WorldWideScience

Sample records for suspendible particles homogeneously

  1. Flow Laminarization and Acceleration by Suspended Particles

    NARCIS (Netherlands)

    Bertsch, M.; Hulshof, J.; Prostokishin, V.M.

    2015-01-01

    In [Comm. Appl. Math. Comput. Sci., 4(2009), pp. 153-175], Barenblatt presents a model for partial laminarization and acceleration of shear flows by the presence of suspended particles of different sizes, and provides a formal asymptotic analysis of the resulting velocity equation. In the present

  2. Particles matter: Transformation of suspended particles in constructed wetlands

    NARCIS (Netherlands)

    Mulling, B.T.M.

    2013-01-01

    This thesis shows that constructed wetlands transform suspended particles in (treated) municipal wastewater through selective precipitation in ponds, biological filtering by plankton communities and physical and biological retention in reed beds. These processes effectively remove faecal indicator

  3. Geodetic monitoring of suspended particles in rivers

    Science.gov (United States)

    Kamnik, Rok; Maksimova, Daria; Kovačič, Boštjan

    2017-10-01

    There is a trend in modern approach to the management of space of collecting the spatial data, in order to obtain useful information. In this paper a research of suspended particles in the river Drava and Mura will be introduced. The goal is to connect different fields of water management in countries where the rivers Drava and Mura flows in purpose of water management sustainability. The methods such as GNSS for mapping cross sections of the river, the use of ADCP (Acoustic Doppler Current Profiler) measurement system and water sampling to monitor sediment in the water will be presented.

  4. Homogeneous Biosensing Based on Magnetic Particle Labels

    KAUST Repository

    Schrittwieser, Stefan

    2016-06-06

    The growing availability of biomarker panels for molecular diagnostics is leading to an increasing need for fast and sensitive biosensing technologies that are applicable to point-of-care testing. In that regard, homogeneous measurement principles are especially relevant as they usually do not require extensive sample preparation procedures, thus reducing the total analysis time and maximizing ease-of-use. In this review, we focus on homogeneous biosensors for the in vitro detection of biomarkers. Within this broad range of biosensors, we concentrate on methods that apply magnetic particle labels. The advantage of such methods lies in the added possibility to manipulate the particle labels by applied magnetic fields, which can be exploited, for example, to decrease incubation times or to enhance the signal-to-noise-ratio of the measurement signal by applying frequency-selective detection. In our review, we discriminate the corresponding methods based on the nature of the acquired measurement signal, which can either be based on magnetic or optical detection. The underlying measurement principles of the different techniques are discussed, and biosensing examples for all techniques are reported, thereby demonstrating the broad applicability of homogeneous in vitro biosensing based on magnetic particle label actuation.

  5. Homogeneous Biosensing Based on Magnetic Particle Labels.

    Science.gov (United States)

    Schrittwieser, Stefan; Pelaz, Beatriz; Parak, Wolfgang J; Lentijo-Mozo, Sergio; Soulantica, Katerina; Dieckhoff, Jan; Ludwig, Frank; Guenther, Annegret; Tschöpe, Andreas; Schotter, Joerg

    2016-06-06

    The growing availability of biomarker panels for molecular diagnostics is leading to an increasing need for fast and sensitive biosensing technologies that are applicable to point-of-care testing. In that regard, homogeneous measurement principles are especially relevant as they usually do not require extensive sample preparation procedures, thus reducing the total analysis time and maximizing ease-of-use. In this review, we focus on homogeneous biosensors for the in vitro detection of biomarkers. Within this broad range of biosensors, we concentrate on methods that apply magnetic particle labels. The advantage of such methods lies in the added possibility to manipulate the particle labels by applied magnetic fields, which can be exploited, for example, to decrease incubation times or to enhance the signal-to-noise-ratio of the measurement signal by applying frequency-selective detection. In our review, we discriminate the corresponding methods based on the nature of the acquired measurement signal, which can either be based on magnetic or optical detection. The underlying measurement principles of the different techniques are discussed, and biosensing examples for all techniques are reported, thereby demonstrating the broad applicability of homogeneous in vitro biosensing based on magnetic particle label actuation.

  6. Plasmons on Separated Particles: Homogenization and Applications

    Science.gov (United States)

    McPhedran, Ross

    In this chapter, we discuss localized plasmons in optical systems containing metallic particles, clusters of metallic particles, or periodic arrays of metallic particles, separated in all cases by a background dielectric material or matrix. We begin with a brief discussion of the equations governing electromagnetic propagation in structured or composite systems containing metal particles in a matrix. A full electromagnetic solution for a periodic array of particles or a finite cluster of them is possible, but much can be learned from treatments in the quasistatic approximation, where properties of the particles are subsumed in effective dielectric permittivities and magnetic permeabilities, and these are used in Maxwells' equations for a homogeneous material to calculate reflection and transmission properties. The two most important equations used to calculate effective dielectric permittivities and magnetic permeabilities are the Maxwell-Garnett formula and Bruggeman's effective medium formulae. We compare these in Sect. 6.3, and look at applications in Sect. 6.4 to the field of selective absorbers for photothermal and photovoltaic energy applications. In the next section, we go on to consider collections of particles and their resonant properties, which can be exploited to deliver strong local concentrations of electromagnetic fields. These are used in Sects. 6.6 and 6.7 to discuss cloaking using plasmonic resonance, and spasers, devices which can overcome through amplification the propagation losses associated with plasmons.

  7. Suspended sediment concentration and particle size distribution ...

    Indian Academy of Sciences (India)

    face area, shape, minerals and source) and conse- quent interaction with heavy metal concentrations. (HMCs). Recent studies have shown a growing awareness of the wider environmental significance of the suspended sediment loads transported by rivers and streams. This includes the importance of fine grain sediment in ...

  8. Transport of suspended particles in turbulent open channel flows

    NARCIS (Netherlands)

    Breugem, W.A.

    2012-01-01

    Two experiments are performed in order to investigate suspended sediment transport in a turbulent open channel flow. The first experiment used particle image velocimetry (PIV) to measure the fluid velocity with a high spatial resolution, while particle tracking velocimetry (PTV) was used to measure

  9. IUTAM symposium on hydrodynamic diffusion of suspended particles

    Energy Technology Data Exchange (ETDEWEB)

    Davis, R.H. [ed.

    1995-12-31

    Hydrodynamic diffusion refers to the fluctuating motion of nonBrownian particles (or droplets or bubbles) which occurs in a dispersion due to multiparticle interactions. For example, in a concentrated sheared suspension, particles do not move along streamlines but instead exhibit fluctuating motions as they tumble around each other. This leads to a net migration of particles down gradients in particle concentration and in shear rate, due to the higher frequency of encounters of a test particle with other particles on the side of the test particle which has higher concentration or shear rate. As another example, suspended particles subject to sedimentation, centrifugation, or fluidization, do not generally move relative to the fluid with a constant velocity, but instead experience diffusion-like fluctuations in velocity due to interactions with neighboring particles and the resulting variation in the microstructure or configuration of the suspended particles. In flowing granular materials, the particles interact through direct collisions or contacts (rather than through the surrounding fluid); these collisions also cause the particles to undergo fluctuating motions characteristic of diffusion processes. Selected papers are indexed separately for inclusion in the Energy Science and Technology Database.

  10. Suspended sediment concentration and particle size distribution ...

    Indian Academy of Sciences (India)

    ... particle size distribution (PSD) were correlated with HMC by using bivariate and multivariate regression models. Proposed models were then selected based on statistical criteria. The results showed high correlation between dissolved and particulate chromium content with efficiency coefficients beyond 77% ( > 0.001).

  11. Ratios of total suspended solids to suspended sediment concentrations by particle size

    Science.gov (United States)

    Selbig, W.R.; Bannerman, R.T.

    2011-01-01

    Wet-sieving sand-sized particles from a whole storm-water sample before splitting the sample into laboratory-prepared containers can reduce bias and improve the precision of suspended-sediment concentrations (SSC). Wet-sieving, however, may alter concentrations of total suspended solids (TSS) because the analytical method used to determine TSS may not have included the sediment retained on the sieves. Measuring TSS is still commonly used by environmental managers as a regulatory metric for solids in storm water. For this reason, a new method of correlating concentrations of TSS and SSC by particle size was used to develop a series of correction factors for SSC as a means to estimate TSS. In general, differences between TSS and SSC increased with greater particle size and higher sand content. Median correction factors to SSC ranged from 0.29 for particles larger than 500m to 0.85 for particles measuring from 32 to 63m. Great variability was observed in each fraction-a result of varying amounts of organic matter in the samples. Wide variability in organic content could reduce the transferability of the correction factors. ?? 2011 American Society of Civil Engineers.

  12. Mixing Performance of a Suspended Stirrer for Homogenizing Biodegradable Food Waste from Eatery Centers

    Directory of Open Access Journals (Sweden)

    Olumide Babarinsa

    2014-08-01

    Full Text Available Numerical simulation of a suspended stirrer within a homogenizing system is performed towards determining the mixing performance of a homogenizer. A two-dimensional finite volume formulation is developed for the cylindrical system that is used for the storage and stirring of biodegradable food waste from eatery centers. The numerical solver incorporates an analysis of the property distribution for viscous food waste in a storage tank, while coupling the impact of mixing on the slurry fluid. Partial differential equations, which describe the conservation of mass, momentum and energy, are applied. The simulation covers the mixing and heating cycles of the slurry. Using carrot-orange soup as the operating fluid (and its thermofluid properties and assuming constant density and temperature-dependent viscosity, the velocity and temperature field distribution under the influence of the mixing source term are analyzed. A parametric assessment of the velocity and temperature fields is performed, and the results are expected to play a significant role in designing a homogenizer for biodegradable food waste.

  13. Extension of a suspended soap film: a homogeneous dilatation followed by new film extraction.

    Science.gov (United States)

    Seiwert, Jacopo; Monloubou, Martin; Dollet, Benjamin; Cantat, Isabelle

    2013-08-30

    Liquid foams are widely used in industry for their high effective viscosity, whose local origin is still unclear. This Letter presents new results on the extension of a suspended soap film, in a configuration mimicking the elementary deformation occurring during foam shearing. We evidence a surprising two-step evolution: the film first extends homogeneously, then its extension stops, and a new thicker film is extracted from the meniscus. The second step is independent of the nature of the surfactant solution, whereas the initial extension is only observed for surfactant solutions with negligible dilatational moduli. We predict this complex behavior using a model based on Frankel's theory and on interface rigidification induced by confinement.

  14. Deterministic separation of suspended particles in a reconfigurable obstacle array

    CERN Document Server

    Du, Siqi

    2015-01-01

    We use a macromodel of a flow-driven deterministic lateral displacement (DLD) microfluidic system to investigate conditions leading to size-separation of suspended particles. This model system can be easily reconfigured to establish an arbitrary orientation between the average flow field and the array of obstacles comprising the stationary phase (forcing angle). We also investigate the effect of obstacle size using two arrays with different obstacles but same surface-to-surface distance between them. In all cases, we observe the presence of a locked mode at small forcing angles, in which particles move along a principal direction in the lattice until a locked-to-zigzag transition takes place when the driving force reaches a critical angle. We show that the transition occurs at increasing angles for larger particles, thus enabling particle separation at specific forcing angles. Moreover, we observe a linear correlation between the critical angle and the size of the particles that could be used in the design of...

  15. The rotation and translation of non-spherical particles in homogeneous isotropic turbulence

    Science.gov (United States)

    Byron, Margaret

    The motion of particles suspended in environmental turbulence is relevant to many scientific fields, from sediment transport to biological interactions to underwater robotics. At very small scales and simple shapes, we are able to completely mathematically describe the motion of inertial particles; however, the motion of large aspherical particles is significantly more complex, and current computational models are inadequate for large or highly-resolved domains. Therefore, we seek to experimentally investigate the coupling between freely suspended particles and ambient turbulence. A better understanding of this coupling will inform not only engineering and physics, but the interactions between small aquatic organisms and their environments. In the following pages, we explore the roles of shape and buoyancy on the motion of passive particles in turbulence, and allow these particles to serve as models for meso-scale aquatic organisms. We fabricate cylindrical and spheroidal particles and suspend them in homogeneous, isotropic turbulence that is generated via randomly-actuated jet arrays. The particles are fabricated with agarose hydrogel, which is refractive-index-matched to the surrounding fluid (water). Both the fluid and the particle are seeded with passive tracers, allowing us to perform Particle Image Velocimetry (PIV) simultaneously on the particle and fluid phase. To investigate the effects of shape, particles are fabricated at varying aspect ratios; to investigate the effects of buoyancy, particles are fabricated at varying specific gravities. Each particle type is freely suspended at a volume fraction of F=0.1%, for which four-way coupling interactions are negligible. The suspended particles are imaged together with the surrounding fluid and analyzed using stereoscopic PIV, which yields three velocity components in a two-dimensional measurement plane. Using image thresholding, the results are separated into simultaneous fluid-phase and solid-phase velocity

  16. Homogenous Surface Nucleation of Solid Polar Stratospheric Cloud Particles

    Science.gov (United States)

    Tabazadeh, A.; Hamill, P.; Salcedo, D.; Gore, Warren J. (Technical Monitor)

    2002-01-01

    A general surface nucleation rate theory is presented for the homogeneous freezing of crystalline germs on the surfaces of aqueous particles. While nucleation rates in a standard classical homogeneous freezing rate theory scale with volume, the rates in a surface-based theory scale with surface area. The theory is used to convert volume-based information on laboratory freezing rates (in units of cu cm, seconds) of nitric acid trihydrate (NAT) and nitric acid dihydrate (NAD) aerosols into surface-based values (in units of sq cm, seconds). We show that a surface-based model is capable of reproducing measured nucleation rates of NAT and NAD aerosols from concentrated aqueous HNO3 solutions in the temperature range of 165 to 205 K. Laboratory measured nucleation rates are used to derive free energies for NAT and NAD germ formation in the stratosphere. NAD germ free energies range from about 23 to 26 kcal mole, allowing for fast and efficient homogeneous NAD particle production in the stratosphere. However, NAT germ formation energies are large (greater than 26 kcal mole) enough to prevent efficient NAT particle production in the stratosphere. We show that the atmospheric NAD particle production rates based on the surface rate theory are roughly 2 orders of magnitude larger than those obtained from a standard volume-based rate theory. Atmospheric volume and surface production of NAD particles will nearly cease in the stratosphere when denitrification in the air exceeds 40 and 78%, respectively. We show that a surface-based (volume-based) homogeneous freezing rate theory gives particle production rates, which are (not) consistent with both laboratory and atmospheric data on the nucleation of solid polar stratospheric cloud particles.

  17. Physical and biological changes of suspended particles in a free surface flow constructed wetland

    NARCIS (Netherlands)

    Mulling, B.T.M.; van den Boomen, R.M.; Claassen, T.H.L.; van der Geest, H.G.; Kappelhof, J.W.N.M.; Admiraal, W.

    2013-01-01

    Suspended particles are considered as contaminants in treated wastewater and can have profound effects on the biological, physical and chemical properties of receiving aquatic ecosystems, depending on the concentration, type and nature of the suspended particles. Constructed wetlands are known to

  18. Event-based total suspended sediment particle size distribution model

    Science.gov (United States)

    Thompson, Jennifer; Sattar, Ahmed M. A.; Gharabaghi, Bahram; Warner, Richard C.

    2016-05-01

    One of the most challenging modelling tasks in hydrology is prediction of the total suspended sediment particle size distribution (TSS-PSD) in stormwater runoff generated from exposed soil surfaces at active construction sites and surface mining operations. The main objective of this study is to employ gene expression programming (GEP) and artificial neural networks (ANN) to develop a new model with the ability to more accurately predict the TSS-PSD by taking advantage of both event-specific and site-specific factors in the model. To compile the data for this study, laboratory scale experiments using rainfall simulators were conducted on fourteen different soils to obtain TSS-PSD. This data is supplemented with field data from three construction sites in Ontario over a period of two years to capture the effect of transport and deposition within the site. The combined data sets provide a wide range of key overlooked site-specific and storm event-specific factors. Both parent soil and TSS-PSD in runoff are quantified by fitting each to a lognormal distribution. Compared to existing regression models, the developed model more accurately predicted the TSS-PSD using a more comprehensive list of key model input parameters. Employment of the new model will increase the efficiency of deployment of required best management practices, designed based on TSS-PSD, to minimize potential adverse effects of construction site runoff on aquatic life in the receiving watercourses.

  19. Dynamics of Single Chains of Suspended Ferrofluid Particles

    Science.gov (United States)

    Cutillas, S.; Liu, J.

    1999-01-01

    We present an experimental study of the dynamics of isolated chains made of super-paramagnetic particles under the influence of a magnetic field. The motivation of this work is to understand if the chain fluctuations exist and, if it does, how does the fluctuation affect chain aggregation. We find that single chains strongly fluctuate and that the characteristic frequency of their fluctuations is inversely proportional to the magnetic field strength. The higher the field the lower the characteristic frequency of the chain fluctuations. In the high magnetic field limit, chains behave like rigid rods without any internal motions. In this work, we used ferrofluid particles suspended in water. These particles do not have any intrinsic magnetization. Once a magnetic field is applied, a dipole moment is induced in each particle, proportional to the magnetic field. A dipolar magnetic interaction then occurs between particles. If dipole-dipole magnetic energy is higher than the thermal energy, the result is a structure change inside the dipolar fluid. The ratio of these two energies is expressed by a coupling constant lambda as: lambda = (pi(a(exp 3))(chi(exp 2))(mu(sub 0))(H(sub 0))(exp 2))/18kT Where a is the particle radius, mu(sub 0) is the vacuum magnetic permeability, H(sub 0) the applied magnetic field, k the Boltzmann constant and T the absolute temperature. If lambda > 1, magnetic particles form chains along the field direction. The lateral coalescence of several chains may form bigger aggregates especially if the particle volume fraction is high. While many studies and applications deal with the rheological properties and the structural changes of these dipolar fluids, this work focuses on the understanding of the chain dynamics. In order to probe the chain dynamics, we used dynamic light scattering (DLS) in self-beating mode as our experimental technique. The experimental geometry is such that the scattering plane is perpendicular to the magnetic field

  20. Direct Numerical Simulation of Particles-Bubbles Collisions Kernel in Homogeneous Isotropic Turbulence

    Directory of Open Access Journals (Sweden)

    Hassan E. Fayed

    2013-09-01

    Full Text Available Particles and bubbles suspended in homogeneous isotropic turbulence are tracked and their collisions frequency is determined as a function of particle Stokes number. The carrier phase velocity fluctuations are determined by Direct Numerical Simulations (DNS. The effects of the dispersed phases on the carrier phase are neglected. Particles and bubbles of sizes on the order of Kolmogorov length scale are treated as point masses. In addition to Stokes drag, the pressure gradient in the carrier phase and added-mass forces are also included. Equations of motion of dispersed phases are integrated simultaneously with the equations of the carrier phase using the same time stepping scheme. The collision model used here allows overlap of particles and bubbles. Simulations for three turbulence Reynolds numbers ReΛ = 57, 77, and 96 have been performed. Collisions kernel, radial relative velocity, and radial distribution function found by DNS are compared to theoretical models over a range of particle Stokes number. Comparisons are made with Zaichik et al. [22] model, which is applicable to heavy particles, and Zaichik et al. [23] model which is valid for an arbitrary Stokes number. Zaichik et al. [23] is essentially a model for the radial relative velocity, and for the purpose of computing the collision kernel, it assumes the radial distribution function to be one. In general, good agreement between DNS and Zaichik et al. models is obtained for radial relative velocity for both particle-particle and particle-bubble collisions. The DNS results show that around Stokes number of unity particles of the same group undergo expected preferential concentration while particles and bubbles are segregated. The segregation behavior of particles and bubbles leads to a radial distribution function that is less than one. Existing theoretical models do not account for effects of this segregation behavior of particles and bubbles on the radial distribution function.

  1. Monosaccharide composition of suspended particles from the Bay of Bengal

    Digital Repository Service at National Institute of Oceanography (India)

    Bhosle, N.B.; Sankaran, P.D.; Wagh, A.B.

    Neutral carbohydrates were determined as alditol acetates by capillary gas chromatography in the hydrolysates of suspended particulate samples (40) collected from 8 depths (approx 1 to 1,000 m) at 5 stations of the Bay of Bengal. Eight individual...

  2. Experimental investigation of suspended particles transport through porous media: particle and grain size effect.

    Science.gov (United States)

    Liu, Quansheng; Cui, Xianze; Zhang, Chengyuan; Huang, Shibing

    2016-01-01

    Particle and grain size may influence the transportation and deposition characteristics of particles within pollutant transport and within granular filters that are typically used in wastewater treatment. We conducted two-dimensional sandbox experiments using quartz powder as the particles and quartz sand as the porous medium to study the response of transportation and deposition formation to changes in particle diameter (ds, with median diameter 18, 41, and 82 μm) and grain diameter (dp, with median diameter 0.36, 1.25, and 2.82 mm) considering a wide range of diameter ratios (ds/dp) from 0.0064 to 0.228. Particles were suspended in deionized water, and quartz sand was used as the porous medium, which was meticulously cleaned to minimize any physicochemical and impurities effects that could result in indeterminate results. After the experiments, the particle concentration of the effluent and particle mass per gram of dry sands were measured to explore changes in transportation and deposition characteristics under different conditions. In addition, a micro-analysis was conducted to better analyse the results on a mesoscopic scale. The experimental observation analyses indicate that different diameter ratios (ds/dp) may lead to different deposit formations. As ds/dp increased, the deposit formation changed from 'Random Deposition Type' to 'Gradient Deposition Type', and eventually became 'Inlet Deposition Type'.

  3. Thermal instability of Walters B' viscoelastic fluid permeated with suspended particles in hydromagnetics in porous medium

    Directory of Open Access Journals (Sweden)

    Kumar Pardeep

    2004-01-01

    Full Text Available The effect of suspended particles on the thermal instability of Walters B' viscoelastic fluid in hydromantic in porous medium is considered. For stationary convection, Walters B' viscoelastic fluid behaves like a Newtonian fluid. The medium permeability and suspended particles has ten the onset of convection whereas the magnetic field postpones the onset of convection, for the case of stationary convection. The magnetic field and viscoelasticity intro duce oscillatory modes in the system which was non-existent in their absence.

  4. Particle size distribution of suspended solids in the Chesapeake Bay entrance and adjacent shelf waters

    Science.gov (United States)

    Byrnes, M. R.; Oertel, G. F.

    1981-01-01

    Characteristics of suspended solids, including total suspended matter, total suspended inorganics, total suspended organics, particle size distribution, and the presence of the ten most prominent particle types were determined. Four research vessels simultaneously collected samples along four transects. Samples were collected within a 2-hour period that coincided with the maximum ebb penetration of Chesapeake Bay outwelling. The distribution of primary and secondary particle size modes indicate the presence of a surface or near-surface plume, possibly associated with three sources: (1) runoff, (2) resuspension of material within the Bay, and/or (3) resuspension of material in the area of shoals at the Bay mouth. Additional supportive evidence for this conclusion is illustrated with ocean color scanner data.

  5. Finite Element Modeling of Suspended Particle Migration in Non-Newtonian Fluids

    Energy Technology Data Exchange (ETDEWEB)

    Altobelli, S.; Baer, T.; Mondy, L.; Rao, R.; Stephens, T.

    1999-03-04

    Shear-induced migration of particles is studied during the slow flow of suspensions of spheres (particle volume fraction {phi} = 0.50) in an inelastic but shear-thinning, suspending fluid in flow between counterrotating concentric cylinders, The conditions are such that nonhydrodynamic effects are negligible. The movement of particles away from the high shear rate region is more pronounced than in a Newtonian suspending liquid. We test a continuum constitutive model for the evolution of particle concentration in a flowing suspension proposed by Phillips et al. (1992) by using shear-thinning, suspending fluids. The fluid constitutive equation is Carreau-like in its shear-thinning behavior but also varies with the local particle concentration. The model is compared with the experimental data gathered with nuclear magnetic resonance (NMR) imaging.

  6. Composition and Particle Size Retrievals for Homogeneous Binary Aerosols

    Science.gov (United States)

    Niedziela, R. F.; Argon, P.; Bejcek, L.

    2014-12-01

    Tropospheric aerosols have widely varying compositions, shapes, and sizes. The ability to measure these physical characteristics, coupled with knowledge about their optical properties, can provide insight as to how these particles might participate in atmospheric processes, including their interaction with light. Over the past several years, our laboratory has been involved in developing methods to determine basic physical properties of laboratory-generated particles based on the analysis of infrared extinction spectra of multi-component aerosols. Here we report the results of a complete study on the applicability of well-known refractive index mixing rules to homogeneous binary liquid organic aerosols in an effort to yield in situ measurements of particle size and composition. In particular, we present results for terpenoid (carvone/nopinone) and long-chain hydrocarbon (squalane/squalene) mixtures. The included image shows model carvone/nopinone extinction spectra that were computed using the Lorentz-Lorenz mixing rule on complex refractive index data for the pure components.

  7. [Impacts of Sediment Disturbance on the Distribution of Suspended Particle Size and Phosphorus].

    Science.gov (United States)

    Guo, Jun-rui; Li, Da-peng; Liu, Yan-jian

    2016-04-15

    To clarify the influence of the sediments disturbance on the particle size distribution of suspended solids, and the influence of particle distribution on the forms of dissolved phosphorous in the overlaying water, the sediments and overlying water from Meiliang Bay, Taihu Lake, were used to conduct the indoor simulation experiments to investigate the particle size of suspended solids according to the Ubbelobde particle size criteria and the distribution of phosphorus compounds in the overlying water under the disturbance circumstances. The results indicated that the average proportions of small (0-10 microm), middle (10-20 microm) and large (> or = 20 microm) diameter particles presented different trends of increasing, decreasing and staying stable, respectively. It indicated the possible transformation of particle size of suspended solids from small-middle diameter to large diameter. In addition, the data of DTP/TP and DIP/TP showed a periodical variation with the corresponding periodical variety of particle diameter in suspended solids, while ns obvious variety of DTP and DIP was observed. It suggested that disturbance enhanced the ability of phosphorus immobilization by suspended solids. On the other band, the percentages of DTP in TP and DIP in TP were 19% and 13% under the disturbance, respectively, and they were obviously lower than those (DTP/TP, 80% and DIP/TP, 69% ) in the control. It indicated that tbs transformation of particle size of suspended solids from small-middle diameter to large diameter due to disturbance was in favor of tbe adsorption and sedimentation of dissolved phosphorus. Accordingly, the formation of particle phosphorus was enhanced. Therefore, it delayed the development of eutrophication in the water body.

  8. Particles Growing in Solutions: Depletion Forces and Instability of Homogeneous Particle Distribution

    Science.gov (United States)

    Chernov, A. A.

    2004-01-01

    Crystallites, droplets and amorphous precipitates growing from supersaturated solution are surrounded by zones, which are depleted with respect to the molecules they are built of. If two such particles of colloidal size are separated by a distance comparable to their diameters, then the depletion within the gap between particles is deeper than that at the outer portion of the particles. This will cause depletion attraction between the particles should appear. It may cause particle coagulation and decay of the originally homogeneous particle distribution into a system of clouds within which the particle number density is higher, separated by the region of the lower number density. Stability criterion, Q = 4 pi R(exp 3)c/3 >> 1, was analytically found along with typical particle density distribution wavevector q = (Q/I)(exp 1/2)(a/R)(exp 1/4). Here, R and a are the particle and molecular radii, respectively, c is the average molecular number density in solution and I is the squared diffusion length covered by a molecule during a typical time characterizing decay of molecular concentration in solution due to consumption of the molecules by the growing particles.

  9. Laser-induced incandescence of suspended particles as a source of excitation of dye luminescence

    CERN Document Server

    Zelensky, S

    2003-01-01

    The interaction of pulsed YAG-Nd sup 3 sup + laser radiation with submicron light-absorbing particles suspended in an aqueous solution of Rhodamine 6G is investigated experimentally. The experiments demonstrate that the laser-induced incandescence of suspended particles excites the luminescence of the dissolved dye molecules. The mechanism of the luminescence excitation consists in the reabsorption of the thermal radiation within the volume of the sample cell. On the ground of this mechanism of excitation, a method of measurement of the luminescence quantum yield is proposed and realized. The method requires the knowledge of the geometrical parameters of the cell and does not require the use of reference samples.

  10. Elemental Spatiotemporal Variations of Total Suspended Particles in Jeddah City

    Directory of Open Access Journals (Sweden)

    Mohammad W. Kadi

    2014-01-01

    Full Text Available Elements associated with total suspended particulate matter (TSP in Jeddah city were determined. Using high-volume samplers, TSP samples were simultaneously collected over a one-year period from seven sampling sites. Samples were analyzed for Al, Ba, Ca, Cu, Mg, Fe, Mn, Zn, Ti, V, Cr, Co, Ni, As, and Sr. Results revealed great dependence of element contents on spatial and temporal variations. Two sites characterized by busy roads, workshops, heavy population, and heavy trucking have high levels of all measured elements. Concentrations of most elements at the two sites exhibit strong spatial gradients and concentrations of elements at these sites are higher than other locations. The highest concentrations of elements were observed during June–August because of dust storms, significant increase in energy consumption, and active surface winds. Enrichment factors of elements at the high-level sites have values in the range >10~60 while for Cu and Zn the enrichment factors are much higher (~0–>700 indicating that greater percentage of TSP composition for these three elements in air comes from anthropogenic activities.

  11. The Influence of Suspended Inert Solid Particles on Zinc Corrosion

    DEFF Research Database (Denmark)

    Bech-Nielsen, Gregers

    1996-01-01

    The rate of corrosion of electroplated zinc in near-neutral chloride solutions can be lowered by as much as 75% by adding fine, inert particles of substances such as MnO2, Fe3O4, SiC and TiN to the well-stirred solution. Spreading of local areas of etching is also stopped. Copyright (C) 1996...

  12. Porous media grain size distribution and hydrodynamic forces effects on transport and deposition of suspended particles.

    Science.gov (United States)

    Ahfir, Nasre-Dine; Hammadi, Ahmed; Alem, Abdellah; Wang, HuaQing; Le Bras, Gilbert; Ouahbi, Tariq

    2017-03-01

    The effects of porous media grain size distribution on the transport and deposition of polydisperse suspended particles under different flow velocities were investigated. Selected Kaolinite particles (2-30μm) and Fluorescein (dissolved tracer) were injected in the porous media by step input injection technique. Three sands filled columns were used: Fine sand, Coarse sand, and a third sand (Mixture) obtained by mixing the two last sands in equal weight proportion. The porous media performance on the particle removal was evaluated by analysing particles breakthrough curves, hydro-dispersive parameters determined using the analytical solution of convection-dispersion equation with a first order deposition kinetics, particles deposition profiles, and particle-size distribution of the recovered and the deposited particles. The deposition kinetics and the longitudinal hydrodynamic dispersion coefficients are controlled by the porous media grain size distribution. Mixture sand is more dispersive than Fine and Coarse sands. More the uniformity coefficient of the porous medium is large, higher is the filtration efficiency. At low velocities, porous media capture all sizes of suspended particles injected with larger ones mainly captured at the entrance. A high flow velocity carries the particles deeper into the porous media, producing more gradual changes in the deposition profile. The median diameter of the deposited particles at different depth increases with flow velocity. The large grain size distribution leads to build narrow pores enhancing the deposition of the particles by straining. Copyright © 2016. Published by Elsevier B.V.

  13. Suspended particle transport through constriction channel with Brownian motion

    Science.gov (United States)

    Hanasaki, Itsuo; Walther, Jens H.

    2017-08-01

    It is well known that translocation events of a polymer or rod through pores or narrower parts of micro- and nanochannels have a stochastic nature due to the Brownian motion. However, it is not clear whether the objects of interest need to have a larger size than the entrance to exhibit the deviation from the dynamics of the surrounding fluid. We show by numerical analysis that the particle injection into the narrower part of the channel is affected by thermal fluctuation, where the particles have spherical symmetry and are smaller than the height of the constriction. The Péclet number (Pe) is the order parameter that governs the phenomena, which clarifies the spatio-temporal significance of Brownian motion compared to hydrodynamics. Furthermore, we find that there exists an optimal condition of Pe to attain the highest flow rate of particles relative to the dispersant fluid flow. Our finding is important in science and technology from nanopore DNA sequencers and lab-on-a-chip devices to filtration by porous materials and chromatography.

  14. Experimental study of the viscosity of suspensions: effect of solid fraction, particle size and suspending liquid

    NARCIS (Netherlands)

    Konijn, B.J.; Sanderink, O.B.J.; Kruyt, Nicolaas P.

    2014-01-01

    The behaviour of nearly neutrally-buoyant suspensions has been studied experimentally, using a concentric-cylinder rheometer. The effect on the suspension viscosity of: (i) solid fraction, (ii) diameter of the solid, spherical particles, (iii) viscosity of the suspending liquid, and (iv) shear rate

  15. Particle Size Characteristics of Fluvial Suspended Sediment in Proglacial Streams, King George Island, South Shetland Island

    Science.gov (United States)

    Szymczak, Ewa

    2017-12-01

    In this study, the characterization of particle size distribution of suspended sediment that is transported by streams (Ornithologist Creek, Ecology Glacier Creeks, Petrified Forest Creek, Czech Creek, Vanishing Creek, Italian Creek) in the area of the Arctowski Polish Antarctic Station is presented. During the first period of the summer season, the aforementioned streams are supplied by the melting snow fields, while later on, by thawing permafrost. The water samples were collected from the streams at monthly intervals during the Antarctic summer season (January - March) of 2016. The particle size distribution was measured in the laboratory with a LISST-25X laser diffraction particle size analyser. According to Sequoia Scientific Inc., LISST-25X can measure particle sizes (Sauter Mean Diameter) between 2.50 and 500 μm. The results of particle size measurements were analysed in relation to flow velocity (0.18–0.89 m/s), the cross-sectional parameters of the streams, suspended sediment concentration (0.06–167.22 mg/dm3) and the content of particulate organic matter (9.8–84.85%). Overall, the mean particle size ranged from 28.8 to 136 μm. The grain size of well-sorted sediments ranged from 0.076 to 0.57, with the skewness and kurtosis values varying from -0.1 to 0.4, and from 0.67 to 1.3, respectively. Based on the particle size characteristics of suspended sediment, the streams were divided into two groups. For most of the streams, the sediment was very well sorted, while fine sand and very fine sand were dominant fractions displaying symmetric and platykurtic distributions, respectively. Only in two streams, the suspended sediment consisted of silt-size grains, well or moderately well sorted, with coarse-skewness and mostly mesokurtic distribution. The C-M chart suggested that the transportation processes of suspended sediment included the suspended mode only. The grain-size distribution of suspended sediment was mainly influenced by the stream runoff

  16. The rotation and translation of non-spherical particles in homogeneous isotropic turbulence

    CERN Document Server

    Byron, Margaret L

    2015-01-01

    The motion of particles suspended in environmental turbulence is relevant to many scientific fields, from sediment transport to biological interactions to underwater robotics. At very small scales and simple shapes, we are able to completely mathematically describe the motion of inertial particles; however, the motion of large aspherical particles is significantly more complex, and current computational models are inadequate for large or highly-resolved domains. Therefore, we seek to experimentally investigate the coupling between freely suspended particles and ambient turbulence. A better understanding of this coupling will inform not only engineering and physics, but the interactions between small aquatic organisms and their environments. We explore the roles of shape and buoyancy on the motion of passive particles in turbulence, and allow these particles to serve as models for meso-scale aquatic organisms. The results of this study will allow us to more accurately predict the motion of aspherical particles...

  17. Parchar – Characterization of Suspended Particles Through Image Processing in Matlab

    Directory of Open Access Journals (Sweden)

    Thor Nygaard Markussen

    2016-07-01

    Full Text Available Studies of suspended particles and particle dynamics in aquatic environments increasingly rely on camera systems to characterize the particles. Numerous systems exist and all use different codes and practises to process the images from the systems. Here, a step-by-step guide to an image processing and particle characterization code for Matlab is presented with the aim of bringing the particle community towards standardized image processing techniques. The code uses morphological reconstruction and simple block processing to filter out noise, out-of-focus particles and light source inconsistencies. It has been implemented on a specific camera system but is applicable to numerous systems and on highly variable particle types due to the standardized setup.

  18. Scattering signatures of suspended particles: an integrated system for combining digital holography and laser diffraction.

    Science.gov (United States)

    Davies, Emlyn J; Nimmo-Smith, W Alex M; Agrawal, Yogesh C; Souza, Alejandro J

    2011-12-05

    The use of laser diffraction is now common practice for the determination of an in situ particle size distribution in the marine environment. However, various imaging techniques have shown that particles vary greatly in shape, leading to uncertainty in the response of laser diffraction instruments when subjected to this diverse range of complex particles. Here we present a novel integrated system which combines both digital in-line holography and a LISST-100 type C, to simultaneously record in-focus images of artificial and natural particles with their small-angle forward scattering signature. The system will allow for further development of a reliable alternative to Mie Theory when using laser diffraction for the in situ measurement of complex suspended particles. A more detailed knowledge of the performance of laser diffraction when subjected to the wide variety of complex particles found in the marine environment will then be possible.

  19. Photocurrent spectroscopy of exciton and free particle optical transitions in suspended carbon nanotube pn-junctions

    Energy Technology Data Exchange (ETDEWEB)

    Chang, Shun-Wen [Department of Physics and Astronomy, University of Southern California, Los Angeles, California 90089 (United States); Theiss, Jesse; Hazra, Jubin; Aykol, Mehmet; Kapadia, Rehan [Department of Electrical Engineering, University of Southern California, Los Angeles, California 90089 (United States); Cronin, Stephen B. [Department of Physics and Astronomy, University of Southern California, Los Angeles, California 90089 (United States); Department of Electrical Engineering, University of Southern California, Los Angeles, California 90089 (United States); Department of Chemistry, University of Southern California, Los Angeles, California 90089 (United States)

    2015-08-03

    We study photocurrent generation in individual, suspended carbon nanotube pn-junction diodes formed by electrostatic doping using two gate electrodes. Photocurrent spectra collected under various electrostatic doping concentrations reveal distinctive behaviors for free particle optical transitions and excitonic transitions. In particular, the photocurrent generated by excitonic transitions exhibits a strong gate doping dependence, while that of the free particle transitions is gate independent. Here, the built-in potential of the pn-junction is required to separate the strongly bound electron-hole pairs of the excitons, while free particle excitations do not require this field-assisted charge separation. We observe a sharp, well defined E{sub 11} free particle interband transition in contrast with previous photocurrent studies. Several steps are taken to ensure that the active charge separating region of these pn-junctions is suspended off the substrate in a suspended region that is substantially longer than the exciton diffusion length and, therefore, the photocurrent does not originate from a Schottky junction. We present a detailed model of the built-in fields in these pn-junctions, which, together with phonon-assistant exciton dissociation, predicts photocurrents on the same order of those observed experimentally.

  20. Spatial and temporal dynamics of suspended particle characteristics and composition in Navigation Pool 19 of the Upper Mississippi River

    Science.gov (United States)

    Milde, Amanda S.

    2017-01-01

    Suspended particles are an essential component of large rivers influencing channel geomorphology, biogeochemical cycling of nutrients, and food web resources. The Upper Mississippi River (UMR) is a large floodplain river that exhibits pronounced spatiotemporal variation in environmental conditions and biota, providing an ideal environment for investigating dynamics of suspended particles in large river ecosystems. Here we investigated two questions: (1) How do suspended particle characteristics (e.g., size and morphology) vary temporally and spatially? and (2) What environmental variables have the strongest association with particle characteristics? Water sampling was conducted in June, August, and September of 2013 and 2014 in Navigation Pool 19 of the UMR. A FlowCAM particle imaging system was used to enumerate and measure particles 53–300 µm in diameter for size and shape characteristics (e.g., volume, elongation, and symmetry). Suspended particle characteristics varied considerably over space and time and were strongly associated with discharge and concentrations of nitrate + nitrite (NO3-) and soluble reactive phosphorous (SRP). Particle characteristics in backwaters were distinct from those in other habitats for most of the study period, likely due to reduced hydrologic connectivity and higher biotic production in backwaters. During low discharge, phytoplankton and zooplankton made up relatively greater proportions of the observed particles. Concurrently during low discharge, concentrations of chlorophyll, volatile suspended solids, and total phosphorous were higher. Our results suggest that there are complex interactions among space, time, discharge, and other environmental variables (e.g. water nutrients) which drive suspended particle dynamics in large rivers.

  1. Concentration Measurements of Suspended Load using ADV with Influence of the Particle Size

    Science.gov (United States)

    Schwarzwälder, Kordula

    2017-04-01

    ADV backscatter data can be used under certain conditions to gain information about the concentrations of suspended loads. This was shown in many studies before (Fugate and Friedrichs 2002; Chanson et al 2008; Ha et al. 2009). This paper reports on a pre-study to investigate the influence of particle size on concentration measurements for suspended sediment load with ADV. The study was conducted in a flume in the Oskar-von-Miller-Institute using fresh water from a river including the natural suspended load. The ADV used in the experiments was a Vectrino Profiler (Nortek). In addition water samples were taken for TSS and TOC. For the measurements a surge was generated in the flume to ensure that also particles of larger size will be present in the water phase. The measurements and samples were taken during the whole surge event. Therefore we were able to find a good correlation between the backscatter data of the ADV and the TSS as well as TOC results. For the decreasing part of the flow event the concentration of TOC in the suspended load of the water phase is decreasing much slower than the TSS and results in a damped decrease of the backscatter values. This means that the results for concentration measurements might be slightly influenced by the size of the particles. Further evaluations of measurements conducted with a LISST SL (Sequoia) will be investigated to show the trend of the particle sizes during this process and fortify this result. David C. Fugate, Carl T. Friedrichs, Determining concentration and fall velocity of estuarine particle populations using ADV, OBS and LISST, Continental Shelf Research, Volume 22, Issues 11-13, 2002 H.K. Ha, W.-Y. Hsu, J.P.-Y. Maa, Y.Y. Shao, C.W. Holland, Using ADV backscatter strength for measuring suspended cohesive sediment concentration, Continental Shelf Research, Volume 29, Issue 10, 2009 Hubert Chanson, Maiko Takeuchi, Mark Trevethan, Using turbidity and acoustic backscatter intensity as surrogate measures of

  2. Viruses, bacteria and suspended particles in a backwater and main channel site of the Danube (Austria)

    OpenAIRE

    Peduzzi, Peter; Luef, Birgit

    2008-01-01

    A short overview of currently available studies on the ecology of viruses in running waters is provided. Additionally, a survey was conducted on the dynamics of both viruses and bacteria in an isolated floodplain segment of the Danube River and in the main channel near Vienna (Austria) during the hydrologically most dynamic phase (spring – summer). The study evaluates the differences between the main channel and the floodplain segment for suspended particle abundance and quality in relation t...

  3. Daylighting and Thermo-Electrical performance of an Autonomous Suspended Particle Device Evacuated Glazing

    OpenAIRE

    Ghosh, Aritra

    2016-01-01

    Suspended particle device (SPD) glazing is an AC powered switchable glazing. PV powered SPD evacuated (vacuum) glazing was proposed with the potential of reducing the heating demand, cooling demand and artificial lighting demand of a building. To achieve an autonomous SPD vacuum glazing, semi empirical simulation and outdoor characterisation was explored in this thesis. Transmission of SPD glazing (area 0.058 m2) varied from 5% when opaque to 55% when transparent in the presence of 110 V, 0.0...

  4. Vanadium Inhalation in a Mouse Model for the Understanding of Air-Suspended Particle Systemic Repercussion

    Directory of Open Access Journals (Sweden)

    T. I. Fortoul

    2011-01-01

    Full Text Available There is an increased concern about the health effects that air-suspended particles have on human health which have been dissected in animal models. Using CD-1 mouse, we explore the effects that vanadium inhalation produce in different tissues and organs. Our findings support the systemic effects of air pollution. In this paper, we describe our findings in different organs in our conditions and contrast our results with the literature.

  5. Instability of two rotating viscoelastic (Walters B' superposed fluids with suspended particles in porous medium

    Directory of Open Access Journals (Sweden)

    Kumar Pardeep

    2007-01-01

    Full Text Available The instability of the plane interface between two Walters B' viscoelastic superposed fluids permeated with suspended particles and uniform rotation in porous medium is considered following the linearized perturbation theory and normal mode analysis. For the stable configuration the system is found to be stable or unstable if ν' k1/Є, depending on kinematic viscoelasticity, permeability of the medium and porosity of the medium. However, the system is found to be unstable for the potentially unstable configuration. .

  6. Three dimensional open cavity flow for the continuous separation of suspended particles

    Science.gov (United States)

    Bernate, Jorge A.; Paul, Colin; Liu, Chengxun; Lagae, Liesbet; Konstantopoulos, Konstantinos; Gagnon, Zachary; Drazer, German

    2012-11-01

    We present a microfluidic platform for the continuous separation of suspended particles based on their size and settling velocity, which relies on the reorientation of the flow field created by applying a pressure gradient across and along a periodic array of open cavities. The flow along the open cavities deflects different particles to a different degree depending on the extent to which they penetrate into the open cavities. Two regimes can be distinguished depending on the ratio r between the settling velocity of the particles and their velocity across the cavities. When r ~ 1 , heavier particles settle deeper into the open cavities and deflect more than lighter ones. When r centrifuge depleting RBCs and enriching spiked MCF-7 cancer cells. This platform can be easily integrated with external fields resulting in a potentially versatile technique. In particular, we use dielectrophoretic forces for the high-throughput separation of particles of the same size.

  7. Tracking suspended particle transport via radium isotopes ((226)Ra and (228)Ra) through the Apalachicola-Chattahoochee-Flint River system.

    Science.gov (United States)

    Peterson, Richard N; Burnett, William C; Opsahl, Stephen P; Santos, Isaac R; Misra, Sambuddha; Froelich, Philip N

    2013-02-01

    Suspended particles in rivers can carry metals, nutrients, and pollutants downstream which can become bioactive in estuaries and coastal marine waters. In river systems with multiple sources of both suspended particles and contamination sources, it is important to assess the hydrologic conditions under which contaminated particles can be delivered to downstream ecosystems. The Apalachicola-Chattahoochee-Flint (ACF) River system in the southeastern United States represents an ideal system to study these hydrologic impacts on particle transport through a heavily-impacted river (the Chattahoochee River) and one much less impacted by anthropogenic activities (the Flint River). We demonstrate here the utility of natural radioisotopes as tracers of suspended particles through the ACF system, where particles contaminated with arsenic (As) and antimony (Sb) have been shown to be contributed from coal-fired power plants along the Chattahoochee River, and have elevated concentrations in the surficial sediments of the Apalachicola Bay Delta. Radium isotopes ((228)Ra and (226)Ra) on suspended particles should vary throughout the different geologic provinces of this river system, allowing differentiation of the relative contributions of the Chattahoochee and Flint Rivers to the suspended load delivered to Lake Seminole, the Apalachicola River, and ultimately to Apalachicola Bay. We also use various geochemical proxies ((40)K, organic carbon, and calcium) to assess the relative composition of suspended particles (lithogenic, organic, and carbonate fractions, respectively) under a range of hydrologic conditions. During low (base) flow conditions, the Flint River contributed 70% of the suspended particle load to both the Apalachicola River and the bay, whereas the Chattahoochee River became the dominant source during higher discharge, contributing 80% of the suspended load to the Apalachicola River and 62% of the particles entering the estuary. Neither of these hydrologic

  8. Study of Hydrophilic Electrospun Nanofiber Membranes for Filtration of Micro and Nanosize Suspended Particles

    Directory of Open Access Journals (Sweden)

    Nurxat Nuraje

    2013-11-01

    Full Text Available Polymeric nanofiber membranes of polyvinyl chloride (PVC blended with polyvinylpyrrolidone (PVP were fabricated using an electrospinning process at different conditions and used for the filtration of three different liquid suspensions to determine the efficiency of the filter membranes. The three liquid suspensions included lake water, abrasive particles from a water jet cutter, and suspended magnetite nanoparticles. The major goal of this research work was to create highly hydrophilic nanofiber membranes and utilize them to filter the suspended liquids at an optimal level of purification (i.e., drinkable level. In order to overcome the fouling/biofouling/blocking problems of the membrane, a coagulation process, which enhances the membrane’s efficiency for removing colloidal particles, was used as a pre-treatment process. Two chemical agents, Tanfloc (organic and Alum (inorganic, were chosen for the flocculation/coagulation process. The removal efficiency of the suspended particles in the liquids was measured in terms of turbidity, pH, and total dissolved solids (TDS. It was observed that the coagulation/filtration experiments were more efficient at removing turbidity, compared to the direct filtration process performed without any coagulation and filter media.

  9. A suspended-particle rosette multi-sampler for discrete biogeochemical sampling in low-particle-density waters

    Energy Technology Data Exchange (ETDEWEB)

    Breier, J. A.; Rauch, C. G.; McCartney, K.; Toner, B. M.; Fakra, S. C.; White, S. N.; German, C. R.

    2010-06-22

    To enable detailed investigations of early stage hydrothermal plume formation and abiotic and biotic plume processes we developed a new oceanographic tool. The Suspended Particulate Rosette sampling system has been designed to collect geochemical and microbial samples from the rising portion of deep-sea hydrothermal plumes. It can be deployed on a remotely operated vehicle for sampling rising plumes, on a wire-deployed water rosette for spatially discrete sampling of non-buoyant hydrothermal plumes, or on a fixed mooring in a hydrothermal vent field for time series sampling. It has performed successfully during both its first mooring deployment at the East Pacific Rise and its first remotely-operated vehicle deployments along the Mid-Atlantic Ridge. It is currently capable of rapidly filtering 24 discrete large-water-volume samples (30-100 L per sample) for suspended particles during a single deployment (e.g. >90 L per sample at 4-7 L per minute through 1 {mu}m pore diameter polycarbonate filters). The Suspended Particulate Rosette sampler has been designed with a long-term goal of seafloor observatory deployments, where it can be used to collect samples in response to tectonic or other events. It is compatible with in situ optical sensors, such as laser Raman or visible reflectance spectroscopy systems, enabling in situ particle analysis immediately after sample collection and before the particles alter or degrade.

  10. A review of the effects of particle types on oil-suspended particulate matter aggregate formation

    Science.gov (United States)

    Loh, Andrew; Yim, Un Hyuk

    2016-12-01

    Oil-suspended particulate matter aggregate (OSA) can form naturally when oil and particles interact. The interaction between oil and suspended particulate matter makes oil less sticky, and facilitates its dispersion in the water column. The high oil-water surface contact enhances the biodegradation of oil and thus increases the efficiency of remediation processes. There are many factors that affect OSA formation, but, particle type is one of the most important. Because different particle types have different physical, chemical, and biological properties, their interactions with oil differ greatly. Particle properties such as interlayer spaces, hydrophobicity, surface charges, polarity, organic content, and size affect the interactions between materials and oil. These different interactions determine the type, buoyancy, size, and stability of OSA that forms, thus determining its fate in the environment. This review provides a current understanding of (1) OSA formation mechanisms, (2) sources and classes of marine materials, (3) oil-particle interactions, (4) material properties and their effects on oil interaction, and (5) future research needs.

  11. Homogenization of metasurfaces formed by random resonant particles in periodical lattices

    DEFF Research Database (Denmark)

    Andryieuski, Andrei; Lavrinenko, Andrei; Petrov, Mihail

    2016-01-01

    In this paper we suggest a simple analytical method for description of electromagnetic properties of a geometrically regular two-dimensional subwavelength arrays (metasurfaces) formed by particles with randomly fluctuating polarizabilities. We propose an analytical homogenization method applicable...

  12. Homogeneous vs heterogeneous polymerization catalysis revealed by single-particle fluorescence microscopy.

    Science.gov (United States)

    Esfandiari, N Melody; Blum, Suzanne A

    2011-11-16

    A high-sensitivity and high-resolution single-particle fluorescence microscopy technique differentiated between homogeneous and heterogeneous metathesis polymerization catalysis by imaging the location of the early stages of polymerization. By imaging single polymers and single crystals of Grubbs II, polymerization catalysis was revealed to be solely homogeneous rather than heterogeneous or both.

  13. Viruses, bacteria and suspended particles in a backwater and main channel site of the Danube (Austria)

    Science.gov (United States)

    Peduzzi, Peter; Luef, Birgit

    2010-01-01

    A short overview of currently available studies on the ecology of viruses in running waters is provided. Additionally, a survey was conducted on the dynamics of both viruses and bacteria in an isolated floodplain segment of the Danube River and in the main channel near Vienna (Austria) during the hydrologically most dynamic phase (spring – summer). The study evaluates the differences between the main channel and the floodplain segment for suspended particle abundance and quality in relation to bacterial and viral parameters; both free-living forms and those attached to particles are examined. The hydrological disconnection of these two contrasting sampling sites influenced particle abundance and quality as well as the distribution of free-living vs. attached bacteria and viruses. The per-cell activity of bacteria attached to particles was significantly higher than that of the free-living fraction, particularly in the isolated water body. The abundance of bacteria and viruses on particles depended on particle quality (size). In the main channel, bacteria were significantly more abundant on surfaces (per mm2) of suspended matter > 5 μm (aggregates with organic constituents) compared to particles 5μm and attached viruses; free-living viruses were less abundant at high > 5μm particle loads. Only in the isolated floodplain section was viral abundance positively influenced by elevated per-cell productivity of potential host bacteria. The results demonstrate that system variability on a relatively small topographical scale (within a river-floodplain system) has consequences for microbial life, including viruses. PMID:21151810

  14. EFFECT OF SUSPENDED PARTICLES ON THERMAL CONVECTION IN RIVLIN-ERICKSEN FLUID IN A DARCY-BRINKMAN POROUS MEDIUM

    Directory of Open Access Journals (Sweden)

    G.C. Rana

    2012-06-01

    Full Text Available In this paper, the effect of suspended particles on thermal convection in an incompressible Rivlin-Ericksen elastico-viscous fluid in a porous medium is considered. For the porous medium, the Brinkman model is employed. By applying a normal mode analysis method, the dispersion relation has been derived and solved analytically. It is observed that the medium permeability, suspended particles, gravity field and viscoelasticity introduce oscillatory modes. For stationary convection, it is observed that the Darcy number has a stabilising effect, whereas the suspended particles and medium permeability have destabilising effects on the system. The effects of suspended particles, the Darcy number and the medium permeability have been presented graphically to depict the stability characteristics, which are in good agreement with the results derived analytically.

  15. Thermosolutal Convection in Compressible Walters' (Model B′ Fluid Permeated with Suspended Particles in a Brinkman Porous Medium

    Directory of Open Access Journals (Sweden)

    G. C. Rana

    2012-06-01

    Full Text Available In this paper, the thermosolutal convection in compressible Walters' (model B′ elastico-viscous fluid permeated with suspended particles in a porous medium is considered. For the porous medium, the Brinkman model is employed. By applying normal mode analysis method, the dispersion relation has been derived and solved analytically. It is observed that the medium permeability, suspended particles, gravity field and viscoelasticity introduce oscillatory modes. For stationary convection, it is observed that the Darcy number and stable solute gradient have stabilizing effects whereas the suspended particles and medium permeability has destabilizing effects on the system. The effects of Darcy number, stable solute gradient, suspended particles and medium permeability has also been shown graphically.

  16. Inertial Effects on the Vertical Transport of Suspended Particles in a Turbulent Boundary Layer

    Science.gov (United States)

    Richter, David; Chamecki, Marcelo

    2017-11-01

    In many atmospheric flows, a dispersed phase is actively suspended by turbulence, whose competition with gravitational settling ultimately dictates its vertical distribution. Examples of dispersed phases include snow, sea-spray droplets, dust, or sand, where individual elements of much larger density than the surrounding air are carried by turbulent motions after emission from the surface. In cases where the particle is assumed to deviate from local fluid motions only by its gravitational settling (i.e., they are inertialess), traditional flux balances predict a power-law dependence of particle concentration with height. It is unclear, however, how particle inertia influences this relationship, and this question is the focus of this work. Direct numerical simulations are conducted of turbulent open-channel flow, laden with Lagrangian particles of specified inertia; in this way the study focuses on the turbulent transport which occurs in the lowest few meters of the planetary boundary layer, in regions critical for connecting emission fluxes to the fluxes felt by the full-scale boundary layer. Simulations over a wide range of particle Stokes number, while holding the dimensionless settling velocity constant, are performed to understand the role of particle inertia on vertical dispersion. It is found that particles deviate from their inertialess behaviour in ways that are not easily captured by traditional theory; concentrations are reduced with increasing Stokes number. Furthermore, a similarity-based eddy diffusivity for particle concentration fails as particles experience inertial acceleration, precluding a closed-form solution for particle concentration as in the case of inertialess particles. The primary consequence of this result is that typical flux parametrizations connecting surface emission models (e.g., saltation models or sea-spray generation functions) to elevated boundary conditions may overestimate particle concentrations due to the reduced vertical

  17. Effects of transparent exopolymer particles and suspended particles on the survival of Salmonella enterica serovar Typhimurium in seawater.

    Science.gov (United States)

    Davidson, Marion C F; Berardi, Terra; Aguilar, Beatriz; Byrne, Barbara A; Shapiro, Karen

    2015-03-01

    The bacterium Salmonella enterica can infect marine mammals and has been increasingly implicated in seafood-borne disease outbreaks in humans. Despite the risk this zoonotic agent poses to animals and people, little is known regarding the environmental factors that affect its persistence in the sea. The goal of this study was to evaluate the impact of two constituents on the survival of Salmonella in the marine environment: transparent exopolymer particles (TEP) and suspended particles. A decay experiment was conducted by spiking Salmonella into bottles containing seawater, seawater with alginic acid as a source of TEP, filtered seawater or filtered seawater with alginic acid. Survival of Salmonella was monitored using culture followed by enrichment assays to evaluate if the bacteria entered a viable but non-cultivable (VBNC) state. Salmonella cell counts dropped significantly faster (P ≤ 0.05) in the unfiltered seawater samples with and without TEP. The slowest decay occurred in filtered seawater containing alginic acid, with VBNC Salmonella persisting for 17 months. These findings suggest that TEP may favor Salmonella survival while suspended particles facilitate its decay. Insight on the survival of allochthonous, zoonotic pathogens in seawater can guide monitoring, management and policy decisions relevant to wildlife and human public health. © FEMS 2015. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  18. Prediction of fat globule particle size in homogenized milk using Fourier transform mid-infrared spectra.

    Science.gov (United States)

    Di Marzo, Larissa; Cree, Patrick; Barbano, David M

    2016-11-01

    Our objective was to develop partial least square models using data from Fourier transform mid-infrared (MIR) spectra to predict the particle size distributions d(0.5) and d(0.9), surface volume mean diameter D[3,2], and volume moment mean diameter D[4,3] of milk fat globules and validate the models. The goal of the study was to produce a method built into the MIR milk analyzer that could be used to warn the instrument operator that the homogenizer is near failure and needs to be replaced to ensure quality of results. Five homogenizers with different homogenization efficiency were used to homogenize pasteurized modified unhomogenized milks and farm raw bulk milks. Homogenized milks were collected from the homogenizer outlet and then run through an MIR milk analyzer without an in-line homogenizer to collect a MIR spectrum. A separate portion of each homogenized milk was analyzed with a laser light-scattering particle size analyzer to obtain reference values. The study was replicated 3 times with 3 independent sets of modified milks and bulk tank farm milks. Validation of the models was done with a set of 34 milks that were not used in the model development. Partial least square regression models were developed and validated for predicting the following milk fat globule particle size distribution parameters from MIR spectra: d(0.5) and d(0.9), surface volume mean diameter D[3,2], and volume moment mean diameter D[4,3]. The basis for the ability to model particle size distribution of milk fat emulsions was hypothesized to be the result of the partial least square modeling detecting absorbance shifts in MIR spectra of milk fat due to the Christiansen effect. The independent sample validation of particle size prediction methods found more variation in d(0.9) and D[4,3] predictions than the d(0.5) and D[3,2] predictions relative to laser light-scattering reference values, and this may be due to variation in particle size among different pump strokes. The accuracy of the

  19. Inertial migration regimes of spherical particles suspended in square tube flows

    Science.gov (United States)

    Shichi, Hiroyuki; Yamashita, Hiroshi; Seki, Junji; Itano, Tomoaki; Sugihara-Seki, Masako

    2017-04-01

    The inertial migration of neutrally buoyant spherical particles suspended in tube flows of square cross sections was investigated experimentally in the range of Reynolds numbers (Re) from 1 to 800 for particle-to-tube-size ratios from 0.075 to 0.175. Direct observations of the particle distribution in the cross section at various distances from the tube inlet revealed that at low Re, smaller than a certain critical value, particles were focused on four equilibrium positions, located at the center of channel faces, consistent with previous studies on microchannel flows, whereas at higher Re, larger than another critical value, four additional equilibrium positions were observed near the channel corners. At intermediate Re, between these two critical values, we observed new focusing positions of particles, located on a heteroclinic orbit joining the channel face and corner equilibrium positions. Comparing these results with corresponding numerical simulations, we examined the migration properties in detail and categorized their types. It was found that the critical Re values depended considerably on the particle-to-tube-size ratio.

  20. Dynamics of suspended sediment concentration, flow discharge and sediment particle size interdependency to identify sediment source

    Science.gov (United States)

    Sadeghi, Seyed Hamidreza; Singh, Vijay P.

    2017-11-01

    Spatiotemporal behavior of sediment yield is a key for proper watershed management. This study analyzed statistical characteristics and trends of suspended sediment concentration (SCS), flow discharge (FD) and sediment particle sizes using data from 24 gage stations scattered throughout the United States. Analysis showed significant time- and location-specific differences of these variables. The median values of SSC, FD and percentage of particle sizes smaller than 63 μm (P63) for all 24 gage stations were found to be 510.236 mg l-1 (right skewed), 45.406 m3 s-1 (left skewed) and 78.648% (right skewed), respectively. Most of the stations exhibited significant trends (P management practices which may call for local or regional planning based on natural (i.e., precipitation amount, type and erosivity, watershed area, and soil erodibility) and human-affected (i.e., land use and hydraulic structures and water resources management) factors governing the study variables.

  1. Chromium in water, suspended particles, sediments and biota in the Iraja River estuary

    Energy Technology Data Exchange (ETDEWEB)

    Pfeiffer, W.C.; Fiszman, M.; de Lacerda, L.D.; van Weerfelt, M.; Carbonell, N.

    1982-11-01

    Analyses of chromium concentrations in waters, suspended particles, bottom sediments, fish (Poecilia reticulata), plants (Paspalum vaginatum, Sesuvium portulacastrum, Philoxeros vermicularis), soils and barnacles (Balanus sp.) were performed from August 1976 to September 1980 in samples collected from the Iraja River and inside its estuary in Guanabara Bay (Rio de Janeiro, Brazil). Sediments and water from the Iraja River showed chromium concentrations of 17536 and 23.39 ppm--a thousand times higher than the published data for freshwater systems. Chromium removed from solution by bottom sediments reaches Guanabara Bay linked to particulate matter. Fish and emergent grass inside the river concentrate chromium from water and/or sediment, returning the metal to the system as detritus. Soil and plants inside the estuary concentrate chromium thirty and ten times higher than in the control area. The vegetal community exhibits a concentration factor smaller than that related to soil and prevents the return of chromium to the estuarine waters. Inside the Guanabara Bay, Balanus sp. appears to be an effective biological monitor as it concentrates chromium in soft tissues 10/sup 3/ times higher than values found in suspended particles (0.012 ..mu..g ml/sup -1/).

  2. Experimental Exploration of Electrostatic Charge on Particle Pair Relative Velocity in Homogeneous and Isotropic Turbulence

    Science.gov (United States)

    Hammond, Adam; Dou, Zhongwang; Tripathi, Anjan; Liang, Zach; Meng, Hui

    2015-11-01

    Study of droplet collision and cloud formation should consider the effects of both turbulence and electrostatic charge on particle dynamics. We present the first experimental observation of radial relative velocity (RV) of charged particles in homogeneous and isotropic turbulence (HIT). Charges on particles were generated through triboelectric effect between the inner wall of the chamber and the particles. To measure charge distribution, a particle-laden head-on impinging flow mimicking our HIT chamber conditions was built and holographic particle tracking was applied to quantify particle charges by measuring their displacements in an electric field. Particles were observed to have opposite charges. Next, in our HIT chamber, we measured particle RV by a novel 4-frame particle tracking velocimetry technique with and without charges on particles, wherein charges were neutralized by coating the interior of the HIT chamber with conductive carbon paint. We compared RV under the same turbulence conditions between charged particles and neutral particles and observed that when particles were oppositely charged, their mean inward RV increased at small separation distances. This result is consistent with recent theory and simulations (Lu and Shaw, Physics of Fluids, 2015). This work was supported by the National Science Foundation through a Collaborative Research Grant CBET-0967407.

  3. Hysteresis in suspended sediment to turbidity relations due to changing particle size distributions

    Science.gov (United States)

    Landers, Mark N.; Sturm, Terry W.

    2013-01-01

    Turbidity (T) is the most ubiquitous of surrogate technologies used to estimate suspended-sediment concentration (SSC). The effects of sediment size on turbidity are well documented; however, effects from changes in particle size distributions (PSD) are rarely evaluated. Hysteresis in relations of SSC-to-turbidity (SSC~T) for single stormflow events was observed and quantified for a data set of 195 concurrent measurements of SSC, turbidity, discharge, velocity, and volumetric PSD collected during five stormflows in 2009–2010 on Yellow River at Gees Mill Road in metropolitan Atlanta, Georgia. Regressions of SSC-normalized turbidity (T/SSC) on concurrently measured PSD percentiles show an inverse, exponential influence of particle size on turbidity that is not constant across the size range of the PSD. The majority of the influence of PSD on T/SSC is from particles of fine-silt and smaller sizes (finer than 16 microns). This study shows that small changes in the often assumed stability of the PSD are significant to SSC~T relations. Changes of only 5 microns in the fine silt and smaller size fractions of suspended sediment PSD can produce hysteresis in the SSC~T rating that can increase error and produce bias. Observed SSC~T hysteresis may be an indicator of changes in sediment properties during stormflows and of potential changes in sediment sources. Trends in the PSD time series indicate that sediment transport is capacity-limited for sand-sized sediment in the channel and supply-limited for fine silt and smaller sediment from the hillslope.

  4. Intergrating cavity absorption meter measurements of dissolved substances and suspended particles in ocean water

    Science.gov (United States)

    Pope, Robin M.; Weidemann, Alan D.; Fry, Edward S.

    2000-01-01

    We have developed a new device to measure the separate contributions to the spectral absorption coefficient due to a pure liquid, due to the particles suspended in it, and due to the substances dissolved in it. This device, the Integrating Cavity Absorption Meter (ICAM), is essentially independent of scattering effects in the sample. In April 1993, a prototype of the ICAM was field tested on board the research vessel USNS Bartlett. A major part of the cruise track included criss-crossing the area where the Mississippi flows into the Gulf of Mexico at various ranges from the mouth of the river; thus samples were collected from areas of blue, green, and brown/black water. We evaluated 35 seawater samples collected with 5-l Niskin bottles from 22 locations to determine absorption spectra (380-700 nm) of suspended particles and dissolved substances (gelbstoff). Results validate the ICAM as a viable tool for marine optical absorption research. Gelbstoff absorption at 432.5 nm ranged from 0.024 to 0.603 m -1. Over the spectral region 380→560 nm, gelbstoff absorption by each of the samples could be accurately fit to a decaying exponential. The particle absorption spectra are generally characteristic of those of phytoplankton and exhibit a local maximum at 430-440 nm. Absorption values at 432.5 nm ranged from ˜zero to ˜1.0 m -1. Some samples with moderate particulate absorption, however, did not show the characteristic local maximum of phytoplankton in the blue and instead resembled the characteristic decaying exponential of detritus with a shape similar to that observed in the gelbstoff. The ratio of gelbstoff to particulate absorption at 432.5 nm ranged from 0.46 to 152.

  5. Turbidimetric method for evaluation of photocatalytic activities of suspended fine particles

    Directory of Open Access Journals (Sweden)

    Hideki Aoyagi

    2010-10-01

    Full Text Available Hideki Aoyagi1, Katsumi Yabusaki21Life Science and Bioengineering, Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki, Japan; 2Electronics and Optics Research Laboratory, Kowa Ltd, Chofugaoka, Chofu City, Tokyo, JapanAbstract: A spectrophotometer with special cuvette was developed for evaluating the photocatalytic activities of suspended fine particles. The spectrophotometer can continuously irradiate UV light using LED to the sample solution, and changes in the absorbance at 664 nm during photocatalytic degradation of methylene blue (MB were monitored continuously. From the onset of MB degradation, the absorbance decreased and reached a steady value at the end of the reaction. This process was expressed by first order kinetics and the photocatalytic activities of various fine particles could be evaluated quantitatively based on the reaction rate constant (k. The effect of photocatalysis using various TiO2 fine particles on the physiological activities of Euglena gracilis was related with k value.Keywords: photocatalyst, fine nano sized particles, specialized spectrophotometer, Euglena gracilis, rate constant

  6. A description of particle shape homogeneity in the space of composite suspension casting

    Directory of Open Access Journals (Sweden)

    K. Gawdzińska

    2011-01-01

    Full Text Available The presented analysis of the particle shape homogeneity of the reinforcement phase in the space of composite casting is made by meansof the descriptive statistics method and the analysis of variance. The reinforcement phase consisted of SiC particles with 15% content,while the matrix was an AlSi11 alloy. The composites were made by the mechanical stir casting method.

  7. Hydromagnetic thermosolutal instability of compressible walters' (model B' rotating fluid permeated with suspended particles in porous medium

    Directory of Open Access Journals (Sweden)

    G Rana

    2016-09-01

    Full Text Available The thermosolutal instability of compressible Walters' (model B' elastico-viscous rotating fluid permeated with suspended particles (fine dust in the presence of vertical magnetic field in porous medium is considered. By applying normal mode analysis method, the dispersion relation has been derived and solved analytically. It is observed that the rotation, magnetic field, suspended particles and viscoelasticity introduce oscillatory modes. For stationary convection the Walters' (model B' fluid behaves like an ordinary Newtonian fluid and it is observed that the rotation and stable solute gradient has stabilizing effects and suspended particles are found to have destabilizing effect on the system, whereas the medium permeability has stabilizing or destabilizing effect on the system under certain conditions. The magnetic field has destabilizing effect in the absence of rotation, whereas in the presence of rotation, magnetic field has stabilizing or destabilizing effect under certain conditions.

  8. Study of agglomeration of ice particles and of trichlorofluoromethane hydrate particles suspended in a hydrocarbon phase

    Energy Technology Data Exchange (ETDEWEB)

    Colombel, E.; Palermo, T.; Barre, L.; Gateau, P. [Inst. Francais du Petrole, Rueil Malmaison (France). Dept. of Applied Chemistry and Physico-Chemistry; Gruy, F. [Ecole Nationale Superieure des Mines, Saint Etienne (France)

    2008-07-01

    Gas hydrates may lead to pipeline blockage during oil production in offshore conditions. A study was conducted to better understand the agglomeration mechanism of gas hydrate particles in water in oil emulsions. The model system chosen to study this mechanism was ice or trichlorofluoromethane (CCl{sub 3}F) hydrate particles dispersed in xylene with asphaltenes as surfactants. The system illustrated what occurs in pipelines as produced water with oil is dispersed by surfactants that are naturally present in the oil phase. Freon was selected because it models methane behaviour very well. Both methane and freon are soluble in oil and insoluble in water. CCl{sub 3}F hydrates are stable under atmospheric pressure. As such, different techniques can be applied without being limited by high pressure conditions. The agglomeration mechanism in these particles can be modelled and compared with ice crystals. This study focused on the kinetics of agglomeration formation and mechanisms of hydrate and ice particle agglomeration in a hydrocarbon phase. Two characterization techniques were implemented in this study, notably nuclear magnetic resonance (NMR) relaxometry and rheology. The different relaxation rate for solids or liquids was used to monitor in situ the ratio between the solid and total hydrogen or fluorine as a function of time with controlled shearing conditions. NMR provided information on the formation kinetics and the conversion rate of water in ice crystals. The rest of the study focused on the formation of Freon hydrate crystals. The study confirmed that the physico-chemistry of the water/oil interface has an important role in agglomeration. 9 refs., 5 tabs., 18 figs.

  9. Optimized goniometer for determination of the scattering phase function of suspended particles: simulations and measurements.

    Science.gov (United States)

    Foschum, Florian; Kienle, Alwin

    2013-08-01

    We present simulations and measurements with an optimized goniometer for determination of the scattering phase function of suspended particles. We applied the Monte Carlo method, using a radially layered cylindrical geometry and mismatched boundary conditions, in order to investigate the influence of reflections caused by the interfaces of the glass cuvette and the scatterer concentration on the accurate determination of the scattering phase function. Based on these simulations we built an apparatus which allows direct measurement of the phase function from ϑ=7  deg to ϑ=172  deg without any need for correction algorithms. Goniometric measurements on polystyrene and SiO2 spheres proved this concept. Using the validated goniometer, we measured the phase function of yeast cells, demonstrating the improvement of the new system compared to standard goniometers. Furthermore, the scattering phase function of different fat emulsions, like Intralipid, was determined precisely.

  10. Determination of suspended particulate matter concentration from turbidity measurements: particle size effects and calibration procedures

    Science.gov (United States)

    Pfannkuche, J.; Schmidt, A.

    2003-07-01

    Measurements of suspended particulate matter concentration and turbidity point towards the possibility of a site-specific algorithm (SPM), relating SPM to nephelometric turbidity units (NTU). In this paper regression models are presented that account for changes in the relationship of SPM and NTU as a result of changes in particle properties. The models have been developed by the use of daily measurements of SPM concentration and a continuous record of turbidity for the period from June 1996 to February 2001 in the River Elbe, a major river in the eastern part of Germany.The effect of changes in the particle properties with increasing water discharge was taken into account by varying the slope of a linear regression equation according to a logistic function. Water discharge, Q, was defined to be the only variable of this function - as an adequate substitute of the parameter bottom shear stress, which cannot be measured directly. Measurements of flow velocity in the River Elbe show that bottom shear stress is related almost linearly to water discharge up to bankful discharges.Regression models with slopes varying continuously with hydraulic parameters may account for the effects resulting from changes of particle characteristics and thus may have some advantages compared with models with a constant slope or models calibrated for different seasons.

  11. Scattering of millimeter waves by snow crystals and equivalent homogeneous symmetric particles.

    Science.gov (United States)

    O'Brien, S G; Goedecke, G H

    1988-06-15

    The digitized Green's function code was used to compute differential and total cross sections of several model snow crystals and of several homogeneous highly symmetric equivalent particles of the same general shape and size as the snow crystals at a wavelength of 10 mm. Optical constants of equivalent particles were derived using the Biot-Arago, Lorentz-Lorenz, and Bruggemann mixing rules. Reasonable agreement was found for equivalent particles whose mass distributions were most similar to those of the snow crystals. Overall, the Bruggemann mixing rule produced the best match.

  12. Effect of particle size and composition of suspended sediment on denitrification in river water

    Energy Technology Data Exchange (ETDEWEB)

    Jia, Zhimei; Liu, Ting; Xia, Xinghui, E-mail: xiaxh@bnu.edu.cn; Xia, Na

    2016-01-15

    Rivers with high suspended sediment (SPS) concentration are common worldwide, and previous studies reported the occurrence of denitrification on SPS. In this work, effect of particle size and composition of SPS on denitrification in river water was studied in laboratory. The {sup 15}N isotope tracer technique was used to investigate the denitrification in water containing 8 g L{sup −1} SPS with different particle sizes, including < 20 μm, 20–50 μm, 50–100 μm, and 100–200 μm. The results showed that the denitrification rate was negatively related to particle size, and the SPS with particle size below 20 μm had the highest {sup 15}N{sub 2} emission rate of 0.27 mg-N/m{sup 3}·d, which was twice that of 100–200 μm. The denitrifying bacteria population in the system decreased with the increase of particle size, which was positively correlated with denitrification rate (p < 0.05). There was a positive correlation between organic carbon content of SPS and denitrifying bacteria population (p < 0.01), indicating that organic carbon is a key factor influencing denitrifying bacteria. Different from the {sup 15}N{sub 2} production, {sup 15}N{sub 2}O emission rate reached the highest of 1.02 μg-N/m{sup 3}·d in the system containing SPS of 20–50 μm, which was 14.8 times that of 100–200 μm. This was due to the difference in denitrifying bacteria species in different systems due to different oxic/anoxic conditions around SPS. This study suggests that not only the SPS concentration but also the SPS size and composition should be considered in studying the nitrogen cycle in river systems, especially for the production of N{sub 2}O. - Highlights: • Denitrification rate was negatively related to particle size of SPS. • Denitrification in the < 20 μm SPS had the highest N{sub 2} emission rate of 0.27 mg-N/m{sup 3} d. • {sup 15}N{sub 2}O production in the system with SPS of 20–50 μm was 14.8 times that of 100–200 μm. • The denitrifying bacteria

  13. Suspended particles only marginally reduce pyrethroid toxicity to the freshwater invertebrate Gammarus pulex (L.) during pulse exposure

    DEFF Research Database (Denmark)

    Rasmussen, Jes; Cedergreen, Nina; Kronvang, Brian

    2016-01-01

    Current ecotoxicological research on particle associated pyrethroids in freshwater systems focuses almost exclusively on sediment-exposure scenarios and sediment-dwelling macroinvertebrates. We studied how suspended particles influence acute effects of lambda-cyhalothrin and bifenthrin on the epi......Current ecotoxicological research on particle associated pyrethroids in freshwater systems focuses almost exclusively on sediment-exposure scenarios and sediment-dwelling macroinvertebrates. We studied how suspended particles influence acute effects of lambda-cyhalothrin and bifenthrin...... on the epibenthic freshwater amphipod Gammarus pulex (L.) using brief pulse exposures followed by a 144 h post exposure recovery phase. Humic acid (HA) and the clay mineral montmorillonite (MM) were used as model sorbents in environmentally realistic concentrations (5, 25 and 125 mg L-1). Mortality of G. pulex...

  14. THERMAL INSTABILITY OF COMPRESSIBLE WALTERS' (MODEL B' FLUID IN THE PRESENCE OF HALL CURRENTS AND SUSPENDED PARTICLES

    Directory of Open Access Journals (Sweden)

    Urvashi GUPTA

    2011-01-01

    Full Text Available Effect of Hall currents and suspended particles is considered on the hydromagnetic stability of a compressible, electrically conducting Walters' (Model B' elastico-viscous fluid. After linearizing the relevant hydromagnetic equations, the perturbation equations are analyzed in terms of normal modes. A dispersion relation governing the effects of visco-elasticity, magnetic field, Hall currents and suspended particles is derived. It has been found that for stationary convection, the Walters' (Model B' fluid behaves like an ordinary Newtonian fluid due to the vanishing of the visco-elastic parameter. The compressibility and magnetic field have a stabilizing effect on the system, as such their effect is to postpone the onset of thermal instability whereas Hall currents and suspended particles are found to hasten the onset of thermal instability for permissible range of values of various parameters. Also, the dispersion relation is analyzed numerically and the results shown graphically. The critical Rayleigh numbers and the wavenumbers of the associated disturbances for the onset of instability as stationary convection are obtained and the behavior of various parameters on critical thermal Rayleigh numbers has been depicted graphically. The visco-elasticity, suspended particles and Hall currents (hence magnetic field introduce oscillatory modes in the system which were non-existent in their absence.

  15. [Remote sensing inversion mode of suspended particles concentration in Hangzhou Bay based on in situ measurement spectrum].

    Science.gov (United States)

    Wang, Fan; Zhou, Bin; Xu, Jian-Ming; Ling, Zai-Ying

    2008-11-01

    Suspended particles are one of major parameters of coastal water color remote sensing in China. The reflectances spectral of water were measured using an ASD field spectroscope, synchronously the suspended particles concentrations of surface water were acquired in Hangzhou Bay. Two remote sensing inversion models for suspended particles concentrations (SPC) were developed based on t hesimulated reflectance of MODIS & MERIS channels using artificial neural network (ANN) algorithm. Measurement results show that the total SPC of Hangzhou bay is comparatively high where the suspended sediments concentrations (SSC) are far more than chlorophyll concentrations, averagely 705 mg/L and 1.164 mg/m3, reseparately. The SPC in two measurement stations appears spatio-temporal variation, especially the short period change due to tidal cycle. There are two reflectance peaks in the measured spectral curves, one is between 650 nm to 750 nm, and the other is near 800 nm. The first order derivative curves of reflectance spectral indicate that the first reflectance peaks shift to long wavelength according to the increased SSC. The ANN models make full use of the spectral information in different channels which can simulate the pigment and non-pigment particles concentrations at same time. The fitting effects are preferable with R2 more than 0.95 for each model. The ANN mode can be used for satellite remote sensing inversion, especially MERIS data, because of its comparatively high spatial resolution.

  16. Simulation and quantitative assessment of homogeneous and inhomogeneous particle distributions in particulate metal matrix composites.

    Science.gov (United States)

    Yang, N.; Boselli, J.; Sinclair, I.

    2001-02-01

    Reinforcement distributions play an important role in various aspects of the processing and final mechanical behaviour of particulate metal matrix composites (PMMCs). Methods for quantifying spatial distribution in such materials are, however, poorly developed, particularly in relation to the range of particle size, shape and orientation that may be present in any one system. The present work investigates via computer simulations the influences of particle morphology, homogeneity and inhomogeneity on spatial distribution measurements obtained by finite-body tessellation. Distribution inhomogeneity was simulated both by the segregation of particles away from specified regions within a microstructure and by generating point density peaks at random locations within a microstructure. Both isotropic and anisotropic inhomogeneous distributions were considered to simulate distribution patterns in PMMCs before and after mechanical working. It was found that the coefficient of variation of the mean near-neighbour distance (COV(dmean)), derived from particle interfaces using finite-body tessellation, was essentially independent of particle shape, size distribution, orientation and area fraction in homogeneous (random) distributions, but showed great sensitivity to inhomogeneity. Increased values of COV(dmean) were seen for both forms of inhomogeneous distributions considered here, with little influence of particle morphology. The COV(dmean) was also seen to be sensitive to anisotropic clustering, the presence of which was identified via nearest-neighbour angles and cell orientations. Although generally formulated for PMMCs, the present results may be generalized to other systems containing low aspect ratio finite bodies of low to moderate area fraction.

  17. Changes in particle size distribution of suspended sediment affected by gravity erosion on the Loess Plateau, China

    Science.gov (United States)

    Guo, Wen-Zhao; Xu, Xiang-Zhou; Liu, Ya-Kun; Zhang, Hong-Wu; Zhu, Ming-Dong

    2017-04-01

    Gravity erosion generates an enormous volume of sediment on the steep hillslopes throughout the world, yet the response from particle size distribution (PSD) of suspended sediment to mass failure remains poorly understood. Here rainfall simulation experiments were conducted on the natural loess slopes to induce a series of mass failures under rainfall intensity of 48 mm h-1, and then an index of enrichment/dilution ratio was used to quantitatively explore the change trend of suspended sediment PSD affected by gravity erosion. To determine suspended sediment, water samples were collected in a polyethylene bottle directly from the gully runoff and channel flow in the pre and during- slope failures events. Then, the particle fractions of samples were done by combining sieving method and photoelectric sedimentometer technique. The results are shown as follows: (1) Gravity erosion has a significant influence on the particle size distribution of suspended sediment. As the mass erosion occurred, the proportion of sand-sized particles was decreased from 71.2 to 50.8%, whereas the proportions of clay and silt were increased remarkably from 1.3 to 7.3% and 27.5 to 41.9%, respectively. Hence the sediment can be more easily transported into channel flow while the suspended sediment load becomes finer as gravitational erosion occurs. (2) The median particle size (d50), sediment heterogeneity (H) and fractal dimensions (D) were significantly correlated with gravity erosion. As a result, d50 was decreased from 0.084 to 0.051 mm, H was increase from 5.6 to 26.8, and D was magnified from 2.60 to 2.78. This implies that mass failure makes the particle size distribution of suspended sediment more nonuniform and irregular. (3) Suspended sediment tended to enrich in the silt and clay fractions, while it diluted in the sand fractions during landslide erosion. Meanwhile, the enrichment/dilution ratios were 13.9 for the clay fractions, 1.4 for clay, and 0.7 for sand. This reflects the

  18. Homogeneous dispersion of TiC nano particles in a cast carbon steel matrix.

    Science.gov (United States)

    Lee, Sang-Hoon; Hong, Sung-Mo; Han, Byoung-Sun; Park, Jin-Ju; Lee, Jong-Keuk; Lee, Jung-Gu; Lee, Min-Ku; Rhee, Chang-Kyu

    2010-01-01

    Metal matrix nano-composites (MMNCs) (metal matrix with nano-sized ceramic particles) can be of great significance because of their high performance and thus it would be advantageous to produce as-cast bulk MMNCs. However, it is so difficult to disperse nano-sized ceramic particles uniformly in molten metal. In this study, carbon steel matrix composites with a homogeneous dispersion of TiC nano particles were fabricated by conventional liquid metal casting method. In order to get highly wettable nano-sized TiC ceramic particles, the micro-sized (approximately 10 m) TiC particles were first mechanically milled (MMed) by Cu in a high-energy ball mill machine (MMed TiC/Cu), and then mixed with Sn powders to obtain better wettability, as this lowered the surface tension of the carbon steel melt. According to OM images, an addition of MMed TiC/Cu-Sn mixed powders favorably disperses the TiC nano particles in the carbon steel matrix. SEM and EDS images revealed that spherical particles with several hundreds of nanometers were distributed uniformly in the carbon steel matrix. It was also found that the grain size refinement of the cast matrix is achieved remarkably when TiC nano particles were added due to the fact that TiC nano particles act as nucleation sites during the solidification process.

  19. Tracking control of colloidal particles through non-homogeneous stationary flows

    Energy Technology Data Exchange (ETDEWEB)

    Híjar, Humberto, E-mail: humberto.hijar@lasallistas.org.mx [Grupo de Sistemas Inteligentes, Facultad de Ingeniería, Universidad La Salle, Benjamín Franklin 47, 06140, Distrito Federal (Mexico)

    2013-12-21

    We consider the problem of controlling the trajectory of a single colloidal particle in a fluid with steady non-homogeneous flow. We use a Langevin equation to describe the dynamics of this particle, where the friction term is assumed to be given by the Faxén's Theorem for the force on a sphere immersed in a stationary flow. We use this description to propose an explicit control force field to be applied on the particle such that it will follow asymptotically any given desired trajectory, starting from an arbitrary initial condition. We show that the dynamics of the controlled particle can be mapped into a set of stochastic harmonic oscillators and that the velocity gradient of the solvent induces an asymmetric coupling between them. We study the particular case of a Brownian particle controlled through a plane Couette flow and show explicitly that the velocity gradient of the solvent renders the dynamics non-stationary and non-reversible in time. We quantify this effect in terms of the correlation functions for the position of the controlled particle, which turn out to exhibit contributions depending exclusively on the non-equilibrium character of the state of the solvent. In order to test the validity of our model, we perform simulations of the controlled particle moving in a simple shear flow, using a hybrid method combining molecular dynamics and multi-particle collision dynamics. We confirm numerically that the proposed guiding force allows for controlling the trajectory of the micro-sized particle by obligating it to follow diverse specific trajectories in fluids with homogeneous shear rates of different strengths. In addition, we find that the non-equilibrium correlation functions in simulations exhibit the same qualitative behavior predicted by the model, thus revealing the presence of the asymmetric non-equilibrium coupling mechanism induced by the velocity gradient.

  20. Ultra-directional super-scattering of homogenous spherical particles with radial anisotropy

    CERN Document Server

    Liu, Wei

    2015-01-01

    We study the light scattering of homogenous radially-anisotropic spherical particles. It is shown that radial anisotropy can be employed to tune effectively the electric resonances, and thus enable flexible overlapping of electric and magnetic dipoles of various numbers, which leads to unidirectional forward super-scattering at different spectral positions. We further reveal that through adjusting the radial anisotropy parameters, electric and magnetic resonances of higher orders can be also made overlapped, thus further collimating the forward scattering lobes. The ultra-directional super-scattering we have obtained with individual homogenous radially anisotropic spherical particles may shed new light to the design of compact and efficient nanoantennas, which may find various applications in solar cells, bio-sensing and many other antenna based researches.

  1. Preparation and Optimization of 10-Hydroxycamptothecin Nanocolloidal Particles Using Antisolvent Method Combined with High Pressure Homogenization

    Directory of Open Access Journals (Sweden)

    Bolin Lian

    2017-01-01

    Full Text Available The aim of this study was to prepare 10-hydroxycamptothecin nanocolloidal particles (HCPTNPs to increase the solubility of drugs, reduce the toxicity, improve the stability of the drug, and so forth. HCPTNPs was prepared by antisolvent precipitation (AP method combined with high pressure homogenization (HPH, followed by lyophilization. The main parameters during antisolvent process including volume ratio of dimethyl sulfoxide (DMSO and H2O and dripping speed were optimized and their effects on mean particle size (MPS and yield of HCPT primary particles were investigated. In the high pressure homogeneous procedure, types of surfactants, amount of surfactants, and homogenization pressure (HP were optimized and their influences on MPS, zeta potential (ZP, and morphology were analyzed. The optimum conditions of HCPTNPs were as follows: 0.2 mg/mL HCPT aqueous suspension, 1% of ASS, 1000 bar of HP, and 20 passes. Finally, the HCPTNPs via lyophilization using glucose as lyoprotectant under optimum conditions had an MPS of 179.6 nm and a ZP of 28.79 ± 1.97 mV. The short-term stability of HCPTNPs indicated that the MPS changed in a small range.

  2. Snell's law for particles moving on piecewise homogeneous two dimensional surface with linear boundaries

    CERN Document Server

    Mandrekar, Pratik

    2011-01-01

    We study the properties of least time trajectories for particles moving on a two dimensional surface which consists of piecewise homogeneous regions. The particles are assumed to move with different constant speeds on different regions and on the boundary between regions. The speed of the particle is assumed to be highest when it moves along the edges formed by the boundary of two regions. We get an analogous behavior to Snell's Law of light refraction, but in a more generalized form. The model could be used for studying properties of animal and insect trails which tend to form predominantly along edges. The model predicts three types of behavior for the trajectories near a corner forming edge: fully edge following, partial edge following and complete avoidance of the edge, which are indeed observed in natural ant trails.

  3. Suspended particles only marginally reduce pyrethroid toxicity to the freshwater invertebrate Gammarus pulex (L.) during pulse exposure.

    Science.gov (United States)

    Rasmussen, Jes Jessen; Cedergreen, Nina; Kronvang, Brian; Andersen, Maj-Britt Bjergager; Nørum, Ulrik; Kretschmann, Andreas; Strobel, Bjarne Westergaard; Hansen, Hans Christian Bruun

    2016-04-01

    Current ecotoxicological research on particle-associated pyrethroids in freshwater systems focuses almost exclusively on sediment-exposure scenarios and sediment-dwelling macroinvertebrates. We studied how suspended particles influence acute effects of lambda-cyhalothrin and bifenthrin on the epibenthic freshwater amphipod Gammarus pulex (L.) using brief pulse exposures followed by a 144 h post exposure recovery phase. Humic acid (HA) and the clay mineral montmorillonite (MM) were used as model sorbents in environmentally realistic concentrations (5, 25 and 125 mg L(-1)). Mortality of G. pulex was recorded during the post exposure recovery phase and locomotor behavior was measured during exposure to lambda-cyhalothrin. We found that HA in concentrations ≥25 mg L(-1) adsorbed the majority of pyrethroids but only reduced mortality of G. pulex up to a factor of four compared to pyrethroid-only treatments. MM suspensions adsorbed a variable fraction of pyrethroids (10% for bifenthrin and 70% for lambda-cyhalothrin) but did not significantly change the concentration-response relationship compared to pure pyrethroid treatments. Behavioral responses and immobilisation rate of G. pulex were reduced in the presence of HA, whereas behavioral responses and immobilisation rate were increased in the presence of MM. This indicates that G. pulex was capable of sensing the bioavailable fraction of lambda-cyhalothrin. Our results imply that suspended particles reduce to only a limited extent the toxicity of pyrethroids to G. pulex and that passive uptake of pyrethroids can be significant even when pyrethroids are adsorbed to suspended particles.

  4. Seasonal and spatial variability of light absorption by suspended particles in the southern Baltic: A mathematical description

    Science.gov (United States)

    Meler, Justyna; Ostrowska, Mirosława; Stoń-Egiert, Joanna; Zabłocka., Monika

    2017-06-01

    This paper analyses the relationships between the light absorption coefficients at 440 nm ap(440) for particles suspended in the surface waters of the southern Baltic Sea and the concentrations of some optically significant constituents in these waters. The analysis covers two main groups of particles: phytoplankton and non-algal. For this purpose we use the extensive database of optical measurements acquired from 2006 to 2013 during 40 cruises of r/v Oceania in various regions of the southern Baltic: open waters, coastal waters, the Gulf of Gdańsk, the Pomeranian Bay and river mouths. Expressions are derived for each of these regions to describe the seasonal variations of the dependence of the light absorption coefficients for phytoplankton aph(440) and non-algal particles aNAP(440) on concentrations of chlorophyll a (Tchla) and suspended particulate matter in sea water (SPM). With a knowledge of these dependences, one can determine the overall absorption coefficient for all suspended particles in any part of the Baltic Sea in particular seasons from known Tchla and SPM concentrations using the relationship ap(440) = aph(440) + aNAP(440) = f(Tchla, SPM). These dependences reflect the characteristics of a study area and season, and their application increases the accuracy of determination of the overall absorption properties of suspended particles and their main constituents as confirmed by statistical error reduction, e.g. standard error factor falls from 1.46 to 1.38. The relationships derived in this work can be applied in the local remote sensing algorithms used for monitoring the southern Baltic.

  5. Biologically induced deposition of fine suspended particles by filter-feeding bivalves in land-based industrial marine aquaculture wastewater.

    Directory of Open Access Journals (Sweden)

    Yi Zhou

    Full Text Available Industrial aquaculture wastewater contains large quantities of suspended particles that can be easily broken down physically. Introduction of macro-bio-filters, such as bivalve filter feeders, may offer the potential for treatment of fine suspended matter in industrial aquaculture wastewater. In this study, we employed two kinds of bivalve filter feeders, the Pacific oyster Crassostrea gigas and the blue mussel Mytilus galloprovincialis, to deposit suspended solids from marine fish aquaculture wastewater in flow-through systems. Results showed that the biodeposition rate of suspended particles by C. gigas (shell height: 8.67 ± 0.99 cm and M. galloprovincialis (shell height: 4.43 ± 0.98 cm was 77.84 ± 7.77 and 6.37 ± 0.67 mg ind(-1 • d(-1, respectively. The total solid suspension (TSS deposition rates of oyster and mussel treatments were 3.73 ± 0.27 and 2.76 ± 0.20 times higher than that of the control treatment without bivalves, respectively. The TSS deposition rates of bivalve treatments were significantly higher than the natural sedimentation rate of the control treatment (P < 0.001. Furthermore, organic matter and C, N in the sediments of bivalve treatments were significantly lower than those in the sediments of the control (P < 0.05. It was suggested that the filter feeders C. gigas and M. galloprovincialis had considerable potential to filter and accelerate the deposition of suspended particles from industrial aquaculture wastewater, and simultaneously yield value-added biological products.

  6. Biologically Induced Deposition of Fine Suspended Particles by Filter-Feeding Bivalves in Land-Based Industrial Marine Aquaculture Wastewater

    Science.gov (United States)

    Zhou, Yi; Zhang, Shaojun; Liu, Ying; Yang, Hongsheng

    2014-01-01

    Industrial aquaculture wastewater contains large quantities of suspended particles that can be easily broken down physically. Introduction of macro-bio-filters, such as bivalve filter feeders, may offer the potential for treatment of fine suspended matter in industrial aquaculture wastewater. In this study, we employed two kinds of bivalve filter feeders, the Pacific oyster Crassostrea gigas and the blue mussel Mytilus galloprovincialis, to deposit suspended solids from marine fish aquaculture wastewater in flow-through systems. Results showed that the biodeposition rate of suspended particles by C. gigas (shell height: 8.67±0.99 cm) and M. galloprovincialis (shell height: 4.43±0.98 cm) was 77.84±7.77 and 6.37±0.67 mg ind−1•d−1, respectively. The total solid suspension (TSS) deposition rates of oyster and mussel treatments were 3.73±0.27 and 2.76±0.20 times higher than that of the control treatment without bivalves, respectively. The TSS deposition rates of bivalve treatments were significantly higher than the natural sedimentation rate of the control treatment (Paquaculture wastewater, and simultaneously yield value-added biological products. PMID:25250730

  7. Biologically induced deposition of fine suspended particles by filter-feeding bivalves in land-based industrial marine aquaculture wastewater.

    Science.gov (United States)

    Zhou, Yi; Zhang, Shaojun; Liu, Ying; Yang, Hongsheng

    2014-01-01

    Industrial aquaculture wastewater contains large quantities of suspended particles that can be easily broken down physically. Introduction of macro-bio-filters, such as bivalve filter feeders, may offer the potential for treatment of fine suspended matter in industrial aquaculture wastewater. In this study, we employed two kinds of bivalve filter feeders, the Pacific oyster Crassostrea gigas and the blue mussel Mytilus galloprovincialis, to deposit suspended solids from marine fish aquaculture wastewater in flow-through systems. Results showed that the biodeposition rate of suspended particles by C. gigas (shell height: 8.67 ± 0.99 cm) and M. galloprovincialis (shell height: 4.43 ± 0.98 cm) was 77.84 ± 7.77 and 6.37 ± 0.67 mg ind(-1) • d(-1), respectively. The total solid suspension (TSS) deposition rates of oyster and mussel treatments were 3.73 ± 0.27 and 2.76 ± 0.20 times higher than that of the control treatment without bivalves, respectively. The TSS deposition rates of bivalve treatments were significantly higher than the natural sedimentation rate of the control treatment (P treatments were significantly lower than those in the sediments of the control (P aquaculture wastewater, and simultaneously yield value-added biological products.

  8. Computation of stress on the surface of a soft homogeneous arbitrarily shaped particle

    Science.gov (United States)

    Yang, Minglin; Ren, Kuan Fang; Wu, Yueqian; Sheng, Xinqing

    2014-04-01

    Prediction of the stress on the surface of an arbitrarily shaped particle of soft material is essential in the study of elastic properties of the particles with optical force. It is also necessary in the manipulation and sorting of small particles with optical tweezers, since a regular-shaped particle, such as a sphere, may be deformed under the nonuniform optical stress on its surface. The stress profile on a spherical or small spheroidal soft particle trapped by shaped beams has been studied, however little work on computing the surface stress of an irregular-shaped particle has been reported. We apply in this paper the surface integral equation with multilevel fast multipole algorithm to compute the surface stress on soft homogeneous arbitrarily shaped particles. The comparison of the computed stress profile with that predicted by the generalized Lorenz-Mie theory for a water droplet of diameter equal to 51 wavelengths in a focused Gaussian beam show that the precision of our method is very good. Then stress profiles on spheroids with different aspect ratios are computed. The particles are illuminated by a Gaussian beam of different waist radius at different incidences. Physical analysis on the mechanism of optical stress is given with help of our recently developed vectorial complex ray model. It is found that the maximum of the stress profile on the surface of prolate spheroids is not only determined by the reflected and refracted rays (orders p =0,1) but also the rays undergoing one or two internal reflections where they focus. Computational study of stress on surface of a biconcave cell-like particle, which is a typical application in life science, is also undertaken.

  9. Stability Of Superposed Fluids Through Magnetic Field With Suspended Particles Of Different Permeability Saturated Through Porous Layer

    Science.gov (United States)

    Singh, M.

    2015-12-01

    The instability of plane interface between two superposed Rivlin-Ericksen elastico-viscous fluids saturated through a porous medium has been studied to include the suspended (dust) particles effect. Following the linearized stability theory and normal mode analysis the dispersion relation is obtained. For stationary convection, the Rivlin-Ericksen elastico-viscous fluid behaves like Newtonian fluids. It found that for a potentially stable arrangement the Rivlin-Ericksen elastico-viscous fluid of different permeabilities in the presence of suspended particles in a porous medium is stable, whereas in a potentially unstable case instability of the system occurs. In the presence of a magnetic field for a potentially stable arrangement the system is always stable and for the potentially unstable arrangement, the magnetic field succeeds in stabilizing certain wave-number band which was unstable in the absence of the magnetic field.

  10. Automatic Extraction of Ferromagnetic Particle from Non-homogeneous Solid-Solid Mixture

    Directory of Open Access Journals (Sweden)

    Farhad Ismail

    2011-12-01

    Full Text Available Separation of magnetic particles in sand processing is very important for many industrial purposes. This paper presents an automation process to separate the magnetic particles from a non-homogeneous solid-solid mixture (sea sand. Here a magnetic force is created by changing the electric field and thus the particles are separated from the mixture of sand automatically. Here such a simple and cost effective design is prsented which can automatically take the the mixture as input and give the refined and separated product as output continuously. ABSTRAK : Pengasingan zarah-zarah bermagnet dalam pemprosesan pasir penting untuk pelbagai tujuan industri. Kertas ini membentangkan proses pengautomatikan untuk mengasingkan butir-butir bermagnet dari pepejal tak homogen - campuran pepejal (pasir pantai. Di sini, daya magnet dihasilkan dengan menukarkan medan elektrik dan seterusnya butir-butir ini terasing daripada campuran pasir dengan sendirinya. Kaedah yang mudah dan rekaan keberkesanan kos ini secara langsung mengambil campuran tersebut sebagai input dan memberikan hasil bertapis dan terpisah sebagai output dengan berterusan.

  11. Method of Comprehensive Assessment of Efficiency of Decrease of Fire and Explosion Risk of Coal Suspended Particles

    Directory of Open Access Journals (Sweden)

    Arkhipov Vladimir

    2016-01-01

    Full Text Available Methods and results of experimental study of explosive and wetting characteristics of coal dust are presented. Modified evaluation method of explosive characteristics of coal dust allows estimating critical concentrations of suspended dust at variation of temperature of ionizing ignition source corresponding to beginning of flame propagation by means of approximation method. Method of measuring the contact angle of particles of coal powder is based on visualization of the drop placed on the pressed coal.

  12. Probing of the Changing Shapes and Viscosity of Suspended Organic Particles as a Function of Relative Humidity

    Science.gov (United States)

    Zhang, Y.; Sanchez, M. S.; Douet, C.; Wang, Y.; Bateman, A. P.; Gong, Z.; Kuwata, M.; Wolff, L. R.; Liu, P.; Sato, B. B.; Bertram, A. K.; Geiger, F.; Martin, S. T.

    2014-12-01

    Aerosol particles of secondary organic material (SOM) were produced by α-pinene ozonolysis in a flow tube reactor. The aerosol flow was passed into a chamber with a long residence time where coagulation of primary particles occurred. An experimental apparatus, consisting of a differential mobility analyzer coupled to a particle mass analyzer (DMA-APM), was used to classify coagulated particles by particle electric mobility diameter (52.4 to 190.0 nm) and then to measure associated particle mass. From these data, the dynamic shape factor was determined for particles of known material density. Experiments were conducted for variable relativity humidity (RH). The results showed that the dynamic shape factor depended on post-coagulation particle number concentration, particle diameter, and relative humidity. For some particle number concentrations, coagulation occurred between particles of similar diameters under dry conditions (< 5% RH), thereby forming non-spherical particles. The dynamic shape factors were observed to change from 1.24 to 1.02 between 5 and 35% RH, and 1.27 to 1.03 between 20% to 60% RH, implying a transformation from non-spherical to round shapes. The shape change arose from decreased viscosity at elevated RH, allowing the material to flow and thereby form a spherical shape (i.e., as favored by minimization of surface area). Numerical modeling was used to estimate the particle viscosity associated with this flow. Based on the particle size and exposure time to elevated RH, the viscosity was determined from 109 Pa s down to 107 Pa s from 3% RH to 65% RH. The experiments establish a method for estimating the viscosity of suspended submicron aerosol particles based on changes in particle shape.

  13. The active surface of suspended particles as a predictor of lung function and pulmonary symptoms in Austrian school children

    Science.gov (United States)

    Moshammer, Hanns; Neuberger, Manfred

    At a central elementary school in the capital of Upper Austria children aged 7-10 years underwent repeated respiratory health checkups (questionnaires, diaries, spirometry). Between March and May 2001 the daily means of the signals of a diffusion charging sensor, measuring the "active surface" of suspended particles, and a photoelectric aerosol sensor, measuring the particle-bound polycyclic aromatic hydrocarbons, were related to spirometric results of the total 164 children examined and to the daily symptom scores of a susceptible subgroup. Significant reductions of forced vital capacity ( p=0.006) and forced expiratory volume in the first second ( p=0.001) and significant increases of wheezing ( p=0.001), shortness of breath ( p=0.041), cough in the evening ( p=0.031) and at night ( p=0.018) were found with increase of "active surface" of suspended particles measured at the adjacent outdoor monitoring station, but not with the increase of particle-bound polycyclic aromatic hydrocarbons. Monitoring "active surface" of particles with diameters of about 10 nm-1 μm by means of a diffusion charging sensor might provide additional information in surveillance of particulate matter for prevention of acute effects on respiratory health.

  14. On the formation of sulfuric acid-water particles via homogeneous nucleation in the lower troposphere

    Energy Technology Data Exchange (ETDEWEB)

    Kerminen, V.M.

    1995-12-31

    Production of new sulfur derived particles via homogeneous nucleation between sulfuric acid and water vapors, and other related aerosol processes taking place in a variety of tropospheric environments, were studied using theoretical and model approaches. For nucleation to occur in the lower troposphere, cool and humid conditions combined with relatively strong solar radiation were usually required. Regardless of the system concerned, production of nuclei was found to be favored also by high SO{sub 2}(g) to fine particulate matter ratios. Urban post-fog situations, which are encountered commonly during severe air pollution episodes, were shown to favor new particle production considerably above the corresponding `background` conditions. A simple procedure for evaluating post-fog nucleation probabilities from routinely obtained data was developed and applied to real aerosol systems. Nucleation in the remote marine environment, which is an essential phenomenon in linking natural sulfur emissions to global climate change, was studied from a dynamic point of view. It was demonstrated that new particle production occurs more often in association with relative humidity transitions typical for many boundary layer processes than under averaged or steady conditions of the kind assumed explicitly in most earlier model studies. Power plant plumes were shown to be a particularly significant source of atmospheric nuclei, due primarily to their frequently high SO{sub 2}-to-particulate matter ratios. Factors affecting the probability of nucleation during plume dispersion were examined in detail, and finally, strategies for the control of in-plume particle production were analyzed. (author)

  15. Properties of an ultrarelativistic charged particle radiation in a constant homogeneous crossed electromagnetic field

    Energy Technology Data Exchange (ETDEWEB)

    Bogdanov, O.V., E-mail: bov@tpu.ru [Physics Faculty, Tomsk State University, Tomsk, 634050 (Russian Federation); Department of Higher Mathematics and Mathematical Physics, Tomsk Polytechnic University, Tomsk, 634050 (Russian Federation); Kazinski, P.O., E-mail: kpo@phys.tsu.ru [Physics Faculty, Tomsk State University, Tomsk, 634050 (Russian Federation); Department of Higher Mathematics and Mathematical Physics, Tomsk Polytechnic University, Tomsk, 634050 (Russian Federation); Lazarenko, G.Yu., E-mail: lazarenko.georgijj@icloud.com [Physics Faculty, Tomsk State University, Tomsk, 634050 (Russian Federation)

    2017-05-15

    The properties of radiation created by a classical ultrarelativistic scalar charged particle in a constant homogeneous crossed electromagnetic field are described both analytically and numerically with radiation reaction taken into account in the form of the Landau–Lifshitz equation. The total radiation naturally falls into two parts: the radiation formed at the entrance point of a particle into the crossed field (the synchrotron entrance radiation), and the radiation coming from the late-time asymptotics of a particle motion (the de-excited radiation). The synchrotron entrance radiation resembles, although does not coincide with, the ultrarelativistic limit of the synchrotron radiation: its distribution over energies and angles possesses almost the same properties. The de-excited radiation is soft, not concentrated in the plane of motion of a charged particle, and almost completely circularly polarized. The photon energy delivering the maximum to its spectral angular distribution decreases with increasing the initial energy of a charged particle, while the maximum value of this distribution remains the same at the fixed photon observation angle and entrance angle of a charged particle. The ultraviolet and infrared asymptotics of the total radiation are also described. - Highlights: • Properties of an electron radiation in a crossed electromagnetic field are studied. • Spectral angular distribution of the synchrotron entrance radiation is described. • Spectral angular distribution of the de-excited radiation is described. • De-excited radiation is almost completely circularly polarized. • Photon energy at the maximum of the de-excited radiation decreases with increasing the initial energy of an electron.

  16. Quantitative Homogeneity and In-Contact Particles of High Temperature Reactors (htr) Compacts Determination via X-Ray Tomography

    Science.gov (United States)

    Lecomte, G.; Tisseur, D.; Létang, J. M.; Banchet, J.; Vitali, M. P.

    2008-02-01

    In AREVA Nuclear Power's High Temperature Reactor (HTR) design called ANTARES, fuel consists of compacts composed of few thousands millimetric quasi-spherical particles dispersed in a graphite matrix. Compact homogeneity, defined as the homogeneous particles spatial distribution in the matrix, as well as the possibility of obtaining particles in contact, need to be assessed since they condition the thermo-mechanical behavior of the nuclear fuel under irradiation. In this paper, image and data processing algorithms are developed to do so, based on X-Ray tomographic images.

  17. Individual particle analysis of coarse air suspended particulate material by synchrotron radiation X-ray micro fluorescence

    Energy Technology Data Exchange (ETDEWEB)

    Moreira, Silvana; Melo Junior, Ariston [Universidade Estadual de Campinas, SP (Brazil). Faculdade de Engenharia Civil, Arquitetura e Urbanismo. Dept. de Recursos Hidricos]. E-mail: silvana@fec.unicamp.br; Perez, Carlos Alberto [Laboratorio Nacional de Luz Sincrotron (LNLS), Campinas, SP (Brazil)]. E-mail: perez@lnls.br; Vives, Ana Elisa S. de [Universidade Metodista de Piracicaba (UNIMEP), Santa Barbara D' Oeste, SP (Brazil). Faculdade de Engenharia, Arquitetura e Urbanismo]. E-mail: aesvives@unimep.br; Nascimento Filho, Virgilio F. [Centro de Energia Nuclear na Agricultura (CENA), Piracicaba, SP (Brazil). Lab. de Instrumentacao Nuclear]. E-mail: virgilio@cena.usp.br

    2005-07-01

    The purpose of this work is evaluate the size of individual particles present in the air suspended particulate material collected in Campinas, Sao Paulo State, and analyze quantitatively the particles using the synchrotron radiation X-ray micro fluorescence ({mu}-SRXRF) associated with the fundamental parameter method to correct attenuation/absorption effects by the matrix. The particles analyzed have size between 50-10 {mu}m and to perform the spatial distribution a white beam of synchrotron radiation condensed by a conical capillary (13 {mu}m diameter) was used. For the quantitative analysis punctual measures in thin films standards in Mylar subtract were performed. The elements detected were Si, S, Cl, K, Ca, Ti, V, Cr, Mn, Fe, Ni, Cu, Zn, Ba and Pb. (author)

  18. Influences of suspended particles on the runoff of pesticides from an agricultural field at Askim, SE-Norway.

    Science.gov (United States)

    Wu, Q; Riise, G; Lundekvam, H; Mulder, J; Haugen, L E

    2004-01-01

    Field and laboratory experiments were conducted to study the loss of particles from agricultural fields, and the role of suspended particles in carrying pesticides in surface runoff and drainage water. Propiconazole, a widely used fungicide was applied to experimental fields located at Askim, SE-Norway. Samples from surface runoff and drainage water were collected and analyzed for sediment mass, pesticides, particulate and dissolved organic carbon through a whole year. The surface soil and the runoff material were characterized by its particle size distribution, organic carbon content in size fractions and its ability to bind propiconazole. The results show that (1) particle runoff mostly occurred during the rainfall event shortly after harrowing in autumn. The highest particle concentration observed in the surface runoff water was 4600 mg l(-1), and in the drainage water 1130 mg l(-1); (2) the erosion of surface soil is size selective. The runoff sediment contained finer particle/aggregates rich in organic matter compared to its original surface soil; (3) the distribution coefficient (Kd) of propiconazole was significantly higher in the runoff sediment than in the parent soil. According to our calculation, particle-bound propiconazole can represent up to 23% of the total amount of propiconazole in a water sample with a sediment concentration of 7600 mg l(-1), which will significantly influence the transport behavior of the pesticide.

  19. Particle size distribution of river-suspended sediments determined by in situ measured remote-sensing reflectance.

    Science.gov (United States)

    Zhang, Yuanzhi; Huang, Zhaojun; Chen, Chuqun; He, Yijun; Jiang, Tingchen

    2015-07-10

    Suspended sediments in water bodies are classified into organic and inorganic matter and have been investigated by remote-sensing technology for years. Focusing on inorganic matter, however, detailed information such as the grain size of this matter has not been provided yet. In this study, we present a new solution for estimating inorganic suspended sediments' size distribution in highly complex Case 2 waters by using a simple spectrometer sensor rather than a backscattering sensor. An experiment was carried out in the Pearl River Estuary (PRE) in the dry season to collect the remote-sensing reflectance (Rrs) and particle size distribution (PSD) of inorganic suspended sediments. Based on Mie theory, PSDs in the PRE waters were retrieved by Rrs, colored dissolved organic matter, and phytoplankton. The retrieved median diameters in 12 stations show good agreement with those of laboratory analysis at root mean square error of 2.604 μm (27.63%), bias of 1.924 μm (20.42%), and mean absolute error of 2.298 μm (24.37%). The retrieved PSDs and previous PSDs were compared, and the features of PSDs in the PRE waters were concluded.

  20. Suspended organic particles drive the development of attached algal communities in degraded peatlands

    NARCIS (Netherlands)

    Goldenberg Vilar, A.; Vonk, J.A.; Bichebois, S.; van Dam, H.; Admiraal, W.; van der Geest, H.G.

    2015-01-01

    Mineral particles in rivers have been shown to cover adnate algal species, promoting motile and filamentous species. Such effects and the role of detrital particles have not been studied in stagnant waters. In degraded peat lands, detrital particles are very prominent and therefore we studied the

  1. Suspended organic particles drive the development of attached algal communities in degraded peatlands

    NARCIS (Netherlands)

    Goldenberg Vilar, Alejandra; Vonk, J. Arie; van der geest, Harm; van Dam, Herman; Bichebois, Simon; Admiraal, Wim

    2014-01-01

    Mineral particles in rivers have been shown to cover adnate algal species, promoting motile and filamentous species. Such effects and the role of detrital particles have not been studied in stagnant waters. In degraded peat lands, detrital particles are very prominent and therefore we studied the

  2. Evaluating unsupervised methods to size and classify suspended particles using digital in-line holography

    Science.gov (United States)

    Davies, Emlyn J.; Buscombe, Daniel D.; Graham, George W.; Nimmo-Smith, W. Alex M.

    2015-01-01

    Substantial information can be gained from digital in-line holography of marine particles, eliminating depth-of-field and focusing errors associated with standard lens-based imaging methods. However, for the technique to reach its full potential in oceanographic research, fully unsupervised (automated) methods are required for focusing, segmentation, sizing and classification of particles. These computational challenges are the subject of this paper, in which we draw upon data collected using a variety of holographic systems developed at Plymouth University, UK, from a significant range of particle types, sizes and shapes. A new method for noise reduction in reconstructed planes is found to be successful in aiding particle segmentation and sizing. The performance of an automated routine for deriving particle characteristics (and subsequent size distributions) is evaluated against equivalent size metrics obtained by a trained operative measuring grain axes on screen. The unsupervised method is found to be reliable, despite some errors resulting from over-segmentation of particles. A simple unsupervised particle classification system is developed, and is capable of successfully differentiating sand grains, bubbles and diatoms from within the surf-zone. Avoiding miscounting bubbles and biological particles as sand grains enables more accurate estimates of sand concentrations, and is especially important in deployments of particle monitoring instrumentation in aerated water. Perhaps the greatest potential for further development in the computational aspects of particle holography is in the area of unsupervised particle classification. The simple method proposed here provides a foundation upon which further development could lead to reliable identification of more complex particle populations, such as those containing phytoplankton, zooplankton, flocculated cohesive sediments and oil droplets.

  3. Validating a universal model of particle transport lengths with laboratory measurements of suspended grain motions

    Science.gov (United States)

    Naqshband, Suleyman; McElroy, Brandon; Mahon, Robert C.

    2017-05-01

    The mechanics of sediment transport are of fundamental importance for fluvio-deltaic morphodynamics. The present study focuses on quantifying particle motions and trajectories across a wide range of flow conditions. In particular, a continuous model is presented that predicts particle travel distances for saltation and suspension based on Rouse number and relative grain roughness. By utilizing a series of eight video cameras in a plexiglass flume direct measurements of the distributions of particle travel distances (excursion lengths) were obtained. To this end, experiments were carried out in dark under black lights with fluorescent painted plastic and quartz sand particles. For relatively high Rouse numbers indicating bed load dominant transport regime (P≥2.5), particle motion is governed by the effect of gravitational forces (settling velocities) and measured excursion lengths closely follow a Gaussian distribution. For P=2.5, particle motion is equally subjected to both gravitational and turbulent forces. Consequently, measured excursion lengths exhibit a bimodal distribution with two distinct peaks. As turbulent fluctuations increase and dominate particle motion over gravity (P(P=1.8-8.9). Furthermore, measured excursion lengths are observed to fit within the predicted range of excursion lengths with no significant difference between measured excursion lengths of plastic and quartz sand particles.

  4. DNS with Discrete Element Modeling of Suspended Sediment Particles in an Open Channel Flow

    Science.gov (United States)

    Paksereht, Pedram; Apte, Sourabh; Finn, Justin

    2015-11-01

    Interactions of glass particles in water in a turbulent open channel flow over a smooth bed with gravity perpendicular to the mean flow is examined using direct numerical simulation (DNS) together with Lagrangian Discrete-Element-Model (DEM) for particles. The turbulent Reynolds number (Reτ) is 710 corresponding to the experimental observations of Righetti & Romano (JFM, 2004). Particles of size 200 microns with volume loading on the order of 10-3 are simulated using four-way coupling with standard models for drag, added mass, lift, pressure, and inter-particle collision forces. The presence of particles affect the outer as well as inner region of the wall layer where particle inertia and concentration are higher. The DNS-DEM is able to capture the fluid-particle interactions in the outer layer accurately. However, in the inner layer, an increase in mean as well as rms fluid velocity, as observed in the experiments, is not predicted by the DNS-DEM model. It is conjectured that particles slide and roll on the bottom wall, creating slip-like condition. Predictions using different models for drag and lift forces, as well as strong torque coupling are explored and compared with experimental data. Funding: NSF project #1133363, Sediment-Bed-Turbulence Coupling in Oscillatory Flows.

  5. Coalescence of freely moving bubbles in water by the action of suspended hydrophobic particles

    NARCIS (Netherlands)

    van der Zon, M.; Hamersma, P.J.; Poels, E.K.; Bliek, A.

    2002-01-01

    The presence of (catalyst) particles in slurry columns may induce significant changes in the overall column hydrodynamics. This is commonly attributed to changes in the apparent viscosity and density of the slurry phase as a result of the presence of particles. However, in case of solids

  6. Validating a universal model of particle transport lengths with laboratory measurements of suspended grain motions

    NARCIS (Netherlands)

    Naqshband, Suleyman; McElroy, Brandon; Mahon, Robert C.

    2017-01-01

    The mechanics of sediment transport are of fundamental importance for fluvio-deltaic morphodynamics. The present study focuses on quantifying particle motions and trajectories across a wide range of flow conditions. In particular, a continuous model is presented that predicts particle travel

  7. Combined technology for observing, understanding and predicting suspended particle transport and fate from anthropogenic discharges in coastal waters

    Science.gov (United States)

    Davies, E. J.

    2016-02-01

    The combined observation, understanding and prediction of suspended particle transport and fate in coastal waters is essential for assessing environmental stresses that originate from anthropogenic sources. We present a toolbox consisting of an optics-based instrument suite, post-processing and analysis tools, and numerical models for understanding particle transport and fate, and its effect on the marine environment. We show results from a combined measurement and modelling campaign, focussed on understanding the transport of flocculating particulate material discharged into a Norwegian fjord, and demonstrate the application of this approach to real-time monitoring of drilling discharges in the vicinity of coral reefs. Unique measurements and images of suspended particulates, obtained from multiple water column profiles within a fjord, are presented. Initial model predictions of particle transport were used to highlight target areas for the field campaign, where model uncertainty was highest. Regular discharges of flocculating material were released into the fjord, requiring particle observations to span several orders of magnitude in size and concentration. This was achieved by combining data from a LISST-100, LISST-HOLO, and a bespoke Silhouette particle imaging system. Together, these instruments produced size distributions ranging from 2.5-10000microns. In-situ imaging proved essential in providing a realistic picture of the nature of the flocculated material, with many long, string-like flocs of several cm in length being advected hundreds of metres from their discharge location. Observations surrounding the discharge within this fjord system are used to help validate an improved particle transport model aimed at accurately accounting for flocculation, subsequent sedimentation and modifications to seabed bathymetry. The numerical formulation enhanced by this combined measurement and modelling approach is applicable for a wide variety of scenarios where human

  8. Heavy metal content of total suspended air particles in the heavily industrialized town of Gebze, Turkey.

    Science.gov (United States)

    Ergenekon, Pinar; Ulutaş, Kadir

    2014-01-01

    Air pollution is a serious environmental problem in industrialized towns, where a significant portion of the residents live in close proximity to factories and major highways with high traffic load. In this study, the ambient air quality in Gebze, an industrial region with an area of 438 km(2) and a population of 300,000, was characterized in terms for total suspended particulate matter and its composition of trace elements, i.e. Cd, Cr, Cu, Fe, Mn, Ni and Pb. Samples were collected using high volume samplers from March to June 2009 at two sites during the day and the night. A significantly higher Cu concentrations during night suggested that Cu emissions were the result of a local source. The known air toxics, Cd and Ni, had average concentrations (34 and 43 ng/m(3), respectively) higher than proposed by the European Union's ambient air quality standards. These results highlight the potential health risks for the local population.

  9. Particle size distributions and the vertical distribution of suspended matter in the upwelling region off Oregon

    Science.gov (United States)

    Kitchen, J. C.

    1977-01-01

    Various methods of presenting and mathematically describing particle size distribution are explained and evaluated. The hyperbolic distribution is found to be the most practical but the more complex characteristic vector analysis is the most sensitive to changes in the shape of the particle size distributions. A method for determining onshore-offshore flow patterns from the distribution of particulates was presented. A numerical model of the vertical structure of two size classes of particles was developed. The results show a close similarity to the observed distributions but overestimate the particle concentration by forty percent. This was attributed to ignoring grazing by zooplankton. Sensivity analyses showed the size preference was most responsive to the maximum specific growth rates and nutrient half saturation constants. The verical structure was highly dependent on the eddy diffusivity followed closely by the growth terms.

  10. Exactly solvable model for drift of suspended ferromagnetic particles induced by the Magnus force

    Science.gov (United States)

    Denisov, S. I.; Pedchenko, B. O.; Kvasnina, O. V.; Denisova, E. S.

    2017-12-01

    The phenomenon of drift motion of single-domain ferromagnetic particles induced by the Magnus force in a viscous fluid is studied analytically. We use a minimal set of equations to describe the translational and rotational motions of these particles subjected to a harmonic force and a non-uniformly rotating magnetic field. Assuming that the azimuthal angle of the magnetic field is a periodic triangular function, we analytically solve the rotational equation of motion in the steady state and calculate the drift velocity of particles. We study in detail the dependence of this velocity on the model parameters, discuss the applicability of the drift phenomenon for separation of particles in suspensions, and verify numerically the analytical predictions.

  11. Gravity driven deterministic lateral displacement for suspended particles in a 3D obstacle array

    OpenAIRE

    Du, Siqi; Drazer, German

    2016-01-01

    We present a simple modification to enhance the separation ability of deterministic lateral displacement (DLD) systems by expanding the two-dimensional nature of these devices and driving the particles into size-dependent, fully three-dimensional trajectories. Specifically, we drive the particles through an array of long cylindrical posts, such that they not only move parallel to the basal plane of the posts as in traditional two-dimensional DLD systems (in-plane motion), but also along the a...

  12. Gravity driven deterministic lateral displacement for suspended particles in a 3D obstacle array.

    Science.gov (United States)

    Du, Siqi; Drazer, German

    2016-08-16

    We present a simple modification to enhance the separation ability of deterministic lateral displacement (DLD) systems by expanding the two-dimensional nature of these devices and driving the particles into size-dependent, fully three-dimensional trajectories. Specifically, we drive the particles through an array of long cylindrical posts, such that they not only move parallel to the basal plane of the posts as in traditional two-dimensional DLD systems (in-plane motion), but also along the axial direction of the solid posts (out-of-plane motion). We show that the (projected) in-plane motion of the particles is completely analogous to that observed in 2D-DLD systems. In fact, a theoretical model originally developed for force-driven, two-dimensional DLD systems accurately describes the experimental results. More importantly, we analyze the particles out-of-plane motion and observe, for certain orientations of the driving force, significant differences in the out-of-plane displacement depending on particle size. Therefore, taking advantage of both the in-plane and out-of-plane motion of the particles, it is possible to achieve the simultaneous fractionation of a polydisperse suspension into multiple streams.

  13. Measurements of Plutonium and Americium in Soil Samples from Project 57 using the Suspended Soil Particle Sizing System (SSPSS)

    Energy Technology Data Exchange (ETDEWEB)

    John L. Bowen; Rowena Gonzalez; David S. Shafer

    2001-05-01

    As part of the preliminary site characterization conducted for Project 57, soils samples were collected for separation into several size-fractions using the Suspended Soil Particle Sizing System (SSPSS). Soil samples were collected specifically for separation by the SSPSS at three general locations in the deposited Project 57 plume, the projected radioactivity of which ranged from 100 to 600 pCi/g. The primary purpose in focusing on samples with this level of activity is that it would represent anticipated residual soil contamination levels at the site after corrective actions are completed. Consequently, the results of the SSPSS analysis can contribute to dose calculation and corrective action-level determinations for future land-use scenarios at the site.

  14. Suspended-sediment concentrations, yields, total suspended solids, turbidity, and particle-size fractions for selected rivers in Minnesota, 2007 through 2011

    Science.gov (United States)

    Ellison, Christopher A.; Savage, Brett E.; Johnson, Gregory D.

    2015-01-01

    Excessive sediment transport in rivers causes problems for flood control, soil conservation, irrigation, aquatic health, and navigation, as well as transporting harmful contaminants like organic chemicals and eutrophication-causing nutrients. In Minnesota, more than 5,800 miles of streams are identified as impaired by the Minnesota Pollution Control Agency (MPCA) due to elevated levels of suspended sediment. The U.S. Geological Survey, in cooperation with the MPCA, established a sediment monitoring network in 2007 and began systematic sampling of suspended-sediment concentration (SSC), total suspended solids (TSS), and turbidity in rivers across Minnesota to improve the understanding of fluvial sediment transport relations. Suspended-sediment samples were collected from 14 sites from 2007 through 2011. Analyses of these data indicated that the Zumbro River at Kellogg in southeast Minnesota had the highest mean SSC of 226 milligrams per liter (mg/L) followed by the Minnesota River at Mankato with a mean SSC of 193 mg/L. The single highest SSC of 1,250 mg/L was measured at the Zumbro River during the 2011 spring runoff. The lowest mean SSC of 21 mg/L was measured at Rice Creek in the northern Minneapolis-St. Paul metropolitan area. Total suspended solids (TSS) have been used as a measure of fluvial sediment by the MPCA since the early 1970s; however, TSS concentrations have been known to underrepresent the amount of suspended sediment. For this study, comparisons between concurrently sampled SSC and TSS indicated significant differences at every site, with SSC on average two times larger than TSS concentrations. Regression analysis indicated that 7 out of 14 sites had poor or no relation between SSC and streamflow. Only two sites, the Knife River and the Wild Rice River at Twin Valley, had strong correlations between SSC and streamflow, with coefficient of determination (R2) values of 0.82 and 0.80, respectively. In contrast, turbidity had moderate to strong

  15. Suspended-sediment concentrations, loads, total suspended solids, turbidity, and particle-size fractions for selected rivers in Minnesota, 2007 through 2011

    Science.gov (United States)

    Ellison, Christopher A.; Savage, Brett E.; Johnson, Gregory D.

    2014-01-01

    Sediment-laden rivers and streams pose substantial environmental and economic challenges. Excessive sediment transport in rivers causes problems for flood control, soil conservation, irrigation, aquatic health, and navigation, and transports harmful contaminants like organic chemicals and eutrophication-causing nutrients. In Minnesota, more than 5,800 miles of streams are identified as impaired by the Minnesota Pollution Control Agency (MPCA) due to elevated levels of suspended sediment. The U.S. Geological Survey, in cooperation with the MPCA, established a sediment monitoring network in 2007 and began systematic sampling of suspended-sediment concentrations (SSC), total suspended solids (TSS), and turbidity in rivers across Minnesota to improve the understanding of fluvial sediment transport relations. Suspended-sediment samples collected from 14 sites from 2007 through 2011 indicated that the Zumbro River at Kellogg in the driftless region of southeast Minnesota had the highest mean SSC of 226 milligrams per liter (mg/L) followed by the Minnesota River at Mankato with a mean SSC of 193 mg/L. During the 2011 spring runoff, the single highest SSC of 1,250 mg/L was measured at the Zumbro River. The lowest mean SSC of 21 mg/L was measured at Rice Creek in the northern Minneapolis- St. Paul metropolitan area. Total suspended solids (TSS) have been used as a measure of fluvial sediment by the MPCA since the early 1970s; however, TSS concentrations have been determined to underrepresent the amount of suspended sediment. Because of this, the MPCA was interested in quantifying the differences between SSC and TSS in different parts of the State. Comparisons between concurrently sampled SSC and TSS indicated significant differences at every site, with SSC on average two times larger than TSS concentrations. The largest percent difference between SSC and TSS was measured at the South Branch Buffalo River at Sabin, and the smallest difference was observed at the Des Moines

  16. A new approach in the prediction of the dissolution behavior of suspended particles by means of their particle size distribution.

    NARCIS (Netherlands)

    Tinke, A.P.; Houtte, K.J.A. van; Maesschalck, R. de; Verheyen, S.; Winter, H. de

    2005-01-01

    Though various attempts have been made in literature to model the particle size distribution of an active pharmaceutical ingredient (API) in function of the required release profile of the pharmaceutical product, so far one has not succeeded to develop a universal approach in the correlation of

  17. Effects of cold water injection on injectivity impairment due to suspended particles

    Energy Technology Data Exchange (ETDEWEB)

    Bedrikovetsky, Pavel; Fonseca, Diogo R. [Universidade Estadual do Norte Fluminense (UENF), Campos dos Goytacases, RJ (Brazil); Paiva, Ronaldo O. [PETROBRAS, Rio de Janeiro, RJ (Brazil)

    2004-07-01

    This paper presents an analytical model to interpret pressure injection data following cold-water injection into a hot-oil reservoir. The injected water contains solid and liquid particles causing permeability decline. The relative permeability characteristics of the porous medium are accounted for, as is the temperature dependence of the fluid mobilities. It is shown that the temperature difference between injected and formation waters and the water-oil mobility variation have significant effects on the pressure data during the impairment of rock by particles from the injected suspension. The matching of field data to type curves generated from analytical solutions provides estimates of the formation damage parameters - filtration and formation damage coefficients, critical porosity ratio and cake permeability. The effect of injected water temperature on well injectivity decline is particularly sounded for cold water injection into heavy oil reservoirs. (author)

  18. Fabrication of ITO particles using a combination of a homogeneous precipitation method and a seeding technique and their electrical conductivity

    Directory of Open Access Journals (Sweden)

    Yoshio Kobayashi

    2015-09-01

    Full Text Available The present work proposes a method to fabricate indium tin oxide (ITO particles using precursor particles synthesized with a combination of a homogeneous precipitation method and a seeding technique, and it also describes their electronic conductivity properties. Seed nanoparticles were produced using a co-precipitation method with aqueous solutions of indium (III chloride, tin (IV chloride aqueous solution and sodium hydroxide. Three types of ITO nanoparticles were fabricated. The first type was fabricated using the co-precipitation method (c-ITO. The second and third types were fabricated using a homogeneous precipitation method with the seed nanoparticles (s-ITO and without seeds (n-ITO. The as-prepared precursor particles were annealed in air at 500 °C, and their crystal structures were cubic ITO. The c-ITO nanoparticles formed irregular-shaped agglomerates of nanoparticles. The n-ITO nanoparticles had a rectangular-parallelepiped or quasi-cubic structure. Most s-ITO nanoparticles had a quasi-cubic structure, and their size was larger than the n-ITO particles. The volume resistivities of the c-ITO, n-ITO and s-ITO powders decreased in that order because the regular-shaped particles were made to strongly contact with each other.

  19. Impact of suspended inorganic particles on phosphorus cycling in the Yellow River (China).

    Science.gov (United States)

    Pan, Gang; Krom, Michael D; Zhang, Meiyi; Zhang, Xianwei; Wang, Lijing; Dai, Lichun; Sheng, Yanqing; Mortimer, Robert J G

    2013-09-03

    Phosphorus (P) in water and sediment in the Yellow River was measured for 21 stations from the source to the Bohai Sea in 2006-2007. The average total particulate matter (TPM) increased from 40 mg/L (upper reaches) to 520 mg/L (middle reaches) and 950 mg/L in the lower reaches of the river. The average dissolved PO4 concentration (0.43 μmol/L) was significantly higher than that in 1980's but lower than the world average level despite high nutrient input to the system. Much of the P input was removed by adsorption, which was due to the high TPM rather than the surface activity of the particles since they had low labile Fe and low affinity for P. The sediment was a sink for P in the middle to lower reaches but not in the upper to middle reaches. TPM has been reduced by more than an order of magnitude due to artificial dams operating over recent decades. Modeling revealed that TPM of 0.2-1 g/L was a critical threshold for the Yellow River, below which most of the phosphate input cannot be removed by the particles and may cause eutrophication. These findings are important for river management and land-ocean modeling of global biogeochemical P cycling.

  20. [Distributions and pollution status of heavy metals in the suspended particles of the estuaries and coastal area of eastern Hainan].

    Science.gov (United States)

    Xin, Cheng-Lin; Ren, Jing-Ling; Zhang, Gui-Ling; Shao, Ya-Ping; Zhang, Guo-Ling; Liu, Su-Mei

    2013-04-01

    The distributions and pollution status of heavy metals in the suspended particles were investigated in the Wanquan and Wenchang/Wenjiao estuaries and the coastal area of eastern Hainan in July 2008. The concentrations of metal elements (Al, Fe, Mn, Cr, Cu, Ni, V, Zn) were determined by ICP-AES after microwave digestion. Multivariate statistical methods (e. g. correlation analysis and principal factor analysis) were used to discuss the major factors controlling the variability of heavy metal concentrations and the pollution status in those areas. There was an obvious variability in particulate metal concentrations from upstream to estuary of both rivers. The concentrations first increased with increasing salinity and then decreased with further increase of the salinity; the concentrations were slightly higher at the coastal area in the east. The variability of particulate metal concentrations reduced significantly after the normalization by Al, indicating the effects of grain size. Enrichment factor calculation results showed that there was heavy metal pollution (especially Cu, Ni) in the Wenchang/Wenjiao River and estuary, while the situation in Wanquan River remained at pristine level. Concentrations of particulate metals in the study area were mainly controlled by source geology and provenance, as well as contamination from the discharge of waste water and biological activity.

  1. Identifying primary stressors impacting macroinvertebrates in the Salinas River (California, USA): Relative effects of pesticides and suspended particles

    Energy Technology Data Exchange (ETDEWEB)

    Anderson, B.S. [Department of Environmental Toxicology, University of California, Davis, CA 95616 (United States)]. E-mail: anderson@ucdavis.edu; Phillips, B.M. [Department of Environmental Toxicology, University of California, Davis, CA 95616 (United States); Hunt, J.W. [Department of Environmental Toxicology, University of California, Davis, CA 95616 (United States); Connor, V. [Division of Water Quality, State Water Resources Control Board, 1001 I. Street, Sacramento, CA 95814 (United States); Richard, N. [Division of Water Quality, State Water Resources Control Board, 1001 I. Street, Sacramento, CA 95814 (United States); Tjeerdema, R.S. [Department of Environmental Toxicology, University of California, Davis, CA 95616 (United States)

    2006-06-15

    Laboratory dose-response experiments with organophosphate and pyrethroid pesticides, and dose-response experiments with increasing particle loads were used to determine which of these stressors were likely responsible for the toxicity and macroinvertebrate impacts previously observed in the Salinas River. Experiments were conducted with the amphipod Hyalella azteca, the baetid mayfly Procloeon sp., and the midge Chironomus dilutus (Shobanov, formerly Chironomus tentans). The results indicate the primary stressor impacting H. azteca was pesticides, including chlorpyrifos and permethrin. The mayfly Procloeon sp. was sensitive to chlorpyrifos and permethrin within the range of concentrations of these pesticides measured in the river. Chironomus dilutus were sensitive to chlorpyrifos within the ranges of concentrations measured in the river. None of the species tested were affected by turbidity as high as 1000 NTUs. The current study shows that pesticides are more important acute stressors of macroinvertebrates than suspended sediments in the Salinas River. - Pesticides are the primary stressor impacting macroinvertebrates in sections of the lower Salinas River.

  2. String pair production in non homogeneous backgrounds

    Energy Technology Data Exchange (ETDEWEB)

    Bolognesi, S. [Department of Physics “E. Fermi” University of Pisa, and INFN - Sezione di Pisa,Largo Pontecorvo, 3, Ed. C, 56127 Pisa (Italy); Rabinovici, E. [Racah Institute of Physics, The Hebrew University of Jerusalem,91904 Jerusalem (Israel); Tallarita, G. [Departamento de Ciencias, Facultad de Artes Liberales,Universidad Adolfo Ibáñez, Santiago 7941169 (Chile)

    2016-04-28

    We consider string pair production in non homogeneous electric backgrounds. We study several particular configurations which can be addressed with the Euclidean world-sheet instanton technique, the analogue of the world-line instanton for particles. In the first case the string is suspended between two D-branes in flat space-time, in the second case the string lives in AdS and terminates on one D-brane (this realizes the holographic Schwinger effect). In some regions of parameter space the result is well approximated by the known analytical formulas, either the particle pair production in non-homogeneous background or the string pair production in homogeneous background. In other cases we see effects which are intrinsically stringy and related to the non-homogeneity of the background. The pair production is enhanced already for particles in time dependent electric field backgrounds. The string nature enhances this even further. For spacial varying electrical background fields the string pair production is less suppressed than the rate of particle pair production. We discuss in some detail how the critical field is affected by the non-homogeneity, for both time and space dependent electric field backgrouds. We also comment on what could be an interesting new prediction for the small field limit. The third case we consider is pair production in holographic confining backgrounds with homogeneous and non-homogeneous fields.

  3. Amendment of saturation magnetization, blocking temperature and particle size homogeneity in Mn-ferrite nanoparticles using Co-Zn substitution

    Energy Technology Data Exchange (ETDEWEB)

    Eltabey, M.M. [Basic Engineering Science Department, Faculty of Engineering, Menoufiya University (Egypt); Physics Department, Faculty of Science, Jazan University, Jazan (Saudi Arabia); Massoud, A.M., E-mail: Amassouda1@yahoo.com [Physics Department, Faculty of Science, Ain Shams University, Abbassia 11566, Cairo (Egypt); Radu, Cosmin [Lake Shore Cryotronics, Inc., Westerville, OH (United States)

    2017-01-15

    Nanocrystalline particles of compositions (CoZn){sub x}Mn{sub 1−x}Fe{sub 2}O{sub 4} were prepared by the coprecipitation method from stoichiometric aqueous solutions, where x varies from 0 to 0.3 in steps of 0.05. The synthesized powders were characterized by X-ray diffraction (XRD), transmission electron microscope (TEM) and Fourier transform infrared spectroscopy (FT-IR). A vibrating sample magnetometer (VSM) was used to measure the hysteresis parameters at 300 and 6 K. Zero field cooling (ZFC) and field cooling (FC) curves were obtained at the temperature range 6–400 K and the blocking temperature values were determined. XRD analysis confirmed the formation of the obtained powder in a single cubic spinel phase and it showed also that the lattice parameter is decreasing with the increase of (Co-Zn) content. FT-IR measurements between 160 and 650 cm{sup −1} also confirmed the intrinsic cation vibrations of the spinel structure. The magnetic measurements showed that the saturation magnetization, coercivity and the values of blocking temperatures were increased with the (Co-Zn) content. TEM micrographs declared the improvement of particle size homogeneity with the increase of (Co-Zn) content without remarkable change in the average particle size. The obtained results were discussed in view of A-B sublattices interaction and superparamagnetic phenomenon. - Highlights: • Nanocrystalline particles of compositions (CoZn){sub x}Mn{sub 1-x}Fe{sub 2}O{sub 4} were prepared by the coprecipitation method. • XRD analysis showed that the lattice parameter is decreased with the increase of (Co,Zn) content. • The saturation magnetization is improved with the (Co,Zn) content. • Particle size homogeneity is enhanced with (Co,Zn) content. • The values of blocking temperatures are enhanced with increasing (Co,Zn) content.

  4. Scale dependence of multiplier distributions for particle concentration, enstrophy, and dissipation in the inertial range of homogeneous turbulence

    Science.gov (United States)

    Hartlep, Thomas; Cuzzi, Jeffrey N.; Weston, Brian

    2017-03-01

    Turbulent flows preferentially concentrate inertial particles depending on their stopping time or Stokes number, which can lead to significant spatial variations in the particle concentration. Cascade models are one way to describe this process in statistical terms. Here, we use a direct numerical simulation (DNS) dataset of homogeneous, isotropic turbulence to determine probability distribution functions (PDFs) for cascade multipliers, which determine the ratio by which a property is partitioned into subvolumes as an eddy is envisioned to decay into smaller eddies. We present a technique for correcting effects of small particle numbers in the statistics. We determine multiplier PDFs for particle number, flow dissipation, and enstrophy, all of which are shown to be scale dependent. However, the particle multiplier PDFs collapse when scaled with an appropriately defined local Stokes number. As anticipated from earlier works, dissipation and enstrophy multiplier PDFs reach an asymptote for sufficiently small spatial scales. From the DNS measurements, we derive a cascade model that is used it to make predictions for the radial distribution function (RDF) for arbitrarily high Reynolds numbers, Re, finding good agreement with the asymptotic, infinite Re inertial range theory of Zaichik and Alipchenkov [New J. Phys. 11, 103018 (2009), 10.1088/1367-2630/11/10/103018]. We discuss implications of these results for the statistical modeling of the turbulent clustering process in the inertial range for high Reynolds numbers inaccessible to numerical simulations.

  5. Explicit time-reversible orbit integration in Particle In Cell codes with static homogeneous magnetic field

    Science.gov (United States)

    Patacchini, L.; Hutchinson, I. H.

    2009-04-01

    A new explicit time-reversible orbit integrator for the equations of motion in a static homogeneous magnetic field - called Cyclotronic integrator - is presented. Like Spreiter and Walter's Taylor expansion algorithm, for sufficiently weak electric field gradients this second order method does not require a fine resolution of the Larmor motion; it has however the essential advantage of being symplectic, hence time-reversible. The Cyclotronic integrator is only subject to a linear stability constraint ( ΩΔ t Democritus can reduce the cost of orbit integration by up to a factor of ten.

  6. First passage times in homogeneous nucleation: Dependence on the total number of particles

    Energy Technology Data Exchange (ETDEWEB)

    Yvinec, Romain [PRC INRA UMR85, CNRS UMR7247, Université François Rabelais de Tours, IFCE, F-37380 Nouzilly (France); Bernard, Samuel; Pujo-Menjouet, Laurent [Université de Lyon, CNRS, Université Lyon 1, Institut Camille Jordan UMR5208, 69622 Villeurbanne (France); INRIA Team Dracula, Inria Center Grenoble Rhône-Alpes, Grenoble (France); Hingant, Erwan [Departamento de Matemática, Universidad Federal de Campina Grande, Campina Grande, PB (Brazil)

    2016-01-21

    Motivated by nucleation and molecular aggregation in physical, chemical, and biological settings, we present an extension to a thorough analysis of the stochastic self-assembly of a fixed number of identical particles in a finite volume. We study the statistics of times required for maximal clusters to be completed, starting from a pure-monomeric particle configuration. For finite volumes, we extend previous analytical approaches to the case of arbitrary size-dependent aggregation and fragmentation kinetic rates. For larger volumes, we develop a scaling framework to study the first assembly time behavior as a function of the total quantity of particles. We find that the mean time to first completion of a maximum-sized cluster may have a surprisingly weak dependence on the total number of particles. We highlight how higher statistics (variance, distribution) of the first passage time may nevertheless help to infer key parameters, such as the size of the maximum cluster. Finally, we present a framework to quantify formation of macroscopic sized clusters, which are (asymptotically) very unlikely and occur as a large deviation phenomenon from the mean-field limit. We argue that this framework is suitable to describe phase transition phenomena, as inherent infrequent stochastic processes, in contrast to classical nucleation theory.

  7. Controlled Synthesis and Ferrimagnetism of Homogeneous Hierarchical CoFe2O4 Particles

    Science.gov (United States)

    Long, Nguyen Viet; Yang, Yong; Thi, Cao Minh; Phuc, Le Hong; Lu, Le Trong; Nogami, Masayuki

    2017-10-01

    Uniform, large, spherical, hierarchical CoFe2O4 spinel particles have been successfully prepared by a modified polyol method using NaBH4 and NaOH, revealing controlled size, shape, and morphology with high crystallinity in a certain microscale range. Their inverse AB2O4-type crystal structure was intensively studied by x-ray diffraction (XRD) analysis and scanning electron microscopy (SEM). Using stock solutions of CoCl2 and FeCl3 precursors in 1:2 ratio, CoFe2O4 particles were formed well with high crystallinity in the best inverse spinel structure in space group Fd-3m. The fascinating ferrimagnetic and hysteretic properties of the as-prepared hierarchical CoFe2O4 spinel particles were investigated by vibrating-sample magnetometry (VSM) at room temperature (RT). The results confirm formation of hierarchical CoFe2O4 microscale particles with inverse-spinel AB2O4-type structure and high magnetization by modified polyol method with heat treatment.

  8. A new device to measure the settling properties of suspended particles : instrumental development and first applications during runoff events in small watersheds

    Science.gov (United States)

    Legoût, Cédric; Wendling, Valentin; Gratiot, Nicolas; Mercier, Bernard; Coulaud, Catherine; Nord, Guillaume; Droppo, Ian; Ribolzi, Olivier

    2016-04-01

    Most equations describing suspended particle transport balances the settling flux of particles against the turbulent flux of the flow. Although in-situ techniques have been developed to measure settling velocities of suspended particles in coastal areas, floodplain rivers and estuaries, they are not easily transferable to small and meso-scale watersheds. The main limitation lies in the range of concentrations frequently reaching several tens of grams per liter during runoff events. To overcome this instrumental limitation we developed an original System for the Characterization of Aggregates and Flocs (SCAF). An optical settling column, equipped with a vertical array of 16 optical sensors, was used to provide light transmission through a suspension during quiescent settling. It was specifically designed to be inserted in plastic bottles contained in classical sequential samplers, in order to obtain automatic measurements of the suspension immediately after its collection in the river. From the SCAF measurements, we calculate both the particle settling velocity distributions and the propensity of particles to flocculate. The prototypes were tested in laboratory conditions for a wide range of concentrations and material types, leading to consistent measurements with flocculation indices comprised between 0 and 80, respectively for non-cohesive and cohesive materials. First measurements in the field were achieved during runoff events at the outlet of small nested catchments in Lao PDR (MSEC network of environmental observatories) in order to explore the non-conservative behavior of the settling properties of eroded soil aggregates during their transfer.

  9. Nature of suspended particles in hydrothermal plume at 3°40'N Carlsberg ridge: A comparison with deep oceanic suspended matter

    Digital Repository Service at National Institute of Oceanography (India)

    Ray, D.; Babu, E.V.S.S.K.; SuryaPrakash, L.

    the plume. Concentration of particulate Mn is similar to that reported in Gorda Ridge plumes (0.76–1.66 nmol/l)3, but higher than Carlsberg event plume (0.46 nmol/l)9 or Rain- bow plume particulates (<0.5 nmol/l)4. Dissolved Mn in hydrothermal plume...-Sea Res. II, 1998, 45, 2637–2664. 4. Edmond, H. N. and German, C. R., Particle geochemistry of Rain- bow hydrothermal plume; Mid-Atlantic Ridge. Geochim. Cosmo- chim. Acta, 2004, 68, 759–772. 5. Lerche, D. and Nozaki, Y., Rare earth elements of sinking...

  10. Modeling the optical properties of mineral particles suspended in seawater and their influence on ocean reflectance and chlorophyll estimation from remote sensing algorithms.

    Science.gov (United States)

    Woźniak, Sławomir B; Stramski, Dariusz

    2004-06-10

    The optical properties of mineral particles suspended in seawater were calculated from the Mie scattering theory for different size distributions and complex refractive indices of the particles. The ratio of the spectral backscattering coefficient to the sum of the spectral absorption and backscattering coefficients of seawater, b(b)(lambda)/[a(lambda) + b(b)(lambda)], was analyzed as a proxy for ocean reflectance for varying properties and concentrations of mineral particles. Given the plausible range of variability in the particle size distribution and the refractive index, the general parameterizations of the absorption and scattering properties of mineral particles and their effects on ocean reflectance in terms of particle mass concentration alone are inadequate. The variations in the particle size distribution and the refractive index must be taken into account. The errors in chlorophyll estimation obtained from the remote sensing algorithms that are due to the presence of mineral particles can be very large. For example, when the mineral concentration is 1 g m(-3) and the chlorophyll a concentration is low (0.05 mg m(-3)), current global algorithms based on a blue-to-green reflectance ratio can produce a chlorophyll overestimation ranging from approximately 50% to as much as 20-fold.

  11. Circular motion of particles suspended in a Gaussian beam with circular polarization validates the spin part of the internal energy flow.

    Science.gov (United States)

    Angelsky, O V; Bekshaev, A Ya; Maksimyak, P P; Maksimyak, A P; Mokhun, I I; Hanson, S G; Zenkova, C Yu; Tyurin, A V

    2012-05-07

    Non-spherical dielectric microparticles were suspended in a water-filled cell and exposed to a coherent Gaussian light beam with controlled state of polarization. When the beam polarization is linear, the particles were trapped at certain off-axial position within the beam cross section. After switching to the right (left) circular polarization, the particles performed spinning motion in agreement with the angular momentum imparted by the field, but they were involved in an orbital rotation around the beam axis as well, which in previous works [Y. Zhao et al, Phys. Rev. Lett. 99, 073901 (2007)] was treated as evidence for the spin-to orbital angular momentum conversion. Since in our realization the moderate focusing of the beam excluded the possibility for such a conversion, we consider the observed particle behavior as a demonstration of the macroscopic "spin energy flow" predicted by the theory of inhomogeneously polarized paraxial beams [A. Bekshaev et al, J. Opt. 13, 053001 (2011)].

  12. Suspended-sediment concentrations, bedload, particle sizes, surrogate measurements, and annual sediment loads for selected sites in the lower Minnesota River Basin, water years 2011 through 2016

    Science.gov (United States)

    Groten, Joel T.; Ellison, Christopher A.; Hendrickson, Jon S.

    2016-12-20

    Accurate measurements of fluvial sediment are important for assessing stream ecological health, calculating flood levels, computing sediment budgets, and managing and protecting water resources. Sediment-enriched rivers in Minnesota are a concern among Federal, State, and local governments because turbidity and sediment-laden waters are the leading impairments and affect more than 6,000 miles of rivers in Minnesota. The suspended sediment in the lower Minnesota River is deleterious, contributing about 75 to 90 percent of the suspended sediment being deposited into Lake Pepin. The Saint Paul District of the U.S. Army Corps of Engineers and the Lower Minnesota River Watershed District collaborate to maintain a navigation channel on the lower 14.7 miles of the Minnesota River through scheduled dredging operations. The Minnesota Pollution Control Agency has adopted a sediment-reduction strategy to reduce sediment in the Minnesota River by 90 percent by 2040.The U.S. Geological Survey, in cooperation with the U.S. Army Corps of Engineers, the Minnesota Pollution Control Agency, and the Lower Minnesota River Watershed District, collected suspended-sediment, bedload, and particle-size samples at five sites in the lower Minnesota River Basin during water years 2011 through 2014 and surrogate measurements of acoustic backscatter at one of these sites on the lower Minnesota River during water years 2012 through 2016 to quantify sediment loads and improve understanding of sediment-transport relations. Annual sediment loads were computed for calendar years 2011 through 2014.Data collected from water years 2011 through 2014 indicated that two tributaries, Le Sueur River and High Island Creek, had the highest sediment yield and concentrations of suspended sediment. These tributaries also had greater stream gradients than the sites on the Minnesota River. Suspended fines were greater than suspended sand at all sites in the study area. The range of median particle sizes matched

  13. Evaluating Suspended Particles Concentration of the Inside and Outside Air of the Classroom and Its Influencing Factors in Middle schools and High Schools of Yazd

    Directory of Open Access Journals (Sweden)

    MH Ehrampoosh

    2015-11-01

    Full Text Available Abstract Introduction: Airborne pollution in such public environments as schools has adverse health effects on pupils and teachers who spend a noticeable amount of time in the school. Therefore, this study aimed to measure the suspended particles concentration of indoor and outdoor air of Yazd schools as well as to determine the influencing parameters on the pollution intensity. Methods: This analytical cross-sectional study was conducted in 20 middle-schools and high schools of males and females in winter of 2013. The environmental aerosol monitoring device, (HAZ-DUST EPAM5000 model was used to measure the concentration of PM1, PM2.5 and PM10. The study data were analyzed via applying correlation, simple linear regression and means comparison tests. Moreover, the study results were compared with the standards of World health organization(WHO and Environmental Health Organization(EPA. Results: The mean concentration of PM10, PM2.5 and PM1 in indoor class air was reported higher compared to the outdoor air. The indoor and outdoor air quality of schools in terms of Air Quality Index9 (AQI Calculator indicated an average condition for PM10, and an unhealthy condition for PM2.5 in regard with the vulnerable groups. A significant relationship was detected between indoor and outdoor air concentration particles (P<0.05. The mean indoor per outdoor air particles ratio (I/O was 1.68, 1.31, 1.46 respectively for PM10, PM2.5, PM1. Conclusion: The study findings revealed a significant relationship between indoor and outdoor suspended particle concentration demonstrating the particles penetration into the classrooms. Therefore, utilizing appropriate air conditioner systems are regarded effective in order to mitigate indoor class pollution.  

  14. Particle fluxes and energy deposition in infinite homogeneous air due to protons of energy 1-, 5-, 10-, and 20-GeV

    Energy Technology Data Exchange (ETDEWEB)

    Gabriel, T. A.; Bishop, B. L.; Amburgey, J. D.; Barish, J.

    1977-12-01

    Calculations have been carried out to determine the spatial dependence of the energy deposition and the spatial and energy dependence of particle fluxes in infinite homogeneous air without hydrogen due to protons of energy 5-, 10-, and 20-GeV. The fluxes are broken down into nine particle types. The energy deposition is divided among seven categories. The spatial dependence of the energy deposition is also presented for 1- and 10-GeV protons incident on infinite homogeneous air with hydrogen. The spatially integrated production of various residual nuclei is included.

  15. Role of microbial Fe(III) reduction and solution chemistry in aggregation and settling of suspended particles in the Mississippi River Delta plain, Louisiana, USA

    Science.gov (United States)

    Jaisi, D.P.; Ji, S.; Dong, H.; Blake, R.E.; Eberl, D.D.; Kim, J.

    2008-01-01

    River-dominated delta areas are primary sites of active biogeochemical cycling, with productivity enhanced by terrestrial inputs of nutrients. Particle aggregation in these areas primarily controls the deposition of suspended particles, yet factors that control particle aggregation and resulting sedimentation in these environments are poorly understood. This study was designed to investigate the role of microbial Fe(III) reduction and solution chemistry in aggregation of suspended particles in the Mississippi Delta. Three representative sites along the salinity gradient were selected and sediments were collected from the sediment-water interface. Based on quantitative mineralogical analyses 88-89 wt.% of all minerals in the sediments are clays, mainly smectite and illite. Consumption of SO421 and the formation of H2S and pyrite during microbial Fe(III) reduction of the non-sterile sediments by Shewanella putrefaciens CN32 in artificial pore water (APW) media suggest simultaneous sulfate and Fe(III) reduction activity. The pHPZNPC of the sediments was ??? 3.5 and their zeta potentials at the sediment-water interface pH (6.9-7.3) varied from -35 to -45 mV, suggesting that both edges and faces of clay particles have negative surface charge. Therefore, high concentrations of cations in pore water are expected to be a predominant factor in particle aggregation consistent with the Derjaguin-Landau-Verwey-Overbeek (DLVO) theory. Experiments on aggregation of different types of sediments in the same APW composition revealed that the sediment with low zeta potential had a high rate of aggregation. Similarly, addition of external Fe(II) (i.e. not derived from sediments) was normally found to enhance particle aggregation and deposition in all sediments, probably resulting from a decrease in surface potential of particles due to specific Fe(II) sorption. Scanning and transmission electron microscopy (SEM, TEM) images showed predominant face-to-face clay aggregation in native

  16. Comparison of fluvial suspended-sediment concentrations and particle-size distributions measured with in-stream laser diffraction and in physical samples

    Science.gov (United States)

    Czuba, Jonathan A.; Straub, Timothy D.; Curran, Christopher A.; Landers, Mark N.; Domanski, Marian M.

    2015-01-01

    Laser-diffraction technology, recently adapted for in-stream measurement of fluvial suspended-sediment concentrations (SSCs) and particle-size distributions (PSDs), was tested with a streamlined (SL), isokinetic version of the Laser In-Situ Scattering and Transmissometry (LISST) for measuring volumetric SSCs and PSDs ranging from 1.8-415 µm in 32 log-spaced size classes. Measured SSCs and PSDs from the LISST-SL were compared to a suite of 22 datasets (262 samples in all) of concurrent suspended-sediment and streamflow measurements using a physical sampler and acoustic Doppler current profiler collected during 2010-12 at 16 U.S. Geological Survey streamflow-gaging stations in Illinois and Washington (basin areas: 38 – 69,264 km2). An unrealistically low computed effective density (mass SSC / volumetric SSC) of 1.24 g/ml (95% confidence interval: 1.05-1.45 g/ml) provided the best-fit value (R2 = 0.95; RMSE = 143 mg/L) for converting volumetric SSC to mass SSC for over 2 orders of magnitude of SSC (12-2,170 mg/L; covering a substantial range of SSC that can be measured by the LISST-SL) despite being substantially lower than the sediment particle density of 2.67 g/ml (range: 2.56-2.87 g/ml, 23 samples). The PSDs measured by the LISST-SL were in good agreement with those derived from physical samples over the LISST-SL's measureable size range. Technical and operational limitations of the LISST-SL are provided to facilitate the collection of more accurate data in the future. Additionally, the spatial and temporal variability of SSC and PSD measured by the LISST-SL is briefly described to motivate its potential for advancing our understanding of suspended-sediment transport by rivers.

  17. Concentration of lead, cadmium, and iron in sediment dust and total suspended particles before and after initialisation of integral production in iron and steel work plant Zenica.

    Science.gov (United States)

    Prcanović, Halim; Duraković, Mirnes; Beganović, Sanela

    2012-06-01

    Poor air quality is a common fact for all areas with base industry. The city of Zenica was once the metallurgical centre of Ex-Yugoslavia and is therefore highly polluted at present. Air pollution peaked in 1987 when average concentration of pollutants was extremely high (daily average concentration of SO(2) was 1800 μg m(-3)). With the beginning of the war in 1992, integral production in the steel work plant was shut down, to be re-launched in 2008. Limit values for iron do not exist, but iron has been monitored in Zenica for the past 28 years because of the presence of steel works. Concentrations of cadmium and lead have also been measured because they are very much present in polluted areas with steel works. The concentration of mentioned elements in air deposit and total suspended particles before and after integral production in the steel work plant was re-launched is the subject of this paper. Total suspended particles were measured in two locations using German standard VDI 2463 Blatt 4. Sediment dust was measured in nine locations using Bergerhoff method. The concentration of iron, lead, and cadmium was performed in the chemical laboratory of the Metallurgical Institute "Kemal Kapetanović" Zenica using standard methods. Higher concentrations of these parameters during the period of integral production clearly point to the impact of steel works on Zenica valley.

  18. The effect of compressibility, rotation and magnetic field on thermal instability of Walters’ fluid permeated with suspended particles in porous medium

    Directory of Open Access Journals (Sweden)

    Aggarwal Kumar Amrish

    2014-01-01

    Full Text Available The purpose of this paper is to study the effects of compressibility, rotation, magnetic field and suspended particles on thermal stability of a layer of visco-elastic Walters’ (model fluid in porous medium. Using linearized theory and normal mode analysis, dispersion relation has been obtained. In case of stationary convection, it is found that the rotation has stabilizing effect on the system. The magnetic field may have destabilizing effect on the system in the presence of rotation while in the absence of rotation it always has stabilizing effect. The medium permeability has destabilizing effect on the system in the absence of rotation while in the presence of rotation it may have stabilizing effect. The suspended particles and compressibility always have destabilizing effect. Due to vanishing of visco-elastic parameter, the compressible visco-elastic fluid behaves like Newtonian fluid. Graphs have also been plotted to depict the stability characteristics. The viscoelasticity, magnetic field and rotation are found to introduce oscillatory modes into the system which were non-existent in their absence.

  19. Flow cytometry is a promising and rapid method for differentiating between freely suspended Escherichia coli and E. coli attached to clay particles.

    Science.gov (United States)

    Liang, X; Soupir, M L; Rigby, S; Jarboe, L R; Zhang, W

    2014-12-01

    A standard procedure does not exist to distinguish between attached and unattached micro-organisms. In this study, we compared two methods to quantify between Escherichia coli attached to clay particles and E. coli freely suspended in solution: flow cytometry (attachment assay and viability assay) and settling (or centrifugation followed by settling). Methods were tested using three environmental strains collected from swine facilities (A, B and C) and one purchased modified pathogenic strain (ATCC 43888); four clay particles: Hectorite, Kaolinite, Ca-Montmorillonite, Montmorillonite K-10; and a range of surface area ratios (particle surface area to E. coli surface area). When comparing the two methods, the per cent attached obtained from the flow cytometry was lower, but not significantly different from the per cent attached obtained from the settling method for all conditions except when the particle was Hectorite or Montmorillonite K-10; when the strain was C; and when the surface area ratio was below 100. Differences between the methods are likely because traditional culture-based methods cannot detect the viable but nonculturable (VBNC) population, whereas flow cytometry can detect the fraction of VBNC with intact membranes. Our results indicate that flow cytometry is a rapid and culture-independent method for differentiating between attached and unattached micro-organisms. Flow cytometry is useful for laboratory-based studies of micro-organism-particle interactions. © 2014 The Society for Applied Microbiology.

  20. Influence of microorganism content in suspended particles on the particle–water partitioning of mercury in semi-enclosed coastal waters

    Energy Technology Data Exchange (ETDEWEB)

    Jang, Jiyi [School of Environmental Science and Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju 500-712 (Korea, Republic of); Global Bioresources Research Center, Korea Institute of Ocean Science and Technology (KIOST), Ansan 426-744 (Korea, Republic of); Kim, Hyunji [School of Environmental Science and Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju 500-712 (Korea, Republic of); Han, Seunghee, E-mail: shan@gist.ac.kr [School of Environmental Science and Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju 500-712 (Korea, Republic of)

    2014-02-01

    It is known that particle scavenging of mercury (Hg) can be affected by the abundance of particulate organic matter in coastal waters. However, the role of living organic particles in Hg scavenging is not yet completely understood. In this study, we hypothesized that an abundance of living organic particles (i.e., phytoplankton and bacteria) would influence the particle–water partitioning of Hg in coastal waters. Surface seawater samples were collected from eight stations in Gwangyang Bay, Korea, in three seasons (November 2009, April 2010, and October 2010) for the determination of concentrations of suspended particulate matter (including chlorophyll-a and bacteria), and Hg in unfiltered and filtered waters. We found that more Hg partitioned toward particulate matter when phytoplankton biomass, indicated from the chlorophyll-a concentration in a particle, was higher. In the low algal season, when [chlorophyll-a] < 0.6 μg L{sup −1}, the bacterial number, instead of chlorophyll-a concentration in particle, showed a positive correlation with the particle–water partition coefficient of Hg. Overall, microbial abundance seems to play a critical role in particle scavenging of Hg in coastal water. Taking this result in light of Hg in pristine coastal zones, we predict that increases in algal biomass amplify the potential for algae to transfer Hg to marine food chains. - Highlights: • Abundance of phytoplankton and bacteria influenced particle–water partitioning of Hg. • More Hg partitioned toward particles when microorganism biomass in particle is large. • Increases of algal biomass may enhance Hg bioaccumulation in coastal ecosystem.

  1. Optical characterisation of suspended particles in the Mackenzie River plume (Canadian Arctic Ocean and implications for ocean colour remote sensing

    Directory of Open Access Journals (Sweden)

    D. Doxaran

    2012-08-01

    Full Text Available Climate change significantly impacts Arctic shelf regions in terms of air temperature, ultraviolet radiation, melting of sea ice, precipitation, thawing of permafrost and coastal erosion. Direct consequences have been observed on the increasing Arctic river flow and a large amount of organic carbon sequestered in soils at high latitudes since the last glacial maximum can be expected to be delivered to the Arctic Ocean during the coming decade. Monitoring the fluxes and fate of this terrigenous organic carbon is problematic in such sparsely populated regions unless remote sensing techniques can be developed and proved to be operational.

    The main objective of this study is to develop an ocean colour algorithm to operationally monitor dynamics of suspended particulate matter (SPM on the Mackenzie River continental shelf (Canadian Arctic Ocean using satellite imagery. The water optical properties are documented across the study area and related to concentrations of SPM and particulate organic carbon (POC. Robust SPM and POC : SPM proxies are identified, such as the light backscattering and attenuation coefficients, and relationships are established between these optical and biogeochemical parameters. Following a semi-analytical approach, a regional SPM quantification relationship is obtained for the inversion of the water reflectance signal into SPM concentration. This relationship is reproduced based on independent field optical measurements. It is successfully applied to a selection of MODIS satellite data which allow estimating fluxes at the river mouth and monitoring the extension and dynamics of the Mackenzie River surface plume in 2009, 2010 and 2011. Good agreement is obtained with field observations representative of the whole water column in the river delta zone where terrigenous SPM is mainly constrained (out of short periods of maximum river outflow. Most of the seaward export of SPM is observed to occur within the west side of

  2. Optical Characterisation of Suspended Particles in the Mackenzie River Plume (Canadian Arctic Ocean) and Implications for Ocean Colour Remote Sensing

    Science.gov (United States)

    Doxaran, D.; Ehn, J.; Belanger, S.; Matsuoka, A.; Hooker, S.; Babin, M.

    2012-01-01

    Climate change significantly impacts Arctic shelf regions in terms of air temperature, ultraviolet radiation, melting of sea ice, precipitation, thawing of permafrost and coastal erosion. Direct consequences have been observed on the increasing Arctic river flow and a large amount of organic carbon sequestered in soils at high latitudes since the last glacial maximum can be expected to be delivered to the Arctic Ocean during the coming decade. Monitoring the fluxes and fate of this terrigenous organic carbon is problematic in such sparsely populated regions unless remote sensing techniques can be developed and proved to be operational. The main objective of this study is to develop an ocean colour algorithm to operationally monitor dynamics of suspended particulate matter (SPM) on the Mackenzie River continental shelf (Canadian Arctic Ocean) using satellite imagery. The water optical properties are documented across the study area and related to concentrations of SPM and particulate organic carbon (POC). Robust SPM and POC : SPM proxies are identified, such as the light backscattering and attenuation coefficients, and relationships are established between these optical and biogeochemical parameters. Following a semi-analytical approach, a regional SPM quantification relationship is obtained for the inversion of the water reflectance signal into SPM concentration. This relationship is reproduced based on independent field optical measurements. It is successfully applied to a selection of MODIS satellite data which allow estimating fluxes at the river mouth and monitoring the extension and dynamics of the Mackenzie River surface plume in 2009, 2010 and 2011. Good agreement is obtained with field observations representative of the whole water column in the river delta zone where terrigenous SPM is mainly constrained (out of short periods of maximum river outflow). Most of the seaward export of SPM is observed to occur within the west side of the river mouth. Future

  3. Modelling the light absorption properties of particulate matter forming organic particles suspended in sea water. Part 3. Practical applications

    Directory of Open Access Journals (Sweden)

    Roman Majchrowski

    2006-12-01

    Full Text Available This paper brings to a close our cycle of articles on modelling the light absorption properties of particulate organic matter (POM in the sea. In the first two parts of this cycle (Woźniaket al. 2005a,b we discussed these properties with reference to various model chemical classes and physical types of POM. We have put these results into practice in the present third part. As a result of the appropriate theoretical speculations, logically underpinned by empirical knowledge, we selected 25 morphological variants of marine organic detritus, to which we ascribed definite chemical compositions and physical types. On this basis and using known spectra of the mass-specific coefficients of light absorption by various naturally occurring organic substances (systematised in Parts 1 and 2, we determined the absorption properties of these 25 morphological groups of particles, that is, the spectra of the imaginary part of the refractive index n'p(λ (in the 200-700 nm range of the particulate matter. They can be applied, with the aid of Mie's or some other similar theory, to calculate the bulk optical properties (absorbing and scattering of such sets of particles in the sea.

  4. Light Absorption by Suspended Particles in the Red Sea: Effect of Phytoplankton Community Size Structure and Pigment Composition

    KAUST Repository

    Kheireddine, Malika

    2018-01-10

    The light absorption properties of phytoplankton (aph(λ)) and non-algal particles (anap(λ)) associated with phytoplankton pigments were analyzed across the Red Sea, in the upper 200 m depth, between October 2014 and August 2016. The contribution by non-algal particles to the total particulate light absorption (aph(λ)+ anap(λ)) was highly variable (23 ± 17% at 440 nm) and no relationship between anap(440) and chlorophyll a concentration, [TChl a], was observed. Phytoplankton specific phytoplankton absorption coefficients at 440 and 676 nm for a given [TChl a], aph*(440) and aph*(676), were slightly higher than those derived from average relationships for open ocean waters within the surface layer as well as along the water column. Variations in the concentration of photosynthetic and photoprotective pigments were noticeable by changes in phytoplankton community size structure as well as in aph*(λ). This study revealed that a higher proportion of picophytoplankton and an increase in photoprotective pigments (mainly driven by zeaxanthin) tended to be responsible for the higher aph*(λ) values found in the Red Sea as compared to other oligotrophic regions with similar [TChl a]. Understanding this variability across the Red Sea may help improve the accuracy of biogeochemical parameters, such as [TChl a], derived from in situ measurements and ocean color remote sensing at a regional scale.

  5. Suspended microfluidics

    OpenAIRE

    Casavant, Benjamin P.; Berthier, Erwin; Theberge, Ashleigh B.; Jean BERTHIER; Montanez-Sauri, Sara I.; Bischel, Lauren L.; Brakke, Kenneth; Hedman, Curtis J.; Bushman, Wade; Keller, Nancy P.; Beebe, David J.

    2013-01-01

    Although the field of microfluidics has made significant progress in bringing new tools to address biological questions, the accessibility and adoption of microfluidics within the life sciences are still limited. Open microfluidic systems have the potential to lower the barriers to adoption, but the absence of robust design rules has hindered their use. Here, we present an open microfluidic platform, suspended microfluidics, that uses surface tension to fill and maintain a fluid in microscale...

  6. Self-Suspended Suspensions of Covalently Grafted Hairy Nanoparticles

    KAUST Repository

    Choudhury, Snehashis

    2015-03-17

    © 2015 American Chemical Society. Dispersions of small particles in liquids have been studied continuously for almost two centuries for their ability to simultaneously advance understanding of physical properties of fluids and their widespread use in applications. In both settings, the suspending (liquid) and suspended (solid) phases are normally distinct and uncoupled on long length and time scales. In this study, we report on the synthesis and physical properties of a novel family of covalently grafted nanoparticles that exist as self-suspended suspensions with high particle loadings. In such suspensions, we find that the grafted polymer chains exhibit unusual multiscale structural transitions and enhanced conformational stability on subnanometer and nanometer length scales. On mesoscopic length scales, the suspensions display exceptional homogeneity and colloidal stability. We attribute this feature to steric repulsions between grafted chains and the space-filling constraint on the tethered chains in the single-component self-suspended materials, which inhibits phase segregation. On macroscopic length scales, the suspensions exist as neat fluids that exhibit soft glassy rheology and, counterintuitively, enhanced elasticity with increasing temperature. This feature is discussed in terms of increased interpenetration of the grafted chains and jamming of the nanoparticles. (Chemical Presented).

  7. Numerical simulation on magnetic assembled structures of iron-based metallic particles within MMCs by a homogeneous strong magnetic field

    Science.gov (United States)

    Liu, Chunwei; Sun, Zhi; Zheng, Lichun; Huang, Shuigen; Blanpain, Bart; Guo, Muxing

    2015-09-01

    Particle-reinforced metal matrix composites (MMCs) have excellent physicochemical properties as structural materials. The morphology and distribution control of reinforcement particles during the fabrication of MMCs are difficult-but-critical-to-achieve required properties of the materials. This research demonstrates a possibility to quantitatively control the distribution of particles in the metal matrix by applying a magnetic field. A 2D numerical model is developed and applied to evaluate the behaviour of Fe-based metallic particles in aluminum MMCs. By combination of 2D simulation with intersectional directions, this model also provides some hints for 3D practice. The assembled structure is found to be governed by the external magnetic field orientation, magnetic flux density and magnetic susceptibility of the particles. Both behaviours of particle agglomeration and dispersion are quantitatively characterized in different conditions. By using a strong magnetic field, it is found that assembled structures of weakly magnetic particles can be effectively manipulated. Therefore, it can be expected to fabricate particle-enhanced metal matrix composites/ceramics/glass with substantial improvements in physical and chemical properties by using a magnetic field.

  8. Removal of antibiotics from water in the coexistence of suspended particles and natural organic matters using amino-acid-modified-chitosan flocculants: A combined experimental and theoretical study.

    Science.gov (United States)

    Jia, Shuying; Yang, Zhen; Ren, Kexin; Tian, Ziqi; Dong, Chang; Ma, Ruixue; Yu, Ge; Yang, Weiben

    2016-11-05

    Contamination of trace antibiotics is widely found in surface water sources. This work delineates removal of trace antibiotics (norfloxacin (NOR), sulfadiazine (SDZ) or tylosin (TYL)) from synthetic surface water by flocculation, in the coexistence of inorganic suspended particles (kaolin) and natural organic matter (humic acid, HA). To avoid extra pollution caused by petrochemical products-based modification reagents, environmental-friendly amino-acid-modified-chitosan flocculants, Ctrp and Ctyr, with different functional aromatic-rings structures were employed. Jar tests at various pHs exhibited that, Ctyr, owning phenol groups as electron donors, was favored for elimination of cationic NOR (∼50% removal; optimal pH: 6; optimal dosage: 4mg/L) and TYL (∼60% removal; optimal pH: 7; optimal dosage: 7.5mg/L), due to π-π electron donator-acceptor (EDA) effect and unconventional H-bonds. Differently, Ctrp with indole groups as electron acceptor had better removal rate (∼50%) of SDZ anions (electron donator). According to correlation analysis, the coexisted kaolin and HA played positive roles in antibiotics' removal. Detailed pairwise interactions in molecular level among different components were clarified by spectral analysis and theoretical calculations (density functional theory), which are important for both the structural design of new flocculants aiming at targeted contaminants and understanding the environmental behaviors of antibiotics in water. Copyright © 2016 Elsevier B.V. All rights reserved.

  9. Search for lightly ionizing particles using CDMS-II data and fabrication of CDMS detectors with improved homogeneity in properties

    Energy Technology Data Exchange (ETDEWEB)

    Prasad, Kunj Bihari [Texas A & M Univ., College Station, TX (United States)

    2013-12-01

    Fundamental particles are always observed to carry charges which are integral multiples of one-third charge of electron, e/3. While this is a well established experimental fact, the theoretical understanding for the charge quantization phenomenon is lacking. On the other hand, there exist numerous theoretical models that naturally allow for existence of particles with fractional electromagnetic charge. These particles, if existing, hint towards existence of physics beyond the standard model. Multiple high energy, optical, cosmological and astrophysical considerations restrict the allowable mass-charge parameter space for these fractional charges. Still, a huge unexplored region remains. The Cryogenic Dark Matter Search (CDMS-II), located at Soudan mines in northern Minnesota, employs germanium and silicon crystals to perform direct searches for a leading candidate to dark matter called Weakly Interacting Massive Particles (WIMPs). Alternately, the low detection threshold allows search for fractional electromagnetic-charged particles, or Lightly Ionizing Particles (LIPs), moving at relativistic speed. Background rejection is obtained by requiring that the magnitude and location of energy deposited in each detector be consistent with corresponding \\signatures" resulting from the passage of a fractionally charged particle. In this dissertation, the CDMS-II data is analyzed to search for LIPs, with an expected background of 0.078 0.078 events. No candidate events are observed, allowing exclusion of new parameter space for charges between e/6 and e/200.

  10. Inhibition effects of suspended and accumulated particles on adhesion and development of Undaria pinnatifida zoospores; Kaisuichu kendaku ryushi no chinko taiseki ga wakame yusoshi no chakusei to sono seicho ni oyobosu sogai sayo

    Energy Technology Data Exchange (ETDEWEB)

    Suzuki, Y.; Maruyama, T.; Takami, T. [Miyazaki University, Miyazaki (Japan). Faculty of Engineering; Miura, A. [Aomori University, Aomori (Japan). Faculty of Engineering

    1998-10-10

    In order to reveal effects of suspended and accumulated particles in sea water on the adhesion and development of Undaria pinnatifida zoospores on the substratum, adhesion Inhibition tests were conducted using kaolinite as model particles under the following three cases of natural conditions; Case 1: suspended particles together with zoospores, Case 2: zoospores released after accumulation of particles on the substratum, and Case 3: accumulated particles on zoospores adhered on the substratum. Case 2 provided the most effective inhibition for the adhesion of zoospores, and 50% of effective concentration of particles was 29{mu}g/cm{sup 2}. Zoospores adhered on the substratum were developed to gametophytes even when covered and deposited by kaolinite particles. It was difficult for these gametophytes to develop to sporophytes. Remarkable inhibition was observed in the development process via gametophytes and sporophytes to young sporophytes. The inhibition was observed for crust spores at lower concentration. Higher adhesion performance on the substratum was found for zoospores. 18 refs., 4 figs., 1 tab.

  11. Removal of antibiotics from water in the coexistence of suspended particles and natural organic matters using amino-acid-modified-chitosan flocculants: A combined experimental and theoretical study

    Energy Technology Data Exchange (ETDEWEB)

    Jia, Shuying [School of Chemistry and Materials Science, Jiangsu Provincial Key Laboratory of Materials Cycling and Pollution Control, Nanjing Normal University, Nanjing 210023 (China); Yang, Zhen, E-mail: yangzhen@njnu.edu.cn [School of Chemistry and Materials Science, Jiangsu Provincial Key Laboratory of Materials Cycling and Pollution Control, Nanjing Normal University, Nanjing 210023 (China); Ren, Kexin [School of Chemistry and Materials Science, Jiangsu Provincial Key Laboratory of Materials Cycling and Pollution Control, Nanjing Normal University, Nanjing 210023 (China); Tian, Ziqi [Department of Chemistry, University of California, Riverside, CA 92521 (United States); Dong, Chang; Ma, Ruixue; Yu, Ge [School of Chemistry and Materials Science, Jiangsu Provincial Key Laboratory of Materials Cycling and Pollution Control, Nanjing Normal University, Nanjing 210023 (China); Yang, Weiben, E-mail: yangwb007@njnu.edu.cn [School of Chemistry and Materials Science, Jiangsu Provincial Key Laboratory of Materials Cycling and Pollution Control, Nanjing Normal University, Nanjing 210023 (China)

    2016-11-05

    Highlights: • Novel amino-acid-modified-chitosan flocculants are employed to remove antibiotics. • Effects of different structures of amino acids and antibiotics are investigated. • Correlation analysis shows coexisted kaolin and HA have synergistic removal effect. • Theoretical DFT calculation clarifies the interactions in molecular level. - Abstract: Contamination of trace antibiotics is widely found in surface water sources. This work delineates removal of trace antibiotics (norfloxacin (NOR), sulfadiazine (SDZ) or tylosin (TYL)) from synthetic surface water by flocculation, in the coexistence of inorganic suspended particles (kaolin) and natural organic matter (humic acid, HA). To avoid extra pollution caused by petrochemical products-based modification reagents, environmental-friendly amino-acid-modified-chitosan flocculants, Ctrp and Ctyr, with different functional aromatic-rings structures were employed. Jar tests at various pHs exhibited that, Ctyr, owning phenol groups as electron donors, was favored for elimination of cationic NOR (∼50% removal; optimal pH: 6; optimal dosage: 4 mg/L) and TYL (∼60% removal; optimal pH: 7; optimal dosage: 7.5 mg/L), due to π–π electron donator-acceptor (EDA) effect and unconventional H-bonds. Differently, Ctrp with indole groups as electron acceptor had better removal rate (∼50%) of SDZ anions (electron donator). According to correlation analysis, the coexisted kaolin and HA played positive roles in antibiotics’ removal. Detailed pairwise interactions in molecular level among different components were clarified by spectral analysis and theoretical calculations (density functional theory), which are important for both the structural design of new flocculants aiming at targeted contaminants and understanding the environmental behaviors of antibiotics in water.

  12. Potential of High Spatial and Temporal Ocean Color Satellite Data to Study the Dynamics of Suspended Particles in a Micro-Tidal River Plume

    Directory of Open Access Journals (Sweden)

    Anouck Ody

    2016-03-01

    Full Text Available Ocean color satellite sensors are powerful tools to study and monitor the dynamics of suspended particulate matter (SPM discharged by rivers in coastal waters. In this study, we test the capabilities of Landsat-8/Operational Land Imager (OLI, AQUA&TERRA/Moderate Resolution Imaging Spectroradiometer (MODIS and MSG-3/Spinning Enhanced Visible and Infrared Imager (SEVIRI sensors in terms of spectral, spatial and temporal resolutions to (i estimate the seawater reflectance signal and then SPM concentrations and (ii monitor the dynamics of SPM in the Rhône River plume characterized by moderately turbid surface waters in a micro-tidal sea. Consistent remote-sensing reflectance (Rrs values are retrieved in the red spectral bands of these four satellite sensors (median relative difference less than ~16% in turbid waters. By applying a regional algorithm developed from in situ data, these Rrs are used to estimate SPM concentrations in the Rhône river plume. The spatial resolution of OLI provides a detailed mapping of the SPM concentration from the downstream part of the river itself to the plume offshore limits with well defined small-scale turbidity features. Despite the low temporal resolution of OLI, this should allow to better understand the transport of terrestrial particles from rivers to the coastal ocean. These details are partly lost using MODIS coarser resolutions data but SPM concentration estimations are consistent, with an accuracy of about 1 to 3 g·m−3 in the river mouth and plume for spatial resolutions from 250 m to 1 km. The MODIS temporal resolution (2 images per day allows to capture the daily to monthly dynamics of the river plume. However, despite its micro-tidal environment, the Rhône River plume shows significant short-term (hourly variations, mainly controlled by wind and regional circulation, that MODIS temporal resolution failed to capture. On the contrary, the high temporal resolution of SEVIRI makes it a powerful tool to

  13. Improving suspended sediment measurements by automatic samplers.

    Science.gov (United States)

    Gettel, Melissa; Gulliver, John S; Kayhanian, Masoud; DeGroot, Gregory; Brand, Joshua; Mohseni, Omid; Erickson, Andrew J

    2011-10-01

    Suspended solids either as total suspended solids (TSS) or suspended sediment concentration (SSC) is an integral particulate water quality parameter that is important in assessing particle-bound contaminants. At present, nearly all stormwater runoff quality monitoring is performed with automatic samplers in which the sampling intake is typically installed at the bottom of a storm sewer or channel. This method of sampling often results in a less accurate measurement of suspended sediment and associated pollutants due to the vertical variation in particle concentration caused by particle settling. In this study, the inaccuracies associated with sampling by conventional intakes for automatic samplers have been verified by testing with known suspended sediment concentrations and known particle sizes ranging from approximately 20 μm to 355 μm under various flow rates. Experimental results show that, for samples collected at a typical automatic sampler intake position, the ratio of sampled to feed suspended sediment concentration is up to 6600% without an intake strainer and up to 300% with a strainer. When the sampling intake is modified with multiple sampling tubes and fitted with a wing to provide lift (winged arm sampler intake), the accuracy of sampling improves substantially. With this modification, the differences between sampled and feed suspended sediment concentration were more consistent and the sampled to feed concentration ratio was accurate to within 10% for particle sizes up to 250 μm.

  14. Assessment of the Atmospheric Suspended Particles Pollution in the Madrid Air Quality Networks; Evaluacion de la Contaminacion Atmosferica producida por Particulas en Suspension en las Redes de Calidad del Aire de la Comunidad de Madrid

    Energy Technology Data Exchange (ETDEWEB)

    Salvador, P.; Artinano, B.

    2000-07-01

    Suspended particles are a very complex type of atmospheric pollution because of their chemical composition and size. In fact, there are a quite high number of particles sources which are linked to different physico-chemical processes that determine their size. At present particles smaller than 10 {mu}m are considered the most dangerous, as has been recently pointed out by numerous epidemiologic studies. In this way, more restrictive concentration limit values have been approved in the EU countries, so an assessment of present airborne concentration values and the sources apportionment in their most representative areas is needed. In the Madrid Community a first approaching of these and other aims, has been carried out from an analysis of the Madrid Air Quality networks data. This will contribute to the stablishment of concentration levels abatement strategies. (Author) 111 refs.

  15. Carbon sources in suspended particles and surface sediments from the Beaufort Sea revealed by molecular lipid biomarkers and compound-specific isotope analysis

    OpenAIRE

    I. Tolosa; S. Fiorini; B. Gasser; J. Martín; J. C. Miquel

    2013-01-01

    Molecular lipid biomarkers (hydrocarbons, alcohols, sterols and fatty acids) and compound-specific isotope analysis of suspended particulate organic matter (SPM) and surface sediments of the Mackenzie Shelf and slope (southeast Beaufort Sea, Arctic Ocean) were studied in summer 2009. The concentrations of the molecular lipid markers, characteristic of known organic matter sources, were grouped and used as proxies to evaluate the relative importance of fresh algal, detrital a...

  16. Evolution of the regions of the 3D particle motion in the regular polygon problem of (N+1) bodies with a quasi-homogeneous potential

    Science.gov (United States)

    Fakis, Demetrios; Kalvouridis, Tilemahos

    2017-09-01

    The regular polygon problem of (N+1) bodies deals with the dynamics of a small body, natural or artificial, in the force field of N big bodies, the ν=N-1 of which have equal masses and form an imaginary regular ν -gon, while the Nth body with a different mass is located at the center of mass of the system. In this work, instead of considering Newtonian potentials and forces, we assume that the big bodies create quasi-homogeneous potentials, in the sense that we insert to the inverse square Newtonian law of gravitation an inverse cube corrective term, aiming to approximate various phenomena due to their shape or to the radiation emitting from the primaries. Based on this new consideration, we apply a general methodology in order to investigate by means of the zero-velocity surfaces, the regions where 3D motions of the small body are allowed, their evolutions and parametric variations, their topological bifurcations, as well as the existing trapping domains of the particle. Here we note that this process is definitely a fundamental step of great importance in the study of many dynamical systems characterized by a Jacobian-type integral of motion in the long way of searching for solutions of any kind.

  17. Estudo das partículas totais em suspensão e metais associados em áreas urbanas Study of total suspended particles and the associated metals in urban areas

    Directory of Open Access Journals (Sweden)

    Fabiana Goulart de Carvalho

    2000-10-01

    Full Text Available This work aims at the study of the air quality determination regarding the total suspended particles (TSP and the associated metals in the counties of Charqueadas and Sapucaia do Sul at the state of Rio Grande do Sul. The TSP samples were collected using high volume samplers and the analysis of the metallic elements was accomplished through ICP-AES. The results revealed that the TSP concentrations, found in the two studied regions, have exceded the current air quality patterns established by the Brazilian Legislation. They also revealed high levels of several of the elements being attributed to the presence of anthropogenic sources. The correlation between meteorological data (speed and wind direction and TSP concentrations were significant and revealed strong influence in particle dispersion.

  18. Steady- and Transient-State Analyses of Fully Ceramic Microencapsulated Fuel with Randomly Dispersed Tristructural Isotropic Particles via Two-Temperature Homogenized Model—I: Theory and Method

    Directory of Open Access Journals (Sweden)

    Yoonhee Lee

    2016-06-01

    Full Text Available As a type of accident-tolerant fuel, fully ceramic microencapsulated (FCM fuel was proposed after the Fukushima accident in Japan. The FCM fuel consists of tristructural isotropic particles randomly dispersed in a silicon carbide (SiC matrix. For a fuel element with such high heterogeneity, we have proposed a two-temperature homogenized model using the particle transport Monte Carlo method for the heat conduction problem. This model distinguishes between fuel-kernel and SiC matrix temperatures. Moreover, the obtained temperature profiles are more realistic than those of other models. In Part I of the paper, homogenized parameters for the FCM fuel in which tristructural isotropic particles are randomly dispersed in the fine lattice stochastic structure are obtained by (1 matching steady-state analytic solutions of the model with the results of particle transport Monte Carlo method for heat conduction problems, and (2 preserving total enthalpies in fuel kernels and SiC matrix. The homogenized parameters have two desirable properties: (1 they are insensitive to boundary conditions such as coolant bulk temperatures and thickness of cladding, and (2 they are independent of operating power density. By performing the Monte Carlo calculations with the temperature-dependent thermal properties of the constituent materials of the FCM fuel, temperature-dependent homogenized parameters are obtained.

  19. Laboratory report on iodine (129I and 127I) speciation, transformation and mobility in Handford groundwater, suspended particles and sediments

    Energy Technology Data Exchange (ETDEWEB)

    Santschi, P. H. [Texas A & M Univ., College Station, TX (United States); Xu, C. [Texas A & M Univ., College Station, TX (United States); Zhang, S. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Ho, Y. [Texas A & M Univ., College Station, TX (United States); Li, H. [Texas A & M Univ., College Station, TX (United States); Schwehr, K. [Texas A & M Univ., College Station, TX (United States); Kaplan, D. I. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2012-09-01

    were on average 89% greater than iodide Kd values, and the Kd values for both species tended to increase with the amount of organic carbon (OC) present in the sediment. It is especially noteworthy that this trend existed at the very low OC concentrations that naturally exist in the Hanford sediments. Iodine and OC can form essentially irreversible covalent bonds, thereby providing a yet unstudied 129I retardation reaction at the Hanford Site. In addition to the transformation of iodine species, the sediment collected from the vadose zone also released stable iodide into the aqueous phase. It was found that the three sediments all took up the ambient iodate from the groundwater and slowly transformed it into iodide under the laboratory conditions, likely dependent on the abundance of reducing agents such as organic matter and Fe2+. Therefore two competitive iodine processes were identified, the tendency for the sediment to reduce iodate to iodide, and the groundwater chemistry to maintain the iodine as iodate, presumably it is largely the result of natural pH and dissolved O2/Eh levels. Suspended carbonate (and silica) particles collected from Hanford groundwater contained elevated amounts of iodine (142 ± 8 μg/g iodine), consisting mainly of iodate (>99%). Iodate was likely incorporated into the carbonate structure during calcite precipitation upon degasing of CO2 as the groundwater samples were removed from the subsurface. This concentration of groundwater iodate in precipitated carbonate has implication to long-term fate and transport of 129I and on active in-situ 129I groundwater remediation. This study provides some of the first groundwater radioiodine speciation studies conducted in arid environments and provides much needed mechanistic descriptions to permit making informed decisions about low-cost/high intellectual input remediation options, such as monitored natural

  20. Reflector homogenization

    Energy Technology Data Exchange (ETDEWEB)

    Sanchez, R.; Ragusa, J.; Santandrea, S. [Commissariat a l' Energie Atomique, Direction de l' Energie Nucleaire, Service d' Etudes de Reacteurs et de Modelisation Avancee, CEA de Saclay, DM2S/SERMA 91 191 Gif-sur-Yvette cedex (France)]. e-mail: richard.sanchez@cea.fr

    2004-07-01

    The problem of the determination of a homogeneous reflector that preserves a set of prescribed albedo is considered. Duality is used for a direct estimation of the derivatives needed in the iterative calculation of the optimal homogeneous cross sections. The calculation is based on the preservation of collapsed multigroup albedo obtained from detailed reference calculations and depends on the low-order operator used for core calculations. In this work we analyze diffusion and transport as low-order operators and argue that the P{sub 0} transfers are the best choice for the unknown cross sections to be adjusted. Numerical results illustrate the new approach for SP{sub N} core calculations. (Author)

  1. Circular motion of particles suspended in a Gaussian beam with circular polarization validates the spin part of the internal energy flow

    National Research Council Canada - National Science Library

    Angelsky, O V; Bekshaev, A Ya; Maksimyak, P P; Maksimyak, A P; Mokhun, I I; Hanson, S G; Zenkova, C Yu; Tyurin, A V

    2012-01-01

    .... After switching to the right (left) circular polarization, the particles performed spinning motion in agreement with the angular momentum imparted by the field, but they were involved in an orbital rotation around the beam axis as well...

  2. Review of total suspended particles (TSP) and PM2.5 concentration variations in Asia during the years of 1998-2015.

    Science.gov (United States)

    Fang, Guor-Cheng; Zhuang, Yuan-Jie; Cho, Meng-Hsien; Huang, Chao-Yang; Xiao, You-Fu; Tsai, Kai-Hsiang

    2017-06-05

    In Asian countries such as China, Malaysia, Pakistan, India, Taiwan, Korea, Japan and Hong Kong, ambient air total suspended particulates and PM2.5 concentration data were collected and discussed during the years of 1998-2015 in this study. The aim of the present study was to (1) investigate and collect ambient air total suspended particulates (TSP) and PM2.5 concentrations for Asian countries during the past two decades. (2) Discuss, analyze and compare those particulates (TSP and PM2.5) annual concentration distribution trends among those Asian countries during the past two decades. (3) Test the mean concentration differences in TSP and PM2.5 among the Asian countries during the past decades. The results indicated that the mean TSP concentration order was shown as China > Malaysia > Pakistan > India > Taiwan > Korea > Japan. In addition, the mean PM2.5 concentration order was shown as Vietnam > India > China > Hong Kong > Mongolia > Korea > Taiwan > Japan and the average percentages of PM2.5 concentrations for Taiwan, China, Japan, Korea, Hong Kong, Mongolia and Other (India and Vietnam) were 8, 21, 6, 8, 14, 13 and 30%, respectively, during the past two decades. Moreover, t test results revealed that there were significant mean TSP and PM2.5 concentration differences for either China or India to any of the countries such as Taiwan, Korea and Japan in Asia during the past two decades for this study. Noteworthy, China and India are both occupied more than 60% of the TSP and PM2.5 particulates concentrations out of all the Asia countries. As for Taiwan, the average PM2.5 concentration displayed increasing trend in the years of 1998-1999. However, it showed decreasing trend in the years of 2000-2010. As for Korea, the average PM2.5 concentrations showed decreasing trend during the years of 2001-2013. Finally, the average PM2.5 concentrations for Mongolia displayed increasing trend in the years of 2004-2013.

  3. Jamming/flowing transition of non-Brownian particles suspended in a iso-density fluid flowing in a 2D rectangular duct

    Directory of Open Access Journals (Sweden)

    Burel Maxym

    2017-01-01

    Full Text Available We present the results of an experimental study on the jamming/flowing transition. A suspension of neutrally buoyant large particles flows in an horizontal rectangular duct, where an artificial restriction triggers jamming. We show that the avalanche distribution size is exponential, that is memoryless. We further demonstrate that the avalanche size diverges when the restriction size approaches a critical value and that this divergence is well described by a power law. The parameters (critical opening size and divergence velocity are compared to literature values and show a strong similarity with others systems. Another result of this paper is the study of the influence of the particle morphology. We show that, for a moderate restriction size, the dead-zone formed right upstream of the restriction is larger for angular particles but, paradoxically, that the avalanche size is larger for polyhedra compared to spheres by at least one order of magnitude.

  4. Macromodel for assessing residential concentrations of combustion-generated pollutants: Model development and preliminary predictions for CO, NO/sub 2/, and respirable suspended particles

    Energy Technology Data Exchange (ETDEWEB)

    Traynor, G.W.; Aceti, J.C.; Apte, M.G.; Smith, B.V.; Green, L.L.; Smith-Reiser, A.; Novak, K.M.; Moses, D.O.

    1989-01-01

    A simulation model (also called a ''macromodel'') has been developed to predict residential air pollutant concentration distributions for specified populations. The model inputs include the market penetration of pollution sources, pollution source characteristics (e.g., emission rates, source usage rates), building characteristics (e.g., house volume, air exchange rates), and meteorological parameters (e.g., outside temperature). Four geographically distinct regions of the US have been modeled using Monte Carlo and deterministic simulation techniques. Single-source simulations were also conducted. The highest predicted CO and NO/sub 2/ residential concentrations were associated with the winter-time use of unvented gas and kerosene space heaters. The highest predicted respirable suspended particulate concentrations were associated with indoor cigarette smoking and the winter-time use of non-airtight wood stoves, radiant kerosene heaters, convective unvented gas space heaters, and oil forced-air furnaces. Future field studies in this area should (1) fill information gaps identified in this report, and (2) collect information on the macromodel input parameters to properly interpret the results. It is almost more important to measure the parameters that affect indoor concentration than it is to measure the concentrations themselves.

  5. Circular motion of particles suspended in a Gaussian beam with circular polarization validates the spin part of the internal energy flow

    DEFF Research Database (Denmark)

    Angelsky, O. V.; Bekshaev, A. Ya.; Maksimyak, P. P.

    2012-01-01

    )] was treated as evidence for the spin-to orbital angular momentum conversion. Since in our realization the moderate focusing of the beam excluded the possibility for such a conversion, we consider the observed particle behavior as a demonstration of the macroscopic “spin energy flow” predicted by the theory...

  6. Modelling the light absorption properties of particulate matter forming organic particles suspended in seawater.Part 1. Model description, classification of organic particles, and example spectra of the light absorption coefficient and the imaginary part of the refractive index of particulate matter for phytoplankton cells and phytoplankton-like particles

    Directory of Open Access Journals (Sweden)

    Bogdan Woźniak

    2005-06-01

    Full Text Available Data on organic substances in the sea are applied to distinguish hypothetical chemical classes and physical types of suspended particulate organic matter (POM in seawater. Spectra of the light absorption coefficients of particulate matter apm(λ and the imaginary refractive index n'p(λ, are assessed for some of these classes and types of POM in seawater, that is, for live phytoplankton cells and phytoplankton-like particles. The spectral characteristics of these coefficients are established and the probable ranges of variability of their absolute magnitudes defined on the basis of the mass-specific coefficients of light absorption by the various organic substances forming the particles. Also presented are mathematical relationships linking the coefficients apm(λ and n'p(λ for the various chemical classes of POM with their physical parameters, such as the relative contents of organic matter, water, air or some other gas. This article is part of a bio-optical study undertaken by the authors, the objective of which is to implement remote sensing techniques in the investigation of Baltic ecosystems (Woźniak et al. 2004.

  7. Study of the heavy metals speciation in the atmospheric suspended particles in Sevilla (Spain); Estudio de la especiacion de metales pesados en la materia particulada atmosferica de la ciudad de Sevilla

    Energy Technology Data Exchange (ETDEWEB)

    Ternero Rodriguez, M.; Sequeiros Madueno, L.; Jimenez Sanchez, C.; Barragan de la Rosa, J.; Bello Lopez, M.; Fernandez Espinosa, A.J.; Perez Bernal, J.L. [Facultad de Quimica, Universidad de Sevilla (Spain)

    1997-06-01

    This work develops analytical methods for the heavy metals speciation in the atmospheric suspended particles. In base to these methods, we study the atmospheric contamination of the city of Seville, determining the metals Al, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Cd and Pb. We also study the effects of metallic species in the alteration processes on rocks material, in base to the SO{sub 2}/SO{sub 4}{sup {minus}{minus}}. The project develops in two years: in the first, we develop the methods of chemistry speciation based on the extraction with different reagents and the methods of physical speciation based on the particle size distribution with cascade impactors. Also, we develop the methodology for the environmental simulation of alteration processes, in base to the heterogeneous catalysis, by metallic ions, of the SO{sub 2} on the surface of the stone. In the second year we apply the methods of speciation to the study of the contamination by heavy metals in the city of Seville. This part divides in two phases: a first of the preliminary study in the city in order to identify the different polluting focuses, and a secondary of study of the contamination produced by punctual sources, in the more polluted points of the city. On the other hand, the study of the alteration processes of rock materials has centred on materials employees in monuments of the city and on application of the catalyzers found in the particulate matter of the true environment of the materials. (Author)

  8. Carbon sources in suspended particles and surface sediments from the Beaufort Sea revealed by molecular lipid biomarkers and compound-specific isotope analysis

    Directory of Open Access Journals (Sweden)

    I. Tolosa

    2013-03-01

    Full Text Available Molecular lipid biomarkers (hydrocarbons, alcohols, sterols and fatty acids and compound-specific isotope analysis of suspended particulate organic matter (SPM and surface sediments of the Mackenzie Shelf and slope (southeast Beaufort Sea, Arctic Ocean were studied in summer 2009. The concentrations of the molecular lipid markers, characteristic of known organic matter sources, were grouped and used as proxies to evaluate the relative importance of fresh algal, detrital algal, fossil, C3 terrestrial plants, bacterial and zooplankton material in the organic matter (OM of this area. Fossil and detrital algal contributions were the major fractions of the freshwater SPM from the Mackenzie River with ~34% each of the total molecular biomarkers. Fresh algal, C3 terrestrial, bacterial and zooplanktonic components represented much lower percentages, 17, 10, 4 and 80%, with a minor contribution of fossil and C3 terrestrial biomarkers. Characterization of the sediments revealed a major sink of refractory algal material mixed with some fresh algal material, fossil hydrocarbons and a small input of C3 terrestrial sources. In particular, the sediments from the shelf and at the mouth of the Amundsen Gulf presented the highest contribution of detrital algal material (60–75%, whereas those from the slope contained the highest proportion of fossil (40% and C3 terrestrial plant material (10%. Overall, considering that the detrital algal material is marine derived, autochthonous sources contributed more than allochthonous sources to the OM lipid pool. Using the ratio of an allochthonous biomarker (normalized to total organic carbon, TOC found in the sediments to those measured at the river mouth water, we estimated that the fraction of terrestrial material preserved in the sediments accounted for 30–40% of the total carbon in the inner shelf sediments, 17% in the outer shelf and Amundsen Gulf and up to 25% in the slope sediments. These estimates are low

  9. Homogeneous nucleation of magnesium hydroxide.

    Science.gov (United States)

    Klein, D H; Smith, M D; Driy, J A

    1967-08-01

    The rate of homogeneous nucleation of magnesium hydroxide has been determined as a function of solution concentration, using a quasi-homogeneous precipitation technique and electronic particle counting. The nucleation rate becomes measurable at super-saturations of about 4, and is dependent on the 33rd power of the product aMgaOH(2). The experimental results are consistent with nucleation theory. The nucleus-solution interfacial energy is calculated to be 115 erg/cm(2).

  10. Environmental toxicology: Acute effects of suspended particulate ...

    African Journals Online (AJOL)

    The elemental contents of suspended particulate matter (dust) samples from Maiduguri, Nigeria, were determined which showed appreciably high levels for especially Pb, Fe, Cu, Zn, K, Ca, and. Na. Wister albino rats were exposed to graded doses of phosphate buffered saline carried dust particles. The hematological ...

  11. Computational study of scattering of a zero-order Bessel beam by large nonspherical homogeneous particles with the multilevel fast multipole algorithm

    Science.gov (United States)

    Yang, Minglin; Wu, Yueqian; Sheng, Xinqing; Ren, Kuan Fang

    2017-12-01

    Computation of scattering of shaped beams by large nonspherical particles is a challenge in both optics and electromagnetics domains since it concerns many research fields. In this paper, we report our new progress in the numerical computation of the scattering diagrams. Our algorithm permits to calculate the scattering of a particle of size as large as 110 wavelengths or 700 in size parameter. The particle can be transparent or absorbing of arbitrary shape, smooth or with a sharp surface, such as the Chebyshev particles or ice crystals. To illustrate the capacity of the algorithm, a zero order Bessel beam is taken as the incident beam, and the scattering of ellipsoidal particles and Chebyshev particles are taken as examples. Some special phenomena have been revealed and examined. The scattering problem is formulated with the combined tangential formulation and solved iteratively with the aid of the multilevel fast multipole algorithm, which is well parallelized with the message passing interface on the distributed memory computer platform using the hybrid partitioning strategy. The numerical predictions are compared with the results of the rigorous method for a spherical particle to validate the accuracy of the approach. The scattering diagrams of large ellipsoidal particles with various parameters are examined. The effect of aspect ratios, as well as half-cone angle of the incident zero-order Bessel beam and the off-axis distance on scattered intensity, is studied. Scattering by asymmetry Chebyshev particle with size parameter larger than 700 is also given to show the capability of the method for computing scattering by arbitrary shaped particles.

  12. Efficient general procedure to access a diversity of gold(0) particles and gold(I) phosphine complexes from a simple HAuCl4 source. Localization of homogeneous/heterogeneous system's interface and field-emission scanning electron microscopy study.

    Science.gov (United States)

    Zalesskiy, Sergey S; Sedykh, Alexander E; Kashin, Alexey S; Ananikov, Valentine P

    2013-03-06

    Soluble gold precatalysts, aimed for homogeneous catalysis, under certain conditions may form nanoparticles, which dramatically change the mechanism and initiate different chemistry. The present study addresses the question of designing gold catalysts, taking into account possible interconversions and contamination at the homogeneous/heterogeneous system's interface. It was revealed that accurate localization of boundary experimental conditions for formation of molecular gold complexes in solution versus nucleation and growth of gold particles opens new opportunities for well-known gold chemistry. Within the developed concept, a series of practical procedures was created for efficient synthesis of soluble gold complexes with various phosphine ligands (R3P)AuCl (90-99% yield) and for preparation of different types of gold materials. The effect of the ligand on the particles growth in solution has been observed and characterized with high-resolution field-emission scanning electron microscopy (FE-SEM) study. Two unique types of nanostructured gold materials were prepared: hierarchical agglomerates and gold mirror composed of ultrafine smoothly shaped particles.

  13. Nanometer Sized Silver Particles Embedded Silica Particles—Spray Method

    Directory of Open Access Journals (Sweden)

    Karunagaran B

    2009-01-01

    Full Text Available Abstract Spherical shaped, nanometer to micro meter sized silica particles were prepared in a homogeneous nature by spray technique. Silver nanoparticles were produced over the surface of the silica grains in a harmonized manner. The size of silver and silica particles was effectively controlled by the precursors and catalysts. The electrostatic repulsion among the silica spheres and the electro static attraction between silica spheres and silver particles make the synchronized structure of the synthesized particles and the morphological images are revealed by transmission electron microscope. The silver ions are reduced by sodium borohydride. Infra red spectroscopy and X-ray photoelectron spectroscopy analysis confirm the formation of silver–silica composite particles. Thermal stability of the prepared particles obtained from thermal analysis ensures its higher temperature applications. The resultant silver embedded silica particles can be easily suspended in diverse solvents and would be useful for variety of applications.

  14. Synthesis of silica nanosphere from homogeneous and ...

    Indian Academy of Sciences (India)

    WINTEC

    Abstract. Silica nanosphere was synthesized using homogeneous and heterogeneous systems, respectively. In homogeneous system, silica spheres were synthesized without cetyltrimethylammonium bromide (CTABr), which gave bimodal particle size and lower yield (77%). To improve the yield, CTABr was added and ...

  15. Monte Carlo implementation of Schiff's approximation for estimating radiative properties of homogeneous, simple-shaped and optically soft particles: Application to photosynthetic micro-organisms

    Science.gov (United States)

    Charon, Julien; Blanco, Stéphane; Cornet, Jean-François; Dauchet, Jérémi; El Hafi, Mouna; Fournier, Richard; Abboud, Mira Kaissar; Weitz, Sebastian

    2016-03-01

    In the present paper, Schiff's approximation is applied to the study of light scattering by large and optically-soft axisymmetric particles, with special attention to cylindrical and spheroidal photosynthetic micro-organisms. This approximation is similar to the anomalous diffraction approximation but includes a description of phase functions. Resulting formulations for the radiative properties are multidimensional integrals, the numerical resolution of which requires close attention. It is here argued that strong benefits can be expected from a statistical resolution by the Monte Carlo method. But designing such efficient Monte Carlo algorithms requires the development of non-standard algorithmic tricks using careful mathematical analysis of the integral formulations: the codes that we develop (and make available) include an original treatment of the nonlinearity in the differential scattering cross-section (squared modulus of the scattering amplitude) thanks to a double sampling procedure. This approach makes it possible to take advantage of recent methodological advances in the field of Monte Carlo methods, illustrated here by the estimation of sensitivities to parameters. Comparison with reference solutions provided by the T-Matrix method is presented whenever possible. Required geometric calculations are closely similar to those used in standard Monte Carlo codes for geometric optics by the computer-graphics community, i.e. calculation of intersections between rays and surfaces, which opens interesting perspectives for the treatment of particles with complex shapes.

  16. Investigation of the Influence of Sucrose and Cholesterol on the Phase Transition Temperature of nanoliposomal formulation besides using particle size Reduction Techniques (Ultrasonication/High Pressure Homogenization

    Directory of Open Access Journals (Sweden)

    Z Malaei-Balasi

    2017-05-01

    Full Text Available Introduction: The successful application of nanoliposoms as an effective drug delivery system depends on their stability in the medium. In this article, influence of additive materials such as cholesterol and sucrose besides two natural and synthesized phospholipids have been investigated. Methods: In the present study, designing and synthesis of nanoliposomal formulations were prepared using thin film method. This liposomal suspension was downsized by two methods, the high-pressure homogenizer and ultrasound to form small unilamellar vesicles. The size distributions, zeta potentials and phase transition temperature of formulations were all determined by a zetasizer and differential scanning calorimetry(DSC. In addition, the contribution of nanoliposomal formulation has been investigated by HPLC and FTIR methods. Results: Results of the DSC measurments indicated that incorporation of unsaturated phospholipid (SOY PC may cause phase separation with partial miscibility in the liposome bilayer containing of DPPG. The optimal nanoliposomal formulation was composed of (DPPC: CHOL: mPEG2000-DSPE with the mole percents equal to (83:15:2, respectively. In addition, sucrose has been used in the formulation with a total amounts six times greater than that of the lipids. The properties of optimized nanoliposome have been shown as the size average 104nm, zeta potential 8.04mv and phase transition temperature of lipid less than 37°C which were stable enough to be utilized for loading and releasing bioactives in body temperature. Conclusion: Finally the produced nanoliposomes were stable vesicles in the proper size, phase transition temperature and surface charge without any aggregation and fusion.

  17. Cable suspended windmill

    Science.gov (United States)

    Farmer, Moses G. (Inventor)

    1990-01-01

    A windmill is disclosed which includes an airframe having an upwind end and a downwind end. The first rotor is rotatably connected to the airframe, and a generator is supported by the airframe and driven by the rotor. The airframe is supported vertically in an elevated disposition by poles which extend vertically upwardly from the ground and support cables which extend between the vertical poles. Suspension cables suspend the airframe from the support cable.

  18. Sedimentation of suspended solids in ultrasound field

    Directory of Open Access Journals (Sweden)

    Vikulina Vera

    2018-01-01

    Full Text Available Physical and chemical effects of aquatic environment that occur in an ultrasonic field change the sedimentation rate of coagulated suspension. This might only happen in case of cavitation of ultrasonic filed that causes a change of potentials of the medium. Research of the influence of ultrasonic vibrations on coagulation of suspended solids within water purification allows expanding their scope of implementation. The objective of the research is to estimate the effect of ultrasound on the sedimentation of the suspended solids, to determine of the efficiency of the process in relation to the dose of the coagulant, and to calculate the numerical values of the constants in the theoretical equation. The experiment condition was held in the water with the clay substances before the introduction of the coagulant. The method of magnetostriction ultrasonic generator was applied to receive ultrasonic vibration. Estimate of concentration of clay particles in water was performed using photometry. As a result of the research, the obtained data allow determining the increase in efficiency of suspended particles sedimentation related to the dose of coagulant, depending on time of ultrasonic treatment. The experiments confirmed the connection between the effect of sedimentation in the coagulation process, the coagulant dose and the time of scoring. Studies have shown that the increase in the duration of ultrasonic treatment causes a decrease of administered doses of coagulant.

  19. Electromagnetic properties of multiferroic magnetoelectric BaTiO{sub 3}-Co{sub x}Fe{sub 3-x}O{sub 4} core-shell particles obtained by homogeneous coprecipitation

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Mei, E-mail: yumei@buaa.edu.cn [School of Materials Science and Engineering, Beihang University, Beijing 100191 (China); Hu, Jingzhi [School of Materials Science and Engineering, Beihang University, Beijing 100191 (China); Liu, Jianhua, E-mail: liujh@buaa.edu.cn [School of Materials Science and Engineering, Beihang University, Beijing 100191 (China); Li, Songmei [School of Materials Science and Engineering, Beihang University, Beijing 100191 (China)

    2013-01-15

    Electromagnetic properties of multiferroic magnetoelectric core-shell structured BaTiO{sub 3}-Co{sub x}Fe{sub 3-x}O{sub 4} composite particles synthesized by homogeneous coprecipitation method were studied. The complex permeability and permittivity of samples prepared with different R values (the molar ratio of FeCl{sub 2}{center_dot}4H{sub 2}O to CoCl{sub 2}{center_dot}6H{sub 2}O, M(FeCl{sub 2}{center_dot}4H{sub 2}O)/M(CoCl{sub 2}{center_dot}6 H{sub 2}O)) during the coprecipitation processes were measured in the frequency range of 2-8 GHz by a network vector analyzer. The result showed that the electromagnetic parameters of BaTiO{sub 3}-Co{sub x}Fe{sub 3-x}O{sub 4} core-shell particles could be controlled effectively by adjusting the R value of reaction solution. The increasing R value intensified the interfacial polarization process, leading the {epsilon} Prime value of BaTiO{sub 3}-Co{sub x}Fe{sub 3-x}O{sub 4} core-shell particles to increase and the fluctuation of {epsilon} Double-Prime curves to become obvious. Meanwhile, the increasing R value enhanced M{sub s} and adjusted the direction of easy magnetization axis, which resulted in the {mu} Prime value of BaTiO{sub 3}-Co{sub x}Fe{sub 3-x}O{sub 4} core-shell particles getting increased and the resonance peak of {mu} Double-Prime moving to a higher frequency. The increased complex permeability and permittivity also resulted in an improvement of dielectric and magnetic loss. - Highlights: Black-Right-Pointing-Pointer We studied electromagnetic properties of BaTiO{sub 3}-Co{sub x}Fe{sub 3-x}O{sub 4} core-shell particles. Black-Right-Pointing-Pointer The molar ratio of FeCl{sub 2}{center_dot}4H{sub 2}O to CoCl{sub 2}{center_dot}6 H{sub 2}O(R) controls electromagnetic parameters. Black-Right-Pointing-Pointer Interfacial polarization adjusted by R affects {epsilon} Prime value and the fluctuation of {epsilon} Double-Prime . Black-Right-Pointing-Pointer M{sub s} enhanced by increasing R makes the {mu} Prime increase

  20. Dispersive suspended microextraction.

    Science.gov (United States)

    Yang, Zhong-Hua; Liu, Yu; Lu, Yue-Le; Wu, Tong; Zhou, Zhi-Qiang; Liu, Dong-Hui

    2011-11-14

    A novel sample pre-treatment technique termed dispersive suspended microextraction (DSME) coupled with gas chromatography-flame photometric detection (GC-FPD) has been developed for the determination of eight organophosphorus pesticides (ethoprophos, malathion, chlorpyrifos, isocarbophos, methidathion, fenamiphos, profenofos, triazophos) in aqueous samples. In this method, both extraction and two phases' separation process were performed by the assistance of magnetic stirring. After separating the two phases, 1 μL of the suspended phase was injected into GC for further instrument analysis. Varieties of experiment factors which could affect the experiment results were optimized and the following were selected: 12.0 μL p-xylene was selected as extraction solvent, extraction speed was 1200 rpm, extraction time was 30 s, the restoration speed was 800 rpm, the restoration time was 8 min, and no salt was added. Under the optimum conditions, limits of detections (LODs) varied between 0.01 and 0.05 μg L(-1). The relative standard deviation (RSDs, n=6) ranged from 4.6% to 12.1%. The linearity was obtained by five points in the concentration range of 0.1-100.0 μg L(-1). Correlation coefficients (r) varied from 0.9964 to 0.9995. The enrichment factors (EFs) were between 206 and 243. In the final experiment, the developed method has been successfully applied to the determination of organophosphorus pesticides in wine and tap water samples and the obtained recoveries were between 83.8% and 101.3%. Compared with other pre-treatment methods, DSME has its own features and could achieve satisfied results for the analysis of trace components in complicated matrices. Copyright © 2011 Elsevier B.V. All rights reserved.

  1. Statistical methods for assessment of blend homogeneity

    DEFF Research Database (Denmark)

    Madsen, Camilla

    2002-01-01

    of internal factors to the blend e.g. the particle size distribution. The relation between particle size distribution and the variation in drug content in blend and tablet samples is discussed. A central problem is to develop acceptance criteria for blends and tablet batches to decide whether the blend......In this thesis the use of various statistical methods to address some of the problems related to assessment of the homogeneity of powder blends in tablet production is discussed. It is not straight forward to assess the homogeneity of a powder blend. The reason is partly that in bulk materials....... Some methods have a focus on exploratory analysis where the aim is to investigate the spatial distribution of drug content in the batch. Other methods presented focus on describing the overall (total) (in)homogeneity of the blend. The overall (in)homogeneity of the blend is relevant as it is closely...

  2. Turbulent diffusion of small particles

    Energy Technology Data Exchange (ETDEWEB)

    Margolin, L.G.

    1977-11-01

    The diffusion of small, spherical, rigid particles suspended in an incompressible turbulent fluid, but not interacting with each other, was studied. As a stochastic process, the turbulent fluid velocity field is assumed to be homogeneous, isotropic and stationary. Assuming the Stokes regime, a particle of equation of motion is used which includes only the effects of Stokes drag and a virtual mass force and an exact solution is found for the particle velocity correlation function, for all times and initial conditions, in terms of a fluid velocity correlation function measured along the motion of the particle. This shows that for times larger than a certain time scale, the particle velocity correlation becomes stationary. The effect of small shears in the fluid velocity was considered, under the additional restrictions of a certain high frequency regime for the turbulence. The shears convected past the particle much faster than the growth of the boundary layer. New force terms due to the presence of such shears are calculated and incorporated into the equation of motion. A perturbation solution to this equation is constructed, and the resultant particle velocity correlation function and diffusion coefficient are calculated. To lowest order, the particle diffusivity is found to be unaltered by the presence of small mean flow shears. The last model treated is one in which particles traverse a turbulent fluid with a large mean velocity. Among other restrictions, linearized form drag is assumed. The diffusion coefficient for such particles was calculated, and found to be much smaller than the passive scalar diffusion coefficient. This agrees within 5 percent with the experimental results of Snyder and Lumley.

  3. Evaluating turbidity and suspended-sediment concentration relations from the North Fork Toutle River basin near Mount St. Helens, Washington; annual, seasonal, event, and particle size variations - a preliminary analysis.

    Science.gov (United States)

    Uhrich, Mark A.; Spicer, Kurt R.; Mosbrucker, Adam; Christianson, Tami

    2015-01-01

    Regression of in-stream turbidity with concurrent sample-based suspended-sediment concentration (SSC) has become an accepted method for producing unit-value time series of inferred SSC (Rasmussen et al., 2009). Turbidity-SSC regression models are increasingly used to generate suspended-sediment records for Pacific Northwest rivers (e.g., Curran et al., 2014; Schenk and Bragg, 2014; Uhrich and Bragg, 2003). Recent work developing turbidity-SSC models for the North Fork Toutle River in Southwest Washington (Uhrich et al., 2014), as well as other studies (Landers and Sturm, 2013, Merten et al., 2014), suggests that models derived from annual or greater datasets may not adequately reflect shorter term changes in turbidity-SSC relations, warranting closer inspection of such relations. In-stream turbidity measurements and suspended-sediment samples have been collected from the North Fork Toutle River since 2010. The study site, U.S. Geological Survey (USGS) streamgage 14240525 near Kid Valley, Washington, is 13 river km downstream of the debris avalanche emplaced by the 1980 eruption of Mount St. Helens (Lipman and Mullineaux, 1981), and 2 river km downstream of the large sediment retention structure (SRS) built from 1987–1989 to mitigate the associated sediment hazard. The debris avalanche extends roughly 25 km down valley from the edifice of the volcano and is the primary source of suspended sediment moving past the streamgage (NF Toutle-SRS). Other significant sources are debris flow events and sand deposits upstream of the SRS, which are periodically remobilized and transported downstream. Also, finer material often is derived from the clay-rich original debris avalanche deposit, while coarser material can derive from areas such as fluvially reworked terraces.

  4. Optimizing homogenization by chaotic unmixing?

    Science.gov (United States)

    Weijs, Joost; Bartolo, Denis

    2016-11-01

    A number of industrial processes rely on the homogeneous dispersion of non-brownian particles in a viscous fluid. An ideal mixing would yield a so-called hyperuniform particle distribution. Such configurations are characterized by density fluctuations that grow slower than the standard √{ N}-fluctuations. Even though such distributions have been found in several natural structures, e.g. retina receptors in birds, they have remained out of experimental reach until very recently. Over the last 5 years independent experiments and numerical simulations have shown that periodically driven suspensions can self-assemble hyperuniformally. Simple as the recipe may be, it has one important disadvantage. The emergence of hyperuniform states co-occurs with a critical phase transition from reversible to non reversible particle dynamics. As a consequence the homogenization dynamics occurs over a time that diverges with the system size (critical slowing down). Here, we discuss how this process can be sped up by exploiting the stirring properties of chaotic advection. Among the questions that we answer are: What are the physical mechanisms in a chaotic flow that are relevant for hyperuniformity? How can we tune the flow parameters such to obtain optimal hyperuniformity in the fastest way? JW acknowledges funding by NWO (Netherlands Organisation for Scientific Research) through a Rubicon Grant.

  5. Investigation of suspended sediment transport using ultrasonic techniques

    DEFF Research Database (Denmark)

    Bjørnø, Irina; Jensen, Leif Bjørnø

    1994-01-01

    The results of the initial experimental studies involving the scattering of ultrasonic signals from canonical and non-canonical shaped suspended particles with known elastical qualities are reported. These results have formed the basis for the development of a numerical model for ultrasound...

  6. Homogeneity of Inorganic Glasses

    DEFF Research Database (Denmark)

    Jensen, Martin; Zhang, L.; Keding, Ralf

    2011-01-01

    Homogeneity of glasses is a key factor determining their physical and chemical properties and overall quality. However, quantification of the homogeneity of a variety of glasses is still a challenge for glass scientists and technologists. Here, we show a simple approach by which the homogeneity...... of different glass products can be quantified and ranked. This approach is based on determination of both the optical intensity and dimension of the striations in glasses. These two characteristic values areobtained using the image processing method established recently. The logarithmic ratio between...... the dimension and the intensity is used to quantify and rank the homogeneity of glass products. Compared with the refractive index method, the image processing method has a wider detection range and a lower statistical uncertainty....

  7. On horizons in homogeneous isotropic universes

    Science.gov (United States)

    Patzelt, Harald

    1990-11-01

    In homogeneous isotropic universes the particle horizon defines causally connected regions. For inflationary universes it is known that microphysics can interact coherently only on a much smaller scale. Here an interaction horizon is introdued that allows this scale to be determined for Robertson-Walker models. During inflation its upper bound is the event horizon.

  8. Stability of titania nanoparticles in soil suspensions and transport in saturated homogeneous soil columns.

    Science.gov (United States)

    Fang, Jing; Shan, Xiao-quan; Wen, Bei; Lin, Jin-ming; Owens, Gary

    2009-04-01

    The stability of TiO(2) nanoparticles in soil suspensions and their transport behavior through saturated homogeneous soil columns were studied. The results showed that TiO(2) could remain suspended in soil suspensions even after settling for 10 days. The suspended TiO(2) contents in soil suspensions after 24h were positively correlated with the dissolved organic carbon and clay content of the soils, but were negatively correlated with ionic strength, pH and zeta potential. In soils containing soil particles of relatively large diameters and lower solution ionic strengths, a significant portion of the TiO(2) (18.8-83.0%) readily passed through the soils columns, while TiO(2) was significantly retained by soils with higher clay contents and salinity. TiO(2) aggregate sizes in the column outflow significantly increased after passing through the soil columns. The estimated transport distances of TiO(2) in some soils ranged from 41.3 to 370 cm, indicating potential environmental risk of TiO(2) nanoparticles to deep soil layers.

  9. Feasibility Study of Aseptic Homogenization: Affecting Homogenization Steps on Quality of Sterilized Coconut Milk

    Directory of Open Access Journals (Sweden)

    Phungamngoen Chanthima

    2016-01-01

    Full Text Available Coconut milk is one of the most important protein-rich food sources available today. Separation of an emulsion into an aqueous phase and cream phase is commonly occurred and this leads an unacceptably physical defect of either fresh or processed coconut milk. Since homogenization steps are known to affect the stability of coconut milk. This work was aimed to study the effect of homogenization steps on quality of coconut milk. The samples were subject to high speed homogenization in the range of 5000-15000 rpm under sterilize temperatures at 120-140 °C for 15 min. The result showed that emulsion stability increase with increasing speed of homogenization. The lower fat particles were generated and easy to disperse in continuous phase lead to high stability. On the other hand, the stability of coconut milk decreased, fat globule increased, L value decreased and b value increased when the high sterilization temperature was applied. Homogenization after heating led to higher stability than homogenization before heating due to the reduced particle size of coconut milk after aggregation during sterilization process. The results implied that homogenization after sterilization process might play an important role on the quality of the sterilized coconut milk.

  10. Homogeneity and Entropy

    Science.gov (United States)

    Tignanelli, H. L.; Vazquez, R. A.; Mostaccio, C.; Gordillo, S.; Plastino, A.

    1990-11-01

    RESUMEN. Presentamos una metodologia de analisis de la homogeneidad a partir de la Teoria de la Informaci6n, aplicable a muestras de datos observacionales. ABSTRACT:Standard concepts that underlie Information Theory are employed in order design a methodology that enables one to analyze the homogeneity of a given data sample. Key : DATA ANALYSIS

  11. Suspended animation for delayed resuscitation.

    Science.gov (United States)

    Safar, Peter J; Tisherman, Samuel A

    2002-04-01

    'Suspended animation for delayed resuscitation' is a new concept for attempting resuscitation from cardiac arrest of patients who currently (totally or temporarily) cannot be resuscitated, such as traumatic exsanguination cardiac arrest. Suspended animation means preservation of the viability of brain and organism during cardiac arrest, until restoration of stable spontaneous circulation or prolonged artificial circulation is possible. Suspended animation for exsanguination cardiac arrest of trauma victims would have to be induced within the critical first 5 min after the start of cardiac arrest no-flow, to buy time for transport and resuscitative surgery (hemostasis) performed during no-flow. Cardiac arrest is then reversed with all-out resuscitation, usually requiring cardiopulmonary bypass. Suspended animation has been explored and documented as effective in dogs in terms of long-term survival without brain damage after very prolonged cardiac arrest. In the 1990s, the Pittsburgh group achieved survival without brain damage in dogs after cardiac arrest of up to 90 min no-flow at brain (tympanic) temperature of 10 degrees C, with functionally and histologically normal brains. These studies used emergency cardiopulmonary bypass with heat exchanger or a single hypothermic saline flush into the aorta, which proved superior to pharmacologic strategies. For the large number of normovolemic sudden cardiac death victims, which currently cannot be resuscitated, more research in large animals is needed.

  12. Batch fabrication of nanotubes suspended between microelectrodes

    DEFF Research Database (Denmark)

    Mateiu, Ramona Valentina; Stöckli, T.; Knapp, H. F.

    2007-01-01

    We report a fabrication method, which uses standard UV-lithography to pattern the catalyst for the chemical vapour deposition(CVD) of suspended double clamped single walled carbon nanotubes. By using an aqueous solution of Fe(NO3)3 the patterning of the catalyst material onto microelectrodes can...... be done with a simple lift-off process with standard photolithographic resist. An applied electric field is sustained between the microelectrodes during CVD to guide the nanotube growth. Comparison with simulations shows that the location and the orientation of the grown carbon nanotubes (CNT) correspond...... to the regions of maximum electric field, enabling accurate positioning of a nanotube by controlling the shape of the microelectrodes. The CNT bridges are deflected tens of nm when a DC voltage is applied between the nanotube and a gate microelectrode indicating that the clamping through the catalyst particles...

  13. Homogenous finitary symmetric groups

    Directory of Open Access Journals (Sweden)

    Otto‎. ‎H‎. Kegel

    2015-03-01

    Full Text Available We characterize strictly diagonal type of embeddings of finitary symmetric groups in terms of cardinality and the characteristic. Namely, we prove the following. Let kappa be an infinite cardinal. If G=underseti=1stackrelinftybigcupG i , where G i =FSym(kappan i , (H=underseti=1stackrelinftybigcupH i , where H i =Alt(kappan i , is a group of strictly diagonal type and xi=(p 1 ,p 2 ,ldots is an infinite sequence of primes, then G is isomorphic to the homogenous finitary symmetric group FSym(kappa(xi (H is isomorphic to the homogenous alternating group Alt(kappa(xi , where n 0 =1,n i =p 1 p 2 ldotsp i .

  14. Homogeneous group, research, institution

    Directory of Open Access Journals (Sweden)

    Francesca Natascia Vasta

    2014-09-01

    Full Text Available The work outlines the complex connection among empiric research, therapeutic programs and host institution. It is considered the current research state in Italy. Italian research field is analyzed and critic data are outlined: lack of results regarding both the therapeutic processes and the effectiveness of eating disorders group analytic treatment. The work investigates on an eating disorders homogeneous group, led into an eating disorder outpatient service. First we present the methodological steps the research is based on including the strong connection among theory and clinical tools. Secondly clinical tools are described and the results commented. Finally, our results suggest the necessity of validating some more specifical hypothesis: verifying the relationship between clinical improvement (sense of exclusion and painful emotions reduction and specific group therapeutic processes; verifying the relationship between depressive feelings, relapses and transition trough a more differentiated groupal field.Keywords: Homogeneous group; Eating disorders; Institutional field; Therapeutic outcome

  15. Analysis of Physical Properties of Dust Suspended in the Mars Atmosphere

    Science.gov (United States)

    Snook, Kelly; McKay, Chris; Cantwell, Brian

    1998-01-01

    Methods for iteratively determining the infrared optical constants for dust suspended in the Mars atmosphere are described. High quality spectra for wavenumbers from 200 to 2000 1/cm were obtained over a wide range of view angles by the Mariner 9 spacecraft, when it observed a global Martian dust storm in 1971-2. In this research, theoretical spectra of the emergent intensity from Martian dust clouds are generated using a 2-stream source-function radiative transfer code. The code computes the radiation field in a plane-parallel, vertically homogeneous, multiply scattering atmosphere. Calculated intensity spectra are compared with the actual spacecraft data to iteratively retrieve the optical properties and opacity of the dust, as well as the surface temperature of Mars at the time and location of each measurement. Many different particle size distributions a-re investigated to determine the best fit to the data. The particles are assumed spherical and the temperature profile was obtained from the CO2 band shape. Given a reasonable initial guess for the indices of refraction, the searches converge in a well-behaved fashion, producing a fit with error of less than 1.2 K (rms) to the observed brightness spectra. The particle size distribution corresponding to the best fit was a lognormal distribution with a mean particle radius, r(sub m) 0.66 pm, and variance, omega(sup 2) = 0.412 (r(sub eff) = 1.85 microns, v(sub eff) =.51), in close agreement with the size distribution found to be the best fit in the visible wavelengths in recent studies. The optical properties and the associated single scattering properties are shown to be a significant improvement over those used in existing models by demonstrating the effects of the new properties both on heating rates of the Mars atmosphere and in example spectral retrieval of surface characteristics from emission spectra.

  16. Homogeneous bilateral block shifts

    Indian Academy of Sciences (India)

    Introduction. We write D for the complex unit disc and G for the Möbius group, the group of holo- morphic self-maps of D. A bounded operator T on a Hilbert space H is said to be homogeneous if its spectrum is contained in ¯D and for every g in G there exists a unitary operator U(g) such that g(T ) = U(g). −1. T U (g).

  17. Dynamics of homogeneous nucleation

    DEFF Research Database (Denmark)

    Toxværd, Søren

    2015-01-01

    The classical nucleation theory for homogeneous nucleation is formulated as a theory for a density fluctuation in a supersaturated gas at a given temperature. But molecular dynamics simulations reveal that it is small cold clusters which initiates the nucleation. The temperature in the nucleating...... or shrink by accretion or evaporation of monomers only but also by an exponentially declining change in cluster size per time step equal to the cluster distribution in the supersaturated gas....

  18. Homogenization of dislocation dynamics

    Energy Technology Data Exchange (ETDEWEB)

    El Hajj, Ahmad; Ibrahim, Hassan; Monneau, Regis, E-mail: elhajj@cermics.enpc.fr, E-mail: ibrahim@cermics.enpc.fr, E-mail: monneau@cermics.enpc.fr [CERMICS, ENPC, 6 and 8 avenue Blaise Pascal, Cite Descartes, Champs sur Marne, 77455 Marne-la-Valle Cedex 2 (France)

    2009-07-15

    In this paper we consider the dynamics of dislocations with the same Burgers vector, contained in the same glide plane, and moving in a material with periodic obstacles. We study two cases: i) the particular case of parallel straight dislocations and ii) the general case of curved dislocations. In each case, we perform rigorously the homogenization of the dynamics and predict the corresponding effective macroscopic elasto-visco-plastic flow rule.

  19. Homogenization of resonant chiral metamaterials

    DEFF Research Database (Denmark)

    Andryieuski, Andrei; Menzel, C.; Rockstuhl, Carsten

    2010-01-01

    Homogenization of metamaterials is a crucial issue as it allows to describe their optical response in terms of effective wave parameters as, e.g., propagation constants. In this paper we consider the possible homogenization of chiral metamaterials. We show that for meta-atoms of a certain size...... an analytical criterion for performing the homogenization and a tool to predict the homogenization limit. We show that strong coupling between meta-atoms of chiral metamaterials may prevent their homogenization at all....

  20. Homogeneous M2 duals

    Energy Technology Data Exchange (ETDEWEB)

    Figueroa-O’Farrill, José [School of Mathematics and Maxwell Institute for Mathematical Sciences,The University of Edinburgh,James Clerk Maxwell Building, The King’s Buildings, Peter Guthrie Tait Road,Edinburgh EH9 3FD, Scotland (United Kingdom); Ungureanu, Mara [Humboldt-Universität zu Berlin, Institut für Mathematik,Unter den Linden 6, 10099 Berlin (Germany)

    2016-01-25

    Motivated by the search for new gravity duals to M2 branes with N>4 supersymmetry — equivalently, M-theory backgrounds with Killing superalgebra osp(N|4) for N>4 — we classify (except for a small gap) homogeneous M-theory backgrounds with symmetry Lie algebra so(n)⊕so(3,2) for n=5,6,7. We find that there are no new backgrounds with n=6,7 but we do find a number of new (to us) backgrounds with n=5. All backgrounds are metrically products of the form AdS{sub 4}×P{sup 7}, with P riemannian and homogeneous under the action of SO(5), or S{sup 4}×Q{sup 7} with Q lorentzian and homogeneous under the action of SO(3,2). At least one of the new backgrounds is supersymmetric (albeit with only N=2) and we show that it can be constructed from a supersymmetric Freund-Rubin background via a Wick rotation. Two of the new backgrounds have only been approximated numerically.

  1. High concentration suspended sediment measurments using acontinuous fiber optic in-stream transmissometer

    Energy Technology Data Exchange (ETDEWEB)

    Campbell, Chris G.; Laycak, Danny T.; Hoppes, William; Tran,Nguyen T.; Shi, Frank G.

    2004-05-26

    Suspended sediment loads mobilized during high flow periods in rivers and streams are largely uncharacterized. In smaller and intermittent streams, a large storm may transport a majority of the annual sediment budget. Therefore monitoring techniques that can measure high suspended sediment concentrations at semi-continuous time intervals are needed. A Fiber optic In-stream Transmissometer (FIT) is presented for continuous measurement of high concentration suspended sediment in storm runoff. FIT performance and precision were demonstrated to be reasonably good for suspended sediment concentrations up to 10g/L. The FIT was compared to two commercially available turbidity devices and provided better precision and accuracy at both high and low concentrations. Both turbidity devices were unable to collect measurements at concentrations greater than 4 g/L. The FIT and turbidity measurements were sensitive to sediment particle size. Particle size dependence of transmittance and turbidity measurement poses the greatest problem for calibration to suspended sediment concentration. While the FIT was demonstrated to provide acceptable measurements of high suspended sediment concentrations, approaches to real-time suspended sediment detection need to address the particle size dependence in concentration measurements.

  2. 7 CFR 1206.21 - Suspend.

    Science.gov (United States)

    2010-01-01

    ... part thereof during a particular period of time specified in the rule. ... AND ORDERS; MISCELLANEOUS COMMODITIES), DEPARTMENT OF AGRICULTURE MANGO PROMOTION, RESEARCH, AND INFORMATION Mango Promotion, Research, and Information Order Definitions § 1206.21 Suspend. Suspend means to...

  3. Development of a microfluidic interface for suspended microchannel resonators

    OpenAIRE

    Maillard, Damien

    2016-01-01

    Suspended microchannel resonators (SMRs) are devices that detect particles in liquid samples. In comparison with similar resonating devices that must be immersed, SMRs allow the fluids to flow through microfluidic resonators. This principle of operation leads to a great reduction of the required sample and to enhanced quality factors. As such, SMRs show great potential for a variety of sensing applications. This thesis reports on the final steps of the microfabrication of SMRs and on the deve...

  4. Model of the motion of a charged particle into a plasma during the interaction of an electromagnetic pulse elliptically polarized propagating in the direction of a static and homogeneous magnetic field; Modelo del movimiento de una particula cargada en un plasma durante la interaccion de un pulso electromagnetico elipticamente polarizado propagandose en la direccion de un campo magnetico estatico y homogeneo

    Energy Technology Data Exchange (ETDEWEB)

    Gomez R, F. [UAEM, A.P. 2-139, 50000 Toluca, Estado de Mexico (Mexico); Ondarza R, R. [ININ, 52045 Ocoyoacac, Estado de Mexico (Mexico)

    2004-07-01

    An analytical model for the description of the movement of a charged particle in the interaction of an electromagnetic pulse elliptically polarized propagating along of a static and homogeneous external magnetic field in a plasma starting from the force equation is presented. The method allows to express the solution in terms of the invariant phase, obtaining differential equations for the trajectory of the accelerated particle by means of an electromagnetic pulse of arbitrary amplitude and modulated by an encircling Gaussian. The numerical solutions reported in this work can find varied applications, for example in the physics of the interaction laser-plasma, in the acceleration of particles, in hot plasma and in radiative effects. (Author)

  5. Motion model for a charged particle in a plasma during the interaction of an electromagnetic pulse elliptically polarized propagating in the direction of a static and homogeneous magnetic field; Modelo del movimiento de una particula cargada en un plasma durante la interaccion de un pulso electromagnetico elipticamente polarizado propagandose en la direccion de un campo magnetico estatico y homogeneo

    Energy Technology Data Exchange (ETDEWEB)

    Gomez R, F. [UAEM, Facultad de Ciencias, 50000 Toluca, Estado de Mexico (Mexico); Ondarza R, R. [ININ, 52045 Ocoyoacac, Estado de Mexico (Mexico)

    2004-07-01

    An analytic model is presented for the description of the motion of a charged particle in the interaction of an elliptically electromagnetic pulse polarized propagating along a static and homogeneous external magnetic field in a plasma starting from the force equation. The method allows to express the solution in terms of the invariant phase, obtaining differential equations for the trajectory of the accelerated particle by means of an electromagnetic pulse of arbitrary and modulated width by an encircling Gaussian. The numerical solutions reported in this work can find varied applications, for example in the physics of the interaction laser-plasma, in the acceleration of particles, in hot plasma and in radioactive effects. (Author)

  6. Understanding the ice nucleation characteristics of feldspars suspended in solution

    Science.gov (United States)

    Kumar, Anand; Marcolli, Claudia; Kaufmann, Lukas; Krieger, Ulrich; Peter, Thomas

    2017-04-01

    Freezing of liquid droplets and subsequent ice crystal growth affects optical properties of clouds and precipitation. Field measurements show that ice formation in cumulus and stratiform clouds begins at temperatures much warmer than those associated with homogeneous ice nucleation in pure water, which is ascribed to heterogeneous ice nucleation occurring on the foreign surfaces of ice nuclei (IN). Various insoluble particles such as mineral dust, soot, metallic particles, volcanic ash, or primary biological particles have been suggested as IN. Among these the suitability of mineral dusts is best established. The ice nucleation ability of mineral dust particles may be modified when secondary organic or inorganic substances are accumulating on the dust during atmospheric transport. If the coating is completely wetting the mineral dust particles, heterogeneous ice nucleation occurs in immersion mode also below 100 % RH. A previous study by Zobrist et al. (2008) Arizona test dust, silver iodide, nonadecanol and silicon dioxide suspensions in various solutes showed reduced ice nucleation efficiency (in immersion mode) of the particles. Though it is still quite unclear how surface modifications and coatings influence the ice nucleation activity of the components present in natural dust particles at a microphysical scale. To improve our understanding how solute and mineral dust particle surface interaction, we run freezing experiments using a differential scanning calorimeter (DSC) with microcline, sanidine, plagioclase, kaolinite and quartz particles suspended in pure water and solutions containing ammonia, ammonium bisulfate, ammonium sulfate, ammonium chloride, ammonium nitrate, potassium chloride, potassium sulfate, sodium sulfate and sulfuric acid. Methodology Suspensions of mineral dust samples (2 - 5 wt%) are prepared in water with varying solute concentrations (0 - 15 wt%). 20 vol% of this suspension plus 80 vol% of a mixture of 95 wt% mineral oil (Aldrich

  7. High Shear Homogenization of Lignin to Nanolignin and Thermal Stability of Nanolignin-Polyvinyl Alcohol Blends

    Science.gov (United States)

    Sandeep S. Nair; Sudhir Sharma; Yunqiao Pu; Qining Sun; Shaobo Pan; J.Y. Zhu; Yulin Deng; Art J. Ragauskas

    2014-01-01

    A new method to prepare nanolignin using a simple high shear homogenizer is presented. The kraft lignin particles with a broad distribution ranging from large micron- to nano-sized particles were completely homogenized to nanolignin particles with sizes less than 100 nm after 4 h of mechanical shearing. The 13C nuclear magnetic resonance (NMR)...

  8. Unified theory of non-suspended sediment transport mediated by a Newtonian fluid

    Science.gov (United States)

    Pähtz, Thomas; Durán, Orencio

    2017-04-01

    We present a unified theory of steady, homogeneous, non-suspended transport of nearly uniform spheres mediated by an arbitrary Newtonian fluid. The theory consists of elements that are rigorously derived from Newton's axioms and of semi-empirical elements that well describe simulation data, obtained using a coupled DEM/RANS numerical model of sediment transport in a Newtonian fluid (Durán et al., POF 103306, 2012), for the entire simulated range of the particle-fluid-density ratio s=ρ_p/ρ_f, particle Reynolds number Re_p=√{(s-1)gd^3}/ν, and Shields number Θ=τ/[(ρ_p-ρ_f)gd], where g is the gravitational constant, d the mean particle diameter, and ν the kinematic viscosity. The theory takes into account our recent numerical finding that the mode of entrainment of bed sediment is controlled by the `impact number' Im=Re_p√{s+0.5} (https://arxiv.org/abs/1605.07306), with entrainment through particle-bed impacts dominating most conditions (including turbulent bedload transport). Despite not being fitted to experimental data, the theory simultaneously reproduces measurements in air (s≈2100) and liquids (s≈1{-}5) of the transport cessation threshold Θ^ext (https://arxiv.org/abs/1602.07079), obtained from extrapolation to vanishing transport, and the dimensionless value Q^\\ast=Q/(ρ_p√{(s-1)gd^3}) of the sediment transport rate Q. From the theory and simulations, we learn that considering added-mass, lubrication, fluid lift, and/or history forces is not required to quantitatively reproduce measurements. However, collisions between transported particles cannot be neglected as they are strongly influencing the scaling of Q_\\ast with Θ. We find such collisions are behind the asymptotic scaling Q_\\ast∝Θ^3Rep measured for transport in viscous liquids and also indirectly behind a transition from a linear scaling Q_\\ast∝√{Θ^ex_t}(Θ-Θ^ex_t) to a non-linear scaling Q_\\ast∝√{Θ}(Θ-Θ^ex_t) of the transport rate in turbulent bedload and

  9. Homogeneous Finsler Spaces

    CERN Document Server

    Deng, Shaoqiang

    2012-01-01

    "Homogeneous Finsler Spaces" is the first book to emphasize the relationship between Lie groups and Finsler geometry, and the first to show the validity in using Lie theory for the study of Finsler geometry problems. This book contains a series of new results obtained by the author and collaborators during the last decade. The topic of Finsler geometry has developed rapidly in recent years. One of the main reasons for its surge in development is its use in many scientific fields, such as general relativity, mathematical biology, and phycology (study of algae). This monograph introduc

  10. HOMOGENEOUS NUCLEAR POWER REACTOR

    Science.gov (United States)

    King, L.D.P.

    1959-09-01

    A homogeneous nuclear power reactor utilizing forced circulation of the liquid fuel is described. The reactor does not require fuel handling outside of the reactor vessel during any normal operation including complete shutdown to room temperature, the reactor being selfregulating under extreme operating conditions and controlled by the thermal expansion of the liquid fuel. The liquid fuel utilized is a uranium, phosphoric acid, and water solution which requires no gus exhaust system or independent gas recombining system, thereby eliminating the handling of radioiytic gas.

  11. Quantitative suspended sediment mapping using aircraft remotely sensed multispectral data. [in Virginia

    Science.gov (United States)

    Johnson, R. W.

    1975-01-01

    Suspended sediment is an important environmental parameter for monitoring water quality, water movement, and land use. Quantitative suspended sediment determinations were made from analysis of aircraft remotely sensed multispectral digital data. A statistical analysis and derived regression equation were used to determine and plot quantitative suspended sediment concentration contours in the tidal James River, Virginia, on May 28, 1974. From the analysis, a single band, Band 8 (0.70-0.74 microns), was adequate for determining suspended sediment concentrations. A correlation coefficient of 0.89 was obtained with a mean inaccuracy of 23.5 percent for suspended sediment concentrations up to about 50 mg/l. Other water quality parameters - secchi disc depth and chlorophyll - also had high correlations with the remotely sensed data. Particle size distribution had only a fair correlation with the remotely sensed data.

  12. Characterization and morphology of solids suspended in rain water; Caracterizacion y morfologia de solidos suspendidos en agua de lluvia

    Energy Technology Data Exchange (ETDEWEB)

    Iturbe G, J.L.; Lopez M, B.E.; Torre O, J. De la [Instituto Nacional de Investigaciones Nucleares, A.P. 18-1027, Mexico D.F. (Mexico)

    2000-07-01

    This work presents the results obtained from the analysis of rain water in Mexico. The study treats over the characterization and morphology of the solids suspended in form of particles in the atmosphere. The solids suspended were obtained of the pluvial precipitations after these have been centrifuged. Subsequently of the separation, the particulate matter was analysed by Sem and X-ray dispersive energy.

  13. Pseudoconvex and Disprisoning Homogeneous Sprays

    CERN Document Server

    Riego, L D

    1994-01-01

    The pseudoconvex and disprisoning conditions for geodesics of linear connections are extended to the solution curves of general homogeneous sprays. The main result is that pseudoconvexity and disprisonment are jointly stable in the fine topology on the space of all homogeneous sprays of any degree of homogeneity.

  14. HOMOGENEOUS NUCLEAR REACTOR

    Science.gov (United States)

    Hammond, R.P.; Busey, H.M.

    1959-02-17

    Nuclear reactors of the homogeneous liquid fuel type are discussed. The reactor is comprised of an elongated closed vessel, vertically oriented, having a critical region at the bottom, a lower chimney structure extending from the critical region vertically upwardly and surrounded by heat exchanger coils, to a baffle region above which is located an upper chimney structure containing a catalyst functioning to recombine radiolyticallydissociated moderator gages. In operation the liquid fuel circulates solely by convection from the critical region upwardly through the lower chimney and then downwardly through the heat exchanger to return to the critical region. The gases formed by radiolytic- dissociation of the moderator are carried upwardly with the circulating liquid fuel and past the baffle into the region of the upper chimney where they are recombined by the catalyst and condensed, thence returning through the heat exchanger to the critical region.

  15. A study of metal ion adsorption at low suspended-solid concentrations

    Science.gov (United States)

    Chang, Cecily C.Y.; Davis, J.A.; Kuwabara, J.S.

    1987-01-01

    A procedure for conducting adsorption studies at low suspended solid concentrations in natural waters (NaCl) concentration (0??1-0??002 m) and particle concentration (2-50 mg l-1). The lack of success of the Davis Leckie site bonding model in describing Zn(II) adsorption emphasizes the need for further studies of adsorption at low suspended-solid concentrations. ?? 1987.

  16. Surface clogging process modeling of suspended solids during urban stormwater aquifer recharge.

    Science.gov (United States)

    Wang, Zijia; Du, Xinqiang; Yang, Yuesuo; Ye, Xueyan

    2012-01-01

    Aquifer recharge, which uses urban stormwater, is an effective technique to control the negative effects of groundwater over-exploitation, while clogging problems in infiltration systems remain the key restricting factor in broadening its practice. Quantitative understanding of the clogging process is still very poor. A laboratory study was conducted to understand surface physical clogging processes, with the primary aim of developing a model for predicting suspended solid clogging processes before aquifer recharge projects start. The experiments investigated the clogging characteristics of different suspended solid sizes in recharge water by using a series of one-dimensional fine quartz sand columns. The results showed that the smaller the suspended particles in recharge water, the farther the distance of movement and the larger the scope of clogging in porous media. Clogging extents in fine sand were 1 cm, for suspended particle size ranging from 0.075 to 0.0385 mm, and 2 cm, for particles less than 0.0385 mm. In addition, clogging development occurred more rapidly for smaller suspended solid particles. It took 48, 42, and 36 hr respectively, for large-, medium-, and small-sized particles to reach pre-determined clogging standards. An empirical formula and iteration model for the surface clogging evolution process were derived. The verification results obtained from stormwater recharge into fine sand demonstrated that the model could reflect the real laws of the surface clogging process.

  17. Rippling instabilities in suspended nanoribbons

    Science.gov (United States)

    Wang, Hailong; Upmanyu, Moneesh

    2012-11-01

    Morphology mediates the interplay between the structure and electronic transport in atomically thin nanoribbons such as graphene as the relaxation of edge stresses occurs preferentially via out-of-plane deflections. In the case of end-supported suspended nanoribbons that we study here, past experiments and computations have identified a range of equilibrium morphologies, in particular, for graphene flakes, yet a unified understanding of their relative stability remains elusive. Here, we employ atomic-scale simulations and a composite framework based on isotropic elastic plate theory to chart out the morphological stability space of suspended nanoribbons with respect to intrinsic (ribbon elasticity) and engineered (ribbon geometry) parameters, and the combination of edge and body actuation. The computations highlight a rich morphological shape space that can be naturally classified into two competing shapes, bendinglike and twistlike, depending on the distribution of ripples across the interacting edges. The linearized elastic framework yields exact solutions for these rippled shapes. For compressive edge stresses, the body strain emerges as a key variable that controls their relative stability and in extreme cases stabilizes coexisting transverse ripples. Tensile edge stresses lead to dimples within the ribbon core that decay into the edges, a feature of obvious significance for stretchable nanoelectronics. The interplay between geometry and mechanics that we report should serve as a key input for quantifying the transport along these ribbons.

  18. Turbulence control of suspended matter aggregate size

    Science.gov (United States)

    Jago, C. F.; Jones, S. E.; Rippeth, T. P.; Simpson, J. H.

    2003-04-01

    The size and properties of the aggregates which comprise suspended particulate matter (SPM) change on short time and length scales in shelf seas. There is experimental and theoretical evidence to suggest that turbulence plays a key role in aggregation but there is contradictory evidence with respect to disaggregation: it has been proposed that sinking stresses, rather than turbulent stresses, are the dominant control of disaggregation. But there is little observational evidence for turbulence control of particle properties. New observations are presented which provide compelling evidence for turbulence control of both aggregation and disaggregation. TKE dissipation and particle size were measured in situ at stratified sites in the northern North Sea in 110 m water depth during the period of weakening of the seasonal thermocline (in October/November) and in the Clyde Sea in 55 m water depth (April). There were similar vertical distributions of TKE dissipation E, SPM concentration C, and particle size D at both sites. At the base of the thermocline, there were minima in E and C, but a maximum in D, indicating that enhanced aggregation was occurring in this region of low turbulent stress. In the bottom mixed layer, E and C increased, while D decreased due to disaggregation in this region of increasing turbulent stress towards the seabed. Particles settling out of the low stress region at the base of the thermocline began to disaggregate when E increased to 3.2x10-6 watts m-2. D did not correlate directly with E because aggregation is a function of collision frequency (and hence of both C and E): this can be accounted for using a simplified theoretical aggregation model which treats flocs as self-similar fractal entities and allows simultaneous floc formation and break up, specified as functions of C and E. It was found that in the northern North Sea the measured D represents an equilibrium size predicted by the model, while in the Clyde Sea tidal variation in both C

  19. Assessment of suspended particulate matters and their heavy metal content in the ambient air of Mobarakeh city, Isfahan, Iran

    OpenAIRE

    Avazali Saririan Mobarakeh; Bibi Fatemeh Nabavi; Mahnaz Nikaeen; Mohammad Mehdi Amin; Akbar Hassanzadeh; Kazem Nadafi

    2014-01-01

    Aim: This study was carried out to investigate the quality of Mobarakeh ambient air in terms of suspended particles and heavy metals. Material and Methods: The current study was carried out in Mobarakeh city, Isfahan, Iran. Air sampling was performed in three sites for a 1-year period (in 2007). Measurement of total suspended particles (TSP) and heavy metals was achieved using high volume air sampler with fiberglass filter. The concentration of heavy metals, including Pb, Ni, Zn, Fe, and ...

  20. Suspended matter in surface waters of the Atlantic continental margin from Cape Cod to the Florida keys

    Science.gov (United States)

    Manheim, F. T.; Meade, R.H.; Bond, G.C.

    1970-01-01

    Appreciable amounts of suspended matter (> 1.0 milligram per liter) in surface waters are restricted to within a few kilometers of the Atlantic coast. Particles that escape estuaries or are discharged by rivers into the shelf region tend to travel longshoreward rather than seaward. Suspended matter farther offshore, chiefly amorphous organic particles, totals 0.1 milligram per liter or less. Soot, fly ash, processed cellulose, and other pollutants are widespread.

  1. Development of homogeneous mixing technology of dispersion nuclear fuel

    Energy Technology Data Exchange (ETDEWEB)

    Hong, S. H.; Ryu, H. J.; Lee, H. S.; Kim, K. S.; Kim, P. W.; Mun, S. J. [Korea Advanced Institute of Science and Technology, Taejeon (Korea)

    2000-04-01

    The measurement methods of homogeneity of dispersion fuel were analyzed. The effects of mixing method, rotating speed, particle shape, particle size and moisture content on homogeneity of U{sub 3}Si/Al powder mixture were characterized by the apparent density measurement. The effects of fuel particle shape on green properties and optimum compaction conditions were investigated in U{sub 3}Si{sub 2}/Al powder compacts. 3 kinds of measurement method on the homogeneity were analyzed by apparent density measurement method, x-ray image contrast method and image analysis method of mixed powders or fuel rods. The homogeneity of dispersed fuel powder mixture was analyzed using three kinds of mixing, by apparent density measurements method. The homogeneity of powder mixture increased with rotating speed of the V-shape tumbler mixer. The comminuted irregular shaped particles and smaller particle size of fuel powders showed homogeneity improved of powder mixture due to adsorbed layer bonding. The homogeneity of powder mixtures increased to a minimum at approximately 0.10 wt% moisture and then decrease with moisture content. The relative density of the compacts increased with increasing the compacting pressure. The compressibility of comminuted powder compacts was larger than that of the atomized powder compacts due to the fragmentation of comminuted particles. The green strength of comminuted powder compacts is higher than that of the atomized powder compact. It is suggested that the compacting condition required to fabricate the atomized powder compacts is over the 350MPa. 76 refs., 44 figs., 9 tabs. (Author)

  2. Surface tension of Nanofluid-type fuels containing suspended nanomaterials.

    Science.gov (United States)

    Tanvir, Saad; Qiao, Li

    2012-04-18

    The surface tension of ethanol and n-decane based nanofluid fuels containing suspended aluminum (Al), aluminum oxide (Al2O3), and boron (B) nanoparticles as well as dispersible multi-wall carbon nanotubes (MWCNTs) were measured using the pendant drop method by solving the Young-Laplace equation. The effects of nanoparticle concentration, size and the presence of a dispersing agent (surfactant) on surface tension were determined. The results show that surface tension increases both with particle concentration (above a critical concentration) and particle size for all cases. This is because the Van der Waals force between particles at the liquid/gas interface increases surface free energy and thus increases surface tension. At low particle concentrations, however, addition of particles has little influence on surface tension because of the large distance between particles. An exception is when a surfactant was used or when (MWCNTs) was involved. For such cases, the surface tension decreases compared to the pure base fluid. The hypothesis is the polymer groups attached to (MWCNTs) and the surfactant layer between a particle and the surround fluid increases the electrostatic force between particles and thus reduce surface energy and surface tension.

  3. Surface tension of Nanofluid-type fuels containing suspended nanomaterials

    Science.gov (United States)

    2012-01-01

    The surface tension of ethanol and n-decane based nanofluid fuels containing suspended aluminum (Al), aluminum oxide (Al2O3), and boron (B) nanoparticles as well as dispersible multi-wall carbon nanotubes (MWCNTs) were measured using the pendant drop method by solving the Young-Laplace equation. The effects of nanoparticle concentration, size and the presence of a dispersing agent (surfactant) on surface tension were determined. The results show that surface tension increases both with particle concentration (above a critical concentration) and particle size for all cases. This is because the Van der Waals force between particles at the liquid/gas interface increases surface free energy and thus increases surface tension. At low particle concentrations, however, addition of particles has little influence on surface tension because of the large distance between particles. An exception is when a surfactant was used or when (MWCNTs) was involved. For such cases, the surface tension decreases compared to the pure base fluid. The hypothesis is the polymer groups attached to (MWCNTs) and the surfactant layer between a particle and the surround fluid increases the electrostatic force between particles and thus reduce surface energy and surface tension. PMID:22513039

  4. Correcting the Relative Bias of Light Obscuration and Flow Imaging Particle Counters.

    Science.gov (United States)

    Ripple, Dean C; Hu, Zhishang

    2016-03-01

    Industry and regulatory bodies desire more accurate methods for counting and characterizing particles. Measurements of proteinaceous-particle concentrations by light obscuration and flow imaging can differ by factors of ten or more. We propose methods to correct the diameters reported by light obscuration and flow imaging instruments. For light obscuration, diameters were rescaled based on characterization of the refractive index of typical particles and a light scattering model for the extinction efficiency factor. The light obscuration models are applicable for either homogeneous materials (e.g., silicone oil) or for chemically homogeneous, but spatially non-uniform aggregates (e.g., protein aggregates). For flow imaging, the method relied on calibration of the instrument with silica beads suspended in water-glycerol mixtures. These methods were applied to a silicone-oil droplet suspension and four particle suspensions containing particles produced from heat stressed and agitated human serum albumin, agitated polyclonal immunoglobulin, and abraded ethylene tetrafluoroethylene polymer. All suspensions were measured by two flow imaging and one light obscuration apparatus. Prior to correction, results from the three instruments disagreed by a factor ranging from 3.1 to 48 in particle concentration over the size range from 2 to 20 μm. Bias corrections reduced the disagreement from an average factor of 14 down to an average factor of 1.5. The methods presented show promise in reducing the relative bias between light obscuration and flow imaging.

  5. Homogeneous Functionalization of Methane.

    Science.gov (United States)

    Gunsalus, Niles Jensen; Koppaka, Anjaneyulu; Park, Sae Hume; Bischof, Steven M; Hashiguchi, Brian G; Periana, Roy A

    2017-07-12

    One of the remaining "grand challenges" in chemistry is the development of a next generation, less expensive, cleaner process that can allow the vast reserves of methane from natural gas to augment or replace oil as the source of fuels and chemicals. Homogeneous (gas/liquid) systems that convert methane to functionalized products with emphasis on reports after 1995 are reviewed. Gas/solid, bioinorganic, biological, and reaction systems that do not specifically involve methane functionalization are excluded. The various reports are grouped under the main element involved in the direct reactions with methane. Central to the review is classification of the various reports into 12 categories based on both practical considerations and the mechanisms of the elementary reactions with methane. Practical considerations are based on whether or not the system reported can directly or indirectly utilize O2 as the only net coreactant based only on thermodynamic potentials. Mechanistic classifications are based on whether the elementary reactions with methane proceed by chain or nonchain reactions and with stoichiometric reagents or catalytic species. The nonchain reactions are further classified as CH activation (CHA) or CH oxidation (CHO). The bases for these various classifications are defined. In particular, CHA reactions are defined as elementary reactions with methane that result in a discrete methyl intermediate where the formal oxidation state (FOS) on the carbon remains unchanged at -IV relative to that in methane. In contrast, CHO reactions are defined as elementary reactions with methane where the carbon atom of the product is oxidized and has a FOS less negative than -IV. This review reveals that the bulk of the work in the field is relatively evenly distributed across most of the various areas classified. However, a few areas are only marginally examined, or not examined at all. This review also shows that, while significant scientific progress has been made

  6. 23 Elemental Composition of Suspended Particulate Matter ...

    African Journals Online (AJOL)

    `123456789jkl''''#

    Elemental Composition of Suspended Particulate Matter Collected at Two Different. Heights above the Ground in A Sub-Urban Site in Kenya. Gitari W. M1, Kinyua A. M. 2, Kamau G. N3 and C. K. Gatebe C. K4. Abstract. Suspended particulate matter samples were collected in a sub-urban area in Nairobi over a 12 month ...

  7. Homogeneous crystal nucleation in polymers

    Science.gov (United States)

    Schick, C.; Androsch, R.; Schmelzer, J. W. P.

    2017-11-01

    The pathway of crystal nucleation significantly influences the structure and properties of semi-crystalline polymers. Crystal nucleation is normally heterogeneous at low supercooling, and homogeneous at high supercooling, of the polymer melt. Homogeneous nucleation in bulk polymers has been, so far, hardly accessible experimentally, and was even doubted to occur at all. This topical review summarizes experimental findings on homogeneous crystal nucleation in polymers. Recently developed fast scanning calorimetry, with cooling and heating rates up to 106 K s-1, allows for detailed investigations of nucleation near and even below the glass transition temperature, including analysis of nuclei stability. As for other materials, the maximum homogeneous nucleation rate for polymers is located close to the glass transition temperature. In the experiments discussed here, it is shown that polymer nucleation is homogeneous at such temperatures. Homogeneous nucleation in polymers is discussed in the framework of the classical nucleation theory. The majority of our observations are consistent with the theory. The discrepancies may guide further research, particularly experiments to progress theoretical development. Progress in the understanding of homogeneous nucleation is much needed, since most of the modelling approaches dealing with polymer crystallization exclusively consider homogeneous nucleation. This is also the basis for advancing theoretical approaches to the much more complex phenomena governing heterogeneous nucleation.

  8. The Ages in a Self-Suspended Nanoparticle Liquid

    KAUST Repository

    Agarwal, Praveen

    2010-01-13

    Telomers ionically tethered to nanometer-sized particles yield self-suspended, nanoparticle-Iaden liquids with unusual dynamical features. By subjecting these suspensions to controlled, modest shear strains, we find that their flow behaviors observed using experiments performed on time scales of tens of seconds can be projected to obtain maps of their dynamical response on geological time scales. That such extraordinarily slow dynamic processes can be uncovered from real-time measurements by simply stretching a system provides a simple but powerful tool for interrogating extremely slow motions in other jammed physical states. © 2010 American Chemical Society.

  9. Mucous Secretion and Cilia Beating Defend Developing Coral Larvae from Suspended Sediments.

    Directory of Open Access Journals (Sweden)

    Gerard F Ricardo

    Full Text Available Suspended sediments produced from dredging activities, or added to the sediment budget via river runoff, are a concern for marine resource managers. Understanding the impact of suspended sediments on critical life history stages of keystone species like corals is fundamental to effective management of coastlines and reefs. Coral embryos (Acropora tenuis and A. millepora and larvae (A. tenuis, A. millepora and Pocillopora acuta were subjected to a range of suspended sediment concentrations of different sediment types (siliciclastic and carbonate to assess concentration-response relationships on ecologically relevant endpoints, including survivorship and ability to metamorphose. Embryos were subjected to short (12 h suspended sediment exposures from ages of 3-12 hours old or a long (30 h exposure at 6 hours old. Neither the survivorship nor metamorphosis function of embryos were significantly affected by realistic sediment exposures to ~1000 mg L-1. However, some embryos exhibited a previously undescribed response to dynamically suspended sediments, which saw 10% of the embryos form negatively buoyant cocoons at siliciclastic suspended sediment concentrations ≥35 mg L-1. Scanning electron and optical microscopy confirmed the presence of a coating on these embryos, possibly mucus with incorporated sediment particles. Cocoon formation was common in embryos but not in larvae, and occurred more often after exposure to siliciclastic rather than carbonate sediments. Once transferred into sediment-free seawater, functional ~36-h-old embryos began emerging from the cocoons, coinciding with cilia development. Ciliated (> 36-h-old larvae exposed to suspended sediments for 60 h were also observed to secrete mucus and were similarly unaffected by suspended sediment concentrations to ~800 mg L-1. This study provides evidence that mucous secretion and cilia beating effectively protect coral embryos and larvae from suspended sediment and that these mechanisms

  10. Heavy metal ions adsorption by suspended particle and sediment of ...

    African Journals Online (AJOL)

    GREGORY

    2012-01-10

    Jan 10, 2012 ... samples in the laboratory, standard metals including Pb, Cu, Zn and Fe (15, 5, 5, and 5 mg/l, respectively) and sediments from the three stations, both arranged in the .... process, lead is separated from gold, silver, zinc and iron but much lead is deposited in waste. Figure 1 shows the situation of the Sorb ...

  11. Suspended particle transport through constriction channel with Brownian motion

    DEFF Research Database (Denmark)

    Hanasaki, Itsuo; Walther, Jens Honore

    2017-01-01

    It is well known that translocation events of a polymer or rod through pores or narrower parts of micro- and nanochannels have a stochastic nature due to the Brownian motion. However, it is not clear whether the objects of interest need to have a larger size than the entrance to exhibit the devia...

  12. Heavy metal ions adsorption by suspended particle and sediment of ...

    African Journals Online (AJOL)

    Nowadays, it is important to evaluate the self-purifying capacity of rivers because of the different kinds of pollutants discharged into them. Important kind of pollutants and heavy metals exist in wastewaters industries. When the Sorb Dona mine is placed in Upper Chalus River, in the west of Mazandaran, products of mine ...

  13. Homogeneous Spaces and Equivariant Embeddings

    CERN Document Server

    Timashev, DA

    2011-01-01

    Homogeneous spaces of linear algebraic groups lie at the crossroads of algebraic geometry, theory of algebraic groups, classical projective and enumerative geometry, harmonic analysis, and representation theory. By standard reasons of algebraic geometry, in order to solve various problems on a homogeneous space it is natural and helpful to compactify it keeping track of the group action, i.e. to consider equivariant completions or, more generally, open embeddings of a given homogeneous space. Such equivariant embeddings are the subject of this book. We focus on classification of equivariant em

  14. Technological advances in suspended-sediment surrogate monitoring

    Science.gov (United States)

    Gray, John R.; Gartner, Jeffrey W.

    2009-01-01

    Surrogate technologies to continuously monitor suspended sediment show promise toward supplanting traditional data collection methods requiring routine collection and analysis of water samples. Commercially available instruments operating on bulk optic (turbidity), laser optic, pressure difference, and acoustic backscatter principles are evaluated based on cost, reliability, robustness, accuracy, sample volume, susceptibility to biological fouling, and suitable range of mass concentration and particle size distribution. In situ turbidimeters are widely used. They provide reliable data where the point measurements can be reliably correlated to the river's mean cross section concentration value, effects of biological fouling can be minimized, and concentrations remain below the sensor's upper measurement limit. In situ laser diffraction instruments have similar limitations and can cost 6 times the approximate $5000 purchase price of a turbidimeter. However, laser diffraction instruments provide volumetric-concentration data in 32 size classes. Pressure differential instruments measure mass density in a water column, thus integrating substantially more streamflow than a point measurement. They are designed for monitoring medium-to-large concentrations, are generally unaffected by biological fouling, and cost about the same as a turbidimeter. However, their performance has been marginal in field applications. Acoustic Doppler profilers use acoustic backscatter to measure suspended sediment concentrations in orders of magnitude more streamflow than do instruments that rely on point measurements. The technology is relatively robust and generally immune to effects of biological fouling. Cost of a single-frequency device is about double that of a turbidimeter. Multifrequency arrays also provide the potential to resolve concentrations by clay silt versus sand size fractions. Multifrequency hydroacoustics shows the most promise for revolutionizing collection of continuous

  15. Net transport of suspended matter due to tidal straining

    Science.gov (United States)

    Jones, S. E.; Jago, C. F.; Simpson, J. H.; Rippeth, T. P.

    2003-04-01

    Net transport of suspended particulate matter (SPM) is well-known in tidal regions where there is time-velocity asymmetry due to frictional modification of the tide in shallow water. We present here observations which show a new mechanism for net flux of SPM in response to tidal straining in a region of freshwater influence (ROFI). In situ measurements of the particle size of suspended particulate matter (SPM) and turbulent energy dissipation have been made at a site in Liverpool Bay (Irish Sea) where there is significant resuspension of particles from the muddy sand substrate during spring tides. This is a ROFI where tidal straining dominates the temporal development of turbulence. On a spring tide the water column tries to stratify on the ebb and destratify on the flood, but these tendencies are masked by mixing due to tidal stirring. Nevertheless, there is a marked excess of TKE dissipation rate E on the flood, especially in the upper part of the water column. Resuspension occurs on both flood and ebb, but SPM flux is strongly asymmetric with a net shorewards component. Asymmetry is most pronounced for the larger particles which comprise most of the mass. Enhanced ? on the flood mixes large particles upwards into faster flowing water, which increases the flux. Comparable upwards mixing of large particles does not occur on the ebb where enhanced E is confined to slower bottom waters. The net flux is not seen on neap tides because, although there is more stratification due to tidal straining, there is essentially no resuspension. The net flux on springs is undoubtedly an important component of SPM transport (and any comparable particulates) in coastal regions.

  16. Fluorine and sulfur simultaneously co-doped suspended graphene

    Science.gov (United States)

    Struzzi, C.; Sezen, H.; Amati, M.; Gregoratti, L.; Reckinger, N.; Colomer, J.-F.; Snyders, R.; Bittencourt, C.; Scardamaglia, M.

    2017-11-01

    Suspended graphene flakes are exposed simultaneously to fluorine and sulfur ions produced by the μ-wave plasma discharge of the SF6 precursor gas. The microscopic and spectroscopic analyses, performed by Raman spectroscopy, scanning electron microscopy and photoelectron spectromicroscopy, show the homogeneity in functionalization yield over the graphene flakes with F and S atoms covalently bonded to the carbon lattice. This promising surface shows potential for several applications ranging from biomolecule immobilization to lithium battery and hydrogen storage devices. The present co-doping process is an optimal strategy to engineer the graphene surface with a concurrent hydrophobic character, thanks to the fluorine atoms, and a high affinity with metal nanoparticles due to the presence of sulfur atoms.

  17. G3-homogeneous gravitational instantons

    Energy Technology Data Exchange (ETDEWEB)

    Bourliot, F; Petropoulos, P M [Centre de Physique Theorique, CNRS-UMR 7644, Ecole Polytechnique, 91128 Palaiseau Cedex (France); Estes, J [Laboratoire de Physique Theorique, CNRS-UMR 8549, Ecole Normale Superieure, 24 rue Lhomond, F-75231 Paris cedex 05 (France); Spindel, Ph, E-mail: bourliot@cpht.polytechnique.f, E-mail: estes@cpht.polytechnique.f, E-mail: marios@cpht.polytechnique.f, E-mail: philippe.spindel@umons.ac.b [Service de Mecanique et Gravitation, Universite de Mons, 20 Place du Parc, 7000 Mons, Belgique (Belgium)

    2010-05-21

    We provide an exhaustive classification of self-dual four-dimensional gravitational instantons foliated with three-dimensional homogeneous spaces, i.e. homogeneous self-dual metrics on four-dimensional Euclidean spaces admitting a Bianchi simply transitive isometry group. The classification pattern is based on the algebra homomorphisms relating the Bianchi group and the duality group SO(3). New and general solutions are found for Bianchi III.

  18. G3-homogeneous gravitational instantons

    CERN Document Server

    Bourliot, F; Petropoulos, P M; Spindel, Ph

    2009-01-01

    We provide an exhaustive classification of self-dual four-dimensional gravitational instantons foliated with three-dimensional homogeneous spaces, i.e. homogeneous self-dual metrics on four-dimensional Euclidean spaces admitting a Bianchi simply transitive isometry group. The classification pattern is based on the algebra homomorphisms relating the Bianchi group and the duality group SO(3). New and general solutions are found for Bianchi III.

  19. [Obtaining ribosome crystals in homogenates].

    Science.gov (United States)

    Bersani, F; Longo, I; Fanti, M; Pettazzoni, P

    1979-08-30

    Chick embryos are homogenized in order to analyse ribosome crystallization. Ribosome crystallization has been induced by hypothermic treatment in chick embryos homogenate. Tetramers and crystals were produced by gradually inducing the temperature over a span of 10 h to 4 degrees C. It has been observed that the concentration of KCl in the buffer is a critical point. It is suggested that the nuclear fraction is engaged in ribosome crystallization.

  20. Homogeneous and isotropic calorimetry for space experiments

    Energy Technology Data Exchange (ETDEWEB)

    Mori, N., E-mail: mori@fi.infn.it [INFN sezione di Firenze, via B. Rossi 1, 50019 Sesto Fiorentino (Italy); Adriani, O. [INFN sezione di Firenze, via B. Rossi 1, 50019 Sesto Fiorentino (Italy); University of Florence, Department of Physics and Astronomy, via G. Sansone 1, 50019 Sesto Fiorentino (Italy); Basti, A. [INFN sezione di Pisa, Largo B. Pontecorvo 3, 56127 Pisa (Italy); Bigongiari, G. [University of Siena, Department of Physics, Earth and Environmental Sciences, Via Laterina 8, 53100 Siena (Italy); Bonechi, L. [INFN sezione di Firenze, via B. Rossi 1, 50019 Sesto Fiorentino (Italy); Bonechi, S. [INFN sezione di Pisa, Largo B. Pontecorvo 3, 56127 Pisa (Italy); University of Siena, Department of Physics, Earth and Environmental Sciences, Via Laterina 8, 53100 Siena (Italy); Bongi, M. [INFN sezione di Firenze, via B. Rossi 1, 50019 Sesto Fiorentino (Italy); University of Florence, Department of Physics and Astronomy, via G. Sansone 1, 50019 Sesto Fiorentino (Italy); Bottai, S. [INFN sezione di Firenze, via B. Rossi 1, 50019 Sesto Fiorentino (Italy); Brogi, P. [INFN sezione di Pisa, Largo B. Pontecorvo 3, 56127 Pisa (Italy); University of Siena, Department of Physics, Earth and Environmental Sciences, Via Laterina 8, 53100 Siena (Italy); D' Alessandro, R. [INFN sezione di Firenze, via B. Rossi 1, 50019 Sesto Fiorentino (Italy); University of Florence, Department of Physics and Astronomy, via G. Sansone 1, 50019 Sesto Fiorentino (Italy); Detti, S.; Lenzi, P. [INFN sezione di Firenze, via B. Rossi 1, 50019 Sesto Fiorentino (Italy); Maestro, P.; Marrocchesi, P.S. [INFN sezione di Pisa, Largo B. Pontecorvo 3, 56127 Pisa (Italy); University of Siena, Department of Physics, Earth and Environmental Sciences, Via Laterina 8, 53100 Siena (Italy); Papini, P. [INFN sezione di Firenze, via B. Rossi 1, 50019 Sesto Fiorentino (Italy); and others

    2013-12-21

    Calorimetry plays an essential role in experiments observing high energy gamma and cosmic rays in space. The observational capabilities are mainly limited by the geometrical dimensions and the mass of the calorimeter. Since deployable mass depends on the design of the detector and the total mass of the payload, it is important to optimize the geometrical acceptance of the calorimeter for rare events, its granularity for particle identification, and its absorption depth for the measurement of the particle energy. A design of a calorimeter that could simultaneously optimize these characteristics assuming a mass limit of about 1.6 t has been studied. As a result, a homogeneous calorimeter instrumented with cesium iodide (CsI) crystals was chosen as the best compromise given the total mass constraint. The most suitable geometry found is cubic and isotropic, so as to detect particles arriving from every direction in space, thus maximizing the acceptance; granularity is obtained by filling the cubic volume with small cubic CsI crystals. The total radiation length in any direction is very large, and allows for optimal electromagnetic particle identification and energy measurement, while the interaction length is at least sufficient to allow a precise reconstruction of hadronic showers. Optimal values for the size of the crystals and spacing among them have been studied. Two prototypes have been constructed and preliminary tests with high energy ion and muon beams are reported.

  1. Basic hydraulic experiment on the saturated concentration of suspended load due to tsunamis

    Science.gov (United States)

    Takahashi, Tomoyuki; Somekawa, Shiho

    2016-04-01

    When tsunamis arrive in the shallow sea, a huge amount of suspended load is generated by large velocity and strong turbulence. The suspended load causes the geomorphic processes of erosion and deposition. Because the suspended load cannot be increased endlessly, it should have the saturated concentration. Many numerical models of sediment transport due to tsunamis have assumed a constant value of 1% for the saturated concentration empirically. However, it is supposed as a function of velocity. In this study, a hydraulic experiment was carried out to investigate a relationship between velocity and the saturated concentration of suspended load when tsunamis attack. A water circulation pipe used in the experiment was 10 cm in a diameter, 260 cm in length and 50 cm in width. A velocity of water flow in the pipe had been controlled by two pumps and two valves. It was changed from 0.24 to 1.22 m/s. Various amounts of sand was spread on the bottom of pipe. The amount of sand was changed from 0.1 to 10% as converted in the concentration of suspended load if all sand suspended. A diameter and a density of the sand were 0.267 mm and 2.64 x 103 kg/m^3. A condition of sediment transport in the pipe was recorded by video camera from a transparent window at the side of pipe. The condition was judged as all sand particles were suspended or not. The former condition indicates that the concentration of suspended load is saturated and the latter does it is not saturated. When velocity was smaller than 0.47 m/s, there was no suspended load because of a weak tractive force. When velocity became larger, the suspended load was generated and the concentration also became higher. However, the concentration had the upper limit and surplus sand appeared on the bed of pipe when velocity became much larger. The condition gave the saturated concentration of suspended load. When velocity was 0.665 m/s, the saturated concentration was smaller than 1% which is used in many numerical simulations

  2. Numerical Modelling of Suspended Transport and Deposition of Highway Deposited Sediments

    DEFF Research Database (Denmark)

    Bentzen, Thomas Ruby; Larsen, Torben; Bach, Christine

    Good data for calibration and validation of numerical models are of high importance. In the natural environment data can be hard to archive and the stochastic nature have governing influence on the data archived. Hence for modelling of suspended transport and deposition of particles, originating...

  3. Observations of suspended sediment from ADCP and OBS measurements in a mud-dominated environment

    NARCIS (Netherlands)

    Hoitink, A.J.F.; Hoekstra, P.

    2005-01-01

    The ability of a 1.2-MHz Acoustic Doppler Current Profiler (ADCP) to measure suspended sediment concentration (SSC) and particle size variation in a mud-dominated environment has been investigated. Experiments were conducted in the Bay of Banten, Indonesia, where clays and silts in the range of 3-55

  4. Development of a field test method for total suspended solids analysis.

    Science.gov (United States)

    2013-11-01

    Total suspended solids (TSS) are all particles in water that will not pass through a glass fiber filter with a pore size less : than 2 m, including sediments, algae, nutrients, and metals. TSS is an important water quality parameter because of its ...

  5. Atmospheric fate and transport of fine volcanic ash: Does particle shape matter?

    Science.gov (United States)

    White, C. M.; Allard, M. P.; Klewicki, J.; Proussevitch, A. A.; Mulukutla, G.; Genareau, K.; Sahagian, D. L.

    2013-12-01

    Volcanic ash presents hazards to infrastructure, agriculture, and human and animal health. In particular, given the economic importance of intercontinental aviation, understanding how long ash is suspended in the atmosphere, and how far it is transported has taken on greater importance. Airborne ash abrades the exteriors of aircraft, enters modern jet engines and melts while coating interior engine parts causing damage and potential failure. The time fine ash stays in the atmosphere depends on its terminal velocity. Existing models of ash terminal velocities are based on smooth, quasi-spherical particles characterized by Stokes velocity. Ash particles, however, violate the various assumptions upon which Stokes flow and associated models are based. Ash particles are non-spherical and can have complex surface and internal structure. This suggests that particle shape may be one reason that models fail to accurately predict removal rates of fine particles from volcanic ash clouds. The present research seeks to better parameterize predictive models for ash particle terminal velocities, diffusivity, and dispersion in the atmospheric boundary layer. The fundamental hypothesis being tested is that particle shape irreducibly impacts the fate and transport properties of fine volcanic ash. Pilot studies, incorporating modeling and experiments, are being conducted to test this hypothesis. Specifically, a statistical model has been developed that can account for actual volcanic ash size distributions, complex ash particle geometry, and geometry variability. Experimental results are used to systematically validate and improve the model. The experiments are being conducted at the Flow Physics Facility (FPF) at UNH. Terminal velocities and dispersion properties of fine ash are characterized using still air drop experiments in an unconstrained open space using a homogenized mix of source particles. Dispersion and sedimentation dynamics are quantified using particle image

  6. Genetic Homogenization of Composite Materials

    Directory of Open Access Journals (Sweden)

    P. Tobola

    2009-04-01

    Full Text Available The paper is focused on numerical studies of electromagnetic properties of composite materials used for the construction of small airplanes. Discussions concentrate on the genetic homogenization of composite layers and composite layers with a slot. The homogenization is aimed to reduce CPU-time demands of EMC computational models of electrically large airplanes. First, a methodology of creating a 3-dimensional numerical model of a composite material in CST Microwave Studio is proposed focusing on a sufficient accuracy of the model. Second, a proper implementation of a genetic optimization in Matlab is discussed. Third, an association of the optimization script and a simplified 2-dimensional model of the homogeneous equivalent model in Comsol Multiphysics is proposed considering EMC issues. Results of computations are experimentally verified.

  7. Continuous-flow centrifugation to collect suspended sediment for chemical analysis

    Science.gov (United States)

    Conn, Kathleen E.; Dinicola, Richard S.; Black, Robert W.; Cox, Stephen E.; Sheibley, Richard W.; Foreman, James R.; Senter, Craig A.; Peterson, Norman T.

    2016-12-22

    polychlorinated biphenyls. The particle-size distribution of the captured sediment changes to a more fine-grained sample during centrifugation, and the necessity to account for this change when extrapolating chemical concentrations on the centrifuged sediment sample to the environmental water system is discussed.The data produced using this method will help eliminate a data gap of suspended sediment-bound chemical concentrations, and will support management decisions, such as chemical source-control efforts or in-stream restoration activities. When coupled with streamflow and sediment flux data, it will improve estimates of riverine chemical fluxes, and will aid in assessing the importance and impacts of suspended sediment-bound chemicals to downstream freshwater and coastal marine ecosystems.

  8. Controls on suspended aggregate size in partially mixed estuaries

    Science.gov (United States)

    Fugate, David C.; Friedrichs, Carl T.

    2003-10-01

    Knowledge of aggregate size in estuaries is important to determining the fate and transport of suspended sediment and particle adherent contaminants. We have used a suite of in situ instruments to determine the controls of aggregate size distributions in three muddy, partially mixed estuaries in the mid-Atlantic USA. A novel method is presented to estimate turbulent kinetic energy (TKE) production and the resulting Kolmogorov microscale ( λK) using a profiling acoustic Doppler velocimeter that has been contaminated by boat motion. The physical processes that control particle size distribution differ in the three estuaries due to the different hydrodynamics and benthic characteristics. Controls within each estuary also vary with different depth regimes. Surface particle size dynamics in all the studied estuaries are affected by irregular advection events. In the hydrodynamically energetic York River, mid-depth regions are controlled tidally by the combined processes of small λK decreasing particle size at high TKE and differential settling increasing particle size during lower TKE, more stratified conditions. Mid-depth regions in the lower energy Elizabeth River are controlled by irregular resuspension and trapping at the pycnocline of large low density particles. Bottom regions in all estuaries are most strongly influenced by resuspension, tidally in the energetic estuaries and irregularly in the low energy estuary. Near-bed particle size distributions are controlled by both λK and the distribution of particles in the bed in the higher energy estuaries. Just above the bed, large porous particles survive resuspension in the lower energy Elizabeth River, particles become smaller with decreased λK in the more energetic York River, and biological aggregation causes large dense particles to resist turbulent breakup in the Chesapeake Bay, which has a more active benthic community. The net result just above the bed is that particle size and settling velocity are

  9. On the existence of periodic orbits for the fixed homogeneous circle problem

    OpenAIRE

    Azevêdo, C.; Ontaneda, P.

    2007-01-01

    We prove the existence of some types of periodic orbits for a particle moving in Euclidean three-space under the influence of the gravitational force induced by a fixed homogeneous circle. These types include periodic orbits very far and very near the homogeneous circle, as well as eight and spiral periodic orbits.

  10. Geometry of Homogeneous Bounded Domains

    CERN Document Server

    Vesentini, E

    2011-01-01

    This title includes: S.G. Gindikin, I.I. Pjateckii-Sapiro, E.B. Vinberg: Homogeneous Kahler manifolds; S.G. Greenfield: Extendibility properties of real submanifolds of Cn; W. Kaup: Holomorphische Abbildungen in Hyperbolische Raume; A. Koranyi: Holomorphic and harmonic functions on bounded symmetric domains; J.L. Koszul: Formes harmoniques vectorielles sur les espaces localement symetriques; S. Murakami: Plongements holomorphes de domaines symetriques; and E.M. Stein: The analogues of Fatous' theorem and estimates for maximal functions.

  11. Chemical composition of sediments, suspended matter, river water and ground water of the Nile (Aswan-Sohag traverse).

    Science.gov (United States)

    Dekov, V M; Komy, Z; Araújo, F; Van Put, A; Van Grieken, R

    1997-08-18

    Sediment, suspended matter, river water and ground water samples were collected at twelve sites in the drainage valley of the Nile River, around Sohag (Central Egypt) and close to the Aswan High Dam. Elemental composition of the river water (27 elements), ground water (eight elements), suspended matter (12 elements) and sediments (12 elements) was studied. Aswan High Dam construction, agricultural and industrial human activities have led to dramatic changes in the Nile River chemistry. Nowadays, the Nile River has the highest dissolved salt content among the major African rivers. Dissolved transport is a major process for Ca, K, Sr, Zn, Cu, Ni and V. Manganese, Fe and Cr are mainly carried by suspended matter. The Nile suspended matter is exhausted in almost all elements studied (except for Mn) compared to the world average river suspended matter. Along the course of the river, the distribution of elements in the suspended matter and sediments is generally controlled by natural processes: the relative importance of elemental transport phases; and the oxidation, precipitation and sedimentation of mineral species through the varying physico-chemical conditions of the environment. Pollution input in the Nile particulate load is not major, as compared to the natural inputs. Eight genetic particle types describe the composition of the Nile suspended matter and sediments: (1) biogenous-aeolian (or silica); (2) terrigenous (Fe-aluminosilicate); (3) authigenic (calcium carbonate); (4) biogenous (apatite); (5) authigenous-terrigenous (Fe-oxyhydroxide-montmorillonite); (6) diagenetic (iron-sulfide); (7) terrigenous (titanium oxide); (8) authigenous (Mn-Fe-oxyhydroxide).

  12. Hafnium and neodymium isotopes and REY distribution in the truly dissolved, nanoparticulate/colloidal and suspended loads of rivers in the Amazon Basin, Brazil

    Science.gov (United States)

    Merschel, Gila; Bau, Michael; Schmidt, Katja; Münker, Carsten; Dantas, Elton L.

    2017-09-01

    Radiogenic isotopes in river sediments and river waters have been widely used in provenance studies, as these samples naturally integrate the geology/chemistry of the entire catchment. While the Hf and Nd isotope systems are coupled during igneous processes, they are decoupled during supergene processes at the Earth's surface, which is reflected by the isotope composition of riverine sediments. We present the first data for both Hf and Nd isotope compositions of the dissolved (0.2 μm-filtrates rich in nanoparticles and colloids, NPCs) and the truly dissolved (1 kDa-ultrafiltrates) load of rivers. Hafnium and Nd isotope compositions and concentrations of the Rare Earths and Yttrium (REY) and Hf were determined for suspended particles (>0.2 μm) as well as for the dissolved and the truly dissolved load of the Rio Solimões, the Amazon's largest tributary draining the Andes, and of the Rio Negro, an organic NPC- and particle-rich river draining the rainforest of northern Amazonia. We also analyzed the Nd isotope compositions of suspended sediments and 0.2 μm-filtered water samples from the Amazon River and its tributaries Rio Tapajos, Rio Xingu and Rio Jari. Our novel results clearly show that the decoupling of the Hf and Nd isotope systems is related to incongruent weathering processes on the continent, as this decoupling can already be observed in the different Hf and Nd pools, i.e. in the particulate, the NPC-dominated dissolved and the truly dissolved load of rivers. In the Rio Negro and Rio Solimões, a strong particle size-dependent difference in Hf isotope composition is observed. Values of εHf become more radiogenic as filter poresize decreases, which can be related to the density- and size-dependent distribution of Hf-rich minerals, e.g. zircons, and their absence from the truly dissolved pool. In contrast, the Nd isotope composition of Amazonian river waters reflects that of their catchment geology. Tributaries draining the Precambrian Brazilian and

  13. 9 CFR 201.81 - Suspended registrants.

    Science.gov (United States)

    2010-01-01

    ... 201.81 Animals and Animal Products GRAIN INSPECTION, PACKERS AND STOCKYARDS ADMINISTRATION (PACKERS AND STOCKYARDS PROGRAMS), DEPARTMENT OF AGRICULTURE REGULATIONS UNDER THE PACKERS AND STOCKYARDS ACT Services § 201.81 Suspended registrants. No stockyard owner, packer, market agency, or dealer shall employ...

  14. Electrodialytic remediation of suspended mine tailings

    DEFF Research Database (Denmark)

    Hansen, Henrik K.; Rojo, Adrian; Pino, Denisse

    2008-01-01

    experiment at 40 mA, with approximately 137.5 g mine tailings on dry basis. The removal for a static (baseline) experiment only amounted 15% when passing approximately the same amount of charge through 130 g of mine tailings. The use of air bubbling to keep the tailings suspended increased the removal...

  15. Environmental toxicology: Acute effects of suspended particulate ...

    African Journals Online (AJOL)

    ... from the control values were found significant at 99% confidence level. Possible inhalatory problems are thus anticipated from prolonged accumulation of the dust in the respiratory system. KEY WORDS: Environmental toxicology, Suspended particulate matter, Dust analysis, Hematological indices, Wister albino rats. Bull.

  16. A depth integrated model for suspended transport

    NARCIS (Netherlands)

    Galappatti, R.

    1983-01-01

    A new depth averaged model for suspended sediment transport in open channels has been developed based on an asymptotic solution to the two dimensional convection-diffusion equation in the vertical plane. The solution for the depth averaged concentration is derived from the bed boundary condition and

  17. The Shape of Breasts Suspended in Liquid

    NARCIS (Netherlands)

    De Kleijn, S.C.; Rensen, W.H.J.

    2007-01-01

    Philips has designed an optical mammography machine. In this machine the breast is suspended into a cup in which the measurements take place. A special fluid is inserted into the cup to prevent the light from going around the breast instead of going through it but this fluid also weakens the signal.

  18. Emulsifying and Suspending Properties of Enterolobium ...

    African Journals Online (AJOL)

    Background:The thermodynamic instability of emulsions and suspensions necessitate the incorporation of emulsifiers and suspending agents respectively, in order to stabilize the formulations and ensure administration of accurate doses. Objective:Enterolobium cyclocarpum gum was characterized and evaluated for its ...

  19. Acoustic backscatter by suspended cohesive sediments: Field observations, Seine Estuary, France

    Science.gov (United States)

    Sahin, Cihan; Verney, Romaric; Sheremet, Alexandru; Voulgaris, George

    2017-02-01

    Observations of suspended sediment size and concentration, flow and acoustic backscatter intensity collected on the Seine Estuary (France) are used to study the acoustic response in cohesive-sediment dominated environments. Estimates of suspended sediment concentration based on optical backscatter sensors and water samples are used to calibrate the acoustic backscatter intensity. The vertical structure of suspended sediment concentration is then estimated from acoustic backscatter information. To our knowledge, this is the first field application of the recently proposed model of acoustic scattering by flocculating suspensions based on the variation of particle density (floc-scattering model). The estimates of sediment concentration reproduce well the observations under different tidal (neap/spring) conditions, confirming the applicability of the new model in the field when detailed particle size measurements are available. When particle size measurements are not available, using estimated floc sizes based on the turbulence intensities may provide reasonable SSC profiles. During spring tide events (associated with strong currents, small flocs and large concentrations), the performances of the new floc-scattering model and the previous models given for solid particle-scattering are comparable. The floc-scattering model increases the quality of the SSC estimates especially during low-energy conditions characterized with larger flocs.

  20. Vertical Distribution of Suspended Sediment under Steady Flow: Existing Theories and Fractional Derivative Model

    Directory of Open Access Journals (Sweden)

    Shiqian Nie

    2017-01-01

    Full Text Available The fractional advection-diffusion equation (fADE model is a new approach to describe the vertical distribution of suspended sediment concentration in steady turbulent flow. However, the advantages and parameter definition of the fADE model in describing the sediment suspension distribution are still unclear. To address this knowledge gap, this study first reviews seven models, including the fADE model, for the vertical distribution of suspended sediment concentration in steady turbulent flow. The fADE model, among others, describes both Fickian and non-Fickian diffusive characteristics of suspended sediment, while the other six models assume that the vertical diffusion of suspended sediment follows Fick’s first law. Second, this study explores the sensitivity of the fractional index of the fADE model to the variation of particle sizes and sediment settling velocities, based on experimental data collected from the literatures. Finally, empirical formulas are developed to relate the fractional derivative order to particle size and sediment settling velocity. These formulas offer river engineers a substitutive way to estimate the fractional derivative order in the fADE model.

  1. Long-term continuous acoustical suspended-sediment measurements in rivers - Theory, application, bias, and error

    Science.gov (United States)

    Topping, David J.; Wright, Scott A.

    2016-05-04

    It is commonly recognized that suspended-sediment concentrations in rivers can change rapidly in time and independently of water discharge during important sediment‑transporting events (for example, during floods); thus, suspended-sediment measurements at closely spaced time intervals are necessary to characterize suspended‑sediment loads. Because the manual collection of sufficient numbers of suspended-sediment samples required to characterize this variability is often time and cost prohibitive, several “surrogate” techniques have been developed for in situ measurements of properties related to suspended-sediment characteristics (for example, turbidity, laser-diffraction, acoustics). Herein, we present a new physically based method for the simultaneous measurement of suspended-silt-and-clay concentration, suspended-sand concentration, and suspended‑sand median grain size in rivers, using multi‑frequency arrays of single-frequency side‑looking acoustic-Doppler profilers. The method is strongly grounded in the extensive scientific literature on the incoherent scattering of sound by random suspensions of small particles. In particular, the method takes advantage of theory that relates acoustic frequency, acoustic attenuation, acoustic backscatter, suspended-sediment concentration, and suspended-sediment grain-size distribution. We develop the theory and methods, and demonstrate the application of the method at six study sites on the Colorado River and Rio Grande, where large numbers of suspended-sediment samples have been collected concurrently with acoustic attenuation and backscatter measurements over many years. The method produces acoustical measurements of suspended-silt-and-clay and suspended-sand concentration (in units of mg/L), and acoustical measurements of suspended-sand median grain size (in units of mm) that are generally in good to excellent agreement with concurrent physical measurements of these quantities in the river cross sections at

  2. Homogenization in chemical reactive flows

    Directory of Open Access Journals (Sweden)

    Carlos Conca

    2004-03-01

    Full Text Available This paper concerns the homogenization of two nonlinear models for chemical reactive flows through the exterior of a domain containing periodically distributed reactive solid grains (or reactive obstacles. In the first model, the chemical reactions take place on the walls of the grains, while in the second one the fluid penetrates the grains and the reactions take place therein. The effective behavior of these reactive flows is described by a new elliptic boundary-value problem containing an extra zero-order term which captures the effect of the chemical reactions.

  3. Energy content of suspended detritus from Arabian Sea

    Digital Repository Service at National Institute of Oceanography (India)

    Krishnakumari, L.; Sumitra-Vijayaraghavan; Royan, J.P.

    Energy components of suspended matter included phytoplankton, zooplankton and detritus inclusive of microorganisms adsorbed to detritus. Of these, detritus contributed most of the energy (98%). The average caloric content of suspended detritus...

  4. Particle Deposition onto Enclosure Surfaces

    Science.gov (United States)

    2009-08-20

    from constant bombardment by surrounding gas molecules. Such irregular motions of pollen grains in water were first observed by the botanist Robert...mode" particles, when neither of the mechanism works effectively to cause particle deposition (Figure 3). With respect to particle composition ... analyses as well as the limitations associated with these models. 7.1 Homogeneous Turbulence Model Modeling efforts for studying particle

  5. The suspended sentence in French Criminal Law

    Directory of Open Access Journals (Sweden)

    Jovašević Dragan

    2016-01-01

    Full Text Available From the ancient times until today, criminal law has provided different criminal sanctions as measures of social control. These coercive measures are imposed on the criminal offender by the competent court and aimed at limitting the offender's rights and freedoms or depriving the offender of certain rights and freedoms. These sanctions are applied to the natural or legal persons who violate the norms of the legal order and injure or endanger other legal goods that enjoy legal protection. In order to effectively protect social values, criminal legislations in all countries predict a number of criminal sanctions. These are: 1 imprisonment, 2 precautions, 3 safety measures, 4 penalties for juveniles, and 5 sanctions for legal persons. Apart and instead of punishment, warning measures have a significant role in the jurisprudence. Since they emerged in the early 20th century in the system of criminal sanctions, there has been an increase in their application to criminal offenders, especially when it comes to first-time offenders who committed a negligent or accidental criminal act. Warnings are applied in case of crimes that do not have serious consequences, and whose perpetrators are not hardened and incorrigible criminals. All contemporary criminal legislations (including the French legilation provide a warning measure of suspended sentence. Suspended sentence is a conditional stay of execution of sentence of imprisonment for a specified time, provided that the convicted person does not commit another criminal offense and fulfills other obligations. This sanction applies if the following two conditions are fulfilled: a forma! -which is attached to the sentence of imprisonment; and b material -which is the court assessment that the application of this sanction is justified and necessary in a particular case. In many modern criminal legislations, there are two different types of suspended (conditional sentence: 1 ordinary (classical suspended

  6. Microgravity particle research on the Space Station

    Energy Technology Data Exchange (ETDEWEB)

    Squyres, S.W.; Mckay, C.P.; Schwartz, D.E.

    1987-12-01

    Science questions that could be addressed by a Space Station Microgravity Particle Research Facility for studying small suspended particles were discussed. Characteristics of such a facility were determined. Disciplines covered include astrophysics and the solar nebula, planetary science, atmospheric science, exobiology and life science, and physics and chemistry.

  7. Transport equation for plasmas in a stationary-homogeneous turbulence

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Shaojie, E-mail: wangsj@ustc.edu.cn [Department of Modern Physics, University of Science and Technology of China, Hefei 230026 (China)

    2016-02-15

    For a plasma in a stationary homogeneous turbulence, the Fokker-Planck equation is derived from the nonlinear Vlasov equation by introducing the entropy principle. The ensemble average in evaluating the kinetic diffusion tensor, whose symmetry has been proved, can be computed in a straightforward way when the fluctuating particle trajectories are provided. As an application, it has been shown that a mean parallel electric filed can drive a particle flux through the Stokes-Einstein relation, independent of the details of the fluctuations.

  8. Catchment soil moisture and rainfall characteristics as determinant factors for discharge/suspended sediment hysteretic loops in a small headwater catchment in the Spanish pyrenees

    NARCIS (Netherlands)

    Seeger, M.; Beguería, S.; Errea, M.P.; Arnáez, J.; Martí, C.; García-Ruiz, J.M.

    2004-01-01

    The concentration of suspended sediment and discharge generated during flood events are not normally homogenous, and the curve representing sediment concentration vs. discharge through time is often a hysteretic loop. Three types of hysteretic loops were found at Arnás, a Mediterranean headwater

  9. ISOTOPE METHODS IN HOMOGENEOUS CATALYSIS.

    Energy Technology Data Exchange (ETDEWEB)

    BULLOCK,R.M.; BENDER,B.R.

    2000-12-01

    The use of isotope labels has had a fundamentally important role in the determination of mechanisms of homogeneously catalyzed reactions. Mechanistic data is valuable since it can assist in the design and rational improvement of homogeneous catalysts. There are several ways to use isotopes in mechanistic chemistry. Isotopes can be introduced into controlled experiments and followed where they go or don't go; in this way, Libby, Calvin, Taube and others used isotopes to elucidate mechanistic pathways for very different, yet important chemistries. Another important isotope method is the study of kinetic isotope effects (KIEs) and equilibrium isotope effect (EIEs). Here the mere observation of where a label winds up is no longer enough - what matters is how much slower (or faster) a labeled molecule reacts than the unlabeled material. The most careti studies essentially involve the measurement of isotope fractionation between a reference ground state and the transition state. Thus kinetic isotope effects provide unique data unavailable from other methods, since information about the transition state of a reaction is obtained. Because getting an experimental glimpse of transition states is really tantamount to understanding catalysis, kinetic isotope effects are very powerful.

  10. Homogenization scheme for acoustic metamaterials

    KAUST Repository

    Yang, Min

    2014-02-26

    We present a homogenization scheme for acoustic metamaterials that is based on reproducing the lowest orders of scattering amplitudes from a finite volume of metamaterials. This approach is noted to differ significantly from that of coherent potential approximation, which is based on adjusting the effective-medium parameters to minimize scatterings in the long-wavelength limit. With the aid of metamaterials’ eigenstates, the effective parameters, such as mass density and elastic modulus can be obtained by matching the surface responses of a metamaterial\\'s structural unit cell with a piece of homogenized material. From the Green\\'s theorem applied to the exterior domain problem, matching the surface responses is noted to be the same as reproducing the scattering amplitudes. We verify our scheme by applying it to three different examples: a layered lattice, a two-dimensional hexagonal lattice, and a decorated-membrane system. It is shown that the predicted characteristics and wave fields agree almost exactly with numerical simulations and experiments and the scheme\\'s validity is constrained by the number of dominant surface multipoles instead of the usual long-wavelength assumption. In particular, the validity extends to the full band in one dimension and to regimes near the boundaries of the Brillouin zone in two dimensions.

  11. Estimating total suspended sediment yield with probability sampling

    Science.gov (United States)

    Robert B. Thomas

    1985-01-01

    The ""Selection At List Time"" (SALT) scheme controls sampling of concentration for estimating total suspended sediment yield. The probability of taking a sample is proportional to its estimated contribution to total suspended sediment discharge. This procedure gives unbiased estimates of total suspended sediment yield and the variance of the...

  12. Optomechanics for thermal characterization of suspended graphene

    Science.gov (United States)

    Dolleman, Robin J.; Houri, Samer; Davidovikj, Dejan; Cartamil-Bueno, Santiago J.; Blanter, Yaroslav M.; van der Zant, Herre S. J.; Steeneken, Peter G.

    2017-10-01

    The thermal response of graphene is expected to be extremely fast due to its low heat capacity and high thermal conductivity. In this work, the thermal response of suspended single-layer graphene membranes is investigated by characterization of their mechanical motion in response to a high-frequency modulated laser. A characteristic delay time τ between the optical intensity and mechanical motion is observed, which is attributed to the time required to raise the temperature of the membrane. We find, however, that the measured time constants are significantly larger than the predicted ones based on values of the specific heat and thermal conductivity. In order to explain the discrepancy between measured and modeled τ , a model is proposed that takes a thermal boundary resistance at the edge of the graphene drum into account. The measurements provide a noninvasive way to characterize thermal properties of suspended atomically thin membranes, providing information that can be hard to obtain by other means.

  13. Remote Sensing of Suspended Sediment Over Gulf of Martaban

    Directory of Open Access Journals (Sweden)

    Matamin Abd Rahman

    2015-03-01

    Full Text Available Gulf of Martaban is located at the north of Andaman, and is one of the world most turbid areas. The presence of suspended sediment concentration (SSC in the water body could reduce the underwater transmittance. This study has been conducted to investigate the variation of SSC over the Gulf of Martaban. Remote sensing reflectance (Rrs of 667 nm is used as a proxy to represent the sediment SSC variation over the study area. The data for the period of July 2002 to March 2014 acquired from MODIS Aqua 4 km resolution are used in this study. As a result, there is no obvious yearly variation in the SSC cover area. The SSC variation over this study area is found to be seasonal. High homogenous SSC covers area observably during the northeast (NE monsoon season that occurs from December to January. The sediment cover area could reach the latitude of 15°N that located at the south of the gulf. During southwest (SW monsoon season that occurs from May to September, low and sparse SSC cover area is observed. As a consequence, the area covered by the SSC is higher during the NE monsoon season as compared to the SW monsoon season. Hence, the SSC cover area during the NE monsoon season is greater than the yearly averaged SSC cover area. Meanwhile the SSC cover area during the rainy SW monsoon season is less than the yearly and NE monsoon season.

  14. Quasi-polynomial 3D electric and magnetic potentials homogeneous in Euler's sense

    Directory of Open Access Journals (Sweden)

    Alexander S. Berdnikov

    2017-03-01

    Full Text Available Electric and magnetic fields homogeneous in Euler's sense are a useful instrument for designing the systems of charge particle optics. The similarity principle for the charged particle trajectories in these fields was applied by Golikov for the first time to create spectrographic charge particle optical systems in a more systematic and intelligence way when using the fields being homogeneous in Euler's sense. This paper studies the Laplace potentials homogeneous in Euler's sense. The coefficients of the polynomials are functions of the two rest coordinates; they are presented not by the polynomial but ought to be the functions harmonic and homogeneous in Euler's sense. We have solved a finite chain of Poisson equations starting from the highest coefficients. By means of the proposed procedure we obtained new classes of potentials which provided a base for electric and magnetic spectrograph systems.

  15. Suspended sediments limit coral sperm availability

    Science.gov (United States)

    Ricardo, Gerard F.; Jones, Ross J.; Clode, Peta L.; Humanes, Adriana; Negri, Andrew P.

    2015-01-01

    Suspended sediment from dredging activities and natural resuspension events represent a risk to the reproductive processes of coral, and therefore the ongoing maintenance of reefal populations. To investigate the underlying mechanisms that could reduce the fertilisation success in turbid water, we conducted several experiments exposing gametes of the corals Acropora tenuis and A. millepora to two sediment types. Sperm limitation was identified in the presence of siliciclastic sediment (230 and ~700 mg L−1), with 2–37 fold more sperm required to achieve maximum fertilisation rates, when compared with sediment-free treatments. This effect was more pronounced at sub-optimum sperm concentrations. Considerable (>45%) decreases in sperm concentration at the water’s surface was recorded in the presence of siliciclastic sediment and a >20% decrease for carbonate sediment. Electron microscopy then confirmed sediment entangled sperm and we propose entrapment and sinking is the primary mechanism reducing sperm available to the egg. Longer exposure to suspended sediments and gamete aging further decreased fertilisation success when compared with a shorter exposure. Collectively, these findings demonstrate that high concentrations of suspended sediments effectively remove sperm from the water’s surface during coral spawning events, reducing the window for fertilisation with potential subsequent flow-on effects for recruitment. PMID:26659008

  16. A combined use of acoustic and optical devices to investigate suspended sediment in rivers

    Science.gov (United States)

    Guerrero, Massimo; Rüther, Nils; Haun, Stefan; Baranya, Sandor

    2017-04-01

    The use of acoustic and optic devices has become more and more common for estimating suspended sediment loads in rivers. The echo intensity levels (EIL) recorded by means of an Acoustic Doppler Current Profiler (ADCP) have been applied in different methods, which provided relationships between scattering particles features derived from samples (i.e., concentration and grain size) and corresponding backscattering strength and sound attenuation. At the same time, the laser diffraction was applied by an in-stream sampler (LISST-SL) to measure suspended sediment concentration and the corresponding particle size distribution (PSD). These two techniques exhibited different limitations in terms of the measured range of concentration, sensitivity to a certain spectrum of particle sizes, and instruments deploy feasibility especially in large rivers, in a way that the use of sampled PSD by LISST-SL to validate ADCP methods may not be trivial. The aim of this study was to combine the vertical profiling of EIL by an ADCP with results from LISST-SL, eventually demonstrating the possibility of using moving ADCP measurements to detect different suspended matters along a Danube River section characterized by a small tributary junction. At the same time, this work elucidates optical to acoustic method deviations that hinders an actual validation of ADCP methods based on LISST-SL rather than with physical samplings.

  17. Traffic planning for non-homogeneous traffic

    Indian Academy of Sciences (India)

    These vehicles have widely different static and dynamic characteristics. The traffic is also very different from homogeneous traffic which primarily consists of motorized vehicles. Homogeneous traffic follows strict lane discipline as compared to non-homogeneous traffic. Western traffic planning methodologies mostly address ...

  18. Projective duality and homogeneous spaces

    CERN Document Server

    Tevelev, E A

    2006-01-01

    Projective duality is a very classical notion naturally arising in various areas of mathematics, such as algebraic and differential geometry, combinatorics, topology, analytical mechanics, and invariant theory, and the results in this field were until now scattered across the literature. Thus the appearance of a book specifically devoted to projective duality is a long-awaited and welcome event. Projective Duality and Homogeneous Spaces covers a vast and diverse range of topics in the field of dual varieties, ranging from differential geometry to Mori theory and from topology to the theory of algebras. It gives a very readable and thorough account and the presentation of the material is clear and convincing. For the most part of the book the only prerequisites are basic algebra and algebraic geometry. This book will be of great interest to graduate and postgraduate students as well as professional mathematicians working in algebra, geometry and analysis.

  19. In vitro release studies on drugs suspended in non-polar media I. Release of sodium chloride from suspensions in liquid paraffin

    NARCIS (Netherlands)

    Crommelin, D.J.A.; Blaey, C.J. de

    The release of a readily water-soluble substance (sodium chloride) from a liquid paraffin phase to an underlying water phase was investigated as a function of particle size (10–50 μm) and concentration (up to 10% m/m). Transport of the suspended particles to the interface by sedimentation was the

  20. Numerical Computation of Homogeneous Slope Stability

    Directory of Open Access Journals (Sweden)

    Shuangshuang Xiao

    2015-01-01

    Full Text Available To simplify the computational process of homogeneous slope stability, improve computational accuracy, and find multiple potential slip surfaces of a complex geometric slope, this study utilized the limit equilibrium method to derive expression equations of overall and partial factors of safety. This study transformed the solution of the minimum factor of safety (FOS to solving of a constrained nonlinear programming problem and applied an exhaustive method (EM and particle swarm optimization algorithm (PSO to this problem. In simple slope examples, the computational results using an EM and PSO were close to those obtained using other methods. Compared to the EM, the PSO had a small computation error and a significantly shorter computation time. As a result, the PSO could precisely calculate the slope FOS with high efficiency. The example of the multistage slope analysis indicated that this slope had two potential slip surfaces. The factors of safety were 1.1182 and 1.1560, respectively. The differences between these and the minimum FOS (1.0759 were small, but the positions of the slip surfaces were completely different than the critical slip surface (CSS.

  1. Magnetic field homogeneity for neutron EDM experiment

    Science.gov (United States)

    Anderson, Melissa

    2016-09-01

    The neutron electric dipole moment (nEDM) is an observable which, if non-zero, would violate time-reversal symmetry, and thereby charge-parity symmetry of nature. New sources of CP violation beyond those found in the standard model of particle physics are already tightly constrained by nEDM measurements. Our future nEDM experiment seeks to improve the precision on the nEDM by a factor of 30, using a new ultracold neutron (UCN) source that is being constructed at TRIUMF. Systematic errors in the nEDM experiment are driven by magnetic field inhomogeneity and instability. The goal field inhomogeneity averaged over the experimental measurement cell (order of 1 m) is 1 nT/m, at a total magnetic field of 1 microTesla. This equates to roughly 10-3 homogeneity. A particularly challenging aspect of the design problem is that nearby magnetic materials will also affect the magnetic inhomogeneity, and this must be taken into account in completing the design. This poster will present the design methodology and status of the main coil for the experiment where we use FEA software (COMSOL) to simulate and analyze the magnetic field. Natural Sciences and Engineering Research Council.

  2. Turbidity and suspended sediment in the upper Esopus Creek watershed, Ulster County, New York

    Science.gov (United States)

    McHale, Michael R.; Siemion, Jason

    2014-01-01

    Suspended-sediment concentrations (SSCs) and turbidity were measured for 2 to 3 years at 14 monitoring sites throughout the upper Esopus Creek watershed in the Catskill Mountains of New York State. The upper Esopus Creek watershed is part of the New York City water-supply system that supplies water to more than 9 million people every day. Turbidity, caused primarily by high concentrations of inorganic suspended particles, is a potential water-quality concern because it colors the water and can reduce the effectiveness of drinking-water disinfection. The purposes of this study were to quantify concentrations of suspended sediment and turbidity levels, to estimate suspended-sediment loads within the upper Esopus Creek watershed, and to investigate the relations between SSC and turbidity. Samples were collected at four locations along the main channel of Esopus Creek and at all of the principal tributaries. Samples were collected monthly and during storms and were analyzed for SSC and turbidity in the laboratory. Turbidity was also measured every 15 minutes at six of the sampling stations with in situ turbidity probes.

  3. Stochastic model of milk homogenization process using Markov's chain

    Directory of Open Access Journals (Sweden)

    A. A. Khvostov

    2016-01-01

    Full Text Available The process of development of a mathematical model of the process of homogenization of dairy products is considered in the work. The theory of Markov's chains was used in the development of the mathematical model, Markov's chain with discrete states and continuous parameter for which the homogenisation pressure is taken, being the basis for the model structure. Machine realization of the model is implemented in the medium of structural modeling MathWorks Simulink™. Identification of the model parameters was carried out by minimizing the standard deviation calculated from the experimental data for each fraction of dairy products fat phase. As the set of experimental data processing results of the micrographic images of fat globules of whole milk samples distribution which were subjected to homogenization at different pressures were used. Pattern Search method was used as optimization method with the Latin Hypercube search algorithm from Global Optimization Тoolbox library. The accuracy of calculations averaged over all fractions of 0.88% (the relative share of units, the maximum relative error was 3.7% with the homogenization pressure of 30 MPa, which may be due to the very abrupt change in properties from the original milk in the particle size distribution at the beginning of the homogenization process and the lack of experimental data at homogenization pressures of below the specified value. The mathematical model proposed allows to calculate the profile of volume and mass distribution of the fat phase (fat globules in the product, depending on the homogenization pressure and can be used in the laboratory and research of dairy products composition, as well as in the calculation, design and modeling of the process equipment of the dairy industry enterprises.

  4. Analyzing the uncertainty of suspended sediment load prediction using sequential data assimilation

    Science.gov (United States)

    Leisenring, Marc; Moradkhani, Hamid

    2012-10-01

    SummaryA first step in understanding the impacts of sediment and controlling the sources of sediment is to quantify the mass loading. Since mass loading is the product of flow and concentration, the quantification of loads first requires the quantification of runoff volume. Using the National Weather Service's SNOW-17 and the Sacramento Soil Moisture Accounting (SAC-SMA) models, this study employed particle filter based Bayesian data assimilation methods to predict seasonal snow water equivalent (SWE) and runoff within a small watershed in the Lake Tahoe Basin located in California, USA. A procedure was developed to scale the variance multipliers (a.k.a hyperparameters) for model parameters and predictions based on the accuracy of the mean predictions relative to the ensemble spread. In addition, an online bias correction algorithm based on the lagged average bias was implemented to detect and correct for systematic bias in model forecasts prior to updating with the particle filter. Both of these methods significantly improved the performance of the particle filter without requiring excessively wide prediction bounds. The flow ensemble was linked to a non-linear regression model that was used to predict suspended sediment concentrations (SSCs) based on runoff rate and time of year. Runoff volumes and SSC were then combined to produce an ensemble of suspended sediment load estimates. Annual suspended sediment loads for the 5 years of simulation were finally computed along with 95% prediction intervals that account for uncertainty in both the SSC regression model and flow rate estimates. Understanding the uncertainty associated with annual suspended sediment load predictions is critical for making sound watershed management decisions aimed at maintaining the exceptional clarity of Lake Tahoe. The computational methods developed and applied in this research could assist with similar studies where it is important to quantify the predictive uncertainty of pollutant load

  5. Optical and Gravimetric Partitioning of Coastal Ocean Suspended Particulate Inorganic Matter (PIM)

    Science.gov (United States)

    Stavn, R. H.; Zhang, X.; Falster, A. U.; Gray, D. J.; Rick, J. J.; Gould, R. W., Jr.

    2016-02-01

    Recent work on the composition of suspended particulates of estuarine and coastal waters increases our capabilities to investigate the biogeochemal processes occurring in these waters. The biogeochemical properties associated with the particulates involve primarily sorption/desorption of dissolved matter onto the particle surfaces, which vary with the types of particulates. Therefore, the breakdown into chemical components of suspended matter will greatly expand the biogeochemistry of the coastal ocean region. The gravimetric techniques for these studies are here expanded and refined. In addition, new optical inversions greatly expand our capabilities to study spatial extent of the components of suspended particulate matter. The partitioning of a gravimetric PIM determination into clay minerals and amorphous silica is aided by electron microprobe analysis. The amorphous silica is further partitioned into contributions by detrital material and by the tests of living diatoms based on an empirical formula relating the chlorophyll content of cultured living diatoms in log phase growth to their frustules determined after gravimetric analysis of the ashed diatom residue. The optical inversion of composition of suspended particulates is based on the entire volume scattering function (VSF) measured in the field with a Multispectral Volume Scattering Meter and a LISST 100 meter. The VSF is partitioned into an optimal combination of contributions by particle subpopulations, each of which is uniquely represented by a refractive index and a log-normal size distribution. These subpopulations are aggregated to represent the two components of PIM using the corresponding refractive indices and sizes which also yield a particle size distribution for the two components. The gravimetric results of partitioning PIM into clay minerals and amorphous silica confirm the optical inversions from the VSF.

  6. Deformation and fracture behavior of simulated particle gels

    NARCIS (Netherlands)

    Rzepiela, A.A.

    2003-01-01

    In this PhD project rheological properties of model particle gels are investigated using Brownian Dynamics (BD) simulations. Particle gels are systems of colloidal particles that form weakly bonded percolating networks interpenetrated by a suspending fluid. They are characterized as

  7. The acceleration of solid particles subjected to cavitation nucleation

    DEFF Research Database (Denmark)

    Borkent, B.M.; Arora, M.; Ohl, C.-D.

    2008-01-01

    The cavity -particle dynamics at cavitation inception on the surface of spherical particles suspended in water and exposed to a strong tensile stress wave is experimentally studied with high-speed photography. Particles, which serve as nucleation sites for cavitation bubbles, are set into a fast...

  8. Monitoring of suspended sediment in South Tyrol

    Science.gov (United States)

    Nadalet, Rudi; Dinale, Roberto; Pernter, Martin; Maraldo, Luca; Peterlin, Dieter; Richter, Arnold; Comiti, Francesco

    2016-04-01

    In the context of the EU Water Framework Directive (WFD), which aims to achieve a good status of European water bodies, the Hydrographic Office of the Autonomous Province of Bolzano (Italy) extended in 2014 its institutional activities including the monitoring of suspended sediment in the river channel network. Currently, the only active monitoring station is on the Adige River at the gauging station of Ponte Adige near Bolzano (drainage area 2705 km2). The applied monitoring strategy and the data analysis concept are both based on the guidelines issued by the Austrian Federal Ministry of Agriculture, Forestry, Environment and Water Management (BMLFUW). The results indicates that the temporal variability strongly differs during the investigated period (2014-2015). In addition to the analysis of precipitation and water discharge, temperature and lightning activity were also included to better understand the sediment transport dynamics observed at the station. In summer 2015, the combination of constantly high daily temperature throughout the Adige basin (which drove intense glacier melting in the headwaters) with a high frequency of convective rainfall events (90% more than in 2014, obtained through lightning detection), led to an annual mass of transported suspended sediment of 260000 t. Interestingly, this value is similar to the one estimated for 2014 (300000 t), which was characterized by very different meteorological conditions (colder and wetter summer), but with the occurrence of an important flood in August, which transported half of the annual amount. Finally, we can conclude that the adopted monitoring strategy is applicable for institutional aims in terms of costs as well as in terms of time effort. During the next years, other stations for suspended sediment monitoring are planned to be installed in the Province to cover the most important river segments.

  9. Novel concepts for preparation of reference materials as whole water samples for priority substances at nanogram-per-liter level using model suspended particulate matter and humic acids.

    Science.gov (United States)

    Elordui-Zapatarietxe, Saioa; Fettig, Ina; Philipp, Rosemarie; Gantois, Fanny; Lalère, Béatrice; Swart, Claudia; Petrov, Panayot; Goenaga-Infante, Heidi; Vanermen, Guido; Boom, Gerard; Emteborg, Håkan

    2015-04-01

    One of the unresolved issues of the European Water Framework Directive is the unavailability of realistic water reference materials for the organic priority pollutants at low nanogram-per-liter concentrations. In the present study, three different types of ready-to-use water test materials were developed for polycyclic aromatic hydrocarbons (PAHs), polybrominated diphenyl ethers (PBDEs) and tributyltin (TBT) at nanogram-per-liter levels. The first type simulated the dissolved phase in the water and comprised of a solution of humic acids (HA) at 5 mg L(-1) dissolved organic carbon (DOC) and a spike of the target compounds. The second type of water sample incorporated the particulate phase in water. To this end, model suspended particulate matter (SPM) with a realistic particle size was produced by jet milling soil and sediments containing known amounts of PAHs, PBDEs and TBT and added as slurry to mineral water. The most complex test materials mimicked "whole water" consequently containing both phases, the model SPM and the HA solution with the target analytes strongly bound to the SPM. In this paper, the development of concepts, processing of the starting materials, characterisation of the HA and model SPMs as well as results for homogeneity and stability testing of the ready-to-use test materials are described in detail.

  10. Homogeneous Precipitation Synthesis and Magnetic Properties of Cobalt Ferrite Nanoparticles

    Directory of Open Access Journals (Sweden)

    Zhigang Liu

    2008-01-01

    Full Text Available Magnetic nanoparticles (NPs of cobalt ferrite have been synthesized via a homogeneous precipitation route using hexamethylenetetramine (HMT as the precipitant. The particle size, crystal structure, and magnetic properties of the synthesized particles were investigated by X-ray diffraction, transmission electron microscopy, and vibrating sample magnetometer. The NPs are of cubic inverse spinel structure and nearly spherical shape. With the increase of oxidation time from 30 to 180 minutes in the reaction solution at 90∘C, the average particle size increases from ~30 nm to ~45 nm. The as-synthesized NPs ~30 nm in size show higher Ms (61.5 emu/g and moderate Hc (945 Oe and Mr/Ms (0.45 value compared with the materials synthesized by coprecipitation method using NaOH as precipitate at high pH value.

  11. Active noise cancellation in a suspended interferometer

    CERN Document Server

    Driggers, Jennifer C; Pepper, Keenan; Adhikari, Rana

    2011-01-01

    We demonstrate feed-forward vibration isolation on a suspended Fabry-Perot interferometer using Wiener filtering and a variant of the common Least Mean Square (LMS) adaptive filter algorithm. We compare the experimental results with theoretical estimates of the cancellation efficiency. Using data from the recent LIGO Science Run, we also estimate the impact of this technique on full scale gravitational wave interferometers. In the future, we expect to use this technique to also remove acoustic, magnetic, and gravitational noise perturbations from the LIGO interferometers. This noise cancellation technique is simple enough to implement in standard laboratory environments and can be used to improve SNR for a variety of high precision experiments.

  12. Safety Harness For Work Under Suspended Load

    Science.gov (United States)

    Sunoo, Su Young

    1994-01-01

    Safety device protects worker under suspended engine or other heavy load. Mechanically linked with load so if load should fall, worker yanked safely away. Worker wears chest-plate vest with straps crossing eye on back. Lower safety cable connected to eye extends horizontally away from worker to nearby wall, wrapped on pulley and extends upward to motion amplifier or reducer. Safety cables transform any sudden downward motion of overhanging load into rapid sideways motion of worker. Net catches worker, preventing worker from bumping against wall.

  13. Prediction of suspended-sediment concentrations at selected sites in the Fountain Creek watershed, Colorado, 2008-09

    Science.gov (United States)

    Stogner, Sr., Robert W.; Nelson, Jonathan M.; McDonald, Richard R.; Kinzel, Paul J.; Mau, David P.

    2013-01-01

    In 2008, the U.S. Geological Survey (USGS), in cooperation with Pikes Peak Area Council of Governments, Colorado Water Conservation Board, Colorado Springs City Engineering, and the Lower Arkansas Valley Water Conservancy District, began a small-scale pilot study to evaluate the effectiveness of the use of a computational model of streamflow and suspended-sediment transport for predicting suspended-sediment concentrations and loads in the Fountain Creek watershed in Colorado. Increased erosion and sedimentation damage have been identified by the Fountain Creek Watershed Plan as key problems within the watershed. A recommendation in the Fountain Creek Watershed plan for management of the basin is to establish measurable criteria to determine if progress in reducing erosion and sedimentation damage is being made. The major objective of this study was to test a computational method to predict local suspended-sediment loads at two sites with different geomorphic characteristics in order to evaluate the feasibility of using such an approach to predict local suspended-sediment loads throughout the entire watershed. Detailed topographic surveys, particle-size data, and suspended-sediment samples were collected at two gaged sites: Monument Creek above Woodmen Road at Colorado Springs, Colorado (USGS gage 07103970), and Sand Creek above mouth at Colorado Springs, Colorado (USGS gage 07105600). These data were used to construct three-dimensional computational models of relatively short channel reaches at each site. The streamflow component of these models predicted a spatially distributed field of water-surface elevation, water velocity, and bed shear stress for a range of stream discharges. Using the model predictions, along with measured particle sizes, the sediment-transport component of the model predicted the suspended-sediment concentration throughout the reach of interest. These computed concentrations were used with predicted flow patterns and channel morphology to

  14. An Experimental Investigation of Bubble Rise Characteristics in a Crystal Suspended Non—Newtonian Fluid

    Science.gov (United States)

    Hassan, N. M. S.; Khan, M. M. K.; Rasul, M. G.; Rackemann, D. W.

    2008-07-01

    An experimental study of the bubble rise characteristics in non-Newtonian fluid with crystal suspension is presented in this paper. The suspension was made of different concentration of xanthan gum solutions with 0.23 mm polystyrene crystal particle. Different percentage of crystal content (by weight) was used to vary rheological properties. The effect of crystal particles and bubble volumes on the bubble rise velocity and bubble trajectory is analysed. The results show that the average bubble velocity increases with the increase in bubble volume for crystal suspended xanthan gum solution. In trajectory analysis, it is seen that the small bubbles experienced less horizontal motion in crystal suspended xanthan gum solution while larger bubbles followed a spiral motion. Experimentally determined data for the drag coefficient at high Reynolds number are compared with the results of other analytical and experimental studies available in the literature. The reported experimental data of drag co-efficient increases in crystal suspended xanthan gum solution for corresponding bubble volume and was found to be consistent with published data.

  15. Seasonal trends of benzo(apyrene in suspended particulate matter in urban areas of Belgrade, Serbia

    Directory of Open Access Journals (Sweden)

    Snežana Matić-Besarabić

    2010-09-01

    Full Text Available Polycyclic aromatic hydrocarbons (PAHs were identified to be one of the major toxic air pollutants in urban environment. PAHs are mostly formed during incomplete combustion or pyrolysis of organic material. According to Serbian National Legislation, benzo(apyrene (BaP concentration in total suspended particles (TSP in ambient air in the Belgrade metropolitan area has been determined in the last ten years, as a part of a local air pollution monitoring program performed by the Public Health Institute of Belgrade and funded by Belgrade’s Municipality. Air samples for analysis of BaP in suspended particleshave been collected (as 24 h sample once per month at selected onitoring sites within the municipal air quality monitoring network. At the beginning, according to National Regulation, all samples were taken as total suspended particles (TSP. Since mid-2008, the procedure of sampling methodology was harmonized with EU requirements and solid fraction PM10 has been collected and analyzed using GC/MS. In this study, we have analyzed results of TSP collected between 2005 and 2008. Looking through the results obtained during the period of a whole year, it can be noticed that concentrations of BaP were much higher during winter season at almost all measuring sites.

  16. STEAM STIRRED HOMOGENEOUS NUCLEAR REACTOR

    Science.gov (United States)

    Busey, H.M.

    1958-06-01

    A homogeneous nuclear reactor utilizing a selfcirculating liquid fuel is described. The reactor vessel is in the form of a vertically disposed tubular member having the lower end closed by the tube walls and the upper end closed by a removal fianged assembly. A spherical reaction shell is located in the lower end of the vessel and spaced from the inside walls. The reaction shell is perforated on its lower surface and is provided with a bundle of small-diameter tubes extending vertically upward from its top central portion. The reactor vessel is surrounded in the region of the reaction shell by a neutron reflector. The liquid fuel, which may be a solution of enriched uranyl sulfate in ordinary or heavy water, is mainiained at a level within the reactor vessel of approximately the top of the tubes. The heat of the reaction which is created in the critical region within the spherical reaction shell forms steam bubbles which more upwardly through the tubes. The upward movement of these bubbles results in the forcing of the liquid fuel out of the top of these tubes, from where the fuel passes downwardly in the space between the tubes and the vessel wall where it is cooled by heat exchangers. The fuel then re-enters the critical region in the reaction shell through the perforations in the bottom. The upper portion of the reactor vessel is provided with baffles to prevent the liquid fuel from splashing into this region which is also provided with a recombiner apparatus for recombining the radiolytically dissociated moderator vapor and a control means.

  17. AQUEOUS HOMOGENEOUS REACTORTECHNICAL PANEL REPORT

    Energy Technology Data Exchange (ETDEWEB)

    Diamond, D.J.; Bajorek, S.; Bakel, A.; Flanagan, G.; Mubayi, V.; Skarda, R.; Staudenmeier, J.; Taiwo, T.; Tonoike, K.; Tripp, C.; Wei, T.; Yarsky, P.

    2010-12-03

    Considerable interest has been expressed for developing a stable U.S. production capacity for medical isotopes and particularly for molybdenum- 99 (99Mo). This is motivated by recent re-ductions in production and supply worldwide. Consistent with U.S. nonproliferation objectives, any new production capability should not use highly enriched uranium fuel or targets. Conse-quently, Aqueous Homogeneous Reactors (AHRs) are under consideration for potential 99Mo production using low-enriched uranium. Although the Nuclear Regulatory Commission (NRC) has guidance to facilitate the licensing process for non-power reactors, that guidance is focused on reactors with fixed, solid fuel and hence, not applicable to an AHR. A panel was convened to study the technical issues associated with normal operation and potential transients and accidents of an AHR that might be designed for isotope production. The panel has produced the requisite AHR licensing guidance for three chapters that exist now for non-power reactor licensing: Reac-tor Description, Reactor Coolant Systems, and Accident Analysis. The guidance is in two parts for each chapter: 1) standard format and content a licensee would use and 2) the standard review plan the NRC staff would use. This guidance takes into account the unique features of an AHR such as the fuel being in solution; the fission product barriers being the vessel and attached systems; the production and release of radiolytic and fission product gases and their impact on operations and their control by a gas management system; and the movement of fuel into and out of the reactor vessel.

  18. Elastic properties of suspended multilayer WSe2

    Science.gov (United States)

    Zhang, Rui; Koutsos, Vasileios; Cheung, Rebecca

    2016-01-01

    We report the experimental determination of the elastic properties of suspended multilayer WSe2, a promising two-dimensional (2D) semiconducting material combined with high optical quality. The suspended WSe2 membranes have been fabricated by mechanical exfoliation of bulk WSe2 and transfer of the exfoliated multilayer WSe2 flakes onto SiO2/Si substrates pre-patterned with hole arrays. Then, indentation experiments have been performed on these membranes with an atomic force microscope. The results show that the 2D elastic modulus of the multilayer WSe2 membranes increases linearly while the prestress decreases linearly as the number of layers increases. The interlayer interaction in WSe2 has been observed to be strong enough to prevent the interlayer sliding during the indentation experiments. The Young's modulus of multilayer WSe2 (167.3 ± 6.7 GPa) is statistically independent of the thickness of the membranes, whose value is about two thirds of other most investigated 2D semiconducting transition metal dichalcogenides, namely, MoS2 and WS2. Moreover, the multilayer WSe2 can endure ˜12.4 GPa stress and ˜7.3% strain without fracture or mechanical degradation. The 2D WSe2 can be an attractive semiconducting material for application in flexible optoelectronic devices and nano-electromechanical systems.

  19. Method for forming suspended micromechanical structures

    Science.gov (United States)

    Fleming, James G.

    2000-01-01

    A micromachining method is disclosed for forming a suspended micromechanical structure from {111} crystalline silicon. The micromachining method is based on the use of anisotropic dry etching to define lateral features of the structure which are etched down into a {111}-silicon substrate to a first etch depth, thereby forming sidewalls of the structure. The sidewalls are then coated with a protection layer, and the substrate is dry etched to a second etch depth to define a spacing of the structure from the substrate. A selective anisotropic wet etchant (e.g. KOH, EDP, TMAH, NaOH or CsOH) is used to laterally undercut the structure between the first and second etch depths, thereby forming a substantially planar lower surface of the structure along a {111} crystal plane that is parallel to an upper surface of the structure. The lateral extent of undercutting by the wet etchant is controlled and effectively terminated by either timing the etching, by the location of angled {111}-silicon planes or by the locations of preformed etch-stops. This present method allows the formation of suspended micromechanical structures having large vertical dimensions and large masses while allowing for detailed lateral features which can be provided by dry etch definition. Additionally, the method of the present invention is compatible with the formation of electronic circuitry on the substrate.

  20. Homogeneity and thermodynamic identities in geometrothermodynamics

    Energy Technology Data Exchange (ETDEWEB)

    Quevedo, Hernando [Universidad Nacional Autonoma de Mexico, Instituto de Ciencias Nucleares (Mexico); Universita di Roma ' ' La Sapienza' ' , Dipartimento di Fisica, Rome (Italy); ICRANet, Rome (Italy); Quevedo, Maria N. [Universidad Militar Nueva Granada, Departamento de Matematicas, Facultad de Ciencias Basicas, Bogota (Colombia); Sanchez, Alberto [CIIDET, Departamento de Posgrado, Queretaro (Mexico)

    2017-03-15

    We propose a classification of thermodynamic systems in terms of the homogeneity properties of their fundamental equations. Ordinary systems correspond to homogeneous functions and non-ordinary systems are given by generalized homogeneous functions. This affects the explicit form of the Gibbs-Duhem relation and Euler's identity. We show that these generalized relations can be implemented in the formalism of black hole geometrothermodynamics in order to completely fix the arbitrariness present in Legendre invariant metrics. (orig.)

  1. Improving understanding of mixed-land-use watershed suspended sediment regimes: Mechanistic progress through high-frequency sampling.

    Science.gov (United States)

    Kellner, Elliott; Hubbart, Jason A

    2017-11-15

    Given the importance of suspended sediment to biogeochemical functioning of aquatic ecosystems, and the increasing concern of mixed-land-use effects on pollutant loading, there is an urgent need for research that quantitatively characterizes spatiotemporal variation of suspended sediment dynamics in contemporary watersheds. A study was conducted in a representative watershed of the central United States utilizing a nested-scale experimental watershed design, including five gauging sites (n=5) partitioning the catchment into five sub-watersheds. Hydroclimate stations at gauging sites were used to monitor air temperature, precipitation, and stream stage at 30-min intervals during the study (Oct. 2009-Feb. 2014). Streamwater grab samples were collected four times per week, at each site, for the duration of the study (Oct. 2009-Feb. 2014). Water samples were analyzed for suspended sediment using laser particle diffraction. Results showed significant differences (pland use (e.g. urban stormwater dilution) and surficial geology (e.g. supply-controlled spatial variation of particle size). Correlation analyses indicated weak relationships with both hydroclimate and land use, indicating non-linear sediment dynamics. Suspended sediment parameters displayed consistent seasonality during the study, with total concentration decreasing through the growing season and mean particle size inversely tracking air temperature. Likely explanations include vegetation influences and climate-driven weathering cycles. Results reflect unique observations of spatiotemporal variation of suspended sediment particle size class. Such information is crucial for land and water resource managers working to mitigate aquatic ecosystem degradation and improve water resource sustainability in mixed-land-use watersheds globally. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. Environmentally-suspended sediment production of the Nasia River ...

    African Journals Online (AJOL)

    The study assessed the level of suspended sediment produced in the Nasia River Basin. Hydrological and meteorological data and water samples were used for the study. Average suspended sediment yield (33 years) in the basin was 19.90 t/km2/yr. With mean annual runoff of 439.13m3/s, 322.43 t/yr suspended sediment ...

  3. Self-consolidating concrete homogeneity

    Directory of Open Access Journals (Sweden)

    Jarque, J. C.

    2007-08-01

    Full Text Available Concrete instability may lead to the non-uniform distribution of its properties. The homogeneity of self-consolidating concrete in vertically cast members was therefore explored in this study, analyzing both resistance to segregation and pore structure uniformity. To this end, two series of concretes were prepared, self-consolidating and traditional vibrated materials, with different w/c ratios and types of cement. The results showed that selfconsolidating concretes exhibit high resistance to segregation, albeit slightly lower than found in the traditional mixtures. The pore structure in the former, however, tended to be slightly more uniform, probably as a result of less intense bleeding. Such concretes are also characterized by greater bulk density, lower porosity and smaller mean pore size, which translates into a higher resistance to pressurized water. For pore diameters of over about 0.5 μm, however, the pore size distribution was found to be similar to the distribution in traditional concretes, with similar absorption rates.En este trabajo se estudia la homogeneidad de los hormigones autocompactantes en piezas hormigonadas verticalmente, determinando su resistencia a la segregación y la uniformidad de su estructura porosa, dado que la pérdida de estabilidad de una mezcla puede conducir a una distribución no uniforme de sus propiedades. Para ello se han fabricado dos tipos de hormigones, uno autocompactante y otro tradicional vibrado, con diferentes relaciones a/c y distintos tipos de cemento. Los resultados ponen de manifiesto que los hormigones autocompactantes presentan una buena resistencia a la segregación, aunque algo menor que la registrada en los hormigones tradicionales. A pesar de ello, su estructura porosa tiende a ser ligeramente más uniforme, debido probablemente a un menor sangrado. Asimismo, presentan una mayor densidad aparente, una menor porosidad y un menor tamaño medio de poro, lo que les confiere mejores

  4. Advancing Homogeneous Antimicrobial Glycoconjugate Vaccines.

    Science.gov (United States)

    Adamo, Roberto

    2017-05-16

    Since 2004, when the first synthetic glycoconjugate vaccine against the pneumonia and meningitis causing bacterium Haemophilus influenza type b (Hib) approved for human use in Cuba was reported, 34 million doses of the synthetic vaccine have been already distributed in several countries under the commercial name of Quimi-Hib. However, despite the success of this product, no other synthetic glycoconjugate vaccine has been licensed in the following 13 years. As well as avoiding the need to handle pathogens, synthetic glycoconjugates offer clear advantages in terms of product characterization and the possibility to understand the parameters influencing immunogenicity. Nevertheless, large scale application of synthetic sugars has been perceived as challenging because of manufacturing costs and process complexity compared to natural polysaccharides. Chemoenzymatic approaches, one-pot protocols, and automated solid-phase synthesis are rendering carbohydrate production considerably more attractive for industrialization. Here we identify three areas where chemical approaches can advance this progress: (i) chemical or enzymatic methods enabling the delivery of the minimal polysaccharide portion responsible for an effective immune response; (ii) site-selective chemical or enzymatic conjugation strategies for the exploration of the conjugation point in immune responses against carbohydrate-based vaccines, and the consistent preparation of more homogeneous products; (iii) multicomponent constructs targeting receptors responsible for immune response modulation in order to control its quality and magnitude. We discuss how synthesis of bacterial oligosaccharides is useful toward understanding the polysaccharide portion responsible for immunogenicity, and for developing robust and consistent alternatives to natural heterogeneous polysaccharides. The synthesis of sugar analogues can lead to the identification of hydrolytically more stable versions of oligosaccharide antigens. The

  5. Global Well-posedness of the Spatially Homogeneous Kolmogorov-Vicsek Model as a Gradient Flow

    Science.gov (United States)

    Figalli, Alessio; Kang, Moon-Jin; Morales, Javier

    2018-03-01

    We consider the so-called spatially homogenous Kolmogorov-Vicsek model, a non-linear Fokker-Planck equation of self-driven stochastic particles with orientation interaction under the space-homogeneity. We prove the global existence and uniqueness of weak solutions to the equation. We also show that weak solutions exponentially converge to a steady state, which has the form of the Fisher-von Mises distribution.

  6. Model of filtration Suspended Particles in gaseous jet Starter in Aqueous Bedding. Application to the Field of Severe Accident in Nuclear Power Plants; Modelo de filtracion de Particulas Suspendidas en un Chorro Gaseoso Entrente en un Lecho Acuoso. Aplicacion al Ambito de Accidente Severo en Centrales Nucleares

    Energy Technology Data Exchange (ETDEWEB)

    Fernandez, E.

    2013-07-01

    In this project the bases and assumptions adopted for the creation of a model are emphasized focused on retention of particles during gas injection jet regime pools (SPARCJET). To achieve this, it has become a robust approach and simplified hydrodynamic jet intended to describe the interaction both gas-liquid drop-like particle. The implementation of this model has been made Fortran as a subroutine in an existing code. Finally it has been carried out indirect validation by comparison with experimental data.

  7. Particle Pollution

    Science.gov (United States)

    ... Your Health Particle Pollution Public Health Issues Particle Pollution Recommend on Facebook Tweet Share Compartir Particle pollution — ... see them in the air. Where does particle pollution come from? Particle pollution can come from two ...

  8. Mass transfer within electrostatic precipitators: in-flight adsorption of mercury by charged suspended particulates.

    Science.gov (United States)

    Clack, Herek L

    2006-06-01

    Electrostatic precipitation is the dominant method of particulate control used for coal combustion, and varying degrees of mercury capture and transformation have been reported across ESPs. Nevertheless, the fate of gas-phase mercury within an ESP remains poorly understood. The present analysis focuses on the gas-particle mass transfer that occurs within a charged aerosol in an ESP. As a necessary step in gas-phase mercury adsorption or transformation, gas-particle mass transfer-particularly in configurations other than fixed beds-has received far less attention than studies of adsorption kinetics. Our previous analysis showed that only a small fraction of gas-phase mercury entering an ESP is likelyto be adsorbed by collected particulate matter on the plate electrodes. The present simplified analysis provides insight into gas-particle mass transfer within an ESP under two limiting conditions: laminar and turbulent fluid flows. The analysis reveals that during the process of particulate collection, gas-particle mass transfer can be quite high, easily exceeding the mass transfer to ESP plate electrodes in most cases. Decreasing particle size, increasing particle mass loading, and increasing temperature all result in increased gas-particle mass transfer. The analysis predicts significantly greater gas-particle mass transfer in the laminar limitthan in the turbulent limit; however, the differences become negligible under conditions where other factors, such as total mass of suspended particulates, are the controlling mass transfer parameters. Results are compared to selected pilot- and full-scale sorbent injection data.

  9. Suspended sediment yield in Texas watersheds

    Science.gov (United States)

    Coonrod, Julia Ellen Allred

    The Texas Water Development Board collected suspended sediment samples across the state of Texas for approximately 60 years. Until this research, no comprehensive analysis of the data had been conducted. This study compiles the suspended sediment data along with corresponding streamflow and rainfall. GIS programs are developed which characterize watersheds corresponding to the sediment gauging stations. The watersheds are characterized according to topography, climate, soils, and land use. All of the data is combined to form several SAS data sets which can subsequently be analyzed using regression. Annual data for all of the stations across the state are classified temporally and spatially to determine trends in the sediment yield. In general, the suspended sediment load increases with increasing runoff but no correlation exists with rainfall. However, the annual average rainfall can be used to classify the watersheds according to climate, which improves the correlation between sediment load and runoff. The watersheds with no dams have higher sediment loads than watersheds with dams. Dams in the drier parts of Texas reduce the sediment load more than dams in the wetter part of the state. Sediment rating curves are developed separately for each basin in Texas. All but one of the curves fall into a band which varies by about two orders of magnitude. The study analyzes daily time series data for the Lavaca River near Edna station. USGS data are used to improve the sediment rating curve by the addition of physically related variables and interaction terms. The model can explain an additional 41% of the variability in sediment concentration compared to a simple bivariate regression of sediment load and flow. The TWDB daily data for the Lavaca River near Edna station are used to quantify temporal trends. There is a high correlation between sediment load and flowrate for the Lavaca River. The correlation can be improved by considering a flow-squared term and by

  10. Geometric classifications of homogeneous production functions

    OpenAIRE

    Chen, Bang-Yen; Vilcu, Gabriel Eduard

    2013-01-01

    In this paper, we completely classify homogeneous production functions with an arbitrary number of inputs whose production hypersurfaces are flat. As an immediate consequence, we obtain a complete classification of homogeneous production functions with two inputs whose production surfaces are developable.

  11. The homogeneous geometries of real hyperbolic space

    DEFF Research Database (Denmark)

    Castrillón López, Marco; Gadea, Pedro Martínez; Swann, Andrew Francis

    We describe the holonomy algebras of all canonical connections of homogeneous structures on real hyperbolic spaces in all dimensions. The structural results obtained then lead to a determination of the types, in the sense of Tricerri and Vanhecke, of the corresponding homogeneous tensors. We use ...

  12. Investigations into homogenization of electromagnetic metamaterials

    DEFF Research Database (Denmark)

    Clausen, Niels Christian Jerichau

    This dissertation encompasses homogenization methods, with a special interest into their applications to metamaterial homogenization. The first method studied is the Floquet-Bloch method, that is based on the assumption of a material being infinite periodic. Its field can then be expanded in term...

  13. Homogeneous nucleation and the Ostwald step rule

    NARCIS (Netherlands)

    Wolde, P.R. ten; Frenkel, D.

    1999-01-01

    We compare the pathways for homogeneous nucleation in a number of different systems. In most cases, the simulations show that the nucleation pathways are markedly different from what is assumed in classical nucleation theory. We find that homogeneous nucleation exhibits, at the microscopic level,

  14. Design consideration for magnetically suspended flywheel systems

    Science.gov (United States)

    Anand, D.; Kirk, J. A.; Frommer, D. A.

    1985-01-01

    Consideration is given to the design, fabrication, and testing of a magnetically suspended flywheel system for energy storage applications in space. The device is the prototype of a system combining passive suspension of the flywheel plate by samarium cobalt magnets and active control in the radial direction using eight separate magnetic coils. The bearing assembly was machined from a nickel-iron alloy, and the machine parts are all hydrogen annealed. Slots in the magnetic plate allow four independent quadrants for control. The motor/generator component of the system is a brushless dc-permanent magnetic/ironless engine using electronic communication. The system has been tested at over 2500 rpm with satisfactory results. The system characteristics of the flywheel for application in low earth orbit (LEO) are given in a table.

  15. Organics and Suspended Solids Removal from Hospital

    Directory of Open Access Journals (Sweden)

    Fakhri Y. Hmood

    2013-05-01

    Full Text Available The Sequencing Batch Reactor (SBR method is used for treating samples of waste water taken from hospitals in Mosul. Many run periods are used (6-24 hours for             6 months. It is found that the organics and suspended solids removal increase with increasing the period of run, it is in the range ( 96-82 % and ( 100-95 % respectively, while the pH values are nearly neutral (7.05 to 7.5.     BOD5 and SS concentrations of the effluent are within the limits of Iraqi standards,  40:30 mg/l respectively. Hence, SBR method could be used for treating hospitals, small factories and some  residential sectors waste waters.  

  16. Circulation and suspended sediment transport in a coral reef lagoon: the south-west lagoon of New Caledonia.

    Science.gov (United States)

    Ouillon, S; Douillet, P; Lefebvre, J P; Le Gendre, R; Jouon, A; Bonneton, P; Fernandez, J M; Chevillon, C; Magand, O; Lefèvre, J; Le Hir, P; Laganier, R; Dumas, F; Marchesiello, P; Bel Madani, A; Andréfouët, S; Panché, J Y; Fichez, R

    2010-01-01

    The south-west lagoon of New Caledonia is a wide semi-open coral reef lagoon bounded by an intertidal barrier reef and bisected by numerous deep inlets. This paper synthesizes findings from the 2000-2008 French National Program EC2CO-PNEC relative to the circulation and the transport of suspended particles in this lagoon. Numerical model development (hydrodynamic, fine suspended sediment transport, wind-wave, small-scale atmospheric circulation) allowed the determination of circulation patterns in the lagoon and the charting of residence time, the later of which has been recently used in a series of ecological studies. Topical studies based on field measurements permitted the parameterisation of wave set-up induced by the swell breaking on the reef barrier and the validation of a wind-wave model in a fetch-limited environment. The analysis of spatial and temporal variability of suspended matter concentration over short and long time-scales, the measurement of grain size distribution and the density of suspended matter (1.27 kg l(-1)), and the estimation of erodibility of heterogeneous (sand/mud, terrigenous/biogenic) soft bottoms was also conducted. Aggregates were shown to be more abundant near or around reefs and a possible biological influence on this aggregation is discussed. Optical measurements enabled the quantification of suspended matter either in situ (monochromatic measurements) or remotely (surface spectral measurements and satellite observations) and provided indirect calibration and validation of a suspended sediment transport model. The processes that warrant further investigation in order to improve our knowledge of circulation and suspended sediment transport in the New Caledonia lagoon as well as in other coral reef areas are discussed, as are the relevance and reliability of the numerical models for this endeavour. Copyright (c) 2010 Elsevier Ltd. All rights reserved.

  17. Homogeneity of Prototypical Attributes in Soccer Teams

    Directory of Open Access Journals (Sweden)

    Christian Zepp

    2015-09-01

    Full Text Available Research indicates that the homogeneous perception of prototypical attributes influences several intragroup processes. The aim of the present study was to describe the homogeneous perception of the prototype and to identify specific prototypical subcategories, which are perceived as homogeneous within sport teams. The sample consists of N = 20 soccer teams with a total of N = 278 athletes (age M = 23.5 years, SD = 5.0 years. The results reveal that subcategories describing the cohesiveness of the team and motivational attributes are mentioned homogeneously within sport teams. In addition, gender, identification, team size, and the championship ranking significantly correlate with the homogeneous perception of prototypical attributes. The results are discussed on the basis of theoretical and practical implications.

  18. Multilevel Monte Carlo Approaches for Numerical Homogenization

    KAUST Repository

    Efendiev, Yalchin R.

    2015-10-01

    In this article, we study the application of multilevel Monte Carlo (MLMC) approaches to numerical random homogenization. Our objective is to compute the expectation of some functionals of the homogenized coefficients, or of the homogenized solutions. This is accomplished within MLMC by considering different sizes of representative volumes (RVEs). Many inexpensive computations with the smallest RVE size are combined with fewer expensive computations performed on larger RVEs. Likewise, when it comes to homogenized solutions, different levels of coarse-grid meshes are used to solve the homogenized equation. We show that, by carefully selecting the number of realizations at each level, we can achieve a speed-up in the computations in comparison to a standard Monte Carlo method. Numerical results are presented for both one-dimensional and two-dimensional test-cases that illustrate the efficiency of the approach.

  19. Storage filters upland suspended sediment signals delivered from watersheds

    Science.gov (United States)

    Pizzuto, James E.; Keeler, Jeremy; Skalak, Katherine; Karwan, Diana

    2017-01-01

    Climate change, tectonics, and humans create long- and short-term temporal variations in the supply of suspended sediment to rivers. These signals, generated in upland erosional areas, are filtered by alluvial storage before reaching the basin outlet. We quantified this filter using a random walk model driven by sediment budget data, a power-law distributed probability density function (PDF) to determine how long sediment remains stored, and a constant downstream drift velocity during transport of 157 km/yr. For 25 km of transport, few particles are stored, and the median travel time is 0.2 yr. For 1000 km of transport, nearly all particles are stored, and the median travel time is 2.5 m.y. Both travel-time distributions are power laws. The 1000 km travel-time distribution was then used to filter sinusoidal input signals with periods of 10 yr and 104 yr. The 10 yr signal is delayed by 12.5 times its input period, damped by a factor of 380, and is output as a power law. The 104 yr signal is delayed by 0.15 times its input period, damped by a factor of 3, and the output signal retains its sinusoidal input form (but with a power-law “tail”). Delivery time scales for these two signals are controlled by storage; in-channel transport time is insignificant, and low-frequency signals are transmitted with greater fidelity than high-frequency signals. These signal modifications are essential to consider when evaluating watershed restoration schemes designed to control sediment loading, and where source-area geomorphic processes are inferred from the geologic record.

  20. The Effect of pH and High-Pressure Homogenization on Droplet Size

    Directory of Open Access Journals (Sweden)

    Ah Pis Yong

    2017-12-01

    Full Text Available The aims of this study are to revisit the effect of high pressure on homogenization and the influence of pH on the emulsion droplet sizes. The high-pressure homogenization (HPH involves two stages of processing, where the first stage involves in blending the coarse emulsion by a blender, and the second stage requires disruption of the coarse emulsion into smaller droplets by a high-pressure homogenizer. The pressure range in this review is in between 10-500 MPa. The homogenised droplet sizes can be reduced by increasing the homogenization recirculation, and there is a threshold point beyond that by applying pressure only, the size cannot be further reduced. Normally, homogenised emulsions are classified by their degree of kinetic stability. Dispersed phase present in the form of droplets while continuous phase also known as suspended droplets. With a proper homogenization recirculation and pressure, a more kinetically stable emulsion can be produced. The side effects of increasing homogenization pressure are that it can cause overprocessing of the emulsion droplets where the droplet sizes become larger rather than the expected smaller size. This can cause kinetic instability in the emulsion. The droplet size is usually measured by dynamic light scattering or by laser light scattering technique. The type of samples used in this reviews are such as chocolate and vanilla based powders; mean droplet sizes samples; basil oil; tomato; lupin protein; oil; skim milk, soymilk; coconut milk; tomato homogenate; corn; egg-yolk, rapeseed and sunflower; Poly(4-vinylpyridine/silica; and Complex 1 until complex 4 approaches from author case study. A relationship is developed between emulsion size and pH. Results clearly show that lower pH offers smaller droplet of emulsion and the opposite occurs when the pH is increased.

  1. Simulation of suspended sediment transport initialized with satellite derived suspended sediment concentrations

    Science.gov (United States)

    Ramakrishnan, Ratheesh; Rajawat, A. S.

    2012-10-01

    Suspended sediment transport in the Gulf of Kachchh is simulated utilizing the suspended sediment concentration (SSC) derived from Oceansat OCM imagery, as the initial condition in MIKE-21 Mud Transport model. Optimization of the model mud parameters, like settling velocity and critical shear stress for erosion are realized with respect to the sediment size distribution and the bottom bed materials observed in the Gulf. Simulated SSCs are compared with alternate OCM derived SSC. The results are observed to be impetus where the model is able to generate the spatial dynamics of the sediment concentrations. Sediment dynamics like deposition, erosion and dispersion are explained with the simulated tidal currents and OCM derived sediment concentrations. Tidal range is observed as the important physical factor controlling the deposition and resuspension of sediments within the Gulf. From the simulation studies; maximum residual current velocities, tidal fronts and high turbulent zones are found to characterise the islands and shoals within the Gulf, which results in high sediment concentrations in those regions. Remarkable variability in the bathymetry of the Gulf, different bed materials and varying tidal conditions induces several circulation patterns and turbulence creating the unique suspended sediment concentration pattern in the Gulf.

  2. A suspended sediment yield predictive equation for river basins in ...

    African Journals Online (AJOL)

    An empirical equation that can be used for estimating the suspended sediment yields of river drainage basins without sediment data has been established for basins in the sub-tropical forest Southwestern river basin system of Ghana. The power law equation relates mean annual specific suspended sediment yield (t km-2 ...

  3. Simulation of suspended sediment transport initialized with satellite ...

    Indian Academy of Sciences (India)

    Suspended sediment transport in the Gulf of Kachchh is simulated utilizing the suspended sediment concentration (SSC) derived from Oceansat OCM imagery, as the initial condition in MIKE-21 Mud. Transport model. Optimization of the model mud parameters, like settling velocity and critical shear stress for erosion are ...

  4. Energy values of suspended detritus in Andaman Sea

    Digital Repository Service at National Institute of Oceanography (India)

    Krishnakumari, L.; Royan, J.P.; Sumitra-Vijayaraghavan

    Energy content of suspended detritus was determined in Andaman Sea waters during April-May 1988. The caloric content of suspended detritus ranged from 987 to 7040 cal. per gram dry wt with an average value of 5530 cal. per gram dry wt. The results...

  5. A wave-resolving model for nearshore suspended sediment transport

    Science.gov (United States)

    Ma, Gangfeng; Chou, Yi-Ju; Shi, Fengyan

    2014-05-01

    This paper presents a wave-resolving sediment transport model, which is capable of simulating sediment suspension in the field-scale surf zone. The surf zone hydrodynamics is modeled by the non-hydrostatic model NHWAVE (Ma et al., 2012). The turbulent flow and suspended sediment are simulated in a coupled manner. Three effects of suspended sediment on turbulent flow field are considered: (1) baroclinic forcing effect; (2) turbulence damping effect and (3) bottom boundary layer effect. Through the validation with the laboratory measurements of suspended sediment under nonbreaking skewed waves and surfzone breaking waves, we demonstrate that the model can reasonably predict wave-averaged sediment profiles. The model is then utilized to simulate a rip current field experiment (RCEX) and nearshore suspended sediment transport. The offshore sediment transport by rip currents is captured by the model. The effects of suspended sediment on self-suspension are also investigated. The turbulence damping and bottom boundary layer effects are significant on sediment suspension. The suspended sediment creates a stably stratified water column, damping fluid turbulence and reducing turbulent diffusivity. The suspension of sediment also produces a stably stratified bottom boundary layer. Thus, the drag coefficient and bottom shear stress are reduced, causing less sediment pickup from the bottom. The cross-shore suspended sediment flux is analyzed as well. The mean Eulerian suspended sediment flux is shoreward outside the surf zone, while it is seaward in the surf zone.

  6. Evaluation of the suspending properties of Cola acuminata gum on ...

    African Journals Online (AJOL)

    Many natural gums are employed as suspending agents in the formulation of pharmaceutical suspensions. The search to develop locally available natural gum from apparently a waste product as an alternative suspending agent stimulated the interest in this present study. Cola acuminata gum (CAG) extracted from Cola ...

  7. 40 CFR 230.21 - Suspended particulates/turbidity.

    Science.gov (United States)

    2010-07-01

    ... time. These new levels may reduce light penetration and lower the rate of photosynthesis and the... suspended particulates persist. The biological and the chemical content of the suspended material may react with the dissolved oxygen in the water, which can result in oxygen depletion. Toxic metals and organics...

  8. Simulation of suspended sediment transport initialized with satellite ...

    Indian Academy of Sciences (India)

    Suspended sediment transport in the Gulf of Kachchh is simulated utilizing the suspended sediment concentration (SSC) derived from Oceansat OCM imagery, as the initial condition in MIKE-21 Mud Transport model. Optimization of the model mud parameters, like settling velocity and critical shear stress for erosion are ...

  9. Evaluation of the suspending property of grewia gum in ...

    African Journals Online (AJOL)

    The suspending property of grewia gum in sulphadimidine suspension was evaluated. The gum was extracted by maceration, filtration, precipitation and drying techniques. It was used at 0.3 to 1% w/v as a suspending agent for sulphadimidine. Sodiumcarboxymethylcellulose (SCMC) and tragacanth were used as basis for ...

  10. Evaluation of the suspending properties of Adansonia digitata gum ...

    African Journals Online (AJOL)

    Sedimentation volume and rate, rheology, and ease of redispersion were employed as evaluation parameters. The results showed that both hot and cold water extracts of the gum used at 2-3 % w/v produced a better suspending property than 4 % w/v Compound Tragacanth gum. The suspending ability of the gums was in ...

  11. Evaluation of the Suspending Property of Grewia Gum in ...

    African Journals Online (AJOL)

    The suspending property of grewia gum in metronidazole suspension was evaluated. The gum was extracted by maceration, filtration, precipitation and drying techniques. It was used at 0.3 to 1% w/v as a suspending agent for metronidazole. Sodiumcarboxymethylcellulose (SCMC) and tragacanth were used as basis for ...

  12. Deforestation homogenizes tropical parasitoid-host networks.

    Science.gov (United States)

    Laliberté, Etienne; Tylianakis, Jason M

    2010-06-01

    Human activities drive biotic homogenization (loss of regional diversity) of many taxa. However, whether species interaction networks (e.g., food webs) can also become homogenized remains largely unexplored. Using 48 quantitative parasitoid-host networks replicated through space and time across five tropical habitats, we show that deforestation greatly homogenized network structure at a regional level, such that interaction composition became more similar across rice and pasture sites compared with forested habitats. This was not simply caused by altered consumer and resource community composition, but was associated with altered consumer foraging success, such that parasitoids were more likely to locate their hosts in deforested habitats. Furthermore, deforestation indirectly homogenized networks in time through altered mean consumer and prey body size, which decreased in deforested habitats. Similar patterns were obtained with binary networks, suggesting that interaction (link) presence-absence data may be sufficient to detect network homogenization effects. Our results show that tropical agroforestry systems can support regionally diverse parasitoid-host networks, but that removal of canopy cover greatly homogenizes the structure of these networks in space, and to a lesser degree in time. Spatiotemporal homogenization of interaction networks may alter coevolutionary outcomes and reduce ecological resilience at regional scales, but may not necessarily be predictable from community changes observed within individual trophic levels.

  13. Suspended-Bed Reactor preliminary design, /sup 233/U--/sup 232/Th cycle. Final report (revised)

    Energy Technology Data Exchange (ETDEWEB)

    Karam, R.A.; Alapour, A.; Lee, C.C.

    1977-11-01

    The preliminary design Suspended-Bed Reactor is described. Coated particles about 2 mm in diameter are used as the fuel. The coatings consist of three layers: (1) low density pyrolytic graphite, 70 ..mu.. thick, (2) silicon carbide pressure vessel, 30 ..mu.. thick, and (3) ZrC layer, 50 ..mu.. thick, to protect the pressure vessel from moisture and oxygen. The fuel kernel can be either uranium-thorium dicarbide or metal. The coated particles are suspended by helium gas (coolant) in a cluster of pressurized tubes. The upward flow of helium fluidizes the coated particles. As the flow rate increases, the bed of particles is lifted upward to the core section. The particles are restrained at the upper end of the core by a suitable screen. The overall particle density in the core is just enough for criticality condition. Should the helium flow cease, the bed in the core section will collapse, and the particles will flow downward into the section where the increased physical spacings among the tubes brings about a safe shutdown. By immersing this section of the tubes in a large graphite block to serve as a heat sink, dissipation of decay heat becomes manageable. This eliminates the need for emergency core cooling systems.

  14. Effect of high-pressure homogenization on different matrices of food supplements.

    Science.gov (United States)

    Martínez-Sánchez, Ascensión; Tarazona-Díaz, Martha Patricia; García-González, Antonio; Gómez, Perla A; Aguayo, Encarna

    2016-12-01

    There is a growing demand for food supplements containing high amounts of vitamins, phenolic compounds and mineral content that provide health benefits. Those functional compounds have different solubility properties, and the maintenance of their compounds and the guarantee of their homogenic properties need the application of novel technologies. The quality of different drinkable functional foods after thermal processing (0.1 MPa) or high-pressure homogenization under two different conditions (80 MPa, 33 ℃ and 120 MPa, 43 ℃) was studied. Physicochemical characteristics and sensory qualities were evaluated throughout the six months of accelerated storage at 40 ℃ and 75% relative humidity (RH). Aroma and color were better maintained in high-pressure homogenization-treated samples than the thermally treated ones, which contributed significantly to extending their shelf life. The small particle size obtained after high-pressure homogenization treatments caused differences in turbidity and viscosity with respect to heat-treated samples. The use of high-pressure homogenization, more specifically, 120 MPa, provided active ingredient homogeneity to ensure uniform content in functional food supplements. Although the effect of high-pressure homogenization can be affected by the food matrix, high-pressure homogenization can be implemented as an alternative to conventional heat treatments in a commercial setting within the functional food supplement or pharmaceutical industry. © The Author(s) 2016.

  15. Homogenization of precipitation data in Pannonian region

    Directory of Open Access Journals (Sweden)

    Medić Nenad Đ.

    2014-01-01

    Full Text Available Testing the homogeneity of data of meteorological occurrences is very important for ensuring the reliability and accuracy of the data that will later be used in a variety of research related to the assessment and prediction of future trends of climate changes. This paper presents the verification of homogeneity of data on average annual precipitations from 19 meteorological stations in the Pannonian region. For this purpose, it has been used four different statistical tests that are applied on each meteorological station individually. It was found that 4 out of 19 meteorological stations or in 21% of the cases there are in homogeneities of precipitation data.

  16. Shocks in homogeneous and heterogeneous populations

    Energy Technology Data Exchange (ETDEWEB)

    Finkelstein, Maxim [Department of Mathematical Statistics, University of the Free State, PO Box 339, 9300 Bloemfontein (South Africa) and Max Planck Institute for Demographic Research, Rostock (Germany)]. E-mail: FinkelM.SCI@mail.uovs.ac.za

    2007-05-15

    A system subject to a point process of shocks is considered. Shocks occur in accordance with a non-homogeneous Poisson process. Different criterions of system failures are discussed in a homogeneous case. Two natural settings are analyzed. Heterogeneity is modeled by an unobserved univariate random variable (frailty). It is shown that reliability (safety) analysis for a heterogeneous case can differ dramatically from that for a homogeneous setting. A shock burn-in procedure for a heterogeneous population is described. The corresponding bounds for the failure rates are obtained.

  17. Higher Order Macro Coefficients in Periodic Homogenization

    Energy Technology Data Exchange (ETDEWEB)

    Conca, Carlos; San Martin, Jorge [Departamento de IngenierIa Matematica, Facultad de Ciencias Fisicas y Matematicas, Universidad de Chile and Centro de Modelamiento Matematico, UMR 2071 CNRS-UChile, Casilla 170/3 - Correo 3, Santiago (Chile); Smaranda, Loredana [Department of Mathematics, Faculty of Mathematics and Computer Science, University of Pitesti, 110040 Pitesti, Str. Targu din Vale Nr.1, Arges (Romania); Vanninathan, Muthusamy, E-mail: cconca@dim.uchile.cl, E-mail: jorge@dim.uchile.cl, E-mail: smaranda@dim.uchile.cl, E-mail: vanni@math.tifrbng.res.in [TIFR-CAM, Post Bag 6503, GKVK Post, Bangalore - 560065 (India)

    2011-09-15

    A first set of macro coefficients known as the homogenized coefficients appear in the homogenization of PDE on periodic structures. If energy is increased or scale is decreased, these coefficients do not provide adequate approximation. Using Bloch decomposition, it is first realized that the above coefficients correspond to the lowest energy and the largest scale. This naturally paves the way to introduce other sets of macro coefficients corresponding to higher energies and lower scales which yield better approximation. The next task is to compare their properties with those of the homogenized coefficients. This article reviews these developments along with some new results yet to be published.

  18. Distribution and sources of suspended particulate matter in the Kara Sea

    Directory of Open Access Journals (Sweden)

    M. Kravchishina

    2015-03-01

    Full Text Available The distribution of suspended particulate matter (SPM concentration in the Kara Sea was analysed based on ship and satellite data during the lowest ice cover periods in the Arctic (2007 and 2011. The distance of the river runoff with terrigenous SPM was recognized up to at least 76–76.5° N on the basis of isotope data and SPM concentrations and composition. The complex studies of SPM in the water column and in the benthic boundary layer provided new information about the supply and transformation of particles in the marine ecosystem.

  19. NOTE: Effects of powder additives suspended in dielectric on crater characteristics for micro electrical discharge machining

    Science.gov (United States)

    Yeo, S. H.; Tan, P. C.; Kurnia, W.

    2007-11-01

    The effects of using powder additives suspended in dielectric on crater characteristics for micro electrical discharge machining (PSD micro-EDM) are investigated through the conduct of single RC discharge experiments at low discharge energies of 2.5 µJ, 5 µJ and 25 µJ. Through the introduction of additive particles into the dielectric, results of the single discharge experiments show the formation of craters with smaller diameters and depths, and having more consistent circular shapes than those produced in dielectric without additive. These craters also possess a noticeable morphological difference compared to those generated in dielectric without additive. In addition, discharge current measurements show a smaller amount of charges flowing between the tool electrode and workpiece, and at a slower flow rate when additives are present in the dielectric. Furthermore, based on the experimental results and findings from studies done in nanofluids, a hypothesis is made on the effects of powder suspended dielectric on the crater formation mechanism. The increased viscosity and enhanced thermal conductivity of a powder suspended dielectric lower the plasma heat flux into the electrode and raise the rate of heat dissipation away from the molten cavity. As a result, a smaller-sized crater having a larger amount of resolidified material within the crater cavity is formed.

  20. Homogeneous protein analysis by magnetic core-shell nanorod probes

    KAUST Repository

    Schrittwieser, Stefan

    2016-03-29

    Studying protein interactions is of vital importance both to fundamental biology research and to medical applications. Here, we report on the experimental proof of a universally applicable label-free homogeneous platform for rapid protein analysis. It is based on optically detecting changes in the rotational dynamics of magnetically agitated core-shell nanorods upon their specific interaction with proteins. By adjusting the excitation frequency, we are able to optimize the measurement signal for each analyte protein size. In addition, due to the locking of the optical signal to the magnetic excitation frequency, background signals are suppressed, thus allowing exclusive studies of processes at the nanoprobe surface only. We study target proteins (soluble domain of the human epidermal growth factor receptor 2 - sHER2) specifically binding to antibodies (trastuzumab) immobilized on the surface of our nanoprobes and demonstrate direct deduction of their respective sizes. Additionally, we examine the dependence of our measurement signal on the concentration of the analyte protein, and deduce a minimally detectable sHER2 concentration of 440 pM. For our homogeneous measurement platform, good dispersion stability of the applied nanoprobes under physiological conditions is of vital importance. To that end, we support our measurement data by theoretical modeling of the total particle-particle interaction energies. The successful implementation of our platform offers scope for applications in biomarker-based diagnostics as well as for answering basic biology questions.

  1. Immersion freezing of biological particles at LACIS

    Science.gov (United States)

    Clauss, T.; Hartmann, S.; Temkiv, T. S.; Augustin, S.; Gosewinkel Karlson, U.; Sahyoun, M. M.; Niedermeier, D.; Wex, H.; Voigtländer, J.; Raddatz, M.; Stratmann, F.

    2012-04-01

    Biological particles, especially bacteria being ubiquitous in the atmosphere, belong to the most efficient ice nuclei (IN) (Möhler, 2008) and hence might have a large impact on weather and climate. In this study, the immersion freezing behavior of different size segregated biological particles is investigated at the laminar flow tube LACIS (Leipzig Aerosol Cloud Interaction Simulator, Hartmann et al., 2011). For these experiments, SNOMAX and outer membrane vesicles (OMV) are used as IN. SNOMAX industrially produced from Pseudomonas-syringae bacteria, which are very ice nucleation active, can be seen as a proxy for ice nucleating bacteria in general. On the surface of these bacteria, ice nucleating proteins that initiate the freezing are situated (Maki et al., 1974). Additionally, it has been found that some ice nucleating bacteria strains have the ability to produce OMV, i.e., strangulated parts of the bacterial cell consisting of the same membrane material (Phelps et al., 1986). These OMV might contain the same ice nucleating proteins on their surface and thus might be able to nucleate ice as well. The OMV used in our experiments were extracted from bacteria cultivated from rain samples collected in Denmark from 30 m height. In our experiments, the biological particles are suspended in air via atomization, size selected by means of a Differential Mobility Particle Sizer, and then fed into LACIS. In LACIS, well defined droplets are produced by activating the biological particles to cloud droplets, so that each droplet contains only one biological particle. By decreasing the temperature in LACIS, these droplets are frozen. To determine the ice fraction, i.e., the fraction of frozen droplets to all particles, the liquid and frozen droplets are distinguished by means of a newly self-built optical device, which is positioned under LACIS, using the depolarization of light scattered by a single particle. The ice fractions are measured as a function of temperature and

  2. Homogeneous operators and projective representations of the ...

    Indian Academy of Sciences (India)

    Abstract. This paper surveys the existing literature on homogeneous operators and their relationships with projective representations of P S L ( 2 , R ) and other Lie groups. It also includes a list of open problems in this area.

  3. Homogeneity of common cosmopolitan inversion frequencies in ...

    Indian Academy of Sciences (India)

    Keywords. Drosophila melanogaster; inversion polymorphism; Southeast Asia; genetic homogeneity; balancing selection. Abstract. East Asian Drosophila melanogaster are known for great variation in morphological and physiological characters among populations, variation that is believed to be maintained by genetic drift.

  4. Homogeneous cosmological models in Yang's gravitation theory

    Science.gov (United States)

    Fennelly, A. J.; Pavelle, R.

    1979-01-01

    We present a dynamic, spatially homogeneous solution of Yang's pure space gravitational field equations which is non-Einsteinian. The predictions of this cosmological model seem to be at variance with observations.

  5. Layout optimization using the homogenization method

    Science.gov (United States)

    Suzuki, Katsuyuki; Kikuchi, Noboru

    1993-01-01

    A generalized layout problem involving sizing, shape, and topology optimization is solved by using the homogenization method for three-dimensional linearly elastic shell structures in order to seek a possibility of establishment of an integrated design system of automotive car bodies, as an extension of the previous work by Bendsoe and Kikuchi. A formulation of a three-dimensional homogenized shell, a solution algorithm, and several examples of computing the optimum layout are presented in this first part of the two articles.

  6. Diffusion processes in freely suspended smectic films

    Science.gov (United States)

    Śliwa, I.; Zakharov, A. V.

    2017-08-01

    A molecular model describing translational diffusion in freely suspended smectic films (FSSFs) in air is proposed. This model is based on the random walk theory and allows calculation of the translational diffusion coefficient (TDC) across smectic layers (along the director). All values necessary for calculating the TDC are obtained within the generalized mean-field model considering not only anisotropic interactions between nearest neighbors of molecules forming FSSFs, but also the stabilizing effect of the smectic/air interface. The spatial inhomogeneity of order parameters over the FSSF section, arising in this case, results in the fact that the surface tension at the smectic/air interface not only suppresses thermal fluctuations in surface layers, but also completely suppresses translational diffusion of molecules from the FSSF to air. The results of calculations of dimensional translational diffusion in the bulk of the FSSF formed by 5- n-alkyl-2-(4- n-(perfluoroalkyl-metyleneoxy))pentyl molecules during its thinning show that the TDC monotonically increases as the smectic film is thinned.

  7. A numerical study of fluidization behavior of Geldart A particles using a discrete particle model

    NARCIS (Netherlands)

    Ye, M.; van der Hoef, Martin Anton; Kuipers, J.A.M.

    2004-01-01

    This paper reports on a numerical study of fluidization behavior of Geldart A particles by use of a 2D soft-sphere discrete particle model (DPM). Some typical features, including the homogeneous expansion, gross particle circulation in the absence of bubbles, and fast bubbles, can be clearly

  8. Effects of high-speed homogenization and high-pressure homogenization on structure of tomato residue fibers.

    Science.gov (United States)

    Hua, Xiao; Xu, Shanan; Wang, Mingming; Chen, Ying; Yang, Hui; Yang, Ruijin

    2017-10-01

    Tomato residue fibers obtained after derosination and deproteinization were processed by high-speed homogenization (HSH) and high-pressure homogenization (HPH), and their effects on fiber structure was investigated, respectively. Characterizations including particle size distribution, SEM, TEM and XRD were performed. HSH could break raw fibers to small particles of around 60μm, while HPH could reshape fibers to build network structure. Microfibrils were released and their nanostructure consisting of elementary fibrils was observed by TEM. XRD patterns indicated both HSH and HPH could hardly alter the nanostructure of the fibers. Physicochemical properties including expansibility, WHC and OHC were determined. Both HSH and HPH could increase the soluble fiber content by about 8%, but HSH-HPH combined processing did not show better result. Acid (4mol/L HCl) was used in replacement of water medium and the acidic degradation of fibers could be promoted by high speed shearing or high pressure processing. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. Suspended matter and fluid mud off Alleppey, southwest coast of India

    Science.gov (United States)

    Shynu, R.; Rao, V. Purnachandra; Samiksha, S. V.; Vethamony, P.; Naqvi, S. W. A.; Kessarkar, Pratima M.; Babu, M. T.; Dineshkumar, P. K.

    2017-02-01

    Time series measurements on suspended particulate matter (SPM) were made at one non-mud bank (M1) and two mud bank stations (M2 and M3) off Alleppey, south west coast of India. The mean SPM was low in surface (6.2 mg/l) and mid-depth (3.7 mg/l) waters and higher in bottom-depth waters (24.6 mg/l) of these stations, during both pre-monsoon and monsoon seasons. Near bed suspended sediment results indicated low SPM during July (0.042 g/l) and September (0.018 g/l) at M1, but very high SPM at M2 (9.2 g/l) and M3 (6.2 g/l) during July that decreased (M2: 0.033 g/l; M3: 0.1 g/l) again in September. Observations based on LISST-25X indicated that optical transmission (OT) was high (80-100%) in surface and mid-depth waters but decreased with increasing depth. Near bed waters at M2 and M3 stations showed ∼1 m thick fluid layer with 0% OT and with high particle volume concentrations (150-200 μl/l) during monsoon. Bottom sediments were clayey silts. Sediments of fluid mud close to the bottom at M2 and M3 stations. As the wave height decreased from ∼3 m in May to 0.76 m in July, the dissipated wave energy probably liquefied, eroded and re-suspended the bottom sediment to form fluid mud. Upwelling currents may have been involved in the up keep and transportation of fluid mud. The suspended mud resettled at the bottom soon after the monsoon event.

  10. factors affecting particle retention in thermal field-flow fractionation

    African Journals Online (AJOL)

    In this paper, we report a range of factors which affect the retention of colloidal particles in thermal field-flow fractionation (ThFFF). These results are observed among different sizes of polystyrene (PS) latex particles suspended in both aqueous and nonaqueous liquid carriers and very low density lipoproteins in a phosphate ...

  11. Recent advances in the simulation of particle-laden flows

    NARCIS (Netherlands)

    Harting, Jens Dieter Rolf; Frijters, M.; Ramaioli, Marco; Wolf, D.E.; Luding, Stefan

    2014-01-01

    A substantial number of algorithms exists for the simulation of moving particles suspended in fluids. However, finding the best method to address a particular physical problem is often highly non-trivial and depends on the properties of the particles and the involved fluid(s) together. In this

  12. Pre-activation of ice-nucleating particles by the pore condensation and freezing mechanism

    Directory of Open Access Journals (Sweden)

    R. Wagner

    2016-02-01

    Full Text Available In spite of the resurgence in ice nucleation research a comparatively small number of studies deal with the phenomenon of pre-activation in heterogeneous ice nucleation. Fifty years ago, it was shown that various mineral dust and volcanic ash particles can be pre-activated to become nuclei for ice crystal formation even at temperatures as high as 270–271 K. Pre-activation was achieved under ice-subsaturated conditions without any preceding macroscopic ice growth by just temporarily cooling the particles to temperatures below 228 K. A two-step mechanism involving capillary condensation of supercooled water and subsequent homogeneous freezing was proposed to account for the particles' enhanced ice nucleation ability at high temperatures. This work reinvestigates the efficiency of the proposed pre-activation mechanism in temperature-cycling experiments performed in a large cloud chamber with suspended particles. We find the efficiency to be highest for the clay mineral illite as well as for highly porous materials like zeolite and diatomaceous earth, whereas most aerosols generated from desert dust surface samples did not reveal a measurable pre-activation ability. The pre-activation efficiency is linked to particle pores in a certain size range. As estimated by model calculations, only pores with diameters between about 5 and 8 nm contribute to pre-activation under ice-subsaturated conditions. This range is set by a combination of requirements from the negative Kelvin effect for condensation and a critical size of ice embryos for ice nucleation and melting. In contrast to the early study, pre-activation is only observed for temperatures below 260 K. Above that threshold, the particles' improved ice nucleation ability disappears due to the melting of ice in the pores.

  13. Estimation of suspended sediment concentration by acoustic ...

    African Journals Online (AJOL)

    However, the acoustic properties of natural sediments vary and depend on many parameters such as particle size, shape, mineralogy and distribution of those parameters in sample. Therefore, this study was conducted to determine the possibility of soil sediment concentration with the f and equations, which were obtained ...

  14. Influence of charge carriers on corrugation of suspended graphene

    Science.gov (United States)

    Kirilenko, Demid A.; Gorodetsky, Andrei; Baidakova, Marina V.

    2018-02-01

    Electronic degrees of freedom are predicted to play a significant role in mechanics of two-dimensional crystalline membranes. Here we show that appearance of charge carriers may cause a considerable impact on suspended graphene corrugation, thus leading to additional mechanism resulting in charge carriers mobility variation with their density. This finding may account for some details of suspended graphene conductivity dependence on its doping level and suggests that proper modeling of suspended graphene-based device properties must include the influence of charge carriers on its surface corrugation.

  15. Evaluation of the air quality regarding total suspended particles and heavy metals (Pb, Cd, Ni, Cu, Cr) in the Hermosillo city, Sonora, Mexico, during a yearly period; Evaluacion de la calidad del aire respecto de particulas suspendidas totales y metales pesados (Pb, Cd, Ni, Cu, Cr) en la Ciudad de Hermosillo, Sonora, Mexico, durante un periodo anual

    Energy Technology Data Exchange (ETDEWEB)

    Cruz C, M. E.; Quintero N, M. [Universidad Autonoma de Baja California, Instituto de Ingenieria, Campus Mexicali, Calle de la Normal s/n, y Blvd. Benito Juarez, Col. Insurgentes Este, Mexicali, Baja California (Mexico); Gomez A, A.; Varela S, J., E-mail: martincruzcampas@hotmail.com [Universidad de Sonora, Departamento de Ingenieria Quimica y Metalurgia, Blvd. Rosales y Luis Ensina s/n, Edificio 5B, Col. Centro, 83000 Hermosillo, Sonora (Mexico)

    2013-07-01

    In the present study, the air quality of the city of Hermosillo, Sonora, Mexico was assessed considering total suspended particulates (tsp) and heavy metals (Pb, Cd, Ni, Cu, Cr) from June 2001 through May 2002 in three monitoring sites Centro (Mazon), Nor este (CESUES) and Noroeste (CBTIS). The filter-samples used for that purpose were provided by the Air Quality Evaluation and Improvement Program (PEMCA) of the municipality of Hermosillo. The sampling method was based on high volume sampling frequency set every 6 days with non-simultaneous sampling among the three sampling sites. Filters were dissolved for metal determination by acidic-extraction, and then analyzed by flame atomic absorption spectrophotometry. Results indicate that tsp concentrations at Centro and Noroeste sites were frequently higher than the maximum daily permissible level (260 {mu}g/m{sup 3}), while in the three sites the annual average was higher than the maximum annual permissible level (75 {mu}g/m{sup 3}) both established in the standard NOM-024-Ssa-1993 (Ssa 1994a). According to the Air Quality Standard Index (US EPA 1992a), used in Mexico by Air Quality Metropolitan Index (IMECA) the results indicate that the air quality in the city of Hermosillo regarding tsp was placed between no satisfactory and poor. In regard to heavy metals (Pb, Cd, Ni, Cu, Cr), concentrations detected were below the maximum permissible levels and/or criteria taking into account the standard NOM-026-Ssa-1993 (Ssa 1994b), the Who criterion (2000), the European Union criterion (Cec 2003), and the European Environmental Agency criteria (EEA 2004). Such findings would mean that airborne metals are of no concern; however, air quality is still classified as no satisfactory due to high particulate matter concentrations. Keeping air quality parameters monitoring is recommended in order to get extensive data for use in risk studies of air quality and health (morbidity/mortality), as well as topographic conditions

  16. A Many Particle Adiabatic Invariant

    DEFF Research Database (Denmark)

    Hjorth, Poul G.

    1999-01-01

    For a system of N charged particles moving in a homogeneous, sufficiently strong magnetic field, a many-particle adiabatic invariant constrains the collisional exchange of energy between the degrees of freedom perpendicular to and parallel to the magnetic field. A description of the phenomenon in...... in terms of Hamiltonian dynamics is given. The relation to the Equipartition Theorem of statistical Mechanics is briefly discussed....

  17. Introduction to suspended-sediment sampling

    Science.gov (United States)

    Nolan, K. Michael; Gray, John R.; Glysson, G. Douglas

    2005-01-01

    Knowledge of the amount and timing of sediment transport in streams is important to those directly or indirectly responsible for developing and managing water and land resources. Such data are often used to judge the health of watershed and the success or failure of activities designed to mitigate adverse impacts of sediment on streams and stream habitats. This training class presents an introduction to methods currently used by the U.S. Geological Survey (USGS) to sample suspended-sediment concentrations in streams. The presentation is narrated, but you control the pace of the presentation. If the computer you are using can view 'MPEG' videos you will be able to take advantage of videos interspersed in the presentation. A test, found at the end of the presentation, can be taken to assess how well you understood the training material. The class, which is registered as class SW4416 with the National Training Center of the USGS, should take two or three hours to complete. In order to use the presentation provided via this Web page, you will need to download a large disc images (linked below) and 'burn' it to a blank CD-ROM using a CD-ROM recorder on your computer. The presentation will only run on a Windows-based personal computer (PC). The presentation was developed using Macromedia Director MX 20041 and is contained in the file 'SIR05-5077.exe' which should autolaunch. If it does not, the presentation can be started by double-clicking on the file name. A sound card and speakers are necessary to take advantage of narrations that accompany the presentation. Text of narrations is provided, if you are unable to listen to narrations. Instructions for installing and running the presentation are included in the file 'Tutorial.htm', which is on the CD. 1 Registered Trademark: Macromedia Incorporated

  18. On the interaction of waves carrying light, sound and small particles : wave-based methods for miniature laboratories and fast optical sensing

    NARCIS (Netherlands)

    van 't Oever, Jan Joannes Frederik

    2018-01-01

    The main theme of this thesis is waves: sound waves for trapping, guiding or mixing suspended particles, and light waves for making sound waves and rough surfaces visible. One of the important functions on a Lab-on-a-Chip system is suspended particle manipulation and concentration. One way to

  19. Effect of non-homogenous thermal stress during sub-lethal photodynamic antimicrobial chemotherapy

    Science.gov (United States)

    Gadura, N.; Kokkinos, D.; Dehipawala, S.; Cheung, E.; Sullivan, R.; Subramaniam, R.; Schneider, P.; Tremberger, G., Jr.; Holden, T.; Lieberman, D.; Cheung, T.

    2012-03-01

    Pathogens could be inactivated via a light source coupled with a photosensitizing agent in photodynamic antimicrobial chemotherapy (PACT). This project studied the effect of non-homogenous substrate on cell colony. The non-homogeneity could be controlled by iron oxide nano-particles doping in porous glassy substrates such that each cell would experience tens of hot spots when illuminated with additional light source. The substrate non-homogeneity was characterized by Atomic Force Microscopy, Transmission Electron Microscopy and Extended X-Ray Absorption Fine Structure at Brookhaven Synchrotron Light Source. Microscopy images of cell motion were used to study the motility. Laboratory cell colonies on non-homogenous substrates exhibit reduced motility similar to those observed with sub-lethal PCAT treatment. Such motility reduction on non-homogenous substrate is interpreted as the presence of thermal stress. The studied pathogens included E. coli and Pseudomonas aeruginosa. Non-pathogenic microbes Bacillus subtilis was also studied for comparison. The results show that sub-lethal PACT could be effective with additional non-homogenous thermal stress. The use of non-uniform illumination on a homogeneous substrate to create thermal stress in sub-micron length scale is discussed via light correlation in propagation through random medium. Extension to sub-lethal PACT application complemented with thermal stress would be an appropriate application.

  20. In vitro release studies on drugs suspended in non-polar media II. The release of paracetamol and chloramphenicol from suspensions in liquid paraffin

    NARCIS (Netherlands)

    Crommelin, D.J.A.; Blaey, C.J. de

    The release of paracetamol and chloramphenicol (water solubility 13 and 3.6 mg · g−1, respectively), suspended in liquid paraffin, to an underlying aqueous layer was investigated as a function of particle size (10–60 μm), concentration (0.5–6% m/m) and the presence of additives (DOSS-Na:

  1. Microoptics for homogeneous LED-illumination

    Science.gov (United States)

    Schreiber, Peter; Kudaev, Sergey; Dannberg, Peter; Gebhardt, Andreas

    2006-04-01

    LED-optics for homogeneous illumination of rectangular areas - as required for reading lamps or lighting of imagers - employ a primary optics which acts as collimator and a secondary optics for beam shaping, homogenization and relaying the light onto the illuminated plane. Efficient primary optics are realized by concentrators which are either simple reflecting or combined refractivereflective devices. Different design algorithms based on the modelling of the concentrators by Bezier splines were developed: A modification of the edge-ray principle allows the formulation of the merit function in geometrical terms (for instance the divergence after collimator), while a more general algorithm with direct Powell optimization allows for combined optimization criteria like efficiency and homogeneity in near- and/or farfield. Concentrator prototypes were realized by direct diamond-turning into PMMA. Telecentric, homogeneous illumination of rectangular areas is achieved by a subsequent secondary optics with tandem lens array integrators. We describe design rules for array integrator optics derived from a simple ABCD-matrix formalism. Based on these rules, sequential real raytracing is used for the actual optics system design and analysis of aberrations, which deteriorate homogeneity and useful system transmission. We realized miniaturized array integrators with monolithic tandem microlens arrays, which remarkably reduce overall system length compared to light-pipe approaches. Double-sided cylindrical microlens arrays with large fill-factor over 99%, realized by polymer-on-glass replication of reflow lenses, relax system assembly by shifting critical adjustment steps into element manufacturing.

  2. 23 Elemental Composition of Suspended Particulate Matter ...

    African Journals Online (AJOL)

    `123456789jkl''''#

    vaseline oil to reduce particles bouncing off. The PM10 inlet was placed at a height of two metres above the ground for the first seven months and four metres for five months. Two polycarbonate nuclepore filters in sequence were used, both of 47mm diameter. These were coarse (8μm pore) and fine (0.4μm pore) diameter to ...

  3. Suspended sediment concentration profiles from synoptic satellite observations

    Digital Repository Service at National Institute of Oceanography (India)

    Ramakrishnan, R.; Rajawat, A; Chauhan, O.S.

    A method is developed to estimate vertical suspended sediment concentration (SSC) profiles in Gulf of Kachchh, from the sediment concentration values derived from synoptic observations of Ocean Colour Monitor (OCM). Under the influence of currents...

  4. An Improved Upper Bound for the Critical Probability of the Frog Model on Homogeneous Trees

    Science.gov (United States)

    Lebensztayn, Élcio; Machado, Fábio P.; Popov, Serguei

    2005-04-01

    We study the frog model on homogeneous trees, a discrete time system of simple symmetric random walks whose description is as follows. There are active and inactive particles living on the vertices. Each active particle performs a simple symmetric random walk having a geometrically distributed random lifetime with parameter (1 - p). When an active particle hits an inactive particle, the latter becomes active. We obtain an improved upper bound for the critical parameter for having indefinite survival of active particles, in the case of one-particle-per-vertex initial configuration. The main tool is to construct a class of branching processes which are dominated by the frog model and analyze their supercritical behavior. This approach allows us also to present an upper bound for the critical probability in the case of random initial configuration.

  5. Influence of suspended kelp culture on seabed sediment composition in Heini Bay, China

    Science.gov (United States)

    Liu, Yanxia; Huang, Haijun; Yan, Liwen; Liu, Xiao; Zhang, Zehua

    2016-11-01

    Kelp aquaculture activities occupy large nearshore areas with significant effects on sediment properties, primarily caused by the influence of the suspended kelp on local hydrodynamics. Changes in sediment composition and grain-size distributions were investigated prior to and following the commencement of kelp aquaculture activities in Heini Bay in eastern China. Seabed sediment types and the particulate matter in suspension during the kelp seeding and harvesting periods, and in sediment cores, were analyzed. While suspended sediment in the kelp aquaculture area was up to 20% organic material, sediment organic content on the seabed remained at similar levels as areas lacking aquaculture. The composition of the seabed sediment in the kelp aquaculture area became finer-grained by the capture of fine particles. Within the kelp aquaculture area, the sediments are poorly sorted and positively skewed, whereas at the shoreward and seaward of the aquaculture area the sediments are relatively coarse-grained, well-sorted and nearly symmetrically distributed. Therefore, the kelp aquaculture activities not only increase the fine particulate fraction in the sediments within the aquaculture area, but also result in similar deposits seaward of it, indicating that seabed erosion and accretion is also controlled by the sediment source and the hydrodynamic conditions. The analysis of sediment cores showed that kelp culturing refines the sediment by preferentially capturing particles in the 38-40 μm size class, while having no effect on the kelp aquaculture area. The same effect was observed in the seabed sediments seaward of the aquaculture area.

  6. Empirical model for estimating vertical concentration profiles of re-suspended, sediment-associated contaminants

    Science.gov (United States)

    Zhu, H. W.; Cheng, P. D.; Li, W.; Chen, J. H.; Pang, Y.; Wang, D. Z.

    2017-10-01

    Vertical distribution processes of sediment contaminants in water were studied by flume experiments. Experimental results show that settling velocity of sediment particles and turbulence characteristics are the major hydrodynamic factors impacting distribution of pollutants, especially near the bottom where particle diameter is similar in size to vortex structure. Sediment distribution was uniform along the distance, while contaminant distribution slightly lagged behind the sediment. The smaller the initial sediment concentration was, the more time it took to achieve a uniform concentration distribution for suspended sediment. A contaminants transportation equation was established depending on mass conservation equations. Two mathematical estimation models of pollutant distribution in the overlying water considering adsorption and desorption were devised based on vertical distribution of suspended sediment: equilibrium partition model and dynamic micro-diffusion model. The ratio of time scale between the sediment movement and sorption can be used as the index of the models. When this ratio was large, the equilibrium assumption was reasonable, but when it was small, it might require dynamic micro-diffusion model.

  7. Long-term continuous acoustical suspended-sediment measurements in rivers – Theory, evaluation, and results from 14 stations on five rivers

    Science.gov (United States)

    Topping, David; Wright, Scott A.; Griffiths, Ronald; Dean, David

    2016-01-01

    We have developed a physically based method for using two acoustic frequencies to measure suspended-silt-and-clay concentration, suspended-sand concentration, and suspended-sand median grain size in river cross sections at 15-minute intervals over decadal timescales. The method is strongly grounded in the extensive scientific literature on the scattering of sound by suspensions of small particles. In particular, the method takes advantage of the specific theoretical relations among acoustic frequency, acoustic attenuation, acoustic backscatter, suspended-sediment concentration, and suspended-sediment grain-size distribution. We briefly describe the theory and methods, demonstrate the application of the method, and compute biases and errors in the method at 14 stations in the Colorado River and Rio Grande basins, where large numbers of suspended-sediment samples have been collected concurrently with acoustical measurements over many years. Quantification of errors in sediment-transport measurements made using this method is essential if the measurements are to be used effectively, e.g., to evaluate uncertainty in long-term sediment loads and budgets

  8. Suspended-sediment and suspended-sand concentrations and loads for selected streams in the Mississippi River Basin, 1940-2009

    Science.gov (United States)

    Heimann, David C.; Cline, Teri L.; Glaspie, Lori M.

    2011-01-01

    This report presents suspended-sediment concentration and streamflow data, describes load-estimation techniques used in the computation of annual suspended-sediment loads, and presents annual suspended-sediment loads for 48 streamgaging stations within the Mississippi River Basin. Available published, unpublished, and computed annual total suspended-sediment and suspended-sand loads are presented for water years 1940 through 2009. When previously published annual loads were not available, total suspended-sediment and sand loads were computed using available data for water years 1949 through 2009. A table of suspended-sediment concentration and daily mean streamflow data used in the computation of annual loads is presented along with a table of compiled and computed annual suspended-sediment and suspended-sand loads, annual streamflows, and flow-weighted concentrations for the 48 stations.

  9. Suspended sediment apportionment in a South-Korean mountain catchment

    Science.gov (United States)

    Birkholz, Axel; Meusburger, Katrin; Park, Ji-Hyung; Alewell, Christine

    2016-04-01

    Due to the rapid agricultural expansion and intensification during the last decades in South-Korea, large areas of hill slope forests were transformed to paddies and vegetable fields. The intensive agriculture and the easily erodible soils in our catchment are a major reason for the increased erosion causing suspended sediments to infiltrate into the close drinking water reservoir. The drinking water reservoir Lake Soyang provides water supply for over ten million people in Seoul. Landscape managers need to know the exact origin of these sediments before they can create landscape amelioration schemes. We applied a compound-specific stable isotope (CSSI) approach (Alewell et al., 2015) to apportion the sources of the suspended sediments between forest and agricultural soil contribution to the suspended sediments in a different catchment and applied the same approach to identify and quantify the different sources of the suspended sediments in the river(s) contributing to Lake Soyang. We sampled eight soil sites within the catchment considering the different landuse types forest, rice paddies, maize and vegetables. Suspended sediments were sampled at three outlets of the different sub-catchments. Soils and suspended sediments are analysed for bulk carbon and nitrogen isotopes, compound-specific carbon isotopes of plant-wax derived long-chain fatty acids and long-chain n-alkanes. Fatty acid and alkane isotopes are then used in mixing calculations and the mixing model software IsoSource to find out the contribution of the different source soils to the suspended sediments. We present first data of the source soils and the suspended sediments. C. Alewell, A. Birkholz, K. Meusburger, Y. Schindler-Wildhaber, L. Mabit, 2015. Sediment source attribution from multiple land use systems with CSIA. Biogeosciences Discuss. 12: 14245-14269.

  10. Homogenity of Die Casting and Returning Material

    Directory of Open Access Journals (Sweden)

    J. Malik

    2012-04-01

    Full Text Available Homogeneity of die castings is influenced by wide range of technological parameters as piston velocity in filling chamber of die casting machine, filling time of mould cavity, temperature of cast alloy, temperature of the mould, temperature of filling chamber, surface pressure on alloy during mould filling, final pressure and others. Based on stated parameters it is clear, that main parameters of die casting are filling time of die mould cavity and velocity of the melt in the ingates. Filling time must ensure the complete filling of the mould cavity before solidification process can negatively influence it. Among technological parameters also belong the returning material, which ratio in charge must be constrained according to requirement on final homogeneity of die castings. With the ratio of returning material influenced are the mechanical properties of castings, inner homogeneity and chemical composition.

  11. Distribution and origin of suspended matter and organic carbon pools in the Tana River Basin, Kenya

    Directory of Open Access Journals (Sweden)

    F. Tamooh

    2012-08-01

    Full Text Available We studied patterns in organic carbon pools and their origin in the Tana River Basin (Kenya, in February 2008 (dry season, September–November 2009 (wet season, and June–July 2010 (end of wet season, covering the full continuum from headwater streams to lowland mainstream sites. A consistent downstream increase in total suspended matter (TSM, 0.6 to 7058 mg l−1 and particulate organic carbon (POC, 0.23 to 119.8 mg l−1 was observed during all three sampling campaigns, particularly pronounced below 1000 m above sea level, indicating that most particulate matter exported towards the coastal zone originated from the mid and low altitude zones rather than from headwater regions. This indicates that the cascade of hydroelectrical reservoirs act as an extremely efficient particle trap. Although 7Be / 210Pbxs ratios/age of suspended sediment do not show clear seasonal variation, the gradual downstream increase of suspended matter during end of wet season suggests its origin is caused by inputs of older sediments from bank erosion and/or river sediment resuspension. During wet season, higher TSM concentrations correspond with relatively young suspended matter, suggesting a contribution from recently eroded material. With the exception of reservoir waters, POC was predominantly of terrestrial origin as indicated by generally high POC : chlorophyll a (POC : Chl a ratios (up to ~41 000. Stable isotope signatures of POC (δ13CPOC ranged between −32 and −20‰ and increased downstream, reflecting an increasing contribution of C4-derived carbon in combination with an expected shift in δ13C for C3 vegetation towards the more semi-arid lowlands. δ13C values in sediments from the main reservoir (−19.5 to −15.7‰ were higher than those found in any of the riverine samples, indicating selective retention of particles associated with C4

  12. Particle transport and deposition: basic physics of particle kinetics.

    Science.gov (United States)

    Tsuda, Akira; Henry, Frank S; Butler, James P

    2013-10-01

    The human body interacts with the environment in many different ways. The lungs interact with the external environment through breathing. The enormously large surface area of the lung with its extremely thin air-blood barrier is exposed to particles suspended in the inhaled air. The particle-lung interaction may cause deleterious effects on health if the inhaled pollutant aerosols are toxic. Conversely, this interaction can be beneficial for disease treatment if the inhaled particles are therapeutic aerosolized drugs. In either case, an accurate estimation of dose and sites of deposition in the respiratory tract is fundamental to understanding subsequent biological response, and the basic physics of particle motion and engineering knowledge needed to understand these subjects is the topic of this article. A large portion of this article deals with three fundamental areas necessary to the understanding of particle transport and deposition in the respiratory tract. These are: (i) the physical characteristics of particles, (ii) particle behavior in gas flow, and (iii) gas-flow patterns in the respiratory tract. Other areas, such as particle transport in the developing lung and in the diseased lung are also considered. The article concludes with a summary and a brief discussion of areas of future research. © 2013 American Physiological Society. Compr Physiol 3:1437-1471, 2013.

  13. Harmonic analysis on spaces of homogeneous type

    CERN Document Server

    Deng, Donggao

    2009-01-01

    The dramatic changes that came about in analysis during the twentieth century are truly amazing. In the thirties, complex methods and Fourier series played a seminal role. After many improvements, mostly achieved by the Calderón-Zygmund school, the action today is taking place in spaces of homogeneous type. No group structure is available and the Fourier transform is missing, but a version of harmonic analysis is still available. Indeed the geometry is conducting the analysis. The authors succeed in generalizing the construction of wavelet bases to spaces of homogeneous type. However wavelet bases are replaced by frames, which in many applications serve the same purpose.

  14. Homogenization of High-Contrast Brinkman Flows

    KAUST Repository

    Brown, Donald L.

    2015-04-16

    Modeling porous flow in complex media is a challenging problem. Not only is the problem inherently multiscale but, due to high contrast in permeability values, flow velocities may differ greatly throughout the medium. To avoid complicated interface conditions, the Brinkman model is often used for such flows [O. Iliev, R. Lazarov, and J. Willems, Multiscale Model. Simul., 9 (2011), pp. 1350--1372]. Instead of permeability variations and contrast being contained in the geometric media structure, this information is contained in a highly varying and high-contrast coefficient. In this work, we present two main contributions. First, we develop a novel homogenization procedure for the high-contrast Brinkman equations by constructing correctors and carefully estimating the residuals. Understanding the relationship between scales and contrast values is critical to obtaining useful estimates. Therefore, standard convergence-based homogenization techniques [G. A. Chechkin, A. L. Piatniski, and A. S. Shamev, Homogenization: Methods and Applications, Transl. Math. Monogr. 234, American Mathematical Society, Providence, RI, 2007, G. Allaire, SIAM J. Math. Anal., 23 (1992), pp. 1482--1518], although a powerful tool, are not applicable here. Our second point is that the Brinkman equations, in certain scaling regimes, are invariant under homogenization. Unlike in the case of Stokes-to-Darcy homogenization [D. Brown, P. Popov, and Y. Efendiev, GEM Int. J. Geomath., 2 (2011), pp. 281--305, E. Marusic-Paloka and A. Mikelic, Boll. Un. Mat. Ital. A (7), 10 (1996), pp. 661--671], the results presented here under certain velocity regimes yield a Brinkman-to-Brinkman upscaling that allows using a single software platform to compute on both microscales and macroscales. In this paper, we discuss the homogenized Brinkman equations. We derive auxiliary cell problems to build correctors and calculate effective coefficients for certain velocity regimes. Due to the boundary effects, we construct

  15. Flows and chemical reactions in homogeneous mixtures

    CERN Document Server

    Prud'homme, Roger

    2013-01-01

    Flows with chemical reactions can occur in various fields such as combustion, process engineering, aeronautics, the atmospheric environment and aquatics. The examples of application chosen in this book mainly concern homogeneous reactive mixtures that can occur in propellers within the fields of process engineering and combustion: - propagation of sound and monodimensional flows in nozzles, which may include disequilibria of the internal modes of the energy of molecules; - ideal chemical reactors, stabilization of their steady operation points in the homogeneous case of a perfect mixture and c

  16. CO2-assisted high pressure homogenization: a solvent-free process for polymeric microspheres and drug-polymer composites.

    Science.gov (United States)

    Kluge, Johannes; Mazzotti, Marco

    2012-10-15

    The study explores the enabling role of near-critical CO(2) as a reversible plasticizer in the high pressure homogenization of polymer particles, aiming at their comminution as well as at the formation of drug-polymer composites. First, the effect of near-critical CO(2) on the homogenization of aqueous suspensions of poly lactic-co-glycolic acid (PLGA) was investigated. Applying a pressure drop of 900 bar and up to 150 passes across the homogenizer, it was found that particles processed in the presence of CO(2) were generally of microspherical morphology and at all times significantly smaller than those obtained in the absence of a plasticizer. The smallest particles, exhibiting a median x(50) of 1.3 μm, were obtained by adding a small quantity of ethyl acetate, which exerts on PLGA an additional plasticizing effect during the homogenization step. Further, the study concerns the possibility of forming drug-polymer composites through simultaneous high pressure homogenization of the two relevant solids, and particularly the effect of near-critical CO(2) on this process. Therefore, PLGA was homogenized together with crystalline S-ketoprofen (S-KET), a non-steroidal anti-inflammatory drug, at a drug to polymer ratio of 1:10, a pressure drop of 900 bar and up to 150 passes across the homogenizer. When the process was carried out in the presence of CO(2), an impregnation efficiency of 91% has been reached, corresponding to 8.3 wt.% of S-KET in PLGA; moreover, composite particles were of microspherical morphology and significantly smaller than those obtained in the absence of CO(2). The formation of drug-polymer composites through simultaneous homogenization of the two materials is thus greatly enhanced by the presence of CO(2), which increases the efficiency for both homogenization and impregnation. Copyright © 2012 Elsevier B.V. All rights reserved.

  17. 7Be/210Pbxs Ratio as an Indicator of Suspended Sediment Age or Fraction New Sediment in Suspension

    Science.gov (United States)

    Matisoff, G.; Wilson, C. G.; Whiting, P. J.

    2005-12-01

    We present a technique to use the 7Be/210Pbxs ratio as a measure of suspended sediment age or as an indicator of the fraction of the suspended sediment that is recently eroded from the landscape. Although both 7Be and 210Pbxs are delivered seasonally and stochastically to the landscape by precipitation, the ratio of the two radionuclides varies substantially less. The 7Be/210Pbxs ratios measured in three different watersheds decrease in the following manner: precipitation (~16) > suspended sediments in rivers (6-7) > suspended sediments in estuaries (4-6) > sediment collected in sediment traps in the estuary (~1) > surface sediment of the estuary (~0.5). Decreases in the 7Be/210Pbxs ratio in suspended sediments can be interpreted to be the result of increased age of the sediment, since 7Be decays faster than 210Pb. Alternatively, a decrease in the 7Be/210Pbxs ratio in suspended sediments can be interpreted to be the result of dilution of newly-tagged 7Be-rich sediment by 7Be-dead sediment, for example, by erosion of soil below the 7Be-enriched surface layer or by resuspension of 7Be-dead bottom sediment. We present a model which uses the 7Be/210Pbxs ratio in suspended sediments to determine the time since the particles were tagged by precipitation-derived radionuclides (i.e., the age of the suspended sediment). In addition, we present an alternative model to determine the fraction of the sediment that is `newly-tagged'. These two models are applied to three watersheds - Old Woman Creek, Ohio; Weeks Bay, Alabama; and South Slough, Oregon - and yield similar findings at all three sites. Sediment ages increase from 0 in newly tagged material to 50-80 days in rivers to about 80-100 days in the estuaries to about 200 days in the sediment traps to about 300 days on surface bottom sediments. Alternatively, the percent new sediment decreases from 100% in newly-tagged material to about 35-50% in rivers to 25-35% in the estuary to less than 10% in the sediment traps to 1

  18. Mineral phases containing heavy metals in the suspended dust from Budapest, Hungary

    Directory of Open Access Journals (Sweden)

    Sipos P.

    2013-04-01

    Full Text Available The mineralogy, geochemistry and magnetic properties of total suspended particulate (TSP matter in Budapest, Hungary were studied to identify their heavy metal-bearing mineral phases. Amorphous organic matter, magnetite, salts as well as mineral phases characteristic of the surrounding geology are the main components of the TSP. They show significant enrichment in several heavy metals, such as Zn (up to 19 046 mg/kg, Pb (up to 3597 mg/kg, Cu (up to 699 mg/kg and Mo (up to 53 mg/kg. The most frequent heavy metal-bearing mineral phases are spherular or xenomorphic magnetite particles containing 2-3 wt% Pb and Zn. They often form aggregates and are closely associated with soot and/or clay minerals. The size of these particles is rarely below 30 nm. Cu and Mo could be associated to magnetite too. Clay minerals and mica particles may also contain significant amount of Zn (up to 5wt%. Additionally, ZnO and ZnCO3 particles were found in the sample with highest Zn content and our data suggest the potential association of Pb and carbonates, as well. Magnetite particles are resistant to weathering releasing its toxic components slowly to the environment, while layer silicates (and carbonates may be the potential source of mobile toxic metals in the TSP.

  19. Seasonal variation of polychlorinated biphenyl congeners in surficial sediment, trapped settling material, and suspended particulate material in Lake Michigan, USA.

    Science.gov (United States)

    Robinson, Sander D; Landrum, Peter F; Van Hoof, Patricia L; Eadie, Brian J

    2008-02-01

    A unique time series of surface sediment, trapped settling material, and suspended particulate material polychlorinated biphenyl (PCB) samples were collected at a 45-m deep site off Grand Haven (MI, USA) over a 14-month period. Both concentrations and congener distributions remained constant for the sediments, although there were seasonal and interannual variability in the other matrices. Trapped settling material and suspended particulate material PCB concentrations were substantially lower (~50%) in 1997 than in the samples from December 1997 through July 1998. The cause could not be determined from the data collected, but there were some very large storms during the winter-spring period of 1998, resulting in major sediment resuspension throughout the southern basin. Observed seasonal variation in PCB concentration and congener distribution on particles likely was due to the changes in particle composition. These include particle size and the source of particles (such as the amount of resuspended sediment in trapped settling material), and the role of diagenesis of the organic matter on particles.

  20. Homogenization-Based Numerical Mathods, Homogenization, Asymptotic Analysis, Asymptotic Expansion, Numerical Simulation

    OpenAIRE

    Frenod, Emmanuel

    2013-01-01

    In this note, a classification of Homogenization-Based Numerical Methods and (in particular) of Numerical Methods that are based on the Two-Scale Convergence is done. In this classification stand: Direct Homogenization-Based Numerical Methods; H-Measure-Based Numerical Methods; Two-Scale Numerical Methods and TSAPS: Two-Scale Asymptotic Preserving Schemes.

  1. Determining the degree of powder homogeneity using PC-based program

    Directory of Open Access Journals (Sweden)

    Đuragić Olivera M.

    2010-01-01

    Full Text Available The mixing of powders and the quality control of the obtained mixtures are critical operations involved in the processing of granular materials in chemical, metallurgical, food and pharmaceutical industries. Studies on mixing efficiency and the time needed for achieving homogeneity in the powder mashes production have significant importance. Depending on the characteristic of the materials, a number of methods have been used for the homogeneity tests. Very often, the degree of mixing has been determined by analyzing images of particle arrays in the sample using microscopy, photography and/or video tools. In this paper, a new PC-based method for determining the number of particles in the powder homogeneity tests has been developed. Microtracers®, red iron particles, were used as external tracer added before mixing. Iron particles in the samples of the mixtures were separated by rotary magnet and spread onto a filter paper. The filter paper was sprayed with 50% solution of ethanol for color development and the particles counted where the number of spots presented the concentration of added tracer. The number of spots was counted manually, as well as by the developed PC program. The program which analyzes scanned filter papers with spots is based on digital image analyses, where red spots were converted through few filters into a black and white, and counted. Results obtained by manual and PC counting were compared. A high correlation was established between the two counting methods.

  2. Numerical homogenization on approach for stokesian suspensions.

    Energy Technology Data Exchange (ETDEWEB)

    Haines, B. M.; Berlyand, L. V.; Karpeev, D. A. (Mathematics and Computer Science); (Department of Mathematics, Pennsylvania State Univ.)

    2012-01-20

    In this technical report we investigate efficient methods for numerical simulation of active suspensions. The prototypical system is a suspension of swimming bacteria in a Newtonian fluid. Rheological and other macroscopic properties of such suspensions can differ dramatically from the same properties of the suspending fluid alone or of suspensions of similar but inactive particles. Elongated bacteria, such as E. coli or B. subtilis, swim along their principal axis, propelling themselves with the help of flagella, attached at the anterior of the organism and pushing it forward in the manner of a propeller. They interact hydrodynamically with the surrounding fluid and, because of their asymmetrical shape, have the propensity to align with the local flow. This, along with the dipolar nature of bacteria (the two forces a bacterium exerts on a fluid - one due to self-propulsion and the other opposing drag - have equal magnitude and point in opposite directions), causes nearby bacteria to tend to align, resulting in a intermittent local ordering on the mesoscopic scale, which is between the microscopic scale of an individual bacterium and the macroscopic scale of the suspension (e.g., its container). The local ordering is sometimes called a collective mode or collective swimming. Thanks to self-propulsion, collective modes inject momentum into the fluid in a coherent way. This enhances the local strain rate without changing the macroscopic stress applied at the boundary of the container. The macroscopic effective viscosity of the suspension is defined roughly as the ratio of the applied stress to the bulk strain rate. If local alignment and therefore local strain-rate enhancement, are significant, the effective viscosity can be appreciably lower than that of the corresponding passive suspension or even of the surrounding fluid alone. Indeed, a sevenfold decrease in the effective viscosity was observed in experiments with B. subtilis. More generally, local collective

  3. Depth-integrated suspended sediment and geochemical fluxes in large rivers: the Amazon River system

    Science.gov (United States)

    Bouchez, J.; Lupker, M.; Gaillardet, J.; Metivier, F.; France-Lanord, C.; Maurice, L.

    2010-12-01

    Erosion and weathering produce a wide range of residual solid products, in terms of size, density, mineralogy and chemical composition. These solid products are then transported by rivers from the continents to the oceans as suspended particulate matter (SPM) and bedload. Large rivers account for an important part of this transfer of sediments at the global scale. In those rivers, deep channels allow for vertical differentiation, or sorting, of suspended sediment, following their size and density. This hydrodynamic sorting results in vertically heterogeneous depth-profiles in terms of SPM concentration and size distribution (e.g. Garcia, 2008), which in turn likely result in an heterogeneous chemical composition of SPM throughout channel depth (e.g. Galy, 2007), which has to be evaluated. We sampled river water of the main tributaries of the Amazon River system (in the lowland basin), at two distinct water-stages, at various depths following depth-profiles, using a point depth-sampler. After filtration, and SPM recovery, SPM concentration, grain size distribution and chemical composition were determined. River discharge and water velocity throughout the sampled cross-sections were recorded using Acoustic Doppler Current Profiler (ADCP). The large increase in SPM concentration with depth observed at most of the sampled depth-profiles is well accounted for by the Rouse model (e.g. Rouse, 1950). This analysis allows us to reliably infer the SPM concentration and grain size distribution throughout the sampled river cross-section, and thus to estimate the spatially-integrated instantaneous SPM flux using ADCP data (Bouchez et al., 2010). The study also emphasizes the potential role of particle aggregation, within the river system, as a complicating factor regarding the prediction of these depth-integrated SPM fluxes from easily measurable hydrodynamic parameters (surface SPM concentration and grain size, and water velocity). Then, using the previous analysis, combined

  4. Magnethophoretic sorting of fluid catalytic cracking particles

    NARCIS (Netherlands)

    Solsona, Miguel; Nieuwelink, A. E.; Odijk, Mathieu; Meirer, Florian; Abelmann, Leon; Olthuis, Wouter; Weckhuysen, Bert M.; van den Berg, Albert; Lee, Abraham; DeVoe, Don

    2017-01-01

    We demonstrate an on-chip particle activity sorter, focused on iron concentration and based on magnetophoresis. This device was used for fast sorting of stepwise homogenously distributed [Fe]s. The preliminary results are very encouraging. We show that we can sort particles on magnetic moment, with

  5. Polygamous particles

    OpenAIRE

    Wu, Kun-Ta; Feng, Lang; Sha, Ruojie; Dreyfus, Rémi; Grosberg, Alexander Y.; Seeman, Nadrian C.; Chaikin, Paul M.

    2012-01-01

    DNA is increasingly used as an important tool in programming the self-assembly of micrometer- and nanometer-scale particles. This is largely due to the highly specific thermoreversible interaction of cDNA strands, which, when placed on different particles, have been used to bind precise pairs in aggregates and crystals. However, DNA functionalized particles will only reach their true potential for particle assembly when each particle can address and bind to many different kinds of particles. ...

  6. Selective particle capture by asynchronously beating cilia

    Science.gov (United States)

    Ding, Yang; Kanso, Eva

    2015-12-01

    Selective particle filtration is fundamental in many engineering and biological systems. For example, many aquatic microorganisms use filter feeding to capture food particles from the surrounding fluid, using motile cilia. One of the capture strategies is to use the same cilia to generate feeding currents and to intercept particles when the particles are on the downstream side of the cilia. Here, we develop a 3D computational model of ciliary bands interacting with flow suspended particles and calculate particle trajectories for a range of particle sizes. Consistent with experimental observations, we find optimal particle sizes that maximize capture rate. The optimal size depends nonlinearly on cilia spacing and cilia coordination, synchronous vs. asynchronous. These parameters affect the cilia-generated flow field, which in turn affects particle trajectories. The low capture rate of smaller particles is due to the particles' inability to cross the flow streamlines of neighboring cilia. Meanwhile, large particles have difficulty entering the sub-ciliary region once advected downstream, also resulting in low capture rates. The optimal range of particle sizes is enhanced when cilia beat asynchronously. These findings have potentially important implications on the design and use of biomimetic cilia in processes such as particle sorting in microfluidic devices.

  7. An elementary singularity-free Rotational Brownian Dynamics algorithm for anisotropic particles

    NARCIS (Netherlands)

    Ilie, Ioana Mariuca; Briels, Willem J.; den Otter, Wouter K.

    2015-01-01

    Brownian Dynamics is the designated technique to simulate the collective dynamics of colloidal particles suspended in a solution, e.g., the self-assembly of patchy particles. Simulating the rotational dynamics of anisotropic particles by a first-order Langevin equation, however, gives rise to a

  8. Homogeneous and heterogeneous catalysis production and ...

    African Journals Online (AJOL)

    Temperature and methanol characteristics (oil molar ratio; catalyst type, concentration and agitation) controlled the ester convers-ion. ... The fuel properties of biodiesels and blends were analysed quantitati-vely, and the biodiesel produced by homogeneous catalysis compared favourably with conventional diesel fuel.

  9. Homogenization Effects of Variable Speed Limits

    National Research Council Canada - National Science Library

    Alvaro Garcia-Castro; Andres Monzon

    2014-01-01

    ... and their results This study also presents a key indicator which measures the speed homogeneity and a methodology to obtain the data based on floating cars and GPS technology applying it to a case study on a section of the M30 urban motorway in Madrid (Spain). It also presents the relation between this indicator and road performance and emissions values.

  10. Gravitational Metric Tensor Exterior to Rotating Homogeneous ...

    African Journals Online (AJOL)

    ... ω is constructed. The constructed metric tensors in this gravitational field have seven non-zero distinct components.The Lagrangian for this gravitational field is constructed. It is used to derive Einstein's planetary equation of motion and photon equation of motion in the vicinity of the rotating homogeneous spherical mass.

  11. Hypersurface-homogeneous cosmological models with anisotropic ...

    Indian Academy of Sciences (India)

    The present study deals with hypersurface-homogeneous cosmological models with anisotropic dark energy in Saez–Ballester theory of gravitation. Exact solutions of field equations are obtained by applying a special law of variation of Hubble's parameter that yields a constant negative value of the deceleration parameter.

  12. Reduced-order modelling numerical homogenization.

    Science.gov (United States)

    Abdulle, A; Bai, Y

    2014-08-06

    A general framework to combine numerical homogenization and reduced-order modelling techniques for partial differential equations (PDEs) with multiple scales is described. Numerical homogenization methods are usually efficient to approximate the effective solution of PDEs with multiple scales. However, classical numerical homogenization techniques require the numerical solution of a large number of so-called microproblems to approximate the effective data at selected grid points of the computational domain. Such computations become particularly expensive for high-dimensional, time-dependent or nonlinear problems. In this paper, we explain how numerical homogenization method can benefit from reduced-order modelling techniques that allow one to identify offline and online computational procedures. The effective data are only computed accurately at a carefully selected number of grid points (offline stage) appropriately 'interpolated' in the online stage resulting in an online cost comparable to that of a single-scale solver. The methodology is presented for a class of PDEs with multiple scales, including elliptic, parabolic, wave and nonlinear problems. Numerical examples, including wave propagation in inhomogeneous media and solute transport in unsaturated porous media, illustrate the proposed method. © 2014 The Author(s) Published by the Royal Society. All rights reserved.

  13. Three-dimensional dispersion analysis of homogeneous ...

    African Journals Online (AJOL)

    The problem of wave propagation in an infinite, homogeneous, transversely isotropic thermo elastic polygonal cross-sectional bar immersed in fluid is studied using Fourier expansion collocation method, with in the framework of linearized, three dimensional theory of thermoelasticity. Three displacement potential functions ...

  14. Predictive modeling in homogeneous catalysis: a tutorial

    NARCIS (Netherlands)

    Maldonado, A.G.; Rothenberg, G.

    2010-01-01

    Predictive modeling has become a practical research tool in homogeneous catalysis. It can help to pinpoint ‘good regions’ in the catalyst space, narrowing the search for the optimal catalyst for a given reaction. Just like any other new idea, in silico catalyst optimization is accepted by some

  15. EFFECT OF HOMOGENATES OF AVOCADO PEAR (PERSEA ...

    African Journals Online (AJOL)

    User

    ABSTRACT. This study evaluated the effects of aqueous homogenates of avocado pear (Persea americana) seeds and fluted pumpkin (Telfairia occidentalis) leaves co-administered with anti-tuberculosis drug on liver enzymes of albino rats. Twenty (20) albino rats were divided into five (5) groups (of four rats each).

  16. On homogeneous skewness of unimodal distributions

    NARCIS (Netherlands)

    Das, Shubhabrata; Mandal, Pranab K.; Ghosh, Diptesh

    2009-01-01

    We introduce a new concept of skewness for unimodal continuous distributions which is built on the asymmetry of the density function around its mode. The asymmetry is captured through a skewness function. We call a distribution homogeneously skewed if this skewness function is consistently positive

  17. Invariant Matsumoto metrics on homogeneous spaces

    OpenAIRE

    Salimi Moghaddam, H.R.

    2014-01-01

    In this paper we consider invariant Matsumoto metrics which are induced by invariant Riemannian metrics and invariant vector fields on homogeneous spaces, and then we give the flag curvature formula of them. Also we study the special cases of naturally reductive spaces and bi-invariant metrics. We end the article by giving some examples of geodesically complete Matsumoto spaces.

  18. Inverse acoustic problem of N homogeneous scatterers

    DEFF Research Database (Denmark)

    Berntsen, Svend

    2002-01-01

    The three-dimensional inverse acoustic medium problem of N homogeneous objects with known geometry and location is considered. It is proven that one scattering experiment is sufficient for the unique determination of the complex wavenumbers of the objects. The mapping from the scattered fields...

  19. Higher dimensional homogeneous cosmology in Lyra geometry

    Indian Academy of Sciences (India)

    Assuming a homogeneous perfect fluid with ρ = ρ() and = (), we have obtained exact solutions for cosmological models in higher-dimension based on Lyra geometry. Depending on the form of metric chosen, the model is similar to FRW type. The explicit solutions of the scale factor are found via the assumption of an ...

  20. Statistical mechanics of homogeneous partly pinned fluid systems.

    Science.gov (United States)

    Krakoviack, Vincent

    2010-12-01

    The homogeneous partly pinned fluid systems are simple models of a fluid confined in a disordered porous matrix obtained by arresting randomly chosen particles in a one-component bulk fluid or one of the two components of a binary mixture. In this paper, their configurational properties are investigated. It is shown that a peculiar complementarity exists between the mobile and immobile phases, which originates from the fact that the solid is prepared in presence of and in equilibrium with the adsorbed fluid. Simple identities follow, which connect different types of configurational averages, either relative to the fluid-matrix system or to the bulk fluid from which it is prepared. Crucial simplifications result for the computation of important structural quantities, both in computer simulations and in theoretical approaches. Finally, possible applications of the model in the field of dynamics in confinement or in strongly asymmetric mixtures are suggested.

  1. Numerical Studies of Homogenization under a Fast Cellular Flow

    KAUST Repository

    Iyer, Gautam

    2012-09-13

    We consider a two dimensional particle diffusing in the presence of a fast cellular flow confined to a finite domain. If the flow amplitude A is held fixed and the number of cells L 2 →∞, then the problem homogenizes; this has been well studied. Also well studied is the limit when L is fixed and A→∞. In this case the solution averages along stream lines. The double limit as both the flow amplitude A→∞and the number of cells L 2 →∞was recently studied [G. Iyer et al., preprint, arXiv:1108.0074]; one observes a sharp transition between the homogenization and averaging regimes occurring at A = L 2. This paper numerically studies a few theoretically unresolved aspects of this problem when both A and L are large that were left open in [G. Iyer et al., preprint, arXiv:1108.0074] using the numerical method devised in [G. A. Pavliotis, A. M. Stewart, and K. C. Zygalakis, J. Comput. Phys., 228 (2009), pp. 1030-1055]. Our treatment of the numerical method uses recent developments in the theory of modified equations for numerical integrators of stochastic differential equations [K. C. Zygalakis, SIAM J. Sci. Comput., 33 (2001), pp. 102-130]. © 2012 Society for Industrial and Applied Mathematics.

  2. A gelatin liver phantom of suspended 90Y resin microspheres to simulate the physiologic microsphere biodistribution of a postradioembolization liver.

    Science.gov (United States)

    Kao, Yung Hsiang; Luddington, Oliver S; Culleton, Simone R; Francis, Roslyn J; Boucek, Jan A

    2014-12-01

    For phantom studies involving (90)Y PET/CT, homogeneous solutions of (90)Y, for example, (90)Y citrate, are commonly used. However, the microsphere biodistribution of a postradioembolization liver is never homogeneous; therefore, such phantoms are physiologically unrealistic for simulating clinical scenarios. The aim of this work was to develop a safe and practical phantom capable of simulating the heterogeneous microsphere biodistribution of a postradioembolization liver. Gelatin (5%) was used to suspend (90)Y resin microspheres, poured into plastic containers to simulate a liver with 2 tumors. Microspheres were added while the gelatin was maintained in a liquid state on a hot plate and continuously stirred with magnetic stir bars. The liquid microsphere mixture was then rapidly cooled in an ice bath while being stirred, resulting in a heterogeneous suspension of microspheres. The completed phantom was serially scanned by (90)Y PET/CT over 2 wk. All scans demonstrated a heterogeneous microsphere distribution throughout the liver and tumor inserts. Serendipitously, magnetic stir bars left inside the phantom produced CT artifacts similar to those caused by embolization coils, whereas pockets of air trapped within the gelatin during its preparation mimicked gas within hollow viscus. The microspheres and tumor inserts remained fixed and suspended within the gelatin, with no evidence of breakdown or leakage. A gelatin phantom realistically simulating the physiologic microsphere biodistribution of a postradioembolization liver is feasible to construct in a radiopharmacy. © 2014 by the Society of Nuclear Medicine and Molecular Imaging, Inc.

  3. Particle settling in non-Newtonian drilling fluids

    OpenAIRE

    Omland, Tor Henry

    2009-01-01

    PhD thesis in Petroleum engineering Particle settling is relevant for several aspects of drilling and completion operations, and is directly related to safety and operational efficiency. The primary function of particles added to drilling fluids is to provide density stabilizing the wellbore and hinder influx of fluids and gas, causing a kick situation. Keeping the particles suspended in the fluids is also critical to avoid problems such as stuck down hole equipment, poor ce...

  4. Homogenization for rigid suspensions with random velocity-dependent interfacial forces

    KAUST Repository

    Gorb, Yuliya

    2014-12-01

    We study suspensions of solid particles in a viscous incompressible fluid in the presence of random velocity-dependent interfacial forces. The flow at a small Reynolds number is modeled by the Stokes equations, coupled with the motion of rigid particles arranged in a periodic array. The objective is to perform homogenization for the given suspension and obtain an equivalent description of a homogeneous (effective) medium, the macroscopic effect of the interfacial forces and the effective viscosity are determined using the analysis on a periodicity cell. In particular, the solutions uωε to a family of problems corresponding to the size of microstructure ε and describing suspensions of rigid particles with random surface forces imposed on the interface, converge H1-weakly as ε→0 a.s. to a solution of a Stokes homogenized problem, with velocity dependent body forces. A corrector to a homogenized solution that yields a strong H1-convergence is also determined. The main technical construction is built upon the Γ-convergence theory. © 2014 Elsevier Inc.

  5. Comparison of turbidity to multi-frequency sideways-looking acoustic-Doppler data and suspended-sediment data in the Colorado River in Grand Canyon

    Science.gov (United States)

    Voichick, Nicholas; Topping, David J.

    2010-01-01

    Water clarity is important to biologists when studying fish and other fluvial fauna and flora. Turbidity is an indicator of the cloudiness of water, or reduced water clarity, and is commonly measured using nephelometric sensors that record the scattering and absorption of light by particles in the water. Unfortunately, nephelometric sensors only operate over a narrow range of the conditions typically encountered in rivers dominated by suspended-sediment transport. For example, sediment inputs into the Colorado River in Grand Canyon caused by tributary floods often result in turbidity levels that exceed the maximum recording level of nephelometric turbidity sensors. The limited range of these sensors is one reason why acoustic Doppler profiler instrument data, not turbidity, has been used as a surrogate for suspended sediment concentration and load of the Colorado River in Grand Canyon. However, in addition to being an important water-quality parameter to biologists, turbidity of the Colorado River in Grand Canyon has been used to strengthen the suspended-sediment record through the process of turbidity-threshold sampling; high turbidity values trigger a pump sampler to collect samples of the river at critical times for gathering suspended-sediment data. Turbidity depends on several characteristics of suspended sediment including concentration, particle size, particle shape, color, and the refractive index of particles. In this paper, turbidity is compared with other parameters coupled to suspended sediment, namely suspended-silt and clay concentration and multifrequency acoustic attenuation. These data have been collected since 2005 at four stations with different sediment-supply characteristics on the Colorado River in Grand Canyon. These comparisons reveal that acoustic attenuation is a particularly useful parameter, because it is strongly related to turbidity and it can be measured by instruments that experience minimal fouling and record over the entire range

  6. Analysis of a homogenous and heterogeneous stylized half core of a CANDU reactor

    Energy Technology Data Exchange (ETDEWEB)

    EL-Khawlani, Afrah [Physics Department, Sana' a (Yemen); Aziz, Moustafa [Nuclear and radiological regulatory authority, Cairo (Egypt); Ismail, Mahmud Yehia; Ellithi, Ali Yehia [Cairo Univ. (Egypt). Faculty of Science

    2015-03-15

    The MCNPX (Monte Carlo N-Particle Transport Code System) code has been used for modeling and simulation of a half core of CANDU (CANada Deuterium-Uranium) reactor, both homogenous and heterogeneous model for the reactor core are designed. The fuel is burnt in normal operation conditions of CANDU reactors. Natural uranium fuel is used in the model. The multiplication factor for homogeneous and heterogeneous reactor core is calculated and compared during fuel burnup. The concentration of both uranium and plutonium isotopes are analysed in the model. The flux and power distributions through channels are calculated.

  7. Effect of homogenization and ultrasonication on the physical properties of insoluble wheat bran fibres

    Science.gov (United States)

    Hu, Ran; Zhang, Min; Adhikari, Benu; Liu, Yaping

    2015-10-01

    Wheat bran is rich in dietary fibre and its annual output is abundant, but underutilized. Insoluble dietary fibre often influences food quality negatively; therefore, how to improve the physical and chemical properties of insoluble dietary fibre of wheat bran for post processing is a challenge. Insoluble dietary fibre was obtained from wheat bran and micronized using high-pressure homogenization, high-intensity sonication, and a combination of these two methods. The high-pressure homogenization and high-pressure homogenization+high-intensity sonication treatments significantly (pproperties by high-intensity sonication alone was marginal. In most cases, the high-pressure homogenization process was as good as the high-pressure homogenization+high-intensity sonication process in improving the above-mentioned properties; hence, the contribution of high-`intensity sonication in the high-pressure homogenization+high-intensity sonication process was minimal. The best results show that the minimum particle size of wheat bran can reach 9 μm, and the solubility, swelling, water-holding, oil-holding, cation exchange capacities change significantly.

  8. Temperature signal in suspended sediment export from an Alpine catchment

    Science.gov (United States)

    Costa, Anna; Molnar, Peter; Stutenbecker, Laura; Bakker, Maarten; Silva, Tiago A.; Schlunegger, Fritz; Lane, Stuart N.; Loizeau, Jean-Luc; Girardclos, Stéphanie

    2018-01-01

    Suspended sediment export from large Alpine catchments ( > 1000 km2) over decadal timescales is sensitive to a number of factors, including long-term variations in climate, the activation-deactivation of different sediment sources (proglacial areas, hillslopes, etc.), transport through the fluvial system, and potential anthropogenic impacts on the sediment flux (e.g. through impoundments and flow regulation). Here, we report on a marked increase in suspended sediment concentrations observed near the outlet of the upper Rhône River Basin in the mid-1980s. This increase coincides with a statistically significant step-like increase in basin-wide mean air temperature. We explore the possible explanations of the suspended sediment rise in terms of changes in water discharge (transport capacity), and the activation of different potential sources of fine sediment (sediment supply) in the catchment by hydroclimatic forcing. Time series of precipitation and temperature-driven snowmelt, snow cover, and ice melt simulated with a spatially distributed degree-day model, together with erosive rainfall on snow-free surfaces, are tested to explore possible reasons for the rise in suspended sediment concentration. We show that the abrupt change in air temperature reduced snow cover and the contribution of snowmelt, and enhanced ice melt. The results of statistical tests show that the onset of increased ice melt was likely to play a dominant role in the suspended sediment concentration rise in the mid-1980s. Temperature-driven enhanced melting of glaciers, which cover about 10 % of the catchment surface, can increase suspended sediment yields through an increased contribution of sediment-rich glacial meltwater, increased sediment availability due to glacier recession, and increased runoff from sediment-rich proglacial areas. The reduced extent and duration of snow cover in the catchment are also potential contributors to the rise in suspended sediment concentration through

  9. Extending Applications of High-Pressure Homogenization by Using Simultaneous Emulsification and Mixing (SEM)—An Overview

    OpenAIRE

    Vanessa Gall; Marc Runde; Schuchmann, Heike P.

    2016-01-01

    Conventional high-pressure homogenization (HPH) is widely used in the pharmaceutical, chemical, and food industries among others. In general, its aim is to produce micron or sub-micron scale emulsions with excellent product characteristics. However, its energy consumption is still very high. Additionally, several limitations and boundaries impede the usage of high-pressure homogenization for special products such as particle loaded or highly concentrated systems. This article gives an overvie...

  10. Transport and exchange of U-series nuclides between suspended material, dissolved load and colloids in rivers draining basaltic terrains

    Science.gov (United States)

    Pogge von Strandmann, Philip A. E.; Burton, Kevin W.; Porcelli, Don; James, Rachael H.; van Calsteren, Peter; Gislason, Sigurður R.

    2011-01-01

    This study presents uranium and thorium concentrations and activity ratios for all riverine phases (bedload, suspended load, dissolved load and colloids) from basaltic terrains in Iceland and the Azores. Small basaltic islands, such as these, are thought to account for ~ 25% of CO2 consumed by global silicate weathering, and for ~ 45% of the flux of suspended material to the oceans. These data indicate that [U] and [Th] in the dissolved and colloidal fractions are strongly controlled by pH, and to a much lesser extent by levels of dissolved organic carbon (which are low in these environments). At high pH, basalt glass dissolution is enhanced, and secondary mineral formation (e.g. Fe-oxyhydroxides and allophane) is suppressed, resulting in high dissolved [U], and low colloidal [U] and [Th], indicating a direct chemical weathering control on elemental abundances. When the dissolved (234U/238U) activity ratio is >~1.3 (i.e. when physical weathering, groundwater contribution or soil formation are high), there is little isotope exchange between dissolved and colloidal fractions. At lower activity ratios, the dissolved load and colloids have indistinguishable activity ratios, suggesting that when chemical weathering rates are high, secondary clay formation is also high, and colloids rapidly adsorb dissolved U. Many of the suspended sediment samples have (234U/238U) activity ratios of > 1, which suggests that uptake of U onto the suspended load is important. Identical (230Th/232Th) in suspended, dissolved and colloidal samples suggests that Th, like U, is exchanged or sorbed rapidly between all riverine phases. This particle-reactivity, combined with poorly constrained contributions from groundwater and hydrothermal water, and short-term variations in input to soils (volcanic and glacial), suggests that U-series nuclides in riverine material from such basaltic terrains are unlikely to reflect steady state erosion processes.

  11. Large counterions boost the solubility and renormalized charge of suspended nanoparticles.

    Science.gov (United States)

    Guerrero-García, Guillermo Iván; González-Mozuelos, Pedro; Olvera de la Cruz, Monica

    2013-11-26

    Colloidal particles are ubiquitous in biology and in everyday products such as milk, cosmetics, lubricants, paints, or drugs. The stability and aggregation of colloidal suspensions are of paramount importance in nature and in diverse nanotechnological applications, including the fabrication of photonic materials and scaffolds for biological assemblies, gene therapy, diagnostics, targeted drug delivery, and molecular labeling. Electrolyte solutions have been extensively used to stabilize and direct the assembly of colloidal particles. In electrolytes, the effective electrostatic interactions among the suspended colloids can be changed over various length scales by tuning the ionic concentration. However, a major limitation is gelation or flocculation at high salt concentrations. This is explained by classical theories, which show that the electrostatic repulsion among charged colloids is significantly reduced at high electrolyte concentrations. As a result, these screened colloidal particles are expected to aggregate due to short-range attractive interactions or dispersion forces as the salt concentration increases. We discuss here a robust, tunable mechanism for colloidal stability by which large counterions prevent highly charged nanoparticles from aggregating in salt solutions with concentrations up to 1 M. Large counterions are shown to generate a thicker ionic cloud in the proximity of each charged colloid, which strengthens short-range repulsions among colloidal particles and also increases the corresponding renormalized colloidal charge perceived at larger separation distances. These effects thus provide a reliable stabilization mechanism in a broad range of biological and synthetic colloidal suspensions.

  12. Chemical concentrations in water and suspended sediment, Green River to Lower Duwamish Waterway near Seattle, Washington, 2016–17

    Science.gov (United States)

    Conn, Kathleen E.; Black, Robert W.; Peterson, Norman T.; Senter, Craig A.; Chapman, Elena A.

    2018-01-05

    From August 2016 to March 2017, the U.S. Geological Survey (USGS) collected representative samples of filtered and unfiltered water and suspended sediment (including the colloidal fraction) at USGS streamgage 12113390 (Duwamish River at Golf Course, at Tukwila, Washington) during 13 periods of differing flow conditions. Samples were analyzed by Washington-State-accredited laboratories for a large suite of compounds, including metals, dioxins/furans, semivolatile compounds including polycyclic aromatic hydrocarbons, butyltins, the 209 polychlorinated biphenyl (PCB) congeners, and total and dissolved organic carbon. Concurrent with the chemistry sampling, water-quality field parameters were measured, and representative water samples were collected and analyzed for river suspended-sediment concentration and particle-size distribution. The results provide new data that can be used to estimate sediment and chemical loads transported by the Green River to the Lower Duwamish Waterway.

  13. Using multi-frequency acoustic attenuation to monitor grain size and concentration of suspended sediment in rivers.

    Science.gov (United States)

    Moore, S A; Le Coz, J; Hurther, D; Paquier, A

    2013-04-01

    Multi-frequency acoustic backscatter profiles recorded with side-looking acoustic Doppler current profilers are used to monitor the concentration and size of sedimentary particles suspended in fluvial environments. Data at 300, 600, and 1200 kHz are presented from the Isère River in France where the dominant particles in suspension are silt and clay sizes. The contribution of suspended sediment to the through-water attenuation was determined for three high concentration (> 100 mg/L) events and compared to theoretical values for spherical particles having size distributions that were measured by laser diffraction in water samples. Agreement was good for the 300 kHz data, but it worsened with increasing frequency. A method for the determination of grain size using multi-frequency attenuation data is presented considering models for spherical and oblate spheroidal particles. When the resulting size estimates are used to convert sediment attenuation to concentration, the spheroidal model provides the best agreement with optical estimates of concentration, but the aspect ratio and grain size that provide the best fit differ between events. The acoustic estimates of size were one-third the values from laser grain sizing. This agreement is encouraging considering optical and acoustical instruments measure different parameters.

  14. CUDA Simulation of Homogeneous, Incompressible Turbulence

    Science.gov (United States)

    Morin, Lee; Shebalin, John V.; Shum, Victor; Fu, Terry

    2011-01-01

    We discuss very fast Compute Unified Device Architecture (CUDA) simulations of ideal homogeneous incompressible turbulence based on Fourier models. These models have associated statistical theories that predict that Fourier coefficients of fluid velocity and magnetic fields (if present) are zero-mean random variables. Prior numerical simulations have shown that certain coefficients have a non-zero mean value that can be very large compared to the associated standard deviation. We review the theoretical basis of this "broken ergodicity" as applied to 2-D and 3-D fluid and magnetohydrodynamic simulations of homogeneous turbulence. Our new simulations examine the phenomenon of broken ergodicity through very long time and large grid size runs performed on a state-of-the-art CUDA platform. Results comparing various CUDA hardware configurations and grid sizes are discussed. NS and MHD results are compared.

  15. Coherent Eigenmodes in Homogeneous MHD Turbulence

    Science.gov (United States)

    Shebalin, John V.

    2010-01-01

    The statistical mechanics of Fourier models of ideal, homogeneous, incompressible magnetohydrodynamic (MHD) turbulence is discussed, along with their relevance for dissipative magnetofluids. Although statistical theory predicts that Fourier coefficients of fluid velocity and magnetic field are zero-mean random variables, numerical simulations clearly show that certain coefficients have a non-zero mean value that can be very large compared to the associated standard deviation, i.e., we have coherent structure. We use eigenanalysis of the modal covariance matrices in the probability density function to explain this phenomena in terms of `broken ergodicity', which is defined to occur when dynamical behavior does not match ensemble predictions on very long time-scales. We provide examples from 2-D and 3-D magnetohydrodynamic simulations of homogeneous turbulence, and show new results from long-time simulations of MHD turbulence with and without a mean magnetic field

  16. Kinematical uniqueness of homogeneous isotropic LQC

    CERN Document Server

    Engle, Jonathan

    2016-01-01

    In a paper by Ashtekar and Campiglia, invariance under volume preserving residual diffeomorphisms has been used to single out the standard representation of the reduced holonomy-flux algebra in homogeneous loop quantum cosmology (LQC). In this paper, we use invariance under all residual diffeomorphisms to single out the standard kinematical Hilbert space of homogeneous isotropic LQC for both the standard configuration space $\\mathbb{R}_{\\mathrm{Bohr}}$, as well as for the Fleischhack one $\\mathbb{R} \\sqcup \\mathbb{R}_{\\mathrm{Bohr}}$. We first determine the scale invariant Radon measures on these spaces, and then show that the Haar measure on $\\mathbb{R}_{\\mathrm{Bohr}}$ is the only such measure for which the momentum operator is hermitian w.r.t. the corresponding inner product. In particular, the measure is forced to be identically zero on $\\mathbb{R}$ in the Fleischhack case, so that for both approaches, the standard kinematical LQC-Hilbert space is singled out.

  17. Broken Ergodicity in Ideal, Homogeneous, Incompressible Turbulence

    Science.gov (United States)

    Morin, Lee; Shebalin, John; Fu, Terry; Nguyen, Phu; Shum, Victor

    2010-01-01

    We discuss the statistical mechanics of numerical models of ideal homogeneous, incompressible turbulence and their relevance for dissipative fluids and magnetofluids. These numerical models are based on Fourier series and the relevant statistical theory predicts that Fourier coefficients of fluid velocity and magnetic fields (if present) are zero-mean random variables. However, numerical simulations clearly show that certain coefficients have a non-zero mean value that can be very large compared to the associated standard deviation. We explain this phenomena in terms of broken ergodicity', which is defined to occur when dynamical behavior does not match ensemble predictions on very long time-scales. We review the theoretical basis of broken ergodicity, apply it to 2-D and 3-D fluid and magnetohydrodynamic simulations of homogeneous turbulence, and show new results from simulations using GPU (graphical processing unit) computers.

  18. Sediment Size Effects in Acoustic Doppler Velocimeter-Derived Estimates of Suspended Sediment Concentration

    Directory of Open Access Journals (Sweden)

    Mehmet Öztürk

    2017-07-01

    Full Text Available Backscatter output from a 10 MHz acoustic Doppler velocimeter (ADV was used to quantify suspended sediment concentrations in a laboratory setting using sand-sized particles. The experiments included (a well-sorted sand samples ranging in size from 0.112 to 0.420 mm, obtained by the sieving of construction sand, (b different, known mixtures of these well-sorted fractions, and (c sieved natural beach sand with median sizes ranging from 0.112 to 0.325 mm. The tested concentrations ranged from 25 to 3000 mg•L−1. The backscatter output was empirically related to concentration and sediment size, and when non-dimensionalized by acoustic wavelength, a dimensionless sediment size gradation coefficient. Size-dependent upper and lower bounds on measurable concentrations were also established empirically. The range of measurable conditions is broad enough to make the approach useful for sand sizes and concentrations commonly encountered in nature. A new method is proposed to determine concentrations in cases of mixed-size sediment suspensions when only calibration data for well-sorted constituent sands are available. This approach could potentially allow better estimates when the suspended load is derived from but is not fully representative of the bed material, and when the size characteristics of the suspended material are varying in time over the period of interest. Differences in results between the construction and beach sands suggest that sediment shape may also need to be considered, and point to the importance of calibrating to sediments encountered at the site of interest.

  19. Suspended Sediment and Phosphorus Removal in a Woodchip Filter System Treating Agricultural Wash Water.

    Science.gov (United States)

    Choudhury, Tahina; Robertson, Will Dean; Finnigan, Darryl S

    2016-05-01

    Woodchip filters have received attention in recent years for their ability to sustain denitrification activity across multiyear time frames. However, in some freshwater aquatic ecosystems, P rather than N is the nutrient considered most responsible for eutrophication. Previous studies have indicated that woodchip filters have limited ability to remove dissolved P, but in agricultural terrain, P export in watercourses is often dominated by particulate P (PP). Woodchip media, because of their high porosity and permeability and the surface roughness of the particles, could be effective for PP removal. In this study, we tested a woodchip filter for its ability to remove suspended sediment and associated PP at a farm in southern Ontario, Canada, where vegetable wash water with extremely high total suspended solids (TSS) was generated. The treatment system consisted of a 12.3-m concrete sedimentation tank and a slightly larger woodchip filter (16.1 m) installed in a subsurface trench. During 7 mo of full-scale operation, treating 10.8 m d, the filter system removed 71% of influent total P (TP) averaging 8.8 mg L and 99% of TSS averaging 5800 mg L, with most of the removal occurring in the tank and a lesser amount (6-16%) occurring in the woodchip filter. Almost all of the TP removal was associated with PP (91% removal) because dissolved P, averaging 1.5 mg L in the wash water, was little changed. Woodchip filters, when coupled with a solids settling tank, have the potential to provide high-capacity, low-maintenance treatment of suspended solids and associated particulate P in turbid waters. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.

  20. Correlated equilibria in homogenous good Bertrand competition

    DEFF Research Database (Denmark)

    Jann, Ole; Schottmüller, Christoph

    2015-01-01

    We show that there is a unique correlated equilibrium, identical to the unique Nash equilibrium, in the classic Bertrand oligopoly model with homogenous goods and identical marginal costs. This provides a theoretical underpinning for the so-called "Bertrand paradox'' as well as its most general f...... formulation to date. Our proof generalizes to asymmetric marginal costs and arbitrarily many players in the following way: The market price cannot be higher than the second lowest marginal cost in any correlated equilibrium....

  1. A homogeneous model of spinfoam cosmology

    Science.gov (United States)

    Rennert, Julian; Sloan, David

    2013-12-01

    We examine spinfoam cosmology by use of a simple graph adapted to homogeneous cosmological models. We calculate dynamics in the isotropic limit, and provide the framework for the anisotropic case. We calculate the transition amplitude between holomorphic coherent states on a single node graph and find that the resultant dynamics is peaked on solutions which have no support on the zero volume state, indicating that big bang type singularities are avoided within such models. Communicated by P Singh

  2. Hypersurface-homogeneous space-times

    Energy Technology Data Exchange (ETDEWEB)

    Hajj-Boutros, J.

    1985-09-01

    We propose a new method to build exact solutions of Einstein field equations in case of ''hypersurface-homogeneous space-times.'' The energy-momentum tensor is of perfect fluid type. Starting from SE solutions we are able to build new classes of solutions which add to the rare solutions not satisfying the equation of state p = (..gamma..-1)..mu... We study the geometrical and physical properties of some of the solutions obtained.

  3. Hydrodynamic and suspended sediment transport controls on river mouth morphology

    Science.gov (United States)

    Falcini, F.; Piliouras, A.; Garra, R.; Guerin, A.; Jerolmack, D. J.; Rowland, J.; Paola, C.

    2014-01-01

    mouths building into standing bodies of water have strikingly varied growth habits. This presents a compelling pattern formation problem that is also of great practical relevance for subsurface prediction and managing coastal wetlands. Here we present a generalized 2.5-dimensional potential vorticity (PV) theory that explains sedimentation patterns of a sediment-laden stationary jet by coupling an understanding of vorticity with suspended sediment concentration fields. We explore the physical meaning of this new sediment-PV definition, and its impact on outflow depositional patterns, by analyzing data from a shallow wall-bounded plane jet experiment and by discussing new theoretical insights. A key result is that lateral advection and diffusion of suspended sediment are directly proportional to jet vorticity, a feature that reveals the mechanistic process that forms elongated channels by focused levee deposition. The new PV theory constitutes a more generalized mathematical framework that expands the Rouse theory for the equilibrium of suspended sediment.

  4. Equilibrium states of homogeneous sheared compressible turbulence

    Directory of Open Access Journals (Sweden)

    M. Riahi

    2011-06-01

    Full Text Available Equilibrium states of homogeneous compressible turbulence subjected to rapid shear is studied using rapid distortion theory (RDT. The purpose of this study is to determine the numerical solutions of unsteady linearized equations governing double correlations spectra evolution. In this work, RDT code developed by authors solves these equations for compressible homogeneous shear flows. Numerical integration of these equations is carried out using a second-order simple and accurate scheme. The two Mach numbers relevant to homogeneous shear flow are the turbulent Mach number Mt, given by the root mean square turbulent velocity fluctuations divided by the speed of sound, and the gradient Mach number Mg which is the mean shear rate times the transverse integral scale of the turbulence divided by the speed of sound. Validation of this code is performed by comparing RDT results with direct numerical simulation (DNS of [A. Simone, G.N. Coleman, and C. Cambon, Fluid Mech. 330, 307 (1997] and [S. Sarkar, J. Fluid Mech. 282, 163 (1995] for various values of initial gradient Mach number Mg0. It was found that RDT is valid for small values of the non-dimensional times St (St 10 in particular for large values of Mg0. This essential feature justifies the resort to RDT in order to determine equilibrium states in the compressible regime.

  5. The immersion freezing behavior of size-segregated soot and kaolinite particles

    Science.gov (United States)

    Hartmann, S.; Augustin, S.; Clauss, T.; Niedermeier, D.; Raddatz, M.; Wex, H.; Shaw, R. A.; Stratmann, F.

    2011-12-01

    Heterogeneous ice nucleation plays a crucial role for ice formation in mixed-phase and cirrus clouds and has an important impact on precipitation formation, global radiation balances, and therefore Earth's climate (Cantrell and Heymsfield, 2005). Mineral dust and soot particles are found to be a major component of ice crystal residues (e.g., Pratt et al., 2009) so these substances are potential sources of atmospheric ice nuclei (IN). Experimental studies investigating the immersion freezing behavior of size-segregated soot and kaolinite particles conducted at the Leipzig Aerosol Cloud Interaction Simulator (LACIS) are presented. In our measurements only one aerosol particle is immersed in an air suspended water droplet which can trigger ice nucleation. The method facilitates very precise examinations with respect to temperature, ice nucleation time and ice nucleus size. Considering laboratory studies, the picture of the IN ability of soot particles is quite heterogeneous. Our studies show that submicron flame, spark soot particles and optionally coated with sulfuric acid to simulate chemically aging do not act as IN at temperatures higher than homogeneous freezing taking place. Therefore soot particles might not be an important source of IN for immersion freezing in the atmosphere. In contrast, kaolinite being representative for natural mineral dust with a well known composition and structure is found to be very active in forming ice for all freezing modes (e.g., Mason and Maybank, 1958). Analyzing the immersion freezing behavior of different sized kaolinite particles (300, 500 and 700 nm in diameter) the size effect was clearly observed, i.e. the ice fraction (number of frozen droplets per total number) scales with particle surface, i.e. the larger the ice nucleus surface the higher the ice fraction. The slope of the logarithm of the ice fraction as function of temperature is similar for all particle sizes investigated and fits very well with the results of L

  6. Dynamic transport of suspended sediment by solitary wave: Experimental study

    Science.gov (United States)

    cho, JaeNam; Kim, DongHyun; Hwang, KyuNam; Lee, SeungOh

    2016-04-01

    Solitary waves are able to transport a large amount of suspended sediment when approaching on the beach, which sometimes causes - serious beach erosion, especially in the east and south coastal lines in Korea. But it has rarely been known about the method how to evaluate or estimate the amount of beach erosion caused by solitary waves. Experimental assessment is necessary to comprehend the process of sediment transport on a slope. The prismatic rectangular channel is 12 m long, 0.8 m wide, and 0.75 m high. A sluice gate is applied at prismatic channel in order to produce the solitary waves. Upstream water depth is more than channel water depth and the sluice gate is suddenly opened to simulate conditions of solitary waves. A sand slope with a 1/6 and a sediment thickness is 0.03 m. The experimental sediments are used anthracite (d_50=1.547 mm ,C_u=1.38) and Jumoonjin sand (d_50=0.627 mm ,C_u=1.68). Specific laboratory equipment are designed to collect suspended sediment samples at the same time along the wave propagation at 5 points with evenly space. Each amount of sampling is approximately 25 ml and they are completely dried in oven over 24 hours according to the USGS (Guideline and standard techniques and method 3-C4). Two video cameras (Model No. : Sony, HDR-XR550) are mounted for capturing images at top and side-view when the processes of solitary wave and run up/down on slope. Also, this study are analyzed the correlation between Suspended sediment concentration and turbidity. Also, this study are analyzed the correlation between suspended sediment concentration and turbidity. Turbidity is used to verify suspended sediment concentration. Dimensionless analyses of experimental results carried out in this study. One dimensionless parameter is expressed with pressure of solitary wave on a slope to suspended sediment concentration, which is concerned about lifting force. The other is relate to drag force presenting with run up/down velocity on a slope and

  7. Design of a LC-tuned magnetically suspended rotating gyroscope

    Science.gov (United States)

    Jin, Lichuan; Zhang, Huaiwu; Zhong, Zhiyong

    2011-04-01

    A inductor-capacitor (LC) tuned magnetically suspended rotating gyroscope prototype is designed and analyzed. High permeability ferrite cores are used for providing suspension force, and the rotation system is designed using the switched reluctance motor (SRM) principle. According to the LC-tuned principle, magnetic suspension force expression has been derived. The electromagnetic properties of the gyroscope are simulated by the Ansoft Maxwell software. And our result is expected to be able to serve as a prototype of micro-electromechanical system (MEMS) magnetically suspended rotating gyroscope in future practical applications.

  8. Quantum Hall effect in multi-terminal suspended graphene devices

    Science.gov (United States)

    Ghahari, Fereshte; Zhao, Yue; Bolotin, Kirill; Kim, Philip

    2010-03-01

    The integer and fractional quantum hall effects have been already observed in two terminal suspended graphene devices. However in this two probe device geometry, mixing between magnetoresistance ρxx and Hall resistance ρxy for incompletely developed quantum Hall states leads to substantial deviation of conductance plateaus values. In this talk, we present the experimental results from four terminal suspended graphene devices. The quality of quantum Hall effect will be discussed in muti-terminal device geometry in conjunction with the current-induced annealing process to improve the quality of graphene samples.

  9. Colorimetry Technique for Scalable Characterization of Suspended Graphene.

    Science.gov (United States)

    Cartamil-Bueno, Santiago J; Steeneken, Peter G; Centeno, Alba; Zurutuza, Amaia; van der Zant, Herre S J; Houri, Samer

    2016-11-09

    Previous statistical studies on the mechanical properties of chemical-vapor-deposited (CVD) suspended graphene membranes have been performed by means of measuring individual devices or with techniques that affect the material. Here, we present a colorimetry technique as a parallel, noninvasive, and affordable way of characterizing suspended graphene devices. We exploit Newton's rings interference patterns to study the deformation of a double-layer graphene drum 13.2 μm in diameter when a pressure step is applied. By studying the time evolution of the deformation, we find that filling the drum cavity with air is 2-5 times slower than when it is purged.

  10. A novel high-pressure precipitation tandem homogenization technology for drug nanocrystals production - a case study with ursodeoxycholic acid.

    Science.gov (United States)

    Li, Yu; Wang, Yong; Yue, Peng-Fei; Hu, Peng-Yi; Wu, Zhen-Feng; Yang, Ming; Yuan, Hai-Long

    2014-09-01

    To overcome the limitations of the conventional particle size reduction technologies, a novel combinative particle size reduction method for the effective production of homogeneous nanosuspensions was investigated. Ursodeoxycholic acid, a poorly soluble drug representative, was tried to prepare nanosuspension by homogenization technology and high-pressure precipitation tandem homogenization technology. It was shown that the combinative approach could significantly improve the particle size reduction effectiveness over conventional homogenization approach. The Box-Behnken design analysis for process optimization revealed that the acceptable UDCA-NS was obtained wherein the optimal values of A, B, C and D were 10%, 500 bar, 0.125 and 600 bar, respectively. SEM results demonstrated that no significant aggregation or crystals growth could be observed in the freeze-dried UDCA nanocrystals. The DSC and XRD results showed that UDCA remained in a crystalline state. Dissolution velocities of the freeze-dried UDCA-NS powder were distinctly superior compared to those of the crude powder and physical mixture. The high-pressure precipitation tandem homogenization technology can be a good choice for nanosuspension preparation of poorly soluble UDCA, due to high efficiency of particle size reduction.

  11. Quantifying the response of optical backscatter devices and transmissometers to variations in suspended particulate matter

    Science.gov (United States)

    Bunt, Jamie A. C.; Larcombe, Piers; Jago, Colin F.

    1999-07-01

    Optical instruments have been used effectively in studies of sediment dynamics for several decades. Without accurate instrument calibrations, calculated concentrations of suspended particulate matter (SPM) may be unreliable, with implications for interpretations of sedimentary processes and sediment fluxes. This review aims to quantify the effect of variations in SPM characteristics on the response of optical instruments (optical backscatter sensors OBS and transmissometers) and to note the implications for users of these instruments. A number of factors have a significant impact on instrument response, for example; a change in grain size from medium sands to fine silts may lead to a×100 increase in instrument response; flocculation of fine particles may decrease instrument response by×2; and the presence of plankton in suspension may lead to poor instrument calibrations of SPM concentration. Calibrations carried out in environments either with multi-modal bottom sediments, where flocculation of fine-grained sediments is likely, or where the hydrodynamics or grain type are highly variable must also include a determination of the changing nature of the suspended load in space and time. A more complete understanding of instrument response to SPM and of calibration requirements may enable optical devices to be used to a greater potential as long-term measures of SPM concentration, and also enable improvements in calculations of net sediment fluxes.

  12. Characterisation of the suspended particulate matter in a stratified estuarine environment employing complementary techniques

    Science.gov (United States)

    Thomas, Luis P.; Marino, Beatriz M.; Szupiany, Ricardo N.; Gallo, Marcos N.

    2017-09-01

    The ability to predict the sediment and nutrient circulation within estuarine waters is of significant economic and ecological importance. In these complex systems, flocculation is a dynamically active process that is directly affected by the prevalent environmental conditions. Consequently, the floc properties continuously change, which greatly complicates the characterisation of the suspended particle matter (SPM). In the present study, three different techniques are combined in a stratified estuary under quiet weather conditions and with a low river discharge to search for a solution to this problem. The challenge is to obtain the concentration, size and flux of suspended elements through selected cross-sections using the method based on the simultaneous backscatter records of 1200 and 600 kHz ADCPs, isokinetic sampling data and LISST-25X measurements. The two-ADCP method is highly effective for determining the SPM size distributions in a non-intrusive way. The isokinetic sampling and the LISST-25X diffractometer offer point measurements at specific depths, which are especially useful for calibrating the ADCP backscatter intensity as a function of the SPM concentration and size, and providing complementary information on the sites where acoustic records are not available. Limitations and potentials of the techniques applied are discussed.

  13. Numerical homogenization of elastic and thermal material properties for metal matrix composites (MMC)

    Science.gov (United States)

    Schindler, Stefan; Mergheim, Julia; Zimmermann, Marco; Aurich, Jan C.; Steinmann, Paul

    2017-01-01

    A two-scale material modeling approach is adopted in order to determine macroscopic thermal and elastic constitutive laws and the respective parameters for metal matrix composite (MMC). Since the common homogenization framework violates the thermodynamical consistency for non-constant temperature fields, i.e., the dissipation is not conserved through the scale transition, the respective error is calculated numerically in order to prove the applicability of the homogenization method. The thermomechanical homogenization is applied to compute the macroscopic mass density, thermal expansion, elasticity, heat capacity and thermal conductivity for two specific MMCs, i.e., aluminum alloy Al2024 reinforced with 17 or 30 % silicon carbide particles. The temperature dependency of the material properties has been considered in the range from 0 to 500°C, the melting temperature of the alloy. The numerically determined material properties are validated with experimental data from the literature as far as possible.

  14. Particle detectors

    CERN Multimedia

    CERN. Geneva

    1999-01-01

    Introduction, interaction of radiation with matter measurement of momentum of charged particles, of energy of e/gamma, hadrons, identification of particles. Design of HEP detectors. Principle of operation and performance of tracking sub-detectors, calorimeters and muon system.

  15. Particle size distribution in ground biological samples.

    Science.gov (United States)

    Koglin, D; Backhaus, F; Schladot, J D

    1997-05-01

    Modern trace and retrospective analysis of Environmental Specimen Bank (ESB) samples require surplus material prepared and characterized as reference materials. Before the biological samples could be analyzed and stored for long periods at cryogenic temperatures, the materials have to be pre-crushed. As a second step, a milling and homogenization procedure has to follow. For this preparation, a grinding device is cooled with liquid nitrogen to a temperature of -190 degrees C. It is a significant condition for homogeneous samples that at least 90% of the particles should be smaller than 200 microns. In the German ESB the particle size distribution of the processed material is determined by means of a laser particle sizer. The decrease of particle sizes of deer liver and bream muscles after different grinding procedures as well as the consequences of ultrasonic treatment of the sample before particle size measurements have been investigated.

  16. Robust Discrimination between Single Gold Nanoparticles and Their Dimers in Aqueous Solution for Ultrasensitive Homogeneous Bioassays

    Directory of Open Access Journals (Sweden)

    Jun Kobayashi

    2015-01-01

    Full Text Available We propose a robust method to distinguish isolated single gold nanoparticles (AuNP monomers and their dimers under Brownian motion, a key for ultrasensitive homogeneous bioassays, including AuNP sandwich assays. To detect dimers and distinguish them from a larger number of monomers in aqueous solution, single-particle polarization microscopy was performed. For the accurate detection of individual particles, the optical anisotropy and rotational diffusion time are measured because a dimer is much more anisotropic than the nearly spherical monomer and the rotational diffusion time of a dimer is four times that of a monomer. By employing an autocorrelation analysis, we defined a measure of distinguishing that simultaneously enables high detection probability and low error probability. The detection platform offers homogeneous DNA hybridization assays and immunoassays at the subpicomolar level.

  17. Spatial distribution of soil erosion and suspended sediment ...

    Indian Academy of Sciences (India)

    sediment transport rate for Chou-Shui river basin ... 5, Anzhong Road,. Tainan 70970, Taiwan. 4. Department of Hydraulics and Ocean Engineering, National Cheng-Kung University, No. 1,. University Road, Tainan ... surface runoff discharge, suspended sediment transport rate, quantity of soil erosion, and spatial distribu-.

  18. Calamine lotion: experimenting with a new suspending agent.

    Science.gov (United States)

    Al-Achi, A; Greenwood, R; Akin-Isijola, A; Bullard, J

    1999-01-01

    The use of a new suspending agent is investigated. Calamine lotion, USP contains bentonite magma as a suspending agent. In this study, bentonite magma was partially or completely replaced with a new suspending agent called tahini. Tahini is sesame paste composed of crushed sesame seeds in sesame oil. It is frequently used in middle eastern food as a thickening and suspending agent. Calamine lotion was prepared, generally, according to the USP method. The formula contained 40% v/v magma. Tahini was added instead of bentonite magma by replacing 100%, 99%, 90%, 75%, 50% and 25% of the magma. The sedimentation volume and the degree of flocculation were calculated for the resulting preparations. Rheological characteristics of bentonite- and tahini-containing lotions were also determined. Sedimentation volume showed 0.723 and 0.851 (p=0.05) for the lotions containing 100% bentonite and 100% tahini, respectively. The degree of flocculation was 2.00 and 2.35 (p=0.05) for the 100% bentonite and 100% tahini lotions, respectively. The rheograms of all the suspensions showed pseudoplastic flow. Overall, the use of tahini in calamine lotion has improved the physical stability of the formula.

  19. Turbulence Flow Characteristics of Suspended Sediments and its ...

    African Journals Online (AJOL)

    These are inturn integrated to give the hydraulic resistance law for sediment laden flow. The law of velocity distribution in open channel flow with suspended sediments was derived introducing Monin-Obukhov Length L . The distribution equation agrees well with the observation of velocity profile in the experiments.

  20. Microscopic characterisation of suspended graphene grown by chemical vapour deposition

    NARCIS (Netherlands)

    Bignardi, L.; Dorp, W.F. van; Gottardi, S.; Ivashenko, O.; Dudin, P.; Barinov, A.; de Hosson, J.T.M.; Stöhr, M.; Rudolf, P.

    2013-01-01

    We present a multi-technique characterisation of graphene grown by chemical vapour deposition (CVD) and thereafter transferred to and suspended on a grid for transmission electron microscopy (TEM). The properties of the electronic band structure are investigated by angle-resolved photoelectron

  1. Geochemistry of suspended and settling solids in two freshwater lakes.

    NARCIS (Netherlands)

    Koelmans, A.A.

    1998-01-01

    This study describes the 1987–1992 time variationof the bulk chemical composition, levels of heavymetals, arsenic, nitrogen and phosporous insuspended and settling solids in Lake Volkerak andLake Zoom (The Netherlands). Suspended and setlingsolids were collected with continuous flowcentrifuges and

  2. Comparison of Suspended Solid Separation in Advanced Storm Overflow Structures

    DEFF Research Database (Denmark)

    Larsen, Torben; Sørensen, Morten Steen

    1990-01-01

    This paper describes a laboratory investigation of the separation of suspended solids in a circular weir overflow and a vortex separator. The basic idea is to evaluate the efficiency of a vortical flow in the overflow chamber, and to compare these results with other overflow structures....

  3. Current-use insecticides, phosphates and suspended solids in the ...

    African Journals Online (AJOL)

    In Western Cape orchard areas, the last pesticide application of the growing season in summer takes place at the end of February. Pesticides, total phosphates and total suspended solids (TSS) were measured in the Lourens River at the beginning of April 1999 prior to the first rainfall of the rainy season and in the middle of ...

  4. Reduction in density of suspended - sediment - laden natural waters

    Digital Repository Service at National Institute of Oceanography (India)

    Joseph, A.; Desa, E.; Desa, E.; Smith, D.; Peshwe, V.B.; VijayKumar, K.; Desa, J.A.E.

    to 0.4% - 4.5%) that of the density of the same water without suspended sediment. Teh values of peff in a given site differed from one tidal cycle to another (approx equal to 1.9%). These values varied slightly (less than 0.8%) from mid-tide to slack...

  5. Spatial Distribution of Suspended Particulate Matter in Mtwapa ...

    African Journals Online (AJOL)

    Surface water concentrations of inorganic nutrients and suspended particulate matter (SPM) components from Mtwapa and Shirazi creeks in Kenya were measured and compared. This was aimed at assessing the contribution of phytoplankton carbon, particulate organic carbon (POC) and detritus on the total SPM pool, and ...

  6. Nature of suspended particulate matter and concentrations of heavy ...

    African Journals Online (AJOL)

    The concentrations of metals in bottom sediment in the Tanzanian waters of Lake Victoria and the nature of suspended particulate matter (SPM) were analysed. The objective of the study was to compare levels of metals in sediment from different locations and to establish their sources. Metal concentrations were higher in ...

  7. Amino sugars in suspended particulate matter from the Bay of ...

    Indian Academy of Sciences (India)

    Amino sugars (AS)are important constituents of organic matter.However,very little is known about their cycling in marine waters.In this research,we assessed the distribution and cycling of these compounds in waters of the Bay of Bengal.For this purpose,samples of suspended particulate matter (SPM)were collected from 8 ...

  8. Stabilised suspending efficiency of Laponite XLG and sodium ...

    African Journals Online (AJOL)

    Charged drugs like Sulphamerazine may make pseudoplastic/plastic materials become Newtonian and loose their suspending power. In this study ... For this purpose, the rheograms of the systems were obtained by the use of a Haake rotoviscometer RV 12 utilizing a cup and rotor sensor system MV 1. In the absence of ...

  9. Spin Transport in High-Quality Suspended Graphene Devices

    NARCIS (Netherlands)

    Guimaraes, Marcos H. D.; Veligura, A.; Zomer, P. J.; Maassen, T.; Vera-Marun, I. J.; Tombros, N.; van Arees, B. J.; Wees, B.J. van

    We measure spin transport in high mobility suspended graphene (mu approximate to 10(5)cm(2)/(V s)), obtaining a (spin) diffusion coefficient of 0.1 m(2)/s and giving a lower bound on the spin relaxation time (tau(s) approximate to 150 ps) and spin relaxation length (lambda(s) = 4.7 mu m) for

  10. 40 CFR 52.330 - Control strategy: Total suspended particulates.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 3 2010-07-01 2010-07-01 false Control strategy: Total suspended... PROGRAMS (CONTINUED) APPROVAL AND PROMULGATION OF IMPLEMENTATION PLANS Colorado § 52.330 Control strategy..., the State must repromulgate Regulation No. 1 to satisfy reasonably available control technology...

  11. Evaluation of the suspending properties of Abizia zygia gum on ...

    African Journals Online (AJOL)

    Method: The suspending properties of Albizia zygia gum (family Mimosoideae) were evaluated comparatively with those of Compound Tragacanth, Acacia and Gelatin at concentration range of 0.5 – 4.0%w/v in Sulphadimidine suspension. Characterization tests were carried out on purified Albizia zygia gum. Sedimentation ...

  12. Discrete Dynamics of Nanoparticle Channelling in Suspended Graphene

    DEFF Research Database (Denmark)

    Booth, Tim; Pizzocchero, Filippo; Andersen, Henrik

    2011-01-01

    We have observed a previously undescribed stepwise oxidation of mono- and few layer suspended graphene by silver nanoparticles in situ at subnanometer scale in an environmental transmission electron microscope. Over the range of 600–850 K, we observe crystallographically oriented channelling...

  13. Method for separating biological cells. [suspended in aqueous polymer systems

    Science.gov (United States)

    Brooks, D. E. (Inventor)

    1980-01-01

    A method for separating biological cells by suspending a mixed cell population in a two-phase polymer system is described. The polymer system consists of droplet phases with different surface potentials for which the cell populations exhibit different affinities. The system is subjected to an electrostatic field of sufficient intensity to cause migration of the droplets with an attendant separation of cells.

  14. Opportunities Suspended: The Disparate Impact of Disciplinary Exclusion from School

    Science.gov (United States)

    Losen, Daniel J.; Gillespie, Jonathan

    2012-01-01

    Well over three million children, K-12, are estimated to have lost instructional "seat time" in 2009-2010 because they were suspended from school, often with no guarantee of adult supervision outside the school. That's about the number of children it would take to fill every seat in every major league baseball park and every NFL stadium…

  15. Microwave-induced nonequilibrium temperature in a suspended carbon nanotube

    NARCIS (Netherlands)

    Hortensius, H.L.; Öztürk, A.; Zeng, P.; Driessen, E.F.C.; Klapwijk, T.M.

    2012-01-01

    Antenna-coupled suspended single carbon nanotubes exposed to 108?GHz microwave radiation are shown to be selectively heated with respect to their metal contacts. This leads to an increase in the conductance as well as to the development of a power-dependent DC voltage. The increased conductance

  16. Scanning tunneling spectroscopy of suspended single-wall carbon nanotubes

    NARCIS (Netherlands)

    LeRoy, B.J.; Lemay, S.G.; Kong, J.; Dekker, C.

    2004-01-01

    We have performed low-temperature scanning tunneling microscopy measurements on single-wall carbon nanotubes that are freely suspended over a trench. The nanotubes were grown by chemical vapor deposition on a Pt substrate with predefined trenches etched into it. Atomic resolution was obtained on the

  17. Evaluation of the Suspending Properties of the Coprecipitate of ...

    African Journals Online (AJOL)

    The suspending ability of the different ratios was evaluated in magnesium trisilicate suspension, and compared with a suspension prepared with Compound Tragacanth Powder BP (CTP) as well as a commercially available magnesium trisilicate suspension (MTS). The parameters tested were sedimentation rate, flow rate, ...

  18. Suspended microstructures of epoxy based photoresists fabricated with UV photolithography

    DEFF Research Database (Denmark)

    Hemanth, Suhith; Anhøj, Thomas Aarøe; Caviglia, Claudia

    2017-01-01

    In this work we present an easy, fast, reliable and low cost microfabrication technique for fabricating suspended microstructures of epoxy based photoresistswith UV photolithography. Two different fabrication processes with epoxy based resins (SU-8 and mr-DWL) using UV exposures at wavelengths...

  19. Optical Characterization of the Interaction of Mercury with Nanoparticulate Gold Suspended in Solution

    Directory of Open Access Journals (Sweden)

    Kevin SCALLAN

    2007-11-01

    Full Text Available We have demonstrated that the surface plasmon resonance (SPR wavelength of gold nanoparticles suspended in solution can be modified by exposure to elemental mercury at sub parts per million (ppm concentrations in nitrogen. Ultraviolet-visible (UV-vis absorption spectroscopy was used to monitor the wavelength and maximum absorbance of the colloidal solution during and after the exposure process. Transmission electron microscopy (TEM images revealed modifications to the morphology of the particles (size, shape, and extent of aggregation. The results show that the SPR wavelength is blue-shifted and the absorbance is increased with exposure time. After the exposure, the spectra were observed to relax toward their original position suggesting that the detection medium is regenerative.

  20. Overview of selected surrogate technologies for high-temporal resolution suspended-sediment monitoring

    Science.gov (United States)

    Gray, John R.; Gartner, Jeffrey W.

    2010-01-01

    Traditional methods for characterizing selected properties of suspended sediments in rivers are being augmented and in some cases replaced by cost-effective surrogate instruments and methods that produce a temporally dense time series of quantifiably accurate data for use primarily in sediment-flux computations. Turbidity is the most common such surrogate technology, and the first to be sanctioned by the U.S. Geological Survey for use in producing data used in concert with water-discharge data to compute sediment concentrations and fluxes for storage in the National Water Information System. Other technologies, including laser-diffraction, digital photo-optic, acoustic-attenuation and backscatter, and pressure-difference techniques are being evaluated for producing reliable sediment concentration and, in some cases, particle-size distribution data. Each technology addresses a niche for sediment monitoring. Their performances range from compelling to disappointing. Some of these technologies have the potential to revolutionize fluvial-sediment data collection, analysis, and availability.

  1. Diffusion piecewise homogenization via flux discontinuity factors

    Energy Technology Data Exchange (ETDEWEB)

    Sanchez, Richard; Zmijarevic, Igor, E-mail: richard.sanchez@cea.fr, E-mail: igor.zmijarevic@cea.fr [Commissariat a l' Energie Atomique et aux Energies Alternatives, Service d' Etudes de Reacteurs et de Mathematiques Appliquees, Gif-sur-Yvette cedex (France)

    2011-07-01

    We analyze the calculation of flux discontinuity factors (FDFs) for use with piecewise subdomain assembly homogenization. These coefficients depend on the numerical mesh used to compute the diffusion problem. When the mesh has a single degree of freedom on subdomain interfaces the solution is unique and can be computed independently per subdomain. For all other cases we have implemented an iterative calculation for the FDFs. Our numerical results show that there is no solution to this nonlinear problem but that the iterative algorithm converges towards FDFs values that reproduce subdomains reaction rates with a relatively high precision. In our test we have included both the GET and black-box FDFs. (author)

  2. Chemical composition modulates the adverse effects of particles on the mucociliary epithelium

    Directory of Open Access Journals (Sweden)

    Regiani Carvalho-Oliveira

    2015-10-01

    Full Text Available OBJECTIVE:We compared the adverse effects of two types of real ambient particles; i.e., total suspended particles from an electrostatic precipitator of a steel mill and fine air particles from an urban ambient particulate matter of 2.5 µm, on mucociliary clearance.METHOD:Mucociliary function was quantified by mucociliary transport, ciliary beating frequency and the amount of acid and neutral mucous in epithelial cells through morphometry of frog palate preparations. The palates were immersed in one of the following solutions: total suspended particles (0.1 mg/mL, particulate matter 2.5 µm 0.1 mg/mL (PM0.1 or 3.0 mg/mL (PM3.0 and amphibian Ringer’s solution (control. Particle chemical compositions were determined by X-ray fluorescence and gas chromatography/mass spectrometry.RESULTS:Exposure to total suspended particles and PM3.0 decreased mucociliary transport. Ciliary beating frequency was diminished by total suspended particles at all times during exposure, while particulate matter of 2.5 µm did not elicit changes. Particulate matter of 2.5 µm reduced epithelial mucous and epithelium thickness, while total suspended particles behaved similarly to the control group. Total suspended particles exhibited a predominance of Fe and no organic compounds, while the particulate matter 2.5 µm contained predominant amounts of S, Fe, Si and, to a lesser extent, Cu, Ni, V, Zn and organic compounds.CONCLUSION:Our results showed that different compositions of particles induced different airway epithelial responses, emphasizing that knowledge of their individual characteristics may help to establish policies aimed at controlling air pollution.

  3. Variability of suspended sediment yields within the Loire river basin (France)

    Science.gov (United States)

    Gay, A.; Cerdan, O.; Delmas, M.; Desmet, M.

    2014-11-01

    . However, a strong spatial variability within this territory exists. The expected results on the SY spatial pattern distribution and the correlation between SY values and basin sizes are not observed. An analysis of the SY values at different time steps shows a strong effect of the seasonal availability of detached particles to be transported with a high concentration of suspended sediments during the winter and lower values during the summer and autumn. Annual variations are also observed, with export values varying by a factor 2 to 10 between years for one catchment and the amplitude of the annual variations varying between catchments. The influence of rainfall in the sediment exports is predominant, but investigations on physical characteristics of each catchment (e.g., lithology, slope, land use) are required to better understand the production and transfer processes within a drainage basin. These annual variations imply that long-term data are required to provide mean SY values representative of the catchment functioning. From our calculations, 18 complete years of data are required to obtain a mean SY value with less than 10% of variation on average around the mean. From our results on nested catchments over a long-time scale (40 yr), it appears that most of the suspended sediment load entering the water system is transported downstream. Covariations of the annual-SY values are generally observed for two gauging stations located on the same river. The nested catchment approach is an interesting tool for the identification of active sediment sources within a large catchment and for the construction of detailed sediment budgets.

  4. Effects of suspended sediment concentration and grain size on three optical turbidity sensors

    Science.gov (United States)

    Merten, Gustavo Henrique; Capel, Paul D.; Minella, Jean P.G.

    2014-01-01

    Purpose: Optical turbidity sensors have been successfully used to determine suspended sediment flux in rivers, assuming the relation between the turbidity signal and suspended sediment concentration (SSC) has been appropriately calibrated. Sediment size, shape and colour affect turbidity and are important to incorporate into the calibration process. Materials and methods: This study evaluates the effect of SSC and particle size (i.e. medium sand, fine sand, very fine sand, and fines (silt + clay)) on the sensitivity of the turbidity signal. Three different turbidity sensors were used, with photo detectors positioned at 90 and 180 degrees relative to the axis of incident light. Five different sediment ratios of sand:fines (0:100, 25:75, 50:50, 75:25 and 100:0) were also evaluated for a single SSC (1000 mg l-1). Results and discussion: The photo detectors positioned at 90 degrees were more sensitive than sensor positioned at 180 degrees in reading a wide variety of grain size particles. On average for the three turbidity sensors, the sensitivity for fines were 170, 40, and 4 times greater than sensitivities for medium sand, fine sand, and very fine sand, respectively. For an SSC of 1000 mg l-1 with the treatments composed of different proportions of sand and fines, the presence of sand in the mixture linearly reduced the turbidity signal. Conclusions: The results indicate that calibration of the turbidity signal should be carried out in situ and that the attenuation of the turbidity signal due to sand can be corrected, as long as the proportion of sand in the SSC can be estimated.

  5. An analysis of bedload and suspended load interactions

    Science.gov (United States)

    Recking, alain; Navratil, Oldrich

    2013-04-01

    Several approaches were used to develop suspension equations. It includes semi-theoretical equations based on the convection diffusion equation (Einstein 1950; Van Rijn 1984; Camenen and Larson 2008; Julien 2010), semi-empirical tools based on energy concept (Velikanov 1954; Bagnold 1966), empirical adjustments (Prosser and Rusttomji 2000). One essential characteristic of all these equations is that most of them were developed by considering continuity between bedload and suspended load, and that the partitioning between these two modes of transport evolves progressively with increasing shear stress, which is the case for fine bed materials. The use of these equations is thus likely to be welcome in estuaries or lowland sandy rivers, but may be questionable in gravel-bed rivers and headwater streams where the bed is usually structured vertically and fine sediments potentially contributing to suspension are stored under a poorly mobile surface armour comprising coarse sediments. Thus one question this work aimed to answer is does the presence of an armour at the bed surface influence suspended load? This was investigated through a large field data set comprising instantaneous measurements of both bedload and suspension. We also considered the river characteristics, distinguishing between lowland rivers, gravel bed rivers and headwater streams. The results showed that a correlation exist between bedload and suspension for lowland and gravel bed rivers. This suggests that in gravel bed rivers a large part of the suspended load is fed by subsurface material, and depends on the remobilization of the surface material. No correlation was observed for head water streams where the sediment production is more likely related to hillslope processes. These results were used with a bedload transport equation for proposing a method for suspended load estimate. The method is rough, but especially for gravel bed rivers, it predicts suspended load reasonably well when compared to

  6. Si isotope homogeneity of the solar nebula

    Energy Technology Data Exchange (ETDEWEB)

    Pringle, Emily A.; Savage, Paul S.; Moynier, Frédéric [Department of Earth and Planetary Sciences and McDonnell Center for the Space Sciences, Washington University in St. Louis, One Brookings Drive, St. Louis, MO 63130 (United States); Jackson, Matthew G. [Department of Earth Science, University of California, Santa Barbara, CA 93109 (United States); Barrat, Jean-Alix, E-mail: eapringle@wustl.edu, E-mail: savage@levee.wustl.edu, E-mail: pringle@ipgp.fr, E-mail: moynier@ipgp.fr, E-mail: jackson@geol.ucsb.edu, E-mail: Jean-Alix.Barrat@univ-brest.fr [Université Européenne de Bretagne, Université de Brest, CNRS UMR 6538 (Domaines Océaniques), I.U.E.M., Place Nicolas Copernic, F-29280 Plouzané Cedex (France)

    2013-12-20

    The presence or absence of variations in the mass-independent abundances of Si isotopes in bulk meteorites provides important clues concerning the evolution of the early solar system. No Si isotopic anomalies have been found within the level of analytical precision of 15 ppm in {sup 29}Si/{sup 28}Si across a wide range of inner solar system materials, including terrestrial basalts, chondrites, and achondrites. A possible exception is the angrites, which may exhibit small excesses of {sup 29}Si. However, the general absence of anomalies suggests that primitive meteorites and differentiated planetesimals formed in a reservoir that was isotopically homogenous with respect to Si. Furthermore, the lack of resolvable anomalies in the calcium-aluminum-rich inclusion measured here suggests that any nucleosynthetic anomalies in Si isotopes were erased through mixing in the solar nebula prior to the formation of refractory solids. The homogeneity exhibited by Si isotopes may have implications for the distribution of Mg isotopes in the solar nebula. Based on supernova nucleosynthetic yield calculations, the expected magnitude of heavy-isotope overabundance is larger for Si than for Mg, suggesting that any potential Mg heterogeneity, if present, exists below the 15 ppm level.

  7. Irregular Homogeneity Domains in Ternary Intermetallic Systems

    Directory of Open Access Journals (Sweden)

    Jean-Marc Joubert

    2015-12-01

    Full Text Available Ternary intermetallic A–B–C systems sometimes have unexpected behaviors. The present paper examines situations in which there is a tendency to simultaneously form the compounds ABx, ACx and BCx with the same crystal structure. This causes irregular shapes of the phase homogeneity domains and, from a structural point of view, a complete reversal of site occupancies for the B atom when crossing the homogeneity domain. This work reviews previous studies done in the systems Fe–Nb–Zr, Hf–Mo–Re, Hf–Re–W, Mo–Re–Zr, Re–W–Zr, Cr–Mn–Si, Cr–Mo–Re, and Mo–Ni–Re, and involving the topologically close-packed Laves, χ and σ phases. These systems have been studied using ternary isothermal section determination, DFT calculations, site occupancy measurement using joint X-ray, and neutron diffraction Rietveld refinement. Conclusions are drawn concerning this phenomenon. The paper also reports new experimental or calculated data on Co–Cr–Re and Fe–Nb–Zr systems.

  8. Emergence of Leadership within a Homogeneous Group.

    Directory of Open Access Journals (Sweden)

    Brent E Eskridge

    Full Text Available Large scale coordination without dominant, consistent leadership is frequent in nature. How individuals emerge from within the group as leaders, however transitory this position may be, has become an increasingly common question asked. This question is further complicated by the fact that in many of these aggregations, differences between individuals are minor and the group is largely considered to be homogeneous. In the simulations presented here, we investigate the emergence of leadership in the extreme situation in which all individuals are initially identical. Using a mathematical model developed using observations of natural systems, we show that the addition of a simple concept of leadership tendencies which is inspired by observations of natural systems and is affected by experience can produce distinct leaders and followers using a nonlinear feedback loop. Most importantly, our results show that small differences in experience can promote the rapid emergence of stable roles for leaders and followers. Our findings have implications for our understanding of adaptive behaviors in initially homogeneous groups, the role experience can play in shaping leadership tendencies, and the use of self-assessment in adapting behavior and, ultimately, self-role-assignment.

  9. Characterization of aerodynamic drag force on single particles: Final report

    Energy Technology Data Exchange (ETDEWEB)

    Kale, S.R.

    1987-10-01

    An electrodynamic balance was used to measure the drag coefficient and also to record the size and shape of spheres, and coal and oil shale particles (100 ..mu..m to 200 ..mu..m in size). The electrodynamic balance consisted of a central, and two end electrodes. The resulting electric field stably suspended a charged particle. A suspended particle, back illuminated by a light emitting diode, was viewed by a video camera. The image was analyzed for particle position control and was calibrated to give the diameter of spheres, or the area equivalent diameter of nonspherical particles. The drag coefficient was calculated from the air velocity and the dc voltage required to keep the particle at the balance center. The particle Reynolds number varied from 0.2 to 13. Three particles each of coal and oil shale were captured and photographed by a scanning electron microscope and the motion of all the particles was recorded on video tape. Drag coefficient vs Reynolds number data for spheres agreed well with correlations. Data for thirteen particles each of coal and oil shale indicated a power law relationship between drag coefficient and Reynolds number. All these particles exhibited higher drag than spheres and were also observed to rotate. The rotation, however, did not affect the drag coefficient. The choice of characteristic dimension affects the drag characteristics of oil shale more strongly than for coal, owing to the flake-like shape of oil shale. 38 figs., 5 tabs.

  10. Numerical homogenization: survey, new results, and perspectives

    Directory of Open Access Journals (Sweden)

    Gloria Antoine

    2012-09-01

    Full Text Available These notes give a state of the art of numerical homogenization methods for linear elliptic equations. The guideline of these notes is analysis. Most of the numerical homogenization methods can be seen as (more or less different discretizations of the same family of continuous approximate problems, which H-converges to the homogenized problem. Likewise numerical correctors may also be interpreted as approximations of Tartar’s correctors. Hence the convergence analysis of these methods relies on the H-convergence theory. When one is interested in convergence rates, the story is different. In particular one first needs to make additional structure assumptions on the heterogeneities (say periodicity for instance. In that case, a crucial tool is the spectral interpretation of the corrector equation by Papanicolaou and Varadhan. Spectral analysis does not only allow to obtain convergence rates, but also to devise efficient new approximation methods. For both qualitative and quantitative properties, the development and the analysis of numerical homogenization methods rely on seminal concepts of the homogenization theory. These notes contain some new results. Ces notes de cours dressent un état de l’art des méthodes d’homogénéisation numérique pour les équations elliptiques linéaires. Le fil conducteur choisi est l’analyse. La plupart des méthodes d’homogénéisation numérique s’interprète comme des discrétisations (plus ou moins différentes d’une même famille de problèmes continus approchés qui H-converge vers le problème homogénéisé. De même, le concept de correcteur numérique s’interprète comme une approximation des correcteurs introduits par Tartar. Ainsi l’analyse de convergence repose essentiellement sur la théorie de la H-convergence. Si on s’intéresse aux estimations quantitatives d’erreur, il faut faire des hypothèses supplémentaires de structure sur les hétérogénéités (périodicité par

  11. Potential threat of heavy metals in re-suspended dusts on building surfaces in oilfield city

    Science.gov (United States)

    Kong, Shaofei; Lu, Bing; Bai, Zhipeng; Zhao, Xueyan; Chen, Li; Han, Bin; Li, Zhiyong; Ji, Yaqin; Xu, Yonghai; Liu, Yong; Jiang, Hua

    2011-08-01

    30 re-suspended dust samples were collected from building surfaces of an oilfield city, then re-suspended through PM 2.5, PM 10 and PM 100 inlets and analyzed for 10 metals including V, Cr, Mn, Co, Ni, Cu, Zn, As, Cd and Pb by inductively coupled plasma-mass spectroscopy. Metals concentrations in different fractions and locations were studied. Metals sources were identified by cluster and primary component analysis. The potential risk to human health was assessed by human exposure model. Results showed that Zn, Mn, Pb and Cu were higher in all the three fractions. V, Cr, Mn and Co ranged close to the background values of Chinese soil indicating that they were mainly from crustal materials. Concentrations of Zn, Mn, Pb, V, Cr, Ni, Co and Cd were higher in old district than that in new district for the three fractions. The PM 2.5/PM 10, PM 10/PM 100 and PM 2.5/PM 100 ratios were higher for Zn, Cd, Cu, Pb, Ni, As and Cr (all higher than 1.0), and lower for Co, Mn and V (all less than or close to 1.0) which meant that anthropologic sources associated metals were more easily accumulated in finer particles than metals from crustal materials. Spatial variations indicated that the ten metals peaked at surroundings near railway station, gas stations, industrial boilers and machine manufacturing plant implying the influence of local vehicle emission, fossil fuel combustion and industrial activities as well as crustal materials which was verified by cluster analysis and primary component analysis results. Ingestion of dust particles appeared to be the main route of exposure to re-suspended dust. Hazard Indexes of As were both highest for children and adult which could be a potential threat to human health for non-cancer effect and it also exhibited the highest values for cancer effect as 1.01E-06, 7.04E-07 and 7.21E-07 for PM 2.5, PM 10 and PM 100, respectively.

  12. Discriminating silt-and-clay from suspended-sand in rivers using side-looking acoustic profilers

    Science.gov (United States)

    Wright, Scott A.; Topping, David J.; Williams, Cory A.

    2010-01-01

    techniques rely on measurements of ancillary properties that correlate with suspended-sediment concentration and particle size and thus require the collection of traditional samples for calibration. Through in situ deployments, these methods can provide the high temporal resolution that cannot be achieved through traditional sampling. Here we focus on the evaluation of acoustic profiling techniques (e.g. acoustic-Doppler sideways-looking profilers, or ADPs). One major advantage of acoustic profiling is the ability to concurrently measure water velocity (using Doppler-shift methods) and suspended-sediment concentration such that suspended-sediment flux can be directly computed using data from a single instrument. Acoustic-Doppler profilers have become popular for measuring water velocity and discharge in rivers, through both moving-boat operations and from fixed deployments such as bank-mounted sideways-looking instruments (Hirsch and Costa, 2004, Muste et al., 2007). The method presented herein is most suited to sideways-looking applications as a complement to the "index velocity" technique, whereby an index velocity from a sideways-looking instrument is related to the cross-section average velocity (determined from moving-boat discharge measurements) as a means for developing a continuous water-discharge record (Ruhl and Simpson, 2005). Topping et al. (2007) presented a method for discriminating silt-and-clay from suspended sand, using single frequency ADPs. This method takes advantage of the relations among acoustic backscatter, sediment-induced acoustic attenuation, suspended-sediment concentration (SSC), and particle size distribution (PSD). Backscatter is the amount of sound scattered back and received at the transducer while sediment-induced attenuation is the amount of sound scattered in other directions and absorbed by the sediment particles. Both of these parameters can be measured with an ADP, and their different dependencies on SSC and PSD allow for the

  13. Collision efficiencies of diffusing spherical particles: hydrodynamic, van der Waals and electrostatic forces

    OpenAIRE

    Valioulis, Iraklis A.; List, E. John

    1984-01-01

    A practical limitation of the application of Smoluchowski's classical estimate for the collisions probability of two diffusing spherical particles in Brownian motion is the non-consideration of interparticle forcves. For suspended particles in water such forces can arise from the disturbance the particle causes in the fluid (hydrodynamic forces), from the cloud of ions which surround an electrically charged particle (double layer forces) or they can be of molecular origin (van der Waals force...

  14. Temperature signal in suspended sediment export from an Alpine catchment

    Directory of Open Access Journals (Sweden)

    A. Costa

    2018-01-01

    Full Text Available Suspended sediment export from large Alpine catchments ( >  1000 km2 over decadal timescales is sensitive to a number of factors, including long-term variations in climate, the activation–deactivation of different sediment sources (proglacial areas, hillslopes, etc., transport through the fluvial system, and potential anthropogenic impacts on the sediment flux (e.g. through impoundments and flow regulation. Here, we report on a marked increase in suspended sediment concentrations observed near the outlet of the upper Rhône River Basin in the mid-1980s. This increase coincides with a statistically significant step-like increase in basin-wide mean air temperature. We explore the possible explanations of the suspended sediment rise in terms of changes in water discharge (transport capacity, and the activation of different potential sources of fine sediment (sediment supply in the catchment by hydroclimatic forcing. Time series of precipitation and temperature-driven snowmelt, snow cover, and ice melt simulated with a spatially distributed degree-day model, together with erosive rainfall on snow-free surfaces, are tested to explore possible reasons for the rise in suspended sediment concentration. We show that the abrupt change in air temperature reduced snow cover and the contribution of snowmelt, and enhanced ice melt. The results of statistical tests show that the onset of increased ice melt was likely to play a dominant role in the suspended sediment concentration rise in the mid-1980s. Temperature-driven enhanced melting of glaciers, which cover about 10 % of the catchment surface, can increase suspended sediment yields through an increased contribution of sediment-rich glacial meltwater, increased sediment availability due to glacier recession, and increased runoff from sediment-rich proglacial areas. The reduced extent and duration of snow cover in the catchment are also potential contributors to the rise in suspended sediment

  15. A method for testing the cosmic homogeneity with Shannon entropy

    Science.gov (United States)

    Pandey, Biswajit

    2013-04-01

    We propose a method for testing cosmic homogeneity based on the Shannon entropy in Information theory and test the potentials and limitations of the method on Monte Carlo simulations of some homogeneous and inhomogeneous 3D point process in a finite region of space. We analyse a set of N-body simulations to investigate the prospect of determining the scale of homogeneity with the proposed method and show that the method could serve as an efficient tool for the study of homogeneity.

  16. Suspended sediment profiles derived from spectral attenuation coefficients measurements using neural network method

    Digital Repository Service at National Institute of Oceanography (India)

    Varkey, G.; Suresh, T.; Matondkar, S.G.P.; Desa, E.; Kamath, S.S.

    total suspended matter values from water samples obtained at discrete depths at the same location. An artificial neural network (ANN) model has been used to derive suspended matter from the spectral values of beam attenuation coefficients measured using...

  17. Impact of sound attenuation by suspended sediment on ADCP backscatter calibrations

    NARCIS (Netherlands)

    Sassi, M.G.; Hoitink, A.J.F.; Vermeulen, B.

    2012-01-01

    Although designed for velocity measurements, acoustic Doppler current profilers (ADCPs) are widely being used to monitor suspended particulate matter in rivers and in marine environments. To quantify mass concentrations of suspended matter, ADCP backscatter is generally calibrated with in situ

  18. Effect of Martian Suspended Dust on Albedo Measurements from the MGS-TES Data

    OpenAIRE

    A. Zinzi; Palomba, E.; Rinaldi, G.; d'Amore, M.

    2010-01-01

    Suspended dust on Mars influences albedo measurements by orbiting instruments, but not necessary the real surface albedo. The aim of this study is to characterize the role of suspended aerosols on albedo measurement by remote sensing instruments.

  19. Design, analysis and control of cable-suspended parallel robots and its applications

    CERN Document Server

    Zi, Bin

    2017-01-01

    This book provides an essential overview of the authors’ work in the field of cable-suspended parallel robots, focusing on innovative design, mechanics, control, development and applications. It presents and analyzes several typical mechanical architectures of cable-suspended parallel robots in practical applications, including the feed cable-suspended structure for super antennae, hybrid-driven-based cable-suspended parallel robots, and cooperative cable parallel manipulators for multiple mobile cranes. It also addresses the fundamental mechanics of cable-suspended parallel robots on the basis of their typical applications, including the kinematics, dynamics and trajectory tracking control of the feed cable-suspended structure for super antennae. In addition it proposes a novel hybrid-driven-based cable-suspended parallel robot that uses integrated mechanism design methods to improve the performance of traditional cable-suspended parallel robots. A comparative study on error and performance indices of hybr...

  20. Homogeneous spaces and transitive actions by Polish groups

    NARCIS (Netherlands)

    van Mill, J.

    2008-01-01

    We prove that for every homogeneous and strongly locally homogeneous Polish space X there is a Polish group admitting a transitive action on X. We also construct an example of a homogeneous Polish space which is not a coset space and on which no separable metrizable topological group acts

  1. Polygamous particles.

    Science.gov (United States)

    Wu, Kun-Ta; Feng, Lang; Sha, Ruojie; Dreyfus, Rémi; Grosberg, Alexander Y; Seeman, Nadrian C; Chaikin, Paul M

    2012-11-13

    DNA is increasingly used as an important tool in programming the self-assembly of micrometer- and nanometer-scale particles. This is largely due to the highly specific thermoreversible interaction of cDNA strands, which, when placed on different particles, have been used to bind precise pairs in aggregates and crystals. However, DNA functionalized particles will only reach their true potential for particle assembly when each particle can address and bind to many different kinds of particles. Indeed, specifying all bonds can force a particular designed structure. In this paper, we present the design rules for multiflavored particles and show that a single particle, DNA functionalized with many different "flavors," can recognize and bind specifically to many different partners. We investigate the cost of increasing the number of flavors in terms of the reduction in binding energy and melting temperature. We find that a single 2-μm colloidal particle can bind to 40 different types of particles in an easily accessible time and temperature regime. The practical limit of ∼100 is set by entropic costs for particles to align complementary pairs and, surprisingly, by the limited number of distinct "useful" DNA sequences that prohibit subunits with nonspecific binding. For our 11 base "sticky ends," the limit is 73 distinct sequences with no unwanted overlaps of 5 bp or more. As an example of phenomena enabled by polygamous particles, we demonstrate a three-particle system that forms a fluid of isolated clusters when cooled slowly and an elastic gel network when quenched.

  2. Individual particle analysis in suburban Osaka

    Science.gov (United States)

    Nakata, Makiko; Sano, Itaru; Mukai, Sonoyo

    2012-11-01

    Higashi-Osaka is urban area located on the east of Osaka city in Japan. We equip various ground measurement devices in Higashi-Osaka campus of Kinki University. The data supplied by the Cimel instrument are analyzed with a standard AERONET (Aerosol Robotics Network) processing system. We set up an SPM sampler attached to our AERONET site. It is found from the simultaneous measurements and analyses that clear atmosphere with few small particles is not too often, usually polluted particles from diesel vehicles and industries are suspended at Higashi-Osaka and the characterization of atmospheric particles varies especially in dust phenomenon. Then we performed detailed analysis of atmospheric particles in dust days. We analyzed atmospheric particles with scanning electron microscope coupled with energy dispersive X-ray analyzer. This instrument can detect contain elements of sample by X-ray emanated from the surface of the sample. In order to investigate change of particle properties before and after dust event, we select three cases as before dust reaches to Higashi-Osaka, peak of dust event and after dust event and after dust passes. The results of analyses for each case indicate that nonspherical particles with large particle size are dominant and the main component becomes silicon derived from soil particles at the peak of dust event and soil particles remain after dust event. It is found that sometimes anthropogenic pollutant is transported to Higashi-Osaka before dust comes and components from anthropogenic source increase before dust event.

  3. Suspended particle and pathogen peak discharge buffering by a surface-flow constructed wetland

    NARCIS (Netherlands)

    Mulling, B.T.M.; van den Boomen, R.M.; van der Geest, H.G.; Kappelhof, J.W.N.M.; Admiraal, W.

    2013-01-01

    Constructed wetlands (CWs) have been shown to improve the water quality of treated wastewater. The capacity of CWs to reduce nutrients, pathogens and organic matter and restore oxygen regime under normal operating conditions cannot be extrapolated to periods of incidental peak discharges. The

  4. Primary production, nutrients, and size spectra of suspended particles in the southern North Sea

    NARCIS (Netherlands)

    Gieskes, W.W.C.

    1972-01-01

    The effect of nutrient enrichment from the Rhine on some major characteristics of the phytoplankton ecosystem of Dutch coastal waters was studied with 14C, liquid scintillation and Coulter Counter techniques. The magnitude of primary production in the most eutrophic waters closest to

  5. Homogenization of the lipid profile values.

    Science.gov (United States)

    Pedro-Botet, Juan; Rodríguez-Padial, Luis; Brotons, Carlos; Esteban-Salán, Margarita; García-Lerín, Aurora; Pintó, Xavier; Lekuona, Iñaki; Ordóñez-Llanos, Jordi

    2017-12-20

    Analytical reports from the clinical laboratory are essential to guide clinicians about what lipid profile values should be considered altered and, therefore, require intervention. Unfortunately, there is a great heterogeneity in the lipid values reported as "normal, desirable, recommended or referenced" by clinical laboratories. This can difficult clinical decisions and be a barrier to achieve the therapeutic goals for cardiovascular prevention. A recent international recommendation has added a new heterogeneity factor for the interpretation of lipid profile, such as the possibility of measuring it without previous fasting. All this justifies the need to develop a document that adapts the existing knowledge to the clinical practice of our health system. In this regard, professionals from different scientific societies involved in the measurement and use of lipid profile data have developed this document to establish recommendations that facilitate their homogenization. Copyright © 2017. Publicado por Elsevier España, S.L.U.

  6. Sojourning with the Homogeneous Poisson Process.

    Science.gov (United States)

    Liu, Piaomu; Peña, Edsel A

    2016-01-01

    In this pedagogical article, distributional properties, some surprising, pertaining to the homogeneous Poisson process (HPP), when observed over a possibly random window, are presented. Properties of the gap-time that covered the termination time and the correlations among gap-times of the observed events are obtained. Inference procedures, such as estimation and model validation, based on event occurrence data over the observation window, are also presented. We envision that through the results in this paper, a better appreciation of the subtleties involved in the modeling and analysis of recurrent events data will ensue, since the HPP is arguably one of the simplest among recurrent event models. In addition, the use of the theorem of total probability, Bayes theorem, the iterated rules of expectation, variance and covariance, and the renewal equation could be illustrative when teaching distribution theory, mathematical statistics, and stochastic processes at both the undergraduate and graduate levels. This article is targeted towards both instructors and students.

  7. Homogeneous catalyst formulations for methanol production

    Science.gov (United States)

    Mahajan, Devinder; Sapienza, Richard S.; Slegeir, William A.; O'Hare, Thomas E.

    1990-01-01

    There is disclosed synthesis of CH.sub.3 OH from carbon monoxide and hydrogen using an extremely active homogeneous catalyst for methanol synthesis directly from synthesis gas. The catalyst operates preferably between 100.degree.-150.degree. C. and preferably at 100-150 psia synthesis gas to produce methanol. Use can be made of syngas mixtures which contain considerable quantities of other gases, such as nitrogen, methane or excess hydrogen. The catalyst is composed of two components: (a) a transition metal carbonyl complex and (b) an alkoxide component. In the simplest formulation, component (a) is a complex of nickel tetracarbonyl and component (b) is methoxide (CH.sub.3 O.sup.13 ), both being dissolved in a methanol solvent system. The presence of a co-solvent such as p-dioxane, THF, polyalcohols, ethers, hydrocarbons, and crown ethers accelerates the methanol synthesis reaction.

  8. 48 CFR 52.209-6 - Protecting the Government's Interest When Subcontracting With Contractors Debarred, Suspended, or...

    Science.gov (United States)

    2010-10-01

    ...'s Interest When Subcontracting With Contractors Debarred, Suspended, or Proposed for Debarment. 52....209-6 Protecting the Government's Interest When Subcontracting With Contractors Debarred, Suspended... Government's Interest When Subcontracting With Contractors Debarred, Suspended, or Proposed for Debarment...

  9. Experimental study on inter-particle acoustic forces.

    Science.gov (United States)

    Garcia-Sabaté, Anna; Castro, Angélica; Hoyos, Mauricio; González-Cinca, Ricard

    2014-03-01

    A method for the experimental measurement of inter-particle forces (secondary Bjerknes force) generated by the action of an acoustic field in a resonator micro-channel is presented. The acoustic radiation force created by an ultrasonic standing wave moves suspended particles towards the pressure nodes and the acoustic pressure induces particle volume oscillations. Once particles are in the levitation plane, transverse and secondary Bjerknes forces become important. Experiments were carried out in a resonator filled with a suspension composed of water and latex particles of different size (5-15 μm) at different concentrations. Ultrasound was generated by means of a 2.5 MHz nominal frequency transducer. For the first time the acoustic force generated by oscillating particles acting on other particles has been measured, and the critical interaction distance in various cases has been determined. Inter-particle forces on the order of 10(-14) N have been measured by using this method.

  10. Dynamics of finite size neutrally buoyant particles in isotropic turbulence

    Energy Technology Data Exchange (ETDEWEB)

    Elhimer, M; Jean, A; Praud, O; Bazile, R; Marchal, M; Couteau, G, E-mail: elhimer@imft.fr [Universite de Toulouse, INPT, UPS, IMFT - Institut de Mecanique des Fluides de Toulouse, Allee Camille Soula, F-31400 Toulouse (France); CNRS, IMFT, F-31400 Toulouse (France)

    2011-12-22

    The dynamics of neutrally buoyant particles suspended in a turbulent flow is investigated experimentally, with particles having diameters larger than the Kolmogorov length scale. To that purpose, a turbulence generator have been constructed and the resulting flow characterized. The fluid was then seeded with polystyrene particles of diameter about 1 mm and their velocity measured separately and simultaneously with the surrounding fluid. Comparison of the velocities statistics between the two phases shows no appreciable discrepancy. However, simultaneous velocity measurement shows that particles may move in different direction from the underlying flow.

  11. Influence of Homogenization and Thermal Processing on the Gastrointestinal Fate of Bovine Milk Fat: In Vitro Digestion Study.

    Science.gov (United States)

    Liang, Li; Qi, Ce; Wang, Xingguo; Jin, Qingzhe; McClements, David Julian

    2017-12-20

    Dairy lipids are an important source of energy and nutrients for infants and adults. The dimensions, aggregation state, and interfacial properties of fat globules in raw milk are changed by dairy processing operations, such as homogenization and thermal processing. These changes influence the behavior of fat globules within the human gastrointestinal tract (GIT). The gastrointestinal fate of raw milk, homogenized milk, high temperature short time (HTST) pasteurized milk, and ultrahigh temperature (UHT) pasteurized milk samples was therefore determined using a simulated GIT. The properties of particles in different regions of the GIT depended on the degree of milk processing. Homogenization increased the initial lipid digestion rate but did not influence the final digestion extent. Thermal processing of homogenized milk decreased the initial rate and final extent of lipid digestion, which was attributed to changes in interfacial structure. These results provide insights into the impact of dairy processing on the gastrointestinal fate of milk fat.

  12. Evaluation of Laser In Situ Scattering Instrument for Measuring Concentration of Phytoplankton, Purple Sulfur Bacteria, and Suspended Inorganic Sediments in Lakes

    OpenAIRE

    Serra, Teresa; Colomer, Jordi; Cristina, Xavier P.; Vila, Xavier; Arellano, Juan B.; Casamitjana, Xavier

    2001-01-01

    A laser in situ scattering and transmissometry (Lisst-100) probe has been used for estimating the particle-size distribution of phytopankton, purple photosynthetic sulphur bacteria (Chromatiaceae), and suspended inorganic sediments in different lakes. Results from Lisst-100 have been compared to laboratory measurements, such as those obtained by using a Galai laser size analyzer (GL), an optical microscope (OM), and a flow cytometer (FC). Although all of these instruments were shown to provid...

  13. Particle cosmology

    CERN Multimedia

    CERN. Geneva

    2007-01-01

    The understanding of the Universe at the largest and smallest scales traditionally has been the subject of cosmology and particle physics, respectively. Studying the evolution of the Universe connects today's large scales with the tiny scales in the very early Universe and provides the link between the physics of particles and of the cosmos. This series of five lectures aims at a modern and critical presentation of the basic ideas, methods, models and observations in today's particle cosmology.

  14. 78 FR 48145 - Lemon Juice From Argentina: Continuation of Suspended Antidumping Duty Investigation

    Science.gov (United States)

    2013-08-07

    ... Doc No: 2013-19067] DEPARTMENT OF COMMERCE International Trade Administration [A-357-818] Lemon Juice... of the suspended investigation on lemon juice from Argentina would likely lead to continuation or... of the suspended antidumping duty investigation on lemon juice from Argentina (``suspended...

  15. Suspended 3D pyrolytic carbon microelectrodes for electrochemistry

    DEFF Research Database (Denmark)

    Hemanth, Suhith; Caviglia, Claudia; Keller, Stephan Sylvest

    2017-01-01

    Carbon microelectrodes have a wide range of applications because of their unique material properties and biocompatibility. This work presents the fabrication and characterization of suspended pyrolytic carbon microstructures serving as three-dimensional (3D) carbon microelectrodes for electrochem...... resistance as compared to 2D carbon electrodes. The higher sensitivity of 3D carbon microelectrodes for electrochemical sensing was illustrated by dopamine detection.......Carbon microelectrodes have a wide range of applications because of their unique material properties and biocompatibility. This work presents the fabrication and characterization of suspended pyrolytic carbon microstructures serving as three-dimensional (3D) carbon microelectrodes...... for electrochemical applications. A 3D polymer template in epoxy based photoresist (SU-8) was fabricated with multiple steps of UV photolithography and pyrolysed at 900 °C to obtain 3D carbon microelectrodes. The pyrolytic carbon microstructures were characterized by SEM, Raman spectroscopy and XPS to determine...

  16. Approximate Series Solutions for Nonlinear Free Vibration of Suspended Cables

    Directory of Open Access Journals (Sweden)

    Yaobing Zhao

    2014-01-01

    Full Text Available This paper presents approximate series solutions for nonlinear free vibration of suspended cables via the Lindstedt-Poincare method and homotopy analysis method, respectively. Firstly, taking into account the geometric nonlinearity of the suspended cable as well as the quasi-static assumption, a mathematical model is presented. Secondly, two analytical methods are introduced to obtain the approximate series solutions in the case of nonlinear free vibration. Moreover, small and large sag-to-span ratios and initial conditions are chosen to study the nonlinear dynamic responses by these two analytical methods. The numerical results indicate that frequency amplitude relationships obtained with different analytical approaches exhibit some quantitative and qualitative differences in the cases of motions, mode shapes, and particular sag-to-span ratios. Finally, a detailed comparison of the differences in the displacement fields and cable axial total tensions is made.

  17. Particle Physics

    CERN Document Server

    Martin, B R

    2008-01-01

    An essential introduction to particle physics, with coverage ranging from the basics through to the very latest developments, in an accessible and carefully structured text. Particle Physics: Third Edition is a revision of a highly regarded introduction to particle physics. In its two previous editions this book has proved to be an accessible and balanced introduction to modern particle physics, suitable for those students needed a more comprehensive introduction to the subject than provided by the 'compendium' style physics books. In the Third Edition the standard mod

  18. Is it possible to homogenize resonant chiral metamaterials ?

    DEFF Research Database (Denmark)

    Andryieuski, Andrei; Menzel, Christoph; Rockstuhl, Carsten

    2010-01-01

    Homogenization of metamaterials is very important as it makes possible description in terms of effective parameters. In this contribution we consider the homogenization of chiral metamaterials. We show that for some metamaterials there is an optimal meta-atom size which depends on the coupling...... between meta-atoms. We introduce numerical criterion of homogeneity on the basis of the Bloch modes dispersion diagram calculation and a tool to predict the homogeneity limit. We show that some metamaterials with strong coupling between meta-atoms cannot be considered as homogeneous at all...

  19. Tire-tread and bitumen particle concentrations in aerosol and soil samples

    DEFF Research Database (Denmark)

    Fauser, Patrik; Tjell, Jens Christian; Mosbæk, Hans

    2002-01-01

    ire and bitumen particle concentrations are determined in aerosol and soil samples. They each constitute about 5 wt-% of the total suspended particulate matter (TSP) in inner city air, collected with a Berner low pressure impactor, 5 m from a road. The particle size distribution shows that 92...

  20. [Light absorption by suspended particulate matter in Chagan Lake, Jilin].

    Science.gov (United States)

    Wang, Yuan-Dong; Liu, Dian-Wei; Song, Kai-Shan; Zhang, Bai; Wang, Zong-Ming; Jiang, Guang-Ji; Tang, Xu-Guang; Lei, Xiao-Chun; Wu, Yan-Qing

    2011-01-01

    Spectral characteristics and the magnitudes of light absorption by suspended particulate matter were determined by spectrophotometry in this optically complex Lake Chagan waters for the purpose of surveying the natural variability of the absorption coefficients to parameterize the bio-optical models for converting satellite or in-situ water reflectance signatures into water quality information. Experiments were carried out on seasonal frozen Lake Chagan, one representative inland case-2 water body in Northeast of China. Particulate absorption properties analyzed using the field data on July 15th and October 12th 2009 were measured using the quantitative filter technique to produce absorption spectra containing several fractions that could be attributed to two main optical active constituents (OACs) phytoplankton pigments and non-algal particulates (mineral sediments, and organic detritus). Results suggested that the suspended particulate matter (SPM) concentration was higher while phytoplankton biomass (chlorophyll-a concentration) was lower in July and that in October. The spectral shape of total suspended particulate matter resembled that of non-algal particulates which contributed greater than phytoplankton in total particulate absorption during both periods. An obvious absorption peak occurring at around 440 nm exhibited an increase in phytoplankton contribution in October. Non-algal particulate absorption at 440 nm (a(NAP) (440)) had better correlation with total suspended particulate matter concentration than that with chlorophyll-a over the two periods. Light absorption by phytoplankton pigments in the Chagan lake region was generally lower than that of non-algal components. Chl. a dominating phytoplankton pigment composition functioned exponentially with its absorption coefficients at 440 and 675 nm specifically, the average values of which in July were 0.146 8 m2 x mg(-1) and 0.050 3 respectively while in October they were 0.153 3 and 0.013 2 m2 x mg(-1