relevant areas. The policy simulation model, because it is based on neoclassical economics, has limitations such that it cannot fully

  18. Leveraging Human-environment Systems in Residential Buildings for Aggregate Energy Efficiency and Sustainability

    Science.gov (United States)

    Xu, Xiaoqi

    Reducing the energy consumed in the built environment is a key objective in many sustainability initiatives. Existing energy saving methods have consisted of physical interventions to buildings and/or behavioral modifications of occupants. However, such methods may not only suffer from their own disadvantages, e.g. high cost and transient effect, but also lose aggregate energy saving potential due to the oftentimes-associated single-building-focused view and an isolated examination of occupant behaviors. This dissertation attempts to overcome the limitations of traditional energy saving research and practical approaches, and enhance residential building energy efficiency and sustainability by proposing innovative energy strategies from a holistic perspective of the aggregate human-environment systems. This holistic perspective features: (1) viewing buildings as mutual influences in the built environment, (2) leveraging both the individual and contextualized social aspects of occupant behaviors, and (3) incorporating interactions between the built environment and human behaviors. First, I integrate three interlinked components: buildings, residents, and the surrounding neighborhood, and quantify the potential energy savings to be gained from renovating buildings at the inter-building level and leveraging neighborhood-contextualized occupant social networks. Following the confirmation of both the inter-building effect among buildings and occupants' interpersonal influence on energy conservation, I extend the research further by examining the synergy that may exist at the intersection between these "engineered" building networks and "social" peer networks, focusing specifically on the additional energy saving potential that could result from interactions between the two components. Finally, I seek to reach an alignment of the human and building environment subsystems by matching the thermostat preferences of each household with the thermal conditions within their

  19. Connecting cities and their environments: Harnessing the water-energy-food nexus for sustainable urban development

    Directory of Open Access Journals (Sweden)

    Chan Arthur

    2015-01-01

    Full Text Available Thousands of years of development have made the production and consumption of water, energy, and food for urban environments more complex. While the rise of cities has fostered social and economic progress, the accompanying environmental pressures threaten to undermine these benefits. The compounding effects of climate change, habitat loss, pollution, overexploitation (in addition to financial constraints make the individual management of these three vital resources incompatible with rapidly growing populations and resource-intensive lifestyles. Nexus thinking is a critical tool to capture opportunities for urban sustainability in both industrialised and developing cities. A nexus approach to water, energy, and food security recognises that conventional decisionmaking, strictly confined within distinct sectors, limits the sustainability of urban development. Important nexus considerations include the need to collaborate with a wide spectrum of stakeholders, and to “re-integrate” urban systems. This means recognising the opportunities coming from the interconnected nature of cities and metropolitan regions, including links with rural environments and wider biophysical dynamics.

  20. Sustainable markets for sustainable energy

    Energy Technology Data Exchange (ETDEWEB)

    Millan, J.; Smyser, C.

    1997-12-01

    The author discusses how the Inter-American Development Bank (IDB) is involved in sustainable energy development. It presently has 50 loans and grants for non conventional renewable energy projects and ten grants for efficiency programs for $600 and $17 million respectively, representing 100 MW of power. The IDB is concerned with how to create a sustainable market for sustainable energy projects. The IDB is trying to work with government, private sector, NGOs, trading allies, credit sources, and regulators to find proper roles for such projects. He discusses how the IDB is working to expand its vision and objectives in renewable energy projects in Central and South America.

  1. Transition to Sustainable Energy Neutral Districts before 2050. Innovative Concepts and Pilots for the Built Environment

    Energy Technology Data Exchange (ETDEWEB)

    Jablonska, B.; Ruijg, G.J.; Opstelten, I.J. [Energy research Centre of the Netherlands ECN, Petten (Netherlands); Epema, T. [TNO Bouw en Ondergrond, Delft (Netherlands); Willems, E.M.M. [Cauberg-Huygen Consulting Engineers, Amsterdam (Netherlands)

    2011-03-15

    The Dutch project 'Transition in Energy and Process for a Sustainable District Development' focuses on the transition to sustainable, energy neutral districts in 2050, particularly in energy concepts and decision processes. The main objective of the technical research is to develop four to six innovative energy concepts for 2050 for the four Dutch cities of Almere, Apeldoorn, Nijmegen and Tilburg, as well as the roadmap for realising this target. Firstly, 14 variations of six general energy concepts have been developed and calculations conducted on the energy neutrality in 2020, 2035 and 2050 by means of an Excel model designed for this purpose. Three concepts are based on the idea of an energy hub (smart district heating, cooling and electricity networks, in which generation, storage, conversion and exchange of energy are all incorporated): the geo hub (using waste heat and/or geothermal energy), the bio hub (using waste heat and/or biomass) and the solar hub (using only solar energy). The fourth concept is the so-called all-electric concept, based predominantly on heat pumps, PV and conversion of high temperature heat from vacuum collectors to electricity. The fifth concept uses only conventional technologies that have been applied since the second half of the previous century, and the sixth one uses only hydrogen. Calculations show that by implementing the hub concepts, the energy neutrality in 2050 ranges from 130 % (solar hubs) to 164% (geo hubs), excluding personal transport within the district. With the all-electric concept, an energy neutrality of 157% can be reached. Hydrogen only and Conventional concepts perform worse, but nevertheless reach an energy neutrality of around 115% in 2050. The energy neutrality shows the extent to which a district, in which the given concept is implemented, can supply itself with sustainable energy generated within the boundaries of that district. Based on the six general concepts, the most optimal energy concepts

  2. Environment and sustainability

    DEFF Research Database (Denmark)

    Paavola, Jouni; Røpke, Inge

    2015-01-01

    This chapter reviews socio-economic research on the environment and sustainability. The chapter first explores core aspects of socio-economics, examines how socio-economics has related to the agenda of research on the environment, and assesses how socio-economic research on the environment became...... to a research agenda for ‘socio-ecological economics’. Sustainable consumption and global environmental change are already important areas of research for it. But ecological macroeconomics is also needed to formulate coordinated responses to multiple crises such as economic downturn, climate change and loss...

  3. Sustainable built environments

    CERN Document Server

    Haase, Dagmar

    2013-01-01

    Sustainable design is a collective process whereby the built environment achieves unprecedented levels of ecological balance through new and retrofit construction, with the goal of long-term viability and humanization of architecture. Focusing on the environmental context, sustainable design merges the natural, minimum resource conditioning solutions of the past (daylight, solar heat, and natural ventilation) with the innovative technologies of the present.  The desired result is an integrated “intelligent” system that supports individual control with expert negotiation for resource consciousness. International experts in the field address the fundamental questions of sustainable design and landscape management: How should the sustainability of landscapes and buildings be evaluated? Which targets have to be set and which thresholds should not be exceeded? What forms of planning and governance structures exist and to what extent do they further the goals of sustainability?  Gathering 30 peer-reviewed ent...

  4. Energies, understand for choose: environment, quality of life, sustainable development; Energies, comprendre pour choisir: environnement, qualite de vie, developpement durable

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2003-07-01

    This document is devoted to the public information on the energies sources, use and consumption. It aims to give a knowledge in the domain, in order to help the people to control its energy consumption in the framework of the sustainable development. (A.L.B.)

  5. Sustainable Energy Resource Buildings: Some Relevant Feautures for Built Environment Needs In Nigeria

    Directory of Open Access Journals (Sweden)

    Barka Joseph Kwaji

    2015-04-01

    Full Text Available Energy has become a critical issue in national and global economic development. Its crucial importance to the nation’s building makes the development of energy resources one of the leading agenda of the present democratic government of Nigeria, towards lifting the nation to the comity of twenty (20 nations with the fastest growing economy in 2020. In achieving this, the building industry and in particular the architectural profession has a leading role to play in adopting education, designs, materials, and technology capable of reducing energy consumption in building within tropic region. This paper, therefore, appraises the important features of energy performance building through the use of sustainable innovative materials and technology that respond to climate condition while being environmentally friendly.

  6. Transport, environment and sustainability

    DEFF Research Database (Denmark)

    Joumard, Robert; Gudmundsson, Henrik; Kehagia, Fotini

    2010-01-01

    This report is the final report of the action COST 356 'EST - Towards the definition of a measurable environmentally sustainable transport'. It tries to answer the following questions: How can environmental impacts of transport be measured? How can measurements be transformed into operational...... indicators? How can several indicators be jointly considered? And how can indicators be used in planning and decision making? Firstly we provide definition of 'indicator of environmental sustainability in transport'. The functions, strengths and weaknesses of indicators as measurement tools, and as decision...... support tools are discussed. We define what "environmental sustainability in transport" may mean through the transport system, the concepts of sustainable development and of environment. The concept of 'chain of causality' between a source and a final target is developed, as a common reference...

  7. Energy sustainability through green energy

    CERN Document Server

    Sharma, Atul

    2015-01-01

    This book shares the latest developments and advances in materials and processes involved in the energy generation, transmission, distribution and storage. Chapters are written by researchers in the energy and materials field. Topics include, but are not limited to, energy from biomass, bio-gas and bio-fuels; solar, wind, geothermal, hydro power, wave energy; energy-transmission, distribution and storage; energy-efficient lighting buildings; energy sustainability; hydrogen and fuel cells; energy policy for new and renewable energy technologies and education for sustainable energy development

  8. Sustainable Energy Systems and Applications

    CERN Document Server

    Dinçer, İbrahim

    2012-01-01

    Sustainable Energy Systems and Applications presents analyses of sustainable energy systems and their applications, providing new understandings, methodologies, models and applications along with descriptions of several illustrative examples and case studies. This textbook aims to address key pillars in the field, such as: better efficiency, cost effectiveness, use of energy resources, environment, energy security, and sustainable development. It also includes some cutting-edge topics, such as hydrogen and fuel cells, renewable, clean combustion technologies, CO2 abatement technologies, and some potential tools for design, analysis and performance improvement. The book also: Discusses producing energy by increasing systems efficiency in generation, conversion, transportation and consumption Analyzes the conversion of fossil fuels to clean fuels for limiting  pollution and creating a better environment Sustainable Energy Systems and Applications is a research-based textbook which can be used by senior u...

  9. Biotemplated materials for sustainable energy and environment: current status and challenges.

    Science.gov (United States)

    Zhou, Han; Fan, Tongxiang; Zhang, Di

    2011-10-17

    Materials science will play a key role in the further development of emerging solutions for the increasing problems of energy and environment. Materials found in nature have many inspiring structures, such as hierarchical organizations, periodic architectures, or nanostructures, that endow them with amazing functions, such as energy harvesting and conversion, antireflection, structural coloration, superhydrophobicity, and biological self-assembly. Biotemplating is an effective strategy to obtain morphology-controllable materials with structural specificity, complexity, and related unique functions. Herein, we highlight the synthesis and application of biotemplated materials for six key areas of energy and environment technologies, namely, photocatalytic hydrogen evolution, CO(2) reduction, solar cells, lithium-ion batteries, photocatalytic degradation, and gas/vapor sensing. Although the applications differ from each other, a common fundamental challenge is to realize optimum structures for improved performances. We highlight the role of four typical structures derived from biological systems exploited to optimize properties: hierarchical (porous) structures, periodic (porous) structures, hollow structures, and nanostructures. We also provide examples of using biogenic elements (e.g., C, Si, N, I, P, S) for the creation of active materials. Finally, we disscuss the challenges of achieving the desired performance for large-scale commercial applications and provide some useful prototypes from nature for the biomimetic design of new materials or systems. The emphasis is mainly focused on the structural effects and compositional utilization of biotemplated materials. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Sustainable Energy for All

    DEFF Research Database (Denmark)

    Energy crisis is one of the most pressing issues of our century. The world currently invests more than $1 trillion per year in energy, much of it going toward the energy systems of the past instead of building the clean energy economies of the future. Effectively, the provision of energy should...... be such that it meets the needs of the present without compromising the ability of future generations to meet their own needs. Investment in sustainable energy is a smart strategy for growing markets, improving competitiveness, and providing greater equity and opportunity. Sustainable energy has two key elements...... - renewable energy and energy efficiency. The promise of renewable energy can only be realised through significant R&D investments on technologies such as solar, biomass, wind, hydropower, geothermal power, ocean energy sources, solar-derived hydrogen fuel coupled with energy storage technologies necessary...

  11. Experimental learning projects address contemporary issues related to energy, environment, and sustainable agriculture

    Science.gov (United States)

    The “Bio-Fuel, sustainability, and geospatial information technologies to enhance experiential learning paradigm for precision agriculture project”, recently funded by USDA extends the environmental stewardship archetype of the preceding project titled “Environmentally conscious precision agricultur...

  12. Chemistry of sustainable energy

    CERN Document Server

    Carpenter, Nancy E

    2014-01-01

    Energy BasicsWhat Is Energy?Energy, Technology, and SustainabilityEnergy Units, Terms, and AbbreviationsElectricity Generation and StorageOther ResourcesReferencesFossil FuelsFormation of Oil and GasExtraction of Fossil FuelsRefiningCarbon Capture and StorageSummaryOther ResourcesOnline Resources Related to Carbon Capture andSequestrationReferencesThermodynamicsIntroductionThe First Law of ThermodynamicsThe Second Law and Thermodynamic Cycles: the Carnot EfficiencyExerg

  13. Sustainable Plus-energy Houses

    DEFF Research Database (Denmark)

    Kazanci, Ongun Berk; Olesen, Bjarne W.

    for an international student competition, Solar Decathlon Europe 2012 and after the competition it was used as a full-scale experimental facility for one year. During this period, different heating and cooling strategies were tested and the performance of the house regarding the thermal indoor environment and energy......This study is an outcome of Elforsk, project number 344-060, Bæredygtige Energi-Plus huse (Sustainable plus-energy houses). The focus of this report is to document the approach and the results of different analyses concerning a plus-energy, single family house. The house was designed...

  14. Institute for Sustainable Energy

    Energy Technology Data Exchange (ETDEWEB)

    Agrawal, Ajay [Univ. of Alabama, Tuscaloosa, AL (United States)

    2016-03-28

    Alternate fuels offer unique challenges and opportunities as energy source for power generation, vehicular transportation, and industrial applications. Institute for Sustainable Energy (ISE) at UA conducts innovative research to utilize the complex mix of domestically-produced alternate fuels to achieve low-emissions, high energy-efficiency, and fuel-flexibility. ISE also provides educational and advancement opportunities to students and researchers in the energy field. Basic research probing the physics and chemistry of alternative fuels has generated practical concepts investigated in a burner and engine test platforms.

  15. Hopi Sustainable Energy Plan

    Energy Technology Data Exchange (ETDEWEB)

    Norman Honie, Jr.; Margie Schaff; Mark Hannifan

    2004-08-01

    The Hopi Tribal Government as part of an initiative to ?Regulate the delivery of energy and energy services to the Hopi Reservation and to create a strategic business plan for tribal provision of appropriate utility, both in a manner that improves the reliability and cost efficiency of such services,? established the Hopi Clean Air Partnership Project (HCAPP) to support the Tribe?s economic development goals, which is sensitive to the needs and ways of the Hopi people. The Department of Energy (DOE) funded, Formation of Hopi Sustainable Energy Program results are included in the Clean Air Partnership Report. One of the Hopi Tribe?s primary strategies to improving the reliability and cost efficiency of energy services on the Reservation and to creating alternative (to coal) economic development opportunities is to form and begin implementation of the Hopi Sustainable Energy Program. The Hopi Tribe through the implementation of this grant identified various economic opportunities available from renewable energy resources. However, in order to take advantage of those opportunities, capacity building of tribal staff is essential in order for the Tribe to develop and manage its renewable energy resources. As Arizona public utilities such as APS?s renewable energy portfolio increases the demand for renewable power will increase. The Hopi Tribe would be in a good position to provide a percentage of the power through wind energy. It is equally important that the Hopi Tribe begin a dialogue with APS and NTUA to purchase the 69Kv transmission on Hopi and begin looking into financing options to purchase the line.

  16. Sustainable energy landscapes: The power of imagination

    NARCIS (Netherlands)

    Stremke, S.

    2012-01-01

    Resource depletion and climate change motivate a transition to sustainable energy systems that make effective use of renewable sources. Sustainable energy transition necessitates a transformation of large parts of the existing built environment and presents one of the great challenges of present-day

  17. Strategies for Sustainable Energy Development

    DEFF Research Database (Denmark)

    Meyer, Niels I

    2009-01-01

    The paper analyses international strategies for establishing a sustainable energy development. Proposals are given for mitigation of global warming.......The paper analyses international strategies for establishing a sustainable energy development. Proposals are given for mitigation of global warming....

  18. A method for economic optimization of energy performance and indoor environment in the design of sustainable buildings

    DEFF Research Database (Denmark)

    Hansen, Sanne; Vanhoutteghem, Lies

    2012-01-01

    that an economic design solution with good indoor environment can be identified. The example also shows that in order to ensure that buildings have low energy consumption, at minimum extra cost, more appropriate products and solutions will have to become available on the market at a competitive price.......Future tightening of the energy requirements increases focus on design of new and better performing buildings with good indoor environment and only limited extra cost compared to new buildings today. This paper presents a method for economic optimization of the design of new low energy dwellings...... that takes into account the indoor thermal environment. By use of the criterion of cost of conserved energy implemented in a Microsoft Excel sheet, a cost optimal design according to a targeted energy frame can be found. The resulting indoor thermal environment is then evaluated based on parametric analysis...

  19. Sustainable Energy Path

    Directory of Open Access Journals (Sweden)

    Hiromi Yamamoto

    2005-12-01

    Full Text Available The uses of fossil fuels cause not only the resources exhaustion but also the environmental problems such as global warming. The purposes of this study are to evaluate paths toward sustainable energy systems and roles of each renewable. In order to realize the purposes, the authors developed the global land use and energy model that figured the global energy supply systems in the future considering the cost minimization. Using the model, the authors conducted a simulation in C30R scenario, which is a kind of strict CO2 emission limit scenarios and reduced CO2 emissions by 30% compared with Kyoto protocol forever scenario, and obtained the following results. In C30R scenario bioenergy will supply 33% of all the primary energy consumption. However, wind and photovoltaic will supply 1.8% and 1.4% of all the primary energy consumption, respectively, because of the limits of power grid stability. The results imply that the strict limits of CO2 emissions are not sufficient to achieve the complete renewable energy systems. In order to use wind and photovoltaic as major energy resources, we need not only to reduce the plant costs but also to develop unconventional renewable technologies.

  20. Sustainability in energy and buildings. Proceedings

    Energy Technology Data Exchange (ETDEWEB)

    Haakansson, Anne [KTH Kista (Sweden). The Royal Institute of Technology; Hoejer, Mattias [KTH Royal Institute of Technology, Stockholm (Sweden). Centre for Sustainable Communications; Howlett, Robert J. [KES International, Shoreham-by-sea (United Kingdom); Bournemouth Univ., Dorset (United Kingdom); Jain, Lakhmi C. (eds.) [South Australia Univ. (Australia). School of Electrical and Information Engineering

    2013-06-01

    Recent research in Sustainability in Energy and Buildings. Edited outcome of the Sustainability in Energy and Buildings, SEB'2012 held on September 3-5, 2012 in Stockholm, Sweden. Written by leading experts in the field. This volume contains the proceedings of the Fourth International Conference on Sustainability in Energy and Buildings, SEB12, held in Stockholm, Sweden, and is organised by KTH Royal Institute of Technology, Stockholm, Sweden in partnership with KES International. The International Conference on Sustainability in Energy and Buildings focuses on a broad range of topics relating to sustainability in buildings but also encompassing energy sustainability more widely. Following the success of earlier events in the series, the 2012 conference includes the themes Sustainability, Energy, and Buildings and Information and Communication Technology, ICT. The SEB'12 proceedings includes invited participation and paper submissions across a broad range of renewable energy and sustainability-related topics relevant to the main theme of Sustainability in Energy and Buildings. Applicable areas include technology for renewable energy and sustainability in the built environment, optimisation and modeling techniques, information and communication technology usage, behaviour and practice, including applications.

  1. Towards sustainable empowering learning environments ...

    African Journals Online (AJOL)

    Towards sustainable empowering learning environments: Unmasking apartheid legacies through scholarship of engagement. ... This article reports, from the insider's perspective, on a research project comprising fifteen academics in the Faculty of Education Sciences at the North-West University and fifteen senior officials ...

  2. Progress in sustainable energy technologies

    CERN Document Server

    Dincer, Ibrahim; Kucuk, Haydar

    2014-01-01

    This multi-disciplinary volume presents information on the state-of-the-art in sustainable energy technologies key to tackling the world's energy challenges and achieving environmentally benign solutions. Its unique amalgamation of the latest technical information, research findings and examples of successfully applied new developments in the area of sustainable energy will be of keen interest to engineers, students, practitioners, scientists and researchers working with sustainable energy technologies. Problem statements, projections, new concepts, models, experiments, measurements and simula

  3. Coherent energy and environmental system analysis. A strategic research project financed by The Danish Council for Strategic Research Programme Commission on Sustainable Energy and Environment

    Energy Technology Data Exchange (ETDEWEB)

    Lund, H. (ed.); Hvelplund, F.; Vad Mathiesen, B. (and others)

    2011-11-15

    The main focus of this project has been A) to further develop and integrate existing tools and methodologies of environmental life cycle assessment and energy system and market analysis into coherent energy and environmental analysis tools. B) to apply such integrated tools and methodologies to the analysis of future sustainable energy systems with an emphasis on: 1) how to integrate the transport sector including considerations of limitations in biomass resources; 2) how to develop future power systems suitable for the integration of distributed renewable energy sources; and 3) how to develop efficient public regulation in an international market environment. It is found that the transition from the present energy system dominated by fossil fuels to a system dominated by renewable energy sources requires significant changes in existing policies on both supply and demand sides. In order to succeed, such change requires the system based on renewables to be supported by strong and efficient energy conservation. In Denmark, wind power and biomass are expected to be the two dominant resources in the short and medium term perspectives. In order to ease the pressure on wind and biomass resources, energy conservation becomes essential and so does the inclusion of contributions from additional sources such as solar and geothermal energy. The change requires infrastructure where intermittent renewable energy sources can be managed in such a way that energy is available at the right time and in the right amount for the consumers. A main challenge for the transition planning is to obtain an efficient coordination between investments in the electricity, transportation, and heat sectors. The policy instruments include new systems of taxes, subsidies, tariffs, and other economic conditions in order to obtain an optimal effect. One main problem is to assure an energy-efficient use of low-temperature sources from CHP, waste incineration, industrial surplus heat and geothermal

  4. Addressing the main challenges of energy security in the twenty-first century – Contributions of the conferences on Sustainable Development of Energy, Water and Environment Systems

    DEFF Research Database (Denmark)

    Markovska, Natasa; Duić, Neven; Mathiesen, Brian Vad

    2016-01-01

    Climate change and fossil fuel reserve depletion both pose challenges for energy security and for wellbeing in general. The top ten among them include: Decarbonising the world economy; Enhancing the energy efficiency and energy savings in buildings; Advancing the energy technologies; Moving towards...... energy systems based on variable renewables; Electrifying the transport and some industrial processes; Liberalizing and extending the energy markets; Integrating energy sectors to Smart Energy Systems; Making the cities and communities smart; Diversifying the energy sources; and Building more...... biorefineries. Presenting the contributions of selected conference papers published in the special issues of leading scientific journals (including all the papers from the current Energy special issue), this review demonstrates the capacity of the Conferences on Sustainable Development of Energy, Water...

  5. Wine tourism and sustainable environments

    Directory of Open Access Journals (Sweden)

    M.ª Luisa González San José

    2017-11-01

    Full Text Available Sustainability is a model of development in which the present actions should not compromise the future of future generations, and is linked to economic and social development which must respect the environment. Wine tourism or enotourism is a pleasant mode of tourism that combines the pleasure of wine-tasting, with cultural aspects related to the wine culture developing in wine regions over time until the present day. It can be affirmed that wine culture, and its use through wine tourism experiences, is clearly correlated to social (socially equitable, economic (economically feasible, environmental (environmentally sound and cultural aspects of the sustainability of winegrowing regions and territories.

  6. A study on the role of nuclear energy in overcoming environment and resource crisis -For the establishment of sustainable energy policy-

    Energy Technology Data Exchange (ETDEWEB)

    Han, Pil Soon; Choi, Yung Myung; Ham, Chul Hoon; Cho, Il Hoon; Jung, Heum Soo; Lee, Tae Joon; Lee, Duk Sun [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)

    1995-04-01

    This study is mainly composed of the analyses of the current circumstances and the future views on the global warming and the exhaustion of energy resources related to the use of energy, and the suggestion on the role of nuclear energy as the most prospective countermeasure on energy crisis. The effects of the problems of global warming and energy crisis on the 21st century are look upon and the strategies of each countries to their crises are analyzed in this study. In energy source and the characteristics of nuclear energy resource, and the necessity of the sustainable development of nuclear energy was emphasized. We suggested the enlargement of the development of nuclear energy in the aspects of the international trends, the national economic options and the deficiency of energy resources, and proposed the detail of the short - and long - term strategies on these matters. 22 figs, 39 tabs, 45 refs. (Author).

  7. Methods of Comprehensive Assessment for China’s Energy Sustainability

    Science.gov (United States)

    Xu, Zhijin; Song, Yankui

    2018-02-01

    In order to assess the sustainable development of China’s energy objectively and accurately, we need to establish a reasonable indicator system for energy sustainability and make a targeted comprehensive assessment with the scientific methods. This paper constructs a comprehensive indicator system for energy sustainability from five aspects of economy, society, environment, energy resources and energy technology based on the theory of sustainable development and the theory of symbiosis. On this basis, it establishes and discusses the assessment models and the general assessment methods for energy sustainability with the help of fuzzy mathematics. It is of some reference for promoting the sustainable development of China’s energy, economy and society.

  8. Sustainable energy supply; Baerekraftig energioppdekning

    Energy Technology Data Exchange (ETDEWEB)

    Alm, Leif Kr.; Rosenberg, Eva [Institutt for energiteknikk, Kjeller(Norway); Kubberud Trond ECON, Oslo (Norway)

    1999-07-01

    This report discusses the potential for reducing the use of energy and quantifies the environmental disadvantages and estimated environmental costs of various energy carriers in Norway. The MARKAL model is used to work out three scenarios for a more sustainable use of energy. It is found that the environmental impact of NOx emissions are much greater than that of sulfur emissions. The damage caused by CO2 and NOx are of the same order of magnitude. The studies indicate that if the damage to the environment is internalized into the energy system, then it will lead to increased use of gas in the industry and transport sectors. The results are sensitive with respect to the cost development for the cleaning technology of conventional energy carriers and for storage and transport of gas. Internalizing the external costs is not enough to eliminate the environmental damage, at least not as this is valued today and with the technology supposed to be available for the next 30-40 years.

  9. Synthesis of TiO2 Materials Using Ionic Liquids and Its Applications for Sustainable Energy and Environment.

    Science.gov (United States)

    Yoo, Kye Sang

    2016-05-01

    Titanium dioxide (TiO2) has received significant attention because of the global climate change and the consumption of fossil fuel resources. Specifically, using TiO2 in photocatalytic applications, such as the removal of organic pollutants and a hydrogen production has become an important issue. Thus, many researchers have attempted to prepare highly active TiO2 materials using various synthetic approaches. Modifications of the conventional sol-gel method, such as the addition of surfactants, have been employed in synthetic procedures. Moreover, hydrothermal, solvothermal, sonochemical and microwave methods have also been used as alternative approaches. Recently, the use of ionic liquids represents a burgeoning direction in inorganic material synthesis. Ionic liquids are exceptional solvents consisting of ions possessing low vapor pressure and tunable solvent properties. This article reviews the preparation of TiO2 materials using ionic liquids with various synthetic approaches. Also, sustainable energy and environmental cleanup applications of TiO2 materials, including the treatment of hazardous organic substances and hydrogen energy derived from electrochemical methods, are discussed.

  10. Elements of an Alternative to Nuclear Power as a Response to the Energy-Environment Crisis in India: Development as Freedom and a Sustainable Energy Utility

    Science.gov (United States)

    Mathai, Manu V.

    2009-01-01

    Even as the conventional energy system is fundamentally challenged by the "energy-environment crisis," its adherents have presented the prospect of "abundant" and purportedly "green" nuclear power as part of a strategy to address the crisis. Surveying the development of nuclear power in India, this article finds that…

  11. Principles of sustainable energy systems

    CERN Document Server

    Kreith, Frank

    2013-01-01

    … ""This is an ideal book for seniors and graduate students interested in learning about the sustainable energy field and its penetration. The authors provide very strong discussion on cost-benefit analysis and ROI calculations for various alternate energy systems in current use. This is a descriptive book with detailed case-based analyses of various systems and engineering applications. The text book provides real-world case studies and related problems pertaining to sustainable energy systems.""--Dr. Kuruvilla John, University of North Texas""The new edition of ""Principles of Sustainable En

  12. Energy efficiency, renewable energy and sustainable development

    Energy Technology Data Exchange (ETDEWEB)

    Ervin, C.A.

    1994-12-31

    The Office of Energy Efficiency and Renewable Energy (EE) is part of the U.S. Department of Energy that is specifically charged with encouraging the more efficient use of energy resources, and the use of renewable energy resources - such as solar power, wind power, biomass energy and geothermal energy. In the past several years, EE has increased its emphasis on technology deployment through partnerships with states, local governments and private companies. Partnerships move new discoveries more quickly into the marketplace, where they can create jobs, prevent pollution, save resources, and produce many other benefits. The author then emphasizes the importance of this effort in a number of different sections of the paper: energy consumption pervades everything we do; U.S. energy imports are rising to record levels; transportation energy demand is increasing; U.S. energy use is increasing; population growth increases world energy demand; total costs of energy consumption aren`t always counted; world energy markets offer incredible potential; cost of renewables is decreasing; clean energy is essential to sustainable development; sustainable energy policy; sustainable energy initiatives: utilities, buildings, and transportation.

  13. Energy sustainability: consumption, efficiency, and ...

    Science.gov (United States)

    One of the critical challenges in achieving sustainability is finding a way to meet the energy consumption needs of a growing population in the face of increasing economic prosperity and finite resources. According to ecological footprint computations, the global resource consumption began exceeding planetary supply in 1977 and by 2030, global energy demand, population, and gross domestic product are projected to greatly increase over 1977 levels. With the aim of finding sustainable energy solutions, we present a simple yet rigorous procedure for assessing and counterbalancing the relationship between energy demand, environmental impact, population, GDP, and energy efficiency. Our analyses indicated that infeasible increases in energy efficiency (over 100 %) would be required by 2030 to return to 1977 environmental impact levels and annual reductions (2 and 3 %) in energy demand resulted in physical, yet impractical requirements; hence, a combination of policy and technology approaches is needed to tackle this critical challenge. This work emphasizes the difficulty in moving toward energy sustainability and helps to frame possible solutions useful for policy and management. Based on projected energy consumption, environmental impact, human population, gross domestic product (GDP), and energy efficiency, for this study, we explore the increase in energy-use efficiency and the decrease in energy use intensity required to achieve sustainable environmental impact le

  14. Climate change, energy, sustainability and pavements

    Energy Technology Data Exchange (ETDEWEB)

    Gopalakrishnan, Kasthurirangan [Iowa State Univ., Ames, IA (United States). Dept. of Civil, Construction and Environmental Engineering; Steyn, Wynand JvdM [Pretoria Univ. (South Africa). Dept. of Civil Engineering; Harvey, John (ed.) [California Univ., Davis, CA (United States). Dept. of Civil and Environmental Engineering

    2014-07-01

    Provides an integrated perspective on understanding the impacts of climate change, energy and sustainable development on transportation infrastructure systems. Presents recent technological innovations and emerging concepts in the field of green and sustainable transportation infrastructure systems with a special focus on highway and airport pavements. Written by leading experts in the field. Climate change, energy production and consumption, and the need to improve the sustainability of all aspects of human activity are key inter-related issues for which solutions must be found and implemented quickly and efficiently. To be successfully implemented, solutions must recognize the rapidly changing socio-techno-political environment and multi-dimensional constraints presented by today's interconnected world. As part of this global effort, considerations of climate change impacts, energy demands, and incorporation of sustainability concepts have increasing importance in the design, construction, and maintenance of highway and airport pavement systems. To prepare the human capacity to develop and implement these solutions, many educators, policy-makers and practitioners have stressed the paramount importance of formally incorporating sustainability concepts in the civil engineering curriculum to educate and train future civil engineers well-equipped to address our current and future sustainability challenges. This book will prove a valuable resource in the hands of researchers, educators and future engineering leaders, most of whom will be working in multidisciplinary environments to address a host of next-generation sustainable transportation infrastructure challenges.

  15. Energy Security, Innovation & Sustainability Initiative

    Energy Technology Data Exchange (ETDEWEB)

    None

    2010-04-30

    More than a dozen energy experts convened in Houston, Texas, on February 13, 2009, for the first in a series of four regionally-based energy summits being held by the Council on Competitiveness. The Southern Energy Summit was hosted by Marathon Oil Corporation, and participants explored the public policy, business and technological challenges to increasing the diversity and sustainability of U.S. energy supplies. There was strong consensus that no single form of energy can satisfy the projected doubling, if not tripling, of demand by the year 2050 while also meeting pressing environmental challenges, including climate change. Innovative technology such as carbon capture and storage, new mitigation techniques and alternative forms of energy must all be brought to bear. However, unlike breakthroughs in information technology, advancing broad-based energy innovation requires an enormous scale that must be factored into any equation that represents an energy solution. Further, the time frame for developing alternative forms of energy is much longer than many believe and is not understood by the general public, whose support for sustainability is critical. Some panelists estimated that it will take more than 50 years to achieve the vision of an energy system that is locally tailored and has tremendous diversity in generation. A long-term commitment to energy sustainability may also require some game-changing strategies that calm volatile energy markets and avoid political cycles. Taking a page from U.S. economic history, one panelist suggested the creation of an independent Federal Energy Reserve Board not unlike the Federal Reserve. The board would be independent and influence national decisions on energy supply, technology, infrastructure and the nation's carbon footprint to better calm the volatile energy market. Public-private efforts are critical. Energy sustainability will require partnerships with the federal government, such as the U.S. Department of Energy

  16. Hawaii Energy Sustainable Program

    Energy Technology Data Exchange (ETDEWEB)

    Rocheleau, Richard [Univ. of Hawaii, Honolulu, HI (United States); Turn, Scott [Univ. of Hawaii, Honolulu, HI (United States); Griffin, James [Univ. of Hawaii, Honolulu, HI (United States); Maskrey, Arthur [Univ. of Hawaii, Honolulu, HI (United States); Antal, Jr., Michael [Univ. of Hawaii, Honolulu, HI (United States); Busquet, Severine [Univ. of Hawaii, Honolulu, HI (United States); Cooney, Michael [Univ. of Hawaii, Honolulu, HI (United States); Cole, John [Univ. of Hawaii, Honolulu, HI (United States); Dubarry, Matthieu [Univ. of Hawaii, Honolulu, HI (United States); Ewan, James [Univ. of Hawaii, Honolulu, HI (United States); Liaw, Bor Yann [Univ. of Hawaii, Honolulu, HI (United States); Matthews, Dax [Univ. of Hawaii, Honolulu, HI (United States); Coffman, Makena [Univ. of Hawaii, Honolulu, HI (United States)

    2016-12-31

    The objective of HESP was to support the development and deployment of distributed energy resource (DER) technologies to facilitate increased penetration of renewable energy resources and reduced use of fossil fuels in Hawaii’s power grids. All deliverables, publications and other public releases have been submitted to the DOE in accordance with the award and subsequent award modifications.

  17. Environment, sustainability, and education policy research

    DEFF Research Database (Denmark)

    McKenzie, Marcia; Rickinson, Mark; Bengtssen, Stefan

    presentations.Objectives: .Methods: .Results: Educational Policy and Environment and Sustainability Part 1: Theoretical and Methodological Approaches to Policy Research (90 minutes)Paper 1 - How might critical policy sociology inform policy analysis and enactment in environmental and sustainability education...

  18. Energy, sustainability and development

    Energy Technology Data Exchange (ETDEWEB)

    Llewellyn Smith, Ch

    2006-07-01

    The author discusses in a first part the urgent need to reduce energy use (or at least curb growth) and seek cleaner ways of producing energy on a large scale. He proposes in a second part what must be done: introduce fiscal measures and regulation to change behavior of consumers, provide incentives to encourage the market to expand use of low carbon technologies, stimulate research and development by industry and develop the renewable energies sources. In a last part he looks what part can fusion play. (A.L.B.)

  19. Human-environment sustainable development of rural areas in China

    Science.gov (United States)

    Zhao, Lei; Zhu, Hongbing; Hu, Shanfeng

    2017-05-01

    Human-environment sustainable development has become the important issue of rural transformation development in China. This paper analyses the development status of rural sustainability in China, and also presents the challenges facing the sustainability from the economic, social and environmental levels, including land and energy efficiency, solid waste, water and other types of environmental pollution. At last, the paper proposes the measures to establish the sustainable and liveable rural areas in China, like raising rural community awareness of sustainable development thinking; improving resource efficiency and new energy; and creating rural green industries and green products.

  20. Energy-water-food nexus under financial constraint environment: good, the bad, and the ugly sustainability reforms in sub-Saharan African countries.

    Science.gov (United States)

    Zaman, Khalid; Shamsuddin, Sadaf; Ahmad, Mehboob

    2017-05-01

    Environmental sustainability agenda are generally compromised by energy, water, and food production resources, while in the recent waves of global financial crisis, it mediates to increase the intensity of air pollutants, which largely affected the less developing countries due to their ease of environmental regulation policies and lack of optimal utilization of economic resources. Sub-Saharan African (SSA) countries are no exception that majorly hit by the recent global financial crisis, which affected the country's natural environment through the channel of unsustainable energy-water-food production. The study employed panel random effect model that addresses the country-specific time-invariant shocks to examine the non-linear relationship between water-energy-food resources and air pollutants in a panel of 19 selected SSA countries, for a period of 2000-2014. The results confirmed the carbon-fossil-methane environmental Kuznets curve (EKC) that turned into inverted U-shaped relationships in a panel of selected SSA countries. Food resources largely affected greenhouse gas (GHG), methane (CH4), and nitrous oxide (N2O) emissions while water resource decreases carbon dioxide (CO2), fossil fuel, and CH4 emissions in a region. Energy efficiency improves air quality indicators while industry value added increases CO2 emissions, fossil fuel energy, and GHG emissions. Global financial crisis increases the risk of climate change across countries. The study concludes that although SSA countries strive hard to take some "good" initiatives to reduce environmental degradation in a form of improved water and energy sources, however, due to lack of optimal utilization of food resources and global financial constraints, it leads to "the bad" and "the ugly" sustainability reforms in a region.

  1. The path towards sustainable energy

    Science.gov (United States)

    Chu, Steven; Cui, Yi; Liu, Nian

    2017-01-01

    Civilization continues to be transformed by our ability to harness energy beyond human and animal power. A series of industrial and agricultural revolutions have allowed an increasing fraction of the world population to heat and light their homes, fertilize and irrigate their crops, connect to one another and travel around the world. All of this progress is fuelled by our ability to find, extract and use energy with ever increasing dexterity. Research in materials science is contributing to progress towards a sustainable future based on clean energy generation, transmission and distribution, the storage of electrical and chemical energy, energy efficiency, and better energy management systems.

  2. Energy, society and environment: considerations about the contribution of biofuels to sustainable development; Energia, sociedade e meio ambiente: consideracoes acerca da contribuicao dos biocombustiveis para o desenvolvimento sustentavel

    Energy Technology Data Exchange (ETDEWEB)

    Correia, Bruna de Barros [Universidade Estadual de Campinas (UNICAMP), SP (Brazil). Fac. de Engenharia Mecanica. Dept. de Energia

    2010-07-01

    The concept of development on the contemporary scene is limited to ideas of economic growth and consumption. In this context, arises the need for a new form of development, witch can be represented by the concept of sustainable development. The sustainability at the energy sector has a key role on mitigating environmental and social problems, and also contributes to security on energy supply. Therefore, the main purpose of the present paper is to understand the need for sustainable development at the contemporary scene and relate it to the energy context. To, then, analyze the prospect of biofuels on the three spheres of sustainable development: economic, social and environmental. (author)

  3. Sustainable Energy, Water and Environmental Systems

    DEFF Research Database (Denmark)

    Østergaard, Poul Alberg; Duic, Neven

    2014-01-01

    This issue presents research results from the 8th Conference on Sustainable Development of Energy, Water and Environment Systems – SDEWES - held in Dubrovnik, Croatia in 2013. Topics covered here include the energy situation in the Middle East with a focus in Cyprus and Israel, energy planning...... methodology with Ireland as a case and the applicability of energy scenarios modelling tools as a main focus, evaluation of energy demands in Italy and finally evaluation of underground cables vs overhead lines and lacking public acceptance of incurring additional costs for the added benefit of having...

  4. Sustainable Energy, Water and Environmental Systems

    Directory of Open Access Journals (Sweden)

    Poul Alberg Østergaard

    2014-06-01

    Full Text Available This issue presents research results from the 8th Conference on Sustainable Development of Energy, Water and Environment Systems – SDEWES - held in Dubrovnik, Croatia in 2013. Topics covered here include the energy situation in the Middle East with a focus in Cyprus and Israel, energy planning methodology with Ireland as a case and the applicability of energy scenarios modelling tools as a main focus, evaluation of energy demands in Italy and finally evaluation of underground cables vs overhead lines and lacking public acceptance of incurring additional costs for the added benefit of having transmission beyond sight.

  5. Climate change, energy, sustainability and pavements

    CERN Document Server

    Gopalakrishnan, Kasthurirangan; Harvey, John

    2014-01-01

    Climate change, energy production and consumption, and the need to improve the sustainability of all aspects of human activity are key inter-related issues for which solutions must be found and implemented quickly and efficiently.  To be successfully implemented, solutions must recognize the rapidly changing socio-techno-political environment and multi-dimensional constraints presented by today's interconnected world.  As part of this global effort, considerations of climate change impacts, energy demands, and incorporation of sustainability concepts have increasing importance in the design,

  6. Energy, Sustainability and Development

    CERN Multimedia

    CERN. Geneva

    2008-01-01

    A huge increase in energy use is expected in the coming decades – see the IEA’s ‘business as usual’/reference scenario below. While developed countries could use less energy, a large increase is needed to lift billions out of poverty, including over 25% of the world’s population who still lack electricity. Meeting demand in an environmentally responsible manner will be a huge challenge. The World Bank estimates that coal pollution leads to 300,000 deaths in China each year, while smoke from cooking and heating with biomass kills 1.3 million world-wide – more than malaria. The IEA’s alternative scenario requires a smaller increase in energy use than the reference scenario and is also less carbon intensive, but it still implies that CO2 emissions will increase 30% by 2030 (compared to 55% in the reference scenario). Frighteningly, implementing the alternative scenario faces “formidable hurdles” according to the IEA, despite the fact that it would yield financial savings for consumers that...

  7. 4th international conference in sustainability in energy and buildings

    CERN Document Server

    Höjer, Mattias; Howlett, Robert; Jain, Lakhmi

    2013-01-01

    This volume contains the proceedings of the Fourth International Conference on Sustainability in Energy and Buildings, SEB12, held in Stockholm, Sweden, and is organised by KTH Royal Institute of Technology, Stockholm, Sweden in partnership with KES International. The International Conference on Sustainability in Energy and Buildings focuses on a broad range of topics relating to sustainability in buildings but also encompassing energy sustainability more widely. Following the success of earlier events in the series, the 2012 conference includes the themes Sustainability, Energy, and Buildings and Information and Communication Technology, ICT. The SEB’12 proceedings includes invited participation and paper submissions across a broad range of renewable energy and sustainability-related topics relevant to the main theme of Sustainability in Energy and Buildings. Applicable areas include technology for renewable energy and sustainability in the built environment, optimisation and modeling techniques, informati...

  8. Towards a sustainable architecture: Adequate to the environment and of maximum energy efficiency; Hacia una arquitectura sustentable: adecuada al ambiente y de maxima eficiencia energetica

    Energy Technology Data Exchange (ETDEWEB)

    Morillon Galvez, David [Comision Nacional para el Ahorro de Energia, Mexico, D. F. (Mexico)

    1999-07-01

    An analysis of the elements and factors that the architecture of buildings must have to be sustainable, such as: a design adequate to the environment, saving and efficient use of alternate energies, and the auto-supply is presented. In addition a methodology for the natural air conditioning (bioclimatic architecture) of buildings, as well as ideas for the saving and efficient use of energy, with the objective of contributing to the adequate use of components of the building (walls, ceilings, floors etc.), is presented, that when interacting with the environment it takes advantage of it, without deterioration of the same, obtaining energy efficient designs. [Spanish] Se presenta un analisis de los elementos y factores que debe tener la arquitectura de edificios para ser sustentable, como; un diseno adecuado al ambiente, ahorro y uso eficiente de la energia, el uso de energias alternas y el autoabastecimiento. Ademas se propone una metodologia para la climatizacion natural (arquitectura bioclimatica) de edificios, asi como ideas para el ahorro y uso eficiente de energia, con el objetivo de aportar al uso adecuado de componentes del edificio (muros, techos, pisos etc.) que al interactuar con el ambiente tome ventaja de el, sin deterioro del mismo, logrando disenos energeticamente eficientes.

  9. Design and management of sustainable built environments

    CERN Document Server

    2013-01-01

    Climate change is believed to be a great challenge to built environment professionals in design and management. An integrated approach in delivering a sustainable built environment is desired by the built environment professional institutions. The aim of this book is to provide an advanced understanding of the key subjects required for the design and management of modern built environments to meet carbon emission reduction targets. In Design and Management of Sustainable Built Environments, an international group of experts provide comprehensive and the most up-to-date knowledge, covering sustainable urban and building design, management and assessment. The best practice case studies of the implementation of sustainable technology and management from the BRE Innovation Park are included. Design and Management of Sustainable Built Environments will be of interest to urban and building designers, environmental engineers, and building performance assessors.  It will be particularly useful as a reference book ...

  10. Teaching Sustainable Energy and Power Electronics to Engineering Students in a Laboratory Environment Using Industry-Standard Tools

    Science.gov (United States)

    Ochs, David S.; Miller, Ruth Douglas

    2015-01-01

    Power electronics and renewable energy are two important topics for today's power engineering students. In many cases, the two topics are inextricably intertwined. As the renewable energy sector grows, the need for engineers qualified to design such systems grows as well. In order to train such engineers, new courses are needed that highlight the…

  11. Human development and sustainability of energy systems

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2003-07-01

    This seminar on human development and sustainability was jointly organized by the French agency of environment and energy mastery (Ademe) and Enerdata company. This document summarises the content of the different presentations and of the minutes of the discussions that took place at the end of each topic. The different themes discussed were: 1 - Political and methodological issues related to sustainability (sustainability concept in government policy, sustainability and back-casting: lessons from EST); 2 - towards a socially viable world: thematic discussions (demography and peoples' migration; time budget and life style change - equal sex access to instruction and labour - geopolitical regional and inter-regional universal cultural acceptability; welfare, poverty and social link and economics); 3 - building up an environmentally sustainable energy world, keeping resources for future generations and preventing geopolitical ruptures (CO{sub 2} emissions; nuclear issues; land-use, noise, and other industrial risks). The memorandum on sustainability issues in view of very long term energy studies is reprinted in the appendix. The transparencies of seven presentations are attached to this document. (J.S.)

  12. A feasibility assessment for the application of biogas and wind power in the farm environment as sustainable sources of energy

    Science.gov (United States)

    Carbo, Laura C.

    The depletion of energy sources and the ever-increasing energy demand---and consequently price escalation---is a problem that concerns the global population. Despite the concept of energy crisis being widely accepted nowadays, there is a lot of scepticism and misinformation on the possible alternatives to alleviate the environmental and economic impacts of conventional energy generation. Renewable energy technologies are constantly experiencing significant innovation and improvements. This thesis sought to assess the potential of small dairy farms to make an energy shift and identify the practical benefits and possible downfalls of this shift. Wind power and biogas digestion were analysed in this thesis, and a model to assess these technologies at any given farm was developed on VBA. For the case studied in this research both technologies were concluded to be feasible from an economic point of view. Although the initial investment can seem costly, considering the relatively low payback period and the currently available subsidies the economic implications are not an obstacle. The model developed on VBA is applicable to any region, given the right data is put into the programme. Considering the global energy concern, models such as the one developed in this thesis are an appropriate tool to identify potential shifts to greener solutions and prove to users that it can be economically profitable for them as well as environmentally beneficial.

  13. Sustainable energy research at DTU

    DEFF Research Database (Denmark)

    Nielsen, Rolf Haugaard; Andersen, Morten

    In the coming years, Denmark and other countries worldwide are set to increase their focus on transforming their energy supplies towards more sustainablew technologies. As part of this process, they can make extensive use of the knowledge generated by the Technical University of Denmark (DTU......). The university is in the international vanguard of knowledge and research in the field of sustainable energy. With as many as 1,000 employees spread across a large number of departments, the university possesses extensive expertise on a wide range of energy technologies and energy systems. Research is carried...... out in close cooperation with internationally leading institutions and experts. Based on a wealth of core competencies, DTU takes a broadand holistic approach to energy research within both energy supply and consumption. Against this background, DTU identifies, presents and discusses new energy...

  14. Towards sustainable energy planning and management

    DEFF Research Database (Denmark)

    Østergaard, Poul Alberg; Sperling, Karl

    2014-01-01

    Rising energy costs, anthropogenic climate change, and fossil fuel depletion calls for a concerted effort within energy planning to ensure a sustainable energy future. This article presents an overview of global energy trends focusing on energy costs, energy use and carbon dioxide emissions....... Secondly, a review of contemporary work is presented focusing on national energy pathways with cases from Ireland, Denmark and Jordan, spatial issues within sustainable energy planning and policy means to advance a sustainable energy future....

  15. Limits to sustained energy intake. XXI. Effect of exposing the mother, but not her pups, to a cold environment during lactation in mice.

    Science.gov (United States)

    Valencak, Teresa G; Wright, Paul; Weir, Ashleigh; Mitchell, Sharon E; Vaanholt, Lobke M; Hambly, Catherine; Król, Elzbieta; Speakman, John R

    2013-12-01

    The capacity of females to dissipate heat may constrain sustained energy intake during lactation. However, some previous experiments supporting this concept have confounded the impact of temperature on the mothers with the impact on the pups. We aimed to separate these effects in lactating laboratory mice (MF1 strain) by giving the mothers access to cages at two ambient temperatures (10 and 21°C) joined by a tube. Food was available only in the cold cage, but females could also choose go to this cage to cool down while their pups were housed in the warmer cage. Control animals had access to the same configuration of cages but with both maintained at 21°C. We hypothesised that if females were limited by heat dissipation, alleviating the heat load by providing a cool environment would allow them to dissipate more heat, take in more food, generate more milk and hence wean heavier litters. We measured maternal energy budgets and monitored time courses of core body temperature and physical activity. To minimise the variance in energy budgets, all litters were adjusted to 12 (±1) pups. Females in the experimental group had higher energy intake (F1,14=15.8, P=0.0014) and higher assimilated energy (F1,13=10.7, P=0.006), and provided their pups with more milk (F1,13=6.65, P=0.03), consistent with the heat dissipation limit theory. Yet, despite keeping demand constant, mean pup growth rates were similar (F1,13=0.06, P=0.8); thus, our data emphasise the difficulties of inferring milk production indirectly from pup growth.

  16. Energy, Environment and IMCC

    DEFF Research Database (Denmark)

    Mogensen, Mogens Bjerg

    2012-01-01

    This paper gives a brief description of the important role that the ionic and mixed conducting ceramics (IMCC) type of materials will play in the R&D of energy and environment technologies of the - presumably - near future. IMCC materials based technologies for energy harvesting, conversion...... and storage as well as for monitoring and protection of our environment are exemplified. The strong impact of the international IMCC research on development of devices based on such materials is illustrated, and some recent trends in the scientific exploration of IMCC are highlighted. Important groups...

  17. Sustainable energy utilization in Finland

    Energy Technology Data Exchange (ETDEWEB)

    Alakangas, E.

    1996-12-31

    Finland tops the statistics for the industrialised world in the utilisation of bioenergy. In 1995 bioenergy, including peat-fired heat and power, accounted for 20 % of the total energy consumption. The declared goal of the government is to increase the use of bioenergy by not less than 25 % (1.5 million toe by the year 2005). Research and development plays a crucial role in the promotion of the expanded use of bioenergy in Finland. The aim is to identify and develop technologies for establishing and sustaining economically, environmentally and socially viable bioenergy niches in the energy system

  18. Sustainability : Intergeneration Equity and Environment

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Y.D. [Korea Energy Economics Institute, Euiwang (Korea)

    2001-06-01

    Regarding intergenerational equity as prerequisite for sustainability, we derive an optimal investment rule for intergenerational equity from an optimization model allowing for capital accumulation and pollution. This rule provides a condition for intergenerational equity such that an economy maintains constant net value of investment the difference between the physical capital investment value and the environmental resource depletion(pollution) value. This rule is more generalized condition for intergenerational equity than the 'keep capital intact' rule suggested by Hartwick(1977) and Solow(1999), in a sense that this rule includes their condition as a special. Also, we expect this rule to offer an empirical measure of sustainability. In addition, we discuss a variety of recent environmental issues in practice, especially associated with the implications from the rule. (author). 13 refs.

  19. Energy access and sustainable development

    Science.gov (United States)

    Kammen, Daniel M.; Alstone, Peter; Gershenson, Dimitry

    2015-03-01

    With 1.4 billion people lacking electricity to light their homes and provide other basic services, or to conduct business, and all of humanity (and particularly the poor) are in need of a decarbonized energy system can close the energy access gap and protect the global climate system. With particular focus on addressing the energy needs of the underserved, we present an analytical framework informed by historical trends and contemporary technological, social, and institutional conditions that clarifies the heterogeneous continuum of centralized on-grid electricity, autonomous mini- or community grids, and distributed, individual energy services. We find that the current day is a unique moment of innovation in decentralized energy networks based on super-efficient end-use technology and low-cost photovoltaics, supported by rapidly spreading information technology, particularly mobile phones. Collectively these disruptive technology systems could rapidly increase energy access, contributing to meeting the Millennium Development Goals for quality of life, while simultaneously driving action towards low-carbon, Earth-sustaining, energy systems.

  20. Energy storage for sustainable microgrid

    CERN Document Server

    Gao, David Wenzhong

    2015-01-01

    Energy Storage for Sustainable Microgrid addresses the issues related to modelling, operation and control, steady-state and dynamic analysis of microgrids with ESS. This book discusses major electricity storage technologies in depth along with their efficiency, lifetime cycles, environmental benefits and capacity, so that readers can envisage which type of storage technology is best for a particular microgrid application. This book offers solutions to numerous difficulties such as choosing the right ESS for the particular microgrid application, proper sizing of ESS for microgrid, as well as

  1. Integrated Renewable Energy and Campus Sustainability Initiative

    Energy Technology Data Exchange (ETDEWEB)

    Uthoff, Jay [Luther College, Decorah, IA (United States); Jensen, Jon [Luther College, Decorah, IA (United States); Bailey, Andrew [Luther College, Decorah, IA (United States)

    2013-09-25

    Renewable energy, energy conservation, and other sustainability initiatives have long been a central focus of Luther College. The DOE funded Integrated Renewable Energy and Campus Sustainability Initiative project has helped accelerate the College’s progress toward carbon neutrality. DOE funds, in conjunction with institutional matching funds, were used to fund energy conservation projects, a renewable energy project, and an energy and waste education program aimed at all campus constituents. The energy and waste education program provides Luther students with ideas about sustainability and conservation guidelines that they carry with them into their future communities.

  2. Building material to isolate the recession. Fighting the economy crisis by stimulating energy efficiency, sustainable energy and more social cohesion in the built environment

    Energy Technology Data Exchange (ETDEWEB)

    Leguijt, C.; Benner, J.; De Jong, F.

    2009-09-15

    This paper explores examples and ideas for policy measures that not only have a positive effect on the climate, employment and social cohesion but are also affordable and have limited or no negative side effects. Options that can be implemented in the short and long term will be reviewed. The long-term goal is a completely renewable energy supply.

  3. Creating sustainable empowering learning environments through ...

    African Journals Online (AJOL)

    Creating sustainable empowering learning environments through scholarship of engagement. ... South African Journal of Higher Education ... Abstract. The assumption grounding this issue of SAJHE is that; a university or any institution of higher learning comes to its fullness through serious engagement with the community.

  4. Sustainable Agricultural Development and Environment: Conflicts ...

    African Journals Online (AJOL)

    user

    environment are changed, sustainable agricultural practices as conceived in the present form appear to be a distant dream ... At the same time the government in Rwanda is continuously under pressure to work towards ...... aspects perceived in this fashion (agrarian structure changes) would go a long way in addressing the ...

  5. Sustainable desalination using ocean thermocline energy

    KAUST Repository

    Ng, Kim Choon

    2017-09-22

    The conventional desalination processes are not only energy intensive but also environment un-friendly. They are operating far from thermodynamic limit, 10–12%, making them un-sustainable for future water supplies. An innovative desalination processes are required to meet future sustainable desalination goal and COP21 goal. In this paper, we proposed a multi-effect desalination system operated with ocean thermocline energy, thermal energy harnessed from seawater temperature gradient. It can exploit low temperature differential between surface hot water temperature and deep-sea cold-water temperature to produce fresh water. Detailed theoretical model was developed and simulation was conducted in FORTRAN using international mathematical and statistical library (IMSL). We presented four different cases with deep-sea cold water temperature varies from 5 to 13°C and MED stages varies from 3 to 6. It shows that the proposed cycle can achieve highest level of universal performance ratio, UPR = 158, achieving about 18.8% of the ideal limit. With the major energy input emanated from the renewable solar, the proposed cycle is truly a “green desalination” method of low global warming potential (GWP), best suited for tropical coastal shores having bathymetry depths up to 300m or more.

  6. Spanish energy planning towards a sustainable future

    Energy Technology Data Exchange (ETDEWEB)

    Contreras, A.; Yigit, K.S.; Veziroglu, T.N. [Miami Univ., Coral Gables, FL (United States)

    1997-11-01

    There is a growing awareness among all countries and their decision makers, regardless of economic and industrial development, that the environment must be protected, leading towards a sustainable future. This is especially important in the energy sector - which is the principal factor in economic and industrial development - since the primary energy sources of today, fossil fuels, are the main culprits of global environmental problems, such as the greenhouse effect, ozone layer depletion, acid rains and pollution. Industrial countries, being greater consumers of fossil fuels, are affected to a greater extent by their environmental harms. Consequently, these countries are leading the way in environmental protection measures. The European Union, the second largest industrial grouping in the world, has become one of the leaders in taking important measures in the energy sector to curb the harmful emissions over the years. Spain, a member of the European Union, has initiated planning to reduce the pollutants produced by the energy sources and bring them in line with the European Union efforts, while keeping up the country`s economic development. This paper reports the efforts and planning of Spain through the year 2010 to comply with the European Union environmental regulations on one hand and to sustain economic development on the other. (author)

  7. Evaluating the Best Renewable Energy Technology For Sustainable Energy Planning

    OpenAIRE

    Demirtas, Ozgur

    2013-01-01

    Energy is one of the main factors that must be considered in the discussions of sustainable development. The basic dimensions of sustainability of energy production are environmentally, technically, economically and socially sustainable supply of energy resources that, in the long term, is reliable, adequate and affordable. Renewable, clean and cost effective energy sources are preferred but unfortunately no one of the alternative energy sources can meet these demands solely. So, the problem ...

  8. Evaluating the Best Renewable Energy Technology for Sustainable Energy Plannin

    OpenAIRE

    Ozgur Demirta

    2013-01-01

    Energy is one of the main factors that must be considered in the discussions of sustainable development. The basic dimensions of sustainability of energy production are environmentally, technically, economically and socially sustainable supply of energy resources that, in the long term, is reliable, adequate and affordable. Renewable, clean and cost effective energy sources are preferred but unfortunately no one of the alternative energy sources can meet these demands solely. So, the problem ...

  9. Sustainable Urban Regeneration Based on Energy Balance

    Directory of Open Access Journals (Sweden)

    Sacha Silvester

    2012-07-01

    Full Text Available In this paper, results are reported of a technology assessment of the use and integration of decentralized energy systems and storage devices in an urban renewal area. First the general context of a different approach based on 'rethinking' and the incorporation of ongoing integration of coming economical and environmental interests on infrastructure, in relation to the sustainable urban development and regeneration from the perspective of the tripod people, technology and design is elaborated. However, this is at different scales, starting mainly from the perspective of the urban dynamics. This approach includes a renewed look at the ‘urban metabolism’ and the role of environmental technology, urban ecology and environment behavior focus. Second, the potential benefits of strategic and balanced introduction and use of decentralized devices and electric vehicles (EVs, and attached generation based on renewables are investigated in more detail in the case study of the ‘Merwe-Vierhaven’ area (MW4 in the Rotterdam city port in the Netherlands. In order to optimize the energy balance of this urban renewal area, it is found to be impossible to do this by tuning the energy consumption. It is more effective to change the energy mix and related infrastructures. However, the problem in existing urban areas is that often these areas are restricted to a few energy sources due to lack of available space for integration. Besides this, energy consumption in most cases is relatively concentrated in (existing urban areas. This limits the potential of sustainable urban regeneration based on decentralized systems, because there is no balanced choice regarding the energy mix based on renewables and system optimization. Possible solutions to obtain a balanced energy profile can come from either the choice to not provide all energy locally, or by adding different types of storage devices to the systems. The use of energy balance based on renewables as a

  10. Demonstrating sustainable energy: A review-based model of sustainable energy demonstration projects

    NARCIS (Netherlands)

    Bossink, Bart

    2017-01-01

    This article develops a model of sustainable energy demonstration projects, based on a review of 229 scientific publications on demonstrations in renewable and sustainable energy. The model addresses the basic organizational characteristics (aim, cooperative form, and physical location) and learning

  11. The United Nations development programme initiative for sustainable energy

    Energy Technology Data Exchange (ETDEWEB)

    Hurry, S.

    1997-12-01

    Energy is central to current concerns about sustainable human development, affecting economic and social development; economic growth, the local, national, regional, and global environment; the global climate; a host of social concerns, including poverty, population, and health, the balance of payments, and the prospects for peace. Energy is not an end in itself, but rather the means to achieve the goals of sustainable human development. The energy systems of most developing countries are in serious crisis involving insufficient levels of energy services, environmental degradation, inequity, poor technical and financial performance, and capital scarcity. Approximately 2.5 billion people in the developing countries have little access to commercial energy supplies. Yet the global demand for energy continues to grow: total primary energy is projected to grow from 378 exajoules (EJ) per year in 1990 to 571 EJ in 2020, and 832 EJ in 2050. If this increase occurs using conventional approaches and energy sources, already serious local (e.g., indoor and urban air pollution), regional (eg., acidification and land degradation), and global (e.g., climate change) environmental problems will be critically aggravated. There is likely to be inadequate capital available for the needed investments in conventional energy sources. Current approaches to energy are thus not sustainable and will, in fact, make energy a barrier to socio-economic development. What is needed now is a new approach in which energy becomes an instrument for sustainable development. The two major components of a sustainable energy strategy are (1) more efficient energy use, especially at the point of end-use, and (2) increased use of renewable sources of energy. The UNDP Initiative for Sustainable Energy (UNISE) is designed to harness opportunities in these areas to build upon UNDP`s existing energy activities to help move the world toward a more sustainable energy strategy by helping program countries.

  12. Better energy indicators for sustainable development

    Science.gov (United States)

    Taylor, Peter G.; Abdalla, Kathleen; Quadrelli, Roberta; Vera, Ivan

    2017-08-01

    The UN Sustainable Development Goal 7 aims to deliver affordable, reliable, sustainable and modern energy for all. Tracking progress towards the targets under this goal can spur better energy statistics and data gathering capacity, and will require new indicators that also consider the interplay with other goals.

  13. National Conference on Sustainable Built Environment 2015

    CERN Document Server

    Biswas, Arindam; Khare, Ajay; Sen, Joy

    2017-01-01

    This book is a comprehensive document visualizing the future of built environment from a multidisciplinary dimension, with special emphasis on the Indian scenario. The multidisciplinary focus would be helpful for the readers to cross-refer and understand others' perspectives. The text also includes case studies substantiating theoretical research. This method of composition helps the book to maintain rational balance among theory, research and its contextual application. The book comprises selected papers from the National Conference on Sustainable Built Environment. The chapters provide varied viewpoints on the core issues of urbanization and planning, especially in the economically diverse Indian market. This compilation would be of interest to students, researchers, professionals and policy makers.

  14. Sustainability in the built environment using embedded technology

    DEFF Research Database (Denmark)

    Buch-Hansen, Thomas Cornelius; Storgaard, Kresten; Ærenlund, Lærke

    2011-01-01

    Innovation of sustainable products and solutions in the built environment using embedded technology in Constructions, is from various earlier investigations shown to increase the value both by reducing emissions of green-house gasses from buildings and by optimising the comfort of living condition...... for the end-user. Based on a project on User-driven Innovation and Embedded Technology in Construction, this paper presents different potential products and solutions for sustainability. This covers a variety of areas such as recycling, energy efficiency, as well as a new concept of sustainable products......-driven Innovation will be presented, with focus on user engagement, interest and acceptance of the ideas arising from the process. This will be exemplified by a developed pilot project involving embedded technology in a building material. Sustainability is categorised in the three dimensions environmental, social...

  15. Progress on linking gender and sustainable energy

    Energy Technology Data Exchange (ETDEWEB)

    Farhar, B.

    2000-04-05

    The field of gender and energy has been identified as critical in global sustainable energy development and is increasingly important to decision makers. The theme of women and energy was of significance at the 1998 World Renewable Energy Congress in Florence, Italy. This paper traces further developments in this field by summarizing selected programmatic initiatives, meetings, and publications over the past 18 months.

  16. Education in Sustainable Energy by European Projects

    Science.gov (United States)

    Stanescu, Corina; Stefureac, Crina

    2010-05-01

    Our schools have been involved in several European projects having with the primary objective of educating the young generation to find ways for saving energy and for using the renewable energy. Small changes in our behaviour can lead to significant energy savings and a major reduction in emissions. In our presentation we will refer to three of them: - The Comenius 1 project "Energy in the Consumers' Hands" tried to improve the quality of education for democratic citizenship in all participant schools by creating a model of curricula concerning the integrative teaching of democratic citizenship using the topic approaches based on key concept - energy as important element of the community welfare. The students studied on the following topics: • Sources of energy • The clean use of fossil based resources; • The rational use of energyEnergy and the environment - The project "Solar Schools Forum" (SSF) focuses on environmental education in schools, in particular addressing the topics of Renewable Energy (RE) and Energy Efficiency (EE). The youth need to become more aware of energy-related problems, and how they can change their own lifestyles to limit environmental damage caused by the daily use of energy. As the decision-makers of tomorrow we need to empower them to make the right choices. The SSF is aimed at improving knowledge about RE and EE among children and young people, using a fun approach and aimed at generating greater enthusiasm for clean energy. The youth will also be encouraged to help raise awareness and so act as multipliers in their own communities, starting with their families and friends. As a result of this project we involved in developing and implementing an optional course for high school students within the Solar Schools Forum project. The optional course entitled "Sustainable energy and the environment" had a great deal of success, proof of this success being the fact that it is still taught even today, three years after its

  17. Special Edition: Environment in Sustainable Development

    Directory of Open Access Journals (Sweden)

    Stephen Morse

    2014-11-01

    Full Text Available When we were invited by the editors of Sustainability to put together a special edition on “Environment in Sustainable Development” our first reaction was to question whether this was really needed. After all, the environment has long been regarded as a central plank in sustainability and there are countless articles and books published on an annual basis that explore the impact of our economic and social activities on our environment. Just what is it that a special edition can achieve? What new angles could we hope to provide? Our initial thinking was to link the special edition to a particular, almost unique, location in time rather than space. We are in the process of recovering, albeit stuttering, from the deepest economic crash experienced by the European and North American economies. The crash has brought some national economies to their knees and, if economic commentators are to be believed, almost destroyed the Euro. Recovery from that crash has been slow and it is arguable whether at the time of writing this has developed much momentum. There is still the skewed perception that prosperity equals economic growth and that economic growth can take place without real (sustainable development or by simply implementing austerity measures and surely without people’s participation. An analogy from National Parks worldwide is when conservation agencies try to enforce protection without local people’s support. All such attempts have either failed or resurrected only once people’s involvement was secured and guaranteed. The unidirectional austerity measures imposed mainly in the countries of southern Europe have destroyed social cohesion leaving deeply wounded societies, while at the same time have also put up for grabs important assets (including natural capital in each of these countries and therefore in jeopardy even their long term recovery.

  18. Energy, ecology, and the environment

    CERN Document Server

    Wilson, Richard F

    1974-01-01

    Energy, Ecology, and the Environment discusses how our need for energy and the different means required to obtain it affect the environment and the harnessing of different natural resources. The book also aims to show more efficient ways to use and generate energy. The book, after a brief introduction to the concept of energy, covers topics such as the different energy resources and the demands, costs, and policies regarding energy. The book also discusses the problems brought about by the production of energy such as the hazards to nature and man; environmental problems and pollution; and

  19. A sustainable energy-system in Latvia

    DEFF Research Database (Denmark)

    Rasmussen, Lotte Holmberg

    2003-01-01

    but a negative trade-balance. With this in mind, it is important that Latvia is able to meet the challenge and use the economic development to develop a sustainable energy-system and a sounder trade-balance. A combination of energy planning, national economy and innovation processes in boiler companies will form......The paper presents some of the problems in the Latvian energy-system, the Latvian economy and how a sustainable restructuring of the energy system with renewable energy, co-generation and the production of energy technology can help solve some of the problems. Latvia has economic growth...

  20. Research on the Sustainable Development of an Economic-Energy-Environment (3E System Based on System Dynamics (SD: A Case Study of the Beijing-Tianjin-Hebei Region in China

    Directory of Open Access Journals (Sweden)

    Yi Zuo

    2017-09-01

    Full Text Available The sustainable development of an economic-energy-environment (3E system has received increasing attention by the government because it both determines national development and individuals’ health at the macro and micro level. In this paper, we synthetically consider various important factors based on analysis of the existing literature and use system dynamics (SD to establish models of sustainable development of a 3E system. The model not only clearly shows the complex logical relationship between the factors but also reveals the process of the 3E system. In addition, the paper provides a case study of the Beijing-Tianjin-Hebei region in China by using a scenario analysis method. The models proposed in this paper can facilitate an understanding of the sustainable development pattern of a 3E coordination system and help to provide references for policy-making institutions. The results show that the long-term development of the Beijing-Tianjin-Hebei region’s 3E system is not sustainable, but it can be changed through the adjustment of the energy structure and an increase in investment in environmental protection, which can improve the environmental quality and ensure continuous growth rather than excessive growth of energy consumption and the gross domestic product (GDP.

  1. Nuclear Energy and the Environment.

    Science.gov (United States)

    International Atomic Energy Agency, Vienna (Austria).

    "Nuclear Energy and the Environment" is a pocket folder of removable leaflets concerned with two major topics: Nuclear energy and Nuclear Techniques. Under Nuclear Energy, leaflets concerning the topics of "Radiation--A Fact of Life,""The Impact of a Fact: 1963 Test Ban Treaty,""Energy Needs and Nuclear Power,""Power Reactor Safety,""Transport,"…

  2. Wind energy renewable energy and the environment

    CERN Document Server

    Nelson, Vaughn; Nelson, Vaughn

    2009-01-01

    Due to the mounting demand for energy and increasing population of the world, switching from nonrenewable fossil fuels to other energy sources is not an option-it is a necessity. Focusing on a cost-effective option for the generation of electricity, Wind Energy: Renewable Energy and the Environment covers all facets of wind energy and wind turbines. The book begins by outlining the history of wind energy, before providing reasons to shift from fossil fuels to renewable energy. After examining the characteristics of wind, such as shear, power potential, and turbulence, it discusses the measur

  3. Sustainability in Energy and Buildings : Proceedings of the 3rd International Conference in Sustainability in Energy and Buildings

    CERN Document Server

    Namaane, Aziz; Howlett, Robert; Jain, Lakhmi

    2012-01-01

    Welcome to the proceedings of the Third International Conference on Sustainability in Energy and Buildings, SEB’11, held in Marseilles in France, organised by the Laboratoire des Sciences del'Information et des Systèmes (LSIS) in Marseille, France in partnership with KES International.   SEB'11 formed a welcome opportunity for researchers in subjects related to sustainability, renewable energy technology, and applications in the built environment to mix with other scientists, industrialists and stakeholders in the field.   The conference featured presentations on a range of renewable energy and sustainability related topics. In addition the conference explored two innovative themes: - the application of intelligent sensing, control, optimisation and modelling techniques to sustainability and - the technology of sustainable buildings.  These two themes combine synergetically to address issues relating to The Intelligent Building.   SEB’11 attracted a significant number of submissions from around the w...

  4. The EU sustainable energy policy indicators framework.

    Science.gov (United States)

    Streimikiene, Dalia; Sivickas, Gintautas

    2008-11-01

    The article deals with indicators framework to monitor implementation of the main EU (European Union) directives and other policy documents targeting sustainable energy development. The main EU directives which have impact on sustainable energy development are directives promoting energy efficiency and use of renewable energy sources, directives implementing greenhouse gas mitigation and atmospheric pollution reduction policies and other policy documents and strategies targeting energy sector. Promotion of use of renewable energy sources and energy efficiency improvements are among priorities of EU energy policy because the use of renewable energy sources and energy efficiency improvements has positive impact on energy security and climate change mitigation. The framework of indicators can be developed to establish the main targets set by EU energy and environmental policies allowing to connect indicators via chain of mutual impacts and to define policies and measures necessary to achieve established targets based on assessment of their impact on the targeted indicators representing sustainable energy development aims. The article discusses the application of indicators framework for EU sustainable energy policy analysis and presents the case study of this policy tool application for Baltic States. The article also discusses the use of biomass in Baltic States and future considerations in this field.

  5. Energy and the Environment

    DEFF Research Database (Denmark)

    Meyer, Niels I

    1996-01-01

    Denmark was one of the first countries in the world to commit itself to reduction targets for CO2 emission. Official Danish energy plans are reviewed in the light of the actual energy development. The EU Commission has been promoting a liberalisation of the electricity market for some years...

  6. Sustainable agriculture and protection of the environment

    Science.gov (United States)

    Siemianowska, Ewa; Wesołowski, Andrzej; Skibniewska, Krystyna A.; Tyburski, Józef; Gurzyński, Marcin

    2017-10-01

    The economic, environmental and social development should not degrade the environment but it should leave it for the next generations in the state that it is presently or even better. The principle of sustainable agriculture is to cover the human needs for food without damage to the environment. The aim of the article was to research the farmers' awareness of the principle of sustainable agriculture and balanced fertilization and their influence on the environment. Among 100 farmers of the Tczew district (Poland) there was done questionnaire research on the determination rates of nitrogen fertilizers and on the regulation of fertilizers usage in Poland. Most of farmers declared a good knowledge of good agricultural practices and of balanced fertilization and the awareness of threats issuing from their activities. At the same time in Poland since the announcement of the Nitrate Directive of the former European Common Market (1992) up till now (2013) the application of nitrogen fertilizers doubled and the yield of wheat increased only by 15%, which means the increase of environmental burden with this chemical element.

  7. Sustainable agriculture and protection of the environment

    Directory of Open Access Journals (Sweden)

    Siemianowska Ewa

    2017-01-01

    Full Text Available The economic, environmental and social development should not degrade the environment but it should leave it for the next generations in the state that it is presently or even better. The principle of sustainable agriculture is to cover the human needs for food without damage to the environment. The aim of the article was to research the farmers’ awareness of the principle of sustainable agriculture and balanced fertilization and their influence on the environment. Among 100 farmers of the Tczew district (Poland there was done questionnaire research on the determination rates of nitrogen fertilizers and on the regulation of fertilizers usage in Poland. Most of farmers declared a good knowledge of good agricultural practices and of balanced fertilization and the awareness of threats issuing from their activities. At the same time in Poland since the announcement of the Nitrate Directive of the former European Common Market (1992 up till now (2013 the application of nitrogen fertilizers doubled and the yield of wheat increased only by 15%, which means the increase of environmental burden with this chemical element.

  8. Transport, energy and environment

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-12-01

    Transportation demands a large and increasing share of total energy consumption in Europe. At the same time many European countries are facing difficult decisions in achieving their long term environmental goals. Therefore energy policy, environmental policy and transport policy should be seen and discussed in a common perspective. In particular the relative contribution from the transport sector and the energy sector involves a number of important and difficult issues. The aim of the conference was to bring together economists, scientists, manufactures, energy planners, transport planners, and decision makers in order to discuss the importance of the transport sector in relation to energy demand and long term environmental goals. General conference sessions covered. Trends in Transport Energy Demand and Environmental constraints, Technological Development and New Transport Systems, Lifestyle Changes and the Transport Sector, Megacities: Solutions to the Transport and Air Pollution Problems, Effectiveness of Public Policies, Transport and Energy sector, and Methods, Models and Data. The conference took place at Hotel Marienlyst, Elsinore, Denmark and attracted wide interest. The participants represented 14 different countries covering international organisations, ministries, universities, research centres, consulting firms, industry etc. (EG)

  9. Sustainable automotive energy system in China

    CERN Document Server

    CAERC, Tsinghua University

    2014-01-01

    This book identifies and addresses key issues of automotive energy in China. It covers demography, economics, technology and policy, providing a broad perspective to aid in the planning of sustainable road transport in China.

  10. Energy efficiency and sustainability: evaluation of electricity ...

    African Journals Online (AJOL)

    Tricomponent Model of Attitude), this work presents the results of a systematic survey and analysis of electricity consumer's attitudes, behaviours and practices towards energy use and sustainability. Using the random sampling method, the ...

  11. Global Energy Assessment. Toward a Sustainable Future

    Energy Technology Data Exchange (ETDEWEB)

    Johansson, T.B.; Nakicenovic, N.; Patwardhan, A.; Gomez-Echeverri, L. (eds.)

    2012-11-01

    The Global Energy Assessment (GEA) brings together over 300 international researchers to provide an independent, scientifically based, integrated and policy-relevant analysis of current and emerging energy issues and options. It has been peer-reviewed anonymously by an additional 200 international experts. The GEA assesses the major global challenges for sustainable development and their linkages to energy; the technologies and resources available for providing energy services; future energy systems that address the major challenges; and the policies and other measures that are needed to realize transformational change toward sustainable energy futures. The GEA goes beyond existing studies on energy issues by presenting a comprehensive and integrated analysis of energy challenges, opportunities and strategies, for developing, industrialized and emerging economies. This volume is an invaluable resource for energy specialists and technologists in all sectors (academia, industry and government) as well as policymakers, development economists and practitioners in international organizations and national governments.

  12. Sustainable Development Strategies of Biomass Energy in Beijing

    Science.gov (United States)

    Zhang, H. Z.; Huang, B. R.

    2017-10-01

    The development of biomass energy industry can effectively improve the rural environment and alleviate the shortage of living energy in rural areas, especially in mountain areas. In order to make clear the current situation of biomass energy industry development in Beijing, this paper analyzed the status of biomass resources and biomass energy utilization and discussed the factors hindering the development of biomass energy industry in Beijing. Based on the analysis, suggestions for promoting sustainable development of Biomass Energy Industry in Beijing are put forward.

  13. Food, energy, and the environment.

    Science.gov (United States)

    Pardue, S L

    2010-04-01

    During the 2009 annual meeting of the Poultry Science Association, a symposium entitled "Global Views of New Agriculture: Food, Energy, and the Environment" was held that focused on several major issues affecting agriculture. Issues included future funding for basic agricultural research, sustainability, bioenergy, and their effects on global food markets. In many ways, a subtitle for the symposium could have been "Agriculture-Why What We Do Matters." It matters because of the fiscal and physical realities the planet will face in the coming decades relative to human population growth and the increasing demands to feed a hungry world. The challenges are daunting and the technologies to address them will require us to reevaluate the structure and policies we have established relative to agricultural research. In this case, change is all the more difficult because the traditional model of agricultural research has been so successful. One only needs to note the remarkable increases in productivity of the past half century of commodities such as corn and soybeans or feed efficiencies among broilers, laying hens, and turkeys to recognize the significant advancements that have been achieved. However, these historic gains have frequently required increased inputs, most notably fossil fuels. Food production in the future will likely be confronted with concerns involving energy, water, climate change, and the threat of agroterrorism. For example, we will need to develop crops that are more drought-resistant and more tolerant to a wider range of salinities as access to fresh water becomes more problematic. Animal agriculture will also need to adapt to diets composed of atypical feedstuffs. Whether future generations will inherit a world described by Paul Roberts in his books The End of Oil and The End of Food will be in part determined by the research model we adopt in the near term.

  14. Wind energy renewable energy and the environment

    CERN Document Server

    Nelson, Vaughn

    2013-01-01

    As the demand for energy increases, and fossil fuels continue to decrease, Wind Energy: Renewable Energy and the Environment, Second Edition considers the viability of wind as an alternative renewable energy source. This book examines the wind industry from its start in the 1970s until now, and introduces all aspects of wind energy. The phenomenal growth of wind power for utilities is covered along with applications such as wind-diesel, village power, telecommunications, and street lighting.. It covers the characteristics of wind, such as shear, power potential, turbulence, wind resource, wind

  15. Summer institute of sustainability and energy

    Energy Technology Data Exchange (ETDEWEB)

    Crabtree, George W. [Univ. of Illinois, Chicago, IL (United States); Argonne National Lab. (ANL), Argonne, IL (United States)

    2012-08-01

    The vision for the Summer Institute on Sustainability and Energy (SISE) is to integrate advancements in basic energy sciences with innovative energy technologies to train the next generation of interdisciplinary scientists and policy makers for both government and industry. Through BES related research, these future leaders will be equipped to make educated decisions about energy at the personal, civic, and global levels in energy related fields including science, technology, entrepreneurship, economics, policy, planning, and behavior. This vision explicitly supports the 2008 report by the Department of Energy’s Basic Energy Science Advisory Committee (2), which outlines scientific opportunities and challenges to achieve energy security, lower CO2 emissions, reduce reliance on foreign oil and create enduring economic growth through discovery, development and the marketing of new technologies for sustainable energy production, delivery, and use (3).

  16. Sustainable Energy Future - Nordic Perspective

    DEFF Research Database (Denmark)

    Nørgaard, Jørgen

    1998-01-01

    This invited paper first outlines the methodologies applied in analysing the energy savings potentials, as applied to a Nordic and a European case study. Afterwards are shown results for how a high quality of life can be achieved with an energy consumption only a small fraction of the present...

  17. Energy Sustainability and Its Impacts on Croatian Tourism

    Directory of Open Access Journals (Sweden)

    Marinela Krstinić Nižić

    2017-01-01

    Full Text Available Energy efficiency, renewable energy sources, and environmental protection projects play a pivotal role in tourism. The World Tourism Organization (UNWTO addresses resource management and energy use as one of the major issues. The main goal of the paper is to present the economic–financial analysis and the assessment of investment projects in the construction of a conventional mid-size hotel using fossil fuels and a mid-size hotel based on sustainable principles and renewable energy sources. Comparative analysis of conventional and energy efficient hotels is used to calculate the key financial indicators in decision making. Case study shows that the introduction of renewable energy sources meets the needs of modern guests and increases the hotel's competitiveness, while the effects of energy sustainability reflect on the environment and reduced CO2 emissions. Based on the results, the paper suggests measures for improving energy sustainability in hotels and other tourism facilities. The paper is intended for those who deal with theoretical and practical issues of energy sustainability in tourism, tourism certificates, renewable energy sources and investment costs―scientists, researchers, PhD candidates and students as a basis for further comparative studies and benchmarking. It can also be useful for a considerably wider circle of users―managers at all levels and other business decision makers, as well as proprietors, investors, and creditors.

  18. Sustainable energy landscapes : designing, planning, and development

    NARCIS (Netherlands)

    Stremke, S.; Dobbelsteen, van den A.

    2013-01-01

    In the near future the appearance and spatial organization of urban and rural landscapes will be strongly influenced by the generation of renewable energy. One of the critical tasks will be the re-integration of these sustainable energy landscapes into the existing environment—which people value and

  19. Sustainable Energy. Alternative proposals to Mercosur

    Energy Technology Data Exchange (ETDEWEB)

    Honty, G. [Centro de Estudios Uruguayo de Tecnologias CEUTA, Montevideo (Uruguay)

    2002-08-01

    After a brief assessment of the Mercosur energy sector (Mercosur is a regional trade agreement subscribed to by Argentina, Brazil, Paraguay and Uruguay) an overview is given of proposals for a sustainable energy integration in the Mercosur: general proposals by sector, specific proposals for the larger economies (Argentina and Brazil), and means of implementation.

  20. Sustainable Energy Technology Acceptance : A psychological perspective

    NARCIS (Netherlands)

    Huijts, N.M.A.

    2013-01-01

    Sustainable energy systems are designed to overcome the large problems resulting from current fossil fuel use, such as climate change, air pollution and energy insecurity. Citizens’ opinions and responses are crucial to the successful implementation of new technologies. This thesis explains public

  1. Background information for the SER Energy Agreement for Sustainable Growth calculations. Sector Built Environment; Achtergronddocument bij doorrekening SER Energieakkoord. Sector Gebouwde omgeving

    Energy Technology Data Exchange (ETDEWEB)

    Menkveld, M.; Tigchelaar, C. [ECN Beleidsstudies, Petten (Netherlands)

    2013-09-01

    This publication is part of the support given by ECN and PBL in the development of a national energy agreement between March and September 2013 as initiated by the SER (Social and Economic Council of the Netherlands). The report gives background information on the evaluation of measures in the agreement aimed at the built environment. It is an annex of the general evaluation of PBL/ECN [Dutch] Dit rapport is geschreven als onderdeel van de ondersteuning door ECN en PBL bij het tot stand komen van het energieakkoord in de periode maart tot september 2013. Dit rapport dient als achtergrond bij de doorrekening van de maatregelen gericht op energiebesparing in de gebouwde omgeving.

  2. THE ROLE OF ENERGY IN ECOLOGICAL SUSTAINABILITY

    Directory of Open Access Journals (Sweden)

    Popescu Maria-Floriana

    2015-07-01

    Full Text Available The rapid population growth leads to greater daily demand for energy, causing nations to diversify their portfolios and seek new sources of energy, including renewable to provide more energy. In a universe with seriously exhausted natural resources, severe urbanization, climate change and conflicts that go beyond borders, the issue of overpopulation unquestionably causes worldwide debates and can generate a snowball effect for the global economy or human society. Population’s increase in the nearby future will have a central role in challenges such as: global warming, air and water contamination, increase in the level of poverty, food scarcity, deforestation, desertification, health problems and resource shortages. The transformation into a sustainable environmental model, situated in a post-carbon economy, will imply setting barriers to industrial progress (will have to be sustainable and environmental friendly and also to population growth (will have to follow a normal pace. But, the level on vulnerability and uncertainty in the evolution of energy has been threatened lately by major events that took place all around the world. Security of supply, new geopolitical perspectives and ecological and sustainability issues are yet again on the bleeding line. Therefore, the goal of this theoretical article is to give an overview of the current situation concerning the role of energy in ecological sustainability. It expresses routes in which humans and enterprises can act in order to contribute to ecologically sustainable development. The subject of how we live on a congested planet represents the most critical sustainability of all. We are witnessing our current risks and we can also envision our possible, and particularly desirable, future: a steady human population, living and protecting the nature and planet, having finite needs of goods, services, or energy, and maintaining a healthy Earth for us and the animals that also depend on it. This is

  3. Renewable energy strategies for sustainable development

    DEFF Research Database (Denmark)

    Lund, Henrik

    2005-01-01

    production, and replacement of fossil fuels by various sources of renewable energy. Consequently, large-scale renewable energy implementation plans must include strategies of how to integrate the renewable sources in coherent energy systems influenced by energy savings and efficiency measures. Based......This paper discusses the perspective of renewable energy (wind, solar, wave and biomass) in the making of strategies for a sustainable development. Such strategies typically involve three major technological changes: energy savings on the demand side, efficiency improvements in the energy...... on the case of Denmark, this paper discusses the problems and perspectives of converting present energy systems into a 100 percent renewable energy system. The conclusion is that such development will be possible. The necessary renewable energy sources are present, if further technological improvements...

  4. Catalytic Science and Technology in Sustainable Energy II

    DEFF Research Database (Denmark)

    Wang, Yuxin; Xiao, Feng-Shou; Seshan, Kulathu K.

    2017-01-01

    This special issue of Catalysis Today results from four sessions, under the collective theme "Catalysis in Sustainable Energy", of the 2ndInternational Symposium on Catalytic Science and Technology in Sustainable Energy and Environment, held in Tianjin, China during October 12-14, 2016. This bien...... whom the special issue would not have been possible. As the organizer of the EECAT 2016, Y Li expresses his special gratitude to the sponsors, especially Haldor Topsoe and Synfuels China, the participants and the co-organizers for their great contribution to the success of EECAT 2016....

  5. Low Energy Flow - The Path Towards Sustainable Development

    DEFF Research Database (Denmark)

    Nørgaard, Jørgen

    1996-01-01

    The global economy will in the near future have to adapt to its dependence on the limited ecological system. Only renewable energy sources can provide a truly sustainable supply of energy. In an environmental ranking of the various energy options, it is pointed out, however, that also the use...... of renewable energy sources can be unsustainable and otherwise damaging to the environment, if vigorously exploited. Since the energy saving options are more gentle to the environment than any supply options, we will be better off by keeping energy consumption very low. Technological efficiency can lower...... energy consumption by a factor three to five. But it is stressed, that these efficiency gains can easily be eaten up by decline in efficiencies in the ways we conduct our lifestyles and run our economies. To apply such an overall effciency view, however, turns out to pose a threat to the presently...

  6. AN ECOLOGICAL-ECONOMIC CONVERGENCE: TRANSITION TO SUSTAINABLE ENERGY

    Directory of Open Access Journals (Sweden)

    G. Kharlamova

    2013-08-01

    Full Text Available Sustainable energy development is complex challenge, so only complex decisions and approaches could be possible to implement in the most efficient way. There is still open question – what is the optimal volume of new energy resources using to support sustainable development and environment safety for any state of the world. Article deals with the availability of convergence to serve for the more effective usage of analytic and system approaches for modeling ecological-economic spillovers in the case of transition to sustainable energy. The economic effects of sustainable energy transition are considered. The analysis of dynamic of energy consumption in the scale of different type of resources during 1820-2030 years depicted the situation of complicated analysis of “economy-energy-environment” linkage. It arises the agenda of necessity to implement complex approaches for modeling and forecasting of new energy systems development. Different types of models and techniques to analyze economy-energy systems are listed and compared.

  7. Northern communities sustainable energy initiative

    Energy Technology Data Exchange (ETDEWEB)

    Oltman, Ursula; Widmeyer, Scott; Moen, Harlan

    2010-09-15

    The Circumpolar North may provide the solution to the world's most urgent problems. Combining new technologies with the resources, opportunities and needs of the north, the Arctic region may become instrumental in promoting nature's ability to sequester natural carbons while supplying future energy demands to the world. With the technologies for efficiencies and CCS, the abundant supply of natural gas exists for an efficient northern network of electrical generating facilities in the circumpolar region. A symbiotic relationship between facilities can ensure dependable clean electricity and support East-West distribution of power across international time zones strategically connected to southern grids.

  8. Wind energy for a sustainable development

    DEFF Research Database (Denmark)

    Karagali, Ioanna; Hasager, Charlotte Bay; Sempreviva, Anna Maria

    2014-01-01

    of both the wind energy related research activities and the wind energy industry, as installed capacity has been increasing in most of the developed and developing countries. The DTU Wind Energy department carries the heritage of the Risø National Laboratory for Sustainable Energy by leading the research......Wind energy is on the forefront of sustainable technologies related to the production of electricity from green sources that combine the efficiency of meeting the demand for growth and the ethical responsibility for environmental protection. The last decades have seen an unprecedented growth...... developments in all sectors related to planning, installing and operating modern wind farms at land and offshore. With as many as 8 sections the department combines specialists at different thematic categories, ranging from meteorology, aeroelastic design and composite materials to electrical grids and test...

  9. Novel combustion concepts for sustainable energy development

    CERN Document Server

    Agarwal, Avinash K; Gupta, Ashwani K; Aggarwal, Suresh K; Kushari, Abhijit

    2014-01-01

    This book comprises research studies of novel work on combustion for sustainable energy development. It offers an insight into a few viable novel technologies for improved, efficient and sustainable utilization of combustion-based energy production using both fossil and bio fuels. Special emphasis is placed on micro-scale combustion systems that offer new challenges and opportunities. The book is divided into five sections, with chapters from 3-4 leading experts forming the core of each section. The book should prove useful to a variety of readers, including students, researchers, and professionals.

  10. Worldwide Engagement for Sustainable Energy Strategies

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2013-08-01

    Almost 40 years after the Agency’s founding, the IEA responsibility for ensuring access to global oil supplies is still a core mandate. Yet over the course of its history, the IEA’s responsibilities have expanded along with both the international energy economy and conceptions of energy security itself. Our mission to promote secure and sustainable energy provision spans the energy mix. At the same time, a changing global energy map means that the industrialised nations of the world no longer dominate energy consumption. The IEA must work in close co-operation with partner countries and organisations worldwide to achieve its three core objectives: energy security, economic prosperity, and environmental sustainability. Working toward international commitments to reduce greenhouse gas emissions that cause global climate change; facilitating energy technology exchange, innovation and deployment; improving modern energy access to the billions of people who are without it; bolstering both cleanliness and security through energy efficiency; and promoting flexible and functioning energy markets – these efforts complement our traditional core responsibilities of mitigating the effects of supply disruptions and improving statistical transparency.

  11. Sustainable Energy Business Visits 2009; Duurzame Energie bedrijfsbezoeken 2009

    Energy Technology Data Exchange (ETDEWEB)

    Gielen, J.H. [C Point, DLV Plant, Horst (Netherlands)

    2010-03-15

    Because the Steering Committee for Long-term Agreements on Energy for Mushrooms found the sustainable energy business visits of 2008 very valuable, it was decided in 2009 to assign Cpoint the task of conducting sustainable energy advisory visits, enabling mushroom cultivators to sign up for a free of charge sustainable energy visit. This report summarizes the results of these business visits [Dutch] Omdat de Duurzame Energie (DE) bedrijfsbezoeken van 2008 door de Stuurgroep MJA-e Paddestoelen als erg waardevol zijn ervaren, is er ook voor het jaar 2009 aan Cpoint een opdracht voor het uitvoeren van DE adviesbezoeken verstrekt, waarbij champignontelers zich konden opgeven voor een gratis DE adviesbezoek. In dit rapport wordt verslag gedaan van de resultaten van de bedrijfsbezoeken.

  12. Renewable energy progress and biofuels sustainability

    Energy Technology Data Exchange (ETDEWEB)

    Hamelinck, C.; De Lovinfosse, I.; Koper, M.; Beestermoeller, C.; Nabe, C.; Kimmel, M.; Van den Bos, A.; Yildiz, I.; Harteveld, M. [Ecofys Netherlands, Utrecht (Netherlands); Ragwitz, M.; Steinhilber, S. [Fraunhofer Institut fuer System- und Innovationsforschung ISI, Karlsruhe (Germany); Nysten, J.; Fouquet, D. [Becker Buettner Held BBH, Munich (Germany); Resch, G.; Liebmann, L.; Ortner, A.; Panzer, C. [Energy Economics Group EEG, Vienna University of Technology, Vienna (Austria); Walden, D.; Diaz Chavez, R.; Byers, B.; Petrova, S.; Kunen, E. [Winrock International, Brussels (Belgium); Fischer, G.

    2013-03-15

    On 27 March 2013, the European Commission published its first Renewable Energy Progress Report under the framework of the 2009 Renewable Energy Directive. Since the adoption of this directive and the introduction of legally binding renewable energy targets, most Member States experienced significant growth in renewable energy consumption. 2010 figures indicate that the EU as a whole is on its trajectory towards the 2020 targets with a renewable energy share of 12.7%. Moreover, in 2010 the majority of Member States already reached their 2011/2012 interim targets set in the Directive. However, as the trajectory grows steeper towards the end, more efforts will still be needed from the Member States in order to reach the 2020 targets. With regard to the EU biofuels and bioliquids sustainability criteria, Member States' implementation of the biofuels scheme is considered too slow. In accordance with the reporting requirements set out in the 2009 Directive on Renewable Energy, every two years the European Commission publishes a Renewable Energy Progress Report. The report assesses Member States' progress in the promotion and use of renewable energy along the trajectory towards the 2020 renewable energy targets. The report also describes the overall renewable energy policy developments in each Member State and their compliance with the measures outlined in the Directive and the National Renewable Energy Action Plans. Moreover, in accordance with the Directive, it reports on the sustainability of biofuels and bioliquids consumed in the EU and the impacts of this consumption. A consortium led by Ecofys was contracted by the European Commission to perform support activities concerning the assessment of progress in renewable energy and sustainability of biofuels.

  13. Individuals’ changes in their lifestyle to build a sustainable environment

    Directory of Open Access Journals (Sweden)

    Matheus Lacerda Viana

    2016-12-01

    Full Text Available The unsustainable use of natural resources is not a current issue and it began since the Agricultural Revolution, which characterizes the change in the relationship between man and nature. The first major environmental impacts emerged and as a result of this new way of life that went from nomadism to sedentary lifestyles, there was an increase of human productive capacity and the emergence of other crafts that were not directly related to food production. This paper provides a complete definition of the key concepts, suggest a few alternatives which people can apply on their daily lives, and relate them to the framework that rules sustainability. The main arguments for this work are that citizens in the developed world can reduce the pressure being placed on the state of the environment and contribute to sustainable development by saving energy and water, reducing waste, and choosing a transportation which emits less pollutants.

  14. Energy sustainability: consumption, efficiency, and environmental impact

    Science.gov (United States)

    One of the critical challenges in achieving sustainability is finding a way to meet the energy consumption needs of a growing population in the face of increasing economic prosperity and finite resources. According to ecological footprint computations, the global resource consump...

  15. Sustainable Energy Landscape: Implementing Energy Transition in the Physical Realm

    NARCIS (Netherlands)

    Stremke, S.

    2015-01-01

    Since the beginning of the new millennium, the concept of “energy landscape” is being discussed by academia from the environmental design domain while more and more practitioners have been contributing to sustainable energy transition. Yet, there remains some ambiguity as to what exactly is meant

  16. Energy options from the 20th Century: Comparing Conventional and Nuclear Energy from a Sustainable Standpoint

    Directory of Open Access Journals (Sweden)

    Eric Ndeh Mboumien Ngang

    2012-12-01

    Full Text Available Different Energy options have been the driving force for the world economy with an evolution in types and sources. Decades ago choosing what energy option to use did not call for much debate as issues of sustainability, pressure on our environment, and our climate were not a major concern. However today, humans have to grapple with these current global challenges especially those exacerbated by our current sources of energy. The review article argues that science and sustainability thinking should be the basis for making the choice about what energy option is suitable for our era. It proposes that a more fruitful discourse should follow from a dialogue that puts in place the set of sustainability indicators and evaluating the suitability of the options for our era in that context. Focusing on two energy options; conventional and nuclear energy; the review compares them based on a set of sustainability indicators including, but not limited to, the environment, economics, ethics, expertise requirements, technical information, health, safety, uncertainty and government funding. In trying to answer the question Unsustainable conventional energy sources, is nuclear energy similar?, the review concludes that despite the demerits of nuclear energy, it is the solution to meet the world’s growing energy needs and to reverse the impending threat posed by climate change if research and development efforts in the sector are accelerated.

  17. Energy technology progress for sustainable development

    Energy Technology Data Exchange (ETDEWEB)

    Arvizu, D.E.; Drennen, T.E.

    1997-03-01

    Energy security is a fundamental part of a country`s national security. Access to affordable, environmentally sustainable energy is a stabilizing force and is in the world community`s best interest. The current global energy situation however is not sustainable and has many complicating factors. The primary goal for government energy policy should be to provide stability and predictability to the market. This paper differentiates between short-term and long-term issues and argues that although the options for addressing the short-term issues are limited, there is an opportunity to alter the course of long-term energy stability and predictability through research and technology development. While reliance on foreign oil in the short term can be consistent with short-term energy security goals, there are sufficient long-term issues associated with fossil fuel use, in particular, as to require a long-term role for the federal government in funding research. The longer term issues fall into three categories. First, oil resources are finite and there is increasing world dependence on a limited number of suppliers. Second, the world demographics are changing dramatically and the emerging industrialized nations will have greater supply needs. Third, increasing attention to the environmental impacts of energy production and use will limit supply options. In addition to this global view, some of the changes occurring in the US domestic energy picture have implications that will encourage energy efficiency and new technology development. The paper concludes that technological innovation has provided a great benefit in the past and can continue to do so in the future if it is both channels toward a sustainable energy future and if it is committed to, and invested in, as a deliberate long-term policy option.

  18. Energy from Biomass for Sustainable Cities

    Science.gov (United States)

    Panepinto, D.; Zanetti, M. C.; Gitelman, L.; Kozhevnikov, M.; Magaril, E.; Magaril, R.

    2017-06-01

    One of the major challenges of sustainable urban development is ensuring a sustainable energy supply while minimizing negative environmental impacts. The European Union Directive 2009/28/EC has set a goal of obtaining 20 percent of all energy from renewable sources by 2020. In this context, it is possible to consider the use of residues from forest maintenance, residues from livestock, the use of energy crops, the recovery of food waste, and residuals from agro-industrial activities. At the same time, it is necessary to consider the consequent environmental impact. In this paper an approach in order to evaluate the environmental compatibility has presented. The possibilities of national priorities for commissioning of power plants on biofuel and other facilities of distributed generation are discussed.

  19. Sustainable business models for wind and solar energy in Romania

    Directory of Open Access Journals (Sweden)

    Nichifor Maria Alexandra

    2015-06-01

    Full Text Available Renewable energy has become a crucial element for the business environment as the need for new energy resources and the degree of climate change are increasing. As developed economies strive towards greater progress, sustainable business models are of the essence in order to maintain a balance between the triple bottom line: people, planet and profit. In recent years, European Union countries have installed important capacities of renewable energy, especially wind and solar energy to achieve this purpose. The objective of this article is to make a comparative study between the current sustainable business models implemented in companies that are active in the wind and solar energy sector in Romania. Both sectors underwent tremendous changes in the last two years due to changing support schemes which have had a significant influence on the mechanism of the renewable energy market, as well as on its development. Using the classical Delphi method, based on questionnaires and interviews with experts in the fields of wind and solar energy, this paper offers an overview of the sustainable business models of wind and solar energy companies, both sectors opting for the alternative of selling electricity to trading companies as a main source of revenue until 2013 and as the main future trend until 2020. Furthermore, the participating wind energy companies noted a pessimistic outlook of future investments due to legal instability that made them to reduce their projects in comparison to PV investments, which are expected to continue. The subject of the article is of interest to scientific literature because sustainable business models in wind and photovoltaic energy have been scarcely researched in previous articles and are essential in understanding the activity of the companies in these two fields of renewable energy.

  20. Comparative Assessment of Sustainable Energy Development in the Czech Republic, Lithuania and Slovakia

    Directory of Open Access Journals (Sweden)

    Streimikiene Dalia

    2016-06-01

    Full Text Available Sustainable energy development and its evaluation is a key resource in learning and understanding the policies implemented by the European Commission and how they work while comparing countries within sustainable energy indicators in the area of sustainable energy. The competitiveness of countries is directly related to the progress achieved in implementing sustainable energy development as the energy sector has great significance for the future development of the country. The energy sector is crucial for economic growth and has a major impact on the environment. Sustainable energy development permits the decoupling of economic growth from energy consumption and the decoupling of energy consumption from atmospheric pollution. This paper views the concept of sustainable energy development and policies that are in place of this topic. It also compares the Czech Republic, Lithuania, and Slovakia within the boundaries of the following sustainable energy development indicators: sustainable consumption and production, marking the production of energy; climate change and energy, marking GHG emissions and the share of renewable energy in gross final energy consumption; sustainable transport, marking the energy consumption of transport relative to GDP.

  1. The Discourse of Sustainable Farming and the Environment in ...

    African Journals Online (AJOL)

    Keywords: environment, sustainable farming, ecocriticism, cosmopolitan ecocriticism, postcolonial ecocriticism ... The need for sustainable agriculture and environment, which Bessie Head (1968) portrays in her novel .... show whether it means that we should alter our lifestyles or the way we use science and technology.

  2. Journal of Renewable Energy and Sustainable Development

    Directory of Open Access Journals (Sweden)

    Yasser Gaber Dessouky

    2015-08-01

    Full Text Available Energy is one of the basic needs of humanity and, for ages, the sun seemed to be the main source ofall energy in the universe and that is why the ancient Egyptians used to venerate it. Many wastes andcorpses – under pressure and heat – have been converted throughout the years inside the earth intothe oil on which recent development is totally based to support humans’ life, particularly intransportation and power generation. As time passes, it has been proven that oil will vanish. For thefirst moment, it seemed like mankind will certainly suffer due to such a hard situation and some peoplethought that we will get back to stone ages when oil no longer exists. Thanks for the Renewable Energy scientist who has looked at the issue from a different prospective,that is, even if oil vanishes, the main reason of its existence is still there, that is the sun . The sun has the capability to still make people enjoy their life not only by enjoying the sunny weatherin many places of the world and having good times on the beach for those who live by the sea but alsothe sun can still provide man with required energy and cause the wind to blow, the waves to raise, theplants to be converted to biomass, and the earth to store its geothermal energy. As long as life goes on, the sun will always rise and will always grant its energy to mankind. It is theclean, renewable and sustainable energy, which guarantees sustainable development. Because of the high correlation between renewable energy and sustainable development, the editorialteam of this journal thought of offering a hub to researchers interested in these two important fields topresent their work and share it with others who have the same interest in such a wide area ofresearch . Thanks to the Academy Publishing Center, ‘APC’ owned by the Arab Academy for Science,Technology and Maritime Transport ‘AASTMT’ for hosting this international journal .

  3. Motivating sustainable energy consumption in the home

    Energy Technology Data Exchange (ETDEWEB)

    He, H.A.; Greenberg, S. [Calgary Univ., AB (Canada). Dept. of Computer Science

    2009-07-01

    This paper discussed social motivations related to household energy conservation. The aim of the study was to explore how technology can be designed and used in the home to encourage sustainable energy use. The basic techniques used to motivate sustainable energy action included behaviour change techniques; information techniques; positive motivational techniques; and coercive motivational techniques. The psychological theories used in the study included cognitive dissonance as a means of reminding people of the inconsistency of their attitudes towards energy and their behaviour, and utility theory as a means of determining personal motivations for energy conservation. The study showed that people are more motivated to act when presented with personalized information and monetary losses as opposed to monetary gain. Social value orientation and self-reflection motivations were also considered. The study showed that pro-social orientation can be used in the form of ambient displays located in public areas of the home. Self-reflection can be encouraged by allowing family members to annotate visualizations containing a history of their energy consumption data. Results of the study will be used to design actual feedback visualizations of energy use. 18 refs.

  4. Sustainable urban energy planning: A strategic approach to meeting climate and energy goals

    Energy Technology Data Exchange (ETDEWEB)

    Dobriansky, Larisa

    2010-09-15

    Meeting our 21st century challenges will require sustainable energy planning by our cities, where over half of the population resides. This already has become evident in the State of California, which has set rigorous greenhouse gas emission reduction targets and timeframes. To attain these targets will necessitate technically-integrated and cost-optimum solutions for innovative asset development and management within urban communities. Using California as a case study, this paper focuses on the crucial role for sustainable energy planning in creating the context and conditions for integrating and optimizing clean and efficient energy use with the urban built environment and infrastructure.

  5. Dilemmas for China: Energy, Economy and Environment

    Directory of Open Access Journals (Sweden)

    Xu Tang

    2015-05-01

    Full Text Available China’s current national policies promote high levels of economic growth, transforming China into a “world factory”, but at a high cost in terms of energy and the environment. At the same time, this growth and transformation also forms the backbone of China’s economy, underpinning social stability. China faces a dilemma to reconcile its economy, energy system and environmental security. Each aspect of this triad is discussed in this study to illuminate the challenges faced by China, and China’s dilemma in energy, economy and environment is analyzed from the perspective of its participation in current global supply chains. While China must import a significant proportion of its energy and a large proportion of primary materials, a large share of these imports are returned to the global market as industrial exports. China is bound by its own course of action and unable to radically change its position for the foreseeable future as the road to economic development and employment stability is through policies built on exports and shifting development models, presenting a tough socio-economic trade-off. China’s growth challenges are discussed as an example of challenges more broadly faced in the developing world. China’s success or failure in achieving a sustainable developmental pattern will inevitably have a significant influence on the global environment.

  6. Agile sustainable communities. On-site renewable energy generation

    Energy Technology Data Exchange (ETDEWEB)

    Clark, Woodrow W. II. [A. Gary Anderson Graduate School of Management, University of California, Riverside (United States); Eisenberg, Larry [Los Angeles Community College District (United States)

    2008-12-15

    situation in California and the Southern California region, primarily Los Angeles. Then the paper looks at the state and regional energy contexts which lay the ground work and rationale why LACCD and other communities must act on their own to counteract climate change and global warming. Finally, the paper discusses how a community becomes sustainable, and hence 'energy independent'. By doing so, any community can generate its own energy through the production or acquisition of its energy from renewable sources such as solar, wind or biomass among other local resources. Even more significant consequences come in terms of carbon control, lower impact on the environment and reduced global warming. (author)

  7. Energy analysis for sustainable mega-cities

    Energy Technology Data Exchange (ETDEWEB)

    Phdungsilp, Aumnad

    2006-09-15

    Cities throughout Asia have experienced unprecedented development over the past decades. In many cases this has contributed to their rapid and uncontrolled growth, which has resulted in a multiplicity of problems, including rapid population increase, enhanced environmental pollution, collapsing traffic systems, dysfunctional waste management, and rapid increases in the consumption of energy, water and other resources. The significant energy use in cities is not very well perceived in Asian countries. Although a number of studies into energy consumption across various sectors have been conducted, most are from the national point of view. Energy demand analysis is not considered important at the level of the city. The thesis is focused on the dynamics of energy utilization in Asian mega-cities, and ultimately aims at providing strategies for maximizing the use of renewable energy in large urban systems. The study aims at providing an in-depth understanding of the complex dynamics of energy utilization in urban mega-centers. An initial general analysis is complemented by a detailed study of the current situation and future outlook for the city of Bangkok, Thailand. An integrated approach applied to the study includes identification of the parameters that affect the utilization of energy in mega-cities and a detailed analysis of energy flows and their various subsystems, including commercial, industrial, residential and that of transportation. The study investigates and evaluates the energy models most commonly used for analyzing and simulating energy utilization. Its purpose is to provide a user-friendly tool suitable for decision-makers in developing an energy model for large cities. In addition, a Multi-Criteria Decision-Making (MCDM) process has been developed to assess whether or not the energy systems meet the sustainability criteria. A metabolic approach has been employed to analyze the energy flow and utilization in selected Asian mega-cities, including Bangkok

  8. ENVIRONMENTAL PROTECTION SUSTAINABILITY STRATEGIC FACTOR IN THE ENERGY INDUSTRY

    Directory of Open Access Journals (Sweden)

    CÎRNU Doru

    2015-06-01

    Full Text Available We propose to conceive an environmental strategy intended to integrate harmoniously Gorj energy industry with principles of sustainable development. The sustainable development complies trinomial: ecological-economic-social. In our view, sustainable development, requires clean water and unpolluted air, land consolidated rejuvenated forests, biodiversity and protected nature reserves, churches and monasteries secular admired by visitors, welcoming places entered in the natural and cultural harmony. It is also necessary to reduce the pressure generated by socio-economic factors on the environment and the principles of sustainable development. The quality of life in urban and rural areas show extreme differences compared to European standards. For efficiency, we addressed the modeling method by designing a model valid for all thermoelectric power plants based on fossil fuels, allowing simultaneously, so adding value and environmental protection. The general objective that we propose for the environment, natural resources and patrimony, is related to the prevention of climate change by limiting the emission of toxic gases and their adverse effects on the environment The achievement of strategic objectives and implementation of proposals submitted, we consider that would have a double impact, on the one side, to protect the environment and the quality of life and, on the other side a positive influence on economic and social level.

  9. Investigating energy saving performance interdependencies with retrofit triple vacuum glazing for use in UK dwelling with solid walls, Sustainable Development on Building and Environment

    OpenAIRE

    Memon, S.

    2015-01-01

    Space-heating loss through the windows of solid wall dwellings is one of the factors contributing to high energy consumption. Despite of significant achievements in the vacuum glazing science a practical benefit of retrofitting triple vacuum glazing to consumers in terms of energy saving is unclear, partly due to which it poses challenges in bringing vacuum glazing technology in the UK market for mass production. This research forms a part of novel contribution in vacuum glazing science prese...

  10. Sustainability of grape-ethanol energy chain

    Directory of Open Access Journals (Sweden)

    Ester Foppa Pedretti

    2014-11-01

    Full Text Available The aim of this work is to evaluate the sustainability, in terms of greenhouse gases emission saving, of a new potential bio-ethanol production chain in comparison with the most common ones. The innovation consists of producing bio-ethanol from different types of no-food grapes, while usually bio-ethanol is obtained from matrices taken away from crop for food destination: sugar cane, corn, wheat, sugar beet. In the past, breeding programs were conducted with the aim of improving grapevine characteristics, a large number of hybrid vine varieties were produced and are nowadays present in the Viticulture Research Centre (CRA-VIT Germplasm Collection. Some of them are potentially interesting for bio-energy production because of their high production of sugar, good resistance to diseases, and ability to grow in marginal lands. Life cycle assessment (LCA of grape ethanol energy chain was performed following two different methods: i using the spreadsheet BioGrace, developed within the Intelligent Energy Europe program to support and to ease the Renewable Energy Directive 2009/28/EC implementation; ii using a dedicated LCA software. Emissions were expressed in CO2 equivalent (CO2eq. These two tools gave very similar results. The overall emissions impact of ethanol production from grapes on average is about 33 g CO2eq MJ–1 of ethanol if prunings are used for steam production and 53 g CO2eq MJ–1 of ethanol if methane is used. The comparison with other bio-energy chains points out that the production of ethanol using grapes represents an intermediate situation in terms of general emissions among the different production chains. The results showed that the sustainability limits provided by the normative are respected to this day. On the contrary, from 2017 this production will be sustainable only if the transformation processes will be performed using renewable sources of energy.

  11. Sustainable-energy managment practices in an energy economy

    Science.gov (United States)

    Darkwa, K.

    2001-10-01

    The economic survival of any nation depends upon its ability to produce and manage sufficient supplies of low-cost safe energy. The world's consumption of fossil fuel resources currently increasing at 3% per annum is found to be unsustainable. Projections of this trend show that mankind will exhaust all known reserves in the second half of the coming century. Governments, industrialists, commercial organizations, public sector departments and the general public have now become aware of the urgent requirements for the efficient management of resources and energy-consuming activities. Most organizations in the materials, manufacturing and retail sectors and in the service industries have also created energy management departments, or have employed consultants, to monitor energy consumption and to reduce wastage. Conversely, any sustained attempt to reduce rates of energy consumption even by as little as 0.1% per annum ensures relatively an eternal future supply as well as reduction on environmental and ecological effect. Thus, there is no long- term solution to energy flow problem other than systematic and effective energy management and the continuous application of the techniques of energy management. Essential energy management strategies in support of a sustainable energy- economy are discussed.

  12. Center for Efficiency in Sustainable Energy Systems

    Energy Technology Data Exchange (ETDEWEB)

    Abraham, Martin [Youngstown State Univ., OH (United States)

    2016-01-31

    The main goal of the Center for Efficiency in Sustainable Energy Systems is to produce a methodology that evaluates a variety of energy systems. Task I. Improved Energy Efficiency for Industrial Processes: This task, completed in partnership with area manufacturers, analyzes the operation of complex manufacturing facilities to provide flexibilities that allow them to improve active-mode power efficiency, lower standby-mode power consumption, and use low cost energy resources to control energy costs in meeting their economic incentives; (2) Identify devices for the efficient transformation of instantaneous or continuous power to different devices and sections of industrial plants; and (3) use these manufacturing sites to demonstrate and validate general principles of power management. Task II. Analysis of a solid oxide fuel cell operating on landfill gas: This task consists of: (1) analysis of a typical landfill gas; (2) establishment of a comprehensive design of the fuel cell system (including the SOFC stack and BOP), including durability analysis; (3) development of suitable reforming methods and catalysts that are tailored to the specific SOFC system concept; and (4) SOFC stack fabrication with testing to demonstrate the salient operational characteristics of the stack, including an analysis of the overall energy conversion efficiency of the system. Task III. Demonstration of an urban wind turbine system: This task consists of (1) design and construction of two side-by-side wind turbine systems on the YSU campus, integrated through power control systems with grid power; (2) preliminary testing of aerodynamic control effectors (provided by a small business partner) to demonstrate improved power control, and evaluation of the system performance, including economic estimates of viability in an urban environment; and (3) computational analysis of the wind turbine system as an enabling activity for development of smart rotor blades that contain integrated sensor

  13. Sustainable Materials for Sustainable Energy Storage: Organic Na Electrodes.

    Science.gov (United States)

    Oltean, Viorica-Alina; Renault, Stéven; Valvo, Mario; Brandell, Daniel

    2016-03-01

    In this review, we summarize research efforts to realize Na-based organic materials for novel battery chemistries. Na is a more abundant element than Li, thereby contributing to less costly materials with limited to no geopolitical constraints while organic electrode materials harvested from biomass resources provide the possibility of achieving renewable battery components with low environmental impact during processing and recycling. Together, this can form the basis for truly sustainable electrochemical energy storage. We explore the efforts made on electrode materials of organic salts, primarily carbonyl compounds but also Schiff bases, unsaturated compounds, nitroxides and polymers. Moreover, sodiated carbonaceous materials derived from biomasses and waste products are surveyed. As a conclusion to the review, some shortcomings of the currently investigated materials are highlighted together with the major limitations for future development in this field. Finally, routes to move forward in this direction are suggested.

  14. Sustainable Materials for Sustainable Energy Storage: Organic Na Electrodes

    Directory of Open Access Journals (Sweden)

    Viorica-Alina Oltean

    2016-03-01

    Full Text Available In this review, we summarize research efforts to realize Na-based organic materials for novel battery chemistries. Na is a more abundant element than Li, thereby contributing to less costly materials with limited to no geopolitical constraints while organic electrode materials harvested from biomass resources provide the possibility of achieving renewable battery components with low environmental impact during processing and recycling. Together, this can form the basis for truly sustainable electrochemical energy storage. We explore the efforts made on electrode materials of organic salts, primarily carbonyl compounds but also Schiff bases, unsaturated compounds, nitroxides and polymers. Moreover, sodiated carbonaceous materials derived from biomasses and waste products are surveyed. As a conclusion to the review, some shortcomings of the currently investigated materials are highlighted together with the major limitations for future development in this field. Finally, routes to move forward in this direction are suggested.

  15. Smart energy control systems for sustainable buildings

    CERN Document Server

    Spataru, Catalina; Howlett, Robert; Jain, Lakhmi

    2017-01-01

    There is widespread interest in the way that smart energy control systems, such as assessment and monitoring techniques for low carbon, nearly-zero energy and net positive buildings can contribute to a Sustainable future, for current and future generations. There is a turning point on the horizon for the supply of energy from finite resources such as natural gas and oil become less reliable in economic terms and extraction become more challenging, and more unacceptable socially, such as adverse public reaction to ‘fracking’. Thus, in 2016 these challenges are having a major influence on the design, optimisation, performance measurements, operation and preservation of: buildings, neighbourhoods, cities, regions, countries and continents. The source and nature of energy, the security of supply and the equity of distribution, the environmental impact of its supply and utilization, are all crucial matters to be addressed by suppliers, consumers, governments, industry, academia, and financial institutions. Thi...

  16. ENERGY AND SUSTAINABLE DEVELOPMENT IN CUBA

    Directory of Open Access Journals (Sweden)

    Debrayan Bravo Hidalgo

    2015-10-01

    Full Text Available Employment and enhancing the use of renewable energy sources could be considered as the beginning of a third ¨Industrial Revolution¨. The transition to a low carbon dioxide emission permits to a momentous turning point in the fight against climate change, improve energy security, and last but not least, significantly reduce the geopolitical intentions of this. The increase in renewable sources constitutes a guideline for energy policy in Cuba. Thus, programs for the construction of small hydropower plants, plant cells and photovoltaic panels, solar thermal energy systems for various services are developed; and the use of other primary sources such as wind and biomass. This work shows the implementation of these practices in the nation, the present results and future aspirations facing the demands of sustainable and steady development of generation and power consumption.

  17. Sustainable Design of Energy Systems - The Case of Geothermal Energy

    OpenAIRE

    Heracles Polatidis; Dias Haralambopoulos

    2006-01-01

    Geothermal energy is one of the renewable energy resources with a vast potential. It is extended spatially in many areas, isolated from urban areas and direct uses, whereas its utilisation when it is not for electricity production is many times hampered due to lack of a proper development framework. In this work we present a design framework for sustainable geothermal systems incorporating modules covering the various aspects of exploration, utilisation, end-use and management. The overall fr...

  18. Evaluating the sustainability of an energy supply system using renewable energy sources: An energy demand assessment of South Carolina

    Science.gov (United States)

    Green, Cedric Fitzgerald

    Sustainable energy is defined as a dynamic harmony between the equitable availability of energy-intensive goods and services to all people and the preservation of the earth for future generations. Sustainable energy development continues to be a major focus within the government and regulatory governing bodies in the electric utility industry. This is as a result of continued demand for electricity and the impact of greenhouse gas emissions from electricity generating plants on the environment by way of the greenhouse effect. A culmination of increasing concerns about climate change, the nuclear incident in Fukushima four years ago, and discussions on energy security in a world with growing energy demand have led to a movement for increasing the share of power generation from renewable energy sources. This work studies demand for electricity from primarily residential, commercial, agricultural, and industrial customers in South Carolina (SC) and its effect on the environment from coal-fired electricity generating plants. Moreover, this work studies sustainable renewable energy source-options based on the renewable resources available in the state of SC, as viable options to supplement generation from coal-fired electricity generating plants. In addition, greenhouse gas emissions and other pollutants from primarily coal-fired plants will be defined and quantified. Fundamental renewable energy source options will be defined and quantified based on availability and sustainability of SC's natural resources. This work studies the environmental, economic, and technical aspects of each renewable energy source as a sustainable energy option to replace power generation from coal-fired plants. Additionally, social aspect implications will be incorporated into each of the three aspects listed above, as these aspects are explored during the research and analysis. Electricity demand data and alternative energy source-supply data in SC are carried out and are used to develop and

  19. Technology Paths in Energy-Efficient and Sustainable Construction

    DEFF Research Database (Denmark)

    Holm, Jesper; Lund Sørensen, Runa Cecilie

    2015-01-01

    Various tehcnology paths and regimes, Building codes and standards in energy, eco and sustainable housing......Various tehcnology paths and regimes, Building codes and standards in energy, eco and sustainable housing...

  20. Food sustainability, food security and the environment

    NARCIS (Netherlands)

    Helms, M.

    2004-01-01

    Sustainable development requires a deliberate choice in the direction of societal transition, but the options are narrowed down by the obligation to feed a growing world population. At present sufficient food is produced, but large differences exist in per capita supply. Poverty prevents many people

  1. Sustainable Agricultural Development and Environment: Conflicts ...

    African Journals Online (AJOL)

    user

    spurt in the environmental awareness in Rwanda is partly induced by donor agencies .... due to increase in fertilizer consumption with increasing soil salinisation and pollution. Many countries claiming green revolution (e.g. India) had this trade-off. ..... thus create conditions later livelihood-intensive and sustainable human.

  2. Functional materials for sustainable energy technologies: four case studies.

    Science.gov (United States)

    Kuznetsov, V L; Edwards, P P

    2010-01-01

    The critical topic of energy and the environment has rarely had such a high profile, nor have the associated materials challenges been more exciting. The subject of functional materials for sustainable energy technologies is demanding and recognized as a top priority in providing many of the key underpinning technological solutions for a sustainable energy future. Energy generation, consumption, storage, and supply security will continue to be major drivers for this subject. There exists, in particular, an urgent need for new functional materials for next-generation energy conversion and storage systems. Many limitations on the performances and costs of these systems are mainly due to the materials' intrinsic performance. We highlight four areas of activity where functional materials are already a significant element of world-wide research efforts. These four areas are transparent conducting oxides, solar energy materials for converting solar radiation into electricity and chemical fuels, materials for thermoelectric energy conversion, and hydrogen storage materials. We outline recent advances in the development of these classes of energy materials, major factors limiting their intrinsic functional performance, and potential ways to overcome these limitations.

  3. Sustainability of grape-ethanol energy chain

    Directory of Open Access Journals (Sweden)

    G. Riva

    2013-09-01

    Full Text Available The aim of this work is to evaluate the sustainability, in terms of greenhouse gases emission saving, of a new potential bio-ethanol production chain in comparison with the most common ones. The innovation consists of producing bio-ethanol from different types of no-food grapes, while usually bio-ethanol is obtained from matrices taken away from crop for food destination: sugar cane, corn, wheat, sugar beet. In the past, breeding programs were conducted with the aim of improving grapevine characteristics, a large number of hybrid vine varieties were produced and are nowadays present in the CRA-VIT (Viticulture Research Centre Germplasm Collection. Some of them are potentially interesting for bio-energy production because of their high production of sugar, good resistance to diseases, and ability to grow in marginal lands. LCA (Life Cycle Assessment of grape ethanol energy chain was performed following two different methods: (i using the spreadsheet “BioGrace, developed within the “Intelligent Energy Europe” program to support and to ease the RED (Directive 2009/28/EC implementation; (ii using a dedicated LCA software. Emissions were expressed in CO2 equivalent (CO2eq. The results showed that the sustainability limits provided by the normative are respected to this day. On the contrary, from 2017 this production will be sustainable only if the transformation processes will be performed using renewable sources of energy. The comparison with other bioenergy chains points out that the production of ethanol using grapes represents an intermediate situation in terms of general emissions among the different production chains.

  4. Mississippi State University Sustainable Energy Research Center

    Energy Technology Data Exchange (ETDEWEB)

    Steele, W. Glenn [Mississippi State Univ., Mississippi State, MS (United States)

    2014-09-26

    The Sustainable Energy Research Center (SERC) project at Mississippi State University included all phases of biofuel production from feedstock development, to conversion to liquid transportation fuels, to engine testing of the fuels. The feedstocks work focused on non-food based crops and yielded an increased understanding of many significant Southeastern feedstocks. an emphasis was placed on energy grasses that could supplement the primary feedstock, wood. Two energy grasses, giant miscanthus and switchgrass, were developed that had increased yields per acre. Each of these grasses was patented and licensed to companies for commercialization. The fuels work focused on three different technologies that each led to a gasoline, diesel, or jet fuel product. The three technologies were microbial oil, pyrolysis oil, and syngas-to liquid-hydrocarbons

  5. Work environment factors and work sustainability in Norwegian cooks

    National Research Council Canada - National Science Library

    Svedahl, Sindre Rabben; Svendsen, Kristin; Romundstad, Pål R; Qvenild, Torgunn; Strømholm, Tonje; Aas, Oddfrid; Hilt, Bjørn

    .... We aimed to elucidate work environment and work sustainability in Norwegian cooks. A questionnaire inquiring about working conditions and work participation was sent to 2082 cooks who had qualified from 1988 onwards...

  6. Energy and environment. Annual report, 1975

    Energy Technology Data Exchange (ETDEWEB)

    Barton, R.G.; Lizama, L.R. (eds.)

    1976-01-01

    Progress is reported on the following programs: geothermal and geosciences; controlled thermonuclear research; chemical processing; instrument development; environment; energy use and conservation; energy analysis; and engineering sciences.

  7. Sustainability reporting in the energy sector

    Directory of Open Access Journals (Sweden)

    Kowal Barbara

    2016-01-01

    Full Text Available Development of the concepts of sustainable development and corporate social responsibility has a great impact on reporting in companies. The increase of their importance has resulted in a need to create a reporting system that would provide information on not only the methods but also the results of implementation of those concepts in companies. Globally, there are many organizations that promote and support companies in the area of integrated reporting. The most popular standard for reporting non-financial data that is used by a number of companies worldwide is the Global Reporting Initiative (GRI Guidelines. The main objective of the GRI is to support the development of sustainable economy in which companies take responsibility for the economic, social, and environmental consequences of their operations, manage that responsibility, and report all their actions. An example of a sector where the concept of sustainable development and its transparent reporting has an impact on the formation of values is the energy sector, which creates value for stakeholders and, together with the financial sector, has the greatest impact on national economies.

  8. Academic Training: Toward Sustainable Energy Systems?

    CERN Multimedia

    Françoise Benz

    2006-01-01

    ACADEMIC TRAINING LECTURE SERIES 28, 29, 30, 31 March from 11:00 to 12:00 - Main Auditorium, bldg. 500 Toward Sustainable Energy Systems? F. Tellez / CIEMAT, Madrid, E and D.Martinez / CIEMAT-PSA, Almeria, E Recent work on alternative energies go in the direction of proving the feasibility of solar energy as one of the best alternatives into the future. Europe, as everybody else, has understandably vested interests in insourcing energetic demands as far as affordable. The good news is that solar energy may be its deciding straw, because it has remarkable facilities and projects probing the possibilities of this option. Two european research centers are at the leading edge in this area: ENEA, which is leading 'Archimede', a vast solar array project in Sicily, and CIEMAT, with its Plataforma Solar de Almeria (PSA, www.psa.es), a major solar energy facility at the south of Spain. Both will become basic poles of the planned 'EURO-MED'electricity interconnection, intending to carry solar electricity fro...

  9. Academic Training: Toward Sustainable Energy Systems?

    CERN Document Server

    Françoise Benz

    2006-01-01

    ACADEMIC TRAINING LECTURE SERIES 28, 29, 30, 31 March from 11:00 to 12:00 - Main Auditorium, bldg. 500 Toward Sustainable Energy Systems? F. Tellez / CIEMAT, Madrid, E and D.Martinez / CIEMAT-PSA, Almeria, E Recent work on alternative energies go in the direction of proving the feasibility of solar energy as one of the best alternatives into the future. Europe, as everybody else, has understandably vested interests in insourcing energetic demands as far as affordable. The good news is that solar energy may be its deciding straw, because it has remarkable facilities and projects probing the possibilities of this option. Two european research centers are at the leading edge in this area: ENEA, which is leading 'Archimede', a vast solar array project in Sicily, and CIEMAT, with its Plataforma Solar de Almeria (PSA, www.psa.es) ,a major solar energy facility at the south of Spain. Both will become basic poles of the planned 'EURO-MED' electricity interconnection, intending to carry solar electricity f...

  10. Environment Protection as a Presumption of Sustainable Development

    Directory of Open Access Journals (Sweden)

    Jelena Premović

    2013-06-01

    Full Text Available Rapid economic growth and irrational use of natural resources in the last decades of the XX century have influenced the changes in the environmental sphere and to specific environmental problems. These processes in the global economy and society, caused a disturbance of the environment by increasing pollution of the environment. Emerging problems of the entire human society can be solved by applying the concept of sustainable growth and development and raising awareness about the necessity of implementation of basic environmental standards in business. In order to reduce the harmful effects of production processes on the environment and to help meet the objective of sustainable development outlined at the UN Conference on Environment and Development in Rio De Janeiro in 1992 the ISO 14000 Standards were created. The essence of sustainable development is responsible development that meets the current needs a way to rationally use natural resources to ensure meeting the needs of future generations and environment protection.

  11. Application of sustainable energy on the island of Bonaire. Phase 1. Inventory of sustainable energy options

    Energy Technology Data Exchange (ETDEWEB)

    Weeda, M.; Dinkelbach, L.; Van Dijk, A.L.; Ligthart, F.A.T.M.; Pierik, J.T.G. [ECN Clean Fossil Fuels, Petten (Netherlands); Jochems, A.; Versteeg, A.J. [Profin, Amersfoort (Netherlands)

    2000-12-01

    The Government of Bonaire has defined a policy which aims for a sustainable economical development of the island. Part of this policy is to amplify the ecological appearance of the island in order to create new impulses for eco-tourism. Within this framework the water and energy company of Bonaire (WEB Bonaire) is being asked to investigate the possibilities for production of energy in a more sustainable way than the present situation. At present the energy supply of the island is fully provided by diesel fuel engine driven generator sets. An additional advantage of a more sustainable energy supply system will be that the economy of Bonaire becomes less dependent on fluctuating world market fuel prices. Energy efficient alternatives for conventional energy services usually appear to be most cost effective to save energy and reduce fossil fuel use. Although the application of energy saving options is not the primary responsibility of WEB, but more of the local authorities and individual consumers, certain areas for energy savings are addressed in the study. Interesting areas for energy saving will be 'lighting' and 'cooling'. Other areas may be 'use of water' and 'household appliances'. The inventory and assessment of renewable energy option indicates that the feasibility of a number of options are doubtful for various reasons. Options, which are part of this category, are the use of landfill gas and biogas, combustion, gasification and pyrolysis of biomass/waste, OTEC, a wave energy based power station and solar thermal based power stations, viz. parabolic trough, power tower and solar dish/engine. From the scarce data available, no clear picture arises for the solar pond. Useful options appear to be wind turbines, solar photovoltaic systems and (small-scale) solar thermal collectors. The results of the current inventory suggest that further investigations and activities with regard to the transition of the Bonaire energy

  12. Towards a sustainable built environment in Malaysia

    OpenAIRE

    Ramli, Mahyudin; Byrd, Hugh

    2012-01-01

    Our objectives in writing this book were to pull together the themes of research that have been ongoing in the School of Housing Building and Planning in the Universiti Sains Malaysia. The main themes investigate the systems that form the inputs and outputs of resources that move to, from and within the built environment. By extrapolating our knowledge of these systems we can begin to predict the long-term effects that the built environment has on our society and eco-system. It also begins to...

  13. Towards a sustainable energy?; Vers une energie durable?

    Energy Technology Data Exchange (ETDEWEB)

    Clement, D. [Agence de l' Environnement et de la Maitrise de l' Energie, ADEME, 75 - Paris (France); Papon, P. [Ecole Superieure de Physique et Chimie Industrielles, 75 - Paris (France)

    2010-07-01

    Energy is in the center of the geo-political, economical, environmental, scientifical and technical debates. During the 20. century, the worldwide consumption has been multiplied by 10. Such a rise is not sustainable. Together with a better usage of the existing energy sources (nuclear, fossil and renewable) we must take the constraints into consideration (climate, resources exhaustion, economic development, international power conflicts) and prepare the future scientifical, technical and social mutations. In conclusion, several scenarios are presented but which one is to be chosen? (J.S.)

  14. Promoting sustainable energy strategies in Russia

    Energy Technology Data Exchange (ETDEWEB)

    Watson, R.K.

    1995-12-31

    Enormous structural changes are taking place in the economy of Russia. It is important that vital sectors of the economy undergo a smooth transition from a centrally-planned paradigm to a more market-oriented structure. Introducing market-oriented-institutional structures and energy planning approaches to Russian utilities can facilitate the transition to the market and allow them to become vehicles for change rather than mere witnesses. As real electricity prices increase relative to other prices, a significant industrial restructuring can be expected, with an accompanying reduction of energy consumption. By developing programs to help industry become more energy-efficiency, the electricity sector can play a central role in Russia`s economic recovery. A robust energy sector will be in a much better position to lead other sectors of the economy toward market-oriented solutions to the present economic crisis. Because of the magnitude of the task of recreating an economy for one of the world`s superpowers, institutional restructuring should take place incrementally. The transition of US utilities from a {open_quotes}build-and-grow{close_quotes} paradigm to one of Integrated Resource Planning (IRP) and subsequently to a hybrid of competition and IRP began and is continuing on the state and regional level. Local success stories on the West Coast and New England persuaded other states to adopt these methods. This strategy could also prove to be very effective in regions of Russia that are served by integrated electricity grids, such as the South Russia Power pool (Yuzhenergo) that serves the North Caucasus region. As the Russian energy system currently undergoes change, simultaneously privatizing and restructuring, these issues will be largely decided within the next two years. One of the greatest challenges involves implementing an environmentally sustainable strategy which ensures that energy efficiency and renewable energy are incorporated into the new structure.

  15. EU - India Sustainable Energy Efficiency Initiative

    Energy Technology Data Exchange (ETDEWEB)

    Agster, Rainer; Henzler, Mikael P. (Adelphi Research GmbH, Berlin (Germany)); Asthana, Arvind (Bureau of Energy, Efficiency/GTZ-Indo-German Energy Programme (India))

    2009-07-01

    Between 2006-2008 the EU India Sustainable Energy Initiative (EISEEI) has supported marketing, implementation and enforcement of the Indian Energy Conservation Act, which came into force in 2002 - on state and local level. Market oriented five-year action plans were prepared, which are implemented by State Designated Agencies (SDA) in charge of energy efficiency measures in their respective states. Each Energy Conservation (EC) action plan states the foreseen activities for the next five years as well as general policies, a mission, and a vision relating to energy efficiency. The EISEEI project activities focused on facilitating a moderated dialogue between India and Europe as well as among the SDAs in order to support the preparation of action plans and operational plans. Furthermore, domestic and overseas trainings for SDA staff and the know-how exchange between policy makers, opinion leaders and professionals in these areas were facilitated. During the duration of the project the Indian Ministry of Power decided to apply the same methodology for 24 more SDAs to cover all Indian states. While the initial 6 pilot states were supported with EU and German development aid funds, the enlargement was 100% financed by the Indian government. The paper will highlight the efforts and results of mainstreaming energy efficiency at various consumer levels (from industry to households) in India. The paper will encompass also the involvement of various agencies and institutional structures as well as the operational experiences with the implementation of the action plan on energy efficiency in one of the fastest growing economies in the world.

  16. Optimal Energy Taxation for Environment and Efficiency

    Energy Technology Data Exchange (ETDEWEB)

    Pak, Y.D. [Korea Energy Economics Institute, Euiwang (Korea)

    2001-11-01

    Main purpose of this research is to investigate about how to use energy tax system to reconcile environmental protection and economic growth, and promote sustainable development with the emphasis of double dividend hypothesis. As preliminary work to attain this target, in this limited study I will investigate the specific conditions under which double dividend hypothesis can be valid, and set up the model for optimal energy taxation. The model will be used in the simulation process in the next project. As the beginning part in this research, I provide a brief review about energy taxation policies in Sweden, Netherlands, and the United States. From this review it can be asserted that European countries are more aggressive in the application of environmental taxes like energy taxes for a cleaner environment than the United States. In next part I examined the rationale for optimal environmental taxation in the first-best and the second-best setting. Then I investigated energy taxation how it can provoke various distortions in markets and be connected to the marginal environmental damages and environmental taxation. In the next chapter, I examined the environmentally motivated taxation in the point of optimal commodity taxation view. Also I identified the impacts of environmental taxation in various circumstances intensively to find out when the environment tax can yield double dividend after taking into account of even tax-interaction effects. Then it can be found that even though in general the environmental tax exacerbates the distortion in the market rather than alleviates, it can also improve the welfare and the employment under several specific circumstances which are classified as various inefficiencies in the existing tax system. (author). 30 refs.

  17. Energy and the Environment: Volume 24

    Energy Technology Data Exchange (ETDEWEB)

    Socolow, R.H.

    1999-07-01

    The 24 papers in this volume are entitled: The art of energy efficiency--Protecting the environment with better technology; On the road to global ecology; Best practices for renewable energy implementation--Integrating end-user and commercial-sector opportunities and constraints; Biomass conversion to fuels; Changing trends in greenhouse gases other than carbon dioxide; Economic growth, liberalization, and the environment--A review of the evidence; Harmful algal blooms--A model for emergence of pathogenic microorganisms under conditions of ecological stress; Enhancing the performance of nuclear power reactors--Issues and opportunities; Environmental issues along the US-Mexico border--Drivers of change and the response of citizens and institutions; Ethics and international business; Fuel cells; High-level nuclear waste--The status of Yucca Mountain; Hydrogen production, transmission, and distribution; It's not easy being green--Innovative environmental technologies enhance hydropower's role in sustainable development; Megacities and the atmosphere; Methods for attributing ambient air pollutants to emission sources; Nuclear energy in the twenty-first century--Examination of a contentious subject; Pollution and human health in the St. Lawrence estuary; Southern perspectives in technology transfer; The post-Kyoto regime on climate change--Southern perspectives; Flexibility in the timing and mechanisms of greenhouse gas controls--A review of economic arguments; How much is energy R and D worth as insurance; A review of technical change in assessments of climate policy; and Energy technology and global change--Modeling techniques developed at NASA.

  18. Adoption of bioenergy technologies for a sustainable energy system

    OpenAIRE

    Bjørnstad, Even

    2011-01-01

    A future sustainable energy system must achieve great improvements in energy efficiency and the energy supply must be based on renewable energy sources. Bioenergy will be an important part of this system. Changing from the current fossil-dependent energy system to a truly sustainable energy system will require fundamental changes in basic structures of society, in the technologies we utilize in the living of our lives and in the way we as citizens and consumers behave relative to energy use. ...

  19. Tidal energy extraction: renewable, sustainable and predictable.

    Science.gov (United States)

    Nicholls-Lee, R F; Turnock, S R

    2008-01-01

    The tidal flow of sea water induced by planetary motion is a potential source of energy if suitable systems can be designed and operated in a cost-effective manner This paper examines the physical origins of the tides and how the local currents are influenced by the depth of the seabed and presence of land mass and associated coastal features. The available methods of extracting energy from tidal movement are classified into devices that store and release potential energy and those that capture kinetic energy directly. A survey is made of candidate designs and, for the most promising, the likely efficiency of energy conversion and methods of installing them are considered. Overall, the need to reduce CO2 emissions, a likely continued rise in fossil fuel cost will result in a significantly increased use of tidal energy. What is still required, especially for kinetic energy devices, is a much greater understanding of how they can be designed to withstand long-term immersion in the marine environment.

  20. Sustainability and Resilience in the Urban Environment

    Science.gov (United States)

    Urban systems are formed by a diversity of actors and activities, and consist of complex interactions involving financial, information, energy, ecological, and material stocks and flows that operate on different spatial and temporal scales. The urban systems that emerge from thes...

  1. Current energy usage and sustainable energy in Kazakhstan: A review

    Science.gov (United States)

    Karatayev, Marat; Islam, Tofazzal; Salnikov, Vitaliy

    2014-05-01

    energy resources such as wind, solar, small hydro and biomass as alternative energy supplies in this country. Our analysis shows that wind and solar energy can become major contributors towards renewable energy in Kazakhstan. The biomass of agricultural residues, municipal solid waste and wood residues could be used for energy purposes too. Therefore, Kazakhstan should optimize energy consumption and take active and effective measures to increase the contribution of renewables in energy supply to make the country's energy mix environmentally sustainable.

  2. Public spaces and urban sustainability in the tropical built environment

    Science.gov (United States)

    Yusof, Y. M.; Kozlowski, M.

    2018-01-01

    Sustainability is an overarching sense of responsibility towards the future. On a city-wide level, urban sustainability incorporates a wide body of changes especially as they relate to the built environment, all of which intended at creating a livable place. This paper discusses existing public spaces in view of their achievement against a set of criteria for the built environment. The paper introduces performance design criteria for the tropical built environment. The key findings indicate that long-term strategies, guidance and directions for the city and region can achieve development which corresponds to local climate, synergies and provide a higher proportion of public spaces that offer something for everyone.

  3. Bioarchitecture - a new vision of energy sustainable cities

    Science.gov (United States)

    Krzemińska, Alicja; Zaręba, Anna; Dzikowska, Anna

    2017-11-01

    Transformation of the natural environment will press the humanity to search for the new look at the problems of architecture and urban design. Nowadays passive houses construction is a standard and green roofs are incorporated in the design of contemporary cities. That's why city cluster will be successively transformed into sustainable bionic systems, which allows to protect the nature and stop further degradation and exploitation of public green space. The good examples of contemporary trend of designing in harmony with nature are energy sustainable underground buildings of Malcolm Wells, who in 60s designed his first energy sufficient construction. The underground cities and rock houses were built from the early beginning of architecture, with significant examples of cities: Sanmenxia in China in Henan Province, Matmata (Tunisia), Cappadocia (Turkey), Uplisciche (Georgia) or Brlhovce (Slovakia) etc. The underground buildings and cities, blending in with the background of topography, have a positive influence on the landscape and are energy sustainable. Climate responsive design materials create effective insulation, which allows to maintain the stable temperature inside the buildings. Bioarchitecture improves the microclimate in the neighborhood through increasing oxygen concentration in atmosphere and limiting of CO2 emission. Bioarchitecture represents new direction in changing the design priorities towards being closer with nature and it's needs.

  4. Drying and dryer from the aspect of renewable energy and sustainable development

    Directory of Open Access Journals (Sweden)

    Topić Radivoj

    2017-01-01

    Full Text Available Sustainable development, energy efficiency, renewable energy and environmental protection are the most pressing questions at the beginning of a new, 21st, century. The most important role of renewable energy in reducing greenhouse gases, increasing energy security and creation through small and medium enterprises. The paper gives a brief overview of renewable energy sources in terms of sustainable development, energy efficiency and environmental protection and the role of the drying process technology in sustainable development (see existing solutions with additional source of Energy and original solutions for drying using renewable sources through: reducing 'consumption' of energy, drying source of bio fuel, solar drying, wind energy and Biogas for drying, to reduce the 'loss' of resources, drying to protect the environment, etc. Before applying the global use every energy process and renewable source of energy, should be analyzed and valorized through 4E principle: ecology, efficiency, economy and education.

  5. Energy End-Use Efficency and Environment

    DEFF Research Database (Denmark)

    Nørgaard, Jørgen

    1998-01-01

    The notes describes the various uses of energy and the potentials for reducing the energy consumption. The issues dealt with includes: Introduction, Energy and Environment, Pumping, Ventilation, Refrigeration, Lighting, Industrial End-uses, Washing, Agriculture, Cooking, etc....

  6. Sustainability and energy self-sufficiency; overcoming the barriers

    Directory of Open Access Journals (Sweden)

    Rania Abdel Galil

    2015-12-01

    Full Text Available Engendering more positive attitudes to renewable energy is by no means a simple feat. Renewable energy technologies are viewed as radical innovations which necessitate substantial changes in production and consumption patterns, hence often met with resistance from both institutions and individuals. Yet action is needed; global energy consumption is expected to rise by 41% and global carbon dioxide emissions by 29%, with most of the demand and rise coming from emerging economies (BP energy outlook 2035. Further, countries need to meet objectives of reduction of GHG under the United Nations Framework Convention on Climate Change. Renewable energy share in the global energy mix needs to significantly increase in order to reach supply sufficiency, energy security, energy equity and environmental sustainability.Meeting demands of energy is critical for the economic and social development of any country; energy must be secure, accessible and affordable at all levels of society, and any negative impact of energy production and energy use on the environment must be minimized. Middle East energy consumption is expected to grow by 69% whilst production to grow by 32%, with 97% of demand still met by fossil fuels by the end of the 2035. Energy investment of $316 billion will be required in the Middle East and North Africa (MENA between 2015 and 2019 to meet its growing demand for power (Apicorp, 2014. Diversifying energy sources is indeed of interest in the MENA region, spurred by growing demand for power and desalinated water, fluctuating fuel price, GHG emission reduction targets, depleting fossil fuel reserves and advances in renewable energy technology. However, there are many barriers that hinder the adoption of renewable energy technologies worldwide, but more so in the MENA region. These barriers are political, economic, social and technological. With a focus on Europe and MENA, it can be said that these barriers have much in common albeit framing

  7. Sustainable Energy - Without the hot air

    Science.gov (United States)

    MacIsaac, Dan

    2009-11-01

    Reader John Roeder writes about a website associated with David MacKay's book Sustainable Energy-Without the hot air. The book is a freely downloadable PDF (or purchasable) book describing an analysis detailing a low-carbon renewable energy transformation route for a large, modern first world industrial country (the United Kingdom). Written for the layman, the work uses vernacular language, e.g., energy consumption and production in a series of bar charts detailing the impacts of necessary strategies such as population reduction, lifestyle changes, and technology changes. MacKay notes that most reasonable plans have large nuclear and ``clean coal'' or other carbon capture components, lots of pumped heat, wind, and much efficiency improvement. He debunks some sacred cows (roof-mounted micro-turbines; hydrogen-powered cars) while pointing out simple effective technologies such as roof-mounted solar water heaters. Similar modest changes in the U.S. (painting roofs white in the southern half of the country) have strong impacts. MacKay claims that he ``doesn't advocate any particular plan or technology,'' but ``tells you how many bricks are in the lego box, and how big each brick is'' so readers can start making planning decisions.

  8. Reactor and process design in sustainable energy technology

    CERN Document Server

    Shi, Fan

    2014-01-01

    Reactor Process Design in Sustainable Energy Technology compiles and explains current developments in reactor and process design in sustainable energy technologies, including optimization and scale-up methodologies and numerical methods. Sustainable energy technologies that require more efficient means of converting and utilizing energy can help provide for burgeoning global energy demand while reducing anthropogenic carbon dioxide emissions associated with energy production. The book, contributed by an international team of academic and industry experts in the field, brings numerous reactor design cases to readers based on their valuable experience from lab R&D scale to industry levels. It is the first to emphasize reactor engineering in sustainable energy technology discussing design. It provides comprehensive tools and information to help engineers and energy professionals learn, design, and specify chemical reactors and processes confidently. Emphasis on reactor engineering in sustainable energy techn...

  9. E3: Economy, Energy and Environment

    Science.gov (United States)

    E3 is a technical assistance framework helping communities, manufacturers, and manufacturing supply chains adapt and thrive in today's green economy. Find information on pollution prevention, sustainable business practices, and energy efficiency.

  10. Industrial energy efficiency: Achieving success in a difficult environment

    Energy Technology Data Exchange (ETDEWEB)

    Castellow, Carl

    2010-09-15

    Energy use and the resulting environmental impacts are major points of concern for the world in the 21st century. Opinions that define the challenges of sustainable energy options are as diverse as the proposed solutions. The industrial sector is a key area both from the standpoint of the amount of energy consumed and the magnitude of the energy options that exist there. However, history has shown that success in the industrial energy sector requires careful planning and consideration of the unique challenges of the manufacturing environment.

  11. Government Governance, Legal Environment and Sustainable Economic Development

    Directory of Open Access Journals (Sweden)

    Feng Wei

    2014-04-01

    Full Text Available Based on China’s inter-provincial panel data from 1999–2009, this paper has tested the impact and extent of marketization, government governance, and legal environment of sustainable economic development by controlling physical capital, human capital and productivity, so as to find the institutional reality for the difference in China’s economic development and another explanation for it. It turns out that marketization, government governance, and legal environment play significant roles in promoting sustainable economic development. Further tests show that the results of Eastern China are consistent with China’s inter-provincial results; while in Western China, the promotion effect of marketization, government governance, and legal environment on sustainable economic development is not significant.

  12. Sustainable diets: The interaction between food industry, nutrition, health and the environment.

    Science.gov (United States)

    Alsaffar, Ayten Aylin

    2016-03-01

    Everyday great amounts of food are produced, processed, transported by the food industry and consumed by us and these activities have direct impact on our health and the environment. The current food system has started causing strain on the Earth's natural resources and that is why sustainable food production systems are needed. This review article discusses the need for sustainable diets by exploring the interactions between the food industry, nutrition, health and the environment, which are strongly interconnected. The most common environmental issues in the food industry are related to food processing loss, food wastage and packaging; energy efficiency; transportation of foods; water consumption and waste management. Among the foods produced and processed, meat and meat products have the greatest environmental impact followed by the dairy products. Our eating patterns impact the environment, but the environment can impact dietary choices as well. The foods and drinks we consume may also affect our health. A healthy and sustainable diet would minimise the consumption of energy-dense and highly processed and packaged foods, include less animal-derived foods and more plant-based foods and encourage people not to exceed the recommended daily energy intake. Sustainable diets contribute to food and nutrition security, have low environmental impacts and promote healthy life for present and future generations. There is an urgent need to develop and promote strategies for sustainable diets; and governments, United Nations agencies, civil society, research organisations and the food industry should work together in achieving this. © The Author(s) 2016.

  13. [Health, environment and sustainable development in Mexico].

    Science.gov (United States)

    1998-09-01

    This article is based on "Salud, ambiente y desarrollo humano sostenible: el caso de México," a document prepared in June 1997 by the Comité Técnico Nacional para el Desarrollo Sostenible. It opens with information regarding the epidemiologic and demographic changes that have taken place in Mexico, such as the decrease in communicable diseases, the rise in noncommunicable diseases, and the less conspicuous increase in lesions resulting from accidents or acts of violence. This is followed by a discussion of priority problems and problems of lesser magnitude in environmental health, specifically those relating to water and air quality, as well as disposal of household and dangerous wastes. Finally, it proposes three areas of intervention in light of the structural problems detected: the absence of an integrated information system covering the area of health, environment, and development; the absence of channels of communication within and between institutions and sectors, and the lack of coordination in planning and implementing programs and actions in this field.

  14. Understanding the human dimensions of a sustainable energy transition

    NARCIS (Netherlands)

    Steg, Linda; Perlaviciute, Goda; van der Werff, Ellen

    2015-01-01

    Global climate change threatens the health, economic prospects, and basic food and water sources of people. A wide range of changes in household energy behavior is needed to realize a sustainable energy transition. We propose a general framework to understand and encourage sustainable energy

  15. Environment, energy, and economic performance

    Energy Technology Data Exchange (ETDEWEB)

    Oberndorfer, Ulrich

    2009-09-25

    This thesis analyzes the relationship between environmental regulation as well as energy market developments on the one hand, and economic performance on the other. Due to its economic effects environmental regulation is controversially disputed. The thesis shows, however, that the economic impacts of the recently adopted climate policy in Europe, namely of the implementation of the European Union Emission Trading Scheme, have been modest at most. Consistent with economic theory, the low stringency of this regulatory measure that is aimed at combating man-made climate change is identified as one important driver of this result. Moreover, results presented in this thesis also indicate the important role which the political economy plays for the design of environmental regulation in general. These mechanisms are shown to be a driver of the low stringency and, consequently, of the small economic effects during the first phase of the European Union Emission Trading Scheme. The thesis highlights the role of investment stimulation if the goal of environmental regulation is not only the protection of the environment, but also the compatibility with economic goals. This thesis also provides new insights into the role of energy market developments for the economy. In this respect, the relevance of the EU carbon market for the financial market performance of European electricity generators is shown. Besides, this thesis particularly demonstrates the paramount importance of oil market developments for the economy as a whole. It suggests that amongst all natural resources, oil is the most relevant one to the pricing of Eurozone energy stocks. It is also shown that besides oil prices, oil volatility plays an important role for stock market development. Finally, the thesis highlights the relevance of oil market developments to the overall economy, in showing that unemployment in Germany is strongly affected by oil price shocks. In this respect, it also opposes claims that the

  16. Sustainable Energy Portfolios for Small Island States

    Directory of Open Access Journals (Sweden)

    Sándor Szabó

    2015-09-01

    Full Text Available The study presents a cost effective electricity generation portfolio for six island states for a 20-year period (2015–2035. The underlying concept investigates whether adding sizeable power capacities of renewable energy sources (RES options could decrease the overall costs and contribute to a more sustainable, indigenous electricity generation at the same time. Often, island states rely on fossil fuels which, apart from dependence on foreign resources, also includes an additional, significant transport cost. This is an extra motive to study the extent in which island states represent primary locations for RES technologies. For the aims of the present study an optimization model has been developed and following numerous runs the obtained results show that installing PV and battery capacities can delay-reduce the huge investments in fossil options in early periods. Thus, investment on RES can have a positive, long-term effect on the overall energy mix. This prompt development can happen without adding new subsidies but there is a need to address the existing socio-economic barriers with intelligent design of financing and economic instruments and capacity building as discussed in the conclusions.

  17. Sustainable Energy Production - Facing up to our Common Challenge

    Energy Technology Data Exchange (ETDEWEB)

    Bondevik, Kjell Magne [Prime Minister (Norway)

    1998-12-31

    With this presentation the Norwegian Prime Minister opened the conference, the Offshore Northern Seas Conference, an important meeting place for the oil and gas industry. Today, sustainable development, the environment and human rights are vital issues that politicians and the petroleum industry have included on their agendas. The end of the 1980s and the beginning of the 1990s mark the beginning of a new era in terms of de regulated markets and a growing concern about the Earth`s capacity to sustain a growing population and the present production and consumption patterns. This shift in political and economic practices has promoted far-reaching institutional changes and a rapid spread of capital, information and skills and an unprecedented integration of the world economy. Energy demand over the next 25 years will depend on fossil fuels, but renewable energy will become increasingly more important. The environmental issues discussed are (1) the local impact of production, distribution and use of fossil fuels, (2) the limited availability of fossil fuels and (3) the impact of the emission of greenhouse gases. The Prime Minister then discusses issues of human rights in sustainable development

  18. A sustainable built environment : A new text book based on ecosystem theory

    NARCIS (Netherlands)

    Van Bueren, E.M.; Van Bohemen, H.; Itard, L.C.M.; Visscher, H.J.

    2010-01-01

    With half of the world population living in urban areas and with the building sector as the largest industrial sector in the US and Europe, the built environment makes a significant contribution to sustainability problems, in terms of energy use, material extraction, waste production and land

  19. Understanding the human dimensions of a sustainable energy transition

    Science.gov (United States)

    Steg, Linda; Perlaviciute, Goda; van der Werff, Ellen

    2015-01-01

    Global climate change threatens the health, economic prospects, and basic food and water sources of people. A wide range of changes in household energy behavior is needed to realize a sustainable energy transition. We propose a general framework to understand and encourage sustainable energy behaviors, comprising four key issues. First, we need to identify which behaviors need to be changed. A sustainable energy transition involves changes in a wide range of energy behaviors, including the adoption of sustainable energy sources and energy-efficient technology, investments in energy efficiency measures in buildings, and changes in direct and indirect energy use behavior. Second, we need to understand which factors underlie these different types of sustainable energy behaviors. We discuss three main factors that influence sustainable energy behaviors: knowledge, motivations, and contextual factors. Third, we need to test the effects of interventions aimed to promote sustainable energy behaviors. Interventions can be aimed at changing the actual costs and benefits of behavior, or at changing people’s perceptions and evaluations of different costs and benefits of behavioral options. Fourth, it is important to understand which factors affect the acceptability of energy policies and energy systems changes. We discuss important findings from psychological studies on these four topics, and propose a research agenda to further explore these topics. We emphasize the need of an integrated approach in studying the human dimensions of a sustainable energy transition that increases our understanding of which general factors affect a wide range of energy behaviors as well as the acceptability of different energy policies and energy system changes. PMID:26136705

  20. Renewability and sustainability aspects of nuclear energy

    Science.gov (United States)

    Şahin, Sümer

    2014-09-01

    Renewability and sustainability aspects of nuclear energy have been presented on the basis of two different technologies: (1) Conventional nuclear technology; CANDU reactors. (2) Emerging nuclear technology; fusion/fission (hybrid) reactors. Reactor grade (RG) plutonium, 233U fuels and heavy water moderator have given a good combination with respect to neutron economy so that mixed fuel made of (ThO2/RG-PuO2) or (ThC/RG-PuC) has lead to very high burn up grades. Five different mixed fuel have been selected for CANDU reactors composed of 4 % RG-PuO2 + 96 % ThO2; 6 % RG-PuO2 + 94 % ThO2; 10 % RG-PuO2 + 90 % ThO2; 20 % RG-PuO2 + 80 % ThO2; 30 % RG-PuO2 + 70 % ThO2, uniformly taken in each fuel rod in a fuel channel. Corresponding operation lifetimes have been found as ˜ 0.65, 1.1, 1.9, 3.5, and 4.8 years and with burn ups of ˜ 30 000, 60 000, 100 000, 200 000 and 290 000 MW.d/ton, respectively. Increase of RG-PuO2 fraction in radial direction for the purpose of power flattening in the CANDU fuel bundle has driven the burn up grade to 580 000 MW.d/ton level. A laser fusion driver power of 500 MWth has been investigated to burn the minor actinides (MA) out of the nuclear waste of LWRs. MA have been homogenously dispersed as carbide fuel in form of TRISO particles with volume fractions of 0, 2, 3, 4 and 5 % in the Flibe coolant zone in the blanket surrounding the fusion chamber. Tritium breeding for a continuous operation of the fusion reactor is calculated as TBR = 1.134, 1.286, 1.387, 1.52 and 1.67, respectively. Fission reactions in the MA fuel under high energetic fusion neutrons have lead to the multiplication of the fusion energy by a factor of M = 3.3, 4.6, 6.15 and 8.1 with 2, 3, 4 and 5 % TRISO volume fraction at start up, respectively. Alternatively with thorium, the same fusion driver would produce ˜160 kg 233U per year in addition to fission energy production in situ, multiplying the fusion energy by a factor of ˜1.3.

  1. Governing in a placeless environment: Sustainability and fish aggregating devices

    NARCIS (Netherlands)

    Bush, S.R.; Mol, A.P.J.

    2015-01-01

    Sustainability governance views ‘place’ as either a central concept and phenomenon to counter homogenising globalisation, or as an irrelevant concept for understanding ostensibly ‘placeless’ global environments such as oceans. Based on a review of global tuna fisheries in placeless oceans, we

  2. Public policies for sustainability in mountain environments in Brazil

    Directory of Open Access Journals (Sweden)

    Amazile López Netto

    2015-08-01

    Full Text Available The mountains encompass a great biological diversity, essential to the survival of the ecosystem on the planet, and key resources for humans, such as water and deposits for genetic food safety. Brazil is among the countries with largest area of mountains on the planet. The country is a signatory of documents prepared for global environmental conventions, in which the fostering sustainability in mountain environments is signed, taking as examples Global Agenda 21; Plan of Implementation of the World Summit on Sustainable Development, and The Future We Want.  The objective of this study is to analyze whether the Brazilian public actions promoting sustainability in mountain environments, as recommended in the global environmental conventions.  This was done through a survey and critical analysis of secondary data, where it was observed that the Brazilian government has no public actions where the focal theme are the mountains, checking only transversal issues at the federal, regional and state levels that affect these environments.  Among these policies, there is the payment for environmental services that can be basis for considering public actions that promote sustainable rural development in mountain environments Brazilians.

  3. Sustainable energy successes in Central and Eastern Europe

    Energy Technology Data Exchange (ETDEWEB)

    Olesen, G.B.; Oesterfelt, P. [eds.

    1998-12-31

    The publication describes more than 20 `good practices` in energy conservation in Central and Eastern Europe: successful campaigns and projects for increased energy efficiency and renewable energy. The cases are collected mainly by NGO-organisations in INFORSE (International Network for Sustainable Energy) - Europe as part of their contributions to the ECO-Forum Energy and Climate Group. (LN)

  4. ACCOUNTANCY REFLECTION OF ENVIRONMENT INFORMATION REGARDING THE ENERGY SECTOR

    Directory of Open Access Journals (Sweden)

    Lucean MIHALCEA

    2014-06-01

    Full Text Available Natural resources, especially energetical ones, have continuously influenced the evolution of human society, including the economical developement, and so the problem of their deficiency and their limited character is a problem of major interest for the human kind in their quest to find the balance betwen the need of economical expansion and the environment protection. The purpose of this paper work is to show the importancy of energy eficiency by asuming two main action directions: to encrease the quantity of renewable energy and to emprove the energetical efficiency. After the researches we made, we brought in attention the main mechanisms used in the insurance of sustainability security and competitiveness of the energy sector. These practices the objectives of the sustainable development principle, exemplified from accountancy point of view through a new instrument in the economical theory: environmental accountancy which ensures the background regarding the recognition, evaluation and presentation of environment information.

  5. Intelligent Buildings: Key to Achieving Total Sustainability in the Built Environment

    Directory of Open Access Journals (Sweden)

    Tulika Gadakari

    2014-01-01

    Full Text Available ‘Are intelligent buildings a pragmatic approach towards achieving a sustainable built environment?’ is the research question that this review article aims to answer. It has been argued that there is a serious need for intelligent buildings to be evaluated against the parameters of total sustainability (environmental, economic and social so as to help the agenda of living in a technologically advanced, healthy and comfortable world. This paper reviews existing theoretical concepts of intelligence and sustainability in the built environment, through an exploration of various scientific literature and U.S Green Building Council’s LEED (Leadership in Energy and Environmental Design databases. A systematic qualitative review approach has been employed to select an appropriate definition of sustainable development and use it as a theoretical framework to assess the technological impact of intelligent buildings on the environmental, economic and social front. Subsequently five case study buildings from around the world, which exemplify the use of intelligent technologies to achieve sustainable gains were chosen and analyzed to further validate the literature findings. Outputs from the study highlight the various benefits of intelligent buildings, which include decrease in energy and water consumption, operational costs, as well as increase in productivity and investments. Additionally the analysis of the case studies revealed that the use of intelligent building technologies has contributed significantly towards a higher sustainability rating on the LEED rating scale. Moreover, the comparison of the attributes of intelligent buildings and sustainable practices in buildings, illustrates the fact that there is a considerable overlap between the two and intelligence can aid sustainability in the built environment. Thus the research suggests that green technologies and intelligence in combination may be a pragmatic approach towards the sustainability

  6. Financing the Transition to Sustainable Energy. Literature Overview

    Energy Technology Data Exchange (ETDEWEB)

    Kerste, M.; Weda, J.

    2010-12-15

    Investment in sustainable energy is essential in view of economic and population growth, climate change as well as energy security, but face specific risks and inconclusive financial attractiveness. It is generally acknowledged that the currently foreseen level of funding is too low compared to the required investments. This report highlights leading literature and empirical findings on financing of the transition to sustainable energy, amongst others addressing the business case for sustainable energy investments, the underlying reasons for the current low level of funding and ways to improve this. This report is part of a set of SEO-reports on finance and sustainability. The other reports deal with: Carbon Trading; Innovations in financing environmental and social sustainability; and Sustainable investment.

  7. Wood Energy Production, Sustainable Farming Livelihood and Multifunctionality in Finland

    Science.gov (United States)

    Huttunen, Suvi

    2012-01-01

    Climate change and the projected depletion of fossil energy resources pose multiple global challenges. Innovative technologies offer interesting possibilities to achieve more sustainable outcomes in the energy production sector. Local, decentralized alternatives have the potential to sustain livelihoods in rural areas. One example of such a…

  8. Sustainable Performance in Energy Harvesting - Wireless Sensor Networks

    DEFF Research Database (Denmark)

    Fafoutis, Xenofon; Di Mauro, Alessio; Dragoni, Nicola

    2013-01-01

    In this practical demo we illustrate the concept of "sustainable performance" in Energy-Harvesting Wireless Sensor Networks (EH-WSNs). In particular, for different classes of applications and under several energy harvesting scenarios, we show how it is possible to have sustainable performance when...

  9. SUSTAINABLE ENERGY POLICY INTEGRATED ASSESSMENT “SEPIA” - Final Report

    OpenAIRE

    LAES, Eric; COUDER, Johan; VERBRUGGEN, Aviel; EGGERMONT, Gilbert; HUGE, Jean; MAES, Fré; MESKENS, Gaston; RUAN, Da; SCHROEDER, Jantine; Jacquemain, Marc; Italiano, Patrick

    2011-01-01

    The report summarizes a 3 years research program aimed at developping long term sustainable scenarios for Belgian the energy system. The research included expert participation, stakeholders assessment, quantitative modelling and fuzzy-logic analysis of the assessments. It produced three scenarios for a sustainable energy system in Belgium 2050.

  10. Mitigation/Adaptation: landscape architecture meets sustainable energy transition

    NARCIS (Netherlands)

    Stremke, S.

    2009-01-01

    Mitigation of climate change and adaptation to renewable energy sources are among the emerging fields of activity in landscape architecture. If landscape architects recognize the need for sustainable development on the basis of renewable energy sources, then how can we contribute to sustainable and

  11. A Framework for Supporting Organizational Transition Processes Towards Sustainable Energy Systems

    Science.gov (United States)

    Buch, Rajesh

    Economic development over the last century has driven a tripling of the world's population, a twenty-fold increase in fossil fuel consumption, and a tripling of traditional biomass consumption. The associated broad income and wealth inequities are retaining over 2 billion people in poverty. Adding to this, fossil fuel combustion is impacting the environment across spatial and temporal scales and the cost of energy is outpacing all other variable costs for most industries. With 60% of world energy delivered in 2008 consumed by the commercial and industrial sector, the fragmented and disparate energy-related decision making within organizations are largely responsible for the inefficient and impacting use of energy resources. The global transition towards sustainable development will require the collective efforts of national, regional, and local governments, institutions, the private sector, and a well-informed public. The leadership role in this transition could be provided by private and public sector organizations, by way of sustainability-oriented organizations, cultures, and infrastructure. The diversity in literature exemplifies the developing nature of sustainability science, with most sustainability assessment approaches and frameworks lacking transformational characteristics, tending to focus on analytical methods. In general, some shortfalls in sustainability assessment processes include lack of: · thorough stakeholder participation in systems and stakeholder mapping, · participatory envisioning of future sustainable states, · normative aggregation of results to provide an overall measure of sustainability, and · influence within strategic decision-making processes. Specific to energy sustainability assessments, while some authors aggregate results to provide overall sustainability scores, assessments have focused solely on energy supply scenarios, while including the deficits discussed above. This paper presents a framework for supporting

  12. Sustainability assessment for the transportation environment of Darjeeling, India.

    Science.gov (United States)

    Nag, Dipanjan; Paul, Subrata Kr; Saha, Swati; Goswami, Arkopal K

    2018-02-02

    Darjeeling is an important tourist hill town of West Bengal, India. It suffers from an acute problem of transportation, particularly during its peak tourist seasons due to limited road space, inadequate public transport facilities and indiscriminate use of automobiles. This hill town was originally designed for a population of 10,000, but over the years, it has come face-to-face with rapid urbanization, a rising population of both tourists and residents and intensifying motor vehicle usage. These factors together are posing a threat to its transport environment. This study identifies the Sustainable Transport Indicators (STIs) available in the existing literature to identify the critical stretches using Analytical Hierarchy Process (AHP) based on experts' consensus. It was found that the experts placed emphasis on the mobility of the town, talking about vehicular impact on air pollution and encroachment of roads as the main issues affecting the sustainability of the transport environment. Thereafter, policy-level interventions have been suggested in accordance with the identified sustainability issues. We trust that other tourist hill towns with issues similar to Darjeeling could easily emulate the study methodology to assess their transport environment sustainability, or replicate on the lines of the recommended policy interventions. Copyright © 2018 Elsevier Ltd. All rights reserved.

  13. ROMANIA'S ENERGY POTENTIAL OF RENEWABLE ENERGIES IN THE CONTEXT OF SUSTAINABLE DEVELOPMENT

    Directory of Open Access Journals (Sweden)

    Maghear Diana

    2011-12-01

    Full Text Available The concept of 'sustainable development' and the necessity for its realization has gone a long way in order to be unanimously accepted. Over time many authors have written about the problem regarding resources depletion, about the effects of pollution and their economic, ecological and social aspects of it. From the observation of the pollution phenomenon and its implications and until this problem has been acknowledged and accepted by a large number of people this problem has been extensively described by various authors be they economists, ecologists, biologists or psychologists and discussed at multiple conferences conducted in order to find a solution to this problem. In the last century, the use of fossil fuels (coal, gas, oil has had disastrous effects, catastrophic even on the environment, greater than any human activity in history. Among these effects we can enumerate: global warming, the emergence of acid rains, thinning of the ozone layer, etc. In consequence, the use of alternative energy resources becomes imminent for the today world. Among these resources we can include the sun, the wind, geothermal water, biomass, water, etc., which have the capacity to generate alternative energy namely solar energy, wind energy, hydro energy, wave energy, geothermal energy, bioenergy (biofuels, biodiesel, etc. that have the as purpose the reduction of the thermal, radioactive and chemical pollution anywhere on the globe. Renewable energy sources are largely indigenous; they are not based on the future availability of conventional sources of energy, and natural or predominantly decentralized makes that the respective economy to be less vulnerable in front of the supply with volatile energy. Therefore, they constitute a key element of a sustainable energy future. This paper is meant to highlight the need for achieving a sustainable development both in terms of the problem that humanity faces which threatens the entire ecosystem and namely the

  14. Amsterdam as a Sustainable European Metropolis : Integration of Water, Energy and Material Flows

    NARCIS (Netherlands)

    Van Der Hoek, J.P.; Struker, A.; Danschutter, J.E.M.

    2013-01-01

    Amsterdam has the ambition to develop as a competitive and sustainable European metropolis. The flows of energy, water and resources within the urban environment have a large potential to contribute to this ambition. The overall mass balances of phosphate, food, water, energy and material imports in

  15. Which sustainable energy policy in France?; Quelle politique energetique durable en France?

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2003-07-01

    Concurrently to the National Debate on the energies, a real debate has been proposed by seven associations of the environment protection and improvement. This debate, international, wonders on the energy choices in France. Presentations of the interveners and working documents are provided on the following topics: energy choices for the economic development, renewable energies, the possibilities and the development of the solar energy in France, the economic interest of the cogeneration, quick overview of the wind energy in France, energy production data, the transport and the greenhouse effect, the sustainable development and the energy policy and the local governments. (A.L.B.)

  16. Sustainable Development of Sewage Sludge-to-Energy in China

    DEFF Research Database (Denmark)

    Ren, Jingzheng; Liang, Hanwei; Dong, Liang

    2017-01-01

    proposed. After the grey DEMATEL analysis, a grey Multi-Criteria Decision Making (MCDM) framework which allows multiple decision-makers/stakeholders to use linguistic terms to participate in the decision-making for prioritizing the alternative technologies for sludge-to-energy was developed......In order to promote the sustainable development of sludge-to-energy industry and help the decision-makers/stakeholders to select the most sustainable technology for achieving the sludge-to-energy target, this study aims at using grey Decision Making Trial and Evaluation Laboratory (DEMATEL...... is feasible for group decision-making and sustainability assessment of the alternative technologies for sludge-to-energy....

  17. The power of design product innovation in sustainable energy technologies

    CERN Document Server

    Reinders, Angele H; Brezet, Han

    2012-01-01

    The Power of Design offers an introduction and a practical guide to product innovation, integrating the key topics that are necessary for the design of sustainable and energy-efficient products using sustainable energy technologies. Product innovation in sustainable energy technologies is an interdisciplinary field. In response to its growing importance and the need for an integrated view on the development of solutions, this text addresses the functional principles of various energy technologies next to the latest design processes and innovation methods. From the perspec

  18. Road map and principles for built environment sustainability.

    Science.gov (United States)

    Vanegas, Jorge A

    2003-12-01

    The built environment, defined by the facilities and civil infrastructure systems that people use, is the fundamental foundation upon which a society exists, develops, and survives. As the main provider and the life cycle custodian of the built environment, the Architecture, Engineering, and Construction (AEC) industry plays a critical role in determining the quality, integrity, and longevity of this foundation. In the execution of these two roles, provider and custodian, the AEC industry has had a major direct and indirect impact on the natural environment, contributing both directly and indirectly to natural resource depletion and degradation, waste generation and accumulation, and environmental impact and degradation. These impacts are not unique to the AEC industry. Other industries face similar challenges, and for many years, a wide range of constituencies within them have been attempting the implementation of the concept of sustainability within what these industries do, how they do it, and with what as a possible mechanism to slow, reduce, eliminate these impacts, and even restore conditions to a better state. In the pursuit of sustainability, the AEC industry faces challenges posed by the unique attributes and characteristics nature of facilities and civil infrastructure systems, the complexities of the current processes for their delivery and use, and the diverse set of resources required for both their delivery and their use. This paper offers a road map and an initial set of principles to implement built environment sustainability as a starting point for an ongoing, industry-wide dialogue and debate.

  19. Multi-criteria sustainability assessment: A tool for evaluation of new energy system

    Directory of Open Access Journals (Sweden)

    Afgan Naim H.

    2007-01-01

    Full Text Available One of perspective methods for the evaluation of quality of energy system is the multi-criteria sustainability assessment, based on the analysis and synthesis of indicators expressing different aspects of the system. Application of this methodology in the cases of information deficiency (ASPID methodology enables evaluation of various energy systems. In the paper, the multi-criteria sustainability assessment of energy systems of various energy sources is used to evaluate the energy power system of Bosnia and Herzegovina. Eight different energy system options are taken into a consideration as the potential options for the capacity building within the energy power system of Bosnia and Herzegovina. It has included various renewable sources and fossil fuel clean technologies. Within the multi-criteria sustainability assessment method, sustainability indicators and weighting coefficients are defined and calculated, including: resource indicator, environment indicator, social indicator and economic indicator with respective weighting factors. The methodology includes the system of stochastic models of uncertainty in order to realize the assessment from various supporting systems, and to obtain respective normalization indexes by using non-numeric (ordinal, non-exact (interval, and non-complete information (NNN- information, for sources of various reliability and probability. By the analysis of multi-criteria sustainability assessment of selected options, the decision makers could be enabled to form opinion on quality of considered energy systems, and from the aspect of sustainability, make selection an optimum option of energy system. .

  20. -5/3 Kolmogorov Turbulent Behaviour and Intermittent Sustainable Energies

    Science.gov (United States)

    Calif, Rudy; Schmitt, François G.; Medina, O. Durán

    2016-12-01

    he massive integration of sustainable energies into electrical grids (non-interconnected or connected) is a major problem due to their stochastic character revealed by strong fluctuations at all scales. In this paper, the scaling behaviour or power law correlations and the nature of scaling behaviour of sustainable resource data such as flow velocity, atmospheric wind speed, solar global solar radiation and sustainable energy such as, wind power output, are highlighted. For the first time, Fourier power spectral densities are estimated for each dataset. We show that the power spectrum densities obtained are close to the 5/3 Kolmogorov spectrum. Furthermore, the multifractal and intermittent properties of sustainable resource and energy data have been revealed by the concavity of the scaling exponent function. The proposed analysis frame allows a full description of fluctuations of processes considered. A good knowledge of the dynamic of fluctuations is crucial to manageme! nt of the integration of sustainable energies into a grid.

  1. 5/3 Kolmogorov Turbulent Behaviour and Intermittent Sustainable Energies

    Science.gov (United States)

    Calif, Rudy; Schmitt, François G.; Medina, O. Durán

    2016-12-01

    The massive integration of sustainable energies into electrical grids (non-interconnected or connected) is a major problem due to their stochastic character revealed by strong fluctuations at all scales. In this paper, the scaling behaviour or power law correlations and the nature of scaling behaviour of sustainable resource data such as flow velocity, atmospheric wind speed, solar global solar radiation and sustainable energy such as, wind power output, are highlighted. For the first time, Fourier power spectral densities are estimated for each dataset. We show that the power spectrum densities obtained are close to the 5/3 Kolmogorov spectrum. Furthermore, the multifractal and intermittent properties of sustainable resource and energy data have been revealed by the concavity of the scaling exponent function. The proposed analysis frame allows a full description of fluctuations of processes considered. A good knowledge of the dynamic of fluctuations is crucial to management of the integration of sustainable energies into a grid.

  2. Energy mix and sustainable development: Issues and challenges in Southern Philippines

    Energy Technology Data Exchange (ETDEWEB)

    Osop, Inoray

    2010-09-15

    Southern Philippines utilizes different sources of energy and like any other areas for every increase in energy; major concerns and issues on its sustainable development sprung up. Methods used were quantitative and qualitative measures, experiment, exploratory and descriptive in findings: (1) each of the energy dimensions are compared economic ; On their environment and health of the end users and Social dimensions . The ideal energy mixes based on sustainable development are renewable and some fossil fuels with strict adherence to clean technology since Coal Plants in the country ignores environmental regulations and yet allowed to operate.

  3. Opportunity knocks - the sustainable energy industry and climate change

    Energy Technology Data Exchange (ETDEWEB)

    Price, B.; Keegan, P. [International Institute for Energy Conservation, Washington, DC (United States)

    1997-12-31

    Climate change mitigation, if intelligently undertaken, can stimulate economic growth. The main tools available for this task are energy efficiency, renewable energy, and clean energy technologies and services, which are collectively known as sustainable energy. To unleash this potential, the US and other governments need the full cooperation of the sustainable energy industry. This industry knows more than most other about turning energy-related pollution prevention into profits. If engaged, they can help: (1) Identify the economic benefits of greenhouse gas mitigation; (2) Identify barriers to the implementation of greenhouse gas mitigation projects; (3) Develop policies and measures to overcome these barriers; and (4) Implement greenhouse gas mitigation projects. 7 refs.

  4. Energy sustainability of Microbial Fuel Cell (MFC): A case study

    Science.gov (United States)

    Tommasi, Tonia; Lombardelli, Giorgia

    2017-07-01

    Energy sustainability analysis and durability of Microbial Fuel Cells (MFCs) as energy source are necessary in order to move from the laboratory scale to full-scale application. This paper focus on these two aspects by considering the energy performances of an original experimental test with MFC conducted for six months under an external load of 1000 Ω. Energy sustainability is quantified using Energy Payback Time, the time necessary to produce the energy already spent to construct the MFC device. The results of experiment reveal that the energy sustainability of this specific MFC is never reached due to energy expenditure (i.e. for pumping) and to the low amount of energy produced. Hence, different MFC materials and architectures were analysed to find guidelines for future MFC development. Among these, only sedimentary fuel cells (Benthic MFCs) seem sustainable from an energetic point of view, with a minimum duration of 2.7 years. An energy balance approach highlights the importance of energy calculation. However, this is very often not taken into account in literature. This study outlines promising methodology for the design of an alternative layout of energy sustainable MFC and wastewater management systems.

  5. Local government delivers sustainability - near zero energy buildings and waste energy makes the city of Lund sustainable

    Energy Technology Data Exchange (ETDEWEB)

    Persson, Agneta (WSP Sverige AB, Stockholm (Sweden)); Larsson, Ola (WSP Environmental, Stockholm (Sweden)); Didriksson, Mats (Lunds Energikoncernen AB (Sweden))

    2011-07-01

    One of Europe's most advanced and exciting scientific projects, the European Spallation Source (ESS), will be built outside Lund in Sweden. A new city district called Brunnshoeg will be developed in the area surrounding the new science park. The vision for this new city district, with more than 10,000 inhabitants and 15,000 work spaces, is outstanding sustainable city development from ecological, economical as well as social perspectives. Sustainable energy solutions are necessary to achieve this goal. A low energy end use combined with renewable energy sources will lead to a sustainable energy system. ESS will generate a substantial amount of waste heat, estimates point at 240 GWh/year. This waste heat can be used for district heating, sorptive cooling, appliances and electricity production. The local energy utility (Lunds Energi) aims to be a driving force towards sustainability. Their efforts to create sustainable solutions for Brunnshoeg started with an analysis of 3 different scenarios of the new city district's energy demand. These scenarios include levels from medium to very high ambitions. This analysis was followed by an analysis of possible renewable energy scenarios. This included not only waste heat from ESS and a new bio fuelled CHP plant, but also small and large scale wind power, solar energy (thermal and photovoltaic), small scale biogas production and geothermal energy for storing waste heat from ESS and creating free cooling. Different measures to further decrease energy use, both end use and primary energy, and reduce the carbon footprint have also been analysed. Sustainable energy systems also need to take dynamics of consumption and lifestyle measures into consideration. Active cooperation between different actor categories is essential for a sustainable society. This paper describes how Lunds Energi combines all above mentioned options in their effort to create the most sustainable solution for Brunnshoeg, the city of Lund and the

  6. Behaviour of a Sustainable Concrete in Acidic Environment

    Directory of Open Access Journals (Sweden)

    Salim Barbhuiya

    2017-09-01

    Full Text Available Sustainability has become one of the most important considerations in building design and construction in recent years. Concrete is susceptible to acid attack because of its alkaline nature. The socioeconomic losses associated with infrastructure deterioration due to acid attack exceed billions of dollars all around the world. An experimental investigation was carried out to study the behaviour of sustainable concrete in 3% sulphuric acid and 1.5% nitric acid environment in which cement was replaced by a combination of fly ash and ultra fine fly ash. It was found that the compressive strength loss of concrete in these acid environments was the minimum in which cement was replaced by 30% fly ash and 10% ultra fine fly ash. This mix also showed the lowest mass loss when exposed to these acids.

  7. Efficiency of Energy Consumption as a Base for Sustainable Energy Sector

    OpenAIRE

    Anicetas Ignotas; Viktorija Stasytytė

    2016-01-01

    Lithuania, as many other EU countries, encounters key challenges in three energy sector fields: energy independence, energy sector competitiveness and sustainable energy sector development. Such situation is determined by historical and political conditions, as well as by limited internal energy resources. In such context an importance of energy consumption efficiency pursuing country energy sector sustainability is highlighted. By implementing the long-term goals and tasks a country may seek...

  8. Energy, environment and development in Bhutan

    Energy Technology Data Exchange (ETDEWEB)

    Uddin, Sk Noim; Taplin, Ros [Graduate School of the Environment, Macquarie University, Sydney, NSW 2109 (Australia); Yu, Xiaojiang [Department of Geography, Hong Kong Baptist University, Kowloon (China)

    2007-12-15

    Bhutan's energy and environmental situation and approaches to development are reviewed and analyzed in this paper. Conservation of natural resources and human happiness have been placed as central strategic policy themes and have been given high priority in the national development plans of Bhutan. Bhutan's unique approach to development via Gross National Happiness (GNH) or the Middle Path of development is being facilitated by the Royal Government of Bhutan as a tool to balance poverty alleviation, environmental conservation and development. However, challenges exist due to the constraints of resources, good governance, legal frameworks, and human capacity. This paper reviews selected sustainable energy projects (e.g. energy from renewables or energy conservation) in Bhutan and finds that in fact, Bhutan's renewable energy resources (e.g. water and forests) which have proved to be indispensable for development are vulnerable due to the adverse impacts of climate change and environmental degradation. Appropriate measures in order to reduce potential environmental degradation and mitigate climate change impacts have been acknowledged globally and these have potential for application in Bhutan. For example, implementation of sustainable energy projects under the Clean Development Mechanism (CDM) of the Kyoto Protocol could offer an opportunity for mitigating climate change impacts and also contributing to sustainable development. (author)

  9. A Sustainable Energy Laboratory Course for Non-Science Majors

    Science.gov (United States)

    Nathan, Stephen A.; Loxsom, Fred

    2016-10-01

    Sustainable energy is growing in importance as the public becomes more aware of climate change and the need to satisfy our society's energy demands while minimizing environmental impacts. To further this awareness and to better prepare a workforce for "green careers," we developed a sustainable energy laboratory course that is suitable for high school and undergraduate students, especially non-science majors. Thirteen hands-on exercises provide an overview of sustainable energy by demonstrating the basic principles of wind power, photovoltaics, electric cars, lighting, heating/cooling, insulation, electric circuits, and solar collectors. The order of content presentation and instructional level (secondary education or college) can easily be modified to suit instructor needs and/or academic programs (e.g., engineering, physics, renewable and/or sustainable energy).

  10. Towards greener and more sustainable batteries for electrical energy storage

    Science.gov (United States)

    Larcher, D.; Tarascon, J.-M.

    2015-01-01

    Ever-growing energy needs and depleting fossil-fuel resources demand the pursuit of sustainable energy alternatives, including both renewable energy sources and sustainable storage technologies. It is therefore essential to incorporate material abundance, eco-efficient synthetic processes and life-cycle analysis into the design of new electrochemical storage systems. At present, a few existing technologies address these issues, but in each case, fundamental and technological hurdles remain to be overcome. Here we provide an overview of the current state of energy storage from a sustainability perspective. We introduce the notion of sustainability through discussion of the energy and environmental costs of state-of-the-art lithium-ion batteries, considering elemental abundance, toxicity, synthetic methods and scalability. With the same themes in mind, we also highlight current and future electrochemical storage systems beyond lithium-ion batteries. The complexity and importance of recycling battery materials is also discussed.

  11. Towards greener and more sustainable batteries for electrical energy storage.

    Science.gov (United States)

    Larcher, D; Tarascon, J-M

    2015-01-01

    Ever-growing energy needs and depleting fossil-fuel resources demand the pursuit of sustainable energy alternatives, including both renewable energy sources and sustainable storage technologies. It is therefore essential to incorporate material abundance, eco-efficient synthetic processes and life-cycle analysis into the design of new electrochemical storage systems. At present, a few existing technologies address these issues, but in each case, fundamental and technological hurdles remain to be overcome. Here we provide an overview of the current state of energy storage from a sustainability perspective. We introduce the notion of sustainability through discussion of the energy and environmental costs of state-of-the-art lithium-ion batteries, considering elemental abundance, toxicity, synthetic methods and scalability. With the same themes in mind, we also highlight current and future electrochemical storage systems beyond lithium-ion batteries. The complexity and importance of recycling battery materials is also discussed.

  12. Sustainability, Ethics and Nuclear Energy: Escaping the Dichotomy

    Directory of Open Access Journals (Sweden)

    Céline Kermisch

    2017-03-01

    Full Text Available In this paper we suggest considering sustainability as a moral framework based on social justice, which can be used to evaluate technological choices. In order to make sustainability applicable to discussions of nuclear energy production and waste management, we focus on three key ethical questions, namely: (i what should be sustained; (ii why should we sustain it; and (iii for whom should we sustain it. This leads us to conceptualize the notion of sustainability as a set of values, including safety, security, environmental benevolence, resource durability, and economic viability of the technology. The practical usefulness of sustainability as a moral framework is highlighted by demonstrating how it is applicable for understanding intergenerational dilemmas—between present and future generations, but also among different future generations—related to nuclear fuel cycles and radioactive waste management.

  13. Built Environment Energy Analysis Tool Overview (Presentation)

    Energy Technology Data Exchange (ETDEWEB)

    Porter, C.

    2013-04-01

    This presentation provides an overview of the Built Environment Energy Analysis Tool, which is designed to assess impacts of future land use/built environment patterns on transportation-related energy use and greenhouse gas (GHG) emissions. The tool can be used to evaluate a range of population distribution and urban design scenarios for 2030 and 2050. This tool was produced as part of the Transportation Energy Futures (TEF) project, a Department of Energy-sponsored multi-agency project initiated to pinpoint underexplored strategies for abating GHGs and reducing petroleum dependence related to transportation.

  14. The role of women in sustainable energy development

    Energy Technology Data Exchange (ETDEWEB)

    Cecelski, E.

    2000-07-13

    This paper explores the question of how sustainable energy development--specifically, decentralized renewable energy technologies--can complement and benefit from the goal of increasing women's role in development. It is based on a paper that was originally presented at the World Renewable Energy Congress-V held in Florence, Italy, in September 1998, as a contribution to the National Renewable Energy Laboratory's program on gender and energy.

  15. Watershed Scale Optimization to Meet Sustainable Cellulosic Energy Crop Demand

    Energy Technology Data Exchange (ETDEWEB)

    Chaubey, Indrajeet [Purdue Univ., West Lafayette, IN (United States); Cibin, Raj [Purdue Univ., West Lafayette, IN (United States); Bowling, Laura [Purdue Univ., West Lafayette, IN (United States); Brouder, Sylvie [Purdue Univ., West Lafayette, IN (United States); Cherkauer, Keith [Purdue Univ., West Lafayette, IN (United States); Engel, Bernard [Purdue Univ., West Lafayette, IN (United States); Frankenberger, Jane [Purdue Univ., West Lafayette, IN (United States); Goforth, Reuben [Purdue Univ., West Lafayette, IN (United States); Gramig, Benjamin [Purdue Univ., West Lafayette, IN (United States); Volenec, Jeffrey [Purdue Univ., West Lafayette, IN (United States)

    2017-03-24

    The overall goal of this project was to conduct a watershed-scale sustainability assessment of multiple species of energy crops and removal of crop residues within two watersheds (Wildcat Creek, and St. Joseph River) representative of conditions in the Upper Midwest. The sustainability assessment included bioenergy feedstock production impacts on environmental quality, economic costs of production, and ecosystem services.

  16. Sustainability, Ethics and Nuclear Energy : Escaping the Dichotomy

    NARCIS (Netherlands)

    Kermisch, C.F.N.; Taebi, B.

    2017-01-01

    In this paper we suggest considering sustainability as a moral framework based on social justice, which can be used to evaluate technological choices. In order to make sustainability applicable to discussions of nuclear energy production and waste management, we focus on three key ethical questions,

  17. Teaching Energy as Part of Education for Sustainability

    Science.gov (United States)

    Tas, Maarten; McKeon, Frankie; Charnley, Fiona; Fleming, Margaret

    2014-01-01

    This article describes how energy issues and education for sustainable development (ESD) are part of the agenda for two current European projects, CoDeS and SUSTAIN. The latter is mainly concerned with the development of inquiry-based primary and lower secondary science education while the former is a network that aims to learn more about…

  18. Two sustainable energy system analysis models

    DEFF Research Database (Denmark)

    Lund, Henrik; Goran Krajacic, Neven Duic; da Graca Carvalho, Maria

    2005-01-01

    This paper presents a comparative study of two energy system analysis models both designed with the purpose of analysing electricity systems with a substantial share of fluctuating renewable energy....

  19. sustainable development of national energy resources

    African Journals Online (AJOL)

    RAYAN_

    Committee on International Law on Sustainable Development in 2003 and submitted its fifth and final report at .... and gas are shared natural resources, with a recent attempt by the ILC Special Rapporteur on Shared ..... the principles, and widely varying consequences of their application depending on the specific context.

  20. Sustainable Welfare in Low Energy Societies

    DEFF Research Database (Denmark)

    Nørgaard, Jørgen

    1996-01-01

    The chapter presents some general basic concepts which are useful in analyzing future options for saving energy and thereby mitigate the environmental problems. Three factors are suggested as determinants of the energy demand, namely the population, the level of energy services (material welfare)...

  1. Investigation of Sustainable Energy Policy: Nairobi Case Study

    Science.gov (United States)

    Shengyuan, Y.; Habiyaremye, J. F. L.; Yingying, W.

    2017-07-01

    A plan for actively achieving green energy obligation is a strategic tool for policies that point forward the diminution of the fossil fuel consumption and greenhouse gas (GHG) in conformity with the Paris environment-friendly accords (COP21) and updates of other ecosystem agreements. To achieve the concrete implementation of the sustainable energy strategy (SES) and to accomplish its objectives, an investigation is a critical factor. SES investigation has to consider both the advancement of each particular action and its wide-ranging green effect, which necessitates multiple levels of improvement. In this study, a consolidated eco strategy for evaluating, monitoring and handling the SES via investigation and execution process is established. The city of Nairobi was used as one of the geographical positions to test the effectiveness of this approach and to investigate its robust and weak points. Specifically, benefit-cost analysis, reliability, peer review and general level of participation were renowned as vital tools for attaining a functional SES investigation and for then drafting successful energy guidelines. Some suggestions were put forward to highlight the research and execution methods and to draw a road map of how SES can be strategically placed into practice.

  2. Biomass energy: Sustainable solution for greenhouse gas emission

    Science.gov (United States)

    Sadrul Islam, A. K. M.; Ahiduzzaman, M.

    2012-06-01

    Biomass is part of the carbon cycle. Carbon dioxide is produced after combustion of biomass. Over a relatively short timescale, carbon dioxide is renewed from atmosphere during next generation of new growth of green vegetation. Contribution of renewable energy including hydropower, solar, biomass and biofuel in total primary energy consumption in world is about 19%. Traditional biomass alone contributes about 13% of total primary energy consumption in the world. The number of traditional biomass energy users expected to rise from 2.5 billion in 2004 to 2.6 billion in 2015 and to 2.7 billion in 2030 for cooking in developing countries. Residential biomass demand in developing countries is projected to rise from 771 Mtoe in 2004 to 818 Mtoe in 2030. The main sources of biomass are wood residues, bagasse, rice husk, agro-residues, animal manure, municipal and industrial waste etc. Dedicated energy crops such as short-rotation coppice, grasses, sugar crops, starch crops and oil crops are gaining importance and market share as source of biomass energy. Global trade in biomass feedstocks and processed bioenergy carriers are growing rapidly. There are some drawbacks of biomass energy utilization compared to fossil fuels viz: heterogeneous and uneven composition, lower calorific value and quality deterioration due to uncontrolled biodegradation. Loose biomass also is not viable for transportation. Pelletization, briquetting, liquefaction and gasification of biomass energy are some options to solve these problems. Wood fuel production is very much steady and little bit increase in trend, however, the forest land is decreasing, means the deforestation is progressive. There is a big challenge for sustainability of biomass resource and environment. Biomass energy can be used to reduce greenhouse emissions. Woody biomass such as briquette and pellet from un-organized biomass waste and residues could be used for alternative to wood fuel, as a result, forest will be saved and

  3. Worldwide Engagement for Sustainable Energy Strategies

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2012-09-19

    Thirty-five years after the Agency's founding, the IEA responsibility for ensuring access to global oil supplies is still a core mandate -- but new energy-related concerns have arisen. Energy security is no longer only about oil. And the industrialised nations of the world are no longer the only major consumers of energy. Climate change driven by greenhouse gas emissions -- 60% of which derive from energy production or use -- is a growing threat. So energy policy was tasked with a new objective: to cut greenhouse gas emissions while maintaining economic growth.

  4. From The Human-Environment Theme Towards Sustainability – Danish Geography and Education for Sustainable Development

    DEFF Research Database (Denmark)

    Grindsted, Thomas Skou

    2013-01-01

    Research on geography in relation to education for sustainable development (ESD), has only recently climbed the research agenda. The geopolitics of intended learning outcomes in the ESD debate, carries policy that produce dilemmas and challenges confronted with disciplinary traditions. In this ar......Research on geography in relation to education for sustainable development (ESD), has only recently climbed the research agenda. The geopolitics of intended learning outcomes in the ESD debate, carries policy that produce dilemmas and challenges confronted with disciplinary traditions...... and climate change and how geographers articulate their role and function as knowledge on human-environment interactions changes. The analysis of the geographical education reveal that geographers’ find their discipline contribute considerably to ESD, and thus the human environment theme seems...

  5. World energy: Building a sustainable future

    Energy Technology Data Exchange (ETDEWEB)

    Schipper, L.; Meyers, S.

    1992-04-01

    As the 20th century draws to a close, both individual countries and the world community face challenging problems related to the supply and use energy. These include local and regional environmental impacts, the prospect of global climate and sea level change associated with the greenhouse effect, and threats to international relations in connection with oil supply or nuclear proliferation. For developing countries, the financial cost of providing energy to provide basic needs and fuel economic development pose an additional burden. To assess the magnitude of future problems and the potential effectiveness of response strategies, it is important to understand how and why energy use has changed in the post and where it is heading. This requires study of the activities for which energy is used, and of how people and technology interact to provide the energy services that are desired. The authors and their colleagues have analyzed trends in energy use by sector for most of the world`s major energy-consuming countries. The approach we use considers three key elements in each sector: the level of activity, structural change, and energy intensity, which expresses the amount of energy used for various activities. At a disaggregated level, energy intensity is indicative of energy efficiency. But other factors besides technical efficiency also shape intensity.

  6. World energy: Building a sustainable future

    Energy Technology Data Exchange (ETDEWEB)

    Schipper, L.; Meyers, S.

    1992-04-01

    As the 20th century draws to a close, both individual countries and the world community face challenging problems related to the supply and use energy. These include local and regional environmental impacts, the prospect of global climate and sea level change associated with the greenhouse effect, and threats to international relations in connection with oil supply or nuclear proliferation. For developing countries, the financial cost of providing energy to provide basic needs and fuel economic development pose an additional burden. To assess the magnitude of future problems and the potential effectiveness of response strategies, it is important to understand how and why energy use has changed in the post and where it is heading. This requires study of the activities for which energy is used, and of how people and technology interact to provide the energy services that are desired. The authors and their colleagues have analyzed trends in energy use by sector for most of the world's major energy-consuming countries. The approach we use considers three key elements in each sector: the level of activity, structural change, and energy intensity, which expresses the amount of energy used for various activities. At a disaggregated level, energy intensity is indicative of energy efficiency. But other factors besides technical efficiency also shape intensity.

  7. Energy solutions for sustainable development. Proceedings

    Energy Technology Data Exchange (ETDEWEB)

    Soenderberg Petersen, L.; Larsen, Hans (eds.)

    2007-05-15

    The Risoe International Energy Conference took place 22 - 24 May 2007. The conference focused on: 1) Future global energy development options. 2) Scenario and policy issues. 3) Measures to achieve low-level stabilization at, for example, 500 ppm CO2 concentrations in the atmosphere. 4) Local energy production technologies such as fuel cells, hydrogen, bio-energy and wind energy. 5) Centralized energy technologies such as clean coal technologies. 6) Providing renewable energy for the transport sector. 7) Systems aspects, differences between the various major regions throughout the world. 8) End-use technologies, efficiency improvements and supply links. 9) Security of supply with regard to resources, conflicts, black-outs, natural disasters and terrorism. (au)

  8. Sustainable Energy Development in Saudi Arabia

    Directory of Open Access Journals (Sweden)

    Mounir Belloumi

    2015-04-01

    Full Text Available The main objective of this research is to study the role of energy consumption in economic growth in Saudi Arabia over the period of 1971–2012 using the autoregressive distributed lag (ARDL cointegration procedure, and based on neoclassical growth, endogenous growth, and ecological-economics viewpoints. Our empirical results show the existence of a cointegrating relationship between the different variables investigated. In addition, all the inputs (conventional and non-conventional Granger cause economic growth in both the short and long runs. Our findings confirm the energy-led growth hypothesis in the case of Saudi Arabia. Hence, energy conservation policies may deteriorate economic growth in Saudi Arabia if they are not followed by measures that improve energy efficiency, energy saving technologies and encourage the investment and use of renewable energy sources such as solar and wind energies that can participate in the attenuation of climate changes.

  9. Wood Biomass Sustainability under the Renewable Energy Directive

    OpenAIRE

    GORDEEVA, Yelena

    2014-01-01

    The article studies the role of wood biomass as a source of renewable energy in the EU and the potential sustainability risks associated with the rapid growth in the use of wood stimulated by the Renewable Energy Directive (RED). Secondly the article discusses the RED's sustainability criteria and their applicability to wood biomass. Thirdly, the article analyzes the current legal framework for forest management that is referred to by the European Commission as "enough to provide assurances f...

  10. Overview of the Sustainable Energy Research at DTU

    DEFF Research Database (Denmark)

    Larsen, Hans Hvidtfeldt

    2014-01-01

    Most of the Danish expertise in sustainable energy is found at the Technical University of Denmark, where approximately 1,000 staff members are carrying out research into sustainable energy. The research activities cover a broad area of scientific fields, from production, conversion, systems...... and transport to storage and end-use consumption. DTU places great emphasis on this research taking place in close cooperation with internationally leading institutions and experts....

  11. Renewable energy sources for sustainable tourism in the Carpathian region

    Science.gov (United States)

    Mandryk, O. M.; Arkhypova, L. M.; Pobigun, O. V.; Maniuk, O. R.

    2016-08-01

    The use of renewable energy in sustainable tourism development of the region is grounded in the paper. There are three stages of selecting areas for projects of renewable energy sources: selection of potentially suitable area; consideration of exclusion criteria, detailed assessment of potential sites or areas. The factors of impact on spatial constraints and opportunities for building wind, solar and small hydro power plants on the parameters of sustainable tourism development in the Carpathian region were determined.

  12. Risoe DTU annual report 2008. Highlights from Risoe National Laboratory for Sustainable Energy, DTU

    Energy Technology Data Exchange (ETDEWEB)

    Pedersen, Birgit; Bindslev, H. (eds.)

    2009-08-15

    Risoe DTU is the National Laboratory for Sustainable Energy at the Technical University of Denmark. The research focuses on development of energy technologies and systems with minimal effect on climate, and contributes to innovation, education and policy. Risoe has large experimental facilities and interdisciplinary research environments, and includes the national centre for nuclear technologies. The 2008 annual report gives highlights on Risoe's research in the following areas: wind energy, bioenergy, solar energy, fusion energy, fuel cells and hydrogen, energy systems and climate change, and nuclear technologies. It also includes information on Education and training, Innovation and business, Research facilities, and Management, Personnel and Operating statements. (LN)

  13. Risoe DTU annual report 2009. Highlights from Risoe National Laboratory for Sustainable Energy, DTU

    Energy Technology Data Exchange (ETDEWEB)

    Pedersen, Birgit; Bindslev, H. (eds.)

    2010-06-15

    Risoe DTU is the National Laboratory for Sustainable Energy at the Technical University of Denmark. The research focuses on development of energy technologies and systems with minimal effect on climate, and contributes to innovation, education and policy. Risoe has large experimental facilities and interdisciplinary research environments, and includes the national centre for nuclear technologies. The 2009 annual report gives highlights on Risoe's research in the following areas: wind energy, bioenergy, solar energy, fusion energy, fuel cells and hydrogen, energy systems and climate change, and nuclear technologies. It also includes information on Education and training, Innovation and business, Research facilities, and Management, Personnel and Operating statements. (LN)

  14. A sustainable built environment: A new text book based on ecosystem theory

    OpenAIRE

    Van Bueren, E.M.; Van Bohemen, H.; Itard, L.C.M.; Visscher, H.J.

    2010-01-01

    With half of the world population living in urban areas and with the building sector as the largest industrial sector in the US and Europe, the built environment makes a significant contribution to sustainability problems, in terms of energy use, material extraction, waste production and land conversion. In a search for a common theoretical basis as foundation for the chosen multi-perspective approach, ecosystem theory appeared to be a powerful framework. A transdisciplinary team of teachers ...

  15. Sustainable urban built environment: Modern management concepts and evaluation methods

    Science.gov (United States)

    Ovsiannikova, Tatiana; Nikolaenko, Mariya

    2017-01-01

    The paper is focused on the analysis of modern concepts in urban development management. It is established that they are based on the principles of ecocentrism and anthropocentrism. The purpose of this research is to develop a system of quality indicators of urban built environment and justification of their application in management of city development. The need for observing the indicators characterizing the urban built environment in the planning of the territory development was proved. Based on the data and reports of the Russian and international organizations the analysis of the existing systems of urban development indicators is made. The suggested solution is to extend the existing indicators systems with that related to urban built environment quality which are recommended for planning urban areas development. The proposed system of indicators includes private, aggregate, normalized, and integrated urban built environment quality indicators using methods of economic-statistical and comparative analysis and index method. Application of these methods allowed calculating the indicators for urban areas of Tomsk Region. The results of calculations are presented in the paper. According to normalized indicators the priority areas for investment and development of urban areas were determined. The scenario conditions allowed estimating changes of quality indicators for urban built environment. Finally, the paper suggests recommendations for making management decisions when creating sustainable environment of life in urban areas.

  16. Work environment factors and work sustainability in Norwegian cooks.

    Science.gov (United States)

    Svedahl, Sindre Rabben; Svendsen, Kristin; Romundstad, Pål R; Qvenild, Torgunn; Strømholm, Tonje; Aas, Oddfrid; Hilt, Bjørn

    2016-01-01

    Cooks have increased morbidity and mortality. A high turnover has also been reported. We aimed to elucidate work environment and work sustainability in Norwegian cooks. A questionnaire inquiring about working conditions and work participation was sent to 2082 cooks who had qualified from 1988 onwards. Of these, 894 responded. Time at work was analyzed with Kaplan-Meier plots and possible determinants for quitting work as a cook was analyzed with Cox regression. The median time at work was 16.6 years. There were differences in sustainability between types of kitchens for both sexes (p = 0.00). The median time in the profession was 9.2 years for the cooks in restaurants, while the cooks in institutions and canteens showed a substantially higher sustainability with 75.4% still at work after 10 years, and 57% still at work after 20 years in the profession. Of those still at work as a cook, 91.4% reported a good or very good contentment, and the 67.4% who expected to stay in the profession the next 5 years frequently answered that excitement of cooking, the social working environment, and the creative features of cooking were reasons to continue. Musculoskeletal complaints were the most common health-related reason for leaving work as a cook, while working hours was the most common non-health-related reason. There are significant differences in work sustainability between the cooks in the different types of kitchens. The identified determinants for length of time in the occupation can be used for preventive purposes. This work is available in Open Access model and licensed under a CC BY-NC 3.0 PL license.

  17. Work environment factors and work sustainability in Norwegian cooks

    Directory of Open Access Journals (Sweden)

    Sindre Rabben Svedahl

    2016-02-01

    Full Text Available Objectives: Cooks have increased morbidity and mortality. A high turnover has also been reported. We aimed to elucidate work environment and work sustainability in Norwegian cooks. Material and Methods: A questionnaire inquiring about working conditions and work participation was sent to 2082 cooks who had qualified from 1988 onwards. Of these, 894 responded. Time at work was analyzed with Kaplan-Meier plots and possible determinants for quitting work as a cook was analyzed with Cox regression. Results: The median time at work was 16.6 years. There were differences in sustainability between types of kitchens for both sexes (p = 0.00. The median time in the profession was 9.2 years for the cooks in restaurants, while the cooks in institutions and canteens showed a substantially higher sustainability with 75.4% still at work after 10 years, and 57% still at work after 20 years in the profession. Of those still at work as a cook, 91.4% reported a good or very good contentment, and the 67.4% who expected to stay in the profession the next 5 years frequently answered that excitement of cooking, the social working environment, and the creative features of cooking were reasons to continue. Musculoskeletal complaints were the most common health-related reason for leaving work as a cook, while working hours was the most common non-health-related reason. Conclusions: There are significant differences in work sustainability between the cooks in the different types of kitchens. The identified determinants for length of time in the occupation can be used for preventive purposes.

  18. Bionic models for new sustainable energy technology

    Energy Technology Data Exchange (ETDEWEB)

    Tributsch, H. [Hahn-Meitner Inst., Dept. Solare Energetik, Berlin (Germany)

    2004-07-01

    Within the boundary conditions of an abundant, but diluted solar energy supply nature has successfully evolved sophisticated regenerative energy technologies, which are not yet familiar to human engineering tradition. Since until the middle of this century a substantial contribution of renewable energy to global energy consumption is required in order to limit environmental deterioration, bionic technologies may contribute to the development of commercially affordable technical options. Four biological energy technologies have been selected as examples to discuss the challenges, both in scientific and technological terms, as well as the material research aspects involved: photovoltaics based on irreversible kinetics, tensile water technology, solar powered protonic energy circuits, fuel cell catalysis based on abundant transition metals. (orig.)

  19. Small hydropower projects and sustainable energy development in Sri Lanka

    Energy Technology Data Exchange (ETDEWEB)

    Morimoto, R.; Munasinghe, M. [Cambridge Univ. (United Kingdom); Munasinghe Inst. for Development, Colombo (Sri Lanka); Yale Univ., New Haven, CT (United States)

    2005-07-01

    Sustainable development has evolved to encompass three major viewpoints: economic, social and environmental. Given the wide-ranging potential impacts of energy on national sustainable development, we review the linkages between these two topics. In the Sri Lanka case study presented here, the Sustainomics framework is used to assess the role of small hydroelectric power projects in sustainable energy development. Key variables represent economic, social and environmental dimensions. This analysis helps policy-makers compare and rank project alternatives more easily and effectively. The multi-dimensional analysis, which includes environmental and social variables, supplements the more conventional cost benefit analysis based on economic values alone. (Author)

  20. Energy solutions for sustainable development. Proceedings

    DEFF Research Database (Denmark)

    The Risø International Energy Conference took place 22 - 24 May 2007. The conference focused on: • Future global energy development options • Scenario and policy issues • Measures to achieve low-level stabilization at, for example, 500 ppm CO2 concentrations in the atmosphere • Local energy produ......, efficiency improvements and supply links • Security of supply with regard to resources, conflicts, black-outs, natural disasters and terrorism...

  1. Sustainable energy: choices, problems and opportunities

    OpenAIRE

    Elliott, David

    2003-01-01

    About the Book: The world's dependence on fossil fuels is widely acknowledged to be a major cause of rising levels of carbon dioxide in the atmosphere. Thus there is an urgent need to develop energy sources with lower environmental impact, with attention focusing on renewable energy sources. Concise, authoritative, up-to-date and readable, this book reviews various energy technologies, as well as taking a critical look at the political, social and economic aspects. Throughout, the emphasis is...

  2. Distributed Power Systems for Sustainable Energy

    Science.gov (United States)

    2012-10-01

    Base ALC Automatic Logic Corporation BEMS building energy management system BMS battery management system CHP combined heat and power DC...direct current DOD U.S. Department of Defense DSB Defense Science Board EES electric energy storage EMS energy management system EO Executive...Electrotechnical Commission IEEE Institute of Electrical and Electronics Engineers LCC life-cycle cost MPPT maximum power point of tracking NDAA National

  3. Sustainable biotechnology: sources of renewable energy

    National Research Council Canada - National Science Library

    Singh, Om V; Harvey, Steven P

    2010-01-01

    ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Anuj K. Chandel, Om V. Singh, and L.Venkateswar Rao 63 Tactical Garbage to Energy Refinery (TGER) . . . . . . . . . . . . . . . James J. Valdes and Jerry B. Warner...

  4. The Energy Union Pillars: Competitiveness, Security and Sustainability

    Directory of Open Access Journals (Sweden)

    Alina Ligia Dumitrescu

    2016-10-01

    Full Text Available This research focuses on the study of energy union, from the perspective of the three pillars: competitiveness, sustainability and security. The author uses descriptive research methodology to analyze the implementation of the main objectives of energy union. The article analyzes, based on the literature in the energy field, the weaknesses and the strengths of each pillar. The study findings show the opportunities, but also the challenges that hinder the development of energy union and identify the priorities for Romania.

  5. SUSTAINABLE DEVELOPMENT, ENERGY AND CLIMATE CHANGE IN THE EUROPEAN UNION

    Directory of Open Access Journals (Sweden)

    Andrei ROTH

    2015-04-01

    Full Text Available Through sustainable development the needs of the current generation are fulfilled without jeopardizing the opportunities of future generations. The concept takes into account economic, social and environmental considerations. It has a wide range of applications from natural resources to population growth and biodiversity. One of its most important themes is energy. In this area, sustainable development relates with resource availability and green house gases emissions. Also it takes into account the needs of people without access to energy, and their legitimate quest for development. For the European Union, sustainable development represents an overarching objective. The present article analyzes the concept from a theoretical perspective, contrasting its strong points and weaknesses. It highlights the relation between sustainable development, energetic resources and climate change. The EU policies results in the field of energy are analyzed from the perspective of resources, energetic dependency and climate change efforts.

  6. The Sustainable Energy Utility (SEU) Model for Energy Service Delivery

    Science.gov (United States)

    Houck, Jason; Rickerson, Wilson

    2009-01-01

    Climate change, energy price spikes, and concerns about energy security have reignited interest in state and local efforts to promote end-use energy efficiency, customer-sited renewable energy, and energy conservation. Government agencies and utilities have historically designed and administered such demand-side measures, but innovative…

  7. Sustainable energy policy in Honduras. Diagnosis and challenges

    Energy Technology Data Exchange (ETDEWEB)

    Flores, Wilfredo C. [National Directorate of Energy, Tegucigalpa (MDC), Honduras, Central America (United States); Universidad Nacional Autonoma de Honduras, Facultad de Ciencias, Escuela de Fisica, Tegucigalpa (MDC), Honduras, Central America (United States); Ojeda, Osvaldo A. [Universidad Nacional de la Patagonia San Juan Bosco (Argentina); Flores, Marco A.; Rivas, Francisco R. [Universidad Nacional Autonoma de Honduras, Facultad de Ciencias, Escuela de Fisica, Tegucigalpa (MDC), Honduras, Central America (United States)

    2011-02-15

    In view of having a still unexploited potential of natural resources available for clean energy and the possibility of using the regional electricity market in Central America, Honduras has several potential energy sources. The growing dependence on oil and the imminent increase in international prices of fossil fuels, coupled with the necessity of changing the energy sector arrangement, the State of Honduras has taken the lead for the development of a long-term sustainable energy policy. This energy policy must be able to develop various energy sources and guide both, the government and the private sector, to the planning and development of alternative energy sources and sustainable growth of the Honduran economy. In this paper, the various energy diagnoses and the potential for changing the Honduran energy mix are presented, as well as the investment required for sustainable management of the energy sector. Furthermore, the objectives of the energy policy and plan up to the year 2030 are presented, outlining the investment possibilities for the energy sector development, showing their costs and timeframes. (author)

  8. Sustainable development in Pemex: energy management

    Energy Technology Data Exchange (ETDEWEB)

    Hernandez, C.E.R. [Petroleos Mexicanos, Mexico (Mexico)

    2002-06-01

    In this paper, the author reviewed the energy management activities, over the last two years, of Petroleos Mexicanos, also known as Pemex. These activities generated substantial savings. A brief overview of Pemex was provided. The State Oil Company of Mexico, Pemex occupies the third rank of the world oil producers, and is in seventh place in terms of proven reserves. The gas production has earned the company the ninth spot, and it is in tenth place as far as its refining capacity is concerned. Pemex has annual revenues of 50, 000 million American dollars and operates in excess of 1,000 facilities. The energy management program implemented covered an experts network, training, campaigns, and information and monitoring system. Each of the components of the energy management system were reviewed. Linking each facility, the experts network was created to enhance the efficient use of energy. The Energy Saving and Environmental Protection campaign was held over the period 1999-2000 and involved the participation of 209 work sites. For its part, the Energy Efficient Use and Savings campaign took place in 2000-2001, involving 205 work sites. Both resulted in substantial savings. An internal carbon dioxide trading system was also implemented to improve air quality, and was designed to provide a cap and trade carbon dioxide emissions. The next phase involved the implementation of an information and monitoring system, which defined an Energy Consumption Index used in monthly reports. The next steps in the process were briefly outlined. 5 figs.

  9. MIT - Mighty Steps toward Energy Sustainability

    Energy Technology Data Exchange (ETDEWEB)

    Robinson, Alastair [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Regnier, Cindy [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Settlemyre, Kevin [Sustainable IQ, Inc., Arlington, MA (United States); Bosnic, Zorana [HOK, San Francisco, CA (United States)

    2012-07-01

    Massachusetts Institute of Technology (MIT) partnered with the U.S. Department of Energy (DOE) to develop and implement solutions to retrofit existing buildings to reduce energy consumption by at least 30% as part of DOE’s Commercial Building Partnerships (CBP) Program.1 Lawrence Berkeley National Laboratory (LBNL) provided technical expertise in support of this DOE program. MIT is one of the U.S.’s foremost higher education institutions, occupying a campus that is nearly 100 years old, with a building floor area totaling more than 12 million square feet. The CBP project focused on improving the energy performance of two campus buildings, the Ray and Maria Stata Center (RMSC) and the Building W91 (BW91) data center. A key goal of the project was to identify energy saving measures that could be applied to other buildings both within MIT’s portfolio and at other higher education institutions. The CBP retrofits at MIT are projected to reduce energy consumption by approximately 48%, including a reduction of around 72% in RMSC lighting energy and a reduction of approximately 55% in RMSC server room HVAC energy. The energy efficiency measure (EEM) package proposed for the BW91 data center is expected to reduce heating, ventilation, and air-conditioning (HVAC) energy use by 30% to 50%, depending on the final air intake temperature that is established for the server racks. The RMSC, an iconic building designed by Frank Gehry, houses the Computer Science and Artificial Intelligence Laboratory, the Laboratory for Information and Decision Systems, and the Department of Linguistics and Philosophy.

  10. Optimising the Environmental Sustainability of Short Rotation Coppice Biomass Production for Energy

    Directory of Open Access Journals (Sweden)

    Ioannis Dimitriou

    2014-12-01

    Full Text Available Background and Purpose: Solid biomass from short rotation coppice (SRC has the potential to significantly contribute to European renewable energy targets and the expected demand for wood for energy, driven mainly by market forces and supported by the targets of national and European energy policies. It is expected that in the near future the number of hectares under SRC will increase in Europe. Besides producing biomass for energy, SRC cultivation can result in various benefits for the environment if it is conducted in a sustainable way. This paper provides with an overview of these environmental benefits. Discussion and Conclusions: The review of existing literature shows that SRC helps to improve water quality, enhance biodiversity, prevent erosion, reduce chemical inputs (fertilizers, pesticides and mitigate climate change due to carbon storage. To promote and disseminate environmentally sustainable production of SRC, based on existing literature and own project experience, a set of sustainability recommendations for SRC production is developed. In addition to numerous environmental benefits, sustainable SRC supply chains can bring also economic and social benefits. However, these aspects of sustainability are not addressed in this paper since they are often country specific and often rely on local conditions and policies. The sustainable practices identified in this manuscript should be promoted among relevant stakeholder to stimulate sustainable local SRC production.

  11. An energy-economy-environment model for simulating the impacts of socioeconomic development on energy and environment.

    Science.gov (United States)

    Wang, Wenyi; Zeng, Weihua; Yao, Bo

    2014-01-01

    Many rapidly developing regions have begun to draw the attention of the world. Meanwhile, the energy and environmental issues associated with rapid economic growth have aroused widespread critical concern. Therefore, studying energy, economic, and environmental systems is of great importance. This study establishes a system dynamic model that covers multiple aspects of those systems, such as energy, economy, population, water pollution, air pollution, solid waste, and technology. The model designed here attempts to determine the impacts of socioeconomic development on the energy and environment of Tongzhou District in three scenarios: under current, planning, and sustainable conditions. The results reveal that energy shortages and water pollutions are very serious and are the key issues constraining future social and economic development. Solid waste emissions increase with population growth. The prediction results provide valuable insights into social advancement.

  12. An Energy-Economy-Environment Model for Simulating the Impacts of Socioeconomic Development on Energy and Environment

    Directory of Open Access Journals (Sweden)

    Wenyi Wang

    2014-01-01

    Full Text Available Many rapidly developing regions have begun to draw the attention of the world. Meanwhile, the energy and environmental issues associated with rapid economic growth have aroused widespread critical concern. Therefore, studying energy, economic, and environmental systems is of great importance. This study establishes a system dynamic model that covers multiple aspects of those systems, such as energy, economy, population, water pollution, air pollution, solid waste, and technology. The model designed here attempts to determine the impacts of socioeconomic development on the energy and environment of Tongzhou District in three scenarios: under current, planning, and sustainable conditions. The results reveal that energy shortages and water pollutions are very serious and are the key issues constraining future social and economic development. Solid waste emissions increase with population growth. The prediction results provide valuable insights into social advancement.

  13. BPS, energy efficiency and renewable energy sources for buildings greening and zero energy cities planning harmony and ethics of sustainability

    Energy Technology Data Exchange (ETDEWEB)

    Todorovic, Marija S. [University of Belgrade, Serbia and Southeast University (China)

    2011-07-01

    Traditional village houses now use renewable materials and energy sources and this paper presents the intrinsic harmony of these buildings' greening and their sustainability. The paper covers building technical systems, sustainable energy supply, and the importance of renewable raw materials (RMS) for sustainable development. This study investigated the role of building dynamic behavior and optimized energy efficiency in reducing thermal loads significantly. A preliminary design for sustainable energy efficient settlements with net zero energy buildings is proposed and a comprehensive multidisciplinary engineering study was done which identified the technical feasibility of sustainable village energy and water supplies using solar or wind technologies. Overall, through analysis of sustainability definitions and possible ways to achieve sustainability, the study demonstrated that this can only be brought about by interdisciplinary interaction and finding the right balance between materiality and spirituality, science and art, and between technological development and concern for cultural and other human values.

  14. Technical Design of Flexible Sustainable Energy Systems

    DEFF Research Database (Denmark)

    Lund, Henrik

    2003-01-01

    The paper presents technical designs of potential future flexible energy systems in Denmark, which will be able both to balance production and demand and to secure voltage and frequency requirements on the grid....

  15. Less is More: DoD’s Strategy for Facility Energy Security and Environmental Sustainability

    Science.gov (United States)

    2012-05-22

    Force: 3 Edwards AFB Nellis AFB (including NTTR) Creech AFB Marine Corps: 3 MCAGCC Twentynine Palms MCLB Barstow Chocolate Mountain Aerial...you that DoD is helping to lead this nation when it comes to preserving our environment and building a more sustainable and secure energy future. ”

  16. Certification criteria for sustainable biomass for energy

    OpenAIRE

    Ladanai, Svetlana; Vinterbäck, Johan

    2010-01-01

    Rising energy prices, geopolitics as well as concerns over increasing oil prices, national security, and the impacts of greenhouse gas emissions on global climate change are driving large-scale efforts to implement bioenergy alternatives. Biomass fuels offer many new opportunities, but if not managed carefully, they may also carry significant risks. Biomass in this context is non-fossil material of biological origin from forest, energy crops, agriculture and different kind of w...

  17. Policies and programs for sustainable energy innovations renewable energy and energy efficiency

    CERN Document Server

    Kim, Jisun; Iskin, Ibrahim; Taha, Rimal; Blommestein, Kevin

    2015-01-01

    This volume features research and case studies across a variety of industries to showcase technological innovations and policy initiatives designed to promote renewable energy and sustainable economic development. The first section focuses on policies for the adoption of renewable energy technologies, the second section covers the evaluation of energy efficiency programs, and the final section provides evaluations of energy technology innovations. Environmental concerns, energy availability, and political pressure have prompted governments to look for alternative energy resources that can minimize the undesirable effects for current energy systems.  For example, shifting away from conventional fuel resources and increasing the percentage of electricity generated from renewable resources, such as solar and wind power, is an opportunity to guarantee lower CO2 emissions and to create better economic opportunities for citizens in the long run.  Including discussions of such of timely topics and issues as global...

  18. The sustainable nuclear energy technology platform. A vision report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2007-07-01

    Nuclear fission energy can deliver safe, sustainable, competitive and practically carbon-free energy to Europe's citizens and industries. Within the framework of the Strategic Energy Technology Plan (SET Plan), the European Commission's stakeholders in this field have formulated a collective vision of the contributions this energy could make towards Europe's transition to a low-carbon energy mix by 2050, with the aim of integrating and expanding R and D capabilities in order to further this objective. The groundwork has been prepared by the stakeholders listed in Annex II, within the framework of two EURATOM FP6 (Sixth Framework Programme) Coordination Actions, namely SNF-TP (Sustainable Nuclear Fission Technology Platform) and PATEROS (Partitioning and Transmutation European Road-map for Sustainable Nuclear Energy), with contributions from Europe's technical safety organisations. This vision report prepares the launch of the European Technology Platform on Sustainable Nuclear Energy (SNE-TP). It proposes a vision for the short-, medium- and long-term development of nuclear fission energy technologies, with the aim of achieving a sustainable production of nuclear energy, a significant progress in economic performance, and a continuous improvement of safety levels as well as resistance to proliferation. In particular, this document proposes road-maps for the development and deployment of potentially sustainable nuclear technologies, as well as actions to harmonize Europe's training and education, whilst renewing its research infrastructures. Public acceptance is also an important issue for the development of nuclear energy. Therefore, research in the fields of nuclear installation safety, protection of workers and populations against radiation, management of all types of waste, and governance methodologies with public participation will be promoted. The proposed road-maps provide the backbone for a strategic research agenda (SRA) to maintain

  19. On the path to sustainability: Key issues on Nigeria’s sustainable energy development

    Directory of Open Access Journals (Sweden)

    Norbert Edomah

    2016-11-01

    Full Text Available In the face of scarcity of energy resources and rising energy prices due primarily to a world of increasing demand, energy security concerns becomes more crucial both for private and public sector alike. At the same time, energy policies have been shifting and policy changes have become hard to predict because of radical changes in energy supply. This paper analyzes the barriers to sustainable energy development in Nigeria which are: (1 cost and pricing barriers, (2 legal and regulatory barriers, (3 market performance barriers. It concludes by highlighting some key policies that can help address some of the identified barriers in order to ensure a secured sustainable energy future for Nigeria.

  20. Mass transport in reverse electrodialysis for sustainable energy generation

    NARCIS (Netherlands)

    Dlugolecki, P.E.

    2009-01-01

    Reverse electrodialysis (RED) is a promising and potentially attractive technology for the generation of sustainable energy from the mixing of salt and fresh water. It uses the free energy of mixing two solutions of different salinity (e.g. river and sea water) to generate power. In RED, a

  1. Materials and membrane technologies for water and energy sustainability

    KAUST Repository

    Le, Ngoc Lieu

    2016-03-10

    Water and energy have always been crucial for the world’s social and economic growth. Their supply and use must be sustainable. This review discusses opportunities for membrane technologies in water and energy sustainbility by analyzing their potential applications and current status; providing emerging technologies and scrutinizing research and development challenges for membrane materials in this field.

  2. Energy Performance of Buildings - The European Approach to Sustainability

    DEFF Research Database (Denmark)

    Heiselberg, Per

    2006-01-01

    This paper presents the European approach to improve sustainability in the building sector, which has a very high potential for considerable reduction of energy consumption in the coming years. By approving the Energy Performance in Buildings Directive the European Union has taken a strong...

  3. Energy Sustainability: It's Easier (and Cheaper) than You Think

    Science.gov (United States)

    Smith, Molly; Peterson, David

    2010-01-01

    In this economy, it's hard to implement any kind of school facility improvement plan with tight budgets and rising energy costs. The following strategies and suggestions are just some of the many ways schools can reach toward sustainability. In creating this presentation, our objective was to point out what you can do to save energy right now with…

  4. Sustainable Energy for University Science Majors: Developing Guidelines for Educators

    Science.gov (United States)

    Langbeheim, Elon; Rez, Peter

    2017-01-01

    This paper describes the basic tenets of a sustainable energy course for university science majors. First, it outlines the three core components of the course: (1) The scientific evidence for the connection between climate change and energy usage; (2) An analysis of the capacity and environmental impact of various renewable and traditional energy…

  5. Biomass in a sustainable energy system

    Energy Technology Data Exchange (ETDEWEB)

    Boerjesson, Paal

    1998-04-01

    In this thesis, aspects of an increase in the utilization of biomass in the Swedish energy system are treated. Modern bioenergy systems should be based on high energy and land use efficiency since biomass resources and productive land are limited. The energy input, including transportation, per unit biomass produced is about 4-5% for logging residues, straw and short rotation forest (Salix). Salix has the highest net energy yield per hectare among the various energy crops cultivated in Sweden. The CO{sub 2} emissions from the production and transportation of logging residues, straw and Salix, are equivalent to 2-3% of those from a complete fuel-cycle for coal. Substituting biomass for fossil fuels in electricity and heat production is, in general, less costly and leads to a greater CO{sub 2} reduction per unit biomass than substituting biomass derived transportation fuels for petrol or diesel. Transportation fuels produced from cellulosic biomass provide larger and less expensive CO{sub 2} emission reductions than transportation fuels from annual crops. Swedish CO{sub 2} emissions could be reduced by about 50% from the present level if fossil fuels are replaced and the energy demand is unchanged. There is a good balance between potential regional production and utilization of biomass in Sweden. Future biomass transportation distances need not be longer than, on average, about 40 km. About 22 TWh electricity could be produced annually from biomass in large district heating systems by cogeneration. Cultivation of Salix and energy grass could be utilized to reduce the negative environmental impact of current agricultural practices, such as the emission of greenhouse gases, nutrient leaching, decreased soil fertility and erosion, and for the treatment of municipal waste and sludge, leading to increased recirculation of nutrients. About 20 TWh biomass could theoretically be produced per year at an average cost of less than 50% of current production cost, if the economic

  6. World in transition 3 towards sustainable energy systems

    CERN Document Server

    2014-01-01

    'The publication of World in Transition: Towards Sustainable Energy Systems is timely indeed. The World Summit on Sustainable Development gave great prominence to this challenge, but failed to agree on a quantitative, time-bound target for the introduction of renewable energy sources. The German Advisory Council on Global Change (WBGU) has now produced a report with a global focus, which is essential in view of the global impacts of climate change. The report provides a convincing long-term analysis, which is also essential. Global energy policies have to take a long-term perspective, over the

  7. Implementation of sustainable energy programs in developing countries

    Energy Technology Data Exchange (ETDEWEB)

    Spitalnik, J. [FEBRAE, Rio Janeiro (Brazil)

    2001-07-01

    Energy, a major contributor to development, is an essential element for increasing quality of life. During the next decades, the developing world will experience an explosive increase of energy demand, requiring enormous efforts and ingenuity to be fully satisfied. Delays may create public frustration for not achieving paradigm levels of quality of life, giving eventually rise to serious pressures on governments. The concept of sustainable energy options for development cannot be analyzed under the same prism in developed and developing countries. The relative degree of a country development should be introduced when setting up the path to sustainable development. (author)

  8. Sustainable energy systems: Limitations and challenges based on exergy analysis

    OpenAIRE

    Woudstra, N.

    2012-01-01

    General There is a general understanding that the so-called “developed countries” have to change their way of life including their energy supply into a more sustainable way. But even in the case of unanimity with regard to the direction, there are still many opinions about the way to follow. This thesis discusses problems and possibilities of more sustainable energy systems first of all for the energy supply of the Netherlands. The “trias energetica” is used to distinguish the steps that have...

  9. Sustainable Mobility: Longitudinal Analysis of Built Environment on Transit Ridership

    Directory of Open Access Journals (Sweden)

    Dohyung Kim

    2016-10-01

    Full Text Available Given the concerns about urban mobility, traffic congestion, and greenhouse gas (GHG emissions, extensive research has explored the relationship between the built environment and transit ridership. However, the nature of aggregation and the cross-sectional approach of the research rarely provide essential clues on the potential of a transit system as a sustainable mobility option. From the perspective of longitudinal sustainability, this paper develops regression models for rail transit stations in the Los Angeles Metro system. These models attempt to identify the socio-demographic characteristics and land use features influencing longitudinal transit ridership changes. Step-wise ordinary least square (OLS regression models are used to identify factors that contribute to transit ridership changes. Those factors include the number of dwelling units, employment-oriented land uses such as office and commercial land uses, and land use balance. The models suggest a negative relationship between job and population balance with transit ridership change. They also raise a question regarding the 0.4 km radius commonly used in transit analysis. The models indicate that the 0.4 km radius is too small to capture the significant influence of the built environment on transit ridership.

  10. Sustainable Biofuel Project: Emergy Analysis of South Florida Energy Crops

    Energy Technology Data Exchange (ETDEWEB)

    Amponsah, Nana Yaw [Intelligentsia International, Inc., LaBelle, FL (United States); Izursa, Jose-Luis [Intelligentsia International, Inc., LaBelle, FL (United States); Hanlon, Edward A. [Univ. of Florida, Gainesville, FL (United States). Soil and Water Sciences Dept.; Capece, John C. [Intelligentsia International, Inc., LaBelle, FL (United States)

    2012-11-15

    This study evaluates the sustainability of various farming systems, namely (1) sugarcane on organic and mineral soils and (2) energycane and sweet sorghum on mineral soils. The primary objective of the study is to compare the relative sustainability matrices of these energy crops and their respective farming systems. These matrices should guide decision and policy makers to determine the overall sustainability of an intended or proposed bioethanol project related to any of these studied crops. Several different methods of energy analysis have been proposed to assess the feasibility or sustainability of projects exploiting natural resources (such as (Life Cycle Analysis, Energy Analysis, Exergy Analysis, Cost Benefit Analysis, Ecological Footprint, etc.). This study primarily focused on the concept of Emergy Analysis, a quantitative analytical technique for determining the values of nonmonied and monied resources, services and commodities in common units of the solar energy it took to make them. With this Emergy Analysis study, the Hendry County Sustainable Biofuels Center intends to provide useful perspective for different stakeholder groups to (1) assess and compare the sustainability levels of above named crops cultivation on mineral soils and organic soils for ethanol production and (2) identify processes within the cultivation that could be targeted for improvements. The results provide as much insight into the assumptions inherent in the investigated approaches as they do into the farming systems in this study.

  11. A source of energy : sustainable architecture and urbanism

    Energy Technology Data Exchange (ETDEWEB)

    Roestvik, Harald N.

    2011-07-01

    An update on the environmental challenges. Meant to inspire and be a source of energy.Tearing down myths and floodlighting paradoxes. Particularly relevant for students of architecture, architects and concerned citizens. Training tasks, recommendations for further source books and web sites, are included. From the content: Climate change and consensus, Population growth, Food production, The sustainable city, Transportation myths and facts, A mini history of environmental architecture, Architects' approach to sustainable design, The failure of western architects; a case study; China, The passive, zeb and plus energy building, Natural ventilation, Sustainable materials, Plastics in building, Nuclear energy, Solar energy, The grid of the future, Indoor climate and health. The sick building syndrome, Radon, Universal design, Paradoxes, Bullying techniques, Trust yourself, Timing, Which gateway will you choose?, On transience. (au)

  12. Border Patrol: Professional Jurisdictions in Sustainable Urban Environments

    Directory of Open Access Journals (Sweden)

    Rebecca Henn

    2013-03-01

    Full Text Available According to the United Nations, our world is becoming more populated, more urban, more connected, more globalized, and more complex. With this physical and social complexity comes a need for increased coordination in negotiating our urban futures. Environmental design and planning professionals have worked for decades according to traditional institutionalized role structures. Sustainability—in considering a wider variety of stakeholders—promises not only to include more members in the typical design and construction team (e.g., sustainability consultants, community representatives, technical specialists, etc., but also to change the jurisdiction of tasks (e.g., project management, decision making, design leadership, etc. taken on by actors in traditional roles (e.g., owner, architect, contractor, etc.. This paper examines how a wider social concern for environmental and social sustainability has affected the design and construction industry. Organizational and sociological theories suggest that professions are “bound to a set of tasks by ties of jurisdiction... [P]rofessions make up an interacting system... and a profession’s success reflects as much the situations of its competitors and the system structure as it does the profession’s own efforts” (Abbott 1988: 33. Abbott also suggests that “larger social forces” affect the structuring of professional boundaries. Treating sustainability as a “larger social force,” this paper examines current understandings of professional boundaries in the planning, design, and construction of our environments. It answers questions of how professionals renegotiate roles, responsibilities, and compensation when dealing with an uncertain change in traditional processes.The qualitative data stem from three university building projects. Each project was proposed ab initio without a mandate to achieve LEED Certification, but this complex criterion was subsequently added at different phases of

  13. World Sustainable Energy Days Next 2014

    CERN Document Server

    Egger, Christiane

    2015-01-01

    These conference proceedings contain contributions to one of Europe’s largest annual conferences on energy efficiency and renewable energy. From two main fields – biomass and energy efficiency in buildings – contributions offer an insight into the research work and the scientific findings and developments of young researchers from all over the world. The papers were selected by a high-level scientific committee for oral presentation. They also communicate results, trends and opinions that will concern and influence the world’s energy experts and policy makers over the next decades. The conference was held from 26-27 February 2014. The conference The conference is organized by the Energy Agency of Upper Austria (OÖ Energiesparverband) and held in Wels annually in February or March. It attracts more than 700 experts from over 50 countries every year. The Editors Christiane Egger is the deputy managing director of the OÖ Energiesparverband and the Manager of the Ökoenergie-Cluster, a network of 160 co...

  14. Sustainable energy policy in Honduras: Diagnosis and challenges

    Energy Technology Data Exchange (ETDEWEB)

    Flores, Wilfredo C. [National Directorate of Energy, Tegucigalpa (MDC) (Honduras); Universidad Nacional Autonoma de Honduras, Facultad de Ciencias, Escuela de Fisica, Tegucigalpa (MDC) (Honduras); Ojeda, Osvaldo A. [Universidad Nacional de la Patagonia San Juan Bosco (Argentina); Flores, Marco A.; Rivas, Francisco R. [Universidad Nacional Autonoma de Honduras, Facultad de Ciencias, Escuela de Fisica, Tegucigalpa (MDC) (Honduras)

    2011-02-15

    In view of having a still unexploited potential of natural resources available for clean energy and the possibility of using the regional electricity market in Central America, Honduras has several potential energy sources. The growing dependence on oil and the imminent increase in international prices of fossil fuels, coupled with the necessity of changing the energy sector arrangement, the State of Honduras has taken the lead for the development of a long-term sustainable energy policy. This energy policy must be able to develop various energy sources and guide both, the government and the private sector, to the planning and development of alternative energy sources and sustainable growth of the Honduran economy. In this paper, the various energy diagnoses and the potential for changing the Honduran energy mix are presented, as well as the investment required for sustainable management of the energy sector. Furthermore, the objectives of the energy policy and plan up to the year 2030 are presented, outlining the investment possibilities for the energy sector development, showing their costs and timeframes. - Research Highlights: {yields} This paper shows the development of a long-term energy policy for Honduras. {yields} The various diagnoses of the energy sector in Honduras are shown, considering the use of wood, biomass, biofuels, electricity, transportation, hydrocarbons and rural electrification. {yields} The most relevant results of the analysis of energy forecasting are shown, for which the LEAP software was used. {yields} The objectives of the energy policy and plan up to the year 2030 are presented, outlining the investment possibilities for the energy sector development, showing their costs and timeframes.

  15. Can Future Energy Needs be Met Sustainably?

    CERN Multimedia

    CERN. Geneva

    2015-01-01

    After briefly reviewing trends in energy demand, supply and efficiency, I will focus on the potential and outlook for the major low carbon energy sources - in order of decreasing current importance: bioenergy, hydro, nuclear, wind and solar. Together, they are sufficiently abundant to replace fossil fuels, which would presumably happen if they were economically competitive. I will discuss how close low carbon sources are to being competitive (which in the case of wind and solar depends on the cost of integrating large-scale intermittent supply), and the tech...

  16. Policy Means for Sustainable Energy Scenarios

    DEFF Research Database (Denmark)

    Meyer, Niels I; Nørgaard, Jørgen

    2011-01-01

    Consequences of global warming are appearing much faster than assumed just a few years ago and irreversible ”tipping points” are few years ahead (IPCC, 2007; Hansen et al., 2008; Kopp et al., 2009). Despite long and tedious preparations for COP15 in December 2009 the final result (Copenhagen Accord......, 2009) lacked sufficient concrete commitments for reduction of greenhouse gases (GHGs) after 2012 when the Kyoto Protocol expires. Human activities in their present form are strongly dependent on the supply of energy. A dominant part of the global energy supply is based on fossil fuels and a dominant...

  17. The missing link in sustainable energy

    DEFF Research Database (Denmark)

    Blarke, Morten Boje

    This thesis investigates options for handling the problem of intermittency related to large-scale penetration of wind power into the West Danish energy system. But rather than being a story about wind power, the thesis explores the principles by which distributed energy plants could be better...... %. However, the thesis claims that increased costs may be acceptable as these concepts will reduce the need for investments in cross-national infrastructure. The most cost-effective concepts for increasing the wind-friendliness of existing distributed generators relies on installing a relatively small heat...

  18. Sustainable energy for all? Linking poor communities to modern energy services

    Energy Technology Data Exchange (ETDEWEB)

    Wilson, Emma; Godfrey Wood, Rachel; Garside, Ben

    2012-12-15

    This paper explores energy delivery models that provide sustainable and clean energy services to the poor. Four key building blocks are: the implementation process, including finance, resource sourcing, conversion and end use; support services (additional services such as training or micro-finance facilities); the enabling environment of policies, regulations and incentives; and the socio-cultural context including local norms and preferences, decision-making structures and levels of social cohesion. A range of products and services targeted at communities located in diverse socio-cultural and geographical contexts are covered. Useful experiences are shared that can help to replicate or scale up successful models that link the poor to modern energy markets. The case studies were selected to illustrate a range of energy products and services, diverse socio-cultural contexts, various business models and partnerships, and varying degrees of formality in the markets under consideration. All of the case studies reveal the challenges of reaching the very poorest even with pro-poor innovations put in place. The four case studies explored in the paper are: The Project for Renewable Energy in Rural Markets (PERMER), Argentina; Portable solar product companies (Tough Stuff and d.light) in southern Asia and sub-Saharan Africa; The Anagi stove in Sri Lanka; and, Micro-hydro development in Nepal (the Rural Energy Development Programme). Lessons learned are highlighted.

  19. Urban sustainable energy development: A case study of the city of Philadelphia

    Science.gov (United States)

    Argyriou, Iraklis

    This study explores the role of cities in sustainable energy development through a governance-informed analysis. Despite the leading position of municipalities in energy sustainability, cities have been mostly conceptualized as sites where energy development is shaped by external policy scales, i.e. the national level. A growing body of research, however, critiques this analytical perspective, and seeks to better understand the type of factors and dynamics that influence energy sustainability within a multi-level policy context for urban energy. Given that particular circumstances are applicable across cities, a context-specific analysis can provide insight regarding how sustainable energy development takes place in urban areas. In applying such an analytical perspective on urban energy sustainability, this study undertakes a qualitative case study analysis for the city of Philadelphia, Pennsylvania, by looking at four key local policy initiatives relevant to building energy efficiency and solar electricity development at the municipal government and city-wide level. The evaluation of the initiatives suggests that renewable electricity use has increased substantially in the city over the last years but the installed capacity of local renewable electricity systems, including solar photovoltaics, is low. On the other hand, although the city has made little progress in meeting its building energy efficiency targets, more comprehensive action is taken in this area. The study finds that the above outcomes have been shaped mainly by four factors. The first is the city government's incremental policy approach aiming to develop a facilitative context for local action. The second is the role that a diverse set of stakeholders have in local sustainable energy development. The third is the constraints that systemic policy barriers create for solar power development. The fourth is the ways through which the relevant multi-level policy environment structures the city

  20. Sustainable urban regeneration based on energy balance

    NARCIS (Netherlands)

    Van Timmeren, A.; Zwetsloot, J.; Brezet, H.; Silvester, S.

    2012-01-01

    In this paper, results are reported of a technology assessment of the use and integration of decentralized energy systems and storage devices in an urban renewal area. First the general context of a different approach based on 'rethinking' and the incorporation of ongoing integration of coming

  1. Energy sustainability performance of the regional economy

    Directory of Open Access Journals (Sweden)

    N. I. Danilov

    2005-03-01

    Full Text Available The results of the study of the dynamics of energy intensity of gross regional product of the Sverdlovsk region for the period 1996 - 2003 years. and projections for the period up to 2015. The principal possibility of growth performance of the regional economy, without a significant increase in the consumption of primary fuel.

  2. Operationalizing Sustainable Development Suncor Energy Inc: A critical case

    Science.gov (United States)

    Fergus, Andrew

    The concept of Sustainable Development is often understood as a framework within which organizations are able to move forward in a successful and beneficial manner. However, it is also seen as an ambiguous notion with little substance beyond a hopeful dialogue. If we are to base organizational action upon the concepts of Sustainable Development, it is vital that we comprehend the implications of how the concept is understood at a behavioral level. Industry leaders, competitors, shareholders, and stakeholders recognize Suncor Energy Inc as a leading organization within the Oil and Gas energy field. In particular it has a reputation for proactive thinking and action within the areas of environmental and social responsibility. Through attempting to integrate the ideas of Sustainable Development at a foundational level into the strategic plan, the management of Suncor Energy Inc has committed the organization to be a sustainable energy company. To achieve this vision the organization faces the challenge of converting strategic goals into operational behaviors, a process critical for a successful future. This research focuses on understanding the issues found with this conversion process. Through exploring a critical case, this research illuminates the reality of a best-case scenario. The findings thus have implications for both Suncor Energy Inc and more importantly all other organizations attempting to move in a Sustainable Development direction.

  3. Sustainability and Energy Efficiency in the Automotive Sector

    CERN Multimedia

    CERN. Geneva

    2013-01-01

    Since this year there can be no doubt that "sustainability" has become the top issue in the automotive sector. Volkswagen's CEO Prof. Dr. Martin Winterkorn attacked incumbents like BMW Group (so far the "most sustainable car manufacturer" for the 8th consecutive year) or Toyota (producer of the famous "Prius") head-on by boldly stating to become "the most profitable and most sustainable car manufacturer worldwide by 2018" . This announcement clearly shows that "sustainability" and "profitability" no longer are considered as conflicting targets. On the contrary, to Prof. Dr. Winterkorn : "climate protection is a driver for economic growth". To prime discussions, the plenary talk will give a brief overview of the entire range of energy efficiency in the automotive sector: based on the multiple drivers behind energy efficiency, practical examples are presented along the entire life-cycle of cars (R&D, production, usage and recycling). These "cases" include big automobile producers as well as their respectiv...

  4. Energy justice and foundations for a sustainable sociology of energy

    Science.gov (United States)

    Holleman, Hannah Ann

    This dissertation proposes an approach to energy that transcends the focus on energy as a mere technical economic or engineering problem, is connected to sociological theory as a whole, and takes issues of equality and ecology as theoretical starting points. In doing so, the work presented here puts ecological and environmental sociological theory, and the work of environmental justice scholars, feminist ecologists, and energy scholars, in a context in which they may complement one another to broaden the theoretical basis of the current sociology of energy. This theoretical integration provides an approach to energy focused on energy justice. Understanding energy and society in the terms outlined here makes visible energy injustice, or the interface between social inequalities and ecological depredations accumulating as the social and ecological debts of the modern energy regime. Systems ecology is brought into this framework as a means for understanding unequal exchange, energy injustice more generally, and the requirements for long-term social and ecological reproduction in ecological terms. Energy developments in Ecuador and Cuba are used here as case studies in order to further develop the idea of energy justice and the theory of unequal ecological exchange. The point is to broaden the framework of the contemporary critical sociology of energy, putting energy justice at its heart. This dissertation contains previously published and unpublished co-authored material.

  5. Innovative paths for providing green energy for sustainable global economic growth

    Science.gov (United States)

    Singh, Rajendra; Alapatt, G. F.

    2012-10-01

    According to United Nation, world population may reach 10.1 billion by the year 2100. The fossil fuel based global economy is not sustainable. For sustainable global green energy scenario we must consider free fuel based energy conversion, environmental concerns and conservation of water. Photovoltaics (PV) offers a unique opportunity to solve the 21st century's electricity generation because solar energy is essentially unlimited and PV systems provide electricity without any undesirable impact on the environment. Innovative paths for green energy conversion and storage are proposed in areas of R and D, manufacturing and system integration, energy policy and financing. With existing silicon PV system manufacturing, the implementation of new innovative energy policies and new innovative business model can provide immediately large capacity of electricity generation to developed, emerging and underdeveloped economies.

  6. Multi-Criteria Evaluation of Energy Systems with Sustainability Considerations

    OpenAIRE

    Despoina E. Keramioti; Christos A. Frangopoulos

    2010-01-01

    A multi-criteria approach is presented for the assessment of alternative means for covering the energy needs (electricity and heat) of an industrial unit, taking into consideration sustainability aspects. The procedure is first described in general terms: proper indicators are defined; next they are grouped in order to form sub-indices, which are then used to determine the composite sustainability index. The procedure is applied for the evaluation of three alternative systems. The three syste...

  7. Limitations of Nuclear Power as a Sustainable Energy Source

    OpenAIRE

    Pearce, Joshua M.

    2012-01-01

    This paper provides a review and analysis of the challenges that nuclear power must overcome in order to be considered sustainable. The results make it clear that not only do innovative technical solutions need to be generated for the fundamental inherent environmental burdens of nuclear energy technology, but the nuclear industry must also address difficult issues of equity both in the present and for future generations. The results show that if the concept of just sustainability&l...

  8. Green Tribology Biomimetics, Energy Conservation and Sustainability

    CERN Document Server

    Bhushan, Bharat

    2012-01-01

    Tribology is the study of friction, wear and lubrication. Recently, the concept of “green tribology” as “the science and technology of the tribological aspects of ecological balance and of environmental and biological impacts” was introduced. The field of green tribology includes tribological technology that mimics living nature (biomimetic surfaces) and thus is expected to be environmentally friendly, the control of friction and wear that is of importance for energy conservation and conversion, environmental aspects of lubrication and surface modification techniques, and tribological aspects of green applications such as wind-power turbines or solar panels. This book is the first comprehensive volume on green tribology. The chapters are prepared by leading experts in their fields and cover such topics as biomimetics, environmentally friendly lubrication, tribology of wind turbines and renewable sources of energy, and ecological impact of new technologies of surface treatment.

  9. Energy [R]evolution 2010-a sustainable world energy outlook

    NARCIS (Netherlands)

    Teske, S.; Pregger, T.; Simon, S.; Naegler, T.; Graus, W.H.J.; Lins, C.

    2011-01-01

    The Energy [R]evolution 2010 scenario is an update of the Energy [R]evolution scenarios published in 2007 and 2008. It takes up recent trends in global energy demand and production and analyses to which extent this affects chances for achieving climate protection targets. The main target is to

  10. Energy [r]evolution - a sustainable world energy outlook

    NARCIS (Netherlands)

    Teske, S.; Muth, J.; Sawyer, S.; Pregger, T.; Simon, S.; Naegler, T.; O'Sullivan, M.; Schmid, S; Pagenkopf, J.; Frieske, B.; Graus, W.H.J.; Kermeli, K.; Zittel, W.; Rutovitz, J.; Harris, S.; Ackermann, T.; Ruwahata, R.; Martense, N.

    2012-01-01

    Energy [R]evolution 2012 provides a consistent fundamental pathway for how to protect our climate: getting the world from where we are now to where we need to be by phasing out fossil fuels and cutting CO2 emissions while ensuring energy security.The Energy [R]evolution Scenario has become a well

  11. Sustainable Algal Energy Production and Environmental Remediation

    Energy Technology Data Exchange (ETDEWEB)

    Cooke, William E. [College of William and Mary, Williamsburg, VA (United States). Dept. of Physics

    2012-07-14

    Overall, our results confirm that wild algal species sequester a wide range of organic and metal contaminants and excess nutrients (PAHs, trace metals, and nutrients) from natural waters, and suggest parameters that could be useful in predicting uptake rates for algae growing on an algal floway or other algal growth systems in the environment or in industrial processes. The implication for various fuel production processes differ with the detailed unit operations involved, and these results will be of use in the developing of scaling experiments for various types of engineering process designs.

  12. Energy policies and politics for sustainable world-system development

    DEFF Research Database (Denmark)

    Czeskleba-Dupont, Rolf

    environmental impacts of renewable energy sources. Normatively, (a) parts of the 1987 Brundtland report and (b) Danish experiences with regulated markets and innovations (Hvelplund 1995) are discussed and supplemented by (c) a critique of EU energy policies, especially the continued support of nuclear industry...... by Euratom (Woodman 2003). A political approach to preconditions for sustainable energy policies is finally developed from (a) Barry Commoner's critique of 1979 of president Carter's energy plan followed by the impasse of the Reagan era with the US government's retreat from federal energy and environmental...

  13. Sustainable Biosolids/Renewable Energy Plant

    Energy Technology Data Exchange (ETDEWEB)

    Marshall, Steven D. [City of St. Petersburg, FL (United States); Smith, Arenee Fanchon Teena [City of St. Petersburg, FL (United States)

    2016-09-01

    In keeping with its designation as being Florida’s first “Green City”, the City's primary purpose of this project is to process and dispose of biosolids and yard wastes in a manner that results in the production of thermal, electrical, gas, or some other form of energy. This project was completed in two budget periods. Budget period one of the project consisted of a feasibility evaluation to determine potential applicable technologies, budget period two consisted of project design.

  14. The Environment, Tourist Transport and the Sustainable Development of Tourism

    Directory of Open Access Journals (Sweden)

    Diana Ioncică

    2016-11-01

    Full Text Available The article explores the complex relationships between the natural environment , tourist transport and sustainable tourism development. In order to research the impact of natural resources on tourism activity, on the one hand, and the influences of tourism on the environment, on the other hand, statistical and mathematical methods of analysis and forecast were used, namely, the analysis of the dynamics of significant indicators of the natural environment and of tourist activity, the correlation method, the Markov chains method. The analyses made lead us to the conclusion of the existence of a positive evolution of significant indicators of the natural environment, with an impact on tourist activity, such as natural parks. It has been emphasized; also, that this positive evolution has a direct influence on the attraction of visitors, specifically, foreign ones, but the intensity of this influence is average. The intensification of the actions of promotion of natural parks and, generally, of protected areas in Romania, would be a direction for attracting an increased number of visitors, with all the favourable economic consequences. On the other hand, the research has outlined the fact that, as far as the means of transportation used by tourists to visit Romania are concerned, on the first places we can see road and air transport, means of transportation which, aside from the obvious advantages for tourists, have a strong negative impact on the environment. The forecast made with the help of the Markov chains method has shown a negative trend, from the point of view of the impact on the environment, namely an increase in the share of road and air transport in the preference of foreign visitors to Romania. The current research represents a contribution to the efforts of measuring, through statistical and mathematical models, of the complex influences, in both senses, between the environment and tourist activity. Thus, an objective radiography has

  15. Physics Literacy, Energy and the Environment

    Science.gov (United States)

    Hobson, Art

    2003-01-01

    Socially aware science literacy courses are sorely needed in every nation that is industrialized and democratic. This article puts societal topics into the more general context of science literacy, suggests that socially significant topics can fit comfortably into a physics literacy course, looks at energy and environment issues, and discusses how…

  16. National Conference on Energy Crisis and Environment

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 1; Issue 12. National Conference on Energy Crisis and Environment. Information and Announcements Volume 1 Issue 12 December 1996 pp 92-92. Fulltext. Click here to view fulltext PDF. Permanent link:

  17. Sustainable energy conversion: fuel cells — the competitive option?

    Science.gov (United States)

    Hart, D.

    The definition of sustainability is still under discussion, but it is becoming increasingly clear that present practices of energy supply and distribution are causing severe environmental pressures, and that they cannot be continued indefinitely. The fuel cell has been undergoing rapid development and is now at a stage immediately prior to commercialisation for a number of markets. It is expected to be economically competitive with many other energy conversion technologies within the next 5 years. However, introduction of the fuel cell may also speed the economic introduction of emissions-free energy carriers such as hydrogen, linking directly to renewably generated electricity. Hydrogen could be used as a form of energy storage in cases where electricity demand and supply were not matched. The fuel cell would then be complementary to, rather than competitive with, renewable generation technologies. Ultimately, the fuel cell, in both its high and low-temperature derivatives, could become one of the pillars of a future sustainable energy system.

  18. Nordic Energy Technologies : Enabling a sustainable Nordic energy future

    Energy Technology Data Exchange (ETDEWEB)

    Vik, Amund; Smith, Benjamin

    2009-10-15

    A high current Nordic competence in energy technology and an increased need for funding and international cooperation in the field are the main messages of the report. This report summarizes results from 7 different research projects relating to policies for energy technology, funded by Nordic Energy Research for the period 2007-2008, and provides an analysis of the Nordic innovation systems in the energy sector. The Nordic countries possess a high level of competence in the field of renewable energy technologies. Of the total installed capacity comprises a large share of renewable energy, and Nordic technology companies play an important role in the international market. Especially distinguished wind energy, both in view of the installed power and a global technology sales. Public funding for energy research has experienced a significant decline since the oil crisis of the 1970s, although the figures in recent years has increased a bit. According to the IEA, it will require a significant increase in funding to reduce greenhouse gas emissions and limit further climate change. The third point highlighted in the report is the importance of international cooperation in energy research. Nordic and international cooperation is necessary in order to reduce duplication and create the synergy needed if we are to achieve our ambitious policy objectives in the climate and energy issue. (AG)

  19. Energy transfer in structured and unstructured environments

    DEFF Research Database (Denmark)

    Iles-Smith, Jake; Dijkstra, Arend G.; Lambert, Neill

    2016-01-01

    We explore excitonic energy transfer dynamics in a molecular dimer system coupled to both structured and unstructured oscillator environments. By extending the reaction coordinate master equation technique developed by Iles-Smith et al. [Phys. Rev. A 90, 032114 (2014)], we go beyond the commonly...... used Born-Markov approximations to incorporate system-environment correlations and the resultant non-Markovian dynamical effects. We obtain energy transfer dynamics for both underdamped and overdamped oscillator environments that are in perfect agreement with the numerical hierarchical equations...... of motion over a wide range of parameters. Furthermore, we show that the Zusman equations, which may be obtained in a semiclassical limit of the reaction coordinate model, are often incapable of describing the correct dynamical behaviour. This demonstrates the necessity of properly accounting for quantum...

  20. International Symposium on Clusters and Nanostructures (Energy, Environment, and Health)

    Energy Technology Data Exchange (ETDEWEB)

    Jena, Puru [Distinguished Professor of Physics, VCU

    2011-11-10

    The international Symposium on Clusters and Nanostructures was held in Richmond, Virginia during November 7-10, 2011. The symposium focused on the roles clusters and nanostructures play in solving outstanding problems in clean and sustainable energy, environment, and health; three of the most important issues facing science and society. Many of the materials issues in renewable energies, environmental impacts of energy technologies as well as beneficial and toxicity issues of nanoparticles in health are intertwined. Realizing that both fundamental and applied materials issues require a multidisciplinary approach the symposium provided a forum by bringing researchers from physics, chemistry, materials science, and engineering fields to share their ideas and results, identify outstanding problems, and develop new collaborations. Clean and sustainable energy sessions addressed challenges in production, storage, conversion, and efficiency of renewable energies such as solar, wind, bio, thermo-electric, and hydrogen. Environmental issues dealt with air- and water-pollution and conservation, environmental remediation and hydrocarbon processing. Topics in health included therapeutic and diagnostic methods as well as health hazards attributed to nanoparticles. Cross-cutting topics such as reactions, catalysis, electronic, optical, and magnetic properties were also covered.

  1. Public Policy Environment: legalization and judicial activism for sustainable development

    Directory of Open Access Journals (Sweden)

    Belinda Pereira da Cunha

    2017-04-01

    Full Text Available This article analyzes the phenomenon of judicialization of environmental public policies, from the "lens" judicial activism, making sure that we can include the existence of this phenomenon in the treatment of these policies. In our post-modern era we have seen increasingly the role of the judiciary. Thus, it sought to address this issue of judicial activism against such contemporary issues as the environment, seeking to understand how the judiciary behaves in relation to environmental issues, which no longer has time to waive or give up the protection of natural resources and compliance with the principle of sustainable development. The methodology used was a literature review and secondary data collection. It was noticed a different activism in the face of environmental issues.

  2. Energy policies for sustainable livelihoods and sustainable development of poor areas in China

    Energy Technology Data Exchange (ETDEWEB)

    Fan Jie [Key Laboratory of Regional Sustainable Development Modeling, Chinese Academy of Sciences, Beijing 100101 (China); Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101 (China); Liang Yutian; Tao Anjun [Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101 (China); Graduate University, Chinese Academy of Sciences, Beijing 100049 (China); Sheng Kerong [Shandong University of Technology, Shandong 255049 (China); Ma Hailong [Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101 (China); Graduate University, Chinese Academy of Sciences, Beijing 100049 (China); Xu Yong; Wang Chuansheng [Key Laboratory of Regional Sustainable Development Modeling, Chinese Academy of Sciences, Beijing 100101 (China); Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101 (China); Sun Wei, E-mail: sunw@igsnrr.ac.c [Key Laboratory of Regional Sustainable Development Modeling, Chinese Academy of Sciences, Beijing 100101 (China); Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101 (China)

    2011-03-15

    Focusing on the sustainable livelihoods of rural households and regional sustainable development, this research takes Yan'an at the upper reaches of Yellow River and Zhaotong at mid-upper reaches of the Yangtze River as the study areas, extracts the central affecting factors of energy consumption and characteristic indexes of energy zoning based on 1560 rural household questionnaires of 85 villages in 4 counties (districts) and database analysis of socio-economic development, conducts energy zoning for the poor areas in China, and puts forward specific supporting policies for each type of zone. The research finds that (1) the study areas are found to have the following energy consumption characteristics: low per capita energy consumption (merely 1/4 of the national average), with energy consumption for non-production purposes taking up the main part (more than 70%), high proportion of non-commercial energy, i.e. firewood, straw, etc. (more than 45%), low utilization rate of such new energy resources as biogas, solar energy, etc. (lower than 2% in high mountain regions), remarkable differentiation of vertical and horizontal zonality, etc. (2) Physical conditions like temperature and topography, socio-economic factors, i.e. income of rural households, energy endowment, transportation conditions, and institutional factors like policy support are the major affecting factors of energy consumption and characteristic indexes of energy policy zoning. (3) According to the characteristic index evaluation and matrix classification of both the suitability for energy development and types of regional energy endowment, the poor areas in China can be divided into three energy policy-oriented zones, i.e. network-based centralized energy supply zone, diversified energy utilization zone, and new energy utilization zone. - Research highlights: {yields}Energy consumption characteristics of the study areas are as follows: low per capita energy consumption, high proportion of non

  3. ENEA e-Learn Platform for Development and Sustainability with International Renewable Energies Network

    Directory of Open Access Journals (Sweden)

    Anna Moreno

    2007-03-01

    Full Text Available The UNESCO office in Venice (the Regional Bureau for Science and Culture in Europe has promoted, in collaboration with the Italian Agency for New Technologies, Energy, and the Environment (ENEA, an e-learning project on renewable energy: the DESIRE-net project (Development and Sustainability with International Renewable Energies network. The project's aim is to share the best available knowledge on renewable energies among all the countries that have joined the project and exploit this knowledge at every level. Currently the project involves 30 Eastern European and Southern Mediterranean countries as well as Australia, Indonesia, and China.

  4. Techno-Economic Optimization of a Sustainable Energy System for a 100% Renewables Smart House

    DEFF Research Database (Denmark)

    Craciun, Vasile Simion; Blarke, Morten; Trifa, Viorel

    2012-01-01

    The continuous increasing negative effects of fossil fuel consumption on society and the environment, opens a major interest into environmentally friendly alternatives to sustain the increasing demand for energy services. Despite the obvious advantages of renewable energy, it presents important...... technical and economic challenges. One such challenge is the discontinuity, or intermittency, of generation, as most renewable energy resources depend on the climate, which is why their use requires complex design, planning and control optimization strategies. This paper presents a model and optimization...... for a sustainable energy system for a 100% renewables based Smart House (SH). We have devised and analysed an innovative high-efficiency approach to residential energy supply. The analysis involves detailed technical specifications and considerations for providing optimal supply of electricity, heating, cooling...

  5. Fuel Consumption Analysis and Optimization of a Sustainable Energy System for a 100% Renewables Smart House

    DEFF Research Database (Denmark)

    Craciun, Vasile Simion; Blarke, Morten; Trifa, Viorel

    2012-01-01

    and a feasibility study of a sustainable energy system for a 100% renewables smart house (SH) in Denmark is presented. Due to the continuous increasing penetration levels of wind and solar power in today’s energy system call for the development of high efficiency optimizations and Smart Grid (SG) enabling options......Continuous increasing of fuel prices due to the limited stock, together with their negative impact on the environment open the gates for new technologies, more environmental friendly resource and free to use resources like the ones used by renewable energies. In this paper an economic analysis....... In case of renewable energies, one main challenge is the discontinuity of generation which can be solved with planning and control optimization methods. The results of the economic analysis and the feasibility of the sustainable energy system for a 100% renewables SH show that this could be possible...

  6. Sustainable Energy Solutions for Rural Alaska

    Energy Technology Data Exchange (ETDEWEB)

    Allen, Riley [Regulatory Assistance Project, Montpelier, VT (United States); Brutkoski, Donna [Regulatory Assistance Project, Montpelier, VT (United States); Farnsworth, David [Regulatory Assistance Project, Montpelier, VT (United States); Larsen, Peter [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)

    2016-04-22

    The state of Alaska recognizes the challenges these rural communities face and provides financial support via the Power Cost Equalization (PCE) program. The PCE subsidizes the electricity prices paid by customers of these high-cost utilities. The PCE program is designed to spread the benefits of Alaska’s natural resources more evenly throughout the state. Yet even with this subsidy, electricity is still much more expensive for these rural customers. And beyond the PCE, other forms of assistance to rural utilities are becoming scarce given the state’s current fiscal environment. Nearly 90 percent of Alaska’s unrestricted budget funds in recent years have been tied to oil royalties—a sector experiencing significant declines in production and oil prices. Consequently, as Alaska looks to tighten budgets, the challenge of lowering rural utility costs, while encouraging self-sufficiency, has become more urgent.This study examines reliability, capital and strategic planning, management, workforce development, governance, financial performance and system efficiency in the various communities visited by the research team. Using those attributes, a tier system was developed to categorize rural Alaska utilities into Leading and Innovating Systems (Tier I), Advanced Diesel Systems (Tier II), Basic Systems (Tier III), and Underperforming Systems (Tier IV). The tier approach is not meant to label specific utilities, but rather to provide a general set of benchmarks and guideposts for improvement.

  7. Saving energy and protecting environment of electric vehicles

    Science.gov (United States)

    Yuan, Lina; Chen, Huajun; Gong, Jing

    2017-05-01

    With the concept of low carbon economy, saving energy, and protecting environment spread, the development of the electric promotes the research pace of wireless charging electronic vehicles, which will become the best choice of energy supply in the future. To generalize and exploit the corresponding alternative fuels and the research and development, and promotion of electric vehicles, becomes the effective means to directly reduce the consumption of fuel, effectively relieves the problem of nervous energy and environmental pollution, and really conforms to the requirements of the national strategy of sustainable development in China. This paper introduces the status of electronic cars and wireless charging, expounds the principle of wireless charging, and concludes the full text.

  8. Sustainable Energy in Remote Indonesian Grids. Accelerating Project Development

    Energy Technology Data Exchange (ETDEWEB)

    Hirsch, Brian [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Burman, Kari [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Davidson, Carolyn [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Elchinger, Michael [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Hardison, R. [Winrock International, Little Rock, AR (United States); Karsiwulan, D. [Winrock International, Little Rock, AR (United States); Castermans, B. [Winrock International, Little Rock, AR (United States)

    2015-06-30

    Sustainable Energy for Remote Indonesian Grids (SERIG) is a U.S. Department of Energy (DOE) funded initiative to support Indonesia’s efforts to develop clean energy and increase access to electricity in remote locations throughout the country. With DOE support, the SERIG implementation team consists of the National Renewable Energy Laboratory (NREL) and Winrock International’s Jakarta, Indonesia office. Through technical assistance that includes techno-economic feasibility evaluation for selected projects, government-to-government coordination, infrastructure assessment, stakeholder outreach, and policy analysis, SERIG seeks to provide opportunities for individual project development and a collective framework for national replication office.

  9. Energy supply options for climate change mitigation and sustainable development

    Energy Technology Data Exchange (ETDEWEB)

    Dobran, Flavio

    2010-09-15

    Modern society is dependent on fossil fuels for its energy needs, but their combustion is producing emissions of greenhouse gases that cause global warming. If these emissions remain unconstrained they risk of producing significant impacts on humanity and ecosystems. Replacement of fossil fuels with alternative energy sources can stabilize anthropogenic global warming and thus reduce the climate change impacts. The deployment of alternative energy supply technologies should be based on objectives that are consistent with sustainability indicators and incorporate quantitative risk assessment multiattribute utility decision methodologies capable of ascertaining effective future energy supply options.

  10. [Letter to the] Environment & Rural Development Committee meeting on sustainable development

    OpenAIRE

    Sustainable Development Commission Scotland

    2006-01-01

    On December 13th 2006, the Sustainable Development Commission gave evidence as part of the Environment & Rural Development Committee's enquiry into sustainable development. This letter was sent as a written submission before the meeting. Publisher PDF

  11. Systemic aspects of the transition to sustainable energy

    Science.gov (United States)

    Schlögl, R.

    2015-08-01

    The supply of free energy to our societies is today an intricate system comprising the regimes of technologies, regulatory frameworks, socio-economic impacts and techno-ecological interactions. As a consequence it is challenging to define clear directions or even device a master plan for the transformation of a single national energy system into a sustainable future. Even the term "sustainable" needs extensive discussion in this context that should not be defined solely in technological or ecological senses. The contribution illustrates some of the elements of the energy system and their interdependencies. It will become clear that multiple reasons exist to change the traditional generation and use of energy even when climate protection is not a sufficiently strong argument for a change.

  12. Sustainable Small-Scale Agriculture in Semi-Arid Environments

    Directory of Open Access Journals (Sweden)

    Katherine A. Spielmann

    2011-03-01

    Full Text Available For at least the past 8000 years, small-scale farmers in semi-arid environments have had to mitigate shortfalls in crop production due to variation in precipitation and stream flow. To reduce their vulnerability to a shortfall in their food supply, small-scale farmers developed short-term strategies, including storage and community-scale sharing, to mitigate inter-annual variation in crop production, and long-term strategies, such as migration, to mitigate the effects of sustained droughts. We use the archaeological and paleoclimatic records from A.D. 900-1600 in two regions of the American Southwest to explore the nature of variation in the availability of water for crops, and the strategies that enhanced the resilience of prehistoric agricultural production to climatic variation. Drawing on information concerning contemporary small-scale farming in semi-arid environments, we then suggest that the risk coping and mitigation strategies that have endured for millennia are relevant to enhancing the resilience of contemporary farmers' livelihoods to environmental and economic perturbations.

  13. Consumer-oriented Sustainable Energy Concepts; Consumentgerichte Duurzame Energieconcepten

    Energy Technology Data Exchange (ETDEWEB)

    Kuiper, H.J. [Universiteit Twente UT, Enschede (Netherlands)

    2009-10-15

    A study on the willingness of potential buyers of newly built houses to invest in energy efficient systems in order to realize a sustainable dwelling [Dutch] Een onder zoek naar de bereidheid van potentiele kopers van nieuwbouw woningen tot het investeren in energetische systemen om te komen tot een duurzame woning.

  14. Increase in buildings sustainability by using renewable materials and energy

    Energy Technology Data Exchange (ETDEWEB)

    Milutiene, Edita [Kaunas University of Technology, Institute of Environmental Engineering, Kaunas (Lithuania); Lithuanian Solar Energy Association, Kaunas (Lithuania); Straw Houses Builders' Association, Kaunas (Lithuania); Staniskis, Jurgis K. [Kaunas University of Technology, Institute of Environmental Engineering, Kaunas (Lithuania); Krucius, Audrys [Straw Houses Builders' Association, Kaunas (Lithuania); JSK ' ' Ecococon' ' , Kaunas (Lithuania); Auguliene, Vida [Lithuanian Hydrometeorological Service under the Ministry of Environment of the Republic of Lithuania, Kaunas (Lithuania); Ardickas, Daumilas [University of Cambridge, Girton College, Cambridge (United Kingdom)

    2012-12-15

    Sustainable development could be seen as indispensable condition for survival of civilization. Construction sector is a field with immediate need for reducing environmental impacts. Sustainability measures applied for buildings could produce very efficient results to the people. The paper provides the methods of construction sustainability increase by researching, developing, and applying the technologies which use renewable materials and energy. The paper analyzes the cases of both a solar eco house which was built of original prefabricated straw-bale panels and was designed to use direct solar energy; and an educational project promoting straw-bale construction and seeking to mitigate climate change. The project results have shown the need of spreading information on sustainable building methods to be accepted by wider society and to be applied to the construction industry. Monitoring of solar ecohouse has proved that direct solar energy gains are significant in reducing heating degree-days in 55 N latitude and in allowing to save half the energy needed for heating. (orig.)

  15. Local Sustainable Energy Assessment Report of Quang Tri in Vietnam

    DEFF Research Database (Denmark)

    Andersen, Jan; Lund, Søren

    The publication reports a sustainable energy assessment at the local project site of the HighARCS project in Nainital, Uttarakhand and Buxa, West Bengal, India. The assessment has been made as a contribution to the elaboration of biodiversity conservation and livelihoods improvement action plans...

  16. Local Sustainable Energy Assessment of Uttarakhand and West Bengal

    DEFF Research Database (Denmark)

    Andersen, Jan; Lund, Søren

    The publication reports a sustainable energy assessment at the local project site of the HighARCS project in Nainital, Uttarakhand and Buxa, West Bengal, India. The assessment has been made as a contribution to the elaboration of biodiversity conservation and livelihoods improvement action plans...

  17. In-School Sustainability Action: Climate Clever Energy Savers

    Science.gov (United States)

    Buchanan, John; Schuck, Sandy; Aubusson, Peter

    2016-01-01

    The mandate for living sustainably is becoming increasingly urgent. This article reports on the Climate Clever Energy Savers (CCES) Program, a student-centred, problem- and project-based program in New South Wales, Australia, aimed at enabling school students to identify ways of reducing their schools' electricity consumption and costs. As part of…

  18. Sustainable energy systems : Limitations and challenges based on exergy analysis

    NARCIS (Netherlands)

    Verkooijen, A.H.M.; Woudstra, N.

    General There is a general understanding that the so-called “developed countries” have to change their way of life including their energy supply into a more sustainable way. But even in the case of unanimity with regard to the direction, there are still many opinions about the way to follow. This

  19. Sustainable energy systems : Limitations and challenges based on exergy analysis

    NARCIS (Netherlands)

    Woudstra, N.

    2012-01-01

    General There is a general understanding that the so-called “developed countries” have to change their way of life including their energy supply into a more sustainable way. But even in the case of unanimity with regard to the direction, there are still many opinions about the way to follow. This

  20. Sustainable Energy Development: The Key to a Stable Nigeria

    Directory of Open Access Journals (Sweden)

    Kalu Uduma

    2010-06-01

    Full Text Available This paper proposes the use of sustainable energy systems based on solar and biomass technologies to provide solutions to utility challenges in Nigeria and acute water shortage both in rural and urban areas of that country. The paper highlights the paradoxes of oil-rich Nigeria and the stark reality of social infrastructure deprivations in that country. Perennial power outages over many years have translated to the absence of or poorly-developed basic social infrastructures in Nigeria. The consequences of this lack have been an increase in abject poverty in rural and urban communities as well as the erosion of social order and threats to citizen and their property. This paper proposes the adaptation of two emerging technologies for building sustainable energy systems and the development of decentralized and sustainable energy sources as catalyst for much-needed social infrastructure development through the creation of Renewable Energy Business Incubators, creative lending strategies, NGO partnerships and shifting energy-distribution responsibilities. These changes will stimulate grassroots economies in the country, develop large quantities of much needed clean water, maintain acceptable standards of sanitation and improve the health and wellbeing of Nigerian communities. The proposed strategies are specific to the Nigerian context; however, the authors suggest that the same or similar strategies may provide energy and social infrastructure development solutions to other developing countries as well.

  1. Limitations of Nuclear Power as a Sustainable Energy Source

    Directory of Open Access Journals (Sweden)

    Joshua M. Pearce

    2012-06-01

    Full Text Available This paper provides a review and analysis of the challenges that nuclear power must overcome in order to be considered sustainable. The results make it clear that not only do innovative technical solutions need to be generated for the fundamental inherent environmental burdens of nuclear energy technology, but the nuclear industry must also address difficult issues of equity both in the present and for future generations. The results show that if the concept of just sustainability is applied to the nuclear energy sector a global large-scale sustainable nuclear energy system to replace fossil fuel combustion requires the following: (i a radical improvement in greenhouse gas emissions intensity by improved technology and efficiency through the entire life cycle to prevent energy cannibalism during rapid growth; (ii the elimination of nuclear insecurity to reduce the risks associated with nuclear power so that the free market can indemnify it without substantial public nuclear energy insurance subsidies; (iii the elimination of radioactive waste at the end of life and minimization of environmental impact during mining and operations; and (iv the nuclear industry must regain public trust or face obsolescence as a swarm of renewable energy technologies quickly improve both technical and economic performance.

  2. Energetic Sustainability and the Environment: A Transdisciplinary, Economic–Ecological Approach

    Directory of Open Access Journals (Sweden)

    Ioan G. Pop

    2017-05-01

    Full Text Available The paper combines original concepts about eco-energetic systems, in a transdisciplinary sustainable context. Firstly, it introduces the concept of M.E.N. (Mega-Eco-Nega-Watt, the eco-energetic paradigm based on three different but complementary ecological economic spaces: the Megawatt as needed energy, the Ecowatt as ecological energy, and the Negawatt as preserved energy. The paper also deals with the renewable energies and technologies in the context of electrical energy production. Secondly, in the context of the M.E.N. eco-energetic paradigm, comprehensive definitions are given about eco-energetic systems and for pollution. Thirdly, the paper introduces a new formula for the eco-energetic efficiency which correlates the energetic efficiency of the system and the necessary newly defined ecological coefficient. The proposed formula for eco-energetic efficiency enables an interesting form of relating to different situations in which the input energy, output energy, lost energy, and externalities involved in an energetic process, interact to produce energy in a specific energetic system, in connection with the circular resilient economy model. Finally, the paper presents an original energetic diagram to explain different channels to produce electricity in a resilience regime, with high eco-energetic efficiency from primary external energetic sources (gravitation and solar sources, fuels (classical and radioactive, internal energetic sources (geothermal, volcanoes and other kind of sources. Regardless the kind of energetic sources used to obtain electricity, the entire process should be sustainable in what concerns the transdisciplinary integration of the different representative spheres as energy, socio-economy, and ecology (environment.

  3. Sustaining Action and Optimizing Entropy: Coupling Efficiency for Energy and the Sustainability of Global Ecosystems

    Science.gov (United States)

    Rose, Michael T.; Crossan, Angus N.; Kennedy, Ivan R.

    2008-01-01

    Consideration of the property of action is proposed to provide a more meaningful definition of efficient energy use and sustainable production in ecosystems. Action has physical dimensions similar to angular momentum, its magnitude varying with mass, spatial configuration and relative motion. In this article, the relationship of action to…

  4. Measures for sustainable energy in the livestock farming industry; Maatregelen duurzame energie veehouderijsector

    Energy Technology Data Exchange (ETDEWEB)

    Schellekens, J. [DLV Bouw Milieu en Techniek, Uden (Netherlands)

    2010-07-15

    The sectors of pig farming, poultry farming and veal farming have been examined for sustainable energy deployment options in agricultural businesses. These are systems are ready for practice and to be used by individual businesses. Background information is provided on energy saving, deployment of photovoltaic energy, solar collectors, biomass incineration, heat pumps, air conditioning with ground water, and practical experiences in the deployment of sustainable energy systems. Moreover, an overview is given of subsidies and fiscal opportunities for sustainable energy deployment by agricultural businesses [Dutch] Voor de sectoren varkenshouderij, pluimveehouderij en vleeskalverhouderij is onderzocht wat de toepassingsmogelijkheden zijn van duurzame energie (DE) op agrarische bedrijven. Het betreft systemen welke praktijkrijp zijn en te gebruiken op individuele bedrijven. Er wordt achtergrondinformatie gegeven over energiebesparing, toepassen van photovoltaische energie, zonnecollectoren, verbranden van biomassa, warmtepompen, luchtconditionering met grondwater, praktijkervaringen in de toepassing van duurzame energiesystemen. Ook wordt een overzicht geven van subsidies en fiscale mogelijkheden voor toepassen van DE-systemen op agrarische bedrijven.

  5. China. Top Sector Energy. Sustainable Building. Opportunities for Dutch companies

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2012-08-15

    For China, sustainable design is necessary for controlling energy usage in crowded and constantly expanding urban areas. It is well known that China is the world's biggest construction market. Nearly half of the new buildings annually constructed worldwide are located in China by 2015. However, only about 4% of these are built according to energy efficiency standards. China's construction market will by 2020 account for 40% of the country's total energy consumption. While it contributes 15% of the world's GDP, China consumes 30% of the earth's steel and half its concrete. On top of which, buildings in China consume a third of the country's increasingly endangered water supplies. Recent research showed that almost half of the national energy consumption has been used for construction related purposes. Of existing buildings, a huge amount needs sustainable redesign and retrofitting technologies.Chinese government has recognized the urgency of widely implementing sustainable buildings. As a result, a national 3-star China National Green Building rating system has been launched in 2006. Yet the Chinese green building revolution is still in its infancy. Main problems are, amongst others, low level of regulations and standards, problematic implementations at local level, lack of awareness and transparency in related public and private sector, lack of expertise of integrated sustainable building design and construction among engineers, designers and constructors. It is also to be expected that more aggressive energy saving and environmental protection targets will be set by the 12th Five Year Plan. Promote green buildings will be one of the top priorities in China's swift urbanization process with focus on saving land, energy, water and materials. Chinese government has recognized the urgency of widely implementing sustainable buildings. Yet the Chinese green building revolution is still in its infancy. Under this framework, the

  6. Sustainability in CALL Learning Environments: A Systemic Functional Grammar Approach

    Science.gov (United States)

    McDonald, Peter

    2014-01-01

    This research aims to define a sustainable resource in Computer-Assisted Language Learning (CALL). In order for a CALL resource to be sustainable it must work within existing educational curricula. This feature is a necessary prerequisite of sustainability because, despite the potential for educational change that digitalization has offered since…

  7. 4th International Conference on Energy and Environment 2013 (ICEE 2013)

    Science.gov (United States)

    Chakrabarty, Chandan Kumar; Shamsuddin, Abd Halim Bin; Ahmad, Ibrahim Bin; Desa, Mohamed Nor Bin Mohamed; Din, Norashidah Bte Md; Bte Mohd, Lariyah; Hamid, Nasri A.; See, Ong Hang; Hafiz Nagi, Farrukh; Yong, Lee Choon; Pasupuleti, Jagadeesh; Mei, Goh Su; Abdullah, Fairuz Bin; Satgunam, Meenaloshini

    2013-06-01

    The 4th International Conference on Energy & Environment 2013 (ICEE2013) was organized by the Universiti Tenaga Nasional (UNITEN) to provide a platform for creating and sharing ideas among engineers, researchers, scientists, industrialists and students in sustainable green energy and technologies. The theme 'Shaping a Sustainable Future through Advancement in Green Energy Technology' is in line with the University's vision to be a leading global energy university that shapes a sustainable future. The general scopes of the conference are renewable energy, smart grid, green technology, energy policies and economics, sustainable green energy and environment, sustainable education, international cooperation and innovation and technology transfer. Five international keynote speakers delivered their speeches in specialized areas of green energy technology and sustainability. In addition, the conference highlights several special parallel sessions by notable invited presenters in their niche areas, which are: Hybrid Energy Power Quality & Distributed Energy Smart Grid Nuclear Power & Technologies Geohazard Management Greener Environment for Sustainability Advances in Computational Fluid Dynamics The research papers presented in ICEE2013 are included in this volume of IOP Conference Series: Earth and Environmental Science (EES). EES is abstracted and indexed in SCOPUS, GeoBase, GeoRef, Compendex, Inspec, Chemical Abstracts Service, NASA Astrophysics Data System, and International Nuclear Information System (INIS). With the comprehensive programme outline, the organizing committee hopes that the ICEE2013 was a notable intellectual sharing session for the research and academic community in Malaysia and regionally. The organizing committee expresses gratitude to the ICEE2013 delegates for their great support and contributions to the event.

  8. New Systems Thinking and Policy Means for Sustainable Energy Development

    DEFF Research Database (Denmark)

    Meyer, Niels I.

    2011-01-01

    Sustainable energy development requires attention to both the demand and supply side. On the demand side there is an urgent need for efficient policy means promoting energy conservation. This includes changes in the institutional and economic framework to compensate for the short comings...... of the dominating neoclassical economy and the short time horizon of the present market system. On the supply side fossil fuels are becoming a central problem being the dominating global energy source while at the same time presenting serious problems in relation to global warming and limited resources (“peak oil...

  9. New Systems Thinking and Policy Means for Sustainable Energy Development

    DEFF Research Database (Denmark)

    Meyer, Niels I

    2010-01-01

    Sustainable energy development requires attention to both the demand and supply side. On the demand side there is an urgent need for efficient policy means promoting energy conservation. This includes changes in the institutional and economic framework to compensate for the short comings...... of the dominating neoclassical economy and the short time horizon of the present market system. On the supply side fossil fuels are becoming a central problem being the dominating global energy source while at the same time presenting serious problems in relation to global warming and limited resources (“peak oil...

  10. Multi-Criteria Evaluation of Energy Systems with Sustainability Considerations

    Directory of Open Access Journals (Sweden)

    Despoina E. Keramioti

    2010-04-01

    Full Text Available A multi-criteria approach is presented for the assessment of alternative means for covering the energy needs (electricity and heat of an industrial unit, taking into consideration sustainability aspects. The procedure is first described in general terms: proper indicators are defined; next they are grouped in order to form sub-indices, which are then used to determine the composite sustainability index. The procedure is applied for the evaluation of three alternative systems. The three systems are placed in order of preference, which depends on the criteria used. In addition to conclusions reached as a result of the particular case study, recommendations for future work are given.

  11. Sustainable Supply Chain Engagement in a Retail Environment

    Directory of Open Access Journals (Sweden)

    Anika Berning

    2015-05-01

    Full Text Available Sustainability is a key requirement for business success and is often regarded a competitive advantage if strategically managed. Sustainability-mature organisations look to their value chains where the retailer-supplier collaboration becomes critical in embedding sustainability. With this in mind, it is important to monitor retailer-supplier collaboration to determine whether it is effective. To facilitate this monitoring, the UN Global Compact Supply Chain Sustainability: A Guide for Continuous Improvement was consulted. The research question aimed to determine the progress of a prominent South African retailer regarding their sustainable supply chain management (SSCM and collaboration with suppliers. Therefore, this study attempts to apply the Supplier Engagement Continuum, extracted from the UN Global Compact Supply Chain Sustainability: A Guide for Continuous Improvement, in order to determine how the retailer is progressing in sustainable supply chain management. The qualitative and exploratory nature of the study necessitated a case study research design, while the technique of purposive sampling was used to select the sample of three suppliers. Data was collected by means of semi-structured interviews facilitated by an interview guide, and data analysis was conducted with Atlas.ti software. It was found that the retailer’s sustainable supply chain management can only be located on level one of the continuum. Supply chain sustainability in organisations lack the theoretical foundation of what sustainability really is. Therefore, the model was amended and an additional level was added to incorporate the education of sustainability.

  12. Drought prediction and sustainable development of the ecological environment.

    Science.gov (United States)

    Xu, X H; Lv, Z Q; Zhou, X Y; Jiang, N

    2017-12-01

    In the 1990s ecological early warning research began with the aim of elucidating the effect of drought in dry regions of the world. Drought has been a prevalent natural disaster, ravaging the Yun'nan province of China for over 5 years since 2009. Due to the extensive range, depth and devastating losses, the drought has reached a once-in-a-century severity. Yun'nan province suffered particularly badly from the drought, which took its toll on both the ecological environment and the sustainable economic development of the province. We chose to study Pu'er city in Yun'nun province for this research, and analysed the drought traits of Pu'er city utilizing geographic information technology. We applied the Mann-Kendall test for trend, linear tendency estimation and percentage of precipitation anomalies, as well as using combinations of monthly data searches of meteorological reports from 1980-2010. The results showed that except for a small rise in spring precipitation, the overall rainfall of Pu'er city showed a decreasing trend. The results of this study can provide an adequate and reliable theoretical basis and technological methods for use in government decision making, and promote research into early warning ecology.

  13. Green remediation. Tool for safe and sustainable environment: a review

    Science.gov (United States)

    Singh, Mamta; Pant, Gaurav; Hossain, Kaizar; Bhatia, A. K.

    2017-10-01

    Nowadays, the bioremediation of toxic pollutants is a subject of interest in terms of health issues and environmental cleaning. In the present review, an eco-friendly, cost-effective approach is discussed for the detoxification of environmental pollutants by the means of natural purifier, i.e., blue-green algae over the conventional methods. Industrial wastes having toxic pollutants are not able to eliminate completely by existing the conventional techniques; in fact, these methods can only change their form rather than the entire degradation. These pollutants have an adverse effect on aquatic life, such as fauna and flora, and finally harm human life directly or indirectly. Cyanobacterial approach for the removal of this contaminant is an efficient tool for sustainable development and pollution control. Cyanobacteria are the primary consumers of food chain which absorbed complex toxic compounds from environments and convert them to simple nontoxic compounds which finally protect higher food chain consumer and eliminate risk of pollution. In addition, these organisms have capability to solve secondary pollution, as they can remediate radioactive compound, petroleum waste and degrade toxins from pesticides.

  14. Chemistry, sun, energy and environment; Chimie, soleil, energie et environnement

    Energy Technology Data Exchange (ETDEWEB)

    Bouchy, M. [Ecole Nationale Superieure des Industries Chimiques (ENSIC), 54 - Villers-les-Nancy (France); Enea, O. [Poitiers Univ., 86 (France); Flamant, G. [IMP-Odeillo-CNRS (France)] (and others)

    2000-07-01

    This document provides the 35 papers presented at the 'Chemistry, Sun, Energy and Environment' meeting, held February 3-4, 2000 in Saint-Avold, France. The main studied topic was the use of solar radiation for water treatment, volatile organic compounds decomposition and in some thermochemical processes. These research subjects are tackled in a fundamental and practical point of view. (O.M.)

  15. Mapping synergies and trade-offs between energy and the Sustainable Development Goals

    Science.gov (United States)

    Fuso Nerini, Francesco; Tomei, Julia; To, Long Seng; Bisaga, Iwona; Parikh, Priti; Black, Mairi; Borrion, Aiduan; Spataru, Catalina; Castán Broto, Vanesa; Anandarajah, Gabrial; Milligan, Ben; Mulugetta, Yacob

    2018-01-01

    The 2030 Agenda for Sustainable Development—including 17 interconnected Sustainable Development Goals (SDGs) and 169 targets—is a global plan of action for people, planet and prosperity. SDG7 calls for action to ensure access to affordable, reliable, sustainable and modern energy for all. Here we characterize synergies and trade-offs between efforts to achieve SDG7 and delivery of the 2030 Agenda as a whole. We identify 113 targets requiring actions to change energy systems, and published evidence of relationships between 143 targets (143 synergies, 65 trade-offs) and efforts to achieve SDG7. Synergies and trade-offs exist in three key domains, where decisions about SDG7 affect humanity's ability to: realize aspirations of greater welfare and well-being; build physical and social infrastructures for sustainable development; and achieve sustainable management of the natural environment. There is an urgent need to better organize, connect and extend this evidence, to help all actors work together to achieve sustainable development.

  16. Sustainable utilisation of forest biomass for energy - Possibilities and problems

    DEFF Research Database (Denmark)

    Stupak, I.; Asikainen, A.; Jonsell, M.

    2007-01-01

    The substitution of biomass for fossil fuels in energy consumption is a measure to mitigate global warming, as well as having other advantages. Political action plans for increased use exist at both European and national levels. This paper briefly reviews the contents of recommendations. guidelines....... and other synthesis publications on Sustainable use of forest biomass for energy. Topics are listed and an overview of advantages. disadvantages, and trade-offs between them is given, from the viewpoint of society in general and the forestry or the Nordic and Baltic countries, the paper also identifies...... the extent to which wood for energy is and energy sectors in particular. F included in forest legislation and forest certification standards under the "Programme for the Endorsement of Forest Certification" (PEFC) and the "Forest Stewardship Council" (FSC) schemes. Energy and forest policies at EU...

  17. Heat Saving Strategies in Sustainable Smart Energy Systems

    DEFF Research Database (Denmark)

    Lund, Henrik; Thellufsen, Jakob Zinck; Aggerholm, Søren

    One of the important issues related to the implementation of future sustainable smart energy systems based on renewable energy sources is the heating of buildings. Especially, when it comes to long‐term investment in savings and heating infrastructures it is essential to identify long‐term least...... that a least‐cost strategy will be to provide approximately 2/3 of the heat demand from district heating and the rest from individual heat pumps. Keywords: Energy Efficiency, Renewable energy, Heating strategy, Heat savings, District heating, Smart energy......‐cost strategies. With Denmark as a case, this paper investigates to which extent heat should be saved rather than produced and to which extent district heating infrastructures, rather than individual heating solutions, should be used. Based on a concrete proposal to implement the Danish governmental long...

  18. Sustainable energy projects and the community: mapping single building use of microgeneration technologies in London

    OpenAIRE

    Coles, Anne-Marie; Piterou, Athena; Genus, Audley

    2016-01-01

    Microgeneration technologies offer the potential for distributed energy supply and consumption resulting in reduced reliance on centralised generation. Adoption of microgeneration for use in community settings is usually understood as having a beneficial contribution to sustainable development. This is particularly relevant in urban environments which present specific challenges relating to the heterogeneity of building and land use. Small-scale installations in buildings also appear to offer...

  19. Sustainable Energy for All and the private sector

    Energy Technology Data Exchange (ETDEWEB)

    Bellanca, Raffaella; Wilson, Emma

    2012-06-15

    The UN's Sustainable Energy for All initiative (SE4ALL) has a strong focus on the private sector to deliver universal energy access, improved efficiency and increased investment in renewable energy. Leading private sector associations have bought into SE4ALL, including the World Business Council for Sustainable Development (WBCSD) and the Global Compact. However, critics argue that SE4ALL is focusing too much on large-scale infrastructure investment and is missing opportunities to stimulate enterprise more locally and to benefit the poorest. The private sector – including large and smaller-scale businesses, both local and international – is keen to get involved in energy access in low-income markets and sees the value of an initiative such as SE4ALL. Yet some feel that SE4ALL is failing to engage all levels of the private sector effectively. To deliver universal energy access, SE4ALL needs to address the lack of finance for enterprises and end users, especially in untested markets; infrastructure and support services for new businesses; local skills, capacity and information about workable models; and favourable policy frameworks. With the right incentives, business can open up low-income markets by providing lifeimproving services to emerging middle class populations who are still excluded from energy access. To reach the poorest SE4ALL can promote private sector partnerships with government and NGOs, encourage corporate responsibility initiatives and support social entrepreneurs.

  20. Bio-Inspired Optimization of Sustainable Energy Systems: A Review

    Directory of Open Access Journals (Sweden)

    Yu-Jun Zheng

    2013-01-01

    Full Text Available Sustainable energy development always involves complex optimization problems of design, planning, and control, which are often computationally difficult for conventional optimization methods. Fortunately, the continuous advances in artificial intelligence have resulted in an increasing number of heuristic optimization methods for effectively handling those complicated problems. Particularly, algorithms that are inspired by the principles of natural biological evolution and/or collective behavior of social colonies have shown a promising performance and are becoming more and more popular nowadays. In this paper we summarize the recent advances in bio-inspired optimization methods, including artificial neural networks, evolutionary algorithms, swarm intelligence, and their hybridizations, which are applied to the field of sustainable energy development. Literature reviewed in this paper shows the current state of the art and discusses the potential future research trends.

  1. NASA spinoffs to energy and the environment

    Science.gov (United States)

    Gilbert, Ray L.; Lehrman, Stephen A.

    1989-01-01

    Thousands of aerospace innovations have found their way into everyday use, and future National Aeronautics and Space Administration (NASA) missions promise to provide many more spinoff opportunities. Each spinoff has contributed some measure of benefit to the national economy, productivity, or lifestyle. In total, these spinoffs represent a substantial dividend on the national investment in aerospace research. Along with examples of the many terrestrial applications of NASA technology to energy and the environment, this paper presents the mechanisms by which NASA promotes technology transfer. Also discussed are new NASA initiatives in superconductivity research, global warming, and aeropropulsion.

  2. Environment, Renewable Energy and Reduced Carbon Emissions

    Science.gov (United States)

    Sen, S.; Khazanov, G.; Kishimoto, Y.

    2011-01-01

    Increased energy security and reduced carbon emissions pose significant challenges for science and technology. However, they also create substantial opportunities for innovative research and development. In this review paper, we highlight some of the key opportunities and mention public policies that are needed to enable the efforts and to maximize the probability of their success. Climate is among the uttermost nonlinear behaviors found around us. As recent studies showed the possible effect of cosmic rays on the Earth's climate, we investigate how complex interactions between the planet and its environment can be responsible for climate anomalies.

  3. Intelligent DC Homes in Future Sustainable Energy Systems

    DEFF Research Database (Denmark)

    Diaz, Enrique Rodriguez; Quintero, Juan Carlos Vasquez; Guerrero, Josep M.

    2016-01-01

    distribution systems. As a consequence a lot of research has been done on DC distribution systems and its potential for residential applications. Furthermore, the increasing presence and used of smart devices in homes, reveal a promising future for intelligent homes, integrated in the Internet of Things...... concept, where the residential electrical power systems works in co-operation with the smart devices, in order to achieve a smarter, more sustainable, and cleaner energy systems....

  4. Thermal insulating concrete wall panel design for sustainable built environment.

    Science.gov (United States)

    Zhou, Ao; Wong, Kwun-Wah; Lau, Denvid

    2014-01-01

    Air-conditioning system plays a significant role in providing users a thermally comfortable indoor environment, which is a necessity in modern buildings. In order to save the vast energy consumed by air-conditioning system, the building envelopes in envelope-load dominated buildings should be well designed such that the unwanted heat gain and loss with environment can be minimized. In this paper, a new design of concrete wall panel that enhances thermal insulation of buildings by adding a gypsum layer inside concrete is presented. Experiments have been conducted for monitoring the temperature variation in both proposed sandwich wall panel and conventional concrete wall panel under a heat radiation source. For further understanding the thermal effect of such sandwich wall panel design from building scale, two three-story building models adopting different wall panel designs are constructed for evaluating the temperature distribution of entire buildings using finite element method. Both the experimental and simulation results have shown that the gypsum layer improves the thermal insulation performance by retarding the heat transfer across the building envelopes.

  5. Thermal Insulating Concrete Wall Panel Design for Sustainable Built Environment

    Directory of Open Access Journals (Sweden)

    Ao Zhou

    2014-01-01

    Full Text Available Air-conditioning system plays a significant role in providing users a thermally comfortable indoor environment, which is a necessity in modern buildings. In order to save the vast energy consumed by air-conditioning system, the building envelopes in envelope-load dominated buildings should be well designed such that the unwanted heat gain and loss with environment can be minimized. In this paper, a new design of concrete wall panel that enhances thermal insulation of buildings by adding a gypsum layer inside concrete is presented. Experiments have been conducted for monitoring the temperature variation in both proposed sandwich wall panel and conventional concrete wall panel under a heat radiation source. For further understanding the thermal effect of such sandwich wall panel design from building scale, two three-story building models adopting different wall panel designs are constructed for evaluating the temperature distribution of entire buildings using finite element method. Both the experimental and simulation results have shown that the gypsum layer improves the thermal insulation performance by retarding the heat transfer across the building envelopes.

  6. Thermal Insulating Concrete Wall Panel Design for Sustainable Built Environment

    Science.gov (United States)

    Zhou, Ao; Wong, Kwun-Wah

    2014-01-01

    Air-conditioning system plays a significant role in providing users a thermally comfortable indoor environment, which is a necessity in modern buildings. In order to save the vast energy consumed by air-conditioning system, the building envelopes in envelope-load dominated buildings should be well designed such that the unwanted heat gain and loss with environment can be minimized. In this paper, a new design of concrete wall panel that enhances thermal insulation of buildings by adding a gypsum layer inside concrete is presented. Experiments have been conducted for monitoring the temperature variation in both proposed sandwich wall panel and conventional concrete wall panel under a heat radiation source. For further understanding the thermal effect of such sandwich wall panel design from building scale, two three-story building models adopting different wall panel designs are constructed for evaluating the temperature distribution of entire buildings using finite element method. Both the experimental and simulation results have shown that the gypsum layer improves the thermal insulation performance by retarding the heat transfer across the building envelopes. PMID:25177718

  7. An Investigation into Energy Requirements and Conservation Techniques for Sustainable Buildings

    Science.gov (United States)

    Robitaille, Jad

    Traditionally, societies use to design their built environment in a way that was in line with the climate and the geographical location that they evolved in, thereby supporting sustainable lifestyles (i.e. thick walls with small windows in cold climates). With the industrial revolution and the heavy use and reliance on cheap fossil fuels, it can be argued that the built environment has become more focused on aesthetics and cost savings rather than on true sustainability. This, in turn, has led to energy intensive practices associated with the construction of homes, buildings, cities and megalopolises. Environmental concerns with regards to the future have pushed people, entities and industries to search for ways to decrease human's energy dependency and/or to supply the demand in ways that are deemed sustainable. Efforts to address this concern with respect to the built environment were translated into 'green buildings', sustainable building technologies and high performance buildings that can be rated and/or licensed by selected certifying bodies with varying metrics of building construction and performance. The growing number of such systems has brought real concerns: Do certified sustainable buildings really achieve the level of sustainability (i.e. performance) they were intended to? For the purpose of this study, buildings' energy consumption will be analysed, as it is one of the main drivers when taking into consideration greenhouse gas emissions. Heating and cooling in the residential and commercial/institutional sector, combined account for approximately a fifth of the secondary energy use in Canada. For this reason, this research aims at evaluating the main rating systems in Canada based on the efficacy of their rating systems' certification methodology and the weighting and comparison of energy requirements under each scheme. It has been proven through numerous studies that major energy savings can be achieved by focusing primarily on building designs

  8. Sustainable energy catalogue - for European decision-makers. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Gram, S.; Jacobsen, Soeren

    2006-10-15

    The Green paper - A European Strategy for Sustainable, Competitive and Secure Energy, 2006 states that Europe has a rising dependency on imported energy reserves, which are concentrated in a few countries. The Rising gas and oil prices along with demands on lower emissions of CO2 adds pressure on the need for a new energy future for Europe. EU has since 1990 planned to become world leader in the renewable energy field. Therefore the EU member states have agreed that by 2010 21% of the consumed electricity and 5,75% of the consumed gasoline and diesel should originate from renewable energy sources. If the EU countries are to reach their goals, a commitment on several levels to develop and install energy from sustainable energy sources is needed. The purpose of this catalogue is to offer planners and decision-makers in EU states an inspirational tool to be used during local or regional transition towards sustainable energy technologies. The catalogue can also be used by everyone else who needs an overview of the sustainable energy technologies and their current development level and future potential, among others educational use is relevant. The catalogue provides an introduction to the following technologies that are already or are estimated to become central to a development with renewable energy in EU: Technologies for wind energy, wave energy, geothermal energy, bioenergy, solar energy, hydropower and fuel cells. The catalogue also includes a section about energy systems, which also includes a part about technologies for efficient use of energy. The catalogue could have included a few other technologies as e.g. heating pumps, but due to the size of the catalogue a priority was necessary. The catalogue does not claim to give all answers or to be complete regarding all details about the individual technologies; even so it offers information, which cannot easily be looked up on the Internet. In the back of the catalogue, under 'References and links' there

  9. Key Assets for a Sustainable Low Carbon Energy Future

    Science.gov (United States)

    Carre, Frank

    2011-10-01

    Since the beginning of the 21st century, concerns of energy security and climate change gave rise to energy policies focused on energy conservation and diversified low-carbon energy sources. Provided lessons of Fukushima accident are evidently accounted for, nuclear energy will probably be confirmed in most of today's nuclear countries as a low carbon energy source needed to limit imports of oil and gas and to meet fast growing energy needs. Future challenges of nuclear energy are then in three directions: i) enhancing safety performance so as to preclude any long term impact of severe accident outside the site of the plant, even in case of hypothetical external events, ii) full use of Uranium and minimization long lived radioactive waste burden for sustainability, and iii) extension to non-electricity energy products for maximizing the share of low carbon energy source in transportation fuels, industrial process heat and district heating. Advanced LWRs (Gen-III) are today's best available technologies and can somewhat advance nuclear energy in these three directions. However, breakthroughs in sustainability call for fast neutron reactors and closed fuel cycles, and non-electric applications prompt a revival of interest in high temperature reactors for exceeding cogeneration performances achievable with LWRs. Both types of Gen-IV nuclear systems by nature call for technology breakthroughs to surpass LWRs capabilities. Current resumption in France of research on sodium cooled fast neutron reactors (SFRs) definitely aims at significant progress in safety and economic competitiveness compared to earlier reactors of this type in order to progress towards a new generation of commercially viable sodium cooled fast reactor. Along with advancing a new generation of sodium cooled fast reactor, research and development on alternative fast reactor types such as gas or lead-alloy cooled systems (GFR & LFR) is strategic to overcome technical difficulties and/or political

  10. Sustainable energy and E-mobility at INEM

    Energy Technology Data Exchange (ETDEWEB)

    Gabele, Hugo; Panik, Ferdinand; Rising, David; Reiser, Stefan [Institut fuer nachhaltige Energietechnik und Mobilitaet, Esslingen-am-Neckar (Germany); Ziegler, Martin [HyLionTec GmbH, Stuttgart (Germany)

    2013-06-01

    The primary goal for the Institute for Sustainable Energy-Technology and Mobility is to provide students with hands-on experience in the field of alternative energy by means of R and D projects such as ''HydroSmart'' and ''Urban Buggy''. These projects, which lasted several semesters, have a special focus on practical skills and were particularly concerned with cost, functionality, engineering sophistication, customer satisfaction, and usability. In each case a final prototype was constructed, tested and presented. (orig.)

  11. Coping with climate change and China's wind energy sustainable development

    Directory of Open Access Journals (Sweden)

    De-Xin He

    2016-03-01

    Full Text Available Greenhouse gas emissions are the main cause of today's climate change. To address this problem, the world is in an era of new round energy transformation, and the existing energy structure is being reformed. In this paper, according to the Chinese government's action plan for coping with climate change, the China's wind energy sustainable development goals and development route are discussed, and the countermeasures and suggestions are put forward. Wind energy is currently a kind of important renewable energy with matured technology which can be scale-up developed and put into commercial application, and in this transformation, wind energy will play a key role with other non-fossil energy sources. The development and utilization of wind energy is a systematic project, which needs to be solved from the aspects of policy, technology and management. At present, China is in the stage of transferring from “large wind power country” to “strong wind power country”, opportunities and challenges coexist, and the advantages of China's socialist system could be fully used, which can concentrate power to do big things and make contribution in the process of realizing global energy transformation.

  12. Net-Zero-Energy Model for Sustainable Wastewater Treatment.

    Science.gov (United States)

    Yan, Peng; Qin, Rong-Cong; Guo, Jin-Song; Yu, Qiang; Li, Zhe; Chen, You-Peng; Shen, Yu; Fang, Fang

    2017-01-17

    A large external energy input prevents wastewater treatment from being environmentally sustainable. A net-zero-energy (NZE) wastewater treatment concept based on biomass energy recycling was proposed to avoid wasting resources and to promote energy recycling in wastewater treatment plants (WWTPs). Simultaneously, a theoretical model and boundary condition based on energy balance were established to evaluate the feasibility of achieving NZE in WWTPs; the model and condition were employed to analyze data from 20 conventional WWTPs in China. A total of six WWTPs can currently export excess energy, eight WWTPs can achieve 100% energy self-sufficiency by adjusting the metabolic material allocation, and six municipal WWTPs cannot achieve net-zero energy consumption based on the evaluation of the theoretical model. The NZE model offset 79.5% of the electricity and sludge disposal cost compared with conventional wastewater treatment. The NZE model provides a theoretical basis for the optimization of material regulation for the effective utilization of organic energy from wastewater and promotes engineering applications of the NZE concept in WWTPs.

  13. Sustainable Digital Environments: What Major Challenges Is Humankind Facing?

    Directory of Open Access Journals (Sweden)

    Roland W. Scholz

    2016-07-01

    Full Text Available This paper identifies and discusses the benefits, threats, and vulnerabilities related to the digital revolution. It aims to motivate research and its funding regarding digital threats and vulnerabilities related, in particular, to anticipating unintended, undesirable rebound effects, tipping points, critically fast evolutionary change rates, trade-offs, etc. A brief analysis of the history of the mind and technology reveals slow technological development over tens of thousands of years (including the invention of a place-value digital number system. Then, a small series of groundbreaking ideas (e.g., binary logic, Shannon’s symbolic analysis of relay and switching circuits, architectures of computing enabled the industry-driven invention of programmable computing machines. Ultimately, the mastery of electron and semiconductor physics allowed for economical and seemingly unlimited storage capacity that made digital tools available to all domains of society. Based on the historical analysis, a coupled human-environment systems perspective (that includes a hierarchy assumption ranging from the human cell to the human species enables the identification of several potential challenges to society and science. First, digital nano-engineering promotes genetic modifications (i.e., directed evolution, and synthetic biology enables a new level of the appropriation of nature. The understanding of cell-based biocomputers may call for new forms of logic. These and other challenges require thorough sustainability research in order to anticipate major changes on all levels of human systems. Second, the human individual is exposed to new forms of vulnerability. In particular, the potential epigenetic effects resulting from the excessive use of digital information of historically unknown speed, density, and contents and the loss of (the Western common-law right to privacy resulting from big data (whose ownership is often unknown should become subjects of

  14. From unlimited growth to sustainable energy. The origin of operational patterns by means of social selection

    Energy Technology Data Exchange (ETDEWEB)

    Peura, P.

    2013-06-01

    This doctoral thesis is based on four peer reviewed articles, which together make a coherent longitudinal research and knowledge creating process, with conceptual integration and dialectical reasoning as its corner stones. The thesis is based on zooming in from large scale thinking - philosophy and worldview - towards smaller scale issues, first in order to understand, then to deepen knowledge through research, then to search for solutions for clearly explicated problems, and finally to implement the findings in practice. The logical framework is as follows: The state of the global environment is approaching a point where the whole of humankind is in danger. These issues are widely discussed and analysed. The change towards more sustainable development will be a long societal process, and it will be essential to understand the characteristics and dialectics of the process. The author presents and analyses his three layer model of societal evolution. The change of making humankind more sustainable creates practical needs - real actions will be necessary - but above all, it creates a need to develop scientific understanding, which is briefly discussed. The production of energy has traditionally been one of the core issues concerning the effect humankind has on the environment, and in the process of change, the potential reform of the energy sector will be in a key position. The main part of the thesis' empirical material concerns the energy sector and its potential shift towards the principle of sustainable energy. (orig.)

  15. Future Transportation with Smart Grids and Sustainable Energy

    Directory of Open Access Journals (Sweden)

    Gustav R. Grob

    2009-10-01

    Full Text Available Transportation is facing fundamental change due to the rapid depletion of fossil fuels, environmental and health problems, the growing world population, rising standards of living with more individual mobility and the globalization of trade with its increasing international transport volume. To cope with these serious problems benign, renewable energy systems and much more efficient drives must be multiplied as rapidly as possible to replace the polluting combustion engines with their much too low efficiency and high fuel logistics cost. Consequently the vehicles of the future must be non-polluting and super-efficient, i.e. electric. The energy supply must come via smart grids from clean energy sources not affecting the health, climate and biosphere. It is shown how this transition to the clean, sustainable energy age is possible, feasible and why it is urgent. The important role of international ISO, IEC and ITU standards and the need for better legislation by means of the Global Energy Charter for Sustainable Development are also highlighted.

  16. Integrating Sustainability in a PBL Environment for Electronics Engineering

    DEFF Research Database (Denmark)

    Arsat, Mahyuddin; Holgaard, Jette Egelund; de Graaff, Erik

    2013-01-01

    In the past decades, education for sustainable development (ESD) has obtained increasing recognition as a general subject in higher education (HE). Institutions worldwide have had attention to the integration of sustainability into the curricula, and on the conceptual level problem based learning...... (PBL) has been put forward as a promising pedagogical model and emerged as an opportunity to implement sustainability successfully. Due to the almost forty years of experience in PBL, a case study was carried out at Aalborg University, Denmark to excerpt their experience of integrating sustainability...... difference factors: input, throughput and output factors; whereas reflections on the study is presented in the final part. It is found that the PBL practices in the modules comprehend the integration of sustainability in engineering education without compensating technical and engineering competencies...

  17. A review of renewable energy sources, sustainability issues and climate change mitigation

    Directory of Open Access Journals (Sweden)

    Phebe Asantewaa Owusu

    2016-12-01

    Full Text Available The world is fast becoming a global village due to the increasing daily requirement of energy by all population across the world while the earth in its form cannot change. The need for energy and its related services to satisfy human social and economic development, welfare and health is increasing. Returning to renewables to help mitigate climate change is an excellent approach which needs to be sustainable in order to meet energy demand of future generations. The study reviewed the opportunities associated with renewable energy sources which includes: Energy Security, Energy Access, Social and Economic development, Climate Change Mitigation, and reduction of environmental and health impacts. Despite these opportunities, there are challenges that hinder the sustainability of renewable energy sources towards climate change mitigation. These challenges include Market failures, lack of information, access to raw materials for future renewable resource deployment, and our daily carbon footprint. The study suggested some measures and policy recommendations which when considered would help achieve the goal of renewable energy thus to reduce emissions, mitigate climate change and provide a clean environment as well as clean energy for all and future generations.

  18. Systemic aspects of the transition to sustainable energy

    Directory of Open Access Journals (Sweden)

    Schlögl R.

    2015-01-01

    Full Text Available The supply of free energy to our societies is today an intricate system comprising the regimes of technologies, regulatory frameworks, socio-economic impacts and techno-ecological interactions. As a consequence it is challenging to define clear directions or even device a master plan for the transformation of a single national energy system into a sustainable future. Even the term “sustainable” needs extensive discussion in this context that should not be defined solely in technological or ecological senses. The contribution illustrates some of the elements of the energy system and their interdependencies. It will become clear that multiple reasons exist to change the traditional generation and use of energy even when climate protection is not a sufficiently strong argument for a change.

  19. Sustainable energy for the future. Modelling transitions to renewable and clean energy in rapidly developing countries.

    NARCIS (Netherlands)

    Urban, Frauke

    2009-01-01

    The main objective of this thesis is first to adapt energy models for the use in developing countries and second to model sustainable energy transitions and their effects in rapidly developing countries like China and India. The focus of this thesis is three-fold: a) to elaborate the differences

  20. Personalized Energy Services : A Data-Driven Methodology towards Sustainable, Smart Energy Systems

    NARCIS (Netherlands)

    Srirangam Narashiman, A.U.N.

    2017-01-01

    The rapid pace of urbanization has an impact on climate change and other environmental issues. Currently, 54% of the global population lives in cities accounting for two-thirds of global energy demand. Sustainable energy generation and consumption is the top humanity’s problem for the next 50 years.

  1. Energy indicators to assess sustainable development at the national level : acting on the Johannesburg plan of implementation

    Energy Technology Data Exchange (ETDEWEB)

    Vera, I.A. [International Atomic Energy Agency, Vienna (Austria); Abdalla, K.L. [United Nations, New York, NY (United States). Dept. of Economic and Social Affairs

    2006-04-15

    Energy and its relationship to socio-economic development and the environment was a central theme at the World Summit on Sustainable Development in 2002. Countries participating in the resulting Johannesburg plan of implementation need to accurately assess current economic conditions, policy instruments and goals for the future. This article provided details of a cooperative effort by the International Atomic Energy Agency (IAEA) and the United Nations Department for Economic and Social Affairs to develop a set of energy indicators to provide insight into the causal relationships between energy trends and policies. The energy indicators are consonant with Agenda 21 objectives, and aim to provide countries with a statistical analysis tool for assessing energy systems status and trends within the paradigm of sustainable development. The first phase of the initiative defined a a conceptual framework that incorporated and identified specific indicators for sustainable energy development. The second phase aimed to test and to provide assistance to countries in the development and use of energy indicators for monitoring progress and for developing energy strategies in conformity with the national objectives of sustainable development. Seven countries participated in the second phase, namely Brazil, Cuba, Lithuania, Mexico, Russian Federation, Slovakia, and Thailand. All participating countries have now defined their energy and sustainable development priorities, and have applied energy indicators to the analysis of energy policies geared to attaining priority goals. The case studies have led to the development of a number of new initiatives to improve national energy statistics as well as to develop databases on energy indicators. It was noted that many developing countries need to make an investment in their energy statistical databases and programs. It was concluded that the case studies demonstrated the advantages of using an integrated approach in the formulation and

  2. Sustainable Entrepreneurship in the Energy Sector: A Perspective from a Brazilian Power Utility Firm

    Directory of Open Access Journals (Sweden)

    Marcus Vinicius de Oliveira Brasil

    2013-12-01

    Full Text Available The key question in this article consists of identifying the conditions under which the social projects developed by the firm Alpha are really promoting the sustainable development in the state of Ceará, located in Northeast Brazil. The general goal is to discuss if the firm’s social projects are related to the sustainable corporate entrepreneurship (SCE. This paper intends to stimulate the scientific community to advance knowledge on entrepreneurial, innovation and sustainability. This case study focuses on four Alpha’s projects: Ecological Initiative, Efficient Exchange, Social Energy, and School of Efficient Paths. The thematic content’s analysis methodology was used in this article. The documental research served as primary data source and helped to better elucidate the studied object. The researcher obtained 12 questionnaires answered. It was found an agreement of respondents to the categories: values, transparency and governance, workforce, environment, suppliers, consumers and customers and community. For the theme government and society, the results showed a disagreement with the category and for the last theme, innovation, the respondents are indifferent. After lexical analysis of data the results confirm in accordance with state of art of literature the existence of triple bottom line in the social projects of Alpha, by the categories resulted (profit, planet, people from content’s analysis of open questions. Alpha is a strong example of social commitment with poverty and environment. In conclusion, the research confirms that the firm promotes sustainable entrepreneurship and innovativeness leading to sustainable development.

  3. Towards Design of Sustainable Energy Systems in Developing Countries: Centralized and Localized Options

    Science.gov (United States)

    Kursun, Berrin

    sustainability results are obtained for full capacity operation in anaerobic digestion and for single fuel mode (SFM) operation in biomass gasification. For both of the processes, cost of electricity reduces 2-3 times if they are operated properly. However, there is not enough ipomea to run the biomass gasifier in SFM in Rampura, hence optimum operation scheme is ideal dual fuel mode (DFM) operation for the biomass gasifier analyzed. Emergy analysis of Rampura village and its subsystems reveal that sustainability is not achieved both at the village and in the subsystems levels since they are highly dependent on non-renewable material and energy inputs. To improve the overall sustainability in Rampura, dependency on purchased inputs fodder, fertilizer and diesel, non-renewable cooking fuel wood should be reduced. In satisfying energy demand in Rampura, biogas cooking and 70% biogas cooking scenarios perform better than electricity options in all of the objectives considered. Other than minimum land and water use objectives, electricity-RM and electricity-GM scenarios overlap and do not have a significant difference in terms of performance. Based on these results, the best option to meet the energy demand in Rampura would be to meet all the cooking energy with direct use of biogas. However, 70% biogas cooking scenario may be a more practical option since it both satisfies energy demand in an environmentally benign manner and satisfies the cultural needs of Rampura people. When 30% of cooking is performed by utilizing improved biomass cook stoves in the traditional way, the biogas potential becomes enough to meet all the remaining energy demand (70% of cooking, lighting and irrigation) in Rampura, hence energy security and reliability are ensured. Furthermore, utilizing biogas for cooking enables more agricultural residues to be available as fodder and eases the pressure on environment due to excessive woody biomass harvesting. Additionally, CH4 emissions from cow dung are avoided

  4. THE HARMONIZATION OF MANMADE ENVIRONMENT WITH THE NATURAL ENVIRONMENT IN THE CONTEXT OF SUSTAINABLE DEVELOPMENT

    Directory of Open Access Journals (Sweden)

    PAUL-BOGDAN ZAMFIR

    2012-06-01

    Full Text Available Experts estimate that physical deterioration of the planet and environment, they stress more serious. The destruction of forests is accelerating and the deserts are extending. Soil erosion undermines not only agricultural production but also winning means needed of existence for millions of people, while gradual disappearance of species of plants and animals diminishes our heritage biological. For the first time in history the structure atmosphere land is modifying by the destruction of the ozone layer which protects us from ultraviolet radiations, it is causing accumulation of greenhouse gases, which leads inevitably to warming climate Earth. Today is widely accepted the concept of sustainable development. It was defined the World Conference on Environment and Development in 1987, as a development that would ensure the present needs without jeopardizing the future generations capacity to satisfy its own requirements. The governments, including the Romanian, have started to react when devastating environmental changes have become ever more obvious. However, the discrepancy between what should be done to protect the capacity of planet to ensure living conditions and that what was achieved in practice is on the rise. In our country the phenomenon of environment degradation with all the concern displayed and the financial effort accomplished, obviously insufficient, tends to magnify, especially in the last period as a result of intensification of polluant industrial activity. In this sense, any cost cannot be considered too big, for the protection of life as a last resort.

  5. Sustainable Development and Energy Geotechnology Potential Roles for Geotechnical Engineering

    Energy Technology Data Exchange (ETDEWEB)

    FragaszyProgram Dire, Dr. R. J. [National Science Foundation; Santamarina, Carlos [Georgia Institute of Technology; Espinoza, N. [Georgia Institute of Technology; Jang, J.W. [Georgia Institute of Technology; Jung, J.W. [Georgia Institute of Technology; Tsouris, Costas [ORNL

    2011-01-01

    The world is facing unprecedented challenges related to energy resources, global climate change, material use, and waste generation. Failure to address these challenges will inhibit the growth of the developing world and will negatively impact the standard of living and security of future generations in all nations. The solutions to these challenges will require multidisciplinary research across the social and physical sciences and engineering. Although perhaps not always recognized, geotechnical engineering expertise is critical to the solution of many energy and sustainability-related problems. Hence, geotechnical engineers and academicians have opportunity and responsibility to contribute to the solution of these worldwide problems. Research will need to be extended to non-standard issues such as thermal properties of soils; sediment and rock response to extreme conditions and at very long time scales; coupled hydro-chemo-thermo-bio-mechanical processes; positive feedback systems; the development of discontinuities; biological modification of soil properties; spatial variability; and emergent phenomena. Clearly, the challenges facing geotechnical engineering in the future will require a much broader knowledge base than our traditional educational programs provide. The geotechnical engineering curricula, from undergraduate education through continuing professional education, must address the changing needs of a profession that will increasingly be engaged in alternative/renewable energy production; energy efficiency; sustainable design, enhanced and more efficient use of natural resources, waste management, and underground utilization.

  6. Capacity Development and Strengthening for Energy Policy formulation and implementation of Sustainable Energy Projects in Indonesia CASINDO. Deliverable No. 24. Regional Energy Efficiency Planning 2011 [for Yogyakarta

    Energy Technology Data Exchange (ETDEWEB)

    Prahara, Pamungkas Jutta; Hariadi, T.K. [Universitas Muhammadiyah PUSPER-UMY, Yogyakarta (Indonesia)

    2012-06-15

    The overall objective of the CASINDO programme is to establish a self-sustaining and self-developing structure at both the national and regional level to build and strengthen human capacity to enable the provinces of North Sumatra, Yogyakarta, Central Java, West Nusa Tenggara and Papua to formulate sound policies for renewable energy and energy efficiency and to develop and implement sustainable energy projects. Increasing energy demand and decreasing energy supply has to be faced by strategic measures. Daerah Istimewa Yogyakarta (DIY) faces the same problem with more burdens since DIY depends on energy supply from other region. One strategic measure is to reduce energy consumption across sectors. There are, in total, 805.468 electricity consumers in Yogyakarta in the household, social and industrial sector. Through direct measures electricity consumption can be reduced and financial resources can be saved. One of the measures is energy conservation campaign to all sectors in the region which expected to reduce the energy spent, for example to switch off electronic devices totally instead of to put them in standby mode. Survey in the region indicated there are various use of electronic devices in household dominated by refrigeration, television, and AC's. In industries and social, AC and motors are dominating the sector. By applying inverter technology and refrigerant retrofitting to air conditioner can reduce significantly the energy consumption. Changing from old refrigerator with new energy saver refrigerator would also reduce energy consumption. Strategic energy policy and tools has to be identified to push the community to apply the recommended measure. Energy labeling, tax reduction program and energy price increase would make the energy conservation program more feasible and create an environment where inventing in energy efficiency is more attractive. Furthermore a financial resource policy has to be prepared for community education through promotion

  7. United Nations Environment Program - Sustainable Purchasing Guidance Profile

    Science.gov (United States)

    To help you find the resource that is right for your organization, EPA conducted a scan of the landscape and developed summary profiles of some of the leading sources of sustainable purchasing guidance around the globe.

  8. Sustainable development and reduced crime in urban environment

    OpenAIRE

    Jalal Mozaffari

    2016-01-01

    Sustainable development is one of the ideal aspects of governments to provide favorable quality of life for residents, since it solves the problem of unemployment, reduces poverty rate, increases income, and establishes social justice. It also paves the way to increase participation in management of the country. Additionally, it increases the security and reduces crime rate in urban areas. In other words, there is mutual relationship between sustainable development and reduced crime rates....

  9. Renewable energy for sustainable ocean sensors and platforms

    Science.gov (United States)

    Carapezza, Edward M.; Molter, Trent M.

    2007-10-01

    In the future, networks of unmanned and unattended sensor systems will replace many of these manned assets and will become pervasive and highly connected in many maritime areas. Unmanned mobile surveillance systems will be able to operate with a high degree of autonomy and weather tolerance with minimum cost and manpower risk. Low cost, highly sustainable underwater power sources, for both stationary sensors systems and mobile surveillance platforms, are required for this vision. This paper presents a description of interim results of investigations into technologies and systems for generating renewable energy from coastal and open ocean areas. A range of technologies have been investigated from low power systems deriving energy from the microbial fuel cells and the direct bacterial conversion of methane gas to methanol liquid to larger power systems deriving energy from ocean waves, methane hydrate deposits, and hydrothermal vents.

  10. Energy Reforms in The Developing World: Sustainable Development Compromised?

    Directory of Open Access Journals (Sweden)

    Said Mbogo Abdallah

    2015-06-01

    Full Text Available Energy sector reforms with an emphasis on electricity growth have been taking place extensively and rapidly worldwide Particularly, motivated chiefly by classical economics’ standpoint of efficiency and market considerations, reforms have been made in the developed North. Models of reforms in the North have in turn been replicated in developing countries. However, questions arise as to whether the models used are suitable for the mostly rural and socioeconomically disadvantaged economies in the South. It is argued in this paper that a sustainability focused mode of reforms guided by futures studies is needed for such economies. Reforms taking place in Kenya and neighbouring countries are in particular examined from a sustainable future perspective; and appropriate improvements and further research are recommended.

  11. Energy policies for low carbon sustainable transport in Asia

    DEFF Research Database (Denmark)

    Shukla, P.R.; Dhar, Subash

    2015-01-01

    equivalent to 2 °C stabilization. Accounting for heterogeneity of national transport systems, these papers use diverse methods, frameworks and models to assess the response of the transport system to environmental policy, such as a carbon tax, as well as to a cluster of policies aimed at diverse development......Transformation of Asia's transport sector has vital implications for climate change, sustainable development and energy indicators. Papers in this special issue show how transport transitions in Asia may play out in different socio-economic and policy scenarios, including a low carbon scenario...... indicators. The analysis shows that CO2 mitigation in a transport system is achieved more effectively by aligning mitigation policies with sustainable development policies and measures such as mandates for mode share and choices such as urban design, information and communication systems, and behavioral...

  12. Dynamic Sustainability. Sustainability Window Analysis of Chinese Poverty-Environment Nexus Development

    Directory of Open Access Journals (Sweden)

    Jyrki Luukkanen

    2015-10-01

    Full Text Available Sustainability Window is a new analysis tool for assessing the sustainability of development simultaneously in all of its three dimensions (environmental, economic, and social. The analysis method provides information of the maximum and minimum economic development that is required to maintain the direction of social and environmental development towards more sustainable targets. With the Sustainability Window method it is possible to easily analyze the sustainability using different indicators and different time periods making comparative analyses easy. The new method makes it also possible to analyze the dynamics of the sustainability and the changes over time in the width of the window. This provides a new perspective for analyzing the trends of sustainability and the impacts of underlying sustainability policies. As an illustration of the method, we have carried out an analysis of Chinese development using CO2 and SO2 emissions as indicators of the environmental dimension, number of non-poor people as an indicator of the social dimension and GDP as an indicator of the economic dimension.

  13. Fungal Genomics for Energy and Environment

    Energy Technology Data Exchange (ETDEWEB)

    Grigoriev, Igor V.

    2013-03-11

    Genomes of fungi relevant to energy and environment are in focus of the Fungal Genomic Program at the US Department of Energy Joint Genome Institute (JGI). One of its projects, the Genomics Encyclopedia of Fungi, targets fungi related to plant health (symbionts, pathogens, and biocontrol agents) and biorefinery processes (cellulose degradation, sugar fermentation, industrial hosts) by means of genome sequencing and analysis. New chapters of the Encyclopedia can be opened with user proposals to the JGI Community Sequencing Program (CSP). Another JGI project, the 1000 fungal genomes, explores fungal diversity on genome level at scale and is open for users to nominate new species for sequencing. Over 200 fungal genomes have been sequenced by JGI to date and released through MycoCosm (www.jgi.doe.gov/fungi), a fungal web-portal, which integrates sequence and functional data with genome analysis tools for user community. Sequence analysis supported by functional genomics leads to developing parts list for complex systems ranging from ecosystems of biofuel crops to biorefineries. Recent examples of such parts suggested by comparative genomics and functional analysis in these areas are presented here.

  14. Building green covering for a sustainable use of energy

    Directory of Open Access Journals (Sweden)

    C.A. Campiotti

    2013-09-01

    Full Text Available Nowadays the growth of the cities increased built and paved areas, energy use and heat generation. The phenomenon of urban warming, called urban heat island, influences negatively outdoor comfort conditions, pollutants concentration, energy demand for air conditioning, as well as increases environmental impact due to the demand of energy generation. A sustainable technology for improving the energy efficiency of buildings is the use of green roofs and walls in order to reduce the energy consumption for conditioning in summer and improve the thermal insulation in winter. The use of green roofs and walls can contribute to mitigate the phenomenon of heat island, the emissions of greenhouse gases, and the storm water runoff affecting human thermal comfort, air quality and energy use of the buildings. Recently, a number of municipalities started to adopt regulations and constructive benefits for renovated and new buildings which incorporate green roofs and walls. The aim of this paper is to describe the green roofs and walls plant technology.

  15. Preface: photosynthesis and hydrogen energy research for sustainability.

    Science.gov (United States)

    Tomo, Tatsuya; Allakhverdiev, Suleyman I

    2017-09-01

    Energy supply, climate change, and global food security are among the main chalenges facing humanity in the twenty-first century. Despite global energy demand is continuing to increase, the availability of low cost energy is decreasing. Together with the urgent problem of climate change due to CO2 release from the combustion of fossil fuels, there is a strong requirement of developing the clean and renewable energy system for the hydrogen production. Solar fuel, biofuel, and hydrogen energy production gained unlimited possibility and feasibility due to understanding of the detailed photosynthetic system structures. This special issue contains selected papers on photosynthetic and biomimetic hydrogen production presented at the International Conference "Photosynthesis Research for Sustainability-2016", that was held in Pushchino (Russia), during June 19-25, 2016, with the sponsorship of the International Society of Photosynthesis Research (ISPR) and of the International Association for Hydrogen Energy (IAHE). This issue is intended to provide recent information on the photosynthetic and biohydrogen production to our readers.

  16. Climate Change Impacts on the Built Environment in the United States and Implications for Sustainability

    Science.gov (United States)

    Quattrochi, Dale A.

    2012-01-01

    As an integral part of the National Climate Assessment (NCA), technical assessment reports for 13 regions in the U.S. that describe the scientific rationale to support climate change impacts within the purview of these regions, and provide adaptation or mitigation measures in response to these impacts. These technical assessments focus on climate change impacts on sectors that are important environmental, biophysical, and social and economic aspects of sustainability within the U.S.: Climate change science, Ecosystems and biodiversity, Water resources, Human health, Energy supply and use, Water/energy/land use, Transportation, Urban/infrastructure/vulnerability, Agriculture, Impacts of climate change on tribal/indigenous and native lands and resources, Forestry, Land use/land cover change, Rural communities development, and Impacts on biogeochemical cycles, with implications for ecosystems and biodiversity. There is a critical and timely need for the development of mitigation and adaptation strategies in response to climate change by the policy and decision making communities, to insure resiliency and sustainability of the built environment in the future.

  17. Nuclear energy and sustainable development: contradiction or challenge?

    Energy Technology Data Exchange (ETDEWEB)

    Laes, E.; Meskens, G. [SCK.CEN, Belgian Nuclear Research Centre, Mol (Belgium)

    2001-07-01

    The concept of sustainable development is widely accepted as a principle for decision-making. However, it needs to be put into operation. Two classical approaches, cost-benefit analysis and multi-criteria analysis, are not suitable on account of the underlying rational choice theory and value system. Insights from these methods need to be complemented by the inherently pluralistic approach of cultural theory. This offers the prospects of the identification of all relevant criteria for the comparison of different energy vectors, broadening the perspective through an interdisciplinary working process, confronting uncertainty at a fundamental level, and the explicit integration of values and world views. (author)

  18. Sustainable energy planning for 27 small Danish Islands. Summary report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-06-01

    A methodology has been developed and implemented, whereby detailed assessment of a few model or archetype islands may be used as basis for subsequent estimation of possibilities for other islands of similar kind, provided certain key data for present day energy consumption are available. A consistent interaction with the population on the model islands has been important in that process. The technical-economical results of the study show, that a number of measures seem cost-effective with the aim of contributing to a sustainable energy supply for the small Danish islands. Most prominent are energy savings for both heat and electricity, grid connected wind turbines for electricity production and collective heat supply, in decreasing order of cost-effectiveness. It has become clear, that an organisational structure based on the cooperative idea is essential for realising this potential. In Denmark this is a strong tradition, recently manifesting itself in the fact, that a majority of Danish wind turbines have been installed in the fram work of cooperative idea is essential for realising this potential. In Denmark this is a strong tradition, recently manifesting itself in the fact, that a majority of Danish wind turbines have been installed in the framework of cooperatives. This means that it is a well proven concept, in Denmark well established in the legal and financial structure including the tax laws. Consequently such energy cooperatives represent the organisational structure recommended by the project also for other sustainable energy initiatives on the small Danish islands. The implication on a European level is that the methodology developed in the project, as well as the concrete recommendations of the project including organisational structures, seem well suited to be applied on a European level in the context of local communities with a strong identity. (LN)

  19. From energy efficiency to integrated sustainable urbanism in residential development in China

    Energy Technology Data Exchange (ETDEWEB)

    Zhichang Cai

    2010-06-15

    China has adopted Sustainable Development as a national strategy for all industries. In civil construction sector, sustainability is regarded as the development of Green Building in China. Since 2000, China has introduced a series of policies and laws to promote Green Building. Green Building was defined as buildings that are 'energy-efficient, land-efficient, water-efficient, and material-efficient' and emit 'minimal pollution' in during its entire life cycle, and meets a specified standard for indoor environment at the same time. However, energy efficiency is the central issue of current Green Building development in China, while issues of resources and pollution are neglected, which is partly due to China's energy structure. Social and economic aspects are also always ignored. The main aim of this thesis is to map pathways towards more comprehensive frameworks for how residential areas in China could be constructed in a more sustainable way in hot summer and cold-winter area. Case study was the main method used to examine the specifications of Green Residential Building in China. This paper offers a general overview of the current green trend in China and presents a specific analysis on three cases to search for the proper approach for China's unique situation by three specific cases representing three types of Green Building: Modern Vernacular Architecture, Eco-office and Mass-housing, according to their features in scale, location and function. This paper then presents a specific integrated sustainability analysis of the Landsea Housing Project in Nanjing, a hot-summer/cold-winter zone. Hammarby Sjoestad, a cutting edge project in Stockholm, is also discussed as a reference area from which experiences can be drawn for China. The aim was to improve the framework for construction of residential buildings in China in a more sustainable way, from energy efficiency to integrated sustainability. The paper also discusses the relationship

  20. Nanoscale triboelectric-effect-enabled energy conversion for sustainably powering portable electronics.

    Science.gov (United States)

    Wang, Sihong; Lin, Long; Wang, Zhong Lin

    2012-12-12

    Harvesting energy from our living environment is an effective approach for sustainable, maintenance-free, and green power source for wireless, portable, or implanted electronics. Mechanical energy scavenging based on triboelectric effect has been proven to be simple, cost-effective, and robust. However, its output is still insufficient for sustainably driving electronic devices/systems. Here, we demonstrated a rationally designed arch-shaped triboelectric nanogenerator (TENG) by utilizing the contact electrification between a polymer thin film and a metal thin foil. The working mechanism of the TENG was studied by finite element simulation. The output voltage, current density, and energy volume density reached 230 V, 15.5 μA/cm(2), and 128 mW/cm(3), respectively, and an energy conversion efficiency as high as 10-39% has been demonstrated. The TENG was systematically studied and demonstrated as a sustainable power source that can not only drive instantaneous operation of light-emitting diodes (LEDs) but also charge a lithium ion battery as a regulated power module for powering a wireless sensor system and a commercial cell phone, which is the first demonstration of the nanogenerator for driving personal mobile electronics, opening the chapter of impacting general people's life by nanogenerators.

  1. Sustainable Livestock Production, Health, and Environment in the ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    This project aims to promote evidence-based policies for improving livestock production, environmental sustainability, and health in the Bolivian Altiplano's rural communities. Traditional farming under threat in Bolivia Raising sheep and llamas is a fundamental economic activity that is threatened by current agricultural ...

  2. Environment and Sustainability Education in a Changing South ...

    African Journals Online (AJOL)

    This paper examines how, in response to emerging risk, methodological narratives for conservation (CE), environmental (EE) and now sustainability education (ESD) were constituted in diverse settings within a changing South African state. After documenting an awareness creation perspective underpinning early ...

  3. Sustaining Agriculture and the Rural Environment; governance, policy and multifunctionality

    NARCIS (Netherlands)

    Brouwer, F.M.

    2004-01-01

    Apart from food and raw materials, agriculture can also provide ancillary benefits such as landscapes, biodiversity, cultural heritage and thriving rural communities. This book offers a state-of-the-art overview of strategies for sustainable management practices and their implementation through the

  4. Ngo accountability and sustainability issues in the changing global environment

    NARCIS (Netherlands)

    Unerman, J.; O'Dwyer, B.

    2010-01-01

    This article, based on a plenary lecture given at the First International Conference on Sustainable Management of Public and Not for Profit Organizations held at the University of Bologna, Forli Campus, Italy in July 2009, provides an overview of issues in non-governmental organization (NGO)

  5. From dust devil to sustainable swirling wind energy.

    Science.gov (United States)

    Zhang, Mingxu; Luo, Xilian; Li, Tianyu; Zhang, Liyuan; Meng, Xiangzhao; Kase, Kiwamu; Wada, Satoshi; Yu, Chuck Wah; Gu, Zhaolin

    2015-02-09

    Dust devils are common but meteorologically unique phenomena on Earth and on Mars. The phenomenon produces a vertical vortex motion in the atmosphere boundary layer and often occurs in hot desert regions, especially in the afternoons from late spring to early summer. Dust devils usually contain abundant wind energy, for example, a maximum swirling wind velocity of up to 25 m/s, with a 15 m/s maximum vertical velocity and 5 m/s maximum near-surface horizontal velocity can be formed. The occurrences of dust devils cannot be used for energy generation because these are generally random and short-lived. Here, a concept of sustained dust-devil-like whirlwind is proposed for the energy generation. A prototype of a circular shed with pre-rotation vanes has been devised to generate the whirlwind flow by heating the air inflow into the circular shed. The pre-rotation vanes can provide the air inflow with angular momentum. The results of numerical simulations and experiment illustrate a promising potential of the circular shed for generating swirling wind energy via the collection of low-temperature solar energy.

  6. Effects of Nuclear Energy on Sustainable Development and Energy Security: Sodium-Cooled Fast Reactor Case

    Directory of Open Access Journals (Sweden)

    Sungjoo Lee

    2016-09-01

    Full Text Available We propose a stepwise method of selecting appropriate indicators to measure effects of a specific nuclear energy option on sustainable development and energy security, and also to compare an energy option with another. Focusing on the sodium-cooled fast reactor, one of the highlighted Generation IV reactors, we measure and compare its effects with the standard pressurized water reactor-based nuclear power, and then with coal power. Collecting 36 indicators, five experts select seven key indicators to meet data availability, nuclear energy relevancy, comparability among energy options, and fit with Korean energy policy objectives. The results show that sodium-cooled fast reactors is a better alternative than existing nuclear power as well as coal electricity generation across social, economic and environmental dimensions. Our method makes comparison between energy alternatives easier, thereby clarifying consequences of different energy policy decisions.

  7. A Net Energy-based Analysis for a Climate-constrained Sustainable Energy Transition

    CERN Document Server

    Sgouridis, Sgouris; Csala, Denes

    2015-01-01

    The transition from a fossil-based energy economy to one based on renewable energy is driven by the double challenge of climate change and resource depletion. Building a renewable energy infrastructure requires an upfront energy investment that subtracts from the net energy available to society. This investment is determined by the need to transition to renewable energy fast enough to stave off the worst consequences of climate change and, at the same time, maintain a sufficient net energy flow to sustain the world's economy and population. We show that a feasible transition pathway requires that the rate of investment in renewable energy should accelerate approximately by an order of magnitude if we are to stay within the range of IPCC recommendations.

  8. Sustainable Mining Land Use for Lignite Based Energy Projects

    Science.gov (United States)

    Dudek, Michal; Krysa, Zbigniew

    2017-12-01

    This research aims to discuss complex lignite based energy projects economic viability and its impact on sustainable land use with respect to project risk and uncertainty, economics, optimisation (e.g. Lerchs and Grossmann) and importance of lignite as fuel that may be expressed in situ as deposit of energy. Sensitivity analysis and simulation consist of estimated variable land acquisition costs, geostatistics, 3D deposit block modelling, electricity price considered as project product price, power station efficiency and power station lignite processing unit cost, CO2 allowance costs, mining unit cost and also lignite availability treated as lignite reserves kriging estimation error. Investigated parameters have nonlinear influence on results so that economically viable amount of lignite in optimal pit varies having also nonlinear impact on land area required for mining operation.

  9. Food-Energy Interactive Tradeoff Analysis of Sustainable Urban Plant Factory Production Systems

    Directory of Open Access Journals (Sweden)

    Li-Chun Huang

    2018-02-01

    Full Text Available This research aims to analyze the food–energy interactive nexus of sustainable urban plant factory systems. Plant factory systems grow agricultural products within artificially controlled growing environment and multi-layer vertical growing systems. The system controls the supply of light, temperature, humidity, nutrition, water, and carbon dioxide for growing plants. Plant factories are able to produce consistent and high-quality agricultural products within less production space for urban areas. The production systems use less labor, pesticide, water, and nutrition. However, food production of plant factories has many challenges including higher energy demand, energy costs, and installation costs of artificially controlled technologies. In the research, stochastic optimization model and linear complementarity models are formulated to conduct optimal and equilibrium food–energy analysis of plant factory production. A case study of plant factories in the Taiwanese market is presented.

  10. Nonregenerative natural resources in a sustainable system of energy supply.

    Science.gov (United States)

    Bradshaw, Alex M; Hamacher, Thomas

    2012-03-12

    Following the lead of the European Union in introducing binding measures to promote the use of regenerative energy forms, it is not unreasonable to assume that the global demand for combustible raw materials for energy generation will be reduced considerably in the second half of this century. This will not only have a favourable effect on the CO(2) concentration in the atmosphere, but will also help preserve fossil fuels-important as raw materials in the chemical industry-for future generations. Nevertheless, associated with the concomitant massive shift to regenerative energy forms, there will be a strong demand for other exhaustible raw materials, in particular metals, some of which are already regarded as scarce. After reviewing the debate on mineral depletion between "cornucopians" and "pessimists", we discuss the meaning of mineral "scarcity", particularly in the geochemical sense, and mineral "exhaustion". The expected drastic increase in demand for mineral resources caused by demographic and societal pressures, that is, due to the increase in in-use stock, is emphasised. Whilst not discussing the issue of "strong" versus "weak" sustainability in detail, we conclude that regenerative energy systems-like nearly all resource-consuming systems in our society-do not necessarily satisfy generally accepted sustainability criteria. In this regard, we discuss some current examples, namely, lithium and cobalt for batteries, rare earth-based permanent magnets for wind turbines, cadmium and tellurium for solar cells and copper for electrical power distribution. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Developing sustainable energy policies for electrical energy conservation in Saudi Arabia

    Energy Technology Data Exchange (ETDEWEB)

    Al-Ajlan, S.A. [Energy Research Institute, King Abdulaziz City for Science and Technology, P.O. Box 6086, Riyadh 11442 (Saudi Arabia)]. E-mail: salajlan@kacst.edu.sa; Al-Ibrahim, A.M. [Energy Research Institute, King Abdulaziz City for Science and Technology, P.O. Box 6086, Riyadh 11442 (Saudi Arabia); Abdulkhaleq, M. [Ministry of Water and Electricity (Saudi Arabia); Alghamdi, F. [Ministry of Water and Electricity (Saudi Arabia)

    2006-09-15

    Towards the end of 1998, the Saudi Arabian electricity sector embarked upon a major restructuring program. One of the aims of the program is to achieve sustainable performance. Although progress has been made, a number of challenges remain, including high demand growth, low generation capacity reserve margins, inefficient energy use, absence of time-of-use tariffs, and the need for large capital investments to meet current and future expansion. Electrical energy consumption in Saudi Arabia increased sharply during the last two decades due to rapid economic development and the absence of energy conservation measures. Peak loads reached nearly 24GW in 2001-25 times their 1975 level-and are expected to approach 60GW by 2023. The total investment needed to meet this demand may exceed $90 billion. Consequently, there is an urgent need to develop energy conservation policies for sustainable development. Current sustainable policies, particularly those pertaining to energy conservation, led to peak load savings of more than 871MW in 2001, mainly as a result of collaborations between the Ministry of Water and Electricity and the Saudi Electricity Company. In the long term, however, unless sustainable energy policies are developed at a national level, such efforts will be largely ineffective. To address this, policies and programs are being developed for public awareness, energy regulation and legislation, and energy information and programming. If energy conservation is taken into account, the forecast demand can be reduced by 5-10%. This is equivalent to 3-6GW of additional capacity, which represents a possible $1.5-3.0 billion saving over the next 20 years. Typically, investment in energy efficiency is 1% of utility sales revenues, which for a country like Saudi Arabia could be $15-60 million p.a. If only savings on air conditioning are considered, the return on investment is equivalent to 400-500MW p.a. of generating capacity-a saving of up to $0.25 billion p.a. In this

  12. An Enabling Regulatory Environment for Sustainable Investment: The Example of Trade Law

    OpenAIRE

    Bürgi, Elisabeth

    2014-01-01

    There is broad international agreement that investment flows to the agricultural sector in developing countries need to be increased. But there is also agreement that such investments need to be sustainable. For being sustainable, they must not only be beneficial to the public economy, but also to rural households and to the environment in the short and the long run. Whether sustainable investments take place, not least depends on the legal framework within which these investments are situate...

  13. The Water Demand of Energy: Implications for Sustainable Energy Policy Development

    Directory of Open Access Journals (Sweden)

    Kaveh Madani

    2013-11-01

    Full Text Available With energy security, climate change mitigation, and sustainable development as three main motives, global energy policies have evolved, now asking for higher shares of renewable energies, shale oil and gas resources in the global energy supply portfolios. Yet, concerns have recently been raised about the environmental impacts of the renewable energy development, supported by many governments around the world. For example, governmental ethanol subsidies and mandates in the U.S. are aimed to increase the biofuel supply while the water footprint of this type of energy might be 70–400 times higher than the water footprint of conventional fossil energy sources. Hydrofracking, as another example, has been recognized as a high water-intensive procedure that impacts the surface and ground water in both quality and quantity. Hence, monitoring the water footprint of the energy mix is significantly important and could have implications for energy policy development. This paper estimates the water footprint of current and projected global energy policies, based on the energy production and consumption scenarios, developed by the International Energy Outlook of the U.S. Energy Information Administration. The outcomes reveal the amount of water required for total energy production in the world will increase by 37%–66% during the next two decades, requiring extensive improvements in water use efficiency of the existing energy production technologies, especially renewables.

  14. Prioritizing urban sustainability solutions: coordinated approaches must incorporate scale-dependent built environment induced effects

    Science.gov (United States)

    Georgescu, M.; Chow, W. T. L.; Wang, Z. H.; Brazel, A.; Trapido-Lurie, B.; Roth, M.; Benson-Lira, V.

    2015-06-01

    Because of a projected surge of several billion urban inhabitants by mid-century, a rising urgency exists to advance local and strategically deployed measures intended to ameliorate negative consequences on urban climate (e.g., heat stress, poor air quality, energy/water availability). Here we highlight the importance of incorporating scale-dependent built environment induced solutions within the broader umbrella of urban sustainability outcomes, thereby accounting for fundamental physical principles. Contemporary and future design of settlements demands cooperative participation between planners, architects, and relevant stakeholders, with the urban and global climate community, which recognizes the complexity of the physical systems involved and is ideally fit to quantitatively examine the viability of proposed solutions. Such participatory efforts can aid the development of locally sensible approaches by integrating across the socioeconomic and climatic continuum, therefore providing opportunities facilitating comprehensive solutions that maximize benefits and limit unintended consequences.

  15. Predictors of Saudi nursing students' attitudes towards environment and sustainability in health care.

    Science.gov (United States)

    Cruz, J P; Alshammari, F; Felicilda-Reynaldo, R F D

    2018-02-09

    This study aimed to investigate the predictors of Saudi nursing students' attitudes towards the environment and sustainability in health care. With rising temperature and decreasing annual rainfall, Saudi Arabia is threatened by the harmful effects of climate change on its population. In response to these threats, the Ministry of Health adapted sustainable development and environmental preservation in their National E-Health strategy. To implement these policies successfully, healthcare practitioners should be educated on how climate change could impact human health negatively. A secondary analysis of 280 questionnaires from baccalaureate nursing students of a university in Hail City, Saudi Arabia, was completed. The New Ecological Paradigm (NEP) Scale and Sustainability Attitudes in Nursing Survey 2 (SANS-2) were used to investigate the predictors of student attitudes towards the environment and sustainable development in health care. The NEP score indicated moderate pro-environment attitudes, whereas the SANS-2 mean score showed very positive attitudes towards sustainability in health care. Learning about the environment and related issues in the nursing programme, raising climate change awareness and attending environment-related seminars and training positively influenced the environmental and sustainability attitudes of nursing students. Saudi nursing students moderately manifested pro-environment attitudes but exhibited extremely positive attitudes towards sustainability in health care. The results support the need to strengthen the education of nursing students about environmental and sustainability concepts and the inclusion of these topics in the nursing curricula. The study underscores the critical role of enriching the awareness of nursing students on environmental issues and concerns and sustainability in health care. The findings of this study can support the inclusion of course contents, which deal specifically with environmental health and

  16. Energy equity: will the UN Sustainable Energy For All initiative make a difference

    Energy Technology Data Exchange (ETDEWEB)

    Wilson, Emma

    2012-05-15

    Access to affordable modern energy services may not be a Millennium Development Goal (MDG) but without it, sustainable development, indeed the MDGs themselves, cannot be achieved. Yet energy access remains an area of great global inequity. On one hand, wealthy countries and communities consume vast amounts of often subsidised energy resources every day. On the other hand, 1-in-5 people lives with no access to grid electricity, and around 40 per cent of the world's population (nearly three billion people) lack the technologies to make cooking fuels clean, safe and efficient. Can the UN's Sustainable Energy for All initiative in 2012 redress the balance? Perhaps, but only if it puts improving the lives of the poorest and most vulnerable at the heart of its efforts.

  17. Microalgal cultivation and utilization in sustainable energy production

    Energy Technology Data Exchange (ETDEWEB)

    Lakaniemi, A.-M.

    2012-07-01

    Microalgae are a promising feedstock for biofuel and bioenergy production due to their high photosynthetic efficiencies, high growth rates and no need for external organic carbon supply. However, microalgal biomass cultivation for energy production purposes is still rare in commercial scale. Further research and development is needed to make microalgal derived energy sustainable and economically competitive. This work investigated cultivation of fresh water microalga Chlorella vulgaris and marine microalga Dunaliella tertiolecta and their utilization in production of hydrogen, methane, electricity, butanol and bio-oil after bulk harvesting the biomass. Growth of the two microalgae was studied in five different photobioreactor (PBR) configurations especially concentrating on the quantification and characterization of heterotrophic bacteria in non-axenic microalgal cultivations and microalgal utilization of different nitrogen sources. Anaerobic cultures used for the energy conversion processes were enriched from a mesophilic municipal sewage digester separately for production of H{sub 2}, CH{sub 4} and electricity from the two microalgal species. After culture enrichment, energy conversion yields of microalgal biomass to the different energy carriers were compared. In summary, this study demonstrated that both C. vulgaris and D. tertiolecta can be used for production of Hv(2), CHv(4), electricity, butanol and lipids. Based on this study C. vulgaris is more suitable for bioenergy production than D. tertiolecta. Depending on cellular lipid content, lipid utilization for bio-oil production and anaerobic digestion were the most potent means of converting C. vulgaris biomass to energy. The study also revealed diverse microbial communities in non-axenic microalgal photobioreactor cultures and in anaerobic consortia converting microalgal biomass to energy carriers

  18. Sustainable Interactions: Studies in the Design of Energy Awareness Artefacts

    Energy Technology Data Exchange (ETDEWEB)

    Broms, Loove

    2011-07-01

    This thesis presents a collection of experimental designs that approach the problem of growing electricity consumption in homes. From the perspective of design, the intention has been to critically explore the design space of energy awareness artefacts to reinstate awareness of energy use in everyday practice. The design experiments were used as vehicles for thinking about the relationship between physical form, interaction, and social practice. The rationale behind the concepts was based on a small-scale ethnography, situated interviews, and design experience. Moreover, the thesis compares designer intention and actual user experiences of a prototype that was installed in nine homes in a residential area in Stockholm for three months. This was done in order to elicit tacit knowledge about how the concept was used in real-world domestic settings, to challenge everyday routines, and to enable both users and designers to critically reflect on artefacts and practices. From a design perspective, contributions include design approaches to communicating energy use: visualizations for showing relationships between behaviour and electricity consumption, shapes and forms to direct action, means for turning restrictions caused by energy conservation into central parts of the product experience, and ways to promote sustainable behaviour with positive driving forces based on user lifestyles. The general results indicate that inclusion is of great importance when designing energy awareness artefacts; all members of the household should be able to access, interact with, and reflect on their energy use. Therefore, design-related aspects such as placement and visibility, as well as how the artefact might affect the social interactions in the home, become central. Additionally, the thesis argues that these types of artefacts can potentially create awareness accompanied by negative results such as stress. A challenge for the designer is to create artefacts that communicate and

  19. in_focus - Valuing the Environment: Economics for a Sustainable ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    1 janv. 2010 ... A vast number of people in developing countries depend on the natural environment for their livelihoods — on farmland or forests, wetlands or coastal areas. For these people, the environment is much more than a source of recreation — it is the basis of the economy. But poorly functioning markets, ...

  20. in_focus - Valuing the Environment: Economics for a Sustainable ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    2010-01-01

    Jan 1, 2010 ... A vast number of people in developing countries depend on the natural environment for their livelihoods — on farmland or forests, wetlands or coastal areas. For these people, the environment is much more than a source of recreation — it is the basis of the economy. But poorly functioning markets, ...

  1. Greening Governance : An Evolutionary Approach to Policy Making for a Sustainable Built Environment

    NARCIS (Netherlands)

    Van Bueren, E.M.

    2009-01-01

    After twenty years of sustainable building policies, the issue of environmental impact of buildings and urban environments remains. Policy makers still have difficulties addressing the ambiguous, contested and dynamic goals encapsulated in the term ‘sustainable development’. How to decide between

  2. Principles of sustainability science to assess alternative energy technologies

    CSIR Research Space (South Africa)

    Brent, AC

    2009-04-01

    Full Text Available The emerging field of sustainability science recognizes the important role of technologies in reaching the conditional goals of sustainable development. Research in sustainable technologies requires transdisciplinarity to determine the resilience...

  3. Energy for the future - with Risoe from nuclear power to sustainable energy

    Energy Technology Data Exchange (ETDEWEB)

    Jastrup, M. (ed.)

    2008-07-01

    The title of the book is inspired by Risoe's mission which, at the time of its 50th anniversary, remains uncannily close to that given to Risoe when it was inaugurated in 1958. First and foremost, then as now, Risoe is engaged in the development of tomorrow's energy technologies. In 1958, it was nuclear power. On the occasion of its 50th anniversary, Risoe is working with a palette of sustainable energy sources. (author)

  4. Renewable energy and sustainable communities: Alaska's wind generator experience†

    Directory of Open Access Journals (Sweden)

    R. Steven Konkel

    2013-08-01

    villages, b. impacts associated with climate change on human health, c. progress in better understanding wind energy potential through resource assessments and new tools for detailed feasibility and project planning, d. need for comprehensive monitoring and data analysis, and e. state funding requirements and opportunity costs. Conclusion . The energy policy choices ahead for Alaska will have important implications for Arctic population health, especially for those villages whose relatively small size and remote locations make energy a key component of subsistence lifestyles and community sustainability. Wind generation can contribute to meeting renewable energy goals and is a particularly important resource for rural and remote Alaskan communities currently dependent on diesel fuel for generating electricity and heat.

  5. Renewable energy and sustainable communities: Alaska's wind generator experience.

    Science.gov (United States)

    Konkel, R Steven

    2013-01-01

    better understanding wind energy potential through resource assessments and new tools for detailed feasibility and project planning, need for comprehensive monitoring and data analysis, and state funding requirements and opportunity costs. The energy policy choices ahead for Alaska will have important implications for Arctic population health, especially for those villages whose relatively small size and remote locations make energy a key component of subsistence lifestyles and community sustainability. Wind generation can contribute to meeting renewable energy goals and is a particularly important resource for rural and remote Alaskan communities currently dependent on diesel fuel for generating electricity and heat.

  6. Renewable energy and sustainable communities: Alaska's wind generator experience†

    Science.gov (United States)

    Konkel, R. Steven

    2013-01-01

    with climate change on human health,progress in better understanding wind energy potential through resource assessments and new tools for detailed feasibility and project planning,need for comprehensive monitoring and data analysis, andstate funding requirements and opportunity costs. Conclusion The energy policy choices ahead for Alaska will have important implications for Arctic population health, especially for those villages whose relatively small size and remote locations make energy a key component of subsistence lifestyles and community sustainability. Wind generation can contribute to meeting renewable energy goals and is a particularly important resource for rural and remote Alaskan communities currently dependent on diesel fuel for generating electricity and heat. PMID:23971014

  7. Sustainable development criteria for Built Environment projects in South Africa (CSIR)

    CSIR Research Space (South Africa)

    Gibberd, Jeremy T

    2010-01-01

    Full Text Available This paper is based on work undertaken for the Gauteng Department of Agriculture and Rural Development (GDARD) developing a set of sustainable development criteria for built environment projects requiring environmental impact assessments. (Gibberd...

  8. Use of ozone for sustainable brackishwater industrial aquaculture and management of environment

    Digital Repository Service at National Institute of Oceanography (India)

    Dwivedi, S.N.

    The use of ozones for sustainable brakish water industrial aquaculture and the management of the environment is discussed. In sample survey conducted in the farms, it was seen that oxygen level was not adequate for high production. Replacement...

  9. Energy and Environment Division, annual report FY 1980

    Energy Technology Data Exchange (ETDEWEB)

    Osowitt, M. (ed.)

    1981-07-01

    This report covers research in: energy analysis; energy efficiency studies; solar energy; chemical process; energy-efficient buildings; environmental pollutant studies; combustion research; laser spectroscopy and trace elements; and oil shale and coal research. An energy and environment personnel listing is appended. Separate projects are indexed individually for the database. (PSB)

  10. Links between livestock production, the environment and sustainable development.

    Science.gov (United States)

    Pradbre, J-P

    2014-12-01

    This study examines the prospects for strong growth in the supply and demand for animal products worldwide, especially in developing countries, where 80% of the world's population lives. Based on scientific publications, statistics and field observations, it reviews greenhouse gas emission levels from livestock, the ability of ruminant livestock systems to sequester carbon and the capacity of the livestock industry to meet the challenge of sustainable development and to share its benefits while minimising impacts to climate change. Special attention is paid to the situation of the 800 million livestock farmers in the world living at the extreme end of poverty. The study underlines the importance of improving livestock productivity and the interdependence of the economic, environmental and social components of sustainable development. It highlights how, in the least developed countries and most lower-middle-income countries, the pressure exerted by animal diseases hampers efforts to improve livestock productivity. Poor livestock farmers have not sufficiently benefited from development policies and need support to adopt technological advances to meet the challenges of sustainable development and poverty reduction.

  11. Sustainable energy and development in disadvantaged communities: New approaches from Bosnia and Herzegovina, Hungary, and Slovakia

    Energy Technology Data Exchange (ETDEWEB)

    Legro, Susan [Eco Ltd (Czech Republic)

    2007-07-01

    This paper examines two community projects implemented by the United Nations Development Programme (UNDP). The first, Promoting Access to Energy Services to Foster Integration and Human Development for Disadvantaged Communities in Hungary and Slovakia with a Special Focus on the Roma, built on regional development work with isolated communities without reliable access to heat and electricity. The second, Energy Efficiency in Housing in Bosnia and Herzegovina (BiH), focused on a network of communities where rebuilding was underway following the Balkans conflict. While the projects took place in different environments, both shared common approaches. First, they focused on community energy planning in areas where infrastructure was severely deficient. Planning was designed so that current investments in building stock would not have to be retrofitted later for efficiency. Second, they linked energy agencies and NGOs with institutions outside of the energy/environment community, such as the National Minority Self Government in Hungary and the Ministry of Refugees in BiH . The projects thus leveraged funds and expertise from new sources while raising awareness of sustainable energy issues in organizations already funding infrastructure.While time and funding were limited by the terms of the grants, both projects established a foundation of information, planning, and partnerships. Both projects included baseline energy studies, training workshops, and practical guides for local leaders. In addition, there were tangible community benefits in education (reliable heat supply for a new kindergarten), jobs creation (wood-chipping in a municipal forest), and business development (contracts for efficient construction)

  12. Sustaining high-energy orbits of bi-stable energy harvesters by attractor selection

    Science.gov (United States)

    Udani, Janav P.; Arrieta, Andres F.

    2017-11-01

    Nonlinear energy harvesters have the potential to efficiently convert energy over a wide frequency range; however, difficulties in attaining and sustaining high-energy oscillations restrict their applicability in practical scenarios. In this letter, we propose an actuation methodology to switch the state of bi-stable harvesters from the low-energy intra-well configuration to the coexisting high-energy inter-well configuration by controlled phase shift perturbations. The strategy is designed to introduce a change in the system state without creating distinct metastable attractors by exploiting the basins of attraction of the coexisting stable attractors. Experimental results indicate that the proposed switching strategy yields a significant improvement in energy transduction capabilities, is highly economical, enabling the rapid recovery of energy spent in the disturbance, and can be practically implemented with widely used low-strain piezoelectric transducers.

  13. Sustainable nanocomposites toward electrochemical energy storage and environmental remediation

    Science.gov (United States)

    Zhu, Jiahua

    Energy shortage and environmental pollution are the two most concerns right now for the long term sustainable development of human society. New technology developments are the key solutions to these challenges, which strongly rely on the continuous upgrading of advanced material performance. In this dissertation, sustainable nanocomposites with multifunctionalities are designed and fabricated targeting to the applications in high energy/power density capacitor electrodes and efficient heavy metal adsorbent for polluted water purification. Contrary to the helical carbon structure from pure cotton fabrics under microwave heating and radical oxidized ignition of nanoparticles from conventional heating, magnetic carbon tubular nanocomposite fabrics decorated with unifromally dispersed Co-Co3O4 nanoparticles were successfully synthesized via a microwave heating process using cotton fabric and inorganic salt as precursors, which have shown better anti-corrosive performance and demonstrated great potential as novel electrochemical pseudocapacitor electrode. Polyaniline nanofibers (PANI-NFs)/graphite oxide (GO) nanocomposites with excellent interfacial interaction and elongated fiber structure were synthesized via a facile interfacial polymerization method. The PANI-NFs/GO hybrid materials showed orders of magnitude enhancement in capacitance and energy density than that of individual GO and PANI-NF components. At the same weight loading of PANI in the composites, fibrous PANI demonstrated higher energy density and long term stability than that of particle-shaped PANI at higher power density. Besides the efforts focusing on the inside of the capacitor including new electrodes, electrolyte materials, and capacitor configuration designs. A significant small external magnetic field (720 Gauss) induced capacitance enhancement is reported for graphene and graphene nanocomposite electrodes. The capacitance of Fe2O3/graphene nanocomposites increases by 154.6% after appling

  14. Energy and the Environment for an Expeditionary Army

    Science.gov (United States)

    2009-10-06

    Energy and the Environment for an Expeditionary Army Mr. Jerry Hansen Senior Official, ASA(I&E) Senior Energy Executive Deputy...SUBTITLE Energy and the Environment for an Expeditionary Army 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) 5d

  15. Wind energy in the built environment : Concentrator effects of buildings

    NARCIS (Netherlands)

    Mertens, S.

    2006-01-01

    This thesis deals with wind energy conversion in the built environment. It gives a description of the wind resources in the built environment that can be converted into energy by a wind turbine. With a focus on maximum energy yield of the wind turbine, it especially deals with the integration of

  16. Energy metabolism and the high-altitude environment.

    Science.gov (United States)

    Murray, Andrew J

    2016-01-01

    At high altitude the barometric pressure falls, challenging oxygen delivery to the tissues. Thus, whilst hypoxia is not the only physiological stress encountered at high altitude, low arterial P(O2) is a sustained feature, even after allowing adequate time for acclimatization. Cardiac and skeletal muscle energy metabolism is altered in subjects at, or returning from, high altitude. In the heart, energetic reserve falls, as indicated by lower phosphocreatine-to-ATP ratios. The underlying mechanism is unknown, but in the hypoxic rat heart fatty acid oxidation and respiratory capacity are decreased, whilst pyruvate oxidation is also lower after sustained hypoxic exposure. In skeletal muscle, there is not a consensus. With prolonged exposure to extreme high altitude (>5500 m) a loss of muscle mitochondrial density is seen, but this was not observed in a simulated ascent of Everest in hypobaric chambers. At more moderate high altitude, decreased respiratory capacity may occur without changes in mitochondrial volume density, and fat oxidation may be downregulated, although this is not seen in all studies. The underlying mechanisms, including the possible role of hypoxia-signalling pathways, remain to be resolved, particularly in light of confounding factors in the high-altitude environment. In high-altitude-adapted Tibetan natives, however, there is evidence of natural selection centred around the hypoxia-inducible factor pathway, and metabolic features in this population (e.g. low cardiac phosphocreatine-to-ATP ratios, increased cardiac glucose uptake and lower muscle mitochondrial densities) share similarities with those in acclimatized lowlanders, supporting a possible role for the hypoxia-inducible factor pathway in the metabolic response of cardiac and skeletal muscle energy metabolism to high altitude. © 2015 The Authors. Experimental Physiology © 2015 The Physiological Society.

  17. Renewable energy and environment - a future perspective

    OpenAIRE

    SANDHYA KATTAYAT; SMITHA JOSEY; ASHA J.V.

    2016-01-01

    Today’s adolescent students are part of the population heading towards the energy crisis. An awareness about alternate energy resources especially renewable energy resources is required among today’s youngsters. If the younger generation is part of today’s innovation programs in the field of renewable energy, their future advancement in this field will be high and their progress will be in a rapid pace. Thus the inevitable energy crisis awaiting us can be avoided. Along with that, the problem...

  18. Energy and Environment Division annual report, 1978

    Energy Technology Data Exchange (ETDEWEB)

    Camp, J.A. (ed.)

    1978-01-01

    Research activities of this Division are reported under nine separate programs, namely: Energy Analysis; Solar Energy; Energy-Efficient Buildings; Chemical Process Research and Development; Environmental Research; Atmospheric Aerosol Research; Oil Shale Research; Instrumentation Development; and Combustion Research. A separate abstract was prepared for each of the nine programs, each of which contained several individual research summaries, with responsible researchers listed. All of the abstracts will appear in Energy Research Abstracts (ERA), and five will appear in Energy Abstracts for Policy Analysis (EAPA).

  19. Sustainable biomass production for energy in Sri Lanka

    Energy Technology Data Exchange (ETDEWEB)

    Perera, K.K.C.K.; Rathnasiri, P.G.; Sugathapala, A.G.T. [Moratuwa Univ., Moratuwa (Sri Lanka)

    2003-11-01

    The present study concentrates mainly on the estimation of land availability for biomass production and the estimation of sustainable biomass production potential for energy. The feasible surplus land area available for bioenergy plantation is estimated assuming two land availability scenarios (Scenarios 1 and 2) and three biomass demand scenarios (IBD Scenario, SBD Scenario and FBD Scenario). Scenario 1 assumes that 100% of the surplus area available in base year 1997 will be suitable for plantation without considering population growth and food production and that 75% of this surplus land is feasible for plantation. Scenario 2 assumes that future food requirement will grow by 20% and the potential surplus area will be reduced by that amount. The incremental biomass demand scenario (IBD Scenario) assumes that only the incremental demand for biomass in the year 2010 with respect to the base year 1997 has to be produced from new plantation. The sustainable biomass demand scenario (SBD Scenario) assumes that the total sustainable supply of biomass in 1997 is deducted from the future biomass demand in 2010 and only the balance is to be met by new plantation. The full biomass demand scenario (FBD Scenario) assumes that the entire projected biomass demand of the year 2010 needs to be produced from new plantation. The total feasible land area for the scenarios IBD-l, IBD-2, SBD-l, SBD-2, FBD-l and FBD-2 are approximately 0.96, 0.66, 0.80, 0.94, 0.60 and 0.30 Mha, respectively. Biomass production potential is estimated by selecting appropriate plant species, plantation spacing and productivity level. The results show that the total annual biomass production in the country could vary from 2 to 9.9 Mt. With the production option (i.e. 1.5 m x 1.5 m spacing plantation with fertilizer application) giving the highest yield, the total biomass production for energy under IBD Scenario would be 9.9 Mtyr{sup -l} for Scenario 1 and 6.7 Mtyr{sup -l} for Scenario 2. Under SBD Scenario

  20. THE ROLE OF ENVIRONMENT IN SUSTAINABLE DEVELOPMENT OF SAMARKAND

    Directory of Open Access Journals (Sweden)

    Lapas Alibekov

    2013-01-01

    Full Text Available The emergence, formation, and development of the city are largely connected with its landscape position. The first stage of Samarkand’s existence may be referred to as “river civilization.” Over the course of development of the city, the nature and intensity of interaction of the population and economy with its landscape have undergone changes; there is a distinct general pattern: dependence on the landscape. This was largely the reason for its sustainable development for many centuries. This fact should be considered in future activities in landscape and spatial planning.

  1. EU Energy Policies Targeting the Environment

    Directory of Open Access Journals (Sweden)

    PAUL CALANTER

    2014-05-01

    Full Text Available Activities in the energy sector provide the greatest contribution to the emission of greenhouse gases (GHG, which are assigned primary responsibility for producing climate change. The European Union puts great emphasis on the mitigation of the environmental impact of the energy sector, in particular concerning the combat against climate change, this fact being demonstrated by the implementation of policies by the EU in this field. This paper aims to analyse the most important Community energy policies with environmental effects, such as setting of climate and energy targets for 2030, policies on nuclear and renewable energy or measures to increase energy efficiency.

  2. 48 CFR 952.223 - Clauses related to environment, energy and water efficiency, renewable energy technologies...

    Science.gov (United States)

    2010-10-01

    ... environment, energy and water efficiency, renewable energy technologies, occupational safety, and drug-free workplace. 952.223 Section 952.223 Federal Acquisition Regulations System DEPARTMENT OF ENERGY CLAUSES AND... related to environment, energy and water efficiency, renewable energy technologies, occupational safety...

  3. Renewable Energy Sources in the Function of Sustainable Business in Tourism and Hospitality Industry

    Directory of Open Access Journals (Sweden)

    Ljerka Cerović

    2014-07-01

    Full Text Available Trends on the international tourist market are recording numerous changes almost on a daily basis, regarding the development of ecological tourist offer. Modern tourists are becoming more and more aware of the necessity of applying the principles of sustainable development in everyday life, so the same preferences are being expressed during their stay in their chosen tourist destination. The management of ecologically oriented tourist destination must pay special attention to the use of renewable energy sources, and in its micro-environment encourage an approach to business according to modern ecological standards. The implementation of renewable energy sources in tourism and hospitality industry aims at ensuring the improvement of business, profiling of an ecologically responsible tourist destination, repositioning of the current tourist offer on the international tourist market and achieving competitive advantages and conquest of a specific tourist segment of ecologically-oriented consumers. The aim of the research is to point out the advantages which sustainable development and application of renewable energy sources has on business development in tourism and hospitality industry, with a goal of improving competitive advantages and positive effect on the environment

  4. Microalgae as Sustainable Renewable Energy Feedstock for Biofuel Production

    Directory of Open Access Journals (Sweden)

    Srikanth Reddy Medipally

    2015-01-01

    Full Text Available The world energy crisis and increased greenhouse gas emissions have driven the search for alternative and environmentally friendly renewable energy sources. According to life cycle analysis, microalgae biofuel is identified as one of the major renewable energy sources for sustainable development, with potential to replace the fossil-based fuels. Microalgae biofuel was devoid of the major drawbacks associated with oil crops and lignocelluloses-based biofuels. Algae-based biofuels are technically and economically viable and cost competitive, require no additional lands, require minimal water use, and mitigate atmospheric CO2. However, commercial production of microalgae biodiesel is still not feasible due to the low biomass concentration and costly downstream processes. The viability of microalgae biodiesel production can be achieved by designing advanced photobioreactors, developing low cost technologies for biomass harvesting, drying, and oil extraction. Commercial production can also be accomplished by improving the genetic engineering strategies to control environmental stress conditions and by engineering metabolic pathways for high lipid production. In addition, new emerging technologies such as algal-bacterial interactions for enhancement of microalgae growth and lipid production are also explored. This review focuses mainly on the problems encountered in the commercial production of microalgae biofuels and the possible techniques to overcome these difficulties.

  5. Microalgae as Sustainable Renewable Energy Feedstock for Biofuel Production

    Science.gov (United States)

    Yusoff, Fatimah Md.; Shariff, M.

    2015-01-01

    The world energy crisis and increased greenhouse gas emissions have driven the search for alternative and environmentally friendly renewable energy sources. According to life cycle analysis, microalgae biofuel is identified as one of the major renewable energy sources for sustainable development, with potential to replace the fossil-based fuels. Microalgae biofuel was devoid of the major drawbacks associated with oil crops and lignocelluloses-based biofuels. Algae-based biofuels are technically and economically viable and cost competitive, require no additional lands, require minimal water use, and mitigate atmospheric CO2. However, commercial production of microalgae biodiesel is still not feasible due to the low biomass concentration and costly downstream processes. The viability of microalgae biodiesel production can be achieved by designing advanced photobioreactors, developing low cost technologies for biomass harvesting, drying, and oil extraction. Commercial production can also be accomplished by improving the genetic engineering strategies to control environmental stress conditions and by engineering metabolic pathways for high lipid production. In addition, new emerging technologies such as algal-bacterial interactions for enhancement of microalgae growth and lipid production are also explored. This review focuses mainly on the problems encountered in the commercial production of microalgae biofuels and the possible techniques to overcome these difficulties. PMID:25874216

  6. Microalgae as sustainable renewable energy feedstock for biofuel production.

    Science.gov (United States)

    Medipally, Srikanth Reddy; Yusoff, Fatimah Md; Banerjee, Sanjoy; Shariff, M

    2015-01-01

    The world energy crisis and increased greenhouse gas emissions have driven the search for alternative and environmentally friendly renewable energy sources. According to life cycle analysis, microalgae biofuel is identified as one of the major renewable energy sources for sustainable development, with potential to replace the fossil-based fuels. Microalgae biofuel was devoid of the major drawbacks associated with oil crops and lignocelluloses-based biofuels. Algae-based biofuels are technically and economically viable and cost competitive, require no additional lands, require minimal water use, and mitigate atmospheric CO2. However, commercial production of microalgae biodiesel is still not feasible due to the low biomass concentration and costly downstream processes. The viability of microalgae biodiesel production can be achieved by designing advanced photobioreactors, developing low cost technologies for biomass harvesting, drying, and oil extraction. Commercial production can also be accomplished by improving the genetic engineering strategies to control environmental stress conditions and by engineering metabolic pathways for high lipid production. In addition, new emerging technologies such as algal-bacterial interactions for enhancement of microalgae growth and lipid production are also explored. This review focuses mainly on the problems encountered in the commercial production of microalgae biofuels and the possible techniques to overcome these difficulties.

  7. Industrial sustainability of competing wood energy options in Canada.

    Science.gov (United States)

    Ackom, Emmanuel K; Mabee, Warren E; Saddler, John N

    2010-12-01

    The amount of sawmill residue available in Canada to support the emerging cellulosic ethanol industry was examined. A material flow analysis technique was employed to determine the amount of sawmill residue that could possibly be available to the ethanol industry per annum. A combination of two key trends--improved efficiency of lumber recovery and increased uptake of sawmill residues for self-generation and for wood pellet production--have contributed to a declining trend of sawmill residue availability. Approximately 2.3 x 10⁶ bone-dry tons per year of sawmill residue was estimated to be potentially available to the cellulosic ethanol industry in Canada, yielding 350 million liters per year of cellulosic ethanol using best practices. An additional 2.7 billion liters of cellulosic ethanol might be generated from sawmill residue that is currently used for competing wood energy purposes, including wood pellet generation. Continued competition between bioenergy options will reduce the industrial sustainability of the forest industry. Recommendations for policy reforms towards improved industrial sustainability practices are provided.

  8. The Evolution of the Sustainability Assessment Tool SBToolPT: From Buildings to the Built Environment

    Directory of Open Access Journals (Sweden)

    Guilherme Castanheira

    2014-01-01

    Full Text Available This paper analyses the current trends in sustainability assessment. After about 15 years from the launch of sustainability assessment tools, focused on buildings evaluation, the paradigm of sustainability assessment tools is changing from the building scale to the built environment scale. Currently European cities and cities around the world are concerned with sustainable development, as well as its evolution. Cities seek a way to adapt to contemporary changes, in order to meet the required needs and ensure population’s well-being. Considering this, the new generations of sustainability assessment tools are being developed to be used to guide and help cities and urban areas to become more sustainable. Following the trend of the most important sustainability assessment tools, the sustainability assessment tool SBToolPT is also developing its version for assessing the sustainability of the built environment, namely, the urban planning projects and the urban regeneration projects, to be developed in Portugal, the SBToolPT-UP. The application of the methodology to three case studies will demonstrate its feasibility; at the same time this will identify the best practices which will serve as reference for new projects, thereby assisting the development of the tool.

  9. The evolution of the sustainability assessment tool SBToolPT: from buildings to the built environment.

    Science.gov (United States)

    Castanheira, Guilherme; Bragança, Luís

    2014-01-01

    This paper analyses the current trends in sustainability assessment. After about 15 years from the launch of sustainability assessment tools, focused on buildings evaluation, the paradigm of sustainability assessment tools is changing from the building scale to the built environment scale. Currently European cities and cities around the world are concerned with sustainable development, as well as its evolution. Cities seek a way to adapt to contemporary changes, in order to meet the required needs and ensure population's well-being. Considering this, the new generations of sustainability assessment tools are being developed to be used to guide and help cities and urban areas to become more sustainable. Following the trend of the most important sustainability assessment tools, the sustainability assessment tool SBTool(PT) is also developing its version for assessing the sustainability of the built environment, namely, the urban planning projects and the urban regeneration projects, to be developed in Portugal, the SBTool(PT)-UP. The application of the methodology to three case studies will demonstrate its feasibility; at the same time this will identify the best practices which will serve as reference for new projects, thereby assisting the development of the tool.

  10. Drying and dryer from the aspect of renewable energy and sustainable development

    OpenAIRE

    Topić Radivoj; Božović Milan; Topić Goran

    2017-01-01

    Sustainable development, energy efficiency, renewable energy and environmental protection are the most pressing questions at the beginning of a new, 21st, century. The most important role of renewable energy in reducing greenhouse gases, increasing energy security and creation through small and medium enterprises. The paper gives a brief overview of renewable energy sources in terms of sustainable development, energy efficiency and environmental protection and the role of the drying process t...

  11. Energy indicators impact in multi-criteria sustainability analyse of thermal power plant unit

    OpenAIRE

    Škobalj Predrag D.; Kijevčanin Mirjana Lj.; Jovanović Marina P.; Afgan Naim H.; Erić Milić D.

    2017-01-01

    This paper presents method for sustainability assessment of thermal power plant unit using multi-criteria analysis with aim to create base for business decision. Seven options of possible status of thermal power plant „Kolubara A” unit No. 2 with energy indicators of sustainable development were shown. Energy indicators of sustainable development consists of sets of resource preservation, economic, environmental, and social indicators. Sustainability assessment often fails to account for soci...

  12. Application of Bacterial Laccases for Sustainable Energy Production

    DEFF Research Database (Denmark)

    Lörcher, Samuel; Koschorreck, Katja; Shipovskov, Stepan

    production. Progress in enzyme biotechnology and electrochemistry enables now construction of biofuel cells exploiting a wide spectrum of enzymes wired to electrodes, able of prolonged for up to several months function.1-3 One of the most attractive designs exploits direct electronic communication between......The recent breakthrough achieved in a steadily expanding field of the enzyme biofuel cell development1 and the predicted exhaustion of the earth Li and Pt resources actually change the public attitude to the future role of the biofuel cells. They appeared to be highly attractive alternative...... for a number of special applications, such as disposable implantable power suppliers for medical sensor-transmitters and drug delivery/activator systems and self-powered enzyme-based biosensors; and they do offer practical advantages of using abundant organic raw materials for clean and sustainable energy...

  13. Heat Saving Strategies in Sustainable Smart Energy Systems

    DEFF Research Database (Denmark)

    Lund, Henrik; Thellufsen, Jakob Zinck; Aggerholm, Søren

    2014-01-01

    This paper investigates to which extent heat should be saved rather than produced and to which extent district heating infrastructures, rather than individual heating solutions, should be used in future sustainable smart energy systems. Based on a concrete proposal to implement the Danish...... governmental 2050 fossil-free vision, this paper identifies marginal heat production costs and compares these to marginal heat savings costs for two different levels of district heating. A suitable least-cost heating strategy seems to be to invest in an approximately 50% decrease in net heat demands in new...... buildings and buildings that are being renovated anyway, while the implementation of heat savings in buildings that are not being renovated hardly pays. Moreover, the analysis points in the direction that a least-cost strategy will be to provide approximately 2/3 of the heat demand from district heating...

  14. Heat Saving Strategies in Sustainable Smart Energy Systems

    Directory of Open Access Journals (Sweden)

    Henrik Lund

    2014-06-01

    Full Text Available This paper investigates to which extent heat should be saved rather than produced and to which extent district heating infrastructures, rather than individual heating solutions, should be used in future sustainable smart energy systems. Based on a concrete proposal to implement the Danish governmental 2050 fossil-free vision, this paper identifies marginal heat production costs and compares these to marginal heat savings costs for two different levels of district heating. A suitable least-cost heating strategy seems to be to invest in an approximately 50% decrease in net heat demands in new buildings and buildings that are being renovated anyway, while the implementation of heat savings in buildings that are not being renovated hardly pays. Moreover, the analysis points in the direction that a least-cost strategy will be to provide approximately 2/3 of the heat demand from district heating and the rest from individual heat pumps.

  15. Business Case: Sustainable Energy for De-mining Operations

    DEFF Research Database (Denmark)

    Buur, Jacob; Finnemann, Winie

    2011-01-01

    small, Danish companies work with an NGO and two university partners to develop a sustainable energy solution for humanitarian landmine removal in Angola as an alternative to the presently used diesel generators. I will discuss the challenges that face the companies, if they are to bring the project......It is very difficult for companies in the industrialised West to establish business in developing countries, both because of lack of knowledge of local conditions and procedures, and because there is less infrastructure to rely on. This paper describes a case of an innovation project in which four...... through to establishing successful business. The challenges include defining what the value proposition actually is, picking customer segments, building customer relations, and finding ways of financing and organising a joint venture....

  16. Sustainability Efficiency Factor: Measuring Sustainability in Advanced Energy Systems through Exergy, Exergoeconomic, Life Cycle, and Economic Analyses

    Science.gov (United States)

    Boldon, Lauren

    The Encyclopedia of Life Support Systems defines sustainability or industrial ecology as "the wise use of resources through critical attention to policy, social, economic, technological, and ecological management of natural and human engineered capital so as to promote innovations that assure a higher degree of human needs fulfilment, or life support, across all regions of the world, while at the same time ensuring intergenerational equity" (Encyclopedia of Life Support Systems 1998). Developing and integrating sustainable energy systems to meet growing energy demands is a daunting task. Although the technology to utilize renewable energies is well understood, there are limited locations which are ideally suited for renewable energy development. Even in areas with significant wind or solar availability, backup or redundant energy supplies are still required during periods of low renewable generation. This is precisely why it would be difficult to make the switch directly from fossil fuel to renewable energy generation. A transition period in which a base-load generation supports renewables is required, and nuclear energy suits this need well with its limited life cycle emissions and fuel price stability. Sustainability is achieved by balancing environmental, economic, and social considerations, such that energy is produced without detriment to future generations through loss of resources, harm to the environment, etcetera. In essence, the goal is to provide future generations with the same opportunities to produce energy that the current generation has. This research explores sustainability metrics as they apply to a small modular reactor (SMR)-hydrogen production plant coupled with wind energy and storage technologies to develop a new quantitative sustainability metric, the Sustainability Efficiency Factor (SEF), for comparison of energy systems. The SEF incorporates the three fundamental aspects of sustainability and provides SMR or nuclear hybrid energy system

  17. Some Issues in Trade, Environment and Sustainable Development ...

    African Journals Online (AJOL)

    Agricultural trade holds potential for the development of African agriculture. Notwithstanding the different perspectives about the relationship between trade and development, trade and environment, there is consensus on the need to integrate environmental concerns into trade policy design. In the absence of strong ...

  18. Religion and Sustainable Environment in the Niger Delta: The Ogoni ...

    African Journals Online (AJOL)

    In the belief of the people whatever happens to their land happens to their existence and whatever happens to their lives equally affect their land. In other words, for Ogoni people, land and life are inseparable entities. There exists a symbiotic relationship between religion and environment. The religion of the people abhors ...

  19. The Discourse of Sustainable Farming and the Environment in ...

    African Journals Online (AJOL)

    Starting with her pioneering novel, When rain clouds gather (1968), Head has left behind an impressive body of eco-literature. In this debut novel, Head tackles some of the most pressing problems of the environment as they affect the lives of poor rural dwellers in Botswana trying to leave hunger and poverty behind and ...

  20. Tools for Measuring Progress towards Sustainable Neighborhood Environments

    Directory of Open Access Journals (Sweden)

    Elizabeth Karol

    2009-09-01

    Full Text Available Various assessment tools are available to assist designers, developers and regulatory bodies to reduce the negative impacts of contemporary multi-housing subdivision projects in industrialized countries. These tools vary considerably in what and how they measure and how the measurement results are presented and interpreted. This paper is largely a desktop study of subdivision assessment tools developed in Australasia, Great Britain and the United States of America. The paper identified a variety of themes and sub-themes that support assessment tools at both the project design phase and the project operational phase. These themes and sub-themes revolve around one or more of the three pillars of sustainability—namely the environmental, economical and social pillars. The paper firstly compares the themes and sub-themes of the assessment tools and then relates those themes to a set of sustainability targets produced for a proposed inner suburban housing subdivision in Perth, Western Australia.

  1. Wind energy in the built environment: concentrator effects of buildings

    OpenAIRE

    Mertens, S.

    2006-01-01

    This thesis deals with wind energy conversion in the built environment. It gives a description of the wind resources in the built environment that can be converted into energy by a wind turbine. With a focus on maximum energy yield of the wind turbine, it especially deals with the integration of wind turbine and building in such a way that the building concentrates the wind energy for the wind turbine. Three different basic principles of such "buildings that concentrate the wind" or concentra...

  2. On the Acceptance and Sustainability of Renewable Energy Projects—A Systems Thinking Perspective

    Directory of Open Access Journals (Sweden)

    Ana María González

    2016-11-01

    Full Text Available Rapid population growth and increasing concern related to improving the living standards in impoverished communities without damaging the natural environment have drawn attention to the adoption of renewable energy systems (RES around the world. Despite this global trend, the implementation of these projects has not succeeded completely in rural poor communities due to several factors, including social barriers faced at the time of their execution. These social barriers lead to poor acceptance of the projects and their consequent abandonment. Acceptance is a social construct that is influenced by several factors that need to be understood to achieve successful and sustainable results in the future. In this paper, we develop a conceptual model, based on principles of sustainability and systems thinking, to understand the interrelationships among the main factors that have been reported in the literature as key to determining the sustainability and community acceptance of RES projects. To do so, we review the existing literature on sustainability and social acceptance of RES and then construct a causal-loop diagram of their driving factors. While doing so, we also view the problem through the lens of the sustainable livelihoods framework, aiming to maintain the perspective of rural communities and observing the impacts of RES on their contextual reality. The resulting model helps to understand the multiple interactions that RES projects have with rural communities as well as identify potential intervention points for future projects. We end the paper with a discussion of the implications of the model and how can it be used to inform future rural energy decision making.

  3. The Psychoanalytic Interpretation of the Organizational Environment as a Management Tool for Sustainable Development

    Directory of Open Access Journals (Sweden)

    Khripko Elena

    2016-01-01

    Full Text Available The article exposes contemporary materials and structures for sustainable development of organizational environment. Psychoanalytic modeling of organizational behavior makes it possible to identify out reflection, unconscious tendencies in individual, group and corporate behavior. This enables to significantly increase the effectiveness of measures for personnel management. Organizational Environment Researches base on psychoanalytic theory of object relations.

  4. Energy and sustainable development. The future is open; Energie et developpement durable. L'avenir est ouvert

    Energy Technology Data Exchange (ETDEWEB)

    Laponche, B.

    2003-07-01

    The author wonders on the place of the energy for the economic development, in the context of the sustainable development. The following subjects are discussed: the place of the energy resource in the economic growth, the energy consumption in the world, the energy production and the energy resources, the environmental impacts of the energy production and consumption, the rational utilization of the energy, the energy prospective. (A.L.B.)

  5. Thermal Performance of Precast Concrete Sandwich Panel (PCSP) Design for Sustainable Built Environment

    Science.gov (United States)

    Ern, Peniel Ang Soon; Ling, Lim Mei; Kasim, Narimah; Hamid, Zuhairi Abd; Masrom, Md Asrul Nasid Bin

    2017-10-01

    Malaysia’s awareness of performance criteria in construction industry towards a sustainable built environment with the use of precast concrete sandwich panel (PCSP) system is applied in the building’s wall to study the structural behaviour. However, very limited studies are conducted on the thermal insulation of exterior and interior panels in PCSP design. In hot countries such as Malaysia, proper designs of panel are important to obtain better thermal insulation for building. This study is based on thermal performance of precast concrete sandwich panel design for sustainable built environment in Malaysia. In this research, three full specimens, which are control specimen (C), foamed concrete (FC) panels and concrete panels with added palm oil fuel ash (FC+ POFA), where FC and FC+POFA sandwiched with gypsum board (G) were produced to investigate their thermal performance. Temperature difference of exterior and interior surface of specimen was used as indicators of thermal-insulating performance of PCSP design. Heat transfer test by halogen lamp was carried out on three specimens where the exterior surface of specimens was exposed to the halogen lamp. The temperature reading of exterior and interior surface for three specimens were recorded with the help of thermocouple. Other factors also studied the workability, compressive strength and axial compressive strength of the specimens. This study has shown that FC + POFA specimen has the strength nearer to normal specimen (C + FC specimen). Meanwhile, the heat transfer results show that the FC+POFA has better thermal insulation performance compared to C and FC specimens with the highest temperature difference, 3.4°C compared to other specimens. The results from this research are useful to be implemented in construction due to its benefits such as reduction of energy consumption in air-conditioning, reduction of construction periods and eco-friendly materials.

  6. Sustainable Systems Analysis of Production and Transportation Scenarios for Conventional and Bio-based Energy Commodities

    Science.gov (United States)

    Doran, E. M.; Golden, J. S.; Nowacek, D. P.

    2013-12-01

    International commerce places unique pressures on the sustainability of water resources and marine environments. System impacts include noise, emissions, and chemical and biological pollutants like introduction of invasive species into key ecosystems. At the same time, maritime trade also enables the sustainability ambition of intragenerational equity in the economy through the global circulation of commodities and manufactured goods, including agricultural, energy and mining resources (UN Trade and Development Board 2013). This paper presents a framework to guide the analysis of the multiple dimensions of the sustainable commerce-ocean nexus. As a demonstration case, we explore the social, economic and environmental aspects of the nexus framework using scenarios for the production and transportation of conventional and bio-based energy commodities. Using coupled LCA and GIS methodologies, we are able to orient the findings spatially for additional insight. Previous work on the sustainable use of marine resources has focused on distinct aspects of the maritime environment. The framework presented here, integrates the anthropogenic use, governance and impacts on the marine and coastal environments with the natural components of the system. A similar framework has been highly effective in progressing the study of land-change science (Turner et al 2007), however modification is required for the unique context of the marine environment. This framework will enable better research integration and planning for sustainability objectives including mitigation and adaptation to climate change, sea level rise, reduced dependence on fossil fuels, protection of critical marine habitat and species, and better management of the ocean as an emerging resource base for the production and transport of commodities and energy across the globe. The framework can also be adapted for vulnerability analysis, resilience studies and to evaluate the trends in production, consumption and

  7. THE INTERACTIONS OF THE NATURAL ENVIRONMENT AND SUSTAINABLE AGRICULTURAL PRODUCTION

    OpenAIRE

    Fabian, Gyula; Marselek, Sandor; Abay-Hamar, Eniko

    2006-01-01

    The accelerating consumption of natural resources has caused significant economic growth and improved financial conditions in industrial countries, but destroys the forests, soil, air, water and the biological diversity of the Earth. By ecologically overloading our planet, economic development is becoming self-destructive. Many scientists believe that this tendency can even threaten the existence of mankind. At international levels, the condition of Hungary’s natural environment is consider...

  8. Sustainable Heating/Cooling for Low Energy Buildings

    DEFF Research Database (Denmark)

    Krajčík, M.; Olesen, Bjarne W.; Petráš, D.

    2012-01-01

    with high accuracy and under well defined boundary conditions, which can be further verified by field measurements or used for validation of a computer simulation. A set of experimental studies of air distribution, ventilation effectiveness and thermal environment were carried out in a simulated room heated....../cooled and ventilated by different concepts, at various boundary conditions, differing in supply air temperature, floor temperature, simulated heat gain/heat loss, nominal air change rate and positions of air terminal devices. The experimental room simulated corresponds to a residential room or a single office room...... located in a low-energy building. Procedures and indicators that can be successfully used for experimental investigations of indoor environment are described and a sample of measured data is reported....

  9. ISABEL Triggering Sustainable Biogas Energy Communities through Social Innovation

    Science.gov (United States)

    Baumgarten, Wibke; Piedra Garcia, Diego

    2017-04-01

    The Horizon 2020 funding project ISABEL (Triggering Sustainable Biogas Energy Communities through Social Innovation) is all about promoting, supporting and developing community biogas in Europe. The project is set on providing all the framework conditions for biogas communities to shape, develop and thrive. It works on all angles to pave the way for the transition from traditional supply chains to community ownership and take full advantage of the ample societal benefits of regional community-driven biogas systems, fuelled and inspired by Social Innovation principles. The biogas communities emerge in three targeted ISABEL regions, Baden-Württemberg in Germany, Central and Eastern Macedonia and Thrace in Greece and Yorkshire, Lincolnshire and the Humber in UK. To realize this vision ISABEL is employing its "5E strategy" with the following objectives: Educate: Re-position biogas energy by re-branding it as a "public good". Engage: Enable the development of regional Biogas Communities. Empower: Utilize the created momentum through Social Innovation and Public Participation Evaluate: Assess the local interventions and drafting lessons and guidelines Expand: Maximise impact through transfer and replication

  10. Hydrogen and the materials of a sustainable energy future

    Energy Technology Data Exchange (ETDEWEB)

    Zalbowitz, M. [ed.

    1997-02-01

    The National Educator`s Workshop (NEW): Update 96 was held October 27--30, 1996, and was hosted by Los Alamos National Laboratory. This was the 11th annual conference aimed at improving the teaching of material science, engineering and technology by updating educators and providing laboratory experiments on emerging technology for teaching fundamental and newly evolving materials concepts. The Hydrogen Education Outreach Activity at Los Alamos National Laboratory organized a special conference theme: Hydrogen and the Materials of a Sustainable Energy Future. The hydrogen component of the NEW:Update 96 offered the opportunity for educators to have direct communication with scientists in laboratory settings, develop mentor relationship with laboratory staff, and bring leading edge materials/technologies into the classroom to upgrade educational curricula. Lack of public education and understanding about hydrogen is a major barrier for initial implementation of hydrogen energy technologies and is an important prerequisite for acceptance of hydrogen outside the scientific/technical research communities. The following materials contain the papers and view graphs from the conference presentations. In addition, supplemental reference articles are also included: a general overview of hydrogen and an article on handling hydrogen safely. A resource list containing a curriculum outline, bibliography, Internet resources, and a list of periodicals often publishing relevant research articles can be found in the last section.

  11. Sustainable Energy Production from Jatropha Bio-Diesel

    Science.gov (United States)

    Yadav, Amit Kumar; Krishna, Vijai

    2012-10-01

    The demand for petroleum has risen rapidly due to increasing industrialization and modernization of the world. This economic development has led to a huge demand for energy, where the major part of that energy is derived from fossil sources such as petroleum, coal and natural gas. Continued use of petroleum sourced fuels is now widely recognized as unsustainable because of depleting supplies. There is a growing interest in using Jatropha curcas L. oil as the feedstock for biodiesel production because it is non-edible and thus does not compromise the edible oils, which are mainly used for food consumption. Further, J. curcas L. seed has a high content of free fatty acids that is converted in to biodiesel by trans esterification with alcohol in the presence of a catalyst. The biodiesel produced has similar properties to that of petroleum-based diesel. Biodiesel fuel has better properties than petro diesel fuel; it is renewable, biodegradable, non-toxic, and essentially free of sulfur and aromatics. Biodiesel seems to be a realistic fuel for future. Biodiesel has the potential to economically, socially, and environmentally benefit communities as well as countries, and to contribute toward their sustainable development.

  12. THE IMPORTANCE OF ENERGY FOR THE ECONOMY, SUSTAINABLE DEVELOPMENT AND ENVIRONMENTAL PROTECTION - AN ECONOMIC ASPECT

    Directory of Open Access Journals (Sweden)

    Ljiljana Stošić Mihajlović

    2018-01-01

    Full Text Available In the area of modern economy and environmental protection there are no significant changes: the old problems are not solved, and the existing ones are deepening. Humanity is still struggling with three existential problems: lack of food, lack of drinking water and insufficiently energized energy. They are also associated with the dangers of further degradation of the environment, the general fear and fear of terrorism and wars, the emergence of diseases for which modern medicine simply has no solution and which threatens to overcome the challenge of pandemic. Energy is still a mood of economic development, with at the same time a disastrous effect on the environment, when traditional sources of fossil resources are used as sources of energy. The paper explores the phenomenon of the impact of energy on the sustainable development of the economy, with a key focus on environmental protection, as well as the possibilities for adaptation to mitigate the consequences of this global phenomenon. In this regard, special attention has been devoted to researching the role and significance of energy from renewable sources as a possible response to current or expected climate stimuli or their consequences in natural and humanism systems. Particular emphasis is placed on the principle of adaptation, which includes mitigation of damages or the exploitation of effective opportunities; understanding how climate can change, what can be impacts, and capacity building and action on these impacts

  13. Salinity Gradients for Sustainable Energy: Primer, Progress, and Prospects.

    Science.gov (United States)

    Yip, Ngai Yin; Brogioli, Doriano; Hamelers, Hubertus V M; Nijmeijer, Kitty

    2016-11-15

    . While research attention is squarely focused on efficiency and power improvements, efforts to mitigate fouling and lower membrane and electrode cost will be equally important to reduce levelized cost of salinity gradient energy production and, thus, boost PRO, RED, and CapMix power generation to be competitive with other renewable technologies. Cognizance of the recent key developments and technical progress on the different technological fronts can help steer the strategic advancement of salinity gradient as a sustainable energy source.

  14. GM crops, the environment and sustainable food production.

    Science.gov (United States)

    Raven, Peter H

    2014-12-01

    Today, over 7.1 billion people rely on the earth's resources for sustenance, and nearly a billion people are malnourished, their minds and bodies unable to develop properly. Globally, population is expected to rise to more than 9 billion by 2050. Given the combined pressures of human population growth, the rapidly growing desire for increased levels of consumption, and the continued use of inappropriate technologies, it is not surprising that humans are driving organisms to extinction at an unprecedented rate. Many aspects of the sustainable functioning of the natural world are breaking down in the face of human-induced pressures including our individual and collective levels of consumption and our widespread and stubborn use of destructive technologies. Clearly, agriculture must undergo a redesign and be better and more effectively managed so as to contribute as well as possible to feeding people, while at the same time we strive to lessen the tragic loss of biodiversity and damage to all of its productive systems that the world is experiencing. For GM crops to be part of the solution, biosafety assessments should not be overly politically-driven or a burdensome impedance to delivering this technology broadly. Biosafety scientists and policy makers need to recognize the undeniable truth that inappropriate actions resulting in indecision also have negative consequences. It is no longer acceptable to delay the use of any strategy that is safe and will help us achieve the ability to feed the world's people.

  15. Concept of environment, sustainable development and respect for human rights

    Directory of Open Access Journals (Sweden)

    Urjana ÇURI

    2013-12-01

    Full Text Available The insistence on the definition of environmental protection is an aspiration which has served as prerequisites to the implementation of human rights in a global economic crises. European Regional System has traditionally been focused on the protection of civil and political rights. In the wake of environmental risks that imply the violation of human rights, the emphasis has been placed more on the social, economic and cultural. Collective mechanisms to appeal to the United Nations and the European Court of Human Rights, gave a number of decisions on matters implicating environmental laws and policies. What is to be noted, is the evolution of the guarantees provided under the European Convention on Human Rights, which refers to a substantial understanding of environmental protection, and also including procedural aspects related to the protection of the right to life, privacy, property, information and effective means of appeal. This evolution has been launched by the growing need for states to take preventive measures and policies to the requirements for a balanced sustainable economic development, avoiding environmental risks that imply the violation of human rights. Proportionality in the protection of the interests in this respect creates a context for a fair trial, but also promotes an open and constructive dialogue between judges and lawmakers to protect the public interest.

  16. The Environment, Energy, and the Tinbergen Rule

    Science.gov (United States)

    Knudson, William A.

    2009-01-01

    Higher energy prices and the growing concern about global warming have led to a number of policy goals and targets designed to curb global warming and/or the development of alternative sources of energy. However, the Tinbergen Rule states that for each and every policy target there must be at least one policy tool. If there are fewer tools than…

  17. External Benefit Evaluation of Renewable Energy Power in China for Sustainability

    National Research Council Canada - National Science Library

    Zhao, Huiru; Guo, Sen

    2015-01-01

    ... goals and to implement differentiated supporting policies for different renewable energy power types, which can promote their sustainable development. In this paper, a hybrid MCDM method was ap...

  18. Multi-criteria sustainability assessment: A tool for evaluation of new energy system

    OpenAIRE

    Afgan Naim H.; Begić Fajik; Kazagić Anes

    2007-01-01

    One of perspective methods for the evaluation of quality of energy system is the multi-criteria sustainability assessment, based on the analysis and synthesis of indicators expressing different aspects of the system. Application of this methodology in the cases of information deficiency (ASPID methodology) enables evaluation of various energy systems. In the paper, the multi-criteria sustainability assessment of energy systems of various energy sources is used to evaluate the energy power sys...

  19. Sustainable Energy Transitions in China: Renewable Options and Impacts on the Electricity System

    Directory of Open Access Journals (Sweden)

    Xiaoyang Sun

    2016-11-01

    Full Text Available Chinese energy consumption has been dominated by coal for decades, but this needs to change to protect the environment and mitigate anthropogenic climate change. Renewable energy development is needed to fulfil the Intended Nationally Determined Contribution (INDC for the post-2020 period, as stated on the 2015 United Nations Climate Change Conference in Paris. This paper reviews the potential of renewable energy in China and how it could be utilised to meet the INDC goals. A business-as-usual case and eight alternative scenarios with 40% renewable electricity are explored using the EnergyPLAN model to visualise out to the year 2030. Five criteria (total cost, total capacity, excess electricity, CO2 emissions, and direct job creation are used to assess the sustainability of the scenarios. The results indicate that renewables can meet the goal of a 20% share of non-fossil energy in primary energy and 40%–50% share of non-fossil energy in electricity power. The low nuclear-hydro power scenario is the most optimal scenario based on the used evaluation criteria. The Chinese government should implement new policies aimed at promoting integrated development of wind power and solar PV.

  20. Environmental Sustainability and Economic Benefits of Dairy Farm Biogas Energy Production: A Case Study in Umbria

    Directory of Open Access Journals (Sweden)

    Biancamaria Torquati

    2014-09-01

    Full Text Available Accelerating demand to reduce the environmental impact of fossil fuels has been driving widespread attention to renewable fuels, such as biogas. In fact, in the last decade numerous policy guidelines and laws regarding energy, the environment and agriculture have been issued to encourage the use of animal sewage as a raw material for the production of biogas. The production of energy from biogas in a dairy farm can provide a good opportunity for sustainable rural development, augmenting the farm’s income from traditional sources and helping to reduce the overall environmental impact of the energy sector. This paper investigates the trade-off between the environmental and economic benefits of an agro-energy farm in the Umbria region of Italy that employs livestock sewage and manure, dedicated energy crops (corn and triticale silage and olive waste. The environmental analysis was performed using the LCA methodology, while the economic investigation was carried out by reconstructing the economic balance of the agro-energetic supply chain based on the budgets of each activity performed. The LCA results show, on the one hand, the predominant weight of producing dedicated crops compared to all other processes in the supply chain and, on the other hand, a significant reduction in environmental impact compared to that caused by energy production from fossil fuels. Economic analysis revealed that the results depend significantly on what rate per kWh the government incentives guarantee to agricultural producers of renewable energy.

  1. Towards a Sustainable Energy Balance: Progressive Efficiency and the Return of Energy Conservation

    Energy Technology Data Exchange (ETDEWEB)

    Diamond, Rick; Harris, Jeff; Diamond, Rick; Iyer, Maithili; Payne, Christopher; Blumstein, Carl; Siderius, Hans-Paul

    2007-08-13

    We argue that a primary focus on energy efficiency may not be sufficient to slow (and ultimately reverse) the growth in total energy consumption and carbon emissions. Instead, policy makers need to return to an earlier emphasis on"conservation," with energy efficiency seen as a means rather than an end in itself. We briefly review the concept of"intensive" versus"extensive" variables (i.e., energy efficiency versus energy consumption), and why attention to both consumption and efficiency is essential for effective policy in a carbon- and oil-constrained world with increasingly brittle energy markets. To start, energy indicators and policy evaluation metrics need to reflect energy consumption as well as efficiency. We introduce the concept of"progressive efficiency," with the expected or required level of efficiency varying as a function of house size, appliance capacity, or more generally, the scale of energy services. We propose introducing progressive efficiency criteria first in consumer information programs (including appliance labeling categories) and then in voluntary rating and recognition programs such as ENERGY STAR. As acceptance grows, the concept could be extended to utility rebates, tax incentives, and ultimately to mandatory codes and standards. For these and other programs, incorporating criteria for consumption as well as efficiency offers a path for energy experts, policy-makers, and the public to begin building consensus on energy policies that recognize the limits of resources and global carrying-capacity. Ultimately, it is both necessary and, we believe, possible to manage energy consumption, not just efficiency in order to achieve a sustainable energy balance. Along the way, we may find it possible to shift expectations away from perpetual growth and toward satisfaction with sufficiency.

  2. Organising Sustainable Transition: Understanding the Product, Project and Service Domain of the Built Environment

    DEFF Research Database (Denmark)

    Thuesen, Christian; Koch-Ørvad, Nina; Maslesa, Esmir

    2016-01-01

    Sustainable transition of the built environment con struction industry is challenging the existing construction practices and business models. This article presents a framework for understanding and facilitating sustainable transition in the built environment. The framework was developed through...... a four years innovation project based on theories on sectorial and business model i nnovation and ten detailed case studies of different types of companies and their experimentation with different management and sustainability concepts. The framework interprets the construction industry as a collection...... with internal agendas. Furthermore, it is shown that the domains are subject to more or less consciously coordinated innovation activities. The research concludes that the three-domain-model represents a promising framework for understanding and facilitating sustainable transition of the construction industry...

  3. When to store energy in a stochastic environment.

    Science.gov (United States)

    Fischer, Barbara; Dieckmann, Ulf; Taborsky, Barbara

    2011-05-01

    The ability to store energy enables organisms to deal with temporarily harsh and uncertain conditions. Empirical studies have demonstrated that organisms adapted to fluctuating energy availability plastically adjust their storage strategies. So far, however, theoretical studies have investigated general storage strategies only in constant or deterministically varying environments. In this study, we analyze how the ability to store energy influences optimal energy allocation to storage, reproduction, and maintenance in environments in which energy availability varies stochastically. We find that allocation to storage is evolutionarily optimal when environmental energy availability is intermediate and energy stores are not yet too full. In environments with low variability and low predictability of energy availability, it is not optimal to store energy. As environments become more variable or more predictable, energy allocation to storage is increasingly favored. By varying environmental variability, environmental predictability, and the cost of survival, we obtain a variety of different optimal life-history strategies, from highly iteroparous to semelparous, which differ significantly in their storage patterns. Our results demonstrate that in a stochastically varying environment simultaneous allocation to reproduction, maintenance, and storage can be optimal, which contrasts with previous findings obtained for deterministic environments. © 2010 The Author(s). Evolution© 2010 The Society for the Study of Evolution.

  4. Energy, Transportation, Air Quality, Climate Change, Health Nexus: Sustainable Energy is Good for Our Health

    Directory of Open Access Journals (Sweden)

    Larry E. Erickson

    2017-02-01

    Full Text Available The Paris Agreement on Climate Change has the potential to improve air quality and human health by encouraging the electrification of transportation and a transition from coal to sustainable energy. There will be human health benefits from reducing combustion emissions in all parts of the world. Solar powered charging infrastructure for electric vehicles adds renewable energy to generate electricity, shaded parking, and a needed charging infrastructure for electric vehicles that will reduce range anxiety. The costs of wind power, solar panels, and batteries are falling because of technological progress, magnitude of commercial activity, production experience, and competition associated with new trillion dollar markets. These energy and transportation transitions can have a very positive impact on health. The energy, transportation, air quality, climate change, health nexus may benefit from additional progress in developing solar powered charging infrastructure.

  5. Wood for energy production. Technology - environment - economy

    Energy Technology Data Exchange (ETDEWEB)

    Serup, H.; Falster, H.; Gamborg, C. [and others

    1999-10-01

    `Wood for Energy Production`, 2nd edition, is a readily understood guide to the application of wood in the Danish energy supply. The first edition was named `Wood Chips for Energy Production`. It describes the wood fuel from forest to consumer and provides a concise introduction to technological, environmental, and financial matters concerning heating systems for farms, institutions, district heating plants, and CHP plants. The individual sections deal with both conventional, well known technology, as well as the most recent technological advances in the field of CHP production. The purpose of this publication is to reach the largest possible audiance, and it is designed so that the layman may find its background information of special relevance. `Wood for Energy Production` is also available in German and Danish. (au)

  6. Competitive environments sustain costly altruism with negligible assortment of interactions.

    Science.gov (United States)

    Doncaster, C Patrick; Jackson, Adam; Watson, Richard A

    2013-10-03

    Competition hinders the evolution of altruism amongst kin when beneficiaries gain at the expense of competing relatives. Altruism is consequently deemed to require stronger kin selection, or trait-selected synergies, or elastic population regulation, to counter this effect. Here we contest the view that competition puts any such demands on altruism. In ecologically realistic scenarios, competition influences both altruism and defection. We show how environments that pit defectors against each other allow strong altruism to evolve even in populations with negligible kin structure and no synergies. Competition amongst defectors presents relative advantages to altruism in the simplest games between altruists and defectors, and the most generic models of altruistic phenotypes or genotypes invading non-altruistic populations under inelastic density regulation. Given the widespread inevitability of competition, selection will often favour altruism because its alternatives provide lower fitness. Strong competition amongst defectors nevertheless undermines altruism, by facilitating invasion of unrelated beneficiaries as parasites.

  7. Alliance for Sustainable Colorado Renovation Raises Its Energy Performance to New Heights, Commercial Building Energy Efficiency (Fact Sheet); Energy Efficiency & Renewable Energy (EERE)

    Energy Technology Data Exchange (ETDEWEB)

    None

    2015-03-01

    The Alliance for Sustainable Colorado (The Alliance) is a nonprofit organization aiming to transform sustainability from vision to reality. Part of its mission is to change the operating paradigms of commercial building design to make them more sustainable. Toward that end The Alliance uses its headquarters, The Alliance Center at 1536 Wynkoop Street in Denver, as a living laboratory, conductingpilot studies of innovative commercial-building-design solutions for using and generating energy.

  8. Energy in the urban environment. Proceedings of the 22. annual Illinois energy conference

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1994-12-31

    The conference addressed the energy and environmental challenges facing large metropolitan areas. The topics included a comparison of the environmental status of cities twenty years ago with the challenges facing today`s large cities, sustainable economic development, improving the energy and environmental infrastructure, and the changing urban transportation sector. Selected papers are indexed separately for inclusion in the Energy Science and Technology Database.

  9. 4th Doctoral Seminar on Sustainability Research in the Built Environment Book of Abstracts

    OpenAIRE

    2017-01-01

    The DS2BE is a joint initiative of research groups working on sustainability issues at 8 Belgian universities: ULBruxelles, VUBrussel, KULeuven, UCLouvain, ULiège, UHasselt, UAntwerpen and UGent. Conceived as a platform for PhD researchers whose work engages the built environment at different scales in the framework of sustainability, these seminars provide an excellent opportunity for the doctoral students of the partner institutions to present their ongoing research. They will get feedback ...

  10. Forward - Green Virtual Enterprises and Their Breeding Environments: Sustainable Manufacturing, Logistics and Consumption

    OpenAIRE

    Romero, David; Molina, Arturo

    2014-01-01

    Part 9: Innovation Networks; International audience; Green Virtual Enterprise Breeding Environments and their Forward-Green Virtual Enterprises, represent a promising paradigm to face the sustainable manufacturing, logistics and consumption challenges towards a Circular Economy. This paper explores the ‘build-to-order supply chain management’ paradigm and the customers involvement in sustainable supply chains to support the creation and operation of goal-oriented supply networks capable of re...

  11. Western Energy Resources and the Environment: Geothermal Energy

    Energy Technology Data Exchange (ETDEWEB)

    None

    1977-05-01

    This document on geothermal energy is the first in a series of summary reports prepared by the Office of Energy, Minerals and Industry of the Environmental Protection Agency. The series describes what environmental effects are known or expected from new energy resource development in the western third of the United States. The series indicates some of the research and development activities under way and reviews the non-environmental constraints to resource development. It also serves as a reference for planners and policymakers on the entire range of problems and prospects associated with the development of new energy resources. [DJE-2005

  12. Microalgae and Its Premises towards Sustainable Energy Development

    Science.gov (United States)

    Chik, M. N.; Yahya, L.; Zainal, A.; Boosroh, M. H.

    2017-06-01

    This paper features the use of nature’s element as a tool to combat current global issues on environment. Through research works by TNB Research Sdn. Bhd. (TNBR), marine phototrophic microalgae is used in reducing CO2 emissions from its fossil-fuel based power plants using. The research program commenced in 2011 with the aim to develop capacity, capability and facilities in biological CO2 fixation. The research program focuses on improving and enhancing the CO2 fixation through four core measures; namely species selection, nutrient optimization, flue gas admission and photobioreactor (PBR) design and engineering. The measures lead to the migration and evolution of culture facilities from laboratory conditions to outdoor, from shake flasks to 6 x 250 liter pilot PBR facility at a live coal-fired power plant, from mono species to consortium of species. Increment of CO2 fixation rates is summarized with discussion on comparisons of other achievements reported elsewhere. A considerable amount of work on analysing the bioactive compound present in the algae - protein, amino acids, carbohydrate, lipid, fatty acids - and its encouraging results, as an impetus towards sustainable development, will also be shared. Premises and observations from various microalgae research works are collated and presented in a manner sufficient to highlight the eminent roles of this tiny creature to become our mentor in providing some solutions to our worldly problems.

  13. Integrated Systems of Farming Production a Sustainable Productive and Friendly Alternative With the Environment.

    Directory of Open Access Journals (Sweden)

    Elías Carvajal Gómez

    2012-11-01

    Full Text Available Discuss the concept of sustainability is to open the door to a world of nature, conservation and harmonious coexistence between man and all both biotic and abiotic components of the environment that surrounds it. For many years there has been talk of such a valuable topic, focusing on the concept of environmental sustainability, tending to look more clean crops, reduced pesticide use, rational use of water and efficient use of resources, and now he incorporates issue of financial sustainability and corporate social responsibility ...

  14. Design for Environment as a Tool for the Development of a Sustainable Supply Chain

    CERN Document Server

    Bevilacqua, Maurizio; Giacchetta, Giancarlo

    2012-01-01

    Environmental Design is becoming an increasingly significant agenda for many manufacturing companies and yet there is no standard to their approaches, strategies or their levels of execution. Applying Design for Environment (DfE) methodologies to develop a more sustainable supply chain has formed procedures and techniques which allow designers to integrate these methods with environmental supply chain management. Design for Environment as a Tool for the Development of a Sustainable Supply Chain aims to define relevant target specifications for a product throughout its life cycle; from conception and design to the end of its operating life.  Be considering this new approach to the supply chain, environmental responsiveness can work in tandem with sounds business management. The usual focus on suppliers, manufacturers and customers is expanded in Design for Environment as a Tool for the Development of a Sustainable Supply Chain to include stakeholders such as government bodies and recycling companies. The infl...

  15. 75 FR 34657 - Energy Efficiency and Sustainable Design Standards for New Federal Buildings

    Science.gov (United States)

    2010-06-18

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF ENERGY 10 CFR Parts 433 and 435 RIN 1904-AC13 Energy Efficiency and Sustainable Design Standards for New Federal Buildings AGENCY: Office of Energy Efficiency and Renewable Energy, Department of Energy. ACTION: Proposed...

  16. Key Factors in Planning a Sustainable Energy Future Including Hydrogen and Fuel Cells

    Science.gov (United States)

    Hedstrom, Lars; Saxe, Maria; Folkesson, Anders; Wallmark, Cecilia; Haraldsson, Kristina; Bryngelsson, Marten; Alvfors, Per

    2006-01-01

    In this article, a number of future energy visions, especially those basing the energy systems on hydrogen, are discussed. Some often missing comparisons between alternatives, from a sustainability perspective, are identified and then performed for energy storage, energy transportation, and energy use in vehicles. It is shown that it is important…

  17. Sustainable Urban (re-Development with Building Integrated Energy, Water and Waste Systems

    Directory of Open Access Journals (Sweden)

    Tae-Goo Lee

    2013-03-01

    Full Text Available The construction and service of urban infrastructure systems and buildings involves immense resource consumption. Cities are responsible for the largest component of global energy, water, and food consumption as well as related sewage and organic waste production. Due to ongoing global urbanization, in which the largest sector of the global population lives in cities which are already built, global level strategies need to be developed that facilitate both the sustainable construction of new cities and the re-development of existing urban environments. A very promising approach in this regard is the decentralization and building integration of environmentally sound infrastructure systems for integrated resource management. This paper discusses such new and innovative building services engineering systems, which could contribute to increased energy efficiency, resource productivity, and urban resilience. Applied research and development projects in Germany, which are based on integrated system approaches for the integrated and environmentally sound management of energy, water and organic waste, are used as examples. The findings are especially promising and can be used to stimulate further research and development, including economical aspects which are crucial for sustainable urban (re-development.

  18. Study of agricultural waste treatment in China and Russia-based on the agriculture environment sustainable development

    Science.gov (United States)

    Chernyaeva, Victoria A.; Teng, Xiuyi; Sergio

    2017-06-01

    China and Russia are both agriculture countries, agricultural environment sustainable development is very important for them. The paper studies three main agricultural wastes: straw, organic waste and plastic waste, and analyzes their treatments with the view of agricultural sustainable development.

  19. Straw for energy production. Technology - Environment - Economy

    Energy Technology Data Exchange (ETDEWEB)

    Nikolaisen, L.; Nielsen, C.; Larsen, M.G.; Nielsen, V.; Zielke, U.; Kristensen, J.K.; Holm-Christensen, B.

    1998-12-31

    `Straw for Energy Production`, second edition, provides a readily accessible background information of special relevance to the use of straw in the Danish energy supply. Technical, environmental, and economic aspects are described in respect of boiler plants for farms, district heating plants, and combined heat and power plants (CHP). The individual sections deal with both well-known, tested technology and the most recent advances in the field of CHP production. This publication is designed with the purpose of reaching the largest possible numbers of people and so adapted that it provides a valuable aid and gives the non-professional, general reader a thorough knowledge of the subject. `Straw for Energy Production` is also available in German and Danish. (au)

  20. Sustainable energy in the flower bulb sector; Duurzame energie in de bloembollensector

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2008-06-15

    The aim of this study is to get a clear view on the technical and economic options for the deployment of sustainable technologies in the flower bulb sector. It subsequently addresses the energy demand of the sector and its distribution across various company processes. Next it addresses the penetration degree of sustainable techniques in use. After this, the opportunities for new sustainable techniques are elaborated. The most appealing techniques are calculated: wood-fired boiler (base load), gas-fired boiler (peak load) and the use of surface water; bio-CHP; PV modules and/or sustainable electricity [Dutch] Het doel van deze studie is de technische en economische mogelijkheden voor de toepassing van duurzame technologieën in de sector helder te krijgen. Hierbij is achtereenvolgens ingegaan op de energievraag van de sector en de opdeling daarvan over de verschillende bedrijfsprocessen. Vervolgens is ingegaan op de penetratiegraad waarin duurzame technieken zijn toegepast. Daarna zijn de mogelijkheden voor nieuwe duurzame technieken uitgewerkt. De meest aantrekkelijke technieken zijn doorgerekend: Houtketel (basislast), gasketel (pieklast) en het gebruik van oppervlaktewater; Bio-WKK; PV-panelen en/of duurzame elektriciteit.