WorldWideScience

Sample records for susquehanna steam electric station unit-1

  1. MINAC radiography performed on susquehanna Steam Electric Station Unit 1

    International Nuclear Information System (INIS)

    Bognet, J.C.

    1986-01-01

    Ten welds were volumetrically examined with a manual and automated ultrasonic (UT) system during a Susquehanna Steam Electric Station (SES) Unit 1 preservice inspection. The automated system had been recently developed and several problems were encountered in this first field application. The ten welds examined had a Sweepolet-to-Risor weld configuration, which further complicated the examination effort. This weld configuration has corrosion-resistant cladding applied to the outside and inside circumference and, as a result of an installation/removal/reinstallation sequence during plant construction, is often referred to as the double weld. After several attempts to obtain interpretable UT data failed (e.g., repeatable data), the examination effort was terminated. PP and L opted to pursue using the Miniature Linear Accelerator (MINAC) to perform radiographic examination. The results were referenced in the Susquehanna SES Unit 1 outage summary report and submitted to the NRC. The total effort was viewed as a complete success with no impact to the overall outage duration. All welds previously attempted by automated and manual UT were successfully examined using the MINAC

  2. Safety evaluation report related to the operation of Susquehanna Steam Electric Station, Units 1 and 2 (Docket Nos. 50-387 and 50-388). Suppl.6

    International Nuclear Information System (INIS)

    1984-03-01

    In April 1981, the staff of the Nuclear Regulatory Commission issued its Safety Evaluation Report (NUREG-0776) regarding the application of the Pennsylvania Power and Light Company (the applicant and/or licensee) and the Allegheny Electric Cooperative, Inc. (co-applicant) for licenses to operate the Susquehanna Steam Electric Station, Units 1 and 2, located on a site in Luzerne County, Pennsylvania. This supplement to NUREG-0776 addresses the remaining issues that required resolution before licensing operation of Unit 2 and closes them out

  3. Solid waste processing experience at Susquehanna Steam Electric Station

    International Nuclear Information System (INIS)

    Phillips, J.W.; Granus, M.W.

    1984-01-01

    This paper reviews the first year's operation at the Susquehanna Steam Electric Station (SSES) with respect to the Westinghouse Hittman Nuclear Incorporated (Hittman) mobile solidification system and the dry activated waste generation, handling and processing. Experiences pertinent to the mobile solidification system are reviewed with emphasis on the integration of the system into the plant, problems associated with unexpected waste properties and the myriad of operating procedures that had to be prepared. The processing history for 1983 is reviewed in terms of the volume of waste, including solidified wastes, dewatered wastes an DAW. Factors that must be considered in evaluating processing alternatives, i.e., dewatering vs. solidification; steel liners vs. HICs, are discussed. Actions taken by Hittman and SSES to maximize the processing economics are also discussed. Finally, recommendations are provided to the utility considering implementing mobile solification services to ensure a smooth and timely integration of services into the plant

  4. Safety evaluation report related to the operation of Susquehanna Steam Electric Station, Units 1 and 2. Docket Nos. 50-387 and 50-388, Pennsylvania Power and Light Company and Allegheny Electric Cooperative, Inc

    International Nuclear Information System (INIS)

    1982-11-01

    In April 1981, the staff of the Nuclear Regulatory Commission issued its Safety Evaluation Report (NUREG-0776) regarding the application of the Pennsylvania Power and Light Company (the licensee) and the Allegheny Electric Cooperative, Inc. (co-licensee) for licenses to operate the Susquehanna Steam Electric Station, Units 1 and 2, located on a site in Luzerne County, Pennsylvania. Supplement 1, issued in June 1981, addressed outstanding issues. Supplement 2, issued in September 1981, contains the ACRS Report and responses. Supplement 3, issued in July 1982, contains the resolution to five items previously identified as open and closes them out. On July 17, 1982, License NPF-14 was issued to allow Unit 1 operation at power levels not to exceed 5% of rated power. This supplement discusses the resolution of several license conditions that have been met

  5. Volume reduction of filter media at Susquehanna steam and electric station

    International Nuclear Information System (INIS)

    Boris, G.F.; Hettinger, J.

    1990-01-01

    This paper describes the joint efforts between Pennsylvania Power ampersand Light (PPQL) and Scientific Ecology Group, Inc. (SEG) to reduce the volume of waste shipped to the burial site by the Susquehanna Steam and Electric Station (SSES) and the resulting savings realized as a result. The filter media used at SSES for its radwaste filters is composed of a mix of anion and cation powered resins, powered carbon, diatomaceous earth and a fibrous overlay. Due to the nature of this waste stream, dewatering was difficult using systems previously available in the industry. Thus, processing was accomplished by decanting (to concentrate the waste) and solidification. In the continuing effort to dewater wastes of this nature, SEG developed a new fabric filter dewatering system (RDU). To investigate its potential use in large containers, this dewatering system was installed in drum-size high integrity containers and used to test its dewatering capabilities on actual SSES waste. Promising results from these tests warranted a full-scale test. This proved successful and implementation of this processing scheme was immediate. Cost savings were substantial in transportation, burial and processing costs as well as personnel exposure. Also, additional waste volume reduction was found due to the volume reduction capability of the dewatering system (equivalent volume of new filter media approximately 1.2 times that of dewatered product volume). Additional savings resulted from SSES's continuing effort to minimize radwaste generation. Combined, these have reduced the number of shipments of filter media in 1989 to sixty percent of the number made in 1988 and have reduced costs by approximately fifty percent. 4 figs., 1 tab

  6. Safety evaluation report related to the operation of Susquehanna Steam Electric Station, Units 1 and 2. Docket Nos. 50-387 and 50-388, Pennsylvania Power and Light Company, Allegheny Electric Cooperative, Inc

    International Nuclear Information System (INIS)

    1982-07-01

    Information is presented concerning site characteristics; design criteria for systems and components; reactor thermal and hydraulic characteristics; reactor coolant pressure boundary; engineered safety features; instrumentation and control; electrical power systems; auxiliary systems; conduct of operations; quality assurance; and TMI-2 requirements

  7. Technical specifications: Susquehanna Steam Electric Station, Unit No. 2 (Docket No. 50-388). Appendix A to License No. NPF-22

    International Nuclear Information System (INIS)

    1984-03-01

    Susquehanna Steam Electric Station, Unit 2 Technical Specifications were prepared by the US Nuclear Regulatory Commission to set forth the limits, operating conditions, and other requirements applicable to a nuclear reactor facility as set forth in Section 50.36 of 10 CFR Part 50 for the protection of the health and safety of the public

  8. Technical Specifications, Comanche Peak Steam Electric Station, Unit 1 (Docket No. 50-445)

    International Nuclear Information System (INIS)

    1990-04-01

    The Technical Specifications for Comanche Peak Steam Electric Station, Unit 1 were prepared by the US Nuclear Regulatory Commission. They set forth the limits, operating conditions, and other requirements applicable to a nuclear reactor facility, as set forth in Section 50.36 of Title 10 of the Code of Federal Regulations Part 50, for the protection of the health and safety of the public

  9. 75 FR 15462 - PPL Susquehanna, LLC; Susquehanna Steam Electric Station, Units 1 and 2; Exemption

    Science.gov (United States)

    2010-03-29

    ... section through its Commission-approved Physical Security Plan, Training and Qualification Plan, Safeguards Contingency Plan, and Cyber Security Plan referred to collectively hereafter as `security plans...

  10. 77 FR 75674 - Susquehanna Steam Electric Station, Units 1 and 2, PPL Susquehanna, LLC, Exemption

    Science.gov (United States)

    2012-12-21

    ... ensure that the licensee's emergency response organization (ERO) personnel are familiar with their duties... licensees to conduct a biennial EP exercise is to ensure that ERO personnel are familiar with their duties... by each offsite authority having a role under the plan. Since the licensee has: (1) Conducted seven...

  11. 75 FR 13322 - PPL Susquehanna, LLC.: Susquehanna Steam Electric Station, Units 1 and 2 Environmental Assessment...

    Science.gov (United States)

    2010-03-19

    ... workers and members of the public. Therefore, no changes or different types of radiological impacts are... to historical and cultural resources. There would be no impact to socioeconomic resources. Therefore...

  12. Final Environmental Statement related to the operation of Comanche Peak Steam Electric Station, Units 1 and 2 (Docket Nos. 50-445 and 50-446)

    International Nuclear Information System (INIS)

    1989-10-01

    In September 1981, the staff of the Nuclear Regulatory Commission (NRC) issued its Final Environmental Statement (NUREG-0775) related to the operation of Comanche Peak Steam Electric Station, Units 1 and 2 (Docket Nos. 50-445 and 50-446), located in Somervell County, Texas, approximately 40 miles southwest of Fort Worth, Texas. The NRC has prepared this supplement to NUREG-0775 to present its evaluation of the alternative of operating Comanche Peak with the installation of further severe-accident-mitigation design features. The NRC has discovered no substantial changes in the proposed action as previously evaluated in the Final Environmental Statement that are relevant to environmental concerns and bearing on the licensing of Comanche Peak Steam Electric Station, Units 1 and 2. 6 refs., 3 tabs

  13. Final environmental statement related to the operation of Comanche Peak Steam Electric Station, Units 1 and 2: (Docket Nos. 50-445 and 50-446)

    International Nuclear Information System (INIS)

    1981-09-01

    The proposed action is the issuance of operating licenses to the Texas Utilities Generating Company for the startup and operation of Units 1 and 2 of the Comanche Peak Steam Electric Station located on Squaw Creek Reservoir in Somervell County, Texas, about 7 km north-northeast of Glen Rose, Texas, and about 65 km southwest of Fort Worth in north-central Texas. The information in this environmental statement represents the second assessment of the environmental impact associated with the Comanche Peak Steam Electric Station pursuant to the guidelines of the National Environmental Policy Act of 1969 (NEPA) and 10 CFR Part 51 of the Commission's Regulations. After receiving an application to construct this station, the staff carried out a review of impact that would occur during its construction and operation. This evaluation was issued as a Final Environmental Statement -- Construction Phase. After this environmental review, a safety review, an evaluation by the Advisory Committee on Reactor Safeguards, and public hearings in Glen Rose, Texas, the US Atomic Energy Commission (now US Nuclear Regulatory Commission) issued construction permits for the construction of Units 1 and 2 of the Comanche Peak Steam Electric Station. 16 figs., 34 tabs

  14. Safety Evaluation Report related to the operation of Comanche Peak Steam Electric Station, Units 1 and 2. Docket Nos. 50-445 and 50-446

    International Nuclear Information System (INIS)

    1983-03-01

    Supplement No. 3 to the Safety Evaluation Report (SER) related to the operation of the Comanche Peak Steam electric Station, Units 1 and 2, has been prepared by the Office of Nuclear Reactor Regulation of the US Nuclear Regulatory Commission. the facility is located in Somervell County, Texas. Subject to favorable resolution of the items identified in this supplement, the staff concludes that the facility can be operated by the applicatn without endangering the health and safety of the public. This document provides the NRC staff's evaluation of the outstanding and confirmatory issues that have been resolved since Supplement No. 2 was issued in January 1982, and addresses changes to the SER and its earlier supplements which have resulted from the receipt of additonal information from the applicant during the period of January throught October 1982

  15. Safety evaluation report related to the operation of Comanche Peak Steam Electric Station, Units 1 and 2 (Docket Nos. 50-445 and 50-446)

    International Nuclear Information System (INIS)

    1988-11-01

    Supplement 19 to the Safety Evaluation Report related to the operation of the Comanche Peak Steam Electric Station (CPSES), Units 1 and 2 (NUREG-0797), has been prepared by the Office of Special Projects of the US Nuclear Regulatory Commission (NRC). The facility is located in Somervell County, Texas, approximately 40 miles southwest of Fort Worth, Texas. This supplement presents the staff's evaluation of the Texas Utilities Electric Company's (lead applicant's) corrective action program (CAP) related to equipment qualification. The scope and methodology for the CAP workscope, as summarized in Revision 0 to the Equipment Qualification Project Status Report and as detailed in related documents, were developed to resolve various issues raised by the Comanche Peak Response Team (CPRT) and the NRC staff to ensure that plant equipment is appropriately environmentally and/or seismically and dynamically qualified and documented in accordance with the validated plant design resulting from other CAP scopes of work for Unit 1 and areas common to Units 1 and 2. The staff concludes that the CAP workscope for equipment qualification provides a comprehensive program for resolving the concerns identified by the CPRT and the NRC staff, including issues raised in the Comanche Peak Safety Evaluation Report and its supplements, and its implementation will ensure that the environmental and/or seismic and dynamic qualification of equipment at CPSES satisfies the validated plant design and the applicable requirements of 10 CFR Part 50. As is routine staff practice, the NRC staff will verify the adequacy of implementation of the environmental and seismic and dynamic equipment qualification program at CPSES during inspections that will take place before fuel loading. 97 refs

  16. North Anna Power Station - Unit 1: Overview of steam generator replacement project activities

    International Nuclear Information System (INIS)

    Gettler, M.W.; Bayer, R.K.; Lippard, D.W.

    1993-01-01

    The original steam generators at Virginia Electric and Power Company's (Virginia Power) North Anna Power Station (NAPS) Unit 1 have experienced corrosion-related degradation that require periodic inspection and plugging of steam generator tubes to ensure their continued safe and reliable operation. Despite improvements in secondary water chemistry, continued tube degradation in the steam generators necessitated the removal from service of approximately 20.3 percent of the tubes by plugging, (18.6, 17.3, and 25.1 for steam generators A, B, and C, respectively). Additionally, the unit power was limited to 95 % during, its last cycle of operation. Projections of industry and Virginia Power experience indicated the possibility of mid-cycle inspections and reductions in unit power. Therefore, economic considerations led to the decision to repair the steam generators (i.e., replace the steam generator lower assemblies). Three new Model 51F Steam Generator lower assembly units were ordered from Westinghouse. Virginia Power contracted Bechtel Power Corporation to provide the engineering and construction support to repair the Unit 1 steam generators. On January 4, 1993, after an extended coastdown period, North Anna Unit 1 was brought off-line and the 110 day (breaker-to-breaker) Steam Generator Replacement Project (SGRP) outage began. As of this paper, the outage is still in progress

  17. Safety evaluation report related to the operation of Comanche Peak Steam Electric Station, Units 1 and 2: Docket No. 50-445 and 50-446

    International Nuclear Information System (INIS)

    1988-11-01

    Supplement 20 to the Safety Evaluation Report related to the operation of the Comanche Peak Steam Electric Station (CPSES), Units 1 and 2 (NUREG-0797), has been prepared by the Office of Special Projects of the US Nuclear Regulatory Commission (NRC). The facility is located in Somervell County, Texas, approximately 40 miles southwest of Fort Worth, Texas. This supplement presents the staff's evaluation of CPRT implementation of the Comanche Peak Response Team (CPRT) Program Plan and the issue-specific action plans (ISAPs), as well as the CPRT's investigations to determine the adequacy of various types of programs and hardware at CPSES. The results and conclusions of the CPRT activities are documented in a results report for each ISAP, a Collective Evaluation Report (CER), and a Collective Significance Report (CSR). This supplement also presents the staff's safety evaluation of TU Electric's root cause assessment of past CPSES design deficiencies and weaknesses. The NRC staff concludes that the CPRT has adequately implemented its investigative activities related to the design, construction, construction quality assurance/quality control, and testing at CPSES. The NRC staff further concludes that the CPRT evaluation of the results of its investigation is thorough and complete and its recommendations for corrective actions are sufficient to resolve identified deficiencies

  18. Safety evaluation report related to the operation of Comanche Peak Steam Electric Station, Units 1 and 2: Docket Nos. 50-445 and 50-446

    International Nuclear Information System (INIS)

    1988-07-01

    Supplement 15 to the Safety Evaluation Report related to the operation of the Comanche Peak Steam Electric Station (CPSES), Units 1 and 2 (NUREG-0797), has been prepared by the Office of Special Projects of the US Nuclear Regulatory Commission (NRC). The facility is located in Somervell County, Texas, approximately 40 miles southwest of Fort Worth, Texas. This supplement presents the staff's evaluation of the applicant's Corrective Action Program (CAP) related to the design of cable trays and cable tray hangers. The scope and methodologies for the CAP workscope as summarized in Revision O to the cable tray and cable tray hanger project status report and as detailed in related documents referenced in this evaluation were developed to resolve various design issues raised by the Atomic Safety and Licensing Board (ASLB) the intervenor, Citizens Association for Sound Energy (CASE); the Comanche Peak Response Team (CPRT); CYGNA Energy Services (CYGNA); and the NRC staff. The NRC staff concludes that the CAP workscope for cable trays and cable tray hangers provides a comprehensive program for resolving the associated technical concerns identified by the ASLB, CASE, CPRT, CYGNA, and the NRC staff and its implementation ensures that the design of cable trays and cable tray hangers at CPSES satisfies the applicable requirements of 10 CFR Part 50

  19. Safety evaluation report related to the operation of Comanche Peak Steam Electric Station, Units 1 and 2 (Docket Nos. 50-445 and 50-446)

    International Nuclear Information System (INIS)

    1988-11-01

    Supplement 18 to the Safety Evaluation Report related to the operation of the Comanche Peak Steam Electric Station (CPSES), Units 1 and 2 (NUREG-0797), has been prepared by the Office of Special Projects of the US Nuclear Regulatory Commission (NRC). The facility is located in Somervell County, Texas, approximately 40 miles southwest of Fort Worth, Texas. This supplement presents the staff's evaluation of the applicant's Corrective Action Program (CAP) related to the structural design of the heating, ventilation, and air conditioning (HVAC) systems. The scope and methodologies for the CAP workscope as summarized in Revision 0 to the HVAC project status report and as detailed in related documents referenced in this evaluation were developed to resolve the technical concerns identified in the HVAC area. The NRC staff concludes that the CAP workscope for the HVAC structural design provides a comprehensive program for resolving the associated technical concerns and its implementation ensures that the structural design of the HVAC systems at CPSES satisfies the applicable requirements of 10 CFR Part 50. 32 refs

  20. Safety Evaluation Report related to the operation of Comanche Peak Steam Electric Station, Units 1 and 2 (Docket Nos. 50-445 and 50-446)

    International Nuclear Information System (INIS)

    1990-01-01

    Supplement 22 to the Safety Evaluation Report related to the operation of the Comanche Peak Steam Electric Station, Units 1 and 2 (NUREG-0797), has been prepared by the Office of Nuclear Reactor Regulation of the US Nuclear Regulatory Commission. The facility is located in Somervell County, Texas, approximately 40 miles southwest of Fort Worth, Texas. This supplement reports the status of certain issues that had not been resolved at the time of publication of the Safety Evaluation Report and Supplements 1, 2, 3, 4, 6, 12, and 21 to that report. This supplement also includes the evaluations for licensing items resolved since Supplement 21 was issued. Supplement 5 has been cancelled. Supplements 7 through 11 were limited to the staff evaluation of allegations investigated by the NRC Technical Review Team. Supplement 13 presented the staff's evaluation of the Comanche Peak Response Team (CPRT) Program Plan, which was formulated by the applicant to resolve various construction and design issues raised by sources external to the applicant. Supplements 14 through 20 presented the staff's evaluation of the applicant's Corrective Action Program and CPRT activities. Items identified in Supplements 7, 8, 9, 10, 11, 13, 14, and 15 through 20 are not included in this supplement, except to the extent that they affect the applicant's Final Safety Analysis Report. 154 refs., 24 figs., 8 tabs

  1. Safety Evaluation Report related to the operation of Comanche Peak Steam Electric Station, Units 1 and 2 (Docket Nos. 50-445 and 50-446)

    International Nuclear Information System (INIS)

    1990-02-01

    Supplement 23 to the Safety Evaluation Report related to the operation of the Comanche Peak Steam Electric Station (CPSES), Units 1 and 2 (NUREG-0797), has been prepared by the Office of Nuclear Reactor Regulation of the US Nuclear Regulatory Commission (NRC). The facility is located in Somervell County, Texas, approximately 40 miles southwest of Fort Worth, Texas. This supplement reports the status of certain issues that had not been resolved when the Safety Evaluation Report and supplements 1, 2, 3, 4, 6, 12, 21, and 22 to that report were published. This supplement also includes the evaluations for licensing items resolved since Supplement 22 was issued. Supplement 5 has not been issued. Supplements 7, 8, 9, 10, and 11 were limited to the staff evaluation of allegations investigated by the NRC Technical Review Team. Supplement 13 presented the staff's evaluation of the Comanche Peak Response Team (CPRT) Program Plan, which was formulated by the applicant to resolve various construction and design issues raised by sources external to TU Electric. Supplements 14 through 19 presented the staff's evaluation of the CPSES Corrective Action Program: large- and small-bore piping and pipe supports (Supplement 14); cable trays and cable tray hangers (Supplement 15); conduit supports (Supplement 16); mechanical, civil/structural, electrical, instrumentation and controls, and systems portions of the heating, ventilation, and air conditioning (HVAC) system workscopes (Supplement 17); HVAC structural design (Supplement 18); and equipment qualification (Supplement 19). Supplement 20 presented the staff's evaluation of the Comanche Peak Response Team implementation of the CPRT Program

  2. Safety evaluation report related to the operation of Comanche Peak Steam Electric Station, Units 1 and 2 (Docket Nos. 50-445 and 50-446)

    International Nuclear Information System (INIS)

    1990-04-01

    Supplement 24 to the Safety Evaluation Report related to the operation of the Comanche Peak Steam Electric Station (CPSES), Units 1 and 2 (NUREG-0797), has been prepared by the Office of Nuclear Reactor Regulation of the US Nuclear Regulatory Commission (NRC). The facility is located in Somervell County, Texas, approximately 40 miles southwest of Fort Worth, Texas. This supplement reports the status of certain issues that had not been resolved when the Safety Evaluation Report and Supplements 1, 2, 3, 4, 6, 12, 21, 22, and 23 to that report were published. This supplement also includes the evaluations for licensing items resolved since Supplement 23 was issued. Supplement 5 has not been issued. Supplements 7, 8, 9, 10, and 11 were limited to the staff evaluation of allegations investigated by the NRC Technical Review Team. Supplement 13 represented the staff's evaluation of the Comanche Peak Response Team (CPRT) Program Plan, which was formulated by the applicant to resolve various construction and design issues raised by sources external to TU Electric. Supplements 14 through 19 presented the staff's evaluation of the CPSES Corrective Action Program: large- and small-bore piping and pipe supports (Supplement 14); cable trays and cable tray hangers (Supplement 15); conduit supports (Supplement 16); mechanical, civil/structural, electrical, instrumentation and controls, and systems portions of the heating, ventilation, and air conditioning (HVAC) system workscopes (Supplement 17); HVAC structural design (Supplement 18); and equipment qualification (Supplement 19). Supplement 20 presented the staff's evaluation of the CPRT implementation of its Program Plan and the issue-specific action plans, as well as the CPRT's investigations to determine the adequacy of various types of programs and hardware at CPSES

  3. Safety evaluation report related to the operation of Comanche Peak Steam Electric Station, Units 1 and 2 (Docket Nos. 50-445 and 50-446)

    International Nuclear Information System (INIS)

    1988-03-01

    Supplement 14 to the Safety Evaluation Report related to the operation of the Comanche Peak Stam Electric Station (CPSES), Units 1 and 2 (NUREG-0797), has been prepared by the Office of Special Projects of the US Nuclear Regulatory Commission (NRC). The facility is located in Somerville County, Texas, approximately 40 miles southwest of Fort Worth, Texas. This supplement presents the staff's evaluation of the applicants' Corrective Action Program (CAP0 related to large ans small bore piping and pipe supports. The scope and methodologies for CAP workshop as summarized in revision O to the large and small bore piping project status reports and as detailed in related documents referenced in this evaluation were developed to resolve various design issues raised by the Atomic Safety and Licensing Board (ASLB);the intervenor, Citizens Association for Sound Energy (CASE);the Camanche Peak Response Team (CPRT);SYGNA Energy Services (CYGNA);and the NRC staff. The NRC staff concludes that the CAP workscopes for large and small bore piping provide a comprehensive program for resolving the associated technical concerns identified by the ASLB, CASE, CPRT, CYGNA, and the NRC staff and their implementation ensures that the design of large and small bore piping and pipe supports at CPSES satisfies the applicable requirements of 10 CFR 50

  4. Safety Evaluation Report related to the operation of Comanche Peak Steam Electric Station, Units 1 and 2 (Docket Nos. 50-445 and 50-446). Supplement No. 7

    International Nuclear Information System (INIS)

    1985-01-01

    Supplement 7 to the Safety Evaluation Report for the Texas Utilities Electric Company application for a license to operate Comanche Peak Steam Electric Station, Units 1 and 2 (Docket Nos. 50-445, 50-446), located in Somervell County, Texas, has been jointly prepared by the Office of Nuclear Reactor Regulation and the Comanche Peak Technical Review of the US Nuclera Regulatory Commission. This supplement provides the results of the staff's evaluation and resolution of approximately 80 technical concerns and allegations in the areas of Electric/Instrumentation and Test Programs regarding construction and plant readiness testing practices at the Comanche Peak facility. Issues raised during Atomic Safety and Licensing Board hearings will be dealt with in future supplements to the Safety Evaluation Report

  5. Safety Evaluation Report related to the operation of Comanche Peak Steam Electric Station, Units 1 and 2 (Docket Nos. 50-445 and 50-446). Supplement No. 8

    International Nuclear Information System (INIS)

    1985-02-01

    Supplement 8 to the Safety Evaluation Report for the Texas Utilities Electric Company application for a license to operate Comanche Peak Steam Electric Station, Units 1 and 2 (Docket Nos. 50-445, 50-446), located in Somervell County, Texas, has been jointly prepared by the Office of Nuclear Reactor Regulation and the Comanche Peak Technical Review Team of the US Nuclear Regulatory Commission. This Supplement provides the results of the staff's evaluation and resolution of approximately 80 technical concerns and allegations relating to civil and structural and miscellaneous issues regarding construction and plant readiness testing practices at the Comanche Peak facility. Issues raised during recent Atomic Safety and Licensing Board hearings will be dealt with in future supplements to the Safety Evaluation Report

  6. Safety evaluation report related to the operation of Comanche Peak Steam Electric Station, Units 1 and 2 (Docket Nos. 50-445 and 50-446): Supplement No. 21

    International Nuclear Information System (INIS)

    1989-04-01

    Supplement 21 to the Safety Evaluation Report related to the operation of the Comanche Peak Steam Electric Station (CPSES), Units 1 and 2 (NUREG-0797), has been prepared by the Office of Nuclear Reactor Regulation of the US Nuclear Regulatory Commission (NRC). The facility is located in Somervell County, Texas, approximately 40 miles southwest of Fort Worth, Texas. This supplement reports the status of certain issues that had not been resolved when the Safety Evaluation Report and Supplements 1, 2, 3, 4, 6, and 12 to that report were published. This supplement also lists the new issues that have been identified since Supplement 12 was issued and includes the evaluations for licensing items resolved in this interim period. 21 refs

  7. Safety Evaluation Report related to the operation of Comanche Peak Steam Electric Station, Units 1 and 2 (Docket Nos. 50-445 and 50-446). Supplement No. 11

    International Nuclear Information System (INIS)

    1985-05-01

    Supplement 11 to the Safety Evaluation Report for the Texas Utilities Electric Company application for a license to operate Comanche Peak Steam Electric Station, Units 1 and 2 (Docket Nos. 50-445, 50-446), located in Somervell County, Texas, has been jointly prepared by the Office of Nuclear Reactor Regulation and the Comanche Peak Technical Review Team (TRT) of the US Nuclear Regulatory Commission (NRC) and is in two parts. Part 1 (Appendix 0) of this supplement provides the results of the TRT's evaluation of approximately 124 concerns and allegations relating specifically to quality assurance and quality control (QA/QC) issues regarding construction proctices at the Comanche Peak facility. Part 2 (Appendix P) contains an overall summary and conclusion of the QA/QC aspects of the NRC Technical Review Team efforts as reported in supplemental Safety Evaluation Report SERs 7, 8, 9, and 10. Since QA/QC issues are also contained in each of the other supplements, the TRT considered that such a summary and conclusion from all supplements was necessary for a complete TRT description of QA/QC activities at Comanche Peak

  8. Safety Evaluation Report related to the operation of Comanche Peak Steam Electric Station, Units 1 and 2 (Docket Nos. 50-445 and 50-446). Supplement No. 13

    International Nuclear Information System (INIS)

    1986-05-01

    Supplement 13 to the Safety Evaluation Report related to the operation of Comanche Peak Steam Electric Station (CPSES), Units 1 and 2 (NUREG-0797), has been prepared by the Office of Nuclear Reactor Regulation of the US Nuclear Regulatory Commission (NRC). The facility is located in Somervell County, Texas, approximately 40 miles southwest of Fort Worth, Texas. This supplement presents the staff's evaluation of the Comanche Peak Response Team (CPRT) Program Plan which was formulated by the applicant to resolve various construction and design issues raised by the Atomic Safety and Licensing Board, allegers, intervenor Citizens Association for Sound Energy (CASE), NRC inspections of various types, and Cygna Energy Services while conducting its independent design assessment. The NRC staff concludes that the CPRT Program Plan provides an overall structure for addressing all existing issues and any future issues which may be identified from further evaluations, and if properly implemented will provide important evidence of the design and construction quality of CPSES, and will identify any needed corrective action. The report identifies items to be addressed by the NRC staff during the implementation phase

  9. 75 FR 8753 - Carolina Power & Light Company, Brunswick Steam Electric Plant, Units 1 and 2; Environmental...

    Science.gov (United States)

    2010-02-25

    ... Dusenbury of the North Carolina Department of Environment and Natural Resources regarding the environmental... & Light Company, Brunswick Steam Electric Plant, Units 1 and 2; Environmental Assessment and Finding of No... identification of licensing and regulatory actions requiring environmental assessments,'' the NRC prepared an...

  10. Evaluation of Waterford Steam Electric Station Unit 3 technical specifications

    International Nuclear Information System (INIS)

    Baxter, D.E.; Bruske, S.J.

    1985-09-01

    This document was prepared for the Nuclear Regulatory Commission (NRC) to assist them in determining whether the Waterford Steam Electric Station Unit 3 Technical Specifications (T/S), which govern plant systems configurations and operations, are in conformance with the requirements of the Final Safety Analysis Report (FSAR) as amended, and the requirements of the Safety Evaluation Report (SER) as supplemented. A comparative audit of the FSAR as amended, and the SER as supplemented was performed with the Waterford T/S. Several discrepancies were identified and subsequently resolved by the cognizant NRC reviewer. Pending completion of the resolutions noted in Part 3 of this report, the Waterford Steam Electric Station Unit 3 T/S, to the extent reviewed, are in conformance with the FSAR and SER

  11. Brunswick Steam Electric Plant, Units 1 and 2. Annual operating report for 1976

    International Nuclear Information System (INIS)

    1977-01-01

    Net electrical energy generated by Unit 1 was 30,399 MWH with the generator on line 334.5 hrs. Unit 2 generated 2,481,014 MWH with the generator on line 4,915.53 hrs. Information is presented concerning operations, shutdowns and power reductions, maintenance, power generation, modifications, changes to operational procedures, radiation exposures, and leak rate testing

  12. Safety Evaluation Report related to the operation of Comanche Peak Steam Electric Station, Units 1 and 2 (Docket Nos. 50-445 and 50-446). Supplement No. 9

    International Nuclear Information System (INIS)

    1985-03-01

    This supplement addresses TUEC's analyses in support of its request to amend the Comanche Peak Final Safety Analysis Report to eliminate the commitment that coatings inside the reactor Containment Building be qualified for Units 1 and 2. In addition, this supplement provides the results of the staff's evaluation and resolution of 62 technical concerns and allegations in the coatings area for Unit 1. Because of the favorable resolution of the items discussed in this report, the staff concludes for the issues considered herein, that there is reasonable assurance that the facility can be operated by TUEC without endangering the health and safety of the public

  13. Risk-based Inspection Guide for the Susquehanna Station HPCI system

    International Nuclear Information System (INIS)

    Travis, R.; Higgins, J.; Gunther, W.; Shier, W.

    1992-11-01

    The High Pressure Coolant Injection (HPCI) system has been examined from a risk perspective. A system Risk-based Inspection Guide (S-RIG) has been developed as an aid to HPCI system inspections at the Susquehanna Steam Electric Station (SSES) which is operated by Pennsylvania Power ampersand Light (PP ampersand L). Included in this S-RIG is a discussion of the role of HPCI in mitigating accidents and a presentation of PRA-based failure modes which could prevent proper operation of the system. The S-RIG uses industry operating experience, including plant-specific illustrative examples, to augment the basic PRA failure modes. It is designed to be used as a reference for both routine inspections and the evaluation of the significance of component failures

  14. Technical evaluation report on the monitoring of electric power to the reactor-protection system for the Brunswick Steam Electric Plant, Units 1 and 2

    International Nuclear Information System (INIS)

    Selan, J.C.

    1982-01-01

    This report documents the technical evaluation of the monitoring of electric power to the reactor protection system (RPS) at the Brunswick Steam Electric Plant, Units 1 and 2. The evaluation is to determine if the proposed design modification will protect the RPS from abnormal voltage and frequency conditions which could be supplied from the power supplies and will meet certain requirements set forth by the Nuclear Regulatory Commission. The proposed design modifications with time delays verified by GE, will protect the RPS from sustained abnormal voltage and frequency conditions from the supplying sources

  15. Recruiting, Training, Retaining, and Promoting the Workforce of the Future at Comanche Peak Steam Electric Station

    International Nuclear Information System (INIS)

    Sunseri, M.

    1999-01-01

    TXU Electric expects to encounter a relatively high turnover in the workforce in the coming years. To prepare for this challenge and to maintain a high level of performance, a number of approaches are being implemented. These approaches involve recruiting experienced personnel, recruiting and developing local nonexperienced personnel, and developing current employees. Through these approaches, TXU Electric expects to maintain a high-quality workforce for the continued support of Comanche Peak Steam Electric Station

  16. Strategic elements of steam cycle chemistry control practices at TXU's Comanche Peak steam electric station

    International Nuclear Information System (INIS)

    Fellers, B.; Stevens, J.; Nichols, G.

    2002-01-01

    Early industry experience defined the critical importance of Chemistry Control Practices to maintaining long-term performance of PWR steam generators. These lessons provided the impetus for a number of innovations and alternate practices at Comanche Peak. For example, advanced amine investigations and implementation of results provided record low iron transport and deposition. The benefits of the surface-active properties of dimethyl-amine exceeded initial expectations. Operation of pre-coat polishers and steam generator blowdown demineralizers in the amine cycle enabled optimization of amine concentrations and stable pH control. The strategy for coordinated control of oxygen and hydrazine dosing complemented the advanced amine program for protective oxide stabilization. Additionally, a proactive chemical cleaning was performed on Unit 1 to prevent degradations from general fouling of steam generator tube-tube support plate (TSP) and top-of-tubesheet (TTS) crevices. This paper shares the results of these innovations and practices. Also, the bases, theory, and philosophy supporting the strategic elements of program will be presented. (authors)

  17. The Susquehanna plant lifetime excellence program

    International Nuclear Information System (INIS)

    McNamara, R.W.

    1988-01-01

    This paper discusses how the Susquehanna plant lifetime excellence program (SPLEX) blends many of the objectives of a new managing for excellence program with plant life extension objectives to achieve excellence in the lifetime operation and availability of the two-unit Susquehanna steam electric station. Investments in lifetime excellence improvements will provide near-term, as well as plant life extension, benefits. A high-quality lifetime experience record, together with extensive, periodic technical assessments and cost-benefit analyses, will provide conclusive justification for future extensions of the unit operating licenses

  18. Safety Evaluation Report related to the operation of Comanche Peak Steam Electric Station, Unit 2 (Docket No. 50-446)

    International Nuclear Information System (INIS)

    1992-09-01

    This document supplement 25 to the Safety Evaluation Report related to the operation of the Comanche Peak Steam Electric Station (CPSES), Unit 2 (NUREG-0797), has been prepared by the Office of Nuclear Reactor Regulation of the US Nuclear Regulatory Commission (NRC). The facility is located in Somervell County, Texas, approximately 40 miles southwest of Fort Worth, Texas. This supplement reports the status of certain issues that had not been resolved when the Safety Evaluation Report and Supplements 1, 2, 3, 4, 6, 12, 21, 22, 23, and 24 to that report were published. This supplement deals primarily with Unit 2 issues; however, it also references evaluations for several Unit 1 licensing items resolved since Supplement 24 was issued

  19. Safety Evaluation Report related to the operation of Comanche Peak Steam Electric Station, Unit 2 (Docket No. 50-446)

    International Nuclear Information System (INIS)

    1993-02-01

    Supplement 26 to the Safety Evaluation Report related to the operation of the Comanche Peak Steam Electric Station (CPSES), Unit 2, has been prepared by the Office of Nuclear Reactor Regulation of the US Nuclear Regulatory Commission (NRC). The facility is located in Somervell County, Texas, approximately 40 miles southwest of Fort Worth, Texas. This supplement reports the status of certain issues that had not been resolved when the Safety Evaluation Report and Supplements 1, 2, 3, 4, 6, 12, 21, 22, 23, 24, and 25 to that report were published. This supplement deals primarily with Unit 2 issues; however, it also references evaluations for several licensing issues that relate to Unit 1, which have been resolved since Supplement 25 was issued

  20. Elevated-constant pH control assessment at TXU's Comanche peak steam electric station

    International Nuclear Information System (INIS)

    Fellers, B.; Perkins, D.; Bosma, J.; Deshon, J.

    2002-01-01

    Industry experience with axial offset anomaly (AOA) has raised the importance of crud management strategies. Elevated-constant pH control is recognized as one potential solution. Additionally, minimizing radiation fields remains a high industry goal which is supported by this strategy. An investigation of industry experience and experimental data has supported a strategy of constant at-temperature pH of 7.4, requiring as much as 6-ppm lithium at the beginning-of-cycle (BOC). This approach, in a modern high temperature plant with high boron requirements, necessitated a careful assessment of potential risk for increased susceptibility to corrosion for both fuel cladding and RCS structural materials. This paper presents results of the assessment for Comanche peak steam electric station (CPSES) and plans for a demonstration of this practice. (author)

  1. Lessons learned while implementing a safety parameter display system at the Comanche Peak steam electric station

    International Nuclear Information System (INIS)

    Hagar, B.

    1987-01-01

    With the completion of site Verification and Validation tests, the Safety Parameter Display System (SPDS) will be fully operational at the Comanche Peak Steam Electric Station. Implementation of the SPDS, which began in 1982, included: modifying generic Safety Assessment System Software; developing site-specific displays and features; installing and integrating system equipment into the plant; modifying station heating, ventilation, and air conditioning systems to provide necessary cooling; installing an additional uninterruptible power supply system to provide necessary power; and training station personnel in the operation and use of the system. Lessons learned during this project can be discussed in terms of an ideal SPDS implementation project. Such a project would design and implement an SPDS for a plant that is already under construction or operating, and would progress through a sequence of activities that includes: (1) developing and documenting the system design bases, and including all major design influences; (2) developing a database description and system functional specifications to clarify specific system requirements; (3) developing detailed system hardware and software design specifications to fully describe the system, and to enable identification of necessary site design changes early in the project; (4) implementing the system design; (5) configuring and extensively testing the system prior to routine system operation; and (6) tuning the system after the completion of system installation. The ideal project would include future system users in design development and system testing, and would use Verification and Validation techniques throughout the project to ensure that each sequential step is appropriate and correct

  2. Steam generator replacement in Bruce A Unit 1 and Unit 2

    International Nuclear Information System (INIS)

    Hart, R.S.

    2006-01-01

    The Bruce A Generating Station consists of four 900 MW class CANDU units. The reactor and Primary Heat Transport System for each Unit are housed within a reinforced concrete reactor vault. A large duct running below the reactor vaults accommodates the shared fuel handling system, and connects the four reactor vaults to the vacuum building. The reactor vaults, fuelling system duct and the vacuum building constitute the station vacuum containment system. Bruce A Unit 2 was shut down in 1995 and Bruce A Units 1, 3 and 4 were shutdown in 1997. Bruce A Units 3 and 4 were returned to service in late 2003 and are currently operating. Units 1 and 2 remain out of service. Bruce Power is currently undertaking a major rehabilitation of Bruce A Unit 1 and Units 2 that will extend the in-service life of these units by at least 25 years. Replacement of the Steam Generators (eight in each unit) is required; this work was awarded to SNC-Lavalin Nuclear (SLN). The existing steam drums (which house the steam separation and drying equipment) will be retained. Unit 2 is scheduled to be synchronized with the grid in 2009, followed by Unit 1 in 2009. Each Bruce A unit has two steam generating assemblies, one located above and to each end of the reactor. Each steam generating assembly consists of a horizontal cylindrical steam drum and four vertical Steam Generators. The vertical Steam Generators connect to individual nozzles that are located on the underside of the Steam Drum (SD). The steam drums are located in concrete shielding structures (steam drum enclosures). The lower sections of the Steam Generators penetrate the top of the reactor vaults: the containment pressure boundary is established by bellows assemblies that connect between the reactor vault roof slab and the Steam Generators. Each Steam Generators is supported from the bottom by a trapeze that is suspended from the reactor vault top structure. The Steam Generator Replacement (SGR) methodology developed by SLN for Unit 1

  3. Technical evaluation report on the monitoring of electric power to the reactor protection system for the Nine Mile Point Nuclear Station, Unit 1 (Docket No. 50-220)

    International Nuclear Information System (INIS)

    Selan, J.C.

    1984-01-01

    This report documents the technical evaluation of the monitoring of electric power to the reactor protection system (RPS) at the Nine Mile Point Nuclear Station, Unit 1. The evaluation is to determine if the proposed design modification will protect the RPS from abnormal voltage and frequency conditions which could be supplied from the power supplies and will meet certain requirements set forth by the Nuclear Regulatory Commission. The proposed design modifications will protect the RPS from sustained abnormal voltage and frequency conditions from the supplying sources

  4. 33 CFR 165.554 - Security Zone; Three Mile Island Generating Station, Susquehanna River, Dauphin County...

    Science.gov (United States)

    2010-07-01

    ... 33 Navigation and Navigable Waters 2 2010-07-01 2010-07-01 false Security Zone; Three Mile Island... Areas Fifth Coast Guard District § 165.554 Security Zone; Three Mile Island Generating Station... waters of the Susquehanna River in the vicinity of the Three Mile Island Generating Station bounded by a...

  5. Use of mock-up training to reduce personnel exposure at the North Anna Unit 1 Steam Generator Replacement Project

    Energy Technology Data Exchange (ETDEWEB)

    Henry, H.G. [Virginia Power, Mineral, VA (United States); Reilly, B.P. [Bechtel Power Corp., Gaithersburg, MD (United States)

    1995-03-01

    The North Anna Power Station is located on the southern shore of Lake Anna in Louisa County, approximately forty miles northwest of Richmond, Virginia. The two 910 Mw nuclear units located on this site are owned by Virginia Electric and Power Company (Virginia Power) and Old Dominion Electric Cooperative and operated by Virginia Power. Fuel was loaded into Unit 1 in December 1977, and it began commercial operation in June 1978. Fuel was loaded into Unit 2 in April 1980 and began commercial operation in December 1980. Each nuclear unit includes a three-coolant-loop pressurized light water reactor nuclear steam supply system that was furnished by Westinghouse Electric Corporation. Included within each system were three Westinghouse Model 51 steam generators with alloy 600, mill-annealed tubing material. Over the years of operation of Unit 1, various corrosion-related phenomena had occurred that affected the steam generators tubing and degraded their ability to fulfill their heat transfer function. Advanced inspection and repair techniques helped extend the useful life of the steam generators, but projections based on the results of the inspections indicated that the existing steam generators tubing and degraded their ability to fullfill their heat transfer function. Advanced inspection and repair techniques helped extend the useful life of the steam generators, but projections based on the results of the inspections indicated that the existing steam generators would not last their design life and must be repaired. To this end Virginia Power determined that a steam generator replacement (SGR) program was necessary to remove the old steam generator tube bundles and lower shell sections, including the channel heads (collectively called the lower assemblies), and replace them with new lower assemblies incorporating design features that will prevent the degradation problems that the old steam generators had experienced.

  6. Alteration in reactor installations (Unit 1 and 2 reactor facilities) in the Hamaoka Nuclear Power Station of The Chubu Electric Power Co., Inc. (report)

    International Nuclear Information System (INIS)

    1982-01-01

    A report by the Nuclear Safety Commission to the Ministry of International Trade and Industry concerning the alteration in Unit 1 and 2 reactor facilities in the Hamaoka Nuclear Power Station, Chubu Electric Power Co., Inc., was presented. The technical capabilities for the alteration of reactor facilities in Chubu Electric Power Co., Inc., were confirmed to be adequate. The safety of the reactor facilities after the alteration was confirmed to be adequate. The items of examination made for the confirmation of the safety are as follows: reactor core design (nuclear design, mechanical design, mixed reactor core), the analysis of abnormal transients in operation, the analysis of various accidents, the analysis of credible accidents for site evaluation. (Mori, K.)

  7. FIND: Douglas Point Nuclear Generating Station, Units 1 and 2

    International Nuclear Information System (INIS)

    Moore, M.M.

    1975-12-01

    This index is presented as a guide to microfiche items 1 through 136 in Docket 50448, which was assigned to Potomac Electric Power Company's Application for Licenses to construct and operate Douglas Point Nuclear Generating Station, Units 1 and 2. Information received from August, 1973 through July, 1975 is included

  8. Technical evaluation report on the adequacy of station electric-distribution-system voltages for the Millstone Nuclear Power Station, Units 1 and 2. Docket Nos. 50-245, 50-336

    International Nuclear Information System (INIS)

    Selan, J.C.

    1983-01-01

    This report documents the technical evaluation of the adequacy of the station electric-distribution-system voltages for the Millstone Nuclear Power Station, Units 1 and 2. The evaluation is to determine if the onsite distribution system, in conjunction with the offsite power sources, has sufficient capacity to automatically start and operate all Class 1E loads within the equipment voltage ratings under certain conditions established by the Nuclear Regulatory Commission. The analyses submitted demonstrate that adequate voltages will be supplied to the Class 1E equipment under the worst-case conditions analyzed

  9. Steam generator replacement in Bruce A Unit 1 and Unit 2

    International Nuclear Information System (INIS)

    Hart, R.S.

    2007-01-01

    The Bruce A Generating Station consists of four 900 MW class CANDU units. The reactor and Primary Heat Transport System for each Unit are housed within a reinforced concrete reactor vault. A large duct running below the reactor vaults accommodates the shared fuel handling system, and connects the four reactor vaults to the vacuum building. The reactor vaults, fuelling system duct and the vacuum building constitute the station vacuum containment system. Bruce A Unit 2 was shut down in 1995 and Bruce A Units 1, 3 and 4 were shutdown in 1997. Bruce A Units 3 and 4 were returned to service in late 2003 and are currently operating. Units 1 and 2 remain out of service. Bruce Power is currently undertaking a major rehabilitation of Bruce A Unit 1 and Unit 2 that will extend the in-service tile of these units by at least 25 years. Replacement of the Steam Generators (eight in each unit) is required; this work was awarded to SNC-Lavalin Nuclear (SLN). The existing steam drums (which house the steam separation and drying equipment) will be retained. Unit 2 is scheduled to be synchronized with the grid in 2009, followed by Unit 1 in 2009. Each Bruce A unit has two steam generating assemblies, one located above and to each end of the reactor. Each steam generating assembly consists of a horizontal cylindrical steam drum and four vertical Steam Generators. The vertical Steam Generators connect to individual nozzles that are located on the underside of the Steam Drum (SD). The steam drums are located in concrete shielding structures (steam drum enclosures). The lower sections of the Steam Generators penetrate the top of the reactor vaults: the containment pressure boundary is established by bellows assemblies that connect between the reactor vault roof slab and the Steam Generators. Each Steam Generators is supported from he bottom by a trapeze that is suspended from the reactor vault top structure. The Steam Generator Replacement (SGR) methodology developed by SLN for Unit 1

  10. Safety Evaluation Report related to the operation of Waterford Steam Electric Station, Unit No. 3 (Docket No. 50-382)

    International Nuclear Information System (INIS)

    1985-03-01

    Supplement 10 to the Safety Evaluation Report for the application filed by Louisiana Power and Light Company for a license to operate the Waterford Steam Electric Station, Unit 3 (Docket No. 50-382), located in St. Charles Parish, Louisiana, has been prepared by the Office of Nuclear Reactor Regulation of the US Nuclear Regulatory Commission. The purpose of this supplement is to update the Safety Evaluation Report by providing the staff's evaluation of information submitted by the licensee since the Safety Evaluation Report and its nine previous supplements were issued

  11. Assessment of the once-through cooling alternative for central steam-electric generating stations

    Energy Technology Data Exchange (ETDEWEB)

    Paddock, R. A.; Ditmars, J. D.

    1978-12-01

    The efficacy of the disposal of waste heat from steam-electric power generation by means of once-through cooling systems was examined in the context of the physical aspects of water quality standards and guidelines for thermal discharges. Typical thermal standards for each of the four classes of water bodies (rivers, lakes, estuaries, and coastal waters) were identified. The mixing and dilution characteristics of various discharge modes ranging from simple, shoreline surface discharges to long, submerged multiport diffusers were examined in terms of the results of prototype measurements, analytical model predictions, and physical model studies. General guidelines were produced that indicate, for a given plant capacity, a given type of receiving water body, and a given discharge mode, the likelihood that once-through cooling can be effected within the restrictions of typical thermal standards. In general, it was found that shoreline surface discharges would not be adequate for large power plants (greater than or equal to 500 MW) at estuarine and marine coastal sites, would be marginally adequate at lake sites, and would be acceptable only at river sites with large currents and river discharges. Submerged multiport diffusers were found to provide the greatest likelihood of meeting thermal standards in all receiving water environments.

  12. Assessment of the once-through cooling alternative for central steam-electric generating stations

    International Nuclear Information System (INIS)

    Paddock, R.A.; Ditmars, J.D.

    1978-12-01

    The efficacy of the disposal of waste heat from steam-electric power generation by means of once-through cooling systems was examined in the context of the physical aspects of water quality standards and guidelines for thermal discharges. Typical thermal standards for each of the four classes of water bodies (rivers, lakes, estuaries, and coastal waters) were identified. The mixing and dilution characteristics of various discharge modes ranging from simple, shoreline surface discharges to long, submerged multiport diffusers were examined in terms of the results of prototype measurements, analytical model predictions, and physical model studies. General guidelines were produced that indicate, for a given plant capacity, a given type of receiving water body, and a given discharge mode, the likelihood that once-through cooling can be effected within the restrictions of typical thermal standards. In general, it was found that shoreline surface discharges would not be adequate for large power plants (greater than or equal to 500 MW) at estuarine and marine coastal sites, would be marginally adequate at lake sites, and would be acceptable only at river sites with large currents and river discharges. Submerged multiport diffusers were found to provide the greatest likelihood of meeting thermal standards in all receiving water environments

  13. Final environmental statement related to the operation of Limerick Generating Station, Units 1 and 2, Docket Nos. 50-352 and 50-353, Philadelphia Electric Company

    International Nuclear Information System (INIS)

    1989-08-01

    In April 1984 the staff of the Nuclear Regulatory Commission issued its Final Environmental Statement (NUREG-0974) related to the operation of Limerick Generating Station, Units 1 and 2, (Docket Nos. 50-352 and 50-353), located on the Schuylkill River, near Pottstown, in Limerick Township, Montgomery and Chester Counties, Pennsylvania. The NRC has prepared this supplement to NUREG-0974 to present its evaluation of the alternative of facility operation with the installation of further severe accident mitigation design features. The NRC staff has discovered no substantial changes in the proposed action as previously evaluated in the Final Environmental Statement that are relevant to environmental concerns nor significant new circumstances or information relevant to environmental concerns and bearing on the licensing of Limerick Generating Station, Units 1 and 2. 15 refs., 10 tabs

  14. Steam generator leak detection at Bruce A Unit 1

    International Nuclear Information System (INIS)

    Maynard, K.J.; McInnes, D.E.; Singh, V.P.

    1997-01-01

    A new steam generator leak detection system was recently developed and utilized at Bruce A. The equipment is based on standard helium leak detection, with the addition of moisture detection and several other capability improvements. All but 1% of the Unit 1 Boiler 03 tubesheet was inspected, using a sniffer probe which inspected tubes seven at a time and followed by individual tube inspections. The leak search period was completed in approximately 24 hours, following a prerequisite period of several days. No helium leak indications were found anywhere on the boiler. A single water leak indication was found, which was subsequently confirmed as a through-wall defect by eddy current inspection. (author)

  15. Technical evaluation report on the adequacy of station electric distribution system voltages for the Point Beach Nuclear Plant, Units 1 and 2. (Docket Nos. 50-266, 50-301)

    International Nuclear Information System (INIS)

    White, R.L.

    1983-01-01

    This report documents the technical evaluation of the adequacy of the station electric distribution system voltages for the Point Beach Nuclear Plant, Units 1 and 2. The evaluation is to determine if the onsite distribution system, in conjunction with the offsite power sources, has sufficient capacity to automatically start and operate all Class 1E loads within the equipment voltage ratings under certain conditions established by the Nuclear Regulatory Commission. For the worst case conditions study submitted by the licensee, it was shown that the station electric distribution system voltages would be adequate to start and operate 4160-volt and 480-volt Class 1E loads and their associated low voltage controls

  16. Steam turbines for PWR stations

    International Nuclear Information System (INIS)

    Muscroft, J.

    1989-01-01

    The thermodynamic cycle requirements and mechanical design features applying to modern GEC 3000 rev/min steam turbines for pressurised water reactor power stations are reviewed. The most recent developments include machines of 630 MW and 985 MW output which are currently under construction. The importance of service experience with nuclear wet steam turbines associated with a variety of types of water cooled reactor and its relevance to the design of modern 3000 rev/min turbines for pressurised water reactor applications is emphasised. (author)

  17. Steam generator replacement at Surry Power Station

    International Nuclear Information System (INIS)

    McKay, H.S.

    1982-01-01

    The purposes of the steam generator repair program at Surry Power Station were to repair the tube degradation caused by corrosion-related phenomena and to restore the integrity of the steam generators to a level equivalent to new equipment. The repair program consisted of (1) replacing the existing lower-shell assemblies with new ones and (2) adding new moisture separation equipment to the upper-shell assemblies. These tasks required that several pieces of reactor coolant piping, feedwater piping, main steam piping, and the steam generator be cut and refurbished for reinstallation after the new lower shell was in place. The safety implications and other potential effects of the repair program both during the repair work and after the unit was returned to power were part of the design basis of the repair program. The repair program has been completed on Unit 2 without any adverse effects on the health and safety of the general public or to the personnel engaged in the repair work. Before the Unit 1 repair program began, a review of work procedures and field changes for the Unit 2 repair was conducted. Several major changes were made to avoid recurrence of problems and to streamline procedures. Steam generator replacements was completed on June 1, 1981, and the unit is presently in the startup phase of the outrage

  18. Station black out of Fukushima Daiichi Nuclear Power Station Unit 1 was not caused by tsunamis

    International Nuclear Information System (INIS)

    Ito, Yoshinori

    2013-01-01

    Station black out (SBO) of Fukushima Daiichi Nuclear Power Station Unit 1 would be concluded to be caused before 15:37 on March 11, 2011 because losses of emergency ac power A system was in 15:36 and ac losses of B system in 15:37 according to the data published by Tokyo Electric Power Co. (TEPCO) in May 10, 2013. Tsunami attacked the site of Fukushima Daiichi Nuclear Power Station passed through the position of wave amplitude meter installed at 1.5 km off the coast after 15:35 and it was also recognized tsunami arrived at the coast of Unit 4 sea side area around in 15:37 judging from a series of photographs taken from the south side of the site and general knowledge of wave propagation. From a series of photographs and witness testimony, tsunami didn't attack Fukushima Daiichi Nuclear Power Station uniformly and tsunami's arrival time at the site of Unit 1 would be far later than arrival time at the coast of Unit 4 sea side area, which suggested it would be around in 15:39. TEPCO insisted tsunami passed through 1.5 km off the coast around in 15:33 and clock of wave amplitude meter was incorrect, which might be wrong. Thus SBO of Fukushima Daiichi Nuclear Power Station Unit 1 occurred before tsunami's arrival at the site of Unit 1 and was not caused by tsunami. (T. Tanaka)

  19. Radioactivity in coal, ashes and selected wastewaters from Canadian coal-fired steam electric generating stations

    International Nuclear Information System (INIS)

    1985-09-01

    Coal is known to contain naturally occurring radioactive elements and there has been speculation that as a results, coal-fuelled power generation stations may be significant emitters of these substances. In this report, the subject of radioactivity is introduced. The kinds of radioactive substances which occur naturally in coal formations, the nature of their emissions and the existing information on their behaviour and their effects on environmental organisms are also reviewed. The results of an examination of levels of alpha, beta and gamma radiaton levels, and the substances which produce them in coals, fly ashes, bottom ashes and related wastewaters at six Canadian coal-fuelled power stations are presented. Difficulties in studies of this nature and the potential effects of these releases on organisms in the adjacent aquatic environment are discussed. Existing and potential technologies for the removal of these substances from wastewaters are examined. In general the releases in wastewaters from the six stations were found to be lower than those known to cause short-term or acute biological effects. The potential for long-term effects from such low-level releases could not be accurately assessed because of the paucity of information. A number of recommendations for: improvements in further studies of this nature; the further examination of the fate of naturally occurring radionuclides in the environment; and the determination of the long-term effects of low levels of naturally occurring radioactive substances on aquatic organisms, are made

  20. 1300MVA steam-turbine generators for Kansai Electric Power's Oi Nuclear Power Station

    Energy Technology Data Exchange (ETDEWEB)

    Oishi, N; Amagasa, N; Ito, H; Yagi, K [Mitsubishi Electric Corp., Kobe (Japan). Kobe Works

    1977-06-01

    Mitsubishi Electric has completed two 1300 MVA generators, equipped with 5500kW brushless exciters, that will be the No. 1 and No. 2 generators of the Oi plant. They are among the largest anywhere, and incorporate such technological innovations as water cooling of the stator coil and asymmetrical arrangement of the rotor slots. The article discusses generator specifications and construction, the brushless exciter, and the results of factory tests.

  1. Safety evaluation report related to the operation of Waterford Steam Electric Station, Unit No. 3 (Docket No. 50-382). Supplement No. 7

    International Nuclear Information System (INIS)

    1984-09-01

    Supplement 7 to the Safety Evaluation Report for Louisiana Power and Light's application for a license to operate Waterford Steam Electric Station, Unit 3 (Docket No. 50-382), located in St. Charles Parish, Louisiana, has been jointly prepared by the Office of Nuclear Reactor Regulation and the Region IV Office of the US Nuclear Regulatory Commission. This supplement provides the results to date of the staff's evaluation of approximately 350 allegations and concerns of poor construction practices at the Waterford 3 facility

  2. Review of the research proposal for the steam generator retired from Kori unit 1

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Joung Soo; Han, Joung Ho; Kim, Hong Pyo; Lim, Yun Soo; Lee, Deok Hyun; Hwang, Seong Sik; Hur, Do Haeng [Korea Atomic Energy Research Institute, Taejeon (Korea)

    2002-03-01

    The tubes of the steam generator retired form Kori unit 1 have many different kinds of failures, such as denting pitting, wastage, ODSCC, PWSCC.Korea Electric Power Research Institute (KEPRI) submitted a research proposal for the steam generator to the Korea Institute S and T Evaluation and Planning (KSITEP). The KISTEP requested Korea Atomic Energy Research Institute to review the proposal by organizing a committee which should be composed of the specialists of the related domestic research institutes. Opinions of the committee on the objectives, research fields, economic benefit and validity in the research proposal were reviewed and suggested optimal research fields to be fulfilled successfully for the retired steam generator. Also, the rolls for the participants in the research works were allocated, which is critical in order to do the project effectively. 6 figs., 5 tabs. (Author)

  3. Ecological effects of nuclear steam electric station operations on estuarine systems. Final report

    International Nuclear Information System (INIS)

    Mihursky, J.A.

    1983-01-01

    This report summarizes the findings of studies of the impact of the Calvert Cliffs Nuclear Power Plant on the aquatic biota of Chesapeake Bay. Physical findings show that the typical radial extent of influence of the discharge on the physical and chemical environment of the Bay is rather limited (< 2 km). This suggestion is bolstered by findings of phytoplankton and zooplankton studies: when effects were noted at all, they only appeared at sampling stations nearest (within 2 km of) the discharge. Also, direct entrainment effects on these groups were either small (in the case of phytoplankton) or species-specific (in the case of zooplankton). Benthos showed mixed responses to plant operations - the populations of some species were enhanced, one species was adversely affected, and others were unaffected. The major plant effect on the benthos was due to habitat resource enrichment, and the consequence was higher standing stocks (e.g., more food for fish) in the affected area. Direct plant effects on finfish are dominated by impingement. Mortality as a result of impingement, for many species, tends to be moderate to slight. Effects as a result of entrainment of eggs and larvae are limited because the Calvert Cliffs area is not a major spawning location for any species. In sum, the Calvert Cliffs plant appears to have a limited effect on the Chesapeake Bay ecosystem. 180 references, 6 figures, 18 tables

  4. Assessment of MTI Water Temperature Retrievals with Ground Truth from the Comanche Peak Steam Electric Station Cooling Lake

    International Nuclear Information System (INIS)

    Kurzeja, R.J.

    2002-01-01

    Surface water temperatures calculated from Multispectral Thermal Imager (MTI) brightness temperatures and the robust retrieval algorithm, developed by the Los Alamos National Laboratory (LANL), are compared with ground truth measurements at the Squaw Creek reservoir at the Comanche Peak Steam Electric Station near Granbury Texas. Temperatures calculated for thirty-four images covering the period May 2000 to March 2002 are compared with water temperatures measured at 10 instrumented buoy locations supplied by the Savannah River Technology Center. The data set was used to examine the effect of image quality on temperature retrieval as well as to document any bias between the sensor chip arrays (SCA's). A portion of the data set was used to evaluate the influence of proximity to shoreline on the water temperature retrievals. This study found errors in daytime water temperature retrievals of 1.8 C for SCA 2 and 4.0 C for SCA 1. The errors in nighttime water temperature retrievals were 3.8 C for SCA 1. Water temperature retrievals for nighttime appear to be related to image quality with the largest positive bias for the highest quality images and the largest negative bias for the lowest quality images. The daytime data show no apparent relationship between water temperature retrieval error and image quality. The average temperature retrieval error near open water buoys was less than corresponding values for the near-shore buoys. After subtraction of the estimated error in the ground truth data, the water temperature retrieval error was 1.2 C for the open-water buoys compared to 1.8 C for the near-shore buoys. The open-water error is comparable to that found at Nauru

  5. Electricity from geothermal steam

    Energy Technology Data Exchange (ETDEWEB)

    Wheatcroft, E L.E.

    1959-01-01

    The development of the power station at Wairakei geothermal field is described. Wairakei is located at the center of New Zealand's volcanic belt, which lies within a major graben which is still undergoing some degree of downfaulting. A considerable number of wells, some exceeding 610 m, have been drilled. Steam and hot water are produced from both deep and shallow wells, which produce at gauge pressures of 1.5 MPa and 0.6 MPa, respectively. The turbines are fed by low, intermediate, and high pressure mains. The intermediate pressure turbine bank was installed as a replacement for a heavy water production facility which had originally been planned for the development. Stage 1 includes a 69 MW plant, and stage 2 will bring the capacity to 150 MW. A third stage, which would bring the output up to 250 MW had been proposed. The second stage involves the installation of more high pressure steam turbines, while the third stage would be powered primarily by hot water flashing. Generation is at 11 kV fed to a two-section 500 MVA board. Each section of the board feeds through a 40 MVA transformer to a pair of 220 V transmission lines which splice into the North Island grid. Other transformers feed 400 V auxiliaries and provide local supply.

  6. Safety Evaluation Report related to the operation of Waterford Steam Electric Station, Unit No. 3 (Docket No. 50-382). Supplement No. 8

    International Nuclear Information System (INIS)

    1984-12-01

    Supplement 8 to the Safety Evaluation Report for the application filed by Louisiana Power and Light Company for a license to operate the Waterford Steam Electric Station, Unit 3 (Docket No. 50-382), located in St. Charles Parish, Louisiana, has been prepared by the Office of Nuclear Reactor Regulation of the Nuclear Regulatory Commission. The purpose of this supplement is to update the Safety Evaluation Report by providing the staff's evaluation of information submitted by the applicant since the Safety Evaluation Report and its seven previous supplements were issued

  7. Safety-evaluation report related to the operation of Waterford Steam Electric Station, Unit No. 3. Docket No. 50-382

    International Nuclear Information System (INIS)

    1983-06-01

    Supplement 5 to the Safety Evaluation Report for the application filed by Louisiana Power and Light Company for a license to operate the Waterford Steam Electric Station, Unit 3 (Docket No. 50-382), located in St. Charles Parish, Louisiana has been prepared by the Office of Nuclear Reactor Regulation of the Nuclear Regulatory Commission. The purpose of this supplement is to update the Safety Evaluation Report by providing the staff's evaluation of information submitted by the applicant since the Safety Evaluation Report and its four previous Supplements were issued

  8. Safety evaluation report related to the operation of Waterford Steam Electric Station, Unit No. 3 (Docket No. 50-382). Suppl.6

    International Nuclear Information System (INIS)

    1984-06-01

    Supplement 6 to the Safety Evaluation Report for the application filed by Louisiana Power and Light Company for a license to operate the Waterford Steam Electric Station, Unit 3 (Docket No. 50-382), located in St. Charles Parish, Louisiana, has been prepared by the Office of Nuclear Reactor Regulation of the Nuclear Regulatory Commission. The purpose of this supplement is to update the Safety Evaluation Report by providing the staff's evaluation of information submitted by the applicant since the Safety Evaluation Report and its five previous supplements were issued

  9. Safety Evaluation Report related to the operation of Waterford Steam Electric Station, Unit No. 3 (Docket No. 50-382). Supplement 9

    International Nuclear Information System (INIS)

    1984-12-01

    Supplement 9 to the Safety Evaluation Report for Louisiana Power and Light's application for a license to operate Waterford Steam Electric Station, Unit 3 (Docket No. 50-382), located in St. Charles Parish, Louisiana, has been jointly prepared by the Office of Nuclear Reactor Regulation and the Region IV Office of the US Nuclear Regulatory Commission. This supplement provides the results of the staff's completion of its evaluation of approximately 350 allegations and concerns of poor construction practices at the Waterford 3 facility

  10. Evaluation of River Bend Station Unit 1 Technical Specifications

    International Nuclear Information System (INIS)

    Baxter, D.E.; Bruske, S.J.

    1985-08-01

    This document was prepared for the Nuclear Regulatory Commission (NRC) to assist them in determining whether the River Bend Station Unit 1 Technical Specifications (T/S), which govern plant systems configurations and operations, are in conformance with the requirements of the Final Safety Analysis Report (FSAR) as amended, and the requirements of the Safety Evaluation Report (SER) as supplemented. A comparative audit of the FSAR as amended, and the SER as supplemented was performed with the River Bend T/S. Several discrepancies were identified and subsequently resolved through discussions with the cognizant NRC reviewer, NRC staff reviewers and/or utility representatives. The River Bend Station Unit 1 T/S, to the extent reviewed, are in conformance with the FSAR and SER

  11. Evaluation of Shoreham Nuclear Power Station, Unit 1 technical specifications

    International Nuclear Information System (INIS)

    Baxter, D.E.; Bruske, S.J.

    1985-08-01

    This document was prepared for the Nuclear Regulatory Commission (NRC) to assist them in determining whether the Shoreham Nuclear Power Station Unit 1 Technical Specifications (T/S), which govern plant systems configurations and operations, are in conformance with the assumptions of the Final Safety Analysis Report (FSAR) as amended, and the requirements of the Safety Evaluation Report (SER) as supplemented. A comparative audit of the FSAR as amended, and the SER as supplemented was performed with the Shoreham T/S. Several discrepancies were identified and subsequently resolved through discussions with the cognizant NRC reviewer, NRC staff reviewers and/or utility representatives. The Shoreham Nuclear Power Station Unit 1 T/S, to the extent reviewed, are in conformance with the FSAR and SER

  12. Draft environmental impact statement. River Bend Nuclear Power Station, Unit 1

    International Nuclear Information System (INIS)

    Anon.

    1980-01-01

    Federal financing of an undivided ownership interest of River Bend Nuclear Power Station Unit 1 on a 3293-acre site near St. Francisville, Louisiana is proposed in a supplement to the final environmental impact statement of September 1974. The facility would consist of a boiling-water reactor that would produce a maximum of 2894 megawatts (MW) of electrical power. A design level of 3015 MW of electric power could be realized at some time in the future. Exhaust steam would be cooled by mechanical cooling towers using makeup water obtained from and discharged to the Mississippi River. Power generated by the unit would be transmitted via three lines totaling 140 circuit miles traversing portions of the parishes of West Feliciana, East Feliciana, East Baton Rouge, West Baton Rouge, Pointe Coupee, and Iberville. The unit would help the applicant meet the power needs of rural electric consumers in the region, and the applicant would contribute significanlty to area tax base and employment rolls during the life of the unit. Construction related activities would disturb 700 forested acres on the site and 1156 acres along the transmission routes. Of the 60 cubic feet per second (cfs) taken from the river, 48 cfs would evaporate during the cooling process and 12 cfs would return to the river with dissolved solids concentrations increased by 500%. The terrace aquifer would be dewatered for 16 months in order to lower the water table at the building site, and Grants Bayou would be transformed from a lentic to a lotic habitat during this period. Fogging and icing due to evaporation and drift from the cooling towers would increase slightly. During the construction period, farming, hunting, and fishing on the site would be suspended, and the social infractructure would be stressed due to the influx of a maximum of 2200 workers

  13. Search and Retrieval of Foreign Objects for the Steam Generator of Wolsung NPP Unit 1

    International Nuclear Information System (INIS)

    Jeong, Woo-Tae; Lee, Kyung-Ho

    2016-01-01

    We developed a foreign object search and retrieval (FOSAR) system for Wolsung NPP unit 1 steam generators. The steam generators of Wolsung NPP unit 1 have one 2.5 inch hand hole and two 4 inch hand holes. The FOSAR system was designed to be installed through 4 inch hand holes. Using permanent magnet, the FOSAR system was firmly attached to the vertical annulus wall of the steam generator. We successfully developed the FOSAR system for Wolsung NPP unit 1. Using the developed FOSAR system, technicians successfully found and removed various foreign objects. Most of the foreign objects, we found, were made of carbon steel sheet, therefore magnet tool was the most useful to remove it. Alligator tool was sometimes used. Based on the experience during the FOSAR activities, we are developing a lancing system for Wolsung NPP unit 1. It will be designed and manufactured until November 2016

  14. Search and Retrieval of Foreign Objects for the Steam Generator of Wolsung NPP Unit 1

    Energy Technology Data Exchange (ETDEWEB)

    Jeong, Woo-Tae; Lee, Kyung-Ho [KHNP CRI, Daejeon (Korea, Republic of)

    2016-10-15

    We developed a foreign object search and retrieval (FOSAR) system for Wolsung NPP unit 1 steam generators. The steam generators of Wolsung NPP unit 1 have one 2.5 inch hand hole and two 4 inch hand holes. The FOSAR system was designed to be installed through 4 inch hand holes. Using permanent magnet, the FOSAR system was firmly attached to the vertical annulus wall of the steam generator. We successfully developed the FOSAR system for Wolsung NPP unit 1. Using the developed FOSAR system, technicians successfully found and removed various foreign objects. Most of the foreign objects, we found, were made of carbon steel sheet, therefore magnet tool was the most useful to remove it. Alligator tool was sometimes used. Based on the experience during the FOSAR activities, we are developing a lancing system for Wolsung NPP unit 1. It will be designed and manufactured until November 2016.

  15. Results of the 5th regular inspection of Unit 1 in the Hamaoka Nuclear Power Station

    International Nuclear Information System (INIS)

    1983-01-01

    The 5th regular inspection of Unit 1 in the Hamaoka Nuclear Power Station was carried out from March 27 to July 27, 1982. Inspection was made on the reactor proper, reactor cooling system, instrumentation/control system, radiation control facility, etc. By the examinations of external appearance, leakage, performance, etc., no abnormality was observed. In the regular inspection, personnel exposure dose was all below the permissible level. The works done during the inspection were the following: the replacement of control rod drives, the replacement of core support-plate plugs, the repair of steam piping, steam extraction pipes and feed water heaters, the repair of a waste-liquid concentrator, the installation of barriers and leak detectors, the installation of drain sump monitors in a containment vessel, the replacement of concentrated liquid waste pumps, the employment of type B fuel. (Mori, K.)

  16. Operation of Grand Gulf Nuclear Station, Units 1 and 2, Dockets Nos. 50-416 and 50-417: Mississippi Power and Light Company, Middle South Energy, Inc., South Mississippi Electric Power Association. Final environmental statement

    International Nuclear Information System (INIS)

    1981-09-01

    The information in this Final Environmental Statement is the second assessment of the environmental impacts associated with the construction and operation of the Grand Gulf Nuclear Station, Units 1 and 2, located on the Mississippi River in Claiborne County, Mississippi. The Draft Environmental Statement was issued in May 1981. The first assessment was the Final Environmental Statement related to construction, which was issued in August 1973 prior to issuance of the Grand Gulf Nuclear Station construction permits. In September 1981 Grand Gulf Unit 1 was 92% complete and Unit 2 was 22% complete. Fuel loading for Unit 1 is scheduled for December 1981. The present assessment is the result of the NRC staff review of the activities associated with the proposed operation of the Station, and includes the staff responses to comments on the Draft Environmental Statement

  17. Snubber reduction program at the Byron Station, Unit 1

    International Nuclear Information System (INIS)

    Arterburn, J.; Bakhtiari, S.

    1987-01-01

    Commonwealth Edison Company's (CECo's) Byron Station, unit 1, was originally designed with approximately 1200 snubbers supporting the plant's large- and small-bore piping systems. This relatively large number of snubbers is attributed to excessive conservatism in nuclear piping codes and regulations effective during the original piping design. A recent pilot program at CECo's LaSalle County Station, a boiling water reactor plant, demonstrated that a 50% or greater reduction in total snubber population is achievable in plants of this design vintage. Based on the successful results of the pilot program, CECo initiated a full scale snubber reduction program at Byron, a pressurized water reactor plant of the same vintage at the LaSalle County Station. The benefits from a reduced snubber population are described. To realize the maximum potential benefits, all snubbers in the plant were prioritized in order of desirability for removal. The priority designations are discussed. The major results from phase 1 of the Byron program are summarized. The NRC inspection of the project addressed a variety of issues and is discussed. The conclusions that can be drawn from the phase 1 program are summarized

  18. Vibration Spectrum Analysis for Indicating Damage on Turbine and Steam Generator Amurang Unit 1

    Directory of Open Access Journals (Sweden)

    Beny Cahyono

    2017-12-01

    Full Text Available Maintenance on machines is a mandatory asset management activity to maintain asset reliability in order to reduce losses due to failure. 89% of defects have random failure mode, the proper maintenance method is predictive maintenance. Predictive maintenance object in this research is Steam Generator Amurang Unit 1, which is predictive maintenance is done through condition monitoring in the form of vibration analysis. The conducting vibration analysis on Amurang Unit 1 Steam Generator is because vibration analysis is very effective on rotating objects. Vibration analysis is predicting the damage based on the vibration spectrum, where the vibration spectrum is the result of separating time-based vibrations and simplifying them into vibrations based on their frequency domain. The transformation of time-domain-wave into frequency-domain-wave is using the application of FFT, namely AMS Machinery. The measurement of vibration value is done on turbine bearings and steam generator of Unit 1 Amurang using Turbine Supervisory Instrument and CSI 2600 instrument. The result of this research indicates that vibration spectrum from Unit 1 Amurang Power Plant indicating that there is rotating looseness, even though the vibration value does not require the Unit 1 Amurang Power Plant to stop operating (shut down. This rotating looseness, at some point, can produce some indications that similar with the unbalance. In order to avoid more severe vibrations, it is necessary to do inspection on the bearings in the Amurang Unit 1 Power Plant.

  19. 75 FR 36700 - Exelon Generation Company, LLC; Three Mile Island Nuclear Station, Unit 1; Environmental...

    Science.gov (United States)

    2010-06-28

    ...; Three Mile Island Nuclear Station, Unit 1; Environmental Assessment and Finding of No Significant Impact... Company, LLC (the licensee), for operation of Three Mile Island Nuclear Station, Unit 1 (TMI-1), located... Three Mile Island Nuclear Station, Units 1 and 2, NUREG-0552, dated December 1972, and Generic...

  20. Black Fox Station, Units 1 and 2. Application for construction permits and operating licenses

    International Nuclear Information System (INIS)

    1975-01-01

    An application to construct and operate Black Fox Station, Units 1 and 2, is presented. The two BWR type reactors will have a rated core thermal power of 3579 MW(t) and a net electrical power of approximately 1150 MW(e). The facility will be located in Inola Township, 23 miles east of Tulsa on the east side of the Verdigris River in Rogers County, Oklahoma

  1. Results of the 4th regular inspection in Unit 1 of the Mihama Nuclear Power Station

    International Nuclear Information System (INIS)

    1981-01-01

    The 4th regular inspection of Unit 1 in the Mihama Nuclear Power Station was made from July, 1975, to December, 1980, on its reactor and associated facilities. The respective stages of inspection during the years are described. The inspection by external appearance examination, disassembling leakage inspection and performance tests indicated crackings in piping for fuel-replacement water tank, the container penetration of recirculation pipe for residual-heat removal, and main steam-relief valve, and leakage in one fuel assembly. Radiation exposure of the personnel during the inspection was less than the permissible dose. Radiation exposure data for the personnel are given in tables. The improvements and repairs done accordingly were as follows: reapir of the piping for a fuel-replacement tank and recirculation piping for residual-heat removal, replacement of the main steam-relief valve, plugging of heating tubes for the steam-generator, replacement of pins and covers for control-rod guide pipes, improvement of safety protection system and installation of rare gas monitor. (J.P.N.)

  2. Surry Power Station, Units 1 and 2. Semiannual operating report, July--December 1974

    International Nuclear Information System (INIS)

    1974-01-01

    Net electric power generated by Surry Unit 1 was 6,930,353 MWH with the generator on line for 10,417.7 hours. Net electric power generated by Unit 2 was 5,699,299 MWH with the generator on line for 8,384.2 hours. Information is presented concerning operation, radioactive effluent releases, solid radioactive wastes, fuel shipments, occurrences in which temperature limitations on the condenser cooling water discharge were exceeded, changes in station organization, occupational personnel radiation exposure, nonradiological monitoring including thermal, physical, and biological programs, and the radiological environmental monitoring program. (U.S.)

  3. Comparison of food habits of white perch (Morone americana) in the heated effluent canal of a steam electric station and in an adjacent river system

    International Nuclear Information System (INIS)

    Moore, C.J.; Fuller, S.L.H.; Burton, D.T.

    1975-01-01

    Analysis of the stomach contents of 97 white perch, Morone americana, taken from the effluent canal of a steam electric station (S.E.S.) and 106 white perch from adjacent Patuxent River waters indicated similar food habits from September 1970 through August 1971. However, 35 percent of all white perch taken from the heated effluent canal contained small pieces of coal and cinders, whereas only 3 percent of the river specimens contained such items in their stomachs. Fly ash and coal dust are present on the bottom of the S.E.S. canal, whereas little such material, if any, can be found on the river bottom in the study area. This suggests the canal fish were actively feeding in the heated effluent and not simply moving into the canal after feeding in the river. No significant difference (P greater than 0.05) was found between the average wet weight stomach contents of the river and canal fish within the same month

  4. Aerial radiological survey of the Comanche Peak Steam Electric Station and surrounding area, Glen Rose, Texas. Date of Survey: March 1982

    International Nuclear Information System (INIS)

    1982-12-01

    An aerial radiological survey was performed from 1 to 9 March 1982 over a 260-square-kilometer area centered on the Comanche Peak Steam Electric Station located in Somervell County, Texas. The survey was conducted by the Energy Measurements Group of EG and G for the US Nuclear Regulatory Commission. All gamma ray data were collected by flying parallel lines spaced 152 meters (500 feet) apart at an altitude of 91 meters (300 feet) above ground level. Count rates obtained from the aerial platform were converted to total exposure rates at 1 meter above the ground and are presented in the form of an isoradiation contour map. The observed exposure rates ranged from 6 to 12 microroentgens per hour (μR/h), with the average background ranging from 6 to 8 μR/h. These values include an estimated cosmic ray contribution of 3.8 μR/h. The exposure rates obtained from ground-based measurements taken in typical background locations within the survey area displayed positive agreement with the aerial data

  5. 78 FR 77726 - Exelon Generation Company, LLC Three Mile Island Nuclear Station, Unit 1

    Science.gov (United States)

    2013-12-24

    ... Three Mile Island Nuclear Station, Unit 1 AGENCY: Nuclear Regulatory Commission. ACTION: Exemption... License No. DPR-50, which authorizes operation of the Three Mile Island Nuclear Station, Unit 1 (TMI-1... Facility Operating License No. DPR-50, which authorizes operation of the Three Mile Island Nuclear Station...

  6. Steam generator replacement at the Obrigheim nuclear power station

    International Nuclear Information System (INIS)

    Pickel, E.; Schenk, H.; Huemmler, A.

    1984-01-01

    The Obrigheim Nuclear Power Station (KWO) is equipped with a dual-loop pressurized water reactor of 345 MW electric power; it was built by Siemens in the period 1965 to 1968. By the end of 1983, KWO had produced some 35 billion kWh in 109,000 hours of operation. Repeated leaks in the heater tubes of the two steam generators had occurred since 1971. Both steam generators were replaced in the course of the 1983 annual revision. Kraftwerk Union AG (KWU) was commissioned to plant and carry out the replacement work. Despite the leakages the steam generators had been run safely and reliably over a period of 14 years until their replacement. Replacing the steam generators was completed within twelve weeks. In addition to the KWO staff and the supervising crew of KWU, some 400 external fitters were employed on the job at peak work-load periods. For the revision of the whole plant, work on the emergency systems and replacement of the steam generators a maximum number of approx. 900 external fitters were employed in the plant in addition to some 250 members of the plant crew. The exposure dose of the personnel sustained in the course of the steam generator replacement was 690 man-rem, which was clearly below previous estimates. (orig.) [de

  7. Safety evaluation report related to the operation of Grand Gulf Nuclear Station, Units 1 and 2. Dockets Nos. 50-416 and 50-417, Mississippi Power and Light Company; Middle South Energy, Inc., South Mississippi Electric Power Association

    International Nuclear Information System (INIS)

    1982-06-01

    Supplement 2 to the Safety Evaluation Report for Mississippi Power and Light Company, et. al, joint application for licenses to operate the Grand Gulf Nuclear Station, Units 1 and 2, located on the east bank of the Mississippi River near Port Gibson, in Claiborne County, Mississippi, has been prepared by the Office of Nuclear Reactor Regulation of the US Nuclear Regulatory Commission. This supplement reports the status of certain items that had not been resolved at the time of publication of the Safety Evaluation Report

  8. 76 FR 40754 - Duke Energy Carolinas, LLC Catawba Nuclear Station, Units 1 and 2; McGuire Nuclear Station, Units...

    Science.gov (United States)

    2011-07-11

    ... NUCLEAR REGULATORY COMMISSION [NRC-2011-0100; Docket Nos. 50-413 and 50-414; Docket Nos. 50-369 and 50-370; Docket Nos. 50-269, 50-270, And 50-287] Duke Energy Carolinas, LLC Catawba Nuclear Station, Units 1 and 2; McGuire Nuclear Station, Units 1 and 2; Oconee Nuclear Station, Units 1, 2, and 3; Notice...

  9. 76 FR 24538 - Duke Energy Carolinas, LLC; Catawba Nuclear Station, Units 1 and 2; McGuire Nuclear Station...

    Science.gov (United States)

    2011-05-02

    ... NUCLEAR REGULATORY COMMISSION [Docket Nos. 50-413 and 50-414; NRC-2011-0100; Docket Nos. 50-369 and 50-370; Docket Nos. 50-269, 50-270, and 50-287] Duke Energy Carolinas, LLC; Catawba Nuclear Station, Units 1 and 2; McGuire Nuclear Station, Units 1 and 2; Oconee Nuclear Station, Units 1, 2, and 3...

  10. Accident analysis of Fukushima Daiichi Nuclear Power Station unit 1

    International Nuclear Information System (INIS)

    Kobayashi, Masahide; Narabayashi, Tadashi; Tsuji, Masashi; Chiba, Go; Nagata, Yasunori; Shimoe, Tomohiro

    2015-01-01

    As a result of the Great East Japan Earthquake that occurred on 11 March 2011, all AC and DC power at the Fukushima Daiichi NPP units 1 to 3 were lost soon after the tsunami. The core cooling function was lost, and the cores of units 1 to 3 were damaged. The purpose of this work is to clarify the progress of the accident in unit 1, which was damaged the earliest among the 3 units. Therefore, an original severe accident analysis code was developed, and the progress of the accident was evaluated from the analysis results and the actual data. As a result, the leakage path from a pressure vessel was clarified, and some lessons and knowledge were gained. (author)

  11. Environmental codes of practice for steam electric power generation

    International Nuclear Information System (INIS)

    1985-03-01

    The Design Phase Code is one of a series of documents being developed for the steam electric power generation industry. This industry includes fossil-fuelled stations (gas, oil and coal-fired boilers), and nuclear-powered stations (CANDU heavy water reactors). In this document, environmental concerns associated with water-related and solid waste activities of steam electric plants are discussed. Design recommendations are presented that will minimize the detrimental environmental effects of once-through cooling water systems, of wastewaters discharged to surface waters and groundwaters, and of solid waste disposal sites. Recommendations are also presented for the design of water-related monitoring systems and programs. Cost estimates associated with the implementation of these recommendations are included. These technical guides for new or modified steam electric stations are the result to consultation with a federal-provincial-industry task force

  12. Tube structural integrity evaluation of Palo Verde Unit 1 steam generators for axial upper-bundle cracking

    International Nuclear Information System (INIS)

    Woodman, B.W.; Begley, J.A.; Brown, S.D.; Sweeney, K.; Radspinner, M.; Melton, M.

    1995-01-01

    The analysis of the issue of upper bundle axial ODSCC as it apples to steam generator tube structural integrity in Unit 1 at the Palo Verde Nuclear generating Station is presented in this study. Based on past inspection results for Units 2 and 3 at Palo Verde, the detection of secondary side stress corrosion cracks in the upper bundle region of Unit 1 may occur at some future date. The following discussion provides a description and analysis of the probability of axial ODSCC in Unit 1 leading to the exceedance of Regulatory Guide 1.121 structural limits. The probabilities of structural limit exceedance are estimated as function of run time using a conservative approach. The chosen approach models the historical development of cracks, crack growth, detection of cracks and subsequent removal from service and the initiation and growth of new cracks during a given cycle of operation. Past performance of all Palo Verde Units as well as the historical performance of other steam generators was considered in the development of cracking statistics for application to Unit 1. Data in the literature and Unit 2 pulled tube examination results were used to construct probability of detection curves for the detection of axial IGSCC/IGA using an MRPC (multi-frequency rotating panake coil) eddy current probe. Crack growth rates were estimated from Unit 2 eddy current inspection data combined with pulled tube examination results and data in the literature. A Monte-Carlo probabilistic model is developed to provide an overall assessment of the risk of Regulatory Guide exceedance during plant operation

  13. Pilgrim Nuclear Power Station, Unit 1. Annual operating report, 1975

    International Nuclear Information System (INIS)

    1976-01-01

    Net electric power generated in 1975 was 1,074,401 MW(e) with the generator on line 4,680.7 hrs. Information is presented concerning operations, maintenance, radioactive effluents and waste shipments, health physics, shutdowns, and personnel exposures

  14. Pilgrim Nuclear Power Station, Unit 1. Annual operating report, 1975

    International Nuclear Information System (INIS)

    1976-01-01

    Net electrical power generated was 2,587,248 MWH(e) with the reactor on line 6,242.4 hr. Information is presented concerning operations, power generation, shutdowns, corrective maintenance, chemistry and radiochemistry, occupational radiation exposure, release of radioactive materials, and reportable occurrences

  15. 76 FR 19148 - PSEG Nuclear, LLC, Hope Creek Generating Station and Salem Nuclear Generating Station, Units 1...

    Science.gov (United States)

    2011-04-06

    ... NUCLEAR REGULATORY COMMISSION [Docket Nos. 50-272, 50-311, 50-354; NRC-2009-0390 and NRC-2009-0391] PSEG Nuclear, LLC, Hope Creek Generating Station and Salem Nuclear Generating Station, Units 1 and 2..., DPR-70, and DPR-75 for an additional 20 years of operation for the Hope Creek Generating Station (HCGS...

  16. Improvements in steam cycle electric power generating plants

    International Nuclear Information System (INIS)

    Bienvenu, Claude.

    1973-01-01

    The invention relates to a steam cycle electric energy generating plants of the type comprising a fossil or nuclear fuel boiler for generating steam and a turbo alternator group, the turbine of which is fed by the boiler steam. The improvement is characterized in that use is made of a second energy generating group in which a fluid (e.g. ammoniac) undergoes a condensation cycle the heat source of said cycle being obtained through a direct or indirect heat exchange with a portion of the boiler generated steam whereby it is possible without overloading the turbo-alternator group, to accomodate any increase of the boiler power resulting from the use of another fuel while maintaining a maximum energy output. This can be applied to electric power stations [fr

  17. Steam turbines for nuclear power stations in Czechoslovakia and their use for district heating

    International Nuclear Information System (INIS)

    Drahy, J.

    1989-01-01

    The first generation of nuclear power stations in Czechoslavakia is equipped with 440 MW e pressurized water reactors. Each reactor supplies two 220 MW, 3000 rpm condensing type turbosets operating with saturated steam. After the completion of heating water piping systems, all of the 24 units of 220 MW in Czechoslovak nuclear power stations will be operated as dual purpose units, delivering both electricity and heat. At the present time, second-generation nuclear power stations, with 1000 MW e PWRs, are being built. Each such plant is equipped with one 1000 MW full-speed saturated steam turbine. The turbine is so designed as to permit the extraction of steam corresponding to the following quantities of heat: 893 MJ/s with three-stage water heating (150/60 0 C); and 570 MJ/s with two-stage water heating (120/60 0 C). The steam is taken from uncontrolled steam extraction points. (author)

  18. Montague Nuclear Power Station, Units 1 and 2: Final environmental statement (Docket Nos. 50-496 and 50-497)

    International Nuclear Information System (INIS)

    1977-02-01

    The proposed action is the issuance of construction permits to the Northeast Nuclear Energy Company for the construction of the Montague Nuclear Power Station, Units 1 and 2, located on the Connecticut River in the Town of Montague, Massachusetts. The plant will employ two identical boiling-water reactors to produce up to 3579 megawatts thermal (MWt) each. Two steam turbine-generators will use this heat to provide 1150 MWe (net) of electrical power capacity from each turbine-generator. A design power level of 3759 MWt (1220 Mwe net) for each unit is anticipated at a future date and is considered in the assessments contained in this statement. The waste heat will be rejected through natural-draft cooling towers using makeup water obtained from and discharged to the Connecticut River. The 1900-acre site is about 90% forest, with the remaining acreage in transmission-line corridor and old-field vegetation. The total loss of mixed-age forest will be 1273 acres. Nodesignated scenic areas will be crossed. Sixty acres of public lands, State forests, and parks will be lost to transmission facilities as well as losses associated with crossings of 2.0 miles of water bodies and 11.9 miles of wetlands. The maximum estimated potential loss of salable wood products will be $849,600. A maximum of 85.8 cfs of cooling water will be withdrawn from the Connecticut River. A maximum of 17.2 cfs will be returned to the river with the dissolved solids concentration increased by a factor of about 5. A maximum of 68.6 cfs will be evaporated to the atmosphere by the cooling towers. 143 refs., 58 figs., 69 tabs

  19. 75 FR 8757 - Nebraska Public Power District, Cooper Nuclear Station, Unit 1; Notice of Availability of the...

    Science.gov (United States)

    2010-02-25

    ..., Cooper Nuclear Station, Unit 1; Notice of Availability of the Draft Supplement 41 to the Generic... Renewal of Cooper Nuclear Station, Unit 1 Notice is hereby given that the U.S. Nuclear Regulatory... operating license DPR-46 for an additional 20 years of operation for Cooper Nuclear Station, Unit 1 (CNS-1...

  20. Safety Evaluation Report related to the operation of Comanche Peak Steam Electric Station, Units 1 and 2 (Docket Nos. 50-445 and 50-446)

    International Nuclear Information System (INIS)

    1985-10-01

    This supplement reports the status of certain issues that had not been resolved at the time of publication of the Safety Evaluation Report and Supplements 1, 2, 3, 4, and 6 to that report. This supplement also lists the new issues that have been identified since Supplement 6 was issued and includes the evaluations for licensing items resolved in this interim period. Supplement 5 has not been issued. Supplements 7, 8, 9, 10, and 11 were limited to the staff evaluations of allegations investigated by the NRC Technical Review Team, and items identified therein are not included in this supplement

  1. Safety Evaluation Report related to the operation of Comanche Peak Steam Electric Station, Units 1 and 2 (Docket Nos. 50-445 and 50-446)

    International Nuclear Information System (INIS)

    1984-11-01

    This supplement reports the status of certain issues that had not been resolved at the time of publication of the Safety Evaluation Report and Supplement 1, 2, 3, and 4 of that report. (Supplement 5, currently in preparation, will document the staff's evaluation findings pertaining solely to an independent design verification, conducted for the applicant by the CYGNA Corporation in late 1983-early 1984, and does not update the status of issues since the release of Supplement 4.)

  2. Restart Testing Program for piping following steam generator replacement at North Anna Unit 1

    International Nuclear Information System (INIS)

    Bain, R.A.; Bayer, R.K.

    1993-01-01

    In order to provide assurance that the effects of performing steam generator replacement (SGR) at North Anna unit 1 had no adverse impact on plant piping systems, a cold functional verification restart testing program was developed. This restart testing program was implemented in lieu of a hot functional testing program normally used during the initial startup of a nuclear plant. A review of North Anna plant-specific and generic U.S. Nuclear Regulatory Commission requirements for restart testing was performed to ensure that no mandatory hot functional testing was required. This was determined to be the case, and the development of a cold functional test program was initiated. The cold functional test had inherent advantages as compared to the hot functional testing, while still providing assurance of piping system adequacy. The advantages of the cold verification program included reducing risk to personnel from hot piping, increasing the accuracy of measurements with the improvement in work conditions, eliminating engineering activities during the heatup process, and being able to record measurements as construction work was completed allowing for rework or repair of components if required. To ensure the effectiveness of the cold verification program, a project procedure was generated to identify the personnel, equipment, and measurement requirements. An engineering calculation was issued to document the scope of the restart test program, and an additional calculation was developed to provide acceptance criteria for the critical commodity measurements

  3. Quad-Cities Station, Units 1 and 2. Semiannual operating report, January--June 1975

    International Nuclear Information System (INIS)

    1975-01-01

    Unit 1 generated 2,024,125 net electrical MWH and the generator was on line 3162.6 hours. Unit 2 generated 746,184 net electrical MWH and was on line 1475.3 hrs. Data is included concerning operations, power generation, shutdowns, maintenance, changes, and tests. (FS)

  4. Experience and development of on-line BWR surveillance system at Onagawa nuclear power station unit-1

    International Nuclear Information System (INIS)

    Kishi, A.; Chiba, K.; Kato, K.; Ebata, S.; Ando, Y.; Sakamoto, H.

    1986-01-01

    ONAGAWA nuclear power station Unit-1 (Tohoku Electric Power Co.) is a BWR-4 nuclear power station of 524 MW electric power which started commercial operation in June 1984. To attain high reliability and applicability for ONAGAWA-1, Tohoku Electric Power Co. and Toshiba started a Research and Development project on plant surveillance and diagnosis from April 1982. Main purposes of this project are to: (1) Develop an on-line surveillance system and acquire its operating experience at a commercial BWR, (2) Assist in plant operation and maintenance by data acquisition and analysis, (3) Develop a new technique for plant surveillance and diagnosis. An outline of the project, operating experience gained from the on-line surveillance system and an introduction to new diagnosis techniques are reported in this paper. (author)

  5. Technical specifications: Seabrook Station, Unit 1 (Docket No. 50-443)

    International Nuclear Information System (INIS)

    1990-03-01

    The Seabrook Station, Unit 1 Technical Specifications were prepared by the US Nuclear Regulatory Commission to set forth the limits, operating conditions, and other requirements applicable to a nuclear reactor facility as set forth in Section 50.36 of 10 CFR Part 50 for the protection of the health and safety of the public

  6. Oconee Nuclear Station, Units 1, 2, and 3. Semiannual operating report, January--June 1975

    International Nuclear Information System (INIS)

    1975-01-01

    Information is presented concerning operations, performance characteristics, changes, tests, inspections, containment leak tests, maintenance, primary coolant chemistry, station staff changes, reservoir investigations, plume mapping, and operational environmental radioactivity monitoring data for oconee Units 1, 2, and 3. The non-radiological environmental surveillance program is also described. (FS)

  7. San Onofre Nuclear Generating Station, Unit 1. Annual operating report for 1976

    International Nuclear Information System (INIS)

    1977-01-01

    Gross electrical energy generated was 2,610,000 MWH with the generator on line 6,162.9 hrs. Information is presented concerning operations, power generation, shutdowns, corrective maintenance, chemistry and radiochemistry, occupational radiation exposure, release of radioactive materials, reportable occurrences, steam generator tube inspections, primary coolant chemistry, containment penetration leak tests, and radiological environmental monitoring

  8. Surry Power Station, Units 1 and 2. Semiannual operating report, January--June 1975

    International Nuclear Information System (INIS)

    1975-01-01

    Net electric power generated by Unit 1 was 2,315,124 MWH(e) and Unit 2 generated 2,062,954 MWH(e) with Unit 1 generator on line for 3,157.8 hrs and Unit 2 on line for 2,881.2 hrs. Information is presented concerning power generation, shutdowns, corrective maintenance, chemistry and radiochemistry, occupational radiation exposure, release of radioactive materials, abnormal occurrences, and environmental monitoring. (FS)

  9. Automation of steam generator services at public service electric & gas

    Energy Technology Data Exchange (ETDEWEB)

    Cruickshank, H.; Wray, J.; Scull, D. [Public Service Electric & Gas, Hancock`s Bridge, NJ (United States)

    1995-03-01

    Public Service Electric & Gas takes an aggressive approach to pursuing new exposure reduction techniques. Evaluation of historic outage exposure shows that over the last eight refueling outages, primary steam generator work has averaged sixty-six (66) person-rem, or, approximately tewenty-five percent (25%) of the general outage exposure at Salem Station. This maintenance evolution represents the largest percentage of exposure for any single activity. Because of this, primary steam generator work represents an excellent opportunity for the development of significant exposure reduction techniques. A study of primary steam generator maintenance activities demonstrated that seventy-five percent (75%) of radiation exposure was due to work activities of the primary steam generator platform, and that development of automated methods for performing these activities was worth pursuing. Existing robotics systems were examined and it was found that a new approach would have to be developed. This resulted in a joint research and development project between Westinghouse and Public Service Electric & Gas to develop an automated system of accomplishing the Health Physics functions on the primary steam generator platform. R.O.M.M.R.S. (Remotely Operated Managed Maintenance Robotics System) was the result of this venture.

  10. 76 FR 24064 - Arizona Public Service Company, Palo Verde Nuclear Generating Station, Units 1, 2, and 3, Notice...

    Science.gov (United States)

    2011-04-29

    ... Service Company, Palo Verde Nuclear Generating Station, Units 1, 2, and 3, Notice of Issuance of Renewed... Company (licensee), the operator of the Palo Verde Nuclear Generating Station, Units 1, 2, and 3 (PVNGS... Plants: Supplement 43, Regarding Palo Verde Nuclear Generating Station,'' issued January 2011, discusses...

  11. Data book of examination of the ruptured pipe at the Hamaoka Nuclear Power Station Unit-1

    International Nuclear Information System (INIS)

    2002-03-01

    In order to investigate root cause of the pipe rupture, which took place at the Hamaoka Nuclear Power Station Unit-1 of Chubu Electric Power Company on November 7, 2001, a task force was established within the Nuclear and Industrial Safety Agency (NISA) and initiated a detailed investigation of the ruptured pipe. The Japan Atomic Energy Research Institute (JAERI) was asked from the Ministry of Education, Culture, Sports, Science and Technology (MEXT) in response to the request from NISA to cooperate as an independent neutral organization with NISA and perform an examination of the ruptured pipe independently from Chubu Electric Power Company. JAERI accepted the request by considering the fact that JAERI is an integrated research institution for nuclear research and development, a prime research institution for nuclear safety research, a research institution with experience of root-cause investigation of various nuclear incidents and accidents of domestic as well as overseas, and a research institution provided with advanced examination facilities necessary for examination of the ruptured pipe. The JAERI examination group was formed at the Tokai Research Establishment and conducted detailed and thorough examination of the pieces taken from the ruptured pipe primarily in the Reactor Fuel Examination Facility (RFEF) with the use of tools such as scanning electron microscopes and other equipments. Purpose of examination was to provide technical information in order to identify causes of the pipe rupture through examination of the pieces taken from the ruptured region of the pipe. The result of the present examination has already been reported to NISA and has also been published as the JAERI-Tech report No.2001-94. This report is a data book containing the detailed data obtained by the present examination. (author)

  12. Report of examination of the ruptured pipe at the Hamaoka Nuclear Power Station Unit-1

    International Nuclear Information System (INIS)

    2001-12-01

    In order to investigate root cause of the pipe rupture, which took place at the Hamaoka Nuclear Power Station Unit-1 of Chubu Electric Power Company on November 7, 2001, a task force was established within the Nuclear and Industrial Safety Agency (NISA) and initiated a detailed investigation of the ruptured pipe. The Japan Atomic Energy Research Institute (JAERI) was asked from the Ministry of Education, Culture, Sports, Science and Technology (MEXT) in response to the request from NISA to cooperate as an independent neutral organization with NISA and perform an examination of the ruptured pipe independently from Chubu Electric Power Company. JAERI accepted the request by considering the fact that JAERI is an integrated research institution for nuclear research and development, a prime research institution for nuclear safety research, a research institution with experience of root-cause investigation of various nuclear incidents and accidents of domestic as well as overseas, and a research institution provided with advanced examination facilities necessary for examination of the ruptured pipe. The JAERI examination group was formed at the Tokai Research Establishment and conducted detailed and thorough examination of the pieces taken from the ruptured pipe primarily in the Reactor Fuel Examination Facility (RFEF) with the use of tools such as scanning electron microscopes and other equipments. Purpose of examination was to provide technical information in order to identify causes of the pipe rupture through examination of the pieces taken from the ruptured region of the pipe. The following findings and conclusion were made as the result of the present examination. (1) Wall thickness of the pipe was significantly reduced in the ruptured region. (2) Dimple pattern resulting from ductile fracture by shearing was observed in the fracture surfaces of nearly all of the pieces and no indication of fatigue crack growth was found. (3) Microstructure showed a typical carbon

  13. Reconstruction of steam generators super emergency feadwater supply system (SHNC) and steam dump stations to the atmosphere system PSA

    International Nuclear Information System (INIS)

    Kuzma, J.

    2001-01-01

    Steam Generators Super Emergency Feadwater Supply System (SHNC) and Steam Dump Stations to the Atmosphere System (PSA) are two systems which cooperate to remove residual heat from reactor core after seismic event. SHNC assure feeding of the secondary site of steam generator (Feed) where after heat removal.from primary loops, is relieved to the atmosphere by PSA (Bleed) in form of steam. (author)

  14. Non-radiological consequences to the aquatic biota and fisheries of the Susquehanna River from the 1979 accident at Three Mile Island Nuclear Station

    International Nuclear Information System (INIS)

    Hickey, C.R. Jr.; Samworth, R.B.

    1979-11-01

    The non-radiological consequences to the aquatic biota and fishes of the Susquehanna River from the March 28, 1979 accident at Three Mile Island Nuclear Station were assessed through the post-accident period of July 1979. Thermal and chemical discharges during the period did not exceed required effluent limitations. Several million gallons of treated industrial waste effluents were released into the river which were not of unusual volumes compared with normal operation and were a very small proportion of the seasonally high river flows. The extent and relative location of the effluent plume were defined and the fisheries known to have been under its immediate influence were identified, including rough, forage, and predator/sport fishery species

  15. Quad-Cities Station, Units 1 and 2. Annual report, 1975

    International Nuclear Information System (INIS)

    1976-01-01

    Net electrical power generated by Unit 1 was 2,246,757 MWh(e) with the generator on line 4,287.5 hrs while Unit 2 generated 1,729,147 MWh(e) with the generator on line 3,056.21 hrs. Information is presented concerning operations, power generation, shutdowns, maintenance, changes, tests, and experiments

  16. Quad-Cities Station, Units 1 and 2. Annual operating report for 1976

    International Nuclear Information System (INIS)

    1976-01-01

    Net electrical power generated by Unit 1 was 3,393,062 MWH with the generator on line 5,703.0 hrs. Unit 2 generated 4,304,684 MWH with the generator on line 7,145.3 hrs. Information is presented concerning modifications, maintenance, power generation, shutdowns, occupational radiation exposures, and organization

  17. Audit of Wolf Creek Generating Station, Unit 1 technical specifications. Final technical evaluation report

    International Nuclear Information System (INIS)

    Stromberg, H.M.

    1985-07-01

    This document was prepared for the Nuclear Regulatory Commission (NRC) to assist them in determining whether the Wolf Creek Generating Station Unit 1 Technical Specifications (T/S), which govern plant systems configurations and operations, are in conformance with the assumptions of the Final Safety Analysis Report (FSAR) as amended, the requirements of the Safety Evaluation Report (SER) as supplemented, and the Comments and Responses to the Wolf Creek Technical Specification Draft Inspection Report. A comparative audit of the FSAR as amended, the SER as supplemented, and the Draft Inspection Report was performed with the Wolf Creek T/S. Several discrepancies were identified and subsequently resolved through discussions with the cognizant NRC reviewer, NRC staff reviewers and/or utility representatives. The Wolf Creek Generating Station Unit 1 T/S, to the extent reviewed, are in conformance with the FSAR, SER, and Draft Inspection Report

  18. VT Data - Electric Charging Stations

    Data.gov (United States)

    Vermont Center for Geographic Information — Locations of Electric Charging Stations provided by the NREL national laboratory of the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy....

  19. Analysis of electrical systems from Cernavoda NPP - Unit 1 based on commissioning activity

    International Nuclear Information System (INIS)

    Goia, M.L.; Manolescu, I.

    1996-01-01

    Several design solutions regarding the electrical part of Cernavoda NPP Unit 1 station auxiliaries are discussed in this paper. The solutions mentioned may have different variants which should be taken into consideration in the design of Units U2 - U5. This work offers an ample debate on such matters as the supply source connection of the station auxiliaries, the use of two different voltages for the mean voltage (MV) supply, the consequence of the lack of breakers on the 24 kV part of station auxiliary transformers T03 - T04, the protection devices non correlated with the breakers to which they react, as well as the consequences of low subtransient reactance of the new stand-by Diesel generators. Besides these design solutions that can influence the station auxiliaries reliability, matters as malfunctioning of the dry type MV/LV transformers and unreliable behaviour of some MV composite insulators are also discussed. For some of the above mentioned problems the authors proposed several solutions. (authors). 1 fig., 1 tab

  20. Three Mile Island Nuclear Station steam generator chemical cleaning

    International Nuclear Information System (INIS)

    Hansen, C.A.

    1992-01-01

    The Three Mile Island-1 steam generators were chemically cleaned in 1991 by the B and W Nuclear Service Co. (BWNS). This secondary side cleaning was accomplished through application of the EPRI/SGOG (Electric Power Research Institute - Steam Generator Owners Group) chemical cleaning iron removal process, followed by sludge lancing. BWNS also performed on-line corrosion monitoring. Corrosion of key steam generator materials was low, and well within established limits. Liquid waste, subsequently processed by BWNS was less than expected. 7 tabs

  1. Revised draft environmental statement related to construction of Atlantic Generating Station Units 1 and 2 (Docket Nos. STN 50-477 and STN 50-478)

    International Nuclear Information System (INIS)

    1976-10-01

    The proposed action is the issuance of a construction permit to Public Service Electric and Gas Company (PDE and G) for the construction of the Atlantic Generating Station (AGS), Units 1 and 2. The AGS is the first nuclear power station in the United States proposed for construction in the offshore waters on the continental shelf. The AHS will be located in the Atlantic Ocean 2.8 miles offshore of Atlantic and Ocean countries. New Jersey, 11 miles northeast of Atlantic City, and will consist of two floating nuclear power plants enclosed in a protective rubble-mound breakwater. Both plants will be identical, of standardized design, and will employ pressurized water reactors to produce up to approximately 3425 megawatts thermal (MWt) each. Steam turbine generators will use this heat to produce up to approximately 1150 megawatts of electrical power (MWe) per unit. The main condensers will be cooled by the flow of seawater drawn from within the breakwater and discharged shoreward and external to the breakwater. This statement identifies various environmental aspects and potential adverse effects associated with the construction and operation of the AGS. Based upon an approximate two-year review period which included a multidisciplined assessment of extensive survey and modeling data, these effects are considered by the staff to be of a generally acceptable nature. Breakwater construction will result in the destruction of 100 acres of benthic infauna (burrowing animals) and the development of a reef-type community on the breakwater. The production of new biomass (standing crop) by the reef community is expected to compensate for the infaunal biomass destroyed by dredging and will contribute mainly to the local sport fishery. 93 figs., 110 tabs

  2. 76 FR 72007 - ZionSolutions, LLC; Zion Nuclear Power Station, Units 1 and 2; Exemption From Certain Security...

    Science.gov (United States)

    2011-11-21

    ... NUCLEAR REGULATORY COMMISSION [Docket Nos. 50-295 and 50-304; NRC-2011-0244] ZionSolutions, LLC; Zion Nuclear Power Station, Units 1 and 2; Exemption From Certain Security Requirements 1.0 Background Zion Nuclear Power Station (ZNPS or Zion), Unit 1, is a Westinghouse 3250 MWt Pressurized Water Reactor...

  3. 75 FR 15745 - Arizona Public Service Company, et al. Palo Verde Nuclear Generating Station, Units 1, 2, and 3...

    Science.gov (United States)

    2010-03-30

    ...] Arizona Public Service Company, et al. Palo Verde Nuclear Generating Station, Units 1, 2, and 3; Exemption 1.0 Background The Arizona Public Service Company (APS, the licensee) is the holder of Facility... Generating Station (PVNGS), Units 1, 2, and 3, respectively. The licenses provide, among other things, that...

  4. 75 FR 8149 - Arizona Public Service Company, et al. Palo Verde Nuclear Generating Station, Units 1, 2, and 3...

    Science.gov (United States)

    2010-02-23

    ...] Arizona Public Service Company, et al. Palo Verde Nuclear Generating Station, Units 1, 2, and 3... NPF-74, issued to the Arizona Public Service Company (APS, or the licensee), for operation of the Palo Verde Nuclear Generating Station (PVNGS, the facility), Units 1, 2, and 3, respectively, located in...

  5. 75 FR 43572 - Duke Energy Carolinas, LLC, McGuire Nuclear Station, Units 1 and 2; Environmental Assessment and...

    Science.gov (United States)

    2010-07-26

    ... NUCLEAR REGULATORY COMMISSION [Docket Nos. 50-369 and 50-370; NRC-2010-0259] Duke Energy Carolinas, LLC, McGuire Nuclear Station, Units 1 and 2; Environmental Assessment and Finding of No Significant... Energy Carolinas, LLC (the licensee), for operation of the McGuire Nuclear Station, Units 1 and 2...

  6. 75 FR 43571 - Duke Energy Carolinas, LLC; Catawba Nuclear Station, Units 1 and 2; Environmental Assessment And...

    Science.gov (United States)

    2010-07-26

    ... NUCLEAR REGULATORY COMMISSION [Docket Nos. 50-413 and 50-414; NRC-2010-0260] Duke Energy Carolinas, LLC; Catawba Nuclear Station, Units 1 and 2; Environmental Assessment And Finding of No Significant... Energy Carolinas, LLC (the licensee), for operation of the Catawba Nuclear Station, Units 1 and 2...

  7. Safety Evaluation Report related to the operation of Limerick Generating Station, Units 1 and 2 (Docket Nos. 50-352 and 50-353). Supplement 2

    International Nuclear Information System (INIS)

    1984-10-01

    In August 1983 the staff of the Nuclear Regulatory Commission issued its Safety Evaluation Report (NUREG-0991) regarding the application of the Philadelphia Electric Company (the applicant) for licenses to operate the Limerick Generating Station, Units 1 and 2, located on a site in Montgomery and Chester Counties, Pennsylvania. This supplement addresses further issues that require resolution and closes them out

  8. Dresden Nuclear Power Station, Units 1, 2, and 3. Annual operating report: January thru December 1976

    International Nuclear Information System (INIS)

    1977-01-01

    Net electrical energy generated by Unit 1 was 953,015.5 MWH with the generator on line 7,399.37 hrs. Unit 2 generated 4,371,553.689 MWH with the generator on line 6,664.58 hrs while Unit 3 generated 4,034,251 MWH with the generator on line 7,234.86 hrs. Information is presented concerning operations, maintenance, and shutdowns

  9. Indian Point Station, Unit 1 and 2. Semiannual operating report No. 24, July--December 1974

    International Nuclear Information System (INIS)

    1975-01-01

    Net electrical power generated by Unit 1 was 519,130 MWH with the reactor critical for 2,400.39 hours and the generator on line for 2,316.14 hours. Unit 2 generated 2,427,828 MWH electrical power, was critical for 3,590.31 hours and the generator was on line for 3,485.41 hours. Operations and maintenance are summarized. Information is presented concerning radioactive effluent releases, occupational personnel radiation protection, primary coolant chemistry, changes, tests, and experiments. Environmental radioactivity is discussed. (U.S.)

  10. Development and application of the lancing system of delta-60 steam generator-Kori nuclear power plant unit 1

    International Nuclear Information System (INIS)

    Jeong, W. T.; Han, D. Y.; Ahn, N. S.; Jo, B. H.; Hong, Y. W.

    2001-01-01

    A lancing system for removing the deposits on the tube sheet of a nuclear steam generator using high pressure water was developed and applied to Kori Nuclear Power Plant( NPP) Unit 1. As the place where the lancing system is to be installed is relatively high radioactive area, every part consisting the equipment is carefully selected to be radiation resistant. The lancing robot was designed to be water proof to aviod possible malfunction of the lancing robot because of high pressure water. To minimize radiation exposure to operators, the system was designed considering easy installation and maintenance in mind. Water ejection nozzle are designed to have high strength with special material and heat treatment so as to lessen abrasion caused by high pressure ejection. The lancing system showed good performance during the on-site lancing using the system for Delta-60 steam generator of Kori NPP No. 1 in October 2000

  11. Technical Feasible Study for Future Solar Thermal Steam Power Station in Malaysia

    Science.gov (United States)

    Bohari, Z. H.; Atira, N. N.; Jali, M. H.; Sulaima, M. F.; Izzuddin, T. A.; Baharom, M. F.

    2017-10-01

    This paper proposed renewable energy which is potential to be used in Malaysia in generating electricity to innovate and improve current operating systems. Thermal and water act as the resources to replace limited fossil fuels such as coal which is still widely used in energy production nowadays. Thermal is also known as the heat energy while the water absorbs energy from the thermal to produce steam energy. By combining both of the sources, it is known as thermal steam renewable energy. The targeted area to build this power station has constant high temperature and low humidity which can maximize the efficiency of generating power.

  12. Steam Oxidation Testing in the Severe Accident Test Station

    Energy Technology Data Exchange (ETDEWEB)

    Pint, Bruce A. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2017-08-01

    After the March 2011 accident at Fukushima Daiichi, Oak Ridge National Laboratory (ORNL) began conducting high temperature steam oxidation testing of candidate materials for accident tolerant fuel (ATF) cladding in August 2011 [1-11]. The ATF concept is to enhance safety margins in light water reactors (LWR) during severe accident scenarios by identifying materials with 100× slower steam oxidation rates compared to current Zr-based alloys. In 2012, the ORNL laboratory equipment was expanded and made available to the entire ATF community as the Severe Accident Test Station (SATS) [4,12]. Compared to the current UO2/Zr-based alloy fuel system, an ATF alternative would significantly reduce the rate of heat and hydrogen generation in the core during a coolant-limited severe accident [13-14]. The steam oxidation behavior of candidate materials is a key metric in the evaluation of ATF concepts and also an important input into models [15-17]. However, initial modeling work of FeCrAl cladding has used incomplete information on the physical properties of FeCrAl. Also, the steam oxidation data being collected at 1200°-1700°C is unique as no prior work has considered steam oxidation of alloys at such high temperatures. Also, because many accident scenarios include steadily increasing temperatures, the required data are not traditional isothermal exposures but exposures with varying “ramp” rates. In some cases, the steam oxidation behavior has been surprising and difficult to interpret. Thus, more fundamental information continues to be collected. In addition, more work continues to focus on commercially-manufactured tube material. This report summarizes recent work to characterize the behavior of candidate alloys exposed to high temperature steam, evaluate steam oxidation behavior in various ramp scenarios and continue to collect integral data on FeCrAl compared to conventional Zr-based cladding.

  13. Autonomous Electrical Vehicles’ Charging Station

    OpenAIRE

    Józef Paska; Mariusz Kłos; Łukasz Rosłaniec; Rafał Bielas; Magdalena Błędzińska

    2016-01-01

    This paper presents a model of an autonomous electrical vehicles’ charging station. It consists of renewable energy sources: wind turbine system, photovoltaic cells, as well as an energy storage, load, and EV charging station. In order to optimise the operating conditions, power electronic converters were added to the system. The model was implemented in the Homer Energy programme. The first part of the paper presents the design assumptions and technological solutions. Further in the paper...

  14. Probabilistic fire risk assessment for Koeberg Nuclear Power Station Unit 1

    International Nuclear Information System (INIS)

    Grobbelaar, J.F.; Foster, N.A.S.; Luesse, L.J.

    1995-01-01

    A probabilistic fire risk assessment was done for Koeberg Nuclear Power Station Unit 1. Areas where fires are likely to start were identified. Equipment important to safety, as well as their power and/or control cable routes were identified in each fire confinement sector. Fire confinement sectors where internal initiating events could be caused by fire were identified. Detection failure and suppression failure fault trees and event trees were constructed. The core damage frequency associated with each fire confinement sector was calculated, and important fire confinement sectors were identified. (author)

  15. High level waste (HLW) steam reducing station evaluation

    International Nuclear Information System (INIS)

    Gannon, R.E.

    1993-01-01

    Existing pressure equipment in High Level Waste does not have a documented technical baseline. Based on preliminary reviews, the existing equipment seems to be based on system required capacity instead of system capability. A planned approach to establish a technical baseline began September 1992 and used the Works Management System preventive maintenance schedule. Several issues with relief valves being undersized on steam reducing stations created a need to determine the risk of maintaining the steam in service. An Action Plan was developed to evaluate relief valves that did not have technical baselines and provided a path forward for continued operation. Based on Action Plan WER-HLE-931042, the steam systems will remain in service while the designs are being developed and implemented

  16. Final environmental statement related to the operation of Byron Station, Units 1 and 2 (Docket Nos. STN 50-454 and STN 50-455)

    International Nuclear Information System (INIS)

    1982-04-01

    The proposed action is the issuance of an operating license to Commonwealth Edison Company (CECo) of Chicago, Illinois, for startup and operation of the Byron Station, Units 1 and 2 on a 710-ha (1754-acre) site in Ogle County 6 km (4 miles) south-southwest of Byron, Illinois, and 3 km (2 miles) east of the Rock River. Each of the two generating units consists of a pressurized-water reactor, four steam generators, one steam turbine generator, a heat-dissipation system, and associated auxiliary and engineered safeguards. Information is presented under the following topics: purpose and need for the action; alternatives to the proposed action; project description and affected environment; environmental consequences and mitigating actions; evaluation of the proposed action; list of contributors; list of agencies and organizations requested to comment on the draft environmental statement; and responses to comments on the Draft Environmental Statement

  17. Indian Point Station, Units 1, 2, and 3. Annual operating report for 1976

    International Nuclear Information System (INIS)

    1977-01-01

    Unit 1 remained in a shutdown condition pending a decision by the Company on the installation of an ECCS as required by NRC. Net electrical power generated by Unit 2 was 2,267,654 MWH with the unit on line 3,056.45 hrs. Unit 3 generated 1,872,947 MWH and was on line 2,286.01 hrs. Information is presented concerning operations, reportable events, corrective maintenance, fuel performance, radioactivity releases, shutdowns, primary coolant chemistry, and occupational radiation exposures

  18. Technical Specifications, Seabrook Station, Unit 1 (Docket No. 50-443). Appendix ''A'' to License No. NPF-56

    International Nuclear Information System (INIS)

    1986-10-01

    This report provides specifications for the Seabrook Station Unit 1 reactor concerning: safety limits and limiting safety settings; limiting conditions for operation and surveillance requirements; design features; and administrative controls

  19. Analysis of flood-magnitude and flood-frequency data for streamflow-gaging stations in the Delaware and North Branch Susquehanna River Basins in Pennsylvania

    Science.gov (United States)

    Roland, Mark A.; Stuckey, Marla H.

    2007-01-01

    The Delaware and North Branch Susquehanna River Basins in Pennsylvania experienced severe flooding as a result of intense rainfall during June 2006. The height of the flood waters on the rivers and tributaries approached or exceeded the peak of record at many locations. Updated flood-magnitude and flood-frequency data for streamflow-gaging stations on tributaries in the Delaware and North Branch Susquehanna River Basins were analyzed using data through the 2006 water year to determine if there were any major differences in the flood-discharge data. Flood frequencies for return intervals of 2, 5, 10, 50, 100, and 500 years (Q2, Q5, Q10, Q50, Q100, and Q500) were determined from annual maximum series (AMS) data from continuous-record gaging stations (stations) and were compared to flood discharges obtained from previously published Flood Insurance Studies (FIS) and to flood frequencies using partial-duration series (PDS) data. A Wilcoxon signed-rank test was performed to determine any statistically significant differences between flood frequencies computed from updated AMS station data and those obtained from FIS. Percentage differences between flood frequencies computed from updated AMS station data and those obtained from FIS also were determined for the 10, 50, 100, and 500 return intervals. A Mann-Kendall trend test was performed to determine statistically significant trends in the updated AMS peak-flow data for the period of record at the 41 stations. In addition to AMS station data, PDS data were used to determine flood-frequency discharges. The AMS and PDS flood-frequency data were compared to determine any differences between the two data sets. An analysis also was performed on AMS-derived flood frequencies for four stations to evaluate the possible effects of flood-control reservoirs on peak flows. Additionally, flood frequencies for three stations were evaluated to determine possible effects of urbanization on peak flows. The results of the Wilcoxon signed

  20. Summary of plant life management evaluation for Onagawa Nuclear Power Station Unit-1

    International Nuclear Information System (INIS)

    Nodate, Kazumi

    2014-01-01

    The Onagawa Nuclear Power Station Unit-1 (Onagawa NPS-1) began commercial operation on June 1, 1984, and has reached 30-year from starting of operation on June of 2014. To that end, we implemented the Plant Life Management (PLM) evaluation for Onagawa NPS-1 as our first experience. We decided on a Long-term Maintenance Management Policy from result of the evaluation, and then applied the Safety-Regulations change approval application on November 6, 2013 and its correcting application on April 16, 2014. Our application was approved on May 21, 2014 through investigation by the Nuclear Regulatory Agency. Also at implementation of the PLM evaluation, we considered effects of the Great East Japan Earthquake that occurred on March 11, 2011 against ageing phenomena. In this paper, we introduce summary of PLM evaluation for Onagawa NPS-1 and the evaluation that considered effects of the Great East Japan Earthquake. (author)

  1. Radiological Effluent Technical Specifications (RETS) implementation: Zion Generating Station Units 1 and 2

    International Nuclear Information System (INIS)

    Serrano, W.; Akers, D.W.; Duce, S.W.; Mandler, J.W.; Simpson, F.B.; Young, T.E.

    1985-06-01

    A review of the Radiological Effluent Technical Specifications (RETS) of the Zion Generating Station Units 1 and 2 was performed. The principal review guidelines used were NUREG-0133, ''Preparation of Radiological Effluent Technical Specifications for Nuclear Power Plants,'' and Draft 7 of NUREG-0472, Revision 3, ''Radiological Effluent Technical Specifications for Pressurized Water Reactors.'' Draft submittals were discussed with the Licensee by both EG and G and the NRC staff until all items requiring changes to the Technical Specifications were resolved. The Licensee then submitted final proposed RETS to the NRC which were evaluated and found to be in compliance with the NRC review guidelines. The proposed Offsite Dose Calculation Manual was reviewed and generally found to be consistent with the NRC review guidelines. 35 refs., 2 figs., 1 tab

  2. Final environmental statement for Shoreham Nuclear Power Station, Unit 1: (Docket No. 50-322)

    International Nuclear Information System (INIS)

    1977-10-01

    The proposed action is the issuance of an Operating License to the Long Island Lighting Company (LILCO) for the startup and operation of the Shoreham Nuclear Power Station, Unit 1 (the plant) located on the north shore of Long Island, the State of New York, County of Suffolk, in the town of Brookhaven. The Shoreham station will employ a boiling-water reactor (BWR), which will operate at a thermal output of 2436 MW leading to a gross output of 846 MWe and a net output of about 820 MWe. The unit will be cooled by once-through flow of water from the Long Island Sound. One nuclear unit with a net capacity of 820 MWe will be added to the generating resources of the Long Island Lighting Company. This will have a favorable effect on reserve margins and provide a cost savings of approximately $62.1 million (1980 dollars) in production costs in 1980 if the unit comes on line as scheduled; additional cost savings will be realized in subsequent years. Approximately 100 acres (40 hectares) of the 500-acre (202-hectare) site of rural (mostly wooded) land owned by the applicant have been cleared. Most of this will be unavailable for other uses during at least the 40-year life of the plant. No offsite acreage has been or will be cleared. Land in the vicinity of the site has undergone some residential development that is typical for all of this area of Long Island. The operation of Shoreham Unit 1 will have insignificant impacts on this and other types of land uses in the vicinity of the site. 33 figs., 56 tabs

  3. Station power supply by residual steam of Fugen

    Energy Technology Data Exchange (ETDEWEB)

    Kamiya, Y.; Kato, H.; Hattori, S. (Power Reactor and Nuclear Fuel Development Corp., Tokyo (Japan))

    1981-09-01

    In the advanced thermal reactor ''Fugen'', when the sudden decrease of load more than 40% occurs due to the failure of power system, the turbine regulating valve is rapidly shut, and the reactor is brought to scrum. However, the operation of turbo-generators is continued with the residual steam in the reactor, and the power for inside the station is supplied for 30 sec by the limiting timer, then the power-generating plant is automatically stopped. The reasons why such design was adopted are to reduce manual operation at the time of emergency, to continue water supply for cooling the reactor and to maintain the water level in the steam drum, and to reduce steam release from the safety valve and the turbine bypass valve. The output-load unbalance relay prevents the everspeed of the turbo-generator when load decreased suddenly, but when the failure of power system is such that recovers automatically in course of time, it does not work. The calculation for estimating the dynamic characteristics at the time of the sole operation within the station is carried out by the analysis code FATRAC. The input conditions for the calculation and the results are reported. Also the dynamic characteristics were actually tested to confirm the set value of the limiting timer and the safe working of turbine and generator trips. The estimated and tested results were almost in agreement.

  4. Final environmental statement related to the proposed construction of Douglas Point Nuclear Generating Station, Units 1 and 2: (Docket Nos. 50-448 and 50-449)

    International Nuclear Information System (INIS)

    1976-03-01

    The proposed action is the issuance of construction permits to the Potomac Electric Power Company for the construction of the Douglas Point Nuclear Generating Station, Units 1 and 2, located in Charles County, Maryland. The exhaust steam will be cooled via a closed-cycle mode incorporating natural-draft wet cooling towers. The water used in the cooling system will be obtained from the Potomac River. Construction-related activities on the site will convert about 290 acres of the 1390 acres of forested land at the Douglas Point site to industrial use. In addition to acreage at the site, approximately 4.5 miles of transmission corridor will require about 211 acres of land for rights-of-way. This corridor will connect with 27 miles of existing rights-of-way over which a line connecting Possum Point to Burches Hill has already been approved. The installation of new transmission line, uniquely identified with Douglas Point, along the existing right-of-way will involve approximately 464 additional acres. As described in the application, the maximum river water intake will be about 97,200 gpm. Of this, a maximum of about 28,000 gpm will be lost in drift or evaporation from the cooling towers. About 700 gpm maximum of fresh well water will be consumed. It is conservatively assumed that all aquatic organisms entrained in the service water system will be killed due to thermal and mechanical shock. It is further estimated that at 97,200 gpm maximum total river water intake, the maximum impact on the striped bass fishery will be a reduction of <5%. The risk associated with accidental radiation exposure is very low. 32 figs., 59 tabs

  5. Analysis of steam-generator tube-rupture events combined with auxiliary-feedwater control-system failure for Three Mile Island-Unit 1 and Zion-Unit 1 pressurized water reactors

    International Nuclear Information System (INIS)

    Nassersharif, B.

    1986-01-01

    A steam-generator tube-rupture (SGTR) event combined with loss of all offsite alternating-current power and failure of the auxiliary-feedwater (AFW) control system has been investigated for the Three Mile Island-Unit 1 (TMI-1) and Zion-Unit 1 (Zion-1) pressurized water reactors. The Transient Reactor Analysis Code was used to simulate the accident sequence for each plant. The objectives of the study were to predict the plant transient response with respect to tube-rupture flow termination, extent of steam generator overfill, and thermal-hydraulic conditions in the steam lines. Two transient cases were calculated: (1) a TMI-1 SGTR and runaway-AFW transient, and (2) a Zion-1 SGTR and runaway-AFW transient. Operator actions terminated the tube-rupture flow by 1342 s (22.4 min) and 1440 s (24.0 min) for TMI-1 and Zion-1, respectively, but AFW injection was continued. The damaged steam generator (DSG) overfilled by 1273 s (21.2 min) for the TMI-1 calculation and by 1604 s (26.7 min) for the Zion-1 calculation. The DSG steam lines were completely filled by 1500 s (25 min) and 2000 s (33.3 min) for TMI-1 and Zion-1, respectively. The maximum subcooling in the steam lines was approx.63 K (approx.113 0 F) for TMI-1 and approx.44 K (approx.80 0 F) for Zion-1

  6. Analysis of internal events for the Unit 1 of the Laguna Verde nuclear power station

    International Nuclear Information System (INIS)

    Huerta B, A.; Aguilar T, O.; Nunez C, A.; Lopez M, R.

    1993-01-01

    This volume presents the results of the starter event analysis and the event tree analysis for the Unit 1 of the Laguna Verde nuclear power station. The starter event analysis includes the identification of all those internal events which cause a disturbance to the normal operation of the power station and require mitigation. Those called external events stay beyond the reach of this study. For the analysis of the Laguna Verde power station eight transient categories were identified, three categories of loss of coolant accidents (LOCA) inside the container, a LOCA out of the primary container, as well as the vessel break. The event trees analysis involves the development of the possible accident sequences for each category of starter events. Events trees by systems for the different types of LOCA and for all the transients were constructed. It was constructed the event tree for the total loss of alternating current, which represents an extension of the event tree for the loss of external power transient. Also the event tree by systems for the anticipated transients without scram was developed (ATWS). The events trees for the accident sequences includes the sequences evaluation with vulnerable nucleus, that is to say those sequences in which it is had an adequate cooling of nucleus but the remoting systems of residual heat had failed. In order to model adequately the previous, headings were added to the event tree for developing the sequences until the point where be solved the nucleus state. This process includes: the determination of the failure pressure of the primary container, the evaluation of the environment generated in the reactor building as result of the container failure or cracked of itself, the determination of the localization of the components in the reactor building and the construction of boolean expressions to estimate the failure of the subordinated components to an severe environment. (Author)

  7. Second periodic safety review of Angra Nuclear Power Station, unit 1

    Energy Technology Data Exchange (ETDEWEB)

    Martins, Carlos F.O.; Crepaldi, Roberto; Freire, Enio M., E-mail: ottoncf@tecnatom.com.br, E-mail: emfreire46@gmail.com, E-mail: robcrepaldi@hotmail.com [Tecnatom do Brasil Engenharia e Servicos Ltda, Rio de Janeiro, RJ (Brazil); Campello, Sergio A., E-mail: sacampe@eletronuclear.gov.br [Eletrobras Termonuclear S.A. (ELETRONUCLEAR), Rio de Janeiro, RJ (Brazil)

    2015-07-01

    This paper describes the second Periodic Safety Review (PSR2-A1) of Angra Nuclear Power Station, Unit 1, prepared by Eletrobras Eletronuclear S.A. and Tecnatom do Brasil Engenharia e Servicos Ltda., during Jul.2013-Aug.2014, covering the period of 2004-2013. The site, in Angra dos Reis-RJ, Brazil, comprises: Unit 1, (640 MWe, Westinghouse PWR, operating), Unit 2 (1300 MWe, KWU/Areva, operating) and Unit 3 (1405 MWe, KWU/Areva, construction). The PSR2-A1 attends the Standards 1.26-Safety in Operation of Nuclear Power Plants, Brazilian Nuclear Regulatory Commission (CNEN), and IAEA.SSG.25-Periodic Safety Review of Nuclear Power Plants. Within 18 months after each 10 years operation, the operating organization shall perform a plant safety review, to investigate the evolution consequences of safety code and standards, regarding: Plant design; structure, systems and components behavior; equipment qualification; plant ageing management; deterministic and probabilistic safety analysis; risk analysis; safety performance; operating experience; organization and administration; procedures; human factors; emergency planning; radiation protection and environmental radiological impacts. The Review included 6 Areas and 14 Safety Parameters, covered by 33 Evaluations.After document evaluations and discussions with plant staff, it was generated one General and 33 Specific Guide Procedures, 33 Specific and one Final Report, including: Description, Strengths, Deficiencies, Areas for Improvement and Conclusions. An Action Plan was prepared by Electronuclear for the recommendations. It was concluded that the Unit was operated within safety standards and will attend its designed operational lifetime, including possible life extensions. The Final Report was submitted to CNEN, as one requisite for renewal of the Unit Permanent Operation License. (author)

  8. Second periodic safety review of Angra Nuclear Power Station, unit 1

    International Nuclear Information System (INIS)

    Martins, Carlos F.O.; Crepaldi, Roberto; Freire, Enio M.; Campello, Sergio A.

    2015-01-01

    This paper describes the second Periodic Safety Review (PSR2-A1) of Angra Nuclear Power Station, Unit 1, prepared by Eletrobras Eletronuclear S.A. and Tecnatom do Brasil Engenharia e Servicos Ltda., during Jul.2013-Aug.2014, covering the period of 2004-2013. The site, in Angra dos Reis-RJ, Brazil, comprises: Unit 1, (640 MWe, Westinghouse PWR, operating), Unit 2 (1300 MWe, KWU/Areva, operating) and Unit 3 (1405 MWe, KWU/Areva, construction). The PSR2-A1 attends the Standards 1.26-Safety in Operation of Nuclear Power Plants, Brazilian Nuclear Regulatory Commission (CNEN), and IAEA.SSG.25-Periodic Safety Review of Nuclear Power Plants. Within 18 months after each 10 years operation, the operating organization shall perform a plant safety review, to investigate the evolution consequences of safety code and standards, regarding: Plant design; structure, systems and components behavior; equipment qualification; plant ageing management; deterministic and probabilistic safety analysis; risk analysis; safety performance; operating experience; organization and administration; procedures; human factors; emergency planning; radiation protection and environmental radiological impacts. The Review included 6 Areas and 14 Safety Parameters, covered by 33 Evaluations.After document evaluations and discussions with plant staff, it was generated one General and 33 Specific Guide Procedures, 33 Specific and one Final Report, including: Description, Strengths, Deficiencies, Areas for Improvement and Conclusions. An Action Plan was prepared by Electronuclear for the recommendations. It was concluded that the Unit was operated within safety standards and will attend its designed operational lifetime, including possible life extensions. The Final Report was submitted to CNEN, as one requisite for renewal of the Unit Permanent Operation License. (author)

  9. Efforts to perform safe and efficient decommissioning for Tsuruga Power Station Unit 1

    International Nuclear Information System (INIS)

    Saito, Shiro; Yamauchi, Toyoaki; Austin, Colin R.

    2017-01-01

    Tsuruga Power Station Unit-1 (Tsuruga-1) started commercial operation in March 1970, and the decision to terminate operation was made in 2015. In April 2016, JAPC signed an agreement with Energy Solutions (ES) on strategic cooperation for domestic D and D projects for introduction of successful international experiences. As a first step in this cooperation, D and D know-how developed by ES in the US is being applied to Tsuruga-1 with verifying its applicability to domestic D and D projects. One of the efforts is human resource development. JAPC has also started introduction of ES's project management method to the Tsuruga-1 project for solid project management and the base line is currently being prepared. Regarding the waste disposal paths, application document of approval for measurement and evaluation of clearance material was submitted in September 2016. However the disposal paths for waste are not established in Japan. It is necessary to cooperate with the government, utilities and local stakeholders to establish waste disposal paths. Because it is also important to obtain the understanding from local communities, JAPC and ES will try positively to utilize local companies for D and D works. JAPC and ES believe that their relationship will ensure success of the Tsuruga-1 NPP decommissioning project. (author)

  10. Retrofit flue gas desulfurization system at Indianapolis Power and Light Co. Petersburg Station Units 1 and 2

    International Nuclear Information System (INIS)

    Watson, W.K.; Wolsiffer, S.R.; Youmans, J.; Martin, J.E.; Wedig, C.P.

    1992-01-01

    This paper briefly describes the status of the retrofit wet limestone flue gas desulfurization system (FGDS) project at Indianapolis Power and Light Company (IPL), Petersburg Units 1 and 2. This project was initiated by IPL in response to the Clean Air Act of 1990 and is intended to treat the flue gas from two base load units with a combined capacity of approximately 700 MW gross electrical output. IPL is the owner and operator of the Petersburg Station located in southwestern Indiana. Stone and Webster Engineering Corporation (Stone and Webster) is the Engineer and Constructor for the project. Radian Corporation is a subcontractor to Stone and Webster in the area of flue gas desulfurization (FGD) process. General Electric Environmental Systems, Inc. (GEESI) is the supplier of the FGDS. The project is organized as a team with each company providing services. The supplier of the new stack is scheduled to be selected and join the team in early 1992. Other material suppliers and field contractors will be selected in 1992

  11. Duke Power Company - McGuire Nuclear Station: steam-generator hideout return and cleanup

    International Nuclear Information System (INIS)

    Anon.

    1986-01-01

    McGuire Nuclear Station steam generator hideout return and cleanup are discussed. Hideout return data are presented for Unit 1 shutdowns that occurred on November 23, 1984, and April 19, 1985, and a Unit 2 shutdown on January 25, 1985. The data are presented as the concentrations of various species as a function of time after power reduction and primary water temperature. The steam generator blowdown as a function of time after power reduction is also presented. The concentrations of sodium, potassium, calcium, magnesium, aluminum, iron, and copper cations, and chloride, fluoride, sulfate, phosphate and nitrite anions were monitored during the each shutdown. Silica was also measured in the two 1985 shutdowns. The return of sulfate, phosphate, calcium and magnesium showed retrograde solubility. Silica concentrations showed an increase as the temperature decreased to about 450 to 500 0 F and then they decreased as the temperature decreased. McGuire has a holf point at 300 at 350 0 F to clean up the steam generator secondary water. The return of sulfates should occur within 4 to 6 hours. The blowdown is maximized to reduce the secondary water impurity concentrations. Cleanup continues until the sulfate concentration is reduced to below 100 ppb. At that point cooldown is continued

  12. Alternatives to electrical cogeneration: The direct application of steam engines

    International Nuclear Information System (INIS)

    Phillips, W.C.

    1993-01-01

    Although small to medium sized industrial facilities are aware of electrical cogeneration, often they are too small for it to be economically justifiable. The direct application of steam turbine power to equipment formerly powered by electric motors, can allow them to use steam capacity to reduce electrical demand and consumption, bypassing cogeneration. Cogeneration converts the heat energy of steam into circular mechanical motion and then converts the circular mechanical motion into electricity. Each conversion entails a loss of energy due to friction and other conversion losses. A substantial amount of the generated electricity is then converted back into circular motion with electric motors, again incurring energy losses. Directly applying the mechanical motion of turbines eliminates both the motion-to-electricity (generator) and the electricity-to-motion (motor) conversion losses. Excess steam capacity during the summer is not unusual for facilities that use steam to provide winter heating. Similarly, most of these facilities experience a large electrical demand peak during the cooling season due to the electricity needed to operate centrifugal chillers. Steam capacity via a turbine to power the chillers can allow the boilers to operate at a higher loading while reducing electrical consumption and demand precisely those periods when demand reduction is most needed. In facilities where the steam generating capacity is sufficient, air compressors provide an appropriate year-round application for turbine power. This paper is the result of an on-going project by the Energy Division, State of North Carolina, Department of Economic and Community Development, in conjunction with the University of North Carolina at Charlotte. The objective of this project is to educate the operating engineers and managers of small to medium sized manufacturing facilities on the technical application and economic justification of steam turbine power

  13. Fulton Generating Station Units 1 and 2 (Docket Nos. 50-463 and 50-464): Final environmental statement

    International Nuclear Information System (INIS)

    1975-04-01

    The proposed action is the issuance of construction permits to the Philadelphia Electric Company for the construction of the Fulton Generating Station, Units 1 and 2, located in Fulton and Drumore Townships, Lancaster County, Pennsylvania. Makeup water for cooling will be withdrawn form Conowingo Pond at a maximum rate of 43,000 gpm. The dissolved solids content of the blowdown water will be increased by a factor of about two. The remainder of the water will be evaporated to the atmosphere by cooling towers. About 10 acres offsite, some 7 acres of which is woodland, will be used for railroad-spur construction. About 0.25 mile of new transmission-line rights-of-way (9 acres) will be needed, although 49 miles of new transmission line, which will require about 3 miles of selective clearing, will be constructed on existing rights-of-way. An unestablished amount of land will be used for access-road construction, but the applicant will use existing roadway corridors where feasible. A small loss of consumer species will result from loss of habitat. Some loss of benthic and pelagic organisms in Conowingo Pond will be caused by intake and discharge construction. The Station's thermal and chemical discharges will meet the State water-quality standards. The duration of additional ground-level fog caused by Station operation is expected to be less than 3 hr/year. (Sect. 5.3.3). No observable effects are expected from salt deposition from cooling-tower drift. (Sect. 5.3.3). Decomposers, primary producers, and zooplankton will be entrained and killed in the cooling-tower system; they, as well as benthic organisms, will be affected by the heated-water discharge. This loss will have little effect on the pond food web. 30 figs., 76 tabs

  14. Ring thermal shield piping modification at Pickering Nuclear Generating Station 'A' Unit 1

    International Nuclear Information System (INIS)

    Brown, R.; Cobanoglu, M.M.

    1995-01-01

    Each of the four Pickering Nuclear Generating Station A (PNGSA) CANDU units was constructed with its reactor and dump tank surrounded by a concrete Calandria Vault (CV). The Ring Thermal Shield (RTS) system at PNGSA units is a water cooled structure with internal cooling channels with the purpose of attenuating excessive heat flux from the calandria shell to the end shield rings and adjoining concrete (Figure 1). In newer CANDU units the reactor calandria vessel is surrounded by a large water filled shield tank which eliminates the requirement for the RTS system. The RTS structures are situated in the space between the calandria and the vault walls. Each RTS is assembled from eight flat sided carbon steel segments, tilted towards the calandria and supported from the end shield rings. Cooling water to the RTS is supplied by carbon steel cooling pipes with a portion of the pipe run embedded in the vault walls. Flow through each RTS is divided into two independent circuits, having an inlet and an outlet cooling line. There are four locations of RTS inlet and outlet cooling lines. The inlet lines are located at the bottom and the outlet lines at the top of the RTS. The 'L' shaped section of RTS inlet and outlet cooling lines, from the RTS waterbox to the start of embedded portion at the concrete wall, had become defective due to corrosion induced by excessive Moisture levels in the calandria vaults. An on-line leak sealing capability was developed and placed in service in all four PNGSA units. However, a leak found during the 1994 Unit 1 outage was too large,to seal with the current capability, forcing Ontario Hydro (OH) to develop a method to replace the corroded pipes. The repair project was subject to some lofty performance targets. All tools had to be able to withstand dose rates of up to 3000 Rem/hour. These tools, along with procedures and personnel had to successfully repair the RTS system within 6 months otherwise a costly outage extension would result. This

  15. Safety Evaluation Report related to the operation of Limerick Generating Station, Units 1 and 2 (Docket Nos. 50-352 and 50-353). Supplement No. 6

    International Nuclear Information System (INIS)

    1985-08-01

    In August 1983 the staff of the Nuclear Regulatory Commission issued its Safety Evaluation Report (NUREG-0991) regarding the application of the Philadelphia Electric Company (the licensee) for licenses to operate the Limerick Generating Station, Units 1 and 2, located on a site in Montgomery and Chester Counties, Pennsylvania. A license for the operation of Limerick Unit 1 was issued on October 26, 1984. The license, which was restricted to a five percent power level, contained conditions which required resolution prior to proceeding beyond the five percent power level. Supplement 4, issued in May 1985, addressed some of these issues. Supplement 4 also contained the comments made by the Advisory Committee on Reactor Safeguards in its report dated November 6, 1984, regarding full power operation of Limerick Unit 1. Supplement 5, issued in July 1985, and this Supplement 6 address further issues, principally the status of offsite emergency planning, that require resolution prior to proceeding beyond the five percent power level

  16. Safety evaluation report related to the operation of Limerick Generating Station, Units 1 and 2 (Docket Nos. 50-352 and 50-353)

    International Nuclear Information System (INIS)

    1989-06-01

    In August 1983 the staff of the Nuclear Regulatory Commission issued its Safety Evaluation Report (NUREG-0991) regarding the application of the Philadelphia Electric Company (the licensee) for licenses to operate the Limerick Generating Station, Units 1 and 2, located on site in Montgomery and Chester Counties, Pennsylvania. Supplement 1 to NUREG-0991 was issued in December 1983. Supplements 2 and 3 were issued in October 1984. License NPF-27 for the low-power operation of Limerick Unit 1 was issued on October 26, 1984. Supplement 4 was issued in May, 1985, Supplement 5 was issued in July 1985, and Supplement 6 was issued in August 1985. These supplements addressed further issues that required resolution before Unit 1 proceeded beyond the 5-percent power level. The full-power operating license for Limerick Unit 1 (NPF-39) was issued August 8, 1985, and the unit has completed two cycles of operation. Supplement 7 was issued April 1989 to address some of the few significant design differences between Units 1 and 2, the resolution of issues that remained open when the Unit 1 full-power license was issued and an assessment of some of the issues that required resolution before issuance of an operating license for Unit 2. This supplement addresses the remaining issues that required resolution before issuance of and operating license for Unit 2

  17. Design and field operation of 1175 MW steam turbine for Ohi Nuclear Power Station

    International Nuclear Information System (INIS)

    Hirota, Yoshio; Nakagami, Yasuo; Fujii, Hisashi; Shibanai, Hirooki.

    1980-01-01

    Two 1175 MW steam turbine and generator units have been successfully in commercial operation since March 1979 and December 1979 respectively at Ohi Nuclear Power Station of the Kansai Electric Power Company. Those units, the largest in their respective outputs in Japan, have also such remarkable design features as two-stage reheat, nozzle governing turbine, water cooled generator stator and turbine-driven feedwater pumps. This paper covers design features and some topics of various pre-operational tests of the above-mentioned units. (author)

  18. Design and field operation of 1175 MW steam turbine for Ohi Nuclear Power Station

    International Nuclear Information System (INIS)

    Hirota, Y.; Nakagami, Y.; Fujii, H.; Shibanai, H.

    1980-01-01

    Two 1,175 MW steam turbine and generator units have been successfully in commercial operation since March 1979 and December 1979 respectively at Ohi Nuclear Power Station of the Kansai Electric Power Company. Those units, the largest in their respective outputs in Japan, have also such remarkable design features as two-stage reheat, nozzle governing turbine, water cooled generator stator and turbine-driven feedwater pumps. This paper covers design features and some topics of various pre-operational tests of the above-mentioned units. (author)

  19. 76 FR 48184 - Exelon Nuclear, Peach Bottom Atomic Power Station, Unit 1; Exemption From Certain Security...

    Science.gov (United States)

    2011-08-08

    ... steam generators remain in place. The facility is permanently shut down in a SAFSTOR condition, defueled..., ``Domestic Licensing of Production and Utilization Facilities,'' to possess but not operate the facility. All...

  20. 75 FR 13606 - Arizona Public Service Company, Palo Verde Nuclear Generating Station, Units 1, 2, and 3...

    Science.gov (United States)

    2010-03-22

    ... NUCLEAR REGULATORY COMMISSION [Docket Nos. STN 50-528, STN 50-529, and STN 50-530; NRC-2010-0114] Arizona Public Service Company, Palo Verde Nuclear Generating Station, Units 1, 2, and 3; Environmental...-74, issued to Arizona Public Service Company (APS, the licensee), for operation of the Palo Verde...

  1. 76 FR 79228 - Combined Licenses at William States Lee III Nuclear Station Site, Units 1 and 2; Duke Energy...

    Science.gov (United States)

    2011-12-21

    ... NUCLEAR REGULATORY COMMISSION [Docket Nos. 52-018 and 52-019; NRC-2008-0170] Combined Licenses at William States Lee III Nuclear Station Site, Units 1 and 2; Duke Energy Carolinas, LLC AGENCY: Nuclear.... SUMMARY: Notice is hereby given that the U.S. Nuclear Regulatory Commission (NRC) and the U.S. Army Corps...

  2. 78 FR 77508 - Duke Energy Carolinas, LLC; William States Lee III Nuclear Station, Units 1 and 2; Combined...

    Science.gov (United States)

    2013-12-23

    ... NUCLEAR REGULATORY COMMISSION [Docket Nos. 52-018 and 52-019; NRC-2008-0170] Duke Energy Carolinas, LLC; William States Lee III Nuclear Station, Units 1 and 2; Combined Licenses Application Review AGENCY: Nuclear Regulatory Commission. ACTION: Final environmental impact statement; availability...

  3. 78 FR 40200 - Duke Energy Carolinas, LLC, Oconee Nuclear Station Units 1, 2, and 3; Independent Spent Fuel...

    Science.gov (United States)

    2013-07-03

    ... NUCLEAR REGULATORY COMMISSION [Docket Nos. 72-1004, 72-40, 50-269, 50-270, and 50-287; NRC-2013-0135] Duke Energy Carolinas, LLC, Oconee Nuclear Station Units 1, 2, and 3; Independent Spent Fuel Storage Installation; Environmental Assessment and Finding of No Significant Impact AGENCY: Nuclear...

  4. 78 FR 45575 - Duke Energy Carolinas, LLC; Oconee Nuclear Station Units 1, 2, and 3; Independent Spent Fuel...

    Science.gov (United States)

    2013-07-29

    ... NUCLEAR REGULATORY COMMISSION [Docket Nos.: 72-1004, 72-40, 50-269, 50-270, 50-287; and NRC-2013- 0135] Duke Energy Carolinas, LLC; Oconee Nuclear Station Units 1, 2, and 3; Independent Spent Fuel Storage Installation AGENCY: Nuclear Regulatory Commission. ACTION: Exemption; issuance. SUMMARY: The NRC...

  5. Technical Specifications, Seabrook Station, Unit 1 (Docket No. 50-443): Appendix ''A'' to License No. NPF-67

    International Nuclear Information System (INIS)

    1989-05-01

    The Seabrook Station, Unit 1 Technical Specifications were prepared by the US Nuclear Regulatory Commission to set forth the limits, operating conditions, and other requirements applicable to a nuclear reactor facility as set forth in Section 50.36 of 10 CFR Part 50 for the protection of the health and safety of the public

  6. 77 FR 35079 - License Renewal Application for Seabrook Station, Unit 1 ; NextEra Energy Seabrook, LLC

    Science.gov (United States)

    2012-06-12

    ... NUCLEAR REGULATORY COMMISSION [Docket No. 50-443; NRC-2010-0206] License Renewal Application for Seabrook Station, Unit 1 ; NextEra Energy Seabrook, LLC AGENCY: Nuclear Regulatory Commission. ACTION: License renewal application; intent to prepare supplement to draft [[Page 35080

  7. 78 FR 29158 - In the Matter of Zion Solutions, LLC; Zion Nuclear Power Station, Units 1 and 2; Order Approving...

    Science.gov (United States)

    2013-05-17

    ... and DPR-48] In the Matter of Zion Solutions, LLC; Zion Nuclear Power Station, Units 1 and 2; Order... formed for the purpose of acquiring ES, Inc. and is held by certain investment fund entities organized by... Environmental Management Programs, in writing, of such receipt no later than one (1) business day prior to the...

  8. LPGC, Levelized Steam Electric Power Generator Cost

    International Nuclear Information System (INIS)

    Coen, J.J.; Delene, J.G.

    1994-01-01

    1 - Description of program or function: LPGC is a set of nine microcomputer programs for estimating power generation costs for large steam-electric power plants. These programs permit rapid evaluation using various sets of economic and technical ground rules. The levelized power generation costs calculated may be used to compare the relative economics of nuclear and coal-fired plants based on life-cycle costs. Cost calculations include capital investment cost, operation and maintenance cost, fuel cycle cost, decommissioning cost, and total levelized power generation cost. These programs can be used for quick analyses of power generation costs using alternative economic parameters, such as interest rate, escalation rate, inflation rate, plant lead times, capacity factor, fuel prices, etc. The two major types of electric generating plants considered are pressurized-water reactor (PWR) and pulverized coal-fired plants. Data are also provided for the Large Scale Prototype Breeder (LSPB) type liquid metal reactor. Costs for plant having either one or two units may be obtained. 2 - Method of solution: LPGC consists of nine individual menu-driven programs controlled by a driver program, MAINPWR. The individual programs are PLANTCAP, for calculating capital investment costs; NUCLOM, for determining operation and maintenance (O and M) costs for nuclear plants; COALOM, for computing O and M costs for coal-fired plants; NFUEL, for calculating levelized fuel costs for nuclear plants; COALCOST, for determining levelized fuel costs for coal-fired plants; FCRATE, for computing the fixed charge rate on the capital investment; LEVEL, for calculating levelized power generation costs; CAPITAL, for determining capitalized cost from overnight cost; and MASSGEN, for generating, deleting, or changing fuel cycle mass balance data for use with NFUEL. LPGC has three modes of operation. In the first, each individual code can be executed independently to determine one aspect of the total

  9. Steam generator maintenance and life management at Embalse Nuclear Station

    International Nuclear Information System (INIS)

    Sainz, R.; Diaz, G.; Sveruga, H.; Ramakrishnan, T.K.; Azeez, S.

    2004-01-01

    The Embalse Nuclear Station has four steam generators (SGs) with inverted vertical U tubes manufactured by Babcock and Wilcox Canada (B and W). These are main components, both from the operative point of view as the heat transfer from the Primary Heat Transport System (PHTS) to the Secondary System, and from the point of view of safety, as they are the part of the PHTS and its radioactive inventory pressure barrier. In addition, they are one of the most important cost-related elements for potential life extensions. Maintenance and inspections are carried out in order to maintain a high availability of the SGs, as they have had a positive impact on the operational availability of the plant, and to reduce the tube failure probabilities, thus minimizing the amount of radioactive effluents and taking care of the condition of the main components in order to enable the plant life management and the planning of the plant life extension. The most relevant maintenance activities performed have been the inspections performed on 100% of the tubes every 3 years. the mechanical cleaning of the inside of the tubes, the sludge removal from the secondary side tubesheet, the divider plate replacement, and the inspection of internals of the secondary side.Thanks to the latter and to the eddy current inspections, the degradation in the U-bend supports was detected early and every effort is being made to repair them shortly. Besides, a life management program has been started covering the entire plant starting with this important component. The Embalse Nuclear Station's SGs show a low percentage of plugged tubes compared to other stations in similar conditions, but they must be monitored continually and systematically if a life extension is intended. (author)

  10. Kawasaki steam power plant of Tokyo Electric Power Co. and an example of geothermal power generation

    Energy Technology Data Exchange (ETDEWEB)

    1961-01-01

    The first part of this discussion is devoted to a description of the Kawasaki steam power plant, installed by Tokyo Electric Co. to supply electricity to the Keihin industrial area. The output is 700 MW and it possesses a thermal efficiency of 36.9%. The plant is operated automatically by remote control. The latter section describes the status of a geothermal power station in Hakone. It outlines the steam distribution piping, the steam itself, the turbine and vapor/water separation equipment. With regard to technical problems, it is suggested that old wells having weak pressure can be restored by self-cleaning and that further improvement can be brought about by dynamiting the base of the borehole.

  11. Sourcing of Steam and Electricity for Carbon Capture Retrofits.

    Science.gov (United States)

    Supekar, Sarang D; Skerlos, Steven J

    2017-11-07

    This paper compares different steam and electricity sources for carbon capture and sequestration (CCS) retrofits of pulverized coal (PC) and natural gas combined cycle (NGCC) power plants. Analytical expressions for the thermal efficiency of these power plants are derived under 16 different CCS retrofit scenarios for the purpose of illustrating their environmental and economic characteristics. The scenarios emerge from combinations of steam and electricity sources, fuel used in each source, steam generation equipment and process details, and the extent of CO 2 capture. Comparing these scenarios reveals distinct trade-offs between thermal efficiency, net power output, levelized cost, profit, and net CO 2 reduction. Despite causing the highest loss in useful power output, bleeding steam and extracting electric power from the main power plant to meet the CCS plant's electricity and steam demand maximizes plant efficiency and profit while minimizing emissions and levelized cost when wholesale electricity prices are below 4.5 and 5.2 US¢/kWh for PC-CCS and NGCC-CCS plants, respectively. At prices higher than these higher profits for operating CCS retrofits can be obtained by meeting 100% of the CCS plant's electric power demand using an auxiliary natural gas turbine-based combined heat and power plant.

  12. Safety evaluation report related to the operation of Limerick Generating Station, Units 1 and 2 (Docket Nos. 50-352-50-353). Supplement 1

    International Nuclear Information System (INIS)

    1983-12-01

    This report supplements the Safety Evaluation Report (NUREG-0991, August 1983) for the application filed by the Philadelphia Electric Company, as applicant and owner, for licenses to operate the Limerick Generating Station Units 1 and 2 (Docket Nos. 50-352 and 50-353). The facility is located near Pottstown, Pennsylvania. Subject to favorable resolution of the items discussed in this report, the NRC staff concludes that the facility can be operated by the applicant without endangering the health and safety of the public

  13. Safety-evaluation report related to the operation of Limerick Generating Station, Units 1 and 2 (Docket Nos. 50-352 and 50-353)

    International Nuclear Information System (INIS)

    1983-08-01

    The Safety Evaluation Report for the application filed by the Philadelphia Electric Company, as applicant and owner, for licenses to operate the Limerick Generating Station Units 1 and 2 (Docket Nos. 50-352 and 50-353), has been prepared by the Office of Nuclear Reactor Regulation of the US Nuclear Regulatory Commission. The facility is located near Pottstown, Pennsylvania. Subject to favorable resolution of the items discussed in this report, the NRC staff concludes that the facility can be operated by the applicant without endangering the health and safety of the public

  14. NRC Fact-Finding Task Force report on the ATWS event at Salem Nuclear Generating Station, Unit 1, on February 25, 1983

    International Nuclear Information System (INIS)

    1983-03-01

    An NRC Region I Task Force was established on March 1, 1983 to conduct fact finding and data collection with regard to the circumstances which led to an anticipated transient without scram (ATWS) event at the Public Service Electric and Gas Company's Salem Generating Station, Unit 1 on February 25, 1983. The charter of the Task Force was to determine the factual information pertinent to management and administrative controls which should have ensured proper operation of the reactor trip breakers in the solid state protection system. This report documents the findings of the Task Force along with its conclusions

  15. 76 FR 30204 - Exelon Nuclear, Dresden Nuclear Power Station, Unit 1; Exemption From Certain Security Requirements

    Science.gov (United States)

    2011-05-24

    ... contained in the Responsibility Matrix of the safeguards contingency plan.'' Part 73 of Title 10 of the Code... organization, which will have as its objective to provide high assurance that activities involving special... structures) for DNPS Unit 1 is in a form that does not pose a risk of removal (i.e., an intact reactor...

  16. Safety evaluation report related to the operation of Catawba Nuclear Station, Units 1 and 2 (Docket Nos. 50-413 and 50-414)

    International Nuclear Information System (INIS)

    1984-07-01

    The report supplements the Safety Evaluation Report (NUREG-0954) issued in February 1983 by the Office of Nuclear Reactor Regulation of the US Nuclear Regulatory Commission with respect to the application filed by Duke Power Company, North Carolina Municipal Power Agency Number 1, North Carolina Membership Corporation, and Saluda River Electric Cooperative, Inc. as applicants and owners, for licenses to operate the Catawba Nuclear Station, Units 1 and 2 (Docket Nos. 50-413 and 50-414, respectively). The facility is located in York County, South Carolina, approximately 9.6 km (6 mi) north of Rock Hill and adjacent to Lake Wylie. This supplement provides additional information supporting the license for fuel loading and precriticality testing for Unit 1

  17. Safety Evaluation Report related to the operation of Limerick Generating Station, Units 1 and 2 (Docket Nos. 50-352 and 50-353). Supplement 3

    International Nuclear Information System (INIS)

    1984-10-01

    In August 1983 the staff of the Nuclear Regulatory Commission issued its Safety Evaluation Report (NUREG-0991) regarding the application of the Philadelphia Electric Company (the applicant) for licenses to operate the Limerick Generating Station, Units 1 and 2. Supplement 1 was issued in December 1983 and addressed several outstanding issues. Supplement 1 also contains the comments made by the Advisory Committee on Reactor Safeguards in its report dated October 18, 1983. Supplement 2 was issued in October 1984 and addressed fourteen outstanding and fifty-three confirmatory issues and closed them put. This Supplement 3 addresses the remaining issues that require resolution before issuance of the operating license for Unit 1 and closes them out

  18. Safety evaluation report related to the operation of Catawba Nuclear Station, Units 1 and 2 (Docket Nos. 50-413 and 50-414)

    International Nuclear Information System (INIS)

    1984-12-01

    This report supplements the Safety Evaluation Report (NUREG-0954) issued in February 1983 by the Office of Nuclear Reactor Regulation of the US Nuclear Regulatory Commission with respect to the application filed by Duke Power Company, North Carolina Municipal Power Agency Number 1, North Carolina Membership Corporation, and Saluda River Electric Cooperative, Inc., as applicants and owners, for licenses to operate the Catawba Nuclear Station, Units 1 and 2 (Docket Nos. 50-413 and 50-414, respectively). The facility is located in York County, South Carolina, approximately 9.6 km (6 mi) north of Rock Hill and adjacent to Lake Wylie. This supplement provides additional information supporting the license for initial criticality and power ascension to full-power opertion for Unit 1

  19. A study on the evaluation of vibration effect and the development of vibration reduction method for Wolsung unit 1 main steam piping

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Hyun; Kim, Yeon Whan [Korea Electric Power Corp. (KEPCO), Taejon (Korea, Republic of). Research Center; Kim, Tae Ryong; Park, Jin Ho [Korea Atomic Energy Research Inst., Daeduk (Korea, Republic of)

    1996-08-01

    The main steam piping of nuclear power plant which runs between steam generator and high pressure turbine has been experienced to have a severe effect on the safe operation of the plant due to the vibration induced by the steam flowing inside the piping. The imposed cyclic loads by the vibration could result in the degradation of the related structures such as connection parts between main instruments, valves, pipe supports and building. The objective of the study is to reduce the vibration level of Wolsung nuclear power plant unit 1 main steam pipeline by analyzing vibration characteristics of the piping, identifying sources of the vibration and developing a vibration reduction method .The location of the maximum vibration is piping between the main steam header and steam chest .The stress level was found to be within the allowable limit .The main vibration frequency was found to be 4{approx}6 Hz which is the same as the natural frequency from model test .A vibration reduction method using pipe supports of energy absorbing type(WEAR)is selected .The measured vibration level after WEAR installation was reduced about 36{approx}77% in displacement unit (author). 36 refs., 188 figs.

  20. AECL's participation in the commissioning of Point Lepreau generating station unit 1

    International Nuclear Information System (INIS)

    Chawla, S.; Singh, K.; Yerramilli, S.

    1983-05-01

    Support from Atomic Energy of Canada Ltd. (AECL) to Point Lepreau during the commissioning program has been in the form of: seconded staff for commissioning program management, preparation of commissioning procedures, and hands-on commissioning of several systems; analysis of test results; engineering service for problem solving and modifications; design engineering for changes and additions; procurement of urgently-needed parts and materials; technological advice; review of operational limits; interpretation of design manuals and assistance with and preparation of submissions to regulatory authorities; and development of equipment and procedures for inspection and repairs. This, together with AECL's experience in the commissioning of other 600 MWe stations, Douglas Point and Ontario Hydro stations, provides AECL with a wide range of expertise for providing operating station support services for CANDU stations

  1. Analysis of internal events for the Unit 1 of the Laguna Verde Nuclear Power Station. Appendixes

    International Nuclear Information System (INIS)

    Huerta B, A.; Lopez M, R.

    1995-01-01

    This volume contains the appendices for the accident sequences analysis for those internally initiated events for Laguna Verde Unit 1, Nuclear Power Plant. The appendix A presents the comments raised by the Sandia National Laboratories technical staff as a result of the review of the Internal Event Analysis for Laguna Verde Unit 1 Nuclear Power Plant. This review was performed during a joint Sandia/CNSNS multi-day meeting by the end 1992. Also included is a brief evaluation on the applicability of these comments to the present study. The appendix B presents the fault tree models printed for each of the systems included and.analyzed in the Internal Event Analysis for LVNPP. The appendice C presents the outputs of the TEMAC code, used for the cuantification of the dominant accident sequences as well as for the final core damage evaluation. (Author)

  2. Analysis of internal events for the Unit 1 of the Laguna Verde Nuclear Power Station. Appendixes

    International Nuclear Information System (INIS)

    Huerta B, A.; Lopez M, R.

    1995-01-01

    This volume contains the appendices for the accident sequences analysis for those internally initiated events for Laguna Verde Unit 1, Nuclear Power Plant. The appendix A presents the comments raised by the Sandia National Laboratories technical staff as a result of the review of the Internal Event Analysis for Laguna Verde Unit 1 Nuclear Power Plant. This review was performed during a joint Sandia/CNSNS multi-day meeting by the end 1992. Also included is a brief evaluation on the applicability of these comments to the present study. The appendix B presents the fault tree models printed for each of the systems included and analyzed in the Internal Event Analysis for LVNPP. The appendice C presents the outputs of the TEMAC code, used for the cuantification of the dominant accident sequences as well as for the final core damage evaluation. (Author)

  3. Station blackout transient at the Browns Ferry Unit 1 Plant: a severe accident sequence analysis (SASA) program study

    International Nuclear Information System (INIS)

    Schultz, R.R.

    1982-01-01

    Operating plant transients are of great interest for many reasons, not the least of which is the potential for a mild transient to degenerate to a severe transient yielding core damage. Using the Browns Ferry (BF) Unit-1 plant as a basis of study, the station blackout sequence was investigated by the Severe Accident Sequence Analysis (SASA) Program in support of the Nuclear Regulatory Commission's Unresolved Safety Issue A-44: Station Blackout. A station blackout transient occurs when the plant's AC power from a comemrcial power grid is lost and cannot be restored by the diesel generators. Under normal operating conditions, f a loss of offsite power (LOSP) occurs [i.e., a complete severance of the BF plants from the Tennessee Valley Authority (TVA) power grid], the eight diesel generators at the three BF units would quickly start and power the emergency AC buses. Of the eight diesel generators, only six are needed to safely shut down all three units. Examination of BF-specific data show that LOSP frequency is low at Unit 1. The station blackout frequency is even lower (5.7 x 10 - 4 events per year) and hinges on whether the diesel generators start. The frequency of diesel generator failure is dictated in large measure by the emergency equipment cooling water (EECW) system that cools the diesel generators

  4. Steam-treated wood pellets: Environmental and financial implications relative to fossil fuels and conventional pellets for electricity generation

    International Nuclear Information System (INIS)

    McKechnie, Jon; Saville, Brad; MacLean, Heather L.

    2016-01-01

    Highlights: • Steam-treated pellets can greatly reduce greenhouse gas emissions relative to coal. • Cost advantage is seen relative to conventional pellets. • Higher pellet cost is more than balanced by reduced retrofit capital requirements. • Low capacity factors further favour steam-treated pellets over conventional pellets. - Abstract: Steam-treated pellets can help to address technical barriers that limit the uptake of pellets as a fuel for electricity generation, but there is limited understanding of the cost and environmental impacts of their production and use. This study investigates life cycle environmental (greenhouse gas (GHG) and air pollutant emissions) and financial implications of electricity generation from steam-treated pellets, including fuel cycle activities (biomass supply, pellet production, and combustion) and retrofit infrastructure to enable 100% pellet firing at a generating station that previously used coal. Models are informed by operating experience of pellet manufacturers and generating stations utilising coal, steam-treated and conventional pellets. Results are compared with conventional pellets and fossil fuels in a case study of electricity generation in northwestern Ontario, Canada. Steam-treated pellet production has similar GHG impacts to conventional pellets as their higher biomass feedstock requirement is balanced by reduced process electricity consumption. GHG reductions of more than 90% relative to coal and ∼85% relative to natural gas (excluding retrofit infrastructure) could be obtained with both pellet options. Pellets can also reduce fuel cycle air pollutant emissions relative to coal by 30% (NOx), 97% (SOx), and 75% (PM 10 ). Lesser retrofit requirements for steam-treated pellets more than compensate for marginally higher pellet production costs, resulting in lower electricity production cost compared to conventional pellets ($0.14/kW h vs. $0.16/kW h). Impacts of retrofit infrastructure become increasingly

  5. Draft Environmental Statement related to the operation of Vogtle Electric Generating Plant, Units 1 and 2 (Docket Nos. 50-424 and 50-425)

    International Nuclear Information System (INIS)

    1984-10-01

    This Draft Environmental Statement contains an assessment of the environmental impact associated with the operation of the Vogtle Electric Generating Plant, Units 1 and 2, pursuant to the National Environmental Policy Act of 1969 (NEPA) and Title 10 of the Code of Federal Regulations, part 51 (10 CFR 51), as amended, of the Nuclear Regulatory Commission regulations. This statement examines the environmental impacts, environmental consequences and mitigating actions, and environmental and economic benefits and costs associated with station operation

  6. Considerations for increasing unit 1 spent fuel pool capacity at the Laguna Verde station

    International Nuclear Information System (INIS)

    Vera, A.

    1992-01-01

    To increase the spent fuel storage capacity at the Laguna Verde Station in a safe and economical manner and assure a continuous operation of the first Mexican Nuclear Plant, Comision Federal de Electricidad (CFE), the Nation's Utility, seeked alternatives considering the overall world situation, the safety and licensing aspects, as well as the economics and the extent of the nuclear program of Mexico. This paper describes the alternatives considered, their evaluation and how the decision taken by CFE in this field, provides the Laguna Verde Station with a maximum of 37 years storage capacity plus full core reserve

  7. Browns Ferry Nuclear Power Station, Units 1, 2, and 3. Semiannual report, January--June 1975

    International Nuclear Information System (INIS)

    1975-01-01

    Browns Ferry units 1 and 2 operated at maximum power from January 1 to March 22 except as limited by thermal margins, fuel preconditioning, optimum power shape, maintenance, and Unit 2 start-up tests. On March 22 a cable tray fire started causing spurious starting of equipment due to faulted control cables. The reactors were manually scrammed and placed in cold shutdown for fire investigation, clean up, and fuel removal. Information is also presented concerning maintenance, radiochemistry, occupational radiation exposure, release of radioactive materials, and non-radiological environmental monitoring

  8. System Definition Document: Reactor Data Necessary for Modeling Plutonium Disposition in Catawba Nuclear Station Units 1 and 2

    International Nuclear Information System (INIS)

    Ellis, R.J.

    2000-01-01

    The US Department of Energy (USDOE) has contracted with Duke Engineering and Services, Cogema, Inc., and Stone and Webster (DCS) to provide mixed-oxide (MOX) fuel fabrication and reactor irradiation services in support of USDOE's mission to dispose of surplus weapons-grade plutonium. The nuclear station units currently identified as mission reactors for this project are Catawba Units 1 and 2 and McGuire Units 1 and 2. This report is specific to Catawba Nuclear Station Units 1 and 2, but the details and materials for the McGuire reactors are very similar. The purpose of this document is to present a complete set of data about the reactor materials and components to be used in modeling the Catawba reactors to predict reactor physics parameters for the Catawba site. Except where noted, Duke Power Company or DCS documents are the sources of these data. These data are being used with the ORNL computer code models of the DCS Catawba (and McGuire) pressurized-water reactors

  9. Large steam turbines for nuclear power stations. Output growth prospects

    International Nuclear Information System (INIS)

    Riollet, G.; Widmer, M.; Tessier, J.

    1975-01-01

    The rapid growth of the output of nuclear reactors, even if temporary settlement occurs, leads the manufacturer to evaluate, at a given time, technological limitations encountered. The problems dealing with the main components of turbines: steam path, rotors and stators steam valves, controle devices, shafts and bearings, are reviewed [fr

  10. Pilgrim Nuclear Power Station, Unit 1. Annual operating report for 1976

    International Nuclear Information System (INIS)

    Net electrical power generated was 2,415,511 MWH with the generator on line 5,333.6 hrs. Information is presented concerning operations, procedure changes, tests, experiments, maintenance, unit shutdowns and power reductions, and radiation doses to personnel

  11. Marble Hill Nuclear Generating Station, Units 1 and 2. License application, PSAR, general information

    International Nuclear Information System (INIS)

    1975-01-01

    An application is presented for two PWR reactors to be constructed in Salud Township, Jefferson County, Indiana, about six miles northeast of New Washington on the Ohio River. Each unit will have a rated core power level of 3411 MW(t) with a corresponding electrical output of 1130 MW(e). Mechanical draft cooling towers will be provided. The facility, which will replicate the Byron facility will be employed for the generation of electricity for transmission, sale for resale, and distribution

  12. Evaluation of material integrity on electricity generator water steam cycles component (Main Steam Pipe)

    International Nuclear Information System (INIS)

    Sudardjo; Histori; Triyadi, Ari

    1998-01-01

    The evaluation of material integrity on electricity generator component has been done. That component was main steam pipe of Unit II Suralaya Coal Fired Power Plant. evaluation was done by replication technique. The damage was found are two porosity's, from two point samples of six points sample population. Based on cavity evaluation in steels, which proposed by Neubauer and Wedel that porosity's still at class A damage. For class A damage, its means no remedial action would be required until next major scheduled maintenance outage. That porosity's was grouped on isolated cavities and not need ti repair that main steam pipe component less than three year after replication test

  13. Structural design of the turbine building of Angra Nuclear Power Station, Unit 1

    International Nuclear Information System (INIS)

    Varella, L.N.; Reis, F.J.C.; Jurkiewicz, W.J.

    1978-01-01

    The Turbine Building of the Angra Nuclear Power Plant, Unit 1, and particularly its structure and structural design are described. The Turbine Building, as far as its structure is concerned, deviates from the standard structure of any turbine building due to the fact that huge ducts are provided in the foundation mat as to accomodate the circulating water system. This aspect and the fact that the building is founded upon a very deep strata of compacted and controlled fill, makes out of the building structure 'a concrete ship floating in the sea of sand', and by the same reason presents by itself an interesting structure, worth to be known to all engineers involved in design of power plants. This pape, suplemented by a few slides shown during presentation of the paper at the conference, covers the subject mainly from the designers' point of view. (Author)

  14. Drying system for steam generators, particularly for steam generators of nuclear power stations

    International Nuclear Information System (INIS)

    Lavalerie, Claude; Borrel, Christian.

    1982-01-01

    A drying system is described which allows for modular construction and which provides a significant available exchange area in a reduced volume. All the drying elements are identical and are distributed according to a ternay circular symmetry and are placed radially and associated to steam guiding facilities which alternately provide around the axis of revolution an output volume of dry steam from one element and an input volume of wet steam in the following element [fr

  15. 1000 MW steam turbine for Temelin nuclear power station

    International Nuclear Information System (INIS)

    Drahy, J.

    1992-01-01

    Before the end 1991 the delivery was completed of the main parts (3 low-pressure sections and 1 high-pressure section, all of double-flow design) of the first full-speed (3000 r.p.m.) 1000 MW steam turbine for saturated admission steam for the Temelin nuclear power plant. Description of the turbine design and of new technologies and tools used in the manufacture are given. Basic technical parameters of the steam turbine are as follows: maximum output of steam generators 6060 th -1 ; maximum steam flow into turbine 5494.7 th -1 ; output of turbo-set 1024 MW; steam conditions before the turbine inlet: pressure 5.8 MPa, temperature 273.3 degC, steam wetness 0.5%; nominal temperature of cooling water 21 degC; temperature of feed water 220.8 degC; maximum consumption of heat from turbine for heating at 3-stage heating of heating water 60/150 degC. (Z.S.) 7 figs., 2 refs

  16. Results of Steam-Water-Oxygen Treatment of the Inside of Heating Surfaces in Heat-Recovery Steam Generators of the PGU-800 Power Unit at the Perm' District Thermal Power Station

    Science.gov (United States)

    Ovechkina, O. V.; Zhuravlev, L. S.; Drozdov, A. A.; Solomeina, S. V.

    2018-05-01

    Prestarting, postinstallation steam-water-oxygen treatment (SWOT) of the natural circulation/steam reheat heat-recovery steam generators (HRSG) manufactured by OAO Krasny Kotelshchik was performed at the PGU-800 power unit of the Perm District Thermal Power Station (GRES). Prior to SWOT, steam-oxygen cleaning, passivation, and preservation of gas condensate heaters (GCH) of HRSGs were performed for 10 h using 1.3MPa/260°C/70 t/h external steam. After that, test specimens were cut out that demonstrated high strength of the passivating film. SWOT of the inside of the heating surfaces was carried out during no-load operation of the gas turbine unit with an exhaust temperature of 280-300°C at the HRSG inlet. The steam turbine was shutdown, and the generated steam was discharged into the atmosphere. Oxygen was metered into the discharge pipeline of the electricity-driven feed pumps and downcomers of the evaporators. The behavior of the concentration by weight of iron compounds and the results of investigation of cutout specimens by the drop or potentiometric method indicate that the steam-water-oxygen process makes it possible to remove corrosion products and reduce the time required to put a boiler into operation. Unlike other processes, SWOT does not require metal-intensive cleaning systems, temporary metering stations, and structures for collection of the waste solution.

  17. Safety Evaluation Report related to the operation of Comanche Peak Steam Electric Station, Units 1 and 2 (Docket Nos. 50-445 and 50-446). Supplement No. 10

    International Nuclear Information System (INIS)

    1985-04-01

    This Supplement provides the results of the staff's evaluation and resolution of approximately 400 technical concerns and allegations in the mechanical and piping area regarding construction practices at the Comanche Peak facility. This report does not address the Walsh/Doyle allegations regarding deficiencies in the pipe support design process and the new allegations recently received by the staff

  18. Management of main generator condition during long term plant shut down at Higashidori Nuclear Power Station Unit 1

    International Nuclear Information System (INIS)

    Kato, Seiji

    2014-01-01

    Higashidori Nuclear Power Station Unit 1 shut down on February 6, 2011 to start 4th refuel outage. On March 11, 2011, we keep going refuel outage on this moment a large earthquake occurred and tsunami was generated following it which called 'Great East Japan Earthquake'. Refuel outage takes 3 ∼ 5 months normally but Higashidori NPS still keeping shut down over 3 years due to some issues. In this paper, we introduce about management of Main generator condition during long term plant shut down situation in addition to normal plant shut down situation to keep well. (author)

  19. Technical evaluation of RETS-required reports for Browns Ferry Nuclear Power Station, Units 1, 2, and 3, for 1983

    International Nuclear Information System (INIS)

    Young, T.E.; Magleby, E.H.

    1985-01-01

    A review was performed of reports required by federal regulations and the plant-specific radiological effluent technical specifications (RETS) for operations conducted at Tennessee Valley Authority's Browns Ferry Nuclear Station, Units 1, 2, and 3, during 1983. The two periodic reports reviewed were (a) the Effluents and Waste Disposal Semiannual Report, First Half 1983 and (b) the Effluents and Waste Disposal Semiannual Report, Second Half 1983. The principal review guidelines were the plant's specific RETs and NRC guidance given in NUREG-0133, ''Preparation of Radiological Effluent Technical Specifications for Nuclear Power Plants.'' The Licensee's submitted reports were found to be reasonably complete and consistent with the review guidelines

  20. Technical evaluation of RETS-required reports for Rancho Seco Nuclear Generating Station, Unit 1 for 1983

    International Nuclear Information System (INIS)

    Magleby, E.H.; Young, T.E.

    1985-01-01

    A review of the reports required by Federal regulations and the plant-specific Radiological Effluent Technical Specifications (RETS) for operations conducted during 1983 was performed. The periodic reports reviewed for the Rancho Seco Nuclear Generating Station, Unit 1 were the Semiannual Effluent Release Report, January 1, 1983 to June 30, 1983 and the Radiation Exposure, Environmental Protection, Effluent and Waste Disposal Report. The principal review guidelines were the plant's specific RETS which were based on NRC guidance given in NUREG-0133, ''Preparation of Radiological Effluent Technical Specifications for Nuclear Power Plants.'' The Licensee's submitted reports were found to be reasonably complete and consistent with the review guidelines

  1. Nine Mile Point Nuclear Station, Unit 1. Annual report of operation, 1975

    International Nuclear Information System (INIS)

    1976-01-01

    Net electrical power generated was 3,044,948 MWh(e) with the reactor on line 6,238 hrs. Information is presented concerning power generation, shutdowns, corrective maintenance, chemistry and radiochemistry, occupational radiation exposure, release of radioactive materials, reportable occurrences, effluent and waste disposal, meteorological summary, and environmental monitoring

  2. Fort Calhoun Station, Unit 1. Semiannual operating report, January--June 1975

    International Nuclear Information System (INIS)

    1975-01-01

    Net electrical power generated was 604,751.4 MHWH(e) with the reactor on line 2,049.9 hrs. Information is presented concerning power generation, shutdowns, corrective maintenance, chemistry and radiochemistry, occupational radiation exposure, release of radioactive materials, abnormal occurrences, and environmental monitoring. (FS)

  3. Beaver Valley Power Station, Unit 1. Annual operating report for 1976

    International Nuclear Information System (INIS)

    Net electrical energy generated was 441,530 MWH with the generator on line 1714.9 hours. Information is presented concerning operations, maintenance, changes, licensee event reports, power generation, shutdowns and forced power reductions, personnel radiation exposures, and unique reporting requirements

  4. Millstone Nuclear Power Station, Unit 1. Annual operating report: 1 January--31 December 1976

    International Nuclear Information System (INIS)

    1977-01-01

    Net electrical power generated was 3,752,445 MWh with the generator on line 6,682 hrs. Information is presented concerning operations; shutdowns and power reductions; refueling; maintenance; failed fuel elements; power generation; occupational personnel radiation exposure; and changes in technical specifications, plant design, and key supervisory personnel

  5. Nine Mile Point Nuclear Station, Unit 1. Annual report of operation: January--December 1976

    International Nuclear Information System (INIS)

    1977-01-01

    Net electrical power generated was 4,112,827 MWH with the reactor on line 7,727.67 hrs. Information is presented concerning operations, power generation, shutdowns, corrective maintenance, chemistry and radiochemistry, occupational radiation exposure, release of radioactive materials, reportable occurrences, and fuel performance

  6. 77 FR 27804 - Entergy Operations, Inc.; Grand Gulf Nuclear Station, Unit 1

    Science.gov (United States)

    2012-05-11

    ... wells have degraded over time and thus cannot perform at their design capacity. Activities to support... piping into the river, and electrical equipment feeders. The proposed working pad is designed to contain..., to control scale, to control corrosion, and to clean and defoul the condenser. These waste liquids...

  7. Fort Calhoun Station, Unit 1. Semiannual report, July--December 1975

    International Nuclear Information System (INIS)

    1976-01-01

    Net electrical power generated was 1,562,051.4 MWH(e) with the reactor on line 3,858.6 hrs. Information is presented concerning operations, power generation, shutdowns, corrective maintenance, primary coolant, chemistry, occupational radiation exposure, release of radioactive materials, and environmental monitoring

  8. Millstone Nuclear Power Station, Unit 1. Semiannual operating report, July--December 1975

    International Nuclear Information System (INIS)

    1976-01-01

    Net electrical power generated was 1,525,943 MWh(e) with the reactor on line 2,682 hrs. Information is presented concerning power generation, shutdowns, corrective maintenance, chemistry and radiochemistry, environmental effects monitoring, release of radioactive materials, and reportable occurrences. Occupational personnel radiation exposures will be submitted later

  9. Millstone Nuclear Power Station, Unit 1. Semiannual operating report, January--June 1975

    International Nuclear Information System (INIS)

    1975-01-01

    Net electrical power generated was 2,373,130 MWH(e) with the reactor on line 3,915 hrs. Information is presented concerning power generation, shutdowns, corrective maintenance, chemistry and radiochemistry, occupational radiation exposure, release of radioactive materials, abnormal occurrences, and environmental radiation monitoring. (FS)

  10. 77 FR 41814 - Entergy Operations, Inc.; Grand Gulf Nuclear Station, Unit 1

    Science.gov (United States)

    2012-07-16

    ... result of the EPU, which will also results in an increase in water loss through evaporation, blowdown... supply piping to the plant service water header, discharge piping into the river, and electrical... only three public water supply systems in the State of Mississippi that use surface water as a source...

  11. Rancho Seco Nuclear Generating Station, Unit 1. Annual report for 1976

    International Nuclear Information System (INIS)

    1977-03-01

    Net electrical energy generated was 2,205,091 MWH with the generator on line 2,662 hrs. Information is presented concerning operations, changes, tests, maintenance, fuel performance, refueling, shutdowns and outages, containment local leak rate testing, and power generation

  12. Three Mile Island Nuclear Station, Unit 1. 1976 annual operating report

    International Nuclear Information System (INIS)

    1977-01-01

    Net electrical power generated was 4,335,625 MWh with the reactor on line 5,747.5 hrs. Information is presented concerning operations; specification, procedures, and FSAR changes; corrective maintenance; irradiated fuel examinations; radioactive effluent releases; personnel radiation exposures; shutdowns; and forced power reductions

  13. Pilgrim Nuclear Power Station, Unit 1. Fifth semiannual operating and maintenance report, July--December 1974

    International Nuclear Information System (INIS)

    1974-01-01

    During this period the reactor was critical for 3,550.3 hrs and the net electrical power generated was 1,973,033 MWH. Information is presented concerning operations, maintenance, radioactive effluents, environmental monitoring, and radioactive materials released to unrestricted areas. (U.S.)

  14. Steam turbine generators for Sizewell 'B' nuclear power station

    International Nuclear Information System (INIS)

    Hesketh, J.A.; Muscroft, J.

    1990-01-01

    The thermodynamic cycle of the modern 3000 r/min steam turbine as applied at Sizewell 'B' is presented. Review is made of the factors affecting thermal efficiency including the special nature of the wet steam cycle and the use of moisture separation and steam reheating. Consideration is given to the optimization of the machine and cycle parameters, including particular attention to reheating and to the provision of feedheating, in order to achieve a high overall level of performance. A modular design approach has made available a family of machines suitable for the output range 600-1300 MW. The constructional features of the 630 MW Sizewell 'B' turbine generators from this range are described in detail. The importance of service experience with wet steam turbines and its influence on the design of modern turbines for pressurized water reactor (PWR) applications is discussed. (author)

  15. Steam generator replacement at Kansai Electric Power Co., Inc

    International Nuclear Information System (INIS)

    Kimura, S.; Dodo, Takashi; Negishi, Kazuo

    1995-01-01

    Eleven nuclear units are in operation at the Kansai Electric Power Co., Inc.. In seven of them, Mihama-1·2·3, Takahama-1·2, and Ohi-1·2, comparatively long duration for tube inspection and repair have been required during late annual outages. KEPCO decided to replace all steam generators in these 7 units with the latest model which was improved upon the past degradation experiences, as a result of comprehensive considerations including public confidence in nuclear power generation, maintenability, and economic efficiency. This report presents the design improvements in new steam generators, replacement techniques, and so on. (author)

  16. Safety Evaluation Report related to the operation of Limerick Generating Station, Units 1 and 2 (Docket Nos. 50-352 and 50-353). Supplement No. 4

    International Nuclear Information System (INIS)

    1985-05-01

    In August 1983 the staff of the Nuclear Regulatory Commission issued its Safety Evaluation Report (NUREG-0991) regarding the application of the Philadelphia Electric Company (the applicant) for licenses to operate the Limerick Generating Station, Units 1 and 2 located on a site in Montgomery and Chester Counties, Pennsylvania. A license (NPF-27) for the operation of Limerick Unit 1 was issued on October 26, 1984. The license, which was restricted to a five percent power level, contained conditions which required resolution prior to proceeding beyond the five percent power level. This Supplement 4 to the SER addresses some of those technical issues and their associated license conditions which require resolution prior to proceeding beyond the five percent power level. The remaining issues to be addressed prior to proceeding beyond the five percent power level will be addressed in a later supplement to this report. This Supplement 4 to the SER also contains the comments made by the Advisory Committee on Reactor Safeguards in its report dated November 6, 1984, regarding full power operation of Limerick Unit 1

  17. Safety evaluation report related to the operation of Limerick Generating Station, Units 1 and 2, Docket nos. 50-352 and 50-353

    International Nuclear Information System (INIS)

    1989-08-01

    In August 1983 the staff of the Nuclear Regulatory commission issued its Safety Evaluation Report (NUREG-0991) regarding the application of the Philadelphia Electric Company (the licensee) for the licenses to operate the Limerick Generating Station, Units 1 and 2, located on a site in Montgomery and Chester Counties, Pennsylvania. Supplement 1 was issued in December 1983. Supplement 2 was issued in October 1984. Supplement 3 was issued in October 1984. Supplement 4 was issued in May 1985. Supplement 5 was issued in July 1985. Supplement 6 was issued in August 1985 and Supplement 7 was issued in April 1989. Supplement 7 addresses the major design differences between Units 1 and 2, the resolution of all issues that remained open when the Unit 1 full-power license was issued, the staff's assessment regarding the application by the licensee to operate Unit 2 and issues that require resolution before issuance of an operating license for Unit 2. Supplements 8 and 9 address further issues that require resolution prior to issuance of an operating license. 1 tab

  18. Fort Calhoun Station, Unit 1. Annual operation report: January-December 1977 (including environmental report)

    International Nuclear Information System (INIS)

    1978-02-01

    Net electrical energy generated in 1977 was 2,922,683.7 MWH with the generator on line 6,959.8 hours. Information is presented concerning operations, power generation, shutdowns, maintenance, changes, tests, experiments, occupational personnel radiation exposures, and primary coolant chemistry. Data on radioactive effluent releases, meteorology, environmental monitoring, and potential radiation doses to individuals for July 7, 1977 to December 31, 1977 are also included

  19. Browns Ferry Nuclear Power Station, Units 1, 2, and 3. Annual operating report: January--December 1976

    International Nuclear Information System (INIS)

    1977-01-01

    Units 1 and 2 were down for the first half of the year caused by the fire of March 1975. Net electrical power generated by Unit 1 this year was 1,301,183 MWH with the generator on line 2,175.25 hrs. Unit 2 generated 1,567,170 MWH with the generator on line 2,548.73 hrs. Unit 3 began full power operation on November 20th and generated 1,416,891 MWH with the generator on line 2,058.20 hrs. Information is presented concerning operations, fuel performance, surveillance testing, containment leak testing, changes, power generation, shutdown and forced reductions, coolant chemistry, occupational radiation exposures, and maintenance

  20. 1000 MW steam turbine for nuclear power station

    International Nuclear Information System (INIS)

    Drahy, J.

    1987-01-01

    Skoda Works started the manufacture of the 1000 MW steam turbine for the Temelin nuclear power plant. The turbine will use saturated steam at 3,000 r.p.m. It will allow steam supply to heat water for district heating, this of an output of 893 MW for a three-stage water heating at a temperature of 150/60 degC or of 570 MW for a two-stage heating at a temperature of 120/60 degC. The turbine features one high-pressure and three identical low-pressure stages. The pressure gradient between the high-pressure and the low-pressure parts was optimized as concerns the thermal efficiency of the cycle and the thermodynamic efficiency of the low-pressure part. A value of 0.79 MPa was selected corresponding to the maximum flow rate of the steam entering the turbine. This is 5,495 t/h, the admission steam parameters are 273.3 degC and 5.8 MPa. The feed water temperature is 220.9 degC. It is expected that throughout the life of the turbine, there will be 300 cold starts, 1,000 starts following shutdown for 55 to 88 hours, and 600 starts following shutdown for 8 hours. (Z.M.). 8 figs., 1 ref

  1. Lessons learned from the seismic reevaluation of San Onofre Nuclear Generating Station, Unit 1

    International Nuclear Information System (INIS)

    Russell, M.J.; Shieh, L.C.; Tsai, N.C.; Cheng, T.M.

    1987-01-01

    A seismic reevaluation program was conducted for the San Onofre Nuclear Generating Station, Unit No. 1 (SONGS 1). SEP was created by the NRC to provide (1) an assessment of the significance of differences between current technical positions on safety issues and those that existed when a particular plant was licensed, (2) a basis for deciding on how these differences should be resolved in an integrated plant review, and (3) a documented evaluation of plant safety. The Systematic Evaluation Program (SEP) seismic review for SONGS 1 was exacerbated by the results of an evaluation of an existing capable fault near the site during the design review for Units 2 and 3, which resulted in a design ground acceleration of 0.67g. Southern California Edison Company (SCE), the licensee for SONGS 1, realized that a uniform application of existing seismic criteria and methods would not be feasible for the upgrading of SONGS 1 to such a high seismic requirement. Instead, SCE elected to supplement existing seismic criteria and analysis methods by developing criteria and methods closer to the state of the art in seismic evaluation techniques

  2. Some causes of vibrations recorded by in-service diagnostic systems in steam generators of units 1 and 2 of Dukovany nuclear power plant

    International Nuclear Information System (INIS)

    Sadilek, J.; Matal, O.

    1989-01-01

    A brief description is presented of the design of the steam generators of the first and second units of the Dukovany nuclear power plant. Attention is also given to the feed water systems and the diagnostic systems. The causes are analyzed of the irregularly occurring vibrations in the steam generators in service. It is demonstrated that the source of the vibrations transmitted to the steam generators are the valves in the feeding tract. The vibrations are induced by dynamic forces from the feed water. Reducing the water pressure at the delivery of the electric feed pumps by reducing the size of the rotor, etc., does not remove all vibrations. It is therefore recommended that valves be ins+alled with better regulating characteristics. (Z.M.). 6 figs., 1 tab., 3 refs

  3. Design of large steam turbines for PWR power stations

    International Nuclear Information System (INIS)

    Hobson, G.; Muscroft, J.

    1983-01-01

    The thermodynamic cycle requirements for use with pressurized water reactors are reviewed and the manner in which thermal efficiency is maximised is outlined. The special nature of the wet steam cycle associated with turbines for this type of reactor is discussed. Machine and cycle parameters are optimised to achieve high thermal efficiency, particular attention being given to arrangements for water separation and steam reheating and to provisions for feedwater heating. Principles and details of mechanical design are considered for a range of both full-speed turbines running at 3000 rpm on 50 Hz systems and half-speed turbines running at 1800 rpm on 60 Hz systems. The importance of service experience with nuclear wet steam turbines and its relevance to the design of modern turbines for pressurized water reactor applications is discussed. (author)

  4. Water separator for a steam turbine for nuclear power stations

    International Nuclear Information System (INIS)

    Herzog, J.; Hubble, W.S.; Woods, K.K.

    1976-01-01

    The invention concerns a water separator for the condensation of humidity from steam of the inertia type, which has an improved flow distribution and can therefore be built for large dimensions. This is achieved by variation of the dimensions of the components of the liquid separator, particularly by the configuration of the drain trough, and by the fixing of suitable impact sheets, which produce turbulence and distribute the wet steam evenly over the separator elements. There is a detailed representation with drawings. (UW) [de

  5. Damage of the Unit 1 reactor building overhead bridge crane at Onagawa Nuclear Power Station caused by the Great East Japan Earthquake and its repair works

    International Nuclear Information System (INIS)

    Sugamata, Norihiko

    2014-01-01

    The driving shaft bearings of the Unit 1 overhead bridge crane were damaged by the Great East Japan Earthquake at Onagawa Nuclear Power Station. The situation, investigation and repair works of the bearing failure are introduced in this paper. (author)

  6. 77 FR 74548 - North Shore Railroad Company-Acquisition and Operation Exemption-PPL Susquehanna, LLC

    Science.gov (United States)

    2012-12-14

    ... Railroad Company--Acquisition and Operation Exemption--PPL Susquehanna, LLC North Shore Railroad Company...., that PPL Susquehanna, LLC (PPLS), and Allegheny Electric Cooperative, Inc. (AEC), the owners of the... extends to an interchange with Norfolk Southern Railway. North Shore states that it provides the only...

  7. Research on simulation of supercritical steam turbine system in large thermal power station

    Science.gov (United States)

    Zhou, Qiongyang

    2018-04-01

    In order to improve the stability and safety of supercritical steam turbine system operation in large thermal power station, the body of the steam turbine is modeled in this paper. And in accordance with the hierarchical modeling idea, the steam turbine body model, condensing system model, deaeration system model and regenerative system model are combined to build a simulation model of steam turbine system according to the connection relationship of each subsystem of steam turbine. Finally, the correctness of the model is verified by design and operation data of the 600MW supercritical unit. The results show that the maximum simulation error of the model is 2.15%, which meets the requirements of the engineering. This research provides a platform for the research on the variable operating conditions of the turbine system, and lays a foundation for the construction of the whole plant model of the thermal power plant.

  8. Turbine steam path replacement at the Grafenrheinfeld Nuclear Power Station

    International Nuclear Information System (INIS)

    Weschenfelder, K.D.; Oeynhausen, H.; Bergmann, D.; Hosbein, P.; Termuehlen, H.

    1994-01-01

    In the last few years, replacement of old vintage steam turbine flow path components has been well established as a valid approach to improve thermal performance of aged turbines. In nuclear power plants, performance improvement is generally achieved only by design improvements since performance deterioration of old units is minor or nonexistent. With fossil units operating over decades loss in performance is an additional factor which can be taken into account. Such loss of performance can be caused by deposits, solid particle erosion, loss of shaft and inter-stage seal strips, etc. Improvement of performance is typically guaranteed as output increases for operation at full load. This value can be evaluated as a direct gain in unit capacity without fuel or steam supply increase. Since fuel intake does not change, the relative improvement of the net plant heat rate or efficiency is equal to the relative increase in output. The heat rate improvement is achieved not only at full load but for the entire load range. Such heat rate improvement not only moves a plant up on the load dispatch list increasing its capacity factor, but also extensive fuel savings can pay off for the investment cost of new steam path components. Another important factor is that quite often older turbine designs show a deterioration of their reliability and need costly repairs. With new flow path components an aged steam turbine starts a new useful life

  9. Safety evaluation report related to the operation of Catawba Nuclear Station, Units 1 and 2. Docket Nos. 50-413 and 50-414. Suppl. 1

    International Nuclear Information System (INIS)

    1983-04-01

    This reort supplements the Safety Evaluation Report (NUREG-0954) issued in February 1983 by the Office of Nuclear Reactor Regulation of the US Nuclear Regulatory Commission with respect to the application filed by Duke Power Company, North Carolina Municipal Power Agency Number 1, North Carolina Membership Corporation, and Saluda River Electric Cooperative, Inc. as applicants and owners, for licenses to operate the Catawba Nuclear Station, Units 1 and 2 (Docket Nos. 50-413 and 50-414, respectively). The facility is located in York County, South Carolina, approximately 9.6 km (6 mi) north of Rock Hill and adjacent to Lake Wylie. This supplement provides more recent information regarding resolution or updating of some of the open and confirmatory items and license conditions identified in the Safety Evaluation Report, and discusses the recommendations of the Advisory Committee on Reactor Safeguards in its report dated March 15, 1983

  10. Safety Evaluation Report related to the operation of Cartawba Nuclear Station, Units 1 and 2 (Docket Nos. 50-413 and 50-414). Supplement No. 5

    International Nuclear Information System (INIS)

    1986-02-01

    This report supplements the Safety Evaluation Report (NUREG-0954) issued in February 1983 by the Office of Nuclear Reactor Regulation of the US Nuclear Regulatory Commission with respect to the application filed by Duke Power Company, North Carolina Municipal Power Agency Number 1, North Carolina Membership Corporation, Saluda River Electric Cooperative, Inc., and Piedmont Municipal Power Agency, as applicants and owners, for licenses to operate the Catawba Nuclear Station, Units 1 and 2 (Docket Nos. 50-413 and 50-414, respectively). The facility is located in York County, South Carolina, approximately 9.6 km (6 mi) north of Rock Hill and adjacent to Lake Wylie. This supplement provides additional information supporting the license for initial criticality and power ascension to full-power operation for Unit 2

  11. Safety Evaluation Report related to the operation of Grand Gulf Nuclear Station, Units 1 and 2 (Docket Nos. 50-416 and 50-417)

    International Nuclear Information System (INIS)

    1984-10-01

    This report supplements the Safety Evaluation Report (NUREG-0831) issued in September 1981 by the Office of Nuclear Reactor Regulation of the US Nuclear Regulatory Commission with respect to the application filed by Mississippi Power and Light (MP and L) Company, Middle South Energy, Inc., and South Mississippi Electric Power Association as applicants and owners, for licenses to operate the Grand Gulf Nuclear Station, Units 1 and 2 (Docket Nos. 50-416 and 50-417, respectively). The facility is located on the east bank of the Mississippi River near Port Gibson in Claiborne County, Mississippi. This supplement provides information on the NRC staff's evaluation of requests for exemptions to NRC regulations pursuant to the Commission's direction in CLI-84-19, dated October 25, 1984

  12. Safety evaluation report related to the operation of Catawba Nuclear Station, Units 1 and 2 (Docket Nos. 50-413 and 50-414). Supplement 2

    International Nuclear Information System (INIS)

    1984-06-01

    This report supplements the Safety Evaluation Report (NUREG-0954) and Supplement 1 with respect to the application filed by Duke Power Company, North Carolina Municipal Power Agency Number 1, North Carolina Membership Corporation, and Saluda River Electric Cooperative, Inc., as applicants and owners, for licenses to operate the Catawba Nuclear Station, Units 1 and 2 (Docket Nos., 50-413 and 50-414, respectively). The facility is located in York County, South Carolina, approximately 9.6 km (6 mi) north of Rock Hill and adjacent to Lake Wylie. This supplement provides more recent information regarding resolution or updating of some of the open and confirmatory issues and license conditions identified in the Safety Evaluation Report

  13. Safety Evaluation Report related to the operation of Catawba Nuclear Station, Units 1 and 2 (Docket Nos. 50-413 and 50-414). Supplement No. 6

    International Nuclear Information System (INIS)

    1986-05-01

    This report supplements the Safety Evaluation Report (NUREG-0954) issued in February 1983 by the Office of Nuclear Reactor Regulation of the US Nuclear Regulatory Commission with respect to the application filed by Duke Power Company, North Carolina Municipal Power Agency Number 1, North Carolina Membership Corporation, Saluda River Electric Cooperative, Inc., and Piedmont Municipal Power Agency, as applicants and owners, for licenses to operate the Catawba Nuclear Station, Units 1 and 2 (Docket Nos. 50-413 and 50-414, respectively). The facility is located in York County, South Carolina, approximately 9.6 km (6 miles) north of Rock Hill and adjacent to Lake Wylie. This supplement provides additional information supporting the license for operation above 5% power and power ascension to full-power operation for Unit 2

  14. Review of the Brunswick Steam Electric Plant Probabilistic Risk Assessment

    International Nuclear Information System (INIS)

    Sattison, M.B.; Davis, P.R.; Satterwhite, D.G.; Gilmore, W.E.; Gregg, R.E.

    1989-11-01

    A review of the Brunswick Steam Electric Plant probabilistic risk Assessment was conducted with the objective of confirming the safety perspectives brought to light by the probabilistic risk assessment. The scope of the review included the entire Level I probabilistic risk assessment including external events. This is consistent with the scope of the probabilistic risk assessment. The review included an assessment of the assumptions, methods, models, and data used in the study. 47 refs., 14 figs., 15 tabs

  15. Critical evaluation of the nonradiological environmental technical specifications. Volume 4. San Onofre Nuclear Generating Station, Unit 1

    Energy Technology Data Exchange (ETDEWEB)

    Adams, S.M.; Cunningham, P.A.; Gray, D.D.; Kumar, K.D.

    1976-08-10

    A comprehensive study of the data collected as part of the environmental Technical Specifications program for Unit 1 of the San Onofre Nuclear Generating Station (SONGS 1) was conducted for the Office of Nuclear Regulatory Research of the U.S. Nuclear Regulatory Commission. The program included an analysis of the hydrothermal and ecological monitoring data collected during 1975. The hydrothermal analysis includes a discussion of models used in plume predictions prior to plant operation and an evaluation of the present hydrothermal monitoring program. The ecological evaluation was directed toward reviewing the strengths and weaknesses of the various sampling programs designed to monitor the planktonic, benthic, and nektonic communities inhabiting the inshore coastal area in the vicinity of San Onofre.

  16. Metallurgical investigation of cracking of the isolation valve downstream piping of regenerative heat exchanger at beaver valley unit 1 station

    International Nuclear Information System (INIS)

    Rao, G.V.

    1998-01-01

    A metallurgical investigation was conducted to establish the mechanism and cause of cracking in the regenerative heat exchanger piping at Beaver Valley Unit 1 PWR station in the USA. The investigation, which was centered on an eight inch long pipe section containing the cracking included surface examinations, metallographic and fractographic examinations, and chemistry evaluations. The results of the examinations showed that there were two types of pipe degradation mechanisms that affected the type 304 stainless schedule 40 piping. These consisted of localized corrosive attack on the OD surface due to the presence of chlorides, sulphates and phosphates, and transgranular stress corrosion cracking in the pipe wall due to the presence of chloride contaminants. The overall results of the investigation showed that the introduction of contaminants from external sources other than pipe insulation was the cause of heat exchanger pipe cracking. (author)

  17. Critical evaluation of the nonradiological environmental technical specifications. Volume 4. San Onofre Nuclear Generating Station, Unit 1

    International Nuclear Information System (INIS)

    Adams, S.M.; Cunningham, P.A.; Gray, D.D.; Kumar, K.D.

    1976-01-01

    A comprehensive study of the data collected as part of the environmental Technical Specifications program for Unit 1 of the San Onofre Nuclear Generating Station (SONGS 1) was conducted for the Office of Nuclear Regulatory Research of the U.S. Nuclear Regulatory Commission. The program included an analysis of the hydrothermal and ecological monitoring data collected during 1975. The hydrothermal analysis includes a discussion of models used in plume predictions prior to plant operation and an evaluation of the present hydrothermal monitoring program. The ecological evaluation was directed toward reviewing the strengths and weaknesses of the various sampling programs designed to monitor the planktonic, benthic, and nektonic communities inhabiting the inshore coastal area in the vicinity of San Onofre

  18. Seismic structural fragility investigation for the San Onofre Nuclear Generating Station, Unit 1 (Project I); SONGS-1 AFWS Project

    International Nuclear Information System (INIS)

    Wesley, D.A.; Hashimoto, P.S.

    1982-04-01

    An evaluation of the seismic capacities of several of the San Onofre Nuclear Generating Station, Unit 1 (SONGS-1) structures was conducted to determine input to the overall probabilistic methodology developed by Lawrence Livermore National Laboratory. Seismic structural fragilities to be used as input consist of median seismic capacities and their variabilities due to randomness and uncertainty. Potential failure modes were identified for each of the SONGS-1 structures included in this study by establishing the seismic load-paths and comparing expected load distributions to available capacities for the elements of each load-path. Particular attention was given to possible weak links and details. The more likely failure modes were screened for more detailed investigation

  19. STEAM GENERATOR TUBE INTEGRITY ANALYSIS OF A TOTAL LOSS OF ALL HEAT SINKS ACCIDENT FOR WOLSONG NPP UNIT 1

    Directory of Open Access Journals (Sweden)

    HEOK-SOON LIM

    2014-02-01

    Full Text Available A total loss of all heat sinks is considered a severe accident with a low probability of occurrence. Following a total loss of all heat sinks, the degasser/condenser relief valves (DCRV become the sole means available for the depressurization of the primary heat transport system. If a nuclear power plant has a total loss of heat sinks accident, high-temperature steam and differential pressure between the primary heat transport system (PHTS and the steam generator (SG secondary side can cause a SG tube creep rupture. To protect the PHTS during a total loss of all heat sinks accident, a sufficient depressurization capability of the degasser/condenser relief valve and the SG tube integrity is very important. Therefore, an accurate estimation of the discharge through these valves is necessary to assess the impact of the PHTS overprotection and the SG tube integrity of the primary circuit. This paper describes the analysis of DCRV discharge capacity and the SG tube integrity under a total loss of all heat sink using the CATHENA code. It was found that the DCRV's discharge capacity is enough to protect the overpressure in the PHTS, and the SG tube integrity is maintained in a total loss of all heat accident.

  20. Steam Generator Tube Integrity Analysis of A Total Loss of all Heat Sinks Accident for Wolsong NPP Unit 1

    Energy Technology Data Exchange (ETDEWEB)

    Lim, Heoksoon; Song, Taeyoung; Chi, Moongoo [Korea Htydro and Nuclear Power Co., Ltd., Daejeon (Korea, Republic of); Kim, Seoungrae [Nuclear Engineering Service and Solution, Daejeon (Korea, Republic of)

    2014-02-15

    A total loss of all heat sinks is considered a severe accident with a low probability of occurrence. Following a total loss of all heat sinks, the degasser/condenser relief valves (DCRV) become the sole means available for the depressurization of the primary heat transport system. If a nuclear power plant has a total loss of heat sinks accident, high-temperature steam and differential pressure between the primary heat transport system (PHTS) and the steam generator (SG) secondary side can cause a SG tube creep rupture. To protect the PHTS during a total loss of all heat sinks accident, a sufficient depressurization capability of the degasser/condenser relief valve and the SG tube integrity is very important. Therefore, an accurate estimation of the discharge through these valves is necessary to assess the impact of the PHTS overprotection and the SG tube integrity of the primary circuit. This paper describes the analysis of DCRV discharge capacity and the SG tube integrity under a total loss of all heat sink using the CATHENA code. It was found that the DCRV's discharge capacity is enough to protect the overpressure in the PHTS, and the SG tube integrity is maintained in a total loss of all heat accident.

  1. Steam Generator Tube Integrity Analysis of A Total Loss of all Heat Sinks Accident for Wolsong NPP Unit 1

    International Nuclear Information System (INIS)

    Lim, Heoksoon; Song, Taeyoung; Chi, Moongoo; Kim, Seoungrae

    2014-01-01

    A total loss of all heat sinks is considered a severe accident with a low probability of occurrence. Following a total loss of all heat sinks, the degasser/condenser relief valves (DCRV) become the sole means available for the depressurization of the primary heat transport system. If a nuclear power plant has a total loss of heat sinks accident, high-temperature steam and differential pressure between the primary heat transport system (PHTS) and the steam generator (SG) secondary side can cause a SG tube creep rupture. To protect the PHTS during a total loss of all heat sinks accident, a sufficient depressurization capability of the degasser/condenser relief valve and the SG tube integrity is very important. Therefore, an accurate estimation of the discharge through these valves is necessary to assess the impact of the PHTS overprotection and the SG tube integrity of the primary circuit. This paper describes the analysis of DCRV discharge capacity and the SG tube integrity under a total loss of all heat sink using the CATHENA code. It was found that the DCRV's discharge capacity is enough to protect the overpressure in the PHTS, and the SG tube integrity is maintained in a total loss of all heat accident

  2. Design of large steam turbines for PWR power stations

    International Nuclear Information System (INIS)

    Hobson, G.

    1984-01-01

    The authors review the thermodynamic cycle requirements for use with pressurized-water reactors, outline the way thermal efficiency is maximized, and discuss the special nature of the wet-steam cycle associated with turbines for this type of reactor. Machine and cycle parameters are optimized to achieve high thermal efficiency, particular attention being given to arrangements for water separation and steam reheating and to provisions for feedwater heating. Principles and details of mechanical design are considered for a range both of full-speed turbines running at 3000 rev/min on 50 Hz systems and of half-speed turbines running at 1800 rev/min on 60 Hz systems. The importance of service experience with nuclear wet-stream turbines, and its relevance to the design of modern turbines for PWR applications, is discussed. (author)

  3. Evaluation of a main steam line break with induced, multiple tube ruptures: A comparison of NUREG 1477 (Draft) and transient methodologies Palo Verde Nuclear Generating Station

    Energy Technology Data Exchange (ETDEWEB)

    Parrish, K.R.

    1995-09-01

    This paper presents the approach taken to analyze the radiological consequences of a postulated main steam line break event, with one or more tube ruptures, for the Palo Verde Nuclear Generating Station. The analysis was required to support the restart of PVNGS Unit 2 following the steam generator tube rupture event on March 14, 1993 and to justify continued operation of Units 1 and 3. During the post-event evaluation, the NRC expressed concern that Unit 2 could have been operating with degraded tubes and that similar conditions could exist in Units 1 and 3. The NRC therefore directed that a safety assessment be performed to evaluate a worst case scenario in which a non-isolable main steam line break occurs inducing one or more tube failures in the faulted steam generator. This assessment was to use the generic approach described in NUREG 1477, Voltage-Based Interim Plugging Criteria for Steam Generator Tubes - Task Group Report. An analysis based on the NUREG approach was performed but produced unacceptable results for off-site and control room thyroid doses. The NUREG methodology, however, does not account for plant thermal-hydraulic transient effects, system performance, or operator actions which could be credited to mitigate dose consequences. To deal with these issues, a more detailed analysis methodology was developed using a modified version of the Combustion Engineering Plant Analysis Code, which examines the dose consequences for a main steam line break transient with induced tube failures for a spectrum equivalent to 1 to 4 double ended guillotine U-tube breaks. By incorporating transient plant system responses and operator actions, the analysis demonstrates that the off-site and control room does consequences for a MSLBGTR can be reduced to acceptable limits. This analysis, in combination with other corrective and recovery actions, provided sufficient justification for continued operation of PVNGS Units 1 and 3, and for the subsequent restart of Unit 2.

  4. Evaluation of a main steam line break with induced, multiple tube ruptures: A comparison of NUREG 1477 (Draft) and transient methodologies Palo Verde Nuclear Generating Station

    International Nuclear Information System (INIS)

    Parrish, K.R.

    1995-01-01

    This paper presents the approach taken to analyze the radiological consequences of a postulated main steam line break event, with one or more tube ruptures, for the Palo Verde Nuclear Generating Station. The analysis was required to support the restart of PVNGS Unit 2 following the steam generator tube rupture event on March 14, 1993 and to justify continued operation of Units 1 and 3. During the post-event evaluation, the NRC expressed concern that Unit 2 could have been operating with degraded tubes and that similar conditions could exist in Units 1 and 3. The NRC therefore directed that a safety assessment be performed to evaluate a worst case scenario in which a non-isolable main steam line break occurs inducing one or more tube failures in the faulted steam generator. This assessment was to use the generic approach described in NUREG 1477, Voltage-Based Interim Plugging Criteria for Steam Generator Tubes - Task Group Report. An analysis based on the NUREG approach was performed but produced unacceptable results for off-site and control room thyroid doses. The NUREG methodology, however, does not account for plant thermal-hydraulic transient effects, system performance, or operator actions which could be credited to mitigate dose consequences. To deal with these issues, a more detailed analysis methodology was developed using a modified version of the Combustion Engineering Plant Analysis Code, which examines the dose consequences for a main steam line break transient with induced tube failures for a spectrum equivalent to 1 to 4 double ended guillotine U-tube breaks. By incorporating transient plant system responses and operator actions, the analysis demonstrates that the off-site and control room does consequences for a MSLBGTR can be reduced to acceptable limits. This analysis, in combination with other corrective and recovery actions, provided sufficient justification for continued operation of PVNGS Units 1 and 3, and for the subsequent restart of Unit 2

  5. 76 FR 28481 - Carolina Power & Light Company; Brunswick Steam Electric Plant, Units 1 and 2; Environmental...

    Science.gov (United States)

    2011-05-17

    ... to public health and safety; (2) performing health physics or chemistry duties required as a member... SSCs that a risk-informed evaluation process has shown to be significant to public health and safety...

  6. 76 FR 34105 - Carolina Power & Light Company, Brunswick Steam Electric Plant Units 1 and 2; Exemption

    Science.gov (United States)

    2011-06-10

    ... two 12-hour shifts of workers consisting of personnel from operations, maintenance, health physics...-informed evaluation process has shown to be significant to public health and safety; (2) performing health physics or chemistry duties required as a member of the onsite emergency response organization's minimum...

  7. Brunswick Steam Electric Plant, Units 1 and 2. Annual operating report No. 3

    International Nuclear Information System (INIS)

    1977-01-01

    After a month-by-month summary of operations and maintenance activities, data are presented concerning modifications, procedure changes, and man-rem radiation doses. Appendices include information on the main generator outage, leak rate testing, refueling outage, recirculation pump modifications, and instrument drift

  8. Investigation of cracking on a main steam isolation valve shaft from the Farley unit 1 nuclear power plant

    International Nuclear Information System (INIS)

    Czajkowski, C.J.

    1985-01-01

    The chemical analysis of the Farley Unit 1 MSIV shaft (69C) showed that the chemical composition of the material was consistent with that expected of a Type 410 stainless steel. The microstructure observed in the base metal (tempered martensite) is consistent with that expected in a Type 410 stainless steel in the quenched and tempered condition. The hardness measurements (both Rsub(c) and Knoop) show that the hardness observed (Rsub(c) 41.3 with a KN max of 459) is significantly higher than that which was anticipated by the heat treatments performed. The cracking was intergranular in nature, occuring along prior austenite grain boundaries. There was no evidence of fatigue interaction on the fracture observed, and no definitive corrodent species identified. The cracking is considered to be an intergranular stress corrosion cracking phenomenon resulting from a high hardness-susceptible material under pressurized water reactor conditions

  9. Final environmental statement: Related to the operation of Davis-Besse Nuclear Power Station, Unit 1 (Docket No. 50-346)

    International Nuclear Information System (INIS)

    1975-10-01

    The proposed action is the issuance of an operating license to the Toledo Edison Company and the Cleveland Electric Illuminating Company for the startup and operation of the Davis-Besse Nuclear Power Station Unit 1 (the station) located near Port Clinton in Ottawa County, Ohio. The total site area is 954 acres of which 160 acres have been removed from production of grain crops and converted to industrial use. Approximately 600 acres of the area is marshland which will be maintained as a wildlife refuge. The disturbance of the lake shore and lake bottom during construction of the station water intake and discharge pipes resulted in temporary turbidity, silting, and destruction of bottom organisms. Since completion of these activities, evidence of improvement in turbidity and transparency measurements, and the reestablishment of the bottom organism has been obtained. The cooling tower blowdown and service water which the station discharges to Lake Erie, via a submerged jet, will be heated no more than 20/degrees/F above the ambient lake water temperature. Although some small fish and plankton in the discharge water plume will be disabled as a result of thermal shock, exposure to chlorine and buffeting, few adult fish will be affected. The thermal plume resulting from the maximum thermal discharge is calculated to have an area of less than one acre within the 3/degrees/F isotherm (above lake ambient). Approximately 101 miles of transmission lines have been constructed, primarily over existing farmland, requiring about 1800 acres of land for the rights-of-way. Land use will essentially be unchanged since only the land required for the base of the towers is removed from production. Herbicides will not be used to maintain the rights-of-way. 14 figs., 34 refs

  10. Manufacture of the 300 MW steam generator and pressure stabilizer for Qinshan Nuclear Power Station

    International Nuclear Information System (INIS)

    Qian Yi; Miao Deming.

    1989-01-01

    A brief description of the manufacturing process of the steam generator and pressure stabilizer for 300 MWe Qinshan Nuclear Power Station in Shanghai Boiler Works is presented, with special emphasis on fabrication facilities, test procedures and technological evaluations during the manufaturing process-imcluding deep driling of tubesheets, welding of tubes to tube-sheets and tube rolling tests

  11. 76 FR 30206 - Southern Nuclear Operating Company, Inc., Vogtle Electric Generating Plant, Unit 1 and 2; Notice...

    Science.gov (United States)

    2011-05-24

    ... Operating Company, Inc., Vogtle Electric Generating Plant, Unit 1 and 2; Notice of Consideration of Issuance..., http://www.regulations.gov . Because your comments will not be edited to remove any identifying or... received from other persons for submission to the NRC inform those persons that the NRC will not edit their...

  12. 75 FR 75704 - Pacific Gas and Electric Company (Diablo Canyon Nuclear Power Plant, Units 1 And 2); Notice of...

    Science.gov (United States)

    2010-12-06

    ... NUCLEAR REGULATORY COMMISSION [Docket Nos. 50-275-LR; 50-323-LR] Pacific Gas and Electric Company (Diablo Canyon Nuclear Power Plant, Units 1 And 2); Notice of Appointment of Adjudicatory Employee... Seismologist, Office of Nuclear Material Safety and Safeguards, has been appointed as a Commission adjudicatory...

  13. Electric power generating plant having direct-coupled steam and compressed-air cycles

    Science.gov (United States)

    Drost, M.K.

    1981-01-07

    An electric power generating plant is provided with a Compressed Air Energy Storage (CAES) system which is directly coupled to the steam cycle of the generating plant. The CAES system is charged by the steam boiler during off peak hours, and drives a separate generator during peak load hours. The steam boiler load is thereby levelized throughout an operating day.

  14. Electric power generating plant having direct coupled steam and compressed air cycles

    Science.gov (United States)

    Drost, Monte K.

    1982-01-01

    An electric power generating plant is provided with a Compressed Air Energy Storage (CAES) system which is directly coupled to the steam cycle of the generating plant. The CAES system is charged by the steam boiler during off peak hours, and drives a separate generator during peak load hours. The steam boiler load is thereby levelized throughout an operating day.

  15. Steam generator management at Ontario Hydro Nuclear Stations

    International Nuclear Information System (INIS)

    Nickerson, J.; Maruska, C.C.

    1998-01-01

    Managing ageing steam generators involves costly decisions for the utility, both in terms of the cost of the maintenance activities and in terms of having the unit shutdown and consequent power loss while performing these activities. The benefits of these activities are seldom guaranteed and are sometimes very intangible. For nuclear utilities the most pertinent questions that arise are have we identified all the problem(s), can we predict the risk due to these problems? Can we implement corrective and preventive activities to manage the problem and what is the optimum timing of implementation? Is the money spent worthwhile, i.e. has it given us a return in production and safety? Can we avoid surprises? How can we tangibly measure success? This paper touches briefly on all the questions mentioned above but it mainly addresses the last question: 'how can we tangibly measure success?' by using several success indicators proposed by EPRI and by applying them to actual Ontario Hydro experience. The appropriateness of these success indicators as the means to assess the success of these programs, to feed back the results, and to enhance or revise the programs will be discussed. (author)

  16. Steam generator management at Ontario Hydro Nuclear Stations

    Energy Technology Data Exchange (ETDEWEB)

    Nickerson, J. [Atomic Energy of Canada Limited, Mississauga, Ontario (Canada); Maruska, C.C. [Ontario Hydro, Toronto, Ontario (Canada)

    1998-07-01

    Managing ageing steam generators involves costly decisions for the utility, both in terms of the cost of the maintenance activities andin terms of having the unit shutdown and consequent power loss while performing these activities. The benefits of these activities are seldom guaranteed and are sometimes very intangible. For nuclear utilities the most pertinent questions that arise are have we identified all the problem(s), can we predict the risk due to these problems? Can we implement corrective and preventive activities to manage the problem and what is the optimum timing of implementation? Is the money spent worthwhile, i.e. has it given us a return in production and safety? Can we avoid surprises? How can we tangibly measure success? This paper touches briefly on all the questions mentioned above but it mainly addresses the last question: 'how can we tangibly measure success?' by using several success indicators proposed by EPRI and by applying them to actual Ontario Hydro experience. The appropriateness of these success indicators as the means to assess the success of these programs, to feed back the results, and to enhance or revise the programs will be discussed. (author)

  17. Examination of failed studs from No. 2 steam generator at the Maine Yankee Nuclear Power Station

    International Nuclear Information System (INIS)

    Czajkowski, C.

    1983-02-01

    Three studs removed from service on the primary manway cover from steam generator No. 2 of the Maine Yankee station were sent to Brookhaven National Laboratory (BNL) for examination. The examination consisted of visual/dye penetrant examination, optical metallography and Scanning Electron Microscopy/Energy Dispersive Spectroscopy (SEM/EDS) evaluation. One bolt was through cracked and its fracture face was generally transgranular in nature with numerous secondary intergranular cracks. The report concludes that the environmenally assisted cracking of the stud was due to the interaction of the various lubricants used with steam leaks associated with this manway cover

  18. Aluminum-Enhanced Underwater Electrical Discharges for Steam Explosion Triggering

    International Nuclear Information System (INIS)

    HOGELAND, STEVE R.; NELSON, LLOYD S.; ROTH, THOMAS CHRISTOPHER

    1999-01-01

    For a number of years, we have been initiating steam explosions of single drops of molten materials with pressure and flow (bubble growth) transients generated by discharging a capacitor bank through gold bridgewires placed underwater. Recent experimental and theoretical advances in the field of steam explosions, however, have made it important to substantially increase these relatively mild transients in water without using high explosives, if possible. To do this with the same capacitor bank, we have discharged similar energies through tiny strips of aluminum foil submerged in water. By replacing the gold wires with the aluminum strips, we were able to add the energy of the aluminum-water combustion to that normally deposited electrically by the bridgewire explosion in water. The chemical enhancement of the explosive characteristics of the discharges was substantial: when the same electrical energies were discharged through the aluminum strips, peak pressures increased as much as 12-fold and maximum bubble volumes as much as 5-fold above those generated with the gold wires. For given weights of aluminum, the magnitudes of both parameters appeared to exceed those produced by the underwater explosion of equivalent weights of high explosives

  19. Steam-generator replacement sets new marks

    International Nuclear Information System (INIS)

    Beck, R.L.

    1995-01-01

    This article describes how, in one of the most successful steam-generator replacement experiences at PWRs worldwide, the V C Summer retrofit exceeded plant goals for critical-path duration, radiation, exposure, and radwaste generation. Intensive planning and teamwork, combined with the firm support of station management and the use of mockups to prepare the work crews for activity in a radiological environment, were key factors in the record performance achieved by South Carolina Electric and Gas Co (SCE and G) in replacing three steam generators at V C Summer nuclear station. The 97-day, two-hour breaker-to-breaker replacement outage -- including an eight-day delay for repair of leak in a small-bore seal-injection line of a reactor coolant pump (unrelated to the replacement activities) -- surpassed the project goal by over one day. Moreover, the outage was only 13 hours shy of the world record held by Virginia Power Co's North Anna Unit 1

  20. CDIO – The steam engine powering the electric grid

    DEFF Research Database (Denmark)

    Træholt, Chresten; Holbøll, Joachim; Thomsen, Ole Cornelius

    2011-01-01

    In building the new DTU B.Eng programme [1] one of the pilots on the 4’th semester is the Design-build project course in Electric Energy Systems. In this course, which is the last Designbuild course many of the CDIO Syllabus bullets [2] are addressed starting with problem identification and formu......In building the new DTU B.Eng programme [1] one of the pilots on the 4’th semester is the Design-build project course in Electric Energy Systems. In this course, which is the last Designbuild course many of the CDIO Syllabus bullets [2] are addressed starting with problem identification...... and formulation, experimental inquiry and modelling, finally leading to planning and solution. The goal is to acquire the skills that are needed for an engineer within electric power engineering to analyse a given task, define the necessary steps to solve the task, organize him/her self and others and finally...... solve the task with success. The concrete work is built up around a miniaturized electric energy system powered by a steam engine. The system mimics an essential sub-section of a real electric power system. The process is realised with a combination of optional lectures, optional exercises, 3 set...

  1. Design and development of steam generators for the AGR power stations at Heysham II/Torness

    Energy Technology Data Exchange (ETDEWEB)

    Charcharos, A N; Jones, A G [National Nuclear Corp. Ltd., Cheshire (United Kingdom)

    1984-07-01

    The current AGR steam generator design is a development of the successful once-through units supplied for the Oldbury Magnox and Hinkley/Hunterston AGR power stations. These units have demonstrated proven control and reliability in service. In this paper the factors which have dictated the design and layout of the latest AGR steam generators are described and reference made to the latest high temperature design techniques that have been employed. Details of development work to support the design and establish the performance characteristics over the range of plant operating conditions are also given. To comply with current UK safety standards, the AGR steam generators and associated plant are designed to accommodate seismic loadings. In addition, provision is made for an independent heat removal system for post reactor trip operations. (author)

  2. Design and development of steam generators for the AGR power stations at Heysham II/Torness

    International Nuclear Information System (INIS)

    Charcharos, A.N.; Jones, A.G.

    1984-01-01

    The current AGR steam generator design is a development of the successful once-through units supplied for the Oldbury Magnox and Hinkley/Hunterston AGR power stations. These units have demonstrated proven control and reliability in service. In this paper the factors which have dictated the design and layout of the latest AGR steam generators are described and reference made to the latest high temperature design techniques that have been employed. Details of development work to support the design and establish the performance characteristics over the range of plant operating conditions are also given. To comply with current UK safety standards, the AGR steam generators and associated plant are designed to accommodate seismic loadings. In addition, provision is made for an independent heat removal system for post reactor trip operations. (author)

  3. Technical specifications for Grand Gulf Nuclear Station, Unit 1 (Docket No. 50-416). Appendix A to License No. NPF-13

    International Nuclear Information System (INIS)

    1984-08-01

    The Grand Gulf Nuclear Station, Unit 1 Technical Specifications were prepared by the US Nuclear Regulatory Commission to set forth the limits, operating conditions and other requirements applicable to a nuclear facility as set forth in Section 50.36 of 10 CFR part 50 for the protection of the health and safety of the public

  4. 78 FR 41907 - Effluent Limitations Guidelines and Standards for the Steam Electric Power Generating Point...

    Science.gov (United States)

    2013-07-12

    ... ENVIRONMENTAL PROTECTION AGENCY 40 CFR Part 423 [EPA-HQ-OW-2009-0819. FRL-9832-7; EPA-HQ-RCRA-2013-0209] RIN 2040-AF14 Effluent Limitations Guidelines and Standards for the Steam Electric Power... proposed rule entitled, ``Effluent Limitations Guidelines and Standards for the Steam Electric Power...

  5. Chemistry, materials and related problems in steam generators of power stations

    International Nuclear Information System (INIS)

    Mathur, P.K.

    2000-01-01

    The operational reliability and availability of power plants are considerably influenced by chemical factors. Researches all over the world indicate that several difficulties in power plants can be traced to off-normal or abnormal water chemistry conditions. Whatever the source of energy, be it fossil fuel or nuclear fuel, the ultimate aim is steam generation to drive a turbine. It is, therefore, natural that problems of water chemistry and material compatibility are similar in thermal and nuclear power stations. The present paper discusses various types of problems in the form of corrosion damages, taking place in the boiler-turbine cycles and describes different types of boiler feed water/boiler water treatments that have been in use both in nuclear and thermal power stations. Current positions in relation to requirements of boiler feed water, boiler water and steam quality have been described

  6. Studies and solutions of steam turbines for nuclear heating power stations

    International Nuclear Information System (INIS)

    Drahy, J.

    1979-01-01

    The possibilities of combined generation of heat and electric power and special features of the corresponding equipment for WWER type reactors are considered. Condensing steam turbines with bled steam points and the constructional solution of bled points are presented for heating the network water to 110 0 C, 120 0 C, and 160 0 C, respectively. The dimensions of the low pressure final stage of the turbine are given. Problems concerning condensing and bleeding turbines and combination types of back-pressure and condensing turbines as well as solutions to the design of 250 MW and 500 MW turbines are discussed

  7. The Japanese and Italian power station markets: prospects for steam coal

    Energy Technology Data Exchange (ETDEWEB)

    Thomas, S D

    1989-02-01

    The world market for steam coal seems likely to fall far short of the expectations of 1980. Two markets which appeared to offer considerable scope for expansion, the Italian and Japanese power station markets, are examined and the factors behind their disappointing performance analysed. The reasons behind the lack of investments in new power stations differ. Difficulties in obtaining sites and financial problems are most important in Italy, whilst environmental restrictions and the attractions of competing technologies dominate in Japan. It is concluded that these factors will not weaken significantly in the next decade and coal's prospects in these two markets are correspondingly restricted. 20 refs., 20 tabs.

  8. Safety-evaluation report related to operation of McGuire Nuclear Station, Units 1 and 2. Docket Nos. 50-369 and 50-370

    International Nuclear Information System (INIS)

    1983-05-01

    This report supplements the Safety Evaluation Report Related to the Operation of McGuire Nuclear Station, Units 1 and 2 (SER (NUREG-0422)) issued in March 1978 by the Office of Nuclear Reactor Regulation of the US Nuclear Regulatory Commission with respect to the application filed by Duke Power Company, as applicant and owner, for licenses to operate the McGuire Nuclear Station, Units 1 and 2 (Docket Nos. 50-369 and 50-370). The facility is located in Mecklenburg County, North Carolina, about 17 mi north-northwest of Charlotte, North Carolina. This supplement provides information related to issuance of a full-power authorization for Unit 2. The staff concludes that the McGuire Nuclear Station can be operated by the licensee without endangering the health and safety of the public

  9. Steam Pressure-Reducing Station Safety and Energy Efficiency Improvement Project

    Energy Technology Data Exchange (ETDEWEB)

    Lower, Mark D [ORNL; Christopher, Timothy W [ORNL; Oland, C Barry [ORNL

    2011-06-01

    The Facilities and Operations (F&O) Directorate is sponsoring a continuous process improvement (CPI) program. Its purpose is to stimulate, promote, and sustain a culture of improvement throughout all levels of the organization. The CPI program ensures that a scientific and repeatable process exists for improving the delivery of F&O products and services in support of Oak Ridge National Laboratory (ORNL) Management Systems. Strategic objectives of the CPI program include achieving excellence in laboratory operations in the areas of safety, health, and the environment. Identifying and promoting opportunities for achieving the following critical outcomes are important business goals of the CPI program: improved safety performance; process focused on consumer needs; modern and secure campus; flexibility to respond to changing laboratory needs; bench strength for the future; and elimination of legacy issues. The Steam Pressure-Reducing Station (SPRS) Safety and Energy Efficiency Improvement Project, which is under the CPI program, focuses on maintaining and upgrading SPRSs that are part of the ORNL steam distribution network. This steam pipe network transports steam produced at the ORNL steam plant to many buildings in the main campus site. The SPRS Safety and Energy Efficiency Improvement Project promotes excellence in laboratory operations by (1) improving personnel safety, (2) decreasing fuel consumption through improved steam system energy efficiency, and (3) achieving compliance with applicable worker health and safety requirements. The SPRS Safety and Energy Efficiency Improvement Project being performed by F&O is helping ORNL improve both energy efficiency and worker safety by modifying, maintaining, and repairing SPRSs. Since work began in 2006, numerous energy-wasting steam leaks have been eliminated, heat losses from uninsulated steam pipe surfaces have been reduced, and deficient pressure retaining components have been replaced. These improvements helped ORNL

  10. Safety Evaluation Report related to the operation of Grand Gulf Nuclear Station, Units 1 and 2 (Docket Nos. 50-416 and 50-417). Supplement 6

    International Nuclear Information System (INIS)

    1984-08-01

    Supplement 6 to the Safety Evaluation Report for Mississippi Power and Light Company et al. joint application for licenses to operate the Grand Gulf Nuclear Station, Units 1 and 2, located on the east bank of the Mississippi River near Port Gibson in Claiborne County, Mississippi, has been prepared by the Office of Nuclear Reactor Regulation of the US Nuclear Regulatory Commission. This supplement reports the NRC staff's evaluation of open items from previous supplements and Technical Specification changes required before authorizing operation of Unit 1 above 5% of rated power

  11. Safety Evaluation Report related to the operation of Grand Gulf Nuclear Station, Units 1 and 2 (Docket Nos. 50-416 and 50-417). Supplement No. 5

    International Nuclear Information System (INIS)

    1984-08-01

    Supplement 5 to the Safety Evaluation Report for Mississippi Power and Light Company, et al., joint application for licenses to operate the Grand Gulf Nuclear Station, Units 1 and 2, located on the east bank of the Mississippi River near Port Gibson in Claiborne County, Mississippi, has been prepared by the Office of Nuclear Reactor Regulation of the US Nuclear Regulatory Commission. This supplement reports the status on the resolution of those issues that require further evaluation before authorizing operation of Unit 1 above 5% of rated power

  12. Safety-Evaluation Report related to the operation of Grand Gulf Nuclear Station, Units 1 and 2. Docket Nos. 50-416 and 50-417

    International Nuclear Information System (INIS)

    1983-05-01

    Supplement 4 to the Safety Evaluation Report for Mississippi Power and Light Company, et. al., joint application for licenses to operate the Grand Gulf Nuclear Station, Units 1 and 2, located on the east bank of the Mississippi River near Port Gibson in Claiborne County, Mississippi, has been prepared by the Office of Nuclear Reactor Regulation of the US Nuclear Regulatory Commission. This supplement reports the status on the resolution of those issues that required further evaluation before authorizing operation of Unit 1 above 5% rated power and other issues that were to be evaluated during the first cycle of power operation

  13. Susquehanna SES maintenance supervisor training and certification

    International Nuclear Information System (INIS)

    Deckman, M.

    1991-01-01

    Susquehanna's program targets all Supervisors, Supervisor Candidates, and Temporary Supervisors that are responsible for in-plant maintenance or maintenance support activities, including: mechanical maintenance; electrical maintenance; maintenance support (labor support, radwaste, etc.); mobile construction support (mechanical and electrical); chemistry; health physics; maintenance planning; and instrument and controls. The program integrates the three major areas of direct Supervisory responsibilities: (1) Leadership and Management - Skills that require interpersonal activities that are typically humanistic and subjective; such as coaching, motivating, communications, etc. (2) Technical and Administrative - Knowledge that is directly related to the job of Supervising from the production, regulatory, accountability perspective. These topics are very objective and include training on topics such as workpackages, plant chemistry parameters, radiological concerns, etc. (3) Technical Skills - Ensure each Supervisor is technically competent in the plant systems, components, or equipment he/she is tasked with maintaining or overseeing. Typical skills found in this area are, circuit breaker maintenance, primary system sampling, or overhauling pumps

  14. 75 FR 9623 - Arizona Public Service Company, et al.; Palo Verde Nuclear Generating Station, Units 1, 2, and 3...

    Science.gov (United States)

    2010-03-03

    ... pressurized-water reactors located in Maricopa County, Arizona. 2.0 Request/Action Title 10 of the Code of... pressure boundary during normal operating and hydrostatic or leak rate testing conditions. Specifically, 10... NRC's March 16, 2001, SE, the staff noted, ``[t]he CE NSSS [nuclear steam supply system] methodology...

  15. Analysis of steam generator tube sections removed from Gentilly-2 nuclear generating station

    International Nuclear Information System (INIS)

    Semmler, J.; Lockley, A.J.; Doyon, D.

    2010-01-01

    deposition rate in the steam generators from 2001 to 2009 were estimated and compared to the estimated values from 1983 (station commissioning) to 2001. This paper presents a summary of steam generator tube characterization results and describes how the data on the oxide deposition rate were correlated to the changes in station operating practices. These data demonstrate the benefits that resulted from recent changes to station chemistry and operational practices. (author)

  16. Manufacture of steam generator units and components for the AGR power stations at Heysham II and Torness

    Energy Technology Data Exchange (ETDEWEB)

    Glasgow, J R; Parkin, K [N.E.I. Nuclear Systems Ltd., Gateshead, Tyne and Wear (United Kingdom)

    1984-07-01

    The current AGR Steam Generator is a development of the successful once-through units supplied for the Oldbury Magnox and Hinkley B/Hunterston B AGR power stations. In this paper a brief outline of the evolution of the steam generator design from the earlier gas cooled reactor stations is presented. A description of the main items of fabrication development is given. The production facilities for the manufacture of the units are described. Reference is also made to some of the work on associated components. The early experience on the construction site of installation of the steam generators is briefly outlined. (author)

  17. Manufacture of steam generator units and components for the AGR power stations at Heysham II and Torness

    International Nuclear Information System (INIS)

    Glasgow, J.R.; Parkin, K.

    1984-01-01

    The current AGR Steam Generator is a development of the successful once-through units supplied for the Oldbury Magnox and Hinkley B/Hunterston B AGR power stations. In this paper a brief outline of the evolution of the steam generator design from the earlier gas cooled reactor stations is presented. A description of the main items of fabrication development is given. The production facilities for the manufacture of the units are described. Reference is also made to some of the work on associated components. The early experience on the construction site of installation of the steam generators is briefly outlined. (author)

  18. Electricity Generation Through the Koeberg Nuclear Power Station of Eskom in South Africa

    International Nuclear Information System (INIS)

    Dladla, G.; Joubert, J.

    2015-01-01

    The poster provides information on the process of nuclear energy generation in a nuclear power plant in order to produce electricity. Nuclear energy currently provides approximately 11% of the world’s electricity needs, with Koeberg Nuclear Power Station situated in the Western Cape providing 4.4% of South Africa’s electricity needs. As Africa’s first nuclear power station, Koeberg has an installed capacity of 1910 MW of power. Koeberg’ s total net output is 1860 MW. While there are significant differences, there are many similarities between nuclear power plants and other electrical generating facilities. Uranium is used for fuel in nuclear power plants to make electricity. With the exception of solar, wind, and hydroelectric plants, all others including nuclear plants convert water to steam that spins the propeller-like blades of a turbine that spins the shaft of a generator. Inside the generator coils of wire and magnetic fields interact to create electricity. The energy needed to boil water into steam is produced in one of two ways: by burning coal, oil, or gas (fossil fuels) in a furnace or by splitting certain atoms of uranium in a nuclear energy plant. The uranium fuel generates heat through a controlled fission process fission, which is described in this poster presentation. The Koeberg Nuclear Power Station is a Pressurised water reactor (PWR). The operating method and the components of the Koeberg Power Station are also described. The nuclear waste generated at a nuclear power station is described under three headings— low-level waste, intermediate-level waste and used or spent fuel, which can be solid, liquid or gaseous. (author)

  19. Integrated Plant Safety Assessment: Systematic Evaluation Program. Millstone Nuclear Power Station, Unit 1, Northeast Nuclear Energy Company, Docket No. 50-245. Final report

    International Nuclear Information System (INIS)

    1983-02-01

    This report documents the review of the Millstone Nuclear Power Station, Unit 1, operated by Northeast Nuclear Energy Company (located in Waterford, Connecticut). Millstone Nuclear Power Station, Unit 1, is one of ten plants reviewed under Phase II of this program. This report indicates how 137 topics selected for review under Phase I of the program were addressed. Equipment and procedural changes have been identified as a result of the review. It is expected that this report will be one of the bases in considering the issuance of a full-term operating license in place of the existing provisional operating license. This report also addresses the comments and recommendations made by the Advisory Committee on Reactor Safeguards in connection with its review of the Draft Report, issued in November 1982

  20. Safety evaluation report related to the operation of Byron Station, Units 1 and 2 (Docket Nos. STN 50-454 and STN 50-455)

    International Nuclear Information System (INIS)

    1987-03-01

    Supplement No. 8 to the Safety Evaluation Report related to Commonwealth Edison Company's application for licenses to operate the Byron Station, Units 1 and 2, located in Rockvale Township, Ogle County, Illinois, has been prepared by th Office of Nuclear Reactor Regulation of the US Nuclear Regulatory Commission. This supplement provides recent information regarding resolution of the license conditions identified in the SER. Because of the favorable resolution of the items discussed in this report, the staff concludes that the Byron Station, Unit 2 can be operated by the licensee at power levels greater than 5% without endangering the health and safety of the public

  1. Summary of erosion-corrosion observations made in power stations on damp-steam circuits

    International Nuclear Information System (INIS)

    Lacaille, L.

    1981-01-01

    The development of the light-water system has profoundly modified the operating conditions of the turbines, in which expansion now takes place from the first saturated-steam stages. In addition to the traditional phenomena of mechanical erosion there are now problems of a chemical nature, linked to the temperatures of the liquid phase, which cause destruction in the HP stages of the turbines, the drier-feed heaters, and the linking piping. Systematic observations have been made in the PWR stations at Chooz, Doel, Tihange, Fessenheim, and Le Bugey, followed by trials of materials, improvements in the flow, chemical treatment of the secondary circuit, and reduction of the liquid phase in the steam emerging from the HP turbine [fr

  2. Three Mile Island Unit 1 Main Steam Line Break Three-Dimensional Neutronics/Thermal-Hydraulics Analysis: Application of Different Coupled Codes

    International Nuclear Information System (INIS)

    D'Auria, Francesco; Moreno, Jose Luis Gago; Galassi, Giorgio Maria; Grgic, Davor; Spadoni, Antonino

    2003-01-01

    A comprehensive analysis of the double ended main steam line break (MSLB) accident assumed to occur in the Babcock and Wilcox Three Mile Island Unit 1 (TMI-1) has been carried out at the Dipartimento di Ingegneria Meccanica, Nucleare e della Produzione of the University of Pisa, Italy, in cooperation with the University of Zagreb, Croatia. The overall activity has been completed within the framework of the participation in the Organization for Economic Cooperation and Development-Committee on the Safety of Nuclear Installations-Nuclear Science Committee pressurized water reactor MSLB benchmark.Thermal-hydraulic system codes (various versions of Relap5), three-dimensional (3-D) neutronics codes (Parcs, Quabbox, and Nestle), and one subchannel code (Cobra) have been adopted for the analysis. Results from the following codes (or code versions) are assumed as reference:1. Relap5/mod3.2.2, beta version, coupled with the 3-D neutron kinetics Parcs code parallel virtual machine (PVM) coupling2. Relap5/mod3.2.2, gamma version, coupled with the 3-D neutron kinetics Quabbox code (direct coupling)3. Relap5/3D code coupled with the 3-D neutron kinetics Nestle code.The influence of PVM and of direct coupling is also discussed.Boundary and initial conditions of the system, including those relevant to the fuel status, have been supplied by Pennsylvania State University in cooperation with GPU Nuclear Corporation (the utility, owner of TMI) and the U.S. Nuclear Regulatory Commission. The comparison among the results obtained by adopting the same thermal-hydraulic nodalization and the coupled code version is discussed in this paper.The capability of the control rods to recover the accident has been demonstrated in all the cases as well as the capability of all the codes to predict the time evolution of the assigned transient. However, one stuck control rod caused some 'recriticality' or 'return to power' whose magnitude is largely affected by boundary and initial conditions

  3. Safety Evaluation Report related to the operation of Byron Station, Units 1 and 2 (Docket Nos. STN 50-454 and STN 50-455). Supplement No. 7

    International Nuclear Information System (INIS)

    1986-11-01

    Supplement No. 7 to the Safety Evaluation Report related to Commonwealth Edison Company's application for licenses to operate the Byron Station, Units 1 and 2, located in Rockvale Township, Ogle County, Illinois, has been prepared by the Office of Nuclear Reactor Regulation of the US Nuclear Regulatory Commission. This supplement provides additional information supporting the license for initial criticality and power ascension to full-power operation for Unit 2

  4. Technical evaluation report on the proposed design modifications and technical-specification changes on grid voltage degradation for the San Onofre Nuclear Genetating Station, Unit 1

    International Nuclear Information System (INIS)

    Selan, J.C.

    1982-01-01

    This report documents the technical evaluation of the proposed design modifications and Technical Specification changes for protection of Class 1E equipment from grid voltage degradation for the San Onofre Nuclear Generating Station, Unit 1. The review criteria are based on several IEEE standards and the Code of Federal Regulations. The evaluation finds that the proposed design modifications and Technical Specification changes will ensure that the Class 1E equipment will be protected from sustained voltage degradation

  5. Safety Evaluation Report, related to the operation of Byron Station, Units 1 and 2 (Docket Nos. STN 50-454 and STN 50-455)

    International Nuclear Information System (INIS)

    1983-11-01

    Supplement No. 3 to the Safety Evaluation Report related to Commonwealth Edison Company's application for licenses to operate the Byron Station, Units 1 and 2, located in Rockvale Township, Ogle County, Illinois, has been prepared by the Office of Nuclear Reactor Regulation of the US Nuclear Regulatory Commission. This supplement reports the status of certain items that had not been resolved at the time of publication of the Safety Evaluation Report

  6. Safety evaluation report related to the operation of Byron Station, Units 1 and 2. Docket Nos. STN 50-454 and STN 50-455

    International Nuclear Information System (INIS)

    1983-01-01

    Supplement No. 2 to the Safety Evaluation Report related to Commonwealth Edison Company's application for licenses to operate the Byron Station, Units 1 and 2, located in Rockvale Township, Ogle County, Illinois, has been prepared by the Office of Nuclear Reactor Regulation of the US Nuclear Regulatory Commission. This supplement reports the status of certain items that had not been resolved at the time of publication of the Safety Evaluation Report

  7. Safety Evaluation Report related to the operation of Byron Station, Units 1 and 2 (Docket Nos. STN 50-454 and STN 50-455)

    International Nuclear Information System (INIS)

    1984-05-01

    Supplement No. 4 to the Safety Evaluation Report related to Commonwealth Edison Company's application for licenses to operate the Byron Station, Units 1 and 2, located in Rockvale Township, Ogle County, Illinois, has been prepared by the Office of Nuclear Reactor Regulation of the US Nuclear Regulatory Commission. This supplement reports the status of certain items that had not been resolved at the time of publication of the Safety Evaluation Report

  8. Indian Point Station, Units 1, 2, and 3. Annual operations report No. 27: January--December 1977

    International Nuclear Information System (INIS)

    1978-01-01

    Unit 1 remained shutdown with the fuel removed to the Fuel Handling Building pending a decision by the Company on the installation of an ECCS. Information for Unit 2 and 3 is presented concerning procedure changes, tests, experiments, maintenance, equipment examinations, radioactivity releases, shutdowns and forced power reductions, and the number of personnel and Man/Rem exposure by work and job function

  9. Final environmental statement for William B. McGuire Nuclear Station, Units 1 and 2: (Docket Nos. 50-369 and 50-370)

    International Nuclear Information System (INIS)

    1976-04-01

    The proposed action is the issuance of operating licenses to the Duke Power Company for the startup and operation of the William B. McGuire Nuclear Station, Units 1 and 2 (the plant) located on the Lake Norman in Mecklenburg County, 17 miles north-northwest of Charlotte, North Carolina. The units will be cooled by once-through flow of water from Lake Norman. Two units, each with a net electrical capacity of 1180 MWe will be added to the resources of the Duke Power Company. This will have a favorable effect on reserve margins and provide a cost savings of $77 to $122 million in production costs in 1979 if the units come on line as scheduled, and cost savings in subsequent years. Approximately 200 acres of rural, partially wooded land owned by the applicant will be unavailable for other uses during the 40-year life of the plant. Approximately 61.6 acres of additional land will be utilized for transmission line corridors and/or switchyard and maintained under controlled conditions. Land-use patterns will necessarily conform to the needs of the application but will not be changed significantly from present usage. At full power, condenser cooling water could be heated to as high as 96/degree/F (35.6/degree/C) as a monthly average and will be discharged at a rate of up to 4492 cfs. The temperature rise of the water will be 16/degree/F (8.8/degree/C) to 32/degree/F (17.8/degree/C) above ambient. The heated water will mix with the cooler water of Lake Norman, where the heat will be dissipated to the atmosphere. The increase in temperature will cause a loss of approximately 31 cfs of water as a result of increased evaporation. 26 figs., 46 tabs

  10. Power stations

    International Nuclear Information System (INIS)

    Cawte, H.; Philpott, E.F.

    1980-01-01

    The object is to provide a method of operating a dual purpose power station so that the steam supply system is operated at a high load factor. The available steam not required for electricity generation is used to provide process heat and the new feature is that the process plant capacity is determined to make the most economic use of the steam supply system, and not to match the passout capacity of the turbine of the turbogenerator. The product of the process plant should, therefore, be capable of being stored. A dual-purpose power station with a nuclear-powered steam source, turbogenerating means connected to the steam source and steam-powered process plant susceptible to wide variation in its rate of operation is described. (U.K.)

  11. Dresden Nuclear Power Station, Units 1, 2, and 3. Semiannual report on operating and maintenance, July--December 1974

    International Nuclear Information System (INIS)

    1975-01-01

    Unit 1 generated 388,882 MWH(e) and was on line 3111.2 hours, Unit 2 generated 1,204,106 MWH(e) and was on line 2013.4 hours, and Unit 3 generated 2,250,810 MWH(e) and was on line 3836 hours. Information is presented concerning operations, shutdowns, maintenance, changes, tests, and experiments for the three units. (U.S.)

  12. Dancing with STEAM: Creative Movement Generates Electricity for Young Learners

    Science.gov (United States)

    Simpson Steele, Jamie; Fulton, Lori; Fanning, Lisa

    2016-01-01

    The integration of science, technology, engineering, arts, and mathematics (STEAM) serves to develop creative thinking and twenty-first-century skills in the classroom (Maeda 2012). Learning through STEAM promotes novelty, innovation, ingenuity, and task-specific purposefulness to solve real-world problems--all aspects that define creativity. Lisa…

  13. 76 FR 58844 - Virginia Electric and Power Company, Surry Power Station, Units 1 and 2; Exemption

    Science.gov (United States)

    2011-09-22

    ... effectively addressed through staff augmentation that can only be practically achieved through the use of work... quality of the human environment published in the Federal Register on August 31, 2011 (76 FR 54259). This...

  14. Application of a steam injector for passive emergency core cooling during a station blackout

    International Nuclear Information System (INIS)

    Heinze, D.; Behnke, L.; Schulenberg, T.

    2012-01-01

    One of the basic protection targets of reactor safety is the safe heat removal during normal operation but also following shut-down. Since the reactor accident in Fukushima an optimization of the plant robustness in case of beyond-design accident is performed. Special attention is given to the increase of time available for starting appropriate measures for emergency core cooling in case of a station blackout. The state-of the art in engineering and research is presented. Investigations on the applicability of a steam injector for passive emergency core cooling during a station blackout in BWR-type reactors have progressed, experiments on dynamic behavior of the injector are described. A precise design with respect to the thermal hydraulic boundary conditions has been performed.

  15. Evaluation of steam generator U-tube integrity during PWR station blackout with secondary system depressurization

    International Nuclear Information System (INIS)

    Hidaka, Akihide; Asaka, Hideaki; Sugimoto, Jun; Ueno, Shingo; Yoshino, Takehito

    1999-12-01

    In PWR severe accidents such as station blackout, the integrity of steam generator U-tube would be threatened early at the transient among the pipes of primary system. This is due to the hot leg countercurrent natural circulation (CCNC) flow which delivers the decay heat of the core to the structures of primary system if the core temperature increases after the secondary system depressurization. From a view point of accident mitigation, this steam generator tube rupture (SGTR) is not preferable because it results in the direct release of primary coolant including fission products (FP) to the environment. Recent SCDAP/RELAP5 analyses by USNRC showed that the creep failure of pressurizer surge line which results in release of the coolant into containment would occur earlier than SGTR during the secondary system depressurization. However, the analyses did not consider the decay heat from deposited FP on the steam generator U-tube surface. In order to investigate the effect of decay heat on the steam generator U-tube integrity, the hot leg CCNC flow model used in the USNRC's calculation was, at first, validated through the analysis for JAERI's LSTF experiment. The CCNC model reproduced well the thermohydraulics observed in the LSTF experiment and thus the model is mostly reliable. An analytical study was then performed with SCDAP/RELAP5 for TMLB' sequence of Surry plant with and without secondary system depressurization. The decay heat from deposited FP was calculated by JAERI's FP aerosol behavior analysis code, ART. The ART analysis showed that relatively large amount of FPs may deposit on steam generator U-tube inlet mainly by thermophoresis. The SCDAP/RELAP5 analyses considering the FP decay heat predicted small safety margin for steam generator U-tube integrity during secondary system depressurization. Considering associated uncertainties in the analyses, the potential for SGTR cannot be ignored. Accordingly, this should be considered in the evaluation of merits

  16. Electric machinery and drives in thermal power stations

    International Nuclear Information System (INIS)

    1974-01-01

    The following subjects were dealt with during the VDE meeting: 1) Requirements made by the electric network on the generators and their excitation equipment, and the influence thereof on their design; 2) requirements made by the power station process on the electric drives and the influence thereof on type and design; 3) requirements made on protective measures from the point of the electric power station machinery. (TK) [de

  17. Palo Verde Nuclear Generating Station, Units 1, 2, and 3 (Docket Nos. STN 50-528, STN 50-529, and STN 50-530): Final environmental statement

    International Nuclear Information System (INIS)

    1982-02-01

    The proposed action is the issuance of operating licenses to the Arizona Public Service Company (APS, applicant) for the startup and operation of PVNGS, Units 1, 2, and 3, located in Maricopa County, about 24 km (15 mi) west of Buckeye, Arizona. The information in this statement represents the second assessment of the environmental impact associated with PVNGS Units 1, 2, and 3 pursuant to the guidelines of the National Environmental Policy Act of 1969 (NEPA) and Title 10 of the Code of Federal Regulations (10 CFR) Part 51 of the Commissions's Regulations. After receiving an application in July 1974 to construct this station, the staff carried out a review of impacts that would occur during its construction and operation. That evaluation was issued as a Final Environmental Statement/emdash/Construction Phase (FES-CP). After this environmental review, a safety review, an evaluation by the Advisory Committee on Reactor Safeguards, and public hearings in Phoenix, Arizona, the US Nuclear Regulatory Commission issued Construction Permits Nos. CPPR-141, CPPR-142, and CPPR-143 for the construction of PVNGS Units 1, 2, and 3. As of September 1981, the construction of Unit 1 was about 92 percent complete, Unit 2 was 68 percent complete, and Unit 3 was 26 percent complete. 11 figs., 21 tabs

  18. 78 FR 41425 - In the Matter of Duke Energy Carolinas, LLC; (Oconee Nuclear Station, Units 1, 2, and 3...

    Science.gov (United States)

    2013-07-10

    ... approved plant procedures and the completion of operator training necessary to accomplish this lineup, and a combination of testing and engineering evaluation in accordance with station procedures which... credited. This modification along with approved plant procedures and the completion of operator training...

  19. A briefing paper for the status of the flue gas desulfurization system at Indianapolis Power ampersand Light Company Petersburg Station Units 1 and 2

    International Nuclear Information System (INIS)

    Rutledge, C.K.; Wolsiffer, S.R.; Gray, S.M.; Martin, J.E.; Wedig, C.P.

    1992-01-01

    This paper presents a brief description of the status of the retrofit wet limestone flue gas desulfurization system project at Indianapolis Power ampersand Light Company (IPL) Petersburg Units 1 and 2. This project was initiated by IPL in response to the Clean Air Act of 1990 and is intended to treat the flue gas from two base load units with a combined capacity of approximately 700 MW gross electrical output

  20. Technical specifications, Catawba Nuclear Station, Unit 1 (Docket No. 50-413). Appendix A to License No. NPF-35

    International Nuclear Information System (INIS)

    1985-01-01

    Information is presented concerning safety limits for operation of reactor control systems, power distribution, instrumentation, reactor coolant system, emergency core cooling system, containment system, electrical power systems, refueling operations, radioactive effluents, environmental monitoring, reactor site, and administrative aspects

  1. Safety Evaluation Report related to the operation of Braidwood Station, Units 1 and 2 (Docket Nos. STN 50-456 and STN 50-457)

    International Nuclear Information System (INIS)

    1988-06-01

    In November 1983, the staff of the Nuclear Regulatory Commission issued its Safety Evaluation Report (NUREG-1002) regarding the application filed by the Commonwealth Edison Company, as applicant and owner, for a license to operate Braidwood Station, Units 1 and 2 (Docket Nos. 50-456 and 50-457). The first supplement to NUREG-1002 was issued in September 1986; the second supplement was issued in October 1986; the third supplement was issued in May 1987; the fourth supplement was issued in July 1987 in support of the full power license for Unit 1; the fifth supplement was issued in December 1987 in support of the low power license for Unit 2. This sixth supplement to NUREG-1002 is in support of the full-power license for Unit 2 and provides the status of items that remained unresolved at the time Supplement 5 was published. The facility is located in Reed Township, Will County, Illinois

  2. Dynamic underground stripping: steam and electric heating for in situ decontamination of soils and groundwater

    Science.gov (United States)

    Daily, William D.; Ramirez, Abelardo L.; Newmark, Robin L.; Udell, Kent; Buetnner, Harley M.; Aines, Roger D.

    1995-01-01

    A dynamic underground stripping process removes localized underground volatile organic compounds from heterogeneous soils and rock in a relatively short time. This method uses steam injection and electrical resistance heating to heat the contaminated underground area to increase the vapor pressure of the contaminants, thus speeding the process of contaminant removal and making the removal more complete. The injected steam passes through the more permeable sediments, distilling the organic contaminants, which are pumped to the surface. Large electrical currents are also applied to the contaminated area, which heat the impermeable subsurface layers that the steam has not penetrated. The condensed and vaporized contaminants are withdrawn by liquid pumping and vacuum extraction. The steam injection and electrical heating steps are repeated as necessary. Geophysical imaging methods can be used to map the boundary between the hot, dry, contamination-free underground zone and the cool, damp surrounding areas to help monitor the dynamic stripping process.

  3. Safety evaluation report related to the operation of Catawba Nuclear Station, Units 1 and 2. Docket Nos. 50-413 and 50-414, Duke Power Company, et al

    International Nuclear Information System (INIS)

    1983-02-01

    The Safety Evaluation Report for the application filed by Duke Power Company, North Carolina Municipal Power Agency Number 1, North Carolina Electric Membership Corporation, and Saluda River Electric Cooperative, Inc. as applicants and owners, for licenses to operate the Catawba Nuclear Station, Units 1 and 2 (Docket Nos. 50-413 and 50-414), has been prepared by the Office of Nuclear Reactor Regulation of the US Nuclear Regulatory Commission. The facility is located in York County, South Carolina, approximately 9.6 km (6 mi) north of Rock Hill and adjacent to Lake Wylie. Subject to favorable resolution of the items discussed in this report, the staff concludes that the facility can be operated by the applicant without endangering the health and safety of the public

  4. Evaluation of severe accident risks and the potential for risk reduction: Surry Power Station, Unit 1: Draft report for comment

    International Nuclear Information System (INIS)

    Benjamin, A.S.; Boyd, G.J.; Kunsman, D.M.; Murfin, W.B.; Williams, D.C.

    1987-02-01

    The Severe Accident Risk Reduction Program (SARRP) has completed a rebaselining of the risks to the public from a particular pressurized water reactor with a subatmospheric containment (Surry, Unit 1). Emphasis was placed on determining the magnitude and character of the uncertainties, rather than focusing on a point estimate. The risk-reduction potential of a set of proposed safety option backfits was also studied, and their costs and benefits were also evaluated. It was found that the risks from internal events are generally lower than previously evaluated in the Reactor Safety Study (RSS). However, certain unresolved issues (such as direct containment heating) caused the top of the uncertainty band to appear at a level that is comparable with the RSS point estimate. None of the postulated safety options appears to be cost effective for the Surry power plant. This work supports the Nuclear Regulatory Commission's assessment of severe accidents in NUREG-1150

  5. Evaluation of severe accident risks and the potential for risk reduction: Surry Power Station, Unit 1: Draft report for comment

    Energy Technology Data Exchange (ETDEWEB)

    Benjamin, A.S.; Boyd, G.J.; Kunsman, D.M.; Murfin, W.B.; Williams, D.C.

    1987-02-01

    The Severe Accident Risk Reduction Program (SARRP) has completed a rebaselining of the risks to the public from a particular pressurized water reactor with a subatmospheric containment (Surry, Unit 1). Emphasis was placed on determining the magnitude and character of the uncertainties, rather than focusing on a point estimate. The risk-reduction potential of a set of proposed safety option backfits was also studied, and their costs and benefits were also evaluated. It was found that the risks from internal events are generally lower than previously evaluated in the Reactor Safety Study (RSS). However, certain unresolved issues (such as direct containment heating) caused the top of the uncertainty band to appear at a level that is comparable with the RSS point estimate. None of the postulated safety options appears to be cost effective for the Surry power plant. This work supports the Nuclear Regulatory Commission's assessment of severe accidents in NUREG-1150.

  6. Electric Vehicle Charging Stations as a Climate Change Mitigation Strategy

    Science.gov (United States)

    Cave, Bridget; DeYoung, Russell J.

    2014-01-01

    In order to facilitate the use of electric vehicles at NASA Langley Research Center (LaRC), charging stations should be made available to LaRC employees. The implementation of charging stations would decrease the need for gasoline thus decreasing CO2 emissions improving local air quality and providing a cost savings for LaRC employees. A charging station pilot program is described that would install stations as the need increased and also presents a business model that pays for the electricity used and installation at no cost to the government.

  7. Palo Verde Nuclear Generating Station, Units 1, 2 and 3 (Docket Nos. STN 50-528, STN 50-529 and STN 50-530): Final environmental statement

    International Nuclear Information System (INIS)

    1975-09-01

    The proposed action is the issuance of construction permits to the Arizona public Service Company for the construction of the Palo Verde Nuclear Generating Station, Units 1, 2, and 3. Preparation of the 3800-acre site will involve the clearing of up to 2500 acres of land, 1500 of which will be prominently devoted to station facilities. An additional 1200- to 1300-acre evaporation pond will ultimately be developed during the lifetime of the station. About 2200 site acres, previously devoted to agriculture, will be excluded from this land use. Soil disturbance during construction of the station, transmission lines, and water conveyance pipeline will tend to promote erosion and increase siltation in local ephemeral water courses. Stringent measures will be taken to minimize these effects. The total radiation dose to construction workers is estimated to be 15 man-rem. This dose is a small fraction of the approximately 470 man-rem which will be received by the construction force over the same period from natural background radiation. Station, transmission line, and water pipeline construction will kill, remove, displace, or otherwise disturb involved flora and fauna, and will eliminate varying amounts of wildlife breeding, nesting, and forage habitat. These will not be important permanent impacts to the population stability and structure of the involved local ecosystems of the Sonoran desert; however, measures will be taken to minimize such effects as do result form the proposed action

  8. Safety Evaluation Report related to the operation of Braidwood Station, Units 1 and 2 (Docket Nos. 50-456 and 50-457)

    International Nuclear Information System (INIS)

    1987-05-01

    In November 1983, the staff of the Nuclear Regulatory Commission issued its Safety Evaluation Report (NUREG-1002) regarding the application filed by the Commonwealth Edison Company, as applicant and owner, for a license to operate Braidwood Station, Units 1 and 2 (Docket Nos. 50-456 and 50-457). The first supplement to NUREG-1002 was issued in September 1986; the second supplement to NUREG-1002 was issued in October 1986. This third supplement to NUREG-1002 reports the status of certain items that remained unresolved at the time Supplement 2 was published. The facility is located in Reed Township, Will County, Illinois

  9. Safety Evaluation Report related to the operation of Byron Station, Units 1 and 2 (Dockets Nos. STN 50-454 and STN 50-455)

    International Nuclear Information System (INIS)

    1984-10-01

    Supplement No. 5 to the Safety Evaluation Report related to Commonwealth Edison Company's application for licenses to operate the Byron Station, Units 1 and 2, located in Rockvale Township, Ogle County, Illinois, has been prepared by the Office of Nuclear Reactor Regulation of the US Nuclear Regulatory Commission. This supplement reports the status of certain items that had not been resolved at the time of publication of the Safety Evaluation Report. Because of the favorable resolution of the items discussed in this report, the staff concludes that there is reasonable assurance that the facility can be operated by the applicant without endangering the health and safety of the public

  10. Technical evaluation of the noise and isolation testing of the safety features actuation system at the Davis Besse Nuclear Power Station, Unit 1

    International Nuclear Information System (INIS)

    Selan, J.C.

    1981-07-01

    This report documents the technical evaluation of the noise and isolation testing of the safety features actuation system at the Davis Besse Nuclear Power Station, Unit 1. The tests were to verify that faults on the non-Class 1E circuits would not propagate to the Class 1E circuits and degrade them below acceptable levels. The tests conducted demonstrated that the safety features actuation system did not degrade below acceptable levels nor was the system's ability to perform its protective functions affected

  11. Safety evaluation report related to the operation of Braidwood Station, Units 1 and 2 (Docket Nos. 50-456 and 50-457)

    International Nuclear Information System (INIS)

    1983-11-01

    The Safety Evaluation Report for the application filed by the Commonwealth Edison Company, as applicant and owner, for a license to operate Braidwood Station, Units 1 and 2 (Docket Nos. STN 50-456 and STN 50-457), has been prepared by the Office of Nuclear Reactor Regulation of the US Nuclear Regulatory Commission. The facility is located in Reed Township, Will County, Illinois. Subject to favorable resolution of the items discussed in this report, the staff concludes that the facility can be operated by the applicant without endangering the health and safety of the public

  12. Safety Evaluation Report related to the operation of Braidwood Station, Units 1 and 2 (Docket Nos. 50-456 and 50-457). Supplement No. 2

    International Nuclear Information System (INIS)

    1986-10-01

    In November 1983, the staff of the Nuclear Regulatory Commission issued its Safety Evaluation Report (NUREG-1002) regarding the application filed by the Commonwealth Edison Company, as applicant and owner, for a license to operate Braidwood Station, Units 1 and 2 (Docket Nos. 50-456 and 50-457). The first supplement to NUREG-1002 was issued in September 1986. This second supplement to NUREG-1002 reports the status of certain items that remained unresolved at the time Supplement 1 was published. The facility is located in Reed Township, Will County, Illinois

  13. Safety Evaluation Report related to the operation of Braidwood Station, Units 1 and 2 (Docket Nos. 50-456 and 50-457). Supplement No. 1

    International Nuclear Information System (INIS)

    1986-09-01

    In November 1983 the staff of the Nuclear Regulatory Commission issued its Safety Evaluation Report (NUREG-1002) regarding the application filed by the Commonwealth Edison Company, as applicant and owner, for a license to operate Braidwood Station, Units 1 and 2 (Docket Nos. STN 50-456 and STN 50-457). The facility is located in Reed Township, Will County, Illinois. This first supplement to NUREG-1002 reports the status of certain items that remained unresolved at the time the Safety Evaluation Report was published

  14. Technical evaluation report on the proposed design modifications and technical specification changes on grid voltage degradation for the Millstone Nuclear Power Station, Unit 1

    International Nuclear Information System (INIS)

    Selan, J.C.

    1982-01-01

    This report documents the technical evaluation of the proposed design modifications and Technical Specification change for protection of Class 1E equipment from grid voltage degradation for the Millstone Nuclear Power Station, Unit 1. The review criteria are based on several IEEE standards and the Code of Federal Regulations. The evaluation finds that the licensee has not provided sufficient information on the undervoltage protection system to allow a complete evaluation into the adequacy of protecting the Class 1E equipment from sustained voltage degradation

  15. Technical evaluation of RETS-required reports for Zion Nuclear Power Station, Units 1 and 2 for 1983

    International Nuclear Information System (INIS)

    Young, T.E.; Magleby, E.H.

    1985-01-01

    A review was performed on the reports required by Federal regulations and the plant-specific Radiological Effluent Technical Specifications (RETS) for operations conducted at Commonwealth Edison's Zion Nuclear Power Station during 1983. The two periodic reports reviewed: (1) were the Effluent and Waste Disposal Semiannual Report, July-December 1983, and (2) the Radioactive Waste and Environmental Monitoring Annual Report - 1983. The principal review guidelines were the plant's specific RETS and NRC guidance given in NUREG-0133, ''Preparation of Radiological Effluent Technical Specifications for Nuclear Power Plants.'' The Licensee's submitted reports were found to be reasonably complete and consistent with the review guidelines

  16. Browns Ferry Nuclear Power Station, Units 1, 2, and 3. Annual operating report: 1 January--31 December 1977

    International Nuclear Information System (INIS)

    1978-01-01

    The three reactors operated at near full power generating 17,622,500 MWH gross electrical power. There were 153 major power reductions including 50 scrams mostly caused by equipment failures. Data are presented concerning operations, modifications, occupational exposures, effluent activity, and waste disposal

  17. Iron turbidity removal from the active process water system of the Kaiga Generating Station Unit 1 using an electrochemical filter

    International Nuclear Information System (INIS)

    Venkateswaran, G.; Gokhale, B.K.

    2007-01-01

    Iron turbidity is observed in the intermediate cooling circuit of the active process water system (APWS) of Kaiga Generating Station (KGS). Deposition of hydrous/hydrated oxides of iron on the plate type heat exchanger, which is employed to transfer heat from the APWS to the active process cooling water system (APCWS), can in turn result in higher moderator D 2 O temperatures due to reduced heat transfer. Characterization of turbidity showed that the major component is γ-FeOOH. An in-house designed and fabricated electrochemical filter (ECF) containing an alternate array of 33 pairs of cathode and anode graphite felts was successfully tested for the removal of iron turbidity from the APWS of Kaiga Generating Station Unit No. 1 (KGS No. 1). A total volume of 52.5 m 3 water was processed using the filter. At an average inlet turbidity of 5.6 nephelometric turbidity units (NTU), the outlet turbidity observed from the ECF was 1.6 NTU. A maximum flow rate (10 L . min -1 ) and applied potential of 18.0-20.0 V was found to yield an average turbidity-removal efficiency of ∝ 75 %. When the experiment was terminated, a throughput of > 2.08 . 10 5 NTU-liters was realized without any reduction in the removal efficiency. Removal of the internals of the filter showed that only the bottom 11 pairs of felts had brownish deposits, while the remaining felts looked clean and unused. (orig.)

  18. Safety Evaluation Report related to the operation of Limerick Generating Station, Units 1 and 2 (Docket Nos. 50-352 and 50-353). Supplement No. 5

    International Nuclear Information System (INIS)

    1985-07-01

    In August 1983 the NRC issues its Safety Evaluation Report regarding the application for licenses to operate the Limerick Generating Station, Units 1 and 2 located on a site in Montgomery and Chester Counties, Pennsylvania. Supplement 1 was issued in December 1983 and addressed several outstanding issues. SSER 1 also contains the comments made by the Advisory Committee on Reactor Safeguards in its interim report dated October 18, 1983. Supplement 2 was issued in October 1984. Supplement 3 was issued in October 1984 and addressed the remaining issues that required resolution before issuance of the operating licence for Unit 1. On October 26, 1984 a license (NPF-27) for Unit 1 was issued which was restricted to a five percent power level and contained conditions which required resolution prior to proceeding beyond the five percent power level. Supplement 4 issued in May 1985 addressed some of the technical issues and their associated license conditions, which required resolution prior to proceeding beyond the five percent power level. SSER 4 also contained the comments made by the Advisory Committee on Reactor Safeguards in its report dated November 6, 1984. This Supplement 5 to the SER addresses further issues that require resolution prior to proceeding beyond the five percent power level

  19. Draft environmental statement related to the operation of Braidwood Station, Units 1 and 2 (Docket Nos. STN 50-456 and STN 50-457)

    International Nuclear Information System (INIS)

    1983-12-01

    The Draft Environment Statement contains the second assessment of the environmental impact associated with the operation of Braidwood Station, Units 1 and 2, pursuant to the National Environmental Policy Act of 1969 (NEPA) and Title 10 of the Code of Federal Regulations, Part 51, as amended, of the Nuclear Regulatory Commission regulations. This statement examines the environment, environmental consequences and mitigating actions, and environmental and economic benefits and costs. Land use and terrestrial and aquatic ecological impacts will be small. Operational impacts to historic and archeologic sites will be negligible. The effects of routine operations, energy transmission, and periodic maintenance of rights of way and transmission facilities should not jeopardize any populations of endangered or threatened species. No significant impacts are anticipated from normal operational releases of radioactivity. The risk of radiation exposure associated with accidental release of radioactivity is very low. The net socioeconomi effects of the project will be beneficial. On the basis of the analysis and evaluation set forth in this environmental statement, it is concluded that the action called for under NEPA and 10 CFR 51 is the issuance of operating licenses for Braidwood Station, Units 1 and 2

  20. Final environmental statement related to the operation of Braidwood Station, Units 1 and 2 (Docket Nos. STN 50-456 and STN 50-457)

    International Nuclear Information System (INIS)

    1984-06-01

    This Final Environmental Statement contains the second assessment of the environmental impact associated with the operation of Braidwood Station, Units 1 and 2, pursuant to the National Environmental Policy Act of 1969 (NEPA) and Title 10 of the Code of Federal Regulations, Part 51, as amended, of the Nuclear Regulatory Commission regulations. This statement examines the environment, environmental consequences and mitigating actions, and environmental and economic benefits and costs. Land use and terrestrial and aquatic ecological impacts will be small. Operational impacts to historic and archeologic sites will be moderate. The effects of routine operations, energy transmission, and periodic maintenance of rights of way and transmission facilities should not jeopardize any populations of endangered or threatened species. No significant impacts are anticipated from normal operational releases of radioactivity. The risk of radiation exposure associated with accidental release of radioactivity is very low. The net socioeconomic effects of the project will be beneficial. On the basis of the analysis and evaluation set forth in this environmental statement, it is concluded that the action called for under NEPA and 10 CFR 51 is the issuance of operating licenses for Braidwood Station, Units 1 and 2. 27 figures, 23 tables

  1. Integrated-plant-safety assessment Systematic Evaluation program. Millstone Nuclear Power Station, Unit 1, Northeast Nuclear Energy Company, Docket No. 50-245

    International Nuclear Information System (INIS)

    1982-11-01

    The Systematic Evaluation Program was initiated in February 1977 to review the designs of older operating nuclear reactor plants to reconfirm and document their safety. The review provides: (1) an assessment of how these plants compare with current licensing safety requirements relating to selected issues, (2) a basis for deciding on how these differences should be resolved in an integrated plant review, and (3) a documented evaluation of plant safety. This report documents the review of the Millstone Nuclear Power Station, Unit 1, operated by Northeast Nuclear Energy Company (located in Waterford, Connecticut). Millstone Nuclear Power Station, Unit 1, is one of ten plants reviewed under Phase II of this program. This report indicates how 137 topics selected for review under Phase I of the program were addressed. Equipment and procedural changes have been identified as a result of the review. It is expected that this report will be one of the bases in considering the issuance of a full-term operating license in place of the existing provisional operating license

  2. 78 FR 46616 - Virginia Electric and Power Company; North Anna Power Station, Units 1 and 2; Surry Power Station...

    Science.gov (United States)

    2013-08-01

    ... Nuclear Energy Institute (NEI) 99-01, Methodology for Development of Emergency Action Levels.'' The... readily accessible means available in the Control Room. Environmental Impacts of the Proposed Action The... that there are no significant environmental impacts associated with the proposed action. Environmental...

  3. Safety Evaluation Report related to the restart of Davis-Besse Nuclear Power Station, Unit 1, following the event of June 9, 1985 (Docket No. 50-346)

    International Nuclear Information System (INIS)

    1986-06-01

    On June 9, 1985, the Davis-Besse Nuclear Power Station, operated by the Toledo Edison Company, experienced a partial loss of main feedwater while the plant was at 90% power. The ensuing reactor trip was followed by spurious isolation of the steam geneators which initiated a chain of events involving a number of equipment malfunctions and several operator errors ultimately interrupting all feedwater for a short period of time. By the time operators were able to restore feedwater, both steam generators had dried out. A letter from the Director of the Office of Nuclear Reactor Regulation, pursuant to 10 CFR 50.54(f) of the Commission's regulations, confirmed that the Davis-Besse facility would not be restarted without NRC approval. The letter also requested that Toledo Edison submit its program for resolving numerous concerns identified by the staff. In response, the license submitted the Davis-Besse Course of Action report. The staff has reviewed that document and other supporting material submitted by the licensee; the staff's evaluation of that information is presented in this report

  4. A process for superheating steam in a nuclear power station circuit and device for putting in operation this process

    International Nuclear Information System (INIS)

    Monteil, Marcel; Forestier, Jean; Leblanc, Bernard; Monteil, Pierre

    1975-01-01

    A process is described for superheating steam in a nuclear power station circuit, comprising a turbine with a high pressure chamber and a low pressure chamber. It consists in superheating the steam between the high and low pressure chambers of the turbine by using as heating fluid water under pressure at vaporisation temperature, directly taken from the recirculation or circulation flow water of the reactor or of the steam generators. The process is adapted to a pressurised water reactor using a once-through steam generator comprising in succession an economiser, a vaporiser and a superheater, the superheating water being taken at the vaporiser intake. It is also adapted for a boiling water reactor, in that the water is taken directly from the reactor vessel and at a suitable level in the recirculation water [fr

  5. Postfact phenomena of the wet-steam flow electrization in turbines

    Science.gov (United States)

    Tarelin, A. A.

    2017-11-01

    Physical processes occurring in a turbine with natural electrization of a humidity-steam flow and their effect on efficiency and reliability of the turbine operation has been considered. Causes of the electrical potential occurrence on a rotor shaft are analyzed. The wet steam's electrization exposure on the electrical potential that is one of the major factors of bearings' electroerosion has been demonstrated on the full-scale installation. Hydrogen formation in wheelspace of the turbine as a result of electrochemical processes and electric field exposure of the space charge has been considered. Hydrogen concentration dependence on a volume charge density in the steam flow has been determined. It is stated that the processes occurring behind the final stage of wet-steam turbines are similar to the ones in elaerosol ectrostatic generators. It has been demonstrated that this phenomenon causes the flow's temporal inhibition and starts pulsations. These factors' impact on power loss of the turbine has been evaluated and recommendations for their elimination have been offered. It has been determined that motions of charged drops can cause self-maintained discharges inside of the flow and between the flow and grounded surfaces that are accompanied by electromagnetic radiation of the wide spectrum. The integrated studies have shown that physical phenomena occurring due to natural electrization negatively affect efficiency and reliability of the turbine operation. Practical recommendations allowing one to minimize the negative effects of the flow natural electrization process have been offered.

  6. Palo Verde Nuclear Generating Station Units 1, 2, and 3: Draft environmental statement (Docket Nos. STN 50-528, 529, and 530)

    International Nuclear Information System (INIS)

    1975-04-01

    The proposed action is the issuance of construction permits to the Arizona Public Service Corporation for the construction of the Palo Verde Nuclear Generating Station, Units 1, 2 and 3. Preparation of the 3880-acre site will involve the clearing of up to 2500 acres of land, 1500 of which will be permanently devoted to station facilities. An additional 1200- to 1300-acre evaporation pond will ultimately be developed during the lifetime of the station. About 2200 site acres, previously devoted to agriculture, will be excluded from this land use (Sec. 4. 1). Soil disturbance during construction of the station, transmission lines, and water conveyance pipeline will tend to promote erosion and increase siltation in local ephemeral water courses. Stringent measures will be taken to minimize these effects (Sec. 4.5). Station, transmission line, and water pipeline construction will kill, remove displace, or otherwise disturb involved flora and fauna, and will eliminate varying amounts of wildlife breeding, nesting, and forage habitat. These will not be important impacts to the population stability and structure of the involved local ecosystems of the Sonoran desert; however, measures will be taken to minimize such effects (Sec. 4.3 and 4.5). Approximately 60 acres of agricultural land will be temporarily affected by construction in transmission corridors. The great majority can be returned to that use upon completion of construction, thus the impact is considered minor. Similarly, most grazing lands affected along these corridors, as well as along the water pipeline corridor, can eventually be returned to that use. New archaeological resources could be discovered along the path of final transmission corridor alignments. The applicant will take measures to locate and protect such resources if they exist. 75 refs., 24 figs., 65 tabs

  7. Composite electric generator equipped with steam generator for heating reactor coolant

    International Nuclear Information System (INIS)

    Watabe, Masaharu; Soman, Yoshindo; Kawanishi, Kohei; Ota, Masato.

    1997-01-01

    The present invention concerns a composite electric generator having coolants, as a heating source, of a PWR type reactor or a thermonuclear reactor. An electric generator driving gas turbine is disposed, and a superheater using a high temperature exhaust gas of the gas turbine as a heating source is disposed, and main steams are superheated by the superheater to elevate the temperature at the inlet of the turbine. This can increase the electric generation capacity as well as increase the electric generation efficiency. In addition, since the humidity in the vicinity of the exit of the steam turbine is reduced, occurrence of loss and erosion can be suppressed. When cooling water of the thermonuclear reactor is used, the electric power generated by the electric generator driven by the gas turbine can be used upon start of the thermonuclear reactor, and it is not necessary to dispose a large scaled special power source in the vicinity, which is efficient. (N.H.)

  8. Ecotaxes and their impact in the cost of steam and electric energy generated by a steam turbine system

    International Nuclear Information System (INIS)

    Montero, Gisela

    2006-01-01

    Ecotaxes allow the internalization of costs that are considered externalities associated with polluting industrial process emissions to the atmosphere. In this paper, ecotaxes internalize polluting emissions negative impacts that are added to electricity and steam generated costs of a steam turbine and heat recovery systems from a utilities refinery plant. Steam costs were calculated by means of an exergy analysis tool and Aspen Plus simulation models. Ecotaxes were calculated for specific substances emitted in the refinery flue gases, based on a toxicity and pollution scale. Ecotaxes were generated from a model that includes damages produced to biotic and abiotic resources and considers the relative position of those substances in a toxicity and pollution scale. These ecotaxes were internalized by an exergoeconomic analysis resulting in an increase in the cost per kWh produced. This kind of ecotax is not applied in Mexico. The values of ecotaxes used in the cost determination are referred to the values currently applied by some European countries to nitrogen oxides emissions. (author)

  9. Steam turbines of large output especially for nuclear power stations. Part 1

    International Nuclear Information System (INIS)

    Drahny, J.; Stasny, M.

    1986-01-01

    At the international conference, 53 papers were presented in 3 sessions dealing with the design of large output steam turbines, with problems of flow in steam turbines, and with the reliability and service life of steam turbines. Part 1 of the conference proceedings contains two introductory papers, one reviewing the 100 years history of steam turbines (not included in INIS), the other giving an overview of the development of steam turbines in the eighties; and the 13 papers heard in the session on steam turbine design, all inputted in INIS. (A.K.)

  10. Resilient design of recharging station networks for electric transportation vehicles

    Energy Technology Data Exchange (ETDEWEB)

    Kris Villez; Akshya Gupta; Venkat Venkatasubramanian

    2011-08-01

    As societies shift to 'greener' means of transportation using electricity-driven vehicles one critical challenge we face is the creation of a robust and resilient infrastructure of recharging stations. A particular issue here is the optimal location of service stations. In this work, we consider the placement of battery replacing service station in a city network for which the normal traffic flow is known. For such known traffic flow, the service stations are placed such that the expected performance is maximized without changing the traffic flow. This is done for different scenarios in which roads, road junctions and service stations can fail with a given probability. To account for such failure probabilities, the previously developed facility interception model is extended. Results show that service station failures have a minimal impact on the performance following robust placement while road and road junction failures have larger impacts which are not mitigated easily by robust placement.

  11. Technical and economic studies of small reactors for supply of electricity and steam

    International Nuclear Information System (INIS)

    Spiewak, I.; Klepper, O.H.; Fuller, L.C.

    1977-02-01

    Several years ago conventional opinion held that nuclear power plants must be very large to be competitive with fossil fuels. This situation has changed markedly in most countries within recent years, as oil and gas supplies have become more scarce and costly. Studies have been carried out for several nuclear steam supply systems in the small and intermediate size range. Detail studies are reported of the Consolidated Nuclear Steam Generator (CNSG), a 365 MW(th) pressurized water reactor being developed by Babcock and Wilcox, as applied to industrial energy needs. Both conventional and barge-mounted nuclear steam supply systems are considered. Conceptual studies have been started of pressurized and boiling water reactors in the range of 1000 MW(th), which are envisioned for utility operation for supply of electric power and steam. Design studies of a 500 MW(th) high temperature reactor are also reported. The small reactors are expected to have higher unit costs than the large commercial plants, but to have compensating advantages in higher plant availability, shorter construction schedule, and greater siting flexibility. Studies are also reported of power cycle parameters and cost allocations for extraction of steam from steam turbine plants. This steam could be used for industrial energy, district heating, or desalination

  12. Technical and economic studies of small reactors for supply of electricity and steam

    International Nuclear Information System (INIS)

    Spiewak, I.; Klepper, O.H.; Fuller, L.C.

    1977-01-01

    Several years ago conventional opinion held that nuclear power plants must be very large to be competitive with fossil fuels. This situation has changed markedly in most countries within recent years, as oil and gas supplies have become more scarce and costly. Studies have been carried out of several nuclear steam supply systems in the small and intermediate size range. Detail studies are reported of the Consolidated Nuclear Steam Generator (CNSG), a 313 MW(t) pressurized water reactor being developed by Babcock and Wilcox, as applied to industrial energy needs. Both conventional and barge-mounted nuclear steam supply systems are considered. Conceptual studies have been started of pressurized and boiling water reactors in the range of 1000 MW(t), which are envisioned for utility operation for supply of electric power and steam. Design studies of a 500 MW(t) high temperature reactor are also reported. The small reactors are expected to have higher unit costs than the large commercial plants, but to have compensating advantages in higher plant availability, shorter construction schedule and greater siting flexibility. Studies are also reported of power cycle parameters and cost allocations for extraction of steam from steam turbine plants. This steam could be used for industrial energy, district heating or desalination

  13. Technical and economic studies of small reactors for supply of electricity and steam

    International Nuclear Information System (INIS)

    Spiewak, I.; Klepper, O.H.; Fuller, L.C.

    1977-01-01

    Several years ago conventional opinion held that nuclear power plants must be very large to be competitive with fossil fuels. This situation has changed markedly in most countries within recent years, as oil and gas supplies have become more scarce and costly. Studies have been carried out of several nuclear steam supply systems in the small and intermediate size range. Detail studies are reported of the Consolidated Nuclear Steam Generator (CNSG), a 313MW(th) pressurized water reactor being developed by Babcock and Wilcox, as applied to industrial energy needs. Both conventional and barge-mounted nuclear steam supply systems are considered. Conceptual studies have been started of pressurized and boiling water reactors in the range of 1000MW(th), which are envisioned for utility operation for supply of electric power and steam. Design studies of a 500MW(th) high temperature reactor are also reported. The small reactors are expected to have higher unit costs than the large commercial plants, but to have compensating advantages in higher plant availability, shorter construction schedule and greater siting flexibility. Studies are also reported of power cycle parameters and cost allocations for extraction of steam from steam turbine plants. This steam could be used for industrial energy, district heating or desalination. (author)

  14. Design and performance of General Electric boiling water reactor main steam line isolation valves

    International Nuclear Information System (INIS)

    Rockwell, D.A.; van Zylstra, E.H.

    1976-08-01

    An extensive test program has been completed by the General Electric Company in cooperation with the Commonwealth Edison Company on the basic design type of large main steam line isolation valves used on General Electric Boiling Water Reactors. Based on a total of 40 tests under simulated accident conditions covering a wide range of mass flows, mixture qualities, and closing times, it was concluded that the commercially available valves of this basic type will close completely and reliably as required. Analytical methods to predict transient effects in the steam line and valve after postulated breaks were refined and confirmed by the test program

  15. Procedure for estimating nonfuel operation and maintenance costs for large steam-electric power plants

    International Nuclear Information System (INIS)

    Myers, M.L.; Fuller, L.C.

    1979-01-01

    Revised guidelines are presented for estimating annual nonfuel operation and maintenance costs for large steam-electric power plants, specifically light-water-reactor plants and coal-fired plants. Previous guidelines were published in October 1975 in ERDA 76-37, a Procedure for Estimating Nonfuel Operating and Maintenance Costs for Large Steam-Electric Power Plants. Estimates for coal-fired plants include the option of limestone slurry scrubbing for flue gas desulfurization. A computer program, OMCOST, is also presented which covers all plant options

  16. Development of the APR1400 model for countercurrent natural circulation in hot leg and steam generator under station blackout

    International Nuclear Information System (INIS)

    Park, Sang Gil; Kim, Han Chul

    2012-01-01

    In order to analyze severe accident phenomena, Korea Institute of Nuclear Safety (KINS) made a MELCOR model for APR1400 to examine natural circulation and creep rupture failure in the Reactor Coolant System (RCS) under station blackout (SBO). In this study, we are trying to advance the former model to describe natural circulation more accurately. After Fukushima accident, the concerns of severe accident management, assuring the heat removal capability, has risen for the case when the SBO is happened and there are no more electric powers to cool down decay heat. Under SBO there are three kinds of natural circulation which can delay the core heatup. One is in vessel natural circulation in the upper plenum of reactor vessel and the second is countercurrent natural circulation in hot leg through steam generator tubes and the last is full loop natural circulation when the reactor coolant pump loop seal is cleared and reactor coolant pump sealing is damaged by high temperature and high pressure. Among them this study focuses on the countercurrent natural circulation model using MELCOR1.8.6

  17. Draft environmental statement related to the operation of Limerick Generating Station, Units 1 and 2. Docket Nos. 50-352 and 50-353

    International Nuclear Information System (INIS)

    1983-06-01

    This Draft Environmental Statement contains the second assessment of the environmental impact associated with the operation of the Limerick Generating Station, Units 1 and 2, pursuant to the National Environment Policy Act of 1969 (NEPA) and Title 10 of the Code of Federal Regulations, Part 51, as amended, of the Nuclear Regulatory Commission regulations. This statement examines the environment, environmental consequences and mitigating actions, and environmental and economic benefits and costs. Land use and terrestrial and aquatic ecological impacts will be small. Operational impacts to historic and archeological sites will be negligible. The effects of routine operations, energy transmission, and periodic maintenance of rights of way and transmission facilities should not jeopardize any populations of endangered or threatened species. No significant impacts are anticipated from normal operational releases of radioactivity

  18. Safety evaluation report related to the operation of Seabrook Station, Units 1 and 2. Docket Nos. 50-443 and 50-444. Suppl. 1

    International Nuclear Information System (INIS)

    1983-04-01

    This report supplements the Safety Evaluation Report (NUREG-0896, March 1983) for the application filed by the Public Service Company of New Hampshire, et. al., for licenses to operate Seabrook Station, Units 1 and 2 (Docket Nos. STN 50-443 and STN 50-444). It has been prepared by the Office of Nuclear Reactor Regulation of the US Nuclear Regulatory Commission and provides recent information on open items identified in the SER. The facility is located in Seabrook, New Hampshire. Subject to favorable resolution of the items discussed in this report, the staff concludes that the facility can be operated by the applicant without endangering the health and safety of the public

  19. Safety Evaluation Report related to the operation of Seabrook Station, Units 1 and 2 (Docket Nos. 50-443 and 50-444)

    International Nuclear Information System (INIS)

    1989-05-01

    This report is Supplement No. 8 to the Safety Evaluation Report (SER) (NUREG-0896, March 1983) for the application filed by the Public Service Company of New Hampshire, et al., for licenses to operate Seabrook Station, Units 1 and 2 (Docket Nos. STN 50-443 and STN 50-444). It has been prepared by the Office of Nuclear Reactor Regulation of the US Nuclear Regulatory Commission and provides recent information on open items identified in the SER. The facility is located in Seabrook, New Hampshire. Subject to favorable resolution of the items discussed in this report, the staff concludes that the facility can be operated by the applicant without endangering the health and safety of the public. 2 figs., 1 tab

  20. Safety Evaluation Report related to the operation of Seabrook Station, Units 1 and 2 (Docket Nos. 50-443 and 50-444). Supplement No. 5

    International Nuclear Information System (INIS)

    1986-07-01

    This report is Supplement No. 5 to the Safety Evaluation Report (NUREG-0896, March 1983) for the application filed by the Public Service Company of New Hampshire, et al., for licenses to operate Seabrook Station, Units 1 and 2 Docket Nos. STN 50-443 and STN 50-444). It has been prepared by the Office of Nuclear Reactor Regulation of the US Nuclear Regulatory Commission and provides recent information on open items identified in the SER. The facility is located in Seabrook, New Hampshire. Subject to favorable resolution of the items discussed in this report, the staff concludes that the facility can be operated by the applicant without endangering the health and safety of the public

  1. Safety Evaluation Report related to the operation of Seabrook Station, Units 1 and 2 (Docket Nos. 50-443 and 50-444)

    International Nuclear Information System (INIS)

    1990-03-01

    This report is Supplement No. 9 to the Safety Evaluation Report (SER) (NUREG-0896, March 1983) for the application filed by the Public Service Company of New Hampshire, et al., for licenses to operate Seabrook Station, Units 1 and 2. It has been prepared by the Office of Nuclear Reactor Regulation of the US Nuclear Regulatory Commission and provides recent information on open items identified in the SER. The facility is located in Seabrook, New Hampshire. Subject to favorable resolution of the items discussed in this report, the staff concludes that the facility can be operated by the applicant without endangering the health and safety of the public. 70 refs., 1 fig., 1 tab

  2. Safety evaluation report related to the operation of Seabrook Station, Units 1 and 2 (Docket Nos. 50-443 and 50-444)

    International Nuclear Information System (INIS)

    1986-05-01

    This report is Supplement 4 to the Safety Evaluation Report (SER, NUREG-0896, March 1983) for the application filed by the Public Service Company of New Hampshire, et al., for licenses to operate Seabrook Station, Units 1 and 2 (Docket Nos. STN 50-443 and STN 50-444). It has been prepared by the Office of Nuclear Reactor Regulation of the US Nuclear Regulatory Commission and provides recent information on open items identified in the SER. The facility is located in Seabrook, New Hamphsire. Subject to favorable resolution of the items discussed in this report, the staff concludes that the facility can be operated by the applicant without endangering the health and safety of the public

  3. Safety evaluation report related to the operation of Seabrook Station, Units 1 and 2 (Docket Nos. 50-443 and 50-444)

    International Nuclear Information System (INIS)

    1987-10-01

    This report is Supplement No. 7 to the Safety Evaluation Report (NUREG-0896, March 1983) for the application filed by the Public Service Company of New Hampshire, et al. for licenses to operate Seabrook Station, Units 1 and 2 (Docket Nos. STN 50-443 and STN 50-444). It has been prepared by the Office of Nuclear Reactor Regulation of the US Nuclear Regulatory Commission and provides recent information on open items identified in the SER. The facility is located in Seabrook, New Hampshire. Subject to favorable resolution of the items discussed in this report, the staff concludes that the facility can be operated by the applicant without endangering the health and safety of the public

  4. Technical evaluation report TMI action - NUREG-0737 (II.D.1) relief and safety valve testing for Clinton Power Station Unit 1. (Docket No. 50-461)

    International Nuclear Information System (INIS)

    Burr, T.K.; Magleby, H.L.

    1985-05-01

    Light water reactors operators have experienced a number of occurrences of improper performance by safety and relief valves installed in their primary coolant systems. Because of this, the authors of NUREG-0578 (TMI-2 Lessons Learned Task Force Status Report and Short-Term Recommendations) recommended that programs be developed and completed which would reevaluate the performance capabilities of BWR safety and relief valves. This report has examined the response of the Licensee for the Clinton Power Station, Unit 1 to the requirements of NUREG-0578 and subsequently NUREG-0737 and finds that the Licensee has provided an acceptable response, reconfirming that the General Design Criteria 14, 15 and 30 of Appendix A to 10 CFR-50 have been met

  5. Safety Evaluation report related to the operation of Braidwood Station, Units 1 and 2 (Docket Nos. STN 50-456 and STN 50-457)

    International Nuclear Information System (INIS)

    1987-07-01

    In November 1983, the staff of the Nuclear Regulatory Commission issued its Safety Evaluation Report (NUREG-1002) regarding the application filed by the Commonwealth Edison Company, as applicant and owner, for a license to operate Braidwood Station, Units 1 and 2 (Docket Nos. 50-456 and 50-457). The first supplement to NUREG-1002 was issued in September 1986; the second supplement to NUREG-1002 was issued in October 1986; the third supplement to NUREG-1002 was issued in May 1987. This fourth supplement to NUREG-1002 reports the status of certain items that remained unresolved at the time Supplement 3 was published. The facility is located in Reed Township, Will County, Illinois

  6. Safety-evaluation report related to the operation of Seabrook Station, Units 1 and 2. Docket Nos. 50-443 and 50-444

    International Nuclear Information System (INIS)

    1983-06-01

    This report is Supplement 2 to the Safety Evaluation Report (NUREG-0896, March 1983) for the application filed by the Public Service Company of New Hampshire, et al., for licenses to operate Seabrook Station, Units 1 and 2 (Docket Nos. STN 50-443 and STN 50-444). It has been prepared by the Office of Nuclear Reactor Regulation of the US Nuclear Regulatory Commission and provides recent information on open items identified in the SER. The facility is located in Seabrook, New Hampshire. Subject to favorable resolution of the items discussed in this report, the staff concludes that the facility can be operated by the applicant without endangering the health and safety of the public

  7. Surry Power Station secondary water chemistry improvement since steam generator replacement and the unit two feedwater pipe rupture

    International Nuclear Information System (INIS)

    Swindell, E.T.

    1988-01-01

    Surry Power Station has two Westinghouse-designed three-loop PWRs of 811 MWe design rating. The start of commercial operation was in July, 1972 in No.1 plant, and May, 1973 in No.2 plant. Both plants began the operation using controlled phosphate chemistry for the steam generators. In 1975, both plants were converted to all volatile treatment on the secondary side due to the tube wall thinning corrosion in the steam generators, which was associated with the phosphate sludge that was building up on the tube sheets and created acidic condition. Thereafter, condenser and air leakage and steam generator denting occurred, and after the operation of 8 years 2 month of No.1 plant and 5 years 9 months of No.2 plant, the steam generators were replaced. A major plant improvement program was designed and implemented from 1979 to 1980. The improvement in new steam generators, the modification for preventing corrosion, the addition of a steam generator blowdown recovery system, the reconstruction of condensers, the installation of full flow, deep bed condensate polishers, the addition of Dionex 8,000 on-line ion chromatograph, a long term maintenance agreement with Westinghouse and so on are reported. (Kako, I.)

  8. 75 FR 82414 - Carolina Power & Light Company; H. B. Robinson Steam Electric Plant, Unit No. 2; Exemption

    Science.gov (United States)

    2010-12-30

    ... NUCLEAR REGULATORY COMMISSION [Docket No. 50-261; NRC-2010-0062] Carolina Power & Light Company; H. B. Robinson Steam Electric Plant, Unit No. 2; Exemption 1.0 Background Carolina Power & Light... authorizes operation of the H.B. Robinson Steam Electric Plant, Unit 2 (HBRSEP). The license provides, among...

  9. 75 FR 11579 - Carolina Power & Light Company H. B. Robinson Steam Electric Plant, Unit No. 2; Exemption

    Science.gov (United States)

    2010-03-11

    ... NUCLEAR REGULATORY COMMISSION [Docket No. 50-261; NRC-2010-0062] Carolina Power & Light Company H. B. Robinson Steam Electric Plant, Unit No. 2; Exemption 1.0 Background Carolina Power & Light... of the H. B. Robinson Steam Electric Plant, Unit 2 (HBRSEP). The license provides, among other things...

  10. Integrated gasification and Cu-Cl cycle for trigeneration of hydrogen, steam and electricity

    Energy Technology Data Exchange (ETDEWEB)

    Aghahosseini, S; Dincer, I; Naterer, G F [University of Ontario, Oshawa, ON (Canada). Institute of Technology

    2011-02-15

    This paper develops and analyzes an integrated process model of an Integrated Gasification Combined Cycle (IGCC) and a thermochemical copper-chlorine (Cu-Cl) cycle for trigeneration of hydrogen, steam and electricity. The process model is developed with Aspen HYSYS software. By using oxygen instead of air for the gasification process, where oxygen is provided by the integrated Cu-Cl cycle, it is found that the hydrogen content of produced syngas increases by about 20%, due to improvement of the gasification combustion efficiency and reduction of syngas NOx emissions. Moreover, about 60% of external heat required for the integrated Cu-Cl cycle can be provided by the IGCC plant, with minor modifications of the steam cycle, and a slight decrease of IGCC overall efficiency. Integration of gasification and thermochemical hydrogen production can provide significant improvements in the overall hydrogen, steam and electricity output, when compared against the processes each operating separately and independently of each other.

  11. The expected environmental consequences and hazards of laser-fusion electric generating stations

    International Nuclear Information System (INIS)

    Devaney, J.J.; Pendergrass, J.H.

    The operation of an expected early form of a laser-fusion electric power plant is described and the hazards and the environmental effects of such a station are estimated. Possible environmental impacts and hazards to mankind can occur from nuclear excursions or explosions, nuclear weapon proliferation, loss of coolant accident (LOCA), tritium releases, chemical fires and accompanying releases of radioactivity or chemicals, induced radioactivity releases (other than tritium), radioactive waste disposal, lasers, normal electrical generation and steam plant effects, external intrusions, natural disasters, land use, resource and transportation use, thermal pollution, and air and water pollution. We find the principle environmental effects to be those of a medium size chemical plant. Electric, magnetic, steam, and radioactive hazards are of a lower order. Indeed in the event of extraordinary success in getting high temperatures and densities so that more difficult nuclear species can be reacted, such as protons with boron-11, there will be no radioactivity at all and also enormously lower hazardous chemical inventories. In our plant designs, for any fusion fuels, nuclear explosions (or even excursions beyond design limits) are not possible. (author)

  12. Reducing lighting electricity use in underground metro stations

    International Nuclear Information System (INIS)

    Casals, Miquel; Gangolells, Marta; Forcada, Núria; Macarulla, Marcel

    2016-01-01

    Highlights: • Lighting systems are big energy consumers in underground metro stations. • An adaptive lighting system strategy is developed for underground stations. • Dimming controls are based on station occupancy levels and maintenance cycles. • The k-means clustering technique is used to identify stations’ occupancy patterns. • Savings were found to amount to 255.47 MW h in 2 years for a case study metro network. - Abstract: Lighting systems are usually one of the largest electrical end-uses in underground metro stations. Taking into account that budget restrictions in publicly owned companies hinder energy efficiency retrofit projects that require high initial investments, affordable energy saving strategies are needed. This paper presents a low-cost approach for reducing lighting electricity use in underground stations, without affecting passengers’ comfort or the metro operator’s service. For this purpose, an adaptive lighting strategy of dimming the illuminance levels of artificial light sources has been developed. Dimming controls are based on the occupancy of the station, and the preventive maintenance and cleaning cycles of the luminaires. The stations’ monthly occupancy patterns are defined through the k-means clustering technique. To illustrate its effectiveness, the method was applied to 115 underground stations of the Barcelona metro network. The results revealed overall electricity savings of 255.47 MW h on a biannual basis, which represents 36.22% of the stations’ baseline lighting consumption. Individual energy savings were found to range from 25 to 87.5 MW h/year in the stations of the Barcelona metro network, depending on the number and profile of station users. The research findings will undoubtedly be useful for the future energy efficiency project plans of worldwide metro operators and managers of other underground spaces.

  13. Evolutionary growth for Space Station Freedom electrical power system

    Science.gov (United States)

    Marshall, Matthew Fisk; Mclallin, Kerry; Zernic, Mike

    1989-01-01

    Over an operational lifetime of at least 30 yr, Space Station Freedom will encounter increased Space Station user requirements and advancing technologies. The Space Station electrical power system is designed with the flexibility to accommodate these emerging technologies and expert systems and is being designed with the necessary software hooks and hardware scars to accommodate increased growth demand. The electrical power system is planned to grow from the initial 75 kW up to 300 kW. The Phase 1 station will utilize photovoltaic arrays to produce the electrical power; however, for growth to 300 kW, solar dynamic power modules will be utilized. Pairs of 25 kW solar dynamic power modules will be added to the station to reach the power growth level. The addition of solar dynamic power in the growth phase places constraints in the initial Space Station systems such as guidance, navigation, and control, external thermal, truss structural stiffness, computational capabilities and storage, which must be planned-in, in order to facilitate the addition of the solar dynamic modules.

  14. Electric vehicle station equipment for grid-integrated vehicles

    Science.gov (United States)

    Kempton, Willett; Kiamilev, Fouad; McGee, Rodney; Waite, Nick

    2017-09-05

    Methods, systems, and apparatus transferring power between the grid and an electric vehicle are disclosed. The apparatus may include at least one vehicle communication port for interfacing with electric vehicle equipment (EVE) and a processor coupled to the at least one vehicle communication port to establish communication with the EVE, receive EVE attributes from the EVE, and transmit electric vehicle station equipment (EVSE) attributes to the EVE. Power may be transferred between the grid and the electric vehicle by maintaining EVSE attributes, establishing communication with the EVE, and transmitting the EVSE maintained attributes to the EVE.

  15. Perkins Nuclear Station, Units 1, 2, and 3: Final environmental statement (Docket Nos. STN 50-488, STN 50-489, and STN 50-490

    International Nuclear Information System (INIS)

    1975-10-01

    The proposed action is the issuance of a construction permit to the Duke Power Company for the construction of the Perkins Nuclear Station (PNS) Units 1, 2, and 3 located in Davie County, North Carolina. A total of 2402 acres will be used for the PNS site; another 1401 acres will be used for the Carter Creek Impoundment. Construction-related activities on the primary site will disturb about 617 acres. Approximately 631 acres of land will be required for transmission line right-of-way, and a railroad spur will affect 77 acres. This constitutes a minor local impact. The heat dissipation system will require a maximum water makeup of 55,816 gpm, of which 50,514 gpm will be consumed due to drift and evaporative losses. This amount represents 4% of the mean monthly flow of the Yadkin River. The cooling tower blowdown and chemical effluents from the station will increase the dissolved solids concentration in the Yadkin River by a maximum of 18 ppm. The thermal alterations and increases in total dissolved solids concentration will not significantly affect the aquatic productivity of the Yadkin River. 26 figs., 51 tabs

  16. Electrical power systems for Space Station

    Science.gov (United States)

    Simon, W. E.

    1984-01-01

    Major challenges in power system development are described. Evolutionary growth, operational lifetime, and other design requirements are discussed. A pictorial view of weight-optimized power system applications shows which systems are best for missions of various lengths and required power level. Following definition of the major elements of the electrical power system, an overview of element options and a brief technology assessment are presented. Selected trade-study results show end-to-end system efficiencies, required photovoltaic power capability as a function of energy storage system efficiency, and comparisons with other systems such as a solar dynamic power system.

  17. Synergetic mechanism of methanol–steam reforming reaction in a catalytic reactor with electric discharges

    International Nuclear Information System (INIS)

    Kim, Taegyu; Jo, Sungkwon; Song, Young-Hoon; Lee, Dae Hoon

    2014-01-01

    Highlights: • Methanol–steam reforming was performed on Cu catalysts under an electric discharge. • Discharge had a synergetic effect on the catalytic reaction for methanol conversion. • Discharge lowered the temperature for catalyst activation or light off. • Discharge controlled the yield and selectivity of species in a reforming process. • Adsorption triggered by a discharge was a possible mechanism for a synergetic effect. - Abstract: Methanol–steam reforming was performed on Cu/ZnO/Al 2 O 3 catalysts under an electric discharge. The discharge occurred between the electrodes where the catalysts were packed. The electric discharge was characterized by the discharge voltage and electric power to generate the discharge. The existence of a discharge had a synergetic effect on the catalytic reaction for methanol conversion. The electric discharge provided modified reaction paths resulting in a lower temperature for catalyst activation or light off. The discharge partially controlled the yield and selectivity of species in a reforming process. The aspect of control was examined in view of the reaction kinetics. The possible mechanisms for the synergetic effect between the catalytic reaction and electric discharge on methanol–steam reforming were addressed. A discrete reaction path, particularly adsorption triggered by an electric discharge, was suggested to be the most likely mechanism for the synergetic effect. These results are expected to provide a guide for understanding the plasma–catalyst hybrid reaction

  18. Impact of Electric Vehicle Charging Station Load on Distribution Network

    Directory of Open Access Journals (Sweden)

    Sanchari Deb

    2018-01-01

    Full Text Available Recent concerns about environmental pollution and escalating energy consumption accompanied by the advancements in battery technology have initiated the electrification of the transportation sector. With the universal resurgence of Electric Vehicles (EVs the adverse impact of the EV charging loads on the operating parameters of the power system has been noticed. The detrimental impact of EV charging station loads on the electricity distribution network cannot be neglected. The high charging loads of the fast charging stations results in increased peak load demand, reduced reserve margins, voltage instability, and reliability problems. Further, the penalty paid by the utility for the degrading performance of the power system cannot be neglected. This work aims to investigate the impact of the EV charging station loads on the voltage stability, power losses, reliability indices, as well as economic losses of the distribution network. The entire analysis is performed on the IEEE 33 bus test system representing a standard radial distribution network for six different cases of EV charging station placement. It is observed that the system can withstand placement of fast charging stations at the strong buses up to a certain level, but the placement of fast charging stations at the weak buses of the system hampers the smooth operation of the power system. Further, a strategy for the placement of the EV charging stations on the distribution network is proposed based on a novel Voltage stability, Reliability, and Power loss (VRP index. The results obtained indicate the efficacy of the VRP index.

  19. 76 FR 53970 - Carolina Power & Light; Brunswick Steam Electric Plant, Units 1 and 2; Independent Spent Fuel...

    Science.gov (United States)

    2011-08-30

    ... submission through the NRC E-Filing system. Requests for a hearing and petitions for leave to intervene... participating under 10 CFR 2.315(c), must be filed in accordance with the NRC E-Filing rule (72 FR 49139, August 28, 2007). The E-Filing process requires participants to submit and serve all adjudicatory documents...

  20. Technical evaluation of the electrical, instrumentation, and control design aspects of the low temperature overpressure protection system for the Salem nuclear power plant, Unit 1

    International Nuclear Information System (INIS)

    Laudenbach, D.H.

    1979-03-01

    The technical evaluation is presented for the electrical, instrumentation, and control design aspects of the low temperature overpressure protection system for the Salem nuclear power plant, Unit 1. Design basis criteria used to evaluate the acceptability of the system include operator action, system testability, single failure criterion, and seismic Category I and IEEE Std-279-1971 criteria

  1. Environmental qualification test of electrical penetration for nuclear power stations

    International Nuclear Information System (INIS)

    Kooziro, Tetsuya; Nakagawa, Akitoshi; Toyoda, Shigeru; Uno, Shunpei

    1979-01-01

    Environmental qualification test was conducted according to IEEE Std. 323-1974 in order to evaluate the safety and reliability of electrical penetration of PWR type nuclear power station. Electrical penetration is the assemblies of electric cables attached to the containment vessel and penetrate through the vessel. Since it is a part of the vessel, it is deemed to be one of the primary safety equipments that are important for the safety and reliability of nuclear power stations. Environmental tests were conducted continuously as to heat cycle, vibration and LOCA with the full size specimens of bushing type, pigtail type and triaxial cable type and at the same time thermal life and irradiation tests were conducted on the insulation materials used, in order to obtain the comprehensive evaluation of their electrical and mechanical characteristics. As the result, they all satisfied the requirements for the circuits for actual use during and after various environmental qualification tests according to IEEE Std. 323. (author)

  2. Utilization of waste heat from electricity generating stations

    International Nuclear Information System (INIS)

    Robertson, R.F.S.

    1977-06-01

    Historically the nuclear power station has been designed solely as an electricity producer. But in Canada today only 15 percent of our energy consumption is as electricity. The non-electrical needs today are supplied almost entirely by natural gas and oil. There is an incentive to see whether a nuclear station could supply energy for some of these non-electrical needs, thus freeing gas and oil for uses for which they may be more valuable and suitable, especially in transportation. A group located at the Whiteshell Nuclear Research Establishment undertook a series of studies to examine this problem. These studies were done in sufficient depth to provide technological and economic answers, and as a result several reports have been published on various topics. In this report, the findings from these studies are drawn together in an assessment of the potential in Canada for using waste heat. (author)

  3. ANALYSIS OF SOLAR POWER STATION SCHEMES ON PHOTOELECTRIC MODULES FOR ELECTRIC CARS CHARGING STATIONS

    Directory of Open Access Journals (Sweden)

    A. Hnatov

    2017-12-01

    Full Text Available The analysis of existing schemes for building solar power stations on photoelectric modules with the revealing of their operation principles and functionality has been conducted. The specified technical characteristics of each of the analyzed schemes are given. The structural scheme of the solar charging station for electric cars with determining its functional capabilities and operation features is proposed. The practical application of this scheme will help to reduce the dependence on the general electric power supply network and will create conditions for its total rejection.

  4. Investigations of the gas-side heat transfer and flow characteristics of steam generators in AGR stations

    Energy Technology Data Exchange (ETDEWEB)

    Lis, J [Central Electricity Research Laboratories, Leatherhead, Surrey (United Kingdom)

    1984-07-01

    This paper describes the experimental and analytical investigations of the gas-side heat transfer and flow characteristics of steam generators in the AGR stations carried out by CERL. The majority of the experimental work on heat transfer and flow characteristics of close-packed tube arrangements in cross-flow of gases is carried out in a pressurised heat exchanger rig. The rig is operated on-line by a dedicated PDP 11/40 computer over the range of Reynolds number 10{sup 4} to 3x10{sup 5}. Atmospheric wind tunnels employing either small or large scale models of the specific sections of steam generators are used for a variety of supplementary and development studies. Various measurements techniques and, in particular, LDA and hot wire anemometry employed in these studies are described. The more important aspects of various investigations are illustrated by typical results. In order to ensure the efficient operation and integrity of steam generators under asymmetric boundary conditions a MIX suite of 2-dimensional codes has been developed. The codes calculate the gas and water/steam flow and temperature distributions in each channel of the steam generator taking into account thermal mixing in the gas as it passes through the generator. Application of the MIX codes to the solution of various operational problems is illustrated by typical examples and the continuing exercise of validating the codes against plant operational data is discussed. (author)

  5. Investigations of the gas-side heat transfer and flow characteristics of steam generators in AGR stations

    International Nuclear Information System (INIS)

    Lis, J.

    1984-01-01

    This paper describes the experimental and analytical investigations of the gas-side heat transfer and flow characteristics of steam generators in the AGR stations carried out by CERL. The majority of the experimental work on heat transfer and flow characteristics of close-packed tube arrangements in cross-flow of gases is carried out in a pressurised heat exchanger rig. The rig is operated on-line by a dedicated PDP 11/40 computer over the range of Reynolds number 10 4 to 3x10 5 . Atmospheric wind tunnels employing either small or large scale models of the specific sections of steam generators are used for a variety of supplementary and development studies. Various measurements techniques and, in particular, LDA and hot wire anemometry employed in these studies are described. The more important aspects of various investigations are illustrated by typical results. In order to ensure the efficient operation and integrity of steam generators under asymmetric boundary conditions a MIX suite of 2-dimensional codes has been developed. The codes calculate the gas and water/steam flow and temperature distributions in each channel of the steam generator taking into account thermal mixing in the gas as it passes through the generator. Application of the MIX codes to the solution of various operational problems is illustrated by typical examples and the continuing exercise of validating the codes against plant operational data is discussed. (author)

  6. Mechanical problems in turbomachines, steam and gas turbines. Large steam turbine manufacturing requirements to fulfill customer needs for electric power

    International Nuclear Information System (INIS)

    Brazzini, R.

    1975-01-01

    The needs of the customers in large steam turbines for electric power are examined. The choices and decisions made by the utility about the equipments are dealt with after considering the evolution of power demand on the French network. These decisions and choices mainly result from a technical and economic optimization of production equipments: choice of field-proven solutions, trend to lower steam characteristics, trend to higher output of the units (i.e. size effect), spreading out standardization of machines and components (policy of technical as well as technological levels, i.e. mass production effect). Standardization of external characteristics of units of same level of output and even standardization of some main components. The requirements turbine manufacturers have to meet may fall in two categories: on one side: gaining experience and know-how, capability of making high quality experiments, out put capacity, will to hold a high efficiency level; on the other side: meeting the technical requirements related to the contracts. Among these requirements, one can differentiate those dealing with the service expected from the turbine and that resulting in the responsibility limits of the manufacturer and those tending to gain interchangeability, to improve availability of the equipment, to increase safety, and to make operation and maintenance easier [fr

  7. Final environmental statement related to the operation of North Anna Power Station, Units 1 and 2: (Docket Nos. 50-338 and 50-339)

    International Nuclear Information System (INIS)

    1980-08-01

    The proposed action is the issuance of Operating Licenses to the Virginia Electric and Power Company for the startup and operation of the North Anna Power Station, Units No. 1 and 2, located on Lake Anna in Louisa County, 40 miles east of Charlottesville, Virginia. The information in this second addendum responds to the Commission's directive that the staff address in narrative form the environmental dose commitments and health effects from fuel cycle releases, fuel cycle socioeconomic impacts, and possible cumulative impacts pending further treatment by rulemaking

  8. Draft environmental statement related to steam generator repair at H.B. Robinson Steam Electric Plant Unit No. 2, (Docket No. 50-261)

    International Nuclear Information System (INIS)

    1983-09-01

    The staff has considered the environmental impacts and economic costs of the proposed steam generator repair at the H.B. Robinson Steam Electric Plant Unit No. 2 along with reasonable alternatives to the proposed action. The staff has concluded that the proposed repair will not significantly affect the quality of the human environment and that there are no preferable alternatives to the proposed action. Furthermore, any impacts from the repair program are outweighted by its benefits

  9. Solar-Assisted Electric Vehicle Charging Station Interim Report

    Energy Technology Data Exchange (ETDEWEB)

    Lapsa, Melissa Voss [ORNL; Durfee, Norman [ORNL; Maxey, L Curt [ORNL; Overbey, Randall M [ORNL

    2011-09-01

    Oak Ridge National Laboratory (ORNL) has been awarded $6.8 million in the Department of Energy (DOE) American Recovery and Reinvestment Act (ARRA) funds as part of an overall $114.8 million ECOtality grant with matching funds from regional partners to install 125 solar-assisted Electric Vehicle (EV) charging stations across Knoxville, Nashville, Chattanooga, and Memphis. Significant progress has been made toward completing the scope with the installation of 25 solar-assisted charging stations at ORNL; six stations at Electric Power Research Institute (EPRI); and 27 stations at Nissan's Smyrna and Franklin sites, with three more stations under construction at Nissan's new lithium-ion battery plant. Additionally, the procurement process for contracting the installation of 34 stations at Knoxville, the University of Tennessee Knoxville (UTK), and Nashville sites is underway with completion of installation scheduled for early 2012. Progress is also being made on finalizing sites and beginning installations of 30 stations in Nashville, Chattanooga, and Memphis by EPRI and Tennessee Valley Authority (TVA). The solar-assisted EV charging station project has made great strides in fiscal year 2011. A total of 58 solar-assisted EV parking spaces have been commissioned in East and Middle Tennessee, and progress on installing the remaining 67 spaces is well underway. The contract for the 34 stations planned for Knoxville, UTK, and Nashville should be underway in October with completion scheduled for the end of March 2012; the remaining three Nissan stations are under construction and scheduled to be complete in November; and the EPRI/TVA stations for Chattanooga, Vanderbilt, and Memphis are underway and should be complete by the end of March 2012. As additional Nissan LEAFs are being delivered, usage of the charging stations has increased substantially. The project is on course to complete all 125 solar-assisted EV charging stations in time to collect meaningful data

  10. Wet steam turbines for nuclear generating stations -design and operating experience

    International Nuclear Information System (INIS)

    Usher, J.

    1977-01-01

    Lecture to the Institution of Nuclear Engineers, 11 Jan. 1977. The object of this lecture was to give an account of some design features of large wet steam turbines and to show by describing some recent operational experience how their design concepts were fulfilled. Headings are as follows: effects of wet steam cycle on turbine layout and operation (H.P. turbine, L.P. turbine); turbine control and operation; water separators; and steam reheaters. (U.K.)

  11. Electricity supplies in a French nuclear power station

    International Nuclear Information System (INIS)

    2011-01-01

    As the operation of a nuclear power station requires a power supply system enabling this operation as well as the installation safety, this document describes how such systems are designed in the different French nuclear power stations to meet the requirements during a normal operation (when the station produces electricity) or when it is stopped, but also to ensure power supply to equipment ensuring safety functions during an incident or an accident occurring on the installation. More precisely, these safety functions are provided by two independent systems in the French nuclear power stations. Their operation is briefly described. Two different types of nuclear reactors are addressed: pressurised water reactors (PWR) of second generation, EPR (or PWR of third generation)

  12. Electricity pricing model in thermal generating stations under deregulation

    International Nuclear Information System (INIS)

    Reji, P.; Ashok, S.; Moideenkutty, K.M.

    2007-01-01

    In regulated public utilities with competitive power markets, deregulation has replaced the monopoly. Under the deregulated power market, the electricity price primarily depends on market mechanism and power demand. In this market, generators generally follow marginal pricing. Each generator fixes the electricity price based on their pricing strategy and it leads to more price volatility. This paper proposed a model to determine the electricity price considering all operational constraints of the plant and economic variables that influenced the price, for a thermal generating station under deregulation. The purpose of the model was to assist existing stations, investors in the power sector, regulatory authorities, transmission utilities, and new power generators in decision-making. The model could accommodate price volatility in the market and was based on performance incentive/penalty considering plant load factor, availability of the plant and peak/ off peak demand. The model was applied as a case study to a typical thermal utility in India to determine the electricity price. It was concluded that the case study of a thermal generating station in a deregulated environment showed that the electricity price mainly depended on the gross calorific value (GCV) of fuel, mode of operation, price of the fuel, and operating charges. 11 refs., 2 tabs., 1 fig

  13. Safety Evaluation Report related to the operation of Vogtle Electric Generating Plant, Units 1 and 2 (Docket Nos. 50-424 and 50-425)

    International Nuclear Information System (INIS)

    1987-03-01

    In June 1985, the staff of the Nuclear Regulatory Commission issued its Safety Evaluation Report (NUREG-1137) regarding the application of Georgia Power Company, Municipal Electric Authority of Georgia, Oglethorpe Power Corporation, and the City of Dalton, Georgia, for licenses to operate the Vogtle Electric Generating Plant, Units 1 and 2 (Docket Nos. 50-424 and 50-425). This sixth supplement of NUREG-1137 provides recent information regarding resolution of some of the open and confirmatory items that remained unresolved at the time the Safety Evaluation Report was issued. These areas are performance testing, reactor cooling hydraulics, loose parts monitoring, and electric power systems

  14. Three Dimensional Visualization for the Steam Injection into Water Pool using Electrical Resistance Tomography

    International Nuclear Information System (INIS)

    Khambampati, Anil Kumar; Lee, Jeong Seong; Kim, Sin; Kim, Kyung Youn

    2010-01-01

    The direct injection of steam into a water pool is a method of heat transfer used in many process industries. The amount of research in this area however is limited to the nuclear industry, with applications relating to reactor cooling systems. Electrical resistance tomography (ERT), a low cost, non-invasive and which has high temporal resolution characteristics, can be used as a visualization tool for the resistivity distribution for the steam injection into water pool such as IRWST. In this paper, three dimensional resistivity distribution of the process is obtained through ERT using iterative Gauss-Newton method. Numerical experiments are performed by assuming different resistive objects in the water pool. Numerical results show that ERT is successful in estimating the resistivity distribution for the injection of steam in the water pool

  15. Kajian Efisiensi Termal Dari Boiler Di Pembangkit Listrik Tenaga Uap Amurang Unit 1

    OpenAIRE

    Kurniawan, Hanzen Yauri; Gunawan, Hardi; Maluegha, Benny

    2015-01-01

    Indonesia has a considerably high potential resources that can be harnessed to generate electricity through power plants. At Amurang Steam Power Plant (PLTU Amurang), coal is used for the fuel and boiler is the equipment to burn the coal producing heat. Boiler is one of the equipments in the thermodynamics cycle which aims to turn the water into steam. This study was conducted to determine the thermal efficiency of the boiler in PLTU Amurang Unit 1 based on operational data. The data collecte...

  16. Maintenance and life assessment of steam generators at Embalse Nuclear Station

    International Nuclear Information System (INIS)

    Luna, P.; Diaz, G.; Sveruga, H.; Sainz, R.

    2006-01-01

    The Embalse Nuclear Generating Station (ENGS) has four vertical I-800 U-tubes Steam Generators (SGs) manufactured by Babcock and Wilcox (B and W). They are one of the most important components from the point of view of safety and cost-related elements for potential life extensions in case of a replacement thereof. A Life Management program has been started covering the entire plant and starting with the Life Assessment (LA) of this component which consists in a systematic way to evaluate aging mechanisms focused on the plant refurbishment and life extension. Because of this, maintenance-based ageing assessment from beginning of operation is analyzed and current LA-frame maintenance and inspections programs are carried out in order to maintain a high availability of the SGs then to enable the planning for the plant life extension. The most important taken actions have been the Eddy Current (EC) In Service Inspection program which performs 100% of the tubes of two SG every 1.5 years started in 1992, the mechanical cleaning by blasting of the internal tube surface, the sludge removal from the secondary side tubesheet, the divider plate replacement, the installation of antivibration bars (AVB's), installation of TSP inspection ports and an exhaustive inspection of the secondary internals as a preliminary result of the Life Assessment started during early 2000. The most relevant aging mechanism up to 2004 was the Flow Accelerated Corrosion (FAC) of U-bend supports and consequent fretting of tubes. The eddy current inspections allowed the fretting degradation to be detected and mitigated by installing AVB's. Currently, efficiency of this mitigating action is being performed by vibration measurements and visual inspections. However, other degradation mechanism that could have origin due to the U-bend FAC like loose part damage (LPD) is being to be analyzed since could be an issue in the future. At present, FAC degradation on the cold leg side and sludge deposition on the

  17. Heat treatment of large-sized welded rotors of steam turbines for atomic power stations

    Energy Technology Data Exchange (ETDEWEB)

    Kutasov, R F; Mukhina, M P; Tustanovskii, A S

    1977-01-01

    The heat treatment of a welded rotor of grade 25Kh2NMFA steel for steam turbines of nuclear power plants was considered. A following heat treatment schedule was suggested: charging the rotor in to a furnace at 100-150 deg C, heating to 200-250 deg C and holding for 12 hrs; slow heating (10 deg C/h) to 400-450 deg C and holding for 12 hrs; slow heating to 630-640 deg C and holding for 50 hrs, cooling at a rate of 5 deg C/h down to 100 deg C, holding for 20 hrs and cooling with the furnace open. The proposed heat treatment schedule of a duration of 356 hrs ensures a temperature gradient throughout the cross section and the length of the rotor of not more than +-5 deg C, least deviations of geometric dimensions and makes possible machining finish to within 0-0.02 mm. Described are the particularities of the design of a roll-out hearth electric chamber furnace, measuring 13000x5500x5000 mm and built for the purpose of carrying out said heat treatment. The power rating of the furnace is 2850 kW.

  18. Design and performance of BWC replacement steam generators for PWR systems

    Energy Technology Data Exchange (ETDEWEB)

    Klarner, R.; Steinmoeller, F.; Millman, J.; Schneider, W. [Babcock and Wilcox Canada, Cambridge, Ontario (Canada)

    1998-07-01

    In recent years, Babcock and Wilcox Canada (BWC) has provided a number of PWR Replacement Steam Generators (RSGS) to replace units that had experienced extensive Alloy 600 tube degradation. BWC RSG units are in operation at Northeast Utilities' Millstone Unit 2, Rochester Gas and Electric's Ginna Station, Duke Energy's Catawba Unit 1, McGuire Unit 1 and 2, Florida Power and Light's St. Lucie Unit 1 and Commonwealth Edison's Byron 1 Station. Extensive start-up performance characteristics have been obtained for Millstone 2, Ginna, McGuire 1, and Catawba 1 RSGS. The Millstone 2, Ginna and Catawba 1 RSGs have also undergone extensive inspections following their first cycle of operation. The design and start-up performance characteristics of these RSGs are presented. The BWC Replacement Steam generators were designed to fit the existing envelope of pressure boundary dimensions to ensure licensability and integration into the Nuclear Steam Supply System. The RSGs were provided with a tube bundle of Alloy 690TT tubing, sized to match or exceed the original steam generator (OSG) thermal performance including provision for the reduced thermal conductivity of Alloy 690 relative to Alloy 600. The RSG tube bundle configurations provide a higher circulation design relative to the OSG, and feature corrosion resistant lattice grid and U-bend tube supports which provide effective anti-vibration support. The tube bundle supports accommodate relatively unobstructed flow and allow unrestrained structural interactions during thermal transients. Efficient steam separators assure low moisture carryover as well as high circulation. Performance measurements obtained during start-up verify that the BWC RSGs meet or exceed the specified thermal and moisture carryover performance requirements. RSG water level stability results at nor-mal operation and during plant transients have been excellent. Visual and ECT inspections have confirmed minimal deposition and 100

  19. Design and performance of BWC replacement steam generators for PWR systems

    International Nuclear Information System (INIS)

    Klarner, R.; Steinmoeller, F.; Millman, J.; Schneider, W.

    1998-01-01

    In recent years, Babcock and Wilcox Canada (BWC) has provided a number of PWR Replacement Steam Generators (RSGS) to replace units that had experienced extensive Alloy 600 tube degradation. BWC RSG units are in operation at Northeast Utilities' Millstone Unit 2, Rochester Gas and Electric's Ginna Station, Duke Energy's Catawba Unit 1, McGuire Unit 1 and 2, Florida Power and Light's St. Lucie Unit 1 and Commonwealth Edison's Byron 1 Station. Extensive start-up performance characteristics have been obtained for Millstone 2, Ginna, McGuire 1, and Catawba 1 RSGS. The Millstone 2, Ginna and Catawba 1 RSGs have also undergone extensive inspections following their first cycle of operation. The design and start-up performance characteristics of these RSGs are presented. The BWC Replacement Steam generators were designed to fit the existing envelope of pressure boundary dimensions to ensure licensability and integration into the Nuclear Steam Supply System. The RSGs were provided with a tube bundle of Alloy 690TT tubing, sized to match or exceed the original steam generator (OSG) thermal performance including provision for the reduced thermal conductivity of Alloy 690 relative to Alloy 600. The RSG tube bundle configurations provide a higher circulation design relative to the OSG, and feature corrosion resistant lattice grid and U-bend tube supports which provide effective anti-vibration support. The tube bundle supports accommodate relatively unobstructed flow and allow unrestrained structural interactions during thermal transients. Efficient steam separators assure low moisture carryover as well as high circulation. Performance measurements obtained during start-up verify that the BWC RSGs meet or exceed the specified thermal and moisture carryover performance requirements. RSG water level stability results at nor-mal operation and during plant transients have been excellent. Visual and ECT inspections have confirmed minimal deposition and 100% tube integrity following

  20. Alteration in reactor installation (addition of Unit 2) in Shimane Nuclear Power Station, Chugoku Electric Power Co., Inc. (inquiry)

    International Nuclear Information System (INIS)

    1983-01-01

    An inquiry was made by the Ministry of International Trade and Industry to Nuclear Safety Commission on the addition of Unit 2 in Shimane Nuclear Power Station of The Chugoku Electric Power Co., Inc., concerning the technical capability of Chugoku Electric Power Co., Inc., and the plant safety. The NSC requested the Committee on Examination of Reactor Safety to make a deliberation on this subject. Both the technical capability and the safety of Unit 1 were already confirmed by MITI. Unit 2 to be newly added in the Shimane Nuclear Power Station is a BWR power plant with electric output of 820 MW. The examination made by MITI is described: the technical capability of Chugoku Electric Power Co., Inc., the safety of Unit 2 about its siting, reactor proper, reactor cooling system, radioactive waste management, etc. (J.P.N.)

  1. Technical evaluation report on the seven main transformer failures at the North Anna Power Station, Units 1 and 2 (Docket Nos. 50-338, 50-339)

    International Nuclear Information System (INIS)

    Dalton, K.J.; Kresser, J.V.; Savage, J.W.; Selan, J.C.

    1984-01-01

    This report documents technical evaluations on various aspects pertaining to the seven main transformer failures at the North Anna Power Station, Units 1 and 2. These reports cover the subjects of Probability Risk Assessment (PRA), Failure Modes and Effects Analysis (FMEA), Root Causes, Protection Systems, Modifications, Failure Statistics, and Generic Aspects. The PRA determined that the contribution from a main transformer failure affecting plant safety systems so as to increase the risk to the public health and safety is negligible. The FMEA determined that a main transformer failure can have primary and secondary effects on plant safety system operation. The evaluation of the Root Causes found that no single common cause contributed to the seven failures. Each failure was found to have specific circumstances for initiating the failure. Both the generator and transformer primary protection systems were found to perform correctly and were designed within industry standards and practices. The proposed modifications resulting from the analyses of the failures will improve system reliability and integrity, and will reduce potentially damaging effects. The failure statistic survey found very limited data bases from which a meaningful correlation could be ascertained. The statistical comparison found no appreciable anomalies with the NAPS failures. The evaluation of all the available information and the results of the separate reports on the main transformer failures found that several generic concerns exist

  2. Integrated plant safety assessment: Systematic Evaluation Program, San Onofre Nuclear Generating Station, Unit 1 (Docket No. 50-206): Final report

    International Nuclear Information System (INIS)

    1986-12-01

    The Systematic Evaluation Program was initiated in February 1977 by the US Nuclear Regulatory Commission to review the designs of older operating nuclear reactor plants to reconfirm and document their safety. The review provides: (1) an assessment of how these plants compare with current licensing safety requirements relating to selected issues; (2) a basis for deciding on how these differences should be resolved in an integrated plant review; and (3) a documented evaluation of plant safety. This report documents the review of San Onofre Nuclear Generating Station, Unit 1, operated by Southern California Edison Company. The San Onofre plant is one of ten plants reviewed under Phase II of this program. This report indicates how 137 topics selected for review under Phase I of the program were addressed. Equipment and procedural changes have been identified as a result of the review. This report will be one of the bases in considering the issuance of a full-term operating license in place of the existing provisional operating license. This report also addresses the comments and recommendations made by the Advisory Committee on Reactor Safeguards in connection with its review of the draft report issued in April 1985

  3. Marble Hill Nuclear Generating Station, Units 1 and 2: Final environmental statement (Docket Nos. STN 50-546 and STN 50-547)

    International Nuclear Information System (INIS)

    1976-09-01

    The proposed action is the issuance of construction permits to the Public Service Company of Indiana, Inc., Northern Indiana Public Service Company, Inc., East Kentucky Power Cooperative, Inc., and Wabash Valley Power Association for the construction of the Marble Hill Nuclear Generating Station, Units 1 and 2 (MH 1and2). The 987-acre site is predominately forest and cropland. Construction-related activities on the site would disturb about 250 acres. The portion of this land not be used for the plant facilities, parking lots, roads, etc., will be restored by seeding and landscaping. The temporary removal of vegetation will tend to promote erosion. Increased siltation and turbidity can be expected in local streams during construction, but measures will be taken to minimize these effects. A maximum of 69 cfs of cooling water will be withdrawn from the Ohio River of which cfs will be returned to the river via pipeline with the dissolved solids concentration increased by a factor of about 6. About cfs will be evaporated to the atmosphere by the cooling towers. The volume of discharge (9 cfs) is very small compared with the river flow (annual mean is about 110,000 cfs) and the thermal effect on the river ecosystem is not expected to be significant. Chemical discharges from the plant will be diluted to concentrations below those which might adversely affect aquatic biota. The risk associated with accidental radiation exposure will be very low. 43 figs., 115 tabs

  4. A pilot application of risk-informed methods to establish inservice inspection priorities for nuclear components at Surry Unit 1 Nuclear Power Station. Revision 1

    International Nuclear Information System (INIS)

    Vo, T.V.; Phan, H.K.; Gore, B.F.; Simonen, F.A.; Doctor, S.R.

    1997-02-01

    As part of the Nondestructive Evaluation Reliability Program sponsored by the US Nuclear Regulatory Commission, the Pacific Northwest National Laboratory has developed risk-informed approaches for inservice inspection plans of nuclear power plants. This method uses probabilistic risk assessment (PRA) results to identify and prioritize the most risk-important components for inspection. The Surry Nuclear Power Station Unit 1 was selected for pilot application of this methodology. This report, which incorporates more recent plant-specific information and improved risk-informed methodology and tools, is Revision 1 of the earlier report (NUREG/CR-6181). The methodology discussed in the original report is no longer current and a preferred methodology is presented in this Revision. This report, NUREG/CR-6181, Rev. 1, therefore supersedes the earlier NUREG/CR-6181 published in August 1994. The specific systems addressed in this report are the auxiliary feedwater, the low-pressure injection, and the reactor coolant systems. The results provide a risk-informed ranking of components within these systems

  5. Draft environmental statement related to the proposed Jamesport Nuclear Power Station, Units 1 and 2: (Docket Nos. STN-50-516 and STN-50-517)

    International Nuclear Information System (INIS)

    1975-02-01

    The proposed action is the issuance of construction permits to the Long Island Lighting Company for the construction of the Jamesport Nuclear Power Station, Units 1 and 2, located on Long Island Sound in the Town of Riverhead, New York. Operation of the proposed once-through cooling system will result in the heating of 4180 cfs of water by 18/degree/F. Phytoplankton, zooplankton, and ichthyoplankton will be entrained by the cooling system. The organisms in approximately 40 /times/ 10 9 ft 3 of water per year will suffer direct mortality due to chlorination and heat shock. The risk associated with accidental radiation exposure will be very low. A bottom area of some 105.5 acres will be affected by dredging and jetty construction. Of this total, 4.35 acres will be permanently replaced by jetties, and 101.15 acres will be temporarily (a total of four years) disrupted by dredging. This impact will be temporary, since the dredged areas will be recolonized by the benthic community upon completion of work. There is a potential for substantial impingement loss of fishes on the intake screens which will require additional data to quantify. Approximately 39 miles of transmission lines will be constructed. Ninety-two percent of the total routings utilize existing rights-of-way, railroad rights-of-way, or new rights-of-way immediately adjacent to railroad rights-of-way. The rights-of-way will require approximately 621 acres. 65 refs., 64 tabs

  6. A pilot application of risk-based methods to establish in-service inspection priorities for nuclear components at Surry Unit 1 Nuclear Power Station

    International Nuclear Information System (INIS)

    Vo, T.; Gore, B.; Simonen, F.; Doctor, S.

    1994-08-01

    As part of the Nondestructive Evaluation Reliability Program sponsored by the US Nuclear Regulatory Commission, the Pacific Northwest Laboratory is developing a method that uses risk-based approaches to establish in-service inspection plans for nuclear power plant components. This method uses probabilistic risk assessment (PRA) results and Failure Modes and Effects Analysis (FEMA) techniques to identify and prioritize the most risk-important systems and components for inspection. The Surry Nuclear Power Station Unit 1 was selected for pilot applications of this method. The specific systems addressed in this report are the reactor pressure vessel, the reactor coolant, the low-pressure injection, and the auxiliary feedwater. The results provide a risk-based ranking of components within these systems and relate the target risk to target failure probability values for individual components. These results will be used to guide the development of improved inspection plans for nuclear power plants. To develop inspection plans, the acceptable level of risk from structural failure for important systems and components will be apportioned as a small fraction (i.e., 5%) of the total PRA-estimated risk for core damage. This process will determine target (acceptable) risk and target failure probability values for individual components. Inspection requirements will be set at levels to assure that acceptable failure probabilistics are maintained

  7. Electric motorcycle charging station powered by solar energy

    Science.gov (United States)

    Siriwattanapong, Akarawat; Chantharasenawong, Chawin

    2018-01-01

    This research proposes a design and verification of an off-grid photovoltaic system (PVS) for electric motorcycle charging station to be located in King’s Mongkut’s University of Technology Thonburi, Bangkok, Thailand. The system is designed to work independently (off-grid) and it must be able to fully charge the batteries of a typical passenger electric motorcycle every evening. A 1,000W Toyotron electric motorcycle is chosen for this study. It carries five units of 12.8V 20Ah batteries in series; hence its maximum energy requirement per day is 1,200Wh. An assessment of solar irradiation data and the Generation Factor in Bangkok, Thailand suggests that the charging system consists of one 500W PV panel, an MPPT charge controller, 48V 150Ah battery, a 1,000W DC to AC inverter and other safety devices such as fuses and breakers. An experiment is conducted to verify the viability of the off-grid PVS charging station by collecting the total daily energy generation data in the raining season and winter. The data suggests that the designed off-grid solar power charging station for electric motorcycle is able to supply sufficient energy for daily charging requirements.

  8. Process for improving the load factor of an electricity generating power station

    International Nuclear Information System (INIS)

    Rostaing, Michel.

    1974-01-01

    A description is given of a process for improving the load factor of an electricity generating power station feeding a supply network in which all or part of the power not required by the network during off-peak hours is used for producing hydrogen which is then stored. The stored hydrogen is then burned and the heat generated is employed for superheating the steam generated by the nuclear reactor of the power plant. This combustion is carried out permanently. The hydrogen is produced by water electrolysis. The oxygen also produced in this manner is used as a comburent in the combustion of the hydrogen. The reactor is of the pressurized water type [fr

  9. Safety evaluation report related to the operation of Vogtle Electric Generating Plant, Units 1 and 2 (Docket Nos. 50-424 and 50-425)

    International Nuclear Information System (INIS)

    1988-01-01

    In June 1985, the staff of the Nuclear Regulatory Commission issued its Safety Evaluation Report (NUREG-1137) regarding the application of Georgia Power Company, Municipal Electric Authority of Georgia, Oglethorpe Power Corporation, and the City of Dalton, Georgia, for licenses to operate Vogtle Electric Generating Plant, Units 1 and 2 (Docket Nos. 50-424 and 50-425). The facility is located in Burke County, Georgia, approximately 26 miles south-southeast of Augusta, Georgia, and on the Savannah River. This seventh supplement to NUREG-1137 provides recent information regarding resolution of some of the open and confirmatory items that remained unresolved following issuance of Supplement 6, and documents completion of several Unit 1 license conditions

  10. Economic analysis of process steam and electricity generation by a 200 MW NHR

    International Nuclear Information System (INIS)

    Tian Li; Wang Yongqing

    2000-01-01

    New applications for low temperature nuclear heating reactors should be developed using economic analysis. This paper compares and analyzes the economics of the generation 1.5 MPa process steam and electricity by a 200 MW nuclear heating reactor (NHR-200) for industrial development. The project is very attractive economically with an internal rate of return of 19.61%, a net present worth (discount rate 10%) of 765 million yuan RMB and a capital recovery or payback period of about 5 years after construction is completed. Compared with only using the NHR-200 for in winter heating, the economic of process steam and electricity generation by NHR-200 are much better. In addition, the NHR-200 will significantly improve environmental pollution in cities and reduce the transport of coal from north to south in China

  11. Total life cycle cost model for electric power stations

    International Nuclear Information System (INIS)

    Cardullo, M.W.

    1995-01-01

    The Total Life Cycle Cost (TLCC) model for electric power stations was developed to provide a technology screening model. The TLCC analysis involves normalizing cost estimates with respect to performance standards and financial assumptions and preparing a profile of all costs over the service life of the power station. These costs when levelized present a value in terms of a utility electricity rate. Comparison of cost and the pricing of the electricity for a utility shows if a valid project exists. Cost components include both internal and external costs. Internal costs are direct costs associated with the purchase, and operation of the power station and include initial capital costs, operating and maintenance costs. External costs result from societal and/or environmental impacts that are external to the marketplace and can include air quality impacts due to emissions, infrastructure costs, and other impacts. The cost stream is summed (current dollars) or discounted (constant dollars) to some base year to yield a overall TLCC of each power station technology on a common basis. While minimizing life cycle cost is an important consideration, it may not always be a preferred method for some utilities who may prefer minimizing capital costs. Such consideration does not always result in technology penetration in a marketplace such as the utility sector. Under various regulatory climates, the utility is likely to heavily weigh initial capital costs while giving limited consideration to other costs such as societal costs. Policy makers considering external costs, such as those resulting from environmental impacts, may reach significantly different conclusions about which technologies are most advantageous to society. The TLCC analysis model for power stations was developed to facilitate consideration of all perspectives

  12. Lewis Research Center space station electric power system test facilities

    Science.gov (United States)

    Birchenough, Arthur G.; Martin, Donald F.

    1988-01-01

    NASA Lewis Research Center facilities were developed to support testing of the Space Station Electric Power System. The capabilities and plans for these facilities are described. The three facilities which are required in the Phase C/D testing, the Power Systems Facility, the Space Power Facility, and the EPS Simulation Lab, are described in detail. The responsibilities of NASA Lewis and outside groups in conducting tests are also discussed.

  13. Production of Fischer–Tropsch fuels and electricity from bituminous coal based on steam hydrogasification

    International Nuclear Information System (INIS)

    Lu, Xiaoming; Norbeck, Joseph M.; Park, Chan S.

    2012-01-01

    A new thermochemical process for (Fischer–Tropsch) FT fuels and electricity coproduction based on steam hydrogasification is addressed and evaluated in this study. The core parts include (Steam Hydrogasification Reactor) SHR, (Steam Methane Reformer) SMR and (Fisher–Tropsch Reactor) FTR. A key feature of SHR is the enhanced conversion of carbon into methane at high steam environment with hydrogen and no need for catalyst or the use of oxygen. Facilities utilizing bituminous coal for coproduction of FT fuels and electricity with carbon dioxide sequestration are designed in detail. Cases with design capacity of either 400 or 4000 TPD (Tonne Per Day) (dry basis) are investigated with process modeling and cost estimation. A cash flow analysis is performed to determine the fuels (Production Cost) PC. The analysis shows that the 400 TPD case due to a FT fuels PC of 5.99 $/gallon diesel equivalent results in a plant design that is totally uneconomic. The 4000 TPD plant design is expected to produce 7143 bbl/day FT liquids with PC of 2.02 $/gallon and 2.27 $/gallon diesel equivalent at overall carbon capture ratio of 65% and 90%, respectively. Prospective commercial economics benefits with increasing plant size and improvements from large-scale demonstration efforts on steam hydrogasification. -- Highlights: ► We develop a new thermochemical method for synthetic fuels production. ► Detailed plant design and process modeling for the Coal-to-Liquid facilities are performed. ► Economic analysis has been carried out in determining the fuel production cost and IRR. ► The fuels produced in this study can compete with petroleum when crude oil price is 100 $/bbl. ► Further economic benefit comes with plant scale-up and process commercial demonstration efforts.

  14. Technical evaluation of the electrical, instrumentation, and control design aspects of the low temperature overpressure protection system for the Point Beach Nuclear Power Plant, Units 1 and 2

    International Nuclear Information System (INIS)

    Laudenbach, D.H.

    1979-03-01

    The technical evaluation is presented for the electrical, instrumentation, and control design aspects of the low temperature overpressure protection system for the Point Beach nuclear power plant, Units 1 and 2. Design basis criteria used to evaluate the acceptability of the system included operator action, system testability, single failure criterion, and seismic Category I and IEEE Std-279-1971 criteria. This report is supplied as part of the Selected Electrical, Instrumentation, and Control Systems Issues Support Program being conducted for the U.S. Nuclear Regulatory Commission by Lawrence Livermore Laboratory

  15. Technical evaluation of the electrical, instrumentation, and control design aspects of the low temperature overpressure protection system for the Point Beach Nuclear Power Plant, Units 1 and 2

    Energy Technology Data Exchange (ETDEWEB)

    Laudenbach, D.H.

    1979-03-01

    The technical evaluation is presented for the electrical, instrumentation, and control design aspects of the low temperature overpressure protection system for the Point Beach nuclear power plant, Units 1 and 2. Design basis criteria used to evaluate the acceptability of the system included operator action, system testability, single failure criterion, and seismic Category I and IEEE Std-279-1971 criteria. This report is supplied as part of the Selected Electrical, Instrumentation, and Control Systems Issues Support Program being conducted for the U.S. Nuclear Regulatory Commission by Lawrence Livermore Laboratory.

  16. Safety evaluation report related to steam generator repair at H.B. Robinson Steam Electric Plant, Unit No. 2. Docket No. 50-261

    International Nuclear Information System (INIS)

    1983-11-01

    A Safety Evaluation Report was prepared for the H.B. Robinson Steam Electric Plant Unit No. 2 by the Office of Nuclear Reactor Regulation. This report considers the safety aspects of the proposed steam generator repair at H.B. Robinson Steam Electric Plant Unit No. 2. The report focuses on the occupational radiation exposure associated with the proposed repair program. It concludes that there is reasonable assurance that the health and safety on the public will not be endangered by the conduct of the proposed action, such activities will be conducted in compliance with the Commission's regulations, and the issuance of this amendment will not be inimical to the common defense and security or the health and safety of the public

  17. Final environmental assessment for vegetation control at VHF stations, microwave stations, electrical substations, and pole yards

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-10-13

    Southwestern Power Adm. operates very high frequency (VHF) and microwave radio stations, electrical substations, and pole yards for electric power transmission throughout AR, MO, and OK. Vegetation growth at the stations must be suppressed for safety of operation and personnel. Southwestern has been using a combination of mechanical/manual and herbicide control for this purpose; Federally- mandated reductions in staff and budgetary resources require Southwestern to evaluate all potentially efficient methods for vegetation control. Three alternatives were examined: no action, mechanical/manual control, and (proposed) a combination of mechanical/manual and herbicide control. Environmental impacts on air and water quality, wetlands, wildlife, endangered species, archaeological and other resources, farmland, human health, transportation, etc. were evaluated.

  18. Long-term security of electrical and control engineering equipment in nuclear power stations to withstand a loss of coolant accident

    International Nuclear Information System (INIS)

    Mueller, H.

    1996-01-01

    Electrical and control engineering equipment, which has to function even after many years of operation in the event of a fault in a saturated steam atmosphere of 160 C maximum, is essential in nuclear power stations in order to control a loss of coolant accident. The nuclear power station operators have, for this purpose, developed verification strategies for groups of components, by means of which it is ensured that the electrical and control engineering components are capable of dealing with a loss of coolant accident even at the end of their planned operating life. (orig.) [de

  19. Digital implementation, simulation and tests in MATLAB of the models of Steam line, the turbines, the pressure regulator of a BWR type nucleo electric power plant

    International Nuclear Information System (INIS)

    Lopez R, A.

    2004-01-01

    In this phase of the project they were carried out exhaustive tests to the models of the steam lines, turbines and pressure regulator of a BWR type nucleo electric central for to verify that their tendencies and behaviors are it more real possible. For it, it was necessary to also analyze the transfer functions of the different components along the steam line until the power generator. Such models define alone the dominant poles of the system, what is not limitation to reproduce a wide range of anticipated transitoriness of a power station operation. In the same manner, it was integrated and proved the integrated model form with the models of feeding water of the SUN-RAH, simulating the nuclear reactor starting from predetermined entrances of the prospective values of the vessel. Also it was coupled with the graphic interface developed with the libraries DirectX implementing a specific monitoring panel for this system. (Author)

  20. Design and construction features of steam generators at a nuclear power station

    International Nuclear Information System (INIS)

    Chakrabarti, A.K.; Gupta, K.N.; Bapat, C.N.; Sharma, V.K.

    1996-01-01

    The Indian nuclear power programme is based on Pressurised Heavy Water Reactors (PHWRs) using natural uranium as fuel and heavy water as reactor coolant as well as moderator. The nuclear heat is generated in the fuel located in the pressure tubes. Pressurised heavy water in the primary heat transport (PHT) system is circulated through the tubes which picks up the heat from the fuel and transfers it to ordinary water in steam generators (SGs) to produce steam. The steam is used for providing power to the turbine. The steam generator is a critical equipment in the nuclear steam supply system (NSSS) of a nuclear reactor. SG tube surface area constitute about 80% of total primary circuit surface area. A typical value in a 220 MWe reactor is 9000 m 2 which can release considerable amount of corrosion products unless very low corrosion rates are achieved by proper design, material selection and water chemistry control. Design and construction features of SGs are given. 1 tab

  1. Experiences from Loviisa Nuclear Power Station concerning the decontamination of steam generators and primary system components

    International Nuclear Information System (INIS)

    Jaernstroem, R.

    1989-01-01

    Loviisa 1 and 2 are 465 MWe PWR units of the Soviet type VVER-440. Loviisa 1 has been in commercial operation since spring 1977 and Loviisa 2 from the beginning of 1980. Decontamination of primary circuit components - even big ones as steam generators - can be performed in an efficient and quick way with good results and resonable expences. Total costs for decontamination of the two steam generators including planning, construction, documentation, operation, chemicals etc. did not rise above 100,000.00 dollars. (author) 6 figs., 2 tabs

  2. Burst protection device for largely cylindrical steam raising units, preferably of pressurized water nuclear power stations

    International Nuclear Information System (INIS)

    Mutzl, J.

    1978-01-01

    This burst protection device controls forces to be expected in an accident by resolving them into axial (vertical) and radial (horizontal) components, which are taken by a large number of elements stressed in tension. The steam raising unit is surrounded by a containment, but remains easily accessible. The containment consists of a steel jacket, lid and floor. Several cylindrical sections above one another form the steel jacket, which surrounds the steam raising unit with an intermediate insulating layer of concrete. The insulating concrete cylinder is of several times the thickness of the steel jacket, and also consists of cylindrical sections. An outer supporting ring for the lid and floor of the containment have outside diameters which project beyond the jacket. Prestressed circumferential vertical tension ropes between the supporting ring and floor take any additional tensional forces. The lid is domed with downward curvature towards the upper boiler dome. Internal bursting forces produce compressive stresses in the lid, which thus pass along its outside diameter into the surrounding ring. The lid, which is devided along one diameter, makes dismantling and access to the boiler easy even with a central steam pipe going upwards. The floor of the burst protection is also the floor of the steam raising unit. It is of several times the thickness of the tube floor, which, with its spacing above the floor forms the usual inlet and outlet space for the reactor cooling water. The main coolant pump installed there is driven by an external motor through a floor penetration. (HP) [de

  3. Amazing & extraordinary facts the steam age

    CERN Document Server

    Holland, Julian

    2012-01-01

    Respected transport author Julian Holland delves into the intriguing world of steam in his latest book, which is full of absorbing facts and figures on subjects ranging from Cornish beam engines, steam railway locomotives, road vehicles and ships through to traction engines, steam rollers and electricity generating stations and the people who designed and built them. Helped along the way by the inventive minds of James Watt, Richard Trevithick and George Stephenson, steam became the powerhouse that drove the Industrial Revolution in Britain in the late 18th and 19th centuries.

  4. Improving nuclear generating station response for electrical grid islanding

    International Nuclear Information System (INIS)

    Chou, Q.B.; Kundur, P.; Acchione, P.N.; Lautsch, B.

    1989-01-01

    This paper describes problems associated with the performance characteristics of nuclear generating stations which do not have their overall plant control design functions co-ordinated with the other grid controls. The paper presents some design changes to typical nuclear plant controls which result in a significant improvement in both the performance of the grid island and the chances of the nuclear units staying on-line following the disturbance. This paper focuses on four areas of the overall unit controls and turbine governor controls which could be modified to better co-ordinate the control functions of the nuclear units with the electrical grid. Some simulation results are presented to show the performance of a typical electrical grid island containing a nuclear unit with and without the changes

  5. Susquehanna River Basin Flood Control Review Study

    Science.gov (United States)

    1980-08-01

    and made recommendations for an intergrated water plan for the Basin and included a specific Early Action Plan. Concerning flood damage reduction, the...transportation and by agriculture as a source of income and occupation. The river served as a source of transportation for trade and commerce and also as a... trade patterns, and labor market areas. The Susquehanna River Basin is largely comprised of BEA economic areas 011, 012, 013, and 016. Figure II shows the

  6. Comparing the steam and electric heat tracing solutions for petrochemical or refining facilities

    Energy Technology Data Exchange (ETDEWEB)

    Young, Joseph G.; McQueen, Greg [Tyco Thermal Controls, Belgie (Belgium)

    2012-07-01

    In this era of energy conservation and cost reduction, the ability to effectively select the optimal solution to meet the heat management system needs of petrochemical or refining facilities is becoming increasingly important. Depending on the type and location of the plant, a heat management system (HMS) can comprise a significant portion of the overall capital expenditure, as well as the ongoing operating and maintenance costs. Several important heat management system design decisions affect the financial operations of a facility, including the selection of the heat tracing technology, the utility distribution scheme, and the insulation system criteria, among others. However, most of these decisions are made early in the project life-cycle without thorough analysis of the various options available. From a high level perspective, numerous heat trace media should be considered, including electric, steam, tempered water, and glycol. These systems also have different impacts on piping systems within the plant battery limits (ISBL) and transfer lines outside of the battery limits (OSBL). This paper takes a careful look at two of the predominant heat tracing technologies - electric heat tracing and steam tracing - and compares these within the larger framework of the heat management system, and relative to petrochemical or refining facilities within the general Brazil geography. In the broader context, a heat management system is defined as the heat tracing technology itself, the utility distribution associated with that technology, the control and monitoring scheme associated with that technology, and the insulation system. We will evaluate the capital expenditure cost, operating expenditure cost, and overall reliability of the electric and steam tracing mediums in both the ISBL and OSBL environments within this broader context. (author)

  7. Development of a steam generator lancing system

    International Nuclear Information System (INIS)

    Jeong, Woo-Tae; Kim, Seok-Tae; Hong, Sung-Yull

    2006-01-01

    It is recommended to clean steam generators of nuclear power plants during plant outages. Under normal operations, sludge is created and constantly accumulates in the steam generators. The constituents of this sludge are different depending on each power plant characteristics. The sludge of the Kori Unit 1 steam generator, for example, was found to be composed of 93% ferrous oxide, 3% carbon and 1% of silica oxide and nickel oxide each. The research to develop a lancing system that would remove sludge deposits from the tubesheet of a steam generator was started in 1998 by the Korea Electric Power Research Institute (KEPRI) of the Korea Electric Power Corporation (KEPCO). The first commercial domestic lancing system in Korea, and KALANS-I Lancing System, was completed in 2000 for Kori Unit 1 for cleaning the tubesheet of its Westinghouse Delta-60 steam generator. Thereafter, the success of the development and site implementation of the KALANS-I lancing system for YGN Units 1 and 2 and Ulchin Units 3 and 4 was also realized in 2004 for sludge removal at those sites. The upper bundle cleaning system for Westinghouse model F steam generators is now under development

  8. Main unit electrical protection at Sizewell 'B' power station

    International Nuclear Information System (INIS)

    Fischer, A.; Keates, T.

    1992-01-01

    For any power station, reliable electrical protection of the main generating units (generators plus generator transformers) has important commercial implications. Spurious trips cause loss of generation and consequent loss of revenue, while failure to rapidly isolate a fault leads to unnecessary damage and again, loss of generation and revenue. While these conditions apply equally to Sizewell B there are additional factors to be taken into consideration. A spurious trip of a main generating unit may lead to a trip of the reactor with an associated challenge to the shutdown and core cooling plant. The generator transformers, besides exporting power from the generators to the 400 kV National Grid, also import power from the Grid to the 11 kV Main Electrical System, which in turn is the preferred source of supply to the Essential Electrical System. The Main Unit Protection is designed to clear generator faults leaving this off-site power route intact. Hence failure to operate correctly could affect the integrity of the Essential Electrical Supplies. (Author)

  9. Design and development of electric vehicle charging station equipped with RFID

    Science.gov (United States)

    Panatarani, C.; Murtaddo, D.; Maulana, D. W.; Irawan, S.; Joni, I. M.

    2016-02-01

    This paper reports the development of electric charging station from distributed renewable for electric vehicle (EV). This designed refer to the input voltage standard of IEC 61851, plugs features of IEC 62196 and standard communication of ISO 15118. The developed electric charging station used microcontroller ATMEGA8535 and RFID as controller and identifier of the EV users, respectively. The charging station successfully developed as desired features for electric vehicle from renewable energy resources grid with solar panel, wind power and batteries storage.

  10. Steam generator materials and secondary side water chemistry in nuclear power stations

    International Nuclear Information System (INIS)

    Rudelli, M.D.

    1979-04-01

    The main purpose of this work is to summarize the European and North American experiences regarding the materials used for the construction of the steam generators and their relative corrosion resistance considering the water chemestry control method. Reasons underlying decision for the adoption of Incoloy 800 as the material for the secondary steam generator system for Atucha I Nuclear Power Plant (Atucha Reactor) and Embalse de Rio III Nuclear Power Plant (Cordoba Reactor) are pointed out. Backup information taken into consideration for the decision of utilizing the All Volatil Treatment for the water chemistry control of the Cordoba Reactor is detailed. Also all the reasonswhich justify to continue with the congruent fosfatic method for the Atucha Reactor are analyzed. Some investigation objectives which would eventually permit the revision of the decisions taken on these subjects are proposed. (E.A.C.) [es

  11. Safety Evaluation Report related to the operation of Vogtle Electric Generating Plant, Units 1 and 2 (Docket Nos. 50-424 and 50-425). Supplement No. 1

    International Nuclear Information System (INIS)

    1985-10-01

    In June 1985, the staff of the Nuclear Regulatory Commission issued its Safety Evaluation Report (NUREG-1137) regarding the application of Georgia Power Company, Municipal Electric Authority of Georgia, Oglethorpe Power Corporation, and City of Dalton, Georgia, for a license to operate the Vogtle Electric Generating Plant, Units 1 and 2 (Docket Nos. 50-424 and 50-425). The facility is located in Burke County, Georgia, approximately 26 miles south-southeast of Augusta, Georgia, and on the Savannah River. This first supplement to NUREG-1137 provides recent information regarding resolution of some of the open and confirmatory items that remained unresolved at the time the Safety Evaluation Report was issued and provides the Advisory Committee on Reactor Safeguards letter dated August 13, 1985

  12. Safety Evaluation Report related to the operation of Vogtle Electric Generating Plant, Units 1 and 2 (Docket Nos 50-424 and 50-425)

    International Nuclear Information System (INIS)

    1985-06-01

    The Safety Evaluation Report for the application filed by Georgia Power Company, Municipal Electric Authority of Georgia, Oglethorpe Power Corporation, and City of Dalton, Georgia, as applicants and owners, for licenses to operate the Vogtle Electric Generating Plant, Units 1 and 2 (Docket Nos. 50-424 and 50-425), has been prepared by the Office of Nuclear Reactor Regulation of the US Nuclear Regulatory Commission. The facility is located in Burke County, Georgia, approximately 41.5 km (26 mi) south-southeast of Augusta, and on the Savannah River. Subject to favorable resolution of the items discussed in this report, the staff concludes that the applicant can operate the facility without endangering the health and safety of the public

  13. Safety Evaluation Report related to the operation of Vogtle Electric Generating Plant, Units 1 and 2 (Docket Nos. 50-424 and 50-425). Supplement No. 2

    International Nuclear Information System (INIS)

    1986-05-01

    In June 1985, the staff of the Nuclear Regulatory Commission issued its Safety Evaluation Report (NUREG-1137) regarding the application of Georgia Power Company, Municipal Electric Authority of Georgia, Oglethorpe Power Corporation, and City of Dalton, Georgia, for a license to operate the Vogtle Electric Generating Plant, Units 1 and 2 (Docket Nos. 50-424 and 50-425). Supplement 1 to NUREG-1137 was issued by the staff in October 1985. The facility is located in Burke County, Georgia, approximately 26 miles south-southeast of Augusta, Georgia, and on the Savannah River. This second supplement to NUREG-1137 provides recent information regarding resolution of some of the open and confirmatory items that remained unresolved at the time the Safety Evaluation Report was issued. This supplement also discusses some new open and confirmatory items

  14. Safety Evaluation Report related to the operation of Vogtle Electric Generating Plant, Units 1 and 2 (Docket Nos. 50-424 and 50-425). Supplement No. 3

    International Nuclear Information System (INIS)

    1986-08-01

    In June 1985, the staff of the Nuclear Regulatory Commission issued its Safety Evaluation Report (NUREG-1137) regarding the application of Georgia Power Company, Municipal Electric Authority of Georgia, Oglethorpe Power Corporation, and City of Dalton, Georgia, for a license to operate the Vogtle Electric Generating Plant, Units 1 and 2 (Docket Nos. 50-424 and 50-425). Supplement 1 to NUREG-1137 was issued by the staff in October 1985, and Supplement 2 was issued in May 1986. The facility is located in Burke County, Georgia, approximately 26 miles south-southeast of Augusta, Georgia, and on the Savannah River. This third supplement to NUREG-1137 provides recent information regarding resolution of some of the open and confirmatory items that remained unresolved at the time the Safety Evaluation Report was issued. This supplement also discusses some new open items

  15. Safety evaluation report related to the operation of Vogtle Electric Generating Plant, Units 1 and 2 (Docket Nos. 50-424 and 50-425)

    International Nuclear Information System (INIS)

    1986-12-01

    In June 1985, the staff of the Nuclear Regulatory Commission issued its Safety Evaluation Report (NUREG-1137) regarding the application of Georgia Power Company, Municipal Electric Authority of Georgia, Oglethorpe Power Corporation, and City of Dalton, Georgia, for licenses to operate the Vogtle Electric Generating Plant, Units 1 and 2 (Docket Nos. 50-424 and 50-425). Supplement 1 to NUREG-0737 was issued by the staff in October 1985, Supplement 2 was issued in May 1986, and Supplement 3 was issued in August 1986. The facility is located in Burke County, Georgia, approximately 26 miles south-southeast of Augusta, Georgia, and on the Savannah River. This fourth supplement to NUREG-1137 provides recent information regarding resolution of some of the open and confirmatory items that remained unresolved at the time the Safety Evaluation Report was issued. This supplement also discusses some new items

  16. Safety evaluation report related to the operation of Vogtle Electric Generating Plant, Units 1 and 2 (Docket Nos. 50-424 and 50-425)

    International Nuclear Information System (INIS)

    1987-01-01

    In June 1985, the staff of the Nuclear Regulatory Commission issued its Safety Evaluation Report (NUREG-1137) regarding the application of Georgia Power Company, Municipal Electric Authority of Georgia, Oglethorpe Power Corporation, and the City of Dalton, Georgia, for licenses to operate the Vogtle Electric Generating Plant, Units 1 and 2 (Docket Nos. 50-424 and 50-425). Supplement 1 to NUREG-1137 was issued by the staff in October 1985, Supplement 2 was issued in May 1986, Supplement 3 was issued in August 1986, and Supplement 4 was issued in December 1986. The facility is located in Burke County, Georgia, approximately 26 miles south-southeast of Augusta, Georgia, and on the Savannah River. This fifth supplement to NUREG-1137 provides recent information regarding resolution of some of the open and confirmatory items that remained unresolved at the time the Safety Evaluation Report was issued

  17. Tampa Electric Company Polk Power Station IGCC project: Project status

    Energy Technology Data Exchange (ETDEWEB)

    McDaniel, J.E.; Carlson, M.R.; Hurd, R.; Pless, D.E.; Grant, M.D. [Tampa Electric Co., FL (United States)

    1997-12-31

    The Tampa Electric Company Polk Power Station is a nominal 250 MW (net) Integrated Gasification Combined Cycle (IGCC) power plant located to the southeast of Tampa, Florida in Polk County, Florida. This project is being partially funded under the Department of Energy`s Clean Coal Technology Program pursuant to a Round II award. The Polk Power Station uses oxygen-blown, entrained-flow IGCC technology licensed from Texaco Development Corporation to demonstrate significant reductions of SO{sub 2} and NO{sub x} emissions when compared to existing and future conventional coal-fired power plants. In addition, this project demonstrates the technical feasibility of commercial scale IGCC and Hot Gas Clean Up (HGCU) technology. The Polk Power Station achieved ``first fire`` of the gasification system on schedule in mid-July, 1996. Since that time, significant advances have occurred in the operation of the entire IGCC train. This paper addresses the operating experiences which occurred in the start-up and shakedown phase of the plant. Also, with the plant being declared in commercial operation as of September 30, 1996, the paper discusses the challenges encountered in the early phases of commercial operation. Finally, the future plans for improving the reliability and efficiency of the Unit in the first quarter of 1997 and beyond, as well as plans for future alternate fuel test burns, are detailed. The presentation features an up-to-the-minute update on actual performance parameters achieved by the Polk Power Station. These parameters include overall Unit capacity, heat rate, and availability. In addition, the current status of the start-up activities for the HGCU portion of the plant is discussed.

  18. Steam drums

    International Nuclear Information System (INIS)

    Crowder, R.

    1978-01-01

    Steam drums are described that are suitable for use in steam generating heavy water reactor power stations. They receive a steam/water mixture via riser headers from the reactor core and provide by means of separators and driers steam with typically 0.5% moisture content for driving turbines. The drums are constructed as prestressed concrete pressure vessels in which the failure of one or a few of the prestressing elements does not significantly affect the overall strength of the structure. The concrete also acts as a radiation shield. (U.K.)

  19. Draft Environmental Statement related to the operation of Seabrook Station, Units 1 and 2. Docket Nos. 50-443 and 50-444, Public Service Company of New Hampshire, et al

    International Nuclear Information System (INIS)

    1982-05-01

    This Draft Environmental Statement contains the second assessment of the environmental impact associated with the operation of the Seabrook Station, Units 1 and 2 pursuant to the National Environmental Policy Act of 1969 (NEPA) and 10 CFR 51, as amended, of the NRC regulations. This statement examines: the effected environment, environmental consequences and mitigating actions, and environmental and economic benefits and costs. Land use and terrestrial and aquatic-ecological impacts will be small. Operational impacts to historic and archeological sites will be negligible. The effects of routine operations, energy transmission, and periodic maintenance of rights-of-way and transmission facilities should not jeopardize any populations of endangered or threatened species. No significant impacts are anticipated from normal operational releases of radioactivity. The risk associated with accidental radiation exposure is very low. The net socioeconomic effects of the project will be beneficial. The action called for is the issuance of an operating license for Seabrook Station, Units 1 and 2

  20. 75 FR 12312 - South Carolina Electric and Gas Company; Virgil C. Summer Nuclear Station, Unit 1; Exemption

    Science.gov (United States)

    2010-03-15

    ... cladding oxidation from the metal/water reaction shall be calculated using the Baker-Just equation. The... of energy release, hydrogen concentration, and cladding oxidation from the metal-water reaction shall... pressurized light-water nuclear power reactor fueled with uranium oxide pellets within cylindrical zircaloy or...

  1. 76 FR 17715 - Virginia Electric and Power Company North Anna Power Station, Units 1 and 2; Exemption

    Science.gov (United States)

    2011-03-30

    ... Optimized ZIRLO TM as a fuel cladding material based on: (1) Similarities with ZIRLO TM , (2) demonstrated... cladding material at NAPS. This change to the plant configuration has no relation to security issues... determined that the granting of this exemption will not have a significant effect on the quality of the human...

  2. 75 FR 8756 - South Carolina Electric and Gas Company, Virgil C. Summer Nuclear Station, Unit 1; Environmental...

    Science.gov (United States)

    2010-02-25

    ... change to radioactive effluents that affect radiation exposures to plant workers and members of the.... There would be no impact to socioeconomic resources. Therefore, no changes to or different types of non...

  3. Outline of Noto Nuclear Power Station, Hokuriku Electric Power Co., Inc

    International Nuclear Information System (INIS)

    1988-01-01

    The location of the power station is in Shiga-cho, Hakui-gun, Ishikawa-ken. One BWR of about 1,600 MWt (540 MWe) capacity is installed. The area of the site is about 1.6 million m 2 , which is on the gentle slope of hilly land at the elevation of about 50 m, and faces Japan Sea. The nuclear reactor proper is installed at the position about 400 m eastward from the coastline. The height of the exhaust stack is about 100 m above the ground. The shortest distance from the center of the reactor core to the boundary of the site is about 450 m in the direction of south and southwest. The objective of use in commercial electric power generation. The start of operation is scheduled in March, 1993. The total cost of construction is about 235 billion yen, which is equivalent to about 435,000 yen-kW. The fuel assemblies are 8 x 8 type, the fuel material is uranium dioxide sintered pellets, and the average degree of enrichment of the initially charged fuel is about 1.6 wt.% in type 1, 2.4 wt.% in type 2 and 3.0 wt.% in type 3 (about 2.3 wt.% on the average). The highest burnup of fuel assemblies is 40,000 MWd-t. The total amount of fuel charged in the core is about 64 t of uranium. The main steam temperature at the reactor exit is 286 deg C, and the feedwater pressure at the reactor entrance is 72 kg-cm 2 g. The steam turbine is a tandem four-flow exhaust condensing turbine of 540 MW output. (Kako, I.)

  4. Radioactive waste management at nuclear electric power stations

    International Nuclear Information System (INIS)

    Gordelier, S.C.

    1993-01-01

    After suitable treatment, gaseous and liquid wastes are routinely discharged from Nuclear Electric's stations and are diluted and dispersed in the environment. The discharges are controlled and authorized under UK legislation and the environmental impact is minimal. Most solid wastes were originally accumulated at the site of origin, but since 1978 low level wastes (LLW) have been send to the UK's main disposal site at Drigg. Recent changes at Drigg have resulted in changed arrangements for the transport and disposal of low-level wastes, including volume reduction by supercompaction. Small amounts of intermediate-level waste (ILW) have been conditioned and disposed of in the sea but this route is now effectively closed and there is currently no disposal route for ILW in the UK. Spent ion exchange resins at one power station have been conditioned and are stored pending the availability of a disposal route. Most ILW will continue to be stored in retrievable form on the site of origin until a mobile waste treatment plant can be brought into use. The timing of this will be subject to agreement with the regulators. In the case of Magnox fuel element debris, a demonstration dissolution plant has been constructed and this will significantly reduce the volume of waste being stored while retaining the bulk of the activity on site for later treatment. A further development has been the construction of a new facility which will hold Magnox fuel element debris in 500 liter drums

  5. Trouble found in regular inspection of No.1 plant in Ikata Power Station, Shikoku Electric Power Co., Inc

    International Nuclear Information System (INIS)

    1989-01-01

    Since May 2, 1989, the regular inspection of No.1 plant which is a PWR plant with the rated output of 566 MW in Ikata Power Station, Shikoku Electric Power Co., Inc. has been carried out, and eddy current flaw detection inspection was conducted on the total 6585 heating tubes of steam generators except already plugged tubes. As the result, significant indication was observed in 12 heating tubes at the expanded part of the high temperature side tube plates. As to the cause, similarly to those observed in the same plant in the past, it is considered that the residual stress caused by expanding at the time of the manufacture and the internal pressure stress during the operation were superposed, and stress corrosion cracking occurred. It was decided that these 12 defective tubes are plugged. State of plugging in steam generators. Number of total heating tubes: 6776=3388 tubes x 2 steam generators. Number of plugged tubes: 203 including the increase of 12 this time. Ratio of plugging: 3.0 %. Heating tubes: Inconel 600 tubes of φ22.7 mm x 1.27 mm thickness. (K.I.)

  6. Peach Bottom Atomic Power Station recirc pipe dose rates with zinc injection and condenser replacement

    International Nuclear Information System (INIS)

    DiCello, D.C.; Odell, A.D.; Jackson, T.J.

    1995-01-01

    Peach Bottom Atomic Power Station (PBAPS) is located near the town of Delta, Pennsylvania, on the west bank of the Susquehanna River. It is situated approximately 20 miles south of Lancaster, Pennsylvania. The site contains two boiling water reactors of General Electric design and each rated at 3,293 megawatts thermal. The units are BWR 4s and went commercial in 1977. There is also a decommissioned high temperature gas-cooled reactor on site, Unit 1. PBAPS Unit 2 recirc pipe was replaced in 1985 and Unit 3 recirc pipes replaced in 1988 with 326 NGSS. The Unit 2 replacement pipe was electropolished, and the Unit 3 pipe was electropolished and passivated. The Unit 2 brass condenser was replaced with a Titanium condenser in the first quarter of 1991, and the Unit 3 condenser was replaced in the fourth quarter of 1991. The admiralty brass condensers were the source of natural zinc in both units. Zinc injection was initiated in Unit 2 in May 1991, and in Unit 3 in May 1992. Contact dose rate measurements were made in standard locations on the 28-inch recirc suction and discharge lines to determine the effectiveness of zinc injection and to monitor radiation build-up in the pipe. Additionally, HPGe gamma scans were performed to determine the isotopic composition of the oxide layer inside the pipe. In particular, the specific (μCi/cm 2 ) of Co-60 and Zn-65 were analyzed

  7. Peach Bottom Atomic Power Station recirc pipe dose rates with zinc injection and condenser replacement

    Energy Technology Data Exchange (ETDEWEB)

    DiCello, D.C.; Odell, A.D.; Jackson, T.J. [PECO Energy Co., Delta, PA (United States)

    1995-03-01

    Peach Bottom Atomic Power Station (PBAPS) is located near the town of Delta, Pennsylvania, on the west bank of the Susquehanna River. It is situated approximately 20 miles south of Lancaster, Pennsylvania. The site contains two boiling water reactors of General Electric design and each rated at 3,293 megawatts thermal. The units are BWR 4s and went commercial in 1977. There is also a decommissioned high temperature gas-cooled reactor on site, Unit 1. PBAPS Unit 2 recirc pipe was replaced in 1985 and Unit 3 recirc pipes replaced in 1988 with 326 NGSS. The Unit 2 replacement pipe was electropolished, and the Unit 3 pipe was electropolished and passivated. The Unit 2 brass condenser was replaced with a Titanium condenser in the first quarter of 1991, and the Unit 3 condenser was replaced in the fourth quarter of 1991. The admiralty brass condensers were the source of natural zinc in both units. Zinc injection was initiated in Unit 2 in May 1991, and in Unit 3 in May 1992. Contact dose rate measurements were made in standard locations on the 28-inch recirc suction and discharge lines to determine the effectiveness of zinc injection and to monitor radiation build-up in the pipe. Additionally, HPGe gamma scans were performed to determine the isotopic composition of the oxide layer inside the pipe. In particular, the specific ({mu}Ci/cm{sup 2}) of Co-60 and Zn-65 were analyzed.

  8. Steam turbine cycle

    International Nuclear Information System (INIS)

    Okuzumi, Naoaki.

    1994-01-01

    In a steam turbine cycle, steams exhausted from the turbine are extracted, and they are connected to a steam sucking pipe of a steam injector, and a discharge pipe of the steam injector is connected to an inlet of a water turbine. High pressure discharge water is obtained from low pressure steams by utilizing a pressurizing performance of the steam injector and the water turbine is rotated by the high pressure water to generate electric power. This recover and reutilize discharged heat of the steam turbine effectively, thereby enabling to improve heat efficiency of the steam turbine cycle. (T.M.)

  9. Susquehanna River Basin Hydrologic Observing System (SRBHOS)

    Science.gov (United States)

    Reed, P. M.; Duffy, C. J.; Dressler, K. A.

    2004-12-01

    In response to the NSF-CUAHSI initiative for a national network of Hydrologic Observatories, we propose to initiate the Susquehanna River Basin Hydrologic Observing System (SRBHOS), as the northeast node. The Susquehanna has a drainage area of 71, 410 km2. From the headwaters near Cooperstown, NY, the river is formed within the glaciated Appalachian Plateau physiographic province, crossing the Valley and Ridge, then the Piedmont, before finishing its' 444 mile journey in the Coastal Plain of the Chesapeake Bay. The Susquehanna is the major source of water and nutrients to the Chesapeake. It has a rich history in resource development (logging, mining, coal, agriculture, urban and heavy industry), with an unusual resilience to environmental degradation, which continues today. The shallow Susquehanna is one of the most flood-ravaged rivers in the US with a decadal regularity of major damage from hurricane floods and rain-on-snow events. As a result of this history, it has an enormous infrastructure for climate, surface water and groundwater monitoring already in place, including the nations only regional groundwater monitoring system for drought detection. Thirty-six research institutions have formed the SRBHOS partnership to collaborate on a basin-wide network design for a new scientific observing system. Researchers at the partner universities have conducted major NSF research projects within the basin, setting the stage and showing the need for a new terrestrial hydrologic observing system. The ultimate goal of SRBHOS is to close water, energy and solute budgets from the boundary layer to the water table, extending across plot, hillslope, watershed, and river basin scales. SRBHOS is organized around an existing network of testbeds (legacy watershed sites) run by the partner universities, and research institutions. The design of the observing system, when complete, will address fundamental science questions within major physiographic regions of the basin. A nested

  10. Final Environmental Statement related to the operation of Wolf Creek Generating Station, Unit No. 1. Docket No. STN 50-482, Kansas Gas and Electric Company, et al

    International Nuclear Information System (INIS)

    1982-06-01

    This final environmental statement contains the second assessment of the environmental impact associated with operation of Wolf Creek Generating Station Unit 1 pursuant to the National Environmental Policy Act of 1969 (NEPA) and 10 CFR Part 51, as amended, of the NRC's regulations. This statement examines: the affected environment, environmental consequences and mitigating actions, and environmental and economic benefits and costs. Land use and terrestrial- and aquatic-ecological impacts will be small. Air-quality impacts will also be small. However, steam fog from the station's cooling lake has the potential for reducing visibility over nearby roads and bridges. A fog-monitoring program for roads and bridges near the lake has been recommended. Impacts to historic and prehistoric sites will be negligible. Chemical discharges to the Neosho River are expected to have no appreciable impacts on water quality under normal conditions and will be required to meet conditions of the station's NPDES permit. The effects of routine operations, energy transmission, and periodic maintenance of rights-of-way and transmission line facilities should not jeopardize any populations of endangered or threatened species. No significant impacts are anticipated from normal operational releases of radioactivity. The risk associated with accidental radiation exposure is very low. The net socioeconomic effects of the project will be beneficial. The action called for is the issuance of an operating license for the Wolf Creek Generating Station Unit 1

  11. Safety evaluation report related to the operation of Vogtle Electric Generating Plant, Units 1 and 2 (Docket Nos. 50-424 and 50-425): Supplement 8

    International Nuclear Information System (INIS)

    1989-02-01

    In June 1985, the staff of the Nuclear Regulatory Commission issued its Safety Evaluation Report (NUREG-1137) regarding the application of Georgia Power Corporation, and the City of Dalton, Georgia, for licenses to operate the Vogtle Electric Generating Plant, Units 1 and 2 (Docket Nos. 50-424 and 50-425). Supplement 1 to NUREG-1137 was issued by the Staff in October 1985, Supplement 2 was issued in May 1986, Supplement 3 was issued in August 1986, Supplement 4 was issued in December 1986, Supplement 5 was issued in January 1987, Supplement 6 was issued in March 1987, and Supplement 7 was issued in January 1988. The facility is located in Burke County, Georgia, approximately 26 miles south-southeast of Augusta, Georgia, and on the Savannah River. This eighth supplement to NUREG-1137 provides recent information regarding resolution of some of the open and confirmatory items that remained unresolved following issuance of Supplement 7. 5 figs., 3 tabs

  12. Energy Conversion Alternatives Study (ECAS), Westinghouse phase 1. Volume 11: Advanced steam systems. [energy conversion efficiency for electric power plants using steam

    Science.gov (United States)

    Wolfe, R. W.

    1976-01-01

    A parametric analysis was made of three types of advanced steam power plants that use coal in order to have a comparison of the cost of electricity produced by them a wide range of primary performance variables. Increasing the temperature and pressure of the steam above current industry levels resulted in increased energy costs because the cost of capital increased more than the fuel cost decreased. While the three plant types produced comparable energy cost levels, the pressurized fluidized bed boiler plant produced the lowest energy cost by the small margin of 0.69 mills/MJ (2.5 mills/kWh). It is recommended that this plant be designed in greater detail to determine its cost and performance more accurately than was possible in a broad parametric study and to ascertain problem areas which will require development effort. Also considered are pollution control measures such as scrubbers and separates for particulate emissions from stack gases.

  13. 76 FR 77022 - In the Matter of Carolina Power & Light Company, H.B. Robinson Steam Electric Plant, Unit No. 2...

    Science.gov (United States)

    2011-12-09

    ... and 72-3] In the Matter of Carolina Power & Light Company, H.B. Robinson Steam Electric Plant, Unit No. 2, H. B. Robinson Steam Electric Plant, Unit 2, Independent Spent Fuel Storage Installation; Order Approving Indirect Transfer of Control of Licenses I. Carolina Power & Light Company (CP&L, the licensee) is...

  14. Modelling and simulation of the steam line, the high and low pressure turbines and the pressure regulator for the SUN-RAH nucleo electric university simulator

    International Nuclear Information System (INIS)

    Lopez R, A.

    2003-01-01

    In the following article the development of a simulator that allows to represent the dynamics of the following systems: steam line, nozzle, vapor separator, reheater, high pressure turbine, low pressure turbine, power generator and the pressure regulator of a nucleo electric power station. We start from the supposition that this plant will be modeled from a nuclear reactor type BWR (Boiling Water Reactor), using models of reduced order that represent the more important dynamic variables of the physical processes that happen along the steam line until the one generator. To be able to carry out the simulation in real time the Mat lab mathematical modeling software is used, as well as the specific simulation tool Simulink. It is necessary to point out that the platform on which the one is executed the simulator is the Windows operating system, to allow the intuitive use that only this operating system offers. The above-mentioned obeys to that the objective of the simulator it is to help the user to understand some of the dynamic phenomena that are present in the systems of a nuclear plant, and to provide a tool of analysis and measurement of variables to predict the desirable behavior of the same ones. The model of a pressure controller for the steam lines, the high pressure turbine and the low pressure turbine is also presented that it will be the one in charge of regulating the demand of the system according to the characteristics and critic restrictions of safety and control, assigned according to those wanted parameters of performance of this system inside the nucleo electric plant. This simulator is totally well defined and it is part of the University student nucleo electric simulator with Boiling Water Reactor (SUN-RAH), an integral project and of greater capacity. (Author)

  15. Draft environmental impact statement. New England Power Units 1 and 2 (NEP 1 and 2)

    International Nuclear Information System (INIS)

    Anon.

    1979-01-01

    Construction of New England Power Company Units 1 and 2 on 120 acres of 604-acre site near Block Island South in Charlestown, Rhode Island is proposed. Each unit would employ a pressurized water reactor to drive a steam turbine generator with a power rating of 1194 megawatts (MWe) of electric power capacity and a net output of 1150 MWe. A once-through flow of water obtained from and discharged into Block Island South at a rate of 1907 cubic feet per second would cool the units' exhaust steam. The station would transmit power through a 6700-foot, 345-kilovolt (kV) transmission line extending underground to the planned Charlestown substation, thence through a total of 70.5 miles of aboveground 345-kV line to the applicant's transmission system. The station would provide area consumers with a 2300-MWe base-load capacity and supply 14 billion kilowatt-hours annually during a 30-year operating life. Construction of the units would generate a total of $640 million in wages, plant operation would employ 250 persons with total wages of $8.4 million annually, and the applicant would contribute 90% of the Charlestown local tax base. Construction activities would cover 350 acres of land, and transmission line rights-of-way would require 1754 acres, including 1300 acres of forestland. Plant structures would mar the landscape, and the cooling system would contribute thermal pollution and some chemical pollutants to the Block Island Sound. Intermittent use of explosives would occur during an eight-to-ten-month period. Entrainment of fish in the cooling system could significantly reduce populations of tautog and cunner in the Block Island Sound

  16. Report from investigation committee on the accident at the Fukushima Nuclear Power Stations of Tokyo Electric Power Company

    International Nuclear Information System (INIS)

    Koshizuka, Seiichi

    2012-01-01

    Government's Investigation Committee on the Accident at Fukushima Nuclear Power Stations of Tokyo Electric Power Company published its final report on July 23, 2012. Results of investigation combined final report and interim report published on December 26, 2011. The author was head of accident accuse investigation team mostly in charge of site response, prior measure and plant behavior. This article reported author related technical investigation results focusing on site response and prior measures against tsunamis of units 1-3 of Fukushima Nuclear Power Stations. Misunderstanding of working state of isolation condenser of unit 1, unsuitability of alternative water injection at manual stop of high-pressure coolant injection (HPCI) system of unit 3 and improper prior measure against tsunami and severe accident were pointed out in interim report. Improper monitoring of suppression chamber of unit 2 and again unsuitable work for HPCI system of unit 3 were reported in final report. Thorough technical investigation was more encouraged to update safety measures of nuclear power stations. (T. Tanaka)

  17. Fish protection at steam-electric power plants: alternative screening devices

    International Nuclear Information System (INIS)

    Cannon, J.B.

    1978-01-01

    Since the enactment of the Federal Water Pollution Control Act Amendments of 1972, very few innovations have surfaced that advance the state of intake technology for fish protection at steam-electric power plants. After careful examination of basic hydrology, hydraulics, and ecology of the source water body is completed and after a suitable location for the intake is established, the design process reduces to the development of proper screening techniques and to the provision of a means of preventing resident and migratory species from entering the intake structure. As a result of this design process, three basic fish protection concepts have evolved: fish deterrence, fish collection and removal, and fish diversion. Intake screening devices that protect fish are discussed

  18. The System of Fast Charging Station for Electric Vehicles with Minimal Impact on the Electrical Grid

    Directory of Open Access Journals (Sweden)

    Petr Chlebis

    2016-01-01

    Full Text Available The searching and utilization of new energy sources and technologies is a current trend. The effort to increase the share of electricity production from renewable energy sources is characteristic for economically developed countries. The use of accumulation of electrical energy with a large number of decentralized storage units is most preferred, as well as the focus on the production of energy at the point of its consumption. Modern cogeneration units are a good example. This paper describes the accumulation of electrical energy for equalizing the power balance of electric charging stations with high instantaneous power. The possibility of re-utilization of electrical energy from the charged vehicle in the case of lack of electricity in the power grid is solved at the same time. This paper also deals with the selection of appropriate concept of accumulation system and its cooperation with both renewable and distribution networks. Details of the main power components including the results obtained from the system implementation are also described in this paper.

  19. 76 FR 66333 - Carolina Power & Light Company, H.B. Robinson Steam Electric Plant, Unit No. 2; Environmental...

    Science.gov (United States)

    2011-10-26

    ... NUCLEAR REGULATORY COMMISSION [Docket No. 50-261; NRC-2011-0247] Carolina Power & Light Company, H.B. Robinson Steam Electric Plant, Unit No. 2; Environmental Assessment and Finding of No Significant... Facility Operating License No. DPR-23, issued to Carolina Power & Light Company (the licensee), for...

  20. Specific properties of the electrical equipment in the nuclear steam supply system; Specificnosti elektricne opreme u primarnom djelu nuklearne elektrane

    Energy Technology Data Exchange (ETDEWEB)

    Smiljanic, D [Rade Koncar Institut, Zagreb (Yugoslavia)

    1979-07-01

    The paper presents description of reactor coolant pump motor in the primary coolant loop. The motor is treated as a representative of all electrical equipment in the nuclear steam supply system that has to meet all the requirements concerning reliability, minimum maintenance, radiation, seismic etc. (author)

  1. Safety evaluation report related to the operation of Vogtle Electric Generating Plant, Units 1 and 2 (Docket Nos. 50-424 and 50-425)

    International Nuclear Information System (INIS)

    1989-03-01

    In June 1985, the staff of the Nuclear Regulatory Commission issued its Safety Evaluation Report (NUREG-1137) regarding the application of Georgia Power Company, Municipal Electric Authority of Georgia, Oglethorpe Power Corporation, and the City of Dalton, Georgia, for licenses to operate the Vogtle Electric Generating Plant, Units 1 and 2 (Docket Nos. 50-424 and 50-425). Supplement 1 to NUREG-1137 was issued by the staff in October 1985, Supplement 2 was issued in May 1986, Supplement 3 was issued in August 1986, Supplement 4 was issued in December 1986, Supplement 5 was issued in January 1987, Supplement 6 was issued in March 1987, Supplement 7 was issued in January 1988, and Supplement 8 was issued in February 1989. The facility is located in Burke County, Georgia, approximately 26 miles south-southeast of Augusta, Georgia, and on the Savannah River. This ninth supplement to NUREG-1137 provides recent information regarding resolution of conditional items following issuance of Supplement 8

  2. Technical evaluation of the proposed design modifications and technical specification changes on grid voltage degradation (Part A) for the Pilgrim Nuclear Power Station, Unit 1

    International Nuclear Information System (INIS)

    White, R.L.

    1980-01-01

    This report documents the technical evaluation of the proposed design modifications and Technical Specification changes for protection of Class 1E equipment from grid voltage degradation for the Pilgrim Nuclear Power Station. The review criteria are based on several IEEE standards and the Code of Federal Regulations. The evaluation compares the submittals made by the licensee with the NRC staff positions and the review criteria and presents the reviewer's conclusion on the acceptability of the proposed system

  3. Safety Evaluation Report related to the operation of LaSalle County Station, Units 1 and 2. Docket Nos. 50-373 and 50-374

    International Nuclear Information System (INIS)

    1984-03-01

    This supplement to the Safety Evaluation Report of Commonwealth Edison Company's application for a license to operate its La Salle County Station, Unit 2, located in Brookfield Township, La Salle County, Illinois, has been prepared by the Office of Nuclear Reactor Regulation of the US Nuclear Regulatory Commission. This supplement is to update evaluations on Unit 2 issues identified in the previous Safety Evaluation Report and Supplements that need resolution prior to issuance of the full power operating license for Unit 2

  4. Effects of electric current upon catalytic steam reforming of biomass gasification tar model compounds to syngas

    International Nuclear Information System (INIS)

    Tao, Jun; Lu, Qiang; Dong, Changqing; Du, Xiaoze; Dahlquist, Erik

    2015-01-01

    Highlights: • ECR technique was proposed to convert biomass gasification tar model compounds. • Electric current enhanced the reforming efficiency remarkably. • The highest toluene conversion reached 99.9%. • Ni–CeO 2 /γ-Al 2 O 3 exhibited good stability during the ECR performance. - Abstract: Electrochemical catalytic reforming (ECR) technique, known as electric current enhanced catalytic reforming technique, was proposed to convert the biomass gasification tar into syngas. In this study, Ni–CeO 2 /γ-Al 2 O 3 catalyst was prepared, and toluene was employed as the major feedstock for ECR experiments using a fixed-bed lab-scale setup where thermal electrons could be generated and provided to the catalyst. Several factors, including the electric current intensity, reaction temperature and steam/carbon (S/C) ratio, were investigated to reveal their effects on the conversion of toluene as well as the composition of the gas products. Moreover, toluene, two other tar model compounds (benzene and 1-methylnaphthalene) and real tar (tar-containing wastewater) were subjected to the long period catalytic stability tests. All the used catalysts were analyzed to determine their carbon contents. The results indicated that the presence of electric current enhanced the catalytic performance remarkably. The toluene conversion reached 99.9% under the electric current of 4 A, catalytic temperature of 800 °C and S/C ratio of 3. Stable conversion performances of benzene, 1-methylnaphthalene and tar-containing wastewater were also observed in the ECR process. H 2 and CO were the major gas products, while CO 2 and CH 4 were the minor ones. Due to the promising capability, the ECR technique deserves further investigation and application for efficient tar conversion

  5. Palo Verde Nuclear Generating Station, Units 1, 2 and 3 (Docket Nos. STN 50-528, STN 50-529 and STN 50-530): Draft supplement to the Final environmental satement

    International Nuclear Information System (INIS)

    1975-11-01

    The proposed action is the issuance of construction permits to the Arizona Public Service Company for the construction of the Palo Verde Nuclear Generating Station, Units 1, 2, and 3. Preparation of the 3800-acre site will involve the clearing of up to 2500 acres of land, 1500 of which will be permanently devoted to station facilities. An additional 1200- to 1300-acre evaporation pond will ultimately be developed during the lifetime of the station. About 2200 site acres, previously devoted to agriculture, will be excluded from this land use. Soil disturbance during construction of the station, transmission lines, and water conveyance pipeline will tend to promote erosion and increase siltation in local ephemeral water courses. Stringent measures will be taken to minimize these effects. Station, transmission line, and water pipeline construction will kill, remove, displace, or otherwise disturb involved flora and fauna, and will eliminate varying amounts of wildlife breeding, nesting, and forage habitat. These will not be important permanent impacts to the population stability and structure of the involved local ecosystems of the Sonoran desert; however, measures will be taken to minimize such effects as do result from the proposed action. The pumping of groundwater will cause a local drawdown of about 1 ft/yr, less than that currently occurring; hence, the impact is considered acceptable. 1 fig., 20 tabs

  6. Adaptive Modeling of the International Space Station Electrical Power System

    Science.gov (United States)

    Thomas, Justin Ray

    2007-01-01

    Software simulations provide NASA engineers the ability to experiment with spacecraft systems in a computer-imitated environment. Engineers currently develop software models that encapsulate spacecraft system behavior. These models can be inaccurate due to invalid assumptions, erroneous operation, or system evolution. Increasing accuracy requires manual calibration and domain-specific knowledge. This thesis presents a method for automatically learning system models without any assumptions regarding system behavior. Data stream mining techniques are applied to learn models for critical portions of the International Space Station (ISS) Electrical Power System (EPS). We also explore a knowledge fusion approach that uses traditional engineered EPS models to supplement the learned models. We observed that these engineered EPS models provide useful background knowledge to reduce predictive error spikes when confronted with making predictions in situations that are quite different from the training scenarios used when learning the model. Evaluations using ISS sensor data and existing EPS models demonstrate the success of the adaptive approach. Our experimental results show that adaptive modeling provides reductions in model error anywhere from 80% to 96% over these existing models. Final discussions include impending use of adaptive modeling technology for ISS mission operations and the need for adaptive modeling in future NASA lunar and Martian exploration.

  7. Safety Evaluation Report related to the operation of Palo Verde Nuclear Generating Station, Units 1, 2, and 3 (Docket Nos. STN 50-528, STN 50-529, and STN 50-530)

    International Nuclear Information System (INIS)

    1984-10-01

    Supplement No. 6 to the Safety Evaluation Report for the application filed by Arizona Public Service Company, et al., for licenses to operate the Palo Verde Nuclear Generating Station, Units 1, 2, and 3 (Docket Nos. STN 50-528/529/530), located in Maricopa County, Arizona, has been prepared by the Office of Nuclear Reactor Regulation of the Nuclear Regulatory Commission. The purpose of this supplement is to update the Safety Evaluation Report by providing an evaluation of (1) additional information submitted by the applicant since Supplement No. 5 was issued and (2) matters that the staff had under review when Supplement No. 5 was issued

  8. Safety Evaluation Report related to the operation of Palo Verde Nuclear Generating Station, Units 1, 2, and 3 (Docket Nos. STN 50-528, STN 50-529, and STN 50-530). Supplement No. 7

    International Nuclear Information System (INIS)

    1984-12-01

    Supplement No. 7 to the Safety Evaluation Report for the application filed by Arizona Public Service Company et al. for licenses to operate the Palo Verde Nuclear Generating Station, Units 1, 2, and 3 (Docket Nos. STN 50-528/529/530), located in Maricopa County, Arizona, has been prepared by the Office of Nuclear Reactor Regulation of the Nuclear Regulatory Commission. The purpose of this supplement is to update the Safety Evaluation Report by providing an evaluation of: (1) additional information submitted by the applicant since Supplement No. 6 was issued; and (2) matters that the staff had under review when Supplement No. 6 was issued

  9. Safety evaluation report: related to the operation of Seabrook Station, Units 1 and 2, Docket Nos. 50-443 and 50-444, Public Service Company of New Hampshire, et al

    International Nuclear Information System (INIS)

    1983-03-01

    The Safety Evaluation Report for the application filed by the Public Service Company of New Hampshire, et al., for licenses to operate Seabrook Station, Units 1 and 2 (Docket Nos. STN 50-443 and STN 50-444), has been prepared by the Office of Nuclear Reactor Regulation of the US Nuclear Regulatory Commission. The facility is located in Seabrook, New Hampshire. Subject to favorable resolution of the items discussed in this report, the staff concludes that the facility can be operated by the applicant without endangering the health and safety of the public

  10. Planning and replacement of steam generators at the Ringhals nuclear power station in Sweden

    International Nuclear Information System (INIS)

    Looft, H.

    1991-01-01

    Planning of the project was divided into different individual phases: studies, conceptual engineering and tender specifications, detailed engineering and construction planning. The paper describes the individual phases and the measures resulting from the studies. The organization of a smooth implementation of all the activities both by the electricity supply undertaking and also by the contractor merits special attention. (orig.) [de

  11. Optimal Allocation of Changing Station for Electric Vehicle Based on Queuing Theory

    Directory of Open Access Journals (Sweden)

    Yagang Zhang

    2016-11-01

    Full Text Available Electric vehicle as the main development direction of the future automotive industry, has gained attention worldwide. The rationality of the planning and construction of the power station, as the foundation of energy supply, is an important premise for the development of electric vehicles. In full consideration of the electric demand and electricity consumption, this paper proposes a new construction mode in which charging station and centralized charging station are appropriately combined and presents a location optimization model. Not only can this model be applied to determine the appropriate location for the power station, but it can use the queuing theory to determine the optimal number of power equipment, with which we can achieve the minimum costs. Finally, taking a certain city as an example, the optimum plan for power station is calculated by using this model, which provides an important reference for the study of electric vehicle infrastructure planning.

  12. Demonstration of containment purge and vent valve operability for the Hope Creek Generating Station, Unit 1 (Docket No. 50-354)

    International Nuclear Information System (INIS)

    Kido, C.

    1985-05-01

    The containment purge and vent valve qualification program for the Hope Creek Generating Station has been reviewed by the NRC Licensing Support Section. The review indicates that the licensee has demonstrated the dependability of containment isolation against the buildup of containment pressure due to a LOCA/DBA with the restrictions that during operating conditions 1, 2, and 3 all purge and vent valves will be sealed closed and under administrative control, and during power ascension and descension conditions the 26 in. inboard valve (1-GS-HV-4952) will be used in series with the 2 in. bypass valve (1-GS-HV-4951) to control the release of containment pressure

  13. Experimental research of variable rotation speed ICE-based electric power station

    Directory of Open Access Journals (Sweden)

    Dar’enkov Andrey

    2017-01-01

    Full Text Available Developing variable rotation speed ICE-based stand-alone electric power stations which can supply distant regions and autonomous objects with electricity are of scientific interest due to the insufficient study. The relevance of developing such electric power stations is determined by their usage is to provide a significant fuel saving as well as increase ICE motor service life. The article describes the electric station of autonomous objects with improved fuel economy. The article describes multivariate characteristic. Multivariate characteristic shows the optimal frequency of rotation of the internal combustion engine. At this rotational speed there is the greatest fuel economy.

  14. Integrated safety assessment report: Integrated Safety Assessment Program: Millstone Nuclear Power Station, Unit 1 (Docket No. 50-245): Draft report

    International Nuclear Information System (INIS)

    1987-04-01

    The Integrated Safety Assessment Program (ISAP) was initiated in November 1984, by the US Nuclear Regulatory Commission to conduct integrated assessments for operating nuclear power reactors. The integrated assessment is conducted in a plant-specific basis to evaluate all licensing actions, licensee initiated plant improvements and selected unresolved generic/safety issues to establish implementation schedules for each item. In addition, procedures will be established to allow for a periodic updating of the schedules to account for licensing issues that arise in the future. This report documents the review of Millstone Nuclear Power Station, Unit No. 1, operated by Northeast Nuclear Energy Company (located in Waterford, Connecticut). Millstone Nuclear Power Station, Unit No. 1, is one of two plants being reviewed under the pilot program for ISAP. This report indicates how 85 topics selected for review were addressed. This report presents the staff's recommendations regarding the corrective actions to resolve the 85 topics and other actions to enhance plant safety. The report is being issued in draft form to obtain comments from the licensee, nuclear safety experts, and the Advisory Committee for Reactor Safeguards (ACRS). Once those comments have been resolved, the staff will present its positions, along with a long-term implementation schedule from the licensee, in the final version of this report

  15. Development in cooling water intake and outfall systems for atomic or steam power stations

    International Nuclear Information System (INIS)

    Wada, Akira

    1987-01-01

    The condenser cooling water channel, in its functional aspects, is an important structure for securing a stable supply of cooling water. In its design it is necessary to give a thorough-going study to a reduction of ranges affected by discharged warm water and minimizing the effect of discharged water on navigating ships, and in its functional aspects as a structure for power generation, avoiding the recirculation of discharged warm water as well as to maintaining the operation of power stations in case of abnormalities (concentration of dirts owing to typhoons and floods, outbreak of a large amount of jellyfishes, etc.), and all these aspects must be reflected in the design of cooling water channel systems. In this paper, the present situation relating to the design of cooling water intake and outfall systems in Japan is discussed. (author). 10 figs

  16. A system for regulating the pressure of resuperheated steam in high temperature gas-cooled reactor power stations

    International Nuclear Information System (INIS)

    Braytenbah, A.S.; Jaegines, K.O.

    1975-01-01

    The invention relates to a system for regulating steam-pressure in the re-superheating portion of a steam-boiler receiving heat from a gas-cooled high temperature nuclear reactor, provided with gas distributing pumps driven by steam-turbines. The system comprises means for generating a pressure signal of desired magnitude for the re-superheating portion, and means for providing a real pressure in the re-superheating portion, means (including a by-passing device) for generating steam-flow rate signal of desired magnitude, a turbine by-pass device comprising a by-pass tapping means for regulating the steam-flow-rate in said turbine according to the desired steam-flow rate signal and means for controlling said by-pass tapping means according to said desired steam-flow-rate signal [fr

  17. Accurate calibration of steam turbine speed control system and its influence on primary regulation at electric grid

    Energy Technology Data Exchange (ETDEWEB)

    Irrazabal Bohorquez, Washington Orlando; Barbosa, Joao Roberto [Technological Institute of Aeronautics (ITA/CTA), Sao Jose dos Campos, SP (Brazil). Center for Reference on Gas Turbine and Energy], E-mail: barbosa@ita.br

    2010-07-01

    In an interconnected electric system there are two very important parameters: the field voltage and the frequency system. The frequency system is very important for the primary regulation of the electric grid. Each turbomachine actuating as generator interconnected to the grid has an automatic speed regulator to keep the rotational speed and mechanical power of the prime machine operating at the set conditions and stable frequency. The electric grid is a dynamical system and in every moment the power units are exposed to several types of disturbances, which cause unbalance of the mechanical power developed by prime machine and the consumed electric power at the grid. The steam turbine speed control system controls the turbine speed to support the electric grid primary frequency at the same time it controls the frequency of the prime machine. Using a mathematical model for the speed control system, the transfer functions were calculated, as well as the proportionality constants of each element of the steam turbine automatic speed regulator. Among other parameters, the droop characteristic of steam turbine and the dynamic characteristics of the automatic speed regulator elements were calculated. Another important result was the determination of the behavior of the speed control when disturbances occur with the improvement of the calibration precision of the control system. (author)

  18. Electric machinery and drives in thermal power stations. Elektrische Maschinen und Antriebe in thermischen Kraftwerken

    Energy Technology Data Exchange (ETDEWEB)

    1974-01-01

    The following subjects were dealt with during the VDE meeting: 1) Requirements made by the electric network on the generators and their excitation equipment, and the influence thereof on their design; 2) requirements made by the power station process on the electric drives and the influence thereof on type and design; 3) requirements made on protective measures from the point of the electric power station machinery.

  19. Engineering analysis activities in support of susquehanna unit 1 startup testing and cycle 1 operations

    International Nuclear Information System (INIS)

    Miller, G.D.; Kukielka, C.A.; Olson, L.M.; Refling, J.G.; Roscioli, A.J.; Somma, S.A.

    1985-01-01

    The engineering analysis group is responsible for all nuclear plant systems analysis and reactor analysis activities, excluding fuel management analysis, at Pennsylvania Power and Light Company. These activities include making pretest and posttest predictions of startup tests; analyzing unplanned or unexpected transient events; providing technical training to plant personnel; assisting in the development of emergency drill scenarios; providing engineering evaluations to support design and technical specification changes, and evaluating, assessing, and resolving a number of license conditions. Many of these activities have required the direct use of RETRAN models. Two RETRAN analyses that were completed to support plant operations - a pretest analysis of the turbine trip startup test, and a posttest analysis of the loss of startup transformer event - are investigated. For each case, RETRAN results are compared with available plant data and comparisons are drawn on the acceptability of the performance of the plant systems

  20. Final supplement to the final environmental statement related to construction of Palo Verde Nuclear Generating Station Units 1, 2 and 3 (Docket Nos. STN 50-528, STN 50-529, and STN 50-530)

    International Nuclear Information System (INIS)

    1976-02-01

    The proposed action is the issuance of construction permits to the Arizona Public Service Company for the construction of the Palo Verde Nuclear Generating Station, Units 1, 2, and 3. Preparation of the 3800-acre site will involve the clearing of up to 2500 acres of land, 1500 of which will ultimately be developed during the lifetime of the station. About 2200 site acres, previously devoted to agriculture, will be excluded from this land use. Soil disturbance during construction of the station, transmission lines, and water conveyance pipeline will tend to promote erosion and increase siltation local ephemeral water courses. Stringent measures will be taken to minimize these effects (Sec. 4.5). Station, transmission line, and water pipeline construction will kill, remove, displace, or otherwise disturb involved flora and fauna, and will eliminate varying amounts of wildlife breeding, nesting, and forage habitat. These will not be important permanent impacts to the population stability and structure of the involved local ecosystems of the Sonoran desert; however, measures will be taken to minimize such effects as do results from the proposed action. 26 refs., 1 fig., 20 tabs

  1. Method and device allowing a more rational exploitation of electrical power-stations. [energy storage

    Energy Technology Data Exchange (ETDEWEB)

    Mascarello, J

    1974-04-12

    Description is given of a device permitting a more rational exploitation of electrical power stations characterized by the fact that, while electric power available during slack hours is used for pressurizing air (the pressurized air being stored in tanks), the electric power available during slack days is used for generating hydrogen from water, the hydrogen being stored in other tanks. Combustion of the stored hydrogen by the stored air is used for generating electric power during electric power consumption peak-periods.

  2. Costs of producing electricity from nuclear, coal-fired and oil-fired power stations

    International Nuclear Information System (INIS)

    1980-07-01

    The Board publishes generation costs per kW h incurred at recently commissioned power stations so that the costs and performance of nuclear and conventional stations of roughly the same date of construction can be compared. The term 'conventional power station' is used to describe coal-fired and oil-fired steam power stations. The Board has now decided: (A) to supplement the past method of calculating costs at main stations commissioned between 1965 and 1977 by giving the associated figures for interest during construction, for research, and for training; (B) to give similar figures for the contemporary stations Hinkley Point B and the first half of Drax, (C) to provide estimates of generating costs of stations under construction; (D) to set out explicitly the relationship of this method of calculation to that employed in taking investment decisions on future stations. In this way the figures for stations in commission and under construction are arrived at more in line with the general principles of evaluating investment proposals. The present document provides this information. (author)

  3. Safety evaluation report related to the full-term operating license for San Onofre Nuclear Generating Station, Unit 1 (Docket No. 50-206)

    International Nuclear Information System (INIS)

    1991-07-01

    The safety evaluation report for the full-term operating license application filed by the Southern California Edison Company and the San Diego Gas and Electric Company has been prepared by the Office of Nuclear Reactor Regulation of the US Nuclear Regulatory Commission. The facility is located in San Diego County, California. The staff has evaluated the issues related to the conversion of the provisional operating license to a full-term operating license and concluded that the facility can continue to be operated without endangering the health and safety of the public following the license conversion. 43 refs., 3 figs., 3 tabs

  4. Safety Evaluation Report related to the restart of Rancho Seco Nuclear Generating Station, Unit 1, following the event of December 26, 1985 (Docket No. 50-312)

    International Nuclear Information System (INIS)

    1987-10-01

    On December 26, 1985, the Rancho Seco Nuclear Generating Station, owned and operated by the Sacramento Municipal Utility District (SMUD), experienced a loss of dc power within the integrated control system (ICS) while the plant was at 76% power. The ensuing reactor trip was followed by a rapid overcooling transient and automatic initiation of the safety features actuation system (SFAS). The overcooling transient continued until ICS dc power was restored 26 minutes after its loss. Two letters from the NRC Region V Administrator (dated December 26, 1985) confirmed that the Rancho Seco plant would not be returned to power operation until SMUD (the licensee) had provided the NRC with an assessment of the root cause of the transient and a justification as to why the Rancho Seco facility is ready to resume power operation. In response, the licensee submitted the ''Rancho Seco Action Plan for Performance Improvement'' on July 3, 1986; revisions to that action plan were submitted on December 15, 1986 and February 28, 1987. The NRC staff has reviewed the action plan and numerous other supporting documents submitted by the licensee. The staff's evaluation of the information supporting restart of Rancho Seco is presented in this safety evaluation report

  5. Mini hydro electric power stations Lukar 1,2,3,4: Public enterprise (JP) Komunalec

    International Nuclear Information System (INIS)

    Stojanova, Blagica

    2004-01-01

    The role of the Public enterprises in improving entire living conditions of the citizens, not only by its services towards the citizenship such as: water supplying and public hygiene but the opportunity to produce the electric power by the Mini hydro electric-power stations built on the main city water supply pipes. The paper presents experiences of building the mini hydro electric power stations Lukar 1,2,3,4. The successful completion of this project should be a motivation for building more electric power stations because there are great water potential in the Republic of Macedonia i.e. there have been recorded more than a hundred places suitable for construction of power electric stations. This will contribute not only for clean ecological energy but will have a direct influence on the total economic development of the Republic of Macedonia. (Author)

  6. Locating replenishment stations for electric vehicles: Application to Danish traffic data

    DEFF Research Database (Denmark)

    Wen, Min; Laporte, Gilbert; Madsen, Oli B.G.

    2012-01-01

    for electric vehicles on a traffic network with flow-based demand. The objective is to optimize the network performance, for example to maximize the flow covered by a prefixed number of stations, or to minimize the number of stations needed to cover traffic flows. Two mixed integer linear programming......Environment-friendly electric vehicles have gained substantial attention in governments, industry and universities. The deployment of a network of recharging stations is essential given their limited travel range. This paper considers the problem of locating electronic replenishment stations...

  7. Device for inspection and/or repair of a pipe of a steam raising unit of a nuclear power station

    International Nuclear Information System (INIS)

    Vermaat, H.P.

    1986-01-01

    Eddy current sensors are introduced into the pipe from the steam raising unit chamber. The two-part device on the supporting pillar is used to support the sensors and to position them, and so is an arm connected to it via a clutch. It is accommodated inside the steam raising chamber, but can be operated remotely from outside the steam raising chamber. This reduces the radiation loading of the operating staff. (DG) [de

  8. Troubles detected during regular inspection of No.1 plant in Oi Power Station, Kansai Electric Power Co., Inc

    International Nuclear Information System (INIS)

    1990-01-01

    No. 1 plant in Oi Power Station, Kansai Electric Power Co., Inc. is a PWR plant with rated output of 1175 MW, and its regular inspection is carried out since August 14, 1989. When eddy current flaw detection inspection was carried out on the total number (11426 except already plugged tubes) of the heating tubes of steam generators, significant indication was observed in tube supporting plate part of 279 tubes, at the boundary of tube plate expanded part of 34 tubes, and in the tube plate expanded part of 99 tubes, 411 heating tubes in total (all on high temperature side). Consequently, it was decided to repair 367 tubes using sleeves, and to plug other 44 tubes. Besides, among the heating tubes plugged in the past, it was decided to remove plugs from 161 tubes, and by repairing them with sleeves, to use them again. Total number of heating tubes 13552 (3388 tubes x 4 steam generators), Number of plugged tubes 2009 (decrease by 117 this time), Ratio of plugging 14.8%. (K.I.)

  9. Trouble found during regular inspection of No.3 plant in Mihama Power Station, Kansai Electric Power Co., Inc

    International Nuclear Information System (INIS)

    1990-01-01

    No.3 plant in Mihama Power Station, Kansai Electric Power Co., Inc. is a PWR type plant with the rated output of 826 MWe. Its regular inspection has been carried out since September 11, 1989, and eddy current flaw detection inspection was carried out on the total number of steam generator heating tubes (9997 tubes except already plugged tubes). As the result, significant indication was observed in 24 tubes in the expanded parts in tube plates, and in 36 tubes at the boundary of the expanded parts (all on high temperature side), in total in 60 tubes. Consequently, it was decided to plug these 60 defective heating tubes. The heating tubes are those made of Inconel 600, having 22.2 mm outside diameter and 1.27 mm wall thickness. The total number of heating tubes in 10164 (3388 tubes x 3 steam generators), the number of plugged tubes is 227, and the ratio of plugging is 2.2 %. (K.I.)

  10. Technical evaluation of the electrical, instrumentation, and control design aspects of the proposed license amendment Revision 1 for single-loop operation of Browns Ferry Nuclear Plants (Docket No. 50-259, Unit 1; Docket No. 50-260, Unit 2; Docket No. 50-296, Unit 3)

    International Nuclear Information System (INIS)

    Donich, T.R.

    1983-01-01

    This report documents the technical evaluation of the proposed changes to the plant reactor protection system by the licensee of Browns Ferry Nuclear Power Station, Units 1, 2, and 3, to account for single-loop plant operation. This evaluation is restricted to only the electrical, instrumentation and control design aspects of proposed changes to the plant technical specifications for single-loop operation beyond 24 hours. Conclusion is that the license amendment for single-loop operation has met the review criteria provided sufficient administrative controls are in effect, and any anomalous control room indicators are corrected or warning-tagged for the duration of single-loop operation

  11. Electric Vehicle Preparedness - Implementation Approach for Electric Vehicles at Naval Air Station Whidbey Island. Task 4

    Energy Technology Data Exchange (ETDEWEB)

    Schey, Stephen [Idaho National Lab. (INL), Idaho Falls, ID (United States); Francfort, Jim [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2015-06-01

    Several U.S. Department of Defense base studies have been conducted to identify potential U.S. Department of Defense transportation systems that are strong candidates for introduction or expansion of plug-in electric vehicles (PEVs). This study is focused on the Naval Air Station Whidbey Island (NASWI) located in Washington State. Task 1 consisted of a survey of the non-tactical fleet of vehicles at NASWI to begin the review of vehicle mission assignments and types of vehicles in service. In Task 2, daily operational characteristics of vehicles were identified to select vehicles for further monitoring and attachment of data loggers. Task 3 recorded vehicle movements in order to characterize the vehicles’ missions. The results of the data analysis and observations were provided. Individual observations of the selected vehicles provided the basis for recommendations related to PEV adoption, i.e., whether a battery electric vehicle (BEV) or plug-in hybrid electric vehicle (PHEV) (collectively PEVs) can fulfill the mission requirements. It also provided the basis for recommendations related to placement of PEV charging infrastructure. This report focuses on an implementation plan for the near-term adoption of PEVs into the NASWI fleet.

  12. Wind-powered electrical systems : highway rest areas, weigh stations, and team section buildings.

    Science.gov (United States)

    2009-02-01

    This project considered the use of wind for providing electrical power at Illinois Department of Transportation : (IDOT) highway rest areas, weigh stations, and team section buildings. The goal of the project was to determine : the extent to which wi...

  13. Emissions from coal-fired electric stations : environmental health effects and reduction options

    International Nuclear Information System (INIS)

    Love, P.; Lourie, B.; Pengelly, D.; Labatt, S.; Ogilvie, K.; Kelly, B.

    1998-01-01

    Findings of a study on the environmental effects of current emissions from coal-fired electric stations were summarized. Current and projected emissions from coal-fired electric stations for five emission reduction scenarios were estimated for Ontario, Eastern Canada, Ohio Valley/Great Lakes, and the U.S. northeast regions. Coal-fired electric stations generate a wide range of environmentally significant air emissions. The five pollutants selected - sulphur dioxide, nitrogen oxides, particulate matter (less than 10 micrometres in size), mercury, and carbon dioxide - are considered to impact most on environmental health. This report focused on 312 coal-fired electric stations in the regions named above. They were selected based on the likelihood that long-range transport of the emissions from these coal-fired utilities would have an impact on human health and the environment. 55 refs., 10 tabs., 8 figs

  14. Safety Evaluation Report related to the operation of Palo Verde Nuclear Generating Station, Units 1, 2, and 3 (Dockets Nos. STN 50-528, STN 50-529, and STN 50-530)

    International Nuclear Information System (INIS)

    1987-03-01

    Supplement No. 11 to the Safety Evaluation Report for the application filed by Arizona Public Service Company et al. for licenses to operate the Palo Verde Nuclear Generating Station, Units 1, 2, and 3 (Docket Nos. STN 50-528/529/530), located in Maricopa County, Arizone, has been prepared by the Office of Nuclear Reactor Regulation of the Nuclear Regulatory Commission. The purpose of this supplement is to update the Safety Evaluation Report by providing an evaluation of (1) additional information submitted by the applicant since Supplement No. 10 was issued and (2) other matters requiring staff review since Supplenent No. 10 was issued, specifically those issues that required resolution before Unit 3 low-power licensing

  15. Safety Evaluation Report related to the operation of Palo Verde Nuclear Generating Station, Units 1, 2, and 3 (Docket Nos. STN 50-528, STN 50-529, and STN 50-530). Supplement No. 9

    International Nuclear Information System (INIS)

    1985-12-01

    Supplement No. 9 to the Safety Evaluation Report for the application filed by Arizona Public Service Company et al. for licenses to operate the Palo Verde Nuclear Generating Station, Units 1, 2 and 3 (Docket Nos. STN 50-528/529/530), located in Maricopa County, Arizona, has been prepared by the Office of Nuclear Reactor Regulation of the Nuclear Regulatory Commission. The purpose of this supplement is to update the Safety Evaluation Report by providing an evaluation of: (1) additional information submitted by the applicant since Supplement No. 8 was issued; and (2) matters that the staff had under review when Supplement No. 8 was issued, specifically those issues which required resolution prior to Unit 2 fuel loading and testing up to 5% of full power

  16. Final environmental statement related to the operation of Catawba Nuclear Station, Units 1 and 2. Docket Nos. 50-413 and 50-414, Duke Power Company, et al

    International Nuclear Information System (INIS)

    1983-01-01

    This Final Environmental Statement contains the second assessment of the environmental impact associated with the operation of the Catawba Nuclear Station, Units 1 and 2, pursuant to the National Environmental Policy Act of 1969 (NEPA) and 10 CFR 51, as amended, of the NRC regulations. This statement examines: the affected environment, environmental consequences and mitigating actions, and environmental and economic benefits and costs. Land use and terrestrial and aquatic-ecological impacts will be small. Operational impacts to historic and archeological sites will be negligible. The effects of routine operations, energy transmission, and periodic maintenance of rights-of-way and transmission facilities should not jeopardize any populations of endangered or threatened species. No significant impacts are anticipated from normal operational releases of radioactivity. The risk associated with accidental radiation exposure is very low. The net socioeconomic effects of the project will be beneficial

  17. Commerical electric power cost studies. Capital cost addendum multi-unit coal and nuclear stations

    International Nuclear Information System (INIS)

    1977-09-01

    This report is the culmination of a study performed to develop designs and associated capital cost estimates for multi-unit nuclear and coal commercial electric power stations, and to determine the distribution of these costs among the individual units. This report addresses six different types of 2400 MWe (nominal) multi-unit stations as follows: Two Unit PWR Station-1139 MWe Each, Two Unit BWR Station-1190 MWe Each, Two Unit High Sulfur Coal-Fired Station-1232 MWe Each, Two Unit Low Sulfur Coal-Fired Station-1243 MWe Each, Three Unit High Sulfur Coal-Fired Station-794 MWe Each, Three Unit Low Sulfur Coal-Fired Station-801 MWe Each. Recent capital cost studies performed for ERDA/NRC of single unit nuclear and coal stations are used as the basis for developing the designs and costs of the multi-unit stations. This report includes the major study groundrules, a summary of single and multi-unit stations total base cost estimates, details of cost estimates at the three digit account level and plot plan drawings for each multi-unit station identified

  18. Space Station Freedom power - A reliability, availability, and maintainability assessment of the proposed Space Station Freedom electric power system

    Science.gov (United States)

    Turnquist, S. R.; Twombly, M.; Hoffman, D.

    1989-01-01

    A preliminary reliability, availability, and maintainability (RAM) analysis of the proposed Space Station Freedom electric power system (EPS) was performed using the unit reliability, availability, and maintainability (UNIRAM) analysis methodology. Orbital replacement units (ORUs) having the most significant impact on EPS availability measures were identified. Also, the sensitivity of the EPS to variations in ORU RAM data was evaluated for each ORU. Estimates were made of average EPS power output levels and availability of power to the core area of the space station. The results of assessments of the availability of EPS power and power to load distribution points in the space stations are given. Some highlights of continuing studies being performed to understand EPS availability considerations are presented.

  19. Impact of a 1,000-foot thermal mixing zone on the steam electric power industry

    International Nuclear Information System (INIS)

    Veil, J.A.

    1994-04-01

    Thermal discharge requirements for power plants using once-through cooling systems are based on state water quality standards for temperatures that must be met outside of designated mixing zones. This study evaluates the impact of limiting the extent of thermal mixing zones. This study evaluates the impact of limiting the extent of thermal mixing zones to no more than 1,000 feet from the discharge point. Data were collected from 79 steam electric plants. Of the plants currently using once-through cooling systems, 74% could not meet current thermal standards at the edge of a 1,000-foot mixing zone. Of this total, 68% would retrofit cooling towers, and 6% would retrofit diffusers. The estimated nationwide capital cost for retrofitting plants that could not meet current thermal standards at the edge of a 1,000-foot mixing zone is $21.4 billion. Conversion of a plant from once-through cooling to cooling towers or addition of diffusers would result in a lower energy output from that plant. For the affected plants, the total estimated replacement cost would be $370 to $590 million per year. Some power companies would have to construct new generating capacity to meet the increased energy demand. The estimated nationwide cost of this additional capacity would be $1.2 to $4.8 billion. In addition to the direct costs associated with compliance with a 1,000-foot mixing zone limit, other secondary environmental impacts would also occur. Generation of the additional power needed would increase carbon dioxide emissions by an estimated 8.3 million tons per year. In addition, conversion from once-through cooling systems to cooling towers at affected plants would result in increased evaporation of about 2.7 million gallons of water per minute nationwide

  20. Analysis of internal events for the Unit 1 of the Laguna Verde nuclear power station; Analisis de eventos internos para la Unidad 1 de la Central Nucleolelectrica de Laguna Verde

    Energy Technology Data Exchange (ETDEWEB)

    Huerta B, A.; Aguilar T, O.; Nunez C, A.; Lopez M, R. [Comision Nacional de Seguridad Nuclear y Salvaguardias, 03000 Mexico D.F. (Mexico)

    1993-07-01

    This volume presents the results of the starter event analysis and the event tree analysis for the Unit 1 of the Laguna Verde nuclear power station. The starter event analysis includes the identification of all those internal events which cause a disturbance to the normal operation of the power station and require mitigation. Those called external events stay beyond the reach of this study. For the analysis of the Laguna Verde power station eight transient categories were identified, three categories of loss of coolant accidents (LOCA) inside the container, a LOCA out of the primary container, as well as the vessel break. The event trees analysis involves the development of the possible accident sequences for each category of starter events. Events trees by systems for the different types of LOCA and for all the transients were constructed. It was constructed the event tree for the total loss of alternating current, which represents an extension of the event tree for the loss of external power transient. Also the event tree by systems for the anticipated transients without scram was developed (ATWS). The events trees for the accident sequences includes the sequences evaluation with vulnerable nucleus, that is to say those sequences in which it is had an adequate cooling of nucleus but the remoting systems of residual heat had failed. In order to model adequately the previous, headings were added to the event tree for developing the sequences until the point where be solved the nucleus state. This process includes: the determination of the failure pressure of the primary container, the evaluation of the environment generated in the reactor building as result of the container failure or cracked of itself, the determination of the localization of the components in the reactor building and the construction of boolean expressions to estimate the failure of the subordinated components to an severe environment. (Author)

  1. A method and device allowing a more rational exploitation of electrical power-stations

    International Nuclear Information System (INIS)

    Mascarello, Jean.

    1974-01-01

    Description is given of a device permitting a more rational exploitation of electrical power-stations characterized by the fact that, while electric power available during slack hours is used for pressurizing air (the thus pressurized air being stored in tanks), the electric power available during slack days is used for generating hydrogen from water, said hydrogen being stored in other tanks, combustion of the stored hydrogen by the stored air being used for generating electric power during electric power consumption peak-periods [fr

  2. Final Environmental Statement related to the operation of Perry Nuclear Power Plant, Units 1 and 2 Docket Nos. 50-440 and 50-441, Cleveland Electric Illuminating Company

    International Nuclear Information System (INIS)

    1982-08-01

    The information in this Final Environmental Statement is the second assessment of the environmental impact associated with the construction and operation of the Perry Nuclear Power Plant, Units 1 and 2, located on Lake Erie in Lake County, about 11 km (7 mi) northeast of Painesville, Ohio. The first assessment was the Final Environmental Statement related to the construction of the plant issued in April 1974, prior to issuance of the construction permits (CPRR-148 and CPPR-149). Plant construction for Unit 1 is currently about 83% complete, and Unit 2 about 43% complete. Fuel loading for Units 1 and 2 currently estimated by the licensee (Cleveland Electric Illuminating Company) for November 1983, with Unit 2 fuel load scheduled for May 1987. The present assessment is the result of the NRC staff review of the activities associated with the proposed operation of the plant

  3. Eddy current magnetic bias x-probe qualification and inspection of steam generator Monel 400 tubing in Pickering Nuclear Generating Station

    International Nuclear Information System (INIS)

    Lepine, B.A.; Van Langen, J.; Obrutsky, L.

    2006-01-01

    This paper presents an overview of the x-probe MB 350 eddy current inspection array probe, for detection of open OD axial crack-like flaws in Monel 400 tubes at Pickering Nuclear Generating Station. This report contains a selection of inspection results from the field inspections performed with this probe during the 2003 and 2004 period at Pickering Nuclear Generating Station A and B. During the 2003 in-service eddy current inspection results of Pickering Nuclear Generating Station A (PNGS-A) Unit 2, a 13 mm (0.5 inch) long axial indication was detected by the CTR1 bobbin and CTR2-C4 array probes in Tube R25-C52 of Steam Generator (SG) 11 in the hot leg sludge pile region. An experimental magnetic bias X-probe, specially designed by Zetec for inspection of Monel 400 tubing, was deployed and the indication was characterized as a potential out diameter (OD) axially oriented crack. Post-inspection tube pulling and destructive examination confirmed the presence of an Environmentally Assisted Crack (EAC), approximately 80% deep and 13mm long. Due to the significance of this discovery, Ontario Power Generation (OPG) requested AECL to initiate a program for qualification of the X-probe MB 350 for the detection of OD axial cracks in medium to high magnetic permeability μ r Monel 400 PNGS-A and B steam generator tubing at different locations. The X-probe MB 350 subsequently has been deployed as a primary inspection probe for crack detection for PNGS steam generators. (author)

  4. Optimal Charging Schedule Planning and Economic Analysis for Electric Bus Charging Stations

    Directory of Open Access Journals (Sweden)

    Rong-Ceng Leou

    2017-04-01

    Full Text Available The battery capacity of electric buses (EB used for public transportation is greater than that of electric cars, and the charging power is also several times greater than that used in electric cars; this can result in high energy consumption and negatively impact power distribution networks. This paper proposes a framework to determine the optimal contracted power capacity and charging schedule of an EB charging station in such a way that energy costs can be reduced. A mathematical model of controlled charging, which includes the capacity and energy charges of the station, was developed to minimize costs. The constraints of the model include the charging characteristics of an EB and the operational guidelines of the bus company. A practical EB charging station was used to verify the proposed model. The financial viability of this EB charging station is also studied in this paper. The economic analysis model for this charging station considers investment and operational costs, and the operational revenue. Sensitivity analyses with respect to some key parameters are also performed in this paper. Based on actual operational routes and EB charging schemes, test results indicate that the EB charging station investment is feasible, and the planning model proposed can be used to determine optimal station power capacity and minimize energy costs.

  5. 75 FR 43915 - Basin Electric Power Cooperative: Deer Creek Station

    Science.gov (United States)

    2010-07-27

    ... factors that could be affected by the proposed Project were evaluated in detail in the EIS. These issues... DEPARTMENT OF AGRICULTURE Rural Utilities Service Basin Electric Power Cooperative: Deer Creek... Energy Facility project (Project) in Brookings and Deuel Counties, South Dakota. The Administrator of RUS...

  6. An Analytical Planning Model to Estimate the Optimal Density of Charging Stations for Electric Vehicles.

    Directory of Open Access Journals (Sweden)

    Yongjun Ahn

    Full Text Available The charging infrastructure location problem is becoming more significant due to the extensive adoption of electric vehicles. Efficient charging station planning can solve deeply rooted problems, such as driving-range anxiety and the stagnation of new electric vehicle consumers. In the initial stage of introducing electric vehicles, the allocation of charging stations is difficult to determine due to the uncertainty of candidate sites and unidentified charging demands, which are determined by diverse variables. This paper introduces the Estimating the Required Density of EV Charging (ERDEC stations model, which is an analytical approach to estimating the optimal density of charging stations for certain urban areas, which are subsequently aggregated to city level planning. The optimal charging station's density is derived to minimize the total cost. A numerical study is conducted to obtain the correlations among the various parameters in the proposed model, such as regional parameters, technological parameters and coefficient factors. To investigate the effect of technological advances, the corresponding changes in the optimal density and total cost are also examined by various combinations of technological parameters. Daejeon city in South Korea is selected for the case study to examine the applicability of the model to real-world problems. With real taxi trajectory data, the optimal density map of charging stations is generated. These results can provide the optimal number of chargers for driving without driving-range anxiety. In the initial planning phase of installing charging infrastructure, the proposed model can be applied to a relatively extensive area to encourage the usage of electric vehicles, especially areas that lack information, such as exact candidate sites for charging stations and other data related with electric vehicles. The methods and results of this paper can serve as a planning guideline to facilitate the extensive

  7. An Analytical Planning Model to Estimate the Optimal Density of Charging Stations for Electric Vehicles.

    Science.gov (United States)

    Ahn, Yongjun; Yeo, Hwasoo

    2015-01-01

    The charging infrastructure location problem is becoming more significant due to the extensive adoption of electric vehicles. Efficient charging station planning can solve deeply rooted problems, such as driving-range anxiety and the stagnation of new electric vehicle consumers. In the initial stage of introducing electric vehicles, the allocation of charging stations is difficult to determine due to the uncertainty of candidate sites and unidentified charging demands, which are determined by diverse variables. This paper introduces the Estimating the Required Density of EV Charging (ERDEC) stations model, which is an analytical approach to estimating the optimal density of charging stations for certain urban areas, which are subsequently aggregated to city level planning. The optimal charging station's density is derived to minimize the total cost. A numerical study is conducted to obtain the correlations among the various parameters in the proposed model, such as regional parameters, technological parameters and coefficient factors. To investigate the effect of technological advances, the corresponding changes in the optimal density and total cost are also examined by various combinations of technological parameters. Daejeon city in South Korea is selected for the case study to examine the applicability of the model to real-world problems. With real taxi trajectory data, the optimal density map of charging stations is generated. These results can provide the optimal number of chargers for driving without driving-range anxiety. In the initial planning phase of installing charging infrastructure, the proposed model can be applied to a relatively extensive area to encourage the usage of electric vehicles, especially areas that lack information, such as exact candidate sites for charging stations and other data related with electric vehicles. The methods and results of this paper can serve as a planning guideline to facilitate the extensive adoption of electric

  8. 75 FR 39986 - In the Matter of Entergy Operations, Inc., Waterford Steam Electric Station, Independent Spent...

    Science.gov (United States)

    2010-07-13

    ... or possess another active U.S. Government-granted security clearance (i.e., Top Secret, Secret, or....e., Top Secret, Secret or Confidential. 5. The licensee shall develop, implement, and maintain....e., Top Secret, Secret or Confidential. 6. The licensee shall develop, implement, and maintain...

  9. 75 FR 34787 - In the Matter of Luminant Generation Company LLC; Comanche Peak Steam Electric Station...

    Science.gov (United States)

    2010-06-18

    ... or possess another active U.S. Government-granted security clearance (i.e., Top Secret, Secret, or....e., Top Secret, Secret or Confidential. 5. The licensee shall develop, implement, and maintain....e., Top Secret, Secret or Confidential. [[Page 34791

  10. 76 FR 12137 - Entergy Operations, Inc. Waterford Steam Electric Station, Unit 3 Exemption

    Science.gov (United States)

    2011-03-04

    ... of the plant and personnel safety, would maintain protection of health and safety of the public...-informed evaluation process has shown to be significant to public health and safety; (2) performing health physics or chemistry duties required as a member of the onsite emergency response organization's minimum...

  11. 75 FR 15746 - Entergy Operations, Inc., Waterford Steam Electric Station, Unit 3; Exemption

    Science.gov (United States)

    2010-03-30

    ... Security Plan, Training and Qualification Plan, Safeguards Contingency Plan, and Cyber Security Plan... necessary changes to its security plans. Pursuant to 10 CFR 51.32, ``Finding of no significant impact,'' the... and implementing comprehensive site security programs. The amendments to 10 CFR 73.55 published on...

  12. 75 FR 13798 - Entergy Operations, Inc.; Waterford Steam Electric Station, Unit 3 Environmental Assessment and...

    Science.gov (United States)

    2010-03-23

    ...). There will be no change to radioactive effluents that affect radiation exposures to plant workers and... cultural resources. There would be no impact to socioeconomic resources. Therefore, no changes to or...

  13. Error Reduction in an Operating Environment - Comanche Peak Steam Electric Station

    International Nuclear Information System (INIS)

    Blevins, Mike; Gallman, Jim

    1998-01-01

    After having outlined that a program to manage human performance and to reduce human performance errors has reached an 88% error reduction rate and a 99% significant error reduction rate, the authors present this program. It takes three cornerstones of human performance management into account: training, leadership and procedures. Other aspects are introduced: communication, corrective action programs, a root cause analysis, seven steps of self checking, trending, and a human performance enhancement program. These other aspects and their relationships are discussed. Program strengths and downsides are outlined, as well as actions needed for success. Another approach is then proposed which comprises proactive interventions and indicators for human performance. These indicators are identified and introduced by analyzing the anatomy of an event. The limitations of this model are discussed

  14. A modular Space Station/Base electrical power system - Requirements and design study.

    Science.gov (United States)

    Eliason, J. T.; Adkisson, W. B.

    1972-01-01

    The requirements and procedures necessary for definition and specification of an electrical power system (EPS) for the future space station are discussed herein. The considered space station EPS consists of a replaceable main power module with self-contained auxiliary power, guidance, control, and communication subsystems. This independent power source may 'plug into' a space station module which has its own electrical distribution, control, power conditioning, and auxiliary power subsystems. Integration problems are discussed, and a transmission system selected with local floor-by-floor power conditioning and distribution in the station module. This technique eliminates the need for an immediate long range decision on the ultimate space base power sources by providing capability for almost any currently considered option.

  15. Technical descriptions of Hudson River electricity generating stations

    International Nuclear Information System (INIS)

    Hutchison, J.B.

    1988-01-01

    Six fossil-fueled and one nuclear electricity generating plants are sited along the Hudson River estuary between kilometers 8 and 228, measured from the river mouth. Their aggregate rated capacity is 5,798 MW of electricity; operating at that capacity they would withdraw cooling water from the river at the rate of 1.5 x 10 to the 9th power cu m/d and reject heat at the rate of 155 x 10 to the 9th power kcal/d. Three of these plants, the fossil-fueled Roseton and Bowline and the nuclear Indian Point facilities; account for 75% of total rated capacity, 62% of maximum water withdrawal, and 79% of potential heat rejection. These three plants and a proposed pumped-storage facility at Cornwall, all sited between km 60 and 106, were the focus of environmental litigation. The Indian Point plant normally operates at 100% generation capacity; the other plants may experience daily operating load changes that vary from approximately 50% to 100% of total generation capacity, depending on system electrical demand or economic considerations. All plants experience periodic unscheduled outages for repairs. 6 refs., 7 figs

  16. Study of the European market for industrial nuclear power plants for the mixed production of electricity and steam

    International Nuclear Information System (INIS)

    1975-01-01

    The opportunity of developing the mixed production of electricity and steam from nuclear power plants in the nine countries of the European Community is studied. Both public distribution and autonomous production are envisaged. An attempt is made to estimate the potentiel market for district heating and for chemical, agricultural and alimentary, textile, paper, car manufacture and wood industries. The reactors considered are LWR reactors of at least 1000MWth. Suggestions are given to overcome the difficulties and constraints that stand in the way of a nuclear solution [fr

  17. Business Models for Solar Powered Charging Stations to Develop Infrastructure for Electric Vehicles

    Directory of Open Access Journals (Sweden)

    Jessica Robinson

    2014-10-01

    Full Text Available Electric power must become less dependent on fossil fuels and transportation must become more electric to decrease carbon emissions and mitigate climate change. Increasing availability and accessibility of charging stations is predicted to increase purchases of electric vehicles. In order to address the current inadequate charging infrastructure for electric vehicles, major entities must adopt business models for solar powered charging stations (SPCS. These SPCS should be located in parking lots to produce electricity for the grid and provide an integrated infrastructure for charging electric vehicles. Due to the lack of information related to SPCS business models, this manuscript designs several models for major entities including industry, the federal and state government, utilities, universities, and public parking. A literature review of the available relevant business models and case studies of constructed charging stations was completed to support the proposals. In addition, a survey of a university’s students, staff, and faculty was conducted to provide consumer research on people’s opinion of SPCS construction and preference of business model aspects. Results showed that 69% of respondents would be more willing to invest in an electric vehicle if there was sufficient charging station infrastructure at the university. Among many recommendations, the business models suggest installing level 1 charging for the majority of entities, and to match entities’ current pricing structures for station use. The manuscript discusses the impacts of fossil fuel use, and the benefits of electric car and SPCS use, accommodates for the present gap in available literature on SPCS business models, and provides current consumer data for SPCS and the models proposed.

  18. Start-up support for New Brunswick Electric's Point Lepreau nuclear steam generators

    International Nuclear Information System (INIS)

    Schneider, W.; Leroux, A.

    1983-05-01

    The start-up of the 600 MW Point Lepreau reactor provided the opportunity for direct involvement in the important low and medium power start-up phase which was of particular interest because this was a first-of-a-kind reactor type incorporating a new steam generator design. Support included test assistance and test results interpretation for the thermal hydraulic performance of the steam generators and in particular, investigation of water level response to operating pressure, power and feed flow. This work resulted in both a greatly improved understanding of transient characteristics and in a number of beneficial refinements in the control methods

  19. An autonomous nuclear power plant with integrated nuclear steam supply system designed for electric power and heat supply in remote areas with difficult access

    International Nuclear Information System (INIS)

    Adamovich, L.A.; Grechko, G.I.; Lapin, B.D.; Ulasevich, V.K.; Shishkin, V.A.

    1997-01-01

    The paper contains basic conceptual principles used to develop the technical assignment for an autonomous nuclear power plant with integrated nuclear steam supply system (NSSS) designed to provide heat and electricity for areas which are remote with difficult access. The paper also describes technical procedures and equipment, NPP thermal hydraulic flow chart, steam generator design, safety aspects as well as operational and maintenance procedures. (author)

  20. Final environmental statement related to construction of Cherokee Nuclear Station, Units 1, 2, and 3: (Docket Nos. STN 50-491, STN 50-492, and STN 50-493)

    International Nuclear Information System (INIS)

    1975-10-01

    The proposed action is the issuance of a construction permit to the Duke Power Company for the construction of the Cherokee Nuclear Station (CNS) Units 1, 2, and 3 located in Cherokee County, South Carolina. A total of 2263 acres will be removed from public use for the CNS site. Construction-related activities on the site will disturb about 751 acres. Approximately 654 acres of land will be required for transmission line right-of-way, and a railroad spur will affect 83 acres. This constitutes a minor regional impact. No significant environmental impacts are anticipated from normal operational releases of radioactive materials. The total annual dose to the US population (total body plus thyroid) from operation of the plant is 210 man-rems which is less than the normal fluctuations in the background dose this population would receive. The occupational dose is approximately 1400 man-rems/year. The heat dissipation system will require a maximum water makeup of 55,814 gpm, of which 50,514 gpm will be consumed due to drift and evaporative losses. This amount represents 4.5% of the mean monthly flow and 23.8% of the low flow of the Broad River. The cooling tower blowdown and chemical effluents from the station will increase the dissolved solids concentration in the river by a maximum of 44 ppM. The thermal alterations and increases in total dissolved solids concentration will not significantly affect the aquatic productivity of the river. 114 refs., 25 figs., 46 tabs