WorldWideScience

Sample records for sustainable biomass products

  1. Sustainable Biomass Resources for Biogas Production

    DEFF Research Database (Denmark)

    Meyer, Ane Katharina Paarup

    The aim of this thesis was to identify and map sustainable biomass resources, which can be utilised for biogas production with minimal negative impacts on the environment, nature and climate. Furthermore, the aim of this thesis was to assess the resource potential and feasibility of utilising...... such biomasses in the biogas sector. Sustainability in the use of biomass feedstock for energy production is of key importance for a stable future food and energy supply, and for the functionality of the Earths ecosystems. A range of biomass resources were assessed in respect to sustainability, availability...... from 39.3-66.9 Mtoe, depending on the availability of the residues. Grass from roadside verges and meadow habitats in Denmark represent two currently unutilised sources. If utilised in the Danish biogas sector, the results showed that the resources represent a net energy potential of 60,000 -122,000 GJ...

  2. Achieving sustainable biomass conversion to energy and bio products

    International Nuclear Information System (INIS)

    Matteson, G. C.

    2009-01-01

    The present effort in to maximize biomass conversion-to-energy and bio products is examined in terms of sustain ability practices. New goals, standards in practice, measurements and certification are needed for the sustainable biomass industry. Sustainable practices produce biomass energy and products in a manner that is secure, renewable, accessible locally, and pollution free. To achieve sustainable conversion, some new goals are proposed. (Author)

  3. Potential of sustainable biomass production systems in Texas

    International Nuclear Information System (INIS)

    Sanderson, M.A.; Hussey, M.A.; Wiselogel, A.E.

    1992-01-01

    Biomass production for liquid fuels feedstock from systems based on warm-season perennial grasses (WSPG) offers a sustainable alternative for forage-livestock producers in Texas. Such systems also would enhance diversity and flexibility in current production systems. Research is needed to incorporate biomass production for liquid fuels, chemicals, and electrical power into current forage-livestock management systems. Our research objectives were to (i) document the potential of several WSPG in diverse Texas environments for biomass feedstock production, (ii) conduct fundamental research on morphological development of WSPG to enhance management for biomass feedstock production, (iii) examine current on-farm production systems for opportunities to incorporate biomass production, and (iv) determine feedstock quality and stability during storage

  4. Sustainable biomass production for energy in Sri Lanka

    International Nuclear Information System (INIS)

    Perera, K.K.C.K.; Rathnasiri, P.G.; Sugathapala, A.G.T.

    2003-01-01

    The present study concentrates mainly on the estimation of land availability for biomass production and the estimation of sustainable biomass production potential for energy. The feasible surplus land area available for bioenergy plantation is estimated assuming two land availability scenarios (Scenarios 1 and 2) and three biomass demand scenarios (IBD Scenario, SBD Scenario and FBD Scenario). Scenario 1 assumes that 100% of the surplus area available in base year 1997 will be suitable for plantation without considering population growth and food production and that 75% of this surplus land is feasible for plantation. Scenario 2 assumes that future food requirement will grow by 20% and the potential surplus area will be reduced by that amount. The incremental biomass demand scenario (IBD Scenario) assumes that only the incremental demand for biomass in the year 2010 with respect to the base year 1997 has to be produced from new plantation. The sustainable biomass demand scenario (SBD Scenario) assumes that the total sustainable supply of biomass in 1997 is deducted from the future biomass demand in 2010 and only the balance is to be met by new plantation. The full biomass demand scenario (FBD Scenario) assumes that the entire projected biomass demand of the year 2010 needs to be produced from new plantation. The total feasible land area for the scenarios IBD-1, 1BD-2, SBD-1, SBD-2, FBD-1 and FBD-2 are approximately 0.96, 0.66, 0.80, 0.94, 0.60 and 0.30 Mha, respectively. Biomass production potential is estimated by selecting appropriate plant species, plantation spacing and productivity level. The results show that the total annual biomass production in the country could vary from 2 to 9.9 Mt. With the production option (i.e. 1.5 mx1.5 m spacing plantation with fertilizer application) giving the highest yield, the total biomass production for energy under IBD Scenario would be 9.9 Mt yr -1 for Scenario 1 and 6.7 Mt yr -1 for Scenario 2. Under SBD Scenario, the

  5. Sustainable Production of Switchgrass for Biomass Energy

    Science.gov (United States)

    Switchgrass (Panicum virgatum L.) is a C4 grass native to the North American tallgrass prairies, which historically extended from Mexico to Canada. It is the model perennial warm-season grass for biomass energy. USDA-ARS in Lincoln, NE has studied switchgrass continuously since 1936. Plot-scale rese...

  6. Sustainability of biofuels and renewable chemicals production from biomass.

    Science.gov (United States)

    Kircher, Manfred

    2015-12-01

    In the sectors of biofuel and renewable chemicals the big feedstock demand asks, first, to expand the spectrum of carbon sources beyond primary biomass, second, to establish circular processing chains and, third, to prioritize product sectors exclusively depending on carbon: chemicals and heavy-duty fuels. Large-volume production lines will reduce greenhouse gas (GHG) emission significantly but also low-volume chemicals are indispensable in building 'low-carbon' industries. The foreseeable feedstock change initiates innovation, securing societal wealth in the industrialized world and creating employment in regions producing biomass. When raising the investments in rerouting to sustainable biofuel and chemicals today competitiveness with fossil-based fuel and chemicals is a strong issue. Many countries adopted comprehensive bioeconomy strategies to tackle this challenge. These public actions are mostly biased to biofuel but should give well-balanced attention to renewable chemicals as well. Copyright © 2015 Elsevier Ltd. All rights reserved.

  7. Sustainable Production of Asphalt using Biomass as Primary Process Fuel

    DEFF Research Database (Denmark)

    Bühler, Fabian; Nguyen, Tuong-Van; Elmegaard, Brian

    2016-01-01

    is the heating and drying of aggregate,where natural gas, fuel oil or LPG is burned in a direct-fired rotary dryer. Replacing this energy source with amore sustainable one presents several technical and economic challenges, as high temperatures, short startuptimes and seasonal production variations are required...

  8. Is the hydrogen production from biomass technology really sustainable? Answer by Life Cycle Emergy Analysis

    DEFF Research Database (Denmark)

    Liang, Hanwei; Ren, Jingzheng; Dong, Liang

    2016-01-01

    The Sustainability performance of biomass-based hydrogen is in debate. This study aims at using Emergy Theory to investigate the sustainability hydrogen production from corn stalks by supercritical water gasification, all the inputs including renewable resources, non-renewable resources, purchased...

  9. Development of Sustainable Landscape Designs for Improved Biomass Production in the U.S. Corn Belt

    Science.gov (United States)

    Bonner, Ian J.

    Demand for renewable and sustainable energy options has resulted in a significant commitment by the US Government to research pathways for fuel production from biomass. The research presented in this thesis describes one potential pathway to increase the amount of biomass available for biofuel production by integrating dedicated energy crops into agricultural fields. In the first chapter an innovative landscape design method based on subfield placement of an energy crop into row crop fields in central Iowa is used to reduce financial loss for farmers, increase and diversify biomass production, and improve soil resources. The second chapter explores how subfield management decisions may be made using high fidelity data and modeling to balance concerns of primary crop production and economics. This work provides critical forward looking support to agricultural land managers and stakeholders in the biomass and bioenergy industry for pathways to improving land stewardship and energy security.

  10. Ecological sustainability of alternative biomass feedstock production for environmental benefits and bioenergy

    Science.gov (United States)

    Ronald S., Jr. Zalesny; Jill A. Zalesny; Edmund O. Bauer

    2007-01-01

    The incorporation of intensive forestry with waste management fills a much-needed niche throughout numerous phytotechnology applications. There is a growing opportunity to incorporate sustainable recycling of waste waters as irrigation and fertilization for alternative biomass feedstock production systems. However, the success of short rotation woody crops is largely...

  11. Relative Sustainability of Natural Gas Assisted High-Octane Gasoline Blendstock Production from Biomass

    Energy Technology Data Exchange (ETDEWEB)

    Tan, Eric C [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Zhang, Yi Min [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Cai, Hao [Argonne National Laboratory

    2017-11-01

    Biomass-derived hydrocarbon fuel technologies are being developed and pursued for better economy, environment, and society benefits underpinning the sustainability of transportation energy. Increasing availability and affordability of natural gas (NG) in the US can play an important role in assisting renewable fuel technology development, primarily in terms of economic feasibility. When a biorefinery is co-processing NG with biomass, the current low cost of NG coupled with the higher NG carbon conversion efficiency potentially allow for cost competitiveness of the fuel while achieving a minimum GHG emission reduction of 50 percent or higher compared to petroleum fuel. This study evaluates the relative sustainability of the production of high-octane gasoline blendstock via indirect liquefaction (IDL) of biomass (and with NG co-feed) through methanol/dimethyl ether intermediates. The sustainability metrics considered in this study include minimum fuel selling price (MFSP), carbon conversion efficiency, life cycle GHG emissions, life cycle water consumption, fossil energy return on investment (EROI), GHG emission avoidance cost, and job creation. Co-processing NG can evidently improve the MFSP. Evaluation of the relative sustainability can shed light on the biomass-NG synergistic impacts and sustainability trade-offs associated with the IDL as high-octane gasoline blendstock production.

  12. Key factors for achieving profitable biogas production from agricultural waste and sustainable biomass

    DEFF Research Database (Denmark)

    Molinuevo-Salces, Beatriz; Larsen, Søren U.; Biswas, Rajib

    2013-01-01

    Based on numerous investigations on increasing the biogas yield of manure, a new concept was developed to increase the economical operation of manure based biogas plants by combining up concentration of manure with a more specific treatment of the recalcitrant lignocellulosic fiber fraction...... by implementing the treatment on the digested solid fraction. Catch crops have been identified as a sustainable co-substrate for biogas production with a high biogas potential. For exploiting this biomass for profitable biogas production, the biomass yield per hectare, harvest costs, TS concentration and specific...

  13. Sustainability of biomass for cofiring

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2014-02-01

    There are many items to include when considering the sustainability of biomass for cofiring, and some of them are hard to quantify. The focus of this report is on the greenhouse gas emission aspects of sustainability. The reduction of greenhouse gas emissions achieved by substituting biomass for coal depends on a number of factors such as the nature of the fossil fuel reference system, the source of the biomass, and how it is produced. Relevant issues in biomass production include the energy balance, the greenhouse gas balance, land use change, non-CO2 greenhouse gas emission from soils, changes to soil organic carbon, and the timing of emissions and removal of CO2 which relates to the scale of biomass production. Certification of sustainable biomass is slow to emerge at the national and international level, so various organisations are developing and using their own standards for sustainable production. The EU does not yet have sustainability standards for solid biomass, but the UK and Belgium have developed their own.

  14. Goal and Scope in Life Cycle Sustainability Analysis: The Case of Hydrogen Production from Biomass

    Directory of Open Access Journals (Sweden)

    Milena Stefanova

    2014-08-01

    Full Text Available The framework for life cycle sustainability analysis (LCSA developed within the project CALCAS (Co-ordination Action for innovation in Life-Cycle Analysis for Sustainability is introducing a truly integrated approach for sustainability studies. However, it needs to be further conceptually refined and to be made operational. In particular, one of the gaps still hindering the adoption of integrated analytic tools for sustainability studies is the lack of a clear link between the goal and scope definition and the modeling phase. This paper presents an approach to structure the goal and scope phase of LCSA so as to identify the relevant mechanisms to be further detailed and analyzed in the modeling phase. The approach is illustrated with an on-going study on a new technology for the production of high purity hydrogen from biomass, to be used in automotive fuel cells.

  15. Production of Solid sustainable Energy Carriers from biomass by means of TORrefaction (SECTOR)

    Energy Technology Data Exchange (ETDEWEB)

    Witt, Janet; Bienert, Kathrin [DBFZ Deutsches Biomasseforschungszentrum gemeinnuetzige GmbH, Leipzig (Germany). Bereich Bioenergiesysteme; Zwart, Robin; Kiel, Jaap; Englisch, Martin; Wojcik, Magdalena

    2012-07-01

    SECTOR is a large-scale European project with a strong consortium of over 20 partners from industry and science. The project is focussed on the further development of torrefaction-based technologies for the production of solid bioenergy carriers up to pilot-plant scale and beyond, and on supporting the market introduction of torrefaction-based bioenergy carriers as a commodity renewable solid fuel. The torrefaction of biomass materials is considered to be a very promising technology for the promotion of the large-scale implementation of bioenergy. During torrefaction biomass is heated up in the absence of oxygen to a temperature of 250-320 C. By combining torrefaction with pelletisation or briquetting, biomass materials can be converted into a high-energy-density commodity solid fuel or bioenergy carrier with improved behaviour in (long-distance) transport, handling and storage, and also with superior properties in many major end-use applications. Torrefaction has the potential to provide a significant contribution to an enlarged raw material portfolio for biomass fuel production inside Europe by including both agricultural and forestry biomass. In this way, the SECTOR project is expected to shorten the time-to-market of torrefaction technology and to promote market introduction within stringent sustainability boundary conditions. The European Union provides funding for this project within the Seventh Framework Programme. The project has a duration of 42 months and started in January 2012. (orig.)

  16. Sustainable biomass products development and evaluation, Hamakua project. Final draft report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-05-01

    The PICHTR Sustainable Biomass Energy Program was developed to evaluate the potential to cultivate crops for energy production as an alternative use of lands made available by the closing of large sugar plantations. In particular, the closing of the Hamakua Sugar Company on the island of Hawaii brought a great deal of attention to the future of agriculture in this region and in the state. Many options were proposed. Several promising alternatives had been proposed for cane lands. These included dedicated feedstock supply systems (DFSS) for electrical energy production, cultivation of sugarcane to produce ethanol and related by-products, and the production of feed and crops to support animal agriculture. Implementation of some of the options might require preservation of large tracts of land and maintenance of the sugar mills and sugar infrastructure. An analysis of the technical, financial, and other issues necessary to reach conclusions regarding the optimal use of these lands was required. At the request of the Office of State Planning and Senator Akaka`s office, the Pacific International Center for High Technology Research (PICHTR) established and coordinated a working group composed of state, county, federal, and private sector representatives to identify sustainable energy options for the use of idle sugar lands on the island of Hawaii. The Sustainable Biomass Energy Program`s Hamakua Project was established to complete a comprehensive evaluation of the most viable alternatives and assess the options to grow crops as a source of raw materials for the production of transportation fuel and/or electricity on the island of Hawaii. The motivation for evaluating biomass to energy conversion embraced the considerations that Hawaii`s energy security would be improved by diversifying the fuels used for transportation and reducing dependency on imported fossil fuels. The use of waste products as feedstocks could divert wastes from landfills.

  17. Independency of Japan's Agriculture through Food and Energy Self-sufficiency : Hokkaido Model Toward the Sustainability of Food and Biomass Production

    OpenAIRE

    Osaki, Mitsuru

    2009-01-01

    Sustainability Weeks 2009 Opening Symposium "International Symposium on Sustainable Development -Recommendations for Tackling the 5 Challenges of Global Sustainability-". Session 5, Toward the Sustainability of Food and Biomass Production. 2 November 2009. Sapporo, Japan.

  18. Legal framework for a sustainable biomass production for bioenergy on Marginal Lands

    Science.gov (United States)

    Baumgarten, Wibke; Pelikan, Vincent

    2017-04-01

    The EU H2020 funded project SEEMLA is aiming at the sustainable exploitation of biomass for bioenergy from marginal lands in Europe. Partners from Germany, Italy, Ukraine and Greece are involved in this project. Whereas Germany can be considered as well-established and leading country with regard to the production of bioenergy, directly followed by Italy and Greece, Ukraine is doing its first steps in becoming independent from fossil energy resources, also heading for the 2020+ goals. A basic, overarching regulation is the Renewable Energy Directive (RED) which has been amended in 2015; these amendments will be set in force in 2017. A new proposal for the period after 2020, the so called RED II, is under preparation. With cross-compliance and greening, the Common Agricultural Policy (CAP) offers measures for an efficient and ecological concept for a sustainable agriculture in Europe. In country-specific National Renewable Energy Action Plans (NREAP) a concept for 2020 targets is given for practical implementation until 2030 which covers e.g. individual renewable energy targets for electricity, heating and cooling, and transport sectors, the planned mix of different renewables technologies, national policies to develop biomass resources, and measures to ensure that biofuels are used to meet renewable energy targets are in compliance with the EU's sustainability criteria. While most of the NREAP have been submitted in 2010, the Ukrainian NREAP was established in 2014. In addition, the legal framework considering the protection of nature, e.g. Natura 2000, and its compartments soil, water, and atmosphere are presented. The SEEMLA approach will be developed in agreement with this already existing policy framework, following a sustainable principle for growing energy plants on marginal lands (MagL). Secondly, legislation regarding bioenergy and biomass potentials in the EU-28 and partner countries is introduced. For each SEEMLA partner an overview of regulatory

  19. Integrating sustainable biofuel and silver nanomaterial production for in situ upgrading of cellulosic biomass pyrolysis

    International Nuclear Information System (INIS)

    Xue, Junjie; Dou, Guolan; Ziade, Elbara; Goldfarb, Jillian L.

    2017-01-01

    Graphical abstract: Integrated production of biotemplated nanomaterials and upgraded biofuels (solid lines indicate current processes, dashed lines indicated proposed pathway). - Highlights: • Novel integrated process to co-produce nanomaterials and biofuels via pyrolysis. • Impregnation of biomass with silver nitrate upgrades bio-oil during pyrolysis. • Co-synthesis enhances syngas produced with more hydrogen. • Biomass template impacts bio-fuels and morphology of resulting nanomaterials. - Abstract: Replacing fossil fuels with biomass-based alternatives is a potential carbon neutral, renewable and sustainable option for meeting the world’s growing energy demand. However, pyrolytic conversions of biomass-to-biofuels suffer marginal total energy gain, and technical limitations such as bio-oils’ high viscosity and oxygen contents that result in unstable, corrosive and low-value fuels. This work demonstrates a new integrated biorefinery process for the co-production of biofuels and silver nanomaterials. By impregnating pure cellulose and corn stalk with silver nitrate, followed by pyrolysis, the gas yield (especially hydrogen) increases substantially. The condensable bio-oil components of the impregnated samples are considerably higher in furfurals (including 5-hydroxymethylfurfural). Though the overall activation energy barrier, as determined via the Distributed Activation Energy Model, does not change significantly with the silver nitrate pre-treatment, the increase in gases devolatilized, and improved 5-hydroxymethylfurfural yield, suggest a catalytic effect, potentially increasing decarboxylation reactions. After using this metal impregnation to improve pyrolysis fuel yield, following pyrolysis, the silver-char composite materials are calcined to remove the biomass template to yield silver nanomaterials. While others have demonstrated the ability to biotemplate such nanosilver on cellulosic biomass, they consider only impregnation and oxidation of the

  20. Evaluating the composition and processing potential of novel sources of Brazilian biomass for sustainable biorenewables production.

    Science.gov (United States)

    Lima, Marisa A; Gomez, Leonardo D; Steele-King, Clare G; Simister, Rachael; Bernardinelli, Oigres D; Carvalho, Marcelo A; Rezende, Camila A; Labate, Carlos A; Deazevedo, Eduardo R; McQueen-Mason, Simon J; Polikarpov, Igor

    2014-01-18

    The search for promising and renewable sources of carbohydrates for the production of biofuels and other biorenewables has been stimulated by an increase in global energy demand in the face of growing concern over greenhouse gas emissions and fuel security. In particular, interest has focused on non-food lignocellulosic biomass as a potential source of abundant and sustainable feedstock for biorefineries. Here we investigate the potential of three Brazilian grasses (Panicum maximum, Pennisetum purpureum and Brachiaria brizantha), as well as bark residues from the harvesting of two commercial Eucalyptus clones (E. grandis and E. grandis x urophylla) for biofuel production, and compare these to sugarcane bagasse. The effects of hot water, acid, alkaline and sulfite pretreatments (at increasing temperatures) on the chemical composition, morphology and saccharification yields of these different biomass types were evaluated. The average yield (per hectare), availability and general composition of all five biomasses were compared. Compositional analyses indicate a high level of hemicellulose and lignin removal in all grass varieties (including sugarcane bagasse) after acid and alkaline pretreatment with increasing temperatures, whilst the biomasses pretreated with hot water or sulfite showed little variation from the control. For all biomasses, higher cellulose enrichment resulted from treatment with sodium hydroxide at 130°C. At 180°C, a decrease in cellulose content was observed, which is associated with high amorphous cellulose removal and 5-hydroxymethyl-furaldehyde production. Morphological analysis showed the effects of different pretreatments on the biomass surface, revealing a high production of microfibrillated cellulose on grass surfaces, after treatment with 1% sodium hydroxide at 130°C for 30 minutes. This may explain the higher hydrolysis yields resulting from these pretreatments, since these cellulosic nanoparticles can be easily accessed and cleaved by

  1. Vertical Integration of Biomass Saccharification of Enzymes for Sustainable Cellulosic Biofuel Production in a Biorefinery

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, Manoj [DSM Innovation, Inc., San Francisco, CA (United States)

    2011-05-09

    These are a set of slides from this conference. Lignocellulosic biomass is the most abundant, least expensive renewable natural biological resource for the production of biobased products and bioenergy is important for the sustainable development of human civilization in 21st century. For making the fermentable sugars from lignocellulosic biomass, a reduction in cellulase production cost, an improvement in cellulase performance, and an increase in sugar yields are all vital to reduce the processing costs of biorefineries. Improvements in specific cellulase activities for non-complexed cellulase mixtures can be implemented through cellulase engineering based on rational design or directed evolution for each cellulase component enzyme, as well as on the reconstitution of cellulase components. In this paper, we will provide DSM's efforts in cellulase research and developments and focus on limitations. Cellulase improvement strategies based on directed evolution using screening on relevant substrates, screening for higher thermal tolerance based on activity screening approaches such as continuous culture using insoluble cellulosic substrates as a powerful selection tool for enriching beneficial cellulase mutants from the large library. We will illustrate why and how thermostable cellulases are vital for economic delivery of bioproducts from cellulosic biomass using biochemical conversion approach.

  2. A crop production ecology (CPE) approach to sustainable production of biomass for food, feed and fuel

    NARCIS (Netherlands)

    Haverkort, A.J.; Bindraban, P.S.; Conijn, J.G.; Ruijter, de F.J.

    2009-01-01

    With the rapid increase in demand for agricultural products for food, feed and fuel, concerns are growing about sustainability issues. Can agricultural production meet the needs of increasing numbers of people consuming more animal products and using a larger share of crops as fuel for transport,

  3. Sustainable Production of o-Xylene from Biomass-Derived Pinacol and Acrolein.

    Science.gov (United States)

    Hu, Yancheng; Li, Ning; Li, Guangyi; Wang, Aiqin; Cong, Yu; Wang, Xiaodong; Zhang, Tao

    2017-07-21

    o-Xylene (OX) is a large-volume commodity chemical that is conventionally produced from fossil fuels. In this study, an efficient and sustainable two-step route is used to produce OX from biomass-derived pinacol and acrolein. In the first step, the phosphotungstic acid (HPW)-catalyzed pinacol dehydration in 1-ethyl-3-methylimidazolium chloride ([emim]Cl) selectively affords 2,3-dimethylbutadiene. The high selectivity of this reaction can be ascribed to the H-bonding interaction between Cl - and the hydroxy group of pinacol. The stabilization of the carbocation intermediate by the surrounding anion Cl - may be another reason for the high selectivity. Notably, the good reusability of the HPW/[emim]Cl system can reduce the waste output and production cost. In the second step, OX is selectively produced by a Diels-Alder reaction of 2,3-dimethylbutadiene and acrolein, followed by a Pd/C-catalyzed decarbonylation/aromatization cascade in a one-pot fashion. The sustainable two-step process efficiently produces renewable OX in 79 % overall yield. Analogously, biomass-derived crotonaldehyde and pinacol can also serve as the feedstocks for the production of 1,2,4-trimethylbenzene. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Enterobacter aerogenes metabolites enhance Microcystis aeruginosa biomass recovery for sustainable bioflocculant and biohydrogen production.

    Science.gov (United States)

    Xu, Liang; Zhou, Mo; Ju, Hanyu; Zhang, Zhenxing; Zhang, Jiquan; Sun, Caiyun

    2018-04-07

    We report a recycling bioresource involving harvesting of Microcystis aeruginosa using the bioflocculant (MBF-32) produced by Enterobacter aerogenes followed by the recovery of the harvested M. aeruginosa as the main substrate for the sustainable production of MBF-32 and biohydrogen. The experimental results indicate that the efficiency of bioflocculation exceeded 90% under optimal conditions. The harvested M. aeruginosa was further recycled as the main substrate for the supply of necessary elements. The highest yield (3.6±0.1g/L) of MBF-32 could be obtained from 20g/L of wet biomass of M. aeruginosa with an additional 20g/L of glucose as the extra carbon source. The highest yield of biohydrogen was 35mL of H 2 /g (dw) algal biomass, obtained from 20g/L of wet biomass of M. aeruginosa with an additional 10g/L of glycerol. Transcriptome analyses indicated that MBF-32 was mainly composed of polysaccharide and tyrosine/tryptophan proteins. Furthermore, NADH synthase and polysaccharide export-related genes were found to be up-regulated. Copyright © 2018 Elsevier B.V. All rights reserved.

  5. Tree genetic engineering and applications to sustainable forestry and biomass production.

    Science.gov (United States)

    Harfouche, Antoine; Meilan, Richard; Altman, Arie

    2011-01-01

    Forest trees provide raw materials, help to maintain biodiversity and mitigate the effects of climate change. Certain tree species can also be used as feedstocks for bioenergy production. Achieving these goals may require the introduction or modified expression of genes to enhance biomass production in a sustainable and environmentally responsible manner. Tree genetic engineering has advanced to the point at which genes for desirable traits can now be introduced and expressed efficiently; examples include biotic and abiotic stress tolerance, improved wood properties, root formation and phytoremediation. Transgene confinement, including flowering control, may be needed to avoid ecological risks and satisfy regulatory requirements. This and stable expression are key issues that need to be resolved before transgenic trees can be used commercially. Copyright © 2010 Elsevier Ltd. All rights reserved.

  6. A sustainable woody biomass biorefinery.

    Science.gov (United States)

    Liu, Shijie; Lu, Houfang; Hu, Ruofei; Shupe, Alan; Lin, Lu; Liang, Bin

    2012-01-01

    Woody biomass is renewable only if sustainable production is imposed. An optimum and sustainable biomass stand production rate is found to be one with the incremental growth rate at harvest equal to the average overall growth rate. Utilization of woody biomass leads to a sustainable economy. Woody biomass is comprised of at least four components: extractives, hemicellulose, lignin and cellulose. While extractives and hemicellulose are least resistant to chemical and thermal degradation, cellulose is most resistant to chemical, thermal, and biological attack. The difference or heterogeneity in reactivity leads to the recalcitrance of woody biomass at conversion. A selection of processes is presented together as a biorefinery based on incremental sequential deconstruction, fractionation/conversion of woody biomass to achieve efficient separation of major components. A preference is given to a biorefinery absent of pretreatment and detoxification process that produce waste byproducts. While numerous biorefinery approaches are known, a focused review on the integrated studies of water-based biorefinery processes is presented. Hot-water extraction is the first process step to extract value from woody biomass while improving the quality of the remaining solid material. This first step removes extractives and hemicellulose fractions from woody biomass. While extractives and hemicellulose are largely removed in the extraction liquor, cellulose and lignin largely remain in the residual woody structure. Xylo-oligomers, aromatics and acetic acid in the hardwood extract are the major components having the greatest potential value for development. Higher temperature and longer residence time lead to higher mass removal. While high temperature (>200°C) can lead to nearly total dissolution, the amount of sugars present in the extraction liquor decreases rapidly with temperature. Dilute acid hydrolysis of concentrated wood extracts renders the wood extract with monomeric sugars

  7. Fuzzy Multi-actor Multi-criteria Decision Making for Sustainability Assessment of biomass-based technologies for hydrogen production

    DEFF Research Database (Denmark)

    Ren, Jingzheng; Fedele, Andrea; Mason, Marco

    2013-01-01

    The purpose of this paper is to develop a sustainability assessment method to rank the prior sequence of biomass-based technologies for hydrogen production. A novel fuzzy Multi-actor Multi-criteria Decision Making method which allows multiple groups of decision-makers to use linguistic variables...

  8. Sustainability of biogas production from biomass waste streams : grass & cow manure co-digestion process

    NARCIS (Netherlands)

    van Someren, Christian

    2014-01-01

    Biogas plays an important role in many future renewable energy scenarios as a source of storable and easily extracted form of renewable energy. However, there remains uncertainty as to which sources of biomass can provide a net energy gain while being harvested in a sustainable, ecologically

  9. Renewable energy from biomass: a sustainable option? - Hydrogen production from alcohols

    Science.gov (United States)

    Balla, Zoltán; Kith, Károly; Tamás, András; Nagy, Orsolya

    2015-04-01

    Sustainable development requires us to find new energy sources instead of fossil fuels. One possibility is the hydrogen fuel cell, which uses significantly more efficient than the current combustion engines. The task of the hydrogen is clean, carbon-free renewable energy sources to choose in the future by growing degree. Hungary can play a role in the renewable energy sources of biomass as a renewable biomass annually mass of about 350 to 360 million tons. The biomass is only a very small proportion of fossil turn carbonaceous materials substitution, while we may utilize alternative energy sources as well. To the hydrogen production from biomass, the first step of the chemical transformations of chemical bonds are broken, which is always activation energy investment needs. The methanol and ethanol by fermentation from different agricultural products is relatively easy to produce, so these can be regarded as renewable energy carriers of. The ethanol can be used directly, and used in several places in the world are mixed with the petrol additive. This method is the disadvantage that the anhydrous alcohol is to be used in the combustion process in the engine more undesired by-products may be formed, and the fuel efficiency of the engine is significantly lower than the efficiency of the fuel cells. More useful to produce hydrogen from the alcohol and is used in a fuel cell electric power generation. Particularly attractive option for the so-called on-board reforming of alcohols, that happens immediately when the vehicle hydrogen production. It does not need a large tank of hydrogen, because the hydrogen produced would be directly to the fuel cell. The H2 tank limit use of its high cost, the significant loss evaporation, the rare-station network, production capacity and service background and lack of opportunity to refuel problems. These can be overcome, if the hydrogen in the vehicle is prepared. As volume even 700 bar only about half the H2 pressure gas can be stored

  10. A roadmap for production of sustainable, consistent and reliable electric power from agricultural biomass- An Indian perspective

    International Nuclear Information System (INIS)

    Singh, Jaswinder

    2016-01-01

    The utilization of agricultural biomass for production of electric power can help to reduce the environmental emissions while achieving energy security and sustainable development. This paper presents a methodology for estimating the power production potential of agricultural biomass in a country. Further, the methodology has been applied to develop a roadmap for producing reliable power in India. The present study reveals that about 650 Mt/year of agricultural biomass is generated in India, while about one-third of this has been found to be surplus for energy applications. The cereal crops have major contribution (64.60%) in production of surplus biomass followed by sugarcane (24.60%) and cotton (10.68%). The energy potential of these resources is of the order of 3.72 EJ, which represents a significant proportion of the primary energy consumption in the country. These biomass resources can produce electric power of 23–35 GW depending upon the efficiency of thermal conversion. The delivery of biomass to the plants and selection of appropriate technology have been found as the major issues that need to be resolved carefully. In the end, the study summarizes various technological options for biomass collection and utilization that can be used for producing clean and consistent power supply. - Highlights: •The production of bioelectricity in India is imperative and inevitable. •About one-third of the agricultural biomass is available for power generation. •The power potential of these resources is of the order of 23–31 GW. •The delivery of biomass to plants and technology selection are the key issues. •India should exploit these resources for producing clean and reliable power.

  11. Optimization of Southeastern Forest Biomass Crop Production: A Watershed Scale Evaluation of the Sustainability and Productivity of Dedicated Energy Crop and Woody Biomass Operations

    Energy Technology Data Exchange (ETDEWEB)

    Chescheir, George M. [North Carolina State Univ., Raleigh, NC (United States); Nettles, Jami E, [Weyerhaeuser Company; Youssef, Mohamed [North Carolina State Univ., Raleigh, NC (United States); Birgand, Francois [North Carolina State Univ., Raleigh, NC (United States); Amatya, Devendra M. [United States Forest Service; Miller, Darren A. [Weyerhaeuser Company; Sucre, Eric [Weyerhaeuser Company; Schilling, Erik [National Council for Air and Stream Improvement, Inc.; Tian, Shiying [North Carolina State Univ., Raleigh, NC (United States); Cacho, Julian F. [Argonne National Lab. (ANL), Argonne, IL (United States); Bennett, Erin M. [Ecosystem Planning and Restoration, LLC; Carter, Taylor [HDR; Bowen, Nicole Dobbs [Engineering Design Consultants; Muwamba, Augustine [College of Charleston; Panda, Sudhanshu [University of North Georgia; Christopher, Sheila [Univ. of Notre Dame, IN (United States); Phillips, Brian D. [North Carolina State Univ., Raleigh, NC (United States); Appelboom, Timothy [NC Department of Environmental Quality; Skaggs, Richard W. [North Carolina State Univ., Raleigh, NC (United States); Greene, Ethan J. [Land Trust for Central North Carolina; Marshall, Craig D. [Mississippi State University; Allen, Elizabeth [North Carolina State Univ., Raleigh, NC (United States); Schoenholtz, Stephen H. [Virginia Polytechnic Inst. and State Univ. (Virginia Tech), Blacksburg, VA (United States)

    2018-04-12

    Growing switchgrass (Panicum virgatum L.) as an intercrop in managed loblolly pine (Pinus taeda L.) plantations has emerged as a potential source of bioenergy feedstock. Utilizing land resources between pine trees to produce an energy crop can potentially reduce the demand for land resources used to produce food; however, converting conventionally managed forest land to this new intercropping system constitutes changes in land use and associated management practices, which may affect the environmental and economic sustainability of the land.

    The overall objective of this project is to evaluate the environmental effects of large-scale forest bioenergy crop production and utilize these results to optimize cropping systems in a manner that protects the important ecosystem services provided by forests while contributing to the development of a sustainable and economically-viable biomass industry in the southeastern United States.

    Specific objectives are to:

    1. Quantify the hydrology of different energy crop production systems in watershed scale experiments on different landscapes in the southeast.
    2. Quantify the nutrient dynamics of energy crop production systems in watershed scale experiments to determine the impact of these systems on water quality.
    3. Evaluate the impacts of energy crop production on soil structure, fertility, and organic matter.
    4. Evaluate the response of flora and fauna populations and habitat quality to energy crop production systems.
    5. Develop watershed and regional scale models to evaluate the environmental sustainability and productivity of energy crop and woody biomass operations.
    6. Quantify the production systems in terms of bioenergy crop yield versus the energy and economic costs of production.
    7. Develop and evaluate best management practice guidelines to ensure the environmental sustainability of energy crop production systems.
    Watershed and plot scale studies

  12. Sustainability considerations for electricity generation from biomass

    International Nuclear Information System (INIS)

    Evans, Annette; Strezov, Vladimir; Evans, Tim J.

    2010-01-01

    The sustainability of electricity generation from biomass has been assessed in this work according to the key indicators of price, efficiency, greenhouse gas emissions, availability, limitations, land use, water use and social impacts. Biomass produced electricity generally provides favourable price, efficiency, emissions, availability and limitations but often has unfavorably high land and water usage as well as social impacts. The type and growing location of the biomass source are paramount to its sustainability. Hardy crops grown on unused or marginal land and waste products are more sustainable than dedicated energy crops grown on food producing land using high rates of fertilisers. (author)

  13. Sustainable Elastomers from Renewable Biomass.

    Science.gov (United States)

    Wang, Zhongkai; Yuan, Liang; Tang, Chuanbing

    2017-07-18

    further explored to enhance the overall sustainability. Isoprene polymers were grafted from a cellulosic backbone to afford Cell-g-polyisoprene copolymers. Via cross-linking of these graft copolymers, human-skin-mimic elastomers and high resilient elastomers with a well-defined network structure were achieved. The mechanical properties of these resilient elastomers could be finely controlled by tuning the cellulose content. As isoprene can be produced by engineering of microorganisms, these elastomers could be a renewable alternative to petroleum products. In summary, triblock copolymer and graft copolymer TPEs with biomass components, skin-mimic elastomers, high resilient biobased elastomers, and engineering of macromolecular architectures for elastomers are discussed. These approaches and design provide us knowledge on the potential to make sustainable elastomers for various applications to compete with petroleum-based counterparts.

  14. Incentives and market development to establish sustainable biomass systems

    International Nuclear Information System (INIS)

    Matteson Gary, C.

    2009-01-01

    Business-as-usual is not acceptable when it comes to the future for biomass-to-energy/product conversion industry. Incentives and market development need to be applied to guide the owners and operators towards the sustainable practices. Sustainability for biomass is defined to be future energy fuels and bio products that are secure, renewable, and accessible locally, affordable, and pollution free. Intensives are required to convert biomass-to-energy/product conversion systems that are not sustainable into sustainable formats. (Author)

  15. Sago Biomass as a Sustainable Source for Biohydrogen Production by Clostridium butyricum A1

    Directory of Open Access Journals (Sweden)

    Mohamad Faizal Ibrahim

    2013-12-01

    Full Text Available Biohydrogen production from biomass is attracting many researchers in developing a renewable, clean and environmental friendly biofuel. The biohydrogen producer, Clostridium butyricum A1, was successfully isolated from landfill soil. This strain produced a biohydrogen yield of 1.90 mol H2/mol glucose with productivity of 170 mL/L/h using pure glucose as substrate. The highest cumulative biohydrogen collected after 24 h of fermentation was 2468 mL/L-medium. Biohydrogen fermentation using sago hampas hydrolysate produced higher biohydrogen yield (2.65 mol H2/mol glucose than sago pith residue (SPR hydrolysate that produced 2.23 mol H2/mol glucose. A higher biohydrogen productivity of 1757 mL/L/h was obtained when using sago hampas hydrolysate compared to when using pure glucose that has the productivity of 170 mL/L/h. A comparable biohydrogen production was also obtained by C. butyricum A1 when compared to C. butyricum EB6 that produced a biohydrogen yield of 2.50 mol H2/mol glucose using sago hampas hydrolysate as substrate. This study shows that the new isolate C. butyricum A1 together with the use of sago biomass as substrate is a promising technology for future biohydrogen production.

  16. Evaluation and Selection of Potential Biomass Sources of North-East India towards Sustainable Bioethanol Production

    International Nuclear Information System (INIS)

    Nongthombam, Grihalakshmi D.; Labala, Rajendra K.; Das, Sudripta; Handique, Pratap J.; Talukdar, Narayan C.

    2017-01-01

    Vegetation biomass production in North-East India within Indo-Burma biodiversity hotspot is luxuriant and available from April to October to consider their potential for bioethanol production. Potential of six lignocellulosic biomass (LCB) sources; namely, sugarcane bagasse (BG), cassava aerial parts (CS), ficus fruits (Ficus cunia) (FF), “phumdi” (floating biomass), rice straw (RS), and sawdust were investigated for bioethanol production using standard techniques. Morphological and chemical changes were evaluated by Scanning electron microscopy and Fourier transform infrared spectroscopy and quantity of sugars and inhibitors in LCB were determined by High performance liquid chromatography. Hydrothermally treated BG, CS, and FF released 954.54, 1,354.33, and 1,347.94 mg/L glucose and 779.31, 612.27, and 1,570.11 mg/L of xylose, respectively. Inhibitors produced due to effect of hydrothermal pretreatment ranged from 42.8 to 145.78 mg/L acetic acid, below detection level (BDL) to 17.7 µg/L 5-hydroxymethylfurfural, and BDL to 56.78 µg/L furfural. The saccharification efficiency of hydrothermally treated LCB (1.35–28.64%) was significantly higher compared with their native counterparts (0.81–17.97%). Consolidated bioprocessing of the LCB using MTCC 1755 (Fusarium oxysporum) resulted in maximum ethanol concentration of 0.85 g/L and corresponded to 42 mg ethanol per gram of hydrothermally treated BG in 120 h followed by 0.83 g/L corresponding to 41.5 mg/g of untreated CS in 144 h. These ethanol concentrations corresponded to 23.43 and 21.54% of theoretical ethanol yield, respectively. LCB of CS and FF emerged as a suitable material to be subjected to test for enhanced ethanol production in future experiments through efficient fermentative microbial strains, appropriate enzyme loadings, and standardization of other fermentation parameters.

  17. Evaluation and Selection of Potential Biomass Sources of North-East India towards Sustainable Bioethanol Production

    Energy Technology Data Exchange (ETDEWEB)

    Nongthombam, Grihalakshmi D., E-mail: griha789@gmail.com; Labala, Rajendra K.; Das, Sudripta [Institute of Bioresources and Sustainable Development (IBSD), Imphal (India); Handique, Pratap J. [Department of Biotechnology, Gauhati University, Guwahati (India); Talukdar, Narayan C., E-mail: griha789@gmail.com [Division of Life Sciences, Institute of Advanced Study in Science and Technology, Guwahati (India)

    2017-07-11

    Vegetation biomass production in North-East India within Indo-Burma biodiversity hotspot is luxuriant and available from April to October to consider their potential for bioethanol production. Potential of six lignocellulosic biomass (LCB) sources; namely, sugarcane bagasse (BG), cassava aerial parts (CS), ficus fruits (Ficus cunia) (FF), “phumdi” (floating biomass), rice straw (RS), and sawdust were investigated for bioethanol production using standard techniques. Morphological and chemical changes were evaluated by Scanning electron microscopy and Fourier transform infrared spectroscopy and quantity of sugars and inhibitors in LCB were determined by High performance liquid chromatography. Hydrothermally treated BG, CS, and FF released 954.54, 1,354.33, and 1,347.94 mg/L glucose and 779.31, 612.27, and 1,570.11 mg/L of xylose, respectively. Inhibitors produced due to effect of hydrothermal pretreatment ranged from 42.8 to 145.78 mg/L acetic acid, below detection level (BDL) to 17.7 µg/L 5-hydroxymethylfurfural, and BDL to 56.78 µg/L furfural. The saccharification efficiency of hydrothermally treated LCB (1.35–28.64%) was significantly higher compared with their native counterparts (0.81–17.97%). Consolidated bioprocessing of the LCB using MTCC 1755 (Fusarium oxysporum) resulted in maximum ethanol concentration of 0.85 g/L and corresponded to 42 mg ethanol per gram of hydrothermally treated BG in 120 h followed by 0.83 g/L corresponding to 41.5 mg/g of untreated CS in 144 h. These ethanol concentrations corresponded to 23.43 and 21.54% of theoretical ethanol yield, respectively. LCB of CS and FF emerged as a suitable material to be subjected to test for enhanced ethanol production in future experiments through efficient fermentative microbial strains, appropriate enzyme loadings, and standardization of other fermentation parameters.

  18. RENEWABLE ENERGY AND ENVIRONMENTAL SUSTAINABILITY USING BIOMASS FROM DAIRY AND BEEF ANIMAL PRODUCTION

    Energy Technology Data Exchange (ETDEWEB)

    Sweeten, John; Annamalai, Kalyan; Auvermann, Brent; Mukhtar, Saqib; Capareda, Sergio C; Engler, Cady; Harman, Wyatte; Reddy, J N; DeOtte, Robert; Parker, David B; Stewart, B A

    2012-05-02

    The Texas Panhandle is regarded as the "Cattle Feeding Capital of the World", producing 42% of the fed beef cattle in the United States within a 200-mile radius of Amarillo generating more than 5 million tons of feedlot manure /year. Apart from feedlots, the Bosque River Region in Erath County, just north of Waco, Texas with about 110,000 dairy cattle in over 250 dairies, produces 1.8 million tons of manure biomass (excreted plus bedding) per year. While the feedlot manure has been used extensively for irrigated and dry land crop production, most dairies, as well as other concentrated animal feeding operations (CAFO's), the dairy farms utilize large lagoon areas to store wet animal biomass. Water runoff from these lagoons has been held responsible for the increased concentration of phosphorus and other contaminates in the Bosque River which drains into Lake Waco—the primary source of potable water for Waco's 108,500 people. The concentrated animal feeding operations may lead to land, water, and air pollution if waste handling systems and storage and treatment structures are not properly managed. Manure-based biomass (MBB) has the potential to be a source of green energy at large coal-fired power plants and on smaller-scale combustion systems at or near confined animal feeding operations. Although MBB particularly cattle biomass (CB) is a low quality fuel with an inferior heat value compared to coal and other fossil fuels, the concentration of it at large animal feeding operations can make it a viable source of fuel. The overall objective of this interdisciplinary proposal is to develop environmentally benign technologies to convert low-value inventories of dairy and beef cattle biomass into renewable energy. Current research expands the suite of technologies by which cattle biomass (CB: manure, and premature mortalities) could serve as a renewable alternative to fossil fuel. The work falls into two broad categories of research and development. Category

  19. RENEWABLE ENERGY AND ENVIRONMENTAL SUSTAINABILITY USING BIOMASS FROM DAIRY AND BEEF ANIMAL PRODUCTION

    Energy Technology Data Exchange (ETDEWEB)

    Kalyan Annamalai, John M. Sweeten,

    2012-05-03

    The Texas Panhandle is regarded as the 'Cattle Feeding Capital of the World', producing 42% of the fed beef cattle in the United States within a 200-mile radius of Amarillo generating more than 5 million tons of feedlot manure/year. Apart from feedlots, the Bosque River Region in Erath County, just north of Waco, Texas with about 110,000 dairy cattle in over 250 dairies, produces 1.8 million tons of manure biomass (excreted plus bedding) per year. While the feedlot manure has been used extensively for irrigated and dry land crop production, most dairies, as well as other concentrated animal feeding operations (CAFO's), the dairy farms utilize large lagoon areas to store wet animal biomass. Water runoff from these lagoons has been held responsible for the increased concentration of phosphorus and other contaminates in the Bosque River which drains into Lake Waco - the primary source of potable water for Waco's 108,500 people. The concentrated animal feeding operations may lead to land, water, and air pollution if waste handling systems and storage and treatment structures are not properly managed. Manure-based biomass (MBB) has the potential to be a source of green energy at large coal-fired power plants and on smaller-scale combustion systems at or near confined animal feeding operations. Although MBB particularly cattle biomass (CB) is a low quality fuel with an inferior heat value compared to coal and other fossil fuels, the concentration of it at large animal feeding operations can make it a viable source of fuel. The overall objective of this interdisciplinary proposal is to develop environmentally benign technologies to convert low-value inventories of dairy and beef cattle biomass into renewable energy. Current research expands the suite of technologies by which cattle biomass (CB: manure, and premature mortalities) could serve as a renewable alternative to fossil fuel. The work falls into two broad categories of research and development

  20. RENEWABLE ENERGY AND ENVIRONMENTAL SUSTAINABILITY USING BIOMASS FROM DAIRY AND BEEF ANIMAL PRODUCTION

    Energy Technology Data Exchange (ETDEWEB)

    Sweeten, John M; Annamalai, Kalyan; Auvermann, Brent; Mukhtar, Saqib; Capareda, Sergio C.; Engler, Cady; Harman, Wyatte; Reddy, J N; DeOtte, Robert; Parker, David B.; Stewart, B. A.

    2012-05-03

    The Texas Panhandle is regarded as the "Cattle Feeding Capital of the World", producing 42% of the fed beef cattle in the United States within a 200-mile radius of Amarillo generating more than 5 million tons of feedlot manure/year. Apart from feedlots, the Bosque River Region in Erath County, just north of Waco, Texas with about 110,000 dairy cattle in over 250 dairies, produces 1.8 million tons of manure biomass (excreted plus bedding) per year. While the feedlot manure has been used extensively for irrigated and dry land crop production, most dairies, as well as other concentrated animal feeding operations (CAFO's), the dairy farms utilize large lagoon areas to store wet animal biomass. Water runoff from these lagoons has been held responsible for the increased concentration of phosphorus and other contaminates in the Bosque River which drains into Lake Waco -- the primary source of potable water for Waco's 108,500 people. The concentrated animal feeding operations may lead to land, water, and air pollution if waste handling systems and storage and treatment structures are not properly managed. Manure-based biomass (MBB) has the potential to be a source of green energy at large coal-fired power plants and on smaller-scale combustion systems at or near confined animal feeding operations. Although MBB particularly cattle biomass (CB) is a low quality fuel with an inferior heat value compared to coal and other fossil fuels, the concentration of it at large animal feeding operations can make it a viable source of fuel. The overall objective of this interdisciplinary proposal is to develop environmentally benign technologies to convert low-value inventories of dairy and beef cattle biomass into renewable energy. Current research expands the suite of technologies by which cattle biomass (CB: manure, and premature mortalities) could serve as a renewable alternative to fossil fuel. The work falls into two broad categories of research and development

  1. Pretreated densified biomass products

    Science.gov (United States)

    Dale, Bruce E; Ritchie, Bryan; Marshall, Derek

    2014-03-18

    A product comprising at least one densified biomass particulate of a given mass having no added binder and comprised of a plurality of lignin-coated plant biomass fibers is provided, wherein the at least one densified biomass particulate has an intrinsic density substantially equivalent to a binder-containing densified biomass particulate of the same given mass and h a substantially smooth, non-flakey outer surface. Methods for using and making the product are also described.

  2. Biochemical conversions of lignocellulosic biomass for sustainable fuel-ethanol production in the upper Midwest

    Science.gov (United States)

    Brodeur-Campbell, Michael J.

    Biofuels are an increasingly important component of worldwide energy supply. This research aims to understand the pathways and impacts of biofuels production, and to improve these processes to make them more efficient. In Chapter 2, a life cycle assessment (LCA) is presented for cellulosic ethanol production from five potential feedstocks of regional importance to the upper Midwest — hybrid poplar, hybrid willow, switchgrass, diverse prairie grasses, and logging residues — according to the requirements of Renewable Fuel Standard (RFS). Direct land use change emissions are included for the conversion of abandoned agricultural land to feedstock production, and computer models of the conversion process are used in order to determine the effect of varying biomass composition on overall life cycle impacts. All scenarios analyzed here result in greater than 60% reduction in greenhouse gas emissions relative to petroleum gasoline. Land use change effects were found to contribute significantly to the overall emissions for the first 20 years after plantation establishment. Chapter 3 is an investigation of the effects of biomass mixtures on overall sugar recovery from the combined processes of dilute acid pretreatment and enzymatic hydrolysis. Biomass mixtures studied were aspen, a hardwood species well suited to biochemical processing; balsam, a high-lignin softwood species, and switchgrass, an herbaceous energy crop with high ash content. A matrix of three different dilute acid pretreatment severities and three different enzyme loading levels was used to characterize interactions between pretreatment and enzymatic hydrolysis. Maximum glucose yield for any species was 70% of theoretical for switchgrass, and maximum xylose yield was 99.7% of theoretical for aspen. Supplemental β-glucosidase increased glucose yield from enzymatic hydrolysis by an average of 15%, and total sugar recoveries for mixtures could be predicted to within 4% by linear interpolation of the pure

  3. Integrated firewood production, ensures fuel security for self sustaining Biomass Power Plants reduces agricultural cost and provides livestock production

    International Nuclear Information System (INIS)

    Lim, Andre

    2010-01-01

    Growing concerns on the impact of climate change, constraints on fossil fuel electricity generation and the likelihood of oil depletion is driving unprecedented growth and investment in renewable energy across the world. The consistency of biomass power plants makes them capable of replacing coal and nuclear for base-load. However experience had shown otherwise, climate change reduces yields, uncontrolled approvals for biomass boilers increased demands and at times motivated by greedy farmers have raised price of otherwise a problematic agricultural waste to high secondary income stream forcing disruption to fuel supply to power plants and even their shutting down. The solution is to established secured fuel sources, fortunately in Asia there are several species of trees that are fast growing and have sufficient yields to make their harvesting economically viable for power production. (author)

  4. Routing of biomass for sustainable agricultural development

    International Nuclear Information System (INIS)

    Suhaimi Masduki; Aini Zakaria

    1998-01-01

    Photosynthetically derived biomass and residues, including waste products from food processing industries are renewable. They accumulate every year in large quantities, causing deterioration to the environment and loss of potentially valuable resources. The conserved energy is potentially convertible; thermodynamically the energy can be tapped into forms which are more amenable for value added agricultural applications or for other higher value products such as chemicals or their feedstocks. The forms and types in which this biomass has to be modified for the intended use depend on the costs or the respective alternatives. Under current situations, where chemical feedstocks are available in abundance at very competitive prices, biomass is obviously more suitably placed in the agro-industrial sector. Recycling of the biomass or residues into the soil as biofertilizers or for some other uses for agricultural applications requires less intense energy inputs for their improvements. Highly efficient biological processes with microorganisms as the primary movers in the production of the desired end products indeed require less capital costs than in most other industrial entities. In this paper, the various processes, which are potentially valuable and economically feasible in the conversion of biomass and residues for several products important in the agricultural sector, are described. Emphasis is given to the approach and the possible permutations of these processes to arrive at the desired good quality products for sustainable agricultural development. (Author)

  5. Energy production from biomass

    International Nuclear Information System (INIS)

    Bestebroer, S.I.

    1995-01-01

    The aim of the task group 'Energy Production from Biomass', initiated by the Dutch Ministry of Economic Affairs, was to identify bottlenecks in the development of biomass for energy production. The bottlenecks were identified by means of a process analysis of clean biomass fuels to the production of electricity and/or heat. The subjects in the process analysis are the potential availability of biomass, logistics, processing techniques, energy use, environmental effects, economic impact, and stimulation measures. Three categories of biomass are distinguished: organic residual matter, imported biomass, and energy crops, cultivated in the Netherlands. With regard to the processing techniques attention is paid to co-firing of clean biomass in existing electric power plants (co-firing in a coal-fired power plant or co-firing of fuel gas from biomass in a coal-fired or natural gas-fired power plant), and the combustion or gasification of clean biomass in special stand-alone installations. 5 figs., 13 tabs., 28 refs

  6. Expanding the biomass resource: sustainable oil production via fast pyrolysis of low input high diversity biomass and the potential integration of thermochemical and biological conversion routes.

    Science.gov (United States)

    Corton, J; Donnison, I S; Patel, M; Bühle, L; Hodgson, E; Wachendorf, M; Bridgwater, A; Allison, G; Fraser, M D

    2016-09-01

    Waste biomass is generated during the conservation management of semi-natural habitats, and represents an unused resource and potential bioenergy feedstock that does not compete with food production. Thermogravimetric analysis was used to characterise a representative range of biomass generated during conservation management in Wales. Of the biomass types assessed, those dominated by rush ( Juncus effuses ) and bracken ( Pteridium aquilinum ) exhibited the highest and lowest volatile compositions respectively and were selected for bench scale conversion via fast pyrolysis. Each biomass type was ensiled and a sub-sample of silage was washed and pressed. Demineralization of conservation biomass through washing and pressing was associated with higher oil yields following fast pyrolysis. The oil yields were within the published range established for the dedicated energy crops miscanthus and willow. In order to examine the potential a multiple output energy system was developed with gross power production estimates following valorisation of the press fluid, char and oil. If used in multi fuel industrial burners the char and oil alone would displace 3.9 × 10 5  tonnes per year of No. 2 light oil using Welsh biomass from conservation management. Bioenergy and product development using these feedstocks could simultaneously support biodiversity management and displace fossil fuels, thereby reducing GHG emissions. Gross power generation predictions show good potential.

  7. Towards an ecologically sustainable energy production based on forest biomass - Forest fertilisation with nutrient rich organic waste matter

    Energy Technology Data Exchange (ETDEWEB)

    Roegaard, Pia-Maria; Aakerback, Nina; Sahlen, Kenneth; Sundell, Markus [Swedish Polytechnic, Vasa (Finland)

    2006-07-15

    The project is a collaboration between Swedish Univ. of Agricultural Sciences, Faculty of Forest Sciences in Umeaa, Swedish Polytechnic, Finland in Vaasa and the Finnish Forest Research Institute in Kannus. Today there are pronounced goals within the EU that lead towards an ecologically sustainable community and there is also a global goal to decrease net carbon dioxide emissions. These goals involve among other things efforts to increase the use of renewable biofuel as energy source. This will result in an enlarged demand for biomass for energy production. Therefore, the forest resources in the Nordic countries will be required for energy production to a far greater extent in the future. One way to meet this increased tree biomass demand is to increase forest tree growth through supply of nutrients, of which nitrogen is the most important. Organic nutrient rich waste matter from the society, such as sewage sludge and mink and fox manure compost from fur farms might be used as forest fertilizer. This would result in increased supply of renewable tree biomass, decreased net carbon dioxide emissions, increased forest ecosystem carbon sequestration, decreased methane emissions from sewage sludge landfill and decreased society costs for sludge landfill or incineration. Therefore, the purpose of this project is to develop methods for forest fertilisation with nutrient rich organic waste matter from municipal wastewater, sludge and manure from mink and fox farms. The project may be divided into three main parts. The first part is the chemical composition of the fertiliser with the objective to increase the nitrogen content in sludge-based fertilisers and in compost of mink and fox manure. The second part involves the technique and logistics for forest fertilisation i.e., to develop application equipment that may be integrated in existing forest technical systems. The third part consists of field fertilisation investigations and an environmental impact assessment

  8. Field emissions of N2O during biomass production may affect the sustainability of agro-biofuels

    DEFF Research Database (Denmark)

    Carter, Mette Sustmann; Hauggaard-Nielsen, Henrik; Heiske, Stefan

    relate measured field emissions of N2O to the reduction in fossil fuel‐derived CO2, which is obtained when agricultural biomasses are used for biofuel production. The analysis includes five organically managed crops (viz. maize, rye, rye‐vetch, vetch and grass‐clover) and three scenarios for conversion...... of biomass to biofuel. The scenarios are 1) bioethanol, 2) biogas and 3) co‐production of bioethanol and biogas. In scenarios 3, the biomass is first used for bioethanol fermentation and subsequently the residue from this process is utilized for biogas production. The net reduction in greenhouse gas...... emissions is calculated as the avoided fossil fuel‐derived CO2, where the N2O emission has been subtracted. This value does not account for CO2 emissions from farm machinery and during biofuel production. We obtained the greatest net reduction in greenhouse gas emissions by co‐production of bioethanol...

  9. Fungal Enzymes for Bio-Products from Sustainable and Waste Biomass.

    Science.gov (United States)

    Gupta, Vijai K; Kubicek, Christian P; Berrin, Jean-Guy; Wilson, David W; Couturier, Marie; Berlin, Alex; Filho, Edivaldo X F; Ezeji, Thaddeus

    2016-07-01

    Lignocellulose, the most abundant renewable carbon source on earth, is the logical candidate to replace fossil carbon as the major biofuel raw material. Nevertheless, the technologies needed to convert lignocellulose into soluble products that can then be utilized by the chemical or fuel industries face several challenges. Enzymatic hydrolysis is of major importance, and we review the progress made in fungal enzyme technology over the past few years with major emphasis on (i) the enzymes needed for the conversion of polysaccharides (cellulose and hemicellulose) into soluble products, (ii) the potential uses of lignin degradation products, and (iii) current progress and bottlenecks for the use of the soluble lignocellulose derivatives in emerging biorefineries. Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. Seaweed and Biomass production

    Science.gov (United States)

    Nadiradze, K. T.

    2016-02-01

    The Black Sea has a sensitive ecosystem, vulnerable to the potential impacts by climate, water quality, pollution and etc. Successfully restoring and sustaining healthy Black Sea aqua cultural farming will require concreted action by private sector, civil society, farmer organizations and other stakeholders. But to achieve agri-environmental goals at scale, well-organized policy goals, framework and strategy for Sea Agriculture Green energy, Algae Biomass, Sapropel Production, aquacultures farming are essential for Georgian Farmers. But we must recognizes the most sustainable and at least risky farming systems will be those that build in aqua cultural, environmental, and social management practices resilient to climate ch ange and other risks and shocks evident in Georgia and whole in a Black Sea Basin Countries. Black Sea has more than 600 kinds of seaweeds; these species contain biologically active substances also present in fish - vitamins and omega fatty acids. The task is to specify how Black Sea seaweeds can be used in preparing nutrition additives, medicines and cosmetic products. As elsewhere around the world, governments, civil society, and the private sector in Georgia should work together to develop and implement `Blue Economy' and Green Growth strategies to generate equitable, sustainable economic development through strengthening Sea Agriculture. We are very interested to develop Black Sea seaweed plantation ad farming for multiply purposes fo r livestock as food additives, for human as great natural source of iodine as much iodine are released by seaweeds into the atmosphere to facilitate the development of better models or aerosol formation and atmospheric chemistry. It is well known, that earth's oceans are thought to have absorbed about one quarter of the CO2 humans pumped into the atmosphere over the past 20 years. The flip side of this process is that, as they absorb co2, oceans also become more acidic with dramatic consequences for sea life

  11. Cascading of Biomass. 13 Solutions for a Sustainable Bio-based Economy. Making Better Choices for Use of Biomass Residues, By-products and Wastes

    Energy Technology Data Exchange (ETDEWEB)

    Odegard, I.; Croezen, H.; Bergsma, G.

    2012-08-15

    Smarter and more efficient use of biomass, referred to as cascading, can lead to an almost 30% reduction in European greenhouse gas emissions by 2030 compared with 2010. As the title study makes clear, cascading of woody biomass, agricultural and industrial residues and other waste can make a significant contribution to a greening of the economy. With the thirteen options quantitatively examined annual emissions of between 330 and 400 Mt CO2 can be avoided by making more efficient use of the same volume of biomass as well as by other means. 75% of the potential CO2 gains can be achieved with just four options: (1) bio-ethanol from straw, for use as a chemical feedstock; (2) biogas from manure; (3) biorefining of grass; and (4) optimisation of paper recycling. Some of the options make multiple use of residues, with biomass being used to produce bioplastics that, after several rounds of recycling, are converted to heat and power at the end of their life, for example. In other cases higher-grade applications are envisaged: more efficient use of recyclable paper and wood waste, in both economic and ecological terms, using them as raw materials for new paper and chipboard rather than as an energy source. Finally, by using smart technologies biomass can be converted to multiple products.

  12. Biomass production efficiency controlled by management in temperate and boreal ecosystems

    NARCIS (Netherlands)

    Campioli, M.; Vicca, S.; Luyssaert, S.; Bilcke, J.; Ceschia, E.; Chapin, F.S. III; Ciais, P.; Fernández-Martínez, M.; Malhi, Y.; Obersteiner, M.; Olefeldt, D.; Papale, D.; Piao, S.L.; Peñuelas, J.; Sullivan, P. F.; Wang, X.; Zenone, T.; Janssens, I.A.

    2015-01-01

    Plants acquire carbon through photosynthesis to sustain biomass production, autotrophic respiration and production of non-structural compounds for multiple purposes. The fraction of photosynthetic production used for biomass production, the biomass production efficiency, is a key determinant of the

  13. 2011 Biomass Program Platform Peer Review. Sustainability

    Energy Technology Data Exchange (ETDEWEB)

    Eng, Alison Goss [Office of Energy Efficiency and Renewable Energy (EERE), Washington, DC (United States)

    2012-02-01

    This document summarizes the recommendations and evaluations provided by an independent external panel of experts at the 2011 U.S. Department of Energy Biomass Program’s Sustainability Platform Review meeting.

  14. Monitoring sustainable biomass flows : General methodology development

    NARCIS (Netherlands)

    Goh, Chun Sheng; Junginger, Martin; Faaij, André

    Transition to a bio-based economy will create new demand for biomass, e.g. the increasing use of bioenergy, but the impacts on existing markets are unclear. Furthermore, there is a growing public concern on the sustainability of biomass. This study proposes a methodological framework for mapping

  15. Sustainable production of toxin free marine microalgae biomass as fish feed in large scale open system in the Qatari desert.

    Science.gov (United States)

    Das, Probir; Thaher, Mahmoud Ibrahim; Hakim, Mohammed Abdul Quadir Mohd Abdul; Al-Jabri, Hareb Mohammed S J

    2015-09-01

    Mass cultivation of microalgae biomass for feed should be cost effective and toxin free. Evaporation loss in Qatar can be as high as 2 cm/d. Hence, production of marine microalgae biomass in Qatar would also require mitigating water loss as there was only very limited groundwater reserve. To address these issues, a combination of four growth conditions were applied to a 25,000 L raceway pond: locally isolated microalgae strain was selected which could grow in elevated salinity; strain that did not require silica and vitamins; volume of the culture would increase over time keeping denser inoculum in the beginning, and evaporation water loss would be balanced by adding seawater only. A local saline tolerant Nannochloropsis sp. was selected which did not require silica and vitamins. When the above conditions were combined in the pond, average areal biomass productivities reached 20.37 g/m(2)/d, and the culture was not contaminated by any toxic microalgae. Copyright © 2015 Elsevier Ltd. All rights reserved.

  16. Shorea robusta: A sustainable biomass feedstock

    Directory of Open Access Journals (Sweden)

    Vishal Kumar Singh

    2016-09-01

    Full Text Available The biomass feedstock needs to be available in a manner that is sustainable as well as renewable. However, obtaining reliable and cost effective supplies of biomass feedstock produced in a sustainable manner can prove to be difficult. Traditional biomass, mainly in the form of fallen leaves, fuel wood or dried dung, has long been the renewable and sustainable energy source for cooking and heating. Present study accounts for the biomass of fallen leaves of Shorea robusta, also known as sal, sakhua or shala tree, in the campus of BIT Mesra (Ranchi. These leaves are being gathered and burnt rather than being sold commercially. They contain water to varying degrees which affects their energy content. Hence, measurement of moisture content is critical for its biomass assessment. The leaves were collected, weighed, oven dried at 100oC until constant weight, then dry sample was reweighed to calculate the moisture content that has been driven off. By subtraction of moisture content from the initial weight of leaves, biomass was calculated. Using Differential Scanning Calorimeter (DSC the heat content of the leaves was calculated and the elemental analysis of leaf was done by CHNSO elemental analyser. Further, total biomass and carbon content of Sal tree was calculated using allometric equations so as to make a comparison to the biomass stored in dried fallen leaves

  17. Overview of recent developments in sustainable biomass certification

    International Nuclear Information System (INIS)

    Dam, Jinke van; Junginger, Martin; Faaij, Andre; Juergens, Ingmar; Best, Gustavo; Fritsche, Uwe

    2008-01-01

    The objective of this paper is to give a comprehensive review of initiatives on biomass certification from different viewpoints of stakeholders, including national governments (such as The Netherlands, the UK, Belgium and Germany), the EC, NGOs, companies, and international bodies up until October 2007. Furthermore, opportunities and restrictions in the development of biomass certification are described, including international trade law limitations, lack of adequate methodologies, stakeholder involvement requirements and certification costs. Next, five different approaches for the implementation of a biomass certification system are compared and discussed. Main differences are the voluntary or mandatory character and the geographical extent of the proposed strategies in terms of biomass end-use. It is concluded that criteria to ensure the sustainable production of biomass are needed urgently. To some extent criteria categories can be covered using existing systems, but others (such as GHG and energy balances, changing land-use) require the development of new methodologies. A gradual development of certification systems with learning (through pilot studies and research) and expansion over time, linked to the development of advanced methodologies can provide valuable experience, and further improve the feasibility and reliability of biomass certification systems. However, better international coordination between initiatives is required to improve coherence and efficiency in the development of sustainable biomass certification systems, to avoid the proliferation of standards and to provide a clearer direction in the approach to be taken. Finally, next to certification, alternative policy tools should be considered as well to ensure sustainable biomass production. (author)

  18. The watershed-scale optimized and rearranged landscape design (WORLD) model and local biomass processing depots for sustainable biofuel production: Integrated life cycle assessments

    Energy Technology Data Exchange (ETDEWEB)

    Eranki, Pragnya L.; Manowitz, David H.; Bals, Bryan D.; Izaurralde, Roberto C.; Kim, Seungdo; Dale, Bruce E.

    2013-07-23

    An array of feedstock is being evaluated as potential raw material for cellulosic biofuel production. Thorough assessments are required in regional landscape settings before these feedstocks can be cultivated and sustainable management practices can be implemented. On the processing side, a potential solution to the logistical challenges of large biorefi neries is provided by a network of distributed processing facilities called local biomass processing depots. A large-scale cellulosic ethanol industry is likely to emerge soon in the United States. We have the opportunity to influence the sustainability of this emerging industry. The watershed-scale optimized and rearranged landscape design (WORLD) model estimates land allocations for different cellulosic feedstocks at biorefinery scale without displacing current animal nutrition requirements. This model also incorporates a network of the aforementioned depots. An integrated life cycle assessment is then conducted over the unified system of optimized feedstock production, processing, and associated transport operations to evaluate net energy yields (NEYs) and environmental impacts.

  19. Accounting for Human Health and Ecosystems Quality in Developing Sustainable Energy Products: The Implications of Wood Biomass-based Electricity Strategies to Climate Change Mitigation

    Science.gov (United States)

    Weldu, Yemane W.

    The prospect for transitions and transformations in the energy sector to mitigate climate change raises concerns that actions should not shift the impacts from one impact category to another, or from one sustainability domain to another. Although the development of renewables mostly results in low environmental impacts, energy strategies are complex and may result in the shifting of impacts. Strategies to climate change mitigation could have potentially large effects on human health and ecosystems. Exposure to air pollution claimed the lives of about seven million people worldwide in 2010, largely from the combustion of solid fuels. The degradation of ecosystem services is a significant barrier to achieving millennium development goals. This thesis quantifies the biomass resources potential for Alberta; presents a user-friendly and sector-specific framework for sustainability assessment; unlocks the information and policy barriers to biomass integration in energy strategy; introduces new perspectives to improve understanding of the life cycle human health and ecotoxicological effects of energy strategies; provides insight regarding the guiding measures that are required to ensure sustainable bioenergy production; validates the utility of the Environmental Life Cycle Cost framework for economic sustainability assessment; and provides policy-relevant societal cost estimates to demonstrate the importance of accounting for human health and ecosystem externalities in energy planning. Alberta is endowed with a wealth of forest and agricultural biomass resources, estimated at 458 PJ of energy. Biomass has the potential to avoid 11-15% of GHG emissions and substitute 14-17% of final energy demand by 2030. The drivers for integrating bioenergy sources into Alberta's energy strategy are economic diversification, technological innovation, and resource conservation policy objectives. Bioenergy pathways significantly improved both human health and ecosystem quality from coal

  20. Sustainable production of a new generation biofuel by lipase-catalyzed esterification of fatty acids from liquid industrial waste biomass.

    Science.gov (United States)

    Foukis, Athanasios; Gkini, Olga A; Stergiou, Panagiota-Yiolanda; Sakkas, Vasilios A; Dima, Agapi; Boura, Konstantina; Koutinas, Athanasios; Papamichael, Emmanuel M

    2017-08-01

    In this work we suggest a methodology comprising the design and use of cost-effective, sustainable, and environmentally friendly process for biofuel production compatible with the market demands. A new generation biofuel is produced using fatty acids, which were generated from acidogenesis of industrial wastes of bioethanol distilleries, and esterified with selected alcohols by immobilized Candida antarctica Lipase-B. Suitable reactors with significant parameters and conditions were studied through experimental design, and novel esterification processes were suggested; among others, the continuous removal of the produced water was provided. Finally, economically sustainable biofuel production was achieved providing high ester yield (<97%) along with augmented concentration (3.35M) in the reaction mixtures at relatively short esterification times, whereas the immobilized lipase maintained over 90% of its initial esterifying ability after reused for ten cycles. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. Catalysis for biomass and CO2 use through solar energy: opening new scenarios for a sustainable and low-carbon chemical production.

    Science.gov (United States)

    Lanzafame, Paola; Centi, Gabriele; Perathoner, Siglinda

    2014-11-21

    The use of biomass, bio-waste and CO2 derived raw materials, the latter synthesized using H2 produced using renewable energy sources, opens new scenarios to develop a sustainable and low carbon chemical production, particularly in regions such as Europe lacking in other resources. This tutorial review discusses first this new scenario with the aim to point out, between the different possible options, those more relevant to enable this new future scenario for the chemical production, commenting in particular the different drivers (economic, technological and strategic, environmental and sustainability and socio-political) which guide the selection. The case of the use of non-fossil fuel based raw materials for the sustainable production of light olefins is discussed in more detail, but the production of other olefins and polyolefins, of drop-in intermediates and other platform molecules are also analysed. The final part discusses the role of catalysis in establishing this new scenario, summarizing the development of catalysts with respect to industrial targets, for (i) the production of light olefins by catalytic dehydration of ethanol and by CO2 conversion via FTO process, (ii) the catalytic synthesis of butadiene from ethanol, butanol and butanediols, and (iii) the catalytic synthesis of HMF and its conversion to 2,5-FDCA, adipic acid, caprolactam and 1,6-hexanediol.

  2. Sustainable use of forest biomass for energy

    International Nuclear Information System (INIS)

    Stupak Moeller, Inge

    2005-01-01

    The substitution of biomass for fossil fuels in energy consumption is a measure to mitigate global warming, and political action plans at European and national levels exist for an increased use. The use of forest biomass for energy can imply different economic and environmental advantages and disadvantages for the society, the energy sector and forestry. For the achievement of an increased and sustainable use of forest biomass for energy, the EU 5th Framework project WOOD-EN-MAN aimed at synthesising current knowledge and creating new knowledge within the field

  3. Sustainable Biomass Resource Development and Use | Energy Analysis | NREL

    Science.gov (United States)

    Sustainable Biomass Resource Development and Use Sustainable Biomass Resource Development and Use A sustainability analysis includes biomass resource use and impact assessment. This analysis examines how we can biomass resource development. They look at whether there is available land to support bioenergy. They also

  4. Biomass in a sustainable energy system

    International Nuclear Information System (INIS)

    Boerjesson, Paal

    1998-04-01

    In this thesis, aspects of an increase in the utilization of biomass in the Swedish energy system are treated. Modern bioenergy systems should be based on high energy and land use efficiency since biomass resources and productive land are limited. The energy input, including transportation, per unit biomass produced is about 4-5% for logging residues, straw and short rotation forest (Salix). Salix has the highest net energy yield per hectare among the various energy crops cultivated in Sweden. The CO 2 emissions from the production and transportation of logging residues, straw and Salix, are equivalent to 2-3% of those from a complete fuel-cycle for coal. Substituting biomass for fossil fuels in electricity and heat production is, in general, less costly and leads to a greater CO 2 reduction per unit biomass than substituting biomass derived transportation fuels for petrol or diesel. Transportation fuels produced from cellulosic biomass provide larger and less expensive CO 2 emission reductions than transportation fuels from annual crops. Swedish CO 2 emissions could be reduced by about 50% from the present level if fossil fuels are replaced and the energy demand is unchanged. There is a good balance between potential regional production and utilization of biomass in Sweden. Future biomass transportation distances need not be longer than, on average, about 40 km. About 22 TWh electricity could be produced annually from biomass in large district heating systems by cogeneration. Cultivation of Salix and energy grass could be utilized to reduce the negative environmental impact of current agricultural practices, such as the emission of greenhouse gases, nutrient leaching, decreased soil fertility and erosion, and for the treatment of municipal waste and sludge, leading to increased recirculation of nutrients. About 20 TWh biomass could theoretically be produced per year at an average cost of less than 50% of current production cost, if the economic value of these

  5. Biomass in a sustainable energy system

    Energy Technology Data Exchange (ETDEWEB)

    Boerjesson, Paal

    1998-04-01

    In this thesis, aspects of an increase in the utilization of biomass in the Swedish energy system are treated. Modern bioenergy systems should be based on high energy and land use efficiency since biomass resources and productive land are limited. The energy input, including transportation, per unit biomass produced is about 4-5% for logging residues, straw and short rotation forest (Salix). Salix has the highest net energy yield per hectare among the various energy crops cultivated in Sweden. The CO{sub 2} emissions from the production and transportation of logging residues, straw and Salix, are equivalent to 2-3% of those from a complete fuel-cycle for coal. Substituting biomass for fossil fuels in electricity and heat production is, in general, less costly and leads to a greater CO{sub 2} reduction per unit biomass than substituting biomass derived transportation fuels for petrol or diesel. Transportation fuels produced from cellulosic biomass provide larger and less expensive CO{sub 2} emission reductions than transportation fuels from annual crops. Swedish CO{sub 2} emissions could be reduced by about 50% from the present level if fossil fuels are replaced and the energy demand is unchanged. There is a good balance between potential regional production and utilization of biomass in Sweden. Future biomass transportation distances need not be longer than, on average, about 40 km. About 22 TWh electricity could be produced annually from biomass in large district heating systems by cogeneration. Cultivation of Salix and energy grass could be utilized to reduce the negative environmental impact of current agricultural practices, such as the emission of greenhouse gases, nutrient leaching, decreased soil fertility and erosion, and for the treatment of municipal waste and sludge, leading to increased recirculation of nutrients. About 20 TWh biomass could theoretically be produced per year at an average cost of less than 50% of current production cost, if the economic

  6. Survey sustainability Biomass. Appendix. Results of the international respondents

    Energy Technology Data Exchange (ETDEWEB)

    Bergsma, G.C.; Groot, M.I.

    2006-06-15

    of their own accord. Attention was drawn surprisingly often to the importance of small holdings, i.e. 'family farms', and maximisation of yields and CO2 reductions per hectare of farmland. It is recommended to take this latter issue on board, in part as a means of elaborating the aspect of 'preventing competition with food production' in practical terms. Based on the survey results, the report concludes with several concrete recommendations on sustainability criteria for biomass. The report published by the Cramer Commission in August 2006 is largely grounded in these survey results and the accompanying evaluation.

  7. Agroecology of Novel Annual and Perennial Crops for Biomass Production

    DEFF Research Database (Denmark)

    Manevski, Kiril; Jørgensen, Uffe; Lærke, Poul Erik

    The agroecological potential of many crops under sustainable intensification has not been investigated. This study investigates such potential for novel annual and perennial crops grown for biomass production.......The agroecological potential of many crops under sustainable intensification has not been investigated. This study investigates such potential for novel annual and perennial crops grown for biomass production....

  8. Plus 10 million tons plan. Feasible increased Danish production of sustainable biomass for bio-refineries; + 10 mio. tons planen - muligheder for en oeget dansk produktion af baeredygtig biomasse til bioraffinaderier

    Energy Technology Data Exchange (ETDEWEB)

    Gylling, M.; Scott Bentsen, N.; Felby, C.; Kvist Johannsen, V. (Koebenhavns Univ., Frederiksberg (Denmark)); Joergensen, Uffe; Kristensen, Inge T.; Dalgaard, T. (Aarhus Univ., Aarhus (Denmark))

    2012-07-01

    The desire to create sustainable solutions in the energy sector has led researchers at the University of Copenhagen, Aarhus University and research and development staff from DONG Energy to enter into a cooperation agreement that will start concrete initiatives in research and education in green energy. An important part of the collaboration is a study of how we can produce more biomass compared to today without compromising food production, feed production or the environment. The present study shows that it can be done through a total commitment to sustainable technology and biology. The report also describes the effects of the establishment of a Danish supplied bio-refinery sector. In order to achieve this required additional research and development is required, particularly in agriculture and forestry but also in biological and chemical conversion of biomass. The initiative supports the BioRefining Alliance, which brings together Danish companies, public partners and organizations with world-class knowledge and technologies for bio-refinery. (LN)

  9. Biomass energy: Sustainable solution for greenhouse gas emission

    Science.gov (United States)

    Sadrul Islam, A. K. M.; Ahiduzzaman, M.

    2012-06-01

    Biomass is part of the carbon cycle. Carbon dioxide is produced after combustion of biomass. Over a relatively short timescale, carbon dioxide is renewed from atmosphere during next generation of new growth of green vegetation. Contribution of renewable energy including hydropower, solar, biomass and biofuel in total primary energy consumption in world is about 19%. Traditional biomass alone contributes about 13% of total primary energy consumption in the world. The number of traditional biomass energy users expected to rise from 2.5 billion in 2004 to 2.6 billion in 2015 and to 2.7 billion in 2030 for cooking in developing countries. Residential biomass demand in developing countries is projected to rise from 771 Mtoe in 2004 to 818 Mtoe in 2030. The main sources of biomass are wood residues, bagasse, rice husk, agro-residues, animal manure, municipal and industrial waste etc. Dedicated energy crops such as short-rotation coppice, grasses, sugar crops, starch crops and oil crops are gaining importance and market share as source of biomass energy. Global trade in biomass feedstocks and processed bioenergy carriers are growing rapidly. There are some drawbacks of biomass energy utilization compared to fossil fuels viz: heterogeneous and uneven composition, lower calorific value and quality deterioration due to uncontrolled biodegradation. Loose biomass also is not viable for transportation. Pelletization, briquetting, liquefaction and gasification of biomass energy are some options to solve these problems. Wood fuel production is very much steady and little bit increase in trend, however, the forest land is decreasing, means the deforestation is progressive. There is a big challenge for sustainability of biomass resource and environment. Biomass energy can be used to reduce greenhouse emissions. Woody biomass such as briquette and pellet from un-organized biomass waste and residues could be used for alternative to wood fuel, as a result, forest will be saved and

  10. Pyrolysis of biomass for hydrogen production

    International Nuclear Information System (INIS)

    Constantinescu, Marius; David, Elena; Bucura, Felicia; Sisu, Claudia; Niculescu, Violeta

    2006-01-01

    Biomass processing is a new technology within the area of renewable energies. Current energy supplies in the world are dominated by fossil fuels (some 80% of the total use of over 400 EJ per year). Nevertheless, about 10-15% of this demand is covered by biomass resources, making biomass by far the most important renewable energy source used to date. On average, in the industrialized countries biomass contributes some 9-13% to the total energy supplies, but in developing countries the proportion is as high as a fifth to one third. In quite a number of countries biomass covers even over 50 to 90% of the total energy demand. Classic application of biomass combustion is heat production for domestic applications. A key issue for bio-energy is that its use should be modernized to fit into a sustainable development path. Especially promising are the production of electricity via advanced conversion concepts (i.e. gasification and state-of-the-art combustion and co-firing) and modern biomass derived fuels like methanol, hydrogen and ethanol from ligno-cellulosic biomass, which can reach competitive cost levels within 1-2 decades (partly depending on price developments with petroleum). (authors)

  11. Sustainable Biofuels from Forests: Woody Biomass

    Directory of Open Access Journals (Sweden)

    Edwin H. White

    2011-11-01

    Full Text Available The use of woody biomass feedstocks for bioenergy and bioproducts involves multiple sources of material that together create year round supplies. The main sources of woody biomass include residues from wood manufacturing industries, low value trees including logging slash in forests that are currently underutilized and dedicated short-rotation woody crops. Conceptually a ton of woody biomass feedstocks can replace a barrel of oil as the wood is processed (refined through a biorefinery. As oil is refined only part of the barrel is used for liquid fuel, e.g., gasoline, while much of the carbon in oil is refined into higher value chemical products-carbon in woody biomass can be refined into the same value-added products.

  12. Biomass in Switzerland. Energy production

    International Nuclear Information System (INIS)

    Guggisberg, B.

    2006-01-01

    In the long term, biomass could be used for energy production in a three times more intensive way, compared to current figures. A major contribution would be delivered to Switzerland's energy supply. Numerous biomass conversion technologies do exist, for the production of heat, power or vehicle fuel. However, the implementation of such a large-scale utilisation of biomass requires a couple of strategic decisions in order to improve the framework conditions for biomass development and precisely target the supporting measures applicable to both research and pilot plants. In short, a clear and efficient strategy is necessary in what regards biomass, that will be used for the definition of a future catalogue of measures. (author)

  13. Lignocellulosic Biomass: A Sustainable Bioenergy Source for the Future.

    Science.gov (United States)

    Fatma, Shabih; Hameed, Amir; Noman, Muhammad; Ahmed, Temoor; Shahid, Muhammad; Tariq, Mohsin; Sohail, Imran; Tabassum, Romana

    2018-01-01

    Increasing population and industrialization are continuously oppressing the existing energy resources and depleting the global fuel reservoirs. The elevated pollutions from the continuous consumption of non-renewable fossil fuels also seriously contaminating the surrounding environment. The use of alternate energy sources can be an environment-friendly solution to cope these challenges. Among the renewable energy sources biofuels (biomass-derived fuels) can serve as a better alternative to reduce the reliance on non-renewable fossil fuels. Bioethanol is one of the most widely consumed biofuels of today's world. The main objective of this review is to highlight the significance of lignocellulosic biomass as a potential source for the production of biofuels like bioethanol, biodiesel or biogas. We discuss the application of various methods for the bioconversion of lignocellulosic biomass to end products i.e. biofuels. The lignocellulosic biomass must be pretreated to disintegrate lignocellulosic complexes and to expose its chemical components for downstream processes. After pretreatment, the lignocellulosic biomass is then subjected to saccharification either via acidic or enzymatic hydrolysis. Thereafter, the monomeric sugars resulted from hydrolysis step are further processed into biofuel i.e. bioethanol, biodiesel or butanol etc. through the fermentation process. The fermented impure product is then purified through the distillation process to obtain pure biofuel. Renewable energy sources represent the potential fuel alternatives to overcome the global energy crises in a sustainable and eco-friendly manner. In future, biofuels may replenish the conventional non-renewable energy resources due to their renewability and several other advantages. Lignocellulosic biomass offers the most economical biomass to generate biofuels. However, extensive research is required for the commercial production of an efficient integrated biotransformation process for the production of

  14. Torrefaction of biomass for power production

    DEFF Research Database (Denmark)

    Saleh, Suriyati Binti

    In order to increase the share of biomass for sustainable energy production, it will be an advantage to utilize fuels as straw, wood and waste on large suspension fired boilers. On a European scale, currently large straw resources are available that are not fully utilized for energy production...... rates, relatively low superheater temperatures have to be applied, which in turn lower the power efficiency. The idea for this Ph.D. project is to develop a biomass pretreatment method that could provide the heating value of the fuel for the boiler, but in a way such that the fuel is easily pulverized.......D. thesis focus on the following subjects: 1) the development of experimental procedures for a novel laboratory scale reactor (simultaneous torrefaction and grinding) and a study on the torrefaction of straw and wood; 2) study the influence of biomass chemical properties such as ash content, ash composition...

  15. INTERNATIONAL BIOMASS TRADE AND SUSTAINABLE DEVELOPMENT: AN OVERVIEW

    Directory of Open Access Journals (Sweden)

    Chiriac Catalin

    2011-12-01

    Full Text Available It is crystal clear that the neoclassical economical theory, despite being probably the best growth model ever invented by man, tickled a cost of environmental degradation which can threaten our wealth and even our existence. For this reason, the concept of sustainable development (SD is so empathic, being considered probably the best theoretical alternative invented by man to standard growth, because of its vision of a better world, where economics, society and environment are intimately linked. Thus, all human activities have to adapt to this new paradigm, in order to achieve its goals. From the economical perspective, production, consumption and trade must incorporate a kind of sustainable type of activity. In the recent years, growing demands in energy use and the increase of oil and coal prices, have led to the usage of new energy sources such as biomass, water, solar, wind and geothermal energy. This is why we propose in this paper to present an overview of international trade in biomass reported to the philosophy of SD. In short, we want to give an answer at two questions: how much is biomass trade sustainable and what risks may arise if the main source of energy used today, based on fossil fuels, will be totally substitute by biomass? To be sustainable, biomass, must meet certain criteria, such as: to possess a high capacity for regeneration, in a relatively short time; to offer a better efficiency compared with the traditional fossil fuel sources; to be less or non-polluting, to be used in solid, liquid and gaseous form; to have a broad applicability in production and consumption; to have a competitive level in terms of costs and prices for transport or storage, in both stages, as a raw material or as a finished product; to be a good substitute of traditional fuels (gasoline or diesel, without the necessity for structural changes of the of the engine. The article will conclude that the uprising trend of the EU biomass trade and

  16. Wood-fuel biomass from the Madeira River. A sustainable option for electricity production in the Amazon region

    Energy Technology Data Exchange (ETDEWEB)

    Bacellar, Atlas Augusto [Center of Amazonic Energy Development, Universidade Federal do Amazonas, Campus Universitario, Av. General Rodrigo Octavio Jordao Ramos, 3000, 69077-000 Manaus, Amazonas (Brazil); Rocha, Brigida R.P. [Post-Graduate Program in Electrical Engineering, Institute of Technology, Universidade Federal do Para, Rua Augusto Correa 1, Guama, 66075-110 Belem, Para (Brazil)

    2010-09-15

    The universal provision of electricity remains far from achieved in the Brazilian Amazon, given the geographical obstacles, the dispersion of its inhabitants, the indistinctness of appropriate technologies, and the economic obstacles. Governmental action was taken in 2003 with the creation of the Light for All Program (PLpT), with the goal of bringing electricity to all rural consumers by 2010. In addition, the National Electric Power Agency, ANEEL (Agencia Nacional de Energia Eletrica), which is responsible in Brazil for the electrical sector regulation, has issued a determination of compulsory access to electricity by 2015. This study describes research conducted on the Madeira River, in the Brazilian Amazon, where the electric needs of the communities and small towns along the river can be satisfied through the gasification system, using as a renewable feedstock the wood-fuel biomass deposited on the riverbed, derived from natural processes, which the Ministry of Transport is already legally obligated to remove in order to provide safe navigation along the river. The study concludes by comparing the competitiveness of this system to diesel thermoelectric plants, along with its advantages in reducing the emission of greenhouse gases. Our results should help future studies in others areas with similar phenomena. (author)

  17. Wood-fuel biomass from the Madeira River: A sustainable option for electricity production in the Amazon region

    Energy Technology Data Exchange (ETDEWEB)

    Bacellar, Atlas Augusto, E-mail: abacellar@ufam.edu.b [Center of Amazonic Energy Development, Universidade Federal do Amazonas, Campus Universitario, Av. General Rodrigo Octavio Jordao Ramos, 3000, 69077-000 Manaus, Amazonas (Brazil); Rocha, Brigida R.P. [Post-Graduate Program in Electrical Engineering, Institute of Technology, Universidade Federal do Para, Rua Augusto Correa 1, Guama, 66075-110 Belem, Para (Brazil)

    2010-09-15

    The universal provision of electricity remains far from achieved in the Brazilian Amazon, given the geographical obstacles, the dispersion of its inhabitants, the indistinctness of appropriate technologies, and the economic obstacles. Governmental action was taken in 2003 with the creation of the Light for All Program (PLpT), with the goal of bringing electricity to all rural consumers by 2010. In addition, the National Electric Power Agency, ANEEL (Agencia Nacional de Energia Eletrica), which is responsible in Brazil for the electrical sector regulation, has issued a determination of compulsory access to electricity by 2015. This study describes research conducted on the Madeira River, in the Brazilian Amazon, where the electric needs of the communities and small towns along the river can be satisfied through the gasification system, using as a renewable feedstock the wood-fuel biomass deposited on the riverbed, derived from natural processes, which the Ministry of Transport is already legally obligated to remove in order to provide safe navigation along the river. The study concludes by comparing the competitiveness of this system to diesel thermoelectric plants, along with its advantages in reducing the emission of greenhouse gases. Our results should help future studies in others areas with similar phenomena.

  18. Wood-fuel biomass from the Madeira River: A sustainable option for electricity production in the Amazon region

    International Nuclear Information System (INIS)

    Bacellar, Atlas Augusto; Rocha, Brigida R.P.

    2010-01-01

    The universal provision of electricity remains far from achieved in the Brazilian Amazon, given the geographical obstacles, the dispersion of its inhabitants, the indistinctness of appropriate technologies, and the economic obstacles. Governmental action was taken in 2003 with the creation of the Light for All Program (PLpT), with the goal of bringing electricity to all rural consumers by 2010. In addition, the National Electric Power Agency, ANEEL (Agencia Nacional de Energia Eletrica), which is responsible in Brazil for the electrical sector regulation, has issued a determination of compulsory access to electricity by 2015. This study describes research conducted on the Madeira River, in the Brazilian Amazon, where the electric needs of the communities and small towns along the river can be satisfied through the gasification system, using as a renewable feedstock the wood-fuel biomass deposited on the riverbed, derived from natural processes, which the Ministry of Transport is already legally obligated to remove in order to provide safe navigation along the river. The study concludes by comparing the competitiveness of this system to diesel thermoelectric plants, along with its advantages in reducing the emission of greenhouse gases. Our results should help future studies in others areas with similar phenomena.

  19. Modeling below-ground biomass to improve sustainable management of Actaea racemosa, a globally important medicinal forest product

    Science.gov (United States)

    James L. Chamberlain; Gabrielle Ness; Christine J. Small; Simon J. Bonner; Elizabeth B. Hiebert

    2013-01-01

    Non-timber forest products, particularly herbaceous understory plants, support a multi-billion dollar industry and are extracted from forests worldwide for their therapeutic value. Tens of thousands of kilograms of rhizomes and roots of Actaea racemosa L., a native Appalachian forest perennial, are harvested every year and used for the treatment of...

  20. A key review on emergy analysis and assessment of biomass resources for a sustainable future

    International Nuclear Information System (INIS)

    Zhang Gaijing; Long Weiding

    2010-01-01

    The present study comprehensively reviews emergy analysis and performance evaluation of biomass energy. Biomass resources utilization technologies include (a) bioethanol production, (b) biomass for bio-oil, (c) biodiesel production, (d) straw as fuel in district heating plants, (e) electricity from Municipal Solid Waste (MSW) incineration power plant, (f) electricity from waste landfill gas. Systems diagrams of biomass, which are to conduct a critical inventory of processes, storage, and flows that are important to the system under consideration and are therefore necessary to evaluate, for biomasses are given. Emergy indicators, such as percent renewable (PR), emergy yield ratio (EYR), environmental load ratio (ELR) and environmental sustainability index (ESI) are shown to evaluate the environmental load and local sustainability of the biomass energy. The emergy indicators show that bio-fuels from crop are not sustainable and waste management for fuels provides an emergy recovery even lower than mining fossil fuel.

  1. Efficiency analysis of hydrogen production methods from biomass

    NARCIS (Netherlands)

    Ptasinski, K.J.

    2008-01-01

    Abstract: Hydrogen is considered as a universal energy carrier for the future, and biomass has the potential to become a sustainable source of hydrogen. This article presents an efficiency analysis of hydrogen production processes from a variety of biomass feedstocks by a thermochemical method –

  2. Potential availability of urban wood biomass in Michigan: Implications for energy production, carbon sequestration and sustainable forest management in the U.S.A

    International Nuclear Information System (INIS)

    MacFarlane, David W.

    2009-01-01

    Tree and wood biomass from urban areas is a potentially large, underutilized resource viewed in the broader social context of biomass production and utilization. Here, data and analysis from a regional study in a 13-county area of Michigan, U.S.A. are combined with data and analysis from several other studies to examine this potential. The results suggest that urban trees and wood waste offer a modest amount of biomass that could contribute significantly more to regional and national bio-economies than it does at present. Better utilization of biomass from urban trees and wood waste could offer new sources of locally generated wood products and bio-based fuels for power and heat generation, reduce fossil fuel consumption, reduce waste disposal costs and reduce pressure on forests. Although wood biomass generally constitutes a 'carbon-neutral' fuel, burning rather than burying urban wood waste may not have a net positive effect on reducing atmospheric CO 2 levels, because it may reduce a significant long term carbon storage pool. Using urban wood residues for wood products may provide the best balance of economic and environmental values for utilization

  3. Strategies for Optimizing Algal Biology for Enhanced Biomass Production

    Energy Technology Data Exchange (ETDEWEB)

    Barry, Amanda N.; Starkenburg, Shawn R.; Sayre, Richard T., E-mail: rsayre@newmexicoconsortium.org [Los Alamos National Laboratory, New Mexico Consortium, Los Alamos, NM (United States)

    2015-02-02

    One of the most environmentally sustainable ways to produce high-energy density (oils) feed stocks for the production of liquid transportation fuels is from biomass. Photosynthetic carbon capture combined with biomass combustion (point source) and subsequent carbon capture and sequestration has also been proposed in the intergovernmental panel on climate change report as one of the most effective and economical strategies to remediate atmospheric greenhouse gases. To maximize photosynthetic carbon capture efficiency and energy-return-on-investment, we must develop biomass production systems that achieve the greatest yields with the lowest inputs. Numerous studies have demonstrated that microalgae have among the greatest potentials for biomass production. This is in part due to the fact that all alga cells are photoautotrophic, they have active carbon concentrating mechanisms to increase photosynthetic productivity, and all the biomass is harvestable unlike plants. All photosynthetic organisms, however, convert only a fraction of the solar energy they capture into chemical energy (reduced carbon or biomass). To increase aerial carbon capture rates and biomass productivity, it will be necessary to identify the most robust algal strains and increase their biomass production efficiency often by genetic manipulation. We review recent large-scale efforts to identify the best biomass producing strains and metabolic engineering strategies to improve aerial productivity. These strategies include optimization of photosynthetic light-harvesting antenna size to increase energy capture and conversion efficiency and the potential development of advanced molecular breeding techniques. To date, these strategies have resulted in up to twofold increases in biomass productivity.

  4. Strategies for Optimizing Algal Biology for Enhanced Biomass Production

    International Nuclear Information System (INIS)

    Barry, Amanda N.; Starkenburg, Shawn R.; Sayre, Richard T.

    2015-01-01

    One of the most environmentally sustainable ways to produce high-energy density (oils) feed stocks for the production of liquid transportation fuels is from biomass. Photosynthetic carbon capture combined with biomass combustion (point source) and subsequent carbon capture and sequestration has also been proposed in the intergovernmental panel on climate change report as one of the most effective and economical strategies to remediate atmospheric greenhouse gases. To maximize photosynthetic carbon capture efficiency and energy-return-on-investment, we must develop biomass production systems that achieve the greatest yields with the lowest inputs. Numerous studies have demonstrated that microalgae have among the greatest potentials for biomass production. This is in part due to the fact that all alga cells are photoautotrophic, they have active carbon concentrating mechanisms to increase photosynthetic productivity, and all the biomass is harvestable unlike plants. All photosynthetic organisms, however, convert only a fraction of the solar energy they capture into chemical energy (reduced carbon or biomass). To increase aerial carbon capture rates and biomass productivity, it will be necessary to identify the most robust algal strains and increase their biomass production efficiency often by genetic manipulation. We review recent large-scale efforts to identify the best biomass producing strains and metabolic engineering strategies to improve aerial productivity. These strategies include optimization of photosynthetic light-harvesting antenna size to increase energy capture and conversion efficiency and the potential development of advanced molecular breeding techniques. To date, these strategies have resulted in up to twofold increases in biomass productivity.

  5. Sustainable Development Strategies of Biomass Energy in Beijing

    Science.gov (United States)

    Zhang, H. Z.; Huang, B. R.

    2017-10-01

    The development of biomass energy industry can effectively improve the rural environment and alleviate the shortage of living energy in rural areas, especially in mountain areas. In order to make clear the current situation of biomass energy industry development in Beijing, this paper analyzed the status of biomass resources and biomass energy utilization and discussed the factors hindering the development of biomass energy industry in Beijing. Based on the analysis, suggestions for promoting sustainable development of Biomass Energy Industry in Beijing are put forward.

  6. IMPROVING BIOMASS LOGISTICS COST WITHIN AGRONOMIC SUSTAINABILITY CONSTRAINTS AND BIOMASS QUALITY TARGETS

    Energy Technology Data Exchange (ETDEWEB)

    J. Richard Hess; Kevin L. Kenney; Christopher T. Wright; David J. Muth; William Smith

    2012-10-01

    Equipment manufacturers have made rapid improvements in biomass harvesting and handling equipment. These improvements have increased transportation and handling efficiencies due to higher biomass densities and reduced losses. Improvements in grinder efficiencies and capacity have reduced biomass grinding costs. Biomass collection efficiencies (the ratio of biomass collected to the amount available in the field) as high as 75% for crop residues and greater than 90% for perennial energy crops have also been demonstrated. However, as collection rates increase, the fraction of entrained soil in the biomass increases, and high biomass residue removal rates can violate agronomic sustainability limits. Advancements in quantifying multi-factor sustainability limits to increase removal rate as guided by sustainable residue removal plans, and mitigating soil contamination through targeted removal rates based on soil type and residue type/fraction is allowing the use of new high efficiency harvesting equipment and methods. As another consideration, single pass harvesting and other technologies that improve harvesting costs cause biomass storage moisture management challenges, which challenges are further perturbed by annual variability in biomass moisture content. Monitoring, sampling, simulation, and analysis provide basis for moisture, time, and quality relationships in storage, which has allowed the development of moisture tolerant storage systems and best management processes that combine moisture content and time to accommodate baled storage of wet material based upon “shelf-life.” The key to improving biomass supply logistics costs has been developing the associated agronomic sustainability and biomass quality technologies and processes that allow the implementation of equipment engineering solutions.

  7. Sustainable and resource-conserving utilization of global land areas and biomass; Globale Landflaechen und Biomasse nachhaltig und ressourcenschonend nutzen

    Energy Technology Data Exchange (ETDEWEB)

    Jering, Almut; Klatt, Anne; Seven, Jan; Ehlers, Knut; Guenther, Jens; Ostermeier, Andreas; Moench, Lars

    2012-10-15

    The contribution under consideration reports on the state of the art of biomass based land use as well as on existing and future global development trends. An ecologically compatible and socially equitable utilization of resources as well as priorities in the production and utilization of biomass are described in order to achieve their goals. Approaches to action, measures and policy recommendations are presented with respect to the development of a globally sustainable, resource-conserving utilization of land.

  8. Energy-efficient biomass processing with pulsed electric fields for bioeconomy and sustainable development.

    Science.gov (United States)

    Golberg, Alexander; Sack, Martin; Teissie, Justin; Pataro, Gianpiero; Pliquett, Uwe; Saulis, Gintautas; Stefan, Töpfl; Miklavcic, Damijan; Vorobiev, Eugene; Frey, Wolfgang

    2016-01-01

    Fossil resources-free sustainable development can be achieved through a transition to bioeconomy, an economy based on sustainable biomass-derived food, feed, chemicals, materials, and fuels. However, the transition to bioeconomy requires development of new energy-efficient technologies and processes to manipulate biomass feed stocks and their conversion into useful products, a collective term for which is biorefinery. One of the technological platforms that will enable various pathways of biomass conversion is based on pulsed electric fields applications (PEF). Energy efficiency of PEF treatment is achieved by specific increase of cell membrane permeability, a phenomenon known as membrane electroporation. Here, we review the opportunities that PEF and electroporation provide for the development of sustainable biorefineries. We describe the use of PEF treatment in biomass engineering, drying, deconstruction, extraction of phytochemicals, improvement of fermentations, and biogas production. These applications show the potential of PEF and consequent membrane electroporation to enable the bioeconomy and sustainable development.

  9. Biomass gasification for energy production

    Energy Technology Data Exchange (ETDEWEB)

    Lundberg, H.; Morris, M.; Rensfelt, E. [TPS Termiska Prosesser Ab, Nykoeping (Sweden)

    1997-12-31

    Biomass and waste are becoming increasingly interesting as fuels for efficient and environmentally sound power generation. Circulating fluidized bed (CFB) gasification for biomass and waste has been developed and applied to kilns both in the pulp and paper industry and the cement industry. A demonstration plant in Greve-in- Chianti, Italy includes two 15 MW{sub t}h RDF-fuelled CFB gasifiers of TPS design, the product gas from which is used in a cement kiln or in steam boiler for power generation. For CFB gasification of biomass and waste to reach a wider market, the product gas has to be cleaned effectively so that higher fuel to power efficiencies can be achieved by utilizing power cycles based on engines or gas turbines. TPS has developed both CFB gasification technology and effective secondary stage tar cracking technology. The integrated gasification - gas-cleaning technology is demonstrated today at pilot plant scale. To commercialise the technology, the TPS`s strategy is to first demonstrate the process for relatively clean fuels such as woody biomass and then extend the application to residues from waste recycling. Several demonstration projects are underway to commercialise TPS`s gasification and gas cleaning technology. In UK the ARBRE project developed by ARBRE Energy will construct a gasification plant at Eggborough, North Yorkshire, which will provide gas to a gas turbine and steam turbine generation system, producing 10 MW and exporting 8 Mw of electricity. It has been included in the 1993 tranche of the UK`s Non Fossil Fuel Obligation (NFFO) and has gained financial support from EC`s THERMIE programme as a targeted BIGCC project. (author)

  10. Biomass gasification for energy production

    Energy Technology Data Exchange (ETDEWEB)

    Lundberg, H; Morris, M; Rensfelt, E [TPS Termiska Prosesser Ab, Nykoeping (Sweden)

    1998-12-31

    Biomass and waste are becoming increasingly interesting as fuels for efficient and environmentally sound power generation. Circulating fluidized bed (CFB) gasification for biomass and waste has been developed and applied to kilns both in the pulp and paper industry and the cement industry. A demonstration plant in Greve-in- Chianti, Italy includes two 15 MW{sub t}h RDF-fuelled CFB gasifiers of TPS design, the product gas from which is used in a cement kiln or in steam boiler for power generation. For CFB gasification of biomass and waste to reach a wider market, the product gas has to be cleaned effectively so that higher fuel to power efficiencies can be achieved by utilizing power cycles based on engines or gas turbines. TPS has developed both CFB gasification technology and effective secondary stage tar cracking technology. The integrated gasification - gas-cleaning technology is demonstrated today at pilot plant scale. To commercialise the technology, the TPS`s strategy is to first demonstrate the process for relatively clean fuels such as woody biomass and then extend the application to residues from waste recycling. Several demonstration projects are underway to commercialise TPS`s gasification and gas cleaning technology. In UK the ARBRE project developed by ARBRE Energy will construct a gasification plant at Eggborough, North Yorkshire, which will provide gas to a gas turbine and steam turbine generation system, producing 10 MW and exporting 8 Mw of electricity. It has been included in the 1993 tranche of the UK`s Non Fossil Fuel Obligation (NFFO) and has gained financial support from EC`s THERMIE programme as a targeted BIGCC project. (author)

  11. Biogeochemical research priorities for sustainable biofuel and bioenergy feedstock production in the Americas

    Science.gov (United States)

    Hero T. Gollany; Brian D. Titus; D. Andrew Scott; Heidi Asbjornsen; Sigrid C. Resh; Rodney A. Chimner; Donald J. Kaczmarek; Luiz F.C. Leite; Ana C.C. Ferreira; Kenton A. Rod; Jorge Hilbert; Marcelo V. Galdos; Michelle E. Cisz

    2015-01-01

    Rapid expansion in biomass production for biofuels and bioenergy in the Americas is increasing demand on the ecosystem resources required to sustain soil and site productivity. We review the current state of knowledge and highlight gaps in research on biogeochemical processes and ecosystem sustainability related to biomass production. Biomass production systems...

  12. Sustainable biomass-derived hydrothermal carbons for energy applications

    Energy Technology Data Exchange (ETDEWEB)

    Falco, Camillo

    2012-01-15

    The need to reduce humankind reliance on fossil fuels by exploiting sustainably the planet renewable resources is a major driving force determining the focus of modern material research. For this reason great interest is nowadays focused on finding alternatives to fossil fuels derived products/materials. For the short term the most promising substitute is undoubtedly biomass, since it is the only renewable and sustainable alternative to fossil fuels as carbon source. As a consequence efforts, aimed at finding new synthetic approaches to convert biomass and its derivatives into carbon-based materials, are constantly increasing. In this regard, hydrothermal carbonisation (HTC) has shown to be an effective means of conversion of biomass-derived precursors into functional carbon materials. However the attempts to convert raw biomass, in particular lignocellulosic one, directly into such products have certainly been rarer. Unlocking the direct use of these raw materials as carbon precursors would definitely be beneficial in terms of HTC sustainability. For this reason, in this thesis the HTC of carbohydrate and protein-rich biomass was systematically investigated, in order to obtain more insights on the potentials of this thermochemical processing technique in relation to the production of functional carbon materials from crude biomass. First a detailed investigation on the HTC conversion mechanism of lignocellulosic biomass and its single components (i.e. cellulose, lignin) was developed based on a comparison with glucose HTC, which was adopted as a reference model. In the glucose case it was demonstrated that varying the HTC temperature allowed tuning the chemical structure of the synthesised carbon materials from a highly cross-linked furan-based structure (T = 180 C) to a carbon framework composed of polyaromatic arene-like domains. When cellulose or lignocellulosic biomass was used as carbon precursor, the furan rich structure could not be isolated at any of the

  13. Growing Azolla to produce sustainable protein feed: the effect of differing species and CO2 concentrations on biomass productivity and chemical composition.

    Science.gov (United States)

    Brouwer, Paul; Schluepmann, Henriette; Nierop, Klaas Gj; Elderson, Janneke; Bijl, Peter K; van der Meer, Ingrid; de Visser, Willem; Reichart, Gert-Jan; Smeekens, Sjef; van der Werf, Adrie

    2018-03-24

    Since available arable land is limited and nitrogen fertilizers pollute the environment, cropping systems ought to be developed that do not rely on them. Here we investigate the rapidly growing, N 2 -fixing Azolla/Nostoc symbiosis for its potential productivity and chemical composition to determine its potential as protein feed. In a small production system, cultures of Azolla pinnata and Azolla filiculoides were continuously harvested for over 100 days, yielding an average productivity of 90.0-97.2 kg dry weight (DW) ha -1  d -1 . Under ambient CO 2 levels, N 2 fixation by the fern's cyanobacterial symbionts accounted for all nitrogen in the biomass. Proteins made up 176-208 g kg -1 DW (4.9 × total nitrogen), depending on species and CO 2 treatment, and contained more essential amino acids than protein from soybean. Elevated atmospheric CO 2 concentrations (800 ppm) significantly boosted biomass production by 36-47%, without decreasing protein content. Choice of species and CO 2 concentrations further affected the biomass content of lipids (79-100 g kg -1 DW) and (poly)phenols (21-69 g kg -1 DW). By continuous harvesting, high protein yields can be obtained from Azolla cultures, without the need for nitrogen fertilization. High levels of (poly)phenols likely contribute to limitations in the inclusion rate of Azolla in animal diets and need further investigation. © 2018 The Authors. Journal of the Science of Food and Agriculture published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry. © 2018 The Authors. Journal of the Science of Food and Agriculture published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.

  14. From biomass to sustainable biofuels in southern Africa

    Energy Technology Data Exchange (ETDEWEB)

    Van Zyl, W.H.; Den Haan, R.; Rose, S.H.; La Grange, D.C.; Bloom, M. [Stellenbosch Univ., Matieland (South Africa). Dept. of Microbiology; Gorgens, J.F.; Knoetze, J.H. [Stellenbosch Univ., Matieland (South Africa). Dept. of Process Engineering; Von Blottnitz, H. [Cape Town Univ., Rondebosch (South Africa). Dept. of Chemical Engineering

    2009-07-01

    This presentation reported on a global sustainable bioenergy project with particular reference to South Africa's strategy to develop biofuels. The current biofuel production in South Africa was presented along with the potential for biofuels production and other clean alternative fuels. The South African industrial biofuel strategy (IBS) was developed in 2007 with a mandate to create jobs in the energy-crop and biofuels value chain; attract investment into rural areas; promote agricultural development; and reduce the import of foreign oil. The proposed crops for bioethanol include sugar cane and sugar beet, while the proposed crops for biodiesel include sunflower, canola and soya beans. The exclusion of maize was based on food security concerns. Jatropha curcas was also excluded because it is considered to be an invasive species. In addition to environmental benefits, the production of biofuels from biomass in Africa offers improved energy security, economic development and social upliftment. All biofuel projects are evaluated to ensure that these benefits are realized. Although first generation technologies do not score well due to marginal energy balance, negative life cycle impacts or detriment to biodiversity, the conversion of lignocellulosic biomass scores well in terms of enabling the commercialization of second generation biofuels. This paper discussed both the biochemical and thermochemical technological interventions needed to develop commercially-viable second generation lignocellulose conversion technologies to biofuels. tabs., figs.

  15. Sustainable hydrogen production

    Energy Technology Data Exchange (ETDEWEB)

    Block, D.L.; Linkous, C.; Muradov, N.

    1996-01-01

    This report describes the Sustainable Hydrogen Production research conducted at the Florida Solar Energy Center (FSEC) for the past year. The report presents the work done on the following four tasks: Task 1--production of hydrogen by photovoltaic-powered electrolysis; Task 2--solar photocatalytic hydrogen production from water using a dual-bed photosystem; Task 3--development of solid electrolytes for water electrolysis at intermediate temperatures; and Task 4--production of hydrogen by thermocatalytic cracking of natural gas. For each task, this report presents a summary, introduction/description of project, and results.

  16. Bio energy: Production of Biomass; Produksjon av biomasse

    Energy Technology Data Exchange (ETDEWEB)

    Noreng, Katrina; Indergaard, Mentz; Liodden, Ole Joergen; Hohle, Erik Eid; Sandberg, Eiliv

    2001-07-01

    This is Chapter 2 of the book ''Bio energy - Environment, technique and market''. Its main sections are: (1) Biomass resources in Norway, (2) The foundation - photosynthesis, (3) Biomass from forestry, (4) Biomass from peat lands, (5) Biomass from agriculture and (6) Biomass from lakes and sea. The exposition largely describes the conditions in Norway, where the use of bio energy can be increased from 15 TWh to 35 TWh using available technology. At present, water-borne heating systems are not extensively used in Norway and 30% of the biomass that is cut in the forests remains there as waste. Using this waste for energy generation would not only contribute to reduce the emission of greenhouse gases, but would often lead to improved forest rejuvenation. Use of a few per thousand of the Norwegian peat lands would produce 2 - 3 TWh. According to calculations, along the coast of Norway, there are at least 15 mill tonnes of kelp and sea tangle and these resources can be utilized in a sustainable way.

  17. Towards Sustainable Production of Formic Acid.

    Science.gov (United States)

    Bulushev, Dmitri A; Ross, Julian R H

    2018-03-09

    Formic acid is a widely used commodity chemical. It can be used as a safe, easily handled, and transported source of hydrogen or carbon monoxide for different reactions, including those producing fuels. The review includes historical aspects of formic acid production. It briefly analyzes production based on traditional sources, such as carbon monoxide, methanol, and methane. However, the main emphasis is on the sustainable production of formic acid from biomass and biomass-derived products through hydrolysis and oxidation processes. New strategies of low-temperature synthesis from biomass may lead to the utilization of formic acid for the production of fuel additives, such as methanol; upgraded bio-oil; γ-valerolactone and its derivatives; and synthesis gas used for the Fischer-Tropsch synthesis of hydrocarbons. Some technological aspects are also considered. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Environmental impacts of biomass energy resource production and utilization

    International Nuclear Information System (INIS)

    Easterly, J.L.; Dunn, S.M.

    1995-01-01

    The purpose of this paper is to provide a broad overview of the environmental impacts associated with the production, conversion and utilization of biomass energy resources and compare them with the impacts of conventional fuels. The use of sustainable biomass resources can play an important role in helping developing nations meet their rapidly growing energy needs, while providing significant environmental advantages over the use of fossil fuels. Two of the most important environmental benefits biomass energy offers are reduced net emissions of greenhouse gases, particularly CO 2 , and reduced emissions of SO 2 , the primary contributor to acid rain. The paper also addresses the environmental impacts of supplying a range of specific biomass resources, including forest-based resources, numerous types of biomass residues and energy crops. Some of the benefits offered by the various biomass supplies include support for improved forest management, improved waste management, reduced air emissions (by eliminating the need for open-field burning of residues) and reduced soil erosion (for example, where perennial energy crops are planted on degraded or deforested land). The environmental impacts of a range of biomass conversion technologies are also addressed, including those from the thermochemical processing of biomass (including direct combustion in residential wood stoves and industrial-scale boilers, gasification and pyrolysis); biochemical processing (anaerobic digestion and fermentation); and chemical processing (extraction of organic oils). In addition to reducing CO 2 and SO 2 , other environmental benefits of biomass conversion technologies include the distinctly lower toxicity of the ash compared to coal ash, reduced odours and pathogens from manure, reduced vehicle emissions of CO 2 , with the use of ethanol fuel blends, and reduced particulate and hydrocarbon emissions where biodiesel is used as a substitute for diesel fuel. In general, the key elements for

  19. Toward Sustainable Amino Acid Production.

    Science.gov (United States)

    Usuda, Yoshihiro; Hara, Yoshihiko; Kojima, Hiroyuki

    Because the global amino acid production industry has been growing steadily and is expected to grow even more in the future, efficient production by fermentation is of great importance from economic and sustainability viewpoints. Many systems biology technologies, such as genome breeding, omics analysis, metabolic flux analysis, and metabolic simulation, have been employed for the improvement of amino acid-producing strains of bacteria. Synthetic biological approaches have recently been applied to strain development. It is also important to use sustainable carbon sources, such as glycerol or pyrolytic sugars from cellulosic biomass, instead of conventional carbon sources, such as glucose or sucrose, which can be used as food. Furthermore, reduction of sub-raw substrates has been shown to lead to reduction of environmental burdens and cost. Recently, a new fermentation system for glutamate production under acidic pH was developed to decrease the amount of one sub-raw material, ammonium, for maintenance of culture pH. At the same time, the utilization of fermentation coproducts, such as cells, ammonium sulfate, and fermentation broth, is a useful approach to decrease waste. In this chapter, further perspectives for future amino acid fermentation from one-carbon compounds are described.

  20. Towards Sustainable Production of Biofuels from Microalgae

    Directory of Open Access Journals (Sweden)

    Hans Ragnar Giselrød

    2008-07-01

    Full Text Available Renewable and carbon neutral biofuels are necessary for environmental and economic sustainability. The viability of the first generation biofuels production is however questionable because of the conflict with food supply. Microalgal biofuels are a viable alternative. The oil productivity of many microalgae exceeds the best producing oil crops. This paper aims to analyze and promote integration approaches for sustainable microalgal biofuel production to meet the energy and environmental needs of the society. The emphasis is on hydrothermal liquefaction technology for direct conversion of algal biomass to liquid fuel.

  1. Region-Specific Indicators for Assessing the Sustainability of Biomass Utilisation in East Asia

    Directory of Open Access Journals (Sweden)

    Yuki Kudoh

    2015-12-01

    Full Text Available This paper presents the findings of an expert working group of researchers from East Asian countries. The group was tasked with developing a theoretically sound and practically implementable methodology for assessing the sustainability of biomass utilisation in East Asian countries based on the needs and potential of biomass resources in this region. Building on six years of research conducted between 2007 and 2013, the working group formulated a set of main and secondary indicators for biomass utilisation under three pillars of sustainability. For the environmental pillar, the main indicator was life cycle greenhouse gas emissions and secondary indicators were water consumption and soil quality. For the economic pillar, the main indicator was total value added and secondary indicators were net profit, productivity, and net energy balance. For the social pillar, the main indicators were employment generation and access to modern energy, and the secondary indicator was the human development index. The application of the working group methodology and indicators in sustainability assessments of biomass utilisation will enable decision makers in East Asian countries to compare the sustainability of biomass utilisation options and to make decisions on whether or not to launch or sustain biomass utilisation initiatives.

  2. Production of Saccharomyces cerevisiae biomass in papaya extract ...

    African Journals Online (AJOL)

    Extracts of papaya fruit were used as substrate for single cell protein (SCP) production using Saccharomyces cerevisiae. A 500 g of papaya fruit was extracted with different volumes of sterile distilled water. Extraction with 200 mL of sterile distilled water sustained highest cell growth. Biochemical analysis of dry biomass ...

  3. Non-thermal production of pure hydrogen from biomass : HYVOLUTION

    NARCIS (Netherlands)

    Claassen, P.A.M.; Vrije, de G.J.

    2006-01-01

    HYVOLUTION is the acronym of an Integrated Project ¿Non-thermal production of pure hydrogen from biomass¿ which has been granted in the Sixth EU Framework Programme on Research, Technological Development and Demonstration, Priority 6.1.ii, Sustainable Energy Systems. The aim of HYVOLUTION:

  4. Fundamentals of Biomass pellet production

    DEFF Research Database (Denmark)

    Holm, Jens Kai; Henriksen, Ulrik Birk; Hustad, Johan Einar

    2005-01-01

    Pelletizing experiments along with modelling of the pelletizing process have been carried out with the aim of understanding the fundamental physico-chemical mechanisms that control the quality and durability of biomass pellets. A small-scale California pellet mill (25 kg/h) located with the Biomass...

  5. Towards sustainable food production

    DEFF Research Database (Denmark)

    Aramyan, Lusine H; Hoste, Robert; van den Broek, Willie

    2011-01-01

    continuous innovation of supply chain network structures, reconsideration of business processes, relocation of logistics infrastructures and renewed allocation of chain activities to these infrastructures in order to achieve sustainable performances. This paper presents a scenario analysis of the spatial...... of pigs, processing of pork and pork consumption, is used to analyse the scenarios. The results reveal major opportunities for reductions in cost as well as in CO2 equivalent emissions if a European sector perspective is taken and some chain activities are relocated to other countries. However......, as minimizing costs will not always lead to an optimal reduction in CO2 equivalent emissions, a differentiated strategy is needed for the European pork sector to move towards more sustainable production...

  6. Identifying the point of departures for the detailed sustainability assessment of biomass feedstocks for biorefinery

    DEFF Research Database (Denmark)

    Parajuli, Ranjan; Knudsen, Marie Trydeman; Dalgaard, Tommy

    for biorefineries and potential impacts to the existing market. This study aims to assist in the sustainability assessment of straw conversion in the biochemical conversion routes to deliver bioethanol and other biobased products. For the comparison, conversion of straw to produce heat and electricity in a Combined......In the light of sustainable development in the energy sector, biomasses have gained increasing attention, which have exacerbated competition among them. Biorefineries are increasing its hold in developed economies, since it facilitates the delivery of multiple products including food, feed...... and fuels. Lignocelluloses (e.g straw) are one of the important biomasses considered in such transition. Meanwhile, it is also relevant to examine how the current utilization of biomasses are taking place and the related environmental and economic burdens. This also allows to compare the sustainability...

  7. Sustainability of biomass utilisation in changing operational environment - SUBICHOE

    Energy Technology Data Exchange (ETDEWEB)

    Soimakallio, S. [VTT Technical Research Centre of Finland, Espoo (Finland)], email: sampo.soimakallio@vtt.fi

    2012-07-01

    The main objective of the project was to assist in strategic decision-making of public administration and companies, as regards the most sustainable use of biomass, by taking into account the changing operational environment. This project continued the work of the BIOVAIKU project by exploring in more details the most critical issues identified in sustainability assessment. These include the need to develop assessment methods and criteria in particular for land use and land-use change due to biomass cultivation and harvesting and indirect impacts due to resource competition.

  8. Sustainable Biocatalytic Biodiesel Production

    DEFF Research Database (Denmark)

    Güzel, Günduz

    As part of his PhD studies, Gündüz Güzel examined the thermodynamics of reactions involved in biocatalytic biodiesel production processes, with a specific focus on phase equilibria of reactive systems. He carried out the thermodynamic analyses of biocatalytic processes in terms of phase and chemi......As part of his PhD studies, Gündüz Güzel examined the thermodynamics of reactions involved in biocatalytic biodiesel production processes, with a specific focus on phase equilibria of reactive systems. He carried out the thermodynamic analyses of biocatalytic processes in terms of phase...... and chemical equilibria as part of his main sustainable biodiesel project. The transesterification reaction of vegetable oils or fats with an aliphatic alcohol – in most cases methanol or ethanol – yields biodiesel (long-chain fatty acid alkyl esters – FAAE) as the main product in the presence of alkaline...

  9. Microalgal biomass production pathways: evaluation of life cycle environmental impacts.

    Science.gov (United States)

    Zaimes, George G; Khanna, Vikas

    2013-06-20

    Microalgae are touted as an attractive alternative to traditional forms of biomass for biofuel production, due to high productivity, ability to be cultivated on marginal lands, and potential to utilize carbon dioxide (CO2) from industrial flue gas. This work examines the fossil energy return on investment (EROIfossil), greenhouse gas (GHG) emissions, and direct Water Demands (WD) of producing dried algal biomass through the cultivation of microalgae in Open Raceway Ponds (ORP) for 21 geographic locations in the contiguous United States (U.S.). For each location, comprehensive life cycle assessment (LCA) is performed for multiple microalgal biomass production pathways, consisting of a combination of cultivation and harvesting options. Results indicate that the EROIfossil for microalgae biomass vary from 0.38 to 1.08 with life cycle GHG emissions of -46.2 to 48.9 (g CO2 eq/MJ-biomass) and direct WDs of 20.8 to 38.8 (Liters/MJ-biomass) over the range of scenarios analyzed. Further anaylsis reveals that the EROIfossil for production pathways is relatively location invariant, and that algae's life cycle energy balance and GHG impacts are highly dependent on cultivation and harvesting parameters. Contrarily, algae's direct water demands were found to be highly sensitive to geographic location, and thus may be a constraining factor in sustainable algal-derived biofuel production. Additionally, scenarios with promising EROIfossil and GHG emissions profiles are plagued with high technological uncertainty. Given the high variability in microalgae's energy and environmental performance, careful evaluation of the algae-to-fuel supply chain is necessary to ensure the long-term sustainability of emerging algal biofuel systems. Alternative production scenarios and technologies may have the potential to reduce the critical demands of biomass production, and should be considered to make algae a viable and more efficient biofuel alternative.

  10. Background Document on Starting Points for Sustainable Biomass. Part 1. Risks and chances with regard to the import of biomass in the Netherlands

    International Nuclear Information System (INIS)

    Richert, W.; Sielhorst, S.

    2006-03-01

    Social organizations point out the sustainability risks involved in biomass production. Upon urgent request of Dutch environmental organizations a set of sustainability criteria must be developed for imported biomass. Part 1 of this background document intends to sketch the background of the risks that are observed by the environmental organizations. Part 2, which is yet to be published, will look at the risks in the light of opportunities of energy crops for producing countries. [nl

  11. Process Design and Economics for the Conversion of Algal Biomass to Biofuels: Algal Biomass Fractionation to Lipid-and Carbohydrate-Derived Fuel Products

    Energy Technology Data Exchange (ETDEWEB)

    None

    2014-09-11

    The U.S. Department of Energy (DOE) promotes the production of a range of liquid fuels and fuel blendstocks from biomass feedstocks by funding fundamental and applied research that advances the state of technology in biomass production, conversion, and sustainability. As part of its involvement in this program, the National Renewable Energy Laboratory (NREL) investigates the conceptual production economics of these fuels. This includes fuel pathways from lignocellulosic (terrestrial) biomass, as well as from algal (aquatic) biomass systems.

  12. Production of methanol/DME from biomass

    DEFF Research Database (Denmark)

    Ahrenfeldt, Jesper; Henriksen, Ulrik Birk; Münster-Swendsen, Janus

    In this project the production of DME/methanol from biomass has been investigated. Production of DME/methanol from biomass requires the use of a gasifier to transform the solid fuel to a synthesis gas (syngas) - this syngas can then be catalytically converted to DME/methanol. Two different gasifier...... cleaning. This was proved by experiments. Thermodynamic computer models of DME and methanol plants based on using the Two-Stage Gasification concept were created to show the potential of such plants. The models showed that the potential biomass to DME/methanol + net electricity energy efficiency was 51...... gasification, but little information exists on using these types of gasifiers for biomass gasification. The experiments performed provided quantitative data on product and gas composition as a function of operation conditions. Biomass can be gasified with less oxygen consumption compared to coal. The organic...

  13. Potential contribution of biomass to the sustainable energy development

    International Nuclear Information System (INIS)

    Demirbas, M. Fatih; Balat, Mustafa; Balat, Havva

    2009-01-01

    Biomass is a renewable energy source and its importance will increase as national energy policy and strategy focuses more heavily on renewable sources and conservation. Biomass is considered the renewable energy source with the highest potential to contribute to the energy needs of modern society for both the industrialized and developing countries worldwide. The most important biomass energy sources are wood and wood wastes, agricultural crops and their waste byproducts, municipal solid waste, animal wastes, waste from food processing, and aquatic plants and algae. Biomass is one potential source of renewable energy and the conversion of plant material into a suitable form of energy, usually electricity or as a fuel for an internal combustion engine, can be achieved using a number of different routes, each with specific pros and cons. Currently, much research has been focused on sustainable and environmental friendly energy from biomass to replace conventional fossil fuels. The main objective of the present study is to investigate global potential and use of biomass energy and its contribution to the sustainable energy development by presenting its historical development.

  14. Energy from Biomass for Sustainable Cities

    Science.gov (United States)

    Panepinto, D.; Zanetti, M. C.; Gitelman, L.; Kozhevnikov, M.; Magaril, E.; Magaril, R.

    2017-06-01

    One of the major challenges of sustainable urban development is ensuring a sustainable energy supply while minimizing negative environmental impacts. The European Union Directive 2009/28/EC has set a goal of obtaining 20 percent of all energy from renewable sources by 2020. In this context, it is possible to consider the use of residues from forest maintenance, residues from livestock, the use of energy crops, the recovery of food waste, and residuals from agro-industrial activities. At the same time, it is necessary to consider the consequent environmental impact. In this paper an approach in order to evaluate the environmental compatibility has presented. The possibilities of national priorities for commissioning of power plants on biofuel and other facilities of distributed generation are discussed.

  15. Biomass refining for sustainable development : analysis and directions

    NARCIS (Netherlands)

    Luo, Lin

    2010-01-01

    To understand the contribution of biomass refining to sustainable development, the technical, environmental and economic aspects are summarized in this thesis. This work begins from life cycle assessment (LCA) of bioethanol from lignocellulosic feedstocks such as corn stover, sugarcane and bagasse,

  16. Three generation production biotechnology of biomass into bio-fuel

    Science.gov (United States)

    Zheng, Chaocheng

    2017-08-01

    The great change of climate change, depletion of natural resources, and scarcity of fossil fuel in the whole world nowadays have witnessed a sense of urgency home and abroad among scales of researchers, development practitioners, and industrialists to search for completely brand new sustainable solutions in the area of biomass transforming into bio-fuels attributing to our duty-that is, it is our responsibility to take up this challenge to secure our energy in the near future with the help of sustainable approaches and technological advancements to produce greener fuel from nature organic sources or biomass which comes generally from organic natural matters such as trees, woods, manure, sewage sludge, grass cuttings, and timber waste with a source of huge green energy called bio-fuel. Biomass includes most of the biological materials, livings or dead bodies. This energy source is ripely used industrially, or domestically for rather many years, but the recent trend is on the production of green fuel with different advance processing systems in a greener. More sustainable method. Biomass is becoming a booming industry currently on account of its cheaper cost and abundant resources all around, making it fairly more effective for the sustainable use of the bio-energy. In the past few years, the world has witnessed a remarkable development in the bio-fuel production technology, and three generations of bio-fuel have already existed in our society. The combination of membrane technology with the existing process line can play a vital role for the production of green fuel in a sustainable manner. In this paper, the science and technology for sustainable bio-fuel production will be introduced in detail for a cleaner world.

  17. Cork for sustainable product design

    NARCIS (Netherlands)

    Mestre, A.C.; Gil, L.

    2011-01-01

    Sustainable Product Design is currently accepted as one of the most promising trends in the “Sustainable Development” movement. It is often seen as a facilitation tool to implement Sustainability in practice, by improving the life cycle and eco-efficiency of products, by promoting dematerialization

  18. Biomass gasification for production of 'green energy'

    International Nuclear Information System (INIS)

    Mambre, V.

    2008-01-01

    This paper presents the differences between biomass gasification and biomass methanation, two ways of using biomass for decentralized production of energy. The stakes of biomass and biomass gasification for meeting the European and national energy goals and environmental targets are summarized. The gasification principle is described and in particular the FICFB optimized process from Repotec for the production of concentrated syngas. The four different ways of syngas valorization (combined heat and power (CHP), 'green methane' (SNG), 'green hydrogen' (gas shift) and liquid biofuels of 2. generation (Fisher-Tropsch)) are recalled and compared with each other. Finally, the economical and environmental key issues of the global chain are summarized with their technological and scientific key locks. The GAYA R and D project of Gaz de France Suez group, which aims at developing gasification and methanation demonstration plants through different programs with European partners, is briefly presented. (J.S.)

  19. Embodied HANPP. Mapping the spatial disconnect between global biomass production and consumption

    International Nuclear Information System (INIS)

    Erb, Karl-Heinz; Krausmann, Fridolin; Haberl, Helmut; Lucht, Wolfgang

    2009-01-01

    Biomass trade results in a growing spatial disconnect between environmental impacts due to biomass production and the places where biomass is being consumed. The pressure on ecosystems resulting from the production of traded biomass, however, is highly variable between regions and products. We use the concept of embodied human appropriation of net primary production (HANPP) to map the spatial disconnect between net-producing and net-consuming regions. Embodied HANPP comprises total biomass withdrawals and land use induced changes in productivity resulting from the provision of biomass products. International net transfers of embodied HANPP are of global significance, amounting to 1.7 PgC/year. Sparsely populated regions are mainly net producers, densely populated regions net consumers, independent of development status. Biomass consumption and trade are expected to surge over the next decades, suggesting a need to sustainably manage supply and demand of products of ecosystems on a global level. (author)

  20. Sustainable utilisation of forest biomass for energy - Possibilities and problems

    DEFF Research Database (Denmark)

    Stupak, I.; Asikainen, A.; Jonsell, M.

    2007-01-01

    The substitution of biomass for fossil fuels in energy consumption is a measure to mitigate global warming, as well as having other advantages. Political action plans for increased use exist at both European and national levels. This paper briefly reviews the contents of recommendations. guidelines....... and other synthesis publications on Sustainable use of forest biomass for energy. Topics are listed and an overview of advantages. disadvantages, and trade-offs between them is given, from the viewpoint of society in general and the forestry or the Nordic and Baltic countries, the paper also identifies...

  1. Sustainable Palm Oil Production For Bioenergy Supply Chain

    OpenAIRE

    Ng, Wai Kiat

    2009-01-01

    A bioenergy supply chain is formed by many parts which from the raw material, biomass feedstock until the distribution and utilisation. The upstream activity is always managed in a sustainable way in order to be capable enough to support the downstream activity. In this dissertation, the sustainable production of palm oil is focused and researched through problem identification and solving by using the operation management perspective and practices. At first, the global biomass industry is st...

  2. Economic sustainability of a biomass energy project located at a dairy in California, USA

    International Nuclear Information System (INIS)

    Camarillo, Mary Kay; Stringfellow, William T.; Jue, Michael B.; Hanlon, Jeremy S.

    2012-01-01

    Previous experience has demonstrated the tenuous nature of biomass energy projects located at livestock facilities in the U.S. In response, the economic sustainability of a 710 kW combined heat and power biomass energy system located on a dairy farm in California was evaluated. This biomass energy facility is unique in that a complete-mix anaerobic digester was used for treatment of manure collected in a flush-water system, co-digestates were used as additional digester feedstocks (whey, waste feed, and plant biomass), and the power plant is operating under strict regulatory requirements for stack gas emissions. Electricity was produced and sold wholesale, and cost savings resulted from the use of waste heat to offset propane demand. The impact of various operational factors was considered in the economic analysis, indicating that the system is economically viable as constructed but could benefit from introduction of additional substrates to increase methane and electricity production, additional utilization of waste heat, sale of digested solids, and possibly pursuing greenhouse gas credits. Use of technology for nitrogen oxide (NO x ) removal had a minimal effect on economic sustainability. - Highlights: ► We evaluated the economic sustainability of a dairy biomass energy project. ► The project is economically sustainable as currently operated. ► The simple payback period could be reduced if the system is operated near capacity. ► Co-digestion of off-site waste streams is recommended to improve profitability.

  3. An Investigation of Sustainable Power Generation from Oil Palm Biomass: A Case Study in Sarawak

    Directory of Open Access Journals (Sweden)

    Nasrin Aghamohammadi

    2016-04-01

    Full Text Available Sarawak is the largest state in Malaysia, with 22% of the nation's oil palm plantation area, making it the second largest contributor to palm biomass production. Despite the enormous amount of palm biomass in the state, the use of biomass as fuel for power generation remains low. This study is designed to investigate the sustainability of power generation from palm biomass specifically in Sarawak by conducting a survey among the palm oil mill developers. To conduct this investigation, several key sustainability factors were identified: the security of the biomass supply, the efficiency of conversion technology, the existing network system, challenges and future prospects for power generation from palm biomass. These factors were assessed through a set of questionnaires. The returned questionnaires were then analysed using statistical tools. The results of this study demonstrate that Sarawak has biomass in abundance, and that it is ready to be exploited for large scale power generation. The key challenge to achieving the renewable energy target is the inadequate grid infrastructure that inhibits palm oil developers from benefiting from the Feed-in-Tariff payment scheme. One way forward, a strategic partnership between government and industrial players, offers a promising outcome, depending on an economic feasibility study. The decentralization of electricity generation to support rural electrification is another feasible alternative for renewable energy development in the state.

  4. The availability of biomass for energy production

    International Nuclear Information System (INIS)

    Zeevalkink, J.A.; Borsboom, N.W.J.; Sikkema, R.

    1997-12-01

    The Dutch energy policy aims at 75 PJ energy production from biomass in the Netherlands by the year 2020. This requires the development of a biomass market for biomass fuels so that suppliers as well as users can sell and buy biomass, respectively. The study concentrates on the contribution that information about biomass supply and demand can make to the realization of such a market for biomass fuels and stimulating its functioning. During the study, an inventory was made of public information on biomass quantities that are expected to become available for energy production in the short term. It was proposed to set up a database that contains information about the supply and suppliers of forest wood (specifically thinnings), (clean) waste wood from wood-processing industries, used timber and green wood waste from public parks. On the basis of rough estimates it can be concluded that these biomass flows account for an approximate annual quantity of 900,000 tonnes of dry biomass, or an annual 16,000 W energy production. This quantity would cover 66% of the goal set for the year 2000 and 20% of the goal set for 2020. Various database models were described and discussed during a workshop which was organized for potentially interested parties so as to find out their interest in and potential support for such an information system. Though the results of the survey conducted earlier suggested otherwise, it turned out that there was only minor interest in an information system, i.e. there was an interest in a survey of the companies involved in biomass supply and demand. In addition, most parties preferred bilateral confidential contacts to contract biomass. The opinion of many parties was that Novem's major tasks were to characterize biomass quality, and to give support to the discussions about the legal framework for using (waste) wood for energy production. It was concluded that at this moment a database must not be set up; in the future, however, there could be a

  5. Is phytoremediation without biomass valorization sustainable? - comparative LCA of landfilling vs. anaerobic co-digestion.

    Science.gov (United States)

    Vigil, Miguel; Marey-Pérez, Manuel F; Martinez Huerta, Gemma; Álvarez Cabal, Valeriano

    2015-02-01

    This study examines the sustainability of phytoremediation for soils contaminated with heavy metals, especially the influence of management of the produced metal-enriched biomass on the environmental performance of the complete system. We examine a case study in Asturias (north of Spain), where the land was polluted with Pb by diffuse emissions from an adjacent steelmaking factory. A Phytoremediation scenario based on this case was assessed by performing a comparative life cycle assessment and by applying the multi-impact assessment method ReCiPe. Our Baseline scenario used the produced biomass as feedstock for an anaerobic digester that produces biogas, which is later upgraded cryogenically. The Baseline scenario was compared with two alternative scenarios: one considers depositing the produced biomass into landfill, and the other considers excavating the contaminated soil, disposing it in a landfill, and refilling the site with pristine soil. A sensitivity analysis was performed using different yields of biomass and biogas, and using different distances between site and biomass valorization/disposal center. Our results show that the impacts caused during agricultural activities and biomass valorization were compensated by the production of synthetic natural gas and the avoided impact of natural gas production. In addition, it was found that if the produced biomass was not valorized, the sustainability of phytoremediation is questionable. The distance between the site and the biomass processing center is not a major factor for determining the technology's sustainability, providing distances are less than 200-300 km. However, distance to landfill or to the source of pristine soil is a key factor when deciding to use phytoremediation or other ex-situ conventional remediation techniques. Copyright © 2014 Elsevier B.V. All rights reserved.

  6. Biomass production efficiency controlled by management in temperate and boreal ecosystems

    Science.gov (United States)

    Campioli, M.; Vicca, S.; Luyssaert, S.; Bilcke, J.; Ceschia, E.; Chapin, F. S., III; Ciais, P.; Fernández-Martínez, M.; Malhi, Y.; Obersteiner, M.; Olefeldt, D.; Papale, D.; Piao, S. L.; Peñuelas, J.; Sullivan, P. F.; Wang, X.; Zenone, T.; Janssens, I. A.

    2015-11-01

    Plants acquire carbon through photosynthesis to sustain biomass production, autotrophic respiration and production of non-structural compounds for multiple purposes. The fraction of photosynthetic production used for biomass production, the biomass production efficiency, is a key determinant of the conversion of solar energy to biomass. In forest ecosystems, biomass production efficiency was suggested to be related to site fertility. Here we present a database of biomass production efficiency from 131 sites compiled from individual studies using harvest, biometric, eddy covariance, or process-based model estimates of production. The database is global, but dominated by data from Europe and North America. We show that instead of site fertility, ecosystem management is the key factor that controls biomass production efficiency in terrestrial ecosystems. In addition, in natural forests, grasslands, tundra, boreal peatlands and marshes, biomass production efficiency is independent of vegetation, environmental and climatic drivers. This similarity of biomass production efficiency across natural ecosystem types suggests that the ratio of biomass production to gross primary productivity is constant across natural ecosystems. We suggest that plant adaptation results in similar growth efficiency in high- and low-fertility natural systems, but that nutrient influxes under managed conditions favour a shift to carbon investment from the belowground flux of non-structural compounds to aboveground biomass.

  7. The sustainable wood production initiative.

    Science.gov (United States)

    Robert. Deal

    2004-01-01

    To address concerns about sustainable forestry in the region, the Focused Science Delivery Program is sponsoring a three year Sustainable Wood Production Initiative. The Pacific Northwest is one of the world's major timber producing regions, and the ability of this region to produce wood on a sustained yield basis is widely recognized. Concerns relating to the...

  8. Electricity production by advanced biomass power systems

    Energy Technology Data Exchange (ETDEWEB)

    Solantausta, Y [VTT Energy, Espoo (Finland). Energy Production Technologies; Bridgwater, T [Aston Univ. Birmingham (United Kingdom); Beckman, D [Zeton Inc., Burlington, Ontario (Canada)

    1996-11-01

    This report gives the results of the Pyrolysis Collaborative Project organized by the International Energy Agency (IEA) under Biomass Agreement. The participating countries or organizations were Canada, European Community (EC), Finland, United States of America, and the United Kingdom. The overall objective of the project was to establish baseline assessments for the performance and economics of power production from biomass. Information concerning the performance of biomass-fuelled power plants based on gasification is rather limited, and even less data is available of on pyrolysis based power applications. In order to gain further insight into the potential for these technologies, this study undertook the following tasks: (1) Prepare process models to evaluate the cost and performance of new advanced biomass power production concepts, (2) Assess the technical and economic uncertainties of different biomass power concepts, (3) Compare the concepts in small scale and in medium scale production (5 - 50 MW{sub e}) to conventional alternatives. Processes considered for this assessment were biomass power production technologies based on gasification and pyrolysis. Direct combustion technologies were employed as a reference for comparison to the processes assessed in this study. Wood was used a feedstock, since the most data was available for wood conversion

  9. Multi-scale sustainability assessments for biomass-based and coal-based fuels in China.

    Science.gov (United States)

    Man, Yi; Xiao, Honghua; Cai, Wei; Yang, Siyu

    2017-12-01

    Transportation liquid fuels production is heavily depend on oil. In recent years, developing biomass based and coal based fuels are regarded as promising alternatives for non-petroleum based fuels in China. With the rapid growth of constructing and planning b biomass based and coal based fuels production projects, sustainability assessments are needed to simultaneously consider the resource, the economic, and the environmental factors. This paper performs multi-scale analyses on the biomass based and coal based fuels in China. The production cost, life cycle cost, and ecological life cycle cost (ELCC) of these synfuels are investigated to compare their pros to cons and reveal the sustainability. The results show that BTL fuels has high production cost. It lacks of economic attractiveness. However, insignificant resource cost and environmental cost lead to a substantially lower ELCC, which may indicate better ecological sustainability. CTL fuels, on the contrary, is lower in production cost and reliable for economic benefit. But its coal consumption and pollutant emissions are both serious, leading to overwhelming resource cost and environmental cost. A shifting from petroleum to CTL fuels could double the ELCC, posing great threat to the sustainability of the entire fuels industry. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. Sustainability of Biomass Utilisation in Changing operational Environment - SUBICHOE

    Energy Technology Data Exchange (ETDEWEB)

    Soimakallio, S.; Hongisto, M.; Koponen, K. (VTT Technical Research Centre of Finland, Espoo (Finland)), e-mail: sampo.soimakallio@vtt.fi (and others)

    2011-11-15

    Sustainability is a multi-faceted and challenging target, but at the same time a crucial issue to assess when setting policies and targets for the future. The main objective of the SUBICHOE project is to assist public administration and companies in strategic decision- making in the most sustainable use of biomass, by taking into account the changing operational environment. The project aimed to assess how the sustainability criteria, in particular those set by the EC, ensure the sustainability of biofuels from short and long term perspectives. The project is carried out jointly by VTT Technical Research Centre of Finland, Finnish Environment Institute SYKE, MTT Agrifood Research Finland, Finnish Forest Research Institute (Metla) and The Government Institute for Economic Research (VATT). The work plan of the project is divided into four Work Packages. In this article, a summary of main findings of the project is presented. (orig.)

  11. Environmental impacts of biomass energy resource production and utilization

    Energy Technology Data Exchange (ETDEWEB)

    Easterly, J L; Dunn, S M [DynCorp, Alexandria, VA (United States)

    1995-12-01

    The purpose of this paper is to provide a broad overview of the environmental impacts associated with the production, conversion and utilization of biomass energy resources and compare them with the impacts of conventional fuels. The use of sustainable biomass resources can play an important role in helping developing nations meet their rapidly growing energy needs, while providing significant environmental advantages over the use of fossil fuels. Two of the most important environmental benefits biomass energy offers are reduced net emissions of greenhouse gases, particularly CO{sub 2}, and reduced emissions of SO{sub 2}, the primary contributor to acid rain. The paper also addresses the environmental impacts of supplying a range of specific biomass resources, including forest-based resources, numerous types of biomass residues and energy crops. Some of the benefits offered by the various biomass supplies include support for improved forest management, improved waste management, reduced air emissions (by eliminating the need for open-field burning of residues) and reduced soil erosion (for example, where perennial energy crops are planted on degraded or deforested land). The environmental impacts of a range of biomass conversion technologies are also addressed, including those from the thermochemical processing of biomass (including direct combustion in residential wood stoves and industrial-scale boilers, gasification and pyrolysis); biochemical processing (anaerobic digestion and fermentation); and chemical processing (extraction of organic oils). In addition to reducing CO{sub 2} and SO{sub 2}, other environmental benefits of biomass conversion technologies include the distinctly lower toxicity of the ash compared to coal ash, reduced odours and pathogens from manure, reduced vehicle emissions of CO{sub 2}, with the use of ethanol fuel blends, and reduced particulate and hydrocarbon emissions where biodiesel is used as a substitute for diesel fuel. In general

  12. Robust and sustainable bioenergy: Biomass in the future Danish energy system; Robust og baeredygtig bioenergi: Biomasse i fremtidens danske energisystem

    Energy Technology Data Exchange (ETDEWEB)

    Skoett, T.

    2012-09-15

    The publication is a collection of articles about new, exciting technologies for the production of bioenergy, which received support from Danish research programmes. The green technologies must be sustainable so that future generations' opportunities for bioenergy use is not restricted, and the solutions must be robust in relation to security of supply, costs and energy economy. In this context, research plays a crucial role. Research is especially carried out within the use of residues as bio-waste, straw, wood and manure for energy purposes, but there are also projects on energy crops, as well as research into how algae from the sea can increase the production of biomass. (LN)

  13. Biomass productivity improvement for eastern cottonwood

    Science.gov (United States)

    Terry L. Robison; Randy J. Rousseau; Jianwei Zhang

    2006-01-01

    Eastern cottonwood ( Populus deltoides Marsh.) is grown in plantations by MeadWestvaco for use at its Wickliffe Kentucky Fine Papers Mill1. Genetic and productivity research over the past two decades have led to significant increases in biomass yield while reducing production costs.Initially, genetic research identified fast growing...

  14. Optimal mode of operation for biomass production

    NARCIS (Netherlands)

    Betlem, Ben H.L.; Roffel, Brian; Mulder, P.

    2002-01-01

    The rate of biomass production is optimised for a predefined feed exhaustion using the residue ratio as a degree of freedom. Three modes of operation are considered: continuous, repeated batch, and repeated fed-batch operation. By means of the Production Curve, the transition points of the optimal

  15. Hydrogen production from algal biomass - Advances, challenges and prospects.

    Science.gov (United States)

    Show, Kuan-Yeow; Yan, Yuegen; Ling, Ming; Ye, Guoxiang; Li, Ting; Lee, Duu-Jong

    2018-06-01

    Extensive effort is being made to explore renewable energy in replacing fossil fuels. Biohydrogen is a promising future fuel because of its clean and high energy content. A challenging issue in establishing hydrogen economy is sustainability. Biohydrogen has the potential for renewable biofuel, and could replace current hydrogen production through fossil fuel thermo-chemical processes. A promising source of biohydrogen is conversion from algal biomass, which is abundant, clean and renewable. Unlike other well-developed biofuels such as bioethanol and biodiesel, production of hydrogen from algal biomass is still in the early stage of development. There are a variety of technologies for algal hydrogen production, and some laboratory- and pilot-scale systems have demonstrated a good potential for full-scale implementation. This work presents an elucidation on development in biohydrogen encompassing biological pathways, bioreactor designs and operation and techno-economic evaluation. Challenges and prospects of biohydrogen production are also outlined. Copyright © 2018 Elsevier Ltd. All rights reserved.

  16. Nutrient fertilizer requirements for sustainable biomass supply to meet U.S. bioenergy goal

    Energy Technology Data Exchange (ETDEWEB)

    Han, Fengxiang X.; King, Roger L.; Lindner, Jeffrey S.; Monts, David L.; Su, Yi; Luthe, John C. [Institute for Clean Energy Technology, Mississippi State University, 205 Research Blvd., Starkville, MS 39759 (United States); Yu, Tzu-Yi [Department of Information Management, National Chi-Nan University, 470 University Rd., Puli, Nantou, 54561 Taiwan (China); Durbha, Surya S.; Younan, Nicolas H. [GeoResources Institute, Mississippi State University, Starkville, MS 39759 (United States); Plodinec, M. John [Savannah River National Laboratory, Bldg 773-A, Aiken, SC 29808 (United States)

    2011-01-15

    The U.S. Biomass Roadmap set forth a goal that, by the year 2030, biomass will supply energy approximately equivalent to 30% of current petroleum consumption. Here we report on the amount of nutrient fertilizers required to meet the proposed 1-billion tons of sustainable bioenergy biomass production annually. To meet this goal, U.S. agriculture (assuming a scenario with high yield increase and land use change) will have net removals of 40.3, 12.7, and 36.2 Tg (million tons) of N, P{sub 2}O{sub 5}, and K{sub 2}O, respectively. The 1-billion tons of bioenergy biomass production alone will remove 16.9, 5.2, and 18.2 Tg of N, P{sub 2}O{sub 5,} and K{sub 2}O, respectively, from U.S. agricultural land. Considering the efficiencies of fertilizers in soils and the contribution of biomass residuals in fields, the overall bioenergy-focused agriculture would require 58.2, 27.3, and 31.7 Tg of N, P{sub 2}O{sub 5,} and K{sub 2}O fertilizers, respectively; this corresponds to an overall nutrient fertilizer application increase by a factor of 5.5 over the base line (1997). This study indicates an increased need for domestic and/or international production facilities for fertilizers if the goal of the Biomass Roadmap is to be attained. (author)

  17. Algal Biomass for Bioenergy and Bioproducts Production in Biorefinery Concepts

    DEFF Research Database (Denmark)

    D'Este, Martina

    industry. The macroalgae used in this work were Laminaria digitata and Saccharina latissima, while the microalgae were Chlorella sorokiniana, Chlorella vulgaris and Chlorella protothecoides. Moreover, an evaluation of the effect of the harvesting season and location on the composition of high value...... feedstocks. Biorefinery represents an important tool towards the development of a sustainable economy. Within the biorefinery framework several bioproducts, such as food, feed and biofuels, can be produced from biomass. The specific composition of the biomass feedstock determines the potential final product...... heterotrophically in the macroalgae L. digitata hydrolyzed. The final composition of the microalgal biomass showed that the protein content was increased from 0.07 ± 0.01 gProtein gDM-1 to 0.44 ± 0.04 gProtein DM-1. The results obtained show that this solution may represent an interesting strategy to be applied...

  18. Microalgal biomass pretreatment for bioethanol production: a review

    Directory of Open Access Journals (Sweden)

    Jesús Velazquez-Lucio

    2018-03-01

    Full Text Available Biofuels derived from microalgae biomass have received a great deal of attention owing to their high potentials as sustainable alternatives to fossil fuels. Microalgae have a high capacity of CO2 fixation and depending on their growth conditions, they can accumulate different quantities of lipids, proteins, and carbohydrates. Microalgal biomass can, therefore, represent a rich source of fermentable sugars for third generation bioethanol production. The utilization of microalgal carbohydrates for bioethanol production follows three main stages: i pretreatment, ii saccharification, and iii fermentation. One of the most important stages is the pretreatment, which is carried out to increase the accessibility to intracellular sugars, and thus plays an important role in improving the overall efficiency of the bioethanol production process. Diverse types of pretreatments are currently used including chemical, thermal, mechanical, biological, and their combinations, which can promote cell disruption, facilitate extraction, and result in the modification the structure of carbohydrates as well as the production of fermentable sugars. In this review, the different pretreatments used on microalgae biomass for bioethanol production are presented and discussed. Moreover, the methods used for starch and total carbohydrates quantification in microalgae biomass are also briefly presented and compared.

  19. Production of chemicals and fuels from biomass

    Science.gov (United States)

    Qiao, Ming; Woods, Elizabeth; Myren, Paul; Cortright, Randy; Kania, John

    2018-01-23

    Methods, reactor systems, and catalysts are provided for converting in a continuous process biomass to fuels and chemicals, including methods of converting the water insoluble components of biomass, such as hemicellulose, cellulose and lignin, to volatile C.sub.2+O.sub.1-2 oxygenates, such as alcohols, ketones, cyclic ethers, esters, carboxylic acids, aldehydes, and mixtures thereof. In certain applications, the volatile C.sub.2+O.sub.1-2 oxygenates can be collected and used as a final chemical product, or used in downstream processes to produce liquid fuels, chemicals and other products.

  20. Production costs for SRIC Populus biomass

    International Nuclear Information System (INIS)

    Strauss, C.H.

    1991-01-01

    Production costs for short rotation, intensive culture (SRIC) Populus biomass were developed from commercial-sized plantations under investigation throughout the US. Populus hybrid planted on good quality agricultural sites at a density of 850 cuttings/acre was projected to yield an average of 7 ovendry (OD) tons/acre/year. Discounted cash-flow analysis of multiple rotations showed preharvest production costs of $14/ton (OD). Harvesting and transportation expenses would increase the delivered cost to $35/ton (OD). Although this total cost compared favorably with the regional market price for aspen (Populus tremuloides), future investments in SRIC systems will require the development of biomass energy markets

  1. Production of chemicals and fuels from biomass

    Energy Technology Data Exchange (ETDEWEB)

    Woods, Elizabeth; Qiao, Ming; Myren, Paul; Cortright, Randy D.; Kania, John

    2015-12-15

    Described are methods, reactor systems, and catalysts for converting biomass to fuels and chemicals in a batch and/or continuous process. The process generally involves the conversion of water insoluble components of biomass, such as hemicellulose, cellulose and lignin, to volatile C.sub.2+O.sub.1-2 oxygenates, such as alcohols, ketones, cyclic ethers, esters, carboxylic acids, aldehydes, and mixtures thereof. In certain applications, the volatile C.sub.2+O.sub.1-2 oxygenates can be collected and used as a final chemical product, or used in downstream processes to produce liquid fuels, chemicals and other products.

  2. Production of methanol/DME from biomass

    Energy Technology Data Exchange (ETDEWEB)

    Ahrenfeldt, J.; Birk Henriksen, U.; Muenster-Swendsen, J.; Fink, A.; Roengaard Clausen, L.; Munkholt Christensen, J.; Qin, K.; Lin, W.; Arendt Jensen, P.; Degn Jensen, A.

    2011-07-01

    In this project the production of DME/methanol from biomass has been investigated. Production of DME/methanol from biomass requires the use of a gasifier to transform the solid fuel to a synthesis gas (syngas) - this syngas can then be catalytically converted to DME/methanol. Two different gasifier types have been investigated in this project: 1) The Two-Stage Gasifier (Viking Gasifier), designed to produce a very clean gas to be used in a gas engine, has been connected to a lab-scale methanol plant, to prove that the gas from the gasifier could be used for methanol production with a minimum of gas cleaning. This was proved by experiments. Thermodynamic computer models of DME and methanol plants based on using the Two-Stage Gasification concept were created to show the potential of such plants. The models showed that the potential biomass to DME/methanol + net electricity energy efficiency was 51-58% (LHV). By using waste heat from the plants for district heating, the total energy efficiencies could reach 87-88% (LHV). 2) A lab-scale electrically heated entrained flow gasifier has been used to gasify wood and straw. Entrained flow gasifiers are today the preferred gasifier type for commercial coal gasification, but little information exists on using these types of gasifiers for biomass gasification. The experiments performed provided quantitative data on product and gas composition as a function of operation conditions. Biomass can be gasified with less oxygen consumption compared to coal. The organic fraction of the biomass that is not converted to gas appears as soot. Thermodynamic computer models of DME and methanol plants based on using entrained flow gasification were created to show the potential of such plants. These models showed that the potential torrefied biomass to DME/methanol + net electricity energy efficiency was 65-71% (LHV). Different routes to produce liquid transport fuels from biomass are possible. They include production of RME (rapeseed oil

  3. Yeast derived from lignocellulosic biomass as a sustainable feed resource for use in aquaculture.

    Science.gov (United States)

    Øverland, Margareth; Skrede, Anders

    2017-02-01

    The global expansion in aquaculture production implies an emerging need of suitable and sustainable protein sources. Currently, the fish feed industry is dependent on high-quality protein sources of marine and plant origin. Yeast derived from processing of low-value and non-food lignocellulosic biomass is a potential sustainable source of protein in fish diets. Following enzymatic hydrolysis, the hexose and pentose sugars of lignocellulosic substrates and supplementary nutrients can be converted into protein-rich yeast biomass by fermentation. Studies have shown that yeasts such as Saccharomyces cerevisiae, Candida utilis and Kluyveromyces marxianus have favourable amino acid composition and excellent properties as protein sources in diets for fish, including carnivorous species such as Atlantic salmon and rainbow trout. Suitable downstream processing of the biomass to disrupt cell walls is required to secure high nutrient digestibility. A number of studies have shown various immunological and health benefits from feeding fish low levels of yeast and yeast-derived cell wall fractions. This review summarises current literature on the potential of yeast from lignocellulosic biomass as an alternative protein source for the aquaculture industry. It is concluded that further research and development within yeast production can be important to secure the future sustainability and economic viability of intensive aquaculture. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.

  4. Experts’ Perceptions of the Effects of Forest Biomass Harvesting on Sustainability in the Alpine Region

    Directory of Open Access Journals (Sweden)

    Gianluca Grilli

    2015-06-01

    Full Text Available Background and Purpose: In the EU political agenda, the use of forest biomass for energy has grown rapidly and significantly, in order to mitigate carbon dioxide emissions and reduce the energy dependence on fossil fuels of European member countries. The target of the EU climate and energy package is to raise the share of renewable energy consumption produced from renewable resources to 20% in 2020 (Directive 2009/28/EC. With regards to biomass energy, the supply of forest wood biomass is expected to rise by 45% (reference period: 2006-2020, in response to increasing demand for renewable sources. The increase of forest biomass supply could have both positive and negative effects on several forest ecosystem services (ESs and local development. These effects should be assessed in a proper manner and taken into account when formulating management strategies. The aim of the paper is to assess the environmental, economic and social sustainability of forest biomass harvesting for energy, using the Figure of Merit (FoM approach. Materials and Methods: Sustainability was assessed through a set of four indicators: two focused on experts’ opinions regarding the effects of forest biomass harvesting and the other two focused on the cost-benefit analysis (potential energy obtained and costs for wood chips. The research was developed through four case studies located in the Alpine Region. A semi-structured questionnaire was administered face-to-face to 32 selected experts. The perceived effects of forest biomass harvesting for energy on ESs and local development were evaluated by experts using a 5-point Likert scale (from “quite negative effect” to “quite positive effect”. Results: All experts agree that forest biomass harvesting has a positive effect on forest products provision and local economic development (employment of local workforce, local entrepreneurship and market diversification, while the effects on other ESs are controversial (e

  5. Optimization of biomass and dihydroorotase (DHOase) production ...

    African Journals Online (AJOL)

    Growth conditions which maintains DHOase overproduction by Saccharomyces cerevisiae MNJ3 (pMNJ1) and allow sufficient biomass production to ensure DHoase's purification were investigated. We used as basal medium the Yeast Carbon Base (YCB; Difco), especially designed for studies of nitrogen metabolism in ...

  6. Biomass production and basic research on photosynthesis

    International Nuclear Information System (INIS)

    Broda, E.

    1979-01-01

    This document is a report of the conference: research and development work in Austria, organized by Austrian ministry of science and research, the ASSA and the OMV-stock company in 1979, which took place in Vienna. The text is about the different possible forms of solar energy utilization. Broda analyses in detail the utilization and production of biomass. (nowak)

  7. Production of charcoal briquettes from biomass for community use

    Science.gov (United States)

    Suttibak, S.; Loengbudnark, W.

    2018-01-01

    This article reports of a study on the production of charcoal briquettes from biomass for community use. Manufacture of charcoal briquettes was done using a briquette machine with a screw compressor. The aim of this research was to investigate the effects of biomass type upon the properties and performance of charcoal briquettes. The biomass samples used in this work were sugarcane bagasse (SB), cassava rhizomes (CR) and water hyacinth (WH) harvested in Udon Thani, Thailand. The char from biomass samples was produced in a 200-liter biomass incinerator. The resulting charcoal briquettes were characterized by measuring their properties and performance including moisture content, volatile matter, fixed carbon and ash contents, elemental composition, heating value, density, compressive strength and extinguishing time. The results showed that the charcoal briquettes from CR had more favorable properties and performance than charcoal briquettes from either SB or WH. The lower heating values (LHV) of the charcoal briquettes from SB, CR and WH were 26.67, 26.84 and 16.76 MJ/kg, respectively. The compressive strengths of charcoal briquettes from SB, CR and WH were 54.74, 80.84 and 40.99 kg/cm2, respectively. The results of this research can contribute to the promotion and development of cost-effective uses of agricultural residues. Additionally, it can assist communities in achieving sustainable self-sufficiency, which is in line with our late King Bhumibol’s economic sufficiency philosophy.

  8. Bioeconomic Sustainability of Cellulosic Biofuel Production on Marginal Lands

    Science.gov (United States)

    Gutierrez, Andrew Paul; Ponti, Luigi

    2009-01-01

    The use of marginal land (ML) for lignocellulosic biofuel production is examined for system stability, resilience, and eco-social sustainability. A North American prairie grass system and its industrialization for maximum biomass production using biotechnology and agro-technical inputs is the focus of the analysis. Demographic models of ML biomass…

  9. Roadmap for import of sustainable biomass. Elaboration of transition path 2. Realisation of the Biomass Import Chain

    International Nuclear Information System (INIS)

    Faaij, A.

    2006-12-01

    The main objective of the activities described in this document is to formulate a transition path for realizing sustainable biomass import chains. The following elements are crucial in this process: definition of required activities (research, demonstration, technology development), as well as a description of main uncertainties and barriers; setting up a time path and assessing costs (government investments and market investments); and engaging the main actors in the Netherlands, making an inventory of the current positions and motivation to contribute to the realization of sustainable biomass import chains. This document sketches a road map for the development of sustainable biomass import capacity in time, especially from a national point of view. [mk] [nl

  10. Towards Sustainable Consumption and Production

    DEFF Research Database (Denmark)

    Ulku, M. Ali; Hsuan, Juliana

    2017-01-01

    an environmentally conscious (green) consumer who will buy one of two available, horizontally differentiated products: a modular product (M) manufactured by Firm M or a standard product (S) manufactured by Firm S. Firm M can take advantage of its modular production technology and product return policy...... and numerical examples to render practical insights: The refund rate has a strong impact on profits; sensitivity of product greenness can be increased by conscientious advertising, and the reusability of modular parts encourages lower pricing and higher market share. We assert that modularity is a strong...... concept and practice in developing sustainable products and thereby in production, which, in turn, may enhance sustainable consumption. This study's findings have direct implications for reverse supply chain management, and firms should take these findings into account early in the product design phase....

  11. An applied methodology for assessment of the sustainability of biomass district heating systems

    Science.gov (United States)

    Vallios, Ioannis; Tsoutsos, Theocharis; Papadakis, George

    2016-03-01

    In order to maximise the share of biomass in the energy supplying system, the designers should adopt the appropriate changes to the traditional systems and become more familiar with the design details of the biomass heating systems. The aim of this study is to present the development of methodology and its associated implementation in software that is useful for the design of biomass thermal conversion systems linked with district heating (DH) systems, taking into consideration the types of building structures and urban settlement layout around the plant. The methodology is based on a completely parametric logic, providing an impact assessment of variations in one or more technical and/or economic parameters and thus, facilitating a quick conclusion on the viability of this particular energy system. The essential energy parameters are presented and discussed for the design of biomass power and heat production system which are in connection with DH network, as well as for its environmental and economic evaluation (i.e. selectivity and viability of the relevant investment). Emphasis has been placed upon the technical parameters of biomass logistics, energy system's design, the economic details of the selected technology (integrated cogeneration combined cycle or direct combustion boiler), the DH network and peripheral equipment (thermal substations) and the greenhouse gas emissions. The purpose of this implementation is the assessment of the pertinent investment financial viability taking into account the available biomass feedstock, the economical and market conditions, and the capital/operating costs. As long as biomass resources (forest wood and cultivation products) are available and close to the settlement, disposal and transportation costs of biomass, remain low assuring the sustainability of such energy systems.

  12. Biomass production for direct generation of energy

    International Nuclear Information System (INIS)

    1992-01-01

    In continuing its activities for the formation of public opinion the Deutsche Farming Association) held a colloquium in 1991 on the issue of biomass production and combustion. Its aim was to gather all current knowledge on this issue and, for the first time, to make a comprehensive appraisal of it. The following aspects were dealt with: Abatement of atmospheric pollution, ecologically oriented production, nature conservation, organisation of decentralized power plant operating corporations, state of the art in combustion technology, operational calculations and, not least, agrarin-political framework conditions. The meeting yielded important statements on remarkable innovations in the area of ecological biomass production and for its utilization as an energy source together with the conventional energy sources of oil, gas, coal and nuclear energy. (orig.) [de

  13. Sustainability labels on food products

    DEFF Research Database (Denmark)

    Grunert, Klaus G; Hieke, Sophie; Wills, Josephine

    2014-01-01

    of sustainability was limited, but understanding of four selected labels (Fair Trade, Rainforest Alliance, Carbon Footprint, and Animal Welfare) was better, as some of them seem to be self-explanatory. The results indicated a low level of use, no matter whether use was measured as self-reported use of different......This study investigates the relationship between consumer motivation, understanding and use of sustainability labels on food products (both environmental and ethical labels), which are increasingly appearing on food products. Data was collected by means of an online survey implemented in the UK......, France, Germany, Spain, Sweden, and Poland, with a total sample size of 4408 respondents. Respondents expressed medium high to high levels of concern with sustainability issues at the general level, but lower levels of concern in the context of concrete food product choices. Understanding of the concept...

  14. Can collusion promote sustainable consumption and production?

    NARCIS (Netherlands)

    Schinkel, M.P.; Spiegel, Y.

    2016-01-01

    Several competition authorities have taken public interest considerations, such as promoting sustainable consumption and production, into account in cartel proceedings.We show that when consumers value sustainable products and firms choose investments in sustainability before choosing output,

  15. Sustainability of biomass in a bio-based economy. A quick-scan analysis of the biomass demand of a bio-based economy in 2030 compared to the sustainable supply

    Energy Technology Data Exchange (ETDEWEB)

    Ros, J.; Olivier, J.; Notenboom, J. [Netherlands Environmental Assessment Agency PBL, Bilthoven (Netherlands); Croezen, H.; Bergsma, G. [CE Delft, Delft (Netherlands)

    2012-02-15

    The conversion of a fossil fuel-based economy into a bio-based economy will probably be restricted in the European Union (EU) by the limited supply of ecologically sustainable biomass. It appears realistic that, for the EU, the sustainable biomass supply will be enough to meet about 10% of the final energy and feedstock consumption in 2030. Under optimistic assumptions, this supply might increase to 20%. EU Member States, in their Renewable Energy Action Plans for 2020, already aim to apply an amount of biomass that already approaches this 10%. Therefore, from a sustainability perspective, there is an urgent need to guarantee ecologically sustainable biomass production. In considering sustainable biomass production, land use is the most critical issue, especially the indirect land-use impacts on greenhouse gas emissions and biodiversity. The use of waste resources and agricultural and forestry residues, that does not involve additional land use, therefore, would be a sustainable option. Technically, it is possible to use these types of resources for most applications in a bio-based economy. However, it seems unlikely that, by 2030, waste and residue resources will contribute more than three to four per cent to the final energy and feedstock consumption in Europe. Moreover, many waste and residue resources currently already have useful applications; for instance, as feed or soil improvers. These are the main findings of a quick-scan analysis carried out by the PBL Netherlands Environmental Assessment Agency and CE Delft on the sustainability of a bio-based economy. Three priorities can be distinguished in the transition to an ecologically sustainable bio-based economy that aims to reduce the consumption of fossil fuels: (1) develop new technologies, procedures and infrastructure to collect or to produce more biomass without using directly or indirectly valuable natural land; (2) develop technologies to produce hydrocarbons from types of biomass that have potentially

  16. Possibilities and limitations for sustainable bioenergy production systems

    NARCIS (Netherlands)

    Smeets, E.M.W.

    2008-01-01

    The focus of this thesis is on the possibilities and limitations of sustainable bioenergy production systems. First, the potential contribution of bioenergy to the energy supply in different world regions in the year 2050 from different biomass sources (dedicated woody energy crops, residues and

  17. Research in biomass production and utilization: Systems simulation and analysis

    Science.gov (United States)

    Bennett, Albert Stewart

    There is considerable public interest in developing a sustainable biobased economy that favors support of family farms and rural communities and also promotes the development of biorenewable energy resources. This study focuses on a number of questions related to the development and exploration of new pathways that can potentially move us toward a more sustainable biobased economy. These include issues related to biomass fuels for drying grain, economies-of-scale, new biomass harvest systems, sugar-to-ethanol crop alternatives for the Upper Midwest U.S., biomass transportation, post-harvest biomass processing and double cropping production scenarios designed to maximize biomass feedstock production. The first section of this study considers post-harvest drying of shelled corn grain both at farm-scale and at larger community-scaled installations. Currently, drying of shelled corn requires large amounts of fossil fuel energy. To address future energy concerns, this study evaluates the potential use of combined heat and power systems that use the combustion of corn stover to produce steam for drying and to generate electricity for fans, augers, and control components. Because of the large capital requirements for solid fuel boilers and steam turbines/engines, both farm-scale and larger grain elevator-scaled systems benefit by sharing boiler and power infrastructure with other processes. The second and third sections evaluate sweet sorghum as a possible "sugarcane-like" crop that can be grown in the Upper Midwest. Various harvest systems are considered including a prototype mobile juice harvester, a hypothetical one-pass unit that separates grain heads from chopped stalks and traditional forage/silage harvesters. Also evaluated were post-harvest transportation, storage and processing costs and their influence on the possible use of sweet sorghum as a supplemental feedstock for existing dry-grind ethanol plants located in the Upper Midwest. Results show that the concept

  18. Sustainable Liquid Biofuels from Biomass Biorefining (SUNLIBB). Policy Brief No. 1

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2012-03-01

    The SUNLIBB project is funded under the European Seventh Framework Programme (FP7) within the Energy theme: Second Generation Biofuels -- EU Brazil Coordinated Call. SUNLIBB started on 1 October 2010 for 4 years and collaborates with a parallel project in Brazil, CeProBIO. First generation biofuels -- which are mainly produced from food crops such as grains, sugarcane and vegetable oils -- have triggered one of the most highly contentious debates on the current international sustainability agenda, given their links to energy security, transport, trade, food security, land-use impacts and climate change concerns. Developing second generation biofuels has emerged as a more attractive option, as these are manufactured from inedible sources, such as woody crops, energy grasses, or even agricultural and forestry residues. Residues from sugarcane and biomass from maize, as well as 'whole-crop' miscanthus are all potential raw material (called 'feedstock') for second generation bioethanol production. Because these three plants are all closely related, processing the biomass from these crops raises common technical challenges, which offers the opportunity for breakthroughs in one species to be rapidly exploited in the others. Despite the potential sustainability benefits of second generation bioethanol, the current inefficiency of production makes it economically uncompetitive. Taking up this challenge, the SUNLIBB consortium's multidisciplinary team of scientists -- in cooperation with CeProBIO, the sister project in Brazil -- combines European and Brazilian research strengths so as to open the way for environmentally, socially and economically sustainable second generation bioethanol production.

  19. Biomass

    Science.gov (United States)

    Bernard R. Parresol

    2001-01-01

    Biomass, the contraction for biological mass, is the amount of living material provided by a given area or volume of the earth's surface, whether terrestrial or aquatic. Biomass is important for commercial uses (e.g., fuel and fiber) and for national development planning, as well as for scientific studies of ecosystem productivity, energy and nutrient flows, and...

  20. Sustainability of biomass utilisation in changing operational environment - SUBICHOE

    Energy Technology Data Exchange (ETDEWEB)

    Soimakallio, S.; Hongisto, M.; Koponen, K.; Sokka, L. (VTT Technical Research Centre of Finland, Espoo (Finland)), Email: sampo.soimakallio@vtt.fi; Antikainen, R.; Manninen, K. (Finnish Environment Inst. SYKE, Helsinki (Finland)); Thun, R.; Sinkko, T. (MTT Agrifood Research Finland, Jokioinen (Finland)); Pasanen, K. (Finnish Forest Research Inst., Joensuu (Finland))

    2010-10-15

    Sustaibability is a multi-faceted and challenging target, but at the same time a crucial issue to assess when setting policies and targets for the future. The main objective of the SUBICHOE project is to assist in strategic decision- making of public administration and companies, as regards the most sustainable use of biomass, by taking into account the changing operational environment. In the project the sustainability of biofuels and the criteria, in particular those set by the EC, for ensuring that set requirements can and will be fulfilled are being assessed from short and long term perspectives. The project is carried out jointly by VTT Technical Research Centre of Finland, Finnish Environment Institute SYKE, MTT Agrifood Research Finland, Finnish Forest Research Institute (Metla) and The Government Institute for Economic Research (VATT). The project started in June 2009 and it is scheduled to be finalised in June 2011. The work plan of the project is divided into four Work Packages. In this article, a summary of a critical view on the requirements and challenges related to the implementation of the RES Directive is also provided based on the main findings of the WP1. (orig.)

  1. Evaluating the environmental sustainability of biomass-based energy strategy: Using an impact matrix framework

    Energy Technology Data Exchange (ETDEWEB)

    Weldu, Yemane W., E-mail: ywweldem@ucalgary.ca [Faculty of Environmental Design, University of Calgary, Calgary, Alberta 2500, University Drive NW, T2N 1N4 (Canada); Assefa, Getachew [Faculty of Environmental Design, University of Calgary, Calgary, Alberta 2500, University Drive NW, T2N 1N4 (Canada); Athena Chair in Life Cycle Assessment in Design (Canada)

    2016-09-15

    A roadmap for a more sustainable energy strategy is complex, as its development interacts critically with the economic, social, and environmental dimensions of sustainable development. This paper applied an impact matrix method to evaluate the environmental sustainability and to identify the desirable policy objectives of biomass-based energy strategy for the case of Alberta. A matrix with the sustainability domains on one axis and areas of environmental impact on the other was presented to evaluate the nexus effect of policy objectives and bioenergy production. As per to our analysis, economic diversification, technological innovation, and resource conservation came up as the desirable policy objectives of sustainable development for Alberta because they demonstrated environmental benefits in all environmental impact categories, namely climate change, human health, and ecosystem. On the other hand, human health and ecosystem impacts were identified as trade-offs when the policy objectives for sustainability were energy security, job creation, and climate change. Thus, bioenergy can mitigate climate change but may impact human health and ecosystem which then in turn can become issues of concern. Energy strategies may result in shifting of risks from one environmental impact category to another, and from one sustainable domain to another if the technical and policy-related issues are not identified.

  2. Evaluating the environmental sustainability of biomass-based energy strategy: Using an impact matrix framework

    International Nuclear Information System (INIS)

    Weldu, Yemane W.; Assefa, Getachew

    2016-01-01

    A roadmap for a more sustainable energy strategy is complex, as its development interacts critically with the economic, social, and environmental dimensions of sustainable development. This paper applied an impact matrix method to evaluate the environmental sustainability and to identify the desirable policy objectives of biomass-based energy strategy for the case of Alberta. A matrix with the sustainability domains on one axis and areas of environmental impact on the other was presented to evaluate the nexus effect of policy objectives and bioenergy production. As per to our analysis, economic diversification, technological innovation, and resource conservation came up as the desirable policy objectives of sustainable development for Alberta because they demonstrated environmental benefits in all environmental impact categories, namely climate change, human health, and ecosystem. On the other hand, human health and ecosystem impacts were identified as trade-offs when the policy objectives for sustainability were energy security, job creation, and climate change. Thus, bioenergy can mitigate climate change but may impact human health and ecosystem which then in turn can become issues of concern. Energy strategies may result in shifting of risks from one environmental impact category to another, and from one sustainable domain to another if the technical and policy-related issues are not identified.

  3. Biomass production and carbon storage of Populus ×canadensis ...

    African Journals Online (AJOL)

    euramericana (Dode) Guinier ex Piccarolo) clone I-214 have good potential for biomass production. The objective of the study was estimation of biomass using allometric equations and estimation of carbon allocation according to tree components.

  4. Green Deal Sustainability of Solid Biomass. Report 1 - 2012; Green Deal Duurzaamheid Vaste Biomassa. Rapportage 1 - 2012

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2013-08-15

    In the title Green Deal, Dutch energy producers agreed late 2012 to report annually on the sustainability of the currently used solid biomass for energy production. This report provides insight over 2012 in the nature and origin of biomass, applied certification systems to demonstrate the sustainability, and the reduction of greenhouse gas emission [Dutch] In de titel Green Deal hebben Nederlandse energieproducenten eind 2012 afgesproken jaarlijks te rapporteren over de duurzaamheid van de gebuikte vaste biomassa voor de energieproductie. Deze rapportage over 2012 biedt inzicht in onder meer de aard en herkomst van de biomassa, gehanteerde certificeringssystemen om de duurzaamheid aan te tonen en de reductie in broeikasgasemissies.

  5. Energy from biomass production - photosynthesis of microalgae?

    Energy Technology Data Exchange (ETDEWEB)

    Lamparter, Tilman [Universitaet Karlsruhe, Botanisches Institut, Geb. 10.40, Kaiserstr. 2, D-76131 Karlsruhe (Germany)

    2009-07-01

    The composition of our atmosphere in the past, present and future is largely determined by photosynthetic activity. Other biological processes such as respiration consume oxygen and produce, like the use of the limited fossil fuel resources, CO{sub 2} whose increasing atmospheric concentration is a major concern. There is thus a demand on the development of alternative energy sources that replace fossil fuel. The use of crop plants for the production of biofuel is one step towards this direction. Since most often the same areas are used as for the production of food, the increased production of biofuel imposes secondary problems, however. In this context, the use of microalgae for biomass production has been proposed. Not only algae in the botanical sense (lower plants, photosynthetic eukaryotes) but also cyanobacteria, which belong to the prokaryotes, are used as ''microalgae''. The conversion of light energy into biomass can reach much higher efficiencies than in crop plants, in which a great portion of photosynthesis products is used to build up non-photosynthetic tissues such as roots or stems. Microalgae can grow in open ponds or bioreactors and can live on water of varying salinity. It has been proposed to grow microalgae in sea water on desert areas. Ongoing research projects aim at optimizing growth conditions in bioreactors, the recycling of CO{sub 2} from flue gases (e.g. from coal-fired power plants), the production of hydrogen, ethanol or lipids, and the production of valuable other substances such as carotenoids.

  6. Synthesis gas production from various biomass feedstocks

    Directory of Open Access Journals (Sweden)

    Juan A. Conesa

    2013-10-01

    Full Text Available The decomposition of five different biomass samples was studied in a horizontal laboratory reactor. The samples consisted of esparto grass, straw, Posidonea Oceanic seaweed, waste from urban and agricultural pruning and waste from forest pruning. Both pyrolysis in inert atmosphere and combustion in the presence of oxygen were studied. Different heating rates were used by varying the input speed. Major gas compounds were analyzed. The experimental results show that the amount of CO formed is lower in less dense species. It is also found that there is an increase of hydrocarbons formed at increasing feeding rates, in particular methane, while there is a decrease in the production of hydrogen.

  7. Sustainability aspects of biofuel production

    Science.gov (United States)

    Pawłowski, L.; Cel, W.; Wójcik Oliveira, K.

    2018-05-01

    Nowadays, world development depends on the energy supply. The use of fossil fuels leads to two threats: depletion of resources within a single century and climate changes caused by the emission of CO2 from fossil fuels combustion. Widespread application of renewable energy sources, in which biofuels play a major role, is proposed as a counter-measure. The paper made an attempt to evaluate to what extent biofuels meet the criteria of sustainable development. It was shown that excessive development of biofuels may threaten the sustainable development paradigms both in the aspect of: intergenerational equity, leading to an increase of food prices, as well as intergenerational equity, resulting in degradation of the environment. The paper presents the possibility of sustainable biofuels production increase.

  8. Sustainable Management of Keratin Waste Biomass: Applications and Future Perspectives

    Directory of Open Access Journals (Sweden)

    Swati Sharma

    2016-01-01

    Full Text Available Keratin is a durable, fibrous protein which is mainly present in higher vertebrates (mammals, birds and reptiles and humans epithelial cells. Food industry especially the meat market, slaughter house and wool industry produces million of tons of keratin containing biomass. These industries are constantly growing and the major producers include USA, Brazil and China, account for more than 40 million tons per year. These proteins constitute keratin by-products have from 15 to 18% nitrogen, 2-5% sulphur, 3.20% mineral elements and 1.27% fat and 90% of proteins. The organic waste rich in keratin can be utilized as a natural source using chemical and mechanical methods. The natural keratin obtained by biomass does not contain any harmful chemical and can be used directly to produce variety of cosmetics, creams, shampoos, hair conditioners and biomedical products. The natural protein is more compatible to use or apply on human skin and hairs. The monomeric units of natural keratin can penetrate in the skin and hair cuticle and able to nourish the skin without any side effects. In the present review various strategies for the purification and separation of keratin from the organic waste have been described and use of natural keratin in cosmetics and pharmaceutical industry has also been explored.

  9. Sustainable food consumption. Product choice or curtailment?

    NARCIS (Netherlands)

    Verain, M.C.D.; Dagevos, H.; Antonides, G.

    2015-01-01

    Food consumption is an important factor in shaping the sustainability of our food supply. The present paper empirically explores different types of sustainable food behaviors. A distinction between sustainable product choices and curtailment behavior has been investigated empirically and predictors

  10. Integrated design and sustainable assessment of innovative biomass supply chains: A case-study on miscanthus in France

    DEFF Research Database (Denmark)

    Perrin, Aurelie; Wohlfahrt, Julie; Morandi, Fabiana

    2017-01-01

    economically optimized across the whole supply chain (from field to plant gate) by considering potential feedstock production (from a high-resolution map), costs, logistical constraints and product prices. Then sustainability assessment was conducted by combining recognized methodologies: economic analysis......Cost-efficient, environmental-friendly and socially sustainable biomass supply chains are urgently needed to achieve the 2020 targets of the Strategic Energy Technologies-Plan of the European Union. This paper investigated technical, social, economic, and environmental barriers to the development......, multi-regional input-output analysis, emergy assessment, and life-cycle assessment. The analysis of the case study scenarios found that expanding biomass supply from 6,000 to 30,000tons of dry matter per year did not impact the profitability, which remained around 20€perton of biomass procured...

  11. Availability of biomass for energy production. GRAIN: Global Restrictions on biomass Availability for Import to the Netherlands

    International Nuclear Information System (INIS)

    Lysen, E.H.

    2000-08-01

    The report includes reports of activities that were carried out within the GRAIN project. This evaluation shows that the (technical) potential contribution of bio-energy to the future world's energy supply could be very large. In theory, energy farming on current agricultural land could contribute over 800 EJ, without jeopardising the world's food supply. Use of degraded lands may add another 150 EJ, although this contribution will largely come from crops with a low productivity. The growing demand for bio-materials may require a biomass input equivalent to 20-50 EJ, which must be grown on plantations when existing forests are not able to supply this growing demand. Organic wastes and residues could possibly supply another 40-170 EJ, with uncertain contributions from forest residues and potentially a very significant role for organic waste, especially when bio-materials are used on a larger scale. In total, the upper limit of the bio-energy potential could be over 1000 EJ per year. This is considerably more than the current global energy use of 400 EJ. However, this contribution is by no means guaranteed: crucial factors determining biomass availability for energy are: (1) Population growth and economic development; (2) The efficiency and productivity of food production systems that must be adopted worldwide and the rate of their deployment in particular in developing countries; (3) Feasibility of the use of marginal/degraded lands; (4) Productivity of forests and sustainable harvest levels; (5) The (increased) utilisation of bio-materials. Major transitions are required to exploit this bio-energy potential. It is uncertain to what extent such transitions are feasible. Depending on the factors mentioned above, the bio-energy potential could be very low as well. At regional/local level the possibilities and potential consequences of biomass production and use can vary strongly, but the insights in possible consequences are fairly limited up to now. Bio-energy offers

  12. Sustainable Liquid Biofuels from Biomass Biorefining (SUNLIBB). Policy Brief No. 2

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2013-09-15

    The SUNLIBB project is funded under the European Seventh Framework Programme (FP7) within the Energy theme: Second Generation Biofuels -- EU Brazil Coordinated Call. SUNLIBB started on 1 October 2010 for 4 years and collaborates with a parallel project in Brazil, CeProBIO. This is the second in a series of policy briefs providing an update on the project. The first brief was issued in March 2012. The project focus is on looking at developing second generation biofuels that hope to improve on issues seen with the first generation options. Second generation biofuels are manufactured from inedible sources, such as woody crops, energy grasses, or even agricultural and forestry residues. Residues from sugarcane and biomass from maize, as well as 'whole-crop' miscanthus are all potential raw material (called 'feedstock') for second generation bioethanol production. Because these three plants are all closely related, processing the biomass from these crops raises common technical challenges, which offers the opportunity for breakthroughs in one species to be rapidly exploited in the others. Despite the potential sustainability benefits of second generation bioethanol, the current inefficiency of production makes it economically uncompetitive. Taking up this challenge, the SUNLIBB consortium's multidisciplinary team of scientists -- in cooperation with CeProBIO, the sister project in Brazil -- combines European and Brazilian research strengths so as to open the way for environmentally, socially and economically sustainable second generation bioethanol production.

  13. Fungal biomass production from coffee pulp juice

    Energy Technology Data Exchange (ETDEWEB)

    De Leon, R.; Calzada, F.; Herrera, R.; Rolz, C.

    1980-01-01

    Coffee pulp or skin represents about 40% of the weight of the fresh coffee fruit. It is currently a waste and its improper handling creates serious pollution problems for coffee producing countries. Mechanical pressing of the pulp will produce two fractions: coffee pulp juice (CPJ) and pressed pulp. Aspergillus oryzae, Trichoderma harzianum, Penicillium crustosum and Gliocladium deliquescens grew well in supplemented CPJ. At shake flask level the optimum initial C/N ratio was found to be in the range of 8 to 14. At this scale, biomass values of up to 50 g/l were obtained in 24 hours. Biomass production and total sugar consumption were not significantly different to all fungal species tested at the bench-scale level, even when the initial C/N ratio was varied. Best nitrogen consumption values were obtained when the initial C/N ratio was 12. Maximum specific growth rates occurred between 4-12 hours for all fungal species tested. (Refs. 8).

  14. Unconventional biomasses as feedstocks for production of biofuels and succinic acid in a biorefinery concept

    DEFF Research Database (Denmark)

    Gunnarsson, Ingólfur Bragi

    composition of the specific biomass feedstock, as well as which pretreatment, saccharification, fermentation and extraction techniques are used. Furthermore, integrating biological processes into the biorefinery that effectively consume CO2 will become increasingly important. Such process integration could...... significantly improve the sustainability indicators of the overall biorefinery process. In this study, unconventional lignocellulosic- and aquatic biomasses were investigated as biorefinery feedstocks. The studied biomasses were Jerusalem artichoke, industrial hemp and macroalgae species Laminaria digitata....... The chemical composition of biomasses was determined in order to demonstrate their biorefinery potential. Bioethanol and biogas along with succinic acid production were the explored bioconversion routes, while potential production of other compounds was also investigated. Differences and changes in biomass...

  15. Soil physical conditions in Nigerian savannas and biomass production

    International Nuclear Information System (INIS)

    Salako, F.K.

    2004-01-01

    posed by the vast area of upland soils which are made up of coarse-textured soils and in some cases gravel and stones. Aggregates of such soils are weak, they loose productivity fast and do not retain adequate water and nutrients for sustainable production. These characteristics imply that even with the best of soil fertility amendments, soil physical conditions must be managed to achieve sustainable crop production. Plant growth had to be encouraged in the soils, such that enough biomass is produced for food and soil management. Another area which requires attention in the tropics is with regard adaptability of equipment for accurate evaluation of soil physical properties. Most commercially available equipment in the field of soil physics needs to be modified to suit the tropical environment

  16. Can Collusion Promote Sustainable Consumption and Production?

    NARCIS (Netherlands)

    Schinkel, M.P.; Spiegel, Y.

    Several competition authorities consider the exemption of horizontal agreements among firms from antitrust liability if the agreements sufficiently promote public interest objectives such as sustainable consumption and production. We show that when consumers value sustainable products and firms

  17. Economic analysis of biomass crop production in Florida

    International Nuclear Information System (INIS)

    Rahmani, M.; Hodges, A.W.; Stricker, J.A.; Kiker, C.F.

    1997-01-01

    Favorable soil and climate conditions for production of biomass crops in Florida, and a market for their use, provide the essentials for developing a biomass energy system in the State. Recent surveys showed that there is low opportunity cost land available and several high yield herbaceous and woody crops have potential as biomass crops. Comparison of biomass crop yields, farmgate costs, and costs of final products in Florida and other states show that Florida can be considered as one of the best areas for development of biomass energy systems in the United States. This paper presents facts and figures on biomass production and conversion in Florida and addresses issues of concern to the economics of biomass energy in the State. (author)

  18. Economic analysis of biomass crop production in Florida

    Energy Technology Data Exchange (ETDEWEB)

    Rahmani, M.; Hodges, A.W.; Stricker, J.A.; Kiker, C.F. [University of Florida, Gainesville, FL (United States)

    1997-07-01

    Favorable soil and climate conditions for production of biomass crops in Florida, and a market for their use, provide the essentials for developing a biomass energy system in the State. Recent surveys showed that there is low opportunity cost land available and several high yield herbaceous and woody crops have potential as biomass crops. Comparison of biomass crop yields, farmgate costs, and costs of final products in Florida and other states show that Florida can be considered as one of the best areas for development of biomass energy systems in the United States. This paper presents facts and figures on biomass production and conversion in Florida and addresses issues of concern to the economics of biomass energy in the State. (author)

  19. Sustainable synthesis gas from biomass. A bridge to a sustainable supply of energy and resources

    International Nuclear Information System (INIS)

    Den Uil, H.; Van Ree, R.; Van der Drift, A.; Boerrigter, H.

    2004-04-01

    Synthesis gas is currently primarily used in the (petro)chemical industry and for the production of liquid fuels. Smaller amounts are being used for electricity and synthetic natural gas (=SNG) production. Finite fossil resources, the dependence on political instable regimes and the Kyoto-protocol are drivers for the attention for renewable synthesis gas. In this report the market for, production of, use of and economy of renewable synthesis gas are analysed. Current synthesis gas use is limited to about 3% of the Dutch primary energy consumption; worldwide this is about 2%. Driven by the targets for renewable energy and the wide range of possible uses, the market for renewable synthesis gas has a large potential. When using synthesis gas for the production of SNG, electricity, liquid fuels and chemicals, the Dutch market for renewable synthesis gas can be 150 PJ in 2010, doubling about every decade to 1500 PJ in 2040. SNG and electricity, together about 80%. To reach these market volumes, import of biomass will be required due to the limited availability of local biomass resources in the Netherlands. The specifications for synthesis gas are dependent on the application. For (petro)chemical use and the production of liquid fuels high H2 and CO concentrations are required, for SNG and electricity production high CH4 concentrations are preferred. Due to the different specifications the names synthesis gas and product gas are used in this study. The name synthesis gas is claimed for a large number of gasification processes under development. But only for a number of processes this claim is justified. The gasification temperature determines the type of gas produced. At high temperatures, above 1300C, synthesis gas is produced, at low temperatures, 700-1000C, so-called product gas is being produced. Entrained-flow gasification is the only possibility for large-scale synthesis gas production in one step. For this process the particle size of the feed has to be small

  20. Potentials for forest woody biomass production in Serbia

    Directory of Open Access Journals (Sweden)

    Vasiljević Aleksandar Lj.

    2015-01-01

    Full Text Available The paper presents the analysis of possible potentials for the production of forest biomass in Serbia taking into consideration the condition of forests, present organizational and technical capacities as well as the needs and situation on the firewood market. Starting point for the estimation of production potentials for forest biomass is the condition of forests which is analyzed based on the available planning documents on all levels. Potentials for biomass production and use refer to initial periods in the production and use of forest biomass in Serbia.

  1. Production costs of liquid fuels from biomass

    International Nuclear Information System (INIS)

    Bridgwater, A.V.; Double, J.M.

    1994-01-01

    This project was undertaken to provide a consistent and thorough review of the full range of processes for producing liquid fuels from biomass to compare both alternative technologies and processes within those technologies in order to identify the most promising opportunities that deserve closer attention. Thermochemical conversion includes both indirect liquefaction through gasification, and direct liquefaction through pyrolysis and liquefaction in pressurized solvents. Biochemical conversion is based on a different set of feedstocks. Both acid and enzyme hydrolysis are included followed by fermentation. The liquid products considered include gasoline and diesel hydrocarbons and conventional alcohol fuels of methanol and ethanol. Results are given both as absolute fuel costs and as a comparison of estimated cost to market price. In terms of absolute fuel costs, thermochemical conversion offers the lowest cost products, with the least complex processes generally having an advantage. Biochemical routes are the least attractive. The most attractive processes from comparing production costs to product values are generally the alcohol fuels which enjoy a higher market value. (author)

  2. Biomass gasification for liquid fuel production

    International Nuclear Information System (INIS)

    Najser, Jan; Peer, Václav; Vantuch, Martin

    2014-01-01

    In our old fix-bed autothermal gasifier we tested wood chips and wood pellets. We make experiments for Czech company producing agro pellets - pellets made from agricultural waste and fastrenewable natural resources. We tested pellets from wheat and rice straw and hay. These materials can be very perspective, because they dońt compete with food production, they were formed in sufficient quantity and in the place of their treatment. New installation is composed of allothermal biomass fixed bed gasifier with conditioning and using produced syngas for Fischer - Tropsch synthesis. As a gasifying agent will be used steam. Gas purification will have two parts - separation of dust particles using a hot filter and dolomite reactor for decomposition of tars. In next steps, gas will be cooled, compressed and removed of sulphur and chlorine compounds and carbon dioxide. This syngas will be used for liquid fuel synthesis

  3. Biomass gasification for liquid fuel production

    Energy Technology Data Exchange (ETDEWEB)

    Najser, Jan, E-mail: jan.najser@vsb.cz, E-mail: vaclav.peer@vsb.cz; Peer, Václav, E-mail: jan.najser@vsb.cz, E-mail: vaclav.peer@vsb.cz [VSB - Technical university of Ostrava, Energy Research Center, 17. listopadu 15/2172, 708 33 Ostrava-Poruba (Czech Republic); Vantuch, Martin [University of Zilina, Faculty of Mechanical Engineering, Department of Power Engineering, Univerzitna 1, 010 26 Zilina (Slovakia)

    2014-08-06

    In our old fix-bed autothermal gasifier we tested wood chips and wood pellets. We make experiments for Czech company producing agro pellets - pellets made from agricultural waste and fastrenewable natural resources. We tested pellets from wheat and rice straw and hay. These materials can be very perspective, because they dońt compete with food production, they were formed in sufficient quantity and in the place of their treatment. New installation is composed of allothermal biomass fixed bed gasifier with conditioning and using produced syngas for Fischer - Tropsch synthesis. As a gasifying agent will be used steam. Gas purification will have two parts - separation of dust particles using a hot filter and dolomite reactor for decomposition of tars. In next steps, gas will be cooled, compressed and removed of sulphur and chlorine compounds and carbon dioxide. This syngas will be used for liquid fuel synthesis.

  4. Evaluation of Torrefied Bamboo for Sustainable Bioenergy Production

    Energy Technology Data Exchange (ETDEWEB)

    Daza Montano, C.; Pels, J.; Fryda, L.; Zwart, R. [ECN Biomass and Energy Efficiency, Petten (Netherlands)

    2012-04-15

    Bamboo is a potential sustainable biomass source for renewable heat and power production. Bamboo presents common fuel characteristics with other biomass feedstocks regarding heating value and chemical composition. Up to date, there are no studies on fuel properties of the bamboo specie Guadua angustifolia. Bamboo is a difficult fuel and most thermal conversion processes have stringent fuel specifications, which are challenging to fulfil with biomass streams. Bamboo is tenacious and fibrous which makes it difficult and expensive to grind. Furthermore, the characteristics with regard to handling, storage and degradability are not favourable for biomass in general. The thermal pre-treatment torrefaction is a promising upgrading technology that can enhance the fuel quality by addressing these issues. During torrefaction, biomass is heated to 250-320C in the absence of oxygen. At the end of the process the material is milled and compressed into pellets. In this way, the biomass becomes easy to grind, more hydrophobic and has a high energy density. Alternatively, wet torrefaction (Torwash) allows for combined torrefaction and washing of the feedstock. Wet torrefaction, a form of hydro-thermal treatment, in addition to dry torrefaction removes salts and minerals from biomass, improving even more the quality of the product. This is in particular interesting for feedstock containing significant amounts of undesirable alkali components for combustion or gasification, as is the case of bamboo. This paper presents an evaluation of the use of Guadua angustifolia as a fuel for heat and power applications. The results of biomass fuel properties and characteristics and quality improvement via dry and wet torrefaction are assessed. Torrefaction clearly shows the improvement of fuel properties and grindability of biomass. Wet-torrefied Guadua angustifolia is chemically an attractive fuel, with favourable fuel properties, e.g. the results showed a 98% of alkali removal, and the

  5. Biomass, Bioenergy and the Sustainability of Soils and Climate: What Role for Biochar?

    Science.gov (United States)

    Sohi, Saran

    2013-04-01

    Biochar is the solid, carbon rich product of heating biomass with the exclusion of air (pyrolysis). Whereas charcoal is derived from wood, biochar is a co-product of energy capture and can derive from waste or non-waste, virgin or non-virgin biomass resources. But also, biochar is not a fuel - rather it is intended for the beneficial amendment of soil in agriculture, forestry and horticulture. This results in long-term storage of plant-derived carbon that could improve yield or efficiency of crop production, and/or mitigate trace gas emissions from the land. Life cycle analysis (LCA) shows that pyrolysis bioenergy with biochar production should offer considerably more carbon abatement than combustion, or gasification of the same feedstock. This has potential to link climate change mitigation to bioenergy and sustainable use of soil. But, in economic terms, the opportunity cost of producing biochar (reflecting the calorific value of its stored carbon) is inflated by bioenergy subsidies. This, combined with a lack of clear regulatory position and no mature pyrolysis technologies at large scale, means that pyrolysis-biochar systems (PBS) remain largely conceptual at the current time. Precise understanding of its function and an ability to predict its impact on different soils and crops with certainty, biochar should acquire a monetary value. Combining such knowledge with a system that monetizes climate change mitigation potential (such as carbon markets), could see schemes for producing and using biochar escalate - including a context for its deployment in biomass crops, or through pyrolysis of residues from other bioenergy processes. This talk explores the opportunity, challenges and risks in pursuing biochar production in various bioenergy contexts including enhanced sustainability of soil use in biomass crop production, improving the carbon balance and value chain in biofuel production, and using organic waste streams more effectively (including the processing of

  6. Relationships between biomass composition and liquid products formed via pyrolysis

    Directory of Open Access Journals (Sweden)

    Fan eLin

    2015-10-01

    Full Text Available Thermal conversion of biomass is a rapid, low-cost way to produce a dense liquid product, known as bio-oil, that can be refined to transportation fuels. However, utilization of bio-oil is challenging due to its chemical complexity, acidity, and instability—all results of the intricate nature of biomass. A clear understanding of how biomass properties impact yield and composition of thermal products will provide guidance to optimize both biomass and conditions for thermal conversion. To aid elucidation of these associations, we first describe biomass polymers, including phenolics, polysaccharides, acetyl groups, and inorganic ions, and the chemical interactions among them. We then discuss evidence for three roles (i.e., models for biomass components in formation of liquid pyrolysis products: (1 as direct sources, (2 as catalysts, and (3 as indirect factors whereby chemical interactions among components and/or cell wall structural features impact thermal conversion products. We highlight associations that might be utilized to optimize biomass content prior to pyrolysis, though a more detailed characterization is required to understand indirect effects. In combination with high-throughput biomass characterization techniques this knowledge will enable identification of biomass particularly suited for biofuel production and can also guide genetic engineering of bioenergy crops to improve biomass features.

  7. Relationships between Biomass Composition and Liquid Products Formed via Pyrolysis

    International Nuclear Information System (INIS)

    Lin, Fan; Waters, Christopher L.; Mallinson, Richard G.; Lobban, Lance L.; Bartley, Laura E.

    2015-01-01

    Thermal conversion of biomass is a rapid, low-cost way to produce a dense liquid product, known as bio-oil, that can be refined to transportation fuels. However, utilization of bio-oil is challenging due to its chemical complexity, acidity, and instability – all results of the intricate nature of biomass. A clear understanding of how biomass properties impact yield and composition of thermal products will provide guidance to optimize both biomass and conditions for thermal conversion. To aid elucidation of these associations, we first describe biomass polymers, including phenolics, polysaccharides, acetyl groups, and inorganic ions, and the chemical interactions among them. We then discuss evidence for three roles (i.e., models) for biomass components in the formation of liquid pyrolysis products: (1) as direct sources, (2) as catalysts, and (3) as indirect factors whereby chemical interactions among components and/or cell wall structural features impact thermal conversion products. We highlight associations that might be utilized to optimize biomass content prior to pyrolysis, though a more detailed characterization is required to understand indirect effects. In combination with high-throughput biomass characterization techniques, this knowledge will enable identification of biomass particularly suited for biofuel production and can also guide genetic engineering of bioenergy crops to improve biomass features.

  8. Sustainability of biomass electricity systems. An estimate of costs, macro-economic and environmental impacts

    International Nuclear Information System (INIS)

    Van den Broek, R

    2001-01-01

    Since the 1990s there has been a renewal of interest in the possibility of sustainable generating energy from biomass, an interest driven in part by the climate issue. Other motives are the search for alternatives for parts of Western agriculture and progress in the technological feasibility of efficiently producing high-quality energy from biomass. World-wide this renewed interest has led to a clear increase in research, demonstration and commercial implementation of biomass energy systems. A recent thesis concludes that biomass can contribute to all aspects of sustainability. In the context of sustainable development (often viewed as a concept having economic, social and ecological dimensions), the central question asked by this Ph.D. research is: How do biomass electricity systems compare to fossil-fuel systems and to the land-use that they may replace, in terms of costs, macro-economic and environmental impacts. This article presents a number of conclusions

  9. Sustainable Strategy Utilizing Biomass: Visible-Light-Mediated Synthesis of gamma-Valerolactone

    Data.gov (United States)

    U.S. Environmental Protection Agency — A novel sustainable approach to valued g-valerolactone was investigated. This approach exploits the visible-light-mediated conversion of biomass-derived levulinic...

  10. Energy Production from Marine Biomass (Ulva lactuca)

    DEFF Research Database (Denmark)

    Nikolaisen, Lars; Daugbjerg Jensen, Peter; Svane Bech, Karin

    The background for this research activity is that the 2020 goals for reduction of the CO2 emissions to the atmosphere are so challenging that exorbitant amounts of biomass and other renewable sources of energy must be mobilised in order to – maybe – fulfil the ambitious 2020 goals. The macroalgae...... is an unexploited, not researched, not developed source of biomass and is at the same time an enormous resource by mass. It is therefore obvious to look into this vast biomass resource and by this report give some of the first suggestions of how this new and promising biomass resource can be exploited....

  11. Competition between biomass and food production in the presence of energy policies: a partial equilibrium analysis

    NARCIS (Netherlands)

    Ignaciuk, A.; Vöhringer, F.; Ruijs, A.J.W.; Ierland, van E.C.

    2006-01-01

    Bioenergy has several advantages over fossil fuels. For example, it delivers energy at low net CO2 emission levels and contributes to sustaining future energy supplies. The concern, however, is that an increase in biomass plantations will reduce the land available for agricultural production. The

  12. Biogas Production from Lignocellulosic Biomass : Impact of pre-treatment, co-digestion, harvest time and inoculation

    OpenAIRE

    LI, Chao

    2017-01-01

    Biogas or methane production through anaerobic digestion (AD) is gaining increasing attention worldwide due to concerns over global warming, energy security and the need for sustainable waste management. AD of lignocellulosic biomass is one facet that is highly appreciated since the conflict over biomass for food/feed or energy can be avoided. As a result the need for non-food based lignocellulosic biomass feedstock has emerged as (co-) feedstock of choice for the AD process. Despite these ad...

  13. Effect of diverse ecological conditions on biomass production of ...

    African Journals Online (AJOL)

    Kangaroo grass native to Australia is known as the best grass to grow on different environmental and soil conditions. Biomass production of any grass is the key factor to estimate that if the grass could fulfill the animal requirements. Biomass production of kangaroo grass was estimated in this study at three growth stages on ...

  14. Biomass Energy Production in California: The Case for a Biomass Policy Initiative; Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Morris, G.

    2000-12-14

    During the 1980s California developed the largest and most divers biomass energy industry in the world. Biomass energy production has become an important component of the state's environmental infrastructure, diverting solid wastes from open burning and disposal in landfills to a beneficial use application.

  15. Results of a survey on the sustainable import of biomass; Resultaat Enquete duurzame import van biomassa

    Energy Technology Data Exchange (ETDEWEB)

    Bergsma, G.C.; Groot, M.I.

    2006-06-15

    of their own accord. Attention was drawn surprisingly often to the importance of small holdings, i.e. 'family farms', and maximisation of yields and CO2 reductions per hectare of farmland. It is recommended to take this latter issue on board, in part as a means of elaborating the aspect of 'preventing competition with food production' in practical terms. Based on the survey results, the report concludes with several concrete recommendations on sustainability criteria for biomass. The report published by the Cramer Commission in August 2006 is largely grounded in these survey results and the accompanying evaluation. [Dutch] In de strijd tegen klimaatverandering wordt steeds vaker biomassa ingezet als alternatief voor fossiele brandstoffen. Van belang is dat de winst aan duurzaamheid die Nederland hierdoor kan boeken, niet ten koste gaat van duurzaamheid in de productielanden. Een set aspecten (voedselvoorziening, natuur, welvaart en welzijn, arbeidsomstandigheden, milieuzorg, bodemkwaliteit en waterkwaliteit) is ontwikkeld aan de hand waarvan de duurzaamheid van biomassa aangetoond kan worden. Voor het toetsen van draagvlak hiervoor heeft CE een webenquete uitgezet onder stakeholders. Hierop hebben 104 respondenten gereageerd. In het rapport zijn alle resultaten en conclusies gespreid over NGO's, bedrijfsleven, overheid en algemeen gerapporteerd. Een aantal opvallende conclusies zijn: Het merendeel van de respondenten acht een duurzaamheidstoets voor biomassa mogelijk mits er adequate duurzaamheideisen gesteld worden (68%); Vrijwel alle respondenten vinden dat de duurzaamheidscriteria moeten gelden voor alle toepassingen van biomassa (90%); Of duurzaamheidscriteria afhankelijk moeten zijn van de productieregio wordt door de respondenten heel verschillend gezien (helft voor helft tegen); Veel NGO's vinden dat duurzaamheidscriteria specifiek zouden moeten zijn per biomassastroom (50%), in tegenstelling tot het bedrijfsleven dat pleit voor

  16. Managing Sustainability in Fruit Production

    OpenAIRE

    Taragola, N.; Van Passel, S.; Zwiekhorst, W.

    2012-01-01

    As fruit growers are faced with a growing need for sustainable development, it is important to integrate sustainability into their management processes. This research applies and evaluates a self-analysis tool for entrepreneurs called the ‘sustainability scan’. The scan identifies 23 sustainability themes, divided according to the 3P-framework (People, Planet and Profit). In the scan, it is assumed that the management of these themes is at the core of sustainable entrepren...

  17. Sustainable food consumption. Product choice or curtailment?

    Science.gov (United States)

    Verain, Muriel C D; Dagevos, Hans; Antonides, Gerrit

    2015-08-01

    Food consumption is an important factor in shaping the sustainability of our food supply. The present paper empirically explores different types of sustainable food behaviors. A distinction between sustainable product choices and curtailment behavior has been investigated empirically and predictors of the two types of behavior have been identified. Respondents were classified into four segments based on their sustainable food behaviors: unsustainers, curtailers, product-oriented consumers, and sustainers. Significant differences between the segments were found with regard to food choice motives, personal and social norms, food involvement, subjective knowledge on sustainable food, ability to judge how sustainably a product has been produced and socio-demographics. It is concluded that distinguishing between behavioral strategies toward sustainable food consumption is important as consumer segments can be identified that differ both in their level of sustainable food consumption and in the type of behavior they employ. Copyright © 2015 Elsevier Ltd. All rights reserved.

  18. Energy production from marine biomass (Ulva lactuca)

    Energy Technology Data Exchange (ETDEWEB)

    Nikolaisen, L; Daugbjerg Jensen, P; Svane Bech, K [Danish Technological Institute (DTI), Taastrup (Denmark); and others

    2011-11-15

    In this project, methods for producing liquid, gaseous and solid biofuel from the marine macroalgae Ulva lactuca has been studied. To get an understanding of the growth conditions of Ulva lactuca, laboratory scale growth experiments describing N, P, and CO{sub 2} uptake and possible N{sub 2}O and CH{sub 4} production are carried out. The macroalgae have been converted to bioethanol and methane (biogas) in laboratory processes. Further the potential of using the algae as a solid combustible biofuel is studied. Harvest and conditioning procedures are described together with the potential of integrating macroalgae production at a power plant. The overall conclusions are: 1. Annual yield of Ulva lactuca is 4-5 times land-based energy crops. 2. Potential for increased growth rate when bubbling with flue gas is up to 20%. 3. Ethanol/butanol can be produced from pretreated Ulva of C6 and - for butanol - also C5 sugars. Fermentation inhibitors can possibly be removed by mechanical pressing. The ethanol production is 0,14 gram pr gram dry Ulva lactuca. The butanol production is lower. 4. Methane yields of Ulva are at a level between cow manure and energy crops. 5. Fast pyrolysis produces algae oil which contains 78 % of the energy content of the biomass. 6. Catalytic supercritical water gasification of Ulva lactuca is feasible and a methane rich gas can be obtained. 7. Thermal conversion of Ulva is possible with special equipment as low temperature gasification and grate firing. 8. Co-firing of Ulva with coal in power plants is limited due to high ash content. 9. Production of Ulva only for energy purposes at power plants is too costly. 10. N{sub 2}O emission has been observed in lab scale, but not in pilot scale production. 11. Analyses of ash from Ulva lactuca indicates it as a source for high value fertilizers. 12. Co-digestion of Ulva lactuca together with cattle manure did not alter the overall fertilization value of the digested cattle manure alone. (LN)

  19. Effective production of fermentable sugars from brown macroalgae biomass.

    Science.gov (United States)

    Wang, Damao; Kim, Do Hyoung; Kim, Kyoung Heon

    2016-11-01

    Brown macroalgae are renewable and sustainable biomass resources for the production of biofuels and chemicals, owing to their high levels of carbohydrates and low levels of lignin. To increase the biological usage of brown macroalgae, it is necessary to depolymerize the polysaccharides that generate macroalgal monomeric sugars or sugar derivatives and to convert them into fermentable sugars for the production of biofuels and chemicals. In this review, we discuss the chemical and enzymatic saccharification of the major carbohydrates found in brown macroalgae and the use of the resulting constituents in the production of biofuels and chemicals, as well as high-value health-benefiting functional oligosaccharides and sugars. We also discuss recently reported experimental results, novel enzymes, and technological breakthroughs that are related to polysaccharide depolymerization, fermentable sugar production, and the biological conversion of non-favorable sugars for fermentation using industrial microorganisms. This review provides a comprehensive perspective of the efficient utilization of brown macroalgae as renewable resources for the production of biofuels and chemicals.

  20. The Prospects of Rubberwood Biomass Energy Production in Malaysia

    Directory of Open Access Journals (Sweden)

    Jegatheswaran Ratnasingam

    2015-03-01

    Full Text Available Rubber has been shown to be one of the most important plantation crops in Malaysia, and rubber tree biomass has widespread applications in almost all sectors of the wood products manufacturing sector. Despite its abundance, the exploitation of rubberwood biomass for energy generation is limited when compared to other available biomass such as oil palm, rice husk, cocoa, sugarcane, coconut, and other wood residues. Furthermore, the use of biomass for energy generation is still in its early stages in Malaysia, a nation still highly dependent on fossil fuels for energy production. The constraints for large scale biomass energy production in Malaysia are the lack of financing for such projects, the need for large investments, and the limited research and development activities in the sector of efficient biomass energy production. The relatively low cost of energy in Malaysia, through the provision of subsidy, also restricts the potential utilization of biomass for energy production. In order to fully realize the potential of biomass energy in Malaysia, the environmental cost must be factored into the cost of energy production.

  1. The regional environmental impact of biomass production

    International Nuclear Information System (INIS)

    Graham, R.L.

    1994-01-01

    The objective of this paper is to present a broad overview of the potential environmental impacts of biomass energy from energy crops. The subject is complex because the environmental impact of using biomass for energy must be considered in the context of alternative energy options while the environmental impact of producing biomass from energy crops must be considered in the context of the alternative land-uses. Using biomass-derived energy can reduce greenhouse gas emissions or increase them; growing biomass energy crops can enhance soil fertility or degrade it. Without knowing the context of the biomass energy, one can say little about its specific environmental impacts. The primary focus of this paper is an evaluation of the environmental impacts of growing energy crops. I present an approach for quantitatively evaluating the potential environmental impact of growing energy crops at a regional scale that accounts for the environmental and economic context of the crops. However, to set the stage for this discussion, I begin by comparing the environmental advantages and disadvantages of biomass-derived energy relative to other energy alternatives such as coal, hydropower, nuclear power, oil/gasoline, natural gas and photovoltaics

  2. Microbial Production of Short Chain Fatty Acids from Lignocellulosic Biomass: Current Processes and Market

    Directory of Open Access Journals (Sweden)

    Ivan Baumann

    2016-01-01

    Full Text Available Biological production of organic acids from conversion of biomass derivatives has received increased attention among scientists and engineers and in business because of the attractive properties such as renewability, sustainability, degradability, and versatility. The aim of the present review is to summarize recent research and development of short chain fatty acids production by anaerobic fermentation of nonfood biomass and to evaluate the status and outlook for a sustainable industrial production of such biochemicals. Volatile fatty acids (VFAs such as acetic acid, propionic acid, and butyric acid have many industrial applications and are currently of global economic interest. The focus is mainly on the utilization of pretreated lignocellulosic plant biomass as substrate (the carbohydrate route and development of the bacteria and processes that lead to a high and economically feasible production of VFA. The current and developing market for VFA is analyzed focusing on production, prices, and forecasts along with a presentation of the biotechnology companies operating in the market for sustainable biochemicals. Finally, perspectives on taking sustainable product of biochemicals from promise to market introduction are reviewed.

  3. Sustainability of biomass import for the Dutch energy economy. Final report

    International Nuclear Information System (INIS)

    Rijssenbeek, W.; Van der Vleuten, F.; De Winter, J.; Corten, I.

    1996-07-01

    The current study is conducted with the aim of developing a number of general (qualitative) criteria which can be used to judge, from the perspective of sustainable development, the various options of importing biomass for the Dutch energy economy. The methods used during implementation of the desk study include: literature reviews on sustainable development and biomass energy conversion techniques; concept development and elaboration; internal discussions of the project team; international discussions through electronic mail in order to obtain the opinions of people outside The Netherlands, in particular from the potentially biomass exporting countries; an interim discussion meeting with representatives of involved (Dutch) actors; a final discussion meeting with representatives of involved (Dutch) actors; and reporting. The results of the desk study are presented. The context of energy from biomass in The Netherlands, and the Dutch policy concerning renewable energies is described. A selection is given of international comments on the idea of importing biomass for the Dutch electricity sector, to underline that the sustainability of this activity is not obvious without more detailed consideration. An overview of biomass energy technologies is presented in order to illustrate the numerous options of importing biomass for energy purposes. A concrete example of wood import from Estonia and Uruguay shows how a biomass import chain could look like in practice. Attempts to put the concept into practice are discussed. General criteria and framework conditions, that can be used in assessing the sustainability of the various alternatives of biomass import are presented. A method for the full evaluation process is proposed. The most important ideas that have been received through E-mail and Internet news groups discussions are listed along with an overview of biomass chains

  4. Sustainable model for financial viability of decentralized biomass gasifier based power projects

    NARCIS (Netherlands)

    Palit, D.; Malhotra, R.; Kumar, Atul

    2011-01-01

    This paper made a modest attempt for designing a sustainable model for financial viability of biomass gasifier power projects for enhancing electricity access in India and other developing countries. For long term sustainability of distributed generation projects in remote rural areas, viability

  5. Supply Chain Sustainability Analysis of Indirect Liquefaction of Blended Biomass to Produce High Octane Gasoline

    Energy Technology Data Exchange (ETDEWEB)

    Cai, Hao [Argonne National Lab. (ANL), Argonne, IL (United States); Canter, Christina E. [Argonne National Lab. (ANL), Argonne, IL (United States); Dunn, Jennifer B. [Argonne National Lab. (ANL), Argonne, IL (United States); Tan, Eric [National Renewable Energy Lab. (NREL), Golden, CO (United States); Biddy, Mary [National Renewable Energy Lab. (NREL), Golden, CO (United States); Talmadge, Michael [National Renewable Energy Lab. (NREL), Golden, CO (United States); Hartley, Damon S. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Snowden-Swan, Lesley [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2015-09-01

    The Department of Energy’s (DOE) Bioenergy Technologies Office (BETO) aims at developing and deploying technologies to transform renewable biomass resources into commercially viable, high-performance biofuels, bioproducts and biopower through public and private partnerships (DOE, 2015). BETO also performs a supply chain sustainability analysis (SCSA). This report describes the SCSA of the production of renewable high octane gasoline (HOG) via indirect liquefaction (IDL) of lignocellulosic biomass. This SCSA was developed for the 2017 design case for feedstock logistics (INL, 2014) and for the 2022 target case for HOG production via IDL (Tan et al., 2015). The design includes advancements that are likely and targeted to be achieved by 2017 for the feedstock logistics and 2022 for the IDL conversion process. The 2017 design case for feedstock logistics demonstrated a delivered feedstock cost of $80 per dry U.S. short ton by the year 2017 (INL, 2014). The 2022 design case for the conversion process, as modeled in Tan et al. (2015), uses the feedstock 2017 design case blend of biomass feedstocks consisting of pulpwood, wood residue, switchgrass, and construction and demolition waste (C&D) with performance properties consistent with a sole woody feedstock type (e.g., pine or poplar). The HOG SCSA case considers the 2017 feedstock design case (the blend) as well as individual feedstock cases separately as alternative scenarios when the feedstock blend ratio varies as a result of a change in feedstock availability. These scenarios could be viewed as bounding SCSA results because of distinctive requirements for energy and chemical inputs for the production and logistics of different components of the blend feedstocks.

  6. Possibilities and limitations for sustainable bioenergy production systems

    International Nuclear Information System (INIS)

    Smeets, Edward Martinus Wilhelmus Utrecht University

    2008-05-01

    The main objective of this thesis is to investigate the possibilities and limitations of sustainable bioenergy production. To this end, the following research questions have been formulated: (1). What is the potential of different world regions to produce biomass for energy generation in the year 2050, taking account of biological and climatological limitations, the use of biomass to produce food, materials and traditional bioenergy, as well as the need to maintain existing forests and thus protect biodiversity?; (2) What are the main bottlenecks to formulating and implementing sustainability criteria for bioenergy production?; (3) To what extent does complying with sustainability criteria have impacts on the costs and potential of bioenergy production?; (4) To what extent do fertilizer- and manure-induced nitrous oxide (N2O) emissions due to energy crop production have an impact on the reduction of greenhouse gas (GHG) emissions when conventional transportation fuels are replaced by first-generation biofuels?; (5) In terms of economic and environmental performance, how does Europe's production, storage and transport of miscanthus and switchgrass in 2004 compare to that in 2030? Throughout this thesis, specific attention is paid to knowledge gaps and their potential impact on results, the aim being to identify priorities for future research and development. Another key element of our research is that we evaluate the possibilities and limitations of strategies that are designed to improve the performance of bioenergy production systems and that may be incorporated in bioenergy certification schemes and bioenergy promoting policies

  7. Price strategies for sustainable food products

    NARCIS (Netherlands)

    Ingenbleek, P.T.M.

    2015-01-01

    Purpose – Sustainable products often suffer a competitive disadvantage compared with mainstream products because they must cover ecological and social costs that their competitors leave to future generations. The purpose of this paper is to identify price strategies for sustainable products that

  8. The effect of different nutrient sources on biomass production of ...

    African Journals Online (AJOL)

    The effect of various organic, inorganic and complex compounds on the biomass production (mycelial dry weight) of Lepiota procera, a Nigerian edible higher fungus was investigated. Among the seventeen carbon compounds tested, mannose enhanced the best biomass yield. This was followed in order by glucose, ...

  9. Fuels production by the thermochemical transformation of the biomass

    International Nuclear Information System (INIS)

    Claudet, G.

    2005-01-01

    The biomass is a local and renewable energy source, presenting many advantages. This paper proposes to examine the biomass potential in France, the energy valorization channels (thermochemical chains of thermolysis and gasification) with a special interest for the hydrogen production and the research programs oriented towards the agriculture and the forest. (A.L.B.)

  10. Influence of aeration and lighting on biomass production and protein ...

    African Journals Online (AJOL)

    The influence aeration and light intensity could have on biomass production and protein biosynthesis in a Spirulina sp. isolated from an oil-polluted brackish water marsh is examined. Biomass, proximal composition and amino acid composition obtained from aerated cultures of the organism were compared with ...

  11. Thermodynamic evaluation of biomass-to-biofuels production systems

    NARCIS (Netherlands)

    Piekarczyk, W.; Czarnowska, L.; Ptasinski, K.J.; Stanek, W.

    2013-01-01

    Biomass is a renewable feedstock for producing modern energy carriers. However, the usage of biomass is accompanied by possible drawbacks, mainly due to limitation of land and water, and competition with food production. In this paper, the analysis concerns so-called second generation biofuels, like

  12. Biomass Production System (BPS) Plant Growth Unit

    Science.gov (United States)

    Morrow, R. C.; Crabb, T. M.

    The Biomass Production System (BPS) was developed under the Small Business Innovative Research (SBIR) program to meet science, biotechnology and commercial plant growth needs in the Space Station era. The BPS is equivalent in size to a double middeck locker, but uses it's own custom enclosure with a slide out structure to which internal components mount. The BPS contains four internal growth chambers, each with a growing volume of more than 4 liters. Each of the growth chambers has active nutrient delivery, and independent control of temperature, humidity, lighting, and CO2 set-points. Temperature control is achieved using a thermoelectric heat exchanger system. Humidity control is achieved using a heat exchanger with a porous interface which can both humidify and dehumidify. The control software utilizes fuzzy logic for nonlinear, coupled temperature and humidity control. The fluorescent lighting system can be dimmed to provide a range of light levels. CO2 levels are controlled by injecting pure CO2 to the system based on input from an infrared gas analyzer. The unit currently does not scrub CO2, but has been designed to accept scrubber cartridges. In addition to providing environmental control, a number of features are included to facilitate science. The BPS chambers are sealed to allow CO2 and water vapor exchange measurements. The plant chambers can be removed to allow manipulation or sampling of specimens, and each chamber has gas/fluid sample ports. A video camera is provided for each chamber, and frame-grabs and complete environmental data for all science and hardware system sensors are stored on an internal hard drive. Data files can also be transferred to 3.5-inch disks using the front panel disk drive

  13. Direct production of fractionated and upgraded hydrocarbon fuels from biomass

    Science.gov (United States)

    Felix, Larry G.; Linck, Martin B.; Marker, Terry L.; Roberts, Michael J.

    2014-08-26

    Multistage processing of biomass to produce at least two separate fungible fuel streams, one dominated by gasoline boiling-point range liquids and the other by diesel boiling-point range liquids. The processing involves hydrotreating the biomass to produce a hydrotreatment product including a deoxygenated hydrocarbon product of gasoline and diesel boiling materials, followed by separating each of the gasoline and diesel boiling materials from the hydrotreatment product and each other.

  14. How sustainable entrepreneurs engage in institutional change : insights from biomass torrefaction in the Netherlands

    NARCIS (Netherlands)

    Thompson, N.A.; Herrmann, A.M.; Hekkert, M.P.

    2015-01-01

    Sustainable entrepreneurship often requires a purposeful change to the existing business environment, market regulations, and societal norms and values (institutions) to ensure sustainable products and services become legitimate and competitive. Yet, how sustainable entrepreneurs alter or create

  15. Analysing the past and exploring the future of sustainable biomass. Participatory stakeholder dialogue and technological innovation systems research

    NARCIS (Netherlands)

    Breukers, S.; Hisschemöller, M.; Cuppen, E.; Suurs, R.

    2014-01-01

    This paper explores the potential of combining technological innovation systems research with a participatory stakeholder dialogue, using empirical material from a dialogue on the options of sustainable biomass in the Netherlands and several historical studies into the emerging Dutch biomass

  16. Thermodynamic evaluation of biomass-to-biofuels production systems

    International Nuclear Information System (INIS)

    Piekarczyk, Wodzisław; Czarnowska, Lucyna; Ptasiński, Krzysztof; Stanek, Wojciech

    2013-01-01

    Biomass is a renewable feedstock for producing modern energy carriers. However, the usage of biomass is accompanied by possible drawbacks, mainly due to limitation of land and water, and competition with food production. In this paper, the analysis concerns so-called second generation biofuels, like Fischer–Tropsch fuels or Substitute Natural Gas which are produced either from wood or from waste biomass. For these biofuels the most promising conversion case is the one which involves production of syngas from biomass gasification, followed by synthesis of biofuels. The thermodynamic efficiency of biofuels production is analyzed and compared using both the direct exergy analysis and the thermo-ecological cost. This analysis leads to the detection of exergy losses in various elements which forms the starting point to the improvement of conversion efficiency. The efficiency of biomass conversion to biofuels is also evaluated for the whole production chain, including biomass cultivation, transportation and conversion. The global effects of natural resources management are investigated using the thermo-ecological cost. The energy carriers' utilities such as electricity and heat are externally generated either from fossil fuels or from renewable biomass. In the former case the production of biofuels not always can be considered as a renewable energy source whereas in the latter case the production of biofuels leads always to the reduction of depletion of non-renewable resources

  17. A statistical study on consumer's perception of sustainable products

    Science.gov (United States)

    Pater, Liana; Izvercian, Monica; Ivaşcu, Larisa

    2017-07-01

    Sustainability and sustainable concepts are quite often but not always used correctly. The statistical research on consumer's perception of sustainable products has tried to identify the level of knowledge regarding the concept of sustainability and sustainable products, the selected criteria concerning the buying decision, the intention of purchasing a sustainable product, main sustainable products preferred by consumers.

  18. Oil palm biomass as a sustainable energy source: A Malaysian case study

    International Nuclear Information System (INIS)

    Shuit, S.H.; Tan, K.T.; Lee, K.T.; Kamaruddin, A.H.

    2009-01-01

    It has been widely accepted worldwide that global warming is by far the greatest threat and challenge in the new millennium. In order to stop global warming and to promote sustainable development, renewable energy is a perfect solution to achieve both targets. Presently million hectares of land in Malaysia is occupied with oil palm plantation generating huge quantities of biomass. In this context, biomass from oil palm industries appears to be a very promising alternative as a source of raw materials including renewable energy in Malaysia. Thus, this paper aims to present current scenario of biomass in Malaysia covering issues on availability and sustainability of feedstock as well as current and possible utilization of oil palm biomass. This paper will also discuss feasibility of some biomass conversion technologies and some ongoing projects in Malaysia related to utilization of oil palm biomass as a source of renewable energy. Based on the findings presented, it is definitely clear that Malaysia has position herself in the right path to utilize biomass as a source of renewable energy and this can act as an example to other countries in the world that has huge biomass feedstock. (author)

  19. Sustainable development through biomass utilization: A practical approach

    Science.gov (United States)

    Ravi Malhotra

    2008-01-01

    (Please note, this is an abstract only) This paper is for folks involved in community development efforts targeted towards biomass utilization. Our approach to evaluate the potential for establishing enterprises that utilize locally available forest resources is tailored specifically to the needs of the local community. We evaluate the: 1. Technical feasibility and...

  20. The scale of biomass production in Japan

    Energy Technology Data Exchange (ETDEWEB)

    Matsumura, Yukihiko [School of Engineering, Hiroshima University, 1-4-1 Kagamiyama, Higashihiroshima-shi 739-8527 (Japan); Inoue, Takashi; Fukuda, Katsura [Global Warming Research Department, Mitsubishi Research Institute, Inc., 2-3-6 Ohtemachi, Chiyoda-ku, Tokyo 100-8141 (Japan); Komoto, Keiichi; Hada, Kenichiro [Renewable energy Team, Environment, Natural Resources and Energy Division, Mizuho Information and Research Institute, Inc., 2-3 Kanda-nishikicho, Chiyoda-ku, Tokyo 101-8443 (Japan); Hirata, Satoshi [Technical Institute, Kawasaki Heavy Industries, Ltd., 1-1 Kawasakicho, Akashi-shi, Hyogo 673-8666 (Japan); Minowa, Tomoaki [Biomass Recycle Research Laboratory, National Institute of Advanced and Industrial Science and Technology, 2-2-2 Hiro, Suehiro, Kure-shi, Hiroshima 737-0197 (Japan); Yamamoto, Hiromi [Socioeconomic Research Center, Central Research Institute of Electric Power Industry, 1-6-1 Ohtemachi, Chiyoda-ku, Tokyo 100-8126 (Japan)

    2005-11-01

    Policymakers working to introduce and promote the use of bioenergy in Japan require detailed information on the scales of the different types of biomass resources generated. In this research, the first of its type in Japan, the investigators reviewed various statistical resources to quantify the scale distribution of forest residues, waste wood from manufacturing, waste wood from construction, cattle manure, sewage sludge, night soil, household garbage, and waste food oil. As a result, the scale of biomass generation in Japan was found to be relatively small, on the average is no more than several tons in dry weight per day. (author)

  1. Method for creating high carbon content products from biomass oil

    Science.gov (United States)

    Parker, Reginald; Seames, Wayne

    2012-12-18

    In a method for producing high carbon content products from biomass, a biomass oil is added to a cracking reactor vessel. The biomass oil is heated to a temperature ranging from about 100.degree. C. to about 800.degree. C. at a pressure ranging from about vacuum conditions to about 20,700 kPa for a time sufficient to crack the biomass oil. Tar is separated from the cracked biomass oil. The tar is heated to a temperature ranging from about 200.degree. C. to about 1500.degree. C. at a pressure ranging from about vacuum conditions to about 20,700 kPa for a time sufficient to reduce the tar to a high carbon content product containing at least about 50% carbon by weight.

  2. Microalgal cultivation and utilization in sustainable energy production

    Energy Technology Data Exchange (ETDEWEB)

    Lakaniemi, A.-M.

    2012-07-01

    Microalgae are a promising feedstock for biofuel and bioenergy production due to their high photosynthetic efficiencies, high growth rates and no need for external organic carbon supply. However, microalgal biomass cultivation for energy production purposes is still rare in commercial scale. Further research and development is needed to make microalgal derived energy sustainable and economically competitive. This work investigated cultivation of fresh water microalga Chlorella vulgaris and marine microalga Dunaliella tertiolecta and their utilization in production of hydrogen, methane, electricity, butanol and bio-oil after bulk harvesting the biomass. Growth of the two microalgae was studied in five different photobioreactor (PBR) configurations especially concentrating on the quantification and characterization of heterotrophic bacteria in non-axenic microalgal cultivations and microalgal utilization of different nitrogen sources. Anaerobic cultures used for the energy conversion processes were enriched from a mesophilic municipal sewage digester separately for production of H{sub 2}, CH{sub 4} and electricity from the two microalgal species. After culture enrichment, energy conversion yields of microalgal biomass to the different energy carriers were compared. In summary, this study demonstrated that both C. vulgaris and D. tertiolecta can be used for production of Hv(2), CHv(4), electricity, butanol and lipids. Based on this study C. vulgaris is more suitable for bioenergy production than D. tertiolecta. Depending on cellular lipid content, lipid utilization for bio-oil production and anaerobic digestion were the most potent means of converting C. vulgaris biomass to energy. The study also revealed diverse microbial communities in non-axenic microalgal photobioreactor cultures and in anaerobic consortia converting microalgal biomass to energy carriers

  3. Fuels production by the thermochemical transformation of the biomass; La production de carburants par transformation thermochimique de la biomasse

    Energy Technology Data Exchange (ETDEWEB)

    Claudet, G. [CEA, 75 - Paris (France)

    2005-07-01

    The biomass is a local and renewable energy source, presenting many advantages. This paper proposes to examine the biomass potential in France, the energy valorization channels (thermochemical chains of thermolysis and gasification) with a special interest for the hydrogen production and the research programs oriented towards the agriculture and the forest. (A.L.B.)

  4. Overview of biomass and waste fuel resources for power production

    International Nuclear Information System (INIS)

    Easterly, J.L.; Burnham, M.

    1993-01-01

    This paper provides an overview of issues and opportunities associated with the use of biomass for electric power generation. Important physical characteristics of biomass and waste fuels are summarized, including comparisons with conventional fossil fuels, primarily coal. The paper also provides an overview of the current use of biomass and waste fuels for electric power generation. Biomass and waste fuels are currently used for approximately 9,800 megawatts (MW) of electric generating capacity, including about 6,100 MW of capacity fueled by wood/wood waste and about 2,200 MW of capacity fueled with municipal solid waste. Perspectives on the future availability of biomass fuels (including energy crops) are addressed, as well as projected levels of market penetration for biomass power. By the year 2010, there is a potential for 22,000 MW, to as much as 70,000 MW of biomass-powered electric generating capacity in the U.S. Given the range of benefits offered by biomass, including reduced sulfur emissions, reduced greenhouse gas emissions, job creation, rural revitalization impacts, and new incentives under the Energy Policy Act of 1992, the potential use of biomass for power production could significantly expand in the future

  5. Photocatalytic reforming of biomass for hydrogen production

    NARCIS (Netherlands)

    Ripken, R.M.; de Boer, V.J.H.W.; Gardeniers, J.G.E.; le Gac, S.

    2017-01-01

    Here, we describe a novel microfluidic device to determine the required bandgap for the photocatalytic reforming of biomass model substrates (ethylene glycol, glycerol, xylose and xylitol) in water. Furthermore, this device is applied to eventually elucidate the reaction mechanism of aqueous

  6. Vegetation Composition, Biomass Production, Carrying Capacity ...

    African Journals Online (AJOL)

    Acacia tortilis, Acacia nilotica, Acacia mellifera and Acacia seyal were the most dominant shrubs with scattered Caddaba rotundifolia, Caddaba furmisa, Seddera bagshawei, Tamarix nilotica, Dobera glabra and abundant Parthenium hysterophorus, Cissus rotundifolia and C. quadrangularis. The grass biomass estimated in ...

  7. Optimal use of biomass for energy production

    International Nuclear Information System (INIS)

    Ruijgrok, W.; Cleijne, H.

    2000-10-01

    In addition to the EWAB programme, which is focused mainly on the application of waste and biomass for generating electricity, Novem is also working on behalf of the government on the development of a programme for gaseous and liquid energy carriers (GAVE). The Dutch ministries concerned have requested that Novem provide more insight concerning two aspects. The first aspect is the world-wide availability of biomass in the long term. A study group under the leadership of the University of Utrecht has elaborated this topic in greater detail in the GRAIN project. The second aspect is the question of whether the use of biomass for biofuels, as aimed at in the GAVE programme, can go hand in hand with the input for the electricity route. Novem has asked the Dutch research institute for the electric power industry (KEMA) to study the driving forces that determine the future use of biomass for electricity and biofuels, the competitive strength of each of the routes, and the possible future scenarios that emerge. The results of this report are presented in the form of copies of overhead sheets

  8. seasonal variation of biomass and secondary production

    African Journals Online (AJOL)

    Preferred Customer

    consimilis was cultured in the laboratory to obtain life history data on duration of embryonic and post-embryonic ... medium. Laboratory duration times were close to biomass turnover rates calculated from field data ... Ethiopian lakes include the work of Seyoum. Mengistou ... water balance of this lake as the static water level.

  9. CIRP Design 2012 Sustainable Product Development

    CERN Document Server

    2013-01-01

    During its life cycle, a product produces waste that is over 20 times its weight. As such it is critical to develop products that are sustainable. Currently product development processes lack high quality methods and tools that are empirically validated to support development of sustainable products. This book is a compilation of over forty cutting edge international research papers from the 22nd CIRP International Design Conference, written by eminent researchers from 15 countries, on engineering design process, methods and tools, broadly for supporting sustainable product development.   A variety of new insights into the product development process, as well as a host of methods and tools that are at the cutting edge of design research are discussed and explained covering a range of diverse topics. The areas covered include: ·Sustainable design and manufacturing, ·Design synthesis and creativity, ·Global product development and product life cycle management, ·Design for X (safety, reliability, manufactu...

  10. Biomass and Neutral Lipid Production in Geothermal Microalgal Consortia

    Science.gov (United States)

    Bywaters, Kathryn F.; Fritsen, Christian H.

    2015-01-01

    Recently, technologies have been developed that offer the possibility of using algal biomass as feedstocks to energy producing systems – in addition to oil-derived fuels (Bird et al., 2011, 2012). Growing native mixed microalgal consortia for biomass in association with geothermal resources has the potential to mitigate negative impacts of seasonally low temperatures on biomass production systems as well as mitigate some of the challenges associated with growing unialgal strains. We assessed community composition, growth rates, biomass, and neutral lipid production of microalgal consortia obtained from geothermal hot springs in the Great Basin/Nevada area that were cultured under different thermal and light conditions. Biomass production rates ranged from 39.0 to 344.1 mg C L−1 day−1. The neutral lipid production in these consortia with and without shifts to lower temperatures and additions of bicarbonate (both environmental parameters that have been shown to enhance neutral lipid production) ranged from 0 to 38.74 mg free fatty acids (FFA) and triacylglycerols (TAG) L−1 day−1; the upper value was approximately 6% of the biomass produced. The higher lipid values were most likely due to the presence of Achnanthidium sp. Palmitic and stearic acids were the dominant free fatty acids. The S/U ratio (the saturated to unsaturated FA ratio) decreased for cultures shifted from their original temperature to 15°C. Biomass production was within the upper limits of those reported for individual strains, and production of neutral lipids was increased with secondary treatment. All results demonstrate a potential of culturing and manipulating resultant microalgal consortia for biomass-based energy production and perhaps even for biofuels. PMID:25763368

  11. Biomass and Neutral Lipid Production in Geothermal Microalgal Consortia

    Directory of Open Access Journals (Sweden)

    Kathryn Faye Bywaters

    2015-02-01

    Full Text Available Recently, technologies have been developed that offer the possibility of using algal biomass as feedstocks to energy producing systems- in addition to oil-derived fuels (Bird et al., 2011;Bird et al., 2012. Growing native mixed microalgal consortia for biomass in association with geothermal resources has the potential to mitigate negative impacts of seasonally low temperatures on biomass production systems as well as mitigate some of the challenges associated with growing unialgal strains. We assessed community composition, growth rates, biomass and neutral lipid production of microalgal consortia obtained from geothermal hot springs in the Great Basin/Nevada area that were cultured under different thermal and light conditions. Biomass production rates ranged from 368 to 3246 mg C L-1 d-1. The neutral lipid production in these consortia with and without shifts to lower temperatures and additions of bicarbonate (both environmental parameters that have been shown to enhance neutral lipid production ranged from zero to 38.74 mg free fatty acids and triacylglycerols L-1 d-1, the upper value was approximately 6% of the biomass produced. The higher lipid values were most likely due to the presence of Achnanthidium sp. Palmitic and stearic acids were the dominant free fatty acids. The S/U ratio (the saturated to unsaturated FA ratio decreased for cultures shifted from their original temperature to 15°C. Biomass production was within the upper limits of those reported for individual strains, and production of neutral lipids was increased with secondary treatment – all results demonstrate a potential of culturing and manipulating resultant microalgal consortia for biomass-based energy production and perhaps even for biofuels.

  12. Short lecture series in sustainable product development

    DEFF Research Database (Denmark)

    McAloone, Tim C.

    2005-01-01

    Three lectures in sustainable product development models, methods and mindsets should give insight into the way of thinking about the environment when developing products. The first two lectures will guide you through: . Environmental problems in industry & life-cycle thinking . Professional...... methods for analysing and changing products’ environmental profiles . Sustainability as a driver for innovation...

  13. Panorama 2010: Which biomass resources should be used to obtain a sustainable energy system?

    International Nuclear Information System (INIS)

    Lorne, D.

    2010-01-01

    Biomass is the leading renewable energy in the world today. Moreover, the introduction of biomass into energy systems presents certain advantages as far as reducing greenhouse gas emissions is concerned. However, its mobilization still presents many challenges relative to the competition between uses and the management of local natural resources (e.g. water, soil and biodiversity). Therefore, the technologies involved should be structured so that this resource can be developed to be truly sustainable. (author)

  14. Hydrogen from algal biomass: A review of production process

    Directory of Open Access Journals (Sweden)

    Archita Sharma

    2017-09-01

    Full Text Available Multifariousness of biofuel sources has marked an edge to an imperative energy issue. Production of hydrogen from microalgae has been gathering much contemplation right away. But, mercantile production of microalgae biofuels considering bio-hydrogen is still not practicable because of low biomass concentration and costly down streaming processes. This review has taken up the hydrogen production by microalgae. Biofuels are the up and coming alternative to exhaustible, environmentally and unsafe fossil fuels. Algal biomass has been considered as an enticing raw material for biofuel production, these days photobioreactors and open-air systems are being used for hydrogen production from algal biomass. The formers allow the careful cultivation control whereas the latter ones are cheaper and simpler. A contemporary, encouraging optimization access has been included called algal cell immobilization on various matrixes which has resulted in marked increase in the productivity per volume of a reactor and addition of the hydrogen-production phase.

  15. BioRefine. New biomass products programme 2007-2012. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Makinen, T. (ed.) [VTT Technical Research Centre of Finland, Espoo (Finland); Alakangas, E.; Holviala, N. (eds.) [VTT Technical Research Centre of Finland, Jyvaskyla (Finland)

    2012-07-01

    The focal areas of the BioRefine programme have been business development, raw materials, and product lines. The key issue in the programme has been the development of business opportunities. The other two programme areas - raw materials and product lines, including technologies and services - have always been viewed from the perspective of short, medium or long-term business activities.The programme has organised four calls for research projects. The focus of the first call was on biomass-based fuels for transport (in the autumn 2007), the second one focused on other biomass-based products like chemicals and materials (in the spring 2008), and the third one on new biomass sources and waste-based biomass, and research supporting the business development of SME companies (early in 2010). In the last call in the spring 2011, project proposals were expected to focus on the following areas: new innovative and multidisciplinary research initiatives related to biomass utilisation, small distributed biorefinery concepts, efficient and sustainable utilisation of biomass raw materials in new integrated solutions for biorefining, and new integrated solutions for the efficient utilisation of sidestreams in the biorefining value chain or in its parts. Unlike research organizations, companies have been able to apply for funding continuously from Tekes.

  16. Use of Jatropha curcas hull biomass for bioactive compost production

    Energy Technology Data Exchange (ETDEWEB)

    Sharma, D.K. [Division of Environmental Sciences, Indian Agricultural Research Institute, New Delhi 110012 (India); Pandey, A.K.; Lata [Division of Microbiology, Indian Agricultural Research Institute, New Delhi 110012 (India)

    2009-01-15

    The paper deals with utilization of biomass of Jatropha hulls for production of bioactive compost. In the process of Jatropha oil extraction, a large amount of hull waste is generated. It has been found that the direct incorporation of hull into soil is considerably inefficient in providing value addition to soil due to its unfavorable physicochemical characteristics (high pH, EC and phenolic content). An alternative to this problem is the bioconversion of Jatropha hulls using effective lignocellulolytic fungal consortium, which can reduce the phytotoxicity of the degraded material. Inoculation with the fungal consortium resulted in better compost of jatropha hulls within 1 month, but it takes nearly 4 months for complete compost maturation as evident from the results of phytotoxicity test. Such compost can be applied to the acidic soil as a remedial organic manure to help maintaining sustainability of the agro-ecosystem. Likewise, high levels of cellulolytic enzymes observed during bioconversion indicate possible use of fungi for ethanol production from fermentation of hulls. (author)

  17. Options for sustainability improvement and biomass use in Malaysia : Palm oil production chain and biorefineries for non-food use of residues and by-products including other agricultural crops

    NARCIS (Netherlands)

    Dam, van J.E.G.

    2009-01-01

    The Division Biobased Products of the WUR institute A&F was approached by the Dutch Ministry of Agriculture, Nature and Food Quality with a policy support question about the potential of Bio-based economic developments in Malaysia. Malaysia is one of the major international trade partners of the

  18. Technical assistance for an evaluation of international schemes to promote biomass sustainability. Final report

    International Nuclear Information System (INIS)

    Londo, M.

    2009-12-01

    In this technical assistance report to the title subject report is given of Task 1: Review of GREEN-X assumptions on biomass availability and costs; Task 2: Impacts of sustainability criteria on biomass availability and costs; Task 3: Applicability of existing certification schemes; Task 4: Identification of feasible verification options; and Task 5: summary, integration. The key objective of Task 1 is to validate the present and future availability (up to 2020) and costs of biomass energy in the EU 27. The GREEN-X model forecasts the deployment of renewable energy systems under various scenarios in terms of supporting policy instruments, the availability of resources and generation technologies and energy, technology and resource price developments. Objective of task 2 is to assess to what extent the sustainability criteria as specified in the Renewable Energy Directive (RED (EP/EC 2009)) affect availability and costs of biofuels. The objective of task 3 is to assess to what extent national and international certification schemes (existing and under development) would be applicable for safeguarding the sustainability criteria as mentioned in the Renewable Energy Sources (RES) directive. The objective of Task 4 is to identify and analyse feasible options to verify compliance with biomass sustainability criteria, in the case of forest biomass.

  19. Thermodynamic analysis of hydrogen production from biomass gasification

    International Nuclear Information System (INIS)

    Cohce, M.K.; Dincer, I.; Rosen, M.A.

    2009-01-01

    'Full Text': Biomass resources have the advantage of being renewable and can therefore contribute to renewable hydrogen production. In this study, an overview is presented of hydrogen production methods in general, and biomass-based hydrogen production in particular. For two methods in the latter category (direct gasification and pyrolysis), assessments are carried out, with the aim of investigating the feasibility of producing hydrogen from biomass and better understanding the potential of biomass as a renewable energy source. A simplified model is presented here for biomass gasification based on chemical equilibrium considerations, and the effects of temperature, pressure and the Gibbs free energy on the equilibrium hydrogen yield are studied. Palm oil (designated C 6 H 10 O 5 ), one of the most common biomass resources in the world, is considered in the analyses. The gasifier is observed to be one of the most critical components of a biomass gasification system, and is modeled using stoichiometric reactions. Various thermodynamic efficiencies are evaluated, and both methods are observed to have reasonably high efficiencies. (author)

  20. An outlook for sustainable forest bioenergy production in the Lake States

    Science.gov (United States)

    Dennis R. Becker; Kenneth Skog; Allison Hellman; Kathleen E. Halvorsen; Terry Mace

    2009-01-01

    The Lake States region of Minnesota, Wisconsin and Michigan offers significant potential for bioenergy production. We examine the sustainability of regional forest biomass use in the context of existing thermal heating, electricity, and biofuels production, projected resource needs over the next decade including existing forest product market demand, and impacts on...

  1. Biomass sustainability criteria: Greenhouse gas accounting issues for biogas and biomethane facilities

    International Nuclear Information System (INIS)

    Adams, P.W.R.; Mezzullo, W.G.; McManus, M.C.

    2015-01-01

    Biomass sustainability criteria were introduced in the UK following the EU Renewable Energy Directive. Criteria are now applicable to solid biomass and biogas, however because it is not mandatory criteria can be adapted by member states with the risk of different interpretation. Operators are required to report greenhouse gas (GHG) emissions for every MJ of energy produced. This paper provides a rigorous analysis of the current GHG emissions accounting methodology for biogas facilities to assess expected compliance for producers. This research uses data from operating CHP and biomethane facilities to calculate GHG emissions using the existing methodology and Government calculator. Results show that whilst many biogas facilities will meet GHG thresholds, as presently defined by Government, several operators may not comply due to methodological uncertainties and chosen operating practices. Several GHG accounting issues are identified which need to be addressed so the biogas industry achieves its reporting obligations and is represented objectively with other bioenergy technologies. Significant methodological issues are highlighted; including consignment definition, mass balance allocation, measurement of fugitive methane emissions, accounting for digestate co-products, fossil fuel comparators, and other accounting problems. Recommendations are made to help address the GHG accounting issues for policy makers and the biogas industry. - Highlights: • GHG accounting issues identified that affect potential compliance with legislation. • Appropriate recognition of digestate value is a key issue for biogas industry. • Fugitive methane emissions measurement is critical for sustainability criteria. • Chosen fossil fuel comparator value determines the potential GHG saving. • Rigorous analysis of GHG accounting methodology for biogas and biomethane systems.

  2. Options for sustainability improvement and biomass use in Malaysia : Palm oil production chain and biorefineries for non-food use of residues and by-products including other agricultural crops

    OpenAIRE

    Dam, van, J.E.G.

    2009-01-01

    The Division Biobased Products of the WUR institute A&F was approached by the Dutch Ministry of Agriculture, Nature and Food Quality with a policy support question about the potential of Bio-based economic developments in Malaysia. Malaysia is one of the major international trade partners of the Netherlands. Annually 4.500 – 5.000 million euro’s worth of goods are imported from Malaysia. The Netherlands are Malaysia’s most important trading partner within the EU. The volume of agricultura...

  3. Biomass : the sustainable energy source for South Asia

    International Nuclear Information System (INIS)

    Chaturvedi, Pradeep

    1998-01-01

    Fuelwood and other biofuels are the indigenously available, and accessible fuels. This situation will continue in near future to at least 2010, and beyond. Recent observations have shown that decentralized growth of fuelwood varieties have reduced pressure on forests and eliminated the gap theory - consumption being higher than the regenerated supply from forests leading to deforestation - resulting in renewed confidence that fuelwood supplies will be available on a sustained basis. Continued effort for technological development, manpower development, financial back up and marketing of fuelwood will hold the key to sustainable traditional supply to the poor in South Asia region

  4. Successful scaling-up of self-sustained pyrolysis of oil palm biomass under pool-type reactor.

    Science.gov (United States)

    Idris, Juferi; Shirai, Yoshihito; Andou, Yoshito; Mohd Ali, Ahmad Amiruddin; Othman, Mohd Ridzuan; Ibrahim, Izzudin; Yamamoto, Akio; Yasuda, Nobuhiko; Hassan, Mohd Ali

    2016-02-01

    An appropriate technology for waste utilisation, especially for a large amount of abundant pressed-shredded oil palm empty fruit bunch (OFEFB), is important for the oil palm industry. Self-sustained pyrolysis, whereby oil palm biomass was combusted by itself to provide the heat for pyrolysis without an electrical heater, is more preferable owing to its simplicity, ease of operation and low energy requirement. In this study, biochar production under self-sustained pyrolysis of oil palm biomass in the form of oil palm empty fruit bunch was tested in a 3-t large-scale pool-type reactor. During the pyrolysis process, the biomass was loaded layer by layer when the smoke appeared on the top, to minimise the entrance of oxygen. This method had significantly increased the yield of biochar. In our previous report, we have tested on a 30-kg pilot-scale capacity under self-sustained pyrolysis and found that the higher heating value (HHV) obtained was 22.6-24.7 MJ kg(-1) with a 23.5%-25.0% yield. In this scaled-up study, a 3-t large-scale procedure produced HHV of 22.0-24.3 MJ kg(-1) with a 30%-34% yield based on a wet-weight basis. The maximum self-sustained pyrolysis temperature for the large-scale procedure can reach between 600 °C and 700 °C. We concluded that large-scale biochar production under self-sustained pyrolysis was successfully conducted owing to the comparable biochar produced, compared with medium-scale and other studies with an electrical heating element, making it an appropriate technology for waste utilisation, particularly for the oil palm industry. © The Author(s) 2015.

  5. Dual uses of microalgal biomass: An integrative approach for biohydrogen and biodiesel production

    International Nuclear Information System (INIS)

    Dasgupta, Chitralekha Nag; Suseela, M.R.; Mandotra, S.K.; Kumar, Pankaj; Pandey, Manish K.; Toppo, Kiran; Lone, J.A.

    2015-01-01

    Highlights: • Chlorella sp. NBRI029 and Scenedesmus sp. NBRI012 shows high biomass productivity. • Scenedesmus sp. NBRI012 shows maximum H 2 evolution in 6th day of fermentation. • Residual biomass after H 2 production contains high lipid content. • Lipid extracted from the residual biomass fulfills various biodiesel properties. - Abstract: Dual application of biomass for biohydrogen and biodiesel production could be considered a feasible option for economic and sustainable energy production from microalgae. In this study, after a large screening of fresh water microalgal isolates, Scenedesmus sp. NBRI012 and Chlorella sp. NBRI029 have exhibited high biomass (1.31 ± 0.11 and 2.62 ± 0.13 g/L respectively) and lipid (244.44 ± 12.3 and 587.38 ± 20.2 mg/L respectively) yield with an organic carbon (acetate) source. Scenedesmus sp. NBRI012 has shown the highest H 2 (maximum evolution of 17.72% v/v H 2 of total gases) production; it produced H 2 continuously for seven days in sulfur-deprived TAP media. Sulfur deprivation during the H 2 production was found to increase the lipid content (410.03 ± 18.5 mg/L) of the residual biomass. Fatty acid profile of the lipid extracted from the residual biomass of Scenedesmus sp. NBRI012 has showed abundance of fatty acids with a carbon chain length of C16 and C18. Cetane number, iodine value, and saponification value of biodiesel were found suitable according to the range given by the Indian standard (IS 15607), Brazilian National Petroleum Agency (ANP255) and the European biodiesel standard EN14214

  6. Recirculation: A New Concept to Drive Innovation in Sustainable Product Design for Bio-Based Products.

    Science.gov (United States)

    Sherwood, James; Clark, James H; Farmer, Thomas J; Herrero-Davila, Lorenzo; Moity, Laurianne

    2016-12-29

    Bio-based products are made from renewable materials, offering a promising basis for the production of sustainable chemicals, materials, and more complex articles. However, biomass is not a limitless resource or one without environmental and social impacts. Therefore, while it is important to use biomass and grow a bio-based economy, displacing the unsustainable petroleum basis of energy and chemical production, any resource must be used effectively to reduce waste. Standards have been developed to support the bio-based product market in order to achieve this aim. However, the design of bio-based products has not received the same level of attention. Reported here are the first steps towards the development of a framework of understanding which connects product design to resource efficiency. Research and development scientists and engineers are encouraged to think beyond simple functionality and associate value to the potential of materials in their primary use and beyond.

  7. A short course in sustainable product development

    DEFF Research Database (Denmark)

    McAloone, Tim C.

    2005-01-01

    This short course in sustainable product development models, methods and mindsets is designed to fit into the Unical course on Engineering Design Methods. Three modules (called “seminars”) will guide you through . The demands for sustainable development . Professional methods for analysing and ch...... and changing products’ environmental profiles . A new approach to product service system development, where the physical product becomes an incidental aspect in the final offering to the customer...

  8. Achieving resource sustainability and enhancing economic development through biomass utilization

    Science.gov (United States)

    Jerrold E. Winandy

    2005-01-01

    As the problems associated with sustaining and enhancing the world's forest and agricultural resources compete with the needs of a rapidly increasing and affluent population, the management of our land becomes a much more complex and important issue. One of the most important environmental features of wood and other woody-like fibers is that they are renewable and...

  9. Transitioning Wood Furniture Products towards Sustainability

    OpenAIRE

    Lu, Lei; Zhang, WeiGuang; Zhang, WeiQing

    2008-01-01

    Wood Furniture Products (WFPs) play a significant role in both the global economy and the transition of society towards sustainability. This paper begins with a brief description of the industry and highlights the current challenges and compelling measures of WFPs from a systems perspective through the lens of the Framework for Strategic Sustainable Development (FSSD) and by applying backcasting from sustainability principles (SPs). An examination of the challenges and opportunities of WFPs i...

  10. Introduction to energy balance of biomass production

    International Nuclear Information System (INIS)

    Manzanares, P.

    1997-01-01

    During last years, energy crops have been envisaged as an interesting alternative to biomass residues utilization as renewable energy source. In this work, main parameters used in calculating the energy balance of an energy crop are analyzed. The approach consists of determining energy equivalents for the different inputs and outputs of the process, thus obtaining energy ratios of the system, useful to determine if the energy balance is positive, that is, if the system generates energy. Energy costs for inputs and assessment approaches for energy crop yields (output) are provided. Finally, as a way of illustration, energy balances of some representative energy crops are shown. (Author) 15 refs

  11. Characterization of Various Biomass Feedstocks for Energy Production

    DEFF Research Database (Denmark)

    Toor, Saqib; Rosendahl, Lasse; Hoffmann, Jessica

    2013-01-01

    Biomass represents the renewable energy source and their use reduces the consumption of fossil fuels and limits the emission of CO2. In this work, various biomass feedstocks were assessed for assessing their suitability as energy production sources using thermochemical conversion routes especially...... hydrothermal liquefaction (HTL) process. The methods used to analyze involved performing proximate, ultimate and thermogravimetry analysis. On the basis of proximate, ultimate, and thermogravimetry analysis, the dried distiller grains with solubles (DDGS), corn silage, chlorella vulgaris, spirulina platensis...

  12. Biogeochemical Research Priorities for Sustainable Biofuel and Bioenergy Feedstock Production in the Americas.

    Science.gov (United States)

    Gollany, Hero T; Titus, Brian D; Scott, D Andrew; Asbjornsen, Heidi; Resh, Sigrid C; Chimner, Rodney A; Kaczmarek, Donald J; Leite, Luiz F C; Ferreira, Ana C C; Rod, Kenton A; Hilbert, Jorge; Galdos, Marcelo V; Cisz, Michelle E

    2015-12-01

    Rapid expansion in biomass production for biofuels and bioenergy in the Americas is increasing demand on the ecosystem resources required to sustain soil and site productivity. We review the current state of knowledge and highlight gaps in research on biogeochemical processes and ecosystem sustainability related to biomass production. Biomass production systems incrementally remove greater quantities of organic matter, which in turn affects soil organic matter and associated carbon and nutrient storage (and hence long-term soil productivity) and off-site impacts. While these consequences have been extensively studied for some crops and sites, the ongoing and impending impacts of biomass removal require management strategies for ensuring that soil properties and functions are sustained for all combinations of crops, soils, sites, climates, and management systems, and that impacts of biomass management (including off-site impacts) are environmentally acceptable. In a changing global environment, knowledge of cumulative impacts will also become increasingly important. Long-term experiments are essential for key crops, soils, and management systems because short-term results do not necessarily reflect long-term impacts, although improved modeling capability may help to predict these impacts. Identification and validation of soil sustainability indicators for both site prescriptions and spatial applications would better inform commercial and policy decisions. In an increasingly inter-related but constrained global context, researchers should engage across inter-disciplinary, inter-agency, and international lines to better ensure the long-term soil productivity across a range of scales, from site to landscape.

  13. Liquid fuels production from biomass. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Levy, P. F.; Sanderson, J. E.; Ashare, E.; Wise, D. L.; Molyneaux, M. S.

    1980-06-30

    The current program to convert biomass into liquid hydrocarbon fuels is an extension of a previous program to ferment marine algae to acetic acid. In that study it was found that marine algae could be converted to higher aliphatic organic acids and that these acids could be readily removed from the fermentation broth by membrane or liquid-liquid extraction. It was then proposed to convert these higher organic acids via Kolbe electrolysis to aliphatic hydrocarbons, which may be used as a diesel fuel. The specific goals for the current porgram are: (1) establish conditions under which substrates other than marine algae may be converted in good yield to organic acids, here the primary task is methane suppression; (2) modify the current 300-liter fixed packed bed batch fermenter to operate in a continuous mode; (3) change from membrane extraction of organic acids to liquid-liquid extraction; (4) optimize the energy balance of the electrolytic oxidation process, the primary task is to reduce the working potential required for the electrolysis while maintaining an adequate current density; (5) scale the entire process up to match the output of the 300 liter fermenter; and (6) design pilot plant and commercial size plant (1000 tons/day) processes for converting biomass to liquid hydrocarbon fuels and perform an economic analysis for the 1000 ton/day design.

  14. Root diseases, climate change and biomass productivity

    International Nuclear Information System (INIS)

    Warren, G.R.; Cruickshank, M.

    2004-01-01

    Tree growth and yield in eastern boreal spruce fir forests are both greatly affected by root and butt rots. These pests are also prevalent in western coniferous species and boreal-sub-boreal forests. Infections are difficult to detect, but reduced growth, tree mortality, wind throw and scaled butt cull contribute to considerable forest gaps. Harvesting and stand tending practices in second growth stands are creating conditions for increased incidence. Tree stress is one of the major factors affecting the spread of root disease. It is expected that climate change will create abnormal stress conditions that will further compound the incidence of root disease. A comparison was made between natural and managed stands, including harvesting and stand practices such as commercial thinning. Studies of Douglas-fir forests in British Columbia were presented, with results indicating that managed forests contain one third to one half less carbon biomass than unmanaged forests. It was concluded that root diseases must be recognized and taken into account in order to refine and improve biomass estimates, prevent overestimation of wood supply models and avoid potential wood fibre losses. 40 refs., 2 figs.

  15. Sustainable bioenergy production from Missouri's Ozark forests

    Science.gov (United States)

    Henry E. Stelzer; Chris Barnett; Verel W. Bensen

    2008-01-01

    The main source of wood fiber for energy resides in Missouri's forests. Alternative bioenergy systems that can use forest thinning residues are electrical energy, thermal energy, and liquid bio-fuel. By applying a thinning rule and accounting for wood fiber that could go into higher value wood products to all live biomass data extracted from the U.S. Forest...

  16. Hydrogen production from biomass by thermochemical recuperative energy conversion

    Energy Technology Data Exchange (ETDEWEB)

    Fushimi, C.; Araki, K.; Yamaguchi, Y.; Tsutsumi, A. [Tokyo Univ. (Japan). Dept. of Chemical System Engineering

    2002-07-01

    The authors conducted, using a thermogravimetric reactor, a kinetic study of production of thermochemical recuperative hydrogen from biomass. The four different biomass materials used were: cellulose, lignin, metroxylon stem, and coconut husk. Under both rapid heating and slow heating conditions, the weight changes of the biomass samples during the steam gasification or pyrolysis were measured at 973 Kelvin. Simultaneously, measurements of the evolution rates of low-molecular-weight gas products such as hydrogen, methane, carbon monoxide, and carbon dioxide were taken with the help of a mass spectrometer and a micro gas chromatograph (GC). The steam gasification of char significantly increased the amount of hydrogen and carbon dioxide production. The results also indicated that at higher heating rate, the cold gas efficiency of steam gasification was increased. This can be explained by the suppression of the tar production at lower temperature. 25 refs., 2 tabs., 10 figs.

  17. Sustainable Biomass Potentials for Food-Feed-Fuels in the Future

    DEFF Research Database (Denmark)

    Holm-Nielsen, Jens Bo; Kirchovas, Simas

    2012-01-01

    has for many years been forming the basis for the change together with wind and solar energy. These resources still contains great potentials for energy supply chains in increasing areas of Europe and the World. Biomass sustainability issues could be solved by developing the international...

  18. Superstructure optimization of biodiesel production from microalgal biomass

    DEFF Research Database (Denmark)

    Rizwan, Muhammad; Lee, Jay H.; Gani, Rafiqul

    2013-01-01

    In this study, we propose a mixed integer nonlinear programming (MINLP) model for superstructure based optimization of biodiesel production from microalgal biomass. The proposed superstructure includes a number of major processing steps for the production of biodiesel from microalgal biomass...... for the production of biodiesel from microalgae. The proposed methodology is tested by implementing on a specific case study. The MINLP model is implemented and solved in GAMS using a database built in Excel. The results from the optimization are analyzed and their significances are discussed....

  19. Biomass production in energy plantation of Prosopis juliflora

    Energy Technology Data Exchange (ETDEWEB)

    Gurumurti, K.

    1984-09-01

    Studies on time trends of biomass production by means of age series in energy plantations (spacing 1.3 x 1.3 m) of Prosopis juliflora is presented. The component biomass production at the age of 18, 24, 30, 36 and 48 months was determined. The results show considerable variation among the population of trees. However, distinct linear relationship between girth at breast height (GBH) and total height was discernible. The total biomass produced at 18, 24, 30, 36 and 48 months of age was 19.69, 41.39, 69.11, 114.62 and 148.63 dry tonnes per hectare, respectively. The corresponding figures for utilizable biomass (wood, bark and branch) were 14.63, 32.17, 50.59, 88.87 and 113.25 dry tonnes per hectare. At all the periods of study, branch component formed the major portion of total biomass being around 50 to 55%. Utilizable biomass was three-fourths of total biomass at all ages. The solar energy conversion efficiency ranged from 0.59% at 18 months to 1.68% at 48 months of age, the peak value being 1.87% at the age of 36 months. It is shown that the variables diameter and height can be used to reliably predict the biomass production in Prosopis juliflora with the help of the regression equations developed in the present study. It is concluded that Prosopis juliflora is an ideal candidate for energy plantations in semi arid and marginal lands, not only to meet the fuelwood demands but also to improve the soil fertility, for, this plant is a fast growing and nitrogen fixing leguminous tree.

  20. Selection of Willows (Salix sp. for Biomass Production

    Directory of Open Access Journals (Sweden)

    Davorin Kajba

    2014-12-01

    Full Text Available Background and Purpose: Willows compared with other species are the most suitable for biomass production in short rotations because of their very abundant growth during the first years. Nowadays, in Croatia, a large number of selected and registered willow clones are available. The main objective of the research should be to find genotypes which, with minimum nutrients, will produce the maximum quantity of biomass. Material and Methods: Clonal test of the arborescent willows include the autochthonous White Willow (Salix alba, interracial hybrids of the autochthonous White Willow and the English ‘cricket’ Willow (S. alba var. calva, interspecies hybrids (S. matsudana × S. alba, as well as multispecies hybrids of willows. Average production of dry biomass (DM∙ha-1∙a-1 per hectare was estimated in regard to the clone, survival, spacing and the number of shoots per stump. Results: The highest biomass production as well as the best adaptedness and phenotypic stability on testing site was shown by clones (‘V 374’, ‘V 461’, ‘V 578’ from 15.2 - 25.0 t∙DM∙ha-1∙a-1 originated from backcross hybrid S. matsudana × (S. matsudana × S. alba and by one S. alba clone (‘V 95’, 23.1 - 25.7 t∙DM∙ha-1∙a-1. These clones are now at the stage of registration and these results indicate significant potential for further breeding aimed at biomass production in short rotations. Conclusions: Willow clones showed high biomass production on marginal sites and dry biomass could be considerably increased with the application of intensive silvicultural and agro technical measures. No nutrition or pest control measures were applied (a practice otherwise widely used in intensive cultivation system, while weed vegetation was regulated only at the earliest age.

  1. Characterization of biofilm-forming cyanobacteria for biomass and lipid production.

    Science.gov (United States)

    Bruno, L; Di Pippo, F; Antonaroli, S; Gismondi, A; Valentini, C; Albertano, P

    2012-11-01

    This work reports on one of the first attempts to use biofilm-forming cyanobacteria for biomass and lipid production. Three isolates of filamentous cyanobacteria were obtained from biofilms at different Italian sites and characterized by a polyphasic approach, involving microscopic observations, ecology and genetic diversity (studying the 16S rRNA gene). The isolates were grown in batch systems and in a semi-continuous flow incubator, specifically designed for biofilms development. Culture system affected biomass and lipid production, but did not influence the fatty acid profile. The composition of fatty acids was mainly palmitic acid (>50%) and less amounts of other saturated and monounsaturated fatty acids. Only two isolates contained two polyunsaturated fatty acids. Data obtained from the flow-lane incubator system would support a more economical and sustainable use of the benthic micro-organisms for biomass production. The produced lipids contained fatty acids suitable for a high-quality biodiesel production, showing high proportions of saturated and monounsaturated fatty acids. Data seem promising when taking into account the savings in cost and time derived from easy procedures for biomass harvesting, especially when being able to obtain the co-production of other valuable by-products. © 2012 The Authors Journal of Applied Microbiology © 2012 The Society for Applied Microbiology.

  2. Product Lifecycle Management and Sustainable Space Exploration

    Science.gov (United States)

    Caruso, Pamela W.; Dumbacher, Daniel L.; Grieves, Michael

    2011-01-01

    This slide presentation reviews the use of product lifecycle management (PLM) in the general aerospace industry, its use and development at NASA and at Marshall Space Flight Center, and how the use of PLM can lead to sustainable space exploration.

  3. Diseases and pests in biomass production systems

    International Nuclear Information System (INIS)

    Royle, D.J.; Hunter, Tom; McNabb, H.S. Jr.

    1998-01-01

    The current status of disease and pest problems in willow and poplar biomass systems for energy within Canada, Sweden, the United Kingdom and the United States is described. The IEA Disease and Pest Activities within the recent Task XII (1995-1997), and previous Tasks since 1987, have provided outstanding opportunities for international co-operation which has served substantially to augment national research programmes. Work is described on recognizing different forms of an insect pest or pathogen and understanding the genetic basis of its variability, which is of fundamental importance in developing pest management strategies that exclude inputs of energy-rich materials such as pesticides. Options for more natural pest control are considered including breeding for resistance, plantation designs based on host genotype diversity and biological control 16 refs, 2 figs

  4. Biomass production and forage quality of head-smut disease ...

    African Journals Online (AJOL)

    Napier grass, commonly known as “elephant grass”, is a major feed used for dairy production by smallholder farmers in eastern and central Africa. However, the productivity of the grass in the region is threatened by stunt and head-smut diseases. The objective of this study was to determine biomass yield and forage quality ...

  5. Sustainable Algae Biodiesel Production in Cold Climates

    OpenAIRE

    Baliga, Rudras; Powers, Susan E.

    2010-01-01

    This life cycle assessment aims to determine the most suitable operating conditions for algae biodiesel production in cold climates to minimize energy consumption and environmental impacts. Two hypothetical photobioreactor algae production and biodiesel plants located in Upstate New York (USA) are modeled. The photobioreactor is assumed to be housed within a greenhouse that is located adjacent to a fossil fuel or biomass power plant that can supply waste heat and flue gas containing CO2 as a ...

  6. Sustainability evaluation of nanotechnology processing and production

    OpenAIRE

    Teresa M. Mata; Nídia de Sá Caetano; António A. Martins

    2015-01-01

    This article discusses the current situation and challenges posed by nanotechnology from a sustainability point of view. It presents an objective methodology to evaluate the sustainability of nanotechnology products, based on a life cycle thinking approach, a framework particularly suited to assess all current and future relevant economic, societal and environmental impacts products and processes. It is grounded on a hierarchical definition of indicators, starting from 3D indicators that take...

  7. The feasibility of biomass production for the Netherlands energy economy

    International Nuclear Information System (INIS)

    Lysen, E.H.; Daey Ouwens, C.; Van Onna, M.J.G.; Blok, K.; Okken, P.A.; Goudriaan, J.

    1992-05-01

    The title study aims at providing a reliable overview of the technical and financial parameters for the available and potential methods of energy production through biomass. In the study the production of biomass has been separated as much as possible from the transport and the conversion of energy carriers such as fuels or electricity. The assessment of the feasibility is based upon data analysis in phase A of the study and subsequent interviews with key institutes and industries in the Netherlands in phase B. The problems in agriculture and environment justify an active policy with respect to the use of biomass for the Netherlands' energy economy. The developments and the programmes in other European countries and the USA, the fact that a good infrastructure is present in the Netherlands, and the possible spin-off for developing countries justify this conclusion. It is recommended to initiate a focused national programme in the field of biomass energy, properly coordinated with the present ongoing Energy from Waste programme (EWAB) and with ongoing international programmes. The programme should encompass both research and development, as well as a few demonstration projects. Research to reduce costs of biomass is important, largely through reaching higher yields. In view of the competitive kWh costs of combined biomass gasifier/steam and gas turbines systems, based upon energy and environmental considerations, development and demonstration of this system is appropriate. 14 figs., 24 tabs., 6 app., 99 refs

  8. Assessing the sustainability of bioethanol production in Nepal

    Energy Technology Data Exchange (ETDEWEB)

    Khatiwada, Dilip

    2010-10-15

    Access to modern energy services derived from renewable sources is a prerequisite, not only for economic growth, rural development and sustainable development, but also for energy security and climate change mitigation. The least developed countries (LDCs) primarily use traditional biomass and have little access to commercial energy sources. They are more vulnerable to problems relating to energy security, air pollution, and the need for hard-cash currency to import fossil fuels. This thesis evaluates sugarcane-molasses bioethanol, a renewable energy source with the potential to be used as a transport fuel in Nepal. Sustainability aspects of molasses-based ethanol have been analyzed. Two important indicators for sustainability, viz. net energy and greenhouse gas (GHG) balances have been used to assess the appropriateness of bioethanol in the life cycle assessment (LCA) framework. This thesis has found that the production of bioethanol is energy-efficient in terms of the fossil fuel inputs required to produce it. Life cycle greenhouse gas (GHG) emissions from production and combustion are also lower than those of gasoline. The impacts of important physical and market parameters, such as sugar cane productivity, the use of fertilizers, energy consumption in different processes, and price have been observed in evaluating the sustainability aspects of bioethanol production. The production potential of bioethanol has been assessed. Concerns relating to the fuel vs. food debate, energy security, and air pollution have also been discussed. The thesis concludes that the major sustainability indicators for molasses ethanol in Nepal are in line with the goals of sustainable development. Thus, Nepal could be a good example for other LDCs when favorable governmental policy, institutional set-ups, and developmental cooperation from donor partners are in place to strengthen the development of renewable energy technologies

  9. Biomass production and utilisation. Policy implications for LDCs

    International Nuclear Information System (INIS)

    Davidson, O.

    1997-01-01

    The importance of biomass in the energy sector of LDCs and in Africa in particular is illustrated so as to provide the background to the policy importance on the production and use of this energy source. The main areas for policy attention discussed are: biomass for power generation, biomass use in the transport sector, urban energy supply and the interactions with agricultural policies. The roles of the major institutions the government, private sector institutions, educational institutions and non-governmental organizations are identified. It is concluded that with the necessary policy shift that is being advocated, biomass can contribute to a more equitable supply of high quality and efficient energy services in the future of African countries. (K.A.)

  10. A Review on Biomass Torrefaction Process and Product Properties

    Energy Technology Data Exchange (ETDEWEB)

    Jaya Shankar Tumuluru; Shahab Sokhansanj; Christopher T. Wright; J. Richard Hess; Richard D. Boardman

    2011-08-01

    Biomass Torrefaction is gaining attention as an important preprocessing step to improve the quality of biomass in terms of physical properties and chemical composition. Torrefaction is a slow heating of biomass in an inert or reduced environment to a maximum temperature of approximately 300 C. Torrefaction can also be defined as a group of products resulting from the partially controlled and isothermal pyrolysis of biomass occurring in a temperature range of 200-280 C. Thus, the process can be called a mild pyrolysis as it occurs at the lower temperature range of the pyrolysis process. At the end of the torrefaction process, a solid uniform product with lower moisture content and higher energy content than raw biomass is produced. Most of the smoke-producing compounds and other volatiles are removed during torrefaction, which produces a final product that will have a lower mass but a higher heating value. The present review work looks into (a) torrefaction process and different products produced during the process and (b) solid torrefied material properties which include: (i) physical properties like moisture content, density, grindability, particle size distribution and particle surface area and pelletability; (ii) chemical properties like proximate and ultimate composition; and (iii) storage properties like off-gassing and spontaneous combustion.

  11. Biomass and Biogas for Sustainable Energy Generation: Recent Development and Perspectives

    International Nuclear Information System (INIS)

    Mustafa Omer, Abdeen

    2017-01-01

    Biogas from biomass appears to have potential as an alternative energy source, which is potentially rich in biomass resources. This is an overview of some salient points and perspectives of biogas technology. The current literature is reviewed regarding the ecological, social, cultural and economic impacts of biogas technology. This article gives an overview of present and future use of biomass as an industrial feedstock for production of fuels, chemicals and other materials. However, to be truly competitive in an open market situation, higher value products are required. Results suggest that biogas technology must be encouraged, promoted, invested, implemented, and demonstrated, but especially in remote rural areas. (author)

  12. Supporting Sustainability and Personalization with Product Architecture

    DEFF Research Database (Denmark)

    Nielsen, Kjeld; Jørgensen, Kaj Asbjørn; Taps, Stig B.

    2011-01-01

    Mass Customization, Personalization and Co-creation (MCPC) are continuously being adopted as a competitive business strategy. Consumers as well as governments are at the same time applying pressure on companies to adopt a more sustainable strategy, consumers request greener products and governments...... is a driver for MCPC and earlier research within product architecture has indicated that modularization could support sustainability. In this paper, work on the drivers for modularization with focus on sustainability and MCPC, will be presented. Several modularization methods and drivers are analyzed...

  13. Evaluation of gastrointestinal bacterial population for the production of holocellulose enzymes for biomass deconstruction.

    Science.gov (United States)

    Asem, Dhaneshwaree; Leo, Vincent Vineeth; Passari, Ajit Kumar; Tonsing, Mary Vanlalhruaii; Joshi, J Beslin; Uthandi, Sivakumar; Hashem, Abeer; Abd Allah, Elsayed Fathi; Singh, Bhim Pratap

    2017-01-01

    The gastrointestinal (GI) habitat of ruminant and non-ruminant animals sustains a vast ensemble of microbes that are capable of utilizing lignocellulosic plant biomass. In this study, an indigenous swine (Zovawk) and a domesticated goat (Black Bengal) were investigated to isolate bacteria having plant biomass degrading enzymes. After screening and enzymatic quantification of eighty-one obtained bacterial isolates, Serratia rubidaea strain DBT4 and Aneurinibacillus aneurinilyticus strain DBT87 were revealed as the most potent strains, showing both cellulase and xylanase production. A biomass utilization study showed that submerged fermentation (SmF) of D2 (alkaline pretreated pulpy biomass) using strain DBT4 resulted in the most efficient biomass deconstruction with maximum xylanase (11.98 U/mL) and FPase (0.5 U/mL) activities (55°C, pH 8). The present study demonstrated that bacterial strains residing in the gastrointestinal region of non-ruminant swine are a promising source for lignocellulose degrading microorganisms that could be used for biomass conversion.

  14. Evaluation of gastrointestinal bacterial population for the production of holocellulose enzymes for biomass deconstruction.

    Directory of Open Access Journals (Sweden)

    Dhaneshwaree Asem

    Full Text Available The gastrointestinal (GI habitat of ruminant and non-ruminant animals sustains a vast ensemble of microbes that are capable of utilizing lignocellulosic plant biomass. In this study, an indigenous swine (Zovawk and a domesticated goat (Black Bengal were investigated to isolate bacteria having plant biomass degrading enzymes. After screening and enzymatic quantification of eighty-one obtained bacterial isolates, Serratia rubidaea strain DBT4 and Aneurinibacillus aneurinilyticus strain DBT87 were revealed as the most potent strains, showing both cellulase and xylanase production. A biomass utilization study showed that submerged fermentation (SmF of D2 (alkaline pretreated pulpy biomass using strain DBT4 resulted in the most efficient biomass deconstruction with maximum xylanase (11.98 U/mL and FPase (0.5 U/mL activities (55°C, pH 8. The present study demonstrated that bacterial strains residing in the gastrointestinal region of non-ruminant swine are a promising source for lignocellulose degrading microorganisms that could be used for biomass conversion.

  15. Sustainable aggregates production : green applications for aggregate by-products.

    Science.gov (United States)

    2015-06-01

    Increased emphasis in the construction industry on sustainability and recycling requires production of : aggregate gradations with lower dust (cleaner aggregates) and smaller maximum sizeshence, increased : amount of quarry by-products (QBs). QBs ...

  16. Sustainable production of wood and non-wood forest products

    Science.gov (United States)

    Ellen M. Donoghue; Gary L. Benson; James L. Chamberlain

    2003-01-01

    The International Union of Forest Research Organizations (IUFRO) All Divisions 5 Conference in Rotorua, New Zealand, March 11-15, 2003, focused on issues surrounding sustainable foest management and forest products research. As the conference title "Forest Products Research: Providing for Sustainable Choices" suggests, the purpose of the conference was to...

  17. Comparison of biomass productivity and nitrogen fixing potential of Azolla SPP

    Energy Technology Data Exchange (ETDEWEB)

    Arora, A.; Singh, P.K. [Indian Agricultural Research Inst., New Delhi (India)

    2003-03-01

    Study was conducted on six different Azolla species, available in the germplasm collection of NCCUBGA, IARI, New Delhi namely A. filiculoides, A. mexicana, A. microphylla, A. pinnata, A. rubra and A. caroliniana in a polyhouse to assess their growth potential by determining their maximal biomass productivity, doubling time and relative growth rates. Their nitrogen fixing potential was assessed by acetylene reduction assay. Among them Azolla microphylla gave highest biomass production and relative growth rate followed by Azolla caroliniana. Both these had high nitrogenase activity also. Peak nitrogenase activity of these strains was found on 14th day of growth and it declined on further incubation. Azolla microphylla and Azolla rubra were more tolerant to salinity than others. On the other hand Azolla pinnata, which is endemic species found in India, exhibited low biomass production, relative growth rate and lower nitrogenase activity compared to other species. It was unable to sustain growth in saline medium. Under polyhouse conditions, A. microphylla was found to perform better than other cultures in terms of biomass productivity, N fixing ability and salt tolerance. Hence it is taken up for mass production.(author)

  18. PRODUCTION OF NEW BIOMASS/WASTE-CONTAINING SOLID FUELS

    Energy Technology Data Exchange (ETDEWEB)

    David J. Akers; Glenn A. Shirey; Zalman Zitron; Charles Q. Maney

    2001-04-20

    CQ Inc. and its team members (ALSTOM Power Inc., Bliss Industries, McFadden Machine Company, and industry advisors from coal-burning utilities, equipment manufacturers, and the pellet fuels industry) addressed the objectives of the Department of Energy and industry to produce economical, new solid fuels from coal, biomass, and waste materials that reduce emissions from coal-fired boilers. This project builds on the team's commercial experience in composite fuels for energy production. The electric utility industry is interested in the use of biomass and wastes as fuel to reduce both emissions and fuel costs. In addition to these benefits, utilities also recognize the business advantage of consuming the waste byproducts of customers both to retain customers and to improve the public image of the industry. Unfortunately, biomass and waste byproducts can be troublesome fuels because of low bulk density, high moisture content, variable composition, handling and feeding problems, and inadequate information about combustion and emissions characteristics. Current methods of co-firing biomass and wastes either use a separate fuel receiving, storage, and boiler feed system, or mass burn the biomass by simply mixing it with coal on the storage pile. For biomass or biomass-containing composite fuels to be extensively used in the U.S., especially in the steam market, a lower cost method of producing these fuels must be developed that includes both moisture reduction and pelletization or agglomeration for necessary fuel density and ease of handling. Further, this method of fuel production must be applicable to a variety of combinations of biomass, wastes, and coal; economically competitive with current fuels; and provide environmental benefits compared with coal. Notable accomplishments from the work performed in Phase I of this project include the development of three standard fuel formulations from mixtures of coal fines, biomass, and waste materials that can be used in

  19. Challenges for renewable hydrogen production from biomass

    International Nuclear Information System (INIS)

    Levin, David B.; Chahine, Richard

    2010-01-01

    The increasing demand for H 2 for heavy oil upgrading, desulfurization and upgrading of conventional petroleum, and for production of ammonium, in addition to the projected demand for H 2 as a transportation fuel and portable power, will require H 2 production on a massive scale. Increased production of H 2 by current technologies will consume greater amounts of conventional hydrocarbons (primarily natural gas), which in turn will generate greater greenhouse gas emissions. Production of H 2 from renewable sources derived from agricultural or other waste streams offers the possibility to contribute to the production capacity with lower or no net greenhouse gas emissions (without carbon sequestration technologies), increasing the flexibility and improving the economics of distributed and semi-centralized reforming. Electrolysis, thermocatalytic, and biological production can be easily adapted to on-site decentralized production of H 2 , circumventing the need to establish a large and costly distribution infrastructure. Each of these H 2 production technologies, however, faces technical challenges, including conversion efficiencies, feedstock type, and the need to safely integrate H 2 production systems with H 2 purification and storage technologies. (author)

  20. Hydrogen Production Cost Estimate Using Biomass Gasification: Independent Review

    Energy Technology Data Exchange (ETDEWEB)

    Ruth, M.

    2011-10-01

    This independent review is the conclusion arrived at from data collection, document reviews, interviews and deliberation from December 2010 through April 2011 and the technical potential of Hydrogen Production Cost Estimate Using Biomass Gasification. The Panel reviewed the current H2A case (Version 2.12, Case 01D) for hydrogen production via biomass gasification and identified four principal components of hydrogen levelized cost: CapEx; feedstock costs; project financing structure; efficiency/hydrogen yield. The panel reexamined the assumptions around these components and arrived at new estimates and approaches that better reflect the current technology and business environments.

  1. Ethanol production from biomass: technology and commercialisation status

    Energy Technology Data Exchange (ETDEWEB)

    Mielenz, J.R.

    2001-06-01

    Owing to technical improvements in the processes used to produce ethanol from biomass, construction of at least two waste-to-ethanol production plants in the United States is expected to start this year. Although there are a number of robust fermentation microorganisms available, initial pretreatment of the biomass and costly cellulase enzymes remain critical targets for process and cost improvements. A highly efficient, very low-acid pretreatment process is approaching pilot testing, while research on cellulases for ethanol production is expanding at both enzyme and organism level. (Author)

  2. Environmental Sustainability Analysis of Biodiesel Production

    DEFF Research Database (Denmark)

    Herrmann, Ivan Tengbjerg; Hauschild, Michael Michael Zwicky; Birkved, Morten

    Due to their generally positive carbon dioxide balance, biofuels are seen as one of the energy carriers in a more sustainable future transportation energy system, but how good is their environmental sustainability, and where lie the main potentials for improvement of their sustainability? Questions...... like these require a life cycle perspective on the biofuel - from the cradle (production of the agricultural feedstock) to the grave (use as fuel). An environmental life cycle assessment is performed on biodiesel to compare different production schemes including chemical and enzymatic esterification...... with the use of methanol or ethanol. The life cycle assessment includes all processes needed for the production, distribution and use of the biodiesel (the product system), and it includes all relevant environmental impacts from the product system, ranging from global impacts like climate change and loss...

  3. Sustainable electricity generation from oil palm biomass wastes in Malaysia: An industry survey

    International Nuclear Information System (INIS)

    Umar, Mohd Shaharin; Jennings, Philip; Urmee, Tania

    2014-01-01

    The biomass wastes from the palm oil industry offer great potential for large-scale power generation in Malaysia. It has been estimated that 85.5% of available biomass in the country comes from oil palm agriculture. The introduction of the FiT (Feed-in Tariff) regime in 2011, which superseded the underperforming SREP (Small Renewable Energy Power) scheme, is expected to catalyse and accelerate the development of the renewable energy industry, including biomass technology. Despite a major overhaul of the market structure under the new scheme, the sustainability of the grid-connected oil palm biomass renewable energy industry downstream components remains questionable. Hence, this paper aims to investigate and analyse the market response to six sustainability-related topics. The research methods include electronic and conventional postal modes to disseminate questionnaires to all of the palm oil producers. The returned questionnaires were then analysed with a statistical tool and inferences were drawn to identify the gaps in the existing policy system. The survey identified several key factors for the government's consideration. - Highlights: • Establishing a fuel collection hub. • Centralising a technology hub facility. • Smart-partnership collaboration for building a large scale biomass plant. • Adopting decentralised generation

  4. Is Danish venison production sustainable?

    DEFF Research Database (Denmark)

    Saxe, Henrik

    2014-01-01

    It is a popular notion in Denmark that we should include more ingredients in our diet which are gathered, caught or hunted in nature rather than grown and harvested on farmed fields and waters. These ingredients include commodities like seafood, seaweed, mushrooms, herbs and venison (meat from free......-ranging wildlife). In the recommendations for the New Nordic Diet, the Danish consumers are, among other recommendations advised to consume 35 % less meat, with more than 4 % of the consumed meat being venison (Meyer et al. 2011). This may be an impossible target. The “wild” ingredients in a modern diet are all...... assumed to be both healthy and environmentally sustainable. But is this always true? More research is needed! The present study seeks to answer the question: ‘Does venison have less impact on the environment than the organic and conventionally produced meat types they replace?’ Six types of venison...

  5. Sustainable Steelmaking Using Biomass and Waste Oxides (TRP9902)

    Energy Technology Data Exchange (ETDEWEB)

    Richard J. Fruehan

    2004-09-30

    A new process for ironmaking was proposed to employ renewable energy in the form of wood charcoal to produce hot metal. The process was aimed at the market niche of units ranging from 400,000 to 1 million tons of hot metal a year. In the new process, a Rotary Hearth Furnace (RHF) would be combined with a smelter to produce hot metal. This combination was proposed to overcome the technical hurdles of energy generation in smelters and the low productivity of RHFs, and also allow the use of wood charcoal as energy source and reductant. In order to assess the feasibility of the new process, it was necessary to estimate the productivity of the two units involved, the RHF and the smelter. This work concentrated on the development of a productivity model for the RHF able to predict changes in productivity according to the type of carbon and iron oxides used as feed materials. This model was constructed starting with the most fundamental aspect of reduction in composites measuring intrinsic rates of oxidation of different carbons in CO{sub 2}-CO atmospheres and reduction of different oxides in the same atmospheres. After that, a model was constructed considering the interplay of intrinsic kinetics and the transfer of heat to and within pellets such as used in the RHF. Finally, a productivity model for the RHF was developed based on the model developed for a pellet and the differences in heat transfer conditions between the laboratory furnace and the actual RHF. The final model produced for the RHF predicts production rates within 30% of actual plant data reported with coal and indicates that productivity gains as high as 50% could be achieved replacing coal with wood charcoal in the green balls owing to the faster reaction rates achieved with the second carbon. This model also indicates that an increase of less than 5% in total carbon consumption should take place in operations using wood charcoal instead of coal.

  6. Fungal Biomass Protein Production from Trichoderma harzianum Using Rice Polishing.

    Science.gov (United States)

    Ahmed, Sibtain; Mustafa, Ghulam; Arshad, Muhammad; Rajoka, Muhammad Ibrahim

    2017-01-01

    Industrially important enzymes and microbial biomass proteins have been produced from fungi for more than 50 years. High levels of crude protein as much as 45% are present in fungal biomass with balanced essential amino acids. The aim of this study was to access the potential of Trichoderma harzianum to produce fungal biomass protein from rice polishings. Maximum biomass yield was obtained at 5% (w/v) rice polishings after 72 h of incubation at 28°C at pH 4. Carbon and nitrogen ratio of 20 : 1 gave significantly higher production of fungal biomass protein. The FBP in the 75 L fermenter contained 49.50% crude protein, 32.00% true protein, 19.45% crude fiber, 9.62% ash, 11.5% cellulose content, and 0.325% RNA content. The profile of amino acids of final FBP exhibited that all essential amino acids were present in great quantities. The FBP produced by this fungus has been shown to be of good nutritional value for supplementation to poultry. The results presented in this study have practical implications in that the fungus T. harzianum could be used successfully to produce fungal biomass protein using rice polishings.

  7. Microalgae as sustainable renewable energy feedstock for biofuel production.

    Science.gov (United States)

    Medipally, Srikanth Reddy; Yusoff, Fatimah Md; Banerjee, Sanjoy; Shariff, M

    2015-01-01

    The world energy crisis and increased greenhouse gas emissions have driven the search for alternative and environmentally friendly renewable energy sources. According to life cycle analysis, microalgae biofuel is identified as one of the major renewable energy sources for sustainable development, with potential to replace the fossil-based fuels. Microalgae biofuel was devoid of the major drawbacks associated with oil crops and lignocelluloses-based biofuels. Algae-based biofuels are technically and economically viable and cost competitive, require no additional lands, require minimal water use, and mitigate atmospheric CO2. However, commercial production of microalgae biodiesel is still not feasible due to the low biomass concentration and costly downstream processes. The viability of microalgae biodiesel production can be achieved by designing advanced photobioreactors, developing low cost technologies for biomass harvesting, drying, and oil extraction. Commercial production can also be accomplished by improving the genetic engineering strategies to control environmental stress conditions and by engineering metabolic pathways for high lipid production. In addition, new emerging technologies such as algal-bacterial interactions for enhancement of microalgae growth and lipid production are also explored. This review focuses mainly on the problems encountered in the commercial production of microalgae biofuels and the possible techniques to overcome these difficulties.

  8. Microalgae as Sustainable Renewable Energy Feedstock for Biofuel Production

    Directory of Open Access Journals (Sweden)

    Srikanth Reddy Medipally

    2015-01-01

    Full Text Available The world energy crisis and increased greenhouse gas emissions have driven the search for alternative and environmentally friendly renewable energy sources. According to life cycle analysis, microalgae biofuel is identified as one of the major renewable energy sources for sustainable development, with potential to replace the fossil-based fuels. Microalgae biofuel was devoid of the major drawbacks associated with oil crops and lignocelluloses-based biofuels. Algae-based biofuels are technically and economically viable and cost competitive, require no additional lands, require minimal water use, and mitigate atmospheric CO2. However, commercial production of microalgae biodiesel is still not feasible due to the low biomass concentration and costly downstream processes. The viability of microalgae biodiesel production can be achieved by designing advanced photobioreactors, developing low cost technologies for biomass harvesting, drying, and oil extraction. Commercial production can also be accomplished by improving the genetic engineering strategies to control environmental stress conditions and by engineering metabolic pathways for high lipid production. In addition, new emerging technologies such as algal-bacterial interactions for enhancement of microalgae growth and lipid production are also explored. This review focuses mainly on the problems encountered in the commercial production of microalgae biofuels and the possible techniques to overcome these difficulties.

  9. Microalgae as Sustainable Renewable Energy Feedstock for Biofuel Production

    Science.gov (United States)

    Yusoff, Fatimah Md.; Shariff, M.

    2015-01-01

    The world energy crisis and increased greenhouse gas emissions have driven the search for alternative and environmentally friendly renewable energy sources. According to life cycle analysis, microalgae biofuel is identified as one of the major renewable energy sources for sustainable development, with potential to replace the fossil-based fuels. Microalgae biofuel was devoid of the major drawbacks associated with oil crops and lignocelluloses-based biofuels. Algae-based biofuels are technically and economically viable and cost competitive, require no additional lands, require minimal water use, and mitigate atmospheric CO2. However, commercial production of microalgae biodiesel is still not feasible due to the low biomass concentration and costly downstream processes. The viability of microalgae biodiesel production can be achieved by designing advanced photobioreactors, developing low cost technologies for biomass harvesting, drying, and oil extraction. Commercial production can also be accomplished by improving the genetic engineering strategies to control environmental stress conditions and by engineering metabolic pathways for high lipid production. In addition, new emerging technologies such as algal-bacterial interactions for enhancement of microalgae growth and lipid production are also explored. This review focuses mainly on the problems encountered in the commercial production of microalgae biofuels and the possible techniques to overcome these difficulties. PMID:25874216

  10. An inventory control model for biomass dependent production systems

    International Nuclear Information System (INIS)

    Grado, S.C.; Strauss, C.H.

    1993-01-01

    The financial performance of a biomass dependent production system was critiqued based on the development and validation of an inventory control model. Dynamic programming was used to examine the constraints and capabilities of producing ethanol from various biomass crops. In particular, the model evaluated the plantation, harvest, and manufacturing components of a woody biomass supply system. The optimum wood to ethanol production scheme produced 38 million litres of ethanol in the harvest year, at 13.6 million litre increase over the least optimal policy as demonstrated in the dynamic programming results. The system produced ethanol at a delivered cost of $0.38 L -1 which was consistent with the unit costs from other studies. Nearly 60% of the delivered costs were in ethanol production. The remaining costs were attributed to growing biomass (14%), harvest and shipment of the crop (18%), storage of the raw material and finished product (7%) and open-quotes lost salesclose quotes (2%). Inventory control, in all phases of production, proved to be an important cost consideration throughout the model. The model also analyzed the employment of alternative harvesting policies and the use of different or multiple feedstocks. A comparison between the least cost wood system and an even cut wood system further revealed the benefits of using an inventory control system

  11. An integrated policy framework for the sustainable exploitation of biomass for bioenergy from marginal lands

    Science.gov (United States)

    Panoutsou, Calliope

    2017-04-01

    Currently, there are not sufficiently tailored policies focusing on biomass and bioenergy from marginal lands. This paper will provide an integrated policy framework and recommendations to facilitate understanding for the market sectors involved and the key principles which can be used to form future sustainable policies for this issue. The work will focus at EU level policy recommendations and discuss how these can interrelate with national and regional level policies to promote the usage of marginal lands for biomass and bioenergy. Recommended policy measures will be based on the findings of the Biomass Policies (www.biomasspolicies.eu) and S2Biom (www.s2biom.eu) projects and will be prepared taking into account the key influencing factors (technical, environmental, social and economic) on biomass and bioenergy from marginal lands: • across different types of marginality (biophysical such as: low temperature, dryness, excess soil moisture, poor chemical properties, steep slope, etc., and socio-economic resulting from lack of economic competitiveness in certain regions and crops, abandonment or rural areas, etc.) • across the different stages of the biomass value chain (supply, logistics, conversion, distribution and end-use). The aim of recommendations will be to inform policy makers on how to distinguish key policy related attributes across biomass and bioenergy from marginal lands, measure them and prioritise actions with a 'system' based approach.

  12. Hydrogen production from biomass by biological systems

    International Nuclear Information System (INIS)

    Sharifan, H.R.; Qader, S.

    2009-01-01

    Hydrogen gas is seen as a future energy carrier, not involved in 'greenhouse' gas and its released energy in combustion can be converted to electric power. Biological system with low energy can produce hydrogen compared to electrochemical hydrogen production via solar battery-based water splitting which requires the use of solar batteries with high energy requirements. The biological hydrogen production occurs in microalgae and cyanobacteria by photosynthesis. They consume biochemical energy to produce molecular hydrogen. Hydrogen in some algae is an anaerobic production in the absence of light. In cyanobacteria the hydrogen production simultaneously happens with nitrogen fixation, and also catalyzed by nitrogenase as a side reaction. Hydrogen production by photosynthetic bacteria is mediated by nitrogenase activity, although hydrogenases may be active for both hydrogen production and hydrogen uptake under some conditions. Genetic studies on photosynthetic microorganisms have markedly increased in recent times, relatively few genetic engineering studies have focused on altering the characteristics of these microorganisms, particularly with respect to enhancing the hydrogen-producing capabilities of photosynthetic bacteria and cyanobacteria. (author)

  13. Hydrogen rich gas production by thermocatalytic decomposition of kenaf biomass

    Energy Technology Data Exchange (ETDEWEB)

    Irmak, Sibel; Oeztuerk, ilker [Department of Chemistry, Cukurova University, Arts and Sciences Faculty, Adana 01330 (Turkey)

    2010-06-15

    Kenaf (Hibiscus cannabinus L.), a well known energy crop and an annual herbaceous plant grows very fast with low lodging susceptibility was used as representative lignocellulosic biomass in the present work. Thermocatalytic conversions were performed by aqueous phase reforming (APR) of kenaf hydrolysates and direct gasification of solid biomass of kenaf using 5% Pt on activated carbon as catalyst. Hydrolysates used in APR experiments were prepared by solubilization of kenaf biomass in subcritical water under CO{sub 2} gas pressure. APR of kenaf hydrolysate with low molecular weight polysaccharides in the presence of the reforming catalyst produced more gas compared to the hydrolysate that had high molecular weight polysaccharides. APR experiments of kenaf biomass hydrolysates and glucose, which was used as a simplest biomass model compound, in the presence of catalyst produced various amounts of gas mixtures that consisted of H{sub 2}, CO, CO{sub 2}, CH{sub 4} and C{sub 2}H{sub 6}. The ratios of H{sub 2} to other gases produced were 0.98, 1.50 and 1.35 for 150 C and 250 C subcritical water-treated kenaf hydrolysates and glucose, respectively. These ratios indicated that more the degraded organic content of kenaf hydrolysate the better selectivity for hydrogen production. Although APR of 250 C-kenaf hydrolysate resulted in similar gas content and composition as glucose, the gas volume produced was three times higher in glucose feed. The use of solid kenaf biomass as starting feedstock in APR experiments resulted in less gas production since the activity of catalyst was lowered by solid biomass particles. (author)

  14. Perrenial Grasses for Sustainable European Protein Production

    DEFF Research Database (Denmark)

    Jørgensen, Uffe; Lærke, Poul Erik

    2016-01-01

    reduction goals for agriculture. Denmark has an especially vulnerable aquatic environment due to sandy soils, a long coast line, and high precipitation. Thus, fulfilling the WFD means some areas must halve their nitrate leaching, and radical changes are required to reduce losses while maintaining profitable...... crop production. National scenarios show that up to ten million tonnes of additional biomass can be sourced in Denmark without reducing food production or increasing the area under cultivation if a biorefinery industry is established. In one of the scenarios optimized for additional environmental...... in the “environment” scenario. This scenario was achieved by converting approx. 9 % of agricultural land from annual crops into perennial grass. New experimental results support the anticipated increase in total biomass yield and reduction in nitrate leaching, when converting land currently used for grain crop...

  15. Sustainability and democracy in food production

    DEFF Research Database (Denmark)

    Nielsen, Kurt Aagaard

    2005-01-01

    The author discuss and presents an empirical study of Danish bread production. The study is organised as action research proces. In the project a method called research workshop is tested as a new form of dialogue creation among groups with different interests and knowledge. The study has generated...... a proposal for a democratic legitimate concept of sustainable bread production...

  16. Carbon and nitrogen trade-offs in biomass energy production

    Energy Technology Data Exchange (ETDEWEB)

    Cucek, Lidija; Klemes, Jiri Jaromir [University of Pannonia, Centre for Process Integration and Intensification (CPI" 2), Research Institute of Chemical and Process Engineering, Faculty of Information Technology, Veszprem (Hungary); Kravanja, Zdravko [University of Maribor, Faculty of Chemistry and Chemical Engineering, Maribor (Slovenia)

    2012-06-15

    This contribution provides an overview of carbon (CFs) and nitrogen footprints (NFs) concerning their measures and impacts on the ecosystem and human health. The adversarial relationship between them is illustrated by the three biomass energy production applications, which substitute fossil energy production applications: (i) domestic wood combustion where different fossil energy sources (natural gas, coal, and fuel oil) are supplemented, (ii) bioethanol production from corn grain via the dry-grind process, where petrol is supplemented, and (iii) rape methyl ester production from rape seed oil via catalytic trans-esterification, where diesel is supplemented. The life cycle assessment is applied to assess the CFs and NFs resulting from different energy production applications from 'cradle-to-grave' span. The results highlighted that all biomass-derived energy generations have lower CFs and higher NFs whilst, on the other hand, fossil energies have higher CFs and lower NFs. (orig.)

  17. Biomass to levulinic acid: A techno-economic analysis and sustainability of biorefinery processes in Southeast Asia.

    Science.gov (United States)

    Isoni, V; Kumbang, D; Sharratt, P N; Khoo, H H

    2018-05-15

    Aligned with Singapore's commitment to sustainable development and investment in renewable resources, cleaner energy and technology (Sustainable Singapore Blueprint), we report a techno-economic analysis of the biorefinery process in Southeast Asia. The considerations in this study provide an overview of the current and future challenges in the biomass-to-chemical processes with life-cycle thinking, linking the land used for agriculture and biomass to the levulinic acid production. 7-8 kg of lignocellulosic feedstock (glucan content 30-35 wt%) from agriculture residues empty fruit bunches (EFB) or rice straw (RS) can be processed to yield 1 kg of levulinic acid. Comparisons of both traditional and "green" alternative solvents and separation techniques for the chemical process were modelled and their relative energy profiles evaluated. Using 2-methyltetrahydrofuran (2-MeTHF) as the process solvent showed to approx. 20 fold less energy demand compared to methyl isobutyl ketone (MIBK) or approx. 180 fold less energy demand compared to direct distillation from aqueous stream. Greenhouse gases emissions of the major operations throughout the supply chain (energy and solvent use, transport, field emissions) were estimated and compared against the impact of deforestation to make space for agriculture purposes. A biorefinery process for the production of 20 ktonne/year of levulinic acid from two different types of lignocellulosic feedstock was hypothesized for different scenarios. In one scenario the chemical plant producing levulinic acid was located in Singapore whereas in other scenarios, its location was placed in a neighboring country, closer to the biomass source. Results from this study show the importance of feedstock choices, as well as the associated plant locations, in the quest for sustainability objectives. Copyright © 2018 Elsevier Ltd. All rights reserved.

  18. Biomass energy production in agriculture: A weighted goal programming analysis

    International Nuclear Information System (INIS)

    Ballarin, A.; Vecchiato, D.; Tempesta, T.; Marangon, F.; Troiano, S.

    2011-01-01

    Energy production from biomasses can be an important resource that, when combined with other green energies such as wind power and solar plants, can contribute to reduce dependency on fossil fuels. The aim of this study is to assess how agriculture could contribute to the production of bio-energy. A multi-period Weighted Goal Programming model (MpWGP) has been applied to identify the optimal land use combinations that simultaneously maximise farmers' income and biomass energy production under three concurrent constraints: water, labour and soil availability. Alternative scenarios are considered that take into account the effect of climate change and social change. The MpWGP model was tested with data from the Rovigo county area (Italy) over a 15-year time period. Our findings show that trade-off exists between the two optimisation targets considered. Although the optimisation of the first target requires traditional agricultural crops, which are characterised by high revenue and a low production of biomass energy, the latter would be achievable with intensive wood production, namely, high-energy production and low income. Our results also show the importance of the constraints imposed, particularly water availability; water scarcity has an overall negative effect and specifically affects the level of energy production. - Research Highlights: → The aim of this study is to assess how agriculture could contribute to the production of bio-energy. → A multi-period (15-year) Weighted Goal Programming model (MpWGP) has been applied. → We identify the optimal land use combinations that simultaneously maximise farmers' income and biomass energy production. → Three concurrent constraints have been considered: water, labour and soil availability.→ Water scarcity has an overall negative effect and specifically affects the level of energy production.

  19. Techno Economic Analysis of Hydrogen Production by gasification of biomass

    Energy Technology Data Exchange (ETDEWEB)

    Francis Lau

    2002-12-01

    Biomass represents a large potential feedstock resource for environmentally clean processes that produce power or chemicals. It lends itself to both biological and thermal conversion processes and both options are currently being explored. Hydrogen can be produced in a variety of ways. The majority of the hydrogen produced in this country is produced through natural gas reforming and is used as chemical feedstock in refinery operations. In this report we will examine the production of hydrogen by gasification of biomass. Biomass is defined as organic matter that is available on a renewable basis through natural processes or as a by-product of processes that use renewable resources. The majority of biomass is used in combustion processes, in mills that use the renewable resources, to produce electricity for end-use product generation. This report will explore the use of hydrogen as a fuel derived from gasification of three candidate biomass feedstocks: bagasse, switchgrass, and a nutshell mix that consists of 40% almond nutshell, 40% almond prunings, and 20% walnut shell. In this report, an assessment of the technical and economic potential of producing hydrogen from biomass gasification is analyzed. The resource base was assessed to determine a process scale from feedstock costs and availability. Solids handling systems were researched. A GTI proprietary gasifier model was used in combination with a Hysys(reg. sign) design and simulation program to determine the amount of hydrogen that can be produced from each candidate biomass feed. Cost estimations were developed and government programs and incentives were analyzed. Finally, the barriers to the production and commercialization of hydrogen from biomass were determined. The end-use of the hydrogen produced from this system is small PEM fuel cells for automobiles. Pyrolysis of biomass was also considered. Pyrolysis is a reaction in which biomass or coal is partially vaporized by heating. Gasification is a more

  20. Enhanced biomass production study on probiotic Bacillus subtilis ...

    African Journals Online (AJOL)

    The culture conditions of lactose fermenting, spore forming probiotic Bacillus subtilis SK09 isolated from dairy effluent were optimized by response surface methodology to maximize the biomass production. The student's t-test of the Placket-Burman screening design revealed that the effects of pH, ammonium citrate and ...

  1. The characteristics of biomass production, lipid accumulation and ...

    African Journals Online (AJOL)

    Glucose was the optimal carbon source for mixotrophic cultivation of C. vulgaris and the effects of glucose content on the alga growth under mixotrophic conditions were considerable because lower glucose content (1 g/l) promoted the production of biomass and photosynthetic pigments; higher glucose contents (>5 g/l) ...

  2. Ecological impacts of biomass production at stand and landscape levels

    CSIR Research Space (South Africa)

    Du Toit, B

    2014-09-01

    Full Text Available In Chapters 4, 5 and 6 of this book, the authors discussed the production and procurement of biomass from various sources, including extensively managed systems such as woodlands, and much more intensively managed systems such as short-rotation bio...

  3. Biomass production of Lactobacillus plantarum LP02 isolated from ...

    African Journals Online (AJOL)

    The potentially hypocholesterolemic strain, designated PL02, of Lactobacillus plantarum, was isolated from infant feces. The aim of this study was to characterize and to cultivate this isolate for biomass production in a 5 L fermentor by batch or fed-batch fermentation. A modified medium composition without peptone was ...

  4. Biomass production and potential water stress increase with ...

    African Journals Online (AJOL)

    The choice of planting density and tree genotype are basic decisions when establishing a forest stand. Understanding the interaction between planting density and genotype, and their relationship with biomass production and potential water stress, is crucial as forest managers are faced with a changing climate. However ...

  5. Estimating annual bole biomass production using uncertainty analysis

    Science.gov (United States)

    Travis J. Woolley; Mark E. Harmon; Kari B. O' Connell

    2007-01-01

    Two common sampling methodologies coupled with a simple statistical model were evaluated to determine the accuracy and precision of annual bole biomass production (BBP) and inter-annual variability estimates using this type of approach. We performed an uncertainty analysis using Monte Carlo methods in conjunction with radial growth core data from trees in three Douglas...

  6. Growth characteristics and biomass production of kenaf | Tahery ...

    African Journals Online (AJOL)

    Parameters of height, diameter and internode were measured within four to six regular intervals of 10 to 15 days, while biomass production parameters of dry one meter stalk mass (DMSM), defoliated plant mass (DPM), one meter stalk mass (MSM) and fresh plant mass (FPM) were measured at harvest time. There was no ...

  7. Fermentative hydrogen production from pretreated biomass: A comparative study

    NARCIS (Netherlands)

    Panagiotopoulos, I.A.; Bakker, R.R.; Budde, M.A.W.; Vrije, de G.J.; Claassen, P.A.M.; Koukios, E.G.

    2009-01-01

    The aim of this work was to evaluate the potential of employing biomass resources from different origin as feedstocks for fermentative hydrogen production. Mild-acid pretreated and hydrolysed barley straw (BS) and corn stalk (CS), hydrolysed barley grains (BG) and corn grains (CG), and sugar beet

  8. Biomass production on saline-alkaline soils

    Energy Technology Data Exchange (ETDEWEB)

    Chaturvedi, A.N.

    1985-01-01

    In a trial of twelve tree species (both nitrogen fixing and non-fixing) for fuel plantations on saline-alkaline soil derived from Gangetic alluvium silty clay, Leucaena leucocephala failed completely after showing rapid growth for six months. Results for other species at age two showed that Prosopis juliflora had the best productivity.

  9. Strategies for achieving a sustainable, clean and cost-effective biomass resource

    International Nuclear Information System (INIS)

    Turnbull, J.

    1993-01-01

    Biomass produced in an economically and environmentally sustainable manner, could realistically be used to supply 50,000 MW (5 Quads) of electric capacity by the year 2010 and probably twice that amount by the year 2030. During the past year, the Electric Power Research Institute (EPRI) and the U.S. Department of Energy (DOE) have each been independently evaluating the potential for biomass to become a major renewable energy resource over the next four decades, able to offset some of the U.S. dependency on imported fossil fuels while also offering important environmental and economic benefits. This paper presents EPRI's conclusions, which are more conservative than those of DOE, and outlines possible strategies by which EPRI can advance acceptance of biomass as a preferred renewable resource

  10. Biological production of liquid fuels from biomass

    Energy Technology Data Exchange (ETDEWEB)

    None

    1982-01-01

    A scheme for the production of liquid fuels from renewable resources such as poplar wood and lignocellulosic wastes from a refuse hydropulper was investigated. The particular scheme being studied involves the conversion of a cellulosic residue, resulting from a solvent delignified lignocellulosic feed, into either high concentration sugar syrups or into ethyl and/or butyl alcohol. The construction of a pilot apparatus for solvent delignifying 150 g samples of lignocellulosic feeds was completed. Also, an analysis method for characterizing the delignified product has been selected and tested. This is a method recommended in the Forage Fiber Handbook. Delignified samples are now being prepared and tested for their extent of delignification and susceptibility to enzyme hydrolysis. Work is continuing on characterizing the cellulase and cellobiase enzyme systems derived from the YX strain of Thermomonospora.

  11. Challenging the sustainability of micro products development

    DEFF Research Database (Denmark)

    De Grave, Arnaud; Olsen, Stig Irving

    2006-01-01

    Environmental aspects are one of the biggest concerns regarding the future of manufacturing and product development sustainability. Furthermore, micro products and micro technologies are often seen as the next big thing in terms of possible mass market trend and boom. Many questions are raised...... and the intermediate parts which can be in-process created. Possible future trends for micro products development scheme involving environmental concerns are given....

  12. Nuclear energy for sustainable Hydrogen production

    International Nuclear Information System (INIS)

    Gyoshev, G.

    2004-01-01

    There is general agreement that hydrogen as an universal energy carrier could play increasingly important role in energy future as part of a set of solutions to a variety of energy and environmental problems. Given its abundant nature, hydrogen has been an important raw material in the organic chemical industry. At recent years strong competition has emerged between nations as diverse as the U.S., Japan, Germany, China and Iceland in the race to commercialize hydrogen energy vehicles in the beginning of 21st Century. Any form of energy - fossil, renewable or nuclear - can be used to generate hydrogen. The hydrogen production by nuclear electricity is considered as a sustainable method. By our presentation we are trying to evaluate possibilities for sustainable hydrogen production by nuclear energy at near, medium and long term on EC strategic documents basis. The main EC documents enter water electrolysis by nuclear electricity as only sustainable technology for hydrogen production in early stage of hydrogen economy. In long term as sustainable method is considered the splitting of water by thermochemical technology using heat from high temperature reactors too. We consider that at medium stage of hydrogen economy it is possible to optimize the sustainable hydrogen production by high temperature and high pressure water electrolysis by using a nuclear-solar energy system. (author)

  13. Supercritical water gasification of biomass for H2 production: process design.

    Science.gov (United States)

    Fiori, Luca; Valbusa, Michele; Castello, Daniele

    2012-10-01

    The supercritical water gasification (SCWG) of biomass for H(2) production is analyzed in terms of process development and energetic self-sustainability. The conceptual design of a plant is proposed and the SCWG process involving several substrates (glycerol, microalgae, sewage sludge, grape marc, phenol) is simulated by means of AspenPlus™. The influence of various parameters - biomass concentration and typology, reaction pressure and temperature - is analyzed. The process accounts for the possibility of exploiting the mechanical energy of compressed syngas (later burned to sustain the SCWG reaction) through expansion in turbines, while purified H(2) is fed to fuel cells. Results show that the SCWG reaction can be energetically self-sustained if minimum feed biomass concentrations of 15-25% are adopted. Interestingly, the H(2) yields are found to be maximal at similar feed concentrations. Finally, an energy balance is performed showing that the whole process could provide a net power of about 150 kW(e)/(1000 kg(feed)/h). Copyright © 2012 Elsevier Ltd. All rights reserved.

  14. Sustainable Transportation Fuels from Natural Gas (H{sub 2}), Coal and Biomass

    Energy Technology Data Exchange (ETDEWEB)

    Huffman, Gerald

    2012-12-31

    This research program is focused primarily on the conversion of coal, natural gas (i.e., methane), and biomass to liquid fuels by Fischer-Tropsch synthesis (FTS), with minimum production of carbon dioxide. A complementary topic also under investigation is the development of novel processes for the production of hydrogen with very low to zero production of CO{sub 2}. This is in response to the nation's urgent need for a secure and environmentally friendly domestic source of liquid fuels. The carbon neutrality of biomass is beneficial in meeting this goal. Several additional novel approaches to limiting carbon dioxide emissions are also being explored.

  15. Optimization of macronutrient kinetics for biomass production in Nostoc calcicola

    Science.gov (United States)

    Aiyer, Subramanian Seshadri C.; Akshai, A.; Kumar, B. G. Prakash; Ramachandran, S.

    2018-04-01

    To assess the feasibility of Allen and Arnon’s (AA) media addition to increase the biomass productivity, (0, 2.5, 5, 7.5 ml of 10x media concentrate - MC) was added to aerated culture every six days, in two separate conditions i.e., single harvest (SH) and continuous harvest (CH) after 15th day. Results show that with addition of 5 ml of MC produced maximum amount of biomass is 1.32 g/L and 2.88 g/L for Sh and CH respectively. These results show that with addition of 5 ml of MC to an aerated culture every six days with continuous biomass harvesting leads to maximum growth of Nostoc calcicola @25°C

  16. Grate-firing of biomass for heat and power production

    DEFF Research Database (Denmark)

    Yin, Chungen; Rosendahl, Lasse; Kær, Søren Knudsen

    2008-01-01

    bed on the grate, and the advanced secondary air supply (a real breakthrough in this technology) are highlighted for grate-firing systems. Amongst all the issues or problems associated with grate-fired boilers burning biomass, primary pollutant formation and control, deposition formation and corrosion......As a renewable and environmentally friendly energy source, biomass (i.e., any organic non-fossil fuel) and its utilization are gaining an increasingly important role worldwide Grate-firing is one of the main competing technologies in biomass combustion for heat and power production, because it can...... combustion mechanism, the recent breakthrough in the technology, the most pressing issues, the current research and development activities, and the critical future problems to be resolved. The grate assembly (the most characteristic element in grate-fired boilers), the key combustion mechanism in the fuel...

  17. Planning woody biomass logistics for energy production: A strategic decision model

    International Nuclear Information System (INIS)

    Frombo, F.; Robba, M.; Minciardi, R.; Sacile, R.; Rosso, F.

    2009-01-01

    One of the key factors on which the sustainable development of modern society should be based is the possibility to take advantage of renewable energies. Biomass resources are one of the most common and widespread resources in the world. Their use to produce energy has many advantages, such as the reduction of greenhouse emissions. This paper describes a GIS-based Environmental Decision Support System (EDSS) to define planning and management strategies for the optimal logistics for energy production from woody biomass, such as forest biomass, agricultural scraps and industrial and urban untreated wood residues. The EDSS is characterized by three main levels: the GIS, the database, and the optimization. The optimization module is divided in three sub-modules to face different kinds of decision problems: strategic planning, tactical planning, and operational management. The aim of this article is to describe the strategic planning level in detail. The decision variables are represented by plant capacity and harvested biomass in a specific forest parcel for each slope class, while the objective function is the sum of the costs related to plant installation and maintenance, biomass transportation and collection, minus the benefits coming from the energy sales at the current market price, including the renewable energy certificates. Moreover, the optimization problem is structured through a set of parameters and equations that are able to encompass different energy conversion technologies (pyrolysis, gasification or combustion) in the system. A case study on the Liguria Region (Savona Province) is presented and results are discussed. (author)

  18. Quantifying biomass production in crops grown for energy

    Energy Technology Data Exchange (ETDEWEB)

    Bullard, M J; Christian, D; Wilkins, C

    1997-12-31

    One estimate suggests that continued CAP (Common Agricultural Policy) reform may lead to as much as 2 million hectares of land set aside from arable production by the year 2020 in the UK alone, with 20 million hectares in the EU in total. Set-aside currently occupies more than 500,000 hectares in the UK. Set-aside land is providing more opportunities for non-food crops, for example fuel crops, which provide biomass for energy. Whilst any crop species will produce biomass which can be burnt to produce energy, arable crops were not developed with this in mind but rather a specific harvestable commodity, e.g. grain, and therefore the total harvestable commodity is seldom maximised. The characteristics of an ideal fuel crop have been identified as: dry harvested material for efficient combustion; perennial growth to minimise establishment costs and lengthen the growing season; good disease resistance; efficient conversion of solar radiation to biomass energy; efficient use of nitrogen fertiliser (where required) and water; and yield close to the theoretical maximum. Miscanthus, a genus of Oriental and African C4 perennial grasses, has been identified as possessing the above characteristics. There may be other species, which, if not yielding quite as much biomass, have other characteristics of merit. This has led to the need to identify inherently productive species which are adapted to the UK, and to validate the productivity of species which have already been 'discovered'. (author)

  19. Quantifying biomass production in crops grown for energy

    Energy Technology Data Exchange (ETDEWEB)

    Bullard, M.J.; Christian, D.; Wilkins, C.

    1996-12-31

    One estimate suggests that continued CAP (Common Agricultural Policy) reform may lead to as much as 2 million hectares of land set aside from arable production by the year 2020 in the UK alone, with 20 million hectares in the EU in total. Set-aside currently occupies more than 500,000 hectares in the UK. Set-aside land is providing more opportunities for non-food crops, for example fuel crops, which provide biomass for energy. Whilst any crop species will produce biomass which can be burnt to produce energy, arable crops were not developed with this in mind but rather a specific harvestable commodity, e.g. grain, and therefore the total harvestable commodity is seldom maximised. The characteristics of an ideal fuel crop have been identified as: dry harvested material for efficient combustion; perennial growth to minimise establishment costs and lengthen the growing season; good disease resistance; efficient conversion of solar radiation to biomass energy; efficient use of nitrogen fertiliser (where required) and water; and yield close to the theoretical maximum. Miscanthus, a genus of Oriental and African C4 perennial grasses, has been identified as possessing the above characteristics. There may be other species, which, if not yielding quite as much biomass, have other characteristics of merit. This has led to the need to identify inherently productive species which are adapted to the UK, and to validate the productivity of species which have already been 'discovered'. (author)

  20. Sustainable model for financial viability of decentralized biomass gasifier based power projects

    International Nuclear Information System (INIS)

    Palit, Debajit; Malhotra, Ramit; Kumar, Atul

    2011-01-01

    This paper made a modest attempt for designing a sustainable model for financial viability of biomass gasifier power projects for enhancing electricity access in India and other developing countries. For long term sustainability of distributed generation projects in remote rural areas, viability from both project implementing agency (PIA) and the end-users need to be ensured. The minimum required prices of electricity from both PIA and end-user perspective have been estimated. While for PIA the cost recovery is the key for viability, the affordability to pay the electricity cost is crucial for the end users. Analysis carried out in this paper on the basis of data obtained from operational projects implemented in India reveal that it is essential to operate the system at a higher capacity utilization factor. While this can be achieved though creating convergence with locally relevant economic activity, it is also observed that micro-enterprises cannot pay beyond a certain price of electricity to keep it sustainable. This paper sets forth a case for developing a regulatory mechanism to extend the tariff fixation for the projects and providing cross-subsidies to ensure long term sustainability of off-grid project. - Highlights: → We design sustainable financial model for viability of biomass gasifier projects. → Analysis based on field data obtained from operational projects in India. Estimated electricity pricing from both implementing agency and end-users perspective. → A regulatory mechanism for tariff fixation and cross subsidization is recommended.

  1. Multi-scale modeling for sustainable chemical production.

    Science.gov (United States)

    Zhuang, Kai; Bakshi, Bhavik R; Herrgård, Markus J

    2013-09-01

    With recent advances in metabolic engineering, it is now technically possible to produce a wide portfolio of existing petrochemical products from biomass feedstock. In recent years, a number of modeling approaches have been developed to support the engineering and decision-making processes associated with the development and implementation of a sustainable biochemical industry. The temporal and spatial scales of modeling approaches for sustainable chemical production vary greatly, ranging from metabolic models that aid the design of fermentative microbial strains to material and monetary flow models that explore the ecological impacts of all economic activities. Research efforts that attempt to connect the models at different scales have been limited. Here, we review a number of existing modeling approaches and their applications at the scales of metabolism, bioreactor, overall process, chemical industry, economy, and ecosystem. In addition, we propose a multi-scale approach for integrating the existing models into a cohesive framework. The major benefit of this proposed framework is that the design and decision-making at each scale can be informed, guided, and constrained by simulations and predictions at every other scale. In addition, the development of this multi-scale framework would promote cohesive collaborations across multiple traditionally disconnected modeling disciplines to achieve sustainable chemical production. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Biomass production on marginal lands - catalogue of bioenergy crops

    Science.gov (United States)

    Baumgarten, Wibke; Ivanina, Vadym; Hanzhenko, Oleksandr

    2017-04-01

    Marginal lands are the poorest type of land, with various limitations for traditional agriculture. However, they can be used for biomass production for bioenergy based on perennial plants or trees. The main advantage of biomass as an energy source compared to fossil fuels is the positive influence on the global carbon dioxide balance in the atmosphere. During combustion of biofuels, less carbon dioxide is emitted than is absorbed by plants during photosynthesis. Besides, 20 to 30 times less sulphur oxide and 3 to 4 times less ash is formed as compared with coal. Growing bioenergy crops creates additional workplaces in rural areas. Soil and climatic conditions of most European regions are suitable for growing perennial energy crops that are capable of rapid transforming solar energy into energy-intensive biomass. Selcted plants are not demanding for soil fertility, do not require a significant amount of fertilizers and pesticides and can be cultivated, therefore, also on unproductive lands of Europe. They prevent soil erosion, contribute to the preservation and improvement of agroecosystems and provide low-cost biomass. A catalogue of potential bioenergy plants was developed within the EU H2020 project SEEMLA including woody and perennial crops that are allowed to be grown in the territory of the EU and Ukraine. The catalogue lists high-productive woody and perennial crops that are not demanding to the conditions of growing and can guarantee stable high yields of high-energy-capacity biomass on marginal lands of various categories of marginality. Biomass of perennials plants and trees is composed of cellulose, hemicellulose and lignin, which are directly used to produce solid biofuels. Thanks to the well-developed root system of trees and perennial plants, they are better adapted to poor soils and do not require careful maintenance. Therefore, they can be grown on marginal lands. Particular C4 bioenergy crops are well adapted to a lack of moisture and high

  3. On-line Biomass Estimation in a Batch Biotechnological Process: Bacillus thuringiensis δ - endotoxins production.

    OpenAIRE

    Amicarelli, Adriana

    2010-01-01

    In this Chapter it has been addressed the problem of the biomass estimation in a batch biotechnological process: the Bacillus thuringiensis (Bt) δ-endotoxins production process. Different alternatives that can be successfully used in this sense were presented. It has been exposed the design of various biomass estimators, namely: a phenomenological biomass estimator, a standard EKF biomass estimator, a biomass estimator based on ANN, a decentralized Kalman Filter, and a biomass concentration ...

  4. Bio refinery: towards a Biomass-based Sustainable Economy; Biorrefineria: hacia una economia sostenible basada en la biomasa

    Energy Technology Data Exchange (ETDEWEB)

    Ballesteros Perdices, M.

    2010-07-01

    At present, biomass is converted into energy in separate installations that have little capacity to obtain many products (ethanol, fatty acid esters, heat, electricity, etc) and that do not take advantage of all the economic potential offered by biomass. The future development of biomass as an energy source will be based on a single installation where all the fractions and byproducts of the biomass will be used to produce a large range of products: energy, bio fuels, chemicals and biomaterials. (Author) 1 refs.

  5. Photoautotrophic Production of Biomass, Laurate, and Soluble Organics by Synechocystis sp. PCC 6803

    Science.gov (United States)

    Nguyen, Binh Thanh

    Photosynthesis converts sunlight to biomass at a global scale. Among the photosynthetic organisms, cyanobacteria provide an excellent model to study how photosynthesis can become a practical platform of large-scale biotechnology. One novel approach involves metabolically engineering the cyanobacterium Synechocystis sp. PCC 6803 to excrete laurate, which is harvested directly. This work begins by defining a working window of light intensity (LI). Wild-type and laurate-excreting Synechocystis required an LI of at least 5 muE/m2-s to sustain themselves, but are photo-inhibited by LI of 346 to 598 muE/m2-s. Fixing electrons into valuable organic products, e.g., biomass and excreted laurate, is critical to success. Wild-type Synechocystis channeled 75% to 84% of its fixed electrons to biomass; laurate-excreting Synechocystis fixed 64 to 69% as biomass and 6.6% to 10% as laurate. This means that 16 to 30% of the electrons were diverted to non-valuable soluble products, and the trend was accentuated with higher LI. How the Ci concentration depended on the pH and the nitrogen source was quantified by the proton condition and experimentally validated. Nitrate increased, ammonium decreased, but ammonium nitrate stabilized alkalinity and Ci. This finding provides a mechanistically sound tool to manage Ci and pH independently. Independent evaluation pH and Ci on the growth kinetics of Synechocystis showed that pH 8.5 supported the fastest maximum specific growth rate (mumax): 2.4/day and 1.7/day, respectively, for the wild type and modified strains with LI of 202 muE/m2-s. Half-maximum-rate concentrations (KCi) were less than 0.1 mM, meaning that Synechocystis should attain its mumax with a modest Ci concentration (≥1.0 mM). Biomass grown with day-night cycles had a night endogenous decay rate of 0.05-1.0/day, with decay being faster with higher LI and the beginning of dark periods. Supplying light at a fraction of daylight reduced dark decay rate and improved overall

  6. Catalytic Production of Ethanol from Biomass-Derived Synthesis Gas

    Energy Technology Data Exchange (ETDEWEB)

    Trewyn, Brian G. [Colorado School of Mines, Golden, CO (United States); Smith, Ryan G. [Iowa State Univ., Ames, IA (United States)

    2016-06-01

    Heterogeneous catalysts have been developed for the conversion of biomass-derived synthetic gas (syngas) to ethanol. The objectives of this project were to develop a clean synthesis gas from biomass and develop robust catalysts with high selectivity and lifetime for C2 oxygenate production from biomass-derived syngas and surrogate syngas. During the timeframe for this project, we have made research progress on the four tasks: (1) Produce clean bio-oil generated from biomass, such as corn stover or switchgrass, by using fast pyrolysis system, (2) Produce clean, high pressure synthetic gas (syngas: carbon monoxide, CO, and hydrogen, H2) from bio-oil generated from biomass by gasification, (3) Develop and characterize mesoporous mixed oxide-supported metal catalysts for the selective production of ethanol and other alcohols, such as butanol, from synthesis gas, and (4) Design and build a laboratory scale synthesis gas to ethanol reactor system evaluation of the process. In this final report, detailed explanations of the research challenges associated with this project are given. Progress of the syngas production from various biomass feedstocks and catalyst synthesis for upgrading the syngas to C2-oxygenates is included. Reaction properties of the catalyst systems under different reaction conditions and different reactor set-ups are also presented and discussed. Specifically, the development and application of mesoporous silica and mesoporous carbon supports with rhodium nanoparticle catalysts and rhodium nanoparticle with manganese catalysts are described along with the significant material characterizations we completed. In addition to the synthesis and characterization, we described the activity and selectivity of catalysts in our micro-tubular reactor (small scale) and fixed bed reactor (larger scale). After years of hard work, we are proud of the work done on this project, and do believe that this work will provide a solid

  7. Nature tourism: a sustainable tourism product

    Directory of Open Access Journals (Sweden)

    Violante Martínez Quintana

    2017-11-01

    Full Text Available Nature tourism has emerged in the tourism field as a result of a logical evolution in line with public policies and academic research. After negative outcomes from traditional models first raised the alarm, the entire sector has tried to foster local development based on models of responsibility and sustainability. This article revises key concepts of nature – based tourism and shows new tendencies and the perception of cultural landscapes that are seen as tourism products. Finally, it concludes by analysing new tendencies to foster alternative nature – based tourism. It also presents a planning proposal based on a responsible and sustainable tourism model to guarantee a sustainable tourism product within the natural and cultural heritage context.

  8. Protein concentrate production from the biomass contaminated with radionuclides

    International Nuclear Information System (INIS)

    Nizhko, V.F.; Shinkarenko, M.P.; Polozhaj, V.V.; Krivchik, O.V.

    1992-01-01

    Coefficients of radionuclides accumulation are determined for traditional and rare forage crops grown on contaminated soils. It is shown that with low concentration of radionuclides in soil minimal level of contamination were found in the biomass of lupine (Lupinus luteus L.) and sainfoin (Onobrychis hybridus L.). Relatively high levels of contamination were found in comfrey (Symphytum asperum Lepech.) and bistort (Polygonum divaricatum L.). Comparatively low accumulation coefficients in case of higher density of soil contamination were observed for white and yellow sweetclovers (Melilotus albus Medik. and M. officinalis (L.) Desr.), while higher values of coefficients were found for bird's-foot trefoil (Lotus corniculatus L.), white clover (Trifolium repens L.) and alsike clover (t. hybridum L.). Biomass of white sweet-clover and alsike clover has been processed to produce leaf protein concentrate. It is shown that with biomass contamination of 1 kBq/kg and above conventional technology based on thermal precipitation of the protein does not provide production of pure product. More purified protein concentrates are obtained after two-stage processing of the biomass

  9. Biomass Biorefinery for the production of Polymers and Fuels

    Energy Technology Data Exchange (ETDEWEB)

    Dr. Oliver P. Peoples

    2008-05-05

    The conversion of biomass crops to fuel is receiving considerable attention as a means to reduce our dependence on foreign oil imports and to meet future energy needs. Besides their use for fuel, biomass crops are an attractive vehicle for producing value added products such as biopolymers. Metabolix, Inc. of Cambridge proposes to develop methods for producing biodegradable polymers polyhydroxyalkanoates (PHAs) in green tissue plants as well as utilizating residual plant biomass after polymer extraction for fuel generation to offset the energy required for polymer extraction. The primary plant target is switchgrass, and backup targets are alfalfa and tobacco. The combined polymer and fuel production from the transgenic biomass crops establishes a biorefinery that has the potential to reduce the nation’s dependence on foreign oil imports for both the feedstocks and energy needed for plastic production. Concerns about the widespread use of transgenic crops and the grower’s ability to prevent the contamination of the surrounding environment with foreign genes will be addressed by incorporating and expanding on some of the latest plant biotechnology developed by the project partners of this proposal. This proposal also addresses extraction of PHAs from biomass, modification of PHAs so that they have suitable properties for large volume polymer applications, processing of the PHAs using conversion processes now practiced at large scale (e.g., to film, fiber, and molded parts), conversion of PHA polymers to chemical building blocks, and demonstration of the usefulness of PHAs in large volume applications. The biodegradability of PHAs can also help to reduce solid waste in our landfills. If successful, this program will reduce U.S. dependence on imported oil, as well as contribute jobs and revenue to the agricultural economy and reduce the overall emissions of carbon to the atmosphere.

  10. Multi-scale modeling for sustainable chemical production

    DEFF Research Database (Denmark)

    Zhuang, Kai; Bakshi, Bhavik R.; Herrgard, Markus

    2013-01-01

    associated with the development and implementation of a su stainable biochemical industry. The temporal and spatial scales of modeling approaches for sustainable chemical production vary greatly, ranging from metabolic models that aid the design of fermentative microbial strains to material and monetary flow......With recent advances in metabolic engineering, it is now technically possible to produce a wide portfolio of existing petrochemical products from biomass feedstock. In recent years, a number of modeling approaches have been developed to support the engineering and decision-making processes...... models that explore the ecological impacts of all economic activities. Research efforts that attempt to connect the models at different scales have been limited. Here, we review a number of existing modeling approaches and their applications at the scales of metabolism, bioreactor, overall process...

  11. Measures For Achieving Sustainable Rabbit Production In ...

    African Journals Online (AJOL)

    A study was conducted to ascertain ways of achieving sustainable rabbits production in Ogba/Egbema/Ndoni Local Government Area of Rivers State. The study population involved 120 respondents comprising 40 students and 80 farmers. Two sets of structured questionnaire designed with a 4-point Likert type rating scale ...

  12. Sustainable Multi-Product Seafood Production Planning Under Uncertainty

    International Nuclear Information System (INIS)

    Simanjuntak, Ruth; Mawengkang, Herman; Sembiring, Monalisa; Sinaga, Rani; Pakpahan, Endang J

    2013-01-01

    A multi-product fish production planning produces simultaneously multi fish products from several classes of raw resources. The goal in sustainable production planning is to meet customer demand over a fixed time horizon divided into planning periods by optimizing the tradeoff between economic objectives such as production cost, waste processed cost, and customer satisfaction level. The major decisions are production and inventory levels for each product and the number of workforce in each planning period. In this paper we consider the management of small scale traditional business at North Sumatera Province which performs processing fish into several local seafood products. The inherent uncertainty of data (e.g. demand, fish availability), together with the sequential evolution of data over time leads the sustainable production planning problem to a nonlinear mixed-integer stochastic programming model. We use scenario generation based approach and feasible neighborhood search for solving the model.

  13. Biological hydrogen production from biomass by thermophilic bacteria

    International Nuclear Information System (INIS)

    Claassen, P.A.M.; Mars, A.E.; Budde, M.A.W.; Lai, M.; de Vrije, T.; van Niel, E.W.J.

    2006-01-01

    To meet the reduction of the emission of CO 2 imposed by the Kyoto protocol, hydrogen should be produced from renewable primary energy. Besides the indirect production of hydrogen by electrolysis using electricity from renewable resources, such as sunlight, wind and hydropower, hydrogen can be directly produced from biomass. At present, there are two strategies for the production of hydrogen from biomass: the thermochemical technology, such as gasification, and the biotechnological approach using micro-organisms. Biological hydrogen production delivers clean hydrogen with an environmental-friendly technology and is very suitable for the conversion of wet biomass in small-scale applications, thus having a high chance of becoming an economically feasible technology. Many micro-organisms are able to produce hydrogen from mono- and disaccharides, starch and (hemi)cellulose under anaerobic conditions. The anaerobic production of hydrogen is a common phenomenon, occurring during the process of anaerobic digestion. Here, hydrogen producing micro-organisms are in syn-trophy with methanogenic bacteria which consume the hydrogen as soon as it is produced. In this way, hydrogen production remains obscure and methane is the end-product. By uncoupling hydrogen production from methane production, hydrogen becomes available for recovery and exploitation. This study describes the use of extreme thermophilic bacteria, selected because of a higher hydrogen production efficiency as compared to mesophilic bacteria, for the production of hydrogen from renewable resources. As feedstock energy crops like Miscanthus and Sorghum bicolor and waste streams like domestic organic waste, paper sludge and potato steam peels were used. The feedstock was pretreated and/or enzymatically hydrolyzed prior to fermentation to make a fermentable substrate. Hydrogen production by Caldicellulosiruptor saccharolyticus, Thermotoga elfii and T. neapolitana on all substrates was observed. Nutrient

  14. Yeast Biomass Production in Brewery's Spent Grains Hemicellulosic Hydrolyzate

    Science.gov (United States)

    Duarte, Luís C.; Carvalheiro, Florbela; Lopes, Sónia; Neves, Ines; Gírio, Francisco M.

    Yeast single-cell protein and yeast extract, in particular, are two products which have many feed, food, pharmaceutical, and biotechnological applications. However, many of these applications are limited by their market price. Specifically, the yeast extract requirements for culture media are one of the major technical hurdles to be overcome for the development of low-cost fermentation routes for several top value chemicals in a biorefinery framework. A potential biotechnical solution is the production of yeast biomass from the hemicellulosic fraction stream. The growth of three pentose-assimilating yeast cell factories, Debaryomyces hansenii, Kluyveromyces marxianus, and Pichia stipitis was compared using non-detoxified brewery's spent grains hemicellulosic hydrolyzate supplemented with mineral nutrients. The yeasts exhibited different specific growth rates, biomass productivities, and yields being D. hansenii as the yeast species that presented the best performance, assimilating all sugars and noteworthy consuming most of the hydrolyzate inhibitors. Under optimized conditions, D. hansenii displayed a maximum specific growth rate, biomass yield, and productivity of 0.34 h-1, 0.61 g g-1, and 0.56 g 1-1 h-1, respectively. The nutritional profile of D. hansenii was thoroughly evaluated, and it compares favorably to others reported in literature. It contains considerable amounts of some essential amino acids and a high ratio of unsaturated over saturated fatty acids.

  15. Biomass storage for further energy use through biogas production

    Energy Technology Data Exchange (ETDEWEB)

    Atem, A.D. [Instituto CEDIAC, Facultad de Ingenieria, Universidad Nacional de Cuyo, Centro Universitario, 5500 Mendoza (Argentina); Instituto de Medio Ambiente, Facultad de Ingenieria, Universidad Nacional de Cuyo, Centro Universitario, 5500 Mendoza (Argentina); Instituto de Energia, Universidad Nacional de Cuyo, Centro Universitario, 5500 Mendoza (Argentina); Consejo Nacional de Investigaciones Cientificas y Tecnicas - CONICET, Mendoza (Argentina); Indiveri, M.E. [Instituto de Medio Ambiente, Facultad de Ingenieria, Universidad Nacional de Cuyo, Centro Universitario, 5500 Mendoza (Argentina); Instituto de Energia, Universidad Nacional de Cuyo, Centro Universitario, 5500 Mendoza (Argentina); Llamas, S. [Instituto de Medio Ambiente, Facultad de Ingenieria, Universidad Nacional de Cuyo, Centro Universitario, 5500 Mendoza (Argentina)

    2010-06-15

    The present work approaches the residual biomass conservation for later digestion in an anaerobic batch reactor. Twenty 4 L capacity PET reactors were used. A measuring device was constructed to quantify the biogas production. As substrate were used tomato wastes from local industry and rumen fluid as inoculum. Digestion start up was able to be controlled by varying the temperature, during a period of 118 days was not verified biogas production. After re-inoculated with rumen fluid stabilized for 34 days, biogas production was verified. They were obtained 0.10 m{sup 3} of biogas per kilogram of volatile solids, with 50% of methane content. (author)

  16. Microwave-assisted pyrolysis of biomass for liquid biofuels production

    DEFF Research Database (Denmark)

    Yin, Chungen

    2012-01-01

    Production of 2nd-generation biofuels from biomass residues and waste feedstock is gaining great concerns worldwide. Pyrolysis, a thermochemical conversion process involving rapid heating of feedstock under oxygen-absent condition to moderate temperature and rapid quenching of intermediate products......, is an attractive way for bio-oil production. Various efforts have been made to improve pyrolysis process towards higher yield and quality of liquid biofuels and better energy efficiency. Microwave-assisted pyrolysis is one of the promising attempts, mainly due to efficient heating of feedstock by ‘‘microwave...

  17. Yeasts in sustainable bioethanol production: A review.

    Science.gov (United States)

    Mohd Azhar, Siti Hajar; Abdulla, Rahmath; Jambo, Siti Azmah; Marbawi, Hartinie; Gansau, Jualang Azlan; Mohd Faik, Ainol Azifa; Rodrigues, Kenneth Francis

    2017-07-01

    Bioethanol has been identified as the mostly used biofuel worldwide since it significantly contributes to the reduction of crude oil consumption and environmental pollution. It can be produced from various types of feedstocks such as sucrose, starch, lignocellulosic and algal biomass through fermentation process by microorganisms. Compared to other types of microoganisms, yeasts especially Saccharomyces cerevisiae is the common microbes employed in ethanol production due to its high ethanol productivity, high ethanol tolerance and ability of fermenting wide range of sugars. However, there are some challenges in yeast fermentation which inhibit ethanol production such as high temperature, high ethanol concentration and the ability to ferment pentose sugars. Various types of yeast strains have been used in fermentation for ethanol production including hybrid, recombinant and wild-type yeasts. Yeasts can directly ferment simple sugars into ethanol while other type of feedstocks must be converted to fermentable sugars before it can be fermented to ethanol. The common processes involves in ethanol production are pretreatment, hydrolysis and fermentation. Production of bioethanol during fermentation depends on several factors such as temperature, sugar concentration, pH, fermentation time, agitation rate, and inoculum size. The efficiency and productivity of ethanol can be enhanced by immobilizing the yeast cells. This review highlights the different types of yeast strains, fermentation process, factors affecting bioethanol production and immobilization of yeasts for better bioethanol production.

  18. Yeasts in sustainable bioethanol production: A review

    Directory of Open Access Journals (Sweden)

    Siti Hajar Mohd Azhar

    2017-07-01

    Full Text Available Bioethanol has been identified as the mostly used biofuel worldwide since it significantly contributes to the reduction of crude oil consumption and environmental pollution. It can be produced from various types of feedstocks such as sucrose, starch, lignocellulosic and algal biomass through fermentation process by microorganisms. Compared to other types of microoganisms, yeasts especially Saccharomyces cerevisiae is the common microbes employed in ethanol production due to its high ethanol productivity, high ethanol tolerance and ability of fermenting wide range of sugars. However, there are some challenges in yeast fermentation which inhibit ethanol production such as high temperature, high ethanol concentration and the ability to ferment pentose sugars. Various types of yeast strains have been used in fermentation for ethanol production including hybrid, recombinant and wild-type yeasts. Yeasts can directly ferment simple sugars into ethanol while other type of feedstocks must be converted to fermentable sugars before it can be fermented to ethanol. The common processes involves in ethanol production are pretreatment, hydrolysis and fermentation. Production of bioethanol during fermentation depends on several factors such as temperature, sugar concentration, pH, fermentation time, agitation rate, and inoculum size. The efficiency and productivity of ethanol can be enhanced by immobilizing the yeast cells. This review highlights the different types of yeast strains, fermentation process, factors affecting bioethanol production and immobilization of yeasts for better bioethanol production.

  19. A model for 'sustainable' US beef production.

    Science.gov (United States)

    Eshel, Gidon; Shepon, Alon; Shaket, Taga; Cotler, Brett D; Gilutz, Stav; Giddings, Daniel; Raymo, Maureen E; Milo, Ron

    2018-01-01

    Food production dominates land, water and fertilizer use and is a greenhouse gas source. In the United States, beef production is the main agricultural resource user overall, as well as per kcal or g of protein. Here, we offer a possible, non-unique, definition of 'sustainable' beef as that subsisting exclusively on grass and by-products, and quantify its expected US production as a function of pastureland use. Assuming today's pastureland characteristics, all of the pastureland that US beef currently use can sustainably deliver ≈45% of current production. Rewilding this pastureland's less productive half (≈135 million ha) can still deliver ≈43% of current beef production. In all considered scenarios, the ≈32 million ha of high-quality cropland that beef currently use are reallocated for plant-based food production. These plant items deliver 2- to 20-fold more calories and protein than the replaced beef and increase the delivery of protective nutrients, but deliver no B 12 . Increased deployment of rapid rotational grazing or grassland multi-purposing may increase beef production capacity.

  20. Sustainable solutions: developing products and services for the future

    National Research Council Canada - National Science Library

    Charter, Martin; Tischner, Ursula

    2001-01-01

    ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 Martin Charter, The Centre for Sustainable Design, UK, and Ursula Tischner, econcept, Germany part 1: 1. Background to Sustainable Consumption and Production...

  1. Sustainability Assessment Model in Product Development

    Science.gov (United States)

    Turan, Faiz Mohd; Johan, Kartina; Nor, Nik Hisyamudin Muhd; Omar, Badrul

    2017-08-01

    Faster and more efficient development of innovative and sustainable products has become the focus for manufacturing companies in order to remain competitive in today’s technologically driven world. Design concept evaluation which is the end of conceptual design is one of the most critical decision points. It relates to the final success of product development, because poor criteria assessment in design concept evaluation can rarely compensated at the later stages. Furthermore, consumers, investors, shareholders and even competitors are basing their decisions on what to buy or invest in, from whom, and also on what company report, and sustainability is one of a critical component. In this research, a new methodology of sustainability assessment in product development for Malaysian industry has been developed using integration of green project management, new scale of “Weighting criteria” and Rough-Grey Analysis. This method will help design engineers to improve the effectiveness and objectivity of the sustainable design concept evaluation, enable them to make better-informed decisions before finalising their choice and consequently create value to the company or industry. The new framework is expected to provide an alternative to existing methods.

  2. Pectin-rich biomass as feedstock for fuel ethanol production.

    Science.gov (United States)

    Edwards, Meredith C; Doran-Peterson, Joy

    2012-08-01

    The USA has proposed that 30 % of liquid transportation fuel be produced from renewable resources by 2030 (Perlack and Stokes 2011). It will be impossible to reach this goal using corn kernel-based ethanol alone. Pectin-rich biomass, an under-utilized waste product of the sugar and juice industry, can augment US ethanol supplies by capitalizing on this already established feedstock. Currently, pectin-rich biomass is sold (at low value) as animal feed. This review focuses on the three most studied types of pectin-rich biomass: sugar beet pulp, citrus waste and apple pomace. Fermentations of these materials have been conducted with a variety of ethanologens, including yeasts and bacteria. Escherichia coli can ferment a wide range of sugars including galacturonic acid, the primary component of pectin. However, the mixed acid metabolism of E. coli can produce unwanted side products. Saccharomyces cerevisiae cannot naturally ferment galacturonic acid nor pentose sugars but has a homoethanol pathway. Erwinia chrysanthemi is capable of degrading many of the cell wall components of pectin-rich materials, including pectin. Klebsiella oxytoca can metabolize a diverse array of sugars including cellobiose, one degradation product of cellulose. However, both E. chrysanthemi and K. oxytoca produce side products during fermentation, similar to E. coli. Using pectin-rich residues from industrial processes is beneficial because the material is already collected and partially pretreated to facilitate enzymatic deconstruction of the plant cell walls. Using biomass already produced for other purposes is an attractive practice because fewer greenhouse gases (GHG) will be anticipated from land-use changes.

  3. Pectin-rich biomass as feedstock for fuel ethanol production

    Energy Technology Data Exchange (ETDEWEB)

    Edwards, Meredith C.; Doran-Peterson, Joy [Georgia Univ., Athens, GA (United States). Dept. of Microbiology

    2012-08-15

    The USA has proposed that 30 % of liquid transportation fuel be produced from renewable resources by 2030 (Perlack and Stokes 2011). It will be impossible to reach this goal using corn kernel-based ethanol alone. Pectin-rich biomass, an under-utilized waste product of the sugar and juice industry, can augment US ethanol supplies by capitalizing on this already established feedstock. Currently, pectin-rich biomass is sold (at low value) as animal feed. This review focuses on the three most studied types of pectin-rich biomass: sugar beet pulp, citrus waste and apple pomace. Fermentations of these materials have been conducted with a variety of ethanologens, including yeasts and bacteria. Escherichia coli can ferment a wide range of sugars including galacturonic acid, the primary component of pectin. However, the mixed acid metabolism of E. coli can produce unwanted side products. Saccharomyces cerevisiae cannot naturally ferment galacturonic acid nor pentose sugars but has a homoethanol pathway. Erwinia chrysanthemi is capable of degrading many of the cell wall components of pectin-rich materials, including pectin. Klebsiella oxytoca can metabolize a diverse array of sugars including cellobiose, one degradation product of cellulose. However, both E. chrysanthemi and K. oxytoca produce side products during fermentation, similar to E. coli. Using pectin-rich residues from industrial processes is beneficial because the material is already collected and partially pretreated to facilitate enzymatic deconstruction of the plant cell walls. Using biomass already produced for other purposes is an attractive practice because fewer greenhouse gases (GHG) will be anticipated from land-use changes. (orig.)

  4. Ethanol Production from Hydrothermally-Treated Biomass from West Africa

    Directory of Open Access Journals (Sweden)

    Edem Cudjoe Bensah

    2015-08-01

    Full Text Available Despite the abundance of diverse biomass resources in Africa, they have received little research and development focus. This study presents compositional analysis, sugar, and ethanol yields of hydrothermal pretreated (195 °C, 10 min biomass from West Africa, including bamboo wood, rubber wood, elephant grass, Siam weed, and coconut husk, benchmarked against those of wheat straw. The elephant grass exhibited the highest glucose and ethanol yields at 57.8% and 65.1% of the theoretical maximums, respectively. The results show that the glucose yield of pretreated elephant grass was 3.5 times that of the untreated material, while the ethanol yield was nearly 2 times higher. Moreover, the sugar released by the elephant grass (30.8 g/100 g TS was only slightly lower than by the wheat straw (33.1 g/100 g TS, while the ethanol yield (16.1 g/100 g TS was higher than that of the straw (15.26 g/100 g TS. All other local biomass types studied exhibited sugar and ethanol yields below 33% and 35% of the theoretical maximum, respectively. Thus, elephant grass is a highly promising biomass source for ethanol production in Africa.

  5. Transitions in Sustainable Product Design Research

    DEFF Research Database (Denmark)

    Boks, Casper; McAloone, Tim C.

    2009-01-01

    By the early 1990s, sustainable product innovation (or ecodesign, or Design for environment) had gained sufficient critical mass in academic research to be identified as a distinct research area. In the past 15 years, stimulated by a growing environmental concern and awareness in the media...... of transitions; this is illustrated by discussing characteristic aspects of each transition, which together provide a historic account of how academic research into sustainable product innovation had matured. In conclusion, a number of possible future transitions or extensions of the research area are discussed......., this research area has expanded considerably; from a bunch of opportunistic eco-pathfinders trying to make products better recyclable into acknowledged scientific research regarding technology transfer and commercialisation. This paper proposes that this maturing process took place through a number...

  6. Sustainable rice production in Malaysia beyond 2000

    International Nuclear Information System (INIS)

    Nashriyah Mat; Ho Nai Kin; Ismail Sahid; Ahyaudin Ali; Lum Keng Yeang; Mashhor Mansor

    2002-01-01

    This book is a compendium of works carried out by various institutions on subjects related to sustainable rice production. The institutions comprise Department of Agriculture, Malaysian Agricultural Research and Development Institute, Malaysian Institute for Nuclear Technology Research, Muda Agricultural Development Authority, Universiti Kebangsaan Malaysia, Universiti Putra Malaysia, Universiti Sains Malaysia, International Islamic University of Malaysia and the Agrochemical Company Mosanto. Integrated Biodiversity Management parallel with the Integrated Weed / Pest / Disease Management, rice-fish farming networking, agrochemical residue monitoring in rice and marine ecosystems, and application of biotechnology in rice productivity are taken as the future direction towards achieving sustainable rice production beyond 2000. Challenges from social and technical agroecosystem constraints, agricultural input management and maintenance of agroecosystem biodiversity are highlighted. It is imperative that the challenges are surmounted to attain the target that would be reflected by tangible rice output of 10 t/ha, and at the same time maintaining the well-being of rice-farmers. (Author)

  7. Applying Sewage Sludge to Eucalyptus grandis Plantations: Effects on Biomass Production and Nutrient Cycling through Litterfall

    International Nuclear Information System (INIS)

    Da Silva, P.H.M.; Poggiani, F.; Laclau, J.P.

    2011-01-01

    In most Brazilian cities sewage sludge is dumped into sanitary landfills, even though its use in forest plantations as a fertilizer and soil conditioner might be an interesting option. Sewage sludge applications might reduce the amounts of mineral fertilizers needed to sustain the productivity on infertile tropical soils. However, sewage sludge must be applied with care to crops to avoid soil and water pollution. The aim of our study was to assess the effects of dry and wet sewage sludges on the growth and nutrient cycling of Eucalyptus grandis plantations established on the most common soil type for Brazilian eucalypt plantations. Biomass production and nutrient cycling were studied over a 36-month period in a complete randomized block design. Four experimental treatments were compared: wet sewage sludge, dry sludge, mineral fertilizer, and no fertilizer applications. The two types of sludges as well as mineral fertilizer increased significantly the biomass of Eucalyptus trees. Wood biomass productions 36 months after planting were similar in the sewage sludge and mineral fertilization treatments (about 80 tons ha - '1) and 86 % higher than in the control treatment. Sewage sludge application also affected positively leaf litter production and significantly increased nutrient transfer among the components of the ecosystem.

  8. Applying Sewage Sludge to Eucalyptus grandis Plantations: Effects on Biomass Production and Nutrient Cycling through Litterfall

    Directory of Open Access Journals (Sweden)

    Paulo Henrique Müller da Silva

    2011-01-01

    Full Text Available In most Brazilian cities sewage sludge is dumped into sanitary landfills, even though its use in forest plantations as a fertilizer and soil conditioner might be an interesting option. Sewage sludge applications might reduce the amounts of mineral fertilizers needed to sustain the productivity on infertile tropical soils. However, sewage sludge must be applied with care to crops to avoid soil and water pollution. The aim of our study was to assess the effects of dry and wet sewage sludges on the growth and nutrient cycling of Eucalyptus grandis plantations established on the most common soil type for Brazilian eucalypt plantations. Biomass production and nutrient cycling were studied over a 36-month period in a complete randomized block design. Four experimental treatments were compared: wet sewage sludge, dry sludge, mineral fertilizer, and no fertilizer applications. The two types of sludges as well as mineral fertilizer increased significantly the biomass of Eucalyptus trees. Wood biomass productions 36 months after planting were similar in the sewage sludge and mineral fertilization treatments (about 80 tons ha−1 and 86% higher than in the control treatment. Sewage sludge application also affected positively leaf litter production and significantly increased nutrient transfer among the components of the ecosystem.

  9. The Economics of Mitigation of Water Pollution Externalities from Biomass Production for Energy

    Directory of Open Access Journals (Sweden)

    Naveen Adusumilli

    2014-12-01

    Full Text Available To fulfill the national bioenergy goals of the United States, conversion of marginal lands to intensive biomass crop production and/or application of greater amounts of nutrients to existing cropland could be expected. Such change in agricultural practices could produce unintended environmental consequences such as water quality degradation. Select Best Management Practices (BMPs are evaluated for water quality mitigation effectiveness as well as for their relative cost-effectiveness, issues that are often ignored in evaluation of biofuels as a sustainable solution for energy demand. The water quality impacts of converting pastureland to intensive biomass production for biofuel, evaluated using the Soil Water Assessment Tool (SWAT, indicate significant increases in erosion and nutrient loadings to water bodies. Hydrologic and economic evaluation of the BMPs indicate their implementation produced effective water pollution mitigation but at substantial costs, accentuating the sustainability issue related to the economics of renewable fuels. U.S. national energy policy designed around achieving energy independence should also consider environmental and economic trade-offs for biofuels to be an economically and environmentally sustainable alternative to fossil fuels.

  10. Cover Crop Biomass Harvest Influences Cotton Nitrogen Utilization and Productivity

    Directory of Open Access Journals (Sweden)

    F. Ducamp

    2012-01-01

    Full Text Available There is a potential in the southeastern US to harvest winter cover crops from cotton (Gossypium hirsutum L. fields for biofuels or animal feed use, but this could impact yields and nitrogen (N fertilizer response. An experiment was established to examine rye (Secale cereale L. residue management (RM and N rates on cotton productivity. Three RM treatments (no winter cover crop (NC, residue removed (REM and residue retained (RET and four N rates for cotton were studied. Cotton population, leaf and plant N concentration, cotton biomass and N uptake at first square, and cotton biomass production between first square and cutout were higher for RET, followed by REM and NC. However, leaf N concentration at early bloom and N concentration in the cotton biomass between first square and cutout were higher for NC, followed by REM and RET. Seed cotton yield response to N interacted with year and RM, but yields were greater with RET followed by REM both years. These results indicate that a rye cover crop can be beneficial for cotton, especially during hot and dry years. Long-term studies would be required to completely understand the effect of rye residue harvest on cotton production under conservation tillage.

  11. Biomass and biofertilizer production by Sesbania cannabina in alkaline soil

    Energy Technology Data Exchange (ETDEWEB)

    Rao, D.L.N.; Gill, H.S. [Central Soil Salinity Research Inst., Haryana (India)

    1995-12-01

    Biomass shortages in developing countries require increased investigation into fast-growing, N-fixing, woody plant species. In field trials in north India, the potential of Sesbania cannabina for production of green leaf manure (biofertilizer) and firewood (woody biomass) was investigated. At 100 days after sowing (DAS), green matter was 21.5 and 9.4 Mg ha{sup -1} in the stem and the leaf. A seeding rate of 15 kg ha{sup -1} producing a population of 10{sup 5} plants per hectare was adequate. Biofertilizer potential was 124.7 N, 5.3 P, 80.7 K and 12.0 S (kg ha{sup -1}), respectively. Nodulation was profuse and effective and N fixed was nearly 122 kg ha{sup -1} at 100 DAS. At maturity, 200 DAS, woody biomass production was 19.2 Mg ha{sup -1} and growing Sesbania until this stage was no more demanding on soil nutrients than growing it for green-matter production. There was a considerable beneficial influence from growing Sesbania on soil C and N status. (Author)

  12. Soil management practices for sustainable crop production

    International Nuclear Information System (INIS)

    Abalos, E.B.

    2005-01-01

    In a sustainable system, the soil is viewed as a fragile and living medium that must be protected and nurtured to ensure its long-term productivity and stability. However, due to high demand for food brought about by high population as well as the decline in agricultural lands, the soil is being exploited beyond its limit thus, leading to poor or sick soils. Sound soil management practices in the Philippines is being reviewed. The technologies, including the advantages and disadvantages are hereby presented. This includes proper cropping systems, fertilizer program, soil erosion control and correcting soil acidity. Sound soil management practices which conserve organic matter for long-term sustainability includes addition of compost, maintaining soil cover, increasing aggregates stability, soil tilt and diversity of soil microbial life. A healthy soil is a key component to sustainability as a health soil produce healthy crop plants and have optimum vigor or less susceptible to pests. (author)

  13. Biomass power production in Amazonia: Environmentally sound, economically productive

    Energy Technology Data Exchange (ETDEWEB)

    Waddle, D.B. [National Rural Electric Cooperative Association, Washington, DC (United States); Hollomon, J.B. [Winrock International Institute for Agricultural Development, Arlington, VA (United States)

    1993-12-31

    With the support of the US Agency for International Development, the National Rural Electric Cooperative Association (NRECA) is assisting their utility counterparts in Bolivia to improve electric service in the country`s rural population. In remote areas, the cost of extending transmission lines to small communities is prohibitive, and diesel generators represent an expensive alternative, especially for baseload power. This has led to serious consideration of electric generating systems using locally available renewable resources, including biomass, hydro, wind, and solar energy. A project has recently been initiated in Riberalta, in the Amazonian region of Bolivia, to convert waste Brazil nut shells and sawmill residues to electricity. Working in tandem with diesel generators, the biomass-fired plant will produce base-load power in an integrated system that will be able to provide reliable and affordable electricity to the city. The project will allow the local rural electric cooperative to lower the price of electricity by nearly forty percent, enable the local Brazil nut industry to increase its level of mechanization, and reduce the environmental impacts of dumping waste shells around the city and in an adjacent river. The project is representative of others that will be funded in the future by NRECA/AID.

  14. Autohydrolysis Pretreatment of Lignocellulosic Biomass for Bioethanol Production

    Science.gov (United States)

    Han, Qiang

    Autohydrolysis, a simple and environmental friendly process, has long been studied but often abandoned as a financially viable pretreatment for bioethanol production due to the low yields of fermentable sugars at economic enzyme dosages. The introduction of mechanical refining can generate substantial improvements for autohydrolysis process, making it an attractive pretreatment technology for bioethanol commercialization. In this study, several lignocellulosic biomass including wheat straw, switchgrass, corn stover, waste wheat straw have been subjected to autohydrolysis pretreatment followed by mechanical refining to evaluate the total sugar recovery at affordable enzyme dosages. Encouraging results have been found that using autohydrolysis plus refining strategy, the total sugar recovery of most feedstock can be as high as 76% at 4 FPU/g enzymes dosages. The mechanical refining contributed to the improvement of enzymatic sugar yield by as much as 30%. Three non-woody biomass (sugarcane bagasse, wheat straw, and switchgrass) and three woody biomass (maple, sweet gum, and nitens) have been subjected to autohydrolysis pretreatment to acquire a fundamental understanding of biomass characteristics that affect the autohydrolysis and the following enzymatic hydrolysis. It is of interest to note that the nonwoody biomass went through substantial delignification during autohydrolysis compared to woody biomass due to a significant amount of p-coumaric acid and ferulic acid. It has been found that hardwood which has a higher S/V ratio in the lignin structure tends to have a higher total sugar recovery from autohydrolysis pretreatment. The economics of bioethanol production from autohydrolysis of different feedstocks have been investigated. Regardless of different feedstocks, in the conventional design, producing bioethanol and co-producing steam and power, the minimum ethanol revenues (MER) required to generate a 12% internal rate of return (IRR) are high enough to

  15. Some ecological and socio-economic considerations for biomass energy crop production

    International Nuclear Information System (INIS)

    Paine, L.K.; Undersander, D.J.; Temple, S.A.; Klemme, R.M.; Peterson, T.L.; Bartelt, G.A.; Sample, D.W.; Rineer, K.C.

    1996-01-01

    The purpose of this paper is to suggest a regional approach to ensure that energy crop production will proceed in an ecologically and economically sustainable way. At this juncture, we have the opportunity to build into the system some ecological and socio-economic values which have not traditionally been considered. If crop species are chosen and sited properly, incorporation of energy crops into our agricultural system could provide extensive wildlife habitat and address soil and water quality concerns, in addition to generating renewable power. We recommend that three types of agricultural land be targeted for perennial biomass energy crops: (1) highly erodible land; (2) wetlands presently converted to agricultural uses; and (3) marginal agricultural land in selected regions. Fitting appropriate species to these lands, biomass crops can be successfully grown on lands not ecologically suited for conventional farming practices, thus providing an environmental benefit in addition to producing an economic return to the land owner. (author)

  16. BIOMASS PRODUCTION AND FORMULATION OF Bacillus subtilis FOR BIOLOGICAL CONTROL

    Directory of Open Access Journals (Sweden)

    Amran Muis

    2016-10-01

    Full Text Available Bacillus subtilis is a widespread bacterium found in soil, water, and air. It controls the growth of certain harmful bacteria and fungi, presumably by competing for nutrients, growth sites on plants, and by directly colonizing and attaching to fungal pathogens. When applied to seeds, it colonizes the developing root system of the plants and continues to live on the root system and provides protection throughout the growing season. The study on biomass production and formulation of B. subtilis for biological control was conducted in the laboratory of Department of Plant Pathology, College of Agriculture, University of the Philippines Los Baños (UPLB-CA, College, Laguna from May to July 2005. The objective of the study was to determine the optimum pH and a good carbon source for biomass production of B. subtilis and to develop a seed treatment formulation of B. subtilis as biological control agent. Results showed that the optimum pH for growth of B. subtilis was pH 6 (1.85 x 109 cfu/ml. In laboratory tests for biomass production using cassava flour, corn flour, rice flour, and brown sugar as carbon sources, it grew best in brown sugar plus yeast extract medium (6.8 x 108 cfu ml-1 in sterile distilled water and 7.8 x 108 cfu ml-1 in coconut water. In test for bacterial biomass carriers, talc proved to be the best in terms of number of bacteria recovered from the seeds (3.98 x 105 cfu seed-1.

  17. Hydrogen production through nuclear energy, a sustainable scenario in Mexico

    International Nuclear Information System (INIS)

    Ortega V, E.; Francois L, J.L.

    2007-01-01

    The energy is a key point in the social and economic development of a country, for such motive to assure the energy supply in Mexico it is of vital importance. The hydrogen it is without a doubt some one of the alternating promising fuels before the visible one necessity to decentralize the energy production based on hydrocarbons. The versatility of their applications, it high heating power and having with the more clean fuel cycle of the energy basket with which count at the moment, they are only some examples of their development potential. However the more abundant element of the universe it is not in their elementary form in our planet, it forms molecules like in the hydrocarbons or water and it stops their use it should be extracted. At the present time different methods are known for the extraction of hydrogen, there is thermal, electric, chemical, photovoltaic among others. The election of the extraction method and the primary energy source to carry out it are decisive to judge the sustainability of the hydrogen production. The sustainable development is defined as development that covers the present necessities without committing the necessity to cover the necessities of the future generations, and in the mark of this definition four indicators of the sustainable development of the different cycles of fuel were evaluated in the hydrogen production in Mexico. These indicators take in consideration the emissions of carbon dioxide in the atmosphere (environment), the readiness of the energy resources (technology), the impacts in the floor use (social) and the production costs of the cycles (economy). In this work the processes were studied at the moment available for the generation of hydrogen, those that use coal, natural gas, hydraulic, eolic energy, biomass and nuclear, as primary energy sources. These processes were evaluated with energy references of Mexico to obtain the best alternative for hydrogen production. (Author)

  18. The sustainability indicators of power production systems

    Energy Technology Data Exchange (ETDEWEB)

    Onat, Nevzat [Vocational School of Technical Studies, Marmara University, Istanbul 34722 (Turkey); Bayar, Haydar [Technical Education Faculty, Marmara University, Istanbul 34722 (Turkey)

    2010-12-15

    One of the most important elements of economical and social development is to provide uninterrupted electric energy to consumers. The increasing world population and technological developments rapidly increase the demand on electric energy. In order to meet the increasing demand for sustainable development, it is necessary to use the consumable resources of the world in the most productive manner and minimum level and to keep its negative effects on human health and environment in the lowest level as much as possible. In this study, alignment of hydrogen fuel cells, hydroelectric, wind, solar and geothermal sourced electric energy systems, in addition to fossil fueled coal, natural gas and nuclear power plants, in respect to sustainability parameters such as CO{sub 2} emission, land use, energy output, fresh water consumption and environmental and social effects is researched. Consequently, it has been determined that the wind and nuclear energy power plants have the highest sustainability indicators. The fuel cells that use hydrogen obtained by using coal and natural gas are determined as the most disadvantageous transformation technologies in respect to sustainability. This study contains an alignment related to today's technologies. Using of renewable energy resources especially in production of hydrogen, output increases to be ensured with nanotechnology applications in photovoltaic systems may change this alignment. (author)

  19. Methods for producing and using densified biomass products containing pretreated biomass fibers

    Science.gov (United States)

    Dale, Bruce E.; Ritchie, Bryan; Marshall, Derek

    2015-05-26

    A process is provided comprising subjecting a quantity of plant biomass fibers to a pretreatment to cause at least a portion of lignin contained within each fiber to move to an outer surface of said fiber, wherein a quantity of pretreated tacky plant biomass fibers is produced; and densifying the quantity of pretreated tacky plant biomass fibers to produce one or more densified biomass particulates, wherein said biomass fibers are densified without using added binder.

  20. The role of constructed wetlands for biomass production within the water-soil-waste nexus.

    Science.gov (United States)

    Avellan, C T; Ardakanian, R; Gremillion, P

    2017-05-01

    The use of constructed wetlands for water pollution control has a long standing tradition in urban, peri-urban, rural, agricultural and mining environments. The capacity of wetland plants to take up nutrients and to filter organic matter has been widely discussed and presented in diverse fora and published in hundreds of articles. In an ever increasingly complex global world, constructed wetlands not only play a role in providing safe sanitation in decentralized settings, shelter for biodiversity, and cleansing of polluted sites, in addition, they produce biomass that can be harvested and used for the production of fodder and fuel. The United Nations University Institute for Integrated Management of Material Fluxes and of Resources (UNU-FLORES) was established in December 2012 in Dresden, Germany, to assess the trade-offs between and among resources when making sustainable decisions. Against the backdrop of the Water-Energy-Food Nexus, which was introduced as a critical element for the discussions on sustainability at Rio +20, the UNU was mandated to pay critical attention to the interconnections of the underlying resources, namely, water, soil and waste. Biomass for human consumption comes in the form of food for direct use, as fodder for livestock, and as semi-woody biomass for fuelling purposes, be it directly for heating and cooking or for the production of biogas and/or biofuel. Given the universal applicability of constructed wetlands in virtually all settings, from arid to tropical, from relatively high to low nutrient loads, and from a vast variety of pollutants, we postulate that the biomass produced in constructed wetlands can be used more extensively in order to enhance the multi-purpose use of these sites.

  1. Catalytic routes from biomass to fuels

    DEFF Research Database (Denmark)

    Riisager, Anders

    2014-01-01

    chain unaffected. This presentation will survey the status of biofuels production from different sources, and discuss the sustainability of making transportation fuels from biomass. Furthermore, recently developed chemocatalytic technologies that allow efficient conversion of lignocellulosic biomass...... the chemical industry to find new feasible chemocatalytic routes to convert the components of lignocellulosic plant biomass (green biomass) as well as aquatic biomass (blue biomass) into potential platform chemicals that can replace the fossil based chemicals in order to leave the chemical supply and value...

  2. Sustainable Improvement of Animal Production and Health

    International Nuclear Information System (INIS)

    Odongo, N.E.; Garcia, M.; Viljoen, G.J.

    2010-01-01

    The world's poorest people, some one billion living mostly in Africa and Asia, depend on livestock for their day-to-day livelihood. To reduce poverty, fight hunger and ensure global food security, there is an urgent need to increase livestock production in sustainable ways. However, livestock production in developing countries is constrained by low genetic potential of the animals, poor nutrition and husbandry practices and infectious diseases. Nuclear techniques, when applied in conjunction with conventional methods, can identify constraints to livestock productivity as well as interventions that lead to their reduction or elimination in ways that are economically and socially acceptable. The challenge is how best to exploit these techniques for solving problems faced by livestock keepers within the many agricultural production systems that exist in developing countries and demonstrating their advantages to owners, local communities and government authorities. This publication is a compilation of the contributions emanating from an international Symposium on Sustainable Improvement of Animal Production and Health organised by the Joint FAO/IAEA Division of Nuclear Techniques in Food and Agriculture in cooperation with the Animal Production and Health Division of FAO. It provides invaluable information not only on how nuclear and related techniques can be used to support sustainable livestock production systems, but also about the constraints and opportunities for using these techniques in developing countries; it also attempts to identify specific research needs and gaps and new options for using these techniques for solving established and emerging problems. As such, it is hoped that the information presented and suggestions made will provide valuable guidance to scientists in both the public and private sectors as well as to government and institutional policy and decision makers. The Symposium comprised a plenary session and four thematic sessions, covering (i

  3. Sustainable Improvement of Animal Production and Health

    Energy Technology Data Exchange (ETDEWEB)

    Odongo, N E; Garcia, M; Viljoen, G J [Animal Production and Health Subprogramme, Joint FAO/IAEA Division of Nuclear Techniques in Food and Agriculture, Department of Nuclear Sciences and Applications, International Atomic Agency, Vienna (Austria)

    2010-07-01

    The world's poorest people, some one billion living mostly in Africa and Asia, depend on livestock for their day-to-day livelihood. To reduce poverty, fight hunger and ensure global food security, there is an urgent need to increase livestock production in sustainable ways. However, livestock production in developing countries is constrained by low genetic potential of the animals, poor nutrition and husbandry practices and infectious diseases. Nuclear techniques, when applied in conjunction with conventional methods, can identify constraints to livestock productivity as well as interventions that lead to their reduction or elimination in ways that are economically and socially acceptable. The challenge is how best to exploit these techniques for solving problems faced by livestock keepers within the many agricultural production systems that exist in developing countries and demonstrating their advantages to owners, local communities and government authorities. This publication is a compilation of the contributions emanating from an international Symposium on Sustainable Improvement of Animal Production and Health organised by the Joint FAO/IAEA Division of Nuclear Techniques in Food and Agriculture in cooperation with the Animal Production and Health Division of FAO. It provides invaluable information not only on how nuclear and related techniques can be used to support sustainable livestock production systems, but also about the constraints and opportunities for using these techniques in developing countries; it also attempts to identify specific research needs and gaps and new options for using these techniques for solving established and emerging problems. As such, it is hoped that the information presented and suggestions made will provide valuable guidance to scientists in both the public and private sectors as well as to government and institutional policy and decision makers. The Symposium comprised a plenary session and four thematic sessions, covering (i

  4. Ethanol, biomass and enzyme production for whey waste abatement

    Energy Technology Data Exchange (ETDEWEB)

    Maiorella, B L; Castillo, F J

    1984-08-01

    Methods of ethanol, biomass, and lactase production are evaluated for the treatment of whey waste. These processes can all reduce the whey BOD load of 35,000 ppm by at least 90%. Plant designs are evaluated at the scale of 25,000 l whey per day, corresponding to the output of a typical independent cheese factory. Ethanol production is the most practical of the alternatives evaluated and the waste treatment would add 7.3 US cents per kilogramme to the cost of cheese manufacture. 57 references.

  5. Sustainability of cosmetic products in Brazil.

    Science.gov (United States)

    de Paula Pereira, Neila

    2009-09-01

    The most recent research in the area of cosmetics to sustainability has focused on obtaining formulations rich in nontraditional oils and butters from seeds and fruits native to Brazilian tropical flora. These have contributed to aggregate value for the raw materials and involvement of small farms forming rural production in Brazil, since the plants are cultivated in preservation areas sponsored by companies who are partners in the Government Program for Brazilian Sustainability. Given that the oils extracted from seeds have the potential to replace these cutaneous constituents, it has been verified that new products of strong commercial impact show an increasing tendency to incorporate in their formulas the oils of plants grown in Brazilian soil.

  6. Method for producing ethanol and co-products from cellulosic biomass

    Science.gov (United States)

    Nguyen, Quang A

    2013-10-01

    The present invention generally relates to processes for production of ethanol from cellulosic biomass. The present invention also relates to production of various co-products of preparation of ethanol from cellulosic biomass. The present invention further relates to improvements in one or more aspects of preparation of ethanol from cellulosic biomass including, for example, improved methods for cleaning biomass feedstocks, improved acid impregnation, and improved steam treatment, or "steam explosion."

  7. Biomass use, production, feed efficiencies, and greenhouse gas emissions from global livestock systems

    Science.gov (United States)

    Herrero, Mario; Havlík, Petr; Valin, Hugo; Notenbaert, An; Rufino, Mariana C.; Thornton, Philip K.; Blümmel, Michael; Weiss, Franz; Grace, Delia; Obersteiner, Michael

    2013-01-01

    We present a unique, biologically consistent, spatially disaggregated global livestock dataset containing information on biomass use, production, feed efficiency, excretion, and greenhouse gas emissions for 28 regions, 8 livestock production systems, 4 animal species (cattle, small ruminants, pigs, and poultry), and 3 livestock products (milk, meat, and eggs). The dataset contains over 50 new global maps containing high-resolution information for understanding the multiple roles (biophysical, economic, social) that livestock can play in different parts of the world. The dataset highlights: (i) feed efficiency as a key driver of productivity, resource use, and greenhouse gas emission intensities, with vast differences between production systems and animal products; (ii) the importance of grasslands as a global resource, supplying almost 50% of biomass for animals while continuing to be at the epicentre of land conversion processes; and (iii) the importance of mixed crop–livestock systems, producing the greater part of animal production (over 60%) in both the developed and the developing world. These data provide critical information for developing targeted, sustainable solutions for the livestock sector and its widely ranging contribution to the global food system. PMID:24344273

  8. Biomass use, production, feed efficiencies, and greenhouse gas emissions from global livestock systems.

    Science.gov (United States)

    Herrero, Mario; Havlík, Petr; Valin, Hugo; Notenbaert, An; Rufino, Mariana C; Thornton, Philip K; Blümmel, Michael; Weiss, Franz; Grace, Delia; Obersteiner, Michael

    2013-12-24

    We present a unique, biologically consistent, spatially disaggregated global livestock dataset containing information on biomass use, production, feed efficiency, excretion, and greenhouse gas emissions for 28 regions, 8 livestock production systems, 4 animal species (cattle, small ruminants, pigs, and poultry), and 3 livestock products (milk, meat, and eggs). The dataset contains over 50 new global maps containing high-resolution information for understanding the multiple roles (biophysical, economic, social) that livestock can play in different parts of the world. The dataset highlights: (i) feed efficiency as a key driver of productivity, resource use, and greenhouse gas emission intensities, with vast differences between production systems and animal products; (ii) the importance of grasslands as a global resource, supplying almost 50% of biomass for animals while continuing to be at the epicentre of land conversion processes; and (iii) the importance of mixed crop–livestock systems, producing the greater part of animal production (over 60%) in both the developed and the developing world. These data provide critical information for developing targeted, sustainable solutions for the livestock sector and its widely ranging contribution to the global food system.

  9. Modelling traditional household use of biomass policy changes for a commercial sustainable alternative

    International Nuclear Information System (INIS)

    Audinet, P.; Fages, E.

    1997-01-01

    Feasible policy alternatives are searched for, which could tackle the job market problem, thus achieving the first step towards solving the biomass dependency issue. To do this, an economic model is built which includes specific characteristics of biomass collection and use, such as non-monetary income, determinants of time allocation between formal and informal activities, and energy sources substitutability. The economic features of biomass production and use is studied in order to understand the underlying principles at work at the cross-roads between rural labour market and energy consumption patterns. The issue of fuelwood plantation is examined on a commercial basis using a spread-sheet model to assess its viability and the constraints for the policy maker. An economic model is developed to test the effects of a variety of policy changes on the local economy as described in the spread-sheet framework. The case of India is studied. (K.A.)

  10. The sustainability of ethanol production from sugarcane

    International Nuclear Information System (INIS)

    Goldemberg, Jose; Coelho, Suani Teixeira; Guardabassi, Patricia

    2008-01-01

    The rapid expansion of ethanol production from sugarcane in Brazil has raised a number of questions regarding its negative consequences and sustainability. Positive impacts are the elimination of lead compounds from gasoline and the reduction of noxious emissions. There is also the reduction of CO 2 emissions, since sugarcane ethanol requires only a small amount of fossil fuels for its production, being thus a renewable fuel. These positive impacts are particularly noticeable in the air quality improvement of metropolitan areas but also in rural areas where mechanized harvesting of green cane is being introduced, eliminating the burning of sugarcane. Negative impacts such as future large-scale ethanol production from sugarcane might lead to the destruction or damage of high-biodiversity areas, deforestation, degradation or damaging of soils through the use of chemicals and soil decarbonization, water resources contamination or depletion, competition between food and fuel production decreasing food security and a worsening of labor conditions on the fields. These questions are discussed here, with the purpose of clarifying the sustainability aspects of ethanol production from sugarcane mainly in Sao Paulo State, where more than 60% of Brazil's sugarcane plantations are located and are responsible for 62% of ethanol production. (author)

  11. Benthic bacterial biomass and production in the Hudson River estuary

    International Nuclear Information System (INIS)

    Austin, H.K.; Findlay, S.E.G.

    1989-01-01

    Bacterial biomass, production, and turnover were determined for two freshwater march sites and a site in the main river channel along the tidally influenced Hudson River. The incorporation of [methyl- 3 H]thymidine into DNA was used to estimate the growth rate of surface and anaerobic bacteria. Bacterial production at marsh sites was similar to, and in some cases considerably higher than, production estimates reported for other aquatic wetland and marine sediment habitats. Production averaged 1.8-2.8 mg C·m -2 · hour -1 in marsh sediments. Anaerobic bacteria in marsh sediment incorporated significant amounts of [methyl- 3 H]thymidine into DNA. Despite differences in dominant vegatation and tidal regime, bacterial biomass was similar (1 x 10 3 ± 0.08 mg C·m -2 ) in Trapa, Typha, and Nuphar aquatic macrophyte communities. Bacterial abundance and productivity were lower in sandy sediments associated with Scirpus communities along the Hudson River (0.2 x 10 3 ± 0.05 mg C·m -2 and 0.3 ± 0.23 mg C · m -2 · hour -1 , respectively)

  12. Consolidated briefing of biochemical ethanol production from lignocellulosic biomass

    Directory of Open Access Journals (Sweden)

    Spyridon Achinas

    2016-09-01

    Full Text Available Bioethanol production is one pathway for crude oil reduction and environmental compliance. Bioethanol can be used as fuel with significant characteristics like high octane number, low cetane number and high heat of vaporization. Its main drawbacks are the corrosiveness, low flame luminosity, lower vapor pressure, miscibility with water, and toxicity to ecosystems. One crucial problem with bioethanol fuel is the availability of raw materials. The supply of feedstocks for bioethanol production can vary season to season and depends on geographic locations. Lignocellulosic biomass, such as forest-based woody materials, agricultural residues and municipal waste, is prominent feedstock for bioethanol cause of its high availability and low cost, even though the commercial production has still not been established. In addition, the supply and the attentive use of microbes render the bioethanol production process highly peculiar. Many conversion technologies and techniques for biomass-based ethanol production are under development and expected to be demonstrated. In this work a technological analysis of the biochemical method that can be used to produce bioethanol is carried out and a review of current trends and issues is conducted.

  13. The biomass

    International Nuclear Information System (INIS)

    Viterbo, J.

    2011-01-01

    Biomass comes mainly from forests and agriculture and is considered as a clean alternative energy that can be valorized as heat, power, bio-fuels and chemical products but its mass production is challenging in terms of adequate technology but also in terms of rethinking the use of lands. Forests can be managed to produce biomass but bio-fuels can also be generated from sea-weeds. Biomass appears very promising but on one hand we have to secure its supplying and assure its economical profitability and on another hand we have to assure a reasonable use of lands and a limited impact on the environment. The contribution of biomass to sustainable development depends on the balance between these 2 ends. (A.C.)

  14. Marginal sites in for biomass production - case study sites in northern Greece. Obstacles and solutions

    Science.gov (United States)

    Kiourtsis, Fotios; Keramitzis, Dimitris; Papatheodorou, Ioannis; Tsoulakaki, Dimitra; Gontzaridou, Marina; Lampetsou, Eugenia; Fragkiskakis, Nikitas; Gerwin, Werner; Repmann, Frank; Baumgarten, Wibke

    2017-04-01

    In 2016, D.A.M.T, the Hellenic Forest Service for northern Greece (Macedonia and Thrace Regions), with the support of BTU Cottbus-Senftenberg Reseach Center Landscape Development and Mining Landscapes experts and following common standard protocols of the SEEMLA project, established three plots, in the northeastern part of Greece, in Rodopi prefecture (main forest species for biomass production: Pinus Nigra, Pinus Brutia and Robinia Pseudacacia). Nearby productive ecosystems (including forests etc.) or successional sites will be used as references for estimating the potentials of MagL. Further existing plantations of energy crops on similar MagL, will be used to assess potential crop yields. These plots represent different types of marginal lands, they were specifically selected for SEEMLA purposes (reliable and sustainable exploitation of biomass) and are entirely different from other inventories, used for typical forest operations in Greece. The main differences are:  an intensively studied core area,  Soil Quality Rating (SQR) method measurements,  Soil Classification Maps - parameters estimation (land capability classes and landforms),  tightly spaced plantations (1,5 m x 1,5 m),  cropping systems,  shorter rotations and  the need for special forest management study. The combination of these requirements with the soil conditions of the area has created significant issues on plots establishment and accurate recording of supply chain stages. Main expected SEEMLA impacts are: • provide a substantial amount of EU energy needs from marginal/degraded land, • avoidance of land use conflicts by strengthening the ability to use MagL for biomass production for energy, • reduction of EU-wide greenhouse gas, • mitigation of conflicts regarding sustainability and biodiversity for the utilization of MagL for biomass production, • growth of plantations of bioenergy carriers from MagL at competitive costs, • expansion of economic opportunities

  15. An analysis of the feasibility for increasing woody biomass production from pine plantations in the southern United States

    International Nuclear Information System (INIS)

    Munsell, John F.; Fox, Thomas R.

    2010-01-01

    In the near future, wood from the 130 000 km 2 of pine plantations in the southern United States could provide much of the feedstock for emerging bioenergy industries. Research and operational experience show that total plantation biomass productivity exceeding 22.4 Mg ha -1 y -1 green weight basis with rotations less than 25 years are biologically possible, financially attractive, and environmentally sustainable. These gains become possible when intensively managed forest plantations are treated as agro-ecosystems where both the crop trees and the soil are managed to optimize productivity and value. Intensive management of southern US pine plantations could significantly increase the amount of biomass available to supply bioenergy firms. Results from growth and yield simulations using models and a financial analysis suggest that if the 130 000 km 2 of cutover pine plantations and an additional 20 000 km 2 of planted idle farmland are intensively managed in the most profitable regimes, up to 77.5 Tg green weight basis of woody biomass could be produced annually. However, questions exist about the extent to which intensive management for biomass production can improve financial returns to owners and whether they would adopt these systems. The financial analysis suggests providing biomass for energy from pine plantations on cutover sites is most profitable when intensive management is used to produce a mixture of traditional forest products and biomass for energy. Returns from dedicated biomass plantations on cutover sites and idle farmland will be lower than integrated product plantations unless prices for biomass increase or subsidies are available. (author)

  16. Key issues in life cycle assessment of ethanol production from lignocellulosic biomass: Challenges and perspectives.

    Science.gov (United States)

    Singh, Anoop; Pant, Deepak; Korres, Nicholas E; Nizami, Abdul-Sattar; Prasad, Shiv; Murphy, Jerry D

    2010-07-01

    Progressive depletion of conventional fossil fuels with increasing energy consumption and greenhouse gas (GHG) emissions have led to a move towards renewable and sustainable energy sources. Lignocellulosic biomass is available in massive quantities and provides enormous potential for bioethanol production. However, to ascertain optimal biofuel strategies, it is necessary to take into account environmental impacts from cradle to grave. Life cycle assessment (LCA) techniques allow detailed analysis of material and energy fluxes on regional and global scales. This includes indirect inputs to the production process and associated wastes and emissions, and the downstream fate of products in the future. At the same time if not used properly, LCA can lead to incorrect and inappropriate actions on the part of industry and/or policy makers. This paper aims to list key issues for quantifying the use of resources and releases to the environment associated with the entire life cycle of lignocellulosic bioethanol production. Copyright 2009 Elsevier Ltd. All rights reserved.

  17. Nutrient recovery from swine waste and protein biomass production using duckweed ponds (Landoltia punctata): southern Brazil.

    Science.gov (United States)

    Mohedano, R A; Velho, V F; Costa, R H R; Hofmann, S M; Belli Filho, P

    2012-01-01

    Brazil is one of the most important countries in pork production worldwide, ranking third. This activity has an important role in the national economic scenario. However, the fast growth of this activity has caused major environmental impacts, especially in developing countries. The large amount of nitrogen and phosphorus compounds found in pig manure has caused ecological imbalances, with eutrophication of major river basins in the producing regions. Moreover, much of the pig production in developing countries occurs on small farms, and therefore causes diffuse pollution. Therefore, duckweed pond have been successfully used in the swine waste polishing, generating further a biomass with high protein content. The present study evaluated the efficiency of two full scale duckweed ponds for the polishing of a small pig farm effluent, biomass yield and crude protein (CP) content. Duckweed pond series received the effluent from a biodigester-storage pond, with a flow rate of 1 m(3)/day (chemical oxygen demand rate = 186 kg/ha day) produced by 300 animals. After 1 year a great improvement of effluent quality was observed, with removal of 96% of total Kjeldahl nitrogen (TKN) and 89% of total phosphorus (TP), on average. Nitrogen removal rate is one of the highest ever found (4.4 g TKN/m(2) day). Also, the dissolved oxygen rose from 0.0 to 3.0 mg/L. The two ponds produced together over 13 tons of fresh biomass (90.5% moisture), with 35% of CP content, which represents a productivity of 24 tonsCP/ha year. Due to the high rate of nutrient removal, and also the high protein biomass production, duckweed ponds revealed, under the presented conditions, a great potential for the polishing and valorization of swine waste. Nevertheless, this technology should be better exploited to improve the sustainability of small pig farms in order to minimize the impacts of this activity on the environment.

  18. Ultrasound pretreatment of filamentous algal biomass for enhanced biogas production.

    Science.gov (United States)

    Lee, Kwanyong; Chantrasakdakul, Phrompol; Kim, Daegi; Kong, Mingeun; Park, Ki Young

    2014-06-01

    The filamentous alga Hydrodictyon reticulatum harvested from a bench-scale wastewater treatment pond was used to evaluate biogas production after ultrasound pretreatment. The effects of ultrasound pretreatment at a range of 10-5000 J/mL were tested with harvested H. reticulatum. Cell disruption by ultrasound was successful and showed a higher degree of disintegration at a higher applied energy. The range of 10-5000 J/mL ultrasound was able to disintegrated H. reticulatum and the soluble COD was increased from 250 mg/L to 1000 mg/L at 2500 J/mL. The disintegrated algal biomass was digested for biogas production in batch experiments. Both cumulative gas generation and volatile solids reduction data were obtained during the digestion. Cell disintegration due to ultrasound pretreatment increased the specific biogas production and degradation rates. Using the ultrasound approach, the specific methane production at a dose of 40 J/mL increased up to 384 mL/g-VS fed that was 2.3 times higher than the untreated sample. For disintegrated samples, the volatile solids reduction was greater with increased energy input, and the degradation increased slightly to 67% at a dose of 50 J/mL. The results also indicate that disintegration of the algal cells is the essential step for efficient anaerobic digestion of algal biomass. Copyright © 2013 Elsevier Ltd. All rights reserved.

  19. Integrated production of lactic acid and biomass on distillery stillage.

    Science.gov (United States)

    Djukić-Vuković, Aleksandra P; Mojović, Ljiljana V; Vukašinović-Sekulić, Maja S; Nikolić, Svetlana B; Pejin, Jelena D

    2013-09-01

    The possibilities of parallel lactic acid and biomass production in batch and fed-batch fermentation on distillery stillage from bioethanol production were studied. The highest lactic acid yield and productivity of 92.3 % and 1.49 g L(-1) h(-1) were achieved in batch fermentation with initial sugar concentration of 55 g L(-1). A significant improvement of the process was achieved in fed-batch fermentation where the concentration of lactic acid was increased to 47.6 % and volumetric productivity for 21 % over the batch process. A high number of Lactobacillus rhamnosus ATCC 7469 viable cells of 10(9) CFU ml(-1) was attained at the end of fed-batch fermentation. The survival of 92.9 % of L. rhamnosus cells after 3 h of incubation at pH 2.5 validated that the fermentation media remained after lactic acid removal could be used as a biomass-enriched animal feed thus making an additional value to the process.

  20. Agricultural innovations for sustainable crop production intensification

    Directory of Open Access Journals (Sweden)

    Michele Pisante

    2012-10-01

    Full Text Available Sustainable crop production intensification should be the first strategic objective of innovative agronomic research for the next 40 years. A range of options exist (often very location specific for farming practices, approaches and technologies that ensure sustainability, while at the same time improving crop production. The main challenge is to encourage farmers in the use of appropriate technologies,  and  to  ensure  that  knowledge  about  sound  production  practices  is  increasingly accepted and applied by farmers. There is a huge, but underutilized potential to link farmers’ local knowledge with science-based innovations, through favourable institutional arrangements.  The same  holds  for  the  design,  implementation  and  monitoring  of  improved  natural  resource management  that  links  community  initiatives  to  external  expertise.  It is also suggested that a comprehensive effort be undertaken to measure different stages of the innovation system, including technological adoption and diffusion at the farm level, and to investigate the impact of agricultural policies on technological change and technical efficiency. This paper provides a brief review of agronomic management practices that support sustainable crop production system and evidence on developments  in the selection of crops and cultivars; describes farming systems for crop which take a predominantly ecosystem approach; discusses the scientific application of ecosystem principles for the management of pest and weed populations; reviews the  improvements in fertilizer and nutrient management that explain productivity growth; describes the benefits and constraints of irrigation technologies; and suggests a way forward. Seven changes in the context for agricultural development are proposed that heighten the need to examine how innovation occurs in the agricultural sector.

  1. Modeling belowground biomass of black cohosh, a medicinal forest product.

    Science.gov (United States)

    James Chamberlain; Gabrielle Ness; Christine Small; Simon Bonner; Elizabeth Hiebert

    2014-01-01

    Tens of thousands of kilograms of rhizomes and roots of Actaea racemosa L., a native Appalachian forest perennial, are harvested every year and used for the treatment of menopausal conditions. Sustainable management of this and other wild-harvested non-timber forest products requires the ability to effectively and reliably inventory marketable plant...

  2. Making environmental assessments of biomass production systems comparable worldwide

    International Nuclear Information System (INIS)

    Meyer, Markus A; Seppelt, Ralf; Priess, Joerg A; Witing, Felix

    2016-01-01

    Global demand for agricultural and forestry products fundamentally affects regional land-use change associated with environmental impacts (EIs) such as erosion. In contrast to aggregated global metrics such as greenhouse gas (GHG) balances, local/regional EIs of different agricultural and forestry production regions need methods which enable worldwide EI comparisons. The key aspect is to control environmental heterogeneity to reveal man-made differences of EIs between production regions. Environmental heterogeneity is the variation in biotic and abiotic environmental conditions. In the present study, we used three approaches to control environmental heterogeneity: (i) environmental stratification, (ii) potential natural vegetation (PNV), and (iii) regional environmental thresholds to compare EIs of solid biomass production. We compared production regions of managed forests and plantation forests in subtropical (Satilla watershed, Southeastern US), tropical (Rufiji basin, Tanzania), and temperate (Mulde watershed, Central Germany) climates. All approaches supported the comparison of the EIs of different land-use classes between and within production regions. They also standardized the different EIs for a comparison between the EI categories. The EIs for different land-use classes within a production region decreased with increasing degree of naturalness (forest, plantation forestry, and cropland). PNV was the most reliable approach, but lacked feasibility and relevance. The PNV approach explicitly included most of the factors that drive environmental heterogeneity in contrast to the stratification and threshold approaches. The stratification approach allows consistent global application due to available data. Regional environmental thresholds only included arbitrarily selected aspects of environmental heterogeneity; they are only available for few EIs. Especially, the PNV and stratification approaches are options to compare regional EIs of biomass or crop production

  3. Microbial Biodiesel Production by Direct Transesterification of Rhodotorula glutinis Biomass

    Directory of Open Access Journals (Sweden)

    I-Ching Kuan

    2018-04-01

    Full Text Available (1 Background: Lipids derived from oleaginous microbes have become promising alternative feedstocks for biodiesel. This is mainly because the lipid production rate from microbes is one to two orders of magnitude higher than those of energy crops. However, the conventional process for converting these lipids to biodiesel still requires a large amount of energy and organic solvents; (2 Methods: In this study, an oleaginous yeast, Rhodotorula glutinis, was used for direct transesterification without lipid pre-extraction to produce biodiesel, using sulfuric acid or sodium hydroxide as a catalyst. Such processes decreased the amount of energy and organic solvents required simultaneously; (3 Results: When 1 g of dry R. glutinis biomass was subject to direct transesterification in 20 mL of methanol catalyzed by 0.6 M H2SO4 at 70 °C for 20 h, the fatty acid methyl ester (FAME yield reached 111%. Using the same amount of biomass and methanol loading but catalyzed by 1 g/L NaOH at 70 °C for 10 h, the FAME yield reached 102%. The acid-catalyzed process showed a superior moisture tolerance; when the biomass contained 70% moisture, the FAME yield was 43% as opposed to 34% of the base-catalyzed counterpart; (4 Conclusions: Compared to conventional transesterification, which requires lipid pre-extraction, direct transesterification not only simplifies the process and shortens the reaction time, but also improves the FAME yield.

  4. Sampling of contaminants from product gases of biomass gasifiers

    Energy Technology Data Exchange (ETDEWEB)

    Staahlberg, P.; Lappi, M.; Kurkela, E.; Simell, P.; Oesch, P.; Nieminen, M. [VTT Energy, Espoo (Finland). New Energy Technologies

    1998-12-01

    Reliable sampling and analysis of products from biomass gasification are essential for the successful process development and economical operation of commercial gasifiers. One of the most important and most difficult analytical tasks is to characterise the emissions from the gasifiers. This report presents a review of the sampling and analytical systems employed and developed when doing research on coal and biomass gasification. In addition to the sampling systems published in the literature, experiences obtained in various biomass gasification R and D projects of VTT in 1985-1995 are described. The present sampling methods used for different gas contaminants at VTT are also briefly presented. This report focuses mainly on the measurement of tars, nitrogen compounds and sulphur gases. Isokinetic and non-isokinetic sampling train systems are described and, in addition, special sampling apparatus based on liquid-quenched probe and gas dilution is briefly outlined. Sampling of tars with impinger systems and sampling of heavy tars with filter techniques are described in detail. Separate sampling of particulates is briefly discussed. From inorganic compounds the sampling systems used for H{sub 2}S and other sulphur gases, NH{sub 3} and HCN and HCl are presented. Proper storage of the samples is also included in the report. (orig.) 90 refs.

  5. Lignocellulosic residues for production of electricity, biogas or second generation biofuel: A case study of technical and sustainable potential of rice straw in Mali

    DEFF Research Database (Denmark)

    Nygaard, Ivan; Dembelé, Filifing; Daou, Ibrahima

    2016-01-01

    Biomass from agricultural residues, especially lignocellulosic biomass, is not only seen as a sustainable biomass source for the production of electricity, but increasingly as a resource for the production of biogas and second generation biofuel in developing countries. Based on empirical research...... in an irrigated rice-growing area, Office du Niger, in Mali, this article builds scenarios for the sustainable potential of rice straw. The paper concludes that there is great uncertainty regarding the size of the sustainable resources of rice straw available for energy, but that the most likely scenario...

  6. 75 FR 56528 - EPA's Role in Advancing Sustainable Products

    Science.gov (United States)

    2010-09-16

    ... action if you manufacture, distribute, label, certify, verify, and purchase or use consumer, commercial... particular, how do you see EPA's role in: Assembling information and databases. Identifying sustainability ``hotspots'' and setting product sustainability priorities. Evaluating the multiple impacts of products...

  7. In situ fast pyrolysis of biomass with zeolite catalysts for bioaromatics/gasoline production: A review

    International Nuclear Information System (INIS)

    Galadima, Ahmad; Muraza, Oki

    2015-01-01

    Highlights: • Biomass upgrading by fast pyrolysis is an attractive bioaromatics production. • Zeolite catalysts are key important systems considered for the process. • Catalytic activity depend on zeolite structure, acidity and textural features. • Recent literature on the role of the zeolite catalysts critically tailored. • Hierarchical zeolites are prospective catalysts for industrial applications. - Abstract: The fast pyrolysis of biomass-based feedstocks is currently gaining considerable attention as an industrial and sustainable option for the production of gasoline-range bioaromatics. The complex composition of biomass molecules and a series of reactions involved during the upgrading process require the incorporation of sufficiently acidic and topological catalysts. This paper carefully documents and analyzes recent publications that have investigated the properties of zeolites to enhance the yield of bioaromatics during in situ fast pyrolysis. Issues related to the effects of zeolite’s textural, topological and acidic properties are critically examined. Factors responsible for catalyst deactivation and the mechanistic roles of the catalysts used are discussed. This paper also explores the prospects of hierarchical zeolites and municipal solid waste (MSW) as catalysts and feedstocks for the fast pyrolysis process.

  8. Genetic engineering and sustainable production of ornamentals

    DEFF Research Database (Denmark)

    Lütken, Henrik Vlk; Clarke, Jihong Liu; Müller, Renate

    2012-01-01

    Abstract Through the last decades, environmentally and health-friendly production methods and conscientious use of resources have become crucial for reaching the goal of a more sustainable plant production. Protection of the environment requires careful consumption of limited resources and reduct......Abstract Through the last decades, environmentally and health-friendly production methods and conscientious use of resources have become crucial for reaching the goal of a more sustainable plant production. Protection of the environment requires careful consumption of limited resources....... This review presents the more recent progress of genetic engineering in ornamental breeding, delivers an overview of the biological background of the used technologies and critically evaluates the usefulness of the strategies to obtain improved ornamental plants. First, genetic engineering is addressed......, compactness can be accomplished by using a natural transformation approach without recombinant DNA technology. Secondly, metabolic engineering approaches targeting elements of the ethylene signal transduction pathway are summarized as a possible alternative to avoid the use of chemical ethylene inhibitors...

  9. Nontraditional Use of Biomass at Certified Forest Management Units: Forest Biomass for Energy Production and Carbon Emissions Reduction in Indonesia

    Directory of Open Access Journals (Sweden)

    Asep S. Suntana

    2012-01-01

    Full Text Available Biomass conversion technologies that produce energy and reduce carbon emissions have become more feasible to develop. This paper analyzes the potential of converting biomass into biomethanol at forest management units experiencing three forest management practices (community-based forest management (CBFM, plantation forest (PF, and natural production forest (NPF. Dry aboveground biomass collected varied considerably: 0.26–2.16 Mg/ha/year (CBFM, 8.08–8.35 Mg/ha/year (NPF, and 36.48–63.55 Mg/ha/year (PF. If 5% of the biomass was shifted to produce biomethanol for electricity production, the NPF and PF could provide continuous power to 138 and 2,762 households, respectively. Dedicating 5% of the biomass was not a viable option from one CBFM unit. However, if all biomasses were converted, the CBFM could provide electricity to 19–27 households. If 100% biomass from two selected PF was dedicated to biomethanol production: (1 52,200–72,600 households could be provided electricity for one year; (2 142–285% of the electricity demand in Jambi province could be satisfied; (3 all gasoline consumed in Jambi, in 2009, would be replaced. The net carbon emissions avoided could vary from 323 to 8,503 Mg when biomethanol was substituted for the natural gas methanol in fuel cells and from 294 to 7,730 Mg when it was used as a gasoline substitute.

  10. Assessment of potential biomass energy production in China towards 2030 and 2050

    Science.gov (United States)

    Zhao, Guangling

    2018-01-01

    The objective of this paper is to provide a more detailed picture of potential biomass energy production in the Chinese energy system towards 2030 and 2050. Biomass for bioenergy feedstocks comes from five sources, which are agricultural crop residues, forest residues and industrial wood waste, energy crops and woody crops, animal manure, and municipal solid waste. The potential biomass production is predicted based on the resource availability. In the process of identifying biomass resources production, assumptions are made regarding arable land, marginal land, crops yields, forest growth rate, and meat consumption and waste production. Four scenarios were designed to describe the potential biomass energy production to elaborate the role of biomass energy in the Chinese energy system in 2030. The assessment shows that under certain restrictions on land availability, the maximum potential biomass energy productions are estimated to be 18,833 and 24,901 PJ in 2030 and 2050.

  11. Design and performance of the KSC Biomass Production Chamber

    Science.gov (United States)

    Prince, Ralph P.; Knott, William M.; Sager, John C.; Hilding, Suzanne E.

    1987-01-01

    NASA's Controlled Ecological Life Support System program has instituted the Kennedy Space Center 'breadboard' project of which the Biomass Production Chamber (BPC) presently discussed is a part. The BPC is based on a modified hypobaric test vessel; its design parameters and operational parameters have been chosen in order to meet a wide range of plant-growing objectives aboard future spacecraft on long-duration missions. A control and data acquisition subsystem is used to maintain a common link between the heating, ventilation, and air conditioning system, the illumination system, the gas-circulation system, and the nutrient delivery and monitoring subsystems.

  12. Assessment of potential biomass energy production in China towards 2030 and 2050

    OpenAIRE

    Zhao, Guangling

    2016-01-01

    The objective of this paper is to provide a more detailed picture of potential biomass energy production in the Chinese energy system towards 2030 and 2050. Biomass for bioenergy feedstocks comes from five sources, which are agricultural crop residues, forest residues and industrial wood waste, energy crops and woody crops, animal manure, and municipal solid waste. The potential biomass production is predicted based on the resource availability. In the process of identifying biomass resources...

  13. Production of yeast biomass using waste Chinese cabbage

    Energy Technology Data Exchange (ETDEWEB)

    Min Ho Choi; Yun Hee Park [Ajou Univ., Suwon (Korea). Dept. of Molecular Science and Technology

    2003-08-01

    The possibility of using waste Chinese cabbage as a substrate for microbial biomass production was investigated. Cell mass and the protein content of four species of yeast, Candida utilis, Pichia stipitis, Kluyveromyces marxianus, and Saccharomyces cerevisiae, were determined when cultured in juice extracted from cabbage waste. Compared to YM broth containing the same level of sugar, all the strains except C. utilis showed higher total protein production in cabbage juice medium (CJM). Cell mass production was lower for all four strains in heat-treated CJM than in membrane-filtered medium, and this adverse effect was pronounced when the CJM was autoclaved at 121{sup o}C for 15 min. As a source of inorganic nitrogen, only ammonium sulfate added at a concentration of 0.5 g nitrogen per liter of CJM increased cell growth. Of the seven organic nitrogen sources tested, only corn steep powder was effective in increasing cell mass (by about 11%). As a micronutrient, the addition of 0.5 mM zinc increased cell mass. The results suggest that juice from waste Chinese cabbages can be used to produce microbial biomass protein without substantial modification, after preliminary heat treatment at temperatures below those required for sterilization. (Author)

  14. Energy-Based Evaluations on Eucalyptus Biomass Production

    Directory of Open Access Journals (Sweden)

    Thiago L. Romanelli

    2012-01-01

    Full Text Available Dependence on finite resources brings economic, social, and environmental concerns. Planted forests are a biomass alternative to the exploitation of natural forests. In the exploitation of the planted forests, planning and management are key to achieve success, so in forestry operations, both economic and noneconomic factors must be considered. This study aimed to compare eucalyptus biomass production through energy embodiment of anthropogenic inputs and resource embodiment including environmental contribution (emergy for the commercial forest in the Sao Paulo, Brazil. Energy analyses and emergy synthesis were accomplished for the eucalyptus production cycles. It was determined that emergy synthesis of eucalyptus production and sensibility analysis for three scenarios to adjust soil acidity (lime, ash, and sludge. For both, energy analysis and emergy synthesis, harvesting presented the highest input demand. Results show the differences between energy analysis and emergy synthesis are in the conceptual underpinnings and accounting procedures. Both evaluations present similar trends and differ in the magnitude of the participation of an input due to its origin. For instance, inputs extracted from ores, which represent environmental contribution, are more relevant for emergy synthesis. On the other hand, inputs from industrial processes are more important for energy analysis.

  15. Sorghum Biomass Production for Energy Purpose Using Treated Urban Wastewater and Different Fertilization in a Mediterranean Environment

    Directory of Open Access Journals (Sweden)

    Carmelo Maucieri

    2016-12-01

    Full Text Available With the aim at enhancing the sustainability of biomass production in the Mediterranean area, this paper analyzes, for the first time, the production of sorghum (Sorghum bicolor (L. Moench biomass for bioenergy production using urban treated wastewaters and bio-fertilization. For this purpose, the effects on biomass production of three different fertilizations (no-nitrogen control, biofertilizer, and mineral ammonium nitrate, four levels of constructed wetland (CW wastewater restitutions (0%, 33%, 66% and 100% of crop evapotranspiration (ETc and three harvesting dates (at full plant maturity, at the initial senescence stage, and at the post-senescence stage were evaluated in a two year trial. For bio-fertilization, a commercial product based on arbuscular mycorrhizal fungi was used. Mineral nitrogen (N fertilization significantly increased dry biomass (+22.8% in the first year and +16.8% in the second year compared to the control (95.9 and 188.2 g·plant−1, respectively. The lowest and highest biomass production, in 2008 and 2009, was found at 0% (67.1 and 118.2 g·plant−1 and 100% (139.2 and 297.4 g·plant−1 ETc restitutions. In both years, the first harvest gave the highest biomass yield (124.3 g·plant−1 in the first year and 321.3 g·plant−1 in the second, followed by the second and the third one. The results showed that in Mediterranean areas, constructed wetlands treated wastewaters, when complying with the European restrictions for their use in agriculture, may represent an important tool to enhance and stabilize the biomass of energy crops by recycling scarce quality water and nutrients otherwise lost in the environment.

  16. Scenarios for power production with biomass in the Finnish forest industry

    International Nuclear Information System (INIS)

    Nousiainen, I.K.; Malinen, H.O.; Villa, A.O.

    1997-01-01

    This study presents three scenarios for power production with biomass in Finnish pulp and paper mills. The basic scenario assumes that the production capacity in the forest industry increases as in the past. The green energy scenario assumes that there is a strong demand from the market for sustainable green energy production. The maximum scenario assumes that the production capacity of chemical pulp increases significantly and the use of wood raw material extends to the maximum level. According to the basic scenario the use of biofuels in the pulp and paper mills will increase from starting level, 3.24 Mtoe in 1992, to 5.07 Mtoe by the year 2010. The utilization potential of biofuels will increase to 5.45 Mtoe in green energy and to 6.43 Mtoe in the maximum biofuels scenario. The power production with biomass will increase from the starting level, 572 MW in 1992, to 930 MW in the basic, to 1 100 MW in the green energy and to 1 670 MW in the maximum biofuels scenario by the year 2010. (author)

  17. Cyanobacteria: Promising biocatalysts for sustainable chemical production.

    Science.gov (United States)

    Knoot, Cory J; Ungerer, Justin; Wangikar, Pramod P; Pakrasi, Himadri B

    2018-04-06

    Cyanobacteria are photosynthetic prokaryotes showing great promise as biocatalysts for the direct conversion of CO 2 into fuels, chemicals, and other value-added products. Introduction of just a few heterologous genes can endow cyanobacteria with the ability to transform specific central metabolites into many end products. Recent engineering efforts have centered around harnessing the potential of these microbial biofactories for sustainable production of chemicals conventionally produced from fossil fuels. Here, we present an overview of the unique chemistry that cyanobacteria have been co-opted to perform. We highlight key lessons learned from these engineering efforts and discuss advantages and disadvantages of various approaches. © 2018 by The American Society for Biochemistry and Molecular Biology, Inc.

  18. Sustainable development perspectives of poultry production

    DEFF Research Database (Denmark)

    Vaarst, Mette; Steenfeldt, Sanna; Horsted, Klaus

    2015-01-01

    or more of the four aspects, e.g., pollution and antibiotic use, biodiversity (environmental aspects), conditions for farm workers and animal welfare (social aspects), governance of the food chain (institutional aspects), and the development of poultry from a valuable food to a cheap staple food...... throughout major parts of the world (economic aspects). There are numerous potential pathways for sustainable development of poultry production. Poultry are living, sentient animals that can be well integrated into many different types of urban and rural farming systems, where they benefit from...... and contribute to such systems and to the livelihood of households around the globe, with special emphasis on women. Furthermore, local production provides potential for production with minimum transport and, concomitantly, minimum usage of fossil fuels. Among the terrestrial animals, poultry has the best...

  19. The Marginalization of Sustainable Charcoal Production in the Policies of a Modernizing African Nation

    Directory of Open Access Journals (Sweden)

    Nike Doggart

    2017-06-01

    Full Text Available Charcoal is the main cooking fuel for urban populations in many African countries. Urbanization and population growth are driving an increase in demand for charcoal, whilst deforestation reduces biomass stocks. Given increasing demand for charcoal, and decreasing availability of biomass, policies are urgently needed that ensure secure energy supplies for urban households and reduce deforestation. There is potential for charcoal to be produced sustainably in natural woodlands, but this requires supportive policies. Previous research has identified policy issues that have contributed to the charcoal sector remaining informal and environmentally destructive. In this paper, we describe how national policies in Tanzania on energy, forests, agriculture, land, and water, consider charcoal, and the degree to which they do, and do not, support sustainable charcoal production. The paper identifies policy gaps and a cross-sector tendency to marginalize natural forest management. By adopting a nexus approach, the paper highlights the inter-connections between sustainable charcoal production, ecosystem services, and trade-offs in the allocation of land, labor, and net primary production. In conclusion, sustainable charcoal production has been marginalized in multiple national policies. As a result, potential benefits of sustainable charcoal production are lost to multiple sectors.

  20. Sustainable Algae Biodiesel Production in Cold Climates

    Directory of Open Access Journals (Sweden)

    Rudras Baliga

    2010-01-01

    Full Text Available This life cycle assessment aims to determine the most suitable operating conditions for algae biodiesel production in cold climates to minimize energy consumption and environmental impacts. Two hypothetical photobioreactor algae production and biodiesel plants located in Upstate New York (USA are modeled. The photobioreactor is assumed to be housed within a greenhouse that is located adjacent to a fossil fuel or biomass power plant that can supply waste heat and flue gas containing CO2 as a primary source of carbon. Model results show that the biodiesel areal productivity is high (19 to 25 L of BD/m2/yr. The total life cycle energy consumption was between 15 and 23 MJ/L of algae BD and 20 MJ/L of soy BD. Energy consumption and air emissions for algae biodiesel are substantially lower than soy biodiesel when waste heat was utilized. Algae's most substantial contribution is a significant decrease in the petroleum consumed to make the fuel.

  1. Combined Heat and Power Systems for the Provision of Sustainable Energy from Biomass in Buildings

    OpenAIRE

    Ortwein Andreas

    2016-01-01

    Against the background of greenhouse gases causing climate change, combined heat and power (CHP) systems fueled by biomass can efficiently supply energy with high flexibility. Such CHP systems will usually consist of one or more thermo-chemical conversion steps and at least one (the more or less separated) electric power generation unit. Depending on the main products of the previous conversion steps (e.g. combustible gases or liquids, but also flue gases with sensible heat), different techno...

  2. Development of strategies and sustainability standards for the certification of internationally traded biomass. Final report; Entwicklung von Strategien und Nachhaltigkeitsstandards zur Zertifizierung von Biomasse fuer den internationalen Handel. Zusammenfassender Endbericht

    Energy Technology Data Exchange (ETDEWEB)

    Fritsche, Uwe R; Hennenberg, Klaus J; Hermann, Andreas; Huenecke, Katja; Herrera, Rocio [Oeko-Institut (Institut fuer angewandte Oekologie e.V.), Darmstadt (Germany); Fehrenbach, Horst; Roth, Elvira; Hennecke, Anna; Giegrich, Juergen [IFEU (Institut fuer Energie- und Umweltforschung) gGmbh, Heidelberg (Germany)

    2010-11-15

    The increased production of renewable raw materials for bioenergy and bio-materials needed to meet the ambitious targets of Germany, the EU and other countries implies tradeoffs which could oppose sustainability requirements. The project worked out the scientific base of and developed proposals for sustainability requirements for biomass and their implementation on national, European and global levels, in dialogue with relevant actors and provided inputs into respective processes. For that, discussions with experts from more than 20 countries were held, international networks created and extended, and political decision-makers supported. Besides answers to strategic questions, the issues focused on were greenhouse gas balances (calculation of GHG emissions from direct and indirect land use changes), biodiversity (a globally applicable risk minimization strategy was developed and tested in Brazil, China and South Africa for degraded lands), water scarcity and water quality (requirements for biomass cultivation were developed). The majority of project results was successfully implemented in legal and standardization processes (e.g., German Sustainability Ordinances for bioenergy, EU renewable energy directive, European Committee for Standardization, Global Bioenergy Partnership) and both scientific and environmental and development questions were discussed with - not only governmental - actors. The next steps should be the extension of the approaches developed to other biomass (especially for material use) and the critical review of the further implementation. (orig.)

  3. Biomass pyrolysis/gasification for product gas production: the overall investigation of parametric effects

    International Nuclear Information System (INIS)

    Chen, G.; Andries, J.; Luo, Z.; Spliethoff, H.

    2003-01-01

    The conventional biomass pyrolysis/gasification process for production of medium heating value gas for industrial or civil applications faces two disadvantages, i.e. low gas productivity and the accompanying corrosion of downstream equipment caused by the high content of tar vapour contained in the gas phase. The objective of this paper is to overcome these disadvantages, and therefore, the effects of the operating parameters on biomass pyrolysis are investigated in a laboratory setup based on the principle of keeping the heating value of the gas almost unchanged. The studied parameters include reaction temperature, residence time of volatile phase in the reactor, physico-chemical pretreatment of biomass particles, heating rate of the external heating furnace and improvement of the heat and mass transfer ability of the pyrolysis reactor. The running temperature of a separate cracking reactor and the geometrical configuration of the pyrolysis reactor are also studied. However, due to time limits, different types of catalysts are not used in this work to determine their positive influences on biomass pyrolysis behaviour. The results indicate that product gas production from biomass pyrolysis is sensitive to the operating parameters mentioned above, and the product gas heating value is high, up to 13-15 MJ/N m 3

  4. LIVESTOCK PRODUCTION FOR A SUSTAINABLE DEVELOPMENT

    Directory of Open Access Journals (Sweden)

    Giuseppe Maiorano

    2014-02-01

    Full Text Available The development of society is based on the existence of food resources. The past half-century has seen marked growth in food production, allowing for a dramatic decrease in the proportion of the world’s people that are hungry, despite a doubling of the total population. Recently, the FAO predicted a higher increase of the consumption of foods of animal origin by 2050. So far, the increased demand for food has been supplied by agriculture due to an improvement of techniques, an increase of cultivated land areas and an increase of water and energy consumption. The environmental assessment of human activities is presently a hot topic. It is not only important from an ecological perspective, but also from the view of efficient utilization of limited natural resources. The livestock sector that increasingly competes for scarce resources (land, water, and energy has a severe impact on air, water and soil quality because of its emissions. The environmental impact of food of animal origin is currently quantified by so-called CO2eq-footprints. Therefore, in the future, it will be necessary to achieve a sustainable supply of food, especially of animal origin, because land and other production factors are not unlimited resources. This lecture deals with related problems linked to the production of foods of animal origin and some possible sustainable solutions for the increasing demand of these products, by means of a detailed analysis of the carbon footprint by the livestock, as well as the land requirement, biodiversity, energy and water footprint in livestock production.

  5. Catalytic amino acid production from biomass-derived intermediates

    KAUST Repository

    Deng, Weiping

    2018-04-30

    Amino acids are the building blocks for protein biosynthesis and find use in myriad industrial applications including in food for humans, in animal feed, and as precursors for bio-based plastics, among others. However, the development of efficient chemical methods to convert abundant and renewable feedstocks into amino acids has been largely unsuccessful to date. To that end, here we report a heterogeneous catalyst that directly transforms lignocellulosic biomass-derived α-hydroxyl acids into α-amino acids, including alanine, leucine, valine, aspartic acid, and phenylalanine in high yields. The reaction follows a dehydrogenation-reductive amination pathway, with dehydrogenation as the rate-determining step. Ruthenium nanoparticles supported on carbon nanotubes (Ru/CNT) exhibit exceptional efficiency compared with catalysts based on other metals, due to the unique, reversible enhancement effect of NH3 on Ru in dehydrogenation. Based on the catalytic system, a two-step chemical process was designed to convert glucose into alanine in 43% yield, comparable with the well-established microbial cultivation process, and therefore, the present strategy enables a route for the production of amino acids from renewable feedstocks. Moreover, a conceptual process design employing membrane distillation to facilitate product purification is proposed and validated. Overall, this study offers a rapid and potentially more efficient chemical method to produce amino acids from woody biomass components.

  6. Residual biomass resources for energy production. Extended abstract

    International Nuclear Information System (INIS)

    Prevot, G.

    2010-06-01

    This report covers the whole problematic of energy production from biomass residues in France except the production of biofuels. It is made of two parts. The first one gives an overview of the availability of residual biomass resources, The concept of residue (or waste) is placed in its economic and regulatory context (the major part of the resource cannot be considered as waste without any further potential use). The conditions of availability of the resource for each market segment are identified. The second part describes the conditions for the use of 5 different conversion options of these residues into energy. The logistics constraints for the procurement of the fuel and the intermediate operations to prepare it are briefly summarised. The objective was the identification of key issues in all relevant aspects, without giving too much emphasis to one of them at the expense of another one in order to avoid duplicating the frequent cases of facilities that do not meet environmental and economic targets because the designers of the system have not paid enough attention to a parameter of the system. (author)

  7. The Fall River Long-Term Site Productivity study in coastal Washington: site characteristics, methods, and biomass and carbon and nitrogen stores before and after harvest.

    Science.gov (United States)

    Adrian Ares; Thomas A. Terry; Kathryn B. Piatek; Robert B. Harrison; Richard E. Miller; Barry L. Flaming; ChristopherW Licata; Brian D. Strahm; Constance A. Harrington; Rodney Meade; Harry W. Anderson; Leslie C. Brodie; Joseph M. Kraft

    2007-01-01

    The Fall River research site in coastal Washington is an affiliate installation of the North American Long-Term Soil Productivity (LTSP) network, which constitutes one of the world’s largest coordinated research programs addressing forest management impacts on sustained productivity. Overall goals of the Fall River study are to assess effects of biomass removals, soil...

  8. Design of Sustainable Biomass Value Chains – Optimising the supply logistics and use of biomass over time

    NARCIS (Netherlands)

    Batidzirai, B.

    2013-01-01

    Modern bioenergy systems have significant potential to cost-effectively substitute fossil energy carriers with substantial GHG emissions reduction benefits. To mobilise large-scale biomass supplies, large volumes of biomass feedstock need to be secured, and competitive feedstock value chains need to

  9. Sustainability Performance of an Italian Textile Product

    Directory of Open Access Journals (Sweden)

    Paola Lenzo

    2018-03-01

    Full Text Available Companies are more and more interested in the improvement of sustainability performance of products, services and processes. For this reason, appropriate and suitable assessment tools supporting the transition to a green economy are highly necessary. Currently, there are a number of methods and approaches for assessing products’ environmental impact and improving their performances; among these, the Life Cycle Thinking (LCT approach has emerged as the most comprehensive and effective to achieve sustainability goals. Indeed, the LCT approach aims to reduce the use of resources and emissions to the environment associated with a product’s life cycle. It can be used as well to improve socio-economic performance through the entire life cycle of a product. Life Cycle Assessment (LCA, Life Cycle Costing (LCC and Social Life Cycle Assessment (S-LCA are undoubtedly the most relevant methodologies to support product-related decision-making activities for the extraction and processing of raw materials, manufacturing, distribution, use, reuse, maintenance, recycling and final disposal. While LCA is an internationally standardized tool (ISO 14040 2006, LCC (except for the ISO related to the building sector and S-LCA have yet to attain international standardization (even if guidelines and general frameworks are available. The S-LCA is still in its experimental phase for many aspects of the methodological structure and practical implementation. This study presents the application of LCA and S-LCA to a textile product. The LCA and S-LCA are implemented following the ISO 14040-44:2006 and the guidelines from UNEP/SETAC (2009, respectively. The functional unit of the study is a cape knitted in a soft blend of wool and cashmere produced by a textile company located in Sicily (Italy. The system boundary of the study includes all phases from cradle-to-gate, from raw material production through fabric/accessory production to the manufacturing process of the

  10. Chlorella vulgaris vs cyanobacterial biomasses: Comparison in terms of biomass productivity and biogas yield

    International Nuclear Information System (INIS)

    Mendez, Lara; Mahdy, Ahmed; Ballesteros, Mercedes; González-Fernández, Cristina

    2015-01-01

    Highlights: • Cyanobacteria and C. vulgaris were compared in terms of growth and methane production. • Biomasses were subjected to anaerobic digestion without applying any disruption method. • Cyanobacteria showed an increased methane yield in comparison with C. vulgaris. - Abstract: The aim of the present study was to compare cyanobacteria strains (Aphanizomenon ovalisporum, Anabaena planctonica, Borzia trilocularis and Synechocystis sp.) and microalgae (Chlorella vulgaris) in terms of growth rate, biochemical profile and methane production. Cyanobacteria growth rate ranged 0.5–0.6 day −1 for A. planctonica, A. ovalisporum and Synecochystis sp. and 0.4 day −1 for B. tricularis. Opposite, C. vulgaris maximum growth rate was double (1.2 day −1 ) than that of cyanobacteria. Regarding the methane yield, microalgae C. vulgaris averaged 120 mL CH 4 g COD in −1 due to the presence of a strong cell wall. On the other hand, anaerobic digestion of cyanobacteria supported higher methane yields. B. trilocularis and A. planctonica presented 1.42-fold higher methane yield than microalgae while this value was raised to approximately 1.85-fold for A. ovalisporum and Synechochystis sp. In the biogas production context, this study showed that the low growth rates of cyanobacteria can be overcome by their increased anaerobic digestibility when compared to their microalgae counterpartners, such is the case of C. vulgaris

  11. Fuel gas production from animal and agricultural residues and biomass

    Energy Technology Data Exchange (ETDEWEB)

    Wise, D. L; Wentworth, R. L

    1978-05-30

    Progress was reported by all contractors. Topics presented include: solid waste to methane gas; pipeline fuel gas from an environmental cattle feed lot; heat treatment of organics for increasing anaerobic biodegradability; promoting faster anaerobic digestion; permselective membrane control of algae and wood digesters for increased production and chemicals recovery; anaerobic fermentation of agricultural residues; pilot plant demonstration of an anaerobic, fixed-film bioreactor for wastewater treatment; enhancement of methane production in the anaerobic diegestion of sewage; evaluation of agitation concepts for biogasification of sewage sludge; operation of a 50,000 gallon anaerobic digester; biological conversion of biomass to methane; dirt feedlot residue experiments; anaerobic fermentation of livestock and crop residues; current research on methanogenesis in Europe; and summary of EPA programs in digestion technology. (DC)

  12. Sustainability Impact Assessment of two forest-based bioenergy production systems related to mitigation and adaption to Climate Change

    Science.gov (United States)

    Gartzia-Bengoetxea, Nahia; Arias-González, Ander; Tuomasjukka, Diana

    2016-04-01

    New forest management strategies are necessary to resist and adapt to Climate Change (CC) and to maintain ecosystem functions such as forest productivity, water storage and biomass production. The increased use of forest-based biomass for energy generation as well as the application of combustion or pyrolysis co-products such as ash or biochar back into forest soils is being suggested as a CC mitigation and adaptation strategy while trying to fulfil the targets of both: (i) Europe 2020 growth strategy in relation to CC and energy sustainability and (ii) EU Action Plan for the Circular Economy. The energy stored in harvested biomass can be released through combustion and used for energy generation to enable national energy security (reduced oil dependence) and the substitution of fossil fuel by renewable biomass can decrease the emission of greenhouse gases.In the end, the wood-ash produced in the process can return to the forest soil to replace the nutrients exported by harvesting. Another way to use biomass in this green circular framework is to pyrolyse it. Pyrolysis of the biomass produce a carbon-rich product (biochar) that can increase carbon sequestration in the soils and liquid and gas co-products of biomass pyrolysis can be used for energy generation or other fuel use thereby offsetting fossil fuel consumption and so avoiding greenhouse gas emissions. Both biomass based energy systems differ in the amount of energy produced, in the co-product (biochar or wood ash) returned to the field, and in societal impacts they have. The Tool for Sustainability Impact Assessment (ToSIA) was used for modelling both energy production systems. ToSIA integrates several different methods, and allows a quantification and objective comparison of economic, environmental and social impacts in a sustainability impact assessment for different decision alternatives/scenarios. We will interpret the results in order to support the bioenergy planning in temperate forests under the

  13. Sustainability of algal biofuel production using integrated renewable energy park (IREP) and algal biorefinery approach

    International Nuclear Information System (INIS)

    Subhadra, Bobban G.

    2010-01-01

    Algal biomass can provide viable third generation feedstock for liquid transportation fuel. However, for a mature commercial industry to develop, sustainability as well as technological and economic issues pertinent to algal biofuel sector must be addressed first. This viewpoint focuses on three integrated approaches laid out to meet these challenges. Firstly, an integrated algal biorefinery for sequential biomass processing for multiple high-value products is delineated to bring in the financial sustainability to the algal biofuel production units. Secondly, an integrated renewable energy park (IREP) approach is proposed for amalgamating various renewable energy industries established in different locations. This would aid in synergistic and efficient electricity and liquid biofuel production with zero net carbon emissions while obviating numerous sustainability issues such as productive usage of agricultural land, water, and fossil fuel usage. A 'renewable energy corridor' rich in multiple energy sources needed for algal biofuel production for deploying IREPs in the United States is also illustrated. Finally, the integration of various industries with algal biofuel sector can bring a multitude of sustainable deliverables to society, such as renewable supply of cheap protein supplements, health products and aquafeed ingredients. The benefits, challenges, and policy needs of the IREP approach are also discussed.

  14. Production of fermentables and biomass by six temperate fuelcrops

    Energy Technology Data Exchange (ETDEWEB)

    Parrish, D.J.; Gammon, T.C.; Graves, B.

    1985-12-01

    Several potential fuelcrops have been studied individually, but relatively little work has been done to compare the various temperate species in side-by-side trials. The production has been examined of readily fermentable carbohydrates and biomass by six fuelcrop candidates: grain sorghum (Sorghum bicolor), Jerusalem articoke (Helianthus tuberosus), maize (Zea Mays), sugarbeet (Beta vulgaris), sweet potato (Ipomoea batatas) and sweet sorghum (Sorghum bicolor). A randomized complete block design with four replicates was employed at each of three locations that were somewhat diverse in soil type, elevation, growing season length, and 1980 rainfall distribution. Fermentables in the harvestable dry matter were determined colorimetrically following dilute acid plus enzymatic hydrolysis. Overall, sugarbeet was the most prolific producer of fermentables (7.4 Mg/ha); Jerusalem artichoke (5.8 Mg/ha), maize (4.8 Mg/ha) and sweet sorghum stems (5.8 Mg/ha) were statistically equivalent, while sweet potato (4.0 Mg/ha) and grain sorghum (3.8 Mg/ha) were less productive than the other candidates. The crops performed somewhat differently at each location, but the most striking site-specific differences were seen at the site with the coarsest textured soil and driest season. At that location, maize produced the least fermentables (0.6 Mg/ha). Biomass production generally reflected either the amount of time each species was actively growing or limiations to growth associated with drought. No general recommendations are made concerning a preferred temperature fuelcrop. Based on the studies, however, maize may not always be the fuelcrop of choice; others, especially sugarbeet and sweet sorghum (when harvested for grain also), may be superior to maize in productivity of fermentable substrates. 6 tabs., 13 refs.

  15. LABELLING OF FOOD PRODUCTS AND SUSTAINABLE CONSUMPTION

    Directory of Open Access Journals (Sweden)

    Renata Nestorowicz

    2015-09-01

    Full Text Available  The manifestation of sustainable consumption on the food market is the consumer is choice of products originating from fair trade and/or organic farming. This paper presents the level of knowledge of Fairtrade signs and organic food logo of the EU. The author describes the importance of these signs by purchasing decisions and the relationship between these factors and the declared level ofknowledge about fair trade. In November 2013 research was conducted by the Department of Marketing Strategies at the Poznań University of Economics and Polish Scientifi c Association of Marketing (PNTM. We interviewed 444 people responsible for food shopping in their households. There were structured interviews in 3 Polish cities: Poznań, Szczecin and Lublin. The results confi rm low awareness of Polish consumers in respect of Fairtrade determinations and slightly higher in the case of organic products. Information regarding the origin of the product (fair trade or organic is not important to consumers when choosing food products. With increasing knowledge on products originating from fair trade derives knowledge of both organic foods and Fairtrade signs, but not the impact of these markings on consumers’ purchasing decisions. Still, people who attach importance to this type of information are niche on the Polish market.

  16. Methods for producing extracted and digested products from pretreated lignocellulosic biomass

    Science.gov (United States)

    Chundawat, Shishir; Sousa, Leonardo Da Costa; Cheh, Albert M.; Balan; , Venkatesh; Dale, Bruce

    2017-05-16

    Methods for producing extracted and digested products from pretreated lignocellulosic biomass are provided. The methods include converting native cellulose I.sub..beta. to cellulose III.sub.I by pretreating the lignocellulosic biomass with liquid ammonia under certain conditions, and performing extracting or digesting steps on the pretreated/converted lignocellulosic biomass.

  17. Production of xylitol from biomass using an inhibitor-tolerant fungal strain

    Science.gov (United States)

    Inhibitory compounds arising from physical–chemical pretreatment of biomass feedstock can interfere with fermentation of biomass sugars to product. A fungus, Coniochaeta ligniaria NRRL30616 improves fermentability of biomass sugars by metabolizing a variety of microbial inhibitors including furan al...

  18. Pinch analysis for bioethanol production process from lignocellulosic biomass

    International Nuclear Information System (INIS)

    Fujimoto, S.; Yanagida, T.; Nakaiwa, M.; Tatsumi, H.; Minowa, T.

    2011-01-01

    Bioethanol produced from carbon neutral and renewable biomass resources is an attractive process for the mitigation of greenhouse gases from vehicle exhaust. This study investigated energy utilization during bioethanol production from lignocellulose while avoiding competition with food production from corn and considering the potential mitigation of greenhouse gases. Process design and simulations were performed for bioethanol production using concentrated sulfuric acid. Mass and heat balances were obtained by process simulations, and the heat recovery ratio was determined by pinch analysis. An energy saving of 38% was achieved. However, energy supply and demand were not effectively utilized in the temperature range from 95 to 100 o C. Therefore, a heat pump was used to improve the temperature range of efficient energy supply and demand. Results showed that the energy required for the process could be supplied by heat released during the process. Additionally, the power required was supplied by surplus power generated during the process. Thus, pinch analysis was used to improve the energy efficiency of the process. - Highlights: → Effective energy utilization of bioethanol production was studied by using pinch analysis. → It was found that energy was not effectively utilized in the temperature range from 95 to 100 o C. → Use of a heat pump was considered to improve the ineffective utilization. → Then, remarkable energy savings could be achieved by it. → Pinch analysis effectively improved the energy efficiency of the bioethanol production.

  19. Digestate as nutrient source for biomass production of sida, lucerne and maize

    Science.gov (United States)

    Bueno Piaz Barbosa, Daniela; Nabel, Moritz; Horsch, David; Tsay, Gabriela; Jablonowski, Nicolai

    2014-05-01

    Biogas as a renewable energy source is supported in many countries driven by climate and energy policies. Nowadays, Germany is the largest biogas producer in the European Union. A sustainable resource management has to be considered within this growing scenario of biogas production systems and its environmental impacts. In this respect, studies aiming to enhance the management of biogas residues, which represents a valuable source of nutrients and organic fertilization, are needed. Our objective was to evaluate the digestate (biogas residue after fermentation process) application as nutrient source for biomass production of three different plants: sida (Sida hermaphrodita - Malvaceae), lucerne (Medicago sativa - Fabaceae) and maize (Zea mays - Poaceae). The digestate was collected from an operating biogas facility (fermenter volume 2500m³, ADRW Natur Power GmbH & Co.KG Titz/Ameln, Germany) composed of maize silage as the major feedstock, and minor amounts of chicken manure, with a composition of 3,29% N; 1,07% P; 3,42% K; and 41,2% C. An arable field soil (Endogleyic Stagnosol) was collected from 0-30 cm depth and 5 mm sieved. The fertilizer treatments of the plants were established in five replicates including digestate (application amount equivalent to 40 t ha-1) and NPK fertilizer (application amount equivalent to 200:100:300 kg ha-1) applications, according to the recommended agricultural doses, and a control (no fertilizer application). The digestate and the NPK fertilizer were thoroughly mixed with the soil in a rotatory shaker for 30 min. The 1L pots were filled with the fertilized soil and the seedlings were transplanted and grown for 30 days under greenhouse conditions (16 h day/8 h night: 24ºC/18ºC; 60% air humidity). After harvesting, the leaf area was immediately measured, and the roots were washed to allow above and below-ground biomass determination. Subsequently, shoots and roots were dried at 60ºC for 48 hours. The biomass and leaf area of sida

  20. Lignocellulosic biorefinery as a model for sustainable development of biofuels and value added products.

    Science.gov (United States)

    De Bhowmick, Goldy; Sarmah, Ajit K; Sen, Ramkrishna

    2018-01-01

    A constant shift of society's dependence from petroleum-based energy resources towards renewable biomass-based has been the key to tackle the greenhouse gas emissions. Effective use of biomass feedstock, particularly lignocellulosic, has gained worldwide attention lately. Lignocellulosic biomass as a potent bioresource, however, cannot be a sustainable alternative if the production cost is too high and/ or the availability is limited. Recycling the lignocellulosic biomass from various sources into value added products such as bio-oil, biochar or other biobased chemicals in a bio-refinery model is a sensible idea. Combination of integrated conversion techniques along with process integration is suggested as a sustainable approach. Introducing 'series concept' accompanying intermittent dark/photo fermentation with co-cultivation of microalgae is conceptualised. While the cost of downstream processing for a single type of feedstock would be high, combining different feedstocks and integrating them in a bio-refinery model would lessen the production cost and reduce CO 2 emission. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. Techno-economic evaluation of hybrid systems for hydrogen production from biomass and natural gas

    Energy Technology Data Exchange (ETDEWEB)

    Kassem, N. [Royal Institute of Technology, Stockholm (Sweden). Dept. of Energy Processes

    2001-07-01

    Hydrogen (H{sub 2}) is an alternative energy carrier, which is expected to significantly contribute to globally sustainable energy systems. It is environmentally friendly with high-energy density that makes it an excellent integrating fuel in transportation and power generation systems. This paper presents an assessment of the techno-economic viability of H{sub 2} production technologies based on hybrid systems using gasified biomass and natural gas combined with high temperature electrochemical shift. Assessment of the well-established thermal processes, high-temperature steam electrolysis (HTEL), and the plasma catalytic reforming (PCR) of light hydrocarbons developed at MIT are included for comparison. The results show that the PCR and HTEL processes are as cost-effective as the thermal steam reforming for H{sub 2} production when deployed on a commercial scale. The natural gas steam reforming (NGSR) is still the most favorable choice in energy and financial terms, while gasified biomass (GB) provides the highest production costs due to the intensive capital cost investments. The cost of H{sub 2} storage in the form of compressed gas or liquefied H{sub 2} also contributes significantly to total cost per kg produced H{sub 2}. 9 refs., 7 figs., 2 tabs.

  2. Rural electrification for isolated consumers: Sustainable management model based on residue biomass

    International Nuclear Information System (INIS)

    Pinheiro, Giorgiana; Rendeiro, Goncalo; Pinho, Joao; Macedo, Emanuel

    2011-01-01

    This paper presents a case study of the electrification of a riparian community in the State of Para, Brazil, within the scope of the Program for Electric Power Service Universalization in Brazil. The community is located in a remote area; approximately 100 km from the municipal district, there is no regular transport to access the community, and adequate communication service. The community is provided with electrification facilities through a small biomass-based power plant, directly firing residues produced by the local economic activity. The objective of the paper is to propose a sustainable management model that is suitable for community's isolation conditions, considering the high costs with operation and maintenance related to the supply of isolated consumers in small locations. A simulation is conducted for the operation of the small biomass-based power plant, the generation costs are determined, the legal aspects are analyzed, and a suggestion for the management model is presented. - Highlights: → Electrification of isolated consumers is a great challenge for utilities. → Using local labor and resources allows lower energy costs for electrification. → Creation of a specific legislation for utilities is required. → Should also be implemented social activities together with electrification.

  3. 10-Year Framework of Programmes on Sustainable Consumption and Production

    Science.gov (United States)

    One of the important programmatic outcomes from the U.N. Conference on Sustainable Development (Rio+20) was the adoption of the 10-Year Framework of Programmes (10YFP) on Sustainable Consumption and Production (SCP).

  4. Duurzaamheid en grondstoffen voor diervoeding = Sustainability and feed commodity production

    NARCIS (Netherlands)

    Gosselink, J.M.J.; Bindraban, P.S.; Bos, J.F.F.P.

    2010-01-01

    This study creates a preliminary framework to judge the sustainability of production of agricultural commodities for the purpose of animal nutrition. Criteria are selected according to the economic, societal and ecological dimensions of sustainability.

  5. Bioenergy potential of Ulva lactuca: Biomass yield, methane production and combustion

    DEFF Research Database (Denmark)

    Bruhn, Annette; Dahl, Jonas; Bangsø Nielsen, Henrik

    2011-01-01

    The biomass production potential at temperate latitudes (56°N), and the quality of the biomass for energy production (anaerobic digestion to methane and direct combustion) were investigated for the green macroalgae, Ulva lactuca. The algae were cultivated in a land based facility demonstrating...... in weight specific methane production compared to wet biomass. Ash and alkali contents are the main challenges in the use of U. lactuca for direct combustion. Application of a bio-refinery concept could increase the economical value of the U. lactuca biomass as well as improve its suitability for production...

  6. System studies on Biofuel production via Integrated Biomass Gasification

    Energy Technology Data Exchange (ETDEWEB)

    Andersson, Jim; Lundgren, Joakim [Luleaa Univ. of Technology Bio4Energy, Luleaa (Sweden); Malek, Laura; Hulteberg, Christian [Lund Univ., Lund (Sweden); Pettersson, Karin [Chalmers Univ. of Technology, Goeteborg (Sweden); Wetterlund, Elisabeth [Linkoeping Univ. Linkoeping (Sweden)

    2013-09-01

    A large number of national and international techno-economic studies on industrially integrated gasifiers for production of biofuels have been published during the recent years. These studies comprise different types of gasifiers (fluidized bed, indirect and entrained flow) integrated in different industries for the production of various types of chemicals and transportation fuels (SNG, FT-products, methanol, DME etc.) The results are often used for techno-economic comparisons between different biorefinery concepts. One relatively common observation is that even if the applied technology and the produced biofuel are the same, the results of the techno-economic studies may differ significantly. The main objective of this project has been to perform a comprehensive review of publications regarding industrially integrated biomass gasifiers for motor fuel production. The purposes have been to identify and highlight the main reasons why similar studies differ considerably and to prepare a basis for fair techno-economic comparisons. Another objective has been to identify possible lack of industrial integration studies that may be of interest to carry out in a second phase of the project. Around 40 national and international reports and articles have been analysed and reviewed. The majority of the studies concern gasifiers installed in chemical pulp and paper mills where black liquor gasification is the dominating technology. District heating systems are also well represented. Only a few studies have been found with mechanical pulp and paper mills, steel industries and the oil refineries as case basis. Other industries have rarely, or not at all, been considered for industrial integration studies. Surprisingly, no studies regarding integration of biomass gasification neither in saw mills nor in wood pellet production industry have been found. In the published economic evaluations, it has been found that there is a large number of studies containing both integration and

  7. Harvesting and processing of microalgae biomass fractions for biodiesel production

    International Nuclear Information System (INIS)

    Munir, M.; Sharif, N.; Naz, S.; Saleem, F.; Manzoor, F.

    2013-01-01

    There has been a recent resurgent interest in microalgae as an oil producer for biofuel applications. An adequate supply of nutrients and carbon dioxide enables algae to successfully transform light energy of the sun into energy - rich chemical compounds through photosynthesis. A strain with high lipids, successfully grown and harvested, could provide oil for most of our process by volume, which would then provide the most profitable output. Significant advances have also been made in upstream processing to generate cellular biomass and oil. However, the process of extracting and purifying of oil from algae continues to prove a significant challenge in producing both microalgae bioproducts and biofuel, as the oil extraction from algae is relatively energy-intensive and expensive. The aim of this review is to focus on different harvesting and extraction processes of algae for biodiesel production reported within the last decade. (author)

  8. Microbial degradation of coconut coir dust for biomass production

    Energy Technology Data Exchange (ETDEWEB)

    Uyenco, F.R.; Ochoa, J.A.K.

    Several species of white-rot fungi were studied for its ability to degrade the lignocellulose components of coir dust at optimum conditions. The most effective fungi was Phanerochaeta chrysosporium UPCC 4003. This organism degraded the lignocellulose complex of coir dust at a rate of about 25 percent in 4 weeks. The degradation process was carried on with minimal nitrogen concentration, coconut water supplementation and moisture levels between 85-90 percent. Shake flask cultures of the degraded coir dust using cellulolytic fungi were not effective. In fermentor cultures with Chaetomium cellulolyticum UPCC 3934, supplemented coir dust was converted into a microbial biomass product (MBP) with 15.58 percent lignin, 19.20 percent cellulose and 18.87 percent protein. More work is being done on the utilization of coir dust on a low technology.

  9. Hydrogen production from biomass tar by catalytic steam reforming

    International Nuclear Information System (INIS)

    Yoon, Sang Jun; Choi, Young-Chan; Lee, Jae-Goo

    2010-01-01

    The catalytic steam reforming of model biomass tar, toluene being a major component, was performed at various conditions of temperature, steam injection rate, catalyst size, and space time. Two kinds of nickel-based commercial catalyst, the Katalco 46-3Q and the Katalco 46-6Q, were evaluated and compared with dolomite catalyst. Production of hydrogen generally increased with reaction temperature, steam injection rate and space time and decreased with catalyst size. In particular, zirconia-promoted nickel-based catalyst, Katalco 46-6Q, showed a higher tar conversion efficiency and shows 100% conversion even relatively lower temperature conditions of 600 deg. C. Apparent activation energy was estimated to 94 and 57 kJ/mol for dolomite and nickel-based catalyst respectively.

  10. Green House Gas Control and Agricultural Biomass for Sustainable Animal Agriculture in Developing Countries

    Directory of Open Access Journals (Sweden)

    J Takahashi

    2010-06-01

    Full Text Available Important green house gases (GHG attributed to animal agriculture are methane (CH4 and nitrous oxide (N2O, though carbon dioxide (CO2 contributes almost half of total greenhouse effect. Rumen CH4 production in an enteric fermentation can be accounted as the biggest anthropogenic source. Some of prebiotics and probiotics have been innovated to mitigate rumen CH4 emission. The possible use of agricultural biomass consisted of non-edible parts of crop plants such as cellulose and hemi cellulose and animal wastes was proposed as a renewable energy and nitrogen sources. The ammonia stripping from digested slurry of animal manure in biogas plant applied three options of nitrogen recycling to mitigate nitrous oxide emission. In the first option of the ammonia stripping, the effect of ammonolysis on feed value of cellulose biomass was evaluated on digestibility, energy metabolism and protein utilization. Saccharification of the NH3 treated cellulose biomass was confirmed in strictly anaerobic incubation with rumen cellulolytic bacteria, Ruminoccous flavefaciens, to produce bio-ethanol as the second option of ammonia stripping. In an attempt of NH3 fuel cell, the reformed hydrogen from the NH3 stripped from 20 liter of digested slurry in thermophilic biogas plant could generate 0.12 W electricity with proton exchange membrane fuel cell (PEM as the third option.

  11. MARKET SUCCESS FACTORS OF SUSTAINABLE PRODUCTS

    Directory of Open Access Journals (Sweden)

    Janine Fleith de Medeiros

    2013-06-01

    Full Text Available This article investigates dimensions and factors that according to the perception of business managers drive the market success of environmentally sustainable products. Initially, publications related to new products introduced to the market (with or without environmental focus were evaluated. Four complementary dimensions were identified as responsible for proper performance: (i Market Knowledge, (ii Interfunctional Collaboration, (iii Knowledge Integration Mechanisms, and (iv Generative Learning. Considering the above, an exploratory study following a qualitative approach was conducted with managers that work in the Brazilian market. For the choice of the respondents, some characteristics were considered, such as growth in the sector of activity where the organization works, and the area that they manage. Results lead to the validation and ranking of the factors and dimensions mentioned in the literature. They also allowed the identification of new factors as: technological domain, competitive price, quality, company's brand, and payback. Moreover, considering the variables described and the relationships established among them, it was inferred that technological domain can be considered as a dimension. This suggestion is based on the respondents' perception concerning "technological domain", such as: specialized people, research budget, and also budget for facilities and equipment. The study also shows deeper difference among practice areas than among sectors. Based on the list of factors that was generated, new studies are recommended to measure the impact of the factors and dimensions on the success of green products.

  12. An outlook for sustainable forest bioenergy production in the Lake States

    International Nuclear Information System (INIS)

    Becker, Dennis R.; Skog, Kenneth; Hellman, Allison; Halvorsen, Kathleen E.; Mace, Terry

    2009-01-01

    The Lake States region of Minnesota, Wisconsin and Michigan offers significant potential for bioenergy production. We examine the sustainability of regional forest biomass use in the context of existing thermal heating, electricity, and biofuels production, projected resource needs over the next decade including existing forest product market demand, and impacts on price and feasibility. Assuming $36 per dry tonne at roadside, 4.1 million dry tonnes of forest biomass could be available region-wide. However, less is likely available due to localized environmental and forest cover type constraints, and landowner willingness to harvest timber. Total projected demand of 5.7 million dry tonnes, based on current and announced industry capacity, exceeds estimates of biomass availability, which suggests that anticipated growth in the forest-based bioeconomy may be constrained. Attaining projected demand will likely require a combination of higher cost feedstocks, integration of energy and non-energy uses, and careful management to meet environmental constraints. State distinctions in biomass harvest guidelines and the propensity for third-party forest certification will be critical in providing environmental safeguards. The cumulative effect of policy initiatives on biomass competition are discussed in the context of an emerging Lake States bioeconomy.

  13. Soil quality: key for sustainable production

    Directory of Open Access Journals (Sweden)

    Anna Benedetti

    2009-04-01

    Full Text Available In the last few years several definitions of “soil quality” have been advanced, but among them the most appreciated is “the ability of soils to interact with the ecosystem in order to maintain the biological productivity, the environmental quality and to promote animal and vegetal health” as defined by Doran and Parkin in 1994. Many researchers place more emphasis on its conceptual meaning for land planning and farm management, while others consider that definition to be worth nothing in order to understand soil properties and the concept of soil quality looks like the concept of “to be suitable for”. For this reason a definition of “soil use” is needed. The food quality is characterized by several properties: the healthiness and the nutritional value, the amount of the production, the typicalness and organoleptic properties, etc.. A lot of these properties depend on environmental quality and, in particular, on soil quality. In fact soil represents the natural substrate for growth and productivity of most of the plants that live on the Hearth because they get all the essential nutritional elements from it for their own development; consequently each nutritional element present into the soil as bioavailable form for the plants is potentially destined to entry in the animal (and human food chain. In the quality process of food productive process it will be important to assure the best soil quality as possible, without any unwanted element (which will not be discussed in this note and with the right amount of fertility elements in order to guarantee the best production. In this paper the relationships between soil quality, soil biodiversity and crop sustainability will be discussed. Finally the concept of soil “biota” as nodal point for the environment regulation and the application of the indicators for soil quality will be discussed.

  14. Soil quality: key for sustainable production

    Directory of Open Access Journals (Sweden)

    Stefano Mocali

    2011-02-01

    Full Text Available In the last few years several definitions of “soil quality” have been advanced, but among them the most appreciated is “the ability of soils to interact with the ecosystem in order to maintain the biological productivity, the environmental quality and to promote animal and vegetal health” as defined by Doran and Parkin in 1994. Many researchers place more emphasis on its conceptual meaning for land planning and farm management, while others consider that definition to be worth nothing in order to understand soil properties and the concept of soil quality looks like the concept of “to be suitable for”. For this reason a definition of “soil use” is needed. The food quality is characterized by several properties: the healthiness and the nutritional value, the amount of the production, the typicalness and organoleptic properties, etc.. A lot of these properties depend on environmental quality and, in particular, on soil quality. In fact soil represents the natural substrate for growth and productivity of most of the plants that live on the Hearth because they get all the essential nutritional elements from it for their own development; consequently each nutritional element present into the soil as bioavailable form for the plants is potentially destined to entry in the animal (and human food chain. In the quality process of food productive process it will be important to assure the best soil quality as possible, without any unwanted element (which will not be discussed in this note and with the right amount of fertility elements in order to guarantee the best production. In this paper the relationships between soil quality, soil biodiversity and crop sustainability will be discussed. Finally the concept of soil “biota” as nodal point for the environment regulation and the application of the indicators for soil quality will be discussed.

  15. Sustainable bioethanol production combining biorefinery principles and intercropping strategies

    Energy Technology Data Exchange (ETDEWEB)

    Thomsen, M.H.; Haugaard-Nielsen, H.; Petersson, A.; Thomsen, A.B.; Jensen, E.S. [Risoe National Lab., DTU, Biosystems Dept., Roskilde (Denmark)

    2007-05-15

    Ethanol produced from pretreatment and microbial fermentation of biomass has great potential to become a sustainable transportation fuel in the near future. First generation biofuel focus on starch (from grain) fermentation, but in the present study that is regarded as a too important food source. In recent years 2nd generation technologies are developed utilizing bulk residues like wheat straw, woody materials, and corn stover. However, there is a need for integrating the biomass starting point into the energy manufacturing steps to secure that bioenergy is produced from local adapted raw materials with limited use of non-renewable fossil fuels. Produced crops can be transformed into a number of useful products using the concept of biorefining, where no waste streams are produced. An advantage of intercropping is that the intercrop components composition can be designed to produce a medium (for microbial fermentation) containing all essential nutrients. Thereby addition of e.g. urea and other fermentation nutrients produced from fossil fuels can be avoided. Intercropping, defined as the growing of two or more species simultaneously on the same area of land, is a cropping strategy based on the manipulation of plant interactions in time and space to maximize growth and productivity. Cereal-legume intercropping data from field trials show the possibility to improve the use of nitrogen resources, because the non fixing species (e.g. wheat) efficiently exploits soil mineral N sources while at the same time atmospheric N from the N{sub 2}-fixing species (e.g. pea) enter the cropping system reducing the need for N fertilizer application. Nitrogen fertilization is responsible for more than 85 % of the greenhouse gas emissions from wheat grain production in Denmark. Increase of fertilizer N supply promotes the growth of wheat and results in a decreased pea N accumulation and a different proportion of intercrop components. Intercropping introduce a dynamic change of plant

  16. Biomass production potentials in Central and Eastern Europe under different scenarios

    International Nuclear Information System (INIS)

    Dam, J. van; Faaij, A.P.C.; Lewandowski, I.; Fischer, G.

    2007-01-01

    A methodology for the assessment of biomass potentials was developed and applied to Central and Eastern European countries (CEEC). Biomass resources considered are agricultural residues, forestry residues, and wood from surplus forest and biomass from energy crops. Only land that is not needed for food and feed production is considered as available for the production of energy crops. Five scenarios were built to depict the influences of different factors on biomass potentials and costs. Scenarios, with a domination of current level of agricultural production or ecological production systems, show the smallest biomass potentials of 2-5.7 EJ for all CEEC. Highest potentials can reach up to 11.7 EJ (85% from energy crops, 12% from residues and 3% from surplus forest wood) when 44 million ha of agricultural land become available for energy crop production. This potential is, however, only realizable under high input production systems and most advanced production technology, best allocation of crop production over all CEEC and by choosing willow as energy crops. The production of lignocellulosic crops, and willow in particular, best combines high biomass production potentials and low biomass production costs. Production costs for willow biomass range from 1.6 to 8.0 EUR/GJ HHV in the scenario with the highest agricultural productivity and 1.0-4.5 EUR/GJ HHV in the scenario reflecting the current status of agricultural production. Generally the highest biomass production costs are experienced when ecological agriculture is prevailing and on land with lower quality. In most CEEC, the production potentials are larger than the current energy use in the more favourable scenarios. Bulk of the biomass potential can be produced at costs lower than 2 EUR/GJ. High potentials combined with the low cost levels gives CEEC major export opportunities. (author)

  17. Environmental and Sustainable Technology Evaluations (ESTE): Verification of Fuel Characteristics and Emissions from Biomass-fired Boilers 09/2008

    Science.gov (United States)

    This is an ESTE project summary brief. With increasing concern about climate change and fossil fuel energy supplies, there continues to be an interest in biomass as a renewable and sustainable energy source. EPA’s Office of Air Quality Planning and Standards has expressed an int...

  18. Pellets for Power: sustainable biomass import from Ukraine : public final report

    NARCIS (Netherlands)

    Elbersen, H.W.; Poppens, R.P.; Lesschen, J.P.; Sluis, van der T.; Galytska, M.; Kulyk, M.; Jamblinne, de P.; Kraisvitnii, P.; Rii, O.; Hoekstra, T.

    2013-01-01

    This project responds to the mismatch between on the one hand a growing demand for biomass on the Dutch and EU energy markets with a limited biomass potential and on the other hand large amounts of biomass and biomass potential currently underutilised in Ukraine. Ukraine itself is seen as a very

  19. Combined Heat and Power Systems for the Provision of Sustainable Energy from Biomass in Buildings

    Directory of Open Access Journals (Sweden)

    Ortwein Andreas

    2016-01-01

    Full Text Available Against the background of greenhouse gases causing climate change, combined heat and power (CHP systems fueled by biomass can efficiently supply energy with high flexibility. Such CHP systems will usually consist of one or more thermo-chemical conversion steps and at least one (the more or less separated electric power generation unit. Depending on the main products of the previous conversion steps (e.g. combustible gases or liquids, but also flue gases with sensible heat, different technologies are available for the final power conversion step. This includes steam cycles with steam turbines or engines and different working fluids (water, organic fluids, but also combustion based systems like gas turbines or gas engines. Further promising technologies include fuel cells with high electric efficiency. When integrating such CHP systems in buildings, there are different strategies, especially concerning electric power generation. While some concepts are focusing on base load production, others are regulated either by thermal or by electric power demand. The paper will give a systematic overview on the combination of thermo-chemical conversion of biomass and combined heat and power production technologies. The mentioned building integration strategies will be discussed, leading to conclusions for further research and development in that field.

  20. Hydrogen production from high moisture content biomass in supercritical water

    Energy Technology Data Exchange (ETDEWEB)

    Antal, M.J. Jr.; Xu, X. [Univ. of Hawaii, Honolulu, HI (United States). Hawaii Natural Energy Inst.

    1998-08-01

    By mixing wood sawdust with a corn starch gel, a viscous paste can be produced that is easily delivered to a supercritical flow reactor by means of a cement pump. Mixtures of about 10 wt% wood sawdust with 3.65 wt% starch are employed in this work, which the authors estimate to cost about $0.043 per lb. Significant reductions in feed cost can be achieved by increasing the wood sawdust loading, but such an increase may require a more complex pump. When this feed is rapidly heated in a tubular flow reactor at pressures above the critical pressure of water (22 MPa), the sawdust paste vaporizes without the formation of char. A packed bed of carbon catalyst in the reactor operating at about 650 C causes the tarry vapors to react with water, producing hydrogen, carbon dioxide, and some methane with a trace of carbon monoxide. The temperature and history of the reactor`s wall influence the hydrogen-methane product equilibrium by catalyzing the methane steam reforming reaction. The water effluent from the reactor is clean. Other biomass feedstocks, such as the waste product of biodiesel production, behave similarly. Unfortunately, sewage sludge does not evidence favorable gasification characteristics and is not a promising feedstock for supercritical water gasification.

  1. Impact of India's watershed development programs on biomass productivity

    Science.gov (United States)

    Bhalla, R. S.; Devi Prasad, K. V.; Pelkey, Neil W.

    2013-03-01

    Watershed development (WSD) is an important and expensive rural development initiative in India. Proponents of the approach contend that treating watersheds will increase agricultural and overall biomass productivity, which in turn will reduce rural poverty. We used satellite-measured normalized differenced vegetation index as a proxy for land productivity to test this crucial contention. We compared microwatersheds that had received funding and completed watershed restoration with adjacent untreated microwatersheds in the same region. As the criteria used can influence results, we analyzed microwatersheds grouped by catchment, state, ecological region, and biogeographical zones for analysis. We also analyzed pre treatment and posttreatment changes for the same watersheds in those schemes. Our findings show that WSD has not resulted in a significant increase in productivity in treated microwatersheds at any grouping, when compared to adjacent untreated microwatershed or the same microwatershed prior to treatment. We conclude that the well-intentioned people-centric WSD efforts may be inhibited by failing to adequately address the basic geomorphology and hydraulic condition of the catchment areas at all scales.

  2. The greenGain project - Biomass from landscape conservation and maintenance work for renewable energy production in the EU

    Science.gov (United States)

    Clalüna, Aline; Baumgarten, Wibke; García Galindo, Daniel; Lenz, Klaus; Doležal, Jan; De Filippi, Federico; Lorenzo, Joaquín; Montagnoli, Louis

    2017-04-01

    The project greenGain is looking for solutions to increase the energy production with regional and local biomass from landscape conservation and maintenance work, which is performed in the public interest. The relevant resources analysed in the greenGain model regions are, among others, biomass residues from clearing invasive vegetation in marginal agricultural lands in Spain, and residues from abandoned vineyards and olive groves in landscape protected areas in Italy. The main target groups are regional and local players who are responsible for maintenance and conservation work and for the biomass residue management in their regions. Moreover, the focus will be on service providers - including farmers and forest owners, their associations, NGOs, energy providers and consumers. Local companies, municipalities and public authorities are collaborating to identify the still underutilised non-food biomass resources and to discuss the way to integrate them into the local and regional biomass markets. Since the start of the three year project in January 2015, the partners from Italy, Spain, Czech Republic and Germany analysed, among other, the biomass feedstock potential coming from landscape maintenance work, and assessed various technological options to utilise this type of biomass. Further, political, legal and environmental aspects as well as awareness raising and public acceptance actions regarding the energetic use of biomass from public areas were assessed. greenGain also facilitates the exchange between model regions and other similar relevant players in the EU and shares examples of good practice. General guidelines will be prepared to guarantee a wide dissemination to other regions in the EU. Thus, the project shows how to build-up reliable knowledge on local availability of this feedstock and provides know-how concerning planning, harvesting, pre-treatment, storage and sustainable conversion pathways to a wide range of stakeholders in the EU.

  3. Globally sustainable manganese metal production and use.

    Science.gov (United States)

    Hagelstein, Karen

    2009-09-01

    The "cradle to grave" concept of managing chemicals and wastes has been a descriptive analogy of proper environmental stewardship since the 1970s. The concept incorporates environmentally sustainable product choices-such as metal alloys utilized steel products which civilization is dependent upon. Manganese consumption is related to the increasing production of raw steel and upgrading ferroalloys. Nonferrous applications of manganese include production of dry-cell batteries, plant fertilizer components, animal feed and colorant for bricks. The manganese ore (high grade 35% manganese) production world wide is about 6 million ton/year and electrolytic manganese metal demand is about 0.7 million ton/year. The total manganese demand is consumed globally by industries including construction (23%), machinery (14%), and transportation (11%). Manganese is recycled within scrap of iron and steel, a small amount is recycled within aluminum used beverage cans. Recycling rate is 37% and efficiency is estimated as 53% [Roskill Metals and Minerals Reports, January 13, 2005. Manganese Report: rapid rise in output caused by Chinese crude steel production. Available from: http://www.roskill.com/reports/manganese.]. Environmentally sustainable management choices include identifying raw material chemistry, utilizing clean production processes, minimizing waste generation, recycling materials, controlling occupational exposures, and collecting representative environmental data. This paper will discuss two electrolytically produced manganese metals, the metal production differences, and environmental impacts cited to date. The two electrolytic manganese processes differ due to the addition of sulfur dioxide or selenium dioxide. Adverse environmental impacts due to use of selenium dioxide methodology include increased water consumption and order of magnitude greater solid waste generation per ton of metal processed. The use of high grade manganese ores in the electrolytic process also

  4. Affordability for sustainable energy development products

    International Nuclear Information System (INIS)

    Riley, Paul H.

    2014-01-01

    Highlights: • Clean cookstoves that also generate electricity improve affordability. • Excel spreadsheet model to assist stakeholders to choose optimum technology. • Presents views for each stakeholder villager, village and country. • By adding certain capital costs, affordability and sustainability are improved. • Affordability is highly dependent on carbon credits and social understandings. - Abstract: Clean burning products, for example cooking stoves, can reduce household air pollution (HAP), which prematurely kills 3.5 million people each year. By careful selection of components into a product package with micro-finance used for the capital payment, barriers to large-scale uptake of products that remove HAP are reduced. Such products reduce smoke from cooking and the lighting from electricity produced, eliminates smoke from kerosene lamps. A bottom-up financial model, that is cognisant of end user social needs, has been developed to compare different products for use in rural areas of developing countries. The model is freely available for use by researchers and has the ability to assist in the analysis of changing assumptions. Business views of an individual villager, the village itself and a country view are presented. The model shows that affordability (defined as the effect on household expenses as a result of a product purchase) and recognition of end-user social needs are as important as product cost. The effects of large-scale deployment (greater that 10 million per year) are described together with level of subsidy required by the poorest people. With the assumptions given, the model shows that pico-hydro is the most cost effective, but not generally available, one thermo-acoustic technology option does not require subsidy, but it is only at technology readiness level 2 (NASA definition) therefore costs are predicted and very large investment in manufacturing capability is needed to meet the cost target. Thermo-electric is currently the only

  5. Production of isometric forces during sustained acceleration.

    Science.gov (United States)

    Sand, D P; Girgenrath, M; Bock, O; Pongratz, H

    2003-06-01

    The operation of high-performance aircraft requires pilots to apply finely graded forces on controls. Since they are often exposed to high levels of acceleration in flight, we investigated to what extent this ability is degraded in such an environment. Twelve healthy non-pilot volunteers were seated in the gondola of a centrifuge and their performance was tested at normal gravity (1 G) and while exposed to sustained forces of 1.5 G and 3 G oriented from head to foot (+Gz). Using an isometric joystick, they attempted to produce force vectors with specific lengths and directions commanded in random order by a visual display. Acceleration had substantial effects on the magnitude of produced force. Compared with 1 G, maximum produced force was about 2 N higher at 1.5 G and about 10 N higher at 3 G. The size of this effect was constant across the different magnitudes, but varied with the direction of the prescribed force. Acceleration degrades control of force production. This finding may indicate that the motor system misinterprets the unusual gravitoinertial environment and/or that proprioceptive feedback is degraded due to increased muscle tone. The production of excessive isometric force could affect the safe operation of high-performance aircraft.

  6. The potential impacts of biomass feedstock production on water resource availability.

    Science.gov (United States)

    Stone, K C; Hunt, P G; Cantrell, K B; Ro, K S

    2010-03-01

    Biofuels are a major topic of global interest and technology development. Whereas bioenergy crop production is highly dependent on water, bioenergy development requires effective allocation and management of water. The objectives of this investigation were to assess the bioenergy production relative to the impacts on water resource related factors: (1) climate and weather impact on water supplies for biomass production; (2) water use for major bioenergy crop production; and (3) potential alternatives to improve water supplies for bioenergy. Shifts to alternative bioenergy crops with greater water demand may produce unintended consequences for both water resources and energy feedstocks. Sugarcane and corn require 458 and 2036 m(3) water/m(3) ethanol produced, respectively. The water requirements for corn grain production to meet the US-DOE Billion-Ton Vision may increase approximately 6-fold from 8.6 to 50.1 km(3). Furthermore, climate change is impacting water resources throughout the world. In the western US, runoff from snowmelt is occurring earlier altering the timing of water availability. Weather extremes, both drought and flooding, have occurred more frequently over the last 30 years than the previous 100 years. All of these weather events impact bioenergy crop production. These events may be partially mitigated by alternative water management systems that offer potential for more effective water use and conservation. A few potential alternatives include controlled drainage and new next-generation livestock waste treatment systems. Controlled drainage can increase water available to plants and simultaneously improve water quality. New livestock waste treatments systems offer the potential to utilize treated wastewater to produce bioenergy crops. New technologies for cellulosic biomass conversion via thermochemical conversion offer the potential for using more diverse feedstocks with dramatically reduced water requirements. The development of bioenergy

  7. Ethanol Production from Biomass: Large Scale Facility Design Project

    Energy Technology Data Exchange (ETDEWEB)

    Berson, R. Eric [Univ. of Louisville, KY (United States)

    2009-10-29

    High solids processing of biomass slurries provides the following benefits: maximized product concentration in the fermentable sugar stream, reduced water usage, and reduced reactor size. However, high solids processing poses mixing and heat transfer problems above about 15% for pretreated corn stover solids due to their high viscosities. Also, highly viscous slurries require high power consumption in conventional stirred tanks since they must be run at high rotational speeds to maintain proper mixing. An 8 liter scraped surface bio-reactor (SSBR) is employed here that is designed to efficiently handle high solids loadings for enzymatic saccharification of pretreated corn stover (PCS) while maintaining power requirements on the order of low viscous liquids in conventional stirred tanks. Saccharification of biomass exhibit slow reaction rates and incomplete conversion, which may be attributed to enzyme deactivation and loss of activity due to a variety of mechanisms. Enzyme deactivation is classified into two categories here: one, deactivation due to enzyme-substrate interactions and two, deactivation due to all other factors that are grouped together and termed “non-specific” deactivation. A study was conducted to investigate the relative extents of “non-specific” deactivation and deactivation due to “enzyme-substrate interactions” and a model was developed that describes the kinetics of cellulose hydrolysis by considering the observed deactivation effects. Enzyme substrate interactions had a much more significant effect on overall deactivation with a deactivation rate constant about 20X higher than the non-specific deactivation rate constant (0.35 h-1 vs 0.018 h-1). The model is well validated by the experimental data and predicts complete conversion of cellulose within 30 hours in the absence of enzyme substrate interactions.

  8. Life cycle assessment of residual lignocellulosic biomass-based jet fuel with activated carbon and lignosulfonate as co-products.

    Science.gov (United States)

    Pierobon, Francesca; Eastin, Ivan L; Ganguly, Indroneil

    2018-01-01

    results in a net negative impact on 'Carcinogenics' and 'Respiratory effects', and substantial reduction in the 'Smog' and 'Ecotoxicity' impacts. The production of woody biomass-based bio-jet fuel, however, did not show any significant improvement in the 'Acidification' and 'Eutrophication' impact categories. The study reveals that residual woody biomass recovered from slash piles represents a more sustainable alternative to petroleum for the production of jet fuel with a lower impact on global warming and local pollution. Future research should focus on the optimization of chemical processes of the bio-refinery to reduce the impacts on the 'Acidification' and 'Eutrophication' impact categories.

  9. Sustainable Product Strategy in Apparel Industry with Consumer Behavior Consideration

    OpenAIRE

    Liu Yang; Shaozeng Dong

    2017-01-01

    The article attempts to analyze sustainable product strategy in apparel industry specifically addressing a firm that is considering launching a sustainable product partly made from recycled materials. There are two types of consumers under consideration, environmentally conscious and regular consumers, as they have different perceived values for the sustainable products. The article provides an analytical model aimed to identify conditions under which a firm could benefit from adopting sustai...

  10. Integrated production of warm season grasses and agroforestry for biomass production

    Energy Technology Data Exchange (ETDEWEB)

    Samson, R.; Omielan, J. [Resource Efficient Agricultural Production-Canada, Ste, Anne de Bellevue, Quebec (Canada); Girouard, P.; Henning, J. [McGill Univ., Ste. Anne de Bellevue, Quebec (Canada)

    1993-12-31

    Increased research on C{sub 3} and C{sub 4} perennial biomass crops is generating a significant amount of information on the potential of these crops to produce large quantities of low cost biomass. In many parts of North America it appears that both C{sub 3} and C{sub 4} species are limited by water availability particularly on marginal soils. In much of North America, rainfall is exceeded by evaporation. High transpiration rates by fast growing trees and rainfall interception by the canopy appear to indicate that this can further exacerbate the problem of water availability. C{sub 4} perennial grasses appear to have distinct advantages over C{sub 3} species planted in monoculture systems particularly on marginal soils. C{sub 4} grasses historically predominated over much of the land that is now available for biomass production because of their adaptation to low humidity environments and periods of low soil moisture. The planting of short rotation forestry (SRF) species in an energy agroforestry system is proposed as an alternative production strategy which could potentially alleviate many of the problems associated with SRF monocultures. Energy agroforestry would be complementary to both production of conventional farm crops and C{sub 4} perennial biomass crops because of beneficial microclimatic effects.

  11. Biomass production as renewable energy resource at reclaimed Serbian lignite open-cast mines

    Directory of Open Access Journals (Sweden)

    Jakovljević Milan

    2015-01-01

    Full Text Available The main goal of this paper is the overview of the scope and dynamics of biomass production as a renewable energy source for substitution of coal in the production of electrical energy in the Kolubara coal basin. In order to successfully realize this goal, it was necessary to develop a dynamic model of the process of coal production, overburden dumping and re-cultivation of dumping sites by biomass planting. The results obtained by simulation of the dynamic model of biomass production in Kolubara mine basin until year 2045 show that 6870 hectares of overburden waste dumps will be re-cultivated by biomass plantations. Biomass production modeling point out the significant benefits of biomass production by planting the willow Salix viminalis cultivated for energy purposes. Under these conditions, a 0.6 % participation of biomass at the end of the period of intensive coal production, year 2037, is achieved. With the decrease of coal production to 15 million tons per year, this percentage steeply rises to 1.4 % in 2045. This amount of equivalent tons of coal from biomass can be used for coal substitution in the production of electrical energy. [Projekat Ministarstva nauke Republike Srbije, br. TR 33039

  12. Techno-economic assessment of hybrid extraction and distillation processes for furfural production from lignocellulosic biomass.

    Science.gov (United States)

    Nhien, Le Cao; Long, Nguyen Van Duc; Kim, Sangyong; Lee, Moonyong

    2017-01-01

    Lignocellulosic biomass is one of the most promising alternatives for replacing mineral resources to overcome global warming, which has become the most important environmental issue in recent years. Furfural was listed by the National Renewable Energy Laboratory as one of the top 30 potential chemicals arising from biomass. However, the current production of furfural is energy intensive and uses inefficient technology. Thus, a hybrid purification process that combines extraction and distillation to produce furfural from lignocellulosic biomass was considered and investigated in detail to improve the process efficiency. This effective hybrid process depends on the extracting solvent, which was selected based on a comprehensive procedure that ranged from solvent screening to complete process design. Various solvents were first evaluated in terms of their extraction ability. Then, the most promising solvents were selected to study the separation feasibility. Eventually, processes that used the three best solvents (toluene, benzene, and butyl chloride) were designed and optimized in detail using Aspen Plus. Sustainability analysis was performed to evaluate these processes in terms of their energy requirements, total annual costs (TAC), and carbon dioxide (CO 2 ) emissions. The results showed that butyl chloride was the most suitable solvent for the hybrid furfural process because it could save 44.7% of the TAC while reducing the CO 2 emissions by 45.5% compared to the toluene process. In comparison with the traditional purification process using distillation, this suggested hybrid extraction/distillation process can save up to 19.2% of the TAC and reduce 58.3% total annual CO 2 emissions. Furthermore, a sensitivity analysis of the feed composition and its effect on the performance of the proposed hybrid system was conducted. Butyl chloride was found to be the most suitable solvent for the hybrid extraction/distillation process of furfural production. The proposed

  13. Sustainable Product Indexing: Navigating the Challenge of Ecolabeling

    Directory of Open Access Journals (Sweden)

    Jay S. Golden

    2010-09-01

    Full Text Available There is growing scientific evidence that improving the sustainability of consumer products can lead to significant gains in global sustainability. Historically, environmental policy has been managed by bureaucracies and institutions in a mechanistic manner; this had led to many early successes. However, we believe that if policy concerning product sustainability is also managed in this way, negative unintended consequences are likely to occur. Thus, we propose a social-ecological systems approach to policy making concerning product sustainability that will lead to more rapid and meaningful progress toward improving the environmental and social impacts of consumer products.

  14. Catalytic conversion of nonfood woody biomass solids to organic liquids

    NARCIS (Netherlands)

    Barta, Katalin; Ford, Peter C

    CONSPECTUS: This Account outlines recent efforts in our laboratories addressing a fundamental challenge of sustainability chemistry, the effective utilization of biomass for production of chemicals and fuels. Efficient methods for converting renewable biomass solids to chemicals and liquid fuels

  15. Poplar physiology and short-term biomass production

    Energy Technology Data Exchange (ETDEWEB)

    Reimer, P.; Lannoye, R. (Universite Libre de Bruxelles (Belgium). Lab. de Physiologie Vegetale)

    1990-01-01

    This program comprised the establishment, on biochemical and physiological basis, of specific screening tests for the rapid evaluation of poplar adaptation to environmental conditions. The resistance of chloroplasts to several major environmental stresses affecting biomass production (light, heat, cold and water stress) has been assessed in leaves of five poplar (Populus sp.) clones by in vivo chlorophyll fluorescence and oxygen production measurements. These two chloroplastic activities are correlated to the photosynthetic activity of the plant and respond immediately to any changes affecting the organization and the functioning of the photosynthetic apparatus, including regulatory mechanisms. Test clones were grown as cuttings in a .80 {times} .80m planting pattern. In addition, some plants were grown hydroponically in containers under a plastic roof in controlled conditions to test their behavior toward hydric (drought), light (shadow and overlight) and temperature (cold and warm) stresses. A specific data capture system has been developed to analyze clone resistance to environmental stresses. The results indicated considerable genetic variation in tolerance of poplar clones toward environmental stresses. The application of the in vivo fluorescence method and of the photoacoustic method appears to be an easy and rapid method to estimate the reaction of poplar clones against some stresses and thus for detecting plant species adapted to environmental stresses. 59 refs., 27 figs., 5 tabs.

  16. Screening Prosopis (mesquite) germplasm for biomass production and nitrogen fixation

    Energy Technology Data Exchange (ETDEWEB)

    Felker, P.; Cannell, G.H.; Clark, P.R.; Osborn, J.F.

    1980-01-01

    The nitrogen-fixing trees of the genus Prosopis (mesquite or algaroba) are well adapted to the semi-arid and often saline regions of the world. These trees may produce firewood or pods for livestock food, they may stabilize sand dunes and they may enrich the soil by production of leaf litter supported by nitrogen fixation. A collection of nearly 500 Prosopis accessions representing North and South American and African germplasm has been established. Seventy of these accessions representing 14 taxa are being grown under field conditions where a 30-fold range in biomass productivity among accessions has been estimated. In a greehouse experiment, 13 Prosopis taxa grew on nitrogen-free medium nodulated, and had a 10-fold difference in nitrogen fixation (acetylene reduction). When Prosopis is propagated by seed the resulting trees are extremely variable in growth rate and presence or absence of thorns. Propagation of 6 Prosopis taxa by stem cuttings has been achieved with low success (1 to 10%) in field-grown plants and with higher success (50 to 100%) with young actively growing greenhouse plants.

  17. Shrub biomass production following simulated herbivory: A test of the compensatory growth hypothesis

    Science.gov (United States)

    Terri B. Teaschner; Timothy E. Fulbright

    2007-01-01

    The objective of this experiment was to test the hypotheses that 1) simulated herbivory stimulates increased biomass production in spiny hackberry (Celtis pallida), but decreases biomass production in blackbrush acacia (Acacia rigidula) compared to unbrowsed plants and 2) thorn density and length increase in blackbrush acacia to a...

  18. Impact of biomass harvesting on forest soil productivity in the northern Rocky Mountains

    Science.gov (United States)

    Woongsoon Jang; Christopher R. Keyes; Deborah Page-Dumroese

    2015-01-01

    Biomass harvesting extracts an increased amount of organic matter from forest ecosystems over conventional harvesting. Since organic matter plays a critical role in forest productivity, concerns of potential negative long-term impacts of biomass harvesting on forest productivity (i.e., changing nutrient/water cycling, aggravating soil properties, and compaction) have...

  19. Exergy analysis of thermochemical ethanol production via biomass gasification and catalytic synthesis

    NARCIS (Netherlands)

    van der Heijden, H.H.J.L.; Ptasinski, K.J.

    2012-01-01

    In this paper an exergy analysis of thermochemical ethanol production from biomass is presented. This process combines a steam-blown indirect biomass gasification of woody feedstock, with a subsequent conversion of produced syngas into ethanol. The production process involves several process

  20. Advanced biomass science and technology for bio-based products: proceedings

    Science.gov (United States)

    Chung Hse; Zehui Jiang; Mon-Lin Kuo

    2009-01-01

    This book was developed from the proceedings of the Advanced Biomass Science and Technology for Bio-Based Products Symposium held in Beijing, China, May 23-25, 2007. The symposium was designed to provide a forum for researchers, producers, and consumers of biomass and bio-based products; to exchange information and ideas; and to stimulate new research and...

  1. Biomass production and water use efficiency of grassland in ...

    African Journals Online (AJOL)

    Using the results from a long-term grazing trial in the Dry Highland Sourveld of the KwaZulu-Natal province, we prepared a water use efficiency value (the ratio of the increment in annual biomass to total annual evapotranspiration) for this rangeland type. Using seasonal biomass measurements recorded between March ...

  2. Biogas energy production from tropical biomass wastes by anaerobic digestion

    Science.gov (United States)

    Anaerobic digestion (AD) is an attractive technology in tropical regions for converting locally abundant biomass wastes into biogas which can be used to produce heat, electricity, and transportation fuels. However, investigations on AD of tropical forestry wastes, such as albizia biomass, and food w...

  3. Mycorrhizal Enhancement of Biomass Productivity of Big Bluestem ...

    African Journals Online (AJOL)

    The usual biomass partitioning by BB at pH=4.5 deserves further investigation. Different patterns of biomass partitioning notwithstanding, results of this study strongly suggest that BB could complement SG, the model biofuel feedstock, especially under acidic substrate conditions. Key words: Big bluestem; switchgrass; ...

  4. Progress towards Sustainable Production: Environmental, Economic, and Social Assessments of the Cellulose Nanofiber Production Process

    Directory of Open Access Journals (Sweden)

    Dami Moon

    2017-12-01

    Full Text Available We assessed the environmental, economic, and social impacts of the process for producing cellulose nanofibers (CNFs, which are considered to be a valuable sustainable woody biomass feedstock. The greenhouse gas (GHG emissions associated with CNF production are greater than the emissions associated with producing most plastic materials used in vehicle components because the grinding process during CNF production generates significant GHG emissions. The cost of CNF production is also higher than the cost of producing comparable plastics for automotive use because of the high cost of the pulverization process. The sensitivity analysis in this study suggested that GHG emissions and manufacturing costs could be reduced by 19.1–76.4% and 3.6–12.2%, respectively, by improving the energy efficiency of CNF production by two to five times. We compared the potential social risks associated with CNF production between Japan and Vietnam using a product social impact life cycle assessment database. It is desirable to reduce the social risk on the fair salary and child labor, and to improve the safe and healthy living conditions in the local communities that import wood chips harvested in Vietnam.

  5. Biomass-derived carbonaceous positive electrodes for sustainable lithium-ion storage

    Science.gov (United States)

    Liu, Tianyuan; Kavian, Reza; Chen, Zhongming; Cruz, Samuel S.; Noda, Suguru; Lee, Seung Woo

    2016-02-01

    Biomass derived carbon materials have been widely used as electrode materials; however, in most cases, only electrical double layer capacitance (EDLC) is utilized and therefore, only low energy density can be achieved. Herein, we report on redox-active carbon spheres that can be simply synthesized from earth-abundant glucose via a hydrothermal process. These carbon spheres exhibit a specific capacity of ~210 mA h gCS-1, with high redox potentials in the voltage range of 2.2-3.7 V vs. Li, when used as positive electrode in lithium cells. Free-standing, flexible composite films consisting of the carbon spheres and few-walled carbon nanotubes deliver high specific capacities up to ~155 mA h gelectrode-1 with no obvious capacity fading up to 10 000 cycles, proposing to be promising positive electrodes for lithium-ion batteries or capacitors. Furthermore, considering that the carbon spheres were obtained in an aqueous glucose solution and no toxic or hazardous reagents were used, this process opens up a green and sustainable method for designing high performance, environmentally-friendly energy storage devices.Biomass derived carbon materials have been widely used as electrode materials; however, in most cases, only electrical double layer capacitance (EDLC) is utilized and therefore, only low energy density can be achieved. Herein, we report on redox-active carbon spheres that can be simply synthesized from earth-abundant glucose via a hydrothermal process. These carbon spheres exhibit a specific capacity of ~210 mA h gCS-1, with high redox potentials in the voltage range of 2.2-3.7 V vs. Li, when used as positive electrode in lithium cells. Free-standing, flexible composite films consisting of the carbon spheres and few-walled carbon nanotubes deliver high specific capacities up to ~155 mA h gelectrode-1 with no obvious capacity fading up to 10 000 cycles, proposing to be promising positive electrodes for lithium-ion batteries or capacitors. Furthermore, considering

  6. Fungal endophytes for sustainable crop production.

    Science.gov (United States)

    Lugtenberg, Ben J J; Caradus, John R; Johnson, Linda J

    2016-12-01

    This minireview highlights the importance of endophytic fungi for sustainable agriculture and horticulture production. Fungal endophytes play a key role in habitat adaptation of plants resulting in improved plant performance and plant protection against biotic and abiotic stresses. They encode a vast variety of novel secondary metabolites including volatile organic compounds. In addition to protecting plants against pathogens and pests, selected fungal endophytes have been used to remove animal toxicities associated with fungal endophytes in temperate grasses, to create corn and rice plants that are tolerant to a range of biotic and abiotic stresses, and for improved management of post-harvest control. We argue that practices used in plant breeding, seed treatments and agriculture, often caused by poor knowledge of the importance of fungal endophytes, are among the reasons for the loss of fungal endophyte diversity in domesticated plants and also accounts for the reduced effectiveness of some endophyte strains to confer plant benefits. We provide recommendations on how to mitigate against these negative impacts in modern agriculture. © FEMS 2016. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  7. Assessment of the externalise of biomass energy for electricity production

    Energy Technology Data Exchange (ETDEWEB)

    Linares, P; Leal, J; Saez, R M

    1996-07-01

    This study presents a methodology for the quantification of the socioeconomic and environmental externalities of the biomass fuel cycle. It is based on the one developed by the ExternE Project of the European Commission, based in turm in the damage function approach, and which has been extended and modified for a better adaptation to biomass energy systems. The methodology has been applied to a 20 MW biomass power plant, fueled by Cynara cardunculus, in southern Spain. The externalities addressed have been macroeconomic effects, employment, CO2, fixation, erosion, and non-point source pollution. The results obtained should be considered only as subtotals, since there are still other externalities to be quantified. Anyway, and in spite of the uncertainty existing, these results suggest that the total cost (those including internal and external costs) of biomass energy are lower than those of conventional energy sources, what, if taken into account, would make biomass more competitive than it is now. (Author) 44 refs.

  8. Assessment of the externalities of biomass energy for electricity production

    Energy Technology Data Exchange (ETDEWEB)

    Linares, P; Leal, J; Saez, R M

    1996-10-01

    This study presents a methodology for the quantification of the socioeconomic and environmental externalities of the biomass fuel cycle. It is based on the one developed by the ExternE Project of the European Commission, based in turn in the damage function approach, and which has been extended and modified for a better adaptation to biomass energy systems. The methodology has been applied to a 20 MW biomass power plant, fueled by Cynara cardunculus, in southern Spain. The externalities addressed have been macroeconomic effects, employment, CO{sub 2}, fixation, erosion, and non-point source pollution. The results obtained should be considered only as subtotals, since there are still other externalities to be quantified. anyway, and in spite of the uncertainty existing, these results suggest that total cost (those including internal and external costs) of biomass energy are lower than those of conventional energy sources, what, if taken into account, would make biomass more competitive than it is now. (Author)

  9. Assessment of the externalise of biomass energy for electricity production

    International Nuclear Information System (INIS)

    Linares, P.; Leal, J.; Saez, R.M.

    1996-01-01

    This study presents a methodology for the quantification of the socioeconomic and environmental externalities of the biomass fuel cycle. It is based on the one developed by the ExternE Project of the European Commission, based in turm in the damage function approach, and which has been extended and modified for a better adaptation to biomass energy systems. The methodology has been applied to a 20 MW biomass power plant, fueled by Cynara cardunculus, in southern Spain. The externalities addressed have been macroeconomic effects, employment, CO2, fixation, erosion, and non-point source pollution. The results obtained should be considered only as subtotals, since there are still other externalities to be quantified. Anyway, and in spite of the uncertainty existing, these results suggest that the total cost (those including internal and external costs) of biomass energy are lower than those of conventional energy sources, what, if taken into account, would make biomass more competitive than it is now. (Author) 44 refs

  10. Centralised electricity production from winter cereals biomass grown under central-northern Spain conditions: Global warming and energy yield assessments

    International Nuclear Information System (INIS)

    Sastre, C.M.; Maletta, E.; González-Arechavala, Y.; Ciria, P.; Santos, A.M.; Val, A. del; Pérez, P.; Carrasco, J.

    2014-01-01

    Highlights: • We assess the sustainability of electricity production from winter cereals biomass. • Productivity ranks are generated from different genotypes cultivated in real farms. • GHG and energy balances show better performance compared to natural gas electricity. • Cereals yields below 8 odt/ha do not accomplish objective 60% of GHG savings. • Marginal yields and sustainability criteria are discussed suggesting optimization. - Abstract: The goal of this paper is to assess the sustainability of electricity production from winter cereals grown in one of the most important Spanish agricultural areas, Castilla y León Region, situated in central-northern Spain. This study analyses greenhouse gases (GHG) emissions and energy balances of electricity production in a 25 MWe power plant that was powered using straw biomass from three annual winter cereals (rye, triticale and oat) grown as dedicated energy crops. The results of these analyses were compared with those of electricity produced from natural gas in Spanish power plants. Assessments were performed using a wide range of scenarios, mainly based on the biomass yield variability obtained in demonstration plots of twelve different winter cereal genotypes. Demonstration plots were established in two different locations (provinces of Soria and León) of the Castilla y León Region during two crop seasons (2009/2010 and 2010/2011) using common management practices and input rates for rain-fed agriculture in these regions. Our results suggest that production of electricity from winter cereals biomass combustion yielded considerable reductions in terms of GHG emissions when compared to electricity from natural gas. Nevertheless, the results show that low biomass yields that are relatively frequent for Spanish farmers on low productivity lands may produce no significant reductions in GHG in comparison with electricity from natural gas. Consequently, the agronomic management of winter cereals should be re

  11. Production of Aspergillus niger biomass on sugarcane distillery wastewater: physiological aspects and potential for biodiesel production.

    Science.gov (United States)

    Chuppa-Tostain, Graziella; Hoarau, Julien; Watson, Marie; Adelard, Laetitia; Shum Cheong Sing, Alain; Caro, Yanis; Grondin, Isabelle; Bourven, Isabelle; Francois, Jean-Marie; Girbal-Neuhauser, Elisabeth; Petit, Thomas

    2018-01-01

    Sugarcane distillery waste water (SDW) or vinasse is the residual liquid waste generated during sugarcane molasses fermentation and alcohol distillation. Worldwide, this effluent is responsible for serious environmental issues. In Reunion Island, between 100 and 200 thousand tons of SDW are produced each year by the three local distilleries. In this study, the potential of Aspergillus niger to reduce the pollution load of SDW and to produce interesting metabolites has been investigated. The fungal biomass yield was 35 g L -1 corresponding to a yield of 0.47 g of biomass/g of vinasse without nutrient complementation. Analysis of sugar consumption indicated that mono-carbohydrates were initially released from residual polysaccharides and then gradually consumed until complete exhaustion. The high biomass yield likely arises from polysaccharides that are hydrolysed prior to be assimilated as monosaccharides and from organic acids and other complex compounds that provided additional C-sources for growth. Comparison of the size exclusion chromatography profiles of raw and pre-treated vinasse confirmed the conversion of humic- and/or phenolic-like molecules into protein-like metabolites. As a consequence, chemical oxygen demand of vinasse decreased by 53%. Interestingly, analysis of intracellular lipids of the biomass revealed high content in oleic acid and physical properties relevant for biodiesel application. The soft-rot fungus A. niger demonstrated a great ability to grow on vinasse and to degrade this complex and hostile medium. The high biomass production is accompanied by a utilization of carbon sources like residual carbohydrates, organic acids and more complex molecules such as melanoidins. We also showed that intracellular lipids from fungal biomass can efficiently be exploited into biodiesel.

  12. Catalytic hydrothermal gasification of biomass for the production of synthetic natural gas[Dissertation 17100

    Energy Technology Data Exchange (ETDEWEB)

    Waldner, M H

    2007-07-01

    Energy from biomass is a CO{sub 2} neutral, sustainable form of energy. Anaerobic digestion is an established technology for converting biomass to biogas, which contains around 60% methane, besides CO{sub 2} and various contaminants. Most types of biomass contain material that cannot be digested; in woody biomass, this portion is particularly high. Therefore, conventional anaerobic digestion is not suited for the production of biogas from woody biomass. While wood is already being converted to energy by conventional thermal methods (gasification with subsequent methanation), dung, manure, and sewage sludge represent types of biomass whose energy potential remains largely untapped (present energetic use of manure in Switzerland: 0.4%). Conventional gas phase processes suffer from a low efficiency due to the high water content of the feed (enthalpy of vaporization). An alternative technology is the hydrothermal gasification: the water contained within the biomass serves as reaction medium, which at high pressures of around 30 MPa turns into a supercritical fluid that exhibits apolar properties. Under these conditions, tar precursors, which cause significant problems in conventional gasification, can be solubilized and gasified. The need to dry the biomass prior to gasification is obsolete, and as a consequence high thermal process efficiencies (65 - 70%) are possible. Due to their low solubility in supercritical water, the inorganics that are present in the biomass (up to 20 wt % of the dry matter of manure) can be separated and further used as fertilizer. The biomass is thus not only converted into an energy carrier, but it allows valuable substances contained in the biomass to be extracted and re-used. Furthermore, the process can be used for aqueous waste stream destruction. The aim of this project at the Paul Scherrer Institute was to develop a catalytic process that demonstrates the gasification of wet biomass to synthetic natural gas (SNG) in a continuously

  13. Consumer attitudes towards sustainability aspects of food production

    DEFF Research Database (Denmark)

    Krystallis Krontalis, Athanasios; Grunert, Klaus G; de Barcellos, Marcia Dutra

    2012-01-01

    This study aims to analyse citizens' sustainability attitudes towards food production in the EU, Brazil, and China (n = 2885), using pork as an exemplary production system. The objective is to map citizens' attitudes towards sustainable characteristics of pig production systems, and investigate...... whether these attitudes coincide with people's general attitudes towards sustainability, on one hand, and their consumption of specific pork products, on the other. A conjoint experiment was designed to evaluate citizens' preferences towards pig production systems with varying sustainability levels....... Conjoint analysis results were then used for a subsequent cluster analysis in order to identify international citizen clusters across the three continents. Respondents' sociodemographic profile, attitudes towards sustainability issues, and consumption frequency of various pork products are used to profile...

  14. Consumer attitudes towards sustainability aspects of food production

    DEFF Research Database (Denmark)

    Krystallis Krontalis, Athanasios; Grunert, Klaus G; de Barcellos, Marcia D.

    2013-01-01

    This study aims to analyse citizens' sustainability attitudes towards food production in the EU, Brazil, and China (n = 2885), using pork as an exemplary production system. The objective is to map citizens' attitudes towards sustainable characteristics of pig production systems, and investigate...... whether these attitudes coincide with people's general attitudes towards sustainability, on one hand, and their consumption of specific pork products, on the other. A conjoint experiment was designed to evaluate citizens' preferences towards pig production systems with varying sustainability levels....... Conjoint analysis results were then used for a subsequent cluster analysis in order to identify international citizen clusters across the three continents. Respondents' sociodemographic profile, attitudes towards sustainability issues, and consumption frequency of various pork products are used to profile...

  15. Production of Butyric Acid and Butanol from Biomass

    Energy Technology Data Exchange (ETDEWEB)

    Ramey, David E. [Environmental Energy Inc., Blacklick, OH (United States); Yang, Shang-Tian [The Ohio State Univ., Columbus, OH (United States). Dept. of Chemical and Biomolecular Engineering

    2005-08-25

    Butanol replaced gasoline gallon for gallon in a 10,000 miles trip across the United States without the need to highly modify a ’92 Buick (your existing car today). Butanol can now be made for less than ethanol and yields more Btu’s from the same corn, making the plow to tire equation positive – more energy out than it takes to make it and Butanol is much safer. Butanol when substituted for gasoline gives better gas mileage and does not pollute as tested in 10 states. Butanol should now receive the same recognition as ethanol in U.S. legislation “ethanol/butanol”. There is abundant plant biomass present as low-value agricultural commodities or processing wastes requiring proper disposal to avoid pollution problems. One example is in the corn refinery industry, which processes more than 13% of the ~9.5 billion bushels (~240 million metric tons) of corn annually produced in the U.S. to produce high-fructose-corn-syrup, dextrose, starch, and fuel alcohol, and generates more than 10 million metric tons of corn byproducts that are currently of limited use and pose significant environmental problems. The abundant inexpensive renewable resources as feedstock for fermentation, and recent advances in the fields of biotechnology and bioprocessing have resulted in a renewed interest in the fermentation production of chemicals and fuels, including n-butanol. The historic acetone-butanol-ethanol (ABE) fermentation by Clostridium acetobutylicum is one of the oldest known industrial fermentations. It was ranked second only to ethanol fermentation by yeast in its scale of production, and is one of the largest biotechnological processes ever known. However, since the 1950's industrial ABE fermentation has declined continuously, and almost all butanol is now produced via petrochemical routes (Chemical Marketing Reporter, 1993). Butanol is an important industrial solvent and is a better fuel for replacing gasoline – gallon for gallon than ethanol. Current butanol

  16. Biotechnological Strategies to Improve Plant Biomass Quality for Bioethanol Production

    Directory of Open Access Journals (Sweden)

    Julián Mario Peña-Castro

    2017-01-01

    Full Text Available The transition from an economy dependent on nonrenewable energy sources to one with higher diversity of renewables will not be a simple process. It requires an important research effort to adapt to the dynamics of the changing energy market, sort costly processes, and avoid overlapping with social interest markets such as food and livestock production. In this review, we analyze the desirable traits of raw plant materials for the bioethanol industry and the molecular biotechnology strategies employed to improve them, in either plants already under use (as maize or proposed species (large grass families. The fundamentals of these applications can be found in the mechanisms by which plants have evolved different pathways to manage carbon resources for reproduction or survival in unexpected conditions. Here, we review the means by which this information can be used to manipulate these mechanisms for commercial uses, including saccharification improvement of starch and cellulose, decrease in cell wall recalcitrance through lignin modification, and increase in plant biomass.

  17. Biotechnological Strategies to Improve Plant Biomass Quality for Bioethanol Production

    Science.gov (United States)

    del Moral, Sandra; Núñez-López, Lizeth; Barrera-Figueroa, Blanca E.; Amaya-Delgado, Lorena

    2017-01-01

    The transition from an economy dependent on nonrenewable energy sources to one with higher diversity of renewables will not be a simple process. It requires an important research effort to adapt to the dynamics of the changing energy market, sort costly processes, and avoid overlapping with social interest markets such as food and livestock production. In this review, we analyze the desirable traits of raw plant materials for the bioethanol industry and the molecular biotechnology strategies employed to improve them, in either plants already under use (as maize) or proposed species (large grass families). The fundamentals of these applications can be found in the mechanisms by which plants have evolved different pathways to manage carbon resources for reproduction or survival in unexpected conditions. Here, we review the means by which this information can be used to manipulate these mechanisms for commercial uses, including saccharification improvement of starch and cellulose, decrease in cell wall recalcitrance through lignin modification, and increase in plant biomass. PMID:28951875

  18. Potential of water surface-floating microalgae for biodiesel production: Floating-biomass and lipid productivities.

    Science.gov (United States)

    Muto, Masaki; Nojima, Daisuke; Yue, Liang; Kanehara, Hideyuki; Naruse, Hideaki; Ujiro, Asuka; Yoshino, Tomoko; Matsunaga, Tadashi; Tanaka, Tsuyoshi

    2017-03-01

    Microalgae have been accepted as a promising feedstock for biodiesel production owing to their capability of converting solar energy into lipids through photosynthesis. However, the high capital and operating costs, and high energy consumption, are hampering commercialization of microalgal biodiesel. In this study, the surface-floating microalga, strain AVFF007 (tentatively identified as Botryosphaerella sudetica), which naturally forms a biofilm on surfaces, was characterized for use in biodiesel production. The biofilm could be conveniently harvested from the surface of the water by adsorbing onto a polyethylene film. The lipid productivity of strain AVFF007 was 46.3 mg/L/day, allowing direct comparison to lipid productivities of other microalgal species. The moisture content of the surface-floating biomass was 86.0 ± 1.2%, which was much lower than that of the biomass harvested using centrifugation. These results reveal the potential of this surface-floating microalgal species as a biodiesel producer, employing a novel biomass harvesting and dewatering strategy. Copyright © 2016 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  19. Emerging sustainable/green cleaning products: health and environmental risks

    OpenAIRE

    Aydin, Mehmet Cihan; Işik, Ercan; Ulu, Ali Emre

    2016-01-01

    Sustainable development aims to bring a new perspective to our lives without compromising customer needs and quality. Along with sustainable development many innovative solutions came out. One of them is sustainable green cleaning products and techniques. Today, emissions from conventional cleaning products may cause severe health and environmental issues. Especially sick building syndromes such as eye, skin and respiratory irritations are main health effects of them. They may also contrib...

  20. Towards Sustainability-driven Innovation through Product Service Systems

    OpenAIRE

    Thompson, Anthony

    2010-01-01

    Increasing awareness of anthropogenic impacts on the planet has lead to efforts to reduce negative environmental impacts in product development for several decades. Benefits to companies who focus on sustainability initiatives have been put forth more recently, leading to many efforts to incorporate sustainability considerations in their product innovation processes. The majority of current sustainability considerations in industry constrain design space by emphasizing reduced material and en...

  1. Maximizing renewable hydrogen production from biomass in a bio/catalytic refinery

    DEFF Research Database (Denmark)

    Westermann, Peter; Jørgensen, Betina; Lange, L.

    2007-01-01

    Biological production of hydrogen from biomass by fermentative or photofermentative microorganisms has been described in numerous research articles and reviews. The major challenge of these techniques is the low yield from fermentative production, and the large reactor volumes necessary for photo......Biological production of hydrogen from biomass by fermentative or photofermentative microorganisms has been described in numerous research articles and reviews. The major challenge of these techniques is the low yield from fermentative production, and the large reactor volumes necessary...

  2. Nature-Inspired Design : Strategies for Sustainable Product Development

    NARCIS (Netherlands)

    De Pauw, I.C.

    2015-01-01

    Product designers can apply different strategies, methods, and tools for sustainable product development. Nature-Inspired Design Strategies (NIDS) offer designers a distinct class of strategies that use ‘nature’ as a guiding source of knowledge and inspiration for addressing sustainability.

  3. Sustainable production and consumption in a regional policy perspective

    NARCIS (Netherlands)

    Coenen, Franciscus H.J.M.

    2004-01-01

    One of the main challenges regions face in sustainable development is changing their production and consumption patterns. This paper focuses on the role of regional government in sustainable production and consumption polices, one of the specific topics in the framework of the European Regional

  4. Structural model for sustainable consumption and production adoption

    DEFF Research Database (Denmark)

    Luthra, Sunil; Govindan, Kannan; Mangla, Sachin Kumar

    2017-01-01

    . “Governmental policies and regulations to develop sustainable consumption and production focused system” and “Management support, dedication and involvement in sustainable consumption and production implementation” have been found as the most influencing drivers and “Gaining the market edge and improving...

  5. Process Design and Economics for the Production of Algal Biomass: Algal Biomass Production in Open Pond Systems and Processing Through Dewatering for Downstream Conversion

    Energy Technology Data Exchange (ETDEWEB)

    Davis, Ryan [National Renewable Energy Lab. (NREL), Golden, CO (United States); Markham, Jennifer [National Renewable Energy Lab. (NREL), Golden, CO (United States); Kinchin, Christopher [National Renewable Energy Lab. (NREL), Golden, CO (United States); Grundl, Nicholas [National Renewable Energy Lab. (NREL), Golden, CO (United States); Tan, Eric C.D. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Humbird, David [DWH Process Consulting, Denver, CO (United States)

    2016-02-17

    This report describes in detail a set of aspirational design and process targets to better understand the realistic economic potential for the production of algal biomass for subsequent conversion to biofuels and/or coproducts, based on the use of open pond cultivation systems and a series of dewatering operations to concentrate the biomass up to 20 wt% solids (ash-free dry weight basis).

  6. Application of lignocellulolytic fungi for bioethanol production from renewable biomass

    Directory of Open Access Journals (Sweden)

    Jović Jelena M.

    2015-01-01

    Full Text Available Pretreatment is a necessary step in the process of conversion of lignocellulosic biomass to ethanol; by changing the structure of lignocellulose, enhances enzymatic hydrolysis, but, often, it consumes large amounts of energy and/or needs an application of expensive and toxic chemicals, which makes the process economically and ecologically unfavourable. Application of lignocellulolytic fungi (from the class Ascomycetes, Basidiomycetes and Deuteromycetes is an attractive method for pre-treatment, environmentally friendly and does not require the investment of energy. Fungi produce a wide range of enzymes and chemicals, which, combined in a variety of ways, together successfully degrade lignocellulose, as well as aromatic polymers that share features with lignin. On the basis of material utilization and features of a rotten wood, they are divided in three types of wood-decay fungi: white rot, brown rot and soft rot fungi. White rot fungi are the most efficient lignin degraders in nature and, therefore, have a very important role in carbon recycling from lignified wood. This paper describes fungal mechanisms of lignocellulose degradation. They involve oxidative and hydrolytic mechanisms. Lignin peroxidase, manganese peroxidase, laccase, cellobiose dehydrogenase and enzymes able to catalyze formation of hydroxyl radicals (•OH such as glyoxal oxidase, pyranose-2-oxidase and aryl-alcohol oxidase are responsible for oxidative processes, while cellulases and hemicellulases are involved in hydrolytic processes. Throughout the production stages, from pre-treatment to fermentation, the possibility of their application in the technology of bioethanol production is presented. Based on previous research, the advantages and disadvantages of biological pre-treatment are pointed out.

  7. Avoiding tar formation in biocoke production from waste biomass

    International Nuclear Information System (INIS)

    Adrados, A.; De Marco, I.; Lopez-Urionabarrenechea, A.; Solar, J.; Caballero, B.

    2015-01-01

    This paper focuses in avoiding tar formation and in optimizing pyrolysis gas (maximizing H 2 and CO) in the production of biocoke from waste lignocellulosic biomass. In order to obtain metallurgical grade biochar (biocoke) slow heating rate and high temperature are required. Under such conditions useless pyrolysis liquids, mainly composed of water together with some heavy-sticky tars, are obtained. In order to make biocoke a cost-effective process it is necessary to optimize pyrolysis vapors avoiding tar formation and maximizing the amount and quality of both coke and gases. With this objective, in this work different heating rates (3–20 °C min −1 ) and catalysts (zeolite, Ni/CeO 2 –Al 2 O 3 ) have been tested in a two step pyrolysis process. Olive tree cuttings have been pyrolyzed in a 3.5 L batch reactor at 750 °C and the vapors generated have been thermally and catalytically treated at 900 °C in a second tubular reactor. About 25 wt.% biocoke useful as reducing agent in certain metallurgical processes, ≈57 wt.% gases with near 50 vol.% H 2 , and no tar production has been achieved when a heating rate of 3 °C min −1 and the homemade Ni/CeO 2 –Al 2 O 3 catalyst were used. - Highlights: • Metallurgical grade biochar was obtained by olive waste pyrolysis. • Low heating rates avoid tar formation and increase gas and biochar yields. • Ni/CeO 2 –Al 2 O 3 was better than HZSM5 zeolite for vapor upgrading in a second step. • Ni/CeO 2 –Al 2 O 3 and 3 °C min −1 gave the maximum H 2 , gas and biochar yields

  8. Commercial production of specialty chemicals and pharmaceuticals from biomass

    Energy Technology Data Exchange (ETDEWEB)

    McChesney, J.D. [Univ. of Mississippi, University, MS (United States)

    1993-12-31

    The chemical substances utilized in consumer products, and for pharmaceutical and agricultural uses are generally referred to as specialty chemicals. These may be flavor or fragrance substances, intermediates for synthesis of drugs or agrochemicals or the drugs or agrochemicals themselves, insecticides or insect pheromones or antifeedants, plant growth regulators, etc. These are in contrast to chemicals which are utilized in large quantities for fuels or preparation of plastics, lubricants, etc., which are usually referred to as industrial chemicals. The specific utilization of specialty chemicals is associated with a specific important physiochemical or biological property. They may possess unique properties as lubricants or waxes or have a very desirable biological activity such as a drug, agrochemical or perfume ingredient. These unique properties convey significant economic value to the specific specialty chemical. The economic commercial production of specialty chemicals commonly requires the isolation of a precursor or the specialty chemical itself from a natural source. The discovery, development and commercialization of specialty chemicals is presented and reviewed. The economic and sustainable production of specialty chemicals is discussed.

  9. Supply chain implications of sustainable design strategies for electronics products

    OpenAIRE

    De Coster, R; Bateman, RJ; Plant, AVC

    2012-01-01

    Increasing legislative and consumer pressures on manufacturers to improve sustainability necessitates that manufacturers consider the overall life cycle and not be scope restricted in creating products. Product strategies to improve sustainability have design implications as many of the decisions made during the design stage will then determine the environmental performance of the final product. Coordination across the supply chain is potentially beneficial as products with improved energy ef...

  10. Nanocellulose as a sustainable biomass material: structure, properties, present status and future prospects in biomedical applications.

    Science.gov (United States)

    Xue, Yan; Mou, Zihao; Xiao, Huining

    2017-10-12

    Nanocellulose, extracted from the most abundant biomass material cellulose, has proved to be an environmentally friendly material with excellent mechanical performance owing to its unique nano-scaled structure, and has been used in a variety of applications as engineering and functional materials. The great biocompatibility and biodegradability, in particular, render nanocellulose promising in biomedical applications. In this review, the structure, treatment technology and properties of three different nanocellulose categories, i.e., nanofibrillated cellulose (NFC), nanocrystalline cellulose (NCC) and bacterial nanocellulose (BNC), are introduced and compared. The cytotoxicity, biocompatibility and frontier applications in biomedicine of the three nanocellulose categories were the focus and are detailed in each section. Future prospects concerning the cytotoxicity, applications and industrial production of nanocellulose are also discussed in the last section.

  11. The Use of Analytic Network Process for Risk Assessment in Production of Renewable Energy from Agriculture Biomass in Latvia

    Directory of Open Access Journals (Sweden)

    Sandija Rivza

    2013-02-01

    Full Text Available Risk assessment is an important factor for successful and sustainable entrepreneurship of bioenergy production that has become one of the priorities in energy sector of Latvia. Promotion of the use of renewable energy is included as one of the strategic goals for European Union (EU and Latvia. As this field of energy production in Latvia is rather new and scantily explored there are many risk factors arising in different stages of production, starting with planning and building of a bioreactor and ending with production and further use and distribution of energy. The present research focuses on risk assessment in renewable energy production form biomass as this kind of energy is seen as a perspective source for renewable energy under the conditions of Latvia. A risk assessment module for renewable energy production made by using the Analytic Network Process (ANP software is described in the paper.

  12. Sustaining Design and Production Resources. Volume 1

    National Research Council Canada - National Science Library

    Schank, John F; Riposo, Jessie; Birkler, John; Chiesa, James

    2005-01-01

    ... the nation's forces do not deteriorate to the point at which they cannot support defence requirements. An important factor in ensuring the sustainability of the industrial base is the scheduling of major weapon system acquisition programmes...

  13. Siting Evaluation for Biomass-Ethanol Production in Hawaii

    Energy Technology Data Exchange (ETDEWEB)

    Kinoshita, C.M.; Zhou, J.

    2000-10-15

    This report examines four Hawaiian islands, Oahu, Hawaii, Maui, and Kauai, to identify three best combinations of potential sites and crops for producing dedicated supplies of biomass for conversion to ethanol. Key technical and economic factors considered in the siting evaluation include land availability (zoning and use), land suitability (agronomic conditions), potential quantities and costs of producing biomass feedstocks, infrastructure (including water and power supplies), transportation, and potential bioresidues to supplement dedicated energy crops.

  14. Biomass Processing using Ionic Liquids for Jet Fuel Production

    Science.gov (United States)

    2014-04-09

    either water (W) or ethanol (E) as the nonsolvent and (bottom) enzymatic hydrolysis (cellulose conversion ) of the samples. PILs for Lignin Dissolution...of lignin) with IL dissolution of biomass has been demonstrated to be a highly effective pretreatment method for the conversion of raw cornstover...into glucose—this enables the rapid conversion (hydrolysis) of the biomass , while minimizing the amount of enzyme necessary (also a crucial issue for

  15. Maintaining environmental quality while expanding biomass production: Sub-regional U.S. policy simulations

    International Nuclear Information System (INIS)

    Egbendewe-Mondzozo, Aklesso; Swinton, Scott M.; Izaurralde, R. César; Manowitz, David H.; Zhang, Xuesong

    2013-01-01

    This paper evaluates environmental policy effects on ligno-cellulosic biomass production and environmental outcomes using an integrated bioeconomic optimization model. The environmental policy integrated climate (EPIC) model is used to simulate crop yields and environmental indicators in current and future potential bioenergy cropping systems based on weather, topographic and soil data. The crop yield and environmental outcome parameters from EPIC are combined with biomass transport costs and economic parameters in a representative farmer profit-maximizing mathematical optimization model. The model is used to predict the impact of alternative policies on biomass production and environmental outcomes. We find that without environmental policy, rising biomass prices initially trigger production of annual crop residues, resulting in increased greenhouse gas emissions, soil erosion, and nutrient losses to surface and ground water. At higher biomass prices, perennial bioenergy crops replace annual crop residues as biomass sources, resulting in lower environmental impacts. Simulations of three environmental policies namely a carbon price, a no-till area subsidy, and a fertilizer tax reveal that only the carbon price policy systematically mitigates environmental impacts. The fertilizer tax is ineffectual and too costly to farmers. The no-till subsidy is effective only at low biomass prices and is too costly to government. - Highlights: ► Bioeconomic optimization model predicts how biomass production affects environment. ► Rising biomass production could impair climate and water quality. ► Environmental protection policies compared as biomass supply grows. ► Carbon price protects the environment cost-effectively as biomass supply expands

  16. Developing a Decision Model of Sustainable Product Design and Development from Product Servicizing in Taiwan

    Science.gov (United States)

    Huang, Yu-Chen; Tu, Jui-Che; Hung, So-Jeng

    2016-01-01

    In response to the global trend of low carbon and the concept of sustainable development, enterprises need to develop R&D for the manufacturing of energy-saving and sustainable products and low carbon products. Therefore, the purpose of this study was to construct a decision model for sustainable product design and development from product…

  17. Aquatic weeds as the next generation feedstock for sustainable bioenergy production.

    Science.gov (United States)

    Kaur, Manpreet; Kumar, Manoj; Sachdeva, Sarita; Puri, S K

    2018-03-01

    Increasing oil prices and depletion of existing fossil fuel reserves, combined with the continuous rise in greenhouse gas emissions, have fostered the need to explore and develop new renewable bioenergy feedstocks that do not require arable land and freshwater resources. In this regard, prolific biomass growth of invasive aquatic weeds in wastewater has gained much attention in recent years in utilizing them as a potential feedstock for bioenergy production. Aquatic weeds have an exceptionally higher reproduction rates and are rich in cellulose and hemicellulose with a very low lignin content that makes them an efficient next generation biofuel crop. Considering their potential as an effective phytoremediators, this review presents a model of integrated aquatic biomass production, phytoremediation and bioenergy generation to reduce the land, fresh water and fertilizer usage for sustainable and economical bioenergy. Copyright © 2017. Published by Elsevier Ltd.

  18. Aproveitamento sustentável de biomassa e de recursos naturais na inovação química Sustainable use fo biomass and natural resources for chemical innovation

    Directory of Open Access Journals (Sweden)

    Fernando Galembeck

    2009-01-01

    Full Text Available Increased production of biomass is currently the only immediately accessible alternative for large-scale carbon sequestration and it can produce large amounts of food, fuel and raw materials for the chemical industry that can in turn growingly replace oil as a source of organic building blocks and also of hydrogen and sulfur. Development of processes for biomass and abundant minerals transformation into chemical raw materials should now benefit from large inputs from nanotechnologies, biotechnologies, information and micro-reactor technologies. Success in R&D&Innovation along this line can yield new products and processes needed to perform desirable functions within a sustainable development paradigm.

  19. The Mississippi University Research Consortium for the Utilization of Biomass: Production of Alternative Fuels from Waste Biomass Initiative

    Energy Technology Data Exchange (ETDEWEB)

    Drs. Mark E. Zapp; Todd French; Lewis Brown; Clifford George; Rafael Hernandez; Marvin Salin (from Mississippie State University); Drs. Huey-Min Hwang, Ken Lee, Yi Zhang; Maria Begonia (from Jackson State University); Drs. Clint Williford; Al Mikell (from the University of Mississippi); Drs. Robert Moore; Roger Hester (from the University of Southern Mississippi).

    2009-03-31

    The Mississippi Consortium for the Utilization of Biomass was formed via funding from the US Department of Energy's EPSCoR Program, which is administered by the Office of Basic Science. Funding was approved in July of 1999 and received by participating Mississippi institutions by 2000. The project was funded via two 3-year phases of operation (the second phase was awarded based on the high merits observed from the first 3-year phase), with funding ending in 2007. The mission of the Consortium was to promote the utilization of biomass, both cultured and waste derived, for the production of commodity and specialty chemicals. These scientific efforts, although generally basic in nature, are key to the development of future industries within the Southeastern United States. In this proposal, the majority of the efforts performed under the DOE EPSCoR funding were focused primarily toward the production of ethanol from lignocellulosic feedstocks and biogas from waste products. However, some of the individual projects within this program investigated the production of other products from biomass feeds (i.e. acetic acid and biogas) along with materials to facilitate the more efficient production of chemicals from biomass. Mississippi is a leading state in terms of raw biomass production. Its top industries are timber, poultry production, and row crop agriculture. However, for all of its vast amounts of biomass produced on an annual basis, only a small percentage of the biomass is actually industrially produced into products, with the bulk of the biomass being wasted. This situation is actually quite representative of many Southeastern US states. The research and development efforts performed attempted to further develop promising chemical production techniques that use Mississippi biomass feedstocks. The three processes that were the primary areas of interest for ethanol production were syngas fermentation, acid hydrolysis followed by hydrolyzate fermentation, and

  20. Furfural production from biomass pretreatment hydrolysate using vapor-releasing reactor system.

    Science.gov (United States)

    Liu, Lu; Chang, Hou-Min; Jameel, Hasan; Park, Sunkyu

    2018-03-01

    Biomass hydrolysate from autohydrolysis pretreatment was used for furfural production considering it is in rich of xylose, xylo-oligomers, and other decomposition products from hemicellulose structure. By using the vapor-releasing reactor system, furfural was protected from degradation by separating it from the reaction media. The maximum furfural yield of 73% was achieved at 200 °C for biomass hydrolysate without the use of the catalyst. This is because the presence of organic acids such as acetic acid in hydrolysate functioned as a catalyst. According to the results in this study, biomass hydrolysate with a vapor-releasing system proves to be efficient for furfural production. The biorefinery process which allows the separation of xylose-rich autohydrolysate from other parts from biomass feedstock also improves the overall application of the biomass. Copyright © 2018 Elsevier Ltd. All rights reserved.